Artificial intelligence applications in space and SDI: A survey
NASA Technical Reports Server (NTRS)
Fiala, Harvey E.
1988-01-01
The purpose of this paper is to survey existing and planned Artificial Intelligence (AI) applications to show that they are sufficiently advanced for 32 percent of all space applications and SDI (Space Defense Initiative) software to be AI-based software. To best define the needs that AI can fill in space and SDI programs, this paper enumerates primary areas of research and lists generic application areas. Current and planned NASA and military space projects in AI will be reviewed. This review will be largely in the selected area of expert systems. Finally, direct applications of AI to SDI will be treated. The conclusion covers the importance of AI to space and SDI applications, and conversely, their importance to AI.
Designing application software in wide area network settings
NASA Technical Reports Server (NTRS)
Makpangou, Mesaac; Birman, Ken
1990-01-01
Progress in methodologies for developing robust local area network software has not been matched by similar results for wide area settings. The design of application software spanning multiple local area environments is examined. For important classes of applications, simple design techniques are presented that yield fault tolerant wide area programs. An implementation of these techniques as a set of tools for use within the ISIS system is described.
NASA Astrophysics Data System (ADS)
Sacco, Giovanni Maria; Ferré, Sébastien
This chapter discusses a number of real-world applications of dynamic taxonomies. Most current applications are object-seeking or knowledge-seeking exploratory tasks, and address important areas such as e-commerce, multimedia infobases, diagnostic systems, digital libraries and news systems, e-government, file systems, and geographical information systems. Applications in these areas are discussed in detail in the following, and applications in cultural heritage, art and architecture, e-recruitment, e-hrm, e-matchmaking, e-health, and e-learning are briefly reviewed.
Large-area graphene for sensor applications
NASA Astrophysics Data System (ADS)
Snow, Eric S.
2010-04-01
Graphene represents an important new material with potential Department of Defense sensor applications. At the Naval Research Laboratory we have developed three techniques to produce large-area graphene films. We have used this material to construct chemical and radio-frequency electromagnetic sensors. Here we report the initial results of this effort.
7 CFR 319.56-4 - Approval of certain fruits and vegetables for importation.
Code of Federal Regulations, 2014 CFR
2014-01-01
... section, as well as the applicable requirements for their importation, may be found on the Internet at... all applicable provisions of § 319.56-3. (2) The fruits or vegetables are imported from a pest-free... fruits or vegetables originated in a pest-free area in the country of origin. (3) The fruits or...
7 CFR 319.56-4 - Approval of certain fruits and vegetables for importation.
Code of Federal Regulations, 2012 CFR
2012-01-01
... section, as well as the applicable requirements for their importation, may be found on the Internet at... all applicable provisions of § 319.56-3. (2) The fruits or vegetables are imported from a pest-free... fruits or vegetables originated in a pest-free area in the country of origin. (3) The fruits or...
7 CFR 319.56-4 - Approval of certain fruits and vegetables for importation.
Code of Federal Regulations, 2013 CFR
2013-01-01
... section, as well as the applicable requirements for their importation, may be found on the Internet at... all applicable provisions of § 319.56-3. (2) The fruits or vegetables are imported from a pest-free... fruits or vegetables originated in a pest-free area in the country of origin. (3) The fruits or...
Advanced Sensors and Applications Study (ASAS)
NASA Technical Reports Server (NTRS)
Chism, S. B.; Hughes, C. L.
1976-01-01
The present EOD requirements for sensors in the space shuttle era are reported with emphasis on those applications which were deemed important enough to warrant separate sections. The application areas developed are: (1) agriculture; (2) atmospheric corrections; (3) cartography; (4) coastal studies; (5) forestry; (6) geology; (7) hydrology; (8) land use; (9) oceanography; and (10) soil moisture. For each application area. The following aspects were covered: (1) specific goals and techniques, (2) individual sensor requirements including types, bands, resolution, etc.; (3) definition of mission requirements, type orbits, coverages, etc.; and (4) discussion of anticipated problem areas and solutions. The remote sensors required for these application areas include; (1) camera systems; (2) multispectral scanners; (3) microwave scatterometers; (4) synthetic aperture radars; (5) microwave radiometers; and (6) vidicons. The emphasis in the remote sensor area was on the evaluation of present technology implications about future systems.
Modeling grain-size dependent bias in estimating forest area: a regional application
Daolan Zheng; Linda S. Heath; Mark J. Ducey
2008-01-01
A better understanding of scaling-up effects on estimating important landscape characteristics (e.g. forest percentage) is critical for improving ecological applications over large areas. This study illustrated effects of changing grain sizes on regional forest estimates in Minnesota, Wisconsin, and Michigan of the USA using 30-m land-cover maps (1992 and 2001)...
Calculation Methods and Conversions for Pesticide Application.
ERIC Educational Resources Information Center
Cole, Herbert, Jr.
This agriculture extension service publication from Pennsylvania State University consists of conversion tables and formulas for determining concentration and rate of application of pesticides. Contents include: (1) Area and volume conversions; (2) Important conversion formulae; (3) Conversions for rates of application; (4) Quantities of pesticide…
2014-09-18
Converter AES Advance Encryption Standard ANN Artificial Neural Network APS Application Support AUC Area Under the Curve CPA Correlation Power Analysis ...Importance WGN White Gaussian Noise WPAN Wireless Personal Area Networks XEnv Cross-Environment XRx Cross-Receiver xxi ADVANCES IN SCA AND RF-DNA...based tool called KillerBee was released in 2009 that increases the exposure of ZigBee and other IEEE 802.15.4-based Wireless Personal Area Networks
Microbiology studies in the Space Shuttle
NASA Technical Reports Server (NTRS)
Taylor, G. R.
1976-01-01
Past space microbiology studies have evaluated three general areas: microbe detection in extraterrestrial materials; monitoring of autoflora and medically important species on crewmembers, equipment, and cabin air; and in vitro evaluations of isolated terrestrial species carried on manned and unmanned spaceflights. These areas are briefly reviewed to establish a basis for presenting probable experiment subjects applicable to the Space Shuttle era. Most extraterrestrial life detection studies involve visitations to other heavenly bodies. Although this is not applicable to the first series of Shuttle flights, attempts to capture meteors and spores in space could be important. Human pathogen and autoflora monitoring will become more important with increased variety among crewmembers. Inclusion of contaminated animal and plant specimens in the space lab will necessitate inflight evaluation of cross-contamination and infection potentials. The majority of Shuttle microbiology studies will doubtless fall into the third study area. Presence of a space lab will permit a whole range of experimentation under conditions similar to these experienced in earth-based laboratories. The recommendations of various study groups are analyzed, and probable inflight microbiological experiment areas are identified for the Life Sciences Shuttle Laboratory.
Cross validation issues in multiobjective clustering
Brusco, Michael J.; Steinley, Douglas
2018-01-01
The implementation of multiobjective programming methods in combinatorial data analysis is an emergent area of study with a variety of pragmatic applications in the behavioural sciences. Most notably, multiobjective programming provides a tool for analysts to model trade offs among competing criteria in clustering, seriation, and unidimensional scaling tasks. Although multiobjective programming has considerable promise, the technique can produce numerically appealing results that lack empirical validity. With this issue in mind, the purpose of this paper is to briefly review viable areas of application for multiobjective programming and, more importantly, to outline the importance of cross-validation when using this method in cluster analysis. PMID:19055857
ERIC Educational Resources Information Center
Williams, Daniel G.
Planners in multicounty rural areas can use the Rural Development, Activity Analysis Planning (RDAAP) model to try to influence the optimal growth of their areas among different general economic goals. The model implies that best industries for rural areas have: high proportion of imported inputs; low transportation costs; high value added/output…
Development of EPA OTM 10 for Landfill Applications, Interim Report
Quantification of greenhouse gas emissions from area sources is of increasing importance. Due to the spatial extent and non homogenous nature of many area sources, assessment of fugitive emissions using traditional point sampling techniques can be problematic. To address this, th...
Isotopic Discrimination of Perchlorate Sources in Ground Water
NASA Astrophysics Data System (ADS)
Bohlke, J.; Hatzinger, P. B.; Sturchio, N. C.; Gu, B.; Jackson, W. A.; Abbene, I. J.
2007-12-01
Perchlorate has been detected in ground water and drinking water in many areas of the U.S. during the past decade. Sources of potential perchlorate enrichment in ground water include releases from past military activities, fireworks manufacture and display, fertilizer applications, discarded road flares, and local atmospheric deposition. Here we present analyses of stable isotopes (δ37Cl, δ18O, and Δ17O) of dissolved perchlorate, along with other supporting environmental tracer data, from selected occurrences in ground water in the U.S. The isotope data indicate that both synthetic and natural perchlorate are present in ground water, and that multiple sources are present locally in some areas. The sampled ground waters generally were oxic and the perchlorate isotopes generally were not affected substantially by biodegradation. In some areas, natural perchlorate, with Δ17O = +7 to +10 ‰, can be attributed to agricultural applications of atmospherically derived natural nitrate fertilizer imported from South America (Atacama Desert, Chile). In at least one agricultural area in New York, concentrations of perchlorate increase with depth and ground-water age, possibly because of decreasing application rates of Atacama nitrate fertilizer and(or) decreasing perchlorate concentrations in the imported fertilizer products in recent years.
Computational methods and software systems for dynamics and control of large space structures
NASA Technical Reports Server (NTRS)
Park, K. C.; Felippa, C. A.; Farhat, C.; Pramono, E.
1990-01-01
Two key areas of crucial importance to the computer-based simulation of large space structures are discussed. The first area involves multibody dynamics (MBD) of flexible space structures, with applications directed to deployment, construction, and maneuvering. The second area deals with advanced software systems, with emphasis on parallel processing. The latest research thrust in the second area involves massively parallel computers.
Terrestrial Observations from NOAA Operational Satellites.
Yates, H; Strong, A; McGinnis, D; Tarpley, D
1986-01-31
Important applications to oceanography, hydrology, and agriculture have been developed from operational satellites of the National Oceanic and Atmospheric Administration and are currently expanding rapidly. Areas of interest involving the oceans include sea surface temperature, ocean currents, and ocean color. Satellites can monitor various hydrological phenomena, including regional and global snow cover, river and sea ice extent, and areas of global inundation. Agriculturally important quantities derived from operational satellite observations include precipitation, daily temperature extremes, canopy temperatures, insolation, and snow cover. This overview describes the current status of each area.
Applications of Machine Learning and Rule Induction,
1995-02-15
An important area of application for machine learning is in automating the acquisition of knowledge bases required for expert systems. In this paper...we review the major paradigms for machine learning , including neural networks, instance-based methods, genetic learning, rule induction, and analytic
7 CFR 4284.630 - Other considerations.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 1940 of this title. Applications for technical assistance or planning projects are generally excluded... within their plans the important environmental factors within the planning area and the potential environmental impacts of the plan on the planning area, as well as the alternative planning strategies that were...
ERIC Educational Resources Information Center
Shumate, Brian T.; Munoz, Marco A.; Winter, Paul A.
2005-01-01
Recruitment of public school administrators is an important issue due to the shortage of qualified job applicants nationwide. The shortage of applicants requires school districts to evaluate their internal pools of potential applicants for administrative vacancies. This evaluation research addressed the recruitment of teacher-leaders to serve as…
NASA Technical Reports Server (NTRS)
Rosen, Paul A.
2012-01-01
This lecture was just a taste of radar remote sensing techniques and applications. Other important areas include Stereo radar grammetry. PolInSAR for volumetric structure mapping. Agricultural monitoring, soil moisture, ice-mapping, etc. The broad range of sensor types, frequencies of observation and availability of sensors have enabled radar sensors to make significant contributions in a wide area of earth and planetary remote sensing sciences. The range of applications, both qualitative and quantitative, continue to expand with each new generation of sensors.
Stakeholders analysis on criteria for protected areas management categories in Peninsular Malaysia
NASA Astrophysics Data System (ADS)
Hashim, Z.; Abdullah, S. A.; Nor, S. Md.
2017-10-01
The establishment of protected areas has always been associated with a strategy to conserve biodiversity. A well-managed protected areas not only protect the ecosystem and threatened species but also provides benefits to the public. These indeed require sound management practices through the application of protected areas management categories which can be is seen as tools for planning, establishment and administration of protected areas as well as to regulate the activities in the protected areas. However, in Peninsular Malaysia the implementation of the protected areas management categories was carried out based on the ‘ad-hoc’ basis without realising the important of the criteria based on the local values. Thus, an investigation has been sought to establish the criteria used in application to the protected areas management categories in Peninsular Malaysia. The outcomes revealed the significant of social, environment and economic criteria in establishing the protected area management categories in Peninsular Malaysia.
Data mining and medical world: breast cancers' diagnosis, treatment, prognosis and challenges.
Oskouei, Rozita Jamili; Kor, Nasroallah Moradi; Maleki, Saeid Abbasi
2017-01-01
The amount of data in electronic and real world is constantly on the rise. Therefore, extracting useful knowledge from the total available data is very important and time consuming task. Data mining has various techniques for extracting valuable information or knowledge from data. These techniques are applicable for all data that are collected inall fields of science. Several research investigations are published about applications of data mining in various fields of sciences such as defense, banking, insurances, education, telecommunications, medicine and etc. This investigation attempts to provide a comprehensive survey about applications of data mining techniques in breast cancer diagnosis, treatment & prognosis till now. Further, the main challenges in these area is presented in this investigation. Since several research studies currently are going on in this issues, therefore, it is necessary to have a complete survey about all researches which are completed up to now, along with the results of those studies and important challenges which are currently exist in this area for helping young researchers and presenting to them the main problems that are still exist in this area.
Data mining and medical world: breast cancers’ diagnosis, treatment, prognosis and challenges
Oskouei, Rozita Jamili; Kor, Nasroallah Moradi; Maleki, Saeid Abbasi
2017-01-01
The amount of data in electronic and real world is constantly on the rise. Therefore, extracting useful knowledge from the total available data is very important and time consuming task. Data mining has various techniques for extracting valuable information or knowledge from data. These techniques are applicable for all data that are collected inall fields of science. Several research investigations are published about applications of data mining in various fields of sciences such as defense, banking, insurances, education, telecommunications, medicine and etc. This investigation attempts to provide a comprehensive survey about applications of data mining techniques in breast cancer diagnosis, treatment & prognosis till now. Further, the main challenges in these area is presented in this investigation. Since several research studies currently are going on in this issues, therefore, it is necessary to have a complete survey about all researches which are completed up to now, along with the results of those studies and important challenges which are currently exist in this area for helping young researchers and presenting to them the main problems that are still exist in this area. PMID:28401016
NASA Astrophysics Data System (ADS)
Wang, Haijiang; Yang, Ling
2014-12-01
In this paper, the application of vector analysis tool in the illuminated area and the Doppler frequency distribution research for the airborne pulse radar is studied. An important feature of vector analysis is that it can closely combine the geometric ideas with algebraic calculations. Through coordinate transform, the relationship between the frame of radar antenna and the ground, under aircraft motion attitude, is derived. Under the time-space analysis, the overlap area between the footprint of radar beam and the pulse-illuminated zone is obtained. Furthermore, the Doppler frequency expression is successfully deduced. In addition, the Doppler frequency distribution is plotted finally. Using the time-space analysis results, some important parameters of a specified airborne radar system are obtained. Simultaneously, the results are applied to correct the phase error brought by attitude change in airborne synthetic aperture radar (SAR) imaging.
LARGE AREA LAND COVER MAPPING THROUGH SCENE-BASED CLASSIFICATION COMPOSITING
Over the past decade, a number of initiatives have been undertaken to create definitive national and global data sets consisting of precision corrected Landsat MSS and TM scenes. One important application of these data is the derivation of large area land cover products spanning ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baer, Donald R.; Shutthanandan, Vaithiyalingam
Nano-sized objects are increasingly important as biomaterials and their surfaces play critical roles in determining their beneficial or deleterious behaviors in biological systems. Important characteristics of nanomaterials that impact their application in many areas are described with a strong focus on the importance of particle surfaces and surface characterization. Understanding aspects of the inherent nature of nano-objects and the important role that surfaces play in these applications is a universal need for any research or product development using such materials in biological applications. The role of surface analysis methods in collecting critical information about the nature of particle surfaces andmore » physicochemical properties of nano-objects is described along with the importance of including sample history and analysis results in a record of provenance information regarding specific batches of nano-objects.« less
Williams, Gregory M.; Faraji, Ary; Unlu, Isik; Healy, Sean P.; Farooq, Muhammad; Gaugler, Randy; Hamilton, George; Fonseca, Dina M.
2014-01-01
The increasing range of Aedes albopictus, the Asian tiger mosquito, in the USA and the threat of chikungunya and dengue outbreaks vectored by this species have necessitated novel approaches to control this peridomestic mosquito. Conventional methods such as adulticiding provide temporary relief, but fail to manage this pest on a sustained basis. We explored the use of cold aerosol foggers and misting machines for area-wide applications of Bacillus thuringiensis var. israelensis (VectoBac WDG) as a larvicide targeting Aedes albopictus. During 2010–2013 we performed initially open field trials and then 19 operational area-wide applications in urban and suburban residential areas in northeastern USA to test three truck-mounted sprayers at two application rates. Area-wide applications of WDG in open field conditions at 400 and 800 g/ha killed on average 87% of tested larvae. Once techniques were optimized in residential areas, applications with a Buffalo Turbine Mist Sprayer at a rate of 800 g/ha, the best combination, consistently provided over 90% mortality. Importantly, there was no significant decrease in efficacy with distance from the spray line even in blocks of row homes with trees and bushes in the backyards. Under laboratory conditions Bti deposition in bioassay cups during the operational trials resulted in over 6 weeks of residual control. Our results demonstrate that area-wide truck mounted applications of WDG can effectively suppress Ae. albopictus larvae and should be used in integrated mosquito management approaches to control this nuisance pest and disease vector. PMID:25329314
Williams, Gregory M; Faraji, Ary; Unlu, Isik; Healy, Sean P; Farooq, Muhammad; Gaugler, Randy; Hamilton, George; Fonseca, Dina M
2014-01-01
The increasing range of Aedes albopictus, the Asian tiger mosquito, in the USA and the threat of chikungunya and dengue outbreaks vectored by this species have necessitated novel approaches to control this peridomestic mosquito. Conventional methods such as adulticiding provide temporary relief, but fail to manage this pest on a sustained basis. We explored the use of cold aerosol foggers and misting machines for area-wide applications of Bacillus thuringiensis var. israelensis (VectoBac WDG) as a larvicide targeting Aedes albopictus. During 2010-2013 we performed initially open field trials and then 19 operational area-wide applications in urban and suburban residential areas in northeastern USA to test three truck-mounted sprayers at two application rates. Area-wide applications of WDG in open field conditions at 400 and 800 g/ha killed on average 87% of tested larvae. Once techniques were optimized in residential areas, applications with a Buffalo Turbine Mist Sprayer at a rate of 800 g/ha, the best combination, consistently provided over 90% mortality. Importantly, there was no significant decrease in efficacy with distance from the spray line even in blocks of row homes with trees and bushes in the backyards. Under laboratory conditions Bti deposition in bioassay cups during the operational trials resulted in over 6 weeks of residual control. Our results demonstrate that area-wide truck mounted applications of WDG can effectively suppress Ae. albopictus larvae and should be used in integrated mosquito management approaches to control this nuisance pest and disease vector.
The Large Area Crop Inventory Experiment (LACIE)
NASA Technical Reports Server (NTRS)
Macdonald, R. B.
1976-01-01
A Large Area Crop Inventory Experiment (LACIE) was undertaken to prove out an economically important application of remote sensing from space. The experiment focused upon determination of wheat acreages in the U.S. Great Plains and upon the development and testing of yield models. The results and conclusions are presented.
Polymers and biopolymers at interfaces
NASA Astrophysics Data System (ADS)
Hall, A. R.; Geoghegan, M.
2018-03-01
This review updates recent progress in the understanding of the behaviour of polymers at surfaces and interfaces, highlighting examples in the areas of wetting, dewetting, crystallization, and ‘smart’ materials. Recent developments in analysis tools have yielded a large increase in the study of biological systems, and some of these will also be discussed, focussing on areas where surfaces are important. These areas include molecular binding events and protein adsorption as well as the mapping of the surfaces of cells. Important techniques commonly used for the analysis of surfaces and interfaces are discussed separately to aid the understanding of their application.
Cryogenics for superconductors: Refrigeration, delivery, and preservation of the cold
NASA Astrophysics Data System (ADS)
Ganni, Venkatarao; Fesmire, James
2012-06-01
Applications in superconductivity have become widespread, enabled by advancements in cryogenic engineering. In this paper, the history of cryogenic refrigeration, its delivery, its preservation and the important scientific and engineering advancements in these areas in the last 100 years will be reviewed, beginning with small laboratory dewars to very large scale systems. The key technological advancements in these areas that enabled the development of superconducting applications at temperatures from 4 to 77 K are identified. Included are advancements in the components used up to the present state-of-the-art in refrigeration systems design. Viewpoints as both an equipment supplier and the end-user with regard to the equipment design and operations will be presented. Some of the present and future challenges in these areas will be outlined. Most of the materials in this paper are a collection of the historical materials applicable to these areas of interest.
Cryogenics for superconductors: Refrigeration, delivery, and preservation of the cold
DOE Office of Scientific and Technical Information (OSTI.GOV)
Venkatarao Ganni, James Fesmire
Applications in superconductivity have become widespread, enabled by advancements in cryogenic engineering. In this paper, the history of cryogenic refrigeration, its delivery, its preservation and the important scientific and engineering advancements in these areas in the last 100 years will be reviewed, beginning with small laboratory dewars to very large scale systems. The key technological advancements in these areas that enabled the development of superconducting applications at temperatures from 4 to 77 K are identified. Included are advancements in the components used up to the present state-of-the-art in refrigeration systems design. Viewpoints as both an equipment supplier and the end-usermore » with regard to the equipment design and operations will be presented. Some of the present and future challenges in these areas will be outlined. Most of the materials in this paper are a collection of the historical materials applicable to these areas of interest.« less
Cryogenics for Superconductors: Refrigeration, Delivery, and Preservation of the Cold
NASA Technical Reports Server (NTRS)
Ganni, V.; Fesmire, J. E.
2011-01-01
Applications in superconductivity have become widespread, enabled by advancements in cryogenic engineering. In this paper, the history of cryogenic refrigeration, its delivery, its preservation and the important scientific and engineering advancements in these areas in the last 100 years will be reviewed, beginning with small laboratory dewars to very large scale systems. The key technological advancements in these areas that enabled the development of superconducting applications at temperatures from 4 to 77 K are identified. Included are advancements in the components used up to the present state-of-the-art in refrigeration systems design. Viewpoints as both an equipment supplier and the end-user with regard to the equipment design and operations will be presented. Some of the present and future challenges in these areas will be outlined. Most of the materials in this paper are a collection of the historical materials applicable to these areas of interest.
2016-01-07
news. Both of these resemble typical activities of intelligence analysts in OSINT processing and production applications. We assessed two task...intelligence analysts in a number of OSINT processing and production applications. (5) Summary of the most important results In both settings
Representative landscapes in the forested area of Canada.
Cardille, Jeffrey A; White, Joanne C; Wulder, Mike A; Holland, Tara
2012-01-01
Canada is a large nation with forested ecosystems that occupy over 60% of the national land base, and knowledge of the patterns of Canada's land cover is important to proper environmental management of this vast resource. To this end, a circa 2000 Landsat-derived land cover map of the forested ecosystems of Canada has created a new window into understanding the composition and configuration of land cover patterns in forested Canada. Strategies for summarizing such large expanses of land cover are increasingly important, as land managers work to study and preserve distinctive areas, as well as to identify representative examples of current land-cover and land-use assemblages. Meanwhile, the development of extremely efficient clustering algorithms has become increasingly important in the world of computer science, in which billions of pieces of information on the internet are continually sifted for meaning for a vast variety of applications. One recently developed clustering algorithm quickly groups large numbers of items of any type in a given data set while simultaneously selecting a representative-or "exemplar"-from each cluster. In this context, the availability of both advanced data processing methods and a nationally available set of landscape metrics presents an opportunity to identify sets of representative landscapes to better understand landscape pattern, variation, and distribution across the forested area of Canada. In this research, we first identify and provide context for a small, interpretable set of exemplar landscapes that objectively represent land cover in each of Canada's ten forested ecozones. Then, we demonstrate how this approach can be used to identify flagship and satellite long-term study areas inside and outside protected areas in the province of Ontario. These applications aid our understanding of Canada's forest while augmenting its management toolbox, and may signal a broad range of applications for this versatile approach.
Representative Landscapes in the Forested Area of Canada
NASA Astrophysics Data System (ADS)
Cardille, Jeffrey A.; White, Joanne C.; Wulder, Mike A.; Holland, Tara
2012-01-01
Canada is a large nation with forested ecosystems that occupy over 60% of the national land base, and knowledge of the patterns of Canada's land cover is important to proper environmental management of this vast resource. To this end, a circa 2000 Landsat-derived land cover map of the forested ecosystems of Canada has created a new window into understanding the composition and configuration of land cover patterns in forested Canada. Strategies for summarizing such large expanses of land cover are increasingly important, as land managers work to study and preserve distinctive areas, as well as to identify representative examples of current land-cover and land-use assemblages. Meanwhile, the development of extremely efficient clustering algorithms has become increasingly important in the world of computer science, in which billions of pieces of information on the internet are continually sifted for meaning for a vast variety of applications. One recently developed clustering algorithm quickly groups large numbers of items of any type in a given data set while simultaneously selecting a representative—or "exemplar"—from each cluster. In this context, the availability of both advanced data processing methods and a nationally available set of landscape metrics presents an opportunity to identify sets of representative landscapes to better understand landscape pattern, variation, and distribution across the forested area of Canada. In this research, we first identify and provide context for a small, interpretable set of exemplar landscapes that objectively represent land cover in each of Canada's ten forested ecozones. Then, we demonstrate how this approach can be used to identify flagship and satellite long-term study areas inside and outside protected areas in the province of Ontario. These applications aid our understanding of Canada's forest while augmenting its management toolbox, and may signal a broad range of applications for this versatile approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sansonnens, L.; Schmidt, H.; Howling, A.A.
The electromagnetic standing wave effect can become the main source of nonuniformity limiting the use of very high frequency in large area reactors exceeding 1 m{sup 2} required for industrial applications. Recently, it has been proposed and shown experimentally in a cylindrical reactor that a shaped electrode in place of the conventional flat electrode can be used in order to suppress the electromagnetic standing wave nonuniformity. In this study, we show experimental measurements demonstrating that the shaped electrode technique can also be applied in large area rectangular reactors. We also present results of electromagnetic screening by a conducting substrate whichmore » has important consequences for industrial application of the shaped electrode technique.« less
The role of platelet rich plasma in musculoskeletal science
Ahmad, Zafar; Howard, Daniel; Brooks, Roger A; Wardale, John; Henson, Fran MD; Getgood, Alan; Rushton, Neil
2012-01-01
The idea of using platelet rich plasma (PRP) in medicine has been around since the 1970s. It is only more recently that its use has been employed in the area of musculoskeletal science. Platelet rich plasma in this area has received much media attention being used by many celebrity sports athletes for musculoskeletal injuries. Therefore it is important for the musculoskeletal practitioner to be aware of the concepts surrounding its use and application. In this article we cover what platelet rich plasma is, how it is prepared and administered, its potential clinical application, and what the current literature discusses in the various areas of musculoskeletal science. PMID:22768374
27 CFR 447.52 - Import restrictions applicable to certain countries.
Code of Federal Regulations, 2014 CFR
2014-04-01
... ALCOHOL, TOBACCO, FIREARMS, AND EXPLOSIVES, DEPARTMENT OF JUSTICE FIREARMS AND AMMUNITION IMPORTATION OF... with respect to defense articles and defense services originating in certain countries or areas. This... consumption in the United States on or before February 9, 1996. (d) A defense article authorized for...
Dynamics at Intermediate Time Scales and Management of Ecological Populations
2017-05-10
thinking about the importance of transients is to recognize the importance of serial autocorrelation in time of forcing terms over realistic ecological time...rich areas helps produce divergent home range responses bet - ween individuals from difference age classes. This model has broad applications for
Translational benchmark risk analysis
Piegorsch, Walter W.
2010-01-01
Translational development – in the sense of translating a mature methodology from one area of application to another, evolving area – is discussed for the use of benchmark doses in quantitative risk assessment. Illustrations are presented with traditional applications of the benchmark paradigm in biology and toxicology, and also with risk endpoints that differ from traditional toxicological archetypes. It is seen that the benchmark approach can apply to a diverse spectrum of risk management settings. This suggests a promising future for this important risk-analytic tool. Extensions of the method to a wider variety of applications represent a significant opportunity for enhancing environmental, biomedical, industrial, and socio-economic risk assessments. PMID:20953283
Research and application of self - propagating welding technology
NASA Astrophysics Data System (ADS)
Ma, Yunhe; Li, Zhizun; Wang, Jianjiang; Sun, Liming
2018-04-01
Self-propagating welding is an important application area of self-propagating high-temperature synthesis technology (SHS technology), suitable for special environment and special materials welding. This paper briefly introduces the principle of self - propagating welding and its technical characteristics, and briefly summarizes the current research and application of SHS welding around three aspects of thin film welding, welding of refractory welding and emergency welding of battlefield.
Applications and suggested directions of transition research
NASA Technical Reports Server (NTRS)
Bushnell, Dennis L.
1989-01-01
This paper summarizes many of the applications of transition research having significant technological importance and suggests critical general areas for further research. Critical research requirements include identification and quantification of initial disturbance fields, disturbance internalization by inviscid and viscous flow fields and amplification in nonboundary-layer flows, along with elucidation of the roughness-induced destabilization physics.
Applications of Genetic Methods to NASA Design and Operations Problems
NASA Technical Reports Server (NTRS)
Laird, Philip D.
1996-01-01
We review four recent NASA-funded applications in which evolutionary/genetic methods are important. In the process we survey: the kinds of problems being solved today with these methods; techniques and tools used; problems encountered; and areas where research is needed. The presentation slides are annotated briefly at the top of each page.
U-ALS: A Ubiquitous Learning Environment
ERIC Educational Resources Information Center
Piovesan, Sandra Dutra; Passerino, Liliana Maria; Medina, Roseclea Duarte
2012-01-01
The diffusion of the use of the learning virtual environments presents a great potential for the development of an application which meet the necessities in the education area. In view of the importance of a more dynamic application and that can adapt itself continuously to the students' necessities, the "U-ALS" (Ubiquitous Adapted Learning…
Terrain Measurement with SAR/InSAR
NASA Astrophysics Data System (ADS)
Li, Deren; Liao, Mingsheng; Balz, Timo; Zhang, Lu; Yang, Tianliang
2016-08-01
Terrain measurement and surface motion estimation are the most important applications for commercial and scientific SAR missions. In Dragon-3, we worked on these applications, especially regarding DEM generation, surface motion estimation with SAR time- series for urban subsidence monitoring and landslide motion estimation, as well as developing tomographic SAR processing methods in urban areas.
The importance of informatics competencies in nursing: an Australian perspective.
Smedley, Alison
2005-01-01
Over the past two decades, dramatic changes have occurred in the nature and extent of communication and information technology use in nursing worldwide. The need for student nurses to be well prepared for the use and application of information technology in nursing is arguably now paramount. This article details areas where information and communication technology is used in nursing in Australia and discusses why nurses must be diligent in maintaining skills in this area to facilitate the delivery of safe, quality care in any healthcare setting. It will then discuss the importance of information and communication technology (ICT) skills, knowledge and understanding as an integral aspect of nursing programs in tertiary institutions. The challenge for training providers to prepare nurses for ever-changing ICT technology and technological applications in their workplace is highlighted.
Microwave thermal radiation effects on skin tissues
NASA Astrophysics Data System (ADS)
Yoon, Hargsoon; Song, Kyo D.; Lee, Uhn; Choi, Sang H.
2012-10-01
Microwave/RF energy has been used for wireless power transmission including many therapeutic applications, such as transurethral microwave therapy (TUMT). For safe uses of RF power, it is important to know how to deliver microwave energy on focused area and control the temperature changes not to drastically increase on adjacent areas. Graphical analysis of thermal loading factor is important to understand how to achieve effective transmission of microwave through the tissue. The loss mechanism while transmission often appears as thermal effects due to absorption of microwave, especially for materials such as human skin, muscles, and other organic parts including brain. In this paper, microwave thermal effects are investigated to measure temperatures, penetration depth through animal skins in terms of input power and various frequencies. This result will be compare with the case of human applications.
Cyber-Physical Attack-Resilient Wide-Area Monitoring, Protection, and Control for the Power Grid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ashok, Aditya; Govindarasu, Manimaran; Wang, Jianhui
Cyber security and resiliency of Wide-Area Monitoring, Protection and Control (WAMPAC) applications is critically important to ensure secure, reliable, and economic operation of the bulk power system. WAMPAC relies heavily on the security of measurements and control commands transmitted over wide-area communication networks for real-time operational, protection, and control functions. Also, the current “N-1 security criteria” for grid operation is inadequate to address malicious cyber events and therefore it is important to fundamentally redesign WAMPAC and to enhance Energy Management System (EMS) applications to make them attack-resilient. In this paper, we propose an end-to-end defense-in-depth architecture for attack-resilient WAMPAC thatmore » addresses resilience at both the infrastructure layer and the application layers. Also, we propose an attack-resilient cyber-physical security framework that encompasses the entire security life cycle including risk assessment, attack prevention, attack detection, attack mitigation, and attack resilience. The overarching objective of this paper is to provide a broad scope that comprehensively describes most of the major research issues and potential solutions in the context of cyber-physical security of WAMPAC for the power grid.« less
Applications and limitations of radiomics
NASA Astrophysics Data System (ADS)
Yip, Stephen S. F.; Aerts, Hugo J. W. L.
2016-07-01
Radiomics is an emerging field in quantitative imaging that uses advanced imaging features to objectively and quantitatively describe tumour phenotypes. Radiomic features have recently drawn considerable interest due to its potential predictive power for treatment outcomes and cancer genetics, which may have important applications in personalized medicine. In this technical review, we describe applications and challenges of the radiomic field. We will review radiomic application areas and technical issues, as well as proper practices for the designs of radiomic studies.
Earth benefits from NASA research and technology. Life sciences applications
NASA Technical Reports Server (NTRS)
1991-01-01
This document provides a representative sampling of examples of Earth benefits in life-sciences-related applications, primarily in the area of medicine and health care, but also in agricultural productivity, environmental monitoring and safety, and the environment. This brochure is not intended as an exhaustive listing, but as an overview to acquaint the reader with the breadth of areas in which the space life sciences have, in one way or another, contributed a unique perspective to the solution of problems on Earth. Most of the examples cited were derived directly from space life sciences research and technology. Some examples resulted from other space technologies, but have found important life sciences applications on Earth. And, finally, we have included several areas in which Earth benefits are anticipated from biomedical and biological research conducted in support of future human exploration missions.
Telehealth innovations in health education and training.
Conde, José G; De, Suvranu; Hall, Richard W; Johansen, Edward; Meglan, Dwight; Peng, Grace C Y
2010-01-01
Telehealth applications are increasingly important in many areas of health education and training. In addition, they will play a vital role in biomedical research and research training by facilitating remote collaborations and providing access to expensive/remote instrumentation. In order to fulfill their true potential to leverage education, training, and research activities, innovations in telehealth applications should be fostered across a range of technology fronts, including online, on-demand computational models for simulation; simplified interfaces for software and hardware; software frameworks for simulations; portable telepresence systems; artificial intelligence applications to be applied when simulated human patients are not options; and the development of more simulator applications. This article presents the results of discussion on potential areas of future development, barries to overcome, and suggestions to translate the promise of telehealth applications into a transformed environment of training, education, and research in the health sciences.
Not single brain areas but a network is involved in language: Applications in presurgical planning.
Alemi, Razieh; Batouli, Seyed Amir Hossein; Behzad, Ebrahim; Ebrahimpoor, Mitra; Oghabian, Mohammad Ali
2018-02-01
Language is an important human function, and is a determinant of the quality of life. In conditions such as brain lesions, disruption of the language function may occur, and lesion resection is a solution for that. Presurgical planning to determine the language-related brain areas would enhance the chances of language preservation after the operation; however, availability of a normative language template is essential. In this study, using data from 60 young individuals who were meticulously checked for mental and physical health, and using fMRI and robust imaging and data analysis methods, functional brain maps for the language production, perception and semantic were produced. The obtained templates showed that the language function should be considered as the product of the collaboration of a network of brain regions, instead of considering only few brain areas to be involved in that. This study has important clinical applications, and extends our knowledge on the neuroanatomy of the language function. Copyright © 2018 Elsevier B.V. All rights reserved.
Larios, Diego F; Barbancho, Julio; Sevillano, José L; Rodríguez, Gustavo; Molina, Francisco J; Gasull, Virginia G; Mora-Merchan, Javier M; León, Carlos
2013-09-10
Wireless Sensor Networks (WSNs) are a technology that is becoming very popular for many applications, and environmental monitoring is one of its most important application areas. This technology solves the lack of flexibility of wired sensor installations and, at the same time, reduces the deployment costs. To demonstrate the advantages of WSN technology, for the last five years we have been deploying some prototypes in the Doñana Biological Reserve, which is an important protected area in Southern Spain. These prototypes not only evaluate the technology, but also solve some of the monitoring problems that have been raised by biologists working in Doñana. This paper presents a review of the work that has been developed during these five years. Here, we demonstrate the enormous potential of using machine learning in wireless sensor networks for environmental and animal monitoring because this approach increases the amount of useful information and reduces the effort that is required by biologists in an environmental monitoring task.
[Measurement of the importance of user satisfaction dimensions in healthcare provision].
Murillo, Carles; Saurina, Carme
2013-01-01
Identifying users' perceptions of the quality of care is essential to improve health services delivery. The main objective of this article was to describe the application of a methodology to identify factors that facilitate the identification of areas for improvement. A questionnaire was applied in three health areas in Catalonia (Spain) (primary care [n=332], outpatient specialty care [n=410] and hospital emergency care [n=413]) to measure user satisfaction and assess the importance given to the aspects analyzed. The main areas for improvement in primary care identified by an importance-performance analysis involved the time devoted to patients as well as health professionals' willingness to listen to their views. In hospital emergency care, the main area of improvement was related to the hospital's physical conditions. The tools designed and implemented by the Catalan Health Service (Spain) have proved to be valid for the detection of priority areas to improve service delivery and promote regional equity. Copyright © 2012 SESPAS. Published by Elsevier Espana. All rights reserved.
Luo, Bin; Liu, Shaomin; Zhi, Linjie
2012-03-12
A 'gold rush' has been triggered all over the world for exploiting the possible applications of graphene-based nanomaterials. For this purpose, two important problems have to be solved; one is the preparation of graphene-based nanomaterials with well-defined structures, and the other is the controllable fabrication of these materials into functional devices. This review gives a brief overview of the recent research concerning chemical and thermal approaches toward the production of well-defined graphene-based nanomaterials and their applications in energy-related areas, including solar cells, lithium ion secondary batteries, supercapacitors, and catalysis. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Lent, P. C. (Principal Investigator)
1974-01-01
The author has identified the following significant results. A multiband classification scheme was applied to ERTS-1 MSS digital tape data in a portion of the Yukon Flats area. Primary analytic objectives of mapping the extent of recent wildfire burns and mature forest were realized illustrating application to moose and caribou biology. Additionally, the analysis indicated the presence of new lakes as well as disappearance of lakes present in 1956. Because this is an important waterfowl production area, similar analyses may have significant application potential to waterfowl biology for rapid updating of habitat information. Further field confirmation of this finding is required.
Dual use of photonic components in radiation environments
NASA Astrophysics Data System (ADS)
Taylor, Edward W.
1994-06-01
The steady evolution of and increased requirement for using photonic technologies within the commercial market coupled with decreased defense spending has brought forth new national philosophies regarding widespread use of the technology in both military and commercial sectors. Many commercially available photonic components (i.e., optical fibers, laser diodes, semiconductor detectors, detector arrays, spatial light modulators, integrated optic circuitry and other similar optoelectronic and electro-optic devices are being scrutinized for utility, cost effectiveness and dual-use in a variety of applications. One important area of application is space. This paper will discuss the current state-of-the-art and utility of qualifying and using several mature photonic component technologies in commercial and defense application areas.
Delin, G.N.; Landon, M.K.; Lamb, J.A.; Dowdy, R.H.
1995-01-01
Results indicate that the effects of the 1992 potassium-chloride and N fertilizer applications were reduced compared to the effects of 1991 applications. The most important factors associated with these differences were lower chemical application rates and lower recharge rates during 1992 than during 1991. Some of the chloride and N fertilizer applied to the cropped areas in 1992 likely did not reach the saturated zone in 1993 due to a 60-percent reduction in recharge compared to 1991. Therefore, analysis of data from additional years will be required to fully evaluate the effects of the fanning systems on ground-water quality.
During the last decade, a number of initiatives have been undertaken to create systematic national and global data sets of processed satellite imagery. An important application of these data is the derivation of large area (i.e. multi-scene) land cover products. Such products, ho...
Application of plantar pressure assessment in footwear and insert design.
Mueller, M J
1999-12-01
This clinical perspective describes the application of plantar pressure assessment in footwear and insert design. First, the rationale and evidence for using pressure assessment to assist in the design of footwear for patients with diabetes is described. I discuss 2 important measures obtained from pressure assessment: peak pressure, because it represents the magnitude of potential mechanical stresses that can contribute to skin breakdown, and contact area, because this identifies the treatment areas. Using measures obtained from pressure assessment, guidelines are presented to maximize contact area of the insert to the foot and reduce highest peak pressures on the skin, with the goal of preventing skin breakdown. Second, a rationale and guidelines are presented for the application of plantar pressure assessment in the evaluation and design of footwear for people without impairments (i.e., the general public). Finally, future applications of pressure assessment to improve the design and fit of shoes are discussed. Benefits and limitations of using pressure assessment to assist in footwear design are addressed throughout.
Plasma Processing of Materials
1985-02-22
inert gas or in a reduced pressure environment) one can obtain rapidly solidified metastable (i.e., amorphous, microcrystalline, and supersaturated...integrated circuits dnd thus is an area of’vital : importance to our electronics industry. Applications utilizing noble gas plasmas, such as ion-plating...phenomena and probably will not benefit -ubstantially from acditional basic research. Applications utilizing molecular gas plasmas, where reactive species
Remote sensing: An inventory of earth's resources
NASA Technical Reports Server (NTRS)
Gramenopoulos, N.
1974-01-01
The remote sensing capabilities of Landsat are reviewed along with the broad areas of application of the Landsat imagery. The importance of Landsat imagery in urban planning and resources management is stressed.
The historical biogeography of Mammalia
Springer, Mark S.; Meredith, Robert W.; Janecka, Jan E.; Murphy, William J.
2011-01-01
Palaeobiogeographic reconstructions are underpinned by phylogenies, divergence times and ancestral area reconstructions, which together yield ancestral area chronograms that provide a basis for proposing and testing hypotheses of dispersal and vicariance. Methods for area coding include multi-state coding with a single character, binary coding with multiple characters and string coding. Ancestral reconstruction methods are divided into parsimony versus Bayesian/likelihood approaches. We compared nine methods for reconstructing ancestral areas for placental mammals. Ambiguous reconstructions were a problem for all methods. Important differences resulted from coding areas based on the geographical ranges of extant species versus the geographical provenance of the oldest fossil for each lineage. Africa and South America were reconstructed as the ancestral areas for Afrotheria and Xenarthra, respectively. Most methods reconstructed Eurasia as the ancestral area for Boreoeutheria, Euarchontoglires and Laurasiatheria. The coincidence of molecular dates for the separation of Afrotheria and Xenarthra at approximately 100 Ma with the plate tectonic sundering of Africa and South America hints at the importance of vicariance in the early history of Placentalia. Dispersal has also been important including the origins of Madagascar's endemic mammal fauna. Further studies will benefit from increased taxon sampling and the application of new ancestral area reconstruction methods. PMID:21807730
Electrically-pumped, broad-area, single-mode photonic crystal lasers.
Zhu, Lin; Chak, Philip; Poon, Joyce K S; DeRose, Guy A; Yariv, Amnon; Scherer, Axel
2007-05-14
Planar broad-area single-mode lasers, with modal widths of the order of tens of microns, are technologically important for high-power applications and improved coupling efficiency into optical fibers. They may also find new areas of applications in on-chip integration with devices that are of similar size scales, such as for spectroscopy in microfluidic chambers or optical signal processing with micro-electromechanical systems. An outstanding challenge is that broad-area lasers often require external means of control, such as injection-locking or a frequency/spatial filter to obtain single-mode operation. In this paper, we propose and demonstrate effective index-guided, large-area, edge-emitting photonic crystal lasers driven by pulsed electrical current injection at the optical telecommunication wavelength of 1550 nm. By suitable design of the photonic crystal lattice, our lasers operate in a single mode with a 1/e(2) modal width of 25 microm and a length of 600 microm.
Bandgap Optimization of Perovskite Semiconductors for Photovoltaic Applications.
Xiao, Zewen; Zhou, Yuanyuan; Hosono, Hideo; Kamiya, Toshio; Padture, Nitin P
2018-02-16
The bandgap is the most important physical property that determines the potential of semiconductors for photovoltaic (PV) applications. This Minireview discusses the parameters affecting the bandgap of perovskite semiconductors that are being widely studied for PV applications, and the recent progress in the optimization of the bandgaps of these materials. Perspectives are also provided for guiding future research in this area. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
ERIC Educational Resources Information Center
Weininger, Jean; Briggs, George M.
1978-01-01
Reviews current nutrition research areas with important practical applications. Topics include hypertension, preventable birth defects, phenylketonuria and genetic diseases, new molecular genetics techniques, and saccharin and sweetners. Entries are brief and a 65-reference list is given. (MA)
Soil Organic Matter (SOM): Molecular Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andersen, Amity
Molecular simulation is a powerful tool used to gain an atomistic, molecular, and nanoscale level understanding of the structure, dynamics, and interactions from adsorption on minerals and assembly in aggregates of soil organic matter (SOM). Given the importance of SOM fate and persistence in soils and the current knowledge gaps, applications of atomistic scale simulations to study the complex compounds in SOM and their interactions in self-assembled aggregates composed of different organic matter compounds and with mineral surfaces of different types common in soils are few and far between. Here, we describe various molecular simulation methods that are currently inmore » use in various areas and applicable to SOM research, followed by a brief survey of specific applications to SOM research and an illustration with our own recent efforts in this area. We conclude with an outlook and the challenges for future research in this area.« less
Telehealth Innovations in Health Education and Training
De, Suvranu; Hall, Richard W.; Johansen, Edward; Meglan, Dwight; Peng, Grace C.Y.
2010-01-01
Abstract Telehealth applications are increasingly important in many areas of health education and training. In addition, they will play a vital role in biomedical research and research training by facilitating remote collaborations and providing access to expensive/remote instrumentation. In order to fulfill their true potential to leverage education, training, and research activities, innovations in telehealth applications should be fostered across a range of technology fronts, including online, on-demand computational models for simulation; simplified interfaces for software and hardware; software frameworks for simulations; portable telepresence systems; artificial intelligence applications to be applied when simulated human patients are not options; and the development of more simulator applications. This article presents the results of discussion on potential areas of future development, barries to overcome, and suggestions to translate the promise of telehealth applications into a transformed environment of training, education, and research in the health sciences. PMID:20155874
Web Accessibility Knowledge and Skills for Non-Web Library Staff
ERIC Educational Resources Information Center
McHale, Nina
2012-01-01
Why do librarians and library staff other than Web librarians and developers need to know about accessibility? Web services staff do not--or should not--operate in isolation from the rest of the library staff. It is important to consider what areas of online accessibility are applicable to other areas of library work and to colleagues' regular job…
A review of polychlorinated biphenyls (PCBs) pollution in indoor air environment.
Dai, Qizhou; Min, Xia; Weng, Mili
2016-10-01
Polychlorinated biphenyls (PCBs) were widely used in industrial production due to the unique physical and chemical properties. As a kind of persistent organic pollutants, the PCBs would lead to environment pollution and cause serious problems for human health. Thus, they have been banned since the 1980s due to the environment pollution in the past years. Indoor air is the most direct and important environment medium to human beings; thus, the PCBs pollution research in indoor air is important for the protection of human health. This paper introduces the industrial application and potential harm of PCBs, summarizes the sampling, extracting, and analytical methods of environment monitoring, and compares the indoor air levels of urban areas with those of industrial areas in different countries according to various reports. This paper can provide a basic summary for PCBs pollution control in the indoor air environment. The review of PCBs pollution in indoor air in China is still limited. In this paper, we introduce the industrial application and potential harm of PCBs, summarize the sampling, extracting, and analytical methods of environment monitoring, and compare the indoor air levels of urban areas with industrial areas in different countries according to various reports.
Identifying marine Important Bird Areas using at-sea survey data
Smith, Melanie A.; Walker, Nathan J.; Free, Christopher M.; Kirchhoff, Matthew J.; Drew, Gary S.; Warnock, Nils; Stenhouse, Iain J.
2014-01-01
Effective marine bird conservation requires identification of at-sea locations used by populations for foraging, staging, and migration. Using an extensive database of at-sea survey data spanning over 30 years, we developed a standardized and data-driven spatial method for identifying globally significant marine Important Bird Areas in Alaska. To delineate these areas we developed a six-step process: binning data and accounting for unequal survey effort, filtering input data for persistence of species use, using a moving window analysis to produce maps representing a gradient from low to high abundance, drawing core area boundaries around major concentrations based on abundance thresholds, validating the results, and combining overlapping boundaries into important areas for multiple species. We identified 126 bird core areas which were merged into 59 pelagic sites important to 45 out of 57 species assessed. The final areas included approximately 34–38% of all marine birds in Alaska waters, within just 6% of the total area. We identified globally significant Important Bird Areas spanning 20 degrees of latitude and 56 degrees of longitude, in two different oceans, with climates ranging from temperate to polar. Although our maps did suffer from some data gaps, these gaps did not preclude us from identifying sites that incorporated 13% of the assessed continental waterbird population and 9% of the assessed global seabird population. The application of this technique over a large and productive region worked well for a wide range of birds, exhibiting a variety of foraging strategies and occupying a variety of ecosystem types.
Predicting diameters inside bark for 10 important hardwood species
Donald E. Hilt; Everette D. Rast; Herman J. Bailey
1983-01-01
General models for predicting DIB/DOB ratios up the stem, applicable over wide geographic areas, have been developed for 10 important hardwood species. Results indicate that the ratios either decrease or remain constant up the stem. Methods for adjusting the general models to local conditions are presented. The prediction models can be used in conjunction with optical...
ERIC Educational Resources Information Center
Clarkson, W. W.; And Others
This module describes important criteria to use in evaluating land for waste treatment sites and tells where the necessary information for such evaluation can be obtained. Among the important criteria for evaluation are climate, land use of potential site and surrounding areas, topography, drainage characteristics, soil properties, and geology.…
Computational Electronics and Electromagnetics
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeFord, J.F.
The Computational Electronics and Electromagnetics thrust area is a focal point for computer modeling activities in electronics and electromagnetics in the Electronics Engineering Department of Lawrence Livermore National Laboratory (LLNL). Traditionally, they have focused their efforts in technical areas of importance to existing and developing LLNL programs, and this continues to form the basis for much of their research. A relatively new and increasingly important emphasis for the thrust area is the formation of partnerships with industry and the application of their simulation technology and expertise to the solution of problems faced by industry. The activities of the thrust areamore » fall into three broad categories: (1) the development of theoretical and computational models of electronic and electromagnetic phenomena, (2) the development of useful and robust software tools based on these models, and (3) the application of these tools to programmatic and industrial problems. In FY-92, they worked on projects in all of the areas outlined above. The object of their work on numerical electromagnetic algorithms continues to be the improvement of time-domain algorithms for electromagnetic simulation on unstructured conforming grids. The thrust area is also investigating various technologies for conforming-grid mesh generation to simplify the application of their advanced field solvers to design problems involving complicated geometries. They are developing a major code suite based on the three-dimensional (3-D), conforming-grid, time-domain code DSI3D. They continue to maintain and distribute the 3-D, finite-difference time-domain (FDTD) code TSAR, which is installed at several dozen university, government, and industry sites.« less
Baweja, Rishi; Kraeutler, Matthew J; Mulcahey, Mary K; McCarty, Eric C
2017-11-01
Orthopaedic surgery residencies and certain fellowships are becoming increasingly competitive. Several studies have identified important factors to be taken into account when selecting medical students for residency interviews. Similar information for selecting orthopaedic sports medicine fellows does not exist. To determine the most important factors that orthopaedic sports medicine fellowship program directors (PDs) take into account when ranking applicants. Cross-sectional study. A brief survey was distributed electronically to PDs of the 92 orthopaedic sports medicine fellowship programs that are accredited by the Accreditation Council for Graduate Medical Education (ACGME). Each PD was asked to rank, in order, the 5 most important factors taken into account when ranking applicants based on a total list of 13 factors: the interview, the applicant's residency program, letters of recommendation (LORs), personal connections made through the applicant, research experience, an applicant's geographical ties to the city/town of the fellowship program, United States Medical Licensing Examination (USMLE) scores, Orthopaedic In-Training Examination (OITE) scores, history of being a competitive athlete in college, extracurricular activities/hobbies, volunteer experience, interest in a career in academics, and publications/research/posters. Factors were scored from 1 to 5, with a score of 5 representing the most important factor and 1 representing the fifth-most important factor. Of the 92 PDs contacted, 57 (62%) responded. Thirty-four PDs (37%) listed the interview as the most important factor in ranking fellowship applicants (overall score, 233). LORs (overall score, 196), an applicant's residency program (overall score, 133), publications/research/posters (overall score, 115), and personal connections (overall score, 90) were reported as the second- through fifth-most important factors, respectively. According to orthopaedic sports medicine fellowship PDs, the fellowship interview is the most important factor in determining how an applicant will be ranked. Other factors, including LORs, the applicant's residency program, research production, and personal connections, were also considered to be important. This information provides orthopaedic sports medicine fellowship applicants with a better understanding of which areas to focus on when preparing for the fellowship interview and matching process.
Magnetorheological finishing: a perfect solution to nanofinishing requirements
NASA Astrophysics Data System (ADS)
Sidpara, Ajay
2014-09-01
Finishing of optics for different applications is the most important as well as difficult step to meet the specification of optics. Conventional grinding or other polishing processes are not able to reduce surface roughness beyond a certain limit due to high forces acting on the workpiece, embedded abrasive particles, limited control over process, etc. Magnetorheological finishing (MRF) process provides a new, efficient, and innovative way to finish optical materials as well many metals to their desired level of accuracy. This paper provides an overview of MRF process for different applications, important process parameters, requirement of magnetorheological fluid with respect to workpiece material, and some areas that need to be explored for extending the application of MRF process.
Urban Rail Supporting Technology Program Fiscal Year 1975 - Year End Summary
DOT National Transportation Integrated Search
1975-12-01
The Urban Rail Supporting Technology Program is described for the 1975 fiscal year period. Important areas include program management, technical support and applications engineering, facilities development, test and evaluation, and technology develop...
Report on Computing and Networking in the Space Science Laboratory by the SSL Computer Committee
NASA Technical Reports Server (NTRS)
Gallagher, D. L. (Editor)
1993-01-01
The Space Science Laboratory (SSL) at Marshall Space Flight Center is a multiprogram facility. Scientific research is conducted in four discipline areas: earth science and applications, solar-terrestrial physics, astrophysics, and microgravity science and applications. Representatives from each of these discipline areas participate in a Laboratory computer requirements committee, which developed this document. The purpose is to establish and discuss Laboratory objectives for computing and networking in support of science. The purpose is also to lay the foundation for a collective, multiprogram approach to providing these services. Special recognition is given to the importance of the national and international efforts of our research communities toward the development of interoperable, network-based computer applications.
Advances in the development of remote sensing technology for agricultural applications
NASA Technical Reports Server (NTRS)
Powers, J. E.; Erb, R. B.; Hall, F. G.; Macdonald, R. B.
1979-01-01
The application of remote sensing technology to crop forecasting is discussed. The importance of crop forecasts to the world economy and agricultural management is explained, and the development of aerial and spaceborne remote sensing for global crop forecasting by the United States is outlined. The structure, goals and technical aspects of the Large Area Crop Inventory Experiment (LACIE) are presented, and main findings on the accuracy, efficiency, applicability and areas for further study of the LACIE procedure are reviewed. The current status of NASA crop forecasting activities in the United States and worldwide is discussed, and the objectives and organization of the newly created Agriculture and Resources Inventory Surveys through Aerospace Remote Sensing (AgRISTARS) program are presented.
Future superconductivity applications in space - A review
NASA Astrophysics Data System (ADS)
Krishen, Kumar; Ignatiev, Alex
High temperature superconductor (HISC) materials and devices can provide immediate applications for many space missions. The in-space thermal environment provides an opportunity to develop, test, and apply this technology to enhance performance and reliability for many applications of crucial importance to NASA. Specifically, the technology development areas include: (1) high current power transmission, (2) microwave components, devices, and antennas, (3) microwave, optical, and infrared sensors, (4) signal processors, (5) submillimeter wave components and systems, (6) ultra stable space clocks, (7) electromagnetic launch systems, and (8) accelerometers and position sensors for flight operations. HTSC is expected to impact NASA's Lunar Bases, Mars exploration, Mission to Earth, and Planetary exploration programs providing enabling and cost-effect technology. A review of the space applications of the HTSC technology is presented. Problem areas in technology development needing special attention are identified.
Combined Landsat-8 and Sentinel-2 Burned Area Mapping
NASA Astrophysics Data System (ADS)
Huang, H.; Roy, D. P.; Zhang, H.; Boschetti, L.; Yan, L.; Li, Z.
2017-12-01
Fire products derived from coarse spatial resolution satellite data have become an important source of information for the multiple user communities involved in fire science and applications. The advent of the MODIS on NASA's Terra and Aqua satellites enabled systematic production of 500m global burned area maps. There is, however, an unequivocal demand for systematically generated higher spatial resolution burned area products, in particular to examine the role of small-fires for various applications. Moderate spatial resolution contemporaneous satellite data from Landsat-8 and the Sentinel-2A and -2B sensors provide the opportunity for detailed spatial mapping of burned areas. Combined, these polar-orbiting systems provide 10m to 30m multi-spectral global coverage more than once every three days. This NASA funded research presents results to prototype a combined Landsat-8 Sentinel-2 burned area product. The Landsat-8 and Sentinel-2 pre-processing, the time-series burned area mapping algorithm, and preliminary results and validation using high spatial resolution commercial satellite data over Africa are presented.
Analysis and Application of Quality Economics Based on Input-Output
NASA Astrophysics Data System (ADS)
Lu, Qiang; Li, Xin
2018-01-01
Quality economics analysis is an important research area in the current economic frontier, which has a huge role in promoting the quality-benefit type road development in China. Through the study of quality economics analysis and application, economics of quality and quality economics management are summarized, and theoretical framework of quality economics analysis is constructed. Finally, the quality economics analysis of aerospace equipment is taken as an example to carry on the application research.
Methods for Engineering Sulfate Reducing Bacteria of the Genus Desulfovibrio
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chhabra, Swapnil R; Keller, Kimberly L.; Wall, Judy D.
Sulfate reducing bacteria are physiologically important given their nearly ubiquitous presence and have important applications in the areas of bioremediation and bioenergy. This chapter provides details on the steps used for homologous-recombination mediated chromosomal manipulation of Desulfovibrio vulgaris Hildenborough, a well-studied sulfate reducer. More specifically, we focus on the implementation of a 'parts' based approach for suicide vector assembly, important aspects of anaerobic culturing, choices for antibiotic selection, electroporation-based DNA transformation, as well as tools for screening and verifying genetically modified constructs. These methods, which in principle may be extended to other sulfate-reducing bacteria, are applicable for functional genomics investigations,more » as well as metabolic engineering manipulations.« less
Molecular Imprinting of Macromolecules for Sensor Applications
Saylan, Yeşeren; Yilmaz, Fatma; Özgür, Erdoğan; Derazshamshir, Ali; Yavuz, Handan; Denizli, Adil
2017-01-01
Molecular recognition has an important role in numerous living systems. One of the most important molecular recognition methods is molecular imprinting, which allows host compounds to recognize and detect several molecules rapidly, sensitively and selectively. Compared to natural systems, molecular imprinting methods have some important features such as low cost, robustness, high recognition ability and long term durability which allows molecularly imprinted polymers to be used in various biotechnological applications, such as chromatography, drug delivery, nanotechnology, and sensor technology. Sensors are important tools because of their ability to figure out a potentially large number of analytical difficulties in various areas with different macromolecular targets. Proteins, enzymes, nucleic acids, antibodies, viruses and cells are defined as macromolecules that have wide range of functions are very important. Thus, macromolecules detection has gained great attention in concerning the improvement in most of the studies. The applications of macromolecule imprinted sensors will have a spacious exploration according to the low cost, high specificity and stability. In this review, macromolecules for molecularly imprinted sensor applications are structured according to the definition of molecular imprinting methods, developments in macromolecular imprinting methods, macromolecular imprinted sensors, and conclusions and future perspectives. This chapter follows the latter strategies and focuses on the applications of macromolecular imprinted sensors. This allows discussion on how sensor strategy is brought to solve the macromolecules imprinting. PMID:28422082
Molecular Imprinting of Macromolecules for Sensor Applications.
Saylan, Yeşeren; Yilmaz, Fatma; Özgür, Erdoğan; Derazshamshir, Ali; Yavuz, Handan; Denizli, Adil
2017-04-19
Molecular recognition has an important role in numerous living systems. One of the most important molecular recognition methods is molecular imprinting, which allows host compounds to recognize and detect several molecules rapidly, sensitively and selectively. Compared to natural systems, molecular imprinting methods have some important features such as low cost, robustness, high recognition ability and long term durability which allows molecularly imprinted polymers to be used in various biotechnological applications, such as chromatography, drug delivery, nanotechnology, and sensor technology. Sensors are important tools because of their ability to figure out a potentially large number of analytical difficulties in various areas with different macromolecular targets. Proteins, enzymes, nucleic acids, antibodies, viruses and cells are defined as macromolecules that have wide range of functions are very important. Thus, macromolecules detection has gained great attention in concerning the improvement in most of the studies. The applications of macromolecule imprinted sensors will have a spacious exploration according to the low cost, high specificity and stability. In this review, macromolecules for molecularly imprinted sensor applications are structured according to the definition of molecular imprinting methods, developments in macromolecular imprinting methods, macromolecular imprinted sensors, and conclusions and future perspectives. This chapter follows the latter strategies and focuses on the applications of macromolecular imprinted sensors. This allows discussion on how sensor strategy is brought to solve the macromolecules imprinting.
Estimating the Regional Economic Significance of Airports
DOT National Transportation Integrated Search
1992-09-01
This report provides advice on how to measure the importance of an airport to the economy of the surrounding area. It defines various measures of economic significance, describes the circumstances in which they are applicable, and provides guidelines...
An overview of degradable polymers
USDA-ARS?s Scientific Manuscript database
Many degradable polymers are being investigated for research purpose or for possible commercial use. This overview provides a listing of the more important degradable polymers and their mechanisms of action. Some application areas, particularly in packaging, housewares, personal care, biomaterials, ...
ERIC Educational Resources Information Center
Nielsen, Earl T.
This monograph is designed to assist administrative school personnel in selecting, training, and retaining the best qualified instructional aides available. It covers five areas: (1) employment procedures--outlining important points under recruitment, applications, examinations, interviews, and selection; (2) payroll procedures--outlining how to…
An overview of degradable polymers
USDA-ARS?s Scientific Manuscript database
Many degradable polymers are being investigated for research purpose or for possible commercial use. This overview provides a listing of the more important degradable polymers and their mechanisms of action. Some application areas, particularly in packaging, housewares, personal care, biomaterials...
Jason A. Gatch; Timothy B. Harrington; James P. Castleberry
2002-01-01
Leaf area index (LAI) is an important parameter of forest stand productivity that has been used to diagnose stand vigor and potential fertilizer response of southern pines. The LAI-2000 was tested for its ability to provide accurate and precise estimates of LAI of loblolly pine (Pinus taeda L.). To test instrument accuracy, regression was used to...
Larios, Diego F.; Barbancho, Julio; Sevillano, José L.; Rodríguez, Gustavo; Molina, Francisco J.; Gasull, Virginia G.; Mora-Merchan, Javier M.; León, Carlos
2013-01-01
Wireless Sensor Networks (WSNs) are a technology that is becoming very popular for many applications, and environmental monitoring is one of its most important application areas. This technology solves the lack of flexibility of wired sensor installations and, at the same time, reduces the deployment costs. To demonstrate the advantages of WSN technology, for the last five years we have been deploying some prototypes in the Doñana Biological Reserve, which is an important protected area in Southern Spain. These prototypes not only evaluate the technology, but also solve some of the monitoring problems that have been raised by biologists working in Doñana. This paper presents a review of the work that has been developed during these five years. Here, we demonstrate the enormous potential of using machine learning in wireless sensor networks for environmental and animal monitoring because this approach increases the amount of useful information and reduces the effort that is required by biologists in an environmental monitoring task. PMID:24025554
Matthew Bumgardner; Urs Buehlmann
2015-01-01
Small firms are a critical component of the secondary woodworking industry and are important to hardwood lumber demand in the US. Understanding managers' perceptions of competitiveness in these firms is important to those working with the industry to help maintain a viable wood manufacturing base. One area of interest relative to the overall business environment...
Silva, S.R.; Ging, P.B.; Lee, R.W.; Ebbert, J.C.; Tesoriero, A.J.; Inkpen, E.L.
2002-01-01
Ground and surface waters in urban areas are susceptible to nitrate contamination from septic systems, leaking sewer lines, and fertilizer applications. Source identification is a primary step toward a successful remediation plan in affected areas. In this respect, nitrogen and oxygen isotope ratios of nitrate, in conjunction with hydrologic data and water chemistry, have proven valuable in urban studies from Austin, Texas, and Tacoma, Washington. In Austin, stream water was sampled during stremflow and baseflow conditions to assess surface and subsurface sources of nitrate, respectively. In Tacoma, well waters were sampled in adjacent sewered and un-sewered areas to determine if locally high nitrate concentrations were caused by septic systems in the un-sewered areas. In both studies, sewage was identified as a nitrate source and mixing between sewage and other sources of nitrate was apparent. In addition to source identification, combined nitrogen and oxygen isotopes were important in determining the significance of denitrification, which can complicate source assessment by reducing nitrate concentrations and increasing ??15N values. The two studies illustrate the value of nitrogen and oxygen isotopes of nitrate for forensic applications in urban areas. ?? Published by Elsevier Science Ltd. on behalf of AEHS.
NASA Astrophysics Data System (ADS)
Sakarya, Doǧan Uǧur
2017-05-01
Drag force effect is an important aspect of range performance in missile applications especially for long flight time. However, old fashioned gimbal approaches force to increase missile diameter. This increase has negative aspect of rising in both drag force and radar cross sectional area. A new gimbal approach was proposed recently. It uses a beam steering optical arrangement. Therefore, it needs less volume envelope for same field of regard and same optomechanical assembly than the old fashioned gimbal approaches. In addition to longer range performance achieved with same fuel in the new gimbal approach, this method provides smaller cross sectional area which can be more invisible in enemies' radar. In this paper, the two gimbal approaches - the old fashioned one and the new one- are compared in order to decrease drag force and radar cross sectional area in missile application. In this study; missile parameters are assumed to generate gimbal and optical design parameters. Optical design is performed according to these missile criteria. Two gimbal configurations are designed with respect to modeled missile parameters. Also analyzes are performed to show decreased drag force and radar cross sectional area in the new approach for comparison.
Cognitive radio wireless sensor networks: applications, challenges and research trends.
Joshi, Gyanendra Prasad; Nam, Seung Yeob; Kim, Sung Won
2013-08-22
A cognitive radio wireless sensor network is one of the candidate areas where cognitive techniques can be used for opportunistic spectrum access. Research in this area is still in its infancy, but it is progressing rapidly. The aim of this study is to classify the existing literature of this fast emerging application area of cognitive radio wireless sensor networks, highlight the key research that has already been undertaken, and indicate open problems. This paper describes the advantages of cognitive radio wireless sensor networks, the difference between ad hoc cognitive radio networks, wireless sensor networks, and cognitive radio wireless sensor networks, potential application areas of cognitive radio wireless sensor networks, challenges and research trend in cognitive radio wireless sensor networks. The sensing schemes suited for cognitive radio wireless sensor networks scenarios are discussed with an emphasis on cooperation and spectrum access methods that ensure the availability of the required QoS. Finally, this paper lists several open research challenges aimed at drawing the attention of the readers toward the important issues that need to be addressed before the vision of completely autonomous cognitive radio wireless sensor networks can be realized.
Measurement and testing of the acoustic properties of materials: a review
NASA Astrophysics Data System (ADS)
Zeqiri, Bajram; Scholl, Werner; Robinson, Stephen P.
2010-04-01
A review is presented of methods of measurement for a range of key acoustic properties of materials, spanning three application areas: airborne sound, underwater acoustics and ultrasound. The acoustic properties considered, primarily transmission loss (damping) and echo-reduction, are specifically important to the end application of any material. The state-of-the-art in measurement and likely future challenges are described in detail.
Note Taking on Trial: A Legal Application of Note-Taking Research
ERIC Educational Resources Information Center
Kiewra, Kenneth A.
2016-01-01
This article is about note taking, but it is not an exhaustive review of note-taking literature. Instead, it portrays the application of note-taking research to an unusual and important area of practice--the law. I was hired to serve as an expert witness on note taking in a legal case that hinged, in part, on the completeness and accuracy of…
Applications of Gold Nanoparticles in Nanomedicine: Recent Advances in Vaccines.
Carabineiro, Sónia Alexandra Correia
2017-05-22
Nowadays, gold is used in (nano-)medicine, usually in the form of nanoparticles, due to the solid proofs given of its therapeutic effects on several diseases. Gold also plays an important role in the vaccine field as an adjuvant and a carrier, reducing toxicity, enhancing immunogenic activity, and providing stability in storage. An even brighter golden future is expected for gold applications in this area.
Pharmaceutical and biomedical applications of surface engineered carbon nanotubes.
Mehra, Neelesh Kumar; Jain, Keerti; Jain, Narendra Kumar
2015-06-01
Surface engineered carbon nanotubes (CNTs) are attracting recent attention of scientists owing to their vivid biomedical and pharmaceutical applications. The focus of this review is to highlight the important role of surface engineered CNTs in the highly challenging but rewarding area of nanotechnology. The major strength of this review lies in highlighting the exciting applications of CNTs to boost the research efforts, which unfortunately are otherwise scattered in the literature making the reading non-coherent and non-homogeneous. Copyright © 2015 Elsevier Ltd. All rights reserved.
Belmeziti, Ali; Coutard, Olivier; de Gouvello, Bernard
2014-01-01
This paper is based on a prospective scenario of development of rainwater harvesting (RWH) on a given large urban area (such as metropolitan area or region). In such a perspective, a new method is proposed to quantify the related potential of potable water savings (PPWS) indicator on this type of area by adapting the reference model usually used on the building level. The method is based on four setting-up principles: gathering (definition of buildings-types and municipalities-types), progressing (use of an intermediate level), increasing (choice of an upper estimation) and prioritizing (ranking the stakes of RWH). Its application to the Paris agglomeration shows that is possible to save up to 11% of the total current potable water through the use of RWH. It also shows that the residential sector offers the most important part because it holds two-thirds of the agglomeration PPWS.
Surface-area-controlled synthesis of porous TiO2 thin films for gas-sensing applications
NASA Astrophysics Data System (ADS)
Park, Jae Young; Kim, Ho-hyoung; Rana, Dolly; Jamwal, Deepika; Katoch, Akash
2017-03-01
Surface-area-controlled porous TiO2 thin films were prepared via a simple sol-gel chemical route, and their gas-sensing properties were thoroughly investigated in the presence of typical oxidizing NO2 gas. The surface area of TiO2 thin films was controlled by developing porous TiO2 networked by means of controlling the TiO2-to-TTIP (titanium isopropoxide, C12H28O4Ti) molar ratio, where TiO2 nanoparticles of size ˜20 nm were used. The sensor’s response was found to depend on the surface area of the TiO2 thin films. The porous TiO2 thin-film sensor with greater surface area was more sensitive than those of TiO2 thin films with lesser surface area. The improved sensing ability was ascribed to the porous network formed within the thin films by TiO2 sol. Our results show that surface area is a key parameter for obtaining superior gas-sensing performance; this provides important guidelines for preparing and using porous thin films for gas-sensing applications.
Application of Remote Sensors in Mapping Rice Area and Forecasting Its Production: A Review
Mosleh, Mostafa K.; Hassan, Quazi K.; Chowdhury, Ehsan H.
2015-01-01
Rice is one of the staple foods for more than three billion people worldwide. Rice paddies accounted for approximately 11.5% of the World's arable land area during 2012. Rice provided ∼19% of the global dietary energy in recent times and its annual average consumption per capita was ∼65 kg during 2010–2011. Therefore, rice area mapping and forecasting its production is important for food security, where demands often exceed production due to an ever increasing population. Timely and accurate estimation of rice areas and forecasting its production can provide invaluable information for governments, planners, and decision makers in formulating policies in regard to import/export in the event of shortfall and/or surplus. The aim of this paper was to review the applicability of the remote sensing-based imagery for rice area mapping and forecasting its production. Recent advances on the resolutions (i.e., spectral, spatial, radiometric, and temporal) and availability of remote sensing imagery have allowed us timely collection of information on the growth and development stages of the rice crop. For elaborative understanding of the application of remote sensing sensors, following issues were described: the rice area mapping and forecasting its production using optical and microwave imagery, synergy between remote sensing-based methods and other developments, and their implications as an operational one. The overview of the studies to date indicated that remote sensing-based methods using optical and microwave imagery found to be encouraging. However, there were having some limitations, such as: (i) optical remote sensing imagery had relatively low spatial resolution led to inaccurate estimation of rice areas; and (ii) radar imagery would suffer from speckles, which potentially would degrade the quality of the images; and also the brightness of the backscatters were sensitive to the interacting surface. In addition, most of the methods used in forecasting rice yield were empirical in nature, so thus it would require further calibration and validation prior to implement over other geographical locations. PMID:25569753
Application of remote sensors in mapping rice area and forecasting its production: a review.
Mosleh, Mostafa K; Hassan, Quazi K; Chowdhury, Ehsan H
2015-01-05
Rice is one of the staple foods for more than three billion people worldwide. Rice paddies accounted for approximately 11.5% of the World's arable land area during 2012. Rice provided ~19% of the global dietary energy in recent times and its annual average consumption per capita was ~65 kg during 2010-2011. Therefore, rice area mapping and forecasting its production is important for food security, where demands often exceed production due to an ever increasing population. Timely and accurate estimation of rice areas and forecasting its production can provide invaluable information for governments, planners, and decision makers in formulating policies in regard to import/export in the event of shortfall and/or surplus. The aim of this paper was to review the applicability of the remote sensing-based imagery for rice area mapping and forecasting its production. Recent advances on the resolutions (i.e., spectral, spatial, radiometric, and temporal) and availability of remote sensing imagery have allowed us timely collection of information on the growth and development stages of the rice crop. For elaborative understanding of the application of remote sensing sensors, following issues were described: the rice area mapping and forecasting its production using optical and microwave imagery, synergy between remote sensing-based methods and other developments, and their implications as an operational one. The overview of the studies to date indicated that remote sensing-based methods using optical and microwave imagery found to be encouraging. However, there were having some limitations, such as: (i) optical remote sensing imagery had relatively low spatial resolution led to inaccurate estimation of rice areas; and (ii) radar imagery would suffer from speckles, which potentially would degrade the quality of the images; and also the brightness of the backscatters were sensitive to the interacting surface. In addition, most of the methods used in forecasting rice yield were empirical in nature, so thus it would require further calibration and validation prior to implement over other geographical locations.
The experimental research on electrodischarge drilling of high aspect ratio holes in Inconel 718
NASA Astrophysics Data System (ADS)
Lipiec, Piotr; Machno, Magdalena; Skoczypiec, Sebastian
2018-05-01
In recent years the drilling operations become important area of electrodischarge machining (EDM) application. This especially concerns drilling of, small (D< 1mm), cylindrical and high-aspect ratio (L/D > 10) holes in difficult-to-cut materials (i.e. nickel or titanium alloys). Drilling of such a holes is significantly beyond mechanical drilling capabilities. Therefore electrodischarge machining is good and cost efficient alternative for such application. EDM gives possibility to drill accurate, burr free and high aspect ratio holes and is applicable to machine wide range of conductive materials, irrespective of their hardness and toughness. However it is worth to underline its main disadvantages such as: significant tool wear, low material removal rate and poor surface integrity. The last one is especially important in reliable applications in aircraft or medical industry.
Civil Applications of National Satellites
NASA Astrophysics Data System (ADS)
Killam, Dudley B.
2002-01-01
For over thirty years, the United States Air Force has employed infrared surveillance for missile warning purposes in support of peace. The Defense Support Program, currently employed in this way, consists of a constellation of satellites that provide civil-oriented, peace preserving infrared surveillance. Such civil applications include monitoring parched areas for wind-whipped brush fires or lightning-initiated forest fires that consume many acres of timber and threaten populated areas. Other applications include the similar monitoring of static, infrared-sensed heat sources including volcanoes and the plumes of acrid smoke produced when the volcanoes are active. This paper will address these important missions that can be performed by the national infrared surveillance satellite constellations, furthering the peace of the world in ways never envisioned by their creators 30 years ago.
Application of laboratory permeability data
Johnson, A.I.
1963-01-01
Some of the basic material contained in this report originally was prepared in 1952 as instructional handouts for ground-water short courses and for training of foreign participants. The material has been revised and expanded and is presented in the present form to make it more readily available to the field hydrologist. Illustrations now present published examples of the applications suggested in the 1952 material. For small areas, a field pumping test is sufficient to predict the characteristics of an aquifer. With a large area under study, the aquifer properties must be determined at many different locations and it is not usually economically feasible to make sufficient field tests to define the aquifer properties in detail for the whole aquifer. By supplementing a few field tests with laboratory permeability data and geologic interpretation, more point measurements representative of the hydrologic properties of the aquifer may be obtained. A sufficient number of samples seldom can be obtained to completely identify the permeability or transmissibility in detail for a project area. However, a few judiciously chosen samples of high quality, combined with good geologic interpretation, often will permit the extrapolation of permeability information over a large area with a fair degree of reliability. The importance of adequate geologic information, as well as the importance of collecting samples representative of at least all major textural units lying within the section or area of study, cannot be overemphasized.
Ultra-low thermal conductivities in large-area Si-Ge nanomeshes for thermoelectric applications
Perez-Taborda, Jaime Andres; Muñoz Rojo, Miguel; Maiz, Jon; Neophytou, Neophytos; Martin-Gonzalez, Marisol
2016-01-01
In this work, we measure the thermal and thermoelectric properties of large-area Si0.8Ge0.2 nano-meshed films fabricated by DC sputtering of Si0.8Ge0.2 on highly ordered porous alumina matrices. The Si0.8Ge0.2 film replicated the porous alumina structure resulting in nano-meshed films. Very good control of the nanomesh geometrical features (pore diameter, pitch, neck) was achieved through the alumina template, with pore diameters ranging from 294 ± 5nm down to 31 ± 4 nm. The method we developed is able to provide large areas of nano-meshes in a simple and reproducible way, being easily scalable for industrial applications. Most importantly, the thermal conductivity of the films was reduced as the diameter of the porous became smaller to values that varied from κ = 1.54 ± 0.27 W K−1m−1, down to the ultra-low κ = 0.55 ± 0.10 W K−1m−1 value. The latter is well below the amorphous limit, while the Seebeck coefficient and electrical conductivity of the material were retained. These properties, together with our large area fabrication approach, can provide an important route towards achieving high conversion efficiency, large area, and high scalable thermoelectric materials. PMID:27650202
An evaluation on CT image acquisition method for medical VR applications
NASA Astrophysics Data System (ADS)
Jang, Seong-wook; Ko, Junho; Yoo, Yon-sik; Kim, Yoonsang
2017-02-01
Recent medical virtual reality (VR) applications to minimize re-operations are being studied for improvements in surgical efficiency and reduction of operation error. The CT image acquisition method considering three-dimensional (3D) modeling for medical VR applications is important, because the realistic model is required for the actual human organ. However, the research for medical VR applications has focused on 3D modeling techniques and utilized 3D models. In addition, research on a CT image acquisition method considering 3D modeling has never been reported. The conventional CT image acquisition method involves scanning a limited area of the lesion for the diagnosis of doctors once or twice. However, the medical VR application is required to acquire the CT image considering patients' various postures and a wider area than the lesion. A wider area than the lesion is required because of the necessary process of comparing bilateral sides for dyskinesia diagnosis of the shoulder, pelvis, and leg. Moreover, patients' various postures are required due to the different effects on the musculoskeletal system. Therefore, in this paper, we perform a comparative experiment on the acquired CT images considering image area (unilateral/bilateral) and patients' postures (neutral/abducted). CT images are acquired from 10 patients for the experiments, and the acquired CT images are evaluated based on the length per pixel and the morphological deviation. Finally, by comparing the experiment results, we evaluate the CT image acquisition method for medical VR applications.
Elaboration of a complex GIS application in a catchment area.
Németh, T; Szabó, J; Pásztor, L; Bakacsi, Zs
2002-01-01
Rearrangement of land resources after political changes has not yet been finished in Hungary. It is almost impossible to collect information necessary for planning activities on outer areas of settlements. The data are distributed among various organizations and can be found in diverse forms or there are no available data at all. However water quality protection has become legally ordered concerning municipal activities around Lake Balaton which is considered as the most important recreation area and tourist target in Hungary and is also affected by a number of factors providing sources of environmental conflicts. Settlements in a catchment area (Tetves Creek) on the southern shoreline of Lake Balaton in Central Hungary tendered a complex project for collecting sources of authentic data of the Hungarian rural areas along with systematizing and saving these data in a uniform GIS. An application using Autodesk MapGuide Program for Internet realization was developed. The implemented web-based system can be used in Internet and Intranet environments.
Determination of the surface area of smectite in water by ethylene oxide chain adsorption.
Yuang, Paul-Cheng; Shen, Yun-Hwei
2005-05-15
This study investigates the feasibility of using ethylene oxide (EO) chain adsorption to determine the surface area of smectite in water. Experimental results indicate that high-molecular-weight poly(ethylene oxide) (PEO) should be used to provide reasonable estimations for monolayer capacity of PEO on smectite. The surface areas of smectites in water are calculated from the monolayer capacity of PEO adsorbed on smectite by taking the area per EO unit as 8.05 A(2). The method measures the actual surface area of smectite exposed when dispersed in water, which is important to applications of smectite under aqueous conditions.
Applicant expectations and decision factors for jobs and careers in food-supply veterinary medicine.
Prince, J Bruce; Gwinner, Kevin; Andrus, David M
2008-01-01
This article examines the job expectations of applicants as reported by recruiters interviewing food-supply veterinary medicine (FSVM) candidates and the career-choice decision factors used by year 3 and 4 veterinary students pursuing careers in FSVM. The responses of 1,047 veterinary recruiters and 270 year 3 and 4 students with a food-supply focus from 32 colleges of veterinary medicine in the United States and Canada were examined. Recruiters were asked to report the two most important job factors applicants took into account when deciding to accept an offer; students were asked the two most important reasons for choosing a career in FSVM and the two most important benefits of working as a food-supply veterinarian. Recruiters reported that high salaries and good benefits are the two most important decision factors. Interest in the food-animal career area and a desire for a rural, outdoor lifestyle were the top reasons students gave for choosing an FSVM career. Students saw the enjoyment of working with and helping producers and food animals as the most important benefits of a career in FSVM.
Cornejo, E; Fungairiño, S G; Barandica, J M; Serrano, J M; Zorrilla, J M; Gómez, T; Zapata, F J; Acosta, F J
2016-01-15
Improving the efficiency of management in protected areas is imperative in a generalized context of limited conservation budgets. However, this is overlooked due to flaws in problem definition, general disregard for cost information, and a lack of suitable tools for measuring costs and management quality. This study describes an innovative methodological framework, implemented in the web application SIGEIN, focused on maximizing the quality of management against its costs, establishing an explicit justification for any decision. The tool integrates, with this aim, a procedure for prioritizing management objects according to a conservation value, modified by a functional criterion; a project management module; and a module for management of continuous assessment. This appraisal associates the relevance of the conservation targets, the efficacy of the methods employed, both resource and personnel investments, and the resulting costs. Preliminary results of a prototypical SIGEIN application on the Site of Community Importance Chafarinas Islands are included. Copyright © 2015 Elsevier Ltd. All rights reserved.
Thomas B. Lynch; Jeffrey H. Gove
2013-01-01
Critical height sampling (CHS) estimates cubic volume per unit area by multiplying the sum of critical heights measured on trees tallied in a horizontal point sample (HPS) by the HPS basal area factor. One of the barriers to practical application of CHS is the fact that trees near the field location of the point-sampling sample point have critical heights that occur...
DOT National Transportation Integrated Search
2016-10-03
Real-time parking availability information is important in urban areas, and if available could reduce congestion, pollution, and gas consumption. This project presents a software solution called PhonePark for detecting the availability of on-street p...
Applications drivers for data parking on the Information Superhighway
NASA Technical Reports Server (NTRS)
Johnson, Clark E., Jr.; Foeller, Thomas
1994-01-01
As the cost of data storage continues to decline (currently about one-millionth of its cost four decades ago) entirely new applications areas become economically feasible. Many of these new areas involved the extraordinarily high data rates and universal connectivity soon to be provided by the National Information Infrastructure (NII). The commonly held belief is that the main driver for the NII will be entertainment applications. We believe that entertainment applications as currently touted (multi-media, 500 video channels, video-on-demand, etc.) will play an important but far from dominant role in the development of the NII and its data storage components. The most pervasively effective drivers will be medical applications such as telemedicine and remote diagnosis, education and environmental monitoring. These applications have a significant funding base and offer a clearly perceived opportunity to improve the nation's standard of living. The NII's wideband connectivity both nationwide and worldwide requires a broad spectrum of data storage devices with a wide-range of performance capabilities. These storage centers will be dispersed throughout the system. Magnetic recording devices will fill the majority of these new data storage requirements for at least the rest of this century. The storage needs of various application areas and their respective market sizes will be explored. The comparative performance of various magnetic technologies and competitive alternative storage systems will be discussed.
2005-04-01
related to one of the following areas: 1. Group Decision Support Methods; 2. Decision Support Methods; 3. AHP applications; 4. Multi...Objective Linear Programming (MOLP) algorithms; 5. Industrial engineering applications; 6. Behavioural considerations, and 7. Fuzzy MCDM. 3...making. This is especially important when using software like AHP or when constructing questionnaires for SME’s ( see [10] for many examples
Synthesis and design of silicide intermetallic materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petrovic, J.J.; Castro, R.G.; Butt, D.P.
1997-04-01
The overall objective of this program is to develop structural silicide-based materials with optimum combinations of elevated temperature strength/creep resistance, low temperature fracture toughness, and high temperature oxidation and corrosion resistance for applications of importance to the U.S. processing industry. A further objective is to develop silicide-based prototype industrial components. The ultimate aim of the program is to work with industry to transfer the structural silicide materials technology to the private sector in order to promote international competitiveness in the area of advanced high temperature materials and important applications in major energy-intensive U.S. processing industries. The program presently has amore » number of developing industrial connections, including a CRADA with Schuller International Inc. targeted at the area of MoSi{sub 2}-based high temperature materials and components for fiberglass melting and processing applications. The authors are also developing an interaction with the Institute of Gas Technology (IGT) to develop silicides for high temperature radiant gas burner applications, for the glass and other industries. Current experimental emphasis is on the development and characterization of MoSi{sub 2}-Si{sub 3}N{sub 4} and MoSi{sub 2}-SiC composites, the plasma spraying of MoSi{sub 2}-based materials, and the joining of MoSi{sub 2} materials to metals.« less
Fire-probability maps for the Brazilian Amazonia
NASA Astrophysics Data System (ADS)
Cardoso, M.; Nobre, C.; Obregon, G.; Sampaio, G.
2009-04-01
Most fires in Amazonia result from the combination between climate and land-use factors. They occur mainly in the dry season and are used as an inexpensive tool for land clearing and management. However, their unintended consequences are of important concern. Fire emissions are the most important sources of greenhouse gases and aerosols in the region, accidental fires are a major threat to protected areas, and frequent fires may lead to permanent conversion of forest areas into savannas. Fire-activity models have thus become important tools for environmental analyses in Amazonia. They are used, for example, in warning systems for monitoring the risk of burnings in protected areas, to improve the description of biogeochemical cycles and vegetation composition in ecosystem models, and to help estimate the long-term potential for savannas in biome models. Previous modeling studies for the whole region were produced in units of satellite fire pixels, which complicate their direct use for environmental applications. By reinterpreting remote-sensing based data using a statistical approach, we were able to calibrate models for the whole region in units of probability, or chance of fires to occur. The application of these models for years 2005 and 2006 provided maps of fire potential at 3-month and 0.25-deg resolution as a function of precipitation and distance from main roads. In both years, the performance of the resulting maps was better for the period July-September. During these months, most of satellite-based fire observations were located in areas with relatively high chance of fire, as determined by the modeled probability maps. In addition to reproduce reasonably well the areas presenting maximum fire activity as detected by remote sensing, the new results in units of probability are easier to apply than previous estimates from fire-pixel models.
Fire-probability maps for the Brazilian Amazonia
NASA Astrophysics Data System (ADS)
Cardoso, Manoel; Sampaio, Gilvan; Obregon, Guillermo; Nobre, Carlos
2010-05-01
Most fires in Amazonia result from the combination between climate and land-use factors. They occur mainly in the dry season and are used as an inexpensive tool for land clearing and management. However, their unintended consequences are of important concern. Fire emissions are the most important sources of greenhouse gases and aerosols in the region, accidental fires are a major threat to protected areas, and frequent fires may lead to permanent conversion of forest areas into savannas. Fire-activity models have thus become important tools for environmental analyses in Amazonia. They are used, for example, in warning systems for monitoring the risk of burnings in protected areas, to improve the description of biogeochemical cycles and vegetation composition in ecosystem models, and to help estimate the long-term potential for savannas in biome models. Previous modeling studies for the whole region were produced in units of satellite fire pixels, which complicate their direct use for environmental applications. By reinterpreting remote-sensing based data using a statistical approach, we were able to calibrate models for the whole region in units of probability, or chance of fires to occur. The application of these models for years 2005 and 2006 provided maps of fire potential at 3-month and 0.25-deg resolution as a function of precipitation and distance from main roads. In both years, the performance of the resulting maps was better for the period July-September. During these months, most of satellite-based fire observations were located in areas with relatively high chance of fire, as determined by the modeled probability maps. In addition to reproduce reasonably well the areas presenting maximum fire activity as detected by remote sensing, the new results in units of probability are easier to apply than previous estimates from fire-pixel models.
Visualization of the tire-soil interaction area by means of ObjectARX programming interface
NASA Astrophysics Data System (ADS)
Mueller, W.; Gruszczyński, M.; Raba, B.; Lewicki, A.; Przybył, K.; Zaborowicz, M.; Koszela, K.; Boniecki, P.
2014-04-01
The process of data visualization, important for their analysis, becomes problematic when large data sets generated via computer simulations are available. This problem concerns, among others, the models that describe the geometry of tire-soil interaction. For the purpose of a graphical representation of this area and implementation of various geometric calculations the authors have developed a plug-in application for AutoCAD, based on the latest technologies, including ObjectARX, LINQ and the use of Visual Studio platform. Selected programming tools offer a wide variety of IT structures that enable data visualization and data analysis and are important e.g. in model verification.
Assessment Methods of Groundwater Overdraft Area and Its Application
NASA Astrophysics Data System (ADS)
Dong, Yanan; Xing, Liting; Zhang, Xinhui; Cao, Qianqian; Lan, Xiaoxun
2018-05-01
Groundwater is an important source of water, and long-term large demand make groundwater over-exploited. Over-exploitation cause a lot of environmental and geological problems. This paper explores the concept of over-exploitation area, summarizes the natural and social attributes of over-exploitation area, as well as expounds its evaluation methods, including single factor evaluation, multi-factor system analysis and numerical method. At the same time, the different methods are compared and analyzed. And then taking Northern Weifang as an example, this paper introduces the practicality of appraisal method.
78 FR 51187 - Equal Employment Opportunity and Diversity
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-20
... staff for deciding and taking action in these critical areas. Importance Unquestionably, the employees... programs, activities, and services will be treated fairly. The Chairman and Chief Executive Officer (CEO...; Make reasonable accommodations for qualified applicants for employment and employees with physical or...
ERTS Applications in earthquake research and mineral exploration in California
NASA Technical Reports Server (NTRS)
Abdel-Gawad, M.; Silverstein, J.
1973-01-01
Examples that ERTS imagery can be effectively utilized to identify, locate, and map faults which show geomorphic evidence of geologically recent breakage are presented. Several important faults not previously known have been identified. By plotting epicenters of historic earthquakes in parts of California, Sonora, Mexico, Arizona, and Nevada, we found that areas known for historic seismicity are often characterized by abundant evidence of recent fault and crustal movements. There are many examples of seismically quiet areas where outstanding evidence of recent fault movements is observed. One application is clear: ERTS-1 imagery could be effectively utilized to delineate areas susceptible to earthquake recurrence which, on the basis of seismic data alone, may be misleadingly considered safe. ERTS data can also be utilized in planning new sites in the geophysical network of fault movement monitoring and strain and tilt measurements.
Quantum machine learning for quantum anomaly detection
NASA Astrophysics Data System (ADS)
Liu, Nana; Rebentrost, Patrick
2018-04-01
Anomaly detection is used for identifying data that deviate from "normal" data patterns. Its usage on classical data finds diverse applications in many important areas such as finance, fraud detection, medical diagnoses, data cleaning, and surveillance. With the advent of quantum technologies, anomaly detection of quantum data, in the form of quantum states, may become an important component of quantum applications. Machine-learning algorithms are playing pivotal roles in anomaly detection using classical data. Two widely used algorithms are the kernel principal component analysis and the one-class support vector machine. We find corresponding quantum algorithms to detect anomalies in quantum states. We show that these two quantum algorithms can be performed using resources that are logarithmic in the dimensionality of quantum states. For pure quantum states, these resources can also be logarithmic in the number of quantum states used for training the machine-learning algorithm. This makes these algorithms potentially applicable to big quantum data applications.
NASA Technical Reports Server (NTRS)
Erb, R. B. (Principal Investigator)
1979-01-01
The author has identified the following significant results. The most important LACIE finding was that the technology worked very well in estimating wheat production in important geographic locations. Based on working through the many successes and shortcomings of LACIE, it can be stated with confidence that: (1) the current technology can successfully monitor what production in regions having similar characteristics to those of the U.S.S.R. wheat areas and the U.S. hard red winter wheat areas; (2) with additional applied research, significant improvements in capabilities to monitor wheat in these and other important production regions can be expected in the near future; (3) the remote sensing and weather effects modeling technology approached used by LACIE is generally applicable to other major crops and crop-producing regions of the world; and (4) with suitable effort, this technology can now advance rapidly and could be widespread use in the late 1980's.
Leaf-IT: An Android application for measuring leaf area.
Schrader, Julian; Pillar, Giso; Kreft, Holger
2017-11-01
The use of plant functional traits has become increasingly popular in ecological studies because plant functional traits help to understand key ecological processes in plant species and communities. This also includes changes in diversity, inter- and intraspecific interactions, and relationships of species at different spatiotemporal scales. Leaf traits are among the most important traits as they describe key dimensions of a plant's life history strategy. Further, leaf area is a key parameter with relevance for other traits such as specific leaf area, which in turn correlates with leaf chemical composition, photosynthetic rate, leaf longevity, and carbon investment. Measuring leaf area usually involves the use of scanners and commercial software and can be difficult under field conditions. We present Leaf-IT, a new smartphone application for measuring leaf area and other trait-related areas. Leaf-IT is free, designed for scientific purposes, and runs on Android 4 or higher. We tested the precision and accuracy using objects with standardized area and compared the area measurements of real leaves with the well-established, commercial software WinFOLIA using the Altman-Bland method. Area measurements of standardized objects show that Leaf-IT measures area with high accuracy and precision. Area measurements with Leaf-IT of real leaves are comparable to those of WinFOLIA. Leaf-IT is an easy-to-use application running on a wide range of smartphones. That increases the portability and use of Leaf-IT and makes it possible to measure leaf area under field conditions typical for remote locations. Its high accuracy and precision are similar to WinFOLIA. Currently, its main limitation is margin detection of damaged leaves or complex leaf morphologies.
Use of display technologies for augmented reality enhancement
NASA Astrophysics Data System (ADS)
Harding, Kevin
2016-06-01
Augmented reality (AR) is seen as an important tool for the future of user interfaces as well as training applications. An important application area for AR is expected to be in the digitization of training and worker instructions used in the Brilliant Factory environment. The transition of work instructions methods from printed pages in a book or taped to a machine to virtual simulations is a long step with many challenges along the way. A variety of augmented reality tools are being explored today for industrial applications that range from simple programmable projections in the work space to 3D displays and head mounted gear. This paper will review where some of these tool are today and some of the pros and cons being considered for the future worker environment.
Clinical Applications of Resting State Functional Connectivity
Fox, Michael D.; Greicius, Michael
2010-01-01
During resting conditions the brain remains functionally and metabolically active. One manifestation of this activity that has become an important research tool is spontaneous fluctuations in the blood oxygen level-dependent (BOLD) signal of functional magnetic resonance imaging (fMRI). The identification of correlation patterns in these spontaneous fluctuations has been termed resting state functional connectivity (fcMRI) and has the potential to greatly increase the translation of fMRI into clinical care. In this article we review the advantages of the resting state signal for clinical applications including detailed discussion of signal to noise considerations. We include guidelines for performing resting state research on clinical populations, outline the different areas for clinical application, and identify important barriers to be addressed to facilitate the translation of resting state fcMRI into the clinical realm. PMID:20592951
Particles and microfluidics merged: perspectives of highly sensitive diagnostic detection
Bale, Shyam Sundhar; Bhushan, Abhinav; Shen, Keyue; Seker, Erkin; Polyak, Boris
2014-01-01
There is a growing need for diagnostic technologies that provide laboratories with solutions that improve quality, enhance laboratory system productivity, and provide accurate detection of a broad range of infectious diseases and cancers. Recent advances in micro- and nanoscience and engineering, in particular in the areas of particles and microfluidic technologies, have advanced the “lab-on-a-chip” concept towards the development of a new generation of point-of-care diagnostic devices that could significantly enhance test sensitivity and speed. In this review, we will discuss many of the recent advances in microfluidics and particle technologies with an eye towards merging these two technologies for application in medical diagnostics. Although the potential diagnostic applications are virtually unlimited, the most important applications are foreseen in the areas of biomarker research, cancer diagnosis, and detection of infectious microorganisms. PMID:25378716
Kurzeja, Patrick
2016-05-01
Modern imaging techniques, increased simulation capabilities and extended theoretical frameworks, naturally drive the development of multiscale modelling by the question: which new information should be considered? Given the need for concise constitutive relationships and efficient data evaluation; however, one important question is often neglected: which information is sufficient? For this reason, this work introduces the formalized criterion of subscale sufficiency. This criterion states whether a chosen constitutive relationship transfers all necessary information from micro to macroscale within a multiscale framework. It further provides a scheme to improve constitutive relationships. Direct application to static capillary pressure demonstrates usefulness and conditions for subscale sufficiency of saturation and interfacial areas.
Alemán, José; Garrido, Alberto; Fraile, Alberto; Yuste, Francisco; Frias, Maria; Cieslik, Wioleta; Rosado, Anielka
2018-04-23
Organocatalysis is a growing area that is benefiting from advances in many fields. Its implementation has begun in areas such as supramolecular chemistry, organic chemistry and natural product syntheses. While a considerable number of important publications in the field of organocatalytic Mukaiyama-type additions have been reported, they are yet to be fully covered in a review. Therefore, we would like to highlight the applications of various kinds of organocatalysts in Mukaiyama-type reactions, while also including the vinylogous Mukaiyama variant. Herein we describe and discuss the development and current state of the art of the organocatalytic Mukaiyama reaction, vinylogous Mukaiyama and related reactions. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The anatomy and art of writing a successful grant application: a practical step-by-step approach.
Gholipour, Ali; Lee, Edward Y; Warfield, Simon K
2014-12-01
Writing a compelling grant application is a skill that is crucial to conducting high-quality and high-impact scientific research. A successful grant proposal provides the resources necessary to foster activity in an important area of investigation. A concise and practical overview of the anatomy and art of grant writing is provided in this article, along with citations to resources that are particularly useful for junior investigators.
Application of hydrodynamic cavitation in ballast water treatment.
Cvetković, Martina; Kompare, Boris; Klemenčič, Aleksandra Krivograd
2015-05-01
Ballast water is, together with hull fouling and aquaculture, considered the most important factor of the worldwide transfer of invasive non-indigenous organisms in aquatic ecosystems and the most important factor in European Union. With the aim of preventing and halting the spread of the transfer of invasive organisms in aquatic ecosystems and also in accordance with IMO's International Convention for the Control and Management of Ships Ballast Water and Sediments, the systems for ballast water treatment, whose work includes, e.g. chemical treatment, ozonation and filtration, are used. Although hydrodynamic cavitation (HC) is used in many different areas, such as science and engineering, implied acoustics, biomedicine, botany, chemistry and hydraulics, the application of HC in ballast water treatment area remains insufficiently researched. This paper presents the first literature review that studies lab- and large-scale setups for ballast water treatment together with the type-approved systems currently available on the market that use HC as a step in their operation. This paper deals with the possible advantages and disadvantages of such systems, as well as their influence on the crew and marine environment. It also analyses perspectives on the further development and application of HC in ballast water treatment.
Protein–Hydrogel Interactions in Tissue Engineering: Mechanisms and Applications
Zustiak, Silviya P.; Wei, Yunqian
2013-01-01
Recent advances in our understanding of the sophistication of the cellular microenvironment and the dynamics of tissue remodeling during development, disease, and regeneration have increased our appreciation of the current challenges facing tissue engineering. As this appreciation advances, we are better equipped to approach problems in the biology and therapeutics of even more complex fields, such as stem cells and cancer. To aid in these studies, as well as the established areas of tissue engineering, including cardiovascular, musculoskeletal, and neural applications, biomaterials scientists have developed an extensive array of materials with specifically designed chemical, mechanical, and biological properties. Herein, we highlight an important topic within this area of biomaterials research, protein–hydrogel interactions. Due to inherent advantages of hydrated scaffolds for soft tissue engineering as well as specialized bioactivity of proteins and peptides, this field is well-posed to tackle major needs within emerging areas of tissue engineering. We provide an overview of the major modes of interactions between hydrogels and proteins (e.g., weak forces, covalent binding, affinity binding), examples of applications within growth factor delivery and three-dimensional scaffolds, and finally future directions within the area of hydrogel–protein interactions that will advance our ability to control the cell–biomaterial interface. PMID:23150926
Cognitive Radio Wireless Sensor Networks: Applications, Challenges and Research Trends
Joshi, Gyanendra Prasad; Nam, Seung Yeob; Kim, Sung Won
2013-01-01
A cognitive radio wireless sensor network is one of the candidate areas where cognitive techniques can be used for opportunistic spectrum access. Research in this area is still in its infancy, but it is progressing rapidly. The aim of this study is to classify the existing literature of this fast emerging application area of cognitive radio wireless sensor networks, highlight the key research that has already been undertaken, and indicate open problems. This paper describes the advantages of cognitive radio wireless sensor networks, the difference between ad hoc cognitive radio networks, wireless sensor networks, and cognitive radio wireless sensor networks, potential application areas of cognitive radio wireless sensor networks, challenges and research trend in cognitive radio wireless sensor networks. The sensing schemes suited for cognitive radio wireless sensor networks scenarios are discussed with an emphasis on cooperation and spectrum access methods that ensure the availability of the required QoS. Finally, this paper lists several open research challenges aimed at drawing the attention of the readers toward the important issues that need to be addressed before the vision of completely autonomous cognitive radio wireless sensor networks can be realized. PMID:23974152
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raynal, Ann Marie; William H. Hensley, Jr.; Burns, Bryan L.
2014-11-01
The linear ground distance per unit time and ground area covered per unit time of producing synthetic aperture radar (SAR) imagery, termed rate of advance (ROA) and area coverage rate (ACR), are important metrics for platform and radar performance in surveillance applications. These metrics depend on many parameters of a SAR system such as wavelength, aircraft velocity, resolution, antenna beamwidth, imaging mode, and geometry. Often the effects of these parameters on rate of advance and area coverage rate are non-linear. This report addresses the impact of different parameter spaces as they relate to rate of advance and area coverage ratemore » performance.« less
Enzymes from Extreme Environments and Their Industrial Applications
Littlechild, Jennifer A.
2015-01-01
This article will discuss the importance of specific extremophilic enzymes for applications in industrial biotechnology. It will specifically address those enzymes that have applications in the area of biocatalysis. Such enzymes now play an important role in catalyzing a variety of chemical conversions that were previously carried out by traditional chemistry. The biocatalytic process is carried out under mild conditions and with greater specificity. The enzyme process does not result in the toxic waste that is usually produced in a chemical process that would require careful disposal. In this sense, the biocatalytic process is referred to as carrying out “green chemistry” which is considered to be environmentally friendly. Some of the extremophilic enzymes to be discussed have already been developed for industrial processes such as an l-aminoacylase and a γ-lactamase. The industrial applications of other extremophilic enzymes, including transaminases, carbonic anhydrases, dehalogenases, specific esterases, and epoxide hydrolases, are currently being assessed. Specific examples of these industrially important enzymes that have been studied in the authors group will be presented in this review. PMID:26528475
Protons and Hydroxide Ions in Aqueous Systems.
Agmon, Noam; Bakker, Huib J; Campen, R Kramer; Henchman, Richard H; Pohl, Peter; Roke, Sylvie; Thämer, Martin; Hassanali, Ali
2016-07-13
Understanding the structure and dynamics of water's constituent ions, proton and hydroxide, has been a subject of numerous experimental and theoretical studies over the last century. Besides their obvious importance in acid-base chemistry, these ions play an important role in numerous applications ranging from enzyme catalysis to environmental chemistry. Despite a long history of research, many fundamental issues regarding their properties continue to be an active area of research. Here, we provide a review of the experimental and theoretical advances made in the last several decades in understanding the structure, dynamics, and transport of the proton and hydroxide ions in different aqueous environments, ranging from water clusters to the bulk liquid and its interfaces with hydrophobic surfaces. The propensity of these ions to accumulate at hydrophobic surfaces has been a subject of intense debate, and we highlight the open issues and challenges in this area. Biological applications reviewed include proton transport along the hydration layer of various membranes and through channel proteins, problems that are at the core of cellular bioenergetics.
Evaluation of Land Use Regression Models for Nitrogen Dioxide and Benzene in Four US Cities
Mukerjee, Shaibal; Smith, Luther; Neas, Lucas; Norris, Gary
2012-01-01
Spatial analysis studies have included the application of land use regression models (LURs) for health and air quality assessments. Recent LUR studies have collected nitrogen dioxide (NO2) and volatile organic compounds (VOCs) using passive samplers at urban air monitoring networks in El Paso and Dallas, TX, Detroit, MI, and Cleveland, OH to assess spatial variability and source influences. LURs were successfully developed to estimate pollutant concentrations throughout the study areas. Comparisons of development and predictive capabilities of LURs from these four cities are presented to address this issue of uniform application of LURs across study areas. Traffic and other urban variables were important predictors in the LURs although city-specific influences (such as border crossings) were also important. In addition, transferability of variables or LURs from one city to another may be problematic due to intercity differences and data availability or comparability. Thus, developing common predictors in future LURs may be difficult. PMID:23226985
A Survey on Anomaly Based Host Intrusion Detection System
NASA Astrophysics Data System (ADS)
Jose, Shijoe; Malathi, D.; Reddy, Bharath; Jayaseeli, Dorathi
2018-04-01
An intrusion detection system (IDS) is hardware, software or a combination of two, for monitoring network or system activities to detect malicious signs. In computer security, designing a robust intrusion detection system is one of the most fundamental and important problems. The primary function of system is detecting intrusion and gives alerts when user tries to intrusion on timely manner. In these techniques when IDS find out intrusion it will send alert massage to the system administrator. Anomaly detection is an important problem that has been researched within diverse research areas and application domains. This survey tries to provide a structured and comprehensive overview of the research on anomaly detection. From the existing anomaly detection techniques, each technique has relative strengths and weaknesses. The current state of the experiment practice in the field of anomaly-based intrusion detection is reviewed and survey recent studies in this. This survey provides a study of existing anomaly detection techniques, and how the techniques used in one area can be applied in another application domain.
Wang, Wei-Ming; Zhou, Hua-Yun; Liu, Yao-Bao; Li, Ju-Lin; Cao, Yuan-Yuan; Cao, Jun
2013-04-01
To explore a new mode of malaria elimination through the application of digital earth system in malaria epidemic management and surveillance. While we investigated the malaria cases and deal with the epidemic areas in Jiangsu Province in 2011, we used JISIBAO UniStrong G330 GIS data acquisition unit (GPS) to collect the latitude and longitude of the cases located, and then established a landmark library about early-warning areas and an image management system by using Google Earth Free 6.2 and its image processing software. A total of 374 malaria cases were reported in Jiangsu Province in 2011. Among them, there were 13 local vivax malaria cases, 11 imported vivax malaria cases from other provinces, 20 abroad imported vivax malaria cases, 309 abroad imported falciparum malaria cases, 7 abroad imported quartan malaria cases (Plasmodium malaria infection), and 14 abroad imported ovale malaria cases (P. ovale infection). Through the analysis of Google Earth Mapping system, these malaria cases showed a certain degree of aggregation except the abroad imported quartan malaria cases which were highly sporadic. The local vivax malaria cases mainly concentrated in Sihong County, the imported vivax malaria cases from other provinces mainly concentrated in Suzhou City and Wuxi City, the abroad imported vivax malaria cases concentrated in Nanjing City, the abroad imported falciparum malaria cases clustered in the middle parts of Jiangsu Province, and the abroad imported ovale malaria cases clustered in Liyang City. The operation of Google Earth Free 6.2 is simple, convenient and quick, which could help the public health authority to make the decision of malaria prevention and control, including the use of funds and other health resources.
Smith, L A; Thomson, S J
2003-01-01
A research summary is presented that emphasizes ARS achievements in application technology over the past 2-3 years. Research focused on the improvement of agricultural pesticide application is important from the standpoint of crop protection as well as environmental safety. Application technology research is being actively pursued within the ARS, with a primary focus on application system development, drift management, efficacy enhancement and remote sensing. Research on application systems has included sensor-controlled hooded sprayers, new approaches to direct chemical injection, and aerial electrostatic sprayers. For aerial application, great improvements in on-board flow controllers permit accurate field application of chemicals. Aircraft parameters such as boom position and spray release height are being altered to determine their effect on drift. Other drift management research has focused on testing of low-drift nozzles, evaluation of pulsed spray technologies and evaluation of drift control adjuvants. Research on the use of air curtain sprayers in orchards, air-assist sprayers for row crops and vegetables, and air deflectors on aircraft has documented improvements in application efficacy. Research has shown that the fate of applied chemicals is influenced by soil properties, and this has implications for herbicide efficacy and dissipation in the environment. Remote sensing systems are being used to target areas in the field where pests are present so that spray can be directed to only those areas. Soil and crop conditions influence propensity for weeds and insects to proliferate in any given field area. Research has indicated distinct field patterns favorable for weed growth and insect concentration, which can provide further assistance for targeted spraying.
[Global patent overview of Ginkgo biloba preparation].
Cheng, Xin-Min; Lei, Hai-Min; Liu, Wei
2013-09-01
With related global patent data as analysis samples, worldwide patent overview of Ginkgo biloba preparation is analyzed in application, applicant, technical distribution and so on. This research shows that the most important areas of G. biloba preparation are Europe and China. The European applicants start earliest along with developing smoothly, moreover, their patents have best quality. The Chinese applicants start late along with the fastest growing, and have already certain research capabilities, moreover, their patents' quality needs to be improved. This research result provides reference for development of G. biloba preparation. The author suggest that Chinese applicants learn techniques and layout experiences of other's patents fully to enhance the level of new drug development and patent protection.
Area under precision-recall curves for weighted and unweighted data.
Keilwagen, Jens; Grosse, Ivo; Grau, Jan
2014-01-01
Precision-recall curves are highly informative about the performance of binary classifiers, and the area under these curves is a popular scalar performance measure for comparing different classifiers. However, for many applications class labels are not provided with absolute certainty, but with some degree of confidence, often reflected by weights or soft labels assigned to data points. Computing the area under the precision-recall curve requires interpolating between adjacent supporting points, but previous interpolation schemes are not directly applicable to weighted data. Hence, even in cases where weights were available, they had to be neglected for assessing classifiers using precision-recall curves. Here, we propose an interpolation for precision-recall curves that can also be used for weighted data, and we derive conditions for classification scores yielding the maximum and minimum area under the precision-recall curve. We investigate accordances and differences of the proposed interpolation and previous ones, and we demonstrate that taking into account existing weights of test data is important for the comparison of classifiers.
Area under Precision-Recall Curves for Weighted and Unweighted Data
Grosse, Ivo
2014-01-01
Precision-recall curves are highly informative about the performance of binary classifiers, and the area under these curves is a popular scalar performance measure for comparing different classifiers. However, for many applications class labels are not provided with absolute certainty, but with some degree of confidence, often reflected by weights or soft labels assigned to data points. Computing the area under the precision-recall curve requires interpolating between adjacent supporting points, but previous interpolation schemes are not directly applicable to weighted data. Hence, even in cases where weights were available, they had to be neglected for assessing classifiers using precision-recall curves. Here, we propose an interpolation for precision-recall curves that can also be used for weighted data, and we derive conditions for classification scores yielding the maximum and minimum area under the precision-recall curve. We investigate accordances and differences of the proposed interpolation and previous ones, and we demonstrate that taking into account existing weights of test data is important for the comparison of classifiers. PMID:24651729
Remote sensing sensors and applications in environmental resources mapping and modeling
Melesse, Assefa M.; Weng, Qihao; Thenkabail, Prasad S.; Senay, Gabriel B.
2007-01-01
The history of remote sensing and development of different sensors for environmental and natural resources mapping and data acquisition is reviewed and reported. Application examples in urban studies, hydrological modeling such as land-cover and floodplain mapping, fractional vegetation cover and impervious surface area mapping, surface energy flux and micro-topography correlation studies is discussed. The review also discusses the use of remotely sensed-based rainfall and potential evapotranspiration for estimating crop water requirement satisfaction index and hence provides early warning information for growers. The review is not an exhaustive application of the remote sensing techniques rather a summary of some important applications in environmental studies and modeling.
Optical methods for wireless implantable sensing platforms
NASA Astrophysics Data System (ADS)
Mujeeb-U-Rahman, Muhammad; Chang, Chieh-Feng; Scherer, Axel
2013-09-01
Ultra small scale implants have gained lots of importance for both acute and chronic applications. Optical techniques hold the key to miniaturizing these devices to long sought sub-mm scale. This will lead towards long term use of these devices for medically relevant applications. It can also allow using multiple of these devices at the same time and forming a true body area network of sensors. In this paper, we present optical power transfer to such devices and the techniques to harness this power for different applications, for example high voltage or high current applications. We also present methods for wireless data transfer from such implants.
The Sunrise project: An R&D project for a national information infrastructure prototype
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Juhnyoung
1995-02-01
Sunrise is a Los Alamos National Laboratory (LANL) project started in October 1993. It is intended to a prototype National Information Infrastructure (NII) development project. A main focus of Sunrise is to tie together enabling technologies (networking, object-oriented distributed computing, graphical interfaces, security, multimedia technologies, and data mining technologies) with several specific applications. A diverse set of application areas was chosen to ensure that the solutions developed in the project are as generic as possible. Some of the application areas are materials modeling, medical records and image analysis, transportation simulations, and education. This paper provides a description of Sunrise andmore » a view of the architecture and objectives of this evolving project. The primary objectives of Sunrise are three-fold: (1) To develop common information-enabling tools for advanced scientific research and its applications to industry; (2) To enhance the capabilities of important research programs at the Laboratory; and (3) To define a new way of collaboration between computer science and industrially relevant research.« less
A network-based distributed, media-rich computing and information environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, R.L.
1995-12-31
Sunrise is a Los Alamos National Laboratory (LANL) project started in October 1993. It is intended to be a prototype National Information Infrastructure development project. A main focus of Sunrise is to tie together enabling technologies (networking, object-oriented distributed computing, graphical interfaces, security, multi-media technologies, and data-mining technologies) with several specific applications. A diverse set of application areas was chosen to ensure that the solutions developed in the project are as generic as possible. Some of the application areas are materials modeling, medical records and image analysis, transportation simulations, and K-12 education. This paper provides a description of Sunrise andmore » a view of the architecture and objectives of this evolving project. The primary objectives of Sunrise are three-fold: (1) To develop common information-enabling tools for advanced scientific research and its applications to industry; (2) To enhance the capabilities of important research programs at the Laboratory; (3) To define a new way of collaboration between computer science and industrially-relevant research.« less
Chemical Gas Sensors for Aeronautic and Space Applications
NASA Technical Reports Server (NTRS)
Hunter, Gary W.; Chen, Liang-Yu; Neudeck, Philip G.; Knight, Dak; Liu, Chung-Chiun; Wu, Quing-Hai; Zhou, Huan-Jun
1997-01-01
Aeronautic and space applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. Two areas of particular interest are safety monitoring and emission monitoring. In safety monitoring, detection of low concentrations of hydrogen at potentially low temperatures is important while for emission monitoring the detection of nitrogen oxides, hydrogen, hydrocarbons and oxygen is of interest. This paper discusses the needs of aeronautic and space applications and the point-contact sensor technology being developed to address these needs. The development of these sensors is based on progress in two types of technology: (1) Micromachining and microfabrication technology to fabricate miniaturized sensors. (2) The development of high temperature semiconductors, especially silicon carbide. The detection of each type of gas involves its own challenges in the fields of materials science and fabrication technology. The number of dual-use commercial applications of this microfabricated gas sensor technology make this general area of sensor development a field of significant interest.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geng, Guangchao; Abhyankar, Shrirang; Wang, Xiaoyu
Transient stability-constrained optimal power flow is an important emerging problem with power systems pushed to the limits for economic benefits, dense and larger interconnected systems, and reduced inertia due to expected proliferation of renewable energy resources. In this study, two more approaches: single machine equivalent and computational intelligence are presented. Also discussed are various application areas, and future directions in this research area. In conclusion, a comprehensive resource for the available literature, publicly available test systems, and relevant numerical libraries is also provided.
The Reality of Virtual Reality Product Development
NASA Astrophysics Data System (ADS)
Dever, Clark
Virtual Reality and Augmented Reality are emerging areas of research and product development in enterprise companies. This talk will discuss industry standard tools and current areas of application in the commercial market. Attendees will gain insights into how to research, design, and (most importantly) ship, world class products. The presentation will recount the lessons learned to date developing a Virtual Reality tool to solve physics problems resulting from trying to perform aircraft maintenance on ships at sea.
Area Estimation of Deep-Sea Surfaces from Oblique Still Images
Souto, Miguel; Afonso, Andreia; Calado, António; Madureira, Pedro; Campos, Aldino
2015-01-01
Estimating the area of seabed surfaces from pictures or videos is an important problem in seafloor surveys. This task is complex to achieve with moving platforms such as submersibles, towed or remotely operated vehicles (ROV), where the recording camera is typically not static and provides an oblique view of the seafloor. A new method for obtaining seabed surface area estimates is presented here, using the classical set up of two laser devices fixed to the ROV frame projecting two parallel lines over the seabed. By combining lengths measured directly from the image containing the laser lines, the area of seabed surfaces is estimated, as well as the camera’s distance to the seabed, pan and tilt angles. The only parameters required are the distance between the parallel laser lines and the camera’s horizontal and vertical angles of view. The method was validated with a controlled in situ experiment using a deep-sea ROV, yielding an area estimate error of 1.5%. Further applications and generalizations of the method are discussed, with emphasis on deep-sea applications. PMID:26177287
3CCD image segmentation and edge detection based on MATLAB
NASA Astrophysics Data System (ADS)
He, Yong; Pan, Jiazhi; Zhang, Yun
2006-09-01
This research aimed to identify weeds from crops in early stage in the field operation by using image-processing technology. As 3CCD images offer greater binary value difference between weed and crop section than ordinary digital images taken by common cameras. It has 3 channels (green, red, ifred) which takes a snap-photo of the same area, and the three images can be composed into one image, which facilitates the segmentation of different areas. By the application of image-processing toolkit on MATLAB, the different areas in the image can be segmented clearly. As edge detection technique is the first and very important step in image processing, The different result of different processing method was compared. Especially, by using the wavelet packet transform toolkit on MATLAB, An image was preprocessed and then the edge was extracted, and getting more clearly cut image of edge. The segmentation methods include operations as erosion, dilation and other algorithms to preprocess the images. It is of great importance to segment different areas in digital images in field real time, so as to be applied in precision farming, to saving energy and herbicide and many other materials. At present time Large scale software as MATLAB on PC was used, but the computation can be reduced and integrated into a small embed system, which means that the application of this technique in agricultural engineering is feasible and of great economical value.
USDA-ARS?s Scientific Manuscript database
BACKGROUND: Glassy-winged sharpshooter (GWSS), Homalodisca vitripennis (Germar) (Hemiptera: Cicadellidae), is an important vector of the bacterium Xylella fastidiosa, the causal agent of Pierce’s disease of grapevine. Area-wide applications of neonicotinoid insecticides have suppressed GWSS populati...
Recent research on emergent verbal behavior: clinical applications and future directions.
Grow, Laura L; Kodak, Tiffany
2010-01-01
This paper describes recent studies that have evaluated the functional independence of verbal operants. Procedures that facilitate the emergence of untrained verbal operants and important areas of future research to increase efficiency of language programs for children diagnosed with developmental disabilities are discussed.
Selection of species and sampling areas: The importance of inference
Paul Stephen Corn
2009-01-01
Inductive inference, the process of drawing general conclusions from specific observations, is fundamental to the scientific method. Platt (1964) termed conclusions obtained through rigorous application of the scientific method as "strong inference" and noted the following basic steps: generating alternative hypotheses; devising experiments, the...
Webb-Vargas, Yenny; Chen, Shaojie; Fisher, Aaron; Mejia, Amanda; Xu, Yuting; Crainiceanu, Ciprian; Caffo, Brian; Lindquist, Martin A
2017-12-01
Big Data are of increasing importance in a variety of areas, especially in the biosciences. There is an emerging critical need for Big Data tools and methods, because of the potential impact of advancements in these areas. Importantly, statisticians and statistical thinking have a major role to play in creating meaningful progress in this arena. We would like to emphasize this point in this special issue, as it highlights both the dramatic need for statistical input for Big Data analysis and for a greater number of statisticians working on Big Data problems. We use the field of statistical neuroimaging to demonstrate these points. As such, this paper covers several applications and novel methodological developments of Big Data tools applied to neuroimaging data.
Humidity sensing properties of Al-doped zinc oxide coating films
NASA Astrophysics Data System (ADS)
Saidi, S. A.; Mamat, M. H.; Ismail, A. S.; Malek, M. F.; Yusoff, M. M.; Sin, N. D. Md.; Zoolfakar, A. S.; Khusaimi, Z.; Rusop, M.
2018-05-01
Humidity sensor was fabricated using Al-doped zinc oxide (ZnO) coating films through spin-coating at room temperature. The sensing mechanism was discussed based on their nanostructures, such as surface area and porous nanostructures. Surface area and water adsorption are an important component in the low humidity, while at high humidity, porous nanostructures and capillary condensation become important. The results showed that the sensitivity of the Al-doped ZnO coating improved compared to that of the Al-doped ZnO nanorod arrays, with values of 7.38 at 40% to 90%RH (Relative humidity). All these results indicated that Al-doped ZnO coating had high potential for humidity-sensor applications.
BASIC STUDY ON APPLICABILITY OF MODIS DATA FOR VEGETATION MONITORING IN ASHIO AREA
NASA Astrophysics Data System (ADS)
Ikeda, Hirokazu; Todate, Hikaru; Tanaka, Hiroshi; Ota, Tametomo
Ashio Basin was once lushly green until 1800's. However, the forest had been almost lost by copper mine de velopment and forest fire by 1956. From that time on, afforestation has been carried out for over 50 years, and the vegetation is being recovered. Therefore, it is very important to estimate the past afforestation activities, and to propose future directions. There exists an earlier research on vegetation monitoring in Ashio area, but it was performed more than 15 years ago, and used expensive commercial GIS and LANDSAT data. The present study examined a sustainable and inexpensive system with using preferably free data and software. It is shown that, by comparison with aerial photographs and digital national land information, vegetation index (NDVI) by MODIS data, available to download free, are easy to obtain and manipulate, and applicable for vegetation monitoring in Ashio area.
Developing satellite communications for public service: Prospects in four service areas
NASA Technical Reports Server (NTRS)
1977-01-01
The Public Service Satellite Consortium evaluated prospects for satellite telecommunications in four areas of the public service: the U.S. health care system, elementary and secondary education, American libraries, and that sector of the public service which is concerned with the provision of continuing education to health professionals. Three important conclusions were reached. First, throughout the public service there are three recurring needs: improved access, cost containment, and maintenance of quality. Appropriate application of communication satellite systems could ameliorate each of these concerns. Second, there appears to be an enormous latent demand for data communication services throughout the public service. The potential demand in 1982 to support requirements in hospital administration, library services and other information-retrieval activities, equipment maintenance, and environmental monitoring may be in excess of $300 million a year. Third, administrative applications of data communication networks show particular promise, especially in rural areas.
Fabricating Ohmic contact on Nb-doped SrTiO{sub 3} surface in nanoscale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yuhang; National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, Chinese Academy of Engineering Physics, Mianyang, Sichuan 621999; Shi, Xiaolan
2016-05-09
Fabricating reliable nano-Ohmic contact on wide gap semiconductors is an important yet difficult step in oxide nanoelectronics. We fabricated Ohmic contact on the n-type wide gap oxide Nb-doped SrTiO{sub 3} in nanoscale by mechanically scratching the surface using an atomic force microscopy tip. Although contacted to high work function metal, the scratched area exhibits nearly linear IV behavior with low contact resistance, which maintains for hours in vacuum. In contrast, the unscratched area shows Fowler–Nordheim tunneling dominated Schottky rectifying behavior with high contact resistance. It was found that the Ohmic conductivity in the scratched area was drastically suppressed by oxygenmore » gas indicating the oxygen vacancy origin of the Ohmic behavior. The surface oxygen vacancy induced barrier width reduction was proposed to explain the phenomena. The nanoscale approach is also applicable to macroscopic devices and has potential application in all-oxide devices.« less
Infrared laser in the treatment of craniomandibular disorders, arthrogenous pain.
Hansson, T L
1989-05-01
The fast removal of intra-articular inflammation of the temporomandibular joint in five different patients after infrared laser application is described. Parameters of clinical evaluation was maximum mouth opening and subjective pain. The application of infrared laser of 700 Hz frequency for 3 minutes during five consecutive days at the skin over the painful area of the temporomandibular joint was used. However, the importance of concomitant mandibular stabilization is stressed to achieve optimal result.
Molecularly Imprinted Nanomaterials for Sensor Applications
Irshad, Muhammad; Iqbal, Naseer; Mujahid, Adnan; Afzal, Adeel; Hussain, Tajamal; Sharif, Ahsan; Ahmad, Ejaz; Athar, Muhammad Makshoof
2013-01-01
Molecular imprinting is a well-established technology to mimic antibody-antigen interaction in a synthetic platform. Molecularly imprinted polymers and nanomaterials usually possess outstanding recognition capabilities. Imprinted nanostructured materials are characterized by their small sizes, large reactive surface area and, most importantly, with rapid and specific analysis of analytes due to the formation of template driven recognition cavities within the matrix. The excellent recognition and selectivity offered by this class of materials towards a target analyte have found applications in many areas, such as separation science, analysis of organic pollutants in water, environmental analysis of trace gases, chemical or biological sensors, biochemical assays, fabricating artificial receptors, nanotechnology, etc. We present here a concise overview and recent developments in nanostructured imprinted materials with respect to various sensor systems, e.g., electrochemical, optical and mass sensitive, etc. Finally, in light of recent studies, we conclude the article with future perspectives and foreseen applications of imprinted nanomaterials in chemical sensors. PMID:28348356
Förster, Erik; Bohnert, Patrick; Kraus, Matthias; Kilper, Roland; Müller, Ute; Buchmann, Martin; Brunner, Robert
2016-11-20
This paper presents the conception and implementation of a variable diameter ring-cutting system for a CO2 laser with a working wavelength of 10.6 μm. The laser-cutting system is adapted to an observation zoom microscope for combined use and is applicable for the extraction of small circular areas from polymer films, such as forensic adhesive tapes in a single shot. As an important characteristic for our application, the variable diameter ring-cutting system provides telecentricity in the target area. Ring diameters are continuously tunable between 500 μm and 2 mm. A minimum width of less than 20 μm was found for the ring profile edge. The basic characteristics of the system, including telecentricity, were experimentally evaluated and demonstrated by cutting experiments on different polymer tapes and further exemplary samples.
Towards Theranostic Multicompartment Microcapsules: in-situ Diagnostics and Laser-induced Treatment
Xiong, Ranhua; Soenen, Stefaan J.; Braeckmans, Kevin; Skirtach, Andre G.
2013-01-01
Paving the way towards the application of polyelectrolyte multilayer capsules in theranostics, we describe diagnostic multi-functionality and drug delivery using multicompartment polymeric capsules which represent the next generation of drug delivery carriers. Their versatility is particularly important for potential applications in the area of theranostics wherein the carriers are endowed with the functionality for both diagnostics and therapy. Responsiveness towards external stimuli is attractive for providing controlled and on-demand release of encapsulated materials. An overview of external stimuli is presented with an emphasis on light as a physical stimulus which has been widely used for activation of microcapsules and release of their contents. In this article we also describe existing and new approaches to build multicompartment microcapsules as well as means available to achieve controlled and triggered release from their subcompartments, with a focus on applications in theranostics. Outlook for future directions in the area are highlighted. PMID:23471141
Ionic Liquid-Based Optical and Electrochemical Carbon Dioxide Sensors.
Behera, Kamalakanta; Pandey, Shubha; Kadyan, Anu; Pandey, Siddharth
2015-12-04
Due to their unusual physicochemical properties (e.g., high thermal stability, low volatility, high intrinsic conductivity, wide electrochemical windows and good solvating ability), ionic liquids have shown immense application potential in many research areas. Applications of ionic liquid in developing various sensors, especially for the sensing of biomolecules, such as nucleic acids, proteins and enzymes, gas sensing and sensing of various important ions, among other chemosensing platforms, are currently being explored by researchers worldwide. The use of ionic liquids for the detection of carbon dioxide (CO₂) gas is currently a major topic of research due to the associated importance of this gas with daily human life. This review focuses on the application of ionic liquids in optical and electrochemical CO₂ sensors. The design, mechanism, sensitivity and detection limit of each type of sensor are highlighted in this review.
Ionic Liquid-Based Optical and Electrochemical Carbon Dioxide Sensors
Behera, Kamalakanta; Pandey, Shubha; Kadyan, Anu; Pandey, Siddharth
2015-01-01
Due to their unusual physicochemical properties (e.g., high thermal stability, low volatility, high intrinsic conductivity, wide electrochemical windows and good solvating ability), ionic liquids have shown immense application potential in many research areas. Applications of ionic liquid in developing various sensors, especially for the sensing of biomolecules, such as nucleic acids, proteins and enzymes, gas sensing and sensing of various important ions, among other chemosensing platforms, are currently being explored by researchers worldwide. The use of ionic liquids for the detection of carbon dioxide (CO2) gas is currently a major topic of research due to the associated importance of this gas with daily human life. This review focuses on the application of ionic liquids in optical and electrochemical CO2 sensors. The design, mechanism, sensitivity and detection limit of each type of sensor are highlighted in this review. PMID:26690155
Application of geoinformation techniques in sustainable development of marginal rural
NASA Astrophysics Data System (ADS)
Leszczynska, G.
2009-04-01
The basic objective of the studies is to create a geographic information system that would assure integration of activities aimed at protecting biological diversity with sustainable development of marginal rural areas through defining the conditions for development of tourism and recreation in the identified areas. The choice of that solution is a consequence of the fact that numerous phenomena and processes presented in maps are linked to functional relations or they can be viewed as functions of space, time and attributes. The paper presents the system development stage aimed at elaborating the template for the system serving solution of the above-presented problem. In case of this issue the geographic information system will be developed to support development of marginal rural areas through selection of appropriate forms of tourism for the endangered areas including indication of locations for development of appropriate tourist infrastructure. Selection of the appropriate form of tourism will depend on natural, tourist and infrastructure values present in a given area and conditioned by the need to present the biodiversity component present in those areas together with elements of traditional agricultural landscape. The most important problem is to reconcile two seemingly contradictory aims: 1. Preventing social and economic marginalization of the restructured rural areas. 2. Preserving biological diversity in the restructured areas.Agriculture influences many aspects of the natural environment such as water resources, biodiversity and status of natural habitats, status of soils, landscape and, in a wider context, the climate. Project implementation will involve application of technologies allowing analysis of the systems for managing marginal rural areas as spatial models based on geographic information systems. Modelling of marginal rural areas management using the GIS technologies will involve creating spatial models of actual objects. On the basis of data on location, properties of attributes and mutual relations of objects analyses of synergic influence of specific development forms on the environment and development of rural areas will be carried out. The important aspect here is the possibility of linking the phenomena and processes presented in maps with functional relations, including the space and time function. Application of that solution will allow analysis of actual marginal rural areas management system as a model of object and it will allow application of artificial intelligence as decision support tool. The system designed in that way will be characterized by the following properties: - it will be modelled and built of mutually communicating objects implemented by software using special object types. - division of the software into objects will facilitate its analysis. - dynamic properties of object structures: polymorphism, hermetization and implementation of methods in object structure will be applied. - objects will be used as the set of system model elements, which will assure ease of its modification. - specialization of classes will be introduced by means of inheritance of fields and methods [Muller, 2000]. The applied methods of object design coupled with GIS use should allow integration of marginal rural areas management according to the principle of sustainable development.
Cheng, S.; Tian, G.; Xia, J.; He, H.; Shi, Z.; ,
2004-01-01
The multichannel analysis of surface-wave method (MASW) is a newly development method. The method has been employed in various applications in environmental and engineering geophysics overseas. However, It can only be found a few case studies in China. Most importantly, there is no application of the MASW in desert area in China or abroad. We present a case study of investigating the low-depression velocity in Temple of North Taba Area in Erdos Basin. The MASW method successfully defined the low-depression velocity layer in the desert area. Comparing results obtained by the MASW method with results by refraction seismic method, we discussed efficiency and simplicity of applying the MASW method in the desert area. It is proved that the maximum investigation depth can reach 60m in the study area when the acquisition and procession parameters are carefully chosen. The MASW method can remedy the incompetence of the refraction method and the micro-seismograph log method in low-depression velocity layer's investigation. The MASW method is also a powerful tool in investigation of near-surface complicated materials and possesses many unique advantages.
2016-01-01
Modern imaging techniques, increased simulation capabilities and extended theoretical frameworks, naturally drive the development of multiscale modelling by the question: which new information should be considered? Given the need for concise constitutive relationships and efficient data evaluation; however, one important question is often neglected: which information is sufficient? For this reason, this work introduces the formalized criterion of subscale sufficiency. This criterion states whether a chosen constitutive relationship transfers all necessary information from micro to macroscale within a multiscale framework. It further provides a scheme to improve constitutive relationships. Direct application to static capillary pressure demonstrates usefulness and conditions for subscale sufficiency of saturation and interfacial areas. PMID:27279769
Crowdsourcing urban air temperatures from smartphone battery temperatures
NASA Astrophysics Data System (ADS)
Overeem, A.; Robinson, J. C. R.; Leijnse, H.; Steeneveld, G. J.; Horn, B. K. P.; Uijlenhoet, R.
2013-08-01
Accurate air temperature observations in urban areas are important for meteorology and energy demand planning. They are indispensable to study the urban heat island effect and the adverse effects of high temperatures on human health. However, the availability of temperature observations in cities is often limited. Here we show that relatively accurate air temperature information for the urban canopy layer can be obtained from an alternative, nowadays omnipresent source: smartphones. In this study, battery temperatures were collected by an Android application for smartphones. A straightforward heat transfer model is employed to estimate daily mean air temperatures from smartphone battery temperatures for eight major cities around the world. The results demonstrate the enormous potential of this crowdsourcing application for real-time temperature monitoring in densely populated areas.
International registration of cultivar names for unassigned woody genera March 2013 - November 2016
USDA-ARS?s Scientific Manuscript database
Accurate cultivar nomenclature is important in all areas of horticulture, since plant material is normally recorded, tracked, and distributed by its name. Misnamed plant material may not have the characteristics that consumers expect, and inconsistent or mistaken application of cultivar names can re...
USDA-ARS?s Scientific Manuscript database
Vertical vegetation structure in rangeland ecosystems can be a valuable indicator for monitoring rangeland health or progress toward management objectives because of its importance for assessing riparian areas, post-fire recovery, wind erosion, and wildlife habitat. Federal land management agencies ...
Testing the efficacy of bicarbonates as fungicides against Cercospora beticola
USDA-ARS?s Scientific Manuscript database
Cercospora leaf spot (CLS), caused by the fungal pathogen Cercospora beticola, is an economically important pathogen of sugar beets in many production areas throughout the world. The application of fungicides has been one of the most effective management tools for CLS, but their effectiveness has di...
Bioorganic and bioinorganic chemistry.
Constable, Edwin C; Housecroft, Catherine E; Creus, Marc; Gademann, Karl; Giese, Bernd; Ward, Thomas R; Woggon, Wolf D; Chougnet, Antoinette
2010-01-01
The interdisciplinary projects in bioinorganic and bioorganic chemistry of the Department of Chemistry, University of Basel led to the preparation of new systems that mimic biologically important processes and to the discovery of compounds from natural sources which are very promising with respect to medical applications. The advances in these areas are reported here.
DOT National Transportation Integrated Search
2000-08-01
The soak-time of vehicle trip starts is defined as the duration of time in which the vehicle's engine is not operating and that precedes a successful vehicle start. The temporal distribution of the soak-time in an area is an important determinant of ...
7 CFR 1942.310 - Other considerations.
Code of Federal Regulations, 2010 CFR
2010-01-01
... basis of age and title III of the Americans with Disabilities Act, Public Law 101-336, which prohibits... environmental resources of rural areas such as important farmlands and forest lands, prime rangelands, wetlands.... The applicant may use guide 2 of this subpart as an example in preparing the resolution. Future...
Help Seeking in Academic Settings: Goals, Groups, and Contexts
ERIC Educational Resources Information Center
Karabenick, Stuart A., Ed.; Newman, Richard S., Ed.
2006-01-01
Building on Karabenick's earlier volume on this topic and maintaining its high standards of scholarship and intellectual rigor, this book brings together contemporary work that is theoretically as well as practically important. It highlights current trends in the area and gives expanded attention to applications to teaching and learning. The…
Using J-Query Mobile Technology to Support a Pedagogical Proficiency Course
ERIC Educational Resources Information Center
Kert, Serhat Bahadir
2013-01-01
Technology-enriched educational environments supported by different technological tools and applications are today's important research areas in the educational literature. During the educational process, different types of technologies are used in order to enhance the learning capabilities of students. Given the popularity of mobile phones, it…
Eradication of Invading Insect Populations: From Concepts to Applications
Andrew M. Liebhold; Ludek Berec; Eckehard G. Brockerhoff; Rebecca S. Epanchin-Niell; Alan Hastings; Daniel A. Herms; John M. Kean; Deborah G. McCullough; David M. Suckling; Patrick C. Tobin; Takehiko Yamanaka
2016-01-01
Eradication is the deliberate elimination of a species from an area. Given that international quarantine measures can never be 100% effective, surveillance for newly arrived populations of nonnative species coupled with their eradication represents an important strategy for excluding potentially damaging insect species. Historically, eradication efforts have not always...
FIBER OPTICS: Fibre optics: Forty years later
NASA Astrophysics Data System (ADS)
Dianov, Evgenii M.
2010-01-01
This paper presents a brief overview of the state of the art in fibre optics and its main applications: optical fibre communications, fibre lasers and fibre sensors for various physical property measurements. The future of fibre optics and the status of this important area of the modern technology in Russia are discussed.
Examining the fate and transport of alpha- and beta-endosulfan in the atmosphere of South Florida
USDA-ARS?s Scientific Manuscript database
Agricultural activity in the South Florida region occurs in close proximity to both important natural areas like Biscayne and Everglades National Parks. One possible transport mechanism for pesticides into these sensitive ecosystems is release to the atmosphere after application. The process is en...
RECENT RESEARCH ON EMERGENT VERBAL BEHAVIOR: CLINICAL APPLICATIONS AND FUTURE DIRECTIONS
Grow, Laura L; Kodak, Tiffany
2010-01-01
This paper describes recent studies that have evaluated the functional independence of verbal operants. Procedures that facilitate the emergence of untrained verbal operants and important areas of future research to increase efficiency of language programs for children diagnosed with developmental disabilities are discussed. PMID:21541166
Evaluation of ULV applications against Old World sand fly species in equatorial Kenya
USDA-ARS?s Scientific Manuscript database
Reducing populations of phlebotomine sand flies in areas prevalent for leishmaniases is of ongoing importance to U.S. military operations. Collateral reduction of sand flies or human cases of leishmaniases during pesticide campaigns against vectors of malaria indicate that residuals like DDT can be ...
USDA-ARS?s Scientific Manuscript database
Reducing populations of phlebotomine sand flies in areas prevalent for human leishmaniases is of ongoing importance to US military operations and civilian populations in endemic regions. Collateral reduction of sand flies or human cases of leishmaniases during pesticide campaigns against vectors of ...
Recent Developments and Applications of the MMPBSA Method
Wang, Changhao; Greene, D'Artagnan; Xiao, Li; Qi, Ruxi; Luo, Ray
2018-01-01
The Molecular Mechanics Poisson-Boltzmann Surface Area (MMPBSA) approach has been widely applied as an efficient and reliable free energy simulation method to model molecular recognition, such as for protein-ligand binding interactions. In this review, we focus on recent developments and applications of the MMPBSA method. The methodology review covers solvation terms, the entropy term, extensions to membrane proteins and high-speed screening, and new automation toolkits. Recent applications in various important biomedical and chemical fields are also reviewed. We conclude with a few future directions aimed at making MMPBSA a more robust and efficient method. PMID:29367919
Instrument for Measuring Thermal Conductivity of Materials at Low Temperatures
NASA Technical Reports Server (NTRS)
Fesmire, James; Sass, Jared; Johnson, Wesley
2010-01-01
With the advance of polymer and other non-metallic material sciences, whole new series of polymeric materials and composites are being created. These materials are being optimized for many different applications including cryogenic and low-temperature industrial processes. Engineers need these data to perform detailed system designs and enable new design possibilities for improved control, reliability, and efficiency in specific applications. One main area of interest is cryogenic structural elements and fluid handling components and other parts, films, and coatings for low-temperature application. An important thermal property of these new materials is the apparent thermal conductivity (k-value).
Optical monitoring of scoliosis by 3D medical laser scanner
NASA Astrophysics Data System (ADS)
Rodríguez-Quiñonez, Julio C.; Sergiyenko, Oleg Yu.; Preciado, Luis C. Basaca; Tyrsa, Vera V.; Gurko, Alexander G.; Podrygalo, Mikhail A.; Lopez, Moises Rivas; Balbuena, Daniel Hernandez
2014-03-01
Three dimensional recording of the human body surface or anatomical areas have gained importance in many medical applications. In this paper, our 3D Medical Laser Scanner is presented. It is based on the novel principle of dynamic triangulation. We analyze the method of operation, medical applications, orthopedically diseases as Scoliosis and the most common types of skin to employ the system the most proper way. It is analyzed a group of medical problems related to the application of optical scanning in optimal way. Finally, experiments are conducted to verify the performance of the proposed system and its method uncertainty.
Where to restore ecological connectivity? Detecting barriers and quantifying restoration benefits.
McRae, Brad H; Hall, Sonia A; Beier, Paul; Theobald, David M
2012-01-01
Landscape connectivity is crucial for many ecological processes, including dispersal, gene flow, demographic rescue, and movement in response to climate change. As a result, governmental and non-governmental organizations are focusing efforts to map and conserve areas that facilitate movement to maintain population connectivity and promote climate adaptation. In contrast, little focus has been placed on identifying barriers-landscape features which impede movement between ecologically important areas-where restoration could most improve connectivity. Yet knowing where barriers most strongly reduce connectivity can complement traditional analyses aimed at mapping best movement routes. We introduce a novel method to detect important barriers and provide example applications. Our method uses GIS neighborhood analyses in conjunction with effective distance analyses to detect barriers that, if removed, would significantly improve connectivity. Applicable in least-cost, circuit-theoretic, and simulation modeling frameworks, the method detects both complete (impermeable) barriers and those that impede but do not completely block movement. Barrier mapping complements corridor mapping by broadening the range of connectivity conservation alternatives available to practitioners. The method can help practitioners move beyond maintaining currently important areas to restoring and enhancing connectivity through active barrier removal. It can inform decisions on trade-offs between restoration and protection; for example, purchasing an intact corridor may be substantially more costly than restoring a barrier that blocks an alternative corridor. And it extends the concept of centrality to barriers, highlighting areas that most diminish connectivity across broad networks. Identifying which modeled barriers have the greatest impact can also help prioritize error checking of land cover data and collection of field data to improve connectivity maps. Barrier detection provides a different way to view the landscape, broadening thinking about connectivity and fragmentation while increasing conservation options.
Groundwater protection: what can we learn from Germany?
Zhu, Yan; Balke, Klaus-Dieter
2008-03-01
For drinking water security the German waterworks proceed on a comprehensive concept, i.e., the protection of all the regions from the recharge area to the client. It includes the protection of the recharge area by a precautionary management, a safe water treatment, a strict maintenance of the water distribution network, continuous control and an intensive training of staff. Groundwater protection zones together with effective regulations and control play a very important role. Three protection zones with different restrictions in land-use are distinguished. Water in reservoirs and lakes is also protected by Surface Water Protection Zones. Within the surrounding area the land-use is controlled, too. Special treatment is necessary if acidification happens caused by acid rain, or eutrophication caused by the inflow of sewage. Very important is the collaboration between waterworks and the farmers cultivating land in the recharge area in order to execute water-protecting ecological farming with the aim to reduce the application of fertilizers and plant protection agents. Probable financial losses have to be compensated by the waterworks.
NASA Astrophysics Data System (ADS)
Salek, Mansour; Levison, Jana; Parker, Beth; Gharabaghi, Bahram
2018-06-01
Road salt is pervasively used throughout Canada and in other cold regions during winter. For cities relying exclusively on groundwater, it is important to plan and minimize the application of salt accordingly to mitigate the adverse effects of high chloride concentrations in water supply aquifers. The use of geospatial data (road network, land use, Quaternary and bedrock geology, average annual recharge, water-table depth, soil distribution, topography) in the DRASTIC methodology provides an efficient way of distinguishing salt-vulnerable areas associated with groundwater supply wells, to aid in the implementation of appropriate management practices for road salt application in urban areas. This research presents a GIS-based methodology to accomplish a vulnerability analysis for 12 municipal water supply wells within the City of Guelph, Ontario, Canada. The chloride application density (CAD) value at each supply well is calculated and related to the measured groundwater chloride concentrations and further combined with soil media and aquifer vadose- and saturated-zone properties used in DRASTIC. This combined approach, CAD-DRASTIC, is more accurate than existing groundwater vulnerability mapping methods and can be used by municipalities and other water managers to further improve groundwater protection related to road salt application.
Recurrent fuzzy ranking methods
NASA Astrophysics Data System (ADS)
Hajjari, Tayebeh
2012-11-01
With the increasing development of fuzzy set theory in various scientific fields and the need to compare fuzzy numbers in different areas. Therefore, Ranking of fuzzy numbers plays a very important role in linguistic decision-making, engineering, business and some other fuzzy application systems. Several strategies have been proposed for ranking of fuzzy numbers. Each of these techniques has been shown to produce non-intuitive results in certain case. In this paper, we reviewed some recent ranking methods, which will be useful for the researchers who are interested in this area.
Applications of aerospace technology to petroleum extraction and reservoir engineering
NASA Technical Reports Server (NTRS)
Jaffe, L. D.; Back, L. H.; Berdahl, C. M.; Collins, E. E., Jr.; Gordon, P. G.; Houseman, J.; Humphrey, M. F.; Hsu, G. C.; Ham, J. D.; Marte, J. E.;
1977-01-01
Through contacts with the petroleum industry, the petroleum service industry, universities and government agencies, important petroleum extraction problems were identified. For each problem, areas of aerospace technology that might aid in its solution were also identified, where possible. Some of the problems were selected for further consideration. Work on these problems led to the formulation of specific concepts as candidate for development. Each concept is addressed to the solution of specific extraction problems and makes use of specific areas of aerospace technology.
fMRI for mapping language networks in neurosurgical cases
Gupta, Santosh S
2014-01-01
Evaluating language has been a long-standing application in functional magnetic resonance imaging (fMRI) studies, both in research and clinical circumstances, and still provides challenges. Localization of eloquent areas is important in neurosurgical cases, so that there is least possible damage to these areas during surgery, maintaining their function postoperatively, therefore providing good quality of life to the patient. Preoperative fMRI study is a non-invasive tool to localize the eloquent areas, including language, with other traditional methods generally used being invasive and at times perilous. In this article, we describe methods and various paradigms to study the language areas, in clinical neurosurgical cases, along with illustrations of cases from our institute. PMID:24851003
Real-time analysis application for identifying bursty local areas related to emergency topics.
Sakai, Tatsuhiro; Tamura, Keiichi
2015-01-01
Since social media started getting more attention from users on the Internet, social media has been one of the most important information source in the world. Especially, with the increasing popularity of social media, data posted on social media sites are rapidly becoming collective intelligence, which is a term used to refer to new media that is displacing traditional media. In this paper, we focus on geotagged tweets on the Twitter site. These geotagged tweets are referred to as georeferenced documents because they include not only a short text message, but also the documents' posting time and location. Many researchers have been tackling the development of new data mining techniques for georeferenced documents to identify and analyze emergency topics, such as natural disasters, weather, diseases, and other incidents. In particular, the utilization of geotagged tweets to identify and analyze natural disasters has received much attention from administrative agencies recently because some case studies have achieved compelling results. In this paper, we propose a novel real-time analysis application for identifying bursty local areas related to emergency topics. The aim of our new application is to provide new platforms that can identify and analyze the localities of emergency topics. The proposed application is composed of three core computational intelligence techniques: the Naive Bayes classifier technique, the spatiotemporal clustering technique, and the burst detection technique. Moreover, we have implemented two types of application interface: a Web application interface and an android application interface. To evaluate the proposed application, we have implemented a real-time weather observation system embedded the proposed application. we used actual crawling geotagged tweets posted on the Twitter site. The weather observation system successfully detected bursty local areas related to observed emergency weather topics.
Development of a Model for the Representation of Nanotechnology-Specific Terminology
Bailey, LeeAnn O.; Kennedy, Christopher H.; Fritts, Martin J.; Hartel, Francis W.
2006-01-01
Nanotechnology is an important, rapidly-evolving, multidisciplinary field [1]. The tremendous growth in this area necessitates the establishment of a common, open-source terminology to support the diverse biomedical applications of nanotechnology. Currently, the consensus process to define and categorize conceptual entities pertaining to nanotechnology is in a rudimentary stage. We have constructed a nanotechnology-specific conceptual hierarchy that can be utilized by end users to retrieve accurate, controlled terminology regarding emerging nanotechnology and corresponding clinical applications. PMID:17238469
Heteroditopic receptors for ion-pair recognition.
McConnell, Anna J; Beer, Paul D
2012-05-21
Ion-pair recognition is a new field of research emerging from cation and anion coordination chemistry. Specific types of heteroditopic receptor designs for ion pairs and the complexity of ion-pair binding are discussed to illustrate key concepts such as cooperativity. The importance of this area of research is reflected by the wide variety of potential applications of ion-pair receptors, including applications as membrane transport and salt solubilization agents and sensors. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Carbon-Based Nanomaterials: Multi-Functional Materials for Biomedical Engineering
Cha, Chaenyung; Shin, Su Ryon; Annabi, Nasim; Dokmeci, Mehmet R.; Khademhosseini, Ali
2013-01-01
Functional carbon-based nanomaterials (CBNs) have become important due to their unique combinations of chemical and physical properties (i.e., thermal and electrical conductivity, high mechanical strength, and optical properties), extensive research efforts are being made to utilize these materials for various industrial applications, such as high-strength materials and electronics. These advantageous properties of CBNs are also actively investigated in several areas of biomedical engineering. This Perspective highlights different types of carbon-based nanomaterials currently used in biomedical applications. PMID:23560817
Carbon-based nanomaterials: multifunctional materials for biomedical engineering.
Cha, Chaenyung; Shin, Su Ryon; Annabi, Nasim; Dokmeci, Mehmet R; Khademhosseini, Ali
2013-04-23
Functional carbon-based nanomaterials (CBNs) have become important due to their unique combinations of chemical and physical properties (i.e., thermal and electrical conductivity, high mechanical strength, and optical properties), and extensive research efforts are being made to utilize these materials for various industrial applications, such as high-strength materials and electronics. These advantageous properties of CBNs are also actively investigated in several areas of biomedical engineering. This Perspective highlights different types of carbon-based nanomaterials currently used in biomedical applications.
Chiral phosphoric acid catalysis: from numbers to insights.
Maji, Rajat; Mallojjala, Sharath Chandra; Wheeler, Steven E
2018-02-19
Chiral phosphoric acids (CPAs) have emerged as powerful organocatalysts for asymmetric reactions, and applications of computational quantum chemistry have revealed important insights into the activity and selectivity of these catalysts. In this tutorial review, we provide an overview of computational tools at the disposal of computational organic chemists and demonstrate their application to a wide array of CPA catalysed reactions. Predictive models of the stereochemical outcome of these reactions are discussed along with specific examples of representative reactions and an outlook on remaining challenges in this area.
Expanding NASA Science Cooperation with New Partners
NASA Astrophysics Data System (ADS)
Allen, Marc; Bress, Kent
Expanding NASA Science Cooperation with New Partners When NASA was created in 1958, it was given a goal of "cooperation by the United States with other nations and groups of nations in work done pursuant to this Act and in the peaceful application of the results." As science has become increasingly globalized during the past 50 years, NASA and its many partners in space and Earth science research have benefited enormously from pooling ideas, skills, and resources for joint undertakings. The discoveries made have powerfully advanced public awareness of science and its importance all over the world. Today, the U.S. Administra-tion is encouraging NASA to expand its cooperation with new and emerging partners. NASA space and Earth science cooperation is founded on scientist-to-scientist research collaboration. Space missions are very costly and technically challenging, but there are many other important areas for international cooperation. Areas ripe for expansion with new partners include space data sharing, scientist-to-scientist collaborative research, international research program plan-ning and coordination, Earth applications for societal benefit, ground-based measurements for Earth system science, and education and public outreach. This presentation lays out NASA's general principles for international science cooperation, briefly describes each of these opportu-nity areas, and suggests avenues for initiating new cooperative relationships.
Weaver, Richard J; Betts, Catherine; Blomme, Eric A G; Gerets, Helga H J; Gjervig Jensen, Klaus; Hewitt, Philip G; Juhila, Satu; Labbe, Gilles; Liguori, Michael J; Mesens, Natalie; Ogese, Monday O; Persson, Mikael; Snoeys, Jan; Stevens, James L; Walker, Tracy; Park, B Kevin
2017-07-01
The liver is an important target for drug-induced toxicities. Early detection of hepatotoxic drugs requires use of well-characterized test systems, yet current knowledge, gaps and limitations of tests employed remains an important issue for drug development. Areas Covered: The current state of the science, understanding and application of test systems in use for the detection of drug-induced cytotoxicity, mitochondrial toxicity, cholestasis and inflammation is summarized. The test systems highlighted herein cover mostly in vitro and some in vivo models and endpoint measurements used in the assessment of small molecule toxic liabilities. Opportunities for research efforts in areas necessitating the development of specific tests and improved mechanistic understanding are highlighted. Expert Opinion: Use of in vitro test systems for safety optimization will remain a core activity in drug discovery. Substantial inroads have been made with a number of assays established for human Drug-induced Liver Injury. There nevertheless remain significant gaps with a need for improved in vitro tools and novel tests to address specific mechanisms of human Drug-Induced Liver Injury. Progress in these areas will necessitate not only models fit for application, but also mechanistic understanding of how chemical insult on the liver occurs in order to identify translational and quantifiable readouts for decision-making.
A review of volume‐area scaling of glaciers
Bahr, David B.; Kaser, Georg
2015-01-01
Abstract Volume‐area power law scaling, one of a set of analytical scaling techniques based on principals of dimensional analysis, has become an increasingly important and widely used method for estimating the future response of the world's glaciers and ice caps to environmental change. Over 60 papers since 1988 have been published in the glaciological and environmental change literature containing applications of volume‐area scaling, mostly for the purpose of estimating total global glacier and ice cap volume and modeling future contributions to sea level rise from glaciers and ice caps. The application of the theory is not entirely straightforward, however, and many of the recently published results contain analyses that are in conflict with the theory as originally described by Bahr et al. (1997). In this review we describe the general theory of scaling for glaciers in full three‐dimensional detail without simplifications, including an improved derivation of both the volume‐area scaling exponent γ and a new derivation of the multiplicative scaling parameter c. We discuss some common misconceptions of the theory, presenting examples of both appropriate and inappropriate applications. We also discuss potential future developments in power law scaling beyond its present uses, the relationship between power law scaling and other modeling approaches, and some of the advantages and limitations of scaling techniques. PMID:27478877
Cost effective spectral sensor solutions for hand held and field applications
NASA Astrophysics Data System (ADS)
Reetz, Edgar; Correns, Martin; Notni, Gunther
2015-05-01
Optical spectroscopy is without doubt one of the most important non-contact measurement principles. It is used in a wide range of applications from bio-medical to industrial fields. One recent trend is to miniaturize spectral sensors to address new areas of application. The most common spectral sensor type is based on diffraction gratings, while other types are based on micro mechanical systems (MEMS) or filter technologies. The authors represent the opinion that there is a potentially wide spread field of applications for spectrometers, but the market limits the range of applications since they cannot keep up with targeted cost requirements for consumer products. The present article explains an alternative approach for miniature multichannel spectrometer to enhance robustness for hand held field applications at a cost efficient price point.
Cabral, Lucélia; Soares, Claúdio Roberto Fonsêca Sousa; Giachini, Admir José; Siqueira, José Oswaldo
2015-11-01
In recent decades, the concentration of trace elements has increased in soil and water, mainly by industrialization and urbanization. Recovery of contaminated areas is generally complex. In that respect, microorganisms can be of vital importance by making significant contributions towards the establishment of plants and the stabilization of impacted areas. Among the available strategies for environmental recovery, bioremediation and phytoremediation outstand. Arbuscular mycorrhizal fungi (AMF) are considered the most important type of mycorrhizae for phytoremediation. AMF have broad occurrence in contaminated soils, and evidences suggest they improve plant tolerance to excess of certain trace elements. In this review, the use of AMF in phytoremediation and mechanisms involved in their trace element tolerance are discussed. Additionally, we present some techniques used to study the retention of trace elements by AMF, as well as a summary of studies showing major benefits of AMF for phytoremediation.
Pyroelectric Materials for Uncooled Infrared Detectors: Processing, Properties, and Applications
NASA Technical Reports Server (NTRS)
Aggarwal, M. D.; Batra, A. K.; Guggilla, P.; Edwards, M. E.; Penn, B. G.; Currie, J. R., Jr.
2010-01-01
Uncooled pyroelectric detectors find applications in diverse and wide areas such as industrial production; automotive; aerospace applications for satellite-borne ozone sensors assembled with an infrared spectrometer; health care; space exploration; imaging systems for ships, cars, and aircraft; and military and security surveillance systems. These detectors are the prime candidates for NASA s thermal infrared detector requirements. In this Technical Memorandum, the physical phenomena underlying the operation and advantages of pyroelectric infrared detectors is introduced. A list and applications of important ferroelectrics is given, which is a subclass of pyroelectrics. The basic concepts of processing of important pyroelectrics in various forms are described: single crystal growth, ceramic processing, polymer-composites preparation, and thin- and thick-film fabrications. The present status of materials and their characteristics and detectors figures-of-merit are presented in detail. In the end, the unique techniques demonstrated for improving/enhancing the performance of pyroelectric detectors are illustrated. Emphasis is placed on recent advances and emerging technologies such as thin-film array devices and novel single crystal sensors.
HDAC inhibitors: a 2013-2017 patent survey.
Faria Freitas, Micaela; Cuendet, Muriel; Bertrand, Philippe
2018-04-19
Zinc-dependent histone deacetylases (HDAC) inhibitors represent an important class of biologically active compounds with four of them approved by the FDA. A wide range of molecules has been reported for applications in several human diseases.Area covered: This review covers recent efforts in the synthesis and applications of HDAC inhibitors from 2013-2017.Expert opinion: HDAC inhibitors represent an important class of biologically active compounds for single or combination therapies. The current synthetic methodologies are oriented towards selective HDAC isoforms to achieve better therapeutic effects. Among the recent patents available, most of them focus on HDAC6 selective inhibitors. Beside this search for isoform selectivity, the quest for zinc binding groups with better pharmacokinetic properties and high potency against HDACs only motivates medicinal chemists, as well as the design of inhibitors targeting HDACs and at the same time another biological target. If the major applications are for anticancer activity, one can note the emerging applications in neurological or metabolic disorders or for the stimulation of the immune system.
NASA Astrophysics Data System (ADS)
Cleary, Kevin R.; Mulcahy, Maureen; Piyasena, Rohan; Zhou, Tong; Dieterich, Sonja; Xu, Sheng; Banovac, Filip; Wong, Kenneth H.
2005-04-01
Tracking organ motion due to respiration is important for precision treatments in interventional radiology and radiation oncology, among other areas. In interventional radiology, the ability to track and compensate for organ motion could lead to more precise biopsies for applications such as lung cancer screening. In radiation oncology, image-guided treatment of tumors is becoming technically possible, and the management of organ motion then becomes a major issue. This paper will review the state-of-the-art in respiratory motion and present two related clinical applications. Respiratory motion is an important topic for future work in image-guided surgery and medical robotics. Issues include how organs move due to respiration, how much they move, how the motion can be compensated for, and what clinical applications can benefit from respiratory motion compensation. Technology that can be applied for this purpose is now becoming available, and as that technology evolves, the subject will become an increasingly interesting and clinically valuable topic of research.
Remote Sensing Sensors and Applications in Environmental Resources Mapping and Modelling
Melesse, Assefa M.; Weng, Qihao; S.Thenkabail, Prasad; Senay, Gabriel B.
2007-01-01
The history of remote sensing and development of different sensors for environmental and natural resources mapping and data acquisition is reviewed and reported. Application examples in urban studies, hydrological modeling such as land-cover and floodplain mapping, fractional vegetation cover and impervious surface area mapping, surface energy flux and micro-topography correlation studies is discussed. The review also discusses the use of remotely sensed-based rainfall and potential evapotranspiration for estimating crop water requirement satisfaction index and hence provides early warning information for growers. The review is not an exhaustive application of the remote sensing techniques rather a summary of some important applications in environmental studies and modeling. PMID:28903290
Bao, Yuping; Wen, Tianlong; Samia, Anna Cristina S.; Khandhar, Amit; Krishnan, Kannan M.
2015-01-01
We present an interdisciplinary overview of material engineering and emerging applications of iron oxide nanoparticles. We discuss material engineering of nanoparticles in the broadest sense, emphasizing size and shape control, large-area self-assembly, composite/hybrid structures, and surface engineering. This is followed by a discussion of several non-traditional, emerging applications of iron oxide nanoparticles, including nanoparticle lithography, magnetic particle imaging, magnetic guided drug delivery, and positive contrast agents for magnetic resonance imaging. We conclude with a succinct discussion of the pharmacokinetics pathways of iron oxide nanoparticles in the human body –– an important and required practical consideration for any in vivo biomedical application, followed by a brief outlook of the field. PMID:26586919
Bao, Yuping; Wen, Tianlong; Samia, Anna Cristina S; Khandhar, Amit; Krishnan, Kannan M
2016-01-01
We present an interdisciplinary overview of material engineering and emerging applications of iron oxide nanoparticles. We discuss material engineering of nanoparticles in the broadest sense, emphasizing size and shape control, large-area self-assembly, composite/hybrid structures, and surface engineering. This is followed by a discussion of several non-traditional, emerging applications of iron oxide nanoparticles, including nanoparticle lithography, magnetic particle imaging, magnetic guided drug delivery, and positive contrast agents for magnetic resonance imaging. We conclude with a succinct discussion of the pharmacokinetics pathways of iron oxide nanoparticles in the human body -- an important and required practical consideration for any in vivo biomedical application, followed by a brief outlook of the field.
Industrial applications of metal-organic frameworks.
Czaja, Alexander U; Trukhan, Natalia; Müller, Ulrich
2009-05-01
New materials are prerequisite for major breakthrough applications influencing our daily life, and therefore are pivotal for the chemical industry. Metal-organic frameworks (MOFs) constitute an emerging class of materials useful in gas storage, gas purification and separation applications as well as heterogeneous catalysis. They not only offer higher surface areas and the potential for enhanced activity than currently used materials like base metal oxides, but also provide shape/size selectivity which is important both for separations and catalysis. In this critical review an overview of the potential applications of MOFs in the chemical industry is presented. Furthermore, the synthesis and characterization of the materials are briefly discussed from the industrial perspective (88 references).
MO-G-12A-01: Quantitative Imaging Metrology: What Should Be Assessed and How?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giger, M; Petrick, N; Obuchowski, N
The first two symposia in the Quantitative Imaging Track focused on 1) the introduction of quantitative imaging (QI) challenges and opportunities, and QI efforts of agencies and organizations such as the RSNA, NCI, FDA, and NIST, and 2) the techniques, applications, and challenges of QI, with specific examples from CT, PET/CT, and MR. This third symposium in the QI Track will focus on metrology and its importance in successfully advancing the QI field. While the specific focus will be on QI, many of the concepts presented are more broadly applicable to many areas of medical physics research and applications. Asmore » such, the topics discussed should be of interest to medical physicists involved in imaging as well as therapy. The first talk of the session will focus on the introduction to metrology and why it is critically important in QI. The second talk will focus on appropriate methods for technical performance assessment. The third talk will address statistically valid methods for algorithm comparison, a common problem not only in QI but also in other areas of medical physics. The final talk in the session will address strategies for publication of results that will allow statistically valid meta-analyses, which is critical for combining results of individual studies with typically small sample sizes in a manner that can best inform decisions and advance the field. Learning Objectives: Understand the importance of metrology in the QI efforts. Understand appropriate methods for technical performance assessment. Understand methods for comparing algorithms with or without reference data (i.e., “ground truth”). Understand the challenges and importance of reporting results in a manner that allows for statistically valid meta-analyses.« less
Intelligent Image Based Computer Aided Education (IICAE)
NASA Astrophysics Data System (ADS)
David, Amos A.; Thiery, Odile; Crehange, Marion
1989-03-01
Artificial Intelligence (AI) has found its way into Computer Aided Education (CAE), and there are several systems constructed to put in evidence its interesting advantages. We believe that images (graphic or real) play an important role in learning. However, the use of images, outside their use as illustration, makes it necessary to have applications such as AI. We shall develop the application of AI in an image based CAE and briefly present the system under construction to put in evidence our concept. We shall also elaborate a methodology for constructing such a system. Futhermore we shall briefly present the pedagogical and psychological activities in a learning process. Under the pedagogical and psychological aspect of learning, we shall develop areas such as the importance of image in learning both as pedagogical objects as well as means for obtaining psychological information about the learner. We shall develop the learner's model, its use, what to build into it and how. Under the application of AI in an image based CAE, we shall develop the importance of AI in exploiting the knowledge base in the learning environment and its application as a means of implementing pedagogical strategies.
Big data analytics to improve cardiovascular care: promise and challenges.
Rumsfeld, John S; Joynt, Karen E; Maddox, Thomas M
2016-06-01
The potential for big data analytics to improve cardiovascular quality of care and patient outcomes is tremendous. However, the application of big data in health care is at a nascent stage, and the evidence to date demonstrating that big data analytics will improve care and outcomes is scant. This Review provides an overview of the data sources and methods that comprise big data analytics, and describes eight areas of application of big data analytics to improve cardiovascular care, including predictive modelling for risk and resource use, population management, drug and medical device safety surveillance, disease and treatment heterogeneity, precision medicine and clinical decision support, quality of care and performance measurement, and public health and research applications. We also delineate the important challenges for big data applications in cardiovascular care, including the need for evidence of effectiveness and safety, the methodological issues such as data quality and validation, and the critical importance of clinical integration and proof of clinical utility. If big data analytics are shown to improve quality of care and patient outcomes, and can be successfully implemented in cardiovascular practice, big data will fulfil its potential as an important component of a learning health-care system.
The spatial optimism model research for the regional land use based on the ecological constraint
NASA Astrophysics Data System (ADS)
XU, K.; Lu, J.; Chi, Y.
2013-12-01
The study focuses on the Yunnan-Guizhou (i.e. Yunnan province and Guizhou province) Plateau in China. Since the Yunnan-Guizhou region consists of closed basins, the land resources suiting for development are in a shortage, and the ecological problems in the area are quite complicated. In such circumstance, in order to get the applicable basins area and distribution, certain spatial optimism model is needed. In this research, Digital Elevation Model (DEM) and land use data are used to get the boundary rules of the basins distribution. Furthermore, natural risks, ecological risks and human-made ecological risks are integrated to be analyzed. Finally, the spatial overlay analysis method is used to model the developable basins area and distribution for industries and urbanization. The study process can be divided into six steps. First, basins and their distribution need to be recognized. In this way, the DEM data is used to extract the geomorphology characteristics. The plaque regions with gradient under eight degrees are selected. Among these regions, the total area of the plaque with the area above 8 km2 is 54,000 km2, 10% of the total area. These regions are selected to the potential application of industries and urbanization. In the later five steps, analyses are aimed at these regions. Secondly, the natural risks are analyzed. The conditions of the earthquake, debris flow and rainstorm and flood are combined to classify the natural risks. Thirdly, the ecological risks are analyzed containing the ecological sensibility and ecosystem service function importance. According to the regional ecologic features, the sensibility containing the soil erosion, acid rain, stony desertification and survive condition factors is derived and classified according to the medium value to get the ecological sensibility partition. The ecosystem service function importance is classified and divided considering the biology variation protection and water conservation factors. The fourth step is the man-made ecological risks analysis. The mineral resources exploitation, forest resources developing, farming, tourism, industrialization and urbanization are integrated to derive the potential ecological risks made by human activities. The risks weight are given using the expert marking method, Then the man-made ecological risks are classified and divided among the regions. In the fifth step, the comprehensive ecological controlling divisions are obtained based on the above factors classification. At last, the applicable regions and distribution are derived using the spatial overlay analysis removing the higher ecological risks area and considering the land use status. In conclusion, based on the above comprehensive analyses, the applicable basins area are 2,575 km2 and 1,011 km2 respectively for the Yunnan province and Guizhou province. The amount is less than 1% of the perspective province total area focusing on the central part of the two provinces.
System dynamics analysis of strategies to reduce energy use in aluminum-intensive sectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanes, Rebecca J.; Nicholson, Scott; 25-29 June 2017, Carpenter, Alberta
Aluminum is one of the most widely used materials in industry, with applications in buildings, vehicles, aircraft, and consumer products. Its ubiquity is also on the rise: aluminum is beginning to supplant steel in lightweight vehicles and aircraft, and is used in many green or LEED-certified buildings. Although aluminum tends to be highly recycled, particularly by manufacturers of aluminum products, the sector as a whole is still far from a closed system. As a result, the increase in aluminum consumption also means an increase in primary aluminum production-an energy-intensive process-and an increase in consumption of the raw material bauxite, whichmore » in the U.S. is almost entirely imported. Our objectives for this study are to identify and analyze aluminum sector technologies and practices that reduce the energy required to manufacture aluminum products and reduce U.S. dependence on imported aluminum and bauxite. To accomplish these objectives, we will develop a system dynamics (SD) model of aluminum production, use and recycling in key application areas, including aerospace, ground vehicles and consumer products. The model will cover the entire aluminum supply chain as it exists in the U.S., from bauxite importing and refining, to the manufacture of products, to the product use phase and end-of-life processing steps. Aluminum flows throughout the model will be determined by the annual domestic demand for each application area as well as demand projections that extend to 2030. Energy consumption will be tracked based on the flows of aluminum through each step of the supply chain. Using the SD model, we will evaluate several technologies and practices that have the potential to reduce energy consumption and reliance on imported bauxite. These include implementation of advanced primary aluminum production technologies, increased recycling within and between application areas, increased material efficiency and increased product lifetimes. Each of these strategies results in short term reductions in energy use, and every strategy except the advance production technologies will also reduce the need for imported bauxite. This model differs from other SD models previously built to study aluminum stocks and flows in two key areas- alloy recycling and product lifetimes. Aluminum recycling is frequently complicated by the need to maintain quality of many different alloys, especially in aerospace applications. This necessitates scrap sorting and product disassembly to avoid contamination; advanced recycling processes of this type are one of the strategies to be evaluated. Product lifetime similarly complicates aluminum recycling, as products with longer lifetimes yield smaller recycling streams compared to disposable or short lifetime products, such as soda cans. When these additional complexities are accounted for in the SD model, a more realistic idea of the short term and long term impacts of the various strategies can be captured, as can any potential synergies and trade-offs between the strategies. Results of the analysis will indicate which strategy, or combination of strategies, yields the lowest cumulative energy consumption and bauxite consumption required to satisfy current and future demand for aluminum products.« less
Nanotechnology in stem cells research: advances and applications.
Deb, Kaushik Dilip; Griffith, May; Muinck, Ebo De; Rafat, Mehrdad
2012-01-01
Human beings suffer from a myriad of disorders caused by biochemical or biophysical alteration of physiological systems leading to organ failure. For a number of these conditions, stem cells and their enormous reparative potential may be the last hope for restoring function to these failing organ or tissue systems. To harness the potential of stem cells for biotherapeutic applications, we need to work at the size scale of molecules and processes that govern stem cells fate. Nanotechnology provides us with such capacity. Therefore, effective amalgamation of nanotechnology and stem cells - medical nanoscience or nanomedicine - offers immense benefits to the human race. The aim of this paper is to discuss the role and importance of nanotechnology in stem cell research by focusing on several important areas such as stem cell visualization and imaging, genetic modifications and reprogramming by gene delivery systems, creating stem cell niche, and similar therapeutic applications.
QCM-D study of nanoparticle interactions.
Chen, Qian; Xu, Shengming; Liu, Qingxia; Masliyah, Jacob; Xu, Zhenghe
2016-07-01
Quartz crystal microbalance with dissipation monitoring (QCM-D) has been proven to be a powerful research tool to investigate in situ interactions between nanoparticles and different functionalized surfaces in liquids. QCM-D can also be used to quantitatively determine adsorption kinetics of polymers, DNA and proteins from solutions on various substrate surfaces while providing insights into conformations of adsorbed molecules. This review aims to provide a comprehensive overview on various important applications of QCM-D, focusing on deposition of nanoparticles and attachment-detachment of nanoparticles on model membranes in complex fluid systems. We will first describe the working principle of QCM-D and DLVO theory pertinent to understanding nanoparticle deposition phenomena. The interactions between different nanoparticles and functionalized surfaces for different application areas are then critically reviewed. Finally, the potential applications of QCM-D in other important fields are proposed and knowledge gaps are identified. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Johnson, Dale L.; Keller, Vernon W.; Vaughan, William W.
2005-01-01
The description and interpretation of the terrestrial environment (0-90 km altitude) is an important driver of aerospace vehicle structural, control, and thermal system design. NASA is currently in the process of reviewing the meteorological information acquired over the past decade and producing an update to the 1993 Terrestrial Environment Guidelines for Aerospace Vehicle Design and Development handbook. This paper addresses the contents of this updated handbook, with special emphasis on new material being included in the areas of atmospheric thermodynamic models, wind dynamics, atmospheric composition, atmospheric electricity, cloud phenomena, atmospheric extremes, sea state, etc. In addition, the respective engineering design elements will be discussed relative to the importance and influence of terrestrial environment inputs that require consideration and interpretation for design applications. Specific lessons learned that have contributed to the advancements made in the acquisition, interpretation, application and awareness of terrestrial environment inputs for aerospace engineering applications are discussed.
Global land cover mapping and characterization: present situation and future research priorities
Giri, Chandra
2005-01-01
The availability and accessibility of global land cover data sets plays an important role in many global change studies. The importance of such science‐based information is also reflected in a number of international, regional, and national projects and programs. Recent developments in earth observing satellite technology, information technology, computer hardware and software, and infrastructure development have helped developed better quality land cover data sets. As a result, such data sets are increasingly becoming available, the user‐base is ever widening, application areas have been expanding, and the potential of many other applications are enormous. Yet, we are far from producing high quality global land cover data sets. This paper examines the progress in the development of digital global land cover data, their availability, and current applications. Problems and opportunities are also explained. The overview sets the stage for identifying future research priorities needed for operational land cover assessment and monitoring.
Dellapé, Gimena; Colpo, Karine D; Melo, María C; Montemayor, Sara I; Dellapé, Pablo M
2018-01-01
Although the majority of threatened species are likely to be tropical insects, knowledge of the diversity, ecological role and impact of insect biodiversity loss on ecosystem processes is very limited. Specimens belonging to four families of Heteroptera: Pentatomidae, Coreidae, Alydidae and Rhopalidae, were collected from a protected area in the Paraná Forest, the largest ecoregion of the Atlantic Forest, in Argentina. The assemblages were characterized and the biodiversity estimated, and they were compared with the assemblages found in five other protected areas in the Brazilian Atlantic Forest. In our study area, Pentatomidae had the greatest richness and diversity; Coreidae was the second most diverse family, with highest sampling deficit, highest percentage of singletons, and lowest inventory completeness; and Rhopalidae was the best sampled family with asymptotic rarefaction curves. We explored the application of the Species Conservation Importance index, following four criteria, to evaluate the relative importance of the pentatomid species studied and its usefulness for assigning conservation values to areas. We found similar Site Conservation Values among the six areas and noted that the use of criteria was limited by the lack of information, being crucial to increase the knowledge of most of the species.
Influence Analysis for the Area Under the Receiver Operating Characteristic Curve.
Ke, Bo-Shiang; Chiang, An Jen; Chang, Yuan-Chin Ivan
2018-01-01
Classification measures play essential roles in the assessment and construction of classifiers. Hence, determining how to prevent these measures from being affected by individual observations has become an important problem. In this paper, we propose several indexes based on the influence function and the concept of local influence to identify influential observations that affect the estimate of the area under the receiver operating characteristic curve (AUC), an important and commonly used measure. Cumulative lift charts are also used to equipoise the disagreements among the proposed indexes. Both the AUC indexes and the graphical tools only rely on the classification scores, and both are applicable to classifiers that can produce real-valued classification scores. A real data set is used for illustration.
Color and psychological functioning: a review of theoretical and empirical work
Elliot, Andrew J.
2015-01-01
In the past decade there has been increased interest in research on color and psychological functioning. Important advances have been made in theoretical work and empirical work, but there are also important weaknesses in both areas that must be addressed for the literature to continue to develop apace. In this article, I provide brief theoretical and empirical reviews of research in this area, in each instance beginning with a historical background and recent advancements, and proceeding to an evaluation focused on weaknesses that provide guidelines for future research. I conclude by reiterating that the literature on color and psychological functioning is at a nascent stage of development, and by recommending patience and prudence regarding conclusions about theory, findings, and real-world application. PMID:25883578
USDA-ARS?s Scientific Manuscript database
The ability to provide protection across the wheat plant is important because different infections may occur on different parts of the plant canopy depending on the pathogen. When the threat of infection is discovered, there is little time available to make multiple treatments over the vast areas o...
Structuring an Undergraduate Mathematics Seminar Dealing with Options and Hedging
ERIC Educational Resources Information Center
Prevot, K. J.
2006-01-01
Offering mathematics majors the opportunity to engage in current, real-world applications can be an important enhancement to their undergraduate course curriculum. Instead of focusing on the traditional topic areas in pure and/or applied mathematics, one may structure a seminar course for senior mathematics majors by concentrating on a specific…
A Note on Powers in Finite Fields
ERIC Educational Resources Information Center
Aabrandt, Andreas; Hansen, Vagn Lundsgaard
2016-01-01
The study of solutions to polynomial equations over finite fields has a long history in mathematics and is an interesting area of contemporary research. In recent years, the subject has found important applications in the modelling of problems from applied mathematical fields such as signal analysis, system theory, coding theory and cryptology. In…
ERIC Educational Resources Information Center
Coalition for Evidence-Based Policy, 2012
2012-01-01
U.S. social programs, set up to address important problems, often fall short by funding specific models/strategies ("interventions") that are not effective. When evaluated in scientifically-rigorous studies, social interventions in K-12 education, job training, crime prevention, and other areas are frequently found ineffective or…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-17
... system for various activities in Antarctica and designation of certain animals and certain geographic areas a requiring special protection. The regulations establish such a permit system to designate... be shed on the evolution, faunal dynamics, and/or paleobiogeography of such important vertebrate...
Application and Evaluation of MODIS LAI, fPAR, and Albedo Products in the WRFCMAQ System
Leaf area index (LAI), vegetation fraction (VF), and surface albedo are important parameters in the land surface model (LSM) for meteorology and air quality modeling systems such as WRF/CMAQ. LAI and VF control not only leaf to canopy level evapotranspiration flux scaling but al...
Rationale, Design and Implementation of a Computer Vision-Based Interactive E-Learning System
ERIC Educational Resources Information Center
Xu, Richard Y. D.; Jin, Jesse S.
2007-01-01
This article presents a schematic application of computer vision technologies to e-learning that is synchronous, peer-to-peer-based, and supports an instructor's interaction with non-computer teaching equipments. The article first discusses the importance of these focused e-learning areas, where the properties include accurate bidirectional…
The Significance of Constructivist Classroom Practice in National Curricular Design
ERIC Educational Resources Information Center
Booyse, Celia; Chetty, Rajendra
2016-01-01
Evidence of the value of constructivist theory in the classroom is especially important for educational practice in areas of poverty and social challenge. Research was undertaken in 2010 into the application of constructivist theory on instructional design. The findings of this research are particularly relevant to the current curricular crisis in…
Crashdynamics with DYNA3D: Capabilities and research directions
NASA Technical Reports Server (NTRS)
Whirley, Robert G.; Engelmann, Bruce E.
1993-01-01
The application of the explicit nonlinear finite element analysis code DYNA3D to crashworthiness problems is discussed. Emphasized in the first part of this work are the most important capabilities of an explicit code for crashworthiness analyses. The areas with significant research promise for the computational simulation of crash events are then addressed.
2005-08-01
is an angular surface. This phenomena has important applications in areas as diverse as heat exchange and catalysis. JOURNAL PAPERS W.P...densify these composites. In addressing the oxidation protection of carbon-carbon composites, the entirely new field of microtube technology was born...nozzle; exit cone; missile nosetip; hypersonic vehicle; oxidation resistance; cost; densification; MEMs; surface tension; microtube 16. SECURITY
2012-04-14
flow or electrical activity in the primary auditory cortex and sound intensity level. Other studies (Brechmann et al., 2002; Hart et al., 2003; Tanji et...duration. Decoding of per- ceived loudness from brain signals may have important applications for the calibration of stimulation levels of cochlear implants
Online Discussion Boards: The Practice of Building Community for Adult Learners
ERIC Educational Resources Information Center
Covelli, Bonnie J.
2017-01-01
Online education continues to grow, and the application of theory to practice becomes increasingly important as practitioners examine the impact technology has on e-classroom interaction. Adult students, in particular, look for interaction that is collaborative and student-centered. A common area for dialogue within the online classroom is the…
The Implications of the Net Fiscal Benefits Criterion for Cost Sharing in Flood Control Projects.
controversial areas. First, it is concluded that the net fiscal benefits criterion has important advantages in the determination of what local governments...would be willing to contribute to the cost of flood control projects, but somewhat less applicability to the analysis of economic efficiency benefits and
ERIC Educational Resources Information Center
House, J. Daniel
2006-01-01
An important area for the application of instructional design is the development of effective teaching strategies for mathematics. Activities that include the use of computers, cooperative learning, and active learning materials are associated with mathematics achievement. Student self-beliefs are also significantly related to mathematics…
ERIC Educational Resources Information Center
Horejsi, Charles R.
1979-01-01
The normalization philosophy originated in Scandinavia. Described as a complex ideology, highly compatible with basic social work principles, it has much to offer social education, especially in areas of social policy and services, planning and program development, and appreciation of the importance of the social environment. (Author/MLW)
Microengineering of magnetic bearings and actuators
NASA Astrophysics Data System (ADS)
Ghantasala, Muralihar K.; Qin, LiJiang; Sood, Dinesh K.; Zmood, Ronald B.
2000-06-01
Microengineering has evolved in the last decade as a subject of its own with the current research encompassing every possible area of devices from electromagnetic to optical and bio-micro electromechanical systems (MEMS). The primary advantage of the micro system technology is its small size, potential to produce high volume and low cost devices. However, the major impediments in the successful realization of many micro devices in practice are the reliability, packaging and integration with the existing microelectronics technology. Microengineering of actuators has recently grown tremendously due to its possible applicability to a wide range of devices of practical importance and the availability of a choice of materials. Selection of materials has been one of the important aspects of the design and fabrication of many micro system and actuators. This paper discusses the issues related to the selection of materials and subsequently their effect on the performance of the actuator. These will be discussed taking micro magnetic actuators and bearings, in particular, as examples. Fabrication and processing strategies and performance evaluation methods adopted will be described. Current status of the technology and projected futuristic applications in this area will be reviewed.
Dvarskas, Anthony
2017-03-01
While the development of the tourism industry can bring economic benefits to an area, it is important to consider the long-run impact of the industry on a given location. Particularly when the tourism industry relies upon a certain ecological state, those weighing different development options need to consider the long-run impacts of increased tourist numbers upon measures of ecological condition. This paper presents one approach for linking a model of recreational visitor behavior with an ecological model that estimates the impact of the increased visitors upon the environment. Two simulations were run for the model using initial parameters available from survey data and water quality data for beach locations in Croatia. Results suggest that the resilience of a given tourist location to the changes brought by increasing tourism numbers is important in determining its long-run sustainability. Further work should investigate additional model components, including the tourism industry, refinement of the relationships assumed by the model, and application of the proposed model in additional areas. Copyright © 2016 Elsevier Ltd. All rights reserved.
Human resources and their possible forensic meanings.
Russo, Andrea; Urlić, Ivan; Kasum, Josip
2015-09-01
Forensics (forensic--before the Forum) means the application of knowledge from different scientific fields in order to define facts in judicial and/or administrative procedures. Nowadays forensics, besides this, finds its application even in different economic processes. For example, forensics enters the commercial areas of business intelligence and of different security areas. The European Commission recognized the importance of forensics, and underscored the importance of development of its scientific infrastructure in member States. We are witnessing the rise of various tragedies in economic and other kinds of processes. Undoubtedly, the world is increasingly exposed to various forms of threats whose occurrences regularly involve people. In this paper we are proposing the development of a new approach in the forensic assessment of the state of human resources. We are suggesting that in the focus should be the forensic approach in the psychological assessment of awareness of the individual and of the critical infrastructure sector operator (CISO) in determining the level of actual practical, rather than formal knowledge of an individual in a particular field of expertise, or in a specific scientific field, and possible forensic meanings.
Performance Analysis of IEEE 802.15.3 MAC Protocol with Different ACK Polices
NASA Astrophysics Data System (ADS)
Mehta, S.; Kwak, K. S.
The wireless personal area network (WPAN) is an emerging wireless technology for future short range indoor and outdoor communication applications. The IEEE 802.15.3 medium access control (MAC) is proposed, specially, for short range high data rates applications, to coordinate the access to the wireless medium among the competing devices. This paper uses analytical model to study the performance analysis of WPAN (IEEE 802.15.3) MAC in terms of throughput, efficient bandwidth utilization, and delay with various acknowledgment schemes under different parameters. Also, some important observations are obtained, which can be very useful to the protocol architectures. Finally, we come up with some important research issues to further investigate the possible improvements in the WPAN MAC.
Adgaba, Nuru; Alghamdi, Ahmed; Sammoud, Rachid; Shenkute, Awraris; Tadesse, Yilma; Ansari, Mahammad J; Sharma, Deepak; Hepburn, Colleen
2017-07-01
In arid zones, the shortage of bee forage is critical and usually compels beekeepers to move their colonies in search of better forages. Identifying and mapping the spatiotemporal distribution of the bee forages over given area is important for better management of bee colonies. In this study honey bee plants in the target areas were inventoried following, ground inventory work supported with GIS applications. The study was conducted on 85 large plots of 50 × 50 m each. At each plot, data on species name, height, base diameter, crown height, crown diameter has been taken for each plant with their respective geographical positions. The data were stored, and processed using Trimble GPS supported with ArcGIS10 software program. The data were used to estimate the relative frequency, density, abundance and species diversity, species important value index and apicultural value of the species. In addition, Remotely Sensed Satellite Image of the area was obtained and processed using Hopfield Artificial Neural Network techniques. During the study, 182 species from 49 plant families were identified as bee forages of the target area. From the total number of species; shrubs, herbs and trees were accounting for 61%, 27.67%, and 11.53% respectively. Of which Ziziphus spina-christi , Acacia tortilis , Acacia origina , Acacia asak , Lavandula dentata , and Hypoestes forskaolii were the major nectar source plants of the area in their degree of importance. The average vegetation cover values of the study areas were low (<30%) with low Shannon's species diversity indices (H') of 0.5-1.52 for different sites. Based on the eco-climatological factors and the variations in their flowering period, these major bee forage species were found to form eight distinct spatiotemporal categories which allow beekeepers to migrate their colonies to exploit the resources at different seasons and place. The Remote Sensed Satellite Image analysis confirmed the spatial distribution of the bee forage resources as determined by the ground inventory work. An integrated approach, combining the ground inventory work with GIS and satellite image processing techniques could be an important tool for characterizing and mapping the available bee forage resources leading to their efficient and sustainable utilization.
Review on airflow in unsaturated zones induced by natural forcings
NASA Astrophysics Data System (ADS)
Kuang, Xingxing; Jiao, Jiu Jimmy; Li, Hailong
2013-10-01
Subsurface airflow in unsaturated zones induced by natural forcings is of importance in many environmental and engineering fields, such as environmental remediation, water infiltration and groundwater recharge, coastal soil aeration, mine and tunnel ventilation, and gas exchange between soil and atmosphere. This review synthesizes the published literature on subsurface airflow driven by natural forcings such as atmospheric pressure fluctuations, topographic effect, water table fluctuations, and water infiltration. The present state of knowledge concerning the mechanisms, analytical and numerical models, and environmental and engineering applications related to the naturally occurring airflow is discussed. Airflow induced by atmospheric pressure fluctuations is studied the most because of the applications to environmental remediation and transport of trace gases from soil to atmosphere, which are very important in understanding biogeochemical cycling and global change. Airflow induced by infiltration is also an extensively investigated topic because of its implications in rainfall infiltration and groundwater recharge. Airflow induced by water table fluctuations is important in coastal areas because it plays an important role in coastal environmental remediation and ecological systems. Airflow induced by topographic effect is studied the least. However, it has important applications in unsaturated zone gas transport and natural ventilation of mines and tunnels. Finally, the similarities and differences in the characteristics of the air pressure and airflow are compared and future research efforts are recommended.
Fanourakis, Dimitrios; Briese, Christoph; Max, Johannes Fj; Kleinen, Silke; Putz, Alexander; Fiorani, Fabio; Ulbrich, Andreas; Schurr, Ulrich
2014-04-11
Light curtain arrays (LC), a recently introduced phenotyping method, yield a binary data matrix from which a shoot silhouette is reconstructed. We addressed the accuracy and applicability of LC in assessing leaf area and maximum height (base to the highest leaf tip) in a phenotyping platform. LC were integrated to an automated routine for positioning, allowing in situ measurements. Two dicotyledonous (rapeseed, tomato) and two monocotyledonous (maize, barley) species with contrasting shoot architecture were investigated. To evaluate if averaging multiple view angles helps in resolving self-overlaps, we acquired a data set by rotating plants every 10° for 170°. To test how rapid these measurements can be without loss of information, we evaluated nine scanning speeds. Leaf area of overlapping plants was also estimated to assess the possibility to scale this method for plant stands. The relation between measured and calculated maximum height was linear and nearly the same for all species. Linear relations were also found between plant leaf area and calculated pixel area. However, the regression slope was different between monocotyledonous and dicotyledonous species. Increasing the scanning speed stepwise from 0.9 to 23.4 m s-1 did not affect the estimation of maximum height. Instead, the calculated pixel area was inversely proportional to scanning speed. The estimation of plant leaf area by means of calculated pixel area became more accurate by averaging consecutive silhouettes and/or increasing the angle between them. Simulations showed that decreasing plant distance gradually from 20 to 0 cm, led to underestimation of plant leaf area owing to overlaps. This underestimation was more important for large plants of dicotyledonous species and for small plants of monocotyledonous ones. LC offer an accurate estimation of plant leaf area and maximum height, while the number of consecutive silhouettes that needs to be averaged is species-dependent. A constant scanning speed is important for leaf area estimations by using LC. Simulations of the effect of varying plant spacing gave promising results for method application in sets of partly overlapping plants, which applies also to field conditions during and after canopy closure for crops sown in rows.
Study On The Application Of CBERS-02B To Quantitative Soil Erosion Monitoring
NASA Astrophysics Data System (ADS)
Shi, Mingchang; Xu, Jing; Wang, Lei; Wang, Xiaoyun; Mu, Jing
2010-10-01
Currently, the reduction of soil erosion is an important prerequisite for achieving ecological security. Since real-time and quantitative evaluation on regional soil erosion plays a significant role in reducing the soil erosion, soil erosion models are more and more widely used. Based on RUSLE model, this paper carries out the quantitative soil erosion monitoring in the Xi River Basin and its surrounding areas by using CBERS-02B CCD, DEM, TRMM and other data. Besides, it performs the validation for monitoring results by using remote sensing investigation results in 2005. The monitoring results show that in 2009, the total amount of soil erosion in the study area was 1.94×106t, the erosion area was 2055.2km2 (54.06% of the total area), and the average soil erosion modulus was 509.7t km-2 a-1. As a case using CBERS-02B data for quantitative soil erosion monitoring, this study provides experience on the application of CBERS-02B data in the field of quantitative soil erosion monitoring and also for local soil erosion management.
Solution processable inverted structure ZnO-organic hybrid heterojuction white LEDs
NASA Astrophysics Data System (ADS)
Bano, N.; Hussain, I.; Soomro, M. Y.; EL-Naggar, A. M.; Albassam, A. A.
2018-05-01
Improving luminance efficiency and colour purity are the most important challenges for zinc oxide (ZnO)-organic hybrid heterojunction light emitting diodes (LEDs), affecting their large area applications. If ZnO-organic hybrid heterojunction white LEDs are fabricated by a hydrothermal method, it is difficult to obtain pure and stable blue emission from PFO due to the presence of an undesirable green emission. In this paper, we present an inverted-structure ZnO-organic hybrid heterojunction LED to avoid green emission from PFO, which mainly originates during device processing. With this configuration, each ZnO nanorod (NR) forms a discrete p-n junction; therefore, large-area white LEDs can be designed without compromising the junction area. The configuration used for this novel structure is glass/ZnO NRs/PFO/PEDOT:PSS/L-ITO, which enables the development of efficient, large-area and low-cost hybrid heterojunction LEDs. Inverted-structure ZnO-organic hybrid heterojunction white LEDs offer several improvements in terms of brightness, size, colour, external quantum efficiency and a wider applicability as compared to normal architecture LEDs.
The National Research Service Award: strategies for developing a successful proposal.
Parker, Barbara; Steeves, Richard
2005-01-01
An important experience for doctoral students is developing and submitting an application for a National Research Service Award (NRSA) from the National Institutes of Health (NIH). This article provides an overview of the process of developing and submitting an NRSA proposal from the perspective of a sponsor of successful proposals as well as a member of the Scientific Review Section. Topics included are suggestions for writing and rewriting the proposal, developing a training plan specific to the proposal, selection of sponsors consultants and references, the review process, and revising and resubmitting a proposal. Tables give examples of (a) applicants identifying strengths and areas for growth, (b) activities to address areas for growth (c), and responses to a previous review. The intended audience is beginning doctoral students and novice sponsors.
FPGA-based coprocessor for matrix algorithms implementation
NASA Astrophysics Data System (ADS)
Amira, Abbes; Bensaali, Faycal
2003-03-01
Matrix algorithms are important in many types of applications including image and signal processing. These areas require enormous computing power. A close examination of the algorithms used in these, and related, applications reveals that many of the fundamental actions involve matrix operations such as matrix multiplication which is of O (N3) on a sequential computer and O (N3/p) on a parallel system with p processors complexity. This paper presents an investigation into the design and implementation of different matrix algorithms such as matrix operations, matrix transforms and matrix decompositions using an FPGA based environment. Solutions for the problem of processing large matrices have been proposed. The proposed system architectures are scalable, modular and require less area and time complexity with reduced latency when compared with existing structures.
NASA Technical Reports Server (NTRS)
Metcalf, David
1995-01-01
Multimedia Information eXchange (MIX) is a multimedia information system that accommodates multiple data types and provides consistency across platforms. Information from all over the world can be accessed quickly and efficiently with the Internet-based system. I-NET's MIX uses the World Wide Web and Mosaic graphical user interface. Mosaic is available on all platforms used at I-NET's Kennedy Space Center (KSC) facilities. Key information system design concepts and benefits are reviewed. The MIX system also defines specific configuration and helper application parameters to ensure consistent operations across the entire organization. Guidelines and procedures for other areas of importance in information systems design are also addressed. Areas include: code of ethics, content, copyright, security, system administration, and support.
Vaz, Belén; Salgueiriño, Verónica; Pérez-Lorenzo, Moisés; Correa-Duarte, Miguel A
2015-08-18
Hollow inorganic nanostructures have attracted much interest in the last few years due to their many applications in different areas of science and technology. In this Feature Article, we overview part of our current work concerning the collective use of plasmonic and magnetic nanoparticles located in voided nanostructures and explore the more specific operational issues that should be taken into account in the design of inorganic nanocapsules. Along these lines, we focus our attention on the applications of silica-based submicrometer capsules aiming to stress the importance of creating nanocavities in order to further exploit the great potential of these functional nanomaterials. Additionally, we will examine some of the recent research on this topic and try to establish a perspective for future developments in this area.
Applications of inductively coupled plasma-mass spectrometry in environmental radiochemistry
Grain, J.S.
1996-01-01
The state of the art in ICP-MS is now such that there are few discernible differences between radiochemical and mass spectrometric determinations of longlived radionuclides. Indeed, ICP-MS may provide better (more sensitive) data for many radionuclides, depending upon how one wishes to define "long-lived." In lowlevel determinations, sample preparation remains an important part of the analytical procedure, even with ICP-MS, but the speed and isotopic selectivity of the mass spectrometer appear to offer distinct procedural advantages over radiochemical techniques. Therefore, "radioanalytical" ICP-MS applications should continue to grow, especially in the area of radiation protection, but further research (on efficient sample introduction, for example) and method development may be required to get ICP-MS "off the ground" in the geochemical research areas that have traditionally been supported by radiochemistry.
Tuneable porous carbonaceous materials from renewable resources.
White, Robin J; Budarin, Vitaly; Luque, Rafael; Clark, James H; Macquarrie, Duncan J
2009-12-01
Porous carbon materials are ubiquitous with a wide range of technologically important applications, including separation science, heterogeneous catalyst supports, water purification filters, stationary phase materials, as well as the developing future areas of energy generation and storage applications. Hard template routes to ordered mesoporous carbons are well established, but whilst offering different mesoscopic textural phases, the surface of the material is difficult to chemically post-modify and processing is energy, resource and step intensive. The production of carbon materials from biomass (i.e. sugars or polysaccharides) is a relatively new but rapidly expanding research area. In this tutorial review, we compare and contrast recently reported routes to the preparation of porous carbon materials derived from renewable resources, with examples of our previously reported mesoporous polysaccharide-derived "Starbon" carbonaceous material technology.
SIAM conference on inverse problems: Geophysical applications. Final technical report
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-12-31
This conference was the second in a series devoted to a particular area of inverse problems. The theme of this series is to discuss problems of major scientific importance in a specific area from a mathematical perspective. The theme of this symposium was geophysical applications. In putting together the program we tried to include a wide range of mathematical scientists and to interpret geophysics in as broad a sense as possible. Our speaker came from industry, government laboratories, and diverse departments in academia. We managed to attract a geographically diverse audience with participation from five continents. There were talks devotedmore » to seismology, hydrology, determination of the earth`s interior on a global scale as well as oceanographic and atmospheric inverse problems.« less
Fluvial sediment fingerprinting: literature review and annotated bibliography
Williamson, Joyce E.; Haj, Adel E.; Stamm, John F.; Valder, Joshua F.; Prautzch, Vicki L.
2014-01-01
The U.S. Geological Survey has evaluated and adopted various field methods for collecting real-time sediment and nutrient data. These methods have proven to be valuable representations of sediment and nutrient concentrations and loads but are not able to accurately identify specific source areas. Recently, more advanced data collection and analysis techniques have been evaluated that show promise in identifying specific source areas. Application of field methods could include studies of sources of fluvial sediment, otherwise referred to as sediment “fingerprinting.” The identification of sediment is important, in part, because knowing the primary sediment source areas in watersheds ensures that best management practices are incorporated in areas that maximize reductions in sediment loadings. This report provides a literature review and annotated bibliography of existing methodologies applied in the field of fluvial sediment fingerprinting. This literature review provides a bibliography of publications where sediment fingerprinting methods have been used; however, this report is not assumed to provide an exhaustive listing. Selected publications were categorized by methodology with some additional summary information. The information contained in the summary may help researchers select methods better suited to their particular study or study area, and identify methods in need of more testing and application.
Potentially Prebiotic Syntheses of Condensed Phosphates
NASA Technical Reports Server (NTRS)
Keefe, Anthony D.; Miller, Stanley L.
1996-01-01
In view of the importance of a prebiotic source of high energy phosphates, we have investigated a number of potentially prebiotic processes to produce condensed phosphates from orthophosphate and cyclic trimetaphosphate from tripolyphosphate. The reagents investigated include polymerizing nitriles, acid anhydrides, lactones, hexamethylene tetramine and carbon suboxide. A number of these processes give substantial yields of pyrophosphate from orthophosphate and trimetaphosphate from tripolyphosphate. Although these reactions may have been applicable in local areas, they are not sufficiently robust to have been of importance in the prebiotic open ocean.
Seven years of radionuclide laboratory at IMC - important achievements.
Hrubý, M; Kučka, J; Pánek, J; Štěpánek, P
2016-10-20
For many important research topics in polymer science the use of radionuclides brings significant benefits concerning nanotechnology, polymer drug delivery systems, tissue engineering etc. This contribution describes important achievements of the radionuclide laboratory at Institute of Macromolecular Chemistry of the Academy of Sciences of the Czech Republic (IMC) in the area of polymers for biomedical applications. Particular emphasis will be given to water-soluble polymer carriers of radionuclides, thermoresponsive polymer radionuclide carriers, thermoresponsive polymers for local brachytherapy, polymer scaffolds modified with (radiolabeled) peptides and polymer copper chelators for the therapy of Wilson´s disease.
Wang, Hui; Chen, Qianwang; Zhou, Shuiqin
2018-06-05
Nanosized crosslinked polymer networks, named as nanogels, are playing an increasingly important role in a diverse range of applications by virtue of their porous structures, large surface area, good biocompatibility and responsiveness to internal and/or external chemico-physical stimuli. Recently, a variety of carbon nanomaterials, such as carbon quantum dots, graphene/graphene oxide nanosheets, fullerenes, carbon nanotubes, and nanodiamonds, have been embedded into responsive polymer nanogels, in order to integrate the unique electro-optical properties of carbon nanomaterials with the merits of nanogels into a single hybrid nanogel system for improvement of their applications in nanomedicine. A vast number of studies have been pursued to explore the applications of carbon-based hybrid nanogels in biomedical areas for biosensing, bioimaging, and smart drug carriers with combinatorial therapies and/or theranostic ability. New synthetic methods and structures have been developed to prepare carbon-based hybrid nanogels with versatile properties and functions. In this review, we summarize the latest developments and applications and address the future perspectives of these carbon-based hybrid nanogels in the biomedical field.
Baker, Benjamin; Amin, Kavit; Chan, Adrian; Patel, Ketan; Wong, Jason
2016-01-01
The continuing enhancement of the surgical environment in the digital age has led to a number of innovations being highlighted as potential disruptive technologies in the surgical workplace. Augmented reality (AR) and virtual reality (VR) are rapidly becoming increasingly available, accessible and importantly affordable, hence their application into healthcare to enhance the medical use of data is certain. Whether it relates to anatomy, intraoperative surgery, or post-operative rehabilitation, applications are already being investigated for their role in the surgeons armamentarium. Here we provide an introduction to the technology and the potential areas of development in the surgical arena. PMID:28090510
Khor, Wee Sim; Baker, Benjamin; Amin, Kavit; Chan, Adrian; Patel, Ketan; Wong, Jason
2016-12-01
The continuing enhancement of the surgical environment in the digital age has led to a number of innovations being highlighted as potential disruptive technologies in the surgical workplace. Augmented reality (AR) and virtual reality (VR) are rapidly becoming increasingly available, accessible and importantly affordable, hence their application into healthcare to enhance the medical use of data is certain. Whether it relates to anatomy, intraoperative surgery, or post-operative rehabilitation, applications are already being investigated for their role in the surgeons armamentarium. Here we provide an introduction to the technology and the potential areas of development in the surgical arena.
Study and Application of Remote Data Moving Transmission under the Network Convergence
NASA Astrophysics Data System (ADS)
Zhiguo, Meng; Du, Zhou
The data transmission is an important problem in remote applications. Advance of network convergence has help to select and use data transmission model. The embedded system and data management platform is a key of the design. With communication module, interface technology and the transceiver which has independent intellectual property rights connected broadband network and mobile network seamlessly. Using the distribution system of mobile base station to realize the wireless transmission, using public networks to implement the data transmission, making the distant information system break through area restrictions and realizing transmission of the moving data, it has been fully recognized in long-distance medical care applications.
Virtual surgery in a (tele-)radiology framework.
Glombitza, G; Evers, H; Hassfeld, S; Engelmann, U; Meinzer, H P
1999-09-01
This paper presents telemedicine as an extension of a teleradiology framework through tools for virtual surgery. To classify the described methods and applications, the research field of virtual reality (VR) is broadly reviewed. Differences with respect to technical equipment, methodological requirements and areas of application are pointed out. Desktop VR, augmented reality, and virtual reality are differentiated and discussed in some typical contexts of diagnostic support, surgical planning, therapeutic procedures, simulation and training. Visualization techniques are compared as a prerequisite for virtual reality and assigned to distinct levels of immersion. The advantage of a hybrid visualization kernel is emphasized with respect to the desktop VR applications that are subsequently shown. Moreover, software design aspects are considered by outlining functional openness in the architecture of the host system. Here, a teleradiology workstation was extended by dedicated tools for surgical planning through a plug-in mechanism. Examples of recent areas of application are introduced such as liver tumor resection planning, diagnostic support in heart surgery, and craniofacial surgery planning. In the future, surgical planning systems will become more important. They will benefit from improvements in image acquisition and communication, new image processing approaches, and techniques for data presentation. This will facilitate preoperative planning and intraoperative applications.
Nanoscience and nanotechnologies in food industries: opportunities and research trends
NASA Astrophysics Data System (ADS)
Ranjan, Shivendu; Dasgupta, Nandita; Chakraborty, Arkadyuti Roy; Melvin Samuel, S.; Ramalingam, Chidambaram; Shanker, Rishi; Kumar, Ashutosh
2014-06-01
Nanomaterials have gained importance in various fields of science, technology, medicine, colloid technologies, diagnostics, drug delivery, personal care applications and others due to their small size and unique physico-chemical characteristic. Apart from above mentioned area, it is also extensively being used in food sector specifically in preservation and packaging. The future applications in food can also be extended to improve the shelf life, food quality, safety, fortification and biosensors for contaminated or spoiled food or food packaging. Different types and shapes of nanomaterials are being employed depending upon the need and nature of the food. Characterisation of these nanomaterials is essential to understand the interaction with the food matrix and also with biological compartment. This review is focused on application of nanotechnology in food industries. It also gives insight on commercial products in market with usage of nanomaterials, current research and future aspects in these areas. Currently, they are being incorporated into commercial products at a faster rate than the development of knowledge and regulations to mitigate potential health and environmental impacts associated with their manufacturing, application and disposal. As nanomaterials are finding new application every day, care should be taken about their potential toxic effects.
Experiences with Text Mining Large Collections of Unstructured Systems Development Artifacts at JPL
NASA Technical Reports Server (NTRS)
Port, Dan; Nikora, Allen; Hihn, Jairus; Huang, LiGuo
2011-01-01
Often repositories of systems engineering artifacts at NASA's Jet Propulsion Laboratory (JPL) are so large and poorly structured that they have outgrown our capability to effectively manually process their contents to extract useful information. Sophisticated text mining methods and tools seem a quick, low-effort approach to automating our limited manual efforts. Our experiences of exploring such methods mainly in three areas including historical risk analysis, defect identification based on requirements analysis, and over-time analysis of system anomalies at JPL, have shown that obtaining useful results requires substantial unanticipated efforts - from preprocessing the data to transforming the output for practical applications. We have not observed any quick 'wins' or realized benefit from short-term effort avoidance through automation in this area. Surprisingly we have realized a number of unexpected long-term benefits from the process of applying text mining to our repositories. This paper elaborates some of these benefits and our important lessons learned from the process of preparing and applying text mining to large unstructured system artifacts at JPL aiming to benefit future TM applications in similar problem domains and also in hope for being extended to broader areas of applications.
Mulugeta, Lealem; Drach, Andrew; Erdemir, Ahmet; Hunt, C. A.; Horner, Marc; Ku, Joy P.; Myers Jr., Jerry G.; Vadigepalli, Rajanikanth; Lytton, William W.
2018-01-01
Modeling and simulation in computational neuroscience is currently a research enterprise to better understand neural systems. It is not yet directly applicable to the problems of patients with brain disease. To be used for clinical applications, there must not only be considerable progress in the field but also a concerted effort to use best practices in order to demonstrate model credibility to regulatory bodies, to clinics and hospitals, to doctors, and to patients. In doing this for neuroscience, we can learn lessons from long-standing practices in other areas of simulation (aircraft, computer chips), from software engineering, and from other biomedical disciplines. In this manuscript, we introduce some basic concepts that will be important in the development of credible clinical neuroscience models: reproducibility and replicability; verification and validation; model configuration; and procedures and processes for credible mechanistic multiscale modeling. We also discuss how garnering strong community involvement can promote model credibility. Finally, in addition to direct usage with patients, we note the potential for simulation usage in the area of Simulation-Based Medical Education, an area which to date has been primarily reliant on physical models (mannequins) and scenario-based simulations rather than on numerical simulations. PMID:29713272
Database tomography for commercial application
NASA Technical Reports Server (NTRS)
Kostoff, Ronald N.; Eberhart, Henry J.
1994-01-01
Database tomography is a method for extracting themes and their relationships from text. The algorithms, employed begin with word frequency and word proximity analysis and build upon these results. When the word 'database' is used, think of medical or police records, patents, journals, or papers, etc. (any text information that can be computer stored). Database tomography features a full text, user interactive technique enabling the user to identify areas of interest, establish relationships, and map trends for a deeper understanding of an area of interest. Database tomography concepts and applications have been reported in journals and presented at conferences. One important feature of the database tomography algorithm is that it can be used on a database of any size, and will facilitate the users ability to understand the volume of content therein. While employing the process to identify research opportunities it became obvious that this promising technology has potential applications for business, science, engineering, law, and academe. Examples include evaluating marketing trends, strategies, relationships and associations. Also, the database tomography process would be a powerful component in the area of competitive intelligence, national security intelligence and patent analysis. User interests and involvement cannot be overemphasized.
Mulugeta, Lealem; Drach, Andrew; Erdemir, Ahmet; Hunt, C A; Horner, Marc; Ku, Joy P; Myers, Jerry G; Vadigepalli, Rajanikanth; Lytton, William W
2018-01-01
Modeling and simulation in computational neuroscience is currently a research enterprise to better understand neural systems. It is not yet directly applicable to the problems of patients with brain disease. To be used for clinical applications, there must not only be considerable progress in the field but also a concerted effort to use best practices in order to demonstrate model credibility to regulatory bodies, to clinics and hospitals, to doctors, and to patients. In doing this for neuroscience, we can learn lessons from long-standing practices in other areas of simulation (aircraft, computer chips), from software engineering, and from other biomedical disciplines. In this manuscript, we introduce some basic concepts that will be important in the development of credible clinical neuroscience models: reproducibility and replicability; verification and validation; model configuration; and procedures and processes for credible mechanistic multiscale modeling. We also discuss how garnering strong community involvement can promote model credibility. Finally, in addition to direct usage with patients, we note the potential for simulation usage in the area of Simulation-Based Medical Education, an area which to date has been primarily reliant on physical models (mannequins) and scenario-based simulations rather than on numerical simulations.
LEDs for solid state lighting and other emerging applications: status, trends, and challenges
NASA Astrophysics Data System (ADS)
Craford, M. George
2005-09-01
LEDs have been commercially available since the 1960's, but in recent years there have been remarkable improvements in performance. These technology developments have enabled the use of LEDs in a variety of colored and white lighting applications. Colored LEDs have already become the technology of choice for traffic signals, much of interior and exterior vehicle lighting, signage of various types often as a replacement for neon, and other areas. LEDs are expected to become the dominant technology for most colored lighting applications. LEDs are beginning to penetrate white lighting markets such as flashlights and localized task lighting. With further improvement LEDs have the potential to become an important technology for large area general illumination. White LED products already have performance of over 30 lumens/watt which is nearly 3x better than incandescents. White LEDs with outputs of more than 100 lumens are already available commercially, and higher power devices can be expected in the near future. LEDs can be used as point sources, or can be used with light guides of various types to provide distributed illumination. Developments that will need to occur for LEDs to be viable for large area general illumination are discussed.
Computational methods and software systems for dynamics and control of large space structures
NASA Technical Reports Server (NTRS)
Park, K. C.; Felippa, C. A.; Farhat, C.; Pramono, E.
1990-01-01
This final report on computational methods and software systems for dynamics and control of large space structures covers progress to date, projected developments in the final months of the grant, and conclusions. Pertinent reports and papers that have not appeared in scientific journals (or have not yet appeared in final form) are enclosed. The grant has supported research in two key areas of crucial importance to the computer-based simulation of large space structure. The first area involves multibody dynamics (MBD) of flexible space structures, with applications directed to deployment, construction, and maneuvering. The second area deals with advanced software systems, with emphasis on parallel processing. The latest research thrust in the second area, as reported here, involves massively parallel computers.
Tiedeman, Claire; Ely, D. Matthew; Hill, Mary C.; O'Brien, Grady M.
2004-01-01
We develop a new observation‐prediction (OPR) statistic for evaluating the importance of system state observations to model predictions. The OPR statistic measures the change in prediction uncertainty produced when an observation is added to or removed from an existing monitoring network, and it can be used to guide refinement and enhancement of the network. Prediction uncertainty is approximated using a first‐order second‐moment method. We apply the OPR statistic to a model of the Death Valley regional groundwater flow system (DVRFS) to evaluate the importance of existing and potential hydraulic head observations to predicted advective transport paths in the saturated zone underlying Yucca Mountain and underground testing areas on the Nevada Test Site. Important existing observations tend to be far from the predicted paths, and many unimportant observations are in areas of high observation density. These results can be used to select locations at which increased observation accuracy would be beneficial and locations that could be removed from the network. Important potential observations are mostly in areas of high hydraulic gradient far from the paths. Results for both existing and potential observations are related to the flow system dynamics and coarse parameter zonation in the DVRFS model. If system properties in different locations are as similar as the zonation assumes, then the OPR results illustrate a data collection opportunity whereby observations in distant, high‐gradient areas can provide information about properties in flatter‐gradient areas near the paths. If this similarity is suspect, then the analysis produces a different type of data collection opportunity involving testing of model assumptions critical to the OPR results.
Ultrasonic image analysis and image-guided interventions.
Noble, J Alison; Navab, Nassir; Becher, H
2011-08-06
The fields of medical image analysis and computer-aided interventions deal with reducing the large volume of digital images (X-ray, computed tomography, magnetic resonance imaging (MRI), positron emission tomography and ultrasound (US)) to more meaningful clinical information using software algorithms. US is a core imaging modality employed in these areas, both in its own right and used in conjunction with the other imaging modalities. It is receiving increased interest owing to the recent introduction of three-dimensional US, significant improvements in US image quality, and better understanding of how to design algorithms which exploit the unique strengths and properties of this real-time imaging modality. This article reviews the current state of art in US image analysis and its application in image-guided interventions. The article concludes by giving a perspective from clinical cardiology which is one of the most advanced areas of clinical application of US image analysis and describing some probable future trends in this important area of ultrasonic imaging research.
Modelling the propagation of smoke from a tanker fire in a built-up area.
Brzozowska, Lucyna
2014-02-15
The paper presents the application of a Lagrangian particle model to problems connected with safety in road transport. Numerical simulations were performed for a hypothetical case of smoke emission from a tanker fire in a built-up area. Propagation of smoke was analysed for three wind directions. A diagnostic model was used to determine the air velocity field, whereas the dispersion of pollutants was analysed by means of a Lagrangian particle model (Brzozowska, 2013). The Idrisi Andes geographic information system was used to provide data on landforms and on their aerodynamic roughness. The presented results of computations and their analysis exemplify a possible application of the Lagrangian particle model: evaluation of mean (averaged over time) concentrations of pollutants and their distribution in the considered area (especially important due to the protection of people, animals and plants) and simulation of the propagation of harmful compounds in time as well as performing computations for cases of the potential effects of road incidents. Copyright © 2013 Elsevier B.V. All rights reserved.
Computational manufacturing as a bridge between design and production.
Tikhonravov, Alexander V; Trubetskov, Michael K
2005-11-10
Computational manufacturing of optical coatings is a research area that can be placed between theoretical designing and practical manufacturing in the same way that computational physics can be placed between theoretical and experimental physics. Investigations in this area have been performed for more than 30 years under the name of computer simulation of manufacturing and monitoring processes. Our goal is to attract attention to the increasing importance of computational manufacturing at the current state of the art in the design and manufacture of optical coatings and to demonstrate possible applications of this research tool.
Computational manufacturing as a bridge between design and production
NASA Astrophysics Data System (ADS)
Tikhonravov, Alexander V.; Trubetskov, Michael K.
2005-11-01
Computational manufacturing of optical coatings is a research area that can be placed between theoretical designing and practical manufacturing in the same way that computational physics can be placed between theoretical and experimental physics. Investigations in this area have been performed for more than 30 years under the name of computer simulation of manufacturing and monitoring processes. Our goal is to attract attention to the increasing importance of computational manufacturing at the current state of the art in the design and manufacture of optical coatings and to demonstrate possible applications of this research tool.
Solution techniques for transient stability-constrained optimal power flow – Part II
Geng, Guangchao; Abhyankar, Shrirang; Wang, Xiaoyu; ...
2017-06-28
Transient stability-constrained optimal power flow is an important emerging problem with power systems pushed to the limits for economic benefits, dense and larger interconnected systems, and reduced inertia due to expected proliferation of renewable energy resources. In this study, two more approaches: single machine equivalent and computational intelligence are presented. Also discussed are various application areas, and future directions in this research area. In conclusion, a comprehensive resource for the available literature, publicly available test systems, and relevant numerical libraries is also provided.
Solution techniques for transient stability-constrained optimal power flow – Part II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geng, Guangchao; Abhyankar, Shrirang; Wang, Xiaoyu
Transient stability-constrained optimal power flow is an important emerging problem with power systems pushed to the limits for economic benefits, dense and larger interconnected systems, and reduced inertia due to expected proliferation of renewable energy resources. In this study, two more approaches: single machine equivalent and computational intelligence are presented. Also discussed are various application areas, and future directions in this research area. In conclusion, a comprehensive resource for the available literature, publicly available test systems, and relevant numerical libraries is also provided.
XUNET experimental high-speed network testbed CRADA 1136, DOE TTI No. 92-MULT-020-B2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palmer, R.E.
1996-04-01
XUNET is a research program with AT&T and other partners to study high-speed wide area communication between local area networks over a backbone using Asynchronous Transfer Mode (ATM) switches. Important goals of the project are to develop software techniques for network control and management, and applications for high-speed networks. The project entails building a testbed between member sites to explore performance issues for mixed network traffic such as congestion control, multimedia communications protocols, segmentation and reassembly of ATM cells, and overall data throughput rates.
Srinivas, Nuggehally R
2006-05-01
The development of sound bioanalytical method(s) is of paramount importance during the process of drug discovery and development culminating in a marketing approval. Although the bioanalytical procedure(s) originally developed during the discovery stage may not necessarily be fit to support the drug development scenario, they may be suitably modified and validated, as deemed necessary. Several reviews have appeared over the years describing analytical approaches including various techniques, detection systems, automation tools that are available for an effective separation, enhanced selectivity and sensitivity for quantitation of many analytes. The intention of this review is to cover various key areas where analytical method development becomes necessary during different stages of drug discovery research and development process. The key areas covered in this article with relevant case studies include: (a) simultaneous assay for parent compound and metabolites that are purported to display pharmacological activity; (b) bioanalytical procedures for determination of multiple drugs in combating a disease; (c) analytical measurement of chirality aspects in the pharmacokinetics, metabolism and biotransformation investigations; (d) drug monitoring for therapeutic benefits and/or occupational hazard; (e) analysis of drugs from complex and/or less frequently used matrices; (f) analytical determination during in vitro experiments (metabolism and permeability related) and in situ intestinal perfusion experiments; (g) determination of a major metabolite as a surrogate for the parent molecule; (h) analytical approaches for universal determination of CYP450 probe substrates and metabolites; (i) analytical applicability to prodrug evaluations-simultaneous determination of prodrug, parent and metabolites; (j) quantitative determination of parent compound and/or phase II metabolite(s) via direct or indirect approaches; (k) applicability in analysis of multiple compounds in select disease areas and/or in clinically important drug-drug interaction studies. A tabular representation of select examples of analysis is provided covering areas of separation conditions, validation aspects and applicable conclusion. A limited discussion is provided on relevant aspects of the need for developing bioanalytical procedures for speedy drug discovery and development. Additionally, some key elements such as internal standard selection, likely issues of mass detection, matrix effect, chiral aspects etc. are provided for consideration during method development.
Multi-scale image segmentation method with visual saliency constraints and its application
NASA Astrophysics Data System (ADS)
Chen, Yan; Yu, Jie; Sun, Kaimin
2018-03-01
Object-based image analysis method has many advantages over pixel-based methods, so it is one of the current research hotspots. It is very important to get the image objects by multi-scale image segmentation in order to carry out object-based image analysis. The current popular image segmentation methods mainly share the bottom-up segmentation principle, which is simple to realize and the object boundaries obtained are accurate. However, the macro statistical characteristics of the image areas are difficult to be taken into account, and fragmented segmentation (or over-segmentation) results are difficult to avoid. In addition, when it comes to information extraction, target recognition and other applications, image targets are not equally important, i.e., some specific targets or target groups with particular features worth more attention than the others. To avoid the problem of over-segmentation and highlight the targets of interest, this paper proposes a multi-scale image segmentation method with visually saliency graph constraints. Visual saliency theory and the typical feature extraction method are adopted to obtain the visual saliency information, especially the macroscopic information to be analyzed. The visual saliency information is used as a distribution map of homogeneity weight, where each pixel is given a weight. This weight acts as one of the merging constraints in the multi- scale image segmentation. As a result, pixels that macroscopically belong to the same object but are locally different can be more likely assigned to one same object. In addition, due to the constraint of visual saliency model, the constraint ability over local-macroscopic characteristics can be well controlled during the segmentation process based on different objects. These controls will improve the completeness of visually saliency areas in the segmentation results while diluting the controlling effect for non- saliency background areas. Experiments show that this method works better for texture image segmentation than traditional multi-scale image segmentation methods, and can enable us to give priority control to the saliency objects of interest. This method has been used in image quality evaluation, scattered residential area extraction, sparse forest extraction and other applications to verify its validation. All applications showed good results.
Design Virtual Reality Scene Roam for Tour Animations Base on VRML and Java
NASA Astrophysics Data System (ADS)
Cao, Zaihui; hu, Zhongyan
Virtual reality has been involved in a wide range of academic and commercial applications. It can give users a natural feeling of the environment by creating realistic virtual worlds. Implementing a virtual tour through a model of a tourist area on the web has become fashionable. In this paper, we present a web-based application that allows a user to, walk through, see, and interact with a fully three-dimensional model of the tourist area. Issues regarding navigation and disorientation areaddressed and we suggest a combination of the metro map and an intuitive navigation system. Finally we present a prototype which implements our ideas. The application of VR techniques integrates the visualization and animation of the three dimensional modelling to landscape analysis. The use of the VRML format produces the possibility to obtain some views of the 3D model and to explore it in real time. It is an important goal for the spatial information sciences.
Creating widely accessible spatial interfaces: mobile VR for managing persistent pain.
Schroeder, David; Korsakov, Fedor; Jolton, Joseph; Keefe, Francis J; Haley, Alex; Keefe, Daniel F
2013-01-01
Using widely accessible VR technologies, researchers have implemented a series of multimodal spatial interfaces and virtual environments. The results demonstrate the degree to which we can now use low-cost (for example, mobile-phone based) VR environments to create rich virtual experiences involving motion sensing, physiological inputs, stereoscopic imagery, sound, and haptic feedback. Adapting spatial interfaces to these new platforms can open up exciting application areas for VR. In this case, the application area was in-home VR therapy for patients suffering from persistent pain (for example, arthritis and cancer pain). For such therapy to be successful, a rich spatial interface and rich visual aesthetic are particularly important. So, an interdisciplinary team with expertise in technology, design, meditation, and the psychology of pain collaborated to iteratively develop and evaluate several prototype systems. The video at http://youtu.be/mMPE7itReds demonstrates how the sine wave fitting responds to walking motions, for a walking-in-place application.
Flexible suspended gate organic thin-film transistors for ultra-sensitive pressure detection
NASA Astrophysics Data System (ADS)
Zang, Yaping; Zhang, Fengjiao; Huang, Dazhen; Gao, Xike; di, Chong-An; Zhu, Daoben
2015-03-01
The utilization of organic devices as pressure-sensing elements in artificial intelligence and healthcare applications represents a fascinating opportunity for the next-generation electronic products. To satisfy the critical requirements of these promising applications, the low-cost construction of large-area ultra-sensitive organic pressure devices with outstanding flexibility is highly desired. Here we present flexible suspended gate organic thin-film transistors (SGOTFTs) as a model platform that enables ultra-sensitive pressure detection. More importantly, the unique device geometry of SGOTFTs allows the fine-tuning of their sensitivity by the suspended gate. An unprecedented sensitivity of 192 kPa-1, a low limit-of-detection pressure of <0.5 Pa and a short response time of 10 ms were successfully realized, allowing the real-time detection of acoustic waves. These excellent sensing properties of SGOTFTs, together with their advantages of facile large-area fabrication and versatility in detecting various pressure signals, make SGOTFTs a powerful strategy for spatial pressure mapping in practical applications.
Development and Application of Integrated Optical Sensors for Intense E-Field Measurement
Zeng, Rong; Wang, Bo; Niu, Ben; Yu, Zhanqing
2012-01-01
The measurement of intense E-fields is a fundamental need in various research areas. Integrated optical E-field sensors (IOESs) have important advantages and are potentially suitable for intense E-field detection. This paper comprehensively reviews the development and applications of several types of IOESs over the last 30 years, including the Mach-Zehnder interferometer (MZI), coupler interferometer (CI) and common path interferometer (CPI). The features of the different types of IOESs are compared, showing that the MZI has higher sensitivity, the CI has a controllable optical bias, and the CPI has better temperature stability. More specifically, the improvement work of applying IOESs to intense E-field measurement is illustrated. Finally, typical uses of IOESs in the measurement of intense E-fields are demonstrated, including application areas such as E-fields with different frequency ranges in high-voltage engineering, simulated nuclear electromagnetic pulse in high-power electromagnetic pulses, and ion-accelerating field in high-energy physics. PMID:23112663
Macromolecule mass spectrometry: citation mining of user documents.
Kostoff, Ronald N; Bedford, Clifford D; del Río, J Antonio; Cortes, Héctor D; Karypis, George
2004-03-01
Identifying research users, applications, and impact is important for research performers, managers, evaluators, and sponsors. Identification of the user audience and the research impact is complex and time consuming due to the many indirect pathways through which fundamental research can impact applications. This paper identified the literature pathways through which two highly-cited papers of 2002 Chemistry Nobel Laureates Fenn and Tanaka impacted research, technology development, and applications. Citation Mining, an integration of citation bibliometrics and text mining, was applied to the >1600 first generation Science Citation Index (SCI) citing papers to Fenn's 1989 Science paper on Electrospray Ionization for Mass Spectrometry, and to the >400 first generation SCI citing papers to Tanaka's 1988 Rapid Communications in Mass Spectrometry paper on Laser Ionization Time-of-Flight Mass Spectrometry. Bibliometrics was performed on the citing papers to profile the user characteristics. Text mining was performed on the citing papers to identify the technical areas impacted by the research, and the relationships among these technical areas.
Physiology, biochemistry and possible applications of microbial caffeine degradation.
Gummadi, Sathyanarayana N; Bhavya, B; Ashok, Nandhini
2012-01-01
Caffeine, a purine alkaloid is a constituent of widely consumed beverages. The scientific evidence which has proved the harm of this alkaloid has paved the way for innumerable research in the area of caffeine degradation. In addition to this, the fact that the by-products of the coffee and tea industry pollute the environment has called for the need of decaffeinating coffee and tea industry's by-products. Though physical and chemical methods for decaffeination are available, the lack of specificity for removal of caffeine in these techniques and their non-eco-friendly nature has opened the area of microbial and enzymatic degradation of caffeine. Another important application of microbial caffeine degradation apart from its advantages like specificity, eco-friendliness and cost-effectiveness is the fact that this process will enable the production of industrially and medically useful components of the caffeine degradation pathway like theobromine and theophylline. This is a comprehensive review which mainly focuses on caffeine degradation, large-scale degradation of the same and its applications in the industrial world.
Flexible suspended gate organic thin-film transistors for ultra-sensitive pressure detection
Zang, Yaping; Zhang, Fengjiao; Huang, Dazhen; Gao, Xike; Di, Chong-an; Zhu, Daoben
2015-01-01
The utilization of organic devices as pressure-sensing elements in artificial intelligence and healthcare applications represents a fascinating opportunity for the next-generation electronic products. To satisfy the critical requirements of these promising applications, the low-cost construction of large-area ultra-sensitive organic pressure devices with outstanding flexibility is highly desired. Here we present flexible suspended gate organic thin-film transistors (SGOTFTs) as a model platform that enables ultra-sensitive pressure detection. More importantly, the unique device geometry of SGOTFTs allows the fine-tuning of their sensitivity by the suspended gate. An unprecedented sensitivity of 192 kPa−1, a low limit-of-detection pressure of <0.5 Pa and a short response time of 10 ms were successfully realized, allowing the real-time detection of acoustic waves. These excellent sensing properties of SGOTFTs, together with their advantages of facile large-area fabrication and versatility in detecting various pressure signals, make SGOTFTs a powerful strategy for spatial pressure mapping in practical applications. PMID:25872157
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gruner, Sol
2012-01-20
The primary focus of the grant is the development of new x-ray detectors for biological and materials work at synchrotron sources, especially Pixel Array Detectors (PADs), and the training of students via research applications to problems in biophysics and materials science using novel x-ray methods. This Final Progress Report provides a high-level overview of the most important accomplishments. These major areas of accomplishment include: (1) Development and application of x-ray Pixel Array Detectors; (2) Development and application of methods of high pressure x-ray crystallography as applied to proteins; (3) Studies on the synthesis and structure of novel mesophase materials derivedmore » from block co-polymers.« less
Effects of field applications of heptachlor on bobwhite quail and other wild animals
Rosene, W.
1965-01-01
A study of the effects of field applications of heptachlor on bobwhite quail (Colinus uirginianus) and other animals was conducted on three similar areas, two in Decatur County, Georgia, and one in Escambia County, Alabama, from February, 1958, to March, 1962. Heptachlor in granules was applied by aircraft on the Georgia areas for eradication of the imported fire ant (Solenopsis saevissima). Applications were directed by personnel of the U. S. Department of Agriculture, Plant Pest Control Division. The Alabama area remained untreated. Transects where whistling cocks were counted were superimposed on areas where coveys were counted. Size of areas varied from 14,000 to 20,000 acres. Each area had six transects, totaling 11,000 acres. Whistling cock bobwhites and coveys averaged 28 and 20 per 1,000 acres, respectively, the year before treatment on a Georgia area, and cocks and coveys averaged 25 per 1,000 acres for the duration of the study on the untreated Alabama area. Where portions of an area were treated at 2 pounds of heptachlor per acre, whistling cocks and coveys were reduced significantly, with a greater reduction where a greater amount of land was treated on the area or its transects. A decline of cocks and coveys also followed 1/2-pound applications (approaching statistical significance for coveys). Three years after treatment, cock and covey numbers were below those recorded before treatment. Whistling cocks and coveys also declined on adjoining land which remained untreated (significant for cocks, approaching significance for coveys). This decline was attributed to movements of bobwhites from untreated land to repopulate treated land. There is evidence that some loss occurred in bobwhites after they moved from untreated to treated land; the decrease in each instance was ascribed to the application of heptachlor. Songbirds were listed on the two Georgia areas. The first summer, eight more species and 458 more individuals of permanent resident birds were listed on the untreated area than on the treated area. After half of the originally untreated area was treated with heptachlor at 2 pounds per acre the following winter, the number of resident birds declined 37 percent. Some species of summer resident birds could not be found on treated land after heptachlor was applied. A small plot of 4 acres was intensively searched for dead and dying animals, and observations were made on living animals. Forty-seven days after treatment, no live animals were seen or heard on the plot, and a total of 38 dead animals had been found. Soils were sampled twice after treatment, and residues had declined in the second lot of samples. Twice animals also were obtained for analysis, and residues declined in the second group. Numbers of birds increased in the same period.
Ye, Mei-na; Yang, Ming; Cheng, Yi-qin; Wang, Bing; Zhu, Ying; Xia, Ya-ru; Meng, Tian; Chen, Hao; Chen, Li-ying; Cheng, Hong-feng
2015-04-01
To evaluate the safety and the clinical value of external use of jiuyi Powder (JP) in treating plasma cell mastitis using partial least-squares discriminant analysis (PLSDA). Totally 50 patients with plasma cell mastitis treated by external use of JP were observed and biochemical examinations of blood and urine detected before application, at day 4 after application, at day 1 and 14 after discontinuation. Blood mercury and urinary mercury were detected before application, at day 1, 4, and 7 after application, at day 1 and 14 after discontinuation. Urinary mercury was also detected at 28 after discontinuation and 3 months after discontinuation. The information of wound, days of external application and the total dosage of external application were recorded before application, at day 1, 4, and 7 after application, as well as at day 1 after discontinuation. Then a discriminant model covering potential safety factors was set up by PLSDA after screening safety indices with important effects. The applicability of the model was assessed using area under ROC curve. Potential safety factors were assessed using variable importance in the projection (VIP). Urinary β2-microglobulin (β2-MG), urinary N-acetyl-β-D-glucosaminidase (NAG), 24 h urinary protein, and urinary α1-microglobulin (α1-MG) were greatly affected by external use of JP in treating plasma cell mastitis. The accuracy rate of PLSDA discriminate model was 74. 00%. The sensitivity, specificity, and the area under ROC curve was 0. 7826, 0. 7037, and 0. 8084, respectively. Three factors with greater effect on the potential safety were screened as follows: pre-application volume of the sore cavity, days of external application, and the total dosage of external application. PLSDA method could be used in analyzing bioinformation of clinical Chinese medicine. Urinary β2-MG and urinary NAG were two main safety monitoring indices. Days of external application and the total dosage of external application were main factors influencing blood mercury and urine mercury. A safety classification simulation model of treating plasma cell mastitis by external therapy of JP was established by the two factors, which could be used to assess the safety of external application of JP to some extent.
A Study about Using Internet in History Lessons
ERIC Educational Resources Information Center
Ulusoy, Kadir
2012-01-01
Internet has become an important part in the field of education as it is in every area nowadays as well. Internet has become appealing among educators and students with its easy and quick access and wide opportunities. In this study, an application of using internet in the history course was done. 160 students who were enrolled in College of…
Transformative Geography: Ethics and Action in Elementary and Secondary Geography Education
ERIC Educational Resources Information Center
Kirman, Joseph M.
2003-01-01
Geographic ethics are profoundly important if students are expected to be stewards of the earth and responsible citizens whose decisions about the environment will affect our planet's future. The proposed framework, founded in geography but applicable to other subject areas, guides students to moral decisions for the well-being of the planet and…
ERIC Educational Resources Information Center
Arieli-Attali, Meirav; Liu, Ying
2016-01-01
Diagnostic assessment approaches intend to provide fine-grained reports of what students know and can do, focusing on their areas of strengths and weaknesses. However, current application of such diagnostic approaches is limited by the scoring method for item responses; important diagnostic information, such as type of errors and strategy use is…
USDA-ARS?s Scientific Manuscript database
The U.S. Air Force maintains a capability with the C130 aircraft to conduct aerial spray operations over large areas for controlling insects of medical importance. The current modular aerial spray system (MASS) is custom designed to support a variety of configurations from ultralow volume space spra...
Evaluation of Hydrogel Technologies for the Decontamination ...
Report This current research effort was developed to evaluate intermediate level (between bench-scale and large-scale or wide-area implementation) decontamination procedures, materials, technologies, and techniques used to remove radioactive material from different surfaces. In the event of such an incident, application of this technology would primarily be intended for decontamination of high-value buildings, important infrastructure, and landmarks.
Critical Care Coding for Neurologists.
Nuwer, Marc R; Vespa, Paul M
2015-10-01
Accurate coding is an important function of neurologic practice. This contribution to Continuum is part of an ongoing series that presents helpful coding information along with examples related to the issue topic. Tips for diagnosis coding, Evaluation and Management coding, procedure coding, or a combination are presented, depending on which is most applicable to the subject area of the issue.
Coding of Neuroinfectious Diseases.
Barkley, Gregory L
2015-12-01
Accurate coding is an important function of neurologic practice. This contribution to Continuum is part of an ongoing series that presents helpful coding information along with examples related to the issue topic. Tips for diagnosis coding, Evaluation and Management coding, procedure coding, or a combination are presented, depending on which is most applicable to the subject area of the issue.
Diagnostic Coding for Epilepsy.
Williams, Korwyn; Nuwer, Marc R; Buchhalter, Jeffrey R
2016-02-01
Accurate coding is an important function of neurologic practice. This contribution to Continuum is part of an ongoing series that presents helpful coding information along with examples related to the issue topic. Tips for diagnosis coding, Evaluation and Management coding, procedure coding, or a combination are presented, depending on which is most applicable to the subject area of the issue.
ERIC Educational Resources Information Center
Evuleocha, Stevina U.; Ugbah, Steve D.; Law, Sweety
2009-01-01
Authors investigated perceptions of campus recruiters (N = 168) in the San Francisco Bay Area regarding the importance of 15 types of information they solicit from job applicants' references in making selection decisions. Results suggest campus recruiters should consider 10 types of information to assist them in making selection decisions. Results…
Sean Healey; Warren Cohen; Gretchen Moisen
2007-01-01
The need for current information about the effects of fires, harvest, and storms is evident in many areas of sustainable forest management. While there are several potential sources of this information, each source has its limitations. Generally speaking, the statistical rigor associated with traditional forest sampling is an important asset in any monitoring effort....
The application of depletion curves for parameterization of subgrid variability of snow
C. H. Luce; D. G. Tarboton
2004-01-01
Parameterization of subgrid-scale variability in snow accumulation and melt is important for improvements in distributed snowmelt modelling. We have taken the approach of using depletion curves that relate fractional snowcovered area to element-average snow water equivalent to parameterize the effect of snowpack heterogeneity within a physically based mass and energy...
Field efficiency and bias of snag inventory methods
Robert S. Kenning; Mark J. Ducey; John C. Brissette; Jeffery H. Gove
2005-01-01
Snags and cavity trees are important components of forests, but can be difficult to inventory precisely and are not always included in inventories because of limited resources. We tested the application of N-tree distance sampling as a time-saving snag sampling method and compared N-tree distance sampling to fixed-area sampling and modified horizontal line sampling in...
ERIC Educational Resources Information Center
Jan, Show-Li; Shieh, Gwowen
2017-01-01
Equivalence assessment is becoming an increasingly important topic in many application areas including behavioral and social sciences research. Although there exist more powerful tests, the two one-sided tests (TOST) procedure is a technically transparent and widely accepted method for establishing statistical equivalence. Alternatively, a direct…
Social Media and the New Academic Environment: Pedagogical Challenges
ERIC Educational Resources Information Center
Patrut, Bogdan; Patrut, Monica; Cmeciu, Camelia
2013-01-01
As web applications play a vital role in our society, social media has emerged as an important tool in the creation and exchange of user-generated content and social interaction. The benefits of these services have entered in the educational areas to become new means by which scholars communicate, collaborate and teach. Social Media and the New…
ERIC Educational Resources Information Center
Eissen, Marco; Strudthoff, Merle; Backhaus, Solveig; Eismann, Carolin; Oetken, Gesa; Kaling, Soren; Lenoir, Dieter
2011-01-01
Oxidation-state and donor-acceptor concepts are important areas in the chemical education. Student worksheets containing problems that emphasize oxidation numbers, redox reactions of organic compounds, and stoichiometric reaction equations are presented. All of the examples are incorporated under one unifying topic: the production of vicinal…
ERIC Educational Resources Information Center
Stein, Zachary
2010-01-01
The use of educationally oriented biotechnology has grown drastically in recent decades and is likely to continue to grow. Advances in both the neurosciences and genetics have opened up important areas of application and industry, from psychopharmacology to gene-chip technologies. This article reviews the current state of educationally oriented…
Recovering wood for reuse and recycling : a United States perspective
Robert H. Falk; David B. McKeever
2004-01-01
The United States is a country with a vast forest resource, comprising about one-third of its total land area (or about 3 million square kilometers). As a result, wood is an important renewable resource and is widely used in many applications! including building construction, furniture, fuelwood, textile fabrics, organic chemicals, and paper manufacture. This wide...
Charles R. Frihart
2014-01-01
Although wood bonding is one of the oldest applications of adhesives, going back to early recorded history (1), some aspects of wood bonds are still not fully understood. Most books in the general area of adhesives and adhesion do not cover wood bonding. However, a clearer understanding of wood bonding and wood adhesives can lead to improved products. This is important...
An Initial Study of the Injection of an Intense Relativistic Electron Beam into the Atmosphere.
1981-03-04
resolved spectroscopy , thermoluminescent x-ray detectors ( TLDs ), and Schlieren photography. The freely propagating electron beam produced a luminous region...atmosphere and its detection with a TLD ...................................... 17 VIII. REFERENCES...atmospheric even though such stu- dies have application in a number of important areas of research including electron beam sustained lasers , 9 inertial
Nanotechnology: Future of Oncotherapy.
Gharpure, Kshipra M; Wu, Sherry Y; Li, Chun; Lopez-Berestein, Gabriel; Sood, Anil K
2015-07-15
Recent advances in nanotechnology have established its importance in several areas including medicine. The myriad of applications in oncology range from detection and diagnosis to drug delivery and treatment. Although nanotechnology has attracted a lot of attention, the practical application of nanotechnology to clinical cancer care is still in its infancy. This review summarizes the role that nanotechnology has played in improving cancer therapy, its potential for affecting all aspects of cancer care, and the challenges that must be overcome to realize its full promise. ©2015 American Association for Cancer Research.
Multilevel modelling: Beyond the basic applications.
Wright, Daniel B; London, Kamala
2009-05-01
Over the last 30 years statistical algorithms have been developed to analyse datasets that have a hierarchical/multilevel structure. Particularly within developmental and educational psychology these techniques have become common where the sample has an obvious hierarchical structure, like pupils nested within a classroom. We describe two areas beyond the basic applications of multilevel modelling that are important to psychology: modelling the covariance structure in longitudinal designs and using generalized linear multilevel modelling as an alternative to methods from signal detection theory (SDT). Detailed code for all analyses is described using packages for the freeware R.
Image Registration Workshop Proceedings
NASA Technical Reports Server (NTRS)
LeMoigne, Jacqueline (Editor)
1997-01-01
Automatic image registration has often been considered as a preliminary step for higher-level processing, such as object recognition or data fusion. But with the unprecedented amounts of data which are being and will continue to be generated by newly developed sensors, the very topic of automatic image registration has become and important research topic. This workshop presents a collection of very high quality work which has been grouped in four main areas: (1) theoretical aspects of image registration; (2) applications to satellite imagery; (3) applications to medical imagery; and (4) image registration for computer vision research.
CFD lends the government a hand
NASA Technical Reports Server (NTRS)
Lekoudis, Spiro; Singleton, Robert E.; Mehta, Unmeel B.
1992-01-01
The present survey of important and novel CFD applications being developed and implemented by U.S. Government contractors gives attention to naval vessel flow-modeling, Army ballistic and rotary wing aerodynamics, and NASA hypersonic vehicle related applications of CFD. CFD-generated knowledge of numerical algorithms, fluid motion, and supercomputer use is being incorporated into such additional areas as computational electromagnetics and acoustics. Attention is presently given to CFD methods' development status in such fields as submarine boundary layers, hypersonic kinetic energy projectile shock structures, helicopter main rotor tip flows, and National Aerospace Plane aerothermodynamics.
Nonparametric bootstrap analysis with applications to demographic effects in demand functions.
Gozalo, P L
1997-12-01
"A new bootstrap proposal, labeled smooth conditional moment (SCM) bootstrap, is introduced for independent but not necessarily identically distributed data, where the classical bootstrap procedure fails.... A good example of the benefits of using nonparametric and bootstrap methods is the area of empirical demand analysis. In particular, we will be concerned with their application to the study of two important topics: what are the most relevant effects of household demographic variables on demand behavior, and to what extent present parametric specifications capture these effects." excerpt
System software for the finite element machine
NASA Technical Reports Server (NTRS)
Crockett, T. W.; Knott, J. D.
1985-01-01
The Finite Element Machine is an experimental parallel computer developed at Langley Research Center to investigate the application of concurrent processing to structural engineering analysis. This report describes system-level software which has been developed to facilitate use of the machine by applications researchers. The overall software design is outlined, and several important parallel processing issues are discussed in detail, including processor management, communication, synchronization, and input/output. Based on experience using the system, the hardware architecture and software design are critiqued, and areas for further work are suggested.
The use of multisensor images for Earth Science applications
NASA Technical Reports Server (NTRS)
Evans, D.; Stromberg, B.
1983-01-01
The use of more than one remote sensing technique is particularly important for Earth Science applications because of the compositional and textural information derivable from the images. The ability to simultaneously analyze images acquired by different sensors requires coregistration of the multisensor image data sets. In order to insure pixel to pixel registration in areas of high relief, images must be rectified to eliminate topographic distortions. Coregistered images can be analyzed using a variety of multidimensional techniques and the acquired knowledge of topographic effects in the images can be used in photogeologic interpretations.
Aditya, Kaustav; Sud, U. C.
2018-01-01
Poverty affects many people, but the ramifications and impacts affect all aspects of society. Information about the incidence of poverty is therefore an important parameter of the population for policy analysis and decision making. In order to provide specific, targeted solutions when addressing poverty disadvantage small area statistics are needed. Surveys are typically designed and planned to produce reliable estimates of population characteristics of interest mainly at higher geographic area such as national and state level. Sample sizes are usually not large enough to provide reliable estimates for disaggregated analysis. In many instances estimates are required for areas of the population for which the survey providing the data was unplanned. Then, for areas with small sample sizes, direct survey estimation of population characteristics based only on the data available from the particular area tends to be unreliable. This paper describes an application of small area estimation (SAE) approach to improve the precision of estimates of poverty incidence at district level in the State of Bihar in India by linking data from the Household Consumer Expenditure Survey 2011–12 of NSSO and the Population Census 2011. The results show that the district level estimates generated by SAE method are more precise and representative. In contrast, the direct survey estimates based on survey data alone are less stable. PMID:29879202
Chandra, Hukum; Aditya, Kaustav; Sud, U C
2018-01-01
Poverty affects many people, but the ramifications and impacts affect all aspects of society. Information about the incidence of poverty is therefore an important parameter of the population for policy analysis and decision making. In order to provide specific, targeted solutions when addressing poverty disadvantage small area statistics are needed. Surveys are typically designed and planned to produce reliable estimates of population characteristics of interest mainly at higher geographic area such as national and state level. Sample sizes are usually not large enough to provide reliable estimates for disaggregated analysis. In many instances estimates are required for areas of the population for which the survey providing the data was unplanned. Then, for areas with small sample sizes, direct survey estimation of population characteristics based only on the data available from the particular area tends to be unreliable. This paper describes an application of small area estimation (SAE) approach to improve the precision of estimates of poverty incidence at district level in the State of Bihar in India by linking data from the Household Consumer Expenditure Survey 2011-12 of NSSO and the Population Census 2011. The results show that the district level estimates generated by SAE method are more precise and representative. In contrast, the direct survey estimates based on survey data alone are less stable.
NASA Astrophysics Data System (ADS)
Yu, H.; He, J.; Zhou, H.; Guan, F.; Li, L.; Ren, B.; Wang, Z.
2018-04-01
Remote sensing technology has become an important method to rapidly acquireing of planting layout and composition of regional crops.It is very important to accurately master the planting area of Chinese medicine crops in the Characteristic planting area because it relations to accurately master the cultivation of Chinese medicine crops, formulate related policies and adjustment of crop planting structure.The author puts forward a method of using remote sencing technology for momitoring Chinese medicine which has good applicability and generalization. This paper took Qiaocheng District of Bozhou as an example to Verify the feasibility of the method, providing a reference for solving the problem of interpretation and extraction of Chinese medicinal materials in the region.
Aerodynamic characteristics of airplanes at high angles of attack
NASA Technical Reports Server (NTRS)
Chambers, J. R.; Grafton, S. B.
1977-01-01
An introduction to, and a broad overiew of, the aerodynamic characteristics of airplanes at high angles of attack are provided. Items include: (1) some important fundamental phenomena which determine the aerodynamic characteristics of airplanes at high angles of attack; (2) static and dynamic aerodynamic characteristics near the stall; (3) aerodynamics of the spin; (4) test techniques used in stall/spin studies; (5) applications of aerodynamic data to problems in flight dynamics in the stall/spin area; and (6) the outlook for future research in the area. Although stalling and spinning are flight dynamic problems of importance to all aircraft, including general aviation aircraft, commercial transports, and military airplanes, emphasis is placed on military configurations and the principle aerodynamic factors which influence the stability and control of such vehicles at high angles of attack.
Congdon, Peter
2008-03-01
The risk of coronary heart disease (CHD) is strongly linked both to deprivation and ethnicity and so prevalence will vary considerably between areas. Variations in prevalence are important in assessing health care needs and how far CHD service provision and surgical intervention rates match need. This paper uses a regression model of prevalence rates by age, sex, region and ethnicity from the 1999 and 2003 Health Surveys for England to estimate CHD prevalence for 354 English local authority areas. To allow for the impact of social factors on prevalence, survey information on the deprivation quintile in the respondents' micro-area of residence is also used. Allowance is also made for area CHD mortality rates (obtained from aggregated vital statistics data) which are positively correlated with, and hence a proxy for, CHD prevalence rates. An application involves assessment of surgical intervention rates in relation to prevalence at the level of 28 Strategic Health Authorities.
Assessment of Hexavalent Chromium Natural Attenuation for the Hanford Site 100 Area
DOE Office of Scientific and Technical Information (OSTI.GOV)
Truex, Michael J.; Szecsody, James E.; Qafoku, Nikolla P.
2015-09-01
Hexavalent chromium (Cr(VI)) plumes are present in the 100 Area at the Hanford Site. Remediation efforts are under way with objectives of restoring the groundwater to meet the drinking-water standard (48 µg/L) and protecting the Columbia River by ensuring that discharge of groundwater to the river is below the surface-water quality standard (10 µg/L). Current remedies include application of Pump-and-Treat (P&T) at the 100-D, 100-H, and 100-K Areas and Monitored Natural Attenuation (MNA) at the 100-F/IU Area. Remedy selection is still under way at the other 100 Areas. Additional information about the natural attenuation processes for Cr(VI) is important inmore » all of these cases. In this study, laboratory experiments were conducted to demonstrate and quantify natural attenuation mechanisms using 100 Area sediments and groundwater conditions.« less
Biomedical Properties Study of Modified Chitosan Nanoparticles for Drug Delivery Systems
NASA Astrophysics Data System (ADS)
Saboktakin, Mohammad Reza
2013-09-01
The purpose of this review is to discuss and summarize some of the interesting findings and applications of modified chitosan (MCS) and their derivatives in different areas of drug delivery. This review highlights the important applications of MCS in the design of various novel delivery systems like liposomes, microspheres, microcapsules, and nanoparticles. In addition to their well-known effects on drug solubility and dissolution, bioavailability, safety, and stability, their uses as recipients in drug formulation are also discussed. This review also focuses on various factors influencing inclusion complex formation because an understanding of the same is necessary for proper handling of these versatile materials. Some important considerations in selecting MCS in drug formulation such as their commercial availability, regulatory status, and patent status are also summarized.
``Carbon Credits'' for Resource-Bounded Computations Using Amortised Analysis
NASA Astrophysics Data System (ADS)
Jost, Steffen; Loidl, Hans-Wolfgang; Hammond, Kevin; Scaife, Norman; Hofmann, Martin
Bounding resource usage is important for a number of areas, notably real-time embedded systems and safety-critical systems. In this paper, we present a fully automatic static type-based analysis for inferring upper bounds on resource usage for programs involving general algebraic datatypes and full recursion. Our method can easily be used to bound any countable resource, without needing to revisit proofs. We apply the analysis to the important metrics of worst-case execution time, stack- and heap-space usage. Our results from several realistic embedded control applications demonstrate good matches between our inferred bounds and measured worst-case costs for heap and stack usage. For time usage we infer good bounds for one application. Where we obtain less tight bounds, this is due to the use of software floating-point libraries.
Gamification and geospatial health management
NASA Astrophysics Data System (ADS)
Wortley, David
2014-06-01
Sensor and Measurement technologies are rapidly developing for many consumer applications which have the potential to make a major impact on business and society. One of the most important areas for building a sustainable future is in health management. This opportunity arises because of the growing popularity of lifestyle monitoring devices such as the Jawbone UP bracelet, Nike Fuelband and Samsung Galaxy GEAR. These devices measure physical activity and calorie consumption and, when visualised on mobile and portable devices, enable users to take more responsibility for their personal health. This presentation looks at how the process of gamification can be applied to develop important geospatial health management applications that could not only improve the health of nations but also significantly address some of the issues in global health such as the ageing society and obesity.
Amphiphilic cyclodextrin nanoparticles.
Varan, Gamze; Varan, Cem; Erdoğar, Nazlı; Hıncal, A Atilla; Bilensoy, Erem
2017-10-15
Cyclodextrins are cyclic oligosaccharides obtained by enzymatic digestion of starch. The α-, β- and γ- cyclodextrins contain respectively 6, 7 and 8 glucopyranose units, with primary and secondary hydroxyl groups located on the narrow and wider rims of a truncated cone shape structure. Such structure is that of a hydrophobic inner cavity with a hydrophilic outer surface allowing to interact with a wide range of molecules like ions, protein and oligonucleotides to form inclusion complexes. Many cyclodextrin applications in the pharmaceutical area have been widely described in the literature due to their low toxicity and low immunogenicity. The most important is to increase the solubility of hydrophobic drugs in water. Chemically modified cyclodextrin derivatives have been synthesized to enhance their properties and more specifically their pharmacological activity. Among these, amphiphilic derivatives were designed to build organized molecular structures, through selfassembling systems or by incorporation in lipid membranes, expected to improve the vectorization in the organism of the drug-containing cyclodextrin cavities. These derivatives can form a variety of supramolecular structures such as micelles, vesicles and nanoparticles. The purpose of this review is to summarize applications of amphiphilic cyclodextrins in different areas of drug delivery, particularly in protein and peptide drug delivery and gene delivery. The article highlights important amphiphilic cyclodextrin applications in the design of novel delivery systems like nanoparticles. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Milojević, Slavka; Stojanovic, Vojislav
2017-04-01
Due to the continuous development of the seismic acquisition and processing method, the increase of the signal/fault ratio always represents a current target. The correct application of the latest software solutions improves the processing results and justifies their development. A correct computation and application of static corrections represents one of the most important tasks in pre-processing. This phase is of great importance for further processing steps. Static corrections are applied to seismic data in order to compensate the effects of irregular topography, the difference between the levels of source points and receipt in relation to the level of reduction, of close to the low-velocity surface layer (weathering correction), or any reasons that influence the spatial and temporal position of seismic routes. The refraction statics method is the most common method for computation of static corrections. It is successful in resolving of both the long-period statics problems and determining of the difference in the statics caused by abrupt lateral changes in velocity in close to the surface layer. XtremeGeo FlatironsTM is a program whose main purpose is computation of static correction through a refraction statics method and allows the application of the following procedures: picking of first arrivals, checking of geometry, multiple methods for analysis and modelling of statics, analysis of the refractor anisotropy and tomography (Eikonal Tomography). The exploration area is located on the southern edge of the Pannonian Plain, in the plain area with altitudes of 50 to 195 meters. The largest part of the exploration area covers Deliblato Sands, where the geological structure of the terrain and high difference in altitudes significantly affects the calculation of static correction. Software XtremeGeo FlatironsTM has powerful visualization and tools for statistical analysis which contributes to significantly more accurate assessment of geometry close to the surface layers and therefore more accurately computed static corrections.
The triplet excited state of Bodipy: formation, modulation and application.
Zhao, Jianzhang; Xu, Kejing; Yang, Wenbo; Wang, Zhijia; Zhong, Fangfang
2015-12-21
Boron dipyrromethene (Bodipy) is one of the most extensively investigated organic chromophores. Most of the investigations are focused on the singlet excited state of Bodipy, such as fluorescence. In stark contrast, the study of the triplet excited state of Bodipy is limited, but it is an emerging area, since the triplet state of Bodipy is tremendously important for several areas, such as the fundamental photochemistry study, photodynamic therapy (PDT), photocatalysis and triplet-triplet annihilation (TTA) upconversion. The recent developments in the study of the production, modulation and application of the triplet excited state of Bodipy are discussed in this review article. The formation of the triplet state of Bodipy upon photoexcitation, via the well known approach such as the heavy atom effect (including I, Br, Ru, Ir, etc.), and the new methods, such as using a spin converter (e.g. C60), charge recombination, exciton coupling and the doubly substituted excited state, are summarized. All the Bodipy-based triplet photosensitizers show strong absorption of visible or near IR light and the long-lived triplet excited state, which are important for the application of the triplet excited state in PDT or photocatalysis. Moreover, the methods for switching (or modulation) of the triplet excited state of Bodipy were discussed, such as those based on the photo-induced electron transfer (PET), by controlling the competing Förster-resonance-energy-transfer (FRET), or the intermolecular charge transfer (ICT). Controlling the triplet excited state will give functional molecules such as activatable PDT reagents or molecular devices. It is worth noting that switching of the singlet excited state and the triplet state of Bodipy may follow different principles. Application of the triplet excited state of Bodipy in PDT, hydrogen (H2) production, photoredox catalytic organic reactions and TTA upconversion were discussed. The challenges and the opportunities in these areas were briefly discussed.
Nonthermal plasma--A tool for decontamination and disinfection.
Scholtz, Vladimir; Pazlarova, Jarmila; Souskova, Hana; Khun, Josef; Julak, Jaroslav
2015-11-01
By definition, the nonthermal plasma (NTP) is partially ionized gas where the energy is stored mostly in the free electrons and the overall temperature remains low. NTP is widely used for many years in various applications such as low-temperature plasma chemistry, removal of gaseous pollutants, in gas-discharge lamps or surface modification. However, during the last ten years, NTP usage expanded to new biological areas of application like plasma microorganisms' inactivation, ready-to-eat food preparation, biofilm degradation or in healthcare, where it seems to be important for the treatment of cancer cells and in the initiation of apoptosis, prion inactivation, prevention of nosocomial infections or in the therapy of infected wounds. These areas are presented and documented in this paper as a review of representative publications. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Young, William D.
1992-01-01
The application of formal methods to the analysis of computing systems promises to provide higher and higher levels of assurance as the sophistication of our tools and techniques increases. Improvements in tools and techniques come about as we pit the current state of the art against new and challenging problems. A promising area for the application of formal methods is in real-time and distributed computing. Some of the algorithms in this area are both subtle and important. In response to this challenge and as part of an ongoing attempt to verify an implementation of the Interactive Convergence Clock Synchronization Algorithm (ICCSA), we decided to undertake a proof of the correctness of the algorithm using the Boyer-Moore theorem prover. This paper describes our approach to proving the ICCSA using the Boyer-Moore prover.
Opal photonic crystals infiltrated with chalcogenide glasses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Astratov, V. N.; Adawi, A. M.; Skolnick, M. S.
Composite opal structures for nonlinear applications are obtained by infiltration with chalcogenide glasses As{sub 2}S{sub 3} and AsSe by precipitation from solution. Analysis of spatially resolved optical spectra reveals that the glass aggregates into submillimeter areas inside the opal. These areas exhibit large shifts in the optical stop bands by up to 80 nm, and by comparison with modelling are shown to have uniform glass filling factors of opal pores up to 40%. Characterization of the domain structure of the opals prior to infiltration by large area angle-resolved spectroscopy is an important step in the analysis of the properties ofmore » the infiltrated regions. {copyright} 2001 American Institute of Physics.« less
Multi-service terminal adapter based on IP technology applications in rural area
NASA Astrophysics Data System (ADS)
Gao, Li; Li, Xiaobo; Yan, Juntao; Ren, Xupeng
Take advantage of ample modern existing telecom network resources to rural areas may achieve it's information society gradually. This includes the establishment of integrated rural information service platform, modern remote education center and electronic administration management platform for rural areas. The geographical and economic constraints must be overcome for structuring the rural service support system, in order to provide technical support, information products and information services to modern rural information service system. It is important that development an access platform based IP technology, which supports multi-service access in order to implement a variety of types of mobile terminal equipment adapter access and to reduce restrictions on mobile terminal equipment.
NASA Technical Reports Server (NTRS)
Macdonald, R. B.
1984-01-01
An historical account is given of the development of technology for the processing of satellite-acquired multispectral data aimed at the identification of the type, condition, and ontogenic stages of agricultural areas. During 1972 and 1973, research established the feasibility of automating digital classification for the processing of large volumes of Landsat MSS data. This capability was successfully demonstrated during the Large Area Crop Inventory Experiment, which estimated wheat crop production on a global basis. This achievement in turn led to the Agriculture and Resources Inventory Surveys Through Aerospace Remote Sensing, which investigated other portions of the electromagnetic spectrum and expanded the study of key commercial crops in important agricultural areas.
A Survey on Data Quality for Dependable Monitoring in Wireless Sensor Networks.
Jesus, Gonçalo; Casimiro, António; Oliveira, Anabela
2017-09-02
Wireless sensor networks are being increasingly used in several application areas, particularly to collect data and monitor physical processes. Non-functional requirements, like reliability, security or availability, are often important and must be accounted for in the application development. For that purpose, there is a large body of knowledge on dependability techniques for distributed systems, which provide a good basis to understand how to satisfy these non-functional requirements of WSN-based monitoring applications. Given the data-centric nature of monitoring applications, it is of particular importance to ensure that data are reliable or, more generically, that they have the necessary quality. In this survey, we look into the problem of ensuring the desired quality of data for dependable monitoring using WSNs. We take a dependability-oriented perspective, reviewing the possible impairments to dependability and the prominent existing solutions to solve or mitigate these impairments. Despite the variety of components that may form a WSN-based monitoring system, we give particular attention to understanding which faults can affect sensors, how they can affect the quality of the information and how this quality can be improved and quantified.
A review of gradient stiffness hydrogels used in tissue engineering and regenerative medicine.
Xia, Tingting; Liu, Wanqian; Yang, Li
2017-06-01
Substrate stiffness is known to impact characteristics including cell differentiation, proliferation, migration and apoptosis. Hydrogels are polymeric materials distinguished by high water content and diverse physical properties. Gradient stiffness hydrogels are designed by the need to develop biologically friendly materials as extracellular matrix (ECM) alternatives to replace the separated and narrow-ranged hydrogel substrates. Important new discoveries in cell behaviors have been realized with model gradient stiffness hydrogel systems from the two-dimensional (2D) to three-dimensional (3D) scale. Basic and clinical applications for gradient stiffness hydrogels in tissue engineering and regenerative medicine continue to drive the development of stiffness and structure varied hydrogels. Given the importance of gradient stiffness hydrogels in basic research and biomedical applications, there is a clear need for systems for gradient stiffness hydrogel design strategies and their applications. This review will highlight past work in the field of gradient stiffness hydrogels fabrication methods, mechanical property test, applications as well as areas for future study. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1799-1812, 2017. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Cao, Lu; Verbeek, Fons J.
2012-03-01
In computer graphics and visualization, reconstruction of a 3D surface from a point cloud is an important research area. As the surface contains information that can be measured, i.e. expressed in features, the application of surface reconstruction can be potentially important for application in bio-imaging. Opportunities in this application area are the motivation for this study. In the past decade, a number of algorithms for surface reconstruction have been proposed. Generally speaking, these methods can be separated into two categories: i.e., explicit representation and implicit approximation. Most of the aforementioned methods are firmly based in theory; however, so far, no analytical evaluation between these methods has been presented. The straightforward way of evaluation has been by convincing through visual inspection. Through evaluation we search for a method that can precisely preserve the surface characteristics and that is robust in the presence of noise. The outcome will be used to improve reliability in surface reconstruction of biological models. We, therefore, use an analytical approach by selecting features as surface descriptors and measure these features in varying conditions. We selected surface distance, surface area and surface curvature as three major features to compare quality of the surface created by the different algorithms. Our starting point has been ground truth values obtained from analytical shapes such as the sphere and the ellipsoid. In this paper we present four classical surface reconstruction methods from the two categories mentioned above, i.e. the Power Crust, the Robust Cocone, the Fourier-based method and the Poisson reconstruction method. The results obtained from our experiments indicate that Poisson reconstruction method performs the best in the presence of noise.
Rombouts, Steffi J E; Nijkamp, Maarten W; van Dijck, Willemijn P M; Brosens, Lodewijk A A; Konings, Maurits; van Hillegersberg, R; Borel Rinkes, Inne H M; Hagendoorn, Jeroen; Wittkampf, Fred H; Molenaar, I Quintus
2017-01-01
Irreversible electroporation (IRE) with needle electrodes is being explored as treatment option in locally advanced pancreatic cancer. Several studies have shown promising results with IRE needles, positioned around the tumor to achieve tumor ablation. Disadvantages are the technical difficulties for needle placement, the time needed to achieve tumor ablation, the risk of needle track seeding and most important the possible occurrence of postoperative pancreatic fistula via the needle tracks. The aim of this experimental study was to evaluate the feasibility of a new IRE-technique using two parallel plate electrodes, in a porcine model. Twelve healthy pigs underwent laparotomy. The pancreas was mobilized to enable positioning of the paddles. A standard monophasic external cardiac defibrillator was used to perform an ablation in 3 separate parts of the pancreas; either a single application of 50 or 100J or a serial application of 4x50J. After 6 hours, pancreatectomy was performed for histology and pigs were terminated. Histology showed necrosis of pancreatic parenchyma with neutrophil influx in 5/12, 11/12 and 12/12 of the ablated areas at 50, 100, and 4x50J respectively. The electric current density threshold to achieve necrosis was 4.3, 5.1 and 3.4 A/cm2 respectively. The ablation threshold was significantly lower for the serial compared to the single applications (p = 0.003). The content of the ablated areas differed between the applications: areas treated with a single application of 50 J often contained vital areas without obvious necrosis, whereas half of the sections treated with 100 J showed small islands of normal looking cells surrounded by necrosis, while all sections receiving 4x 50 J showed a homogeneous necrotic lesion. Pancreatic tissue can be successfully ablated using two parallel paddles around the tissue. A serial application of 4x50J was most effective in creating a homogeneous necrotic lesion.
Applications of magnetohydrodynamics in biological systems-a review on the numerical studies
NASA Astrophysics Data System (ADS)
Rashidi, Saman; Esfahani, Javad Abolfazli; Maskaniyan, Mahla
2017-10-01
Magnetohydrodynamic (MHD) fluid flow in different geometries relevant to human body parts is an interesting and important scientific area due to its applications in medical sciences. This article performs a comprehensive review on the applications of MHD and their numerical modelling in biological systems. Applications of MHD in medical sciences are classified into four categories in this paper. Applications of MHD in simple flow, peristaltic flow, pulsatile flow, and drag delivery are these categories. The numerical researches performed for these categories are reviewed and summarized separately. Finally, some conclusions and suggestions for future works based on the literature review are presented. The results indicated that during a surgery when it is necessary to drop blood flow or reduce tissue temperature, it may be achieved by using a magnetic field. Moreover, the review showed that the trapping is an important phenomenon in peristaltic flows that causes the formation of thrombus in blood and the movement of food bolus in gastrointestinal tract. This phenomenon may be disappeared by using a proper magnetic field. Finally, the concentration of particles that are delivered to the target region increases with an increase in the magnetic field intensity.
McKenzie, Sam; Keene, Chris; Farovik, Anja; Blandon, John; Place, Ryan; Komorowski, Robert; Eichenbaum, Howard
2016-01-01
Here we consider the value of neural population analysis as an approach to understanding how information is represented in the hippocampus and cortical areas and how these areas might interact as a brain system to support memory. We argue that models based on sparse coding of different individual features by single neurons in these areas (e.g., place cells, grid cells) are inadequate to capture the complexity of experience represented within this system. By contrast, population analyses of neurons with denser coding and mixed selectivity reveal new and important insights into the organization of memories. Furthermore, comparisons of the organization of information in interconnected areas suggest a model of hippocampal-cortical interactions that mediates the fundamental features of memory. PMID:26748022
NASA Astrophysics Data System (ADS)
Brax, Christoffer; Niklasson, Lars
2009-05-01
Maritime Domain Awareness is important for both civilian and military applications. An important part of MDA is detection of unusual vessel activities such as piracy, smuggling, poaching, collisions, etc. Today's interconnected sensorsystems provide us with huge amounts of information over large geographical areas which can make the operators reach their cognitive capacity and start to miss important events. We propose and agent-based situation management system that automatically analyse sensor information to detect unusual activity and anomalies. The system combines knowledge-based detection with data-driven anomaly detection. The system is evaluated using information from both radar and AIS sensors.
Electrosprayed nanoparticles for drug delivery and pharmaceutical applications
Sridhar, Radhakrishnan; Ramakrishna, Seeram
2013-01-01
Nanotechnology based Pharma has emerged significantly and has influenced the Pharma industry up to a considerable extent. Nanoparticles technology holds a good share of the nanotech Pharma and is significant in comparison with the other domains. Electrospraying technology answers the potential needs of nanoparticle production such as scalability, reproducibility, effective encapsulation etc. Many drugs have been electrosprayed with and without polymer carriers. Drug release characteristics are improved with the incorporation of biodegradable polymer carriers which sustain the release of encapsulated drug. Electrospraying is acknowledged as an important technique for the preparation of nanoparticles with respect to pharmaceutical applications. Herein we attempted to consolidate the reports pertaining to electrospraying and their corresponding therapeutic application area. PMID:23512013
Recent advances in industrial application of tannases: a review.
Beniwal, Vikas; Kumar, Anil; Sharma, Jitender; Chhokar, Vinod
2013-12-01
Tannin acyl hydrolase (E.C. 3.1.1.20) commonly referred as tannase, is a hydrolytic enzyme that catalyses the hydrolysis of ester bonds present in gallotannins, ellagitannins, complex tannins and gallic acid esters. Tannases are the important group of botechnologically relevant enzymes distributed throughout the animal, plant and microbial kingdoms. However, microbial tannases are currently receiving a great deal of attention. Tannases are extensively used in food, feed, pharmaceutical, beverage, brewing and chemical industries. Owing to its diverse area of applications, a number of patents have been appeared in the recent past. The present review pretends to present the advances and perspectives in the industrial application of tannase with special emphasis on patents.
Feasibility of high recovery highwall mining equipment. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-01-01
Three equipment systems exhibited significant promise: the RSV Miner, a surface longwall using standard underground equipment, and the variable angle auger. Other equipment systems showing considerable merit were the surface shortwall, and the two extended depth augers. Of the three most significant systems, the RSV Miner exhibits the greatest versatility and adaptability. It may be used competently in many surface mining applications and readily adapts to geologic anomalies and changing seam heights. The machine employs steering and guidance equipment and provides the necessary capabilities for extended depth operation. Safety is good, as no men are required to work underground. However,more » most important is the system's recovery factor of approximately 75% to 80% of the in-situ coal reserve within reach. The surface longwall system using standard underground equipment (preferably a ranging drum shearer in conjunction with shield supports) is most suited to either a trench mining or a modified area mining application. Both applications would allow the length of the face to be held constant. Another important consideration is legal requirements for a tailgate entry, which would necessitate additional equipment for development in a modified area mining application. When compared to surface shortwall, surface longwall exhibits higher productivity, a far greater equipment selection which allows system tailoring to geologic conditions, and greater roof control due to the significantly smaller section of overburden that must be supported. Recovery should approach, and possibly exceed, 90% of the coal in-place. The variable angle auger, which is currently only a concept, fills a very real need for which no other equipment is available at this time.« less
On the theory of drainage area for regular and non-regular points.
Bonetti, S; Bragg, A D; Porporato, A
2018-03-01
The drainage area is an important, non-local property of a landscape, which controls surface and subsurface hydrological fluxes. Its role in numerous ecohydrological and geomorphological applications has given rise to several numerical methods for its computation. However, its theoretical analysis has lagged behind. Only recently, an analytical definition for the specific catchment area was proposed (Gallant & Hutchinson. 2011 Water Resour. Res. 47 , W05535. (doi:10.1029/2009WR008540)), with the derivation of a differential equation whose validity is limited to regular points of the watershed. Here, we show that such a differential equation can be derived from a continuity equation (Chen et al. 2014 Geomorphology 219 , 68-86. (doi:10.1016/j.geomorph.2014.04.037)) and extend the theory to critical and singular points both by applying Gauss's theorem and by means of a dynamical systems approach to define basins of attraction of local surface minima. Simple analytical examples as well as applications to more complex topographic surfaces are examined. The theoretical description of topographic features and properties, such as the drainage area, channel lines and watershed divides, can be broadly adopted to develop and test the numerical algorithms currently used in digital terrain analysis for the computation of the drainage area, as well as for the theoretical analysis of landscape evolution and stability.
On the theory of drainage area for regular and non-regular points
NASA Astrophysics Data System (ADS)
Bonetti, S.; Bragg, A. D.; Porporato, A.
2018-03-01
The drainage area is an important, non-local property of a landscape, which controls surface and subsurface hydrological fluxes. Its role in numerous ecohydrological and geomorphological applications has given rise to several numerical methods for its computation. However, its theoretical analysis has lagged behind. Only recently, an analytical definition for the specific catchment area was proposed (Gallant & Hutchinson. 2011 Water Resour. Res. 47, W05535. (doi:10.1029/2009WR008540)), with the derivation of a differential equation whose validity is limited to regular points of the watershed. Here, we show that such a differential equation can be derived from a continuity equation (Chen et al. 2014 Geomorphology 219, 68-86. (doi:10.1016/j.geomorph.2014.04.037)) and extend the theory to critical and singular points both by applying Gauss's theorem and by means of a dynamical systems approach to define basins of attraction of local surface minima. Simple analytical examples as well as applications to more complex topographic surfaces are examined. The theoretical description of topographic features and properties, such as the drainage area, channel lines and watershed divides, can be broadly adopted to develop and test the numerical algorithms currently used in digital terrain analysis for the computation of the drainage area, as well as for the theoretical analysis of landscape evolution and stability.
Distributed multirobot sensing and tracking: a behavior-based approach
NASA Astrophysics Data System (ADS)
Parker, Lynne E.
1995-09-01
An important issue that arises in the automation of many large-scale surveillance and reconnaissance tasks is that of tracking the movements of (or maintaining passive contact with) objects navigating in a bounded area of interest. Oftentimes in these problems, the area to be monitored will move over time or will not permit fixed sensors, thus requiring a team of mobile sensors--or robots--to monitor the area collectively. In these situations, the robots must not only have mechanisms for determining how to track objects and how to fuse information from neighboring robots, but they must also have distributed control strategies for ensuring that the entire area of interest is continually covered to the greatest extent possible. This paper focuses on the distributed control issue by describing a proposed decentralized control mechanism that allows a team of robots to collectively track and monitor objects in an uncluttered area of interest. The approach is based upon an extension to the ALLIANCE behavior-based architecture that generalizes from the domain of loosely-coupled, independent applications to the domain of strongly cooperative applications, in which the action selection of a robot is dependent upon the actions selected by its teammates. We conclude the paper be describing our ongoing implementation of the proposed approach on a team of four mobile robots.
Partington, Andrew; Chew, Derek P; Ben-Tovim, David; Horsfall, Matthew; Hakendorf, Paul; Karnon, Jonathan
2017-03-01
Objective Unwarranted variation in clinical practice is a target for quality improvement in health care, but there is no consensus on how to identify such variation or to assess the potential value of initiatives to improve quality in these areas. This study illustrates the use of a triple test, namely the comparative analysis of processes of care, costs and outcomes, to identify and assess the burden of unwarranted variation in clinical practice. Methods Routinely collected hospital and mortality data were linked for patients presenting with symptoms suggestive of acute coronary syndromes at the emergency departments of four public hospitals in South Australia. Multiple regression models analysed variation in re-admissions and mortality at 30 days and 12 months, patient costs and multiple process indicators. Results After casemix adjustment, an outlier hospital with statistically significantly poorer outcomes and higher costs was identified. Key process indicators included admission patterns, use of invasive diagnostic procedures and length of stay. Performance varied according to patients' presenting characteristics and time of presentation. Conclusions The joint analysis of processes, outcomes and costs as alternative measures of performance inform the importance of reducing variation in clinical practice, as well as identifying specific targets for quality improvement along clinical pathways. Such analyses could be undertaken across a wide range of clinical areas to inform the potential value and prioritisation of quality improvement initiatives. What is known about the topic? Variation in clinical practice is a long-standing issue that has been analysed from many different perspectives. It is neither possible nor desirable to address all forms of variation in clinical practice: the focus should be on identifying important unwarranted variation to inform actions to reduce variation and improve quality. What does this paper add? This paper proposes the comparative analysis of processes of care, costs and outcomes for patients with similar diagnoses presenting at alternative hospitals, using linked, routinely collected data. This triple test of performance indicators extracts maximum value from routine data to identify priority areas for quality improvement to reduce important and unwarranted variations in clinical practice. What are the implications for practitioners? The proposed analyses need to be applied to other clinical areas to demonstrate the general application of the methods. The outputs can then be validated through the application of quality improvement initiatives in clinical areas with identified important and unwarranted variation. Validated frameworks for the comparative analysis of clinical practice provide an efficient approach to valuing and prioritising actions to improve health service quality.
Garrett Duncan; John Mintz; Douglas Rischbieter; John Baas
2004-01-01
This paper focuses on identifying applications of recreation survey results in the context of water-based recreation planning. Recreation researchers have sometimes been criticized for conducting research that is weak in applied value (Cordell 1999). The paper also focuses on the important, but sometimes forgotten role that private entities play (e.g., Pacific Gas and...
Summary of Research 1998, Department of Mechanical Engineering.
1999-08-01
thermoacoustic behavior in strong zero-mean oscillatory flows with potential application to the design of heat exchangers in thermoacoustic engines...important feature in the thermal characterization of microtubes , which are to be used in microheat exchangers . DoD KEY TECHNOLOGY AREA: Modeling and...Simulation KEYWORDS: Laminar Duct Flows, Convection and Conduction Heat Transfer, Axial Conduction, Micro- heat Exchang - ers DEVELOPMENT AND CALIBRATION
Geographical Applications of Remote Sensing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weng, Qihao; Zhou, Yuyu; Quattrochi, Dale
2013-02-28
Data and Information derived through Earth observation technology have been extensively used in geographic studies, such as in the areas of natural and human environments, resources, land use and land cover, human-environment interactions, and socioeconomic issues. Land-use and land-cover change (LULCC), affecting biodiversity, climate change, watershed hydrology, and other surface processes, is one of the most important research topics in geography.
Recent progress in theranostic applications of hybrid gold nanoparticles.
Gharatape, Alireza; Salehi, Roya
2017-09-29
A significant area of research is theranostic applications of nanoparticles, which involves efforts to improve delivery and reduce side effects. Accordingly, the introduction of a safe, effective, and, most importantly, renewable strategy to target, deliver and image disease cells is important. This state-of-the-art review focuses on studies done from 2013 to 2016 regarding the development of hybrid gold nanoparticles as theranostic agents in the diagnosis and treatment of cancer and infectious disease. Several syntheses (chemical and green) methods of gold nanoparticles and their applications in imaging, targeting, and delivery are reviewed; their photothermal efficiency is discussed as is the toxicity of gold nanoparticles. Owing to the unique characterizations of hybrid gold nanoparticles and their potential to be developed as multifunctional, we predict they will present an undeniable role in clinical studies and provide treatment platforms for various diseases. Thus, their clearance and interactions with extra- and intra-cellular molecules need to be considered in future projects. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Smith, Kevin B; Abrantes, Antonio A M; Larraza, Andres
2003-06-01
The shallow water acoustic communication channel is characterized by strong signal degradation caused by multipath propagation and high spatial and temporal variability of the channel conditions. At the receiver, multipath propagation causes intersymbol interference and is considered the most important of the channel distortions. This paper examines the application of time-reversal acoustic (TRA) arrays, i.e., phase-conjugated arrays (PCAs), that generate a spatio-temporal focus of acoustic energy at the receiver location, eliminating distortions introduced by channel propagation. This technique is self-adaptive and automatically compensates for environmental effects and array imperfections without the need to explicitly characterize the environment. An attempt is made to characterize the influences of a PCA design on its focusing properties with particular attention given to applications in noncoherent underwater acoustic communication systems. Due to the PCA spatial diversity focusing properties, PC arrays may have an important role in an acoustic local area network. Each array is able to simultaneously transmit different messages that will focus only at the destination receiver node.
Napp, S; Casas, M; Moset, S; Paramio, J L; Casal, J
2010-11-01
Although rabies incidence in humans in Western Europe is low, the repeated importation of rabid animals from enzootic areas threatens the rabies-free status of terrestrial animals and challenges the public health systems in this area. Most rabid animals imported into the European Union (EU) in recent years came from Morocco. The aim of this study was to develop a probabilistic risk assessment model to estimate the probability of rabies introduction, which was applied to the risk to the EU from dogs coming from Morocco. The mean annual probability of rabies introduction was 0.21 (90% CI 0.02-0.65). The pathways that contributed the most to this probability were: (a) EU citizens who adopted a dog in Morocco (59% of the total probability) and (b) EU citizens who travelled with their dog to Morocco by ferry (34% of the total probability). The model showed a marked seasonality in the risk of rabies with almost 40% of the annual probability occurring during the months of July and August. The application of stricter border controls (assuming 100% compliance) would result in a >270-fold reduction in the likelihood of rabies introduction into the EU from Morocco.
Groundwater Nitrate Contamination Risk Assessment in Canicattì area (Sicily)
NASA Astrophysics Data System (ADS)
Pisciotta, Antonino; Cusimano, Gioacchino; Favara, Rocco
2010-05-01
Groundwaters play a dominant role in the Sicily, because as most part of Mediterranean countries this island is interested by the phenomenon of desertification and the quality of the groundwater reservoir is one of the most important aim for the management policy strategies. During last decade most of the Italian regions the nitrate levels in river and groundwaters have increased gradually over mainly as a consequence of large-scale agricultural application of manure and fertilizers, thereby threatening drinking water quality. The excessive use of chemicals and fertilizers increases the risk to pollution of surface and groundwater from diffuse source, an important reflex to human health and the environment. The studied area is located in Canicattì (central Sicily, Italy), the current land use (grape, olive grove and almond) is the main source of groundwater pollution. In order to investigate the effect of the over farming on the groundwater quality we report the study on the potential risk of contamination from nitrate of agricultural origin through the join of the application of two parametric methods: the IPNOA method (the intrinsic nitrate contamination risk from Agricultural sources) applied to define the Nitrate Vulnerable Zones and the SINTACS method applied to determine the aquifer vulnerability to contamination.
Yang, Yan; Wang, Guoqiang; Wang, Lijing; Yu, Jingshan; Xu, Zongxue
2014-01-01
Gridded precipitation data are becoming an important source for driving hydrologic models to achieve stable and valid simulation results in different regions. Thus, evaluating different sources of precipitation data is important for improving the applicability of gridded data. In this study, we used three gridded rainfall datasets: 1) National Centers for Environmental Prediction - Climate Forecast System Reanalysis (NCEP-CFSR); 2) Asian Precipitation - Highly-Resolved Observational Data Integration Towards Evaluation (APHRODITE); and 3) China trend - surface reanalysis (trend surface) data. These are compared with monitoring precipitation data for driving the Soil and Water Assessment Tool in two basins upstream of Three Gorges Reservoir (TGR) in China. The results of one test basin with significant topographic influence indicates that all the gridded data have poor abilities in reproducing hydrologic processes with the topographic influence on precipitation quantity and distribution. However, in a relatively flat test basin, the APHRODITE and trend surface data can give stable and desirable results. The results of this study suggest that precipitation data for future applications should be considered comprehensively in the TGR area, including the influence of data density and topography. PMID:25409467
Possible etiologies of increased incidence of gastroschisis.
Souther, Christina; Puapong, Devin P; Woo, Russell; Johnson, Sidney M
2017-11-01
Gastroschisis incidence has increased over the past decade nationally and in Hawaii. Pesticides have been implicated as potential causative factors for gastroschisis, and use of restricted use pesticides (RUPs) is widespread in Hawaii. This study was conducted to characterize gastroschisis cases in Hawaii and determine whether RUP application correlates with gastroschisis incidence. Gastroschisis patients treated in Hawaii between September, 2008 and August, 2015 were mapped by zip code along with RUP use. Spatial analysis software was used to identify patients' homes located within the pesticide application zone and agricultural land use areas. 71 gastroschisis cases were identified. 2.8% of patients were from Kauai, 64.8% from Oahu, 16.9% from Hawaii, 14.1% from Maui, and 1.4% from Molokai. RUPs have been used on all of these islands. 78.9% of patients lived in zip codes overlapping agricultural land use areas. 85.9% of patients shared zip codes with RUP-use areas. The majority of gastroschisis patients were from RUP-use areas, supporting the idea that pesticides may contribute to the development of gastroschisis, although limited data on specific releases make it difficult to apply these findings. As more RUP-use data become available to the public, these important research questions can be investigated further.
NASA Technical Reports Server (NTRS)
Shariq, Syed Z.; Kutler, Paul (Technical Monitor)
1997-01-01
The emergence of rapidly expanding technologies for distribution and dissemination of information and knowledge has brought to focus the opportunities for development of knowledge-based networks, knowledge dissemination and knowledge management technologies and their potential applications for enhancing productivity of knowledge work. The challenging and complex problems of the future can be best addressed by developing the knowledge management as a new discipline based on an integrative synthesis of hard and soft sciences. A knowledge management professional society can provide a framework for catalyzing the development of proposed synthesis as well as serve as a focal point for coordination of professional activities in the strategic areas of education, research and technology development. Preliminary concepts for the development of the knowledge management discipline and the professional society are explored. Within this context of knowledge management discipline and the professional society, potential opportunities for application of information technologies for more effectively delivering or transferring information and knowledge (i.e., resulting from the NASA's Mission to Planet Earth) for the development of policy options in critical areas of national and global importance (i.e., policy decisions in economic and environmental areas) can be explored, particularly for those policy areas where a global collaborative knowledge network is likely to be critical to the acceptance of the policies.
Where to Restore Ecological Connectivity? Detecting Barriers and Quantifying Restoration Benefits
McRae, Brad H.; Hall, Sonia A.; Beier, Paul; Theobald, David M.
2012-01-01
Landscape connectivity is crucial for many ecological processes, including dispersal, gene flow, demographic rescue, and movement in response to climate change. As a result, governmental and non-governmental organizations are focusing efforts to map and conserve areas that facilitate movement to maintain population connectivity and promote climate adaptation. In contrast, little focus has been placed on identifying barriers—landscape features which impede movement between ecologically important areas—where restoration could most improve connectivity. Yet knowing where barriers most strongly reduce connectivity can complement traditional analyses aimed at mapping best movement routes. We introduce a novel method to detect important barriers and provide example applications. Our method uses GIS neighborhood analyses in conjunction with effective distance analyses to detect barriers that, if removed, would significantly improve connectivity. Applicable in least-cost, circuit-theoretic, and simulation modeling frameworks, the method detects both complete (impermeable) barriers and those that impede but do not completely block movement. Barrier mapping complements corridor mapping by broadening the range of connectivity conservation alternatives available to practitioners. The method can help practitioners move beyond maintaining currently important areas to restoring and enhancing connectivity through active barrier removal. It can inform decisions on trade-offs between restoration and protection; for example, purchasing an intact corridor may be substantially more costly than restoring a barrier that blocks an alternative corridor. And it extends the concept of centrality to barriers, highlighting areas that most diminish connectivity across broad networks. Identifying which modeled barriers have the greatest impact can also help prioritize error checking of land cover data and collection of field data to improve connectivity maps. Barrier detection provides a different way to view the landscape, broadening thinking about connectivity and fragmentation while increasing conservation options. PMID:23300719
Graphene-like two-dimensional layered nanomaterials: applications in biosensors and nanomedicine.
Yang, Guohai; Zhu, Chengzhou; Du, Dan; Zhu, Junjie; Lin, Yuehe
2015-09-14
The development of nanotechnology provides promising opportunities for various important applications. The recent discovery of atomically-thick two-dimensional (2D) nanomaterials can offer manifold perspectives to construct versatile devices with high-performance to satisfy multiple requirements. Many studies directed at graphene have stimulated renewed interest on graphene-like 2D layered nanomaterials (GLNs). GLNs including boron nitride nanosheets, graphitic-carbon nitride nanosheets and transition metal dichalcogenides (e.g. MoS2 and WS2) have attracted significant interest in numerous research fields from physics and chemistry to biology and engineering, which has led to numerous interdisciplinary advances in nano science. Benefiting from the unique physical and chemical properties (e.g. strong mechanical strength, high surface area, unparalleled thermal conductivity, remarkable biocompatibility and ease of functionalization), these 2D layered nanomaterials have shown great potential in biochemistry and biomedicine. This review summarizes recent advances of GLNs in applications of biosensors and nanomedicine, including electrochemical biosensors, optical biosensors, bioimaging, drug delivery and cancer therapy. Current challenges and future perspectives in these rapidly developing areas are also outlined. It is expected that they will have great practical foundation in biomedical applications with future efforts.
Graphene-like two-dimensional layered nanomaterials: applications in biosensors and nanomedicine
NASA Astrophysics Data System (ADS)
Yang, Guohai; Zhu, Chengzhou; Du, Dan; Zhu, Junjie; Lin, Yuehe
2015-08-01
The development of nanotechnology provides promising opportunities for various important applications. The recent discovery of atomically-thick two-dimensional (2D) nanomaterials can offer manifold perspectives to construct versatile devices with high-performance to satisfy multiple requirements. Many studies directed at graphene have stimulated renewed interest on graphene-like 2D layered nanomaterials (GLNs). GLNs including boron nitride nanosheets, graphitic-carbon nitride nanosheets and transition metal dichalcogenides (e.g. MoS2 and WS2) have attracted significant interest in numerous research fields from physics and chemistry to biology and engineering, which has led to numerous interdisciplinary advances in nano science. Benefiting from the unique physical and chemical properties (e.g. strong mechanical strength, high surface area, unparalleled thermal conductivity, remarkable biocompatibility and ease of functionalization), these 2D layered nanomaterials have shown great potential in biochemistry and biomedicine. This review summarizes recent advances of GLNs in applications of biosensors and nanomedicine, including electrochemical biosensors, optical biosensors, bioimaging, drug delivery and cancer therapy. Current challenges and future perspectives in these rapidly developing areas are also outlined. It is expected that they will have great practical foundation in biomedical applications with future efforts.
Multi-scale Modeling and Analysis of Nano-RFID Systems on HPC Setup
NASA Astrophysics Data System (ADS)
Pathak, Rohit; Joshi, Satyadhar
In this paper we have worked out on some the complex modeling aspects such as Multi Scale modeling, MATLAB Sugar based modeling and have shown the complexities involved in the analysis of Nano RFID (Radio Frequency Identification) systems. We have shown the modeling and simulation and demonstrated some novel ideas and library development for Nano RFID. Multi scale modeling plays a very important role in nanotech enabled devices properties of which cannot be explained sometimes by abstraction level theories. Reliability and packaging still remains one the major hindrances in practical implementation of Nano RFID based devices. And to work on them modeling and simulation will play a very important role. CNTs is the future low power material that will replace CMOS and its integration with CMOS, MEMS circuitry will play an important role in realizing the true power in Nano RFID systems. RFID based on innovations in nanotechnology has been shown. MEMS modeling of Antenna, sensors and its integration in the circuitry has been shown. Thus incorporating this we can design a Nano-RFID which can be used in areas like human implantation and complex banking applications. We have proposed modeling of RFID using the concept of multi scale modeling to accurately predict its properties. Also we give the modeling of MEMS devices that are proposed recently that can see possible application in RFID. We have also covered the applications and the advantages of Nano RFID in various areas. RF MEMS has been matured and its devices are being successfully commercialized but taking it to limits of nano domains and integration with singly chip RFID needs a novel approach which is being proposed. We have modeled MEMS based transponder and shown the distribution for multi scale modeling for Nano RFID.
Large-area tungsten disulfide for ultrafast photonics.
Yan, Peiguang; Chen, Hao; Yin, Jinde; Xu, Zihan; Li, Jiarong; Jiang, Zike; Zhang, Wenfei; Wang, Jinzhang; Li, Irene Ling; Sun, Zhipei; Ruan, Shuangchen
2017-02-02
Two-dimensional (2D) layered transition metal dichalcogenides (TMDs) have attracted significant interest in various optoelectronic applications due to their excellent nonlinear optical properties. One of the most important applications of TMDs is to be employed as an extraordinary optical modulation material (e.g., the saturable absorber (SA)) in ultrafast photonics. The main challenge arises while embedding TMDs into fiber laser systems to generate ultrafast pulse trains and thus constraints their practical applications. Herein, few-layered WS 2 with a large-area was directly transferred on the facet of the pigtail and acted as a SA for erbium-doped fiber laser (EDFL) systems. In our study, WS 2 SA exhibited remarkable nonlinear optical properties (e.g., modulation depth of 15.1% and saturable intensity of 157.6 MW cm -2 ) and was used for ultrafast pulse generation. The soliton pulses with remarkable performances (e.g., ultrashort pulse duration of 1.49 ps, high stability of 71.8 dB, and large pulse average output power of 62.5 mW) could be obtained in a telecommunication band. To the best of our knowledge, the average output power of the mode-locked pulse trains is the highest by employing TMD materials in fiber laser systems. These results indicate that atomically large-area WS 2 could be used as excellent optical modulation materials in ultrafast photonics.
2014-01-01
Background Light curtain arrays (LC), a recently introduced phenotyping method, yield a binary data matrix from which a shoot silhouette is reconstructed. We addressed the accuracy and applicability of LC in assessing leaf area and maximum height (base to the highest leaf tip) in a phenotyping platform. LC were integrated to an automated routine for positioning, allowing in situ measurements. Two dicotyledonous (rapeseed, tomato) and two monocotyledonous (maize, barley) species with contrasting shoot architecture were investigated. To evaluate if averaging multiple view angles helps in resolving self-overlaps, we acquired a data set by rotating plants every 10° for 170°. To test how rapid these measurements can be without loss of information, we evaluated nine scanning speeds. Leaf area of overlapping plants was also estimated to assess the possibility to scale this method for plant stands. Results The relation between measured and calculated maximum height was linear and nearly the same for all species. Linear relations were also found between plant leaf area and calculated pixel area. However, the regression slope was different between monocotyledonous and dicotyledonous species. Increasing the scanning speed stepwise from 0.9 to 23.4 m s−1 did not affect the estimation of maximum height. Instead, the calculated pixel area was inversely proportional to scanning speed. The estimation of plant leaf area by means of calculated pixel area became more accurate by averaging consecutive silhouettes and/or increasing the angle between them. Simulations showed that decreasing plant distance gradually from 20 to 0 cm, led to underestimation of plant leaf area owing to overlaps. This underestimation was more important for large plants of dicotyledonous species and for small plants of monocotyledonous ones. Conclusions LC offer an accurate estimation of plant leaf area and maximum height, while the number of consecutive silhouettes that needs to be averaged is species-dependent. A constant scanning speed is important for leaf area estimations by using LC. Simulations of the effect of varying plant spacing gave promising results for method application in sets of partly overlapping plants, which applies also to field conditions during and after canopy closure for crops sown in rows. PMID:24721154
The effect of nozzle-exit-channel shape on resultant fiber diameter in melt-electrospinning
NASA Astrophysics Data System (ADS)
Esmaeilirad, Ahmad; Ko, Junghyuk; Rukosuyev, Maxym V.; Lee, Jason K.; Lee, Patrick C.; Jun, Martin B. G.
2017-01-01
In recent decades, electrospinning using a molten poly (ε-caprolactone) resin has gained attention for creating fibrous tissue scaffolds. The topography and diameter control of such electrospun microfibers is an important issue for their different applications in tissue engineering. Charge density, initial nozzle-exit-channel cross-sectional area, nozzle to collector distance, viscosity, and processing temperature are the most important input parameters that affect the final electrospun fiber diameters. In this paper we will show that the effect of nozzle-exit-channel shape is as important as the other effective parameters in a resultant fiber diameter. However, to the best of our knowledge, the effect of nozzle-exit-channel shapes on a resultant fiber diameter have not been studied before. Comparing rectangular and circular nozzles with almost the same exit-channel cross-sectional areas in a similar processing condition showed that using a rectangular nozzle resulted in decreasing final fiber diameter up to 50%. Furthermore, the effect of processing temperature on the final fiber topography was investigated.
NASA Astrophysics Data System (ADS)
Poulter, Benjamin; Cadule, Patricia; Cheiney, Audrey; Ciais, Philippe; Hodson, Elke; Peylin, Philippe; Plummer, Stephen; Spessa, Allan; Saatchi, Sassan; Yue, Chao; Zimmermann, Niklaus E.
2015-02-01
Fire plays an important role in terrestrial ecosystems by regulating biogeochemistry, biogeography, and energy budgets, yet despite the importance of fire as an integral ecosystem process, significant advances remain to improve its prognostic representation in carbon cycle models. To recommend and to help prioritize model improvements, this study investigates the sensitivity of a coupled global biogeography and biogeochemistry model, LPJ, to observed burned area measured by three independent satellite-derived products, GFED v3.1, L3JRC, and GlobCarbon. Model variables are compared with benchmarks that include pantropical aboveground biomass, global tree cover, and CO2 and CO trace gas concentrations. Depending on prescribed burned area product, global aboveground carbon stocks varied by 300 Pg C, and woody cover ranged from 50 to 73 Mkm2. Tree cover and biomass were both reduced linearly with increasing burned area, i.e., at regional scales, a 10% reduction in tree cover per 1000 km2, and 0.04-to-0.40 Mg C reduction per 1000 km2. In boreal regions, satellite burned area improved simulated tree cover and biomass distributions, but in savanna regions, model-data correlations decreased. Global net biome production was relatively insensitive to burned area, and the long-term land carbon sink was robust, 2.5 Pg C yr-1, suggesting that feedbacks from ecosystem respiration compensated for reductions in fuel consumption via fire. CO2 transport provided further evidence that heterotrophic respiration compensated any emission reductions in the absence of fire, with minor differences in modeled CO2 fluxes among burned area products. CO was a more sensitive indicator for evaluating fire emissions, with MODIS-GFED burned area producing CO concentrations largely in agreement with independent observations in high latitudes. This study illustrates how ensembles of burned area data sets can be used to diagnose model structures and parameters for further improvement and also highlights the importance in considering uncertainties and variability in observed burned area data products for model applications.
Statistical study of air pollutant concentrations via generalized gamma distribution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marani, A.; Lavagnini, I.; Buttazzoni, C.
1986-11-01
This paper deals with modeling observed frequency distributions of air quality data measured in the area of Venice, Italy. The paper discusses the application of the generalized gamma distribution (ggd) which has not been commonly applied to air quality data notwithstanding the fact that it embodies most distribution models used for air quality analyses. The approach yields important simplifications for statistical analyses. A comparison among the ggd and other relevant models (standard gamma, Weibull, lognormal), carried out on daily sulfur dioxide concentrations in the area of Venice underlines the efficiency of ggd models in portraying experimental data.
Applications of aerospace technology to petroleum exploration. Volume 1: Efforts and results
NASA Technical Reports Server (NTRS)
Jaffe, L. D.
1976-01-01
The feasibility of applying aerospace techniques to help solve significant problems in petroleum exploration is studied. Through contacts with petroleum industry and petroleum service industry, important petroleum exploration problems were identified. For each problem, areas of aerospace technology that might aid in its solution were also identified where possible. Topics selected for investigation include: seismic reflection systems; down-hole acoustic techniques; identification of geological analogies; drilling methods; remote geological sensing; and sea floor imaging and mapping. Specific areas of aerospace technology are applied to 21 concepts formulated from the topics of concern.
Snowmelt-runoff Model Utilizing Remotely-sensed Data
NASA Technical Reports Server (NTRS)
Rango, A.
1985-01-01
Remotely sensed snow cover information is the critical data input for the Snowmelt-Runoff Model (SRM), which was developed to simulatke discharge from mountain basins where snowmelt is an important component of runoff. Of simple structure, the model requires only input of temperature, precipitation, and snow covered area. SRM was run successfully on two widely separated basins. The simulations on the Kings River basin are significant because of the large basin area (4000 sq km) and the adequate performance in the most extreme drought year of record (1976). The performance of SRM on the Okutadami River basin was important because it was accomplished with minimum snow cover data available. Tables show: optimum and minimum conditions for model application; basin sizes and elevations where SRM was applied; and SRM strengths and weaknesses. Graphs show results of discharge simulation.
Comparative studies of industrial grade carbon black powders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chawla, Komal, E-mail: komalchawla.rs@gmail.com; Chauhan, Alok P. S., E-mail: chauhan.alok@gmail.com, E-mail: alok.chauhan@alumni.stonybrook.edu
Comparative studies of two dissimilar industrial grade Carbon Black (CB) powders (N375 and N405) were conducted. The structure, surface area and particle size are the three important characteristics of CB powder that determine their processability and application as filler in preparing rubber compounds. The powders were characterized for their structure using dibutyl phthalate absorption (DBPA), particle size via laser particle size analyzer and surface area by nitrogen adsorption method. The structural characterization showed that N405 had lower DBPA in comparison to N375, confirming low structure of N405 grade CB powder. It was observed from the particle size analysis that N375more » was coarser than N405 grade CB. The total surface area values were determined by the BET method based on the cross sectional area of the nitrogen molecule. N375, a coarse grade CB powder with high structure, depicted less surface area as compared to N405.« less
Leitão, Sara; Moreira-Santos, Matilde; Van den Brink, Paul J; Ribeiro, Rui; José Cerejeira, M; Sousa, José Paulo
2014-05-01
The present study aimed to assess the environmental fate of the insecticide and nematicide ethoprophos in the soil-water interface following the pesticide application in simulated maize and potato crops under Mediterranean agricultural conditions, particularly of irrigation. Focus was given to the soil-water transfer pathways (leaching and runoff), to the pesticide transport in soil between pesticide application (crop row) and non-application areas (between crop rows), as well as to toxic effects of the various matrices on terrestrial and aquatic biota. A semi-field methodology mimicking a "worst-case" ethoprophos application (twice the recommended dosage for maize and potato crops: 100% concentration v/v) in agricultural field situations was used, in order to mimic a possible misuse by the farmer under realistic conditions. A rainfall was simulated under a slope of 20° for both crop-based scenarios. Soil and water samples were collected for the analysis of pesticide residues. Ecotoxicity of soil and aquatic samples was assessed by performing lethal and sublethal bioassays with organisms from different trophic levels: the collembolan Folsomia candida, the earthworm Eisenia andrei and the cladoceran Daphnia magna. Although the majority of ethoprophos sorbed to the soil application area, pesticide concentrations were detected in all water matrices illustrating pesticide transfer pathways of water contamination between environmental compartments. Leaching to groundwater proved to be an important transfer pathway of ethoprophos under both crop-based scenarios, as it resulted in high pesticide concentration in leachates from Maize (130µgL(-1)) and Potato (630µgL(-1)) crop scenarios, respectively. Ethoprophos application at the Potato crop scenario caused more toxic effects on terrestrial and aquatic biota than at the Maize scenario at the recommended dosage and lower concentrations. In both crop-based scenarios, ethoprophos moved with the irrigation water flow to the soil between the crop rows where no pesticide was applied, causing toxic effects on terrestrial organisms. The two simulated agricultural crop-based scenarios had the merit to illustrate the importance of transfer pathways of pesticides from soil to groundwater through leaching and from crop rows to the surrounding soil areas in a soil-water interface environment, which is representative for irrigated agricultural crops under Mediterranean conditions. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Zambito, Anna Maria; Curcio, Francesco; Meli, Antonella; Saverio Ambesi-Impiombato, Francesco
The "MoMa" project: "From Molecules to Man: Space Research Applied to the improvement of the Quality of Life of the Ageing Population on Earth started June 16 2006 and finished right on schedule June 25 2009, has been the biggest of the three projects funded by ASI in the sector "Medicine and Biotechnology. In the last years the scientific community had formed a national chain of biomedical spatial research with different research areas. MoMa responds to the necessity of unification in ASI of the two areas "Radiobiology and Protection" and "Cellular and Molecular Biotechnology" in a line of joint research: "Biotechnological Applications" were the interests of all groups would be combined and unified in a goal of social relevance. MoMa is the largest project ever developed in the biomedical area in Italy, the idea was born thinking about the phenomenon of acceleration of the aging process observed in space, and already described in literature, and the aim of studying the effects of the space environment at cellular, molecular and human organism level. "MoMa" was divided into three primary areas of study: Molecules, Cells and Man with an industrial area alongside. This allowed to optimize the work and information flows within the scientific research more similar and more culturally homogeneous and allowed a perfect industrial integration in a project of great scientific importance. Within three scientific areas 10 scientific lines in total are identified, each of them coordinated by a subcontractor. The rapid and efficient exchange of information between different areas of science and the development of industrial applications in various areas of interest have been assured by a strong work of Scientific Coordination of System Engineering and Quality Control. After three years of intense and coordinated activities within the MoMa project, the objectives achieved are very significant not only as regards the scientific results and the important hardware produced but also as regard of the employment targets with the delivery of approximately 250 scholarships for researchers and doctoral students and financing to industries and SMEs Italian. The scientific and industrial MoMa community is aware that a so important and challenging project can not expire and is now ready to take advantage of the huge potentiality gained to compete successfully at international level in this new phase of space exploration.
NASA Astrophysics Data System (ADS)
Hassan, Siti Nor Habibah; Yusof, Ahmad Anas; Tuan, Tee Boon; Saadun, Mohd Noor Asril; Ibrahim, Mohd Qadafie; Nik, Wan Mohd Norsani Wan
2015-05-01
In promoting energy saving and sustainability, this paper presents research development of water hydraulics manipulator test rig for underwater application. Kinematic analysis of the manipulator has been studied in order to identify the workspace of the fabricated manipulator. The workspace is important as it will define the working area suitable to be developed on the test rig, in order to study the effectiveness of using water hydraulics system for underwater manipulation application. Underwater manipulator that has the ability to utilize the surrounding sea water itself as the power and energy carrier should have better advantages over sustainability and performance.
Applications of nonlinear systems theory to control design
NASA Technical Reports Server (NTRS)
Hunt, L. R.; Villarreal, Ramiro
1988-01-01
For most applications in the control area, the standard practice is to approximate a nonlinear mathematical model by a linear system. Since the feedback linearizable systems contain linear systems as a subclass, the procedure of approximating a nonlinear system by a feedback linearizable one is examined. Because many physical plants (e.g., aircraft at the NASA Ames Research Center) have mathematical models which are close to feedback linearizable systems, such approximations are certainly justified. Results and techniques are introduced for measuring the gap between the model and its truncated linearizable part. The topic of pure feedback systems is important to the study.
The application of biotechnology in medicinal plants breeding research in China.
Huang, He-Ping; Li, Jin-Cai; Huang, Lu-Qi; Wang, Dian-Lei; Huang, Peng; Nie, Jiu-Sheng
2015-07-01
Breeding is not only an important area of medicinal plants research but also the foundation for the superior varieties acquirement of medicinal plants. The rise of modern biotechnology provides good opportunities and new means for medicinal plants breeding research in China. Biotechnology shows its technical advantages and new development prospects in breeding of new medicinal plants varieties with high and stable yield, good quality, as well as stress-resistance. In this paper, we describe recent advances, problems, and development prospects about the application of modern biotechnology in medicinal plants breeding research in China.
The principle of superposition and its application in ground-water hydraulics
Reilly, Thomas E.; Franke, O. Lehn; Bennett, Gordon D.
1987-01-01
The principle of superposition, a powerful mathematical technique for analyzing certain types of complex problems in many areas of science and technology, has important applications in ground-water hydraulics and modeling of ground-water systems. The principle of superposition states that problem solutions can be added together to obtain composite solutions. This principle applies to linear systems governed by linear differential equations. This report introduces the principle of superposition as it applies to ground-water hydrology and provides background information, discussion, illustrative problems with solutions, and problems to be solved by the reader.
The principle of superposition and its application in ground-water hydraulics
Reilly, T.E.; Franke, O.L.; Bennett, G.D.
1984-01-01
The principle of superposition, a powerful methematical technique for analyzing certain types of complex problems in many areas of science and technology, has important application in ground-water hydraulics and modeling of ground-water systems. The principle of superposition states that solutions to individual problems can be added together to obtain solutions to complex problems. This principle applies to linear systems governed by linear differential equations. This report introduces the principle of superposition as it applies to groundwater hydrology and provides background information, discussion, illustrative problems with solutions, and problems to be solved by the reader. (USGS)
DNA origami nanopores: developments, challenges and perspectives
NASA Astrophysics Data System (ADS)
Hernández-Ainsa, Silvia; Keyser, Ulrich F.
2014-11-01
DNA nanotechnology has enabled the construction of DNA origami nanopores; synthetic nanopores that present improved capabilities for the area of single molecule detection. Their extraordinary versatility makes them a new and powerful tool in nanobiotechnology for a wide range of important applications beyond molecular sensing. In this review, we briefly present the recent developments in this emerging field of research. We discuss the current challenges and possible solutions that would enhance the sensing capabilities of DNA origami nanopores. Finally, we anticipate novel avenues for future research and highlight a range of exciting ideas and applications that could be explored in the near future.
Liu, Yang; Lü, Yi-he; Zheng, Hai-feng; Chen, Li-ding
2010-05-01
Based on the 10-day SPOT VEGETATION NDVI data and the daily meteorological data from 1998 to 2007 in Yan' an City, the main meteorological variables affecting the annual and interannual variations of NDVI were determined by using regression tree. It was found that the effects of test meteorological variables on the variability of NDVI differed with seasons and time lags. Temperature and precipitation were the most important meteorological variables affecting the annual variation of NDVI, and the average highest temperature was the most important meteorological variable affecting the inter-annual variation of NDVI. Regression tree was very powerful in determining the key meteorological variables affecting NDVI variation, but could not build quantitative relations between NDVI and meteorological variables, which limited its further and wider application.
Visualization and imaging methods for flames in microgravity
NASA Technical Reports Server (NTRS)
Weiland, Karen J.
1993-01-01
The visualization and imaging of flames has long been acknowledged as the starting point for learning about and understanding combustion phenomena. It provides an essential overall picture of the time and length scales of processes and guides the application of other diagnostics. It is perhaps even more important in microgravity combustion studies, where it is often the only non-intrusive diagnostic measurement easily implemented. Imaging also aids in the interpretation of single-point measurements, such as temperature, provided by thermocouples, and velocity, by hot-wire anemometers. This paper outlines the efforts of the Microgravity Combustion Diagnostics staff at NASA Lewis Research Center in the area of visualization and imaging of flames, concentrating on methods applicable for reduced-gravity experimentation. Several techniques are under development: intensified array camera imaging, and two-dimensional temperature and species concentrations measurements. A brief summary of results in these areas is presented and future plans mentioned.
Modern technologies for retinal scanning and imaging: an introduction for the biomedical engineer
2014-01-01
This review article is meant to help biomedical engineers and nonphysical scientists better understand the principles of, and the main trends in modern scanning and imaging modalities used in ophthalmology. It is intended to ease the communication between physicists, medical doctors and engineers, and hopefully encourage “classical” biomedical engineers to generate new ideas and to initiate projects in an area which has traditionally been dominated by optical physics. Most of the methods involved are applicable to other areas of biomedical optics and optoelectronics, such as microscopic imaging, spectroscopy, spectral imaging, opto-acoustic tomography, fluorescence imaging etc., all of which are with potential biomedical application. Although all described methods are novel and important, the emphasis of this review has been placed on three technologies introduced in the 1990’s and still undergoing vigorous development: Confocal Scanning Laser Ophthalmoscopy, Optical Coherence Tomography, and polarization-sensitive retinal scanning. PMID:24779618
Experimental design methods for bioengineering applications.
Keskin Gündoğdu, Tuğba; Deniz, İrem; Çalışkan, Gülizar; Şahin, Erdem Sefa; Azbar, Nuri
2016-01-01
Experimental design is a form of process analysis in which certain factors are selected to obtain the desired responses of interest. It may also be used for the determination of the effects of various independent factors on a dependent factor. The bioengineering discipline includes many different areas of scientific interest, and each study area is affected and governed by many different factors. Briefly analyzing the important factors and selecting an experimental design for optimization are very effective tools for the design of any bioprocess under question. This review summarizes experimental design methods that can be used to investigate various factors relating to bioengineering processes. The experimental methods generally used in bioengineering are as follows: full factorial design, fractional factorial design, Plackett-Burman design, Taguchi design, Box-Behnken design and central composite design. These design methods are briefly introduced, and then the application of these design methods to study different bioengineering processes is analyzed.
NASA Astrophysics Data System (ADS)
Nieland, Simon; Kleinschmit, Birgit; Förster, Michael
2015-05-01
Ontology-based applications hold promise in improving spatial data interoperability. In this work we use remote sensing-based biodiversity information and apply semantic formalisation and ontological inference to show improvements in data interoperability/comparability. The proposed methodology includes an observation-based, "bottom-up" engineering approach for remote sensing applications and gives a practical example of semantic mediation of geospatial products. We apply the methodology to three different nomenclatures used for remote sensing-based classification of two heathland nature conservation areas in Belgium and Germany. We analysed sensor nomenclatures with respect to their semantic formalisation and their bio-geographical differences. The results indicate that a hierarchical and transparent nomenclature is far more important for transferability than the sensor or study area. The inclusion of additional information, not necessarily belonging to a vegetation class description, is a key factor for the future success of using semantics for interoperability in remote sensing.
Fundamentals and applications of gas hydrates.
Koh, Carolyn A; Sloan, E Dendy; Sum, Amadeu K; Wu, David T
2011-01-01
Fundamental understanding of gas hydrate formation and decomposition processes is critical in many energy and environmental areas and has special importance in flow assurance for the oil and gas industry. These areas represent the core of gas hydrate applications, which, albeit widely studied, are still developing as growing fields of research. Discovering the molecular pathways and chemical and physical concepts underlying gas hydrate formation potentially can lead us beyond flowline blockage prevention strategies toward advancing new technological solutions for fuel storage and transportation, safely producing a new energy resource from natural deposits of gas hydrates in oceanic and arctic sediments, and potentially facilitating effective desalination of seawater. The state of the art in gas hydrate research is leading us to new understanding of formation and dissociation phenomena that focuses on measurement and modeling of time-dependent properties of gas hydrates on the basis of their well-established thermodynamic properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdelmessih, A.N.; Rabas, T.J.; Panchal, C.B.
1997-06-01
Estimates of the surface-area and vapor-release reductions are obtained when commercially available enhanced tubes (spirally ribbed) replace plain tubes in a reflux unit condensing pure organic vapors with different concentrations of a noncondensable gas. This investigation was undertaken because there are no existing data and/or prediction methods that are applicable for these shell-and-tube condensers commonly used in the process industries. To obtain these estimates, existing design methods published in the open literature were used. The major findings are that (1) surface-area reductions can almost approach the single-phase heat transfer enhancement level, and (2) vapor-release reductions can approach a factor ofmore » four. The important implication is that enhanced tubes appear to be very cost effective for addressing the recovery of volatile organic vapors (VOCs), and for a vast number of different reflux-condenser applications.« less
The pan-sharpening of satellite and UAV imagery for agricultural applications
NASA Astrophysics Data System (ADS)
Jenerowicz, Agnieszka; Woroszkiewicz, Malgorzata
2016-10-01
Remote sensing techniques are widely used in many different areas of interest, i.e. urban studies, environmental studies, agriculture, etc., due to fact that they provide rapid, accurate and information over large areas with optimal time, spatial and spectral resolutions. Agricultural management is one of the most common application of remote sensing methods nowadays. Monitoring of agricultural sites and creating information regarding spatial distribution and characteristics of crops are important tasks to provide data for precision agriculture, crop management and registries of agricultural lands. For monitoring of cultivated areas many different types of remote sensing data can be used- most popular are multispectral satellites imagery. Such data allow for generating land use and land cover maps, based on various methods of image processing and remote sensing methods. This paper presents fusion of satellite and unnamed aerial vehicle (UAV) imagery for agricultural applications, especially for distinguishing crop types. Authors in their article presented chosen data fusion methods for satellite images and data obtained from low altitudes. Moreover the authors described pan- sharpening approaches and applied chosen pan- sharpening methods for multiresolution image fusion of satellite and UAV imagery. For such purpose, satellite images from Landsat- 8 OLI sensor and data collected within various UAV flights (with mounted RGB camera) were used. In this article, the authors not only had shown the potential of fusion of satellite and UAV images, but also presented the application of pan- sharpening in crop identification and management.
Behavior of complex mixtures in aquatic environments: a synthesis of PNL ecological research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fickeisen, D.H.; Vaughan, B.E.
1984-06-01
The term complex mixture has been recently applied to energy-related process streams, products and wastes that typically contain hundreds or thousands of individual organic compounds, like petroleum or synthetic fuel oils; but it is more generally applicable. A six-year program of ecological research has focused on four areas important to understanding the environmental behavior of complex mixtures: physicochemical variables, individual organism responses, ecosystems-level determinations, and metabolism. Of these areas, physicochemical variables and organism responses were intensively studied; system-level determinations and metabolism represent more recent directions. Chemical characterization was integrated throughout all areas of the program, and state-of-the-art methods were applied.more » 155 references, 35 figures, 4 tables.« less
Better ceramics through chemistry. 4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zelinski, B.J.J.; Brinker, C.J.; Clark, D.E.
1990-01-01
At this year's meeting, research into the area of reaction mechanisms and kinetics of silicon species remained strong, while significant advances in the area of structure and properties of modified and unmodified metal alkoxide species were reported. The complementary area of processing in water based systems also received considerable attention with emphasis being placed on the hydrolysis behavior of ions in solution. The nature of particle/aggregate growth was also a major topic of discussion with papers being presented on the role of aggregation in particle growth and on the nature and rheology of concentrated suspensions. Important developments in the areamore » of mechanical properties of aerogels, fibers and films were presented as well as research into techniques for in situ monitoring of films during dip coating. Continued advances in applications which utilize solution derived ceramics were also reported. These applications included GRIN lenses, planar waveguides, optical filters and switches, transpiration cooled windows, dye-polymer composites for nonlinear optics, dielectrics and electro-optic materials including PLZT's and the niobates, and chemical sensors. Finally, one of the meeting highlights was a special evening session on biomimetics: ceramic processing in natural systems.« less
Mountain cartography: revival of a classic domain
NASA Astrophysics Data System (ADS)
Häberling, Christian; Hurni, Lorenz
The abstract representation of landscape objects such as mountain peaks, valleys, river networks, lakes, cultivated land and nonproductive areas (forests, pastures, boulder fields, glaciers), settlement areas, infrastructure and traffic networks has been the main concept behind all kind of maps for a long time. For over 300 years, mountain regions became an appropriate subject to be extensively explored and mapped. Together with the growing importance of mountainous areas, the demand for adequate cartographic representations with respect to its contents, graphic design and the presentation media has given new life to a classic domain of cartography: Mountain cartography. This paper gives an overview of the development and the current state of mountain cartography. After a brief description of the beginnings and the historic achievements, basic concepts of cartography such as map purpose, data management, cartographic design and map production and their application in modern mountain cartography are summarised. The paper then provides an overview of different kinds of cartographic representations in mountain cartography like topographic maps, maps derived from Geographical Information Systems (GIS) data, image maps, animations, perspective views and personalised maps. Finally, selected examples of modern mountain map applications are presented.
A spatially explicit suspended-sediment load model for western Oregon
Wise, Daniel R.; O'Connor, Jim
2016-06-27
Knowledge of the regionally important patterns and factors in suspended-sediment sources and transport could support broad-scale, water-quality management objectives and priorities. Because of biases and limitations of this model, however, these results are most applicable for general comparisons and for broad areas such as large watersheds. For example, despite having similar area, precipitation, and land-use, the Umpqua River Basin generates 68 percent more suspended sediment than the Rogue River Basin, chiefly because of the large area of Coast Range sedimentary province in the Umpqua River Basin. By contrast, the Rogue River Basin contains a much larger area of Klamath terrane rocks, which produce significantly less suspended load, although recent fire disturbance (in 2002) has apparently elevated suspended sediment yields in the tributary Illinois River watershed. Fine-scaled analysis, however, will require more intensive, locally focused measurements.
Load application for the contact mechanics analysis and wear prediction of total knee replacement.
Zhang, Jing; Chen, Zhenxian; Wang, Ling; Li, Dichen; Jin, Zhongmin
2017-05-01
Tibiofemoral contact forces in total knee replacement have been measured at the medial and lateral sites respectively using an instrumented prosthesis, and predicted from musculoskeletal multibody dynamics models with a reasonable accuracy. However, it is uncommon that the medial and lateral forces are applied separately to replace a total axial load according to the ISO standard in the majority of current finite element analyses. In this study, we quantified the different effects of applying the medial and lateral loads separately versus the traditional total axial load application on contact mechanics and wear prediction of a patient-specific knee prosthesis. The load application position played an important role under the medial-lateral load application. The loading set which produced the closest load distribution to the multibody dynamics model was used to predict the contact mechanics and wear for the prosthesis and compared with the total axial load application. The medial-lateral load distribution using the present method was found to be closer to the multibody dynamics prediction than the traditional total axial load application, and the maximum contact pressure and contact area were consistent with the corresponding load variation. The predicted total volumetric wear rate and area were similar between the two load applications. However, the split of the predicted wear volumes on the medial and the lateral sides was different. The lateral volumetric wear rate was 31.46% smaller than the medial from the traditional load application prediction, while from the medial-lateral load application, the lateral side was only 11.8% smaller than the medial. The medial-lateral load application could provide a new and more accurate method of load application for patient-specific preclinical contact mechanics and wear prediction of knee implants.
Nanotechnology: A Vast Field for the Creative Mind
NASA Technical Reports Server (NTRS)
Benavides, Jeannette
2003-01-01
Nanotechnology is a rapidly developing field worldwide. Nanotechnology is the development of smart systems for many different applications by building from the molecular level up. Current research, sponsored by The National Nanotechnology Alliance in the US will be described. Future needs in manpower of different disciplines will be discussed. Nanotechnology is a field of research that could allow developing countries to establish a technological infrastructure. The nature of nanotechnology requires professionals in many areas, such as engineers, chemists, physicists, mathematicians, computer scientists, materials scientists, etc. One of the materials that provide unique properties for nanotechnology is carbon nanotubes. At Goddard we have develop a process to produce nanotubes at lower costs and without metal catalysts which will be of great importance for the development of new materials for space applications and others outside NASA. Nanotechnology in general is a very broad and exciting field that will provide the technologies of tomorrow including biomedical applications for the betterment of mankind. There is room in this area for many researchers all over the world. The key is collaboration, nationally and internationally.
ActiviTree: interactive visual exploration of sequences in event-based data using graph similarity.
Vrotsou, Katerina; Johansson, Jimmy; Cooper, Matthew
2009-01-01
The identification of significant sequences in large and complex event-based temporal data is a challenging problem with applications in many areas of today's information intensive society. Pure visual representations can be used for the analysis, but are constrained to small data sets. Algorithmic search mechanisms used for larger data sets become expensive as the data size increases and typically focus on frequency of occurrence to reduce the computational complexity, often overlooking important infrequent sequences and outliers. In this paper we introduce an interactive visual data mining approach based on an adaptation of techniques developed for web searching, combined with an intuitive visual interface, to facilitate user-centred exploration of the data and identification of sequences significant to that user. The search algorithm used in the exploration executes in negligible time, even for large data, and so no pre-processing of the selected data is required, making this a completely interactive experience for the user. Our particular application area is social science diary data but the technique is applicable across many other disciplines.
Covalent Organic Frameworks: From Materials Design to Biomedical Application
Zhao, Fuli; Liu, Huiming; Mathe, Salva D. R.; Dong, Anjie
2017-01-01
Covalent organic frameworks (COFs) are newly emerged crystalline porous polymers with well-defined skeletons and nanopores mainly consisted of light-weight elements (H, B, C, N and O) linked by dynamic covalent bonds. Compared with conventional materials, COFs possess some unique and attractive features, such as large surface area, pre-designable pore geometry, excellent crystallinity, inherent adaptability and high flexibility in structural and functional design, thus exhibiting great potential for various applications. Especially, their large surface area and tunable porosity and π conjugation with unique photoelectric properties will enable COFs to serve as a promising platform for drug delivery, bioimaging, biosensing and theranostic applications. In this review, we trace the evolution of COFs in terms of linkages and highlight the important issues on synthetic method, structural design, morphological control and functionalization. And then we summarize the recent advances of COFs in the biomedical and pharmaceutical sectors and conclude with a discussion of the challenges and opportunities of COFs for biomedical purposes. Although currently still at its infancy stage, COFs as an innovative source have paved a new way to meet future challenges in human healthcare and disease theranostic. PMID:29283423
Nanoporous Metals with Structural Hierarchy: A Review
Juarez, Theresa; Biener, Juergen; Weissmüller, Jörg; ...
2017-08-09
Nanoporous (np) metals have generated much interest since they combine several desirable material characteristics, such as high surface area, mechanical size effects, and high conductivity. Most of the research has been focused on np Au due to its relatively straightforward synthesis, chemical stability, and many promising applications in the fields of catalysis and actuation. Other materials, such as np-Cu, Ag, and Pd have also been studied. Here, this review discusses recent advances in the field of np metals, focusing on new research areas that implement and leverage structural hierarchy while using np metals as their base structural constituents. First, wemore » focus on single-element porous metals that are made of np metals at the fundamental level, but synthesized with additional levels of porosity. Second, we discuss the fabrication of composite structures, which use auxiliary materials to enhance the properties of np metals. Important applications of these hierarchical materials, especially in the fields of catalysis and electrochemistry, are also reviewed. Lastly, we conclude with a discussion about future opportunities for the advancement and application of np metals.« less
Al-Li-Cu-Mg-(Ag) Products for Lower Wing Skin Applications
NASA Astrophysics Data System (ADS)
Karabin, L. M.; Bray, G. H.; Rioja, R. J.; Venema, G.
Al-Li-Cu-Mg alloy products, with and without Ag additions provide substantial performance advantages over conventional 2xxx products. For lower wing applications, the combination of specific ultimate tensile strength and damage tolerance is of particular importance and this is an area in which the Al-Li alloys can excel. Since Al-Li products have historically suffered with issues surrounding high property gradients through the plate thickness and high degrees of tensile in-plane anisotropy, a great deal of attention has been paid to the thermo-mechanical processing routes used in the fabrication of the current generation of alloy products. In addition, corrosion resistance is an area that has received greater attention recently since it can impact inspection intervals. In this presentation, the microstructures and properties of two new alloy products aimed for lower wing applications, 2199-T86 and 2060-T8E86, will be reviewed and compared with non-Li 2xxx products. It is concluded that the performance improvements of Al-Li alloys/products in addition to their lower density will enable significant weight savings in modern aircraft.
Nanoporous Metals with Structural Hierarchy: A Review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Juarez, Theresa; Biener, Juergen; Weissmüller, Jörg
Nanoporous (np) metals have generated much interest since they combine several desirable material characteristics, such as high surface area, mechanical size effects, and high conductivity. Most of the research has been focused on np Au due to its relatively straightforward synthesis, chemical stability, and many promising applications in the fields of catalysis and actuation. Other materials, such as np-Cu, Ag, and Pd have also been studied. Here, this review discusses recent advances in the field of np metals, focusing on new research areas that implement and leverage structural hierarchy while using np metals as their base structural constituents. First, wemore » focus on single-element porous metals that are made of np metals at the fundamental level, but synthesized with additional levels of porosity. Second, we discuss the fabrication of composite structures, which use auxiliary materials to enhance the properties of np metals. Important applications of these hierarchical materials, especially in the fields of catalysis and electrochemistry, are also reviewed. Lastly, we conclude with a discussion about future opportunities for the advancement and application of np metals.« less
Hot topics: Signal processing in acoustics
NASA Astrophysics Data System (ADS)
Gaumond, Charles F.
2005-09-01
Signal processing in acoustics is a multidisciplinary group of people that work in many areas of acoustics. We have chosen two areas that have shown exciting new applications of signal processing to acoustics or have shown exciting and important results from the use of signal processing. In this session, two hot topics are shown: the use of noiselike acoustic fields to determine sound propagation structure and the use of localization to determine animal behaviors. The first topic shows the application of correlation on geo-acoustic fields to determine the Greens function for propagation through the Earth. These results can then be further used to solve geo-acoustic inverse problems. The first topic also shows the application of correlation using oceanic noise fields to determine the Greens function through the ocean. These results also have utility for oceanic inverse problems. The second topic shows exciting results from the detection, localization, and tracking of marine mammals by two different groups. Results from detection and localization of bullfrogs are shown, too. Each of these studies contributed to the knowledge of animal behavior. [Work supported by ONR.
Toivanen, T; Lahti, S; Leino-Kilpi, H
1999-10-01
To determine the applicability of SWOT analysis for measuring the quality of public oral health services from the adult client's perspective. Data were collected using a structured questionnaire developed in an earlier study. The study group consisted of all adult (over 18 years of age) clients (n = 256) using public municipal oral health services in Kirkkonummi, Finland, during 2 weeks in 1995. Before treatment, patients filled out a questionnaire that measured the importance of their expectations in different aspects of oral care. After the appointment, they filled out a similar questionnaire that measured the enactment of these expectations in the treatment situation. The response rate was 51%. The difference between subjective importance and enactment of expectations was tested by Wilcoxon's signed rank test. Results were interpreted using both a conventional analysis of "expectation enacted or not" and SWOT analysis, which is used in strategic planning to identify areas of strengths (S), weaknesses (W), opportunities (O) and threats (T) in an organisation. In 28 statements out of 35, the two analyses revealed similar interpretations. In most areas the patient-perceived quality of the services was good. Weaknesses were found in the following areas: communicating to patients the causes and risk of developing oral diseases, informing them about different treatment possibilities, and including patients in decision-making when choosing restorative materials. SWOT analysis provided more structured interpretation of the results, and can be more easily transferred to development of services.
Thermal modeling of the lithium/polymer battery
NASA Astrophysics Data System (ADS)
Pals, C. R.
1994-10-01
Research in the area of advanced batteries for electric-vehicle applications has increased steadily since the 1990 zero-emission-vehicle mandate of the California Air Resources Board. Due to their design flexibility and potentially high energy and power densities, lithium/polymer batteries are an emerging technology for electric-vehicle applications. Thermal modeling of lithium/polymer batteries is particularly important because the transport properties of the system depend exponentially on temperature. Two models have been presented for assessment of the thermal behavior of lithium/polymer batteries. The one-cell model predicts the cell potential, the concentration profiles, and the heat-generation rate during discharge. The cell-stack model predicts temperature profiles and heat transfer limitations of the battery. Due to the variation of ionic conductivity and salt diffusion coefficient with temperature, the performance of the lithium/polymer battery is greatly affected by temperature. Because of this variation, it is important to optimize the cell operating temperature and design a thermal management system for the battery. Since the thermal conductivity of the polymer electrolyte is very low, heat is not easily conducted in the direction perpendicular to cell layers. Temperature profiles in the cells are not as significant as expected because heat-generation rates in warmer areas of the cell stack are lower than heat-generation rates in cooler areas of the stack. This nonuniform heat-generation rate flattens the temperature profile. Temperature profiles as calculated by this model are not as steep as those calculated by previous models that assume a uniform heat-generation rate.
ERIC Educational Resources Information Center
Milovanovic, Marina; Takaci, Durdica; Milajic, Aleksandar
2011-01-01
This article presents the importance of using multimedia in the math classes by an example of multimedia lesson about definite integral and the results of the research carried out among the students of the first years of faculty, divided into two groups of 25. One group had the traditional lecture about the definite integral, while the other one…
Artificial Intelligence for Command and Control
1988-05-15
complexity of information and are a very active current research area. Some of the important unresolved frame -related issues are control issues , such as...indepth analysis of the combat engineer’s decisio -mnaking activities. -Specificaly 3 combat engineers-stationed at Fort Bragg, North Carolina (307th...experience. The CETOOLS concept is potentially applicable in any decision- making environment, commercial or government, where plans for actions are
NASA Technical Reports Server (NTRS)
Jackson, C. E., Jr.
1977-01-01
A sample problem library containing 20 problems covering most facets of Nastran Thermal Analyzer modeling is presented. Areas discussed include radiative interchange, arbitrary nonlinear loads, transient temperature and steady-state structural plots, temperature-dependent conductivities, simulated multi-layer insulation, and constraint techniques. The use of the major control options and important DMAP alters is demonstrated.
Different Treatment Stages in Medical Diagnosis using Fuzzy Membership Matrix
NASA Astrophysics Data System (ADS)
Sundaresan, T.; Sheeja, G.; Govindarajan, A.
2018-04-01
The field of medicine is the most important and developing area of applications of fuzzy set theory. The nature of medical documentation and uncertain information gathered in the use of fuzzy triangular matrix. In this paper, procedures are presented for medical diagnosis and treatment-stages, patient and drug is constructed in fuzzy membership matrix. Examples are given to verify the proposed approach.
Lethal Locations: An Application of Opportunity Theory to Motel Suicide, a Research Note
ERIC Educational Resources Information Center
Wasserman, Ira M.; Stack, Steven
2008-01-01
Location of suicide is a neglected area in suicidology, but is important because location is related to the presence of motivated rescuers who can prevent suicides. The present study analyzes the predictors of suicide in a location that is apt to be free of motivated rescuers: the motel room. Data from the files of a medical examiner in a…
2D materials: Graphene and others
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bansal, Suneev Anil, E-mail: suneev@gmail.com; Singh, Amrinder Pal; Kumar, Suresh
Present report reviews the recent advancements in new atomically thick 2D materials. Materials covered in this review are Graphene, Silicene, Germanene, Boron Nitride (BN) and Transition metal chalcogenides (TMC). These materials show extraordinary mechanical, electronic and optical properties which make them suitable candidates for future applications. Apart from unique properties, tune-ability of highly desirable properties of these materials is also an important area to be emphasized on.
Germanium Requirements for National Defense,
1991-07-01
work in this area involves development of hard exterior coating materials that will protect Ge windows but not adversely affect their optical...advanced electronic materials, is used in semiconductor devices, fiber optic systems, and infrared sensors for ships, aircraft, missiles, tanks and anti -tank...infrared sensors for ships, aircraft, missiles, tanks and anti -tank units. Because of its importance in these applications, germanium was added to the
Alarcón, Diego; Cavieres, Lohengrin A
2015-01-01
In order to assess the effects of climate change in temperate rainforest plants in southern South America in terms of habitat size, representation in protected areas, considering also if the expected impacts are similar for dominant trees and understory plant species, we used niche modeling constrained by species migration on 118 plant species, considering two groups of dominant trees and two groups of understory ferns. Representation in protected areas included Chilean national protected areas, private protected areas, and priority areas planned for future reserves, with two thresholds for minimum representation at the country level: 10% and 17%. With a 10% representation threshold, national protected areas currently represent only 50% of the assessed species. Private reserves are important since they increase up to 66% the species representation level. Besides, 97% of the evaluated species may achieve the minimum representation target only if the proposed priority areas were included. With the climate change scenario representation levels slightly increase to 53%, 69%, and 99%, respectively, to the categories previously mentioned. Thus, the current location of all the representation categories is useful for overcoming climate change by 2050. Climate change impacts on habitat size and representation of dominant trees in protected areas are not applicable to understory plants, highlighting the importance of assessing these effects with a larger number of species. Although climate change will modify the habitat size of plant species in South American temperate rainforests, it will have no significant impact in terms of the number of species adequately represented in Chile, where the implementation of the proposed reserves is vital to accomplish the present and future minimum representation. Our results also show the importance of using migration dispersal constraints to develop more realistic future habitat maps from climate change predictions.
Alarcón, Diego; Cavieres, Lohengrin A.
2015-01-01
In order to assess the effects of climate change in temperate rainforest plants in southern South America in terms of habitat size, representation in protected areas, considering also if the expected impacts are similar for dominant trees and understory plant species, we used niche modeling constrained by species migration on 118 plant species, considering two groups of dominant trees and two groups of understory ferns. Representation in protected areas included Chilean national protected areas, private protected areas, and priority areas planned for future reserves, with two thresholds for minimum representation at the country level: 10% and 17%. With a 10% representation threshold, national protected areas currently represent only 50% of the assessed species. Private reserves are important since they increase up to 66% the species representation level. Besides, 97% of the evaluated species may achieve the minimum representation target only if the proposed priority areas were included. With the climate change scenario representation levels slightly increase to 53%, 69%, and 99%, respectively, to the categories previously mentioned. Thus, the current location of all the representation categories is useful for overcoming climate change by 2050. Climate change impacts on habitat size and representation of dominant trees in protected areas are not applicable to understory plants, highlighting the importance of assessing these effects with a larger number of species. Although climate change will modify the habitat size of plant species in South American temperate rainforests, it will have no significant impact in terms of the number of species adequately represented in Chile, where the implementation of the proposed reserves is vital to accomplish the present and future minimum representation. Our results also show the importance of using migration dispersal constraints to develop more realistic future habitat maps from climate change predictions. PMID:25786226
NASA Astrophysics Data System (ADS)
Balouchestani, Mohammadreza
2017-05-01
Network traffic or data traffic in a Wireless Local Area Network (WLAN) is the amount of network packets moving across a wireless network from each wireless node to another wireless node, which provide the load of sampling in a wireless network. WLAN's Network traffic is the main component for network traffic measurement, network traffic control and simulation. Traffic classification technique is an essential tool for improving the Quality of Service (QoS) in different wireless networks in the complex applications such as local area networks, wireless local area networks, wireless personal area networks, wireless metropolitan area networks, and wide area networks. Network traffic classification is also an essential component in the products for QoS control in different wireless network systems and applications. Classifying network traffic in a WLAN allows to see what kinds of traffic we have in each part of the network, organize the various kinds of network traffic in each path into different classes in each path, and generate network traffic matrix in order to Identify and organize network traffic which is an important key for improving the QoS feature. To achieve effective network traffic classification, Real-time Network Traffic Classification (RNTC) algorithm for WLANs based on Compressed Sensing (CS) is presented in this paper. The fundamental goal of this algorithm is to solve difficult wireless network management problems. The proposed architecture allows reducing False Detection Rate (FDR) to 25% and Packet Delay (PD) to 15 %. The proposed architecture is also increased 10 % accuracy of wireless transmission, which provides a good background for establishing high quality wireless local area networks.
Area- and energy-efficient CORDIC accelerators in deep sub-micron CMOS technologies
NASA Astrophysics Data System (ADS)
Vishnoi, U.; Noll, T. G.
2012-09-01
The COordinate Rotate DIgital Computer (CORDIC) algorithm is a well known versatile approach and is widely applied in today's SoCs for especially but not restricted to digital communications. Dedicated CORDIC blocks can be implemented in deep sub-micron CMOS technologies at very low area and energy costs and are attractive to be used as hardware accelerators for Application Specific Instruction Processors (ASIPs). Thereby, overcoming the well known energy vs. flexibility conflict. Optimizing Global Navigation Satellite System (GNSS) receivers to reduce the hardware complexity is an important research topic at present. In such receivers CORDIC accelerators can be used for digital baseband processing (fixed-point) and in Position-Velocity-Time estimation (floating-point). A micro architecture well suited to such applications is presented. This architecture is parameterized according to the wordlengths as well as the number of iterations and can be easily extended for floating point data format. Moreover, area can be traded for throughput by partially or even fully unrolling the iterations, whereby the degree of pipelining is organized with one CORDIC iteration per cycle. From the architectural description, the macro layout can be generated fully automatically using an in-house datapath generator tool. Since the adders and shifters play an important role in optimizing the CORDIC block, they must be carefully optimized for high area and energy efficiency in the underlying technology. So, for this purpose carry-select adders and logarithmic shifters have been chosen. Device dimensioning was automatically optimized with respect to dynamic and static power, area and performance using the in-house tool. The fully sequential CORDIC block for fixed-point digital baseband processing features a wordlength of 16 bits, requires 5232 transistors, which is implemented in a 40-nm CMOS technology and occupies a silicon area of 1560 μm2 only. Maximum clock frequency from circuit simulation of extracted netlist is 768 MHz under typical, and 463 MHz under worst case technology and application corner conditions, respectively. Simulated dynamic power dissipation is 0.24 uW MHz-1 at 0.9 V; static power is 38 uW in slow corner, 65 uW in typical corner and 518 uW in fast corner, respectively. The latter can be reduced by 43% in a 40-nm CMOS technology using 0.5 V reverse-backbias. These features are compared with the results from different design styles as well as with an implementation in 28-nm CMOS technology. It is interesting that in the latter case area scales as expected, but worst case performance and energy do not scale well anymore.
High brightness x ray source for directed energy and holographic imaging applications, phase 2
NASA Astrophysics Data System (ADS)
McPherson, Armon; Rhodes, Charles K.
1992-03-01
Advances in x-ray imaging technology and x-ray sources are such that a new technology can be brought to commercialization enabling the three-dimensional (3-D) microvisualization of hydrated biological specimens. The Company is engaged in a program whose main goal is the development of a new technology for direct three dimensional (3-D) x-ray holographic imaging. It is believed that this technology will have a wide range of important applications in the defense, medical, and scientific sectors. For example, in the medical area, it is expected that biomedical science will constitute a very active and substantial market, because the application of physical technologies for the direct visualization of biological entities has had a long and extremely fruitful history.
Study of Civil Markets for Heavy-Lift Airships
NASA Technical Reports Server (NTRS)
Mettam, P. J.; Hansen, D.; Chabot, C.; Byrne, R.
1978-01-01
The civil markets for heavy lift airships (HLAs) were defined by first identifying areas of most likely application. The operational suitability of HLAs for the applications identified were then assessed. The operating economics of HLAs were established and the market size for HLA services estimated by comparing HLA operating and economic characteristics with those of competing modes. The sensitivities of the market size to HLA characteristics were evaluated and the number and sizes of the vehicles required to service the more promising markets were defined. Important characteristics for future HLAs are discussed that were derived from the study of each application, including operational requirements, features enhancing profitability, military compatibility, improved design requirements, approach to entry into service, and institutional implications for design and operation.
Kamal, Jyoti; Liu, Jianhua; Ostrander, Michael; Santangelo, Jennifer; Dyta, Ravi; Rogers, Patrick; Mekhjian, Hagop S
2010-11-13
Since its inception in 1997, the IW (Information Warehouse) at the Ohio State University Medical Center (OSUMC) has gradually transformed itself from a single purpose business decision support system to a comprehensive informatics platform supporting basic, clinical, and translational research. The IW today is the combination of four integrated components: a clinical data repository containing over a million patients; a research data repository housing various research specific data; an application development platform for building business and research enabling applications; a business intelligence environment assisting in reporting in all function areas. The IW is structured and encoded using standard terminologies such as SNOMED-CT, ICD, and CPT. The IW is an important component of OSUMC's Clinical and Translational Science Award (CTSA) informatics program.
A quantitative study of nanoparticle skin penetration with interactive segmentation.
Lee, Onseok; Lee, See Hyun; Jeong, Sang Hoon; Kim, Jaeyoung; Ryu, Hwa Jung; Oh, Chilhwan; Son, Sang Wook
2016-10-01
In the last decade, the application of nanotechnology techniques has expanded within diverse areas such as pharmacology, medicine, and optical science. Despite such wide-ranging possibilities for implementation into practice, the mechanisms behind nanoparticle skin absorption remain unknown. Moreover, the main mode of investigation has been qualitative analysis. Using interactive segmentation, this study suggests a method of objectively and quantitatively analyzing the mechanisms underlying the skin absorption of nanoparticles. Silica nanoparticles (SNPs) were assessed using transmission electron microscopy and applied to the human skin equivalent model. Captured fluorescence images of this model were used to evaluate degrees of skin penetration. These images underwent interactive segmentation and image processing in addition to statistical quantitative analyses of calculated image parameters including the mean, integrated density, skewness, kurtosis, and area fraction. In images from both groups, the distribution area and intensity of fluorescent silica gradually increased in proportion to time. Since statistical significance was achieved after 2 days in the negative charge group and after 4 days in the positive charge group, there is a periodic difference. Furthermore, the quantity of silica per unit area showed a dramatic change after 6 days in the negative charge group. Although this quantitative result is identical to results obtained by qualitative assessment, it is meaningful in that it was proven by statistical analysis with quantitation by using image processing. The present study suggests that the surface charge of SNPs could play an important role in the percutaneous absorption of NPs. These findings can help achieve a better understanding of the percutaneous transport of NPs. In addition, these results provide important guidance for the design of NPs for biomedical applications.
Kistemann, T; Dangendorf, F; Exner, M
2001-03-01
The main tributaries of three drinking water reservoirs of Northrhine-Westfalia (Germany) were monitored within a 14-month period mainly for bacterial and parasitic contamination. In this context a detailed geo-ecological characterisation within the differing catchment areas was carried out to reveal a reliable informational basis for tracing back the origin of microbial loads present in the watercourses. To realise a microbial risk assessing geo-ecological information system (MRA-GIS), a Geographical Information System (GIS) has been implemented for the study areas. The results of the microbiological investigations of the watercourses showed an input of pathogens into all three of the tributaries. It could be demonstrated that the use of MRA-GIS database and some GIS-techniques substantially support the spatial analysis of the microbial contamination patterns. From the hygienic point of view, it is of the utmost importance to protect catchment areas of surface water reservoirs from microbial contamination stemming from human activities and animal sources. This constitutes essential part of the multi-barrier concept which stresses the importance of reducing diffuse and point pollution in catchment areas of water resources intended for human consumption. MRA-GIS proves to be helpful to manage multi-barrier water protection in catchment areas and ideally assists the application of the HACCP concept on drinking water production.
NASA Astrophysics Data System (ADS)
Carpino, Francesca
In the last few decades, the development and use of nanotechnology has become of increasing importance. Magnetic nanoparticles, because of their unique properties, have been employed in many different areas of application. They are generally made of a core of magnetic material coated with some other material to stabilize them and to help disperse them in suspension. The unique feature of magnetic nanoparticles is their response to a magnetic field. They are generally superparamagnetic, in which case they become magnetized only in a magnetic field and lose their magnetization when the field is removed. It is this feature that makes them so useful for drug targeting, hyperthermia and bioseparation. For many of these applications, the synthesis of uniformly sized magnetic nanoparticles is of key importance because their magnetic properties depend strongly on their dimensions. Because of the difficulty of synthesizing monodisperse particulate materials, a technique capable of characterizing the magnetic properties of polydisperse samples is of great importance. Quadrupole magnetic field-flow fractionation (MgFFF) is a technique capable of fractionating magnetic particles based on their content of magnetite or other magnetic material. In MgFFF, the interplay of hydrodynamic and magnetic forces separates the particles as they are carried along a separation channel. Since the magnetic field and the gradient in magnetic field acting on the particles during their migration are known, it is possible to calculate the quantity of magnetic material in the particles according to their time of emergence at the channel outlet. Knowing the magnetic properties of the core material, MgFFF can be used to determine both the size distribution and the mean size of the magnetic cores of polydisperse samples. When magnetic material is distributed throughout the volume of the particles, the derived data corresponds to a distribution in equivalent spherical diameters of magnetic material in the particles. MgFFF is unique in its ability to characterize the distribution in magnetic properties of a particulate sample. This knowledge is not only of importance to the optimization and quality control of particle preparation. It is also of great importance in modeling magnetic cell separation, drug targeting, hyperthermia, and other areas of application.
Soil water repellency under stones, forest residue mulch and bare soil following wildfire.
NASA Astrophysics Data System (ADS)
Martins, Martinho A. S.; Prats, Sérgio A.; van Keulen, Daan; Vieira, Diana C. S.; Silva, Flávio C.; Keizer, Jan J.; Verheijen, Frank G. A.
2017-04-01
Soil water repellency (SWR) is a physical property that is commonly defined as the aptitude of soil to resist wetting. It has been documented for a wide range of soil and vegetation types, and can vary with soil organic matter (SOM) content and type, soil texture, soil moisture content (SMC) and soil temperature. Fire can induce, enhance or destroy SWR and, therefore, lead to considerable changes in soil water infiltration and storage and increase soil erosion by water, thereby weakening soil quality. In Portugal, wildfires occur frequently and affect large areas, on average some 100000 ha per year, but over 300000 ha in extreme years such as 2003 and 2005. This can have important implications in geomorphological and hydrological processes, as evidenced by the strong and sometimes extreme responses in post-fire runoff and erosion reported from various parts of the world, including Portugal. Thereby, the application of mulches from various materials to cover burned areas has been found to be an efficient stabilization treatment. However, little is known about possible side effects on SWR, especially long term effects. Forest SWR is very heterogeneous, as a result of variation in proximity to trees/shrubs, litter type and thickness, cracks, roots, and stones. This study targeted the spatial heterogeneity of soil water repellency under eucalypt plantation, five years after a wildfire and forest residue mulching application. The main objectives of this work were: 1) to assess the long-term effect of mulching application on the strength and spatial heterogeneity of topsoil SWR, by comparing SWR on bare soil, under stones, and under mulching remains; 2) to assess SWR at 1 cm depth between O and Ah horizons. The soil surface results showed that untreated bare soil areas were slightly more water repellent than mulched areas. However, under stones there were no SWR differences between mulched and control areas. At 1 cm depth, there was a marked mulching effect on SWR, even 5 years after application.
Automated Theorem Proving in High-Quality Software Design
NASA Technical Reports Server (NTRS)
Schumann, Johann; Swanson, Keith (Technical Monitor)
2001-01-01
The amount and complexity of software developed during the last few years has increased tremendously. In particular, programs are being used more and more in embedded systems (from car-brakes to plant-control). Many of these applications are safety-relevant, i.e. a malfunction of hardware or software can cause severe damage or loss. Tremendous risks are typically present in the area of aviation, (nuclear) power plants or (chemical) plant control. Here, even small problems can lead to thousands of casualties and huge financial losses. Large financial risks also exist when computer systems are used in the area of telecommunication (telephone, electronic commerce) or space exploration. Computer applications in this area are not only subject to safety considerations, but also security issues are important. All these systems must be designed and developed to guarantee high quality with respect to safety and security. Even in an industrial setting which is (or at least should be) aware of the high requirements in Software Engineering, many incidents occur. For example, the Warshaw Airbus crash, was caused by an incomplete requirements specification. Uncontrolled reuse of an Ariane 4 software module was the reason for the Ariane 5 disaster. Some recent incidents in the telecommunication area, like illegal "cloning" of smart-cards of D2GSM handies, or the extraction of (secret) passwords from German T-online users show that also in this area serious flaws can happen. Due to the inherent complexity of computer systems, most authors claim that only a rigorous application of formal methods in all stages of the software life cycle can ensure high quality of the software and lead to real safe and secure systems. In this paper, we will have a look, in how far automated theorem proving can contribute to a more widespread application of formal methods and their tools, and what automated theorem provers (ATPs) must provide in order to be useful.
Gupta, N; Fischer, A R H; Frewer, L J
Examining those risk and benefit perceptions utilised in the formation of attitudes and opinions about emerging technologies such as nanotechnology can be useful for both industry and policy makers involved in their development, implementation and regulation. A broad range of different socio-psychological and affective factors may influence consumer responses to different applications of nanotechnology, including ethical concerns. A useful approach to identifying relevant consumer concerns and innovation priorities is to develop predictive constructs which can be used to differentiate applications of nanotechnology in a way which is meaningful to consumers. This requires elicitation of attitudinal constructs from consumers, rather than measuring attitudes assumed to be important by the researcher. Psychological factors influencing societal responses to 15 applications of nanotechnology drawn from different application areas (e.g. medicine, agriculture and environment, food, military, sports, and cosmetics) were identified using repertory grid method in conjunction with generalised Procrustes analysis. The results suggested that people differentiate nanotechnology applications based on the extent to which they perceive them to be beneficial, useful, necessary and important. The benefits may be offset by perceived risks focusing on fear and ethical concerns. Compared to an earlier expert study on societal acceptance of nanotechnology, consumers emphasised ethical issues compared to experts but had less concern regarding potential physical contact with the product and time to market introduction. Consumers envisaged fewer issues with several applications compared to experts, in particular food applications.
A Collaborative Support Approach on UML Sequence Diagrams for Aspect-Oriented Software
NASA Astrophysics Data System (ADS)
de Almeida Naufal, Rafael; Silveira, Fábio F.; Guerra, Eduardo M.
AOP and its broader application on software projects brings the importance to provide the separation between aspects and OO components at design time, to leverage the understanding of AO systems, promote aspects' reuse and obtain the benefits of AO modularization. Since the UML is a standard for modeling OO systems, it can be applied to model the decoupling between aspects and OO components. The application of UML to this area is the subject of constant study and is the focus of this paper. In this paper it is presented an extension based on the default UML meta-model, named MIMECORA-DS, to show object-object, object-aspect and aspect-aspect interactions applying the UML's sequence diagram. This research also presents the application of MIMECORA-DS in a case example, to assess its applicability.
Active microwave users working group program planning
NASA Technical Reports Server (NTRS)
Ulaby, F. T.; Bare, J.; Brown, W. E., Jr.; Childs, L. F.; Dellwig, L. F.; Heighway, J. E.; Joosten, R.; Lewis, A. J.; Linlor, W.; Lundien, J. R.
1978-01-01
A detailed programmatic and technical development plan for active microwave technology was examined in each of four user activities: (1) vegetation; (2) water resources and geologic applications, and (4) oceanographic applications. Major application areas were identified, and the impact of each application area in terms of social and economic gains were evaluated. The present state of knowledge of the applicability of active microwave remote sensing to each application area was summarized and its role relative to other remote sensing devices was examined. The analysis and data acquisition techniques needed to resolve the effects of interference factors were reviewed to establish an operational capability in each application area. Flow charts of accomplished and required activities in each application area that lead to operational capability were structured.
7 CFR 1.412 - Institution of proceedings.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Adjudication of Sourcing Area Applications and Formal Review of Sourcing Areas Pursuant to the Forest Resources...) Sourcing area applications. The proceeding for determining sourcing areas shall be instituted by receipt of a sourcing area application by the Office of Administrative Law Judges, pursuant to 36 CFR 223.190...
Code of Federal Regulations, 2010 CFR
2010-01-01
... Sourcing area applicant means a person who submits a sourcing area application pursuant to these rules, or a person who sourcing area is subject to formal review pursuant to 36 CFR 223.191(e). (b) Decision... Sourcing Area Applications and Formal Review of Sourcing Areas Pursuant to the Forest Resources...
Farrell, T.A.; Marion, J.L.
2001-01-01
Protected area visitation is an important component of ecotourism, and as such, must be sustainable. However, protected area visitation may degrade natural resources, particularly in areas of concentrated visitor activities like trails and recreation sites. This is an important concern in ecotourism destinations such as Belize and Costa Rica, because they actively promote ecotourism and emphasize the pristine qualities of their natural resources. Research on visitor impacts to protected areas has many potential applications in protected area management, though it has not been widely applied in Central and South America. This study targeted this deficiency through manager interviews and evaluations of alternative impact assessment procedures at eight protected areas in Belize and Costa Rica. Impact assessment procedures included qualitative condition class systems, ratings systems, and measurement-based systems applied to trails and recreation sites. The resulting data characterize manager perceptions of impact problems, document trail and recreation site impacts, and provide examples of inexpensive, efficient and effective rapid impact assessment procedures. Interview subjects reported a variety of impacts affecting trails, recreation sites, wildlife, water, attraction features and other resources. Standardized assessment procedures were developed and applied to record trail and recreation site impacts. Impacts affecting the study areas included trail proliferation, erosion and widening, muddiness on trails, vegetation cover loss, soil and root exposure, and tree damage on recreation sites. The findings also illustrate the types of assessment data yielded by several alternative methods and demonstrate their utility to protected area managers. The need for additional rapid assessment procedures for wildlife, water, attraction feature and other resource impacts was also identified.
Characterization of Discharge Areas of Radionuclides Originating From Nuclear Waste Repositories
NASA Astrophysics Data System (ADS)
Marklund, L.; Xu, S.; Worman, A.
2009-05-01
If leakages in nuclear waste repositories located in crystalline bedrock arise, radionuclides will reach the biosphere and cause a risk of radiological impact. The extent of the radiological impact depends on in which landscape elements the radionuclides emerge. In this study, we investigate if there are certain landscape elements that generally will act as discharge areas for radionuclides leaking from subsurface deposits. We also characterize the typical properties that distinguish these areas from others. In humid regions, landscape topography is the most important driving force for groundwater flow. Because groundwater is the main transporting agent for migrating radionuclides, the topography will determine the flowpaths of leaking radionuclides. How topography and heterogeneities in the subsurface affect the discharge distribution of the radionuclides is therefore an important scope of this study. To address these issues, we developed a 3-D transport model. Our analyses are based on site-specific data from two different areas in Sweden, Forsmark, Uppland, and Oskarshamn, Småland. The Swedish Nuclear Waste Management Company (SKB) has selected these two areas as candidate areas for a deep repository of nuclear waste and the areas are currently subject to site investigations. Our results suggest that there are hot-spots in the landscape i.e. areas with high probability of receiving large amounts of radionuclides from a leaking repository of nuclear waste. The hot-spots concentrate in the sea, streams, lakes and wetlands. All these elements are found at lower elevations in the landscape. This pattern is mostly determined by the landscape topography and the locations of fracture zones. There is a relationship between fracture zones and topography, and therefore the importance of the topography for the discharge area distribution is not contradicted by the heterogeneity in the bedrock. The varieties of landscape elements which have potential for receiving significant amounts of radionuclides are limited. To limit the radiological dose assessment, analyses should be focused to and more detailed in such landscape areas in which doses are expected to be high. Due to the similarities among deep groundwater discharge areas, one can make site-specific analyses of those areas, which have a broad applicability for migration of radionuclides originating from a nuclear waste repository.
Brain-controlled applications using dynamic P300 speller matrices.
Halder, Sebastian; Pinegger, Andreas; Käthner, Ivo; Wriessnegger, Selina C; Faller, Josef; Pires Antunes, João B; Müller-Putz, Gernot R; Kübler, Andrea
2015-01-01
Access to the world wide web and multimedia content is an important aspect of life. We present a web browser and a multimedia user interface adapted for control with a brain-computer interface (BCI) which can be used by severely motor impaired persons. The web browser dynamically determines the most efficient P300 BCI matrix size to select the links on the current website. This enables control of the web browser with fewer commands and smaller matrices. The multimedia player was based on an existing software. Both applications were evaluated with a sample of ten healthy participants and three end-users. All participants used a visual P300 BCI with face-stimuli for control. The healthy participants completed the multimedia player task with 90% accuracy and the web browsing task with 85% accuracy. The end-users completed the tasks with 62% and 58% accuracy. All healthy participants and two out of three end-users reported that they felt to be in control of the system. In this study we presented a multimedia application and an efficient web browser implemented for control with a BCI. Both applications provide access to important areas of modern information retrieval and entertainment. Copyright © 2014 Elsevier B.V. All rights reserved.
Application of Metamorphic Testing to Supervised Classifiers
Xie, Xiaoyuan; Ho, Joshua; Kaiser, Gail; Xu, Baowen; Chen, Tsong Yueh
2010-01-01
Many applications in the field of scientific computing - such as computational biology, computational linguistics, and others - depend on Machine Learning algorithms to provide important core functionality to support solutions in the particular problem domains. However, it is difficult to test such applications because often there is no “test oracle” to indicate what the correct output should be for arbitrary input. To help address the quality of such software, in this paper we present a technique for testing the implementations of supervised machine learning classification algorithms on which such scientific computing software depends. Our technique is based on an approach called “metamorphic testing”, which has been shown to be effective in such cases. More importantly, we demonstrate that our technique not only serves the purpose of verification, but also can be applied in validation. In addition to presenting our technique, we describe a case study we performed on a real-world machine learning application framework, and discuss how programmers implementing machine learning algorithms can avoid the common pitfalls discovered in our study. We also discuss how our findings can be of use to other areas outside scientific computing, as well. PMID:21243103
A Survey on Data Quality for Dependable Monitoring in Wireless Sensor Networks
Oliveira, Anabela
2017-01-01
Wireless sensor networks are being increasingly used in several application areas, particularly to collect data and monitor physical processes. Non-functional requirements, like reliability, security or availability, are often important and must be accounted for in the application development. For that purpose, there is a large body of knowledge on dependability techniques for distributed systems, which provide a good basis to understand how to satisfy these non-functional requirements of WSN-based monitoring applications. Given the data-centric nature of monitoring applications, it is of particular importance to ensure that data are reliable or, more generically, that they have the necessary quality. In this survey, we look into the problem of ensuring the desired quality of data for dependable monitoring using WSNs. We take a dependability-oriented perspective, reviewing the possible impairments to dependability and the prominent existing solutions to solve or mitigate these impairments. Despite the variety of components that may form a WSN-based monitoring system, we give particular attention to understanding which faults can affect sensors, how they can affect the quality of the information and how this quality can be improved and quantified. PMID:28869505
Photosensitive graphene transistors.
Li, Jinhua; Niu, Liyong; Zheng, Zijian; Yan, Feng
2014-08-20
High performance photodetectors play important roles in the development of innovative technologies in many fields, including medicine, display and imaging, military, optical communication, environment monitoring, security check, scientific research and industrial processing control. Graphene, the most fascinating two-dimensional material, has demonstrated promising applications in various types of photodetectors from terahertz to ultraviolet, due to its ultrahigh carrier mobility and light absorption in broad wavelength range. Graphene field effect transistors are recognized as a type of excellent transducers for photodetection thanks to the inherent amplification function of the transistors, the feasibility of miniaturization and the unique properties of graphene. In this review, we will introduce the applications of graphene transistors as photodetectors in different wavelength ranges including terahertz, infrared, visible, and ultraviolet, focusing on the device design, physics and photosensitive performance. Since the device properties are closely related to the quality of graphene, the devices based on graphene prepared with different methods will be addressed separately with a view to demonstrating more clearly their advantages and shortcomings in practical applications. It is expected that highly sensitive photodetectors based on graphene transistors will find important applications in many emerging areas especially flexible, wearable, printable or transparent electronics and high frequency communications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hyperfine structure of 2Σ molecules containing alkaline-earth-metal atoms
NASA Astrophysics Data System (ADS)
Aldegunde, Jesus; Hutson, Jeremy M.
2018-04-01
Ultracold molecules with both electron spin and an electric dipole moment offer new possibilities in quantum science. We use density-functional theory to calculate hyperfine coupling constants for a selection of molecules important in this area, including RbSr, LiYb, RbYb, CaF, and SrF. We find substantial hyperfine coupling constants for the fermionic isotopes of the alkaline-earth-metal and Yb atoms. We discuss the hyperfine level patterns and Zeeman splittings expected for these molecules. The results will be important both to experiments aimed at forming ultracold open-shell molecules and to their applications.
Computational Fluid Dynamics Program at NASA Ames Research Center
NASA Technical Reports Server (NTRS)
Holst, Terry L.
1989-01-01
The Computational Fluid Dynamics (CFD) Program at NASA Ames Research Center is reviewed and discussed. The technical elements of the CFD Program are listed and briefly discussed. These elements include algorithm research, research and pilot code development, scientific visualization, advanced surface representation, volume grid generation, and numerical optimization. Next, the discipline of CFD is briefly discussed and related to other areas of research at NASA Ames including experimental fluid dynamics, computer science research, computational chemistry, and numerical aerodynamic simulation. These areas combine with CFD to form a larger area of research, which might collectively be called computational technology. The ultimate goal of computational technology research at NASA Ames is to increase the physical understanding of the world in which we live, solve problems of national importance, and increase the technical capabilities of the aerospace community. Next, the major programs at NASA Ames that either use CFD technology or perform research in CFD are listed and discussed. Briefly, this list includes turbulent/transition physics and modeling, high-speed real gas flows, interdisciplinary research, turbomachinery demonstration computations, complete aircraft aerodynamics, rotorcraft applications, powered lift flows, high alpha flows, multiple body aerodynamics, and incompressible flow applications. Some of the individual problems actively being worked in each of these areas is listed to help define the breadth or extent of CFD involvement in each of these major programs. State-of-the-art examples of various CFD applications are presented to highlight most of these areas. The main emphasis of this portion of the presentation is on examples which will not otherwise be treated at this conference by the individual presentations. Finally, a list of principal current limitations and expected future directions is given.
Visual analysis of large heterogeneous social networks by semantic and structural abstraction.
Shen, Zeqian; Ma, Kwan-Liu; Eliassi-Rad, Tina
2006-01-01
Social network analysis is an active area of study beyond sociology. It uncovers the invisible relationships between actors in a network and provides understanding of social processes and behaviors. It has become an important technique in a variety of application areas such as the Web, organizational studies, and homeland security. This paper presents a visual analytics tool, OntoVis, for understanding large, heterogeneous social networks, in which nodes and links could represent different concepts and relations, respectively. These concepts and relations are related through an ontology (also known as a schema). OntoVis is named such because it uses information in the ontology associated with a social network to semantically prune a large, heterogeneous network. In addition to semantic abstraction, OntoVis also allows users to do structural abstraction and importance filtering to make large networks manageable and to facilitate analytic reasoning. All these unique capabilities of OntoVis are illustrated with several case studies.
High Resolution Surface Geometry and Albedo by Combining Laser Altimetry and Visible Images
NASA Technical Reports Server (NTRS)
Morris, Robin D.; vonToussaint, Udo; Cheeseman, Peter C.; Clancy, Daniel (Technical Monitor)
2001-01-01
The need for accurate geometric and radiometric information over large areas has become increasingly important. Laser altimetry is one of the key technologies for obtaining this geometric information. However, there are important application areas where the observing platform has its orbit constrained by the other instruments it is carrying, and so the spatial resolution that can be recorded by the laser altimeter is limited. In this paper we show how information recorded by one of the other instruments commonly carried, a high-resolution imaging camera, can be combined with the laser altimeter measurements to give a high resolution estimate both of the surface geometry and its reflectance properties. This estimate has an accuracy unavailable from other interpolation methods. We present the results from combining synthetic laser altimeter measurements on a coarse grid with images generated from a surface model to re-create the surface model.
Cheminformatics in Drug Discovery, an Industrial Perspective.
Chen, Hongming; Kogej, Thierry; Engkvist, Ola
2018-05-18
Cheminformatics has established itself as a core discipline within large scale drug discovery operations. It would be impossible to handle the amount of data generated today in a small molecule drug discovery project without persons skilled in cheminformatics. In addition, due to increased emphasis on "Big Data", machine learning and artificial intelligence, not only in the society in general, but also in drug discovery, it is expected that the cheminformatics field will be even more important in the future. Traditional areas like virtual screening, library design and high-throughput screening analysis are highlighted in this review. Applying machine learning in drug discovery is an area that has become very important. Applications of machine learning in early drug discovery has been extended from predicting ADME properties and target activity to tasks like de novo molecular design and prediction of chemical reactions. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Barbosa, Humberto
Previous studies on severe storms and related flash foods over large urban areas of Southeastern Brazil have proceeded through the analyses of specific individual case studies. These urban areas, especially in austral summer, are prone to severe convective rainfall that affects targets that are difficult to protect, such as vulnerable communities. The synoptic case on 24 October 2007 showed severe thunderstorms with heavy rains produced widespread street flooding and major damage across the Rio de Janeiro metropolitan area and surrounding locations. The suspected cause determining heavy rains were associated with the intrusion of the cold front towards this urban area, and the interaction that occurred between it and the tropical moist air mass moved from the Amazon deep convection. In this context, METEOSAT Second Generation is an important tool to monitoring the dynamical evolution of cloud structures. This event presented the need to explore possible applications of METEOSAT-9 image analyses in this particular location to account for the possibility of tracking the weather disturbances. One way of supporting the exploratory analyses was by applying the RGB air masses and IR 10.8 images. The results showed that both the RGB air masses and IR 10.8 analyses attain clear and good approach in monitoring and evaluating severe storms that can cause widespread daily rains over the large urban areas located at Southeastern Brazil.
Ghods, Roshanak; Sayfouri, Nasrin; Ayati, Mohammad Hossein
2016-12-01
Although wet cupping has been a treatment for centuries, its mechanism of action is not well understood. Because the anatomical features of the wet-cupping area might play a role in its mechanism, we focus on the features of the interscapular area in which a common type of wet-cupping therapy (WCT), called Hijamat-e-Aam in Iranian medicine, is usually applied and discuss the possible relation of those features to the acupuncture meridians. We gathered and analyzed data from reliable textbooks on modern medicine with a focus on the anatomical features of the interscapular area, topics related to WTC in Iranian medicine, and acupuncture sources obtained by searching PubMed, Google-Scholar, and Science Direct. The interscapular area used for WCT was found to have special features: brown adipose tissue, immediate proximity to sympathetic ganglia, passage of the thoracic duct, two important acupuncture meridians, and proximity to the main vessel divisions carrying blood from the heart and the brain. These features indicate that the interscapular application of WCT not only discharges waste materials through a shifting of blood to the site after application of a traction force but also invigorates the body's metabolism, increases immunity, and regulates blood biochemistry, which are desired therapeutic effects of WCT. Copyright © 2016. Published by Elsevier B.V.
Factors influencing societal response of nanotechnology: an expert stakeholder analysis
NASA Astrophysics Data System (ADS)
Gupta, Nidhi; Fischer, Arnout R. H.; van der Lans, Ivo A.; Frewer, Lynn J.
2012-05-01
Nanotechnology can be described as an emerging technology and, as has been the case with other emerging technologies such as genetic modification, different socio-psychological factors will potentially influence societal responses to its development and application. These factors will play an important role in how nanotechnology is developed and commercialised. This article aims to identify expert opinion on factors influencing societal response to applications of nanotechnology. Structured interviews with experts on nanotechnology from North West Europe were conducted using repertory grid methodology in conjunction with generalized Procrustes analysis to examine the psychological constructs underlying societal uptake of 15 key applications of nanotechnology drawn from different areas (e.g. medicine, agriculture and environment, chemical, food, military, sports, and cosmetics). Based on expert judgement, the main factors influencing societal response to different applications of nanotechnology will be the extent to which applications are perceived to be beneficial, useful, and necessary, and how 'real' and physically close to the end-user these applications are perceived to be by the public.
NASA Astrophysics Data System (ADS)
Mo, W.; Fang, W.
2015-12-01
Vulnerability which quantifies the loss ratio under different hazard intensity is an important feature of the natural disaster system and has important significance to natural disaster risk assessment. Agriculture is an outdoor industry with high risk of meteorological disasters. The strong winds, heavy rain and storm surge are main typhoon hazard factors to crops. To provide a quantitative research method for the loss evaluation of crops due to typhoon disaster we first revised two vulnerability curves for crops under comprehensive intensity of typhoon based on the simulated hazard data and loss data related to historical typhoon events landing on China from 1949 to 2014;and then established a storm surge vulnerability matrix of crops regarding Zhanjiang City of Guangdong Province as the study area ; finally, we put forward three storm surge fragility curves for crops representing different states of loss. The results can effectively describe the typhoon vulnerability for crops in China coastal areas so as to provide the input to post-disaster loss assessments and catastrophe modeling applications.
Remote Sensing of Cryosphere: Estimation of Mass Balance Change in Himalayan Glaciers
NASA Astrophysics Data System (ADS)
Ambinakudige, Shrinidhi; Joshi, Kabindra
2012-07-01
Glacial changes are an important indicator of climate change. Our understanding mass balance change in Himalayan glaciers is limited. This study estimates mass balance of some major glaciers in the Sagarmatha National Park (SNP) in Nepal using remote sensing applications. Remote sensing technique to measure mass balance of glaciers is an important methodological advance in the highly rugged Himalayan terrain. This study uses ASTER VNIR, 3N (nadir view) and 3B (backward view) bands to generate Digital Elevation Models (DEMs) for the SNP area for the years 2002, 2003, 2004 and 2005. Glacier boundaries were delineated using combination of boundaries available in the Global land ice measurement (GLIMS) database and various band ratios derived from ASTER images. Elevation differences, glacial area, and ice densities were used to estimate the change in mass balance. The results indicated that the rate of glacier mass balance change was not uniform across glaciers. While there was a decrease in mass balance of some glaciers, some showed increase. This paper discusses how each glacier in the SNP area varied in its annual mass balance measurement during the study period.
Enhancement of observability and protection of smart power system
NASA Astrophysics Data System (ADS)
Siddique, Abdul Hasib
It is important for a modern power grid to be smarter in order to provide reliable and sustainable supply of electricity. Traditional way of receiving data from the wired system is a very old and outdated technology. For a quicker and better response from the electric system, it is important to look at wireless systems as a feasible option. In order to enhance the observability and protection it is important to integrate wireless technology with the modern power system. In this thesis, wireless network based architecture for wide area monitoring and an alternate method for performing current measurement for protection of generators and motors, has been adopted. There are basically two part of this project. First part deals with the wide area monitoring of the power system and the second part focuses more on application of wireless technology from the protection point of view. A number of wireless method have been adopted in both the part, these includes Zigbee, analog transmission (Both AM and FM) and digital transmission. The main aim of our project was to propose a cost effective wide area monitoring and protection method which will enhance the observability and stability of power grid. A new concept of wireless integration in the power protection system has been implemented in this thesis work.
NASA Astrophysics Data System (ADS)
Doppler, Tobias; Lück, Alfred; Popow, Gabriel; Strahm, Ivo; Winiger, Luca; Gaj, Marcel; Singer, Heinz; Stamm, Christian
2010-05-01
Soil applied herbicides can be transported from their point of application (agricultural field) to surface waters during rain events. There they can have harmful effects on aquatic species. Since the spatial distribution of mobilization and transport processes is very heterogeneous, the contributions of different fields to the total load in a surface water body may differ considerably. The localization of especially critical areas (contributing areas) can help to efficiently minimize herbicide inputs to surface waters. An agricultural field becomes a contributing area when three conditions are met: 1) herbicides are applied, 2) herbicides are mobilized on the field and 3) the mobilized herbicides are transported rapidly to the surface water. In spring 2009, a controlled herbicide application was performed on corn fields in a small (ca 1 km2) catchment with intensive crop production in the Swiss plateau. Subsequently water samples were taken at different locations in the catchment with a high temporal resolution during rain events. We observed both saturation excess and hortonian overland flow during the field campaign. Both can be important mobilization processes depending on the intensity and quantity of the rain. This can lead to different contributing areas during different types of rain events. We will show data on the spatial distribution of herbicide loads during different types of rain events. Also the connectivity of the fields with the brook is spatially heterogeneous. Most of the fields are disconnected from the brook by internal sinks in the catchment, which prevents surface runoff from entering the brook directly. Surface runoff from these disconnected areas can only enter the brook rapidly via macropore-flow into tile drains beneath the internal sinks or via direct shortcuts to the drainage system (maintenance manholes, farmyard or road drains). We will show spatially distributed data on herbicide concentration in purely subsurface systems which shows how important such input pathways can be.
The Importance of the Initial State in Understanding Shocked Porous Materials
NASA Astrophysics Data System (ADS)
Mattsson, Thomas R.; Cochrane, Kyle R.; Lane, J. Matthew D.; Weck, Philippe F.; Vogler, Tracy J.; Shulenburger, Luke
Modeling the response of porous materials to shock loading presents a variety of theoretical challenges, however if done well it can open a whole new area of phase space for probing the equation of state of materials. Shocked porous materials achieve significantly hotter temperatures for the same drive than fully dense ones. By combining ab initio calculations of fully dense material with a model of porosity we show the critical importance of an accurate treatment of the initial state in understanding these experiments. This approach is also directly applicable to present application of tabular equations of state to the modeling of porous material. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Computational modeling of diffusion in the cerebellum.
Marinov, Toma M; Santamaria, Fidel
2014-01-01
Diffusion is a major transport mechanism in living organisms. In the cerebellum, diffusion is responsible for the propagation of molecular signaling involved in synaptic plasticity and metabolism, both intracellularly and extracellularly. In this chapter, we present an overview of the cerebellar structure and function. We then discuss the types of diffusion processes present in the cerebellum and their biological importance. We particularly emphasize the differences between extracellular and intracellular diffusion and the presence of tortuosity and anomalous diffusion in different parts of the cerebellar cortex. We provide a mathematical introduction to diffusion and a conceptual overview of various computational modeling techniques. We discuss their scope and their limit of application. Although our focus is the cerebellum, we have aimed at presenting the biological and mathematical foundations as general as possible to be applicable to any other area in biology in which diffusion is of importance. © 2014 Elsevier Inc. All rights reserved.
Kim, Rak-Hwan; Kim, Dae-Hyeong; Xiao, Jianliang; Kim, Bong Hoon; Park, Sang-Il; Panilaitis, Bruce; Ghaffari, Roozbeh; Yao, Jimin; Li, Ming; Liu, Zhuangjian; Malyarchuk, Viktor; Kim, Dae Gon; Le, An-Phong; Nuzzo, Ralph G; Kaplan, David L; Omenetto, Fiorenzo G; Huang, Yonggang; Kang, Zhan; Rogers, John A
2010-11-01
Inorganic light-emitting diodes and photodetectors represent important, established technologies for solid-state lighting, digital imaging and many other applications. Eliminating mechanical and geometrical design constraints imposed by the supporting semiconductor wafers can enable alternative uses in areas such as biomedicine and robotics. Here we describe systems that consist of arrays of interconnected, ultrathin inorganic light-emitting diodes and photodetectors configured in mechanically optimized layouts on unusual substrates. Light-emitting sutures, implantable sheets and illuminated plasmonic crystals that are compatible with complete immersion in biofluids illustrate the suitability of these technologies for use in biomedicine. Waterproof optical-proximity-sensor tapes capable of conformal integration on curved surfaces of gloves and thin, refractive-index monitors wrapped on tubing for intravenous delivery systems demonstrate possibilities in robotics and clinical medicine. These and related systems may create important, unconventional opportunities for optoelectronic devices.
NASA Astrophysics Data System (ADS)
Noerwasito, Vincentius Totok; Nasution, Tanti Satriana Rosary
2017-11-01
Utilization of local building materials in a residential location in mountainous area is very important, considering local material as a low-energy building material because of low transport energy. The local building materials used in this study are walls made from soil blocks. The material was made by the surrounding community from compacted soil without burning process. To maximize the potential of soil block to the outdoor temperature in the mountains, it is necessary to add non-local building materials as an insulator from the influence of the outside air. The insulator was calcium silicate panel. The location of the research is Trawas sub-district, Mojokerto regency, which is a mountainous area. The research problem is on applying the composition of local materials and calcium silicate panels that it will be able to meet the requirements as a wall building material and finding to what extent the impact of the wall against indoor temperature. The result from this research was the application of soil block walls insulated by calcium silicate panels in a building model. Besides, because of the utilization of those materials, the building has a specific difference between indoor and outdoor temperature. Thus, this model can be applied in mountainous areas in Indonesia.
Biotechnology and Consumer Decision-Making.
Sax, Joanna K
Society is facing major challenges in climate change, health care and overall quality of life. Scientific advances to address these areas continue to grow, with overwhelming evidence that the application of highly tested forms of biotechnology is safe and effective. Despite scientific consensus in these areas, consumers appear reluctant to support their use. Research that helps to understand consumer decision-making and the public’s resistance to biotechnologies such as vaccines, fluoridated water programs and genetically engineered food, will provide great social value. This article is forward-thinking in that it suggests that important research in behavioral decision-making, specifically affect and ambiguity, can be used to help consumers make informed choices about major applications of biotechnology. This article highlights some of the most controversial examples: vaccinations, genetically engineered food, rbST treated dairy cows, fluoridated water, and embryonic stem cell research. In many of these areas, consumers perceive the risks as high, but the experts calculate the risks as low. Four major thematic approaches are proposed to create a roadmap for policymakers to consider for policy design and implementation in controversial areas of biotechnology. This article articulates future directions for studies that implement decision-making research to allow consumers to appropriately assign risk to their options and make informed decisions.
Perfusion weighted imaging and its application in stroke
NASA Astrophysics Data System (ADS)
Li, Enzhong; Tian, Jie; Han, Ying; Wang, Huifang; Li, Xingfeng; Zhu, Fuping
2003-05-01
To study the technique and application of perfusion weighted imaging (PWI) in the diagnosis and medical treatment of acute stroke, 25 patients were examined by 1.5 T or 1.0 T MRI scanner. The Data analysis was done with "3D Med System" developed by our Lab to process the data and obtain apparent diffusion coefficient (ADC) map, cerebral blood volume (CBV) map, cerebral blood flow (CBF) map as well as mean transit time (MTT) map. In accute stage of stroke, normal or slightly hypointensity in T1-, hyperintensity in T2- and diffusion-weighted images were seen in the cerebral infarction areas. There were hypointensity in CBV map, CBF map and ADC map; and hyperintensity in MTT map that means this infarct area could be saved. If the hyperintensity area in MTT map was larger than the area in diffusion weighted imaging (DWI), the larger part was called penumbra and could be cured by an appropriate thrombolyitic or other therapy. The CBV, CBF and MTT maps are very important in the diagnosis and medical treatment of acute especially hyperacute stroke. Comparing with DWI, we can easily know the situation of penumbra and the effect of curvative therapy. Besides, we can also make a differential diagnosis with this method.
Influence of repeated quenching-tempering on spheroidized carbide area in JIS SUJ2 bearing steel
NASA Astrophysics Data System (ADS)
Egawa, K.; Yoshida, I.; Yoshida, H.; Mizobe, K.; Kida, K.
2018-02-01
High-carbon high-strength JIS-SUJ2 bearing steel is mainly used for rolling contact applications which require high fatigue strength. We had applied repeated quenching which refine the prior austenite grains to this steel. In this work, we prepared JIS SUJ2 bearing steel bar specimens which were quenched three times (Q3T1) and quenched-tempered three times (QTQTQT) in order to investigate the influence of tempering before quenching on the microstructure. The specimens were etched by picral to observe the microstructure. We found that the spheroidized carbide area was important for the prior austenite grain formation.
Improving diagnostic accuracy of prostate carcinoma by systematic random map-biopsy.
Szabó, J; Hegedûs, G; Bartók, K; Kerényi, T; Végh, A; Romics, I; Szende, B
2000-01-01
Systematic random rectal ultrasound directed map-biopsy of the prostate was performed in 77 RDE (rectal digital examination) positive and 25 RDE negative cases, if applicable. Hypoechoic areas were found in 30% of RDE positive and in 16% of RDE negative cases. The score for carcinoma in the hypoechoic areas was 6.5% in RDE positive and 0% in RDE negative cases, whereas systematic map biopsy detected 62% carcinomas in RDE positive, and 16% carcinomas in RDE negative patients. The probability of positive diagnosis of prostate carcinoma increased in parallel with the number of biopsy samples/case. The importance of systematic map biopsy is emphasized.
Remote Sensing Data Fusion to Detect Illicit Crops and Unauthorized Airstrips
NASA Astrophysics Data System (ADS)
Pena, J. A.; Yumin, T.; Liu, H.; Zhao, B.; Garcia, J. A.; Pinto, J.
2018-04-01
Remote sensing data fusion has been playing a more and more important role in crop planting area monitoring, especially for crop area information acquisition. Multi-temporal data and multi-spectral time series are two major aspects for improving crop identification accuracy. Remote sensing fusion provides high quality multi-spectral and panchromatic images in terms of spectral and spatial information, respectively. In this paper, we take one step further and prove the application of remote sensing data fusion in detecting illicit crop through LSMM, GOBIA, and MCE analyzing of strategic information. This methodology emerges as a complementary and effective strategy to control and eradicate illicit crops.
Aerodynamic characteristics at high angles of attack
NASA Technical Reports Server (NTRS)
Chambers, J. R.
1977-01-01
An overview is presented of the aerodynamic inputs required for analysis of flight dynamics in the high-angle-of-attack regime wherein large-disturbance, nonlinear effects predominate. An outline of the presentation is presented. The discussion includes: (1) some important fundamental phenomena which determine to a large extent the aerodynamic characteristics of airplanes at high angles of attack; (2) static and dynamic aerodynamic characteristics near the stall; (3) aerodynamics of the spin; (4) test techniques used in stall/spin studies; (5) applications of aerodynamic data to problems in flight dynamics in the stall/spin area; and (6) the outlook for future research in the area.
NASA Astrophysics Data System (ADS)
Laget, R.
1986-01-01
Studies that led to selection of the distributed concentration biplane concept for the solar cell generator to be flown on the coorbiting platform mission, and the major characteristics of such a spaceborne solar array are summarized. It is concluded that there is not a considerable interest in concentration either for array area reduction or cost reduction, although improvements of 15% for both domains are feasible. Only predevelopment activities to verify concentrator performances and system studies to assess respective importance of cost and area saving may increase the level of interest of concentrator solar arrays for this kind of mission.
Domazet, Barbara; MacLennan, Gregory T.; Lopez-Beltran, Antonio; Montironi, Rodolfo; Cheng, Liang
2008-01-01
The advent of new technologies has enabled deeper insight into processes atsubcellular levels, which will ultimately improve diagnostic procedures and patient outcome. Thanks to cell enrichment methods, it is now possible to study cells in their native environment. This has greatly contributed to a rapid growth in several areas, such as gene expression analysis, proteomics, and metabolonomics. Laser capture microdissection (LCM) as a method of procuring subpopulations of cells under direct visual inspection is playing an important role in these areas. This review provides an overview of existing LCM technology and its downstream applications in genomics, proteomics, diagnostics and therapy. PMID:18787684
Domazet, Barbara; Maclennan, Gregory T; Lopez-Beltran, Antonio; Montironi, Rodolfo; Cheng, Liang
2008-03-15
The advent of new technologies has enabled deeper insight into processes at subcellular levels, which will ultimately improve diagnostic procedures and patient outcome. Thanks to cell enrichment methods, it is now possible to study cells in their native environment. This has greatly contributed to a rapid growth in several areas, such as gene expression analysis, proteomics, and metabolonomics. Laser capture microdissection (LCM) as a method of procuring subpopulations of cells under direct visual inspection is playing an important role in these areas. This review provides an overview of existing LCM technology and its downstream applications in genomics, proteomics, diagnostics and therapy.
ERIC Educational Resources Information Center
Cassens, Andrew
2008-01-01
Leadership development continues to be a significant topic of exploration and direct application within many sectors of the academic and professional sectors, but unfortunately, not within the field of psychology. To date, there are no APA sponsored divisions or journals dedicated to this dynamic and increasingly important subject area. The…
GGOS Focus Area 3: Understanding and Forecasting Sea-Level Rise and Variability
NASA Astrophysics Data System (ADS)
Schöne, Tilo; Shum, Ck; Tamisiea, Mark; Woodworth, Philip
2017-04-01
Sea level and its change have been measured for more than a century. Especially for coastal nations, deltaic regions, and coastal-oriented industries, observations of tides, tidal extremes, storm surges, and sea level rise at the interannual or longer scales have substantial impacts on coastal vulnerability towards resilience and sustainability of world's coastal regions. To date, the observed global sea level rise is largely associated with climate related changes. To find the patterns and fingerprints of those changes, and to e.g., separate the land motion from sea level signals, different monitoring techniques have been developed. Some of them are local, e.g., tide gauges, while others are global, e.g., satellite altimetry. It is well known that sea level change and land vertical motion varies regionally, and both signals need to be measured in order to quantify relative sea level at the local scale. The Global Geodetic Observing System (GGOS) and its services contribute in many ways to the monitoring of the sea level. These includes tide gauge observations, estimation of gravity changes, satellite altimetry, InSAR/Lidar, GNSS-control of tide gauges, providing ground truth sites for satellite altimetry, and importantly the maintenance of the International Reference Frame. Focus Area 3 (Understanding and Forecasting Sea-Level Rise and Variability) of GGOS establishes a platform and a forum for researchers and authorities dealing with estimating global and local sea level changes in a 10- to 30-year time span, and its project to the next century or beyond. It presents an excellent opportunity to emphasize the global, through to regional and local, importance of GGOS to a wide range of sea-level related science and practical applications. Focus Area 3 works trough demonstration projects to highlight the value of geodetic techniques to sea level science and applications. Contributions under a call for participation (http://www.ggos.org/Applications/theme3_SL.html) are welcome. The present status of GGOS Focus Area 3 will be highlighted. http://www.ggos-portal.org/lang_en/GGOS-Portal/EN/Themes/SeaLevel/seaLevel.html
3D Tomographic SAR Imaging in Densely Vegetated Mountainous Rural Areas in China and Sweden
NASA Astrophysics Data System (ADS)
Feng, L.; Muller, J. P., , Prof
2017-12-01
3D SAR Tomography (TomoSAR) and 4D SAR Differential Tomography (Diff-TomoSAR) exploit multi-baseline SAR data stacks to create an important new innovation of SAR Interferometry, to unscramble complex scenes with multiple scatterers mapped into the same SAR cell. In addition to this 3-D shape reconstruction and deformation solution in complex urban/infrastructure areas, and recent cryospheric ice investigations, emerging tomographic remote sensing applications include forest applications, e.g. tree height and biomass estimation, sub-canopy topographic mapping, and even search, rescue and surveillance. However, these scenes are characterized by temporal decorrelation of scatterers, orbital, tropospheric and ionospheric phase distortion and an open issue regarding possible height blurring and accuracy losses for TomoSAR applications particularly in densely vegetated mountainous rural areas. Thus, it is important to develop solutions for temporal decorrelation, orbital, tropospheric and ionospheric phase distortion.We report here on 3D imaging (especially in vertical layers) over densely vegetated mountainous rural areas using 3-D SAR imaging (SAR tomography) derived from data stacks of X-band COSMO-SkyMed Spotlight and L band ALOS-1 PALSAR data stacks over Dujiangyan Dam, Sichuan, China and L and P band airborne SAR data (BioSAR 2008 - ESA) in the Krycklan river catchment, Northern Sweden. The new TanDEM-X 12m DEM is used to assist co - registration of all the data stacks over China first. Then, atmospheric correction is being assessed using weather model data such as ERA-I, MERRA, MERRA-2, WRF; linear phase-topography correction and MODIS spectrometer correction will be compared and ionospheric correction methods are discussed to remove tropospheric and ionospheric delay. Then the new TomoSAR method with the TanDEM-X 12m DEM is described to obtain the number of scatterers inside each pixel, the scattering amplitude and phase of each scatterer and finally extract tomograms (imaging), their 3D positions and motion parameters (deformation). A progress report will be shown on these different aspects.This work is partially supported by the CSC and UCL MAPS Dean prize through a PhD studentship at UCL-MSSL.
Computational Modeling of Space Physiology
NASA Technical Reports Server (NTRS)
Lewandowski, Beth E.; Griffin, Devon W.
2016-01-01
The Digital Astronaut Project (DAP), within NASAs Human Research Program, develops and implements computational modeling for use in the mitigation of human health and performance risks associated with long duration spaceflight. Over the past decade, DAP developed models to provide insights into space flight related changes to the central nervous system, cardiovascular system and the musculoskeletal system. Examples of the models and their applications include biomechanical models applied to advanced exercise device development, bone fracture risk quantification for mission planning, accident investigation, bone health standards development, and occupant protection. The International Space Station (ISS), in its role as a testing ground for long duration spaceflight, has been an important platform for obtaining human spaceflight data. DAP has used preflight, in-flight and post-flight data from short and long duration astronauts for computational model development and validation. Examples include preflight and post-flight bone mineral density data, muscle cross-sectional area, and muscle strength measurements. Results from computational modeling supplement space physiology research by informing experimental design. Using these computational models, DAP personnel can easily identify both important factors associated with a phenomenon and areas where data are lacking. This presentation will provide examples of DAP computational models, the data used in model development and validation, and applications of the model.
Polymer optics for the passive infrared
NASA Astrophysics Data System (ADS)
Claytor, Richard N.
2016-10-01
An important, but largely invisible, area of polymer optics involves sensing the motion of warm objects. It can be further subdivided into optics for security, for energy conservation, and for convenience; the area has become known as optics for the passive infrared. The passive infrared is generally known as the 8 to 14 μm region of the optical spectrum. The region's roots are in the traditional infrared technology of many decades ago; there is a coincident atmospheric window, although that has little relevance to many short-range applications relevant to polymer optics. Regrettably, there is no polymer material ideally suited to the passive infrared, but one material is generally superior to other candidates. The inadequacy of this material makes the Fresnel lens important. Polymer optics for the passive infrared were first introduced in the 1970s. Patents from that period will be shown, as well as early examples. The unfamiliar names of the pioneering companies and their technical leaders will be mentioned. The 1980s and 90s brought a new and improved lens type, and rapid growth. Pigments for visible-light appearance and other reasons were introduced; one was a spectacular failure. Recent advances include faster lenses, a new groove structure, additional pigments, and lens-mirror combinations. New sensor types are also being introduced. Finally, some unique and inventive applications will be discussed.
Bioapplications of graphene constructed functional nanomaterials.
Gulzar, Arif; Yang, Piaoping; He, Fei; Xu, Jiating; Yang, Dan; Xu, Liangge; Jan, Mohammad Omar
2017-01-25
Graphene has distinctive mechanical, electronic, and optical properties, which researchers have applied to develop innovative electronic materials including transparent conductors and ultrafast transistors. Lately, the understanding of various chemical properties of graphene has expedited its application in high-performance devices that generate and store energy. Graphene is now increasing its terrain outside electronic and chemical applications toward biomedical areas such as precise bio sensing through graphene-quenched fluorescence, graphene-enhanced cell differentiation and growth, and graphene-assisted laser desorption/ionization for mass spectrometry. In this Account, we evaluate recent efforts to apply graphene and graphene oxides (GO) to biomedical research and a few different approaches to prepare graphene materials designed for biomedical applications and a brief perspective on their future applications. Because of its outstanding aqueous processability, amphiphilicity, surface functionalizability, surface enhanced Raman scattering (SERS), and fluorescence quenching ability, GO chemically exfoliated from oxidized graphite is considered a promising material for biological applications. In addition, the hydrophobicity and flexibility of large-area graphene synthesized by chemical vapor deposition (CVD) allow this material to play an important role in cell growth and differentiation. Graphene is considered to be an encouraging and smart candidate for numerous biomedical applications such as NIR-responsive cancer therapy and fluorescence bio-imaging and drug delivery. To that end, suitable preparation and unique approaches to utilize graphene-based materials such as graphene oxides (GOs), reduced graphene oxides (rGOs), and graphene quantum dots (GQDs) in biology and medical science are gaining growing interest. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Savilov, S.V., E-mail: savilov@chem.msu.ru; N.S. Kurnakov Institute of General and Inorganic Chemistry Of Russian Academy of Sciences, Leninsky avenue, 31, Moscow 119991; Arkhipova, E.A.
2015-09-15
Highlights: • Carbon nanoflakes doped with nitrogen were produced by a pyrolytic technique. • Quarternary, pyrrolic and pyridinic types of nitrogen are confirmed by XPS. • Nitrogen content depends on precursor used and temperature processed. • Specific surface area values decrease with increasing of synthesis duration. • N-doped carbon nanoflakes may be suitable for electrochemical applications. - Abstract: Nitrogen doped carbon nanoflakes, which are very important for many electrochemical applications, were synthesized by pyrolysis of nitrogen containing organic compounds over metal oxide template. Acetonitrile, pyridine and butylamine, which are of different volatility were tested as N-containing precursors. Morphology, structure andmore » chemical composition of the as-synthesized materials were investigated by scanning electron microscopy (SEM), high resolution transmission electron microscopy (TEM), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). It was found that materials are highly defective and consist of a few malformed graphene layers. X-ray photoelectron spectra reflect the dominant graphitic and pyridinic N-bonding configuration. It was also noted that specific surface area depends on the duration and temperature of the reaction. Increase in duration and temperature led to decrease of the specific surface area from 1000 to 160 m{sup 2}/g, 1170 to 210 m{sup 2}/g and 1180 to 480 m{sup 2}/g for acetonitrile, butylamine and pyridine precursors, respectively.« less
Agronomic phosphorus imbalances across the world's croplands
MacDonald, Graham K.; Bennett, Elena M.; Potter, Philip A.; Ramankutty, Navin
2011-01-01
Increased phosphorus (P) fertilizer use and livestock production has fundamentally altered the global P cycle. We calculated spatially explicit P balances for cropland soils at 0.5° resolution based on the principal agronomic P inputs and outputs associated with production of 123 crops globally for the year 2000. Although agronomic inputs of P fertilizer (14.2 Tg of P·y−1) and manure (9.6 Tg of P·y−1) collectively exceeded P removal by harvested crops (12.3 Tg of P·y−1) at the global scale, P deficits covered almost 30% of the global cropland area. There was massive variation in the magnitudes of these P imbalances across most regions, particularly Europe and South America. High P fertilizer application relative to crop P use resulted in a greater proportion of the intense P surpluses (>13 kg of P·ha−1·y−1) globally than manure P application. High P fertilizer application was also typically associated with areas of relatively low P-use efficiency. Although manure was an important driver of P surpluses in some locations with high livestock densities, P deficits were common in areas producing forage crops used as livestock feed. Resolving agronomic P imbalances may be possible with more efficient use of P fertilizers and more effective recycling of manure P. Such reforms are needed to increase global agricultural productivity while maintaining or improving freshwater quality. PMID:21282605
Stability issues pertaining large area perovskite and dye-sensitized solar cells and modules
NASA Astrophysics Data System (ADS)
Castro-Hermosa, S.; Yadav, S. K.; Vesce, L.; Guidobaldi, A.; Reale, A.; Di Carlo, A.; Brown, T. M.
2017-01-01
Perovskite and dye-sensitized solar cells are PV technologies which hold promise for PV application. Arguably, the biggest issue facing these technologies is stability. The vast majority of studies have been limited to small area laboratory cells. Moisture, oxygen, UV light, thermal and electrical stresses are leading the degradation causes. There remains a shortage of stability investigations on large area devices, in particular modules. At the module level there exist particular challenges which can be different from those at the small cell level such as encapsulation (not only of the unit cells but of interconnections and contacts), non-uniformity of the layer stacks and unit cells, reverse bias stresses, which are important to investigate for technologies that aim for industrial acceptance. Herein we present a review of stability investigations published in the literature pertaining large area perovskite and dye-sensitized solar devices fabricated both on rigid (glass) and flexible substrates.
The Case for the Use of Active Social Media in Nonproliferation and Nuclear Security
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schanfein, Mark J.
A great amount of attention and consideration is being directed at possible applications of social media in many challenging areas. The use of social media has already shown its importance in the area of disaster response, where, each citizen is essentially acting as a sensor in reporting local conditions. In the aggregate, valuable information is obtained to enable a more effective response as well as provide timely information to those in the disaster area. No one needs to be trained to understand what constitutes a disaster, so a social media data stream from the public is literally always active andmore » ready to engage. A similar but more focused approach is the use of crowdsourcing for science, where specific challenges in areas such as mathematics, astronomy, and biology are posted to social media and solved by the crowd.« less
NASA Astrophysics Data System (ADS)
Li, Qingwei; Liu, Changhong; Fan, Shoushan
2018-04-01
Electro-active polymer (EAP) actuators, such as electronic, ionic and electrothermal (ET) actuators, have become an important branch of next-generation soft actuators in bionic robotics. However, most reported EAP actuators could realize only simple movements, being restricted by the small area of flexible electrodes and simple designs. We prepared large-area flexible electrodes of high anisotropy, made of oriented carbon nanotube (CNT) paper, and carried out artful graphic designs and processing on the electrodes to make functional ET bimorph actuators which can realize large bending deformations (over 220°, curvature > 1.5 cm-1) and bionic movements driven by electricity. The anisotropy of CNT paper benefits electrode designs and multiform actuations for complex actuators. Based on the large-area CNT paper, more interesting and functional actuators can be designed and prepared which will have practical applications in the fields of artificial muscles, complicated actuations, and soft and bionic robotics.
Intrinsic vulnerability, hazard and risk mapping for karst aquifers: A case study
NASA Astrophysics Data System (ADS)
Mimi, Ziad A.; Assi, Amjad
2009-01-01
SummaryGroundwater from karst aquifers is among the most important resources of drinking water supply of the worldwide population. The European COST action 620 proposed a comprehensive approach to karst groundwater protection, comprising methods of intrinsic and specific vulnerability mapping, hazard and risk mapping. This paper presents the first application of all components of this European approach to the groundwater underlying the Ramallah district, a karst hydrogeology system in Palestine. The vulnerability maps which were developed can assist in the implementation of groundwater management strategies to prevent degradation of groundwater quality. Large areas in the case study area can be classified as low or very low risk area corresponding to the pollution sources due to the absence of hazards and also due to low vulnerabilities. These areas could consequently be interesting for future development as they are preferable in view of ground water protection.
State-of-the-art measurements in human body composition: A moving frontier of clinical importance.
Gallagher, D; Shaheen, I; Zafar, K
2008-01-01
The measurement of human body composition allows for the estimation of body tissues, organs, and their distributions in living persons without inflicting harm. From a nutritional perspective, the interest in body composition has increased multi-fold with the global increase in the prevalence of obesity and its complications. The latter has driven in part the need for improved measurement methods with greater sensitivity and precision. There is no single gold standard for body-composition measurements in-vivo. All methods incorporate assumptions that do not apply in all individuals and the more accurate models are derived by using a combination of measurements, thereby reducing the importance of each assumption. This review will discuss why the measurement of body composition or human phenotyping is important; discuss new areas where the measurement of body composition (human phenotyping) is recognized as having important application; and will summarize recent advances made in new methodology. Reference will also be made to areas we cannot yet measure due to the lack of appropriate measurement methodologies, most especially measurements methods that provide information on kinetic states (not just static state) and metabolic function.
State-of-the-art measurements in human body composition: A moving frontier of clinical importance
Gallagher, D.; Shaheen, I.; Zafar, K.
2010-01-01
The measurement of human body composition allows for the estimation of body tissues, organs, and their distributions in living persons without inflicting harm. From a nutritional perspective, the interest in body composition has increased multi-fold with the global increase in the prevalence of obesity and its complications. The latter has driven in part the need for improved measurement methods with greater sensitivity and precision. There is no single gold standard for body-composition measurements in-vivo. All methods incorporate assumptions that do not apply in all individuals and the more accurate models are derived by using a combination of measurements, thereby reducing the importance of each assumption. This review will discuss why the measurement of body composition or human phenotyping is important; discuss new areas where the measurement of body composition (human phenotyping) is recognized as having important application; and will summarize recent advances made in new methodology. Reference will also be made to areas we cannot yet measure due to the lack of appropriate measurement methodologies, most especially measurements methods that provide information on kinetic states (not just static state) and metabolic function. PMID:21234275
Su, Xianli; Wei, Ping; Li, Han; Liu, Wei; Yan, Yonggao; Li, Peng; Su, Chuqi; Xie, Changjun; Zhao, Wenyu; Zhai, Pengcheng; Zhang, Qingjie; Tang, Xinfeng; Uher, Ctirad
2017-05-01
Considering only about one third of the world's energy consumption is effectively utilized for functional uses, and the remaining is dissipated as waste heat, thermoelectric (TE) materials, which offer a direct and clean thermal-to-electric conversion pathway, have generated a tremendous worldwide interest. The last two decades have witnessed a remarkable development in TE materials. This Review summarizes the efforts devoted to the study of non-equilibrium synthesis of TE materials with multi-scale structures, their transport behavior, and areas of applications. Studies that work towards the ultimate goal of developing highly efficient TE materials possessing multi-scale architectures are highlighted, encompassing the optimization of TE performance via engineering the structures with different dimensional aspects spanning from the atomic and molecular scales, to nanometer sizes, and to the mesoscale. In consideration of the practical applications of high-performance TE materials, the non-equilibrium approaches offer a fast and controllable fabrication of multi-scale microstructures, and their scale up to industrial-size manufacturing is emphasized here. Finally, the design of two integrated power generating TE systems are described-a solar thermoelectric-photovoltaic hybrid system and a vehicle waste heat harvesting system-that represent perhaps the most important applications of thermoelectricity in the energy conversion area. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Robotics in neurosurgery: state of the art and future technological challenges.
Zamorano, L; Li, Q; Jain, S; Kaur, G
2004-06-01
The use of robotic technologies to assist surgeons was conceptually described almost thirty years ago but has only recently become feasible. In Neurosurgery, medical robots have been applied to neurosurgery for over 19 years. Nevertheless this field remains unknown to most neurosurgeons. The intrinsic characteristics of robots, such as high precision, repeatability and endurance make them ideal surgeon's assistants. Unfortunately, limitations in the current available systems make its use limited to very few centers in the world. During the last decade, important efforts have been made between academic and industry partnerships to develop robots suitable for use in the operating room environment. Although some applications have been successful in areas of laparoscopic surgery and orthopaedics, Neurosurgery has presented a major challenge due to the eloquence of the surrounding anatomy. This review focuses on the application of medical robotics in neurosurgery. The paper begins with an overview of the development of the medical robotics, followed by the current clinical applications in neurosurgery and an analysis of current limitations. We discuss robotic applications based in our own experience in the field. Next, we discuss the technological challenges and research areas to overcome those limitations, including some of our current research approaches for future progress in the field. Copyright 2004 Robotic Publications Ltd.
Skin Permeabilization for Transdermal Drug Delivery: Recent Advances and Future Prospects
Schoellhammer, Carl M.; Blankschtein, Daniel; Langer, Robert
2014-01-01
Introduction Transdermal delivery has potential advantages over other routes of administration. It could reduce first-pass metabolism associated with oral delivery and is less painful than injections. However, the outermost layer of the skin, the stratum corneum (SC), limits passive diffusion to small lipophilic molecules. Therefore, methods are needed to safely permeabilize the SC so that ionic and larger molecules may be delivered transdermally. Areas Covered This review focuses on low-frequency sonophoresis, microneedles, electroporation and iontophoresis, and combinations of these methods to permeabilize the SC. The mechanisms of enhancement and developments in the last five years are discussed. Potentially high-impact applications, including protein delivery, vaccination, and sensing, are presented. Finally, commercial interest and clinical trials are discussed. Expert Opinion Not all permeabilization methods are appropriate for all applications. Focused studies into applications utilizing the advantages of each method are needed. The total dose and kinetics of delivery must be considered. Vaccination is one application where permeabilization methods could make an impact. Protein delivery and analyte sensing are also areas of potential impact, although the amount of material that can be delivered (or extracted) is of critical importance. Additional work on the miniaturization of these technologies will help to increase commercial interest. PMID:24392787
Gas adsorption properties of hybrid graphene-MOF materials.
Szczęśniak, Barbara; Choma, Jerzy; Jaroniec, Mietek
2018-03-15
Nowadays, hybrid porous materials consisting of metal-organic frameworks (MOFs) and graphene nanosheets become more and more attractive because of their growing applications in adsorption, catalysis and related areas. Incorporation of graphene oxide into MOFs can provide benefits such as increased water resistance and thermal stability as well as enhanced surface area and adsorption properties. Graphene oxide is one of the best additives to other materials owing to its two main virtues: high atomic density and large amount of surface functional groups. Due to its dense array of atoms, graphene oxide can significantly increase dispersion forces in graphene-MOF materials, which is beneficial for adsorption of small molecules. This work presents a concise appraisal of adsorption properties of MOFs and graphene-MOF hybrids toward CO 2 , volatile organic compounds, hydrogen and methane. It shows that the graphene-MOF materials represent an important class of materials with potential applications in adsorption and catalysis. A special emphasis of this article is placed on their adsorption applications for gas capture and storage. A large number of graphene-MOF adsorbents has been so far explored and their appraisal could be beneficial for researchers interested in the development of hybrid adsorbents for adsorption-based applications. Copyright © 2017 Elsevier Inc. All rights reserved.
The theory of reasoned action and intention to seek cancer information.
Ross, Levi; Kohler, Connie L; Grimley, Diane M; Anderson-Lewis, Charkarra
2007-01-01
To evaluate the applicability of the theory of reasoned action to explain men's intentions to seek prostate cancer information. Three hundred randomly selected African American men participated in telephone interviews. Correlational and regression analyses were conducted to examine relationships among measures. All relationships were significant in regression analyses. Attitudes and subjective norm were significantly related to intentions. Indirect measures of beliefs derived from elicitation research were associated with direct measures of attitude and subjective norms. The data are sufficiently clear to support the applicability of the theory for this behavioral domain with African American men and suggest several important areas for future research.
Impact compaction of a granular material
Fenton, Gregg; Asay, Blaine; Dalton, Devon
2015-05-19
The dynamic behavior of granular materials has importance to a variety of engineering applications. Structural seismic coupling, planetary science, and earth penetration mechanics, are just a few of the application areas. Although the mechanical behavior of granular materials of various types have been studied extensively for several decades, the dynamic behavior of such materials remains poorly understood. High-quality experimental data are needed to improve our general understanding of granular material compaction physics. This study will describe how an instrumented plunger impact system can be used to measure pressure-density relationships for model materials at high and controlled strain rates and subsequentlymore » used for computational modeling.« less
Khan, Gazala N; Merajver, Sofia D
2007-01-01
Although anti- angiogenesis strategies have generated much enthusiasm for therapeutic applications, it is still unknown whether they would be feasible for prevention. The possibility of interfering very early in tumor progression by modulating the cancer angiogenic switch is appealing. In this chapter, we review progress with in vitro and in vivo models that show that anti-angiogenic interventions may be amenable to long- term chemopreventive measures. In particular, some approaches that are nearly ready for major applications are anti-oxidant nutraceuticals and copper deficiency. We use these strategies as paradigms of how to make progress in this difficult but important area of translational research.
Technology to optimize pediatric diabetes management and outcomes.
Markowitz, Jessica T; Harrington, Kara R; Laffel, Lori M B
2013-12-01
Technology for diabetes management is rapidly developing and changing. With each new development, there are numerous factors to consider, including medical benefits, impact on quality of life, ease of use, and barriers to use. It is also important to consider the interaction between developmental stage and technology. This review considers a number of newer diabetes-related technologies and explores issues related to their use in the pediatric diabetes population (including young adults), with a focus on psychosocial factors. Areas include trend technology in blood glucose monitoring, continuous glucose monitoring, sensor-augmented insulin pumps and low glucose suspend functions, internet applications including videoconferencing, mobile applications (apps), text messaging, and online gaming.
Designing and Testing Energy Harvesters Suitable for Renewable Power Sources
NASA Astrophysics Data System (ADS)
Synkiewicz, B.; Guzdek, P.; Piekarski, J.; Zaraska, K.
2016-01-01
Energy harvesters convert waste power (heat, light and vibration) directly to electric power . Fast progress in their technology, design and areas of application (e.g. “Internet of Things”) has been observed recently. Their effectiveness is steadily growing which makes their application to powering sensor networks with wireless data transfer reasonable. The main advantage is the independence from wired power sources, which is especially important for monitoring state of environmental parameters. In this paper we describe the design and realization of a gas sensor monitoring CO level (powered by TEG) and two, designed an constructed in ITE, autonomous power supply modules powered by modern photovoltaic cells.
Experimental microbubble generation by sudden pressure drop and fluidics
NASA Astrophysics Data System (ADS)
Franco Gutierrez, Fernando; Figueroa Espinoza, Bernardo; Aguilar Corona, Alicia; Vargas Correa, Jesus; Solorio Diaz, Gildardo
2014-11-01
Mass and heat transfer, as well as chemical species in bubbly flow are of importance in environmental and industrial applications. Microbubbles are well suited to these applications due to the large interface contact area and residence time. The objective of this investigation is to build devices to produce microbubbles using two methods: pressure differences and fluidics. Some characteristics, advantages and drawbacks of both methods are briefly discussed, as well as the characterization of the bubbly suspensions in terms of parameters such as the pressure jump and bubble equivalent diameter distribution. The authors acknowledge the support of Consejo Nacional de Ciencia y Tecnología.
Terahertz science and technology of carbon nanomaterials.
Hartmann, R R; Kono, J; Portnoi, M E
2014-08-15
The diverse applications of terahertz (THz) radiation and its importance to fundamental science makes finding ways to generate, manipulate and detect THz radiation one of the key areas of modern applied physics. One approach is to utilize carbon nanomaterials, in particular, single-wall carbon nanotubes and graphene. Their novel optical and electronic properties offer much promise to the field of THz science and technology. This article describes the past, current, and future of THz science and technology of carbon nanotubes and graphene. We will review fundamental studies such as THz dynamic conductivity, THz nonlinearities and ultrafast carrier dynamics as well as THz applications such as THz sources, detectors, modulators, antennas and polarizers.
Realising the Promise of Cancer Predisposition Genes
Rahman, Nazneen
2016-01-01
Genes in which germline mutations confer high or moderate increased risks of cancer are called cancer predisposition genes (CPG). Over 100 CPGs have been identified providing important scientific insights in many areas, particularly mechanisms of cancer causation. Moreover, clinical utilisation of CPGs has had substantial impact in diagnosis, optimised management and prevention of cancer. The recent transformative advances in DNA sequencing bring the promise of many more CPG discoveries and greater, broader clinical applications. However, there is also considerable potential for incorrect inferences and inappropriate clinical applications. Realising the promise of cancer predisposition genes for science and medicine will thus require careful navigation. PMID:24429628
The role of empirical Bayes methodology as a leading principle in modern medical statistics.
van Houwelingen, Hans C
2014-11-01
This paper reviews and discusses the role of Empirical Bayes methodology in medical statistics in the last 50 years. It gives some background on the origin of the empirical Bayes approach and its link with the famous Stein estimator. The paper describes the application in four important areas in medical statistics: disease mapping, health care monitoring, meta-analysis, and multiple testing. It ends with a warning that the application of the outcome of an empirical Bayes analysis to the individual "subjects" is a delicate matter that should be handled with prudence and care. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Thermal comfort of patients in hospital ward areas.
Smith, R. M.; Rae, A.
1977-01-01
The patient is identified as being of prime importance for comfort standards in hospital ward areas, other ward users being expected to adjust their dress to suit the conditions necessary for patients comfort. A study to identify the optimum steady state conditions for patients comfort is then described. Although this study raises some doubts as to the applicability of the standard thermal comfort assessment techniques to ward areas, it is felt that its results give a good indication of the steady-state conditions preferred by the patients. These were an air temperature of between 21-5 degrees and 22 degrees C and a relative humidity of between 30% and 70%, where the air velocity was less than 0-1 m/s and the mean radiant temperature was close to air temperature. PMID:264497
The Large Area Crop Inventory Experiment /LACIE/ - An assessment after one year of operation
NASA Technical Reports Server (NTRS)
Macdonald, R. B.; Hall, F. G.; Erb, R. B.
1975-01-01
A Large Area Crop Inventory Experiment (LACIE) has been undertaken jointly by the U.S. Department of Agriculture (USDA), the National Oceanic and Atmospheric Administration (NOAA) of the Department of Commerce and the National Aeronautics and Space Administration (NASA) to prove out an economically important application of remote sensing from space. The first phase of the Experiment, which focused upon determinations of wheat area in the U.S. Great Plains and upon the development and testing of yield models, is now nearing completion. The system implemented to handle and analyze the Landsat and meteorological data has generally worked well and met operational goals. A very preliminary assessment of results to date indicates that the accuracy goals of the experiment can be met.
NASA Astrophysics Data System (ADS)
Margheri, Luca; Sagaut, Pierre
2016-11-01
To significantly increase the contribution of numerical computational fluid dynamics (CFD) simulation for risk assessment and decision making, it is important to quantitatively measure the impact of uncertainties to assess the reliability and robustness of the results. As unsteady high-fidelity CFD simulations are becoming the standard for industrial applications, reducing the number of required samples to perform sensitivity (SA) and uncertainty quantification (UQ) analysis is an actual engineering challenge. The novel approach presented in this paper is based on an efficient hybridization between the anchored-ANOVA and the POD/Kriging methods, which have already been used in CFD-UQ realistic applications, and the definition of best practices to achieve global accuracy. The anchored-ANOVA method is used to efficiently reduce the UQ dimension space, while the POD/Kriging is used to smooth and interpolate each anchored-ANOVA term. The main advantages of the proposed method are illustrated through four applications with increasing complexity, most of them based on Large-Eddy Simulation as a high-fidelity CFD tool: the turbulent channel flow, the flow around an isolated bluff-body, a pedestrian wind comfort study in a full scale urban area and an application to toxic gas dispersion in a full scale city area. The proposed c-APK method (anchored-ANOVA-POD/Kriging) inherits the advantages of each key element: interpolation through POD/Kriging precludes the use of quadrature schemes therefore allowing for a more flexible sampling strategy while the ANOVA decomposition allows for a better domain exploration. A comparison of the three methods is given for each application. In addition, the importance of adding flexibility to the control parameters and the choice of the quantity of interest (QoI) are discussed. As a result, global accuracy can be achieved with a reasonable number of samples allowing computationally expensive CFD-UQ analysis.
2013-01-01
Background Accurate determination of genetic ancestry is of high interest for many areas such as biomedical research, personal genomics and forensics. It remains an important topic in genetic association studies, as it has been shown that population stratification, if not appropriately considered, can lead to false-positive and -negative results. While large association studies typically extract ancestry information from available genome-wide SNP genotypes, many important clinical data sets on rare phenotypes and historical collections assembled before the GWAS area are in need of a feasible method (i.e., ease of genotyping, small number of markers) to infer the geographic origin and potential admixture of the study subjects. Here we report on the development, application and limitations of a small, multiplexable ancestry informative marker (AIM) panel of SNPs (or AISNP) developed specifically for this purpose. Results Based on worldwide populations from the HGDP, a 41-AIM AISNP panel for multiplex application with the ABI SNPlex and a subset with 31 AIMs for the Sequenome iPLEX system were selected and found to be highly informative for inferring ancestry among the seven continental regions Africa, the Middle East, Europe, Central/South Asia, East Asia, the Americas and Oceania. The panel was found to be least informative for Eurasian populations, and additional AIMs for a higher resolution are suggested. A large reference set including over 4,000 subjects collected from 120 global populations was assembled to facilitate accurate ancestry determination. We show practical applications of this AIM panel, discuss its limitations for admixed individuals and suggest ways to incorporate ancestry information into genetic association studies. Conclusion We demonstrated the utility of a small AISNP panel specifically developed to discern global ancestry. We believe that it will find wide application because of its feasibility and potential for a wide range of applications. PMID:23815888
STREAM2016: Streaming Requirements, Experience, Applications and Middleware Workshop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fox, Geoffrey; Jha, Shantenu; Ramakrishnan, Lavanya
The Department of Energy (DOE) Office of Science (SC) facilities including accelerators, light sources and neutron sources and sensors that study, the environment, and the atmosphere, are producing streaming data that needs to be analyzed for next-generation scientific discoveries. There has been an explosion of new research and technologies for stream analytics arising from the academic and private sectors. However, there has been no corresponding effort in either documenting the critical research opportunities or building a community that can create and foster productive collaborations. The two-part workshop series, STREAM: Streaming Requirements, Experience, Applications and Middleware Workshop (STREAM2015 and STREAM2016), weremore » conducted to bring the community together and identify gaps and future efforts needed by both NSF and DOE. This report describes the discussions, outcomes and conclusions from STREAM2016: Streaming Requirements, Experience, Applications and Middleware Workshop, the second of these workshops held on March 22-23, 2016 in Tysons, VA. STREAM2016 focused on the Department of Energy (DOE) applications, computational and experimental facilities, as well software systems. Thus, the role of “streaming and steering” as a critical mode of connecting the experimental and computing facilities was pervasive through the workshop. Given the overlap in interests and challenges with industry, the workshop had significant presence from several innovative companies and major contributors. The requirements that drive the proposed research directions, identified in this report, show an important opportunity for building competitive research and development program around streaming data. These findings and recommendations are consistent with vision outlined in NRC Frontiers of Data and National Strategic Computing Initiative (NCSI) [1, 2]. The discussions from the workshop are captured as topic areas covered in this report's sections. The report discusses four research directions driven by current and future application requirements reflecting the areas identified as important by STREAM2016. These include (i) Algorithms, (ii) Programming Models, Languages and Runtime Systems (iii) Human-in-the-loop and Steering in Scientific Workflow and (iv) Facilities.« less
Inhalational and dermal exposures during spray application of biocides.
Berger-Preiss, Edith; Boehncke, Andrea; Könnecker, Gustav; Mangelsdorf, Inge; Holthenrich, Dagmar; Koch, Wolfgang
2005-01-01
Data on inhalational and potential dermal exposures during spray application of liquid biocidal products were generated. On the one hand, model experiments with different spraying devices using fluorescent tracers were carried out to investigate the influence of parameters relevant to the exposure (e.g. spraying equipment, nozzle size, direction of application). On the other hand, measurements were performed at selected workplaces (during disinfection operations in food and feed areas; pest control operations for private, public and veterinary hygiene; wood protection and antifouling applications) after application of biocidal products such as Empire 20, Responsar SC, Omexan-forte, Actellic, Perma-forte; Fendona SC, Pyrethrum mist; CBM 8, Aldekol Des 03, TAD CID, Basileum, Basilit. The measurements taken in the model rooms demonstrated dependence of the inhalation exposure on the type of spraying device used, in the following order: "spraying with low pressure" < "airless spraying" < "fogging" indicating that the particle diameter of the released spray droplets is the most important parameter. In addition inhalation exposure was lowest when the spraying direction was downward. Also for the potential dermal exposure, the spraying direction was of particular importance: overhead spraying caused the highest contamination of body surfaces. The data of inhalational and potential dermal exposures gained through workplace measurements showed considerable variation. During spraying procedures with low-pressure equipments, dose rates of active substances inhaled by the operators ranged from 7 to 230 microg active substance (a.s.)/h. An increase in inhaled dose rates (6-33 mg a.s./h) was observed after use of high application volumes/time unit during wood protection applications indoors. Spraying in the veterinary sector using medium-pressure sprayers led to inhaled dose rates between 2 and 24mga.s./h. The highest inhaled dose rates were measured during fogging (114 mg a.s./h) and after-high-pressure applications in the antifouling sector (110-300 mg a.s./h). The potential dermal exposure of spray operators was lowest (dose rates from 0.2 to 7 mg a.s./h) in the areas of food and feed disinfection and private and public hygiene during spraying with low-pressure devices. During fogging, wood protection and antifouling applications, high-potential dermal exposures of the operators were determined. Dermal dose rates varied between 100 and 34,000 mg a.s./h.
NASA Astrophysics Data System (ADS)
Jain, A. K.; Dorai, C.
Computer vision has emerged as a challenging and important area of research, both as an engineering and a scientific discipline. The growing importance of computer vision is evident from the fact that it was identified as one of the "Grand Challenges" and also from its prominent role in the National Information Infrastructure. While the design of a general-purpose vision system continues to be elusive machine vision systems are being used successfully in specific application elusive, machine vision systems are being used successfully in specific application domains. Building a practical vision system requires a careful selection of appropriate sensors, extraction and integration of information from available cues in the sensed data, and evaluation of system robustness and performance. The authors discuss and demonstrate advantages of (1) multi-sensor fusion, (2) combination of features and classifiers, (3) integration of visual modules, and (IV) admissibility and goal-directed evaluation of vision algorithms. The requirements of several prominent real world applications such as biometry, document image analysis, image and video database retrieval, and automatic object model construction offer exciting problems and new opportunities to design and evaluate vision algorithms.
Jubb, Aaron M; Hua, Wei; Allen, Heather C
2012-01-01
The chemistry that occurs at surfaces has been an intense area of study for many years owing to its complexity and importance in describing a wide range of physical phenomena. The vapor/water interface is particularly interesting from an environmental chemistry perspective as this surface plays host to a wide range of chemistries that influence atmospheric and geochemical interactions. The application of vibrational sum frequency generation (VSFG), an inherently surface-specific, even-order nonlinear optical spectroscopy, enables the direct interrogation of various vapor/aqueous interfaces to elucidate the behavior and reaction of chemical species within the surface regime. In this review we discuss the application of VSFG to the study of a variety of atmospherically important systems at the vapor/aqueous interface. Chemical systems presented include inorganic ionic solutions prevalent in aqueous marine aerosols, small molecular solutes, and long-chain fatty acids relevant to fat-coated aerosols. The ability of VSFG to probe both the organization and reactions that may occur for these systems is highlighted. A future perspective toward the application of VSFG to the study of environmental interfaces is also provided.
Active learning in camera calibration through vision measurement application
NASA Astrophysics Data System (ADS)
Li, Xiaoqin; Guo, Jierong; Wang, Xianchun; Liu, Changqing; Cao, Binfang
2017-08-01
Since cameras are increasingly more used in scientific application as well as in the applications requiring precise visual information, effective calibration of such cameras is getting more important. There are many reasons why the measurements of objects are not accurate. The largest reason is that the lens has a distortion. Another detrimental influence on the evaluation accuracy is caused by the perspective distortions in the image. They happen whenever we cannot mount the camera perpendicularly to the objects we want to measure. In overall, it is very important for students to understand how to correct lens distortions, that is camera calibration. If the camera is calibrated, the images are rectificated, and then it is possible to obtain undistorted measurements in world coordinates. This paper presents how the students should develop a sense of active learning for mathematical camera model besides the theoretical scientific basics. The authors will present the theoretical and practical lectures which have the goal of deepening the students understanding of the mathematical models of area scan cameras and building some practical vision measurement process by themselves.
High-frequency applications of high-temperature superconductor thin films
NASA Astrophysics Data System (ADS)
Klein, N.
2002-10-01
High-temperature superconducting thin films offer unique properties which can be utilized for a variety of high-frequency device applications in many areas related to the strongly progressing market of information technology. One important property is an exceptionally low level of microwave absorption at temperatures attainable with low power cryocoolers. This unique property has initiated the development of various novel type of microwave devices and commercialized subsystems with special emphasis on application in advanced microwave communication systems. The second important achievement related to efforts in oxide thin and multilayer technology was the reproducible fabrication of low-noise Josephson junctions in high-temperature superconducting thin films. As a consequence of this achievement, several novel nonlinear high-frequency devices, most of them exploiting the unique features of the ac Josephson effect, have been developed and found to exhibit challenging properties to be utilized in basic metrology and Terahertz technology. On the longer timescale, the achievements in integrated high-temperature superconductor circuit technology may offer a strong potential for the development of digital devices with possible clock frequencies in the range of 100 GHz.
Monitoring compaction and compressibility changes in offshore chalk reservoirs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dean, G.; Hardy, R.; Eltvik, P.
1994-03-01
Some of the North Sea's largest and most important oil fields are in chalk reservoirs. In these fields, it is important to measure reservoir compaction and compressibility because compaction can result in platform subsidence. Also, compaction drive is a main drive mechanism in these fields, so an accurate reserves estimate cannot be made without first measuring compressibility. Estimating compaction and reserves is difficult because compressibility changes throughout field life. Installing of accurate, permanent downhole pressure gauges on offshore chalk fields makes it possible to use a new method to monitor compressibility -- measurement of reservoir pressure changes caused by themore » tide. This tidal-monitoring technique is an in-situ method that can greatly increase compressibility information. It can be used to estimate compressibility and to measure compressibility variation over time. This paper concentrates on application of the tidal-monitoring technique to North Sea chalk reservoirs. However, the method is applicable for any tidal offshore area and can be applied whenever necessary to monitor in-situ rock compressibility. One such application would be if platform subsidence was expected.« less
Arch Venture Partners' investment considerations for CBRNE products and opportunities
NASA Astrophysics Data System (ADS)
Crandell, K.; Lazarus, S.; Gardner, P. J.
2008-04-01
ARCH is interested in building leading, highly-valued companies from leading research. Toward that end we value innovations created by the leading researchers in the world, many of which are funded to solve critical scientific challenges including those in the instrumentation and CBRNE area. The most important CBRNE innovations we have seen at ARCH are breakthroughs involving significant unaddressed technology risk and have the potential for broad proprietary intellectual property as a result. The model ARCH has evolved in instrumentation is to look for a breakthrough innovation, with strong intellectual property and continue to strengthen the patent estate through the life of the company. ARCH looks to build companies around leading interdisciplinary scientific and engineering teams, and we favor platform technology that can be applied to multiple market applications both commercial and government. As part of a strategy to build a great company, addressing important CBRNE challenges can help a company strengthen its technical team and its IP estate. This supports a focus on early low volume markets on the way toward addressing a fuller portfolio of applications. Experienced Venture Capitalists can help this process by identifying important executive talent, partners and applications, offering financial syndication strength, and helping shape the company's strategy to maximize the ultimate value realized.
Vertical Accuracy Evaluation of Aster GDEM2 Over a Mountainous Area Based on Uav Photogrammetry
NASA Astrophysics Data System (ADS)
Liang, Y.; Qu, Y.; Guo, D.; Cui, T.
2018-05-01
Global digital elevation models (GDEM) provide elementary information on heights of the Earth's surface and objects on the ground. GDEMs have become an important data source for a range of applications. The vertical accuracy of a GDEM is critical for its applications. Nowadays UAVs has been widely used for large-scale surveying and mapping. Compared with traditional surveying techniques, UAV photogrammetry are more convenient and more cost-effective. UAV photogrammetry produces the DEM of the survey area with high accuracy and high spatial resolution. As a result, DEMs resulted from UAV photogrammetry can be used for a more detailed and accurate evaluation of the GDEM product. This study investigates the vertical accuracy (in terms of elevation accuracy and systematic errors) of the ASTER GDEM Version 2 dataset over a complex terrain based on UAV photogrammetry. Experimental results show that the elevation errors of ASTER GDEM2 are in normal distribution and the systematic error is quite small. The accuracy of the ASTER GDEM2 coincides well with that reported by the ASTER validation team. The accuracy in the research area is negatively correlated to both the slope of the terrain and the number of stereo observations. This study also evaluates the vertical accuracy of the up-sampled ASTER GDEM2. Experimental results show that the accuracy of the up-sampled ASTER GDEM2 data in the research area is not significantly reduced by the complexity of the terrain. The fine-grained accuracy evaluation of the ASTER GDEM2 is informative for the GDEM-supported UAV photogrammetric applications.
Swain, Eric D.; Decker, Jeremy D.
2009-01-01
A numerical model application was developed for the coastal area inland of the Ten Thousand Islands (TTI) in southwestern Florida using the Flow and Transport in a Linked Overland/Aquifer Density-Dependent System (FTLOADDS) model. This model couples a two-dimensional dynamic surface-water model with a three-dimensional groundwater model, and has been applied to several locations in southern Florida. The model application solves equations for salt transport in groundwater and surface water, and also simulates surface-water temperature using a newly enhanced heat transport algorithm. One of the purposes of the TTI application is to simulate hydrologic factors that relate to habitat suitability for the West Indian Manatee. Both salinity and temperature have been shown to be important factors for manatee survival. The inland area of the TTI domain is the location of the Picayune Strand Restoration Project, which is designed to restore predevelopment hydrology through the filling and plugging of canals, construction of spreader channels, and the construction of levees and pump stations. The effects of these changes are simulated to determine their effects on manatee habitat. The TTI application utilizes a large amount of input data for both surface-water and groundwater flow simulations. These data include topography, frictional resistance, atmospheric data including rainfall and air temperature, aquifer properties, and boundary conditions for tidal levels, inflows, groundwater heads, and salinities. Calibration was achieved by adjusting the parameters having the largest uncertainty: surface-water inflows, the surface-water transport dispersion coefficient, and evapotranspiration. A sensitivity analysis did not indicate that further parameter changes would yield an overall improvement in simulation results. The agreement between field data from GPS-tracked manatees and TTI application results demonstrates that the model can predict the salinity and temperature fluctuations which affect manatee behavior. Comparison of the existing conditions simulation with the simulation incorporating restoration changes indicated that the restoration would increase the period of inundation for most of the coastal wetlands. Generally, surface-water salinity was lowered by restoration changes in most of the wetlands areas, especially during the early dry season. However, the opposite pattern was observed in the primary canal habitat for manatees, namely, the Port of the Islands. Salinities at this location tended to be moderately elevated during the dry season, and unchanged during the wet season. Water temperatures were in close agreement between the existing conditions and restoration simulations, although minimum temperatures at the Port of the Islands were slightly higher in the restoration simulation as a result of the additional surface-water ponding and warming that occurs in adjacent wetlands. The TTI application output was used to generate salinity and temperature time series for comparison to manatee field tracking data and an individually-based manatee-behavior model. Overlaying field data with salinity and temperature results from the TTI application reflects the effect of warm water availability and the periodic need for low-salinity drinking water on manatee movements. The manatee-behavior model uses the TTI application data at specific model nodes along the main manatee travel corridors to determine manatee migration patterns. The differences between the existing conditions and restoration scenarios can then be compared for manatee refugia. The TTI application can be used to test a variety of hydrologic conditions and their effect on important criteria.
Yang, Ke; Peretz-Soroka, Hagit; Liu, Yong; Lin, Francis
2016-03-21
Portable electronic devices and wireless communication systems enable a broad range of applications such as environmental and food safety monitoring, personalized medicine and healthcare management. Particularly, hybrid smartphone and microfluidic devices provide an integrated solution for the new generation of mobile sensing applications. Such mobile sensing based on microfluidic devices (broadly defined) and smartphones (MS(2)) offers a mobile laboratory for performing a wide range of bio-chemical detection and analysis functions such as water and food quality analysis, routine health tests and disease diagnosis. MS(2) offers significant advantages over traditional platforms in terms of test speed and control, low cost, mobility, ease-of-operation and data management. These improvements put MS(2) in a promising position in the fields of interdisciplinary basic and applied research. In particular, MS(2) enables applications to remote in-field testing, homecare, and healthcare in low-resource areas. The marriage of smartphones and microfluidic devices offers a powerful on-chip operating platform to enable various bio-chemical tests, remote sensing, data analysis and management in a mobile fashion. The implications of such integration are beyond telecommunication and microfluidic-related research and technology development. In this review, we will first provide the general background of microfluidic-based sensing, smartphone-based sensing, and their integration. Then, we will focus on several key application areas of MS(2) by systematically reviewing the important literature in each area. We will conclude by discussing our perspectives on the opportunities, issues and future directions of this emerging novel field.