Sample records for important cellular components

  1. Creating Age Asymmetry: Consequences of Inheriting Damaged Goods in Mammalian Cells.

    PubMed

    Moore, Darcie L; Jessberger, Sebastian

    2017-01-01

    Accumulating evidence suggests that mammalian cells asymmetrically segregate cellular components ranging from genomic DNA to organelles and damaged proteins during cell division. Asymmetric inheritance upon mammalian cell division may be specifically important to ensure cellular fitness and propagate cellular potency to individual progeny, for example in the context of somatic stem cell division. We review here recent advances in the field and discuss potential effects and underlying mechanisms that mediate asymmetric segregation of cellular components during mammalian cell division. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. At a glance: cellular biology for engineers.

    PubMed

    Khoshmanesh, K; Kouzani, A Z; Nahavandi, S; Baratchi, S; Kanwar, J R

    2008-10-01

    Engineering contributions have played an important role in the rise and evolution of cellular biology. Engineering technologies have helped biologists to explore the living organisms at cellular and molecular levels, and have created new opportunities to tackle the unsolved biological problems. There is now a growing demand to further expand the role of engineering in cellular biology research. For an engineer to play an effective role in cellular biology, the first essential step is to understand the cells and their components. However, the stumbling block of this step is to comprehend the information given in the cellular biology literature because it best suits the readers with a biological background. This paper aims to overcome this bottleneck by describing the human cell components as micro-plants that form cells as micro-bio-factories. This concept can accelerate the engineers' comprehension of the subject. In this paper, first the structure and function of different cell components are described. In addition, the engineering attempts to mimic various cell components through numerical modelling or physical implementation are highlighted. Next, the interaction of different cell components that facilitate complicated chemical processes, such as energy generation and protein synthesis, are described. These complex interactions are translated into simple flow diagrams, generally used by engineers to represent multi-component processes.

  3. Inter-Cellular Exchange of Cellular Components via VE-Cadherin-Dependent Trans-Endocytosis

    PubMed Central

    Sakurai, Takashi; Woolls, Melissa J.; Jin, Suk-Won

    2014-01-01

    Cell-cell communications typically involve receptor-mediated signaling initiated by soluble or cell-bound ligands. Here, we report a unique mode of endocytosis: proteins originating from cell-cell junctions and cytosolic cellular components from the neighboring cell are internalized, leading to direct exchange of cellular components between two adjacent endothelial cells. VE-cadherins form transcellular bridges between two endothelial cells that are the basis of adherence junctions. At such adherens junction sites, we observed the movement of the entire VE-cadherin molecule from one endothelial cell into the other with junctional and cytoplasmic components. This phenomenon, here termed trans-endocytosis, requires the establishment of a VE-cadherin homodimer in trans with internalization proceeding in a Rac1-, and actomyosin-dependent manner. Importantly, the trans-endocytosis is not dependent on any known endocytic pathway including clathrin-dependent endocytosis, macropinocytosis or phagocytosis. This novel form of cell-cell communications, leading to a direct exchange of cellular components, was observed in 2D and 3D-cultured endothelial cells as well as in the developing zebrafish vasculature. PMID:24603875

  4. NFAT Signaling and the Tumorigenic Microenvironment of the Prostate

    DTIC Science & Technology

    2017-12-01

    ABSTRACT Although the importance of microenvironment in prostate cancer is widely recognized, the molecular and cellular processes leading from genetic ...non-invasive clinical tests. Second, the illustration of the main cellular and molecular components in the tumorigenic microenvironment provides new...potential of NFATc1 as a novel biomarker for prostate cancer diagnosis/prognosis. We will take advantage of the cellular precision, genetic manipulability

  5. Taming the Sphinx: Mechanisms of Cellular Sphingolipid Homeostasis

    PubMed Central

    Olson, D. K.; Fröhlich, F.; Farese, R; Walther, T. C.

    2016-01-01

    Sphingolipids are important structural membrane components of eukaryotic cells, and potent signaling molecules. As such, their levels must be maintained to optimize cellular functions in different cellular membranes. Here, we review the current knowledge of homeostatic sphingolipid regulation. We describe recent studies in Saccharomyces cerevisiae that have provided insights into how cells sense changes in sphingolipid levels in the plasma membrane and acutely regulate sphingolipid biosynthesis by altering signaling pathways. We also discuss how cellular trafficking has emerged as an important determinant of sphingolipid homeostasis. Finally, we highlight areas where work is still needed to elucidate the mechanisms of sphingolipid regulation and the physiological functions of such regulatory networks, especially in mammalian cells. PMID:26747648

  6. Regulation of cellular senescence by the essential caveolar component PTRF/Cavin-1

    PubMed Central

    Bai, Lin; Deng, Xiaoli; Li, Juanjuan; Wang, Miao; Li, Qian; An, Wei; A, Deli; Cong, Yu-Sheng

    2011-01-01

    Polymerase I and transcript release factor (PTRF, also known as Cavin-1) is an essential component in the biogenesis and function of caveolae. Here, we show that PTRF expression is increased in senescent human fibroblasts. Importantly, overexpression of PTRF induced features characteristic of cellular senescence, whereas reduced PTRF expression extended the cellular replicative lifespan. Interestingly, we found that PTRF localized primarily to the nuclei of young and quiescent WI-38 human fibroblasts, but translocated to the cytosol and plasma membrane during cellular senescence. Furthermore, electron microscopic analysis demonstrated an increased number of caveolar structures in senescent and PTRF-transfected WI-38 cells. Our data suggest that the role of PTRF in cellular senescence is dependent on its targeting to caveolae and its interaction with caveolin-1, which appeared to be regulated by the phosphorylation of PTRF. Taken together, our findings identify PTRF as a novel regulator of cellular senescence that acts through the p53/p21 and caveolar pathways. PMID:21445100

  7. Light-dependent governance of cell shape dimensions in cyanobacteria.

    PubMed

    Montgomery, Beronda L

    2015-01-01

    The regulation of cellular dimension is important for the function and survival of cells. Cellular dimensions, such as size and shape, are regulated throughout the life cycle of bacteria and can be adapted in response to environmental changes to fine-tune cellular fitness. Cell size and shape are generally coordinated with cell growth and division. Cytoskeletal regulation of cell shape and cell wall biosynthesis and/or deposition occurs in a range of organisms. Photosynthetic organisms, such as cyanobacteria, particularly exhibit light-dependent regulation of morphogenes and generation of reactive oxygen species and other signals that can impact cellular dimensions. Environmental signals initiate adjustments of cellular dimensions, which may be vitally important for optimizing resource acquisition and utilization or for coupling the cellular dimensions with the regulation of subcellular organization to maintain optimal metabolism. Although the involvement of cytoskeletal components in the regulation of cell shape is widely accepted, the signaling factors that regulate cytoskeletal and other distinct components involved in cell shape control, particularly in response to changes in external light cues, remain to be fully elucidated. In this review, factors impacting the inter-coordination of growth and division, the relationship between the regulation of cellular dimensions and central carbon metabolism, and consideration of the effects of specific environment signals, primarily light, on cell dimensions in cyanobacteria will be discussed. Current knowledge about the molecular bases of the light-dependent regulation of cellular dimensions and cell shape in cyanobacteria will be highlighted.

  8. Taming the sphinx: Mechanisms of cellular sphingolipid homeostasis.

    PubMed

    Olson, D K; Fröhlich, F; Farese, R V; Walther, T C

    2016-08-01

    Sphingolipids are important structural membrane components of eukaryotic cells, and potent signaling molecules. As such, their levels must be maintained to optimize cellular functions in different cellular membranes. Here, we review the current knowledge of homeostatic sphingolipid regulation. We describe recent studies in Saccharomyces cerevisiae that have provided insights into how cells sense changes in sphingolipid levels in the plasma membrane and acutely regulate sphingolipid biosynthesis by altering signaling pathways. We also discuss how cellular trafficking has emerged as an important determinant of sphingolipid homeostasis. Finally, we highlight areas where work is still needed to elucidate the mechanisms of sphingolipid regulation and the physiological functions of such regulatory networks, especially in mammalian cells. This article is part of a Special Issue entitled: The cellular lipid landscape edited by Tim P. Levine and Anant K. Menon. Copyright © 2015. Published by Elsevier B.V.

  9. Profiling planktonic biomass using element-specific, multicomponent nuclear magnetic resonance spectroscopy.

    PubMed

    Komatsu, Takanori; Kobayashi, Toshiya; Hatanaka, Minoru; Kikuchi, Jun

    2015-06-02

    Planktonic metabolism plays crucial roles in Earth's elemental cycles. Chemical speciation as well as elemental stoichiometry is important for advancing our understanding of planktonic roles in biogeochemical cycles. In this study, a multicomponent solid-state nuclear magnetic resonance (NMR) approach is proposed for chemical speciation of cellular components, using several advanced NMR techniques. Measurements by ssNMR were performed on (13)C and (15)N-labeled Euglena gracilis, a flagellated protist. 3D dipolar-assisted rotational resonance, double-cross-polarization (1)H-(13)C correlation spectroscopy, and (1)H-(13)C solid-state heteronuclear single quantum correlation spectroscopy successively allowed characterization of cellular components. These techniques were then applied to E. gracilis cultured in high and low ammonium media to demonstrate the power of this method for profiling and comparing cellular components. Cellular NMR spectra indicated that ammonium induced both paramylon degradation and amination. Arginine was stored as a nitrogen reserve and ammonium replaced by arginine catabolism via the arginine dihydrolase pathway. (15)N and (31)P cellular ssNMR indicated arginine and polyphosphate accumulation in E. gracilis, respectively. This chemical speciation technique will contribute to environmental research by providing detailed information on environmental chemical properties.

  10. A technical review of cellular radio and analysis of a possible protocol

    NASA Astrophysics Data System (ADS)

    Reese, William D.

    1992-09-01

    Radio and television technology made the field of cellular radio possible. This thesis shows the development of radio and television technology from both a historical and technical aspect. A review of the important researchers and their contributions is followed by a technical explanation of the theories behind electromagnetic radiation of radio and television signals and the technology which was developed to implement such transmissions. The evolution of development which the paper outlines begins with some of the first theories about electricity and magnetism and the subsequent mathematical foundation developed to explain them. This is followed by a number of experimental and developmental researchers and their contributions. The bulk of the paper is concentrated on explaining the earliest generations of radio and all generations of television. The major components of both radio and television are described in detail along with an explanation of what they do and how they work. Such components, in many cases, found important uses in fields outside those for which they were developed. A brief overview of the regulatory environment of each technology and the U.S. and international standardization efforts is also included. Finally, the paper illustrates a modern-day application of radio technology--the cellular radio industry. A description of the components and their functions is followed by a possible cellular radio protocol and analysis.

  11. Important cellular targets for antimicrobial photodynamic therapy.

    PubMed

    Awad, Mariam M; Tovmasyan, Artak; Craik, James D; Batinic-Haberle, Ines; Benov, Ludmil T

    2016-09-01

    The persistent problem of antibiotic resistance has created a strong demand for new methods for therapy and disinfection. Photodynamic inactivation (PDI) of microbes has demonstrated promising results for eradication of antibiotic-resistant strains. PDI is based on the use of a photosensitive compound (photosensitizer, PS), which upon illumination with visible light generates reactive species capable of damaging and killing microorganisms. Since photogenerated reactive species are short lived, damage is limited to close proximity of the PS. It is reasonable to expect that the larger the number of damaged targets is and the greater their variety is, the higher the efficiency of PDI is and the lower the chances for development of resistance are. Exact molecular mechanisms and specific targets whose damage is essential for microbial inactivation have not been unequivocally established. Two main cellular components, DNA and plasma membrane, are regarded as the most important PDI targets. Using Zn porphyrin-based PSs and Escherichia coli as a model Gram-negative microorganism, we demonstrate that efficient photoinactivation of bacteria can be achieved without detectable DNA modification. Among the cellular components which are modified early during illumination and constitute key PDI targets are cytosolic enzymes, membrane-bound protein complexes, and the plasma membrane. As a result, membrane barrier function is lost, and energy and reducing equivalent production is disrupted, which in turn compromises cell defense mechanisms, thus augmenting the photoinduced oxidative injury. In conclusion, high PDI antimicrobial effectiveness does not necessarily require impairment of a specific critical cellular component and can be achieved by inducing damage to multiple cellular targets.

  12. Growth phase-dependent activation of the DccRS regulon of Campylobacter jejuni

    USDA-ARS?s Scientific Manuscript database

    Two-component systems are widespread prokaryotic signal transduction devices which allow the regulation of cellular functions in response to changing environmental conditions. The two-component system DccRS (Cj1223-Cj1222) of Campylobacter jejuni is important for the colonization of chickens. Here w...

  13. LIPOMICS, AN IMPORTANT COMPONENT OF METABOLOMICS, AND POSSIBLE USE IN TOXICOLOGY STUDIES

    EPA Science Inventory

    Metabolites of endogenous biochemical substances can be considered to represent the ultimate organ and cellular responses to toxicants or other changes in an organism's environment. An important fraction of these endogenously produced metabolites are lipids; the comprehensive stu...

  14. Magmas functions as a ROS regulator and provides cytoprotection against oxidative stress-mediated damages

    PubMed Central

    Srivastava, S; Sinha, D; Saha, P P; Marthala, H; D'Silva, P

    2014-01-01

    Redox imbalance generates multiple cellular damages leading to oxidative stress-mediated pathological conditions such as neurodegenerative diseases and cancer progression. Therefore, maintenance of reactive oxygen species (ROS) homeostasis is most important that involves well-defined antioxidant machinery. In the present study, we have identified for the first time a component of mammalian protein translocation machinery Magmas to perform a critical ROS regulatory function. Magmas overexpression has been reported in highly metabolically active tissues and cancer cells that are prone to oxidative damage. We found that Magmas regulates cellular ROS levels by controlling its production as well as scavenging. Magmas promotes cellular tolerance toward oxidative stress by enhancing antioxidant enzyme activity, thus preventing induction of apoptosis and damage to cellular components. Magmas enhances the activity of electron transport chain (ETC) complexes, causing reduced ROS production. Our results suggest that J-like domain of Magmas is essential for maintenance of redox balance. The function of Magmas as a ROS sensor was found to be independent of its role in protein import. The unique ROS modulatory role of Magmas is highlighted by its ability to increase cell tolerance to oxidative stress even in yeast model organism. The cytoprotective capability of Magmas against oxidative damage makes it an important candidate for future investigation in therapeutics of oxidative stress-related diseases. PMID:25165880

  15. Cellular Components, Including Stem-Like Cells, of Preterm Mother's Mature Milk as Compared with Those in Her Colostrum: A Pilot Study.

    PubMed

    Kaingade, Pankaj; Somasundaram, Indumathi; Sharma, Akshita; Patel, Darshan; Marappagounder, Dhanasekaran

    2017-09-01

    Whether the preterm mothers' mature milk retains the same cellular components as those in colostrum including stem-like cell, cell adhesion molecules, and immune cells. A total of five preterm mothers were recruited for the study having an average age of 30.2 years and gestational age of 29.8 weeks from the Pristine Women's Hospital, Kolhapur. Colostrum milk was collected within 2-5 days and matured milk was collected 20-30 days after delivery from the same mothers. Integral cellular components of 22 markers including stem cells, immune cells, and cell adhesion molecules were measured using flowcytometry. Preterm mature milk was found to possess higher expressions of hematopoietic stem cells, mesenchymal stem-like cells, immune cells, few cell adhesion molecules, and side population cells than colostrum. The increased level of these different cell components in mature milk may be important in the long-term preterm baby's health growth. Further similar research in a larger population of various gestational ages and lactation stages of preterm mothers is warranted to support these pilot findings.

  16. The Serum Complement System: A Simplified Laboratory Exercise to Measure the Activity of an Important Component of the Immune System

    ERIC Educational Resources Information Center

    Inglis, Jordan E.; Radziwon, Kimberly A.; Maniero, Gregory D.

    2008-01-01

    The immune system is a vital physiological component that affords animals protection from disease and is composed of innate and adaptive mechanisms that rely on cellular and dissolved components. The serum complement system is a series of dissolved proteins that protect against a variety of pathogens. The activity of complement in serum can be…

  17. The regulatory software of cellular metabolism.

    PubMed

    Segrè, Daniel

    2004-06-01

    Understanding the regulation of metabolic pathways in the cell is like unraveling the 'software' that is running on the 'hardware' of the metabolic network. Transcriptional regulation of enzymes is an important component of this software. A recent systematic analysis of metabolic gene-expression data in Saccharomyces cerevisiae reveals a complex modular organization of co-expressed genes, which could increase our ability to understand and engineer cellular metabolic functions.

  18. [The connective tissues, from the origin of the concept to its "Maturation" to extracellular matrix. Application to ocular tissues. Contribution to the history of medical sciences].

    PubMed

    Labat-Robert, J; Robert, L; Pouliquen, Y

    2011-06-01

    The "Tissue" concept emerged apparently in the medical literature at about the French revolution, during the second half of the 18(th) century. It was found in the texts written by the physicians of Béarn and Montpellier, the Bordeu-s and also by the famous physician, Felix Vicq d'Azyr, the last attending physician of the queen Marie-Antoinette, "Bordeu et al. (1775) et Pouliquen (2009)". It was elaborated into a coherent doctrine somewhat later by Xavier Bichat, considered as the founder of modern pathological anatomy, Bichat. With the advent of histochemistry, from the beginning of the 20(th) century, several of the principal macromolecular components of connective tissues, collagens, elastin, "acid mucopolysaccharides" (later glycosaminoglycans and proteoglycans) and finally structural glycoproteins were characterized. These constituents of connective tissues were then designated as components of the extracellular matrix (ECM), closely associated to the cellular components of these tissues by adhesive (structural) glycoproteins as fibronectin, several others and cell receptors, "recognising" ECM-components as integrins, the elastin-receptor and others. This molecular arrangement fastens cells to the ECM-components they synthesize and mediates the exchange of informations between the cells to the ECM (inside-out) and also from the ECM-components to the cells (outside-in). This macromolecular arrangement is specific for each tissue as a result of the differentiation of their cellular components. It is also the basis and condition of the fulfillment of the specific functions of differentiated tissues. This is a short description of the passage of the "tissue" concept from its vague origin towards its precise identification at the cellular and molecular level up to the recognition of its functional importance and its establishment as an autonomous science. This can be considered as a new example of the importance of metaphors for the progress of science, Keller (1995). Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  19. Cellular and soluble components decrease the viable pathogen counts in milk from dairy cows with subclinical mastitis.

    PubMed

    Koshiishi, Tomoko; Watanabe, Masako; Miyake, Hajime; Hisaeda, Keiichi; Isobe, Naoki

    2017-08-10

    The present study was undertaken to clarify the factors that reduce the viable pathogen count in milk collected from the udders of subclinical mastitic cows during preservation. Milk was centrifuged to divide somatic cells (cellular components, precipitates) and antimicrobial peptides (soluble components, supernatants without fat layer); each fraction was cultured with bacteria, and the number of viable bacteria was assessed prior to and after culture. In 28.8% of milk samples, we noted no viable bacteria immediately after collection; this value increased significantly after a 5-hr incubation of milk with cellular components but not with soluble components (48.1 and 28.8%, respectively). After culture with cellular components, the numbers of bacteria (excluding Staphylococcus aureus and Streptococcus uberis) and yeast decreased dramatically, although the differences were not statistically significant. After cultivation with soluble components, only yeasts showed a tendency toward decreased mean viability, whereas the mean bacterial counts of S. uberis and T. pyogenes tended to increase after 5-hr preservation with soluble components. These results suggest that most pathogens in high somatic cell count (SCC) milk decreased during preservation at 15 to 25°C, due to both the cellular components and antimicrobial components in the milk. Particularly, the cellular components more potently reduced bacterial counts during preservation.

  20. In search of cellular control: signal transduction in context

    NASA Technical Reports Server (NTRS)

    Ingber, D.

    1998-01-01

    The field of molecular cell biology has experienced enormous advances over the last century by reducing the complexity of living cells into simpler molecular components and binding interactions that are amenable to rigorous biochemical analysis. However, as our tools become more powerful, there is a tendency to define mechanisms by what we can measure. The field is currently dominated by efforts to identify the key molecules and sequences that mediate the function of critical receptors, signal transducers, and molecular switches. Unfortunately, these conventional experimental approaches ignore the importance of supramolecular control mechanisms that play a critical role in cellular regulation. Thus, the significance of individual molecular constituents cannot be fully understood when studied in isolation because their function may vary depending on their context within the structural complexity of the living cell. These higher-order regulatory mechanisms are based on the cell's use of a form of solid-state biochemistry in which molecular components that mediate biochemical processing and signal transduction are immobilized on insoluble cytoskeletal scaffolds in the cytoplasm and nucleus. Key to the understanding of this form of cellular regulation is the realization that chemistry is structure and hence, recognition of the the importance of architecture and mechanics for signal integration and biochemical control. Recent work that has unified chemical and mechanical signaling pathways provides a glimpse of how this form of higher-order cellular control may function and where paths may lie in the future.

  1. Stochastic Model of Vesicular Sorting in Cellular Organelles

    NASA Astrophysics Data System (ADS)

    Vagne, Quentin; Sens, Pierre

    2018-02-01

    The proper sorting of membrane components by regulated exchange between cellular organelles is crucial to intracellular organization. This process relies on the budding and fusion of transport vesicles, and should be strongly influenced by stochastic fluctuations, considering the relatively small size of many organelles. We identify the perfect sorting of two membrane components initially mixed in a single compartment as a first passage process, and we show that the mean sorting time exhibits two distinct regimes as a function of the ratio of vesicle fusion to budding rates. Low ratio values lead to fast sorting but result in a broad size distribution of sorted compartments dominated by small entities. High ratio values result in two well-defined sorted compartments but sorting is exponentially slow. Our results suggest an optimal balance between vesicle budding and fusion for the rapid and efficient sorting of membrane components and highlight the importance of stochastic effects for the steady-state organization of intracellular compartments.

  2. Caveolins and caveolae in ocular physiology and pathophysiology.

    PubMed

    Gu, Xiaowu; Reagan, Alaina M; McClellan, Mark E; Elliott, Michael H

    2017-01-01

    Caveolae are specialized, invaginated plasma membrane domains that are defined morphologically and by the expression of signature proteins called, caveolins. Caveolae and caveolins are abundant in a variety of cell types including vascular endothelium, glia, and fibroblasts where they play critical roles in transcellular transport, endocytosis, mechanotransduction, cell proliferation, membrane lipid homeostasis, and signal transduction. Given these critical cellular functions, it is surprising that ablation of the caveolae organelle does not result in lethality suggesting instead that caveolae and caveolins play modulatory roles in cellular homeostasis. Caveolar components are also expressed in ocular cell types including retinal vascular cells, Müller glia, retinal pigment epithelium (RPE), conventional aqueous humor outflow cells, the corneal epithelium and endothelium, and the lens epithelium. In the eye, studies of caveolae and other membrane microdomains (i.e., "lipid rafts") have lagged behind what is a substantial body of literature outside vision science. However, interest in caveolae and their molecular components has increased with accumulating evidence of important roles in vision-related functions such as blood-retinal barrier homeostasis, ocular inflammatory signaling, pathogen entry at the ocular surface, and aqueous humor drainage. The recent association of CAV1/2 gene loci with primary open angle glaucoma and intraocular pressure has further enhanced the need to better understand caveolar functions in the context of ocular physiology and disease. Herein, we provide the first comprehensive review of literature on caveolae, caveolins, and other membrane domains in the context of visual system function. This review highlights the importance of caveolae domains and their components in ocular physiology and pathophysiology and emphasizes the need to better understand these important modulators of cellular function. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Caveolins and caveolae in ocular physiology and pathophysiology

    PubMed Central

    Gu, Xiaowu; Reagan, Alaina M.; McClellan, Mark E.; Elliott, Michael H.

    2016-01-01

    Caveolae are specialized, invaginated plasma membrane domains that are defined morphologically and by the expression of signature proteins called, caveolins. Caveolae and caveolins are abundant in a variety of cell types including vascular endothelium, glia, and fibroblasts where they play critical roles in transcellular transport, endocytosis, mechanotransduction, cell proliferation, membrane lipid homeostasis, and signal transduction. Given these critical cellular functions, it is surprising that ablation of the caveolae organelle does not result in lethality suggesting instead that caveolae and caveolins play modulatory roles in cellular homeostasis. Caveolar components are also expressed in ocular cell types including retinal vascular cells, Müller glia, retinal pigment epithelium (RPE), conventional aqueous humor outflow cells, the corneal epithelium and endothelium, and the lens epithelium. In the eye, studies of caveolae and other membrane microdomains (i.e., “lipid rafts”) have lagged behind what is a substantial body of literature outside vision science. However, interest in caveolae and their molecular components has increased with accumulating evidence of important roles in vision-related functions such as blood-retinal barrier homeostasis, ocular inflammatory signalling, pathogen entry at the ocular surface, and aqueous humor drainage. The recent association of CAV1/2 gene loci with primary open angle glaucoma and intraocular pressure has further enhanced the need to better understand caveolar functions in the context of ocular physiology and disease. Herein, we provide the first comprehensive review of literature on caveolae, caveolins, and other membrane domains in the context of visual system function. This review highlights the importance of caveolae domains and their components in ocular physiology and pathophysiology and emphasizes the need to better understand these important modulators of cellular function. PMID:27664379

  4. Chronic stress induced disruption of the peri-infarct neurovascular unit following experimentally induced photothrombotic stroke.

    PubMed

    Zhao, Zidan; Ong, Lin Kooi; Johnson, Sarah; Nilsson, Michael; Walker, Frederick R

    2017-12-01

    How stress influences brain repair is an issue of considerable importance, as patients recovering from stroke are known to experience high and often unremitting levels of stress post-event. In the current study, we investigated how chronic stress modified the key cellular components of the neurovascular unit. Using an experimental model of focal cortical ischemia in male C57BL/6 mice, we examined how exposure to a persistently aversive environment, induced by the application of chronic restraint stress, altered the cortical remodeling post-stroke. We focused on systematically investigating changes in the key components of the neurovascular unit (i.e. neurons, microglia, astrocytes, and blood vessels) within the peri-infarct territories using both immunohistochemistry and Western blotting. The results from our study indicated that exposure to chronic stress exerted a significant suppressive effect on each of the key cellular components involved in neurovascular remodeling. Co-incident with these cellular changes, we observed that chronic stress was associated with an exacerbation of motor impairment 42 days post-event. Collectively, these results highlight the vulnerability of the peri-infarct neurovascular unit to the negative effects of chronic stress.

  5. Lipids, lysosomes, and autophagy

    PubMed Central

    2016-01-01

    Lipids are essential components of a cell providing energy substrates for cellular processes, signaling intermediates, and building blocks for biological membranes. Lipids are constantly recycled and redistributed within a cell. Lysosomes play an important role in this recycling process that involves the recruitment of lipids to lysosomes via autophagy or endocytosis for their degradation by lysosomal hydrolases. The catabolites produced are redistributed to various cellular compartments to support basic cellular function. Several studies demonstrated a bidirectional relationship between lipids and lysosomes that regulate autophagy. While lysosomal degradation pathways regulate cellular lipid metabolism, lipids also regulate lysosome function and autophagy. In this review, we focus on this bidirectional relationship in the context of dietary lipids and provide an overview of recent evidence of how lipid-overload lipotoxicity, as observed in obesity and metabolic syndrome, impairs lysosomal function and autophagy that may eventually lead to cellular dysfunction or cell death. PMID:27330054

  6. Control of human adenovirus type 5 gene expression by cellular Daxx/ATRX chromatin-associated complexes

    PubMed Central

    Schreiner, Sabrina; Bürck, Carolin; Glass, Mandy; Groitl, Peter; Wimmer, Peter; Kinkley, Sarah; Mund, Andreas; Everett, Roger D.; Dobner, Thomas

    2013-01-01

    Death domain–associated protein (Daxx) cooperates with X-linked α-thalassaemia retardation syndrome protein (ATRX), a putative member of the sucrose non-fermentable 2 family of ATP-dependent chromatin-remodelling proteins, acting as the core ATPase subunit in this complex, whereas Daxx is the targeting factor, leading to histone deacetylase recruitment, H3.3 deposition and transcriptional repression of cellular promoters. Despite recent findings on the fundamental importance of chromatin modification in host-cell gene regulation, it remains unclear whether adenovirus type 5 (Ad5) transcription is regulated by cellular chromatin remodelling to allow efficient virus gene expression. Here, we focus on the repressive role of the Daxx/ATRX complex during Ad5 replication, which depends on intact protein–protein interaction, as negative regulation could be relieved with a Daxx mutant that is unable to interact with ATRX. To ensure efficient viral replication, Ad5 E1B-55K protein inhibits Daxx and targets ATRX for proteasomal degradation in cooperation with early region 4 open reading frame protein 6 and cellular components of a cullin-dependent E3-ubiquitin ligase. Our studies illustrate the importance and diversity of viral factors antagonizing Daxx/ATRX-mediated repression of viral gene expression and shed new light on the modulation of cellular chromatin remodelling factors by Ad5. We show for the first time that cellular Daxx/ATRX chromatin remodelling complexes play essential roles in Ad gene expression and illustrate the importance of early viral proteins to counteract cellular chromatin remodelling. PMID:23396441

  7. Analysis of Students' Aptitude to Provide Meaning to Images that Represent Cellular Components at the Molecular Level

    ERIC Educational Resources Information Center

    Dahmani, Hassen-Reda; Schneeberger, Patricia; Kramer, IJsbrand M.

    2009-01-01

    The number of experimentally derived structures of cellular components is rapidly expanding, and this phenomenon is accompanied by the development of a new semiotic system for teaching. The infographic approach is shifting from a schematic toward a more realistic representation of cellular components. By realistic we mean artist-prepared or…

  8. The MADS-box XAANTAL1 increases proliferation at the Arabidopsis root stem-cell niche and participates in transition to differentiation by regulating cell-cycle components

    PubMed Central

    García-Cruz, Karla V.; García-Ponce, Berenice; Garay-Arroyo, Adriana; Sanchez, María De La Paz; Ugartechea-Chirino, Yamel; Desvoyes, Bénédicte; Pacheco-Escobedo, Mario A.; Tapia-López, Rosalinda; Ransom-Rodríguez, Ivan; Gutierrez, Crisanto; Alvarez-Buylla, Elena R.

    2016-01-01

    Background Morphogenesis depends on the concerted modulation of cell proliferation and differentiation. Such modulation is dynamically adjusted in response to various external and internal signals via complex transcriptional regulatory networks that mediate between such signals and regulation of cell-cycle and cellular responses (proliferation, growth, differentiation). In plants, which are sessile, the proliferation/differentiation balance is plastically adjusted during their life cycle and transcriptional networks are important in this process. MADS-box genes are key developmental regulators in eukaryotes, but their role in cell proliferation and differentiation modulation in plants remains poorly studied. Methods We characterize the XAL1 loss-of-function xal1-2 allele and overexpression lines using quantitative cellular and cytometry analyses to explore its role in cell cycle, proliferation, stem-cell patterning and transition to differentiation. We used quantitative PCR and cellular markers to explore if XAL1 regulates cell-cycle components and PLETHORA1 (PLT1) gene expression, as well as confocal microscopy to analyse stem-cell niche organization. Key Results We previously showed that XAANTAL1 (XAL1/AGL12) is necessary for Arabidopsis root development as a promoter of cell proliferation in the root apical meristem. Here, we demonstrate that XAL1 positively regulates the expression of PLT1 and important components of the cell cycle: CYCD3;1, CYCA2;3, CYCB1;1, CDKB1;1 and CDT1a. In addition, we show that xal1-2 mutant plants have a premature transition to differentiation with root hairs appearing closer to the root tip, while endoreplication in these plants is partially compromised. Coincidently, the final size of cortex cells in the mutant is shorter than wild-type cells. Finally, XAL1 overexpression-lines corroborate that this transcription factor is able to promote cell proliferation at the stem-cell niche. Conclusion XAL1 seems to be an important component of the networks that modulate cell proliferation/differentiation transition and stem-cell proliferation during Arabidopsis root development; it also regulates several cell-cycle components. PMID:27474508

  9. [Evaluation of Cellular Effects Caused by Lunar Regolith Simulant Including Fine Particles].

    PubMed

    Horie, Masanori; Miki, Takeo; Honma, Yoshiyuki; Aoki, Shigeru; Morimoto, Yasuo

    2015-06-01

    The National Aeronautics and Space Administration has announced a plan to establish a manned colony on the surface of the moon, and our country, Japan, has declared its participation. The surface of the moon is covered with soil called lunar regolith, which includes fine particles. It is possible that humans will inhale lunar regolith if it is brought into the spaceship. Therefore, an evaluation of the pulmonary effects caused by lunar regolith is important for exploration of the moon. In the present study, we examine the cellular effects of lunar regolith simulant, whose components are similar to those of lunar regolith. We focused on the chemical component and particle size in particular. The regolith simulant was fractionated to < 10 μm, < 25 μm and 10-25 μm by gravitational sedimentation in suspensions. We also examined the cellular effects of fine regolith simulant whose primary particle size is 5.10 μm. These regolith simulants were applied to human lung carcinoma A549 cells at concentrations of 0.1 and 1.0 mg/ml. Cytotoxicity, oxidative stress and immune response were examined after 24 h exposure. Cell membrane damage, mitochondrial dysfunction and induction of Interleukin-8 (IL-8) were observed at the concentration of 1.0 mg/ml. The cellular effects of the regolith simulant at the concentration of 0.1 mg/ml were small, as compared with crystalline silica as a positive control. Secretion of IL-1β and tumor necrosis factor-α (TNF-α) was observed at the concentration of 1.0 mg/ml, but induction of gene expression was not observed at 24 h after exposure. Induction of cellular oxidative stress was small. Although the cellular effects tended to be stronger in the < 10 μm particles, there was no remarkable difference. These results suggest that the chemical components and particle size have little relationship to the cellular effects of lunar regolith simulant such as cell membrane damage, induction of oxidative stress and proinflammatory effect.

  10. Autophagy in the eye: Development, degeneration, and aging.

    PubMed

    Boya, Patricia; Esteban-Martínez, Lorena; Serrano-Puebla, Ana; Gómez-Sintes, Raquel; Villarejo-Zori, Beatriz

    2016-11-01

    Autophagy is a catabolic pathway that promotes the degradation and recycling of cellular components. Proteins, lipids, and even whole organelles are engulfed in autophagosomes and delivered to the lysosome for elimination. In response to stress, autophagy mediates the degradation of cell components, which are recycled to generate the nutrients and building blocks required to sustain cellular homeostasis. Moreover, it plays an important role in cellular quality control, particularly in neurons, in which the total burden of altered proteins and damaged organelles cannot be reduced by redistribution to daughter cells through cell division. Research has only begun to examine the role of autophagy in the visual system. The retina, a light-sensitive tissue, detects and transmits electrical impulses through the optic nerve to the visual cortex in the brain. Both the retina and the eye are exposed to a variety of environmental insults and stressors, including genetic mutations and age-associated alterations that impair their function. Here, we review the main studies that have sought to explain autophagy's importance in visual function. We describe the role of autophagy in retinal development and cell differentiation, and discuss the implications of autophagy dysregulation both in physiological aging and in important diseases such as age-associated macular degeneration and glaucoma. We also address the putative role of autophagy in promoting photoreceptor survival and discuss how selective autophagy could provide alternative means of protecting retinal cells. The findings reviewed here underscore the important role of autophagy in maintaining proper retinal function and highlight novel therapeutic approaches for blindness and other diseases of the eye. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Substitution of stable isotopes in Chlorella

    NASA Technical Reports Server (NTRS)

    Flaumenhaft, E.; Katz, J. J.; Uphaus, R. A.

    1969-01-01

    Replacement of biologically important isotopes in the alga Chlorella by corresponding heavier stable isotopes produces increasingly greater deviations from the normal cell size and changes the quality and distribution of certain cellular components. The usefulness of isotopically altered organisms increases interest in the study of such permuted organisms.

  12. Intersection of autophagy with pathways of antigen presentation.

    PubMed

    Patterson, Natalie L; Mintern, Justine D

    2012-12-01

    Traditionally, macroautophagy (autophagy) is viewed as a pathway of cell survival. Autophagy ensures the elimination of damaged or unwanted cytosolic components and provides a source of cellular nutrients during periods of stress. Interestingly, autophagy can also directly intersect with, and impact, other major pathways of cellular function. Here, we will review the contribution of autophagy to pathways of antigen presentation. The autophagy machinery acts to modulate both MHCI and MHCII antigen presentation. As such autophagy is an important participant in pathways that elicit host cell immunity and the elimination of infectious pathogens.

  13. Building robust functionality in synthetic circuits using engineered feedback regulation.

    PubMed

    Chen, Susan; Harrigan, Patrick; Heineike, Benjamin; Stewart-Ornstein, Jacob; El-Samad, Hana

    2013-08-01

    The ability to engineer novel functionality within cells, to quantitatively control cellular circuits, and to manipulate the behaviors of populations, has many important applications in biotechnology and biomedicine. These applications are only beginning to be explored. In this review, we advocate the use of feedback control as an essential strategy for the engineering of robust homeostatic control of biological circuits and cellular populations. We also describe recent works where feedback control, implemented in silico or with biological components, was successfully employed for this purpose. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Advances in molecular labeling, high throughput imaging and machine intelligence portend powerful functional cellular biochemistry tools.

    PubMed

    Price, Jeffrey H; Goodacre, Angela; Hahn, Klaus; Hodgson, Louis; Hunter, Edward A; Krajewski, Stanislaw; Murphy, Robert F; Rabinovich, Andrew; Reed, John C; Heynen, Susanne

    2002-01-01

    Cellular behavior is complex. Successfully understanding systems at ever-increasing complexity is fundamental to advances in modern science and unraveling the functional details of cellular behavior is no exception. We present a collection of prospectives to provide a glimpse of the techniques that will aid in collecting, managing and utilizing information on complex cellular processes via molecular imaging tools. These include: 1) visualizing intracellular protein activity with fluorescent markers, 2) high throughput (and automated) imaging of multilabeled cells in statistically significant numbers, and 3) machine intelligence to analyze subcellular image localization and pattern. Although not addressed here, the importance of combining cell-image-based information with detailed molecular structure and ligand-receptor binding models cannot be overlooked. Advanced molecular imaging techniques have the potential to impact cellular diagnostics for cancer screening, clinical correlations of tissue molecular patterns for cancer biology, and cellular molecular interactions for accelerating drug discovery. The goal of finally understanding all cellular components and behaviors will be achieved by advances in both instrumentation engineering (software and hardware) and molecular biochemistry. Copyright 2002 Wiley-Liss, Inc.

  15. Evolutionary tradeoffs in cellular composition across diverse bacteria

    PubMed Central

    Kempes, Christopher P; Wang, Lawrence; Amend, Jan P; Doyle, John; Hoehler, Tori

    2016-01-01

    One of the most important classic and contemporary interests in biology is the connection between cellular composition and physiological function. Decades of research have allowed us to understand the detailed relationship between various cellular components and processes for individual species, and have uncovered common functionality across diverse species. However, there still remains the need for frameworks that can mechanistically predict the tradeoffs between cellular functions and elucidate and interpret average trends across species. Here we provide a comprehensive analysis of how cellular composition changes across the diversity of bacteria as connected with physiological function and metabolism, spanning five orders of magnitude in body size. We present an analysis of the trends with cell volume that covers shifts in genomic, protein, cellular envelope, RNA and ribosomal content. We show that trends in protein content are more complex than a simple proportionality with the overall genome size, and that the number of ribosomes is simply explained by cross-species shifts in biosynthesis requirements. Furthermore, we show that the largest and smallest bacteria are limited by physical space requirements. At the lower end of size, cell volume is dominated by DNA and protein content—the requirement for which predicts a lower limit on cell size that is in good agreement with the smallest observed bacteria. At the upper end of bacterial size, we have identified a point at which the number of ribosomes required for biosynthesis exceeds available cell volume. Between these limits we are able to discuss systematic and dramatic shifts in cellular composition. Much of our analysis is connected with the basic energetics of cells where we show that the scaling of metabolic rate is surprisingly superlinear with all cellular components. PMID:27046336

  16. Fluorescence microscopy: A tool to study autophagy

    NASA Astrophysics Data System (ADS)

    Rai, Shashank; Manjithaya, Ravi

    2015-08-01

    Autophagy is a cellular recycling process through which a cell degrades old and damaged cellular components such as organelles and proteins and the degradation products are reused to provide energy and building blocks. Dysfunctional autophagy is reported in several pathological situations. Hence, autophagy plays an important role in both cellular homeostasis and diseased conditions. Autophagy can be studied through various techniques including fluorescence based microscopy. With the advancements of newer technologies in fluorescence microscopy, several novel processes of autophagy have been discovered which makes it an essential tool for autophagy research. Moreover, ability to tag fluorescent proteins with sub cellular targets has enabled us to evaluate autophagy processes in real time under fluorescent microscope. In this article, we demonstrate different aspects of autophagy in two different model organisms i.e. yeast and mammalian cells, with the help of fluorescence microscopy.

  17. Quantifying white matter tract diffusion parameters in the presence of increased extra-fiber cellularity and vasogenic edema

    PubMed Central

    Chiang, Chia-Wen; Wang, Yong; Sun, Peng; Lin, Tsen-Hsuan; Trinkaus, Kathryn; Cross, Anne H.; Song, Sheng-Kwei

    2014-01-01

    The effect of extra-fiber structural and pathological components confounding diffusion tensor imaging (DTI) computation was quantitatively investigated using data generated by both Monte-Carlo simulations and tissue phantoms. Increased extent of vasogenic edema, by addition of various amount of gel to fixed normal mouse trigeminal nerves or by increasing non-restricted isotropic diffusion tensor components in Monte-Carlo simulations, significantly decreased fractional anisotropy (FA), increased radial diffusivity, while less significantly increased axial diffusivity derived by DTI. Increased cellularity, mimicked by graded increase of the restricted isotropic diffusion tensor component in Monte-Carlo simulations, significantly decreased FA and axial diffusivity with limited impact on radial diffusivity derived by DTI. The MC simulation and tissue phantom data were also analyzed by the recently developed diffusion basis spectrum imaging (DBSI) to simultaneously distinguish and quantify the axon/myelin integrity and extra-fiber diffusion components. Results showed that increased cellularity or vasogenic edema did not affect the DBSI-derived fiber FA, axial or radial diffusivity. Importantly, the extent of extra-fiber cellularity and edema estimated by DBSI correlated with experimentally added gel and Monte-Carlo simulations. We also examined the feasibility of applying 25-direction diffusion encoding scheme for DBSI analysis on coherent white matter tracts. Results from both phantom experiments and simulations suggested that the 25-direction diffusion scheme provided comparable DBSI estimation of both fiber diffusion parameters and extra-fiber cellularity/edema extent as those by 99-direction scheme. An in vivo 25-direction DBSI analysis was performed on experimental autoimmune encephalomyelitis (EAE, an animal model of human multiple sclerosis) optic nerve as an example to examine the validity of derived DBSI parameters with post-imaging immunohistochemistry verification. Results support that in vivo DBSI using 25-direction diffusion scheme correctly reflect the underlying axonal injury, demyelination, and inflammation of optic nerves in EAE mice. PMID:25017446

  18. Convergence Time and Phase Transition in a Non-monotonic Family of Probabilistic Cellular Automata

    NASA Astrophysics Data System (ADS)

    Ramos, A. D.; Leite, A.

    2017-08-01

    In dynamical systems, some of the most important questions are related to phase transitions and convergence time. We consider a one-dimensional probabilistic cellular automaton where their components assume two possible states, zero and one, and interact with their two nearest neighbors at each time step. Under the local interaction, if the component is in the same state as its two neighbors, it does not change its state. In the other cases, a component in state zero turns into a one with probability α , and a component in state one turns into a zero with probability 1-β . For certain values of α and β , we show that the process will always converge weakly to δ 0, the measure concentrated on the configuration where all the components are zeros. Moreover, the mean time of this convergence is finite, and we describe an upper bound in this case, which is a linear function of the initial distribution. We also demonstrate an application of our results to the percolation PCA. Finally, we use mean-field approximation and Monte Carlo simulations to show coexistence of three distinct behaviours for some values of parameters α and β.

  19. Turnover of microbial groups and cell components in soil: 13C analysis of cellular biomarkers

    NASA Astrophysics Data System (ADS)

    Gunina, Anna; Dippold, Michaela; Glaser, Bruno; Kuzyakov, Yakov

    2017-01-01

    Microorganisms regulate the carbon (C) cycle in soil, controlling the utilization and recycling of organic substances. To reveal the contribution of particular microbial groups to C utilization and turnover within the microbial cells, the fate of 13C-labelled glucose was studied under field conditions. Glucose-derived 13C was traced in cytosol, amino sugars and phospholipid fatty acid (PLFA) pools at intervals of 3, 10 and 50 days after glucose addition into the soil. 13C enrichment in PLFAs ( ˜ 1.5 % of PLFA C at day 3) was an order of magnitude greater than in cytosol, showing the importance of cell membranes for initial C utilization. The 13C enrichment in amino sugars of living microorganisms at day 3 accounted for 0.57 % of total C pool; as a result, we infer that the replacement of C in cell wall components is 3 times slower than that of cell membranes. The C turnover time in the cytosol (150 days) was 3 times longer than in PLFAs (47 days). Consequently, even though the cytosol pool has the fastest processing rates compared to other cellular compartments, intensive recycling of components here leads to a long C turnover time. Both PLFA and amino-sugar profiles indicated that bacteria dominated in glucose utilization. 13C enrichment decreased with time for bacterial cell membrane components, but it remained constant or even increased for filamentous microorganisms. 13C enrichment of muramic acid was the 3.5 times greater than for galactosamine, showing a more rapid turnover of bacterial cell wall components compared to fungal. Thus, bacteria utilize a greater proportion of low-molecular-weight organic substances, whereas filamentous microorganisms are responsible for further C transformations. Thus, tracing 13C in cellular compounds with contrasting turnover rates elucidated the role of microbial groups and their cellular compartments in C utilization and recycling in soil. The results also reflect that microbial C turnover is not restricted to the death or growth of new cells. Indeed, even within living cells, highly polymeric cell compounds are constantly replaced and renewed. This is especially important for assessing C fluxes in soil and the contribution of C from microbial residues to soil organic matter.

  20. Regulation of transport processes across the tonoplast

    PubMed Central

    Neuhaus, H. Ekkehard; Trentmann, Oliver

    2014-01-01

    In plants, the vacuole builds up the cellular turgor and represents an important component in cellular responses to diverse stress stimuli. Rapid volume changes of cells, particularly of motor cells, like guard cells, are caused by variation of osmolytes and consequently of the water contents in the vacuole. Moreover, directed solute uptake into or release out of the large central vacuole allows adaptation of cytosolic metabolite levels according to the current physiological requirements and specific cellular demands. Therefore, solute passage across the vacuolar membrane, the tonoplast, has to be tightly regulated. Important principles in vacuolar transport regulation are changes of tonoplast transport protein abundances by differential expression of genes or changes of their activities, e.g., due to post-translational modification or by interacting proteins. Because vacuolar transport is in most cases driven by an electro-chemical gradient altered activities of tonoplast proton pumps significantly influence vacuolar transport capacities. Intense studies on individual tonoplast proteins but also unbiased system biological approaches have provided important insights into the regulation of vacuolar transport. This short review refers to selected examples of tonoplast proteins and their regulation, with special focus on protein phosphorylation. PMID:25309559

  1. Interplay of autophagy, receptor tyrosine kinase signalling and endocytic trafficking

    PubMed Central

    Fraser, Jane; Cabodevilla, Ainara G.; Simpson, Joanne; Gammoh, Noor

    2017-01-01

    Vesicular trafficking events play key roles in the compartmentalization and proper sorting of cellular components. These events have crucial roles in sensing external signals, regulating protein activities and stimulating cell growth or death decisions. Although mutations in vesicle trafficking players are not direct drivers of cellular transformation, their activities are important in facilitating oncogenic pathways. One such pathway is the sensing of external stimuli and signalling through receptor tyrosine kinases (RTKs). The regulation of RTK activity by the endocytic pathway has been extensively studied. Compelling recent studies have begun to highlight the association between autophagy and RTK signalling. The influence of this interplay on cellular status and its relevance in disease settings will be discussed here. PMID:29233871

  2. Probing eukaryotic cell mechanics via mesoscopic simulations

    PubMed Central

    Shang, Menglin; Lim, Chwee Teck

    2017-01-01

    Cell mechanics has proven to be important in many biological processes. Although there is a number of experimental techniques which allow us to study mechanical properties of cell, there is still a lack of understanding of the role each sub-cellular component plays during cell deformations. We present a new mesoscopic particle-based eukaryotic cell model which explicitly describes cell membrane, nucleus and cytoskeleton. We employ Dissipative Particle Dynamics (DPD) method that provides us with the unified framework for modeling of a cell and its interactions in the flow. Data from micropipette aspiration experiments were used to define model parameters. The model was validated using data from microfluidic experiments. The validated model was then applied to study the impact of the sub-cellular components on the cell viscoelastic response in micropipette aspiration and microfluidic experiments. PMID:28922399

  3. The ubiquitin proteasomal system: a potential target for the management of Alzheimer's disease.

    PubMed

    Gadhave, Kundlik; Bolshette, Nityanand; Ahire, Ashutosh; Pardeshi, Rohit; Thakur, Krishan; Trandafir, Cristiana; Istrate, Alexandru; Ahmed, Sahabuddin; Lahkar, Mangala; Muresanu, Dafin F; Balea, Maria

    2016-07-01

    The cellular quality control system degrades abnormal or misfolded proteins and consists of three different mechanisms: the ubiquitin proteasomal system (UPS), autophagy and molecular chaperones. Any disturbance in this system causes proteins to accumulate, resulting in neurodegenerative diseases such as amyotrophic lateral sclerosis, Alzheimer's disease (AD), Parkinson's disease, Huntington's disease and prion or polyglutamine diseases. Alzheimer's disease is currently one of the most common age-related neurodegenerative diseases. However, its exact cause and pathogenesis are unknown. Currently approved medications for AD provide symptomatic relief; however, they fail to influence disease progression. Moreover, the components of the cellular quality control system represent an important focus for the development of targeted and potent therapies for managing AD. This review aims to evaluate whether existing evidence supports the hypothesis that UPS impairment causes the early pathogenesis of neurodegenerative disorders. The first part presents basic information about the UPS and its molecular components. The next part explains how the UPS is involved in neurodegenerative disorders. Finally, we emphasize how the UPS influences the management of AD. This review may help in the design of future UPS-related therapies for AD. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  4. Computational Methods for Biomolecular Electrostatics

    PubMed Central

    Dong, Feng; Olsen, Brett; Baker, Nathan A.

    2008-01-01

    An understanding of intermolecular interactions is essential for insight into how cells develop, operate, communicate and control their activities. Such interactions include several components: contributions from linear, angular, and torsional forces in covalent bonds, van der Waals forces, as well as electrostatics. Among the various components of molecular interactions, electrostatics are of special importance because of their long range and their influence on polar or charged molecules, including water, aqueous ions, and amino or nucleic acids, which are some of the primary components of living systems. Electrostatics, therefore, play important roles in determining the structure, motion and function of a wide range of biological molecules. This chapter presents a brief overview of electrostatic interactions in cellular systems with a particular focus on how computational tools can be used to investigate these types of interactions. PMID:17964951

  5. Protein subcellular location pattern classification in cellular images using latent discriminative models.

    PubMed

    Li, Jieyue; Xiong, Liang; Schneider, Jeff; Murphy, Robert F

    2012-06-15

    Knowledge of the subcellular location of a protein is crucial for understanding its functions. The subcellular pattern of a protein is typically represented as the set of cellular components in which it is located, and an important task is to determine this set from microscope images. In this article, we address this classification problem using confocal immunofluorescence images from the Human Protein Atlas (HPA) project. The HPA contains images of cells stained for many proteins; each is also stained for three reference components, but there are many other components that are invisible. Given one such cell, the task is to classify the pattern type of the stained protein. We first randomly select local image regions within the cells, and then extract various carefully designed features from these regions. This region-based approach enables us to explicitly study the relationship between proteins and different cell components, as well as the interactions between these components. To achieve these two goals, we propose two discriminative models that extend logistic regression with structured latent variables. The first model allows the same protein pattern class to be expressed differently according to the underlying components in different regions. The second model further captures the spatial dependencies between the components within the same cell so that we can better infer these components. To learn these models, we propose a fast approximate algorithm for inference, and then use gradient-based methods to maximize the data likelihood. In the experiments, we show that the proposed models help improve the classification accuracies on synthetic data and real cellular images. The best overall accuracy we report in this article for classifying 942 proteins into 13 classes of patterns is about 84.6%, which to our knowledge is the best so far. In addition, the dependencies learned are consistent with prior knowledge of cell organization. http://murphylab.web.cmu.edu/software/.

  6. Relative Roles of the Cellular and Humoral Responses in the Drosophila Host Defense against Three Gram-Positive Bacterial Infections

    PubMed Central

    Cho, Ju Hyun; Lee, Janice; Lafarge, Marie-Céline; Kocks, Christine; Ferrandon, Dominique

    2011-01-01

    Background Two NF-kappaB signaling pathways, Toll and immune deficiency (imd), are required for survival to bacterial infections in Drosophila. In response to septic injury, these pathways mediate rapid transcriptional activation of distinct sets of effector molecules, including antimicrobial peptides, which are important components of a humoral defense response. However, it is less clear to what extent macrophage-like hemocytes contribute to host defense. Methodology/Principal Findings In order to dissect the relative importance of humoral and cellular defenses after septic injury with three different Gram-positive bacteria (Micrococcus luteus, Enterococcus faecalis, Staphylococcus aureus), we used latex bead pre-injection to ablate macrophage function in flies wildtype or mutant for various Toll and imd pathway components. We found that in all three infection models a compromised phagocytic system impaired fly survival – independently of concomitant Toll or imd pathway activation. Our data failed to confirm a role of the PGRP-SA and GNBP1 Pattern Recognition Receptors for phagocytosis of S. aureus. The Drosophila scavenger receptor Eater mediates the phagocytosis by hemocytes or S2 cells of E. faecalis and S. aureus, but not of M. luteus. In the case of M. luteus and E. faecalis, but not S. aureus, decreased survival due to defective phagocytosis could be compensated for by genetically enhancing the humoral immune response. Conclusions/Significance Our results underscore the fundamental importance of both cellular and humoral mechanisms in Drosophila immunity and shed light on the balance between these two arms of host defense depending on the invading pathogen. PMID:21390224

  7. The MADS-box XAANTAL1 increases proliferation at the Arabidopsis root stem-cell niche and participates in transition to differentiation by regulating cell-cycle components.

    PubMed

    García-Cruz, Karla V; García-Ponce, Berenice; Garay-Arroyo, Adriana; Sanchez, María De La Paz; Ugartechea-Chirino, Yamel; Desvoyes, Bénédicte; Pacheco-Escobedo, Mario A; Tapia-López, Rosalinda; Ransom-Rodríguez, Ivan; Gutierrez, Crisanto; Alvarez-Buylla, Elena R

    2016-07-29

    Morphogenesis depends on the concerted modulation of cell proliferation and differentiation. Such modulation is dynamically adjusted in response to various external and internal signals via complex transcriptional regulatory networks that mediate between such signals and regulation of cell-cycle and cellular responses (proliferation, growth, differentiation). In plants, which are sessile, the proliferation/differentiation balance is plastically adjusted during their life cycle and transcriptional networks are important in this process. MADS-box genes are key developmental regulators in eukaryotes, but their role in cell proliferation and differentiation modulation in plants remains poorly studied. We characterize the XAL1 loss-of-function xal1-2 allele and overexpression lines using quantitative cellular and cytometry analyses to explore its role in cell cycle, proliferation, stem-cell patterning and transition to differentiation. We used quantitative PCR and cellular markers to explore if XAL1 regulates cell-cycle components and PLETHORA1 (PLT1) gene expression, as well as confocal microscopy to analyse stem-cell niche organization. We previously showed that XAANTAL1 (XAL1/AGL12) is necessary for Arabidopsis root development as a promoter of cell proliferation in the root apical meristem. Here, we demonstrate that XAL1 positively regulates the expression of PLT1 and important components of the cell cycle: CYCD3;1, CYCA2;3, CYCB1;1, CDKB1;1 and CDT1a In addition, we show that xal1-2 mutant plants have a premature transition to differentiation with root hairs appearing closer to the root tip, while endoreplication in these plants is partially compromised. Coincidently, the final size of cortex cells in the mutant is shorter than wild-type cells. Finally, XAL1 overexpression-lines corroborate that this transcription factor is able to promote cell proliferation at the stem-cell niche. XAL1 seems to be an important component of the networks that modulate cell proliferation/differentiation transition and stem-cell proliferation during Arabidopsis root development; it also regulates several cell-cycle components. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. PARP13 and RNA regulation in immunity and cancer

    PubMed Central

    Todorova, Tanya; Bock, Florian; Chang, Paul

    2015-01-01

    Posttranscriptional regulation of RNA is an important mechanism for activating and resolving cellular stress responses. Poly(ADP-ribose) Polymerase-13 (PARP13), also known as ZC3HAV1 and Zinc-finger Antiviral Protein (ZAP), is an RNA-binding protein that regulates the stability, and translation of specific mRNAs, and modulates the miRNA silencing pathway to globally impact miRNA targets. These functions of PARP13 are important components of the cellular response to stress. In addition, the ability of PARP13 to restrict oncogenic viruses and to repress the pro-survival cytokine receptor TRAILR4 suggests that it can be protective against malignant transformation and cancer development. The relevance of PARP13 to human health and disease make it a promising therapeutic target. PMID:25851173

  9. Bistability, epigenetics, and bet-hedging in bacteria.

    PubMed

    Veening, Jan-Willem; Smits, Wiep Klaas; Kuipers, Oscar P

    2008-01-01

    Clonal populations of microbial cells often show a high degree of phenotypic variability under homogeneous conditions. Stochastic fluctuations in the cellular components that determine cellular states can cause two distinct subpopulations, a property called bistability. Phenotypic heterogeneity can be readily obtained by interlinking multiple gene regulatory pathways, effectively resulting in a genetic logic-AND gate. Although switching between states can occur within the cells' lifetime, cells can also pass their cellular state over to the next generation by a mechanism known as epigenetic inheritance and thus perpetuate the phenotypic state. Importantly, heterogeneous populations can demonstrate increased fitness compared with homogeneous populations. This suggests that microbial cells employ bet-hedging strategies to maximize survival. Here, we discuss the possible roles of interlinked bistable networks, epigenetic inheritance, and bet-hedging in bacteria.

  10. Cellular dynamics in the muscle satellite cell niche

    PubMed Central

    Bentzinger, C Florian; Wang, Yu Xin; Dumont, Nicolas A; Rudnicki, Michael A

    2013-01-01

    Satellite cells, the quintessential skeletal muscle stem cells, reside in a specialized local environment whose anatomy changes dynamically during tissue regeneration. The plasticity of this niche is attributable to regulation by the stem cells themselves and to a multitude of functionally diverse cell types. In particular, immune cells, fibrogenic cells, vessel-associated cells and committed and differentiated cells of the myogenic lineage have emerged as important constituents of the satellite cell niche. Here, we discuss the cellular dynamics during muscle regeneration and how disease can lead to perturbation of these mechanisms. To define the role of cellular components in the muscle stem cell niche is imperative for the development of cell-based therapies, as well as to better understand the pathobiology of degenerative conditions of the skeletal musculature. PMID:24232182

  11. Microvascular Targets for Anti-Fibrotic Therapeutics

    PubMed Central

    Pu, Kai-Ming T.; Sava, Parid; Gonzalez, Anjelica L.

    2013-01-01

    Fibrosis is characterized by excessive extracellular matrix deposition and is the pathological outcome of repetitive tissue injury in many disorders. The accumulation of matrix disrupts the structure and function of the native tissue and can affect multiple organs including the lungs, heart, liver, and skin. Unfortunately, current therapies against the deadliest and most common fibrosis are ineffective. The pathogenesis of fibrosis is the result of aberrant wound healing, therefore, the microvasculature plays an important role, contributing through regulation of leukocyte recruitment, inflammation, and angiogenesis. Further exacerbating the condition, microvascular endothelial cells and pericytes can transdifferentiate into matrix depositing myofibroblasts. The contribution of the microvasculature to fibrotic progression makes its cellular components and acellular products attractive therapeutic targets. In this review, we examine many of the cytokine, matrix, and cellular microvascular components involved in fibrosis and discuss their potential as targets for fibrotic therapies with a particular focus on developing nanotechnologies. PMID:24348218

  12. Cellular MYCro economics: Balancing MYC function with MYC expression.

    PubMed

    Levens, David

    2013-11-01

    The expression levels of the MYC oncoprotein have long been recognized to be associated with the outputs of major cellular processes including proliferation, cell growth, apoptosis, differentiation, and metabolism. Therefore, to understand how MYC operates, it is important to define quantitatively the relationship between MYC input and expression output for its targets as well as the higher-order relationships between the expression levels of subnetwork components and the flow of information and materials through those networks. Two different views of MYC are considered, first as a molecular microeconomic manager orchestrating specific positive and negative responses at individual promoters in collaboration with other transcription and chromatin components, and second, as a macroeconomic czar imposing an overarching rule onto all active genes. In either case, c-myc promoter output requires multiple inputs and exploits diverse mechanisms to tune expression to the appropriate levels relative to the thresholds of expression that separate health and disease.

  13. A Model of How Different Biology Experts Explain Molecular and Cellular Mechanisms

    ERIC Educational Resources Information Center

    Trujillo, Caleb M.; Anderson, Trevor R.; Pelaez, Nancy J.

    2015-01-01

    Constructing explanations is an essential skill for all science learners. The goal of this project was to model the key components of expert explanation of molecular and cellular mechanisms. As such, we asked: What is an appropriate model of the components of explanation used by biology experts to explain molecular and cellular mechanisms? Do…

  14. Landscape- vs gap-level controls on the abundance of a fire-sensitive, late-successional tree species.

    Treesearch

    Michael C. Wimberly; Thomas A. Spies

    2002-01-01

    Tsuga heterophylla (western hemlock), a fire-sensitive, late-successional tree species, is an important component of old-growth forests in the Pacific Northwest, USA. In the Oregon Coast Range, however, T. heterophylla occurs at low densities in or is completely absent from many conifer stands. We used a cellular automata-based...

  15. Antioxidative activity of green tea treated with radical initiator 2, 2'-azobis(2-amidinopropane) dihydrochloride.

    PubMed

    Yokozawa, T; Cho, E J; Hara, Y; Kitani, K

    2000-10-01

    This study investigated the antioxidative activity of green tea extract, and a green tea tannin mixture and its components, under conditions of radical generation using the hydrophilic azo compound, 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH) to generate peroxyl radicals at a constant and measurable rate in the cultured renal epithelial cell line, LLC-PK(1), which is susceptible to oxidative damage. Treatment with AAPH decreased cell viability and increased the formation of thiobarbituric acid-reactive substances. However, green tea extract, and the tannin mixture and its components, comprising (-)-epigallocatechin 3-O-gallate (EGCg), (-)-gallocatechin 3-O-gallate (GCg), (-)-epicatechin 3-O-gallate (ECg), (-)-epigallocatechin (EGC), (+)-gallocatechin (GC), (-)-epicatechin (EC), and (+)-catechin (C), showed protective activity against AAPH-induced cellular damage. The tannin mixture and its components exhibited higher antioxidative activity than the green tea extract. Furthermore, EGCg and GCg had higher activity than EGC and GC, respectively. In particular, EGCg exerted the most significant cellular protective activity against AAPH. These results indicate that green tea tannin may inhibit cellular loss and lipid peroxidation resulting from the peroxyl radical generated by AAPH, and that the chemical structure of tannin is also involved in the activity, suggesting that the O-dihydroxy structure in the B ring and the galloyl groups are important determinants for radical scavenging and antioxidative potential.

  16. Contribution of constitutive characteristics of lipids and phenolics in roots of tree species in Myrtales to aluminum tolerance.

    PubMed

    Maejima, Eriko; Osaki, Mitsuru; Wagatsuma, Tadao; Watanabe, Toshihiro

    2017-05-01

    High aluminum (Al) concentration in soil solution is the most important factor restricting plant growth in acidic soils. However, various plant species naturally grow in such soils. Generally, they are highly tolerant to Al, but organic acid exudation, the most common Al tolerance mechanism, cannot explain their tolerance. Lower phospholipid and higher sterol proportions in root plasma membrane enhance Al tolerance. Other cellular components, such as cell walls and phenolics, may also be involved in Al tolerance mechanisms. In this study, the relationships between these cellular components and the Al tolerance mechanisms in Melastoma malabathricum and Melaleuca cajuputi, both highly Al-tolerant species growing in strongly acidic soils, were investigated. Both species contained lower proportions of phospholipids and higher proportions of sterols in roots, respectively. Concentrations of phenolics in roots of both species were higher than that of rice; their phenolics could form chelates with Al. In these species, phenolic concentrations and composition were the same irrespective of the presence or absence of Al in the medium, suggesting that a higher concentration of phenolics is not a physiological response to Al but a constitutive characteristic. These characteristics of cellular components in roots may be cooperatively involved in their high Al tolerance. © 2016 The Authors. Physiologia Plantarum published by John Wiley & Sons Ltd on behalf of Scandinavian Plant Physiology Society.

  17. Global Analysis Reveals the Complexity of the Human Glomerular Extracellular Matrix

    PubMed Central

    Byron, Adam; Humphries, Jonathan D.; Randles, Michael J.; Carisey, Alex; Murphy, Stephanie; Knight, David; Brenchley, Paul E.; Zent, Roy; Humphries, Martin J.

    2014-01-01

    The glomerulus contains unique cellular and extracellular matrix (ECM) components, which are required for intact barrier function. Studies of the cellular components have helped to build understanding of glomerular disease; however, the full composition and regulation of glomerular ECM remains poorly understood. We used mass spectrometry-based proteomics of enriched ECM extracts for a global analysis of human glomerular ECM in vivo and identified a tissue-specific proteome of 144 structural and regulatory ECM proteins. This catalog includes all previously identified glomerular components plus many new and abundant components. Relative protein quantification showed a dominance of collagen IV, collagen I, and laminin isoforms in the glomerular ECM together with abundant collagen VI and TINAGL1. Protein network analysis enabled the creation of a glomerular ECM interactome, which revealed a core of highly connected structural components. More than one half of the glomerular ECM proteome was validated using colocalization studies and data from the Human Protein Atlas. This study yields the greatest number of ECM proteins relative to previous investigations of whole glomerular extracts, highlighting the importance of sample enrichment. It also shows that the composition of glomerular ECM is far more complex than previously appreciated and suggests that many more ECM components may contribute to glomerular development and disease processes. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium with the dataset identifier PXD000456. PMID:24436468

  18. Visualization and Measurement of Multiple Components of the Autophagy Flux.

    PubMed

    Evans, Tracey; Button, Robert; Anichtchik, Oleg; Luo, Shouqing

    2018-06-24

    Autophagy is an intracellular degradation process that mediates the clearance of cytoplasmic components. As well as being an important function for cellular homeostasis, autophagy also promotes the removal of aberrant protein accumulations, such as those seen in conditions like neurodegeneration. The dynamic nature of autophagy requires precise methods to examine the process at multiple stages. The protocols described herein enable the dissection of the complete autophagy process (the "autophagy flux"). These allow for the elucidation of which stages of autophagy may be altered in response to various diseases and treatments.

  19. From Stochastic Foam to Designed Structure: Balancing Cost and Performance of Cellular Metals

    PubMed Central

    Lehmhus, Dirk; Vesenjak, Matej

    2017-01-01

    Over the past two decades, a large number of metallic foams have been developed. In recent years research on this multi-functional material class has further intensified. However, despite their unique properties only a limited number of large-scale applications have emerged. One important reason for this sluggish uptake is their high cost. Many cellular metals require expensive raw materials, complex manufacturing procedures, or a combination thereof. Some attempts have been made to decrease costs by introducing novel foams based on cheaper components and new manufacturing procedures. However, this has often yielded materials with unreliable properties that inhibit utilization of their full potential. The resulting balance between cost and performance of cellular metals is probed in this editorial, which attempts to consider cost not in absolute figures, but in relation to performance. To approach such a distinction, an alternative classification of cellular metals is suggested which centers on structural aspects and the effort of realizing them. The range thus covered extends from fully stochastic foams to cellular structures designed-to-purpose. PMID:28786935

  20. The cytoskeleton in cell-autonomous immunity: structural determinants of host defence

    PubMed Central

    Mostowy, Serge; Shenoy, Avinash R.

    2016-01-01

    Host cells use antimicrobial proteins, pathogen-restrictive compartmentalization and cell death in their defence against intracellular pathogens. Recent work has revealed that four components of the cytoskeleton — actin, microtubules, intermediate filaments and septins, which are well known for their roles in cell division, shape and movement — have important functions in innate immunity and cellular self-defence. Investigations using cellular and animal models have shown that these cytoskeletal proteins are crucial for sensing bacteria and for mobilizing effector mechanisms to eliminate them. In this Review, we highlight the emerging roles of the cytoskeleton as a structural determinant of cell-autonomous host defence. PMID:26292640

  1. Regulation of Cellular Communication by Signaling Microdomains in the Blood Vessel Wall

    PubMed Central

    Billaud, Marie; Lohman, Alexander W.; Johnstone, Scott R.; Biwer, Lauren A.; Mutchler, Stephanie; Isakson, Brant E.

    2014-01-01

    It has become increasingly clear that the accumulation of proteins in specific regions of the plasma membrane can facilitate cellular communication. These regions, termed signaling microdomains, are found throughout the blood vessel wall where cellular communication, both within and between cell types, must be tightly regulated to maintain proper vascular function. We will define a cellular signaling microdomain and apply this definition to the plethora of means by which cellular communication has been hypothesized to occur in the blood vessel wall. To that end, we make a case for three broad areas of cellular communication where signaling microdomains could play an important role: 1) paracrine release of free radicals and gaseous molecules such as nitric oxide and reactive oxygen species; 2) role of ion channels including gap junctions and potassium channels, especially those associated with the endothelium-derived hyperpolarization mediated signaling, and lastly, 3) mechanism of exocytosis that has considerable oversight by signaling microdomains, especially those associated with the release of von Willebrand factor. When summed, we believe that it is clear that the organization and regulation of signaling microdomains is an essential component to vessel wall function. PMID:24671377

  2. Regulation of cellular communication by signaling microdomains in the blood vessel wall.

    PubMed

    Billaud, Marie; Lohman, Alexander W; Johnstone, Scott R; Biwer, Lauren A; Mutchler, Stephanie; Isakson, Brant E

    2014-01-01

    It has become increasingly clear that the accumulation of proteins in specific regions of the plasma membrane can facilitate cellular communication. These regions, termed signaling microdomains, are found throughout the blood vessel wall where cellular communication, both within and between cell types, must be tightly regulated to maintain proper vascular function. We will define a cellular signaling microdomain and apply this definition to the plethora of means by which cellular communication has been hypothesized to occur in the blood vessel wall. To that end, we make a case for three broad areas of cellular communication where signaling microdomains could play an important role: 1) paracrine release of free radicals and gaseous molecules such as nitric oxide and reactive oxygen species; 2) role of ion channels including gap junctions and potassium channels, especially those associated with the endothelium-derived hyperpolarization mediated signaling, and lastly, 3) mechanism of exocytosis that has considerable oversight by signaling microdomains, especially those associated with the release of von Willebrand factor. When summed, we believe that it is clear that the organization and regulation of signaling microdomains is an essential component to vessel wall function.

  3. Incubation period and immune function: A comparative field study among coexisting birds

    USGS Publications Warehouse

    Palacios, M.G.; Martin, T.E.

    2006-01-01

    Developmental periods are integral components of life history strategies that can have important fitness consequences and vary enormously among organisms. However, the selection pressures and mechanisms causing variation in length of developmental periods are poorly understood. Particularly puzzling are prolonged developmental periods, because their selective advantage is unclear. Here we tested the hypotheses that immune function is stronger in species that are attacked at a higher rate by parasites and that prolonged embryonic development allows the development of this stronger immune system. Through a comparative field study among 12 coexisting passerine bird species, we show that species with higher blood parasite prevalence mounted stronger cellular immune responses than species with lower prevalence. These results provide support for the hypothesis that species facing greater selection pressure from parasites invest more in immune function. However, species with longer incubation periods mounted weaker cellular immune responses than species with shorter periods. Therefore, cellular immune responses do not support the hypothesis that longer development time enhances immunocompentence. Future studies should assess other components of the immune system and test alternative causes of variation in incubation periods among bird species. ?? Springer-Verlag 2005.

  4. Mitochondrial peptides modulate mitochondrial function during cellular senescence.

    PubMed

    Kim, Su-Jeong; Mehta, Hemal H; Wan, Junxiang; Kuehnemann, Chisaka; Chen, Jingcheng; Hu, Ji-Fan; Hoffman, Andrew R; Cohen, Pinchas

    2018-06-10

    Cellular senescence is a complex cell fate response that is thought to underlie several age-related pathologies. Despite a loss of proliferative potential, senescent cells are metabolically active and produce energy-consuming effectors, including senescence-associated secretory phenotypes (SASPs). Mitochondria play crucial roles in energy production and cellular signaling, but the key features of mitochondrial physiology and particularly of mitochondria-derived peptides (MDPs), remain underexplored in senescence responses. Here, we used primary human fibroblasts made senescent by replicative exhaustion, doxorubicin or hydrogen peroxide treatment, and examined the number of mitochondria and the levels of mitochondrial respiration, mitochondrial DNA methylation and the mitochondria-encoded peptides humanin, MOTS-c, SHLP2 and SHLP6. Senescent cells showed increased numbers of mitochondria and higher levels of mitochondrial respiration, variable changes in mitochondrial DNA methylation, and elevated levels of humanin and MOTS-c. Humanin and MOTS-c administration modestly increased mitochondrial respiration and selected components of the SASP in doxorubicin-induced senescent cells partially via JAK pathway. Targeting metabolism in senescence cells is an important strategy to reduce SASP production for eliminating the deleterious effects of senescence. These results provide insight into the role of MDPs in mitochondrial energetics and the production of SASP components by senescent cells.

  5. Biconnectivity of the cellular metabolism: A cross-species study and its implication for human diseases

    PubMed Central

    Kim, P.; Lee, D.-S.; Kahng, B.

    2015-01-01

    The maintenance of stability during perturbations is essential for living organisms, and cellular networks organize multiple pathways to enable elements to remain connected and communicate, even when some pathways are broken. Here, we evaluated the biconnectivity of the metabolic networks of 506 species in terms of the clustering coefficients and the largest biconnected components (LBCs), wherein a biconnected component (BC) indicates a set of nodes in which every pair is connected by more than one path. Via comparison with the rewired networks, we illustrated how biconnectivity in cellular metabolism is achieved on small and large scales. Defining the biconnectivity of individual metabolic compounds by counting the number of species in which the compound belonged to the LBC, we demonstrated that biconnectivity is significantly correlated with the evolutionary age and functional importance of a compound. The prevalence of diseases associated with each metabolic compound quantifies the compounds vulnerability, i.e., the likelihood that it will cause a metabolic disorder. Moreover, the vulnerability depends on both the biconnectivity and the lethality of the compound. This fact can be used in drug discovery and medical treatments. PMID:26490723

  6. Differential Proteome Analysis of a Flor Yeast Strain under Biofilm Formation.

    PubMed

    Moreno-García, Jaime; Mauricio, Juan Carlos; Moreno, Juan; García-Martínez, Teresa

    2017-03-28

    Several Saccharomyces cerevisiae strains (flor yeasts) form a biofilm (flor velum) on the surface of Sherry wines after fermentation, when glucose is depleted. This flor velum is fundamental to biological aging of these particular wines. In this study, we identify abundant proteins in the formation of the biofilm of an industrial flor yeast strain. A database search to enrich flor yeast "biological process" and "cellular component" according to Gene Ontology Terminology (GO Terms) and, "pathways" was carried out. The most abundant proteins detected were largely involved in respiration, translation, stress damage prevention and repair, amino acid metabolism (glycine, isoleucine, leucine and arginine), glycolysis/gluconeogenesis and biosynthesis of vitamin B9 (folate). These proteins were located in cellular components as in the peroxisome, mitochondria, vacuole, cell wall and extracellular region; being these two last directly related with the flor formation. Proteins like Bgl2p, Gcv3p, Hyp2p, Mdh1p, Suc2p and Ygp1p were quantified in very high levels. This study reveals some expected processes and provides new and important information for the design of conditions and genetic constructions of flor yeasts for improving the cellular survival and, thus, to optimize biological aging of Sherry wine production.

  7. Global functional analyses of cellular responses to pore-forming toxins.

    PubMed

    Kao, Cheng-Yuan; Los, Ferdinand C O; Huffman, Danielle L; Wachi, Shinichiro; Kloft, Nicole; Husmann, Matthias; Karabrahimi, Valbona; Schwartz, Jean-Louis; Bellier, Audrey; Ha, Christine; Sagong, Youn; Fan, Hui; Ghosh, Partho; Hsieh, Mindy; Hsu, Chih-Shen; Chen, Li; Aroian, Raffi V

    2011-03-01

    Here we present the first global functional analysis of cellular responses to pore-forming toxins (PFTs). PFTs are uniquely important bacterial virulence factors, comprising the single largest class of bacterial protein toxins and being important for the pathogenesis in humans of many Gram positive and Gram negative bacteria. Their mode of action is deceptively simple, poking holes in the plasma membrane of cells. The scattered studies to date of PFT-host cell interactions indicate a handful of genes are involved in cellular defenses to PFTs. How many genes are involved in cellular defenses against PFTs and how cellular defenses are coordinated are unknown. To address these questions, we performed the first genome-wide RNA interference (RNAi) screen for genes that, when knocked down, result in hypersensitivity to a PFT. This screen identifies 106 genes (∼0.5% of genome) in seven functional groups that protect Caenorhabditis elegans from PFT attack. Interactome analyses of these 106 genes suggest that two previously identified mitogen-activated protein kinase (MAPK) pathways, one (p38) studied in detail and the other (JNK) not, form a core PFT defense network. Additional microarray, real-time PCR, and functional studies reveal that the JNK MAPK pathway, but not the p38 MAPK pathway, is a key central regulator of PFT-induced transcriptional and functional responses. We find C. elegans activator protein 1 (AP-1; c-jun, c-fos) is a downstream target of the JNK-mediated PFT protection pathway, protects C. elegans against both small-pore and large-pore PFTs and protects human cells against a large-pore PFT. This in vivo RNAi genomic study of PFT responses proves that cellular commitment to PFT defenses is enormous, demonstrates the JNK MAPK pathway as a key regulator of transcriptionally-induced PFT defenses, and identifies AP-1 as the first cellular component broadly important for defense against large- and small-pore PFTs.

  8. [The Functional Role of Exosomes in Cancer Biology and Their Potential as Biomarkers and Therapeutic Targets of Cancer].

    PubMed

    Naito, Yutaka; Yoshioka, Yusuke; Ochiya, Takahiro

    2015-06-01

    Intercellular communication plays an important role in the regulation of various cellular events. In particular, cancer cells and the surrounding cells communicate with each other, and this intercellular communication triggers cancer initiation and progression through the secretion of molecules, including growth factors and cytokines. Recent advances in cancer biology have indicated that small membrane vesicles, termed exosomes, also serve as regulatory agents in intercellular communications. Exosomes contain functional cellular components, including proteins and microRNAs (miRNAs), and they transfer these components to recipient cells. This exosome-mediated intercellular communication leads to increased growth, invasion, and metastasis of cancer. Thus, researchers regard exosomes as important cues to understanding the molecular mechanisms of cancer biology. Indeed, several lines of evidence have demonstrated that exosomes can explain multiple aspects of cancer biology. In addition, increasing evidence suggests that exosomes and their specific molecules are also attractive for use as biomarkers and therapeutic targets in cancer. Recent reports showed the efficacy of a novel diagnosis by detecting component molecules of cancer-derived exosomes, including miRNAs and membrane proteins. Furthermore, clinical trials that test the application of exosomes for cancer therapy have already been reported. From these points of view, we will summarize experimental data that support the role of exosomes in cancer progression and the potential of exosomes for use in novel diagnostic and therapeutic approaches for cancer.

  9. Engineering a biospecific communication pathway between cells and electrodes

    NASA Astrophysics Data System (ADS)

    Collier, Joel H.; Mrksich, Milan

    2006-02-01

    Methods for transducing the cellular activities of mammalian cells into measurable electronic signals are important in many biotechnical applications, including biosensors, cell arrays, and other cell-based devices. This manuscript describes an approach for functionally integrating cellular activities and electrical processes in an underlying substrate. The cells are engineered with a cell-surface chimeric receptor that presents the nonmammalian enzyme cutinase. Action of this cell-surface cutinase on enzyme substrate self-assembled monolayers switches a nonelectroactive hydroxyphenyl ester to an electroactive hydroquinone, providing an electrical activity that can be identified with cyclic voltammetry. In this way, cell-surface enzymatic activity is transduced into electronic signals. The development of strategies to directly interface the activities of cells with materials will be important to enabling a broad class of hybrid microsystems that combine living and nonliving components. biomaterial | extracellular matrix | signal transduction

  10. The Hippo component YAP localizes in the nucleus of human papilloma virus positive oropharyngeal squamous cell carcinoma.

    PubMed

    Alzahrani, Faisal; Clattenburg, Leanne; Muruganandan, Shanmugam; Bullock, Martin; MacIsaac, Kaitlyn; Wigerius, Michael; Williams, Blair A; Graham, M Elise R; Rigby, Matthew H; Trites, Jonathan R B; Taylor, S Mark; Sinal, Christopher J; Fawcett, James P; Hart, Robert D

    2017-02-22

    HPV infection causes cervical cancer, mediated in part by the degradation of Scribble via the HPV E6 oncoprotein. Recently, Scribble has been shown to be an important regulator of the Hippo signaling cascade. Deregulation of the Hippo pathway induces an abnormal cellular transformation, epithelial to mesenchymal transition, which promotes oncogenic progression. Given the recent rise in oropharyngeal HPV squamous cell carcinoma we sought to determine if Hippo signaling components are implicated in oropharyngeal squamous cell carcinoma. Molecular and cellular techniques including immunoprecipiations, Western blotting and immunocytochemistry were used to identify the key Hippo pathway effector Yes-Associated Protein (YAP)1. Oropharyngeal tissue was collected from CO 2 laser resections, and probed with YAP1 antibody in tumor and pre-malignant regions of HPV positive OPSCC tissue. This study reveals that the Scribble binding protein Nitric Oxide Synthase 1 Adaptor Protein (NOS1AP) forms a complex with YAP. Further, the NOS1APa and NOS1APc isoforms show differential association with activated and non-activated YAP, and impact cellular proliferation. Consistent with deregulated Hippo signaling in OPSCC HPV tumors, we see a delocalization of Scribble and increased nuclear accumulation of YAP1 in an HPV-positive OPSCC. Our preliminary data indicates that NOS1AP isoforms differentially associate with YAP1, which, together with our previous findings, predicts that loss of YAP1 enhances cellular transformation. Moreover, YAP1 is highly accumulated in the nucleus of HPV-positive OPSCC, implying that Hippo signaling and possibly NOS1AP expression are de-regulated in OPSCC. Further studies will help determine if NOS1AP isoforms, Scribble and Hippo components will be useful biomarkers in OPSCC tumor biology.

  11. Methods to Measure Lipophagy in Yeast.

    PubMed

    Cristobal-Sarramian, A; Radulovic, M; Kohlwein, S D

    2017-01-01

    Maintenance of cellular and organismal lipid homeostasis is critical for life, and any deviation from a balanced equilibrium between fat uptake and degradation may have deleterious consequences, resulting in severe lipid-associated disorders. Excess fat is typically stored in cytoplasmic organelles termed "lipid droplets" (LDs); to adjust for a constantly fluctuating supply of and demand for cellular fat, these organelles are metabolically highly dynamic and subject to multiple levels of regulation. In addition to a well-described cytosolic lipid degradation pathway, recent evidence underscores the importance of "lipophagy" in cellular lipid homeostasis, i.e., the degradation of LD by autophagy in the lysosome/vacuole. Pioneering work in yeast mutant models has unveiled the requirement of key components of the autophagy machinery, providing evidence for a highly conserved process of lipophagy from yeast to man. However, further work is required to unveil the intricate metabolic interaction between LD metabolism and autophagy to sustain membrane homeostasis and cellular survival. © 2017 Elsevier Inc. All rights reserved.

  12. Role of Fatty Acid Kinase in Cellular Lipid Homeostasis and SaeRS-Dependent Virulence Factor Expression in Staphylococcus aureus.

    PubMed

    Ericson, Megan E; Subramanian, Chitra; Frank, Matthew W; Rock, Charles O

    2017-08-01

    The SaeRS two-component system is a master activator of virulence factor transcription in Staphylococcus aureus , but the cellular factors that control its activity are unknown. Fatty acid (FA) kinase is a two-component enzyme system required for extracellular FA uptake and SaeRS activity. Here, we demonstrate the existence of an intracellular nonesterified FA pool in S. aureus that is elevated in strains lacking FA kinase activity. SaeRS-mediated transcription is restored in FA kinase-negative strains when the intracellular FA pool is reduced either by growth with FA-depleted bovine serum albumin to extract the FA into the medium or by the heterologous expression of Neisseria gonorrhoeae acyl-acyl carrier protein synthetase to activate FA for phospholipid synthesis. These data show that FAs act as negative regulators of SaeRS signaling, and FA kinase activates SaeRS-dependent virulence factor production by lowering inhibitory FA levels. Thus, FA kinase plays a role in cellular lipid homeostasis by activating FA for incorporation into phospholipid, and it indirectly regulates SaeRS signaling by maintaining a low intracellular FA pool. IMPORTANCE The SaeRS two-component system is a master transcriptional activator of virulence factor production in response to the host environment in S. aureus , and strains lacking FA kinase have severely attenuated SaeRS-dependent virulence factor transcription. FA kinase is required for the activation of exogenous FAs, and it plays a role in cellular lipid homeostasis by recycling cellular FAs into the phospholipid biosynthetic pathway. Activation of the sensor kinase, SaeS, is mediated by its membrane anchor domain, and the FAs which accumulate in FA kinase knockout strains are potent inhibitors of SaeS-dependent signaling. This work identifies FAs as physiological effectors for the SaeRS system and reveals a connection between cellular lipid homeostasis and the regulation of virulence factor transcription. FA kinase is widely distributed in Gram-positive bacteria, suggesting similar roles for FA kinase in these organisms. Copyright © 2017 Ericson et al.

  13. Molecular chaperones and photoreceptor function

    PubMed Central

    Kosmaoglou, Maria; Schwarz, Nele; Bett, John S.; Cheetham, Michael E.

    2008-01-01

    Molecular chaperones facilitate and regulate protein conformational change within cells. This encompasses many fundamental cellular processes: including the correct folding of nascent chains; protein transport and translocation; signal transduction and protein quality control. Chaperones are, therefore, important in several forms of human disease, including neurodegeneration. Within the retina, the highly specialized photoreceptor cell presents a fascinating paradigm to investigate the specialization of molecular chaperone function and reveals unique chaperone requirements essential to photoreceptor function. Mutations in several photoreceptor proteins lead to protein misfolding mediated neurodegeneration. The best characterized of these are mutations in the molecular light sensor, rhodopsin, which cause autosomal dominant retinitis pigmentosa. Rhodopsin biogenesis is likely to require chaperones, while rhodopsin misfolding involves molecular chaperones in quality control and the cellular response to protein aggregation. Furthermore, the specialization of components of the chaperone machinery to photoreceptor specific roles has been revealed by the identification of mutations in molecular chaperones that cause inherited retinal dysfunction and degeneration. These chaperones are involved in several important cellular pathways and further illuminate the essential and diverse roles of molecular chaperones. PMID:18490186

  14. Ethanol-induced oxidant stress modulates hepatic autophagy and proteasome activity

    PubMed Central

    Donohue, Jr., Terrence M.; Thomes, Paul G.

    2014-01-01

    In this review, we describe research findings on the effects of alcohol exposure on two major catabolic systems in liver cells: the ubiquitin–proteasome system (UPS) and autophagy. These hydrolytic systems are not unique to liver cells; they exist in all eukaryotic tissues and cells. However, because the liver is the principal site of ethanol metabolism, it sustains the greatest damage from heavy drinking. Thus, the focus of this review is to specifically describe how ethanol oxidation modulates the activities of the UPS and autophagy and the mechanisms by which these changes contribute to the pathogenesis of alcohol-induced liver injury. Here, we describe the history and the importance of cellular hydrolytic systems, followed by a description of each catabolic pathway and the differential modulation of each by ethanol exposure. Overall, the evidence for an involvement of these catabolic systems in the pathogenesis of alcoholic liver disease is quite strong. It underscores their importance, not only as effective means of cellular recycling and eventual energy generation, but also as essential components of cellular defense. PMID:25462063

  15. Mouse Models for Unraveling the Importance of Diet in Colon Cancer Prevention

    PubMed Central

    Tammariello, Alexandra E.; Milner, John A.

    2010-01-01

    Diet and genetics are both considered important risk determinants for colorectal cancer, a leading cause of death worldwide. Several genetically engineered mouse models have been created, including the ApcMin mouse, to aid in the identification of key cancer related processes and to assist with the characterization of environmental factors, including the diet, which influence risk. Current research using these models provides evidence that several bioactive food components can inhibit genetically predisposed colorectal cancer, while others increase risk. Specifically, calorie restriction or increased exposure to n-3 fatty acids, sulforaphane, chafuroside, curcumin, and dibenzoylmethane were reported protective. Total fat, calories and all-trans retinoic acid are associated with an increased risk. Unraveling the importance of specific dietary components in these models is complicated by the basal diet used, the quantity of test components provided, and interactions among food components. Newer models are increasingly available to evaluate fundamental cellular processes, including DNA mismatch repair, immune function and inflammation as markers for colon cancer risk. Unfortunately, these models have been used infrequently to examine the influence of specific dietary components. The enhanced use of these models can shed mechanistic insights about the involvement of specific bioactive food and components and energy as determinants of colon cancer risk. However, the use of available mouse models to exactly represent processes important to human gastrointestinal cancers will remain a continued scientific challenge. PMID:20122631

  16. Developmental consequences of cryopreservation of mammalian oocytes and embryos.

    PubMed

    Smith, Gary D; Silva E Silva, Cristine Ane

    2004-08-01

    During the last three decades, significant advances have been made in successful cryopreservation of mammalian preimplantation embryos, and more recently oocytes. The ability to cryopreserve, thaw, and establish pregnancies with supernumerary preimplantation embryos has become an important tool in fertility treatment. Human oocyte cryopreservation has practical application in preserving fertility for individuals at risk of compromised egg quality due to cancer treatments or advanced maternal age. While oocyte/embryo cryopreservation success has increased over time, there is still room for improvement. Oocytes and embryos are susceptible to cryo-damage, which collectively entails cellular damage caused by mechanical, chemical, or thermal forces during the freeze-thaw process. Basic studies focused on understanding cellular structures, their composition, and more importantly their functions, in normal cell developments will continue to be critical in assessing, understanding, and correcting oocyte/embryo cryo-damage. This review will delineate many of the oocyte/embryo intracellular and extracellular structures that are or may be compromised during cryopreservation. A global theme presented throughout this review is that many structural components of the oocyte/embryo also have essential functional roles in development. Compromising these cellular structures, and thus their cellular homeostatic functions, can deleteriously influence initial cryo-survival or compromise subsequent normal development through effects on the oocyte and/or early embryo.

  17. Yeast Reporter Assay to Identify Cellular Components of Ricin Toxin A Chain Trafficking.

    PubMed

    Becker, Björn; Schnöder, Tina; Schmitt, Manfred J

    2016-12-06

    RTA, the catalytic A-subunit of the ribosome inactivating A/B toxin ricin, inhibits eukaryotic protein biosynthesis by depurination of 28S rRNA. Although cell surface binding of ricin holotoxin is mainly mediated through its B-subunit (RTB), sole application of RTA is also toxic, albeit to a significantly lower extent, suggesting alternative pathways for toxin uptake and transport. Since ricin toxin trafficking in mammalian cells is still not fully understood, we developed a GFP-based reporter assay in yeast that allows rapid identification of cellular components required for RTA uptake and subsequent transport through a target cell. We hereby show that Ypt6p, Sft2p and GARP-complex components play an important role in RTA transport, while neither the retromer complex nor COPIB vesicles are part of the transport machinery. Analyses of yeast knock-out mutants with chromosomal deletion in genes whose products regulate ADP-ribosylation factor GTPases (Arf-GTPases) and/or retrograde Golgi-to-ER (endoplasmic reticulum) transport identified Sso1p, Snc1p, Rer1p, Sec22p, Erv46p, Gea1p and Glo3p as novel components in RTA transport, suggesting the developed reporter assay as a powerful tool to dissect the multistep processes of host cell intoxication in yeast.

  18. Combining RNA interference and kinase inhibitors against cell signalling components involved in cancer

    PubMed Central

    O'Grady, Michael; Raha, Debasish; Hanson, Bonnie J; Bunting, Michaeline; Hanson, George T

    2005-01-01

    Background The transcription factor activator protein-1 (AP-1) has been implicated in a large variety of biological processes including oncogenic transformation. The tyrosine kinases of the epidermal growth factor receptor (EGFR) constitute the beginning of one signal transduction cascade leading to AP-1 activation and are known to control cell proliferation and differentiation. Drug discovery efforts targeting this receptor and other pathway components have centred on monoclonal antibodies and small molecule inhibitors. Resistance to such inhibitors has already been observed, guiding the prediction of their use in combination therapies with other targeted agents such as RNA interference (RNAi). This study examines the use of RNAi and kinase inhibitors for qualification of components involved in the EGFR/AP-1 pathway of ME180 cells, and their inhibitory effects when evaluated individually or in tandem against multiple components of this important disease-related pathway. Methods AP-1 activation was assessed using an ME180 cell line stably transfected with a beta-lactamase reporter gene under the control of AP-1 response element following epidermal growth factor (EGF) stimulation. Immunocytochemistry allowed for further quantification of small molecule inhibition on a cellular protein level. RNAi and RT-qPCR experiments were performed to assess the amount of knockdown on an mRNA level, and immunocytochemistry was used to reveal cellular protein levels for the targeted pathway components. Results Increased potency of kinase inhibitors was shown by combining RNAi directed towards EGFR and small molecule inhibitors acting at proximal or distal points in the pathway. After cellular stimulation with EGF and analysis at the level of AP-1 activation using a β-lactamase reporter gene, a 10–12 fold shift or 2.5–3 fold shift toward greater potency in the IC50 was observed for EGFR and MEK-1 inhibitors, respectively, in the presence of RNAi targeting EGFR. Conclusion EGFR pathway components were qualified as targets for inhibition of AP-1 activation using RNAi and small molecule inhibitors. The combination of these two targeted agents was shown to increase the efficacy of EGFR and MEK-1 kinase inhibitors, leading to possible implications for overcoming or preventing drug resistance, lowering effective drug doses, and providing new strategies for interrogating cellular signalling pathways. PMID:16202132

  19. Different cellular effects of four anti-inflammatory eye drops on human corneal epithelial cells: independent in active components.

    PubMed

    Qu, Mingli; Wang, Yao; Yang, Lingling; Zhou, Qingjun

    2011-01-01

    To evaluate and compare the cellular effects of four commercially available anti-inflammatory eye drops and their active components on human corneal epithelial cells (HCECs) in vitro. The cellular effects of four eye drops (Bromfenac Sodium Hydrate Eye Drops, Pranoprofen Eye Drops, Diclofenac Sodium Eye Drops, and Tobramycin & Dex Eye Drops) and their corresponding active components were evaluated in an HCEC line with five in vitro assays. Cell proliferation and migration were measured using 3-(4,5)-dimethylthiahiazo (-z-y1)-3 5-di-phenytetrazoliumromide (MTT) assay and transwell migration assay. Cell damage was determined with the lactate dehydrogenase (LDH) assay. Cell viability and median lethal time (LT₅₀) were measured by 7-amino-actinomycin D (7-AAD) staining and flow cytometry analysis. Cellular effects after exposure of HCECs to the four anti-inflammatory eye drops were concentration dependent. The differences of cellular toxicity on cell proliferation became significant at lower concentrations (<0.002%). Diclofenac Sodium Eye Drops showed significant increasing effects on cell damage and viability when compared with the other three solutions. Tobramycin & Dex Eye Drops inhibited the migration of HCECs significantly. Tobramycin & Dex Eye Drops showed the quickest effect on cell viability: the LT₅₀ was 3.28, 9.23, 10.38, and 23.80 min for Tobramycin & Dex Eye Drops, Diclofenac Sodium Eye Drops, Pranoprofen Eye Drops, and Bromfenac Sodium Hydrate Eye Drops, respectively. However, the comparisons of cellular toxicity revealed significant differences between the eye drops and their active components under the same concentration. The corneal epithelial toxicity differences among the active components of the four eye drops became significant as higher concentration (>0.020%). The four anti-inflammatory eye drops showed different cellular effects on HCECs, and the toxicity was not related with their active components, which provides new reference for the clinical application and drug research and development.

  20. Cellular angiofibroma with atypia or sarcomatous transformation: clinicopathologic analysis of 13 cases.

    PubMed

    Chen, Eleanor; Fletcher, Christopher D M

    2010-05-01

    Cellular angiofibroma is a mesenchymal neoplasm that is characterized by a bland spindle cell component, morphologically reminiscent of spindle cell lipoma, and thick-walled vessels. The tumor occurs equally in men and women and usually arises in the inguino-scrotal or vulvovaginal regions. An earlier study of 51 cases from our group showed that the tumor follows a benign course without any tendency for recurrence. In 1 case, an intralesional microscopic nodule of pleomorphic liposarcoma was observed. The biologic significance of atypia or sarcomatous transformation in cellular angiofibroma remains uncertain. In this study, we characterized clinicopathologic features in 13 cases of cellular angiofibroma with morphologic atypia or sarcomatous transformation. Thirteen cases with atypia or sarcomatous transformation among 154 usual cellular angiofibromas identified between 1993 and 2009 were retrieved from consultation files. There were 12 females and 1 male ranging in age from 39 to 71 years (median age, 46 y). Tumor size ranged from 1.2 to 7.5 cm. In 11 cases, the tumors occurred in the vulva. One case each occurred in the paratesticular and hip regions. Most tumors were located in subcutaneous tissue. There were 4 cases of cellular angiofibroma with atypia. Three showed severely atypical cells as scattered foci within the cellular angiofibroma. One case showed a discrete nodule of atypical cells. There were 9 cases of cellular angiofibroma with morphologic features of sarcomatous transformation. In each case, abrupt transition to a discrete sarcomatous component was seen. Of these 9 cases, the sarcomatous component in 2 cases showed features of pleomorphic liposarcoma with multivacuolated lipoblasts readily identified. Three of these 9 cases showed discrete nodule(s) closely resembling atypical lipomatous tumor within usual cellular angiofibroma. In the remaining 4 cases, the sarcomatous component was composed of pleomorphic spindle cells arranged in various patterns. By immunohistochemistry, atypical cells and sarcomatous areas showed either multifocal or more diffuse p16 expression compared with either scattered or negative expression in the conventional cellular angiofibroma. The 3 cases with atypical lipomatous tumor-like areas were negative for MDM-2 and CDK4. Follow-up information was available for 7 patients (range from 2 to 75 mo; median: 14 mo). Six patients did not develop recurrence or metastasis. One patient died of metastatic carcinoma of unknown primary site 27 months after the diagnosis of cellular angiofibroma with sarcomatous transformation. Cellular angiofibroma with atypia or morphologic sarcomatous transformation occurs predominantly in the subcutaneous tissue of the vulva and, as yet, shows no evident tendency to recur based on limited clinical follow-up available for 7 cases. The sarcomatous component can show variable features including atypical lipomatous tumor, pleomorphic liposarcoma, and pleomorphic sarcoma NOS. Overexpression of p16 in the atypical cells and sarcomatous component suggests a possible underlying molecular mechanism.

  1. Identification of signaling components required for the prediction of cytokine release in RAW 264.7 macrophages

    PubMed Central

    Pradervand, Sylvain; Maurya, Mano R; Subramaniam, Shankar

    2006-01-01

    Background Release of immuno-regulatory cytokines and chemokines during inflammatory response is mediated by a complex signaling network. Multiple stimuli produce different signals that generate different cytokine responses. Current knowledge does not provide a complete picture of these signaling pathways. However, using specific markers of signaling pathways, such as signaling proteins, it is possible to develop a 'coarse-grained network' map that can help understand common regulatory modules for various cytokine responses and help differentiate between the causes of their release. Results Using a systematic profiling of signaling responses and cytokine release in RAW 264.7 macrophages made available by the Alliance for Cellular Signaling, an analysis strategy is presented that integrates principal component regression and exhaustive search-based model reduction to identify required signaling factors necessary and sufficient to predict the release of seven cytokines (G-CSF, IL-1α, IL-6, IL-10, MIP-1α, RANTES, and TNFα) in response to selected ligands. This study provides a model-based quantitative estimate of cytokine release and identifies ten signaling components involved in cytokine production. The models identified capture many of the known signaling pathways involved in cytokine release and predict potentially important novel signaling components, like p38 MAPK for G-CSF release, IFNγ- and IL-4-specific pathways for IL-1a release, and an M-CSF-specific pathway for TNFα release. Conclusion Using an integrative approach, we have identified the pathways responsible for the differential regulation of cytokine release in RAW 264.7 macrophages. Our results demonstrate the power of using heterogeneous cellular data to qualitatively and quantitatively map intermediate cellular phenotypes. PMID:16507166

  2. Cellular Entry of Clostridium perfringens Iota-Toxin and Clostridium botulinum C2 Toxin

    PubMed Central

    Takehara, Masaya; Takagishi, Teruhisa; Seike, Soshi; Oda, Masataka; Sakaguchi, Yoshihiko; Hisatsune, Junzo; Ochi, Sadayuki; Kobayashi, Keiko; Nagahama, Masahiro

    2017-01-01

    Clostridium perfringens iota-toxin and Clostridium botulinum C2 toxin are composed of two non-linked proteins, one being the enzymatic component and the other being the binding/translocation component. These latter components recognize specific receptors and oligomerize in plasma membrane lipid-rafts, mediating the uptake of the enzymatic component into the cytosol. Enzymatic components induce actin cytoskeleton disorganization through the ADP-ribosylation of actin and are responsible for cell rounding and death. This review focuses upon the recent advances in cellular internalization of clostridial binary toxins. PMID:28800062

  3. Cellular Entry of Clostridium perfringens Iota-Toxin and Clostridium botulinum C2 Toxin.

    PubMed

    Takehara, Masaya; Takagishi, Teruhisa; Seike, Soshi; Oda, Masataka; Sakaguchi, Yoshihiko; Hisatsune, Junzo; Ochi, Sadayuki; Kobayashi, Keiko; Nagahama, Masahiro

    2017-08-11

    Clostridium perfringens iota-toxin and Clostridium botulinum C2 toxin are composed of two non-linked proteins, one being the enzymatic component and the other being the binding/translocation component. These latter components recognize specific receptors and oligomerize in plasma membrane lipid-rafts, mediating the uptake of the enzymatic component into the cytosol. Enzymatic components induce actin cytoskeleton disorganization through the ADP-ribosylation of actin and are responsible for cell rounding and death. This review focuses upon the recent advances in cellular internalization of clostridial binary toxins.

  4. Testisimmune privilege - Assumptions versus facts

    PubMed Central

    Kaur, G.; Mital, P.; Dufour, J.M.

    2013-01-01

    The testis has long enjoyed a reputation as an immunologically privileged site based on its ability to protect auto-antigenic germ cells and provide an optimal environment for the extended survival of transplanted allo- or xeno-grafts. Exploration of the role of anatomical, physiological, immunological and cellular components in testis immune privilege revealed that the tolerogenic environment of the testis is a result of the immunomodulatory factors expressed or secreted by testicular cells (mainly Sertoli cells, peritubular myoid cells, Leydig cells, and resident macrophages). The blood-testis barrier/Sertoli cell barrier, is also important to seclude advanced germ cells but its requirement in testis immune privilege needs further investigation. Testicular immune privilege is not permanent, as an effective immune response can be mounted against transplanted tissue, and bacterial/viral infections in the testis can be effectively eliminated. Overall, the cellular components control the fate of the immune response and can shift the response from immunodestructive to immunoprotective, resulting in immune privilege. PMID:25309630

  5. Accurate reliability analysis method for quantum-dot cellular automata circuits

    NASA Astrophysics Data System (ADS)

    Cui, Huanqing; Cai, Li; Wang, Sen; Liu, Xiaoqiang; Yang, Xiaokuo

    2015-10-01

    Probabilistic transfer matrix (PTM) is a widely used model in the reliability research of circuits. However, PTM model cannot reflect the impact of input signals on reliability, so it does not completely conform to the mechanism of the novel field-coupled nanoelectronic device which is called quantum-dot cellular automata (QCA). It is difficult to get accurate results when PTM model is used to analyze the reliability of QCA circuits. To solve this problem, we present the fault tree models of QCA fundamental devices according to different input signals. After that, the binary decision diagram (BDD) is used to quantitatively investigate the reliability of two QCA XOR gates depending on the presented models. By employing the fault tree models, the impact of input signals on reliability can be identified clearly and the crucial components of a circuit can be found out precisely based on the importance values (IVs) of components. So this method is contributive to the construction of reliable QCA circuits.

  6. Epithelialization in Wound Healing: A Comprehensive Review

    PubMed Central

    Pastar, Irena; Stojadinovic, Olivera; Yin, Natalie C.; Ramirez, Horacio; Nusbaum, Aron G.; Sawaya, Andrew; Patel, Shailee B.; Khalid, Laiqua; Isseroff, Rivkah R.; Tomic-Canic, Marjana

    2014-01-01

    Significance: Keratinocytes, a major cellular component of the epidermis, are responsible for restoring the epidermis after injury through a process termed epithelialization. This review will focus on the pivotal role of keratinocytes in epithelialization, including cellular processes and mechanisms of their regulation during re-epithelialization, and their cross talk with other cell types participating in wound healing. Recent Advances: Discoveries in epidermal stem cells, keratinocyte immune function, and the role of the epidermis as an independent neuroendocrine organ will be reviewed. Novel mechanisms of gene expression regulation important for re-epithelialization, including microRNAs and histone modifications, will also be discussed. Critical Issues: Epithelialization is an essential component of wound healing used as a defining parameter of a successful wound closure. A wound cannot be considered healed in the absence of re-epithelialization. The epithelialization process is impaired in all types of chronic wounds. Future Directions: A comprehensive understanding of the epithelialization process will ultimately lead to the development of novel therapeutic approaches to promote wound closure. PMID:25032064

  7. [Cell signaling pathways interaction in cellular proliferation: Potential target for therapeutic interventionism].

    PubMed

    Valdespino-Gómez, Víctor Manuel; Valdespino-Castillo, Patricia Margarita; Valdespino-Castillo, Víctor Edmundo

    2015-01-01

    Nowadays, cellular physiology is best understood by analysing their interacting molecular components. Proteins are the major components of the cells. Different proteins are organised in the form of functional clusters, pathways or networks. These molecules are ordered in clusters of receptor molecules of extracellular signals, transducers, sensors and biological response effectors. The identification of these intracellular signaling pathways in different cellular types has required a long journey of experimental work. More than 300 intracellular signaling pathways have been identified in human cells. They participate in cell homeostasis processes for structural and functional maintenance. Some of them participate simultaneously or in a nearly-consecutive progression to generate a cellular phenotypic change. In this review, an analysis is performed on the main intracellular signaling pathways that take part in the cellular proliferation process, and the potential use of some components of these pathways as target for therapeutic interventionism are also underlined. Copyright © 2015 Academia Mexicana de Cirugía A.C. Published by Masson Doyma México S.A. All rights reserved.

  8. Human cell structure-driven model construction for predicting protein subcellular location from biological images.

    PubMed

    Shao, Wei; Liu, Mingxia; Zhang, Daoqiang

    2016-01-01

    The systematic study of subcellular location pattern is very important for fully characterizing the human proteome. Nowadays, with the great advances in automated microscopic imaging, accurate bioimage-based classification methods to predict protein subcellular locations are highly desired. All existing models were constructed on the independent parallel hypothesis, where the cellular component classes are positioned independently in a multi-class classification engine. The important structural information of cellular compartments is missed. To deal with this problem for developing more accurate models, we proposed a novel cell structure-driven classifier construction approach (SC-PSorter) by employing the prior biological structural information in the learning model. Specifically, the structural relationship among the cellular components is reflected by a new codeword matrix under the error correcting output coding framework. Then, we construct multiple SC-PSorter-based classifiers corresponding to the columns of the error correcting output coding codeword matrix using a multi-kernel support vector machine classification approach. Finally, we perform the classifier ensemble by combining those multiple SC-PSorter-based classifiers via majority voting. We evaluate our method on a collection of 1636 immunohistochemistry images from the Human Protein Atlas database. The experimental results show that our method achieves an overall accuracy of 89.0%, which is 6.4% higher than the state-of-the-art method. The dataset and code can be downloaded from https://github.com/shaoweinuaa/. dqzhang@nuaa.edu.cn Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Importance of Nutrients and Nutrient Metabolism on Human Health

    PubMed Central

    Chen, Yiheng; Michalak, Marek; Agellon, Luis B.

    2018-01-01

    Nutrition transition, which includes a change from consumption of traditional to modern diets that feature high-energy density and low nutrient diversity, is associated with acquired metabolic syndromes. The human diet is comprised of diverse components which include both nutrients, supplying the raw materials that drive multiple metabolic processes in every cell of the body, and non-nutrients. These components and their metabolites can also regulate gene expression and cellular function via a variety of mechanisms. Some of these components are beneficial while others have toxic effects. Studies have found that persistent disturbance of nutrient metabolism and/or energy homeostasis, caused by either nutrient deficiency or excess, induces cellular stress leading to metabolic dysregulation and tissue damage, and eventually to development of acquired metabolic syndromes. It is now evident that metabolism is influenced by extrinsic factors (e.g., food, xenobiotics, environment), intrinsic factors (e.g., sex, age, gene variations) as well as host/microbiota interaction, that together modify the risk for developing various acquired metabolic diseases. It is also becoming apparent that intake of diets with low-energy density but high in nutrient diversity may be the key to promoting and maintaining optimal health.

  10. Overexpression of human kynurenine-3-monooxygenase protects against 3-hydroxykynurenine-mediated apoptosis through bidirectional nonlinear feedback.

    PubMed

    Wilson, K; Auer, M; Binnie, M; Zheng, X; Pham, N T; Iredale, J P; Webster, S P; Mole, D J

    2016-04-14

    Kynurenine 3-monooxygenase (KMO) is a critical regulator of inflammation. The preferred KMO substrate, kynurenine, is converted to 3-hydroxykynurenine (3HK), and this product exhibits cytotoxicity through mechanisms that culminate in apoptosis. Here, we report that overexpression of human KMO with orthotopic localisation to mitochondria creates a metabolic environment during which the cell exhibits increased tolerance for exogenous 3HK-mediated cellular injury. Using the selective KMO inhibitor Ro61-8048, we show that KMO enzyme function is essential for cellular protection. Pan-caspase inhibition with Z-VAD-FMK confirmed apoptosis as the mode of cell death. By defining expression of pathway components upstream and downstream of KMO, we observed alterations in other key kynurenine pathway components, particularly tryptophan-2,3-dioxygenase upregulation, through bidirectional nonlinear feedback. KMO overexpression also increased expression of inducible nitric oxide synthase (iNOS). These changes in gene expression are functionally relevant, because siRNA knockdown of the pathway components kynureninase and quinolinate phosphoribosyl transferase caused cells to revert to a state of susceptibility to 3HK-mediated apoptosis. In summary, KMO overexpression, and importantly KMO activity, have metabolic repercussions that fundamentally affect resistance to cell stress.

  11. Overexpression of human kynurenine-3-monooxygenase protects against 3-hydroxykynurenine-mediated apoptosis through bidirectional nonlinear feedback

    PubMed Central

    Wilson, K; Auer, M; Binnie, M; Zheng, X; Pham, N T; Iredale, J P; Webster, S P; Mole, D J

    2016-01-01

    Kynurenine 3-monooxygenase (KMO) is a critical regulator of inflammation. The preferred KMO substrate, kynurenine, is converted to 3-hydroxykynurenine (3HK), and this product exhibits cytotoxicity through mechanisms that culminate in apoptosis. Here, we report that overexpression of human KMO with orthotopic localisation to mitochondria creates a metabolic environment during which the cell exhibits increased tolerance for exogenous 3HK-mediated cellular injury. Using the selective KMO inhibitor Ro61-8048, we show that KMO enzyme function is essential for cellular protection. Pan-caspase inhibition with Z-VAD-FMK confirmed apoptosis as the mode of cell death. By defining expression of pathway components upstream and downstream of KMO, we observed alterations in other key kynurenine pathway components, particularly tryptophan-2,3-dioxygenase upregulation, through bidirectional nonlinear feedback. KMO overexpression also increased expression of inducible nitric oxide synthase (iNOS). These changes in gene expression are functionally relevant, because siRNA knockdown of the pathway components kynureninase and quinolinate phosphoribosyl transferase caused cells to revert to a state of susceptibility to 3HK-mediated apoptosis. In summary, KMO overexpression, and importantly KMO activity, have metabolic repercussions that fundamentally affect resistance to cell stress. PMID:27077813

  12. Systems biology of cellular membranes: a convergence with biophysics.

    PubMed

    Chabanon, Morgan; Stachowiak, Jeanne C; Rangamani, Padmini

    2017-09-01

    Systems biology and systems medicine have played an important role in the last two decades in shaping our understanding of biological processes. While systems biology is synonymous with network maps and '-omics' approaches, it is not often associated with mechanical processes. Here, we make the case for considering the mechanical and geometrical aspects of biological membranes as a key step in pushing the frontiers of systems biology of cellular membranes forward. We begin by introducing the basic components of cellular membranes, and highlight their dynamical aspects. We then survey the functions of the plasma membrane and the endomembrane system in signaling, and discuss the role and origin of membrane curvature in these diverse cellular processes. We further give an overview of the experimental and modeling approaches to study membrane phenomena. We close with a perspective on the converging futures of systems biology and membrane biophysics, invoking the need to include physical variables such as location and geometry in the study of cellular membranes. WIREs Syst Biol Med 2017, 9:e1386. doi: 10.1002/wsbm.1386 For further resources related to this article, please visit the WIREs website. © 2017 Wiley Periodicals, Inc.

  13. The Fluid-Mosaic Model of Membrane Structure: still relevant to understanding the structure, function and dynamics of biological membranes after more than 40 years.

    PubMed

    Nicolson, Garth L

    2014-06-01

    In 1972 the Fluid-Mosaic Membrane Model of membrane structure was proposed based on thermodynamic principals of organization of membrane lipids and proteins and available evidence of asymmetry and lateral mobility within the membrane matrix [S. J. Singer and G. L. Nicolson, Science 175 (1972) 720-731]. After over 40years, this basic model of the cell membrane remains relevant for describing the basic nano-structures of a variety of intracellular and cellular membranes of plant and animal cells and lower forms of life. In the intervening years, however, new information has documented the importance and roles of specialized membrane domains, such as lipid rafts and protein/glycoprotein complexes, in describing the macrostructure, dynamics and functions of cellular membranes as well as the roles of membrane-associated cytoskeletal fences and extracellular matrix structures in limiting the lateral diffusion and range of motion of membrane components. These newer data build on the foundation of the original model and add new layers of complexity and hierarchy, but the concepts described in the original model are still applicable today. In updated versions of the model more emphasis has been placed on the mosaic nature of the macrostructure of cellular membranes where many protein and lipid components are limited in their rotational and lateral motilities in the membrane plane, especially in their natural states where lipid-lipid, protein-protein and lipid-protein interactions as well as cell-matrix, cell-cell and intracellular membrane-associated protein and cytoskeletal interactions are important in restraining the lateral motility and range of motion of particular membrane components. The formation of specialized membrane domains and the presence of tightly packed integral membrane protein complexes due to membrane-associated fences, fenceposts and other structures are considered very important in describing membrane dynamics and architecture. These structures along with membrane-associated cytoskeletal and extracellular structures maintain the long-range, non-random mosaic macro-organization of membranes, while smaller membrane nano- and submicro-sized domains, such as lipid rafts and protein complexes, are important in maintaining specialized membrane structures that are in cooperative dynamic flux in a crowded membrane plane. This Article is Part of a Special Issue Entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy. © 2013.

  14. Kibra and aPKC regulate starvation-induced autophagy in Drosophila.

    PubMed

    Jin, Ahrum; Neufeld, Thomas P; Choe, Joonho

    Autophagy is a bulk degradation system that functions in response to cellular stresses such as metabolic stress, endoplasmic reticulum stress, oxidative stress, and developmental processes. During autophagy, cytoplasmic components are captured in double-membrane vesicles called autophagosomes. The autophagosome fuses with the lysosome, producing a vacuole known as an autolysosome. The cellular components are degraded by lysosomal proteases and recycled. Autophagy is important for maintaining cellular homeostasis, and the process is evolutionarily conserved. Kibra is an upstream regulator of the hippo signaling pathway, which controls organ size by affecting cell growth, proliferation, and apoptosis. Kibra is mainly localized in the apical membrane domain of epithelial cells and acts as a scaffold protein. We found that Kibra is required for autophagy to function properly. The absence of Kibra caused defects in the formation of autophagic vesicles and autophagic degradation. We also found that the well-known cell polarity protein aPKC interacts with Kibra, and its activity affects autophagy upstream of Kibra. Constitutively active aPKC decreased autophagic vesicle formation and autophagic degradation. We confirmed the interaction between aPKC and Kibra in S2 cells and Drosophila larva. Taken together, our data suggest that Kibra and aPKC are essential for regulating starvation-induced autophagy. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Modeling the mechanical and aging properties of silicone rubber and foam - stockpile-historical & additively manufactured materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maiti, A.; Weisgraber, T. H.; Gee, R. H.

    M97* and M9763 belong to the M97xx series of cellular silicone materials that have been deployed as stress cushions in some of the LLNL systems. Their purpose of these support foams is to distribute the stress between adjacent components, maintain relative positioning of various components, and mitigate the effects of component size variation due to manufacturing and temperature changes. In service these materials are subjected to a continuous compressive strain over long periods of time. In order to ensure their effectiveness, it is important to understand how their mechanical properties change over time. The properties we are primarily concerned aboutmore » are: compression set, load retention, and stress-strain response (modulus).« less

  16. Rubella viruses shift cellular bioenergetics to a more oxidative and glycolytic phenotype with a strain-specific requirement for glutamine.

    PubMed

    Bilz, Nicole C; Jahn, Kristin; Lorenz, Mechthild; Lüdtke, Anja; Hübschen, Judith M; Geyer, Henriette; Mankertz, Annette; Hübner, Denise; Liebert, Uwe G; Claus, Claudia

    2018-06-27

    The flexible regulation of cellular metabolic pathways enables cellular adaptation to changes in energy demand under conditions of stress such as posed by a virus infection. To analyze such an impact on cellular metabolism, rubella virus (RV) was used in this study. RV replication under selected substrate supplementation with glucose, pyruvate, and glutamine as essential nutrients for mammalian cells revealed its requirement for glutamine. The assessment of the mitochondrial respiratory (based on oxygen consumption rate, OCR) and glycolytic (based on extracellular acidification rate, ECAR) rate and capacity by respective stress tests through Seahorse technology enabled determination of the bioenergetic phenotype of RV-infected cells. Irrespective of the cellular metabolic background, RV infection induced a shift of the bioenergetic state of epithelial (Vero and A549) and endothelial (HUVEC) cells to a higher oxidative and glycolytic level. Interestingly there was a RV strain-specific, but genotype-independent demand for glutamine to induce a significant increase in metabolic activity. While glutaminolysis appeared to be rather negligible for RV replication, glutamine could serve as donor of its amide nitrogen in biosynthesis pathways for important metabolites. This study suggests that the capacity of rubella viruses to induce metabolic alterations could evolve differently during natural infection. Thus, changes in cellular bioenergetics represent an important component of virus-host interactions and could complement our understanding of the viral preference for a distinct host cell population. Importance RV pathologies, especially during embryonal development, could be connected with its impact on mitochondrial metabolism. With bioenergetic phenotyping we pursued a rather novel approach in virology. For the first time it was shown that a virus infection could shift the bioenergetics of its infected host cell to a higher energetic state. Notably, the capacity to induce such alterations varied among different RV isolates. Thus, our data adds viral adaptation of cellular metabolic activity to its specific needs as a novel aspect to virus-host evolution. Additionally, this study emphasizes the implementation of different viral strains in the study of virus-host interactions and the use of bioenergetic phenotyping of infected cells as a biomarker for virus-induced pathological alterations. Copyright © 2018 American Society for Microbiology.

  17. Phosphate toxicity: new insights into an old problem

    PubMed Central

    RAZZAQUE, M. Shawkat

    2011-01-01

    Phosphorus is an essential nutrient required for critical biological reactions that maintain the normal homoeostatic control of the cell. This element is an important component of different cellular structures, including nucleic acids and cell membranes. Adequate phosphorus balance is vital for maintaining basic cellular functions, ranging from energy metabolism to cell signalling. In addition, many intracellular pathways utilize phosphate ions for important cellular reactions; therefore, homoeostatic control of phosphate is one of the most delicate biological regulations. Impaired phosphorus balance can affect the functionality of almost every human system, including musculoskeletal and cardiovascular systems, ultimately leading to an increase in morbidity and mortality of the affected patients. Human and experimental studies have found that delicate balance among circulating factors, like vitamin D, PTH (parathyroid hormone) and FGF23 (fibroblast growth factor 23), are essential for regulation of physiological phosphate balance. Dysregulation of these factors, either alone or in combination, can induce phosphorus imbalance. Recent studies have shown that suppression of the FGF23–klotho system can lead to hyperphosphataemia with extensive tissue damage caused by phosphate toxicity. The cause and consequences of phosphate toxicity will be briefly summarized in the present review. PMID:20958267

  18. Phosphate toxicity: new insights into an old problem.

    PubMed

    Razzaque, M Shawkat

    2011-02-01

    Phosphorus is an essential nutrient required for critical biological reactions that maintain the normal homoeostatic control of the cell. This element is an important component of different cellular structures, including nucleic acids and cell membranes. Adequate phosphorus balance is vital for maintaining basic cellular functions, ranging from energy metabolism to cell signalling. In addition, many intracellular pathways utilize phosphate ions for important cellular reactions; therefore, homoeostatic control of phosphate is one of the most delicate biological regulations. Impaired phosphorus balance can affect the functionality of almost every human system, including musculoskeletal and cardiovascular systems, ultimately leading to an increase in morbidity and mortality of the affected patients. Human and experimental studies have found that delicate balance among circulating factors, like vitamin D, PTH (parathyroid hormone) and FGF23 (fibroblast growth factor 23), are essential for regulation of physiological phosphate balance. Dysregulation of these factors, either alone or in combination, can induce phosphorus imbalance. Recent studies have shown that suppression of the FGF23-klotho system can lead to hyperphosphataemia with extensive tissue damage caused by phosphate toxicity. The cause and consequences of phosphate toxicity will be briefly summarized in the present review.

  19. Imaging analysis of nuclear antiviral factors through direct detection of incoming adenovirus genome complexes.

    PubMed

    Komatsu, Tetsuro; Will, Hans; Nagata, Kyosuke; Wodrich, Harald

    2016-04-22

    Recent studies involving several viral systems have highlighted the importance of cellular intrinsic defense mechanisms through nuclear antiviral proteins that restrict viral propagation. These factors include among others components of PML nuclear bodies, the nuclear DNA sensor IFI16, and a potential restriction factor PHF13/SPOC1. For several nuclear replicating DNA viruses, it was shown that these factors sense and target viral genomes immediately upon nuclear import. In contrast to the anticipated view, we recently found that incoming adenoviral genomes are not targeted by PML nuclear bodies. Here we further explored cellular responses against adenoviral infection by focusing on specific conditions as well as additional nuclear antiviral factors. In line with our previous findings, we show that neither interferon treatment nor the use of specific isoforms of PML nuclear body components results in co-localization between incoming adenoviral genomes and the subnuclear domains. Furthermore, our imaging analyses indicated that neither IFI16 nor PHF13/SPOC1 are likely to target incoming adenoviral genomes. Thus our findings suggest that incoming adenoviral genomes may be able to escape from a large repertoire of nuclear antiviral mechanisms, providing a rationale for the efficient initiation of lytic replication cycle. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Human Heat shock protein 40 (Hsp40/DnaJB1) promotes influenza A virus replication by assisting nuclear import of viral ribonucleoproteins.

    PubMed

    Batra, Jyoti; Tripathi, Shashank; Kumar, Amrita; Katz, Jacqueline M; Cox, Nancy J; Lal, Renu B; Sambhara, Suryaprakash; Lal, Sunil K

    2016-01-11

    A unique feature of influenza A virus (IAV) life cycle is replication of the viral genome in the host cell nucleus. The nuclear import of IAV genome is an indispensable step in establishing virus infection. IAV nucleoprotein (NP) is known to mediate the nuclear import of viral genome via its nuclear localization signals. Here, we demonstrate that cellular heat shock protein 40 (Hsp40/DnaJB1) facilitates the nuclear import of incoming IAV viral ribonucleoproteins (vRNPs) and is important for efficient IAV replication. Hsp40 was found to interact with NP component of IAV RNPs during early stages of infection. This interaction is mediated by the J domain of Hsp40 and N-terminal region of NP. Drug or RNAi mediated inhibition of Hsp40 resulted in reduced nuclear import of IAV RNPs, diminished viral polymerase function and attenuates overall viral replication. Hsp40 was also found to be required for efficient association between NP and importin alpha, which is crucial for IAV RNP nuclear translocation. These studies demonstrate an important role for cellular chaperone Hsp40/DnaJB1 in influenza A virus life cycle by assisting nuclear trafficking of viral ribonucleoproteins.

  1. Human Heat shock protein 40 (Hsp40/DnaJB1) promotes influenza A virus replication by assisting nuclear import of viral ribonucleoproteins

    PubMed Central

    Batra, Jyoti; Tripathi, Shashank; Kumar, Amrita; Katz, Jacqueline M.; Cox, Nancy J.; Lal, Renu B.; Sambhara, Suryaprakash; Lal, Sunil K.

    2016-01-01

    A unique feature of influenza A virus (IAV) life cycle is replication of the viral genome in the host cell nucleus. The nuclear import of IAV genome is an indispensable step in establishing virus infection. IAV nucleoprotein (NP) is known to mediate the nuclear import of viral genome via its nuclear localization signals. Here, we demonstrate that cellular heat shock protein 40 (Hsp40/DnaJB1) facilitates the nuclear import of incoming IAV viral ribonucleoproteins (vRNPs) and is important for efficient IAV replication. Hsp40 was found to interact with NP component of IAV RNPs during early stages of infection. This interaction is mediated by the J domain of Hsp40 and N-terminal region of NP. Drug or RNAi mediated inhibition of Hsp40 resulted in reduced nuclear import of IAV RNPs, diminished viral polymerase function and attenuates overall viral replication. Hsp40 was also found to be required for efficient association between NP and importin alpha, which is crucial for IAV RNP nuclear translocation. These studies demonstrate an important role for cellular chaperone Hsp40/DnaJB1 in influenza A virus life cycle by assisting nuclear trafficking of viral ribonucleoproteins. PMID:26750153

  2. Microwave components for cellular portable radiotelephone

    NASA Astrophysics Data System (ADS)

    Muraguchi, Masahiro; Aikawa, Masayoshi

    1995-09-01

    Mobile and personal communication systems are expected to represent a huge market for microwave components in the coming years. A number of components in silicon bipolar, silicon Bi-CMOS, GaAs MESFET, HBT and HEMT are now becoming available for system application. There are tradeoffs among the competing technologies with regard to performance, cost, reliability and time-to-market. This paper describes process selection and requirements of cost and r.f. performances to microwave semiconductor components for digital cellular and cordless telephones. Furthermore, new circuit techniques which were developed by NTT are presented.

  3. Expanding the B Cell Centric View of Systemic Lupus Erythematosus

    PubMed Central

    Morawski, Peter A.; Bolland, Silvia

    2017-01-01

    Systemic lupus erythematosus (SLE) is an autoimmune disorder characterized by a breakdown of self-tolerance in B cells and production of antibodies against nuclear self-antigens. Increasing evidence supports the notion that additional cellular contributors beyond B cells are important for lupus pathogenesis. In this Review, we consider recent advances regarding both pathogenic and regulatory roles of lymphocytes in SLE, beyond the production of IgG autoantibodies. We also discuss various inflammatory effector cell types involved in cytokine production, removal of self-antigens, and responses to autoreactive IgE antibodies. We aim to integrate these ideas to expand the current understanding of the cellular components that contribute to disease progression and ultimately help in the design of novel targeted therapeutics. PMID:28274696

  4. A polymer optoelectronic interface restores light sensitivity in blind rat retinas

    NASA Astrophysics Data System (ADS)

    Ghezzi, Diego; Antognazza, Maria Rosa; Maccarone, Rita; Bellani, Sebastiano; Lanzarini, Erica; Martino, Nicola; Mete, Maurizio; Pertile, Grazia; Bisti, Silvia; Lanzani, Guglielmo; Benfenati, Fabio

    2013-05-01

    Interfacing organic electronics with biological substrates offers new possibilities for biotechnology by taking advantage of the beneficial properties exhibited by organic conducting polymers. These polymers have been used for cellular interfaces in several applications, including cellular scaffolds, neural probes, biosensors and actuators for drug release. Recently, an organic photovoltaic blend has been used for neuronal stimulation via a photo-excitation process. Here, we document the use of a single-component organic film of poly(3-hexylthiophene) (P3HT) to trigger neuronal firing upon illumination. Moreover, we demonstrate that this bio-organic interface restores light sensitivity in explants of rat retinas with light-induced photoreceptor degeneration. These findings suggest that all-organic devices may play an important future role in subretinal prosthetic implants.

  5. Injectable, cellular-scale optoelectronics with applications for wireless optogenetics.

    PubMed

    Kim, Tae-il; McCall, Jordan G; Jung, Yei Hwan; Huang, Xian; Siuda, Edward R; Li, Yuhang; Song, Jizhou; Song, Young Min; Pao, Hsuan An; Kim, Rak-Hwan; Lu, Chaofeng; Lee, Sung Dan; Song, Il-Sun; Shin, Gunchul; Al-Hasani, Ream; Kim, Stanley; Tan, Meng Peun; Huang, Yonggang; Omenetto, Fiorenzo G; Rogers, John A; Bruchas, Michael R

    2013-04-12

    Successful integration of advanced semiconductor devices with biological systems will accelerate basic scientific discoveries and their translation into clinical technologies. In neuroscience generally, and in optogenetics in particular, the ability to insert light sources, detectors, sensors, and other components into precise locations of the deep brain yields versatile and important capabilities. Here, we introduce an injectable class of cellular-scale optoelectronics that offers such features, with examples of unmatched operational modes in optogenetics, including completely wireless and programmed complex behavioral control over freely moving animals. The ability of these ultrathin, mechanically compliant, biocompatible devices to afford minimally invasive operation in the soft tissues of the mammalian brain foreshadow applications in other organ systems, with potential for broad utility in biomedical science and engineering.

  6. A polymer optoelectronic interface restores light sensitivity in blind rat retinas

    PubMed Central

    Ghezzi, Diego; Antognazza, Maria Rosa; Maccarone, Rita; Bellani, Sebastiano; Lanzarini, Erica; Martino, Nicola; Mete, Maurizio; Pertile, Grazia; Bisti, Silvia; Lanzani, Guglielmo; Benfenati, Fabio

    2013-01-01

    Interfacing organic electronics with biological substrates offers new possibilities for biotechnology due to the beneficial properties exhibited by organic conducting polymers. These polymers have been used for cellular interfaces in several fashions, including cellular scaffolds, neural probes, biosensors and actuators for drug release. Recently, an organic photovoltaic blend has been exploited for neuronal stimulation via a photo-excitation process. Here, we document the use of a single-component organic film of poly(3-hexylthiophene) (P3HT) to trigger neuronal firing upon illumination. Moreover, we demonstrate that this bio-organic interface restored light sensitivity in explants of rat retinas with light-induced photoreceptor degeneration. These findings suggest that all-organic devices may play an important future role in sub-retinal prosthetic implants. PMID:27158258

  7. Control systems and coordination protocols of the secretory pathway.

    PubMed

    Luini, Alberto; Mavelli, Gabriella; Jung, Juan; Cancino, Jorge

    2014-01-01

    Like other cellular modules, the secretory pathway and the Golgi complex are likely to be supervised by control systems that support homeostasis and optimal functionality under all conditions, including external and internal perturbations. Moreover, the secretory apparatus must be functionally connected with other cellular modules, such as energy metabolism and protein degradation, via specific rules of interaction, or "coordination protocols". These regulatory devices are of fundamental importance for optimal function; however, they are generally "hidden" at steady state. The molecular components and the architecture of the control systems and coordination protocols of the secretory pathway are beginning to emerge through studies based on the use of controlled transport-specific perturbations aimed specifically at the detection and analysis of these internal regulatory devices.

  8. Impact of media and antifoam selection on monoclonal antibody production and quality using a high throughput micro‐bioreactor system

    PubMed Central

    Velugula‐Yellela, Sai Rashmika; Williams, Abasha; Trunfio, Nicholas; Hsu, Chih‐Jung; Chavez, Brittany; Yoon, Seongkyu

    2017-01-01

    Monoclonal antibody production in commercial scale cell culture bioprocessing requires a thorough understanding of the engineering process and components used throughout manufacturing. It is important to identify high impact components early on during the lifecycle of a biotechnology‐derived product. While cell culture media selection is of obvious importance to the health and productivity of mammalian bioreactor operations, other components such as antifoam selection can also play an important role in bioreactor cell culture. Silicone polymer‐based antifoams were known to have negative impacts on cell health, production, and downstream filtration and purification operations. High throughput screening in micro‐scale bioreactors provides an efficient strategy to identify initial operating parameters. Here, we utilized a micro‐scale parallel bioreactor system to study an IgG1 producing CHO cell line, to screen Dynamis, ProCHO5, PowerCHO2, EX‐Cell Advanced, and OptiCHO media, and 204, C, EX‐Cell, SE‐15, and Y‐30 antifoams and their impacts on IgG1 production, cell growth, aggregation, and process control. This study found ProCHO5, EX‐Cell Advanced, and PowerCHO2 media supported strong cellular growth profiles, with an IVCD of 25‐35 × 106 cells‐d/mL, while maintaining specific antibody production (Qp > 2 pg/cell‐d) for our model cell line and a monomer percentage above 94%. Antifoams C, EX‐Cell, and SE‐15 were capable of providing adequate control of foaming while antifoam 204 and Y‐30 noticeably stunted cellular growth. This work highlights the utility of high throughput micro bioreactors and the importance of identifying both positive and negative impacts of media and antifoam selection on a model IgG1 producing CHO cell line. © 2017 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers Biotechnol. Prog., 34:262–270, 2018 PMID:29086492

  9. Dynamic niches in the origination and differentiation of haematopoietic stem cells

    PubMed Central

    Wang, Leo D.; Wagers, Amy J.

    2014-01-01

    Haematopoietic stem cells (HSCs) are multipotent, self-renewing progenitors that generate all mature blood cells. HSC function is tightly controlled to maintain haematopoietic homeostasis, and this regulation relies on specialized cells and factors that constitute the haematopoietic ‘niche’, or microenvironment. Recent discoveries, aided in part by technological advances in in vivo imaging, have engendered a new appreciation for the dynamic nature of the niche, identifying novel cellular and acellular niche components and uncovering fluctuations in the relative importance of these components over time. These new insights significantly improve our understanding of haematopoiesis and raise fundamental questions about what truly constitutes a stem cell niche. PMID:21886187

  10. The Multiple Roles of Exosomes in Metastasis

    PubMed Central

    WEIDLE, H. ULRICH; BIRZELE, FABIAN; KOLLMORGEN, GWEN; RÜGER, RÜDIGER

    2016-01-01

    Exosomes are important contributors to cell−cell communication and their role as diagnostic markers for cancer and the pathogenesis for cancer is under intensive investigation. Here, we focus on their role in metastasis-related processes. We discuss their impact regarding promotion of invasion and migration of tumor cells, conditioning of lymph nodes, generation of premetastatic niches and organotropism of metastasis. Furthermore, we highlight interactions of exosomes with bone marrow and stromal components such as fibroblasts, endothelial cells, myeloid- and other immune-related cells in the context of metastases. For all processes as described above, we outline molecular and cellular components for therapeutic intervention with metastatic processes. PMID:28031234

  11. Dissecting the Components of Long-Term Potentiation

    PubMed Central

    Blundon, Jay A.; Zakharenko, Stanislav S.

    2009-01-01

    The formation of memories relies on plastic changes at synapses between neurons. Although the mechanisms of synaptic plasticity have been studied extensively over several decades, many aspects of this process remain controversial. The cellular locus of expression of long-term potentiation (LTP), a major form of synaptic plasticity, is one of the most important unresolved phenomena. In this article, we summarize some recent advances in this area made possible by the development of new imaging tools. These studies have demonstrated that LTP is compound in nature and consists of both presynaptic and postsynaptic components. We also review some features of presynaptic and postsynaptic changes during compound LTP. PMID:18940785

  12. Body composition analysis: Cellular level modeling of body component ratios.

    PubMed

    Wang, Z; Heymsfield, S B; Pi-Sunyer, F X; Gallagher, D; Pierson, R N

    2008-01-01

    During the past two decades, a major outgrowth of efforts by our research group at St. Luke's-Roosevelt Hospital is the development of body composition models that include cellular level models, models based on body component ratios, total body potassium models, multi-component models, and resting energy expenditure-body composition models. This review summarizes these models with emphasis on component ratios that we believe are fundamental to understanding human body composition during growth and development and in response to disease and treatments. In-vivo measurements reveal that in healthy adults some component ratios show minimal variability and are relatively 'stable', for example total body water/fat-free mass and fat-free mass density. These ratios can be effectively applied for developing body composition methods. In contrast, other ratios, such as total body potassium/fat-free mass, are highly variable in vivo and therefore are less useful for developing body composition models. In order to understand the mechanisms governing the variability of these component ratios, we have developed eight cellular level ratio models and from them we derived simplified models that share as a major determining factor the ratio of extracellular to intracellular water ratio (E/I). The E/I value varies widely among adults. Model analysis reveals that the magnitude and variability of each body component ratio can be predicted by correlating the cellular level model with the E/I value. Our approach thus provides new insights into and improved understanding of body composition ratios in adults.

  13. Morphological and functional aspects of progenitors perturbed in cortical malformations

    PubMed Central

    Bizzotto, Sara; Francis, Fiona

    2015-01-01

    In this review, we discuss molecular and cellular mechanisms important for the function of neuronal progenitors during development, revealed by their perturbation in different cortical malformations. We focus on a class of neuronal progenitors, radial glial cells (RGCs), which are renowned for their unique morphological and behavioral characteristics, constituting a key element during the development of the mammalian cerebral cortex. We describe how the particular morphology of these cells is related to their roles in the orchestration of cortical development and their influence on other progenitor types and post-mitotic neurons. Important for disease mechanisms, we overview what is currently known about RGC cellular components, cytoskeletal mechanisms, signaling pathways and cell cycle characteristics, focusing on how defects lead to abnormal development and cortical malformation phenotypes. The multiple recent entry points from human genetics and animal models are contributing to our understanding of this important cell type. Combining data from phenotypes in the mouse reveals molecules which potentially act in common pathways. Going beyond this, we discuss future directions that may provide new data in this expanding area. PMID:25729350

  14. Case Study: The Mystery of the Seven Deaths--A Case Study in Cellular Respiration

    ERIC Educational Resources Information Center

    Gazdik, Michaela

    2014-01-01

    Cellular respiration, the central component of cellular metabolism, can be a difficult concept for many students to fully understand. In this interrupted, problem-based case study, students explore the purpose of cellular respiration as they play the role of medical examiner, analyzing autopsy evidence to determine the mysterious cause of death…

  15. A comparative study on fluorescent cholesterol analogs as versatile cellular reporters[S

    PubMed Central

    Sezgin, Erdinc; Can, Fatma Betul; Schneider, Falk; Clausen, Mathias P.; Galiani, Silvia; Stanly, Tess A.; Waithe, Dominic; Colaco, Alexandria; Honigmann, Alf; Wüstner, Daniel; Platt, Frances; Eggeling, Christian

    2016-01-01

    Cholesterol (Chol) is a crucial component of cellular membranes, but knowledge of its intracellular dynamics is scarce. Thus, it is of utmost interest to develop tools for visualization of Chol organization and dynamics in cells and tissues. For this purpose, many studies make use of fluorescently labeled Chol analogs. Unfortunately, the introduction of the label may influence the characteristics of the analog, such as its localization, interaction, and trafficking in cells; hence, it is important to get knowledge of such bias. In this report, we compared different fluorescent lipid analogs for their performance in cellular assays: 1) plasma membrane incorporation, specifically the preference for more ordered membrane environments in phase-separated giant unilamellar vesicles and giant plasma membrane vesicles; 2) cellular trafficking, specifically subcellular localization in Niemann-Pick type C disease cells; and 3) applicability in fluorescence correlation spectroscopy (FCS)-based and super-resolution stimulated emission depletion-FCS-based measurements of membrane diffusion dynamics. The analogs exhibited strong differences, with some indicating positive performance in the membrane-based experiments and others in the intracellular trafficking assay. However, none showed positive performance in all assays. Our results constitute a concise guide for the careful use of fluorescent Chol analogs in visualizing cellular Chol dynamics. PMID:26701325

  16. Sequential recovery of macromolecular components of the nucleolus.

    PubMed

    Bai, Baoyan; Laiho, Marikki

    2015-01-01

    The nucleolus is involved in a number of cellular processes of importance to cell physiology and pathology, including cell stress responses and malignancies. Studies of macromolecular composition of the nucleolus depend critically on the efficient extraction and accurate quantification of all macromolecular components (e.g., DNA, RNA, and protein). We have developed a TRIzol-based method that efficiently and simultaneously isolates these three macromolecular constituents from the same sample of purified nucleoli. The recovered and solubilized protein can be accurately quantified by the bicinchoninic acid assay and assessed by polyacrylamide gel electrophoresis or by mass spectrometry. We have successfully applied this approach to extract and quantify the responses of all three macromolecular components in nucleoli after drug treatments of HeLa cells, and conducted RNA-Seq analysis of the nucleolar RNA.

  17. Hacking the Cell: Network Intrusion and Exploitation by Adenovirus E1A.

    PubMed

    King, Cason R; Zhang, Ali; Tessier, Tanner M; Gameiro, Steven F; Mymryk, Joe S

    2018-05-01

    As obligate intracellular parasites, viruses are dependent on their infected hosts for survival. Consequently, viruses are under enormous selective pressure to utilize available cellular components and processes to their own advantage. As most, if not all, cellular activities are regulated at some level via protein interactions, host protein interaction networks are particularly vulnerable to viral exploitation. Indeed, viral proteins frequently target highly connected "hub" proteins to "hack" the cellular network, defining the molecular basis for viral control over the host. This widespread and successful strategy of network intrusion and exploitation has evolved convergently among numerous genetically distinct viruses as a result of the endless evolutionary arms race between pathogens and hosts. Here we examine the means by which a particularly well-connected viral hub protein, human adenovirus E1A, compromises and exploits the vulnerabilities of eukaryotic protein interaction networks. Importantly, these interactions identify critical regulatory hubs in the human proteome and help define the molecular basis of their function. Copyright © 2018 King et al.

  18. Cellular and molecular mechanisms of tooth root development

    PubMed Central

    Li, Jingyuan; Parada, Carolina

    2017-01-01

    ABSTRACT The tooth root is an integral, functionally important part of our dentition. The formation of a functional root depends on epithelial-mesenchymal interactions and integration of the root with the jaw bone, blood supply and nerve innervations. The root development process therefore offers an attractive model for investigating organogenesis. Understanding how roots develop and how they can be bioengineered is also of great interest in the field of regenerative medicine. Here, we discuss recent advances in understanding the cellular and molecular mechanisms underlying tooth root formation. We review the function of cellular structure and components such as Hertwig's epithelial root sheath, cranial neural crest cells and stem cells residing in developing and adult teeth. We also highlight how complex signaling networks together with multiple transcription factors mediate tissue-tissue interactions that guide root development. Finally, we discuss the possible role of stem cells in establishing the crown-to-root transition, and provide an overview of root malformations and diseases in humans. PMID:28143844

  19. No evidence for a local renin-angiotensin system in liver mitochondria

    PubMed Central

    Astin, Ronan; Bentham, Robert; Djafarzadeh, Siamak; Horscroft, James A.; Kuc, Rhoda E.; Leung, Po Sing; Skipworth, James R. A.; Vicencio, Jose M.; Davenport, Anthony P.; Murray, Andrew J.; Takala, Jukka; Jakob, Stephan M.; Montgomery, Hugh; Szabadkai, Gyorgy

    2013-01-01

    The circulating, endocrine renin-angiotensin system (RAS) is important to circulatory homeostasis, while ubiquitous tissue and cellular RAS play diverse roles, including metabolic regulation. Indeed, inhibition of RAS is associated with improved cellular oxidative capacity. Recently it has been suggested that an intra-mitochondrial RAS directly impacts on metabolism. Here we sought to rigorously explore this hypothesis. Radiolabelled ligand-binding and unbiased proteomic approaches were applied to purified mitochondrial sub-fractions from rat liver, and the impact of AngII on mitochondrial function assessed. Whilst high-affinity AngII binding sites were found in the mitochondria-associated membrane (MAM) fraction, no RAS components could be detected in purified mitochondria. Moreover, AngII had no effect on the function of isolated mitochondria at physiologically relevant concentrations. We thus found no evidence of endogenous mitochondrial AngII production, and conclude that the effects of AngII on cellular energy metabolism are not mediated through its direct binding to mitochondrial targets. PMID:23959064

  20. Hacking the Cell: Network Intrusion and Exploitation by Adenovirus E1A

    PubMed Central

    King, Cason R.; Zhang, Ali; Tessier, Tanner M.; Gameiro, Steven F.

    2018-01-01

    ABSTRACT As obligate intracellular parasites, viruses are dependent on their infected hosts for survival. Consequently, viruses are under enormous selective pressure to utilize available cellular components and processes to their own advantage. As most, if not all, cellular activities are regulated at some level via protein interactions, host protein interaction networks are particularly vulnerable to viral exploitation. Indeed, viral proteins frequently target highly connected “hub” proteins to “hack” the cellular network, defining the molecular basis for viral control over the host. This widespread and successful strategy of network intrusion and exploitation has evolved convergently among numerous genetically distinct viruses as a result of the endless evolutionary arms race between pathogens and hosts. Here we examine the means by which a particularly well-connected viral hub protein, human adenovirus E1A, compromises and exploits the vulnerabilities of eukaryotic protein interaction networks. Importantly, these interactions identify critical regulatory hubs in the human proteome and help define the molecular basis of their function. PMID:29717008

  1. A structured approach to the study of metabolic control principles in intact and impaired mitochondria.

    PubMed

    Huber, Heinrich J; Connolly, Niamh M C; Dussmann, Heiko; Prehn, Jochen H M

    2012-03-01

    We devised an approach to extract control principles of cellular bioenergetics for intact and impaired mitochondria from ODE-based models and applied it to a recently established bioenergetic model of cancer cells. The approach used two methods for varying ODE model parameters to determine those model components that, either alone or in combination with other components, most decisively regulated bioenergetic state variables. We found that, while polarisation of the mitochondrial membrane potential (ΔΨ(m)) and, therefore, the protomotive force were critically determined by respiratory complex I activity in healthy mitochondria, complex III activity was dominant for ΔΨ(m) during conditions of cytochrome-c deficiency. As a further important result, cellular bioenergetics in healthy, ATP-producing mitochondria was regulated by three parameter clusters that describe (1) mitochondrial respiration, (2) ATP production and consumption and (3) coupling of ATP-production and respiration. These parameter clusters resembled metabolic blocks and their intermediaries from top-down control analyses. However, parameter clusters changed significantly when cells changed from low to high ATP levels or when mitochondria were considered to be impaired by loss of cytochrome-c. This change suggests that the assumption of static metabolic blocks by conventional top-down control analyses is not valid under these conditions. Our approach is complementary to both ODE and top-down control analysis approaches and allows a better insight into cellular bioenergetics and its pathological alterations.

  2. Inhibition by fenoterol of human eosinophil functions including beta2-adrenoceptor-independent actions.

    PubMed

    Tachibana, A; Kato, M; Kimura, H; Fujiu, T; Suzuki, M; Morikawa, A

    2002-12-01

    Agonists at beta2 adrenoceptors are used widely as bronchodilators in treating bronchial asthma. These agents also may have important anti-inflammatory effects on eosinophils in asthma. We examined whether widely prescribed beta2-adrenoceptor agonists differ in ability to suppress stimulus-induced eosinophil effector functions such as superoxide anion (O2-) generation and degranulation. To examine involvement of cellular adhesion in such responses, we also investigated effects of beta2 agonists on cellular adhesion and on CD11b expression by human eosinophils. O2- was measured using chemiluminescence. Eosinophil degranulation and adhesion were assessed by a radioimmunoassay for eosinophil protein X (EPX). CD11b expression was measured by flow cytometry. Fenoterol inhibited platelet-activating factor (PAF)-induced O2- generation by eosinophils significantly more than salbutamol or procaterol. Fenoterol partially inhibited PAF-induced degranulation by eosinophils similarly to salbutamol or procaterol. Fenoterol inhibited phorbol myristate acetate (PMA)-induced O2- generation and degranulation by eosinophils, while salbutamol or procaterol did not. Fenoterol inhibition of PMA-induced O2- generation was not reversed by ICI-118551, a selective beta2-adrenoceptor antagonist. Fenoterol, but not salbutamol or procaterol, significantly inhibited PAF-induced eosinophil adhesion. Fenoterol inhibited O2- generation and degranulation more effectively than salbutamol or procaterol; these effects may include a component involving cellular adhesion. Inhibition also might include a component not mediated via beta2 adrenoceptors.

  3. DNA replication components as regulators of epigenetic inheritance--lesson from fission yeast centromere.

    PubMed

    He, Haijin; Gonzalez, Marlyn; Zhang, Fan; Li, Fei

    2014-06-01

    Genetic information stored in DNA is accurately copied and transferred to subsequent generations through DNA replication. This process is accomplished through the concerted actions of highly conserved DNA replication components. Epigenetic information stored in the form of histone modifications and DNA methylation, constitutes a second layer of regulatory information important for many cellular processes, such as gene expression regulation, chromatin organization, and genome stability. During DNA replication, epigenetic information must also be faithfully transmitted to subsequent generations. How this monumental task is achieved remains poorly understood. In this review, we will discuss recent advances on the role of DNA replication components in the inheritance of epigenetic marks, with a particular focus on epigenetic regulation in fission yeast. Based on these findings, we propose that specific DNA replication components function as key regulators in the replication of epigenetic information across the genome.

  4. The role of the cell wall in fungal pathogenesis

    PubMed Central

    Arana, David M.; Prieto, Daniel; Román, Elvira; Nombela, César; Alonso‐Monge, Rebeca; Pla, Jesús

    2009-01-01

    Summary Fungal infections are a serious health problem. In recent years, basic research is focusing on the identification of fungal virulence factors as promising targets for the development of novel antifungals. The wall, as the most external cellular component, plays a crucial role in the interaction with host cells mediating processes such as adhesion or phagocytosis that are essential during infection. Specific components of the cell wall (called PAMPs) interact with specific receptors in the immune cell (called PRRs), triggering responses whose molecular mechanisms are being elucidated. We review here the main structural carbohydrate components of the fungal wall (glucan, mannan and chitin), how their biogenesis takes place in fungi and the specific receptors that they interact with. Different model fungal pathogens are chosen to illustrate the functional consequences of this interaction. Finally, the identification of the key components will have important consequences in the future and will allow better approaches to treat fungal infections. PMID:21261926

  5. Integration of Proteomic, Transcriptional, and Interactome Data Reveals Hidden Signaling Components

    PubMed Central

    Huang, Shao-shan Carol; Fraenkel, Ernest

    2009-01-01

    Cellular signaling and regulatory networks underlie fundamental biological processes such as growth, differentiation, and response to the environment. Although there are now various high-throughput methods for studying these processes, knowledge of them remains fragmentary. Typically, the vast majority of hits identified by transcriptional, proteomic, and genetic assays lie outside of the expected pathways. These unexpected components of the cellular response are often the most interesting, because they can provide new insights into biological processes and potentially reveal new therapeutic approaches. However, they are also the most difficult to interpret. We present a technique, based on the Steiner tree problem, that uses previously reported protein-protein and protein-DNA interactions to determine how these hits are organized into functionally coherent pathways, revealing many components of the cellular response that are not readily apparent in the original data. Applied simultaneously to phosphoproteomic and transcriptional data for the yeast pheromone response, it identifies changes in diverse cellular processes that extend far beyond the expected pathways. PMID:19638617

  6. Lipid Cell Biology: A Focus on Lipids in Cell Division.

    PubMed

    Storck, Elisabeth M; Özbalci, Cagakan; Eggert, Ulrike S

    2018-06-20

    Cells depend on hugely diverse lipidomes for many functions. The actions and structural integrity of the plasma membrane and most organelles also critically depend on membranes and their lipid components. Despite the biological importance of lipids, our understanding of lipid engagement, especially the roles of lipid hydrophobic alkyl side chains, in key cellular processes is still developing. Emerging research has begun to dissect the importance of lipids in intricate events such as cell division. This review discusses how these structurally diverse biomolecules are spatially and temporally regulated during cell division, with a focus on cytokinesis. We analyze how lipids facilitate changes in cellular morphology during division and how they participate in key signaling events. We identify which cytokinesis proteins are associated with membranes, suggesting lipid interactions. More broadly, we highlight key unaddressed questions in lipid cell biology and techniques, including mass spectrometry, advanced imaging, and chemical biology, which will help us gain insights into the functional roles of lipids.

  7. Analysis of Students' Aptitude to Provide Meaning to Images that Represent Cellular Components at the Molecular Level

    PubMed Central

    Dahmani, Hassen-Reda; Schneeberger, Patricia

    2009-01-01

    The number of experimentally derived structures of cellular components is rapidly expanding, and this phenomenon is accompanied by the development of a new semiotic system for teaching. The infographic approach is shifting from a schematic toward a more realistic representation of cellular components. By realistic we mean artist-prepared or computer graphic images that closely resemble experimentally derived structures and are characterized by a low level of styling and simplification. This change brings about a new challenge for teachers: designing course instructions that allow students to interpret these images in a meaningful way. To determine how students deal with this change, we designed several image-based, in-course assessments. The images were highly relevant for the cell biology course but did not resemble any of the images in the teaching documents. We asked students to label the cellular components, describe their function, or both. What we learned from these tests is that realistic images, with a higher apparent level of complexity, do not deter students from investigating their meaning. When given a choice, the students do not necessarily choose the most simplified representation, and they were sensitive to functional indications embedded in realistic images. PMID:19723817

  8. Protein kinases responsible for the phosphorylation of the nuclear egress core complex of human cytomegalovirus.

    PubMed

    Sonntag, Eric; Milbradt, Jens; Svrlanska, Adriana; Strojan, Hanife; Häge, Sigrun; Kraut, Alexandra; Hesse, Anne-Marie; Amin, Bushra; Sonnewald, Uwe; Couté, Yohann; Marschall, Manfred

    2017-10-01

    Nuclear egress of herpesvirus capsids is mediated by a multi-component nuclear egress complex (NEC) assembled by a heterodimer of two essential viral core egress proteins. In the case of human cytomegalovirus (HCMV), this core NEC is defined by the interaction between the membrane-anchored pUL50 and its nuclear cofactor, pUL53. NEC protein phosphorylation is considered to be an important regulatory step, so this study focused on the respective role of viral and cellular protein kinases. Multiply phosphorylated pUL50 varieties were detected by Western blot and Phos-tag analyses as resulting from both viral and cellular kinase activities. In vitro kinase analyses demonstrated that pUL50 is a substrate of both PKCα and CDK1, while pUL53 can also be moderately phosphorylated by CDK1. The use of kinase inhibitors further illustrated the importance of distinct kinases for core NEC phosphorylation. Importantly, mass spectrometry-based proteomic analyses identified five major and nine minor sites of pUL50 phosphorylation. The functional relevance of core NEC phosphorylation was confirmed by various experimental settings, including kinase knock-down/knock-out and confocal imaging, in which it was found that (i) HCMV core NEC proteins are not phosphorylated solely by viral pUL97, but also by cellular kinases; (ii) both PKC and CDK1 phosphorylation are detectable for pUL50; (iii) no impact of PKC phosphorylation on NEC functionality has been identified so far; (iv) nonetheless, CDK1-specific phosphorylation appears to be required for functional core NEC interaction. In summary, our findings provide the first evidence that the HCMV core NEC is phosphorylated by cellular kinases, and that the complex pattern of NEC phosphorylation has functional relevance.

  9. Changes in the topography of cellular components in pea root statocytes exposed to high gradient magnetic fields

    NASA Astrophysics Data System (ADS)

    Belyavskaya, Ninel A.; Polishchuk, Olexandr V.; Kondrachuk, Alexander V.

    2005-08-01

    High-gradient magnetic field (HGMF) is one of methods, by which gravitropism in plants is studied. The aim of our study was elucidation of HGMF effects on topography of cellular components in root statocytes of 4- day Pisum sativum L. seedlings in comparison to gravistimulation. Under gravistimulation during 5, 30 and 60 min seedlings were rotated 45o; magnetostimulation was carried out along gap between two NdFeB magnets (0.7 T). Morphometric measurements were made from images of whole statocytes, for upper, middle and lower thirds of cells, and proximal and distal halves of cells. Morphometric analysis revealed that HGMF resulted in the redistribution of all cellular components in statocytes. The correlation in the amyloplast distribution between gravistimulation and magnetostimulation was established.

  10. Expanding the B Cell-Centric View of Systemic Lupus Erythematosus.

    PubMed

    Morawski, Peter A; Bolland, Silvia

    2017-05-01

    Systemic lupus erythematosus (SLE) is an autoimmune disorder characterized by a breakdown of self-tolerance in B cells and the production of antibodies against nuclear self-antigens. Increasing evidence supports the notion that additional cellular contributors beyond B cells are important for lupus pathogenesis. In this review we consider recent advances regarding both the pathogenic and the regulatory role of lymphocytes in SLE beyond the production of IgG autoantibodies. We also discuss various inflammatory effector cell types involved in cytokine production, removal of self-antigens, and responses to autoreactive IgE antibodies. We aim to integrate these ideas to expand the current understanding of the cellular components that contribute to disease progression and ultimately help in the design of novel, targeted therapeutics. Published by Elsevier Ltd.

  11. Dynamics of biological systems: role of systems biology in medical research.

    PubMed

    Assmus, Heike E; Herwig, Ralf; Cho, Kwang-Hyun; Wolkenhauer, Olaf

    2006-11-01

    Cellular systems are networks of interacting components that change with time in response to external and internal events. Studying the dynamic behavior of these networks is the basis for an understanding of cellular functions and disease mechanisms. Quantitative time-series data leading to meaningful models can improve our knowledge of human physiology in health and disease, and aid the search for earlier diagnoses, better therapies and a healthier life. The advent of systems biology is about to take the leap into clinical research and medical applications. This review emphasizes the importance of a dynamic view and understanding of cell function. We discuss the potential for computer-aided mathematical modeling of biological systems in medical research with examples from some of the major therapeutic areas: cancer, cardiovascular, diabetic and neurodegenerative medicine.

  12. Keeping the LINC: the importance of nucleocytoskeletal coupling in intracellular force transmission and cellular function.

    PubMed

    Lombardi, Maria L; Lammerding, Jan

    2011-12-01

    Providing a stable physical connection between the nucleus and the cytoskeleton is essential for a wide range of cellular functions and it could also participate in mechanosensing by transmitting intra- and extra-cellular mechanical stimuli via the cytoskeleton to the nucleus. Nesprins and SUN proteins, located at the nuclear envelope, form the LINC (linker of nucleoskeleton and cytoskeleton) complex that connects the nucleus to the cytoskeleton; underlying nuclear lamins contribute to anchoring LINC complex components at the nuclear envelope. Disruption of the LINC complex or loss of lamins can result in disturbed perinuclear actin and intermediate filament networks and causes severe functional defects, including impaired nuclear positioning, cell polarization and cell motility. Recent studies have identified the LINC complex as the major force-transmitting element at the nuclear envelope and suggest that many of the aforementioned defects can be attributed to disturbed force transmission between the nucleus and the cytoskeleton. Thus mutations in nesprins, SUN proteins or lamins, which have been linked to muscular dystrophies and cardiomyopathies, may weaken or completely eliminate LINC complex function at the nuclear envelope and result in impaired intracellular force transmission, thereby disrupting critical cellular functions.

  13. Translational Control in Cancer Etiology

    PubMed Central

    Ruggero, Davide

    2013-01-01

    The link between perturbations in translational control and cancer etiology is becoming a primary focus in cancer research. It has now been established that genetic alterations in several components of the translational apparatus underlie spontaneous cancers as well as an entire class of inherited syndromes known as “ribosomopathies” associated with increased cancer susceptibility. These discoveries have illuminated the importance of deregulations in translational control to very specific cellular processes that contribute to cancer etiology. In addition, a growing body of evidence supports the view that deregulation of translational control is a common mechanism by which diverse oncogenic pathways promote cellular transformation and tumor development. Indeed, activation of these key oncogenic pathways induces rapid and dramatic translational reprogramming both by increasing overall protein synthesis and by modulating specific mRNA networks. These translational changes promote cellular transformation, impacting almost every phase of tumor development. This paradigm represents a new frontier in the multihit model of cancer formation and offers significant promise for innovative cancer therapies. Current research, in conjunction with cutting edge technologies, will further enable us to explore novel mechanisms of translational control, functionally identify translationally controlled mRNA groups, and unravel their impact on cellular transformation and tumorigenesis. PMID:22767671

  14. In vitro cellular adhesion and antimicrobial property of SiO2-MgO-Al2O3-K2O-B2O3-F glass ceramic.

    PubMed

    Kalmodia, Sushma; Molla, Atiar Rahaman; Basu, Bikramjit

    2010-04-01

    The aim of the present study was to examine the cellular functionality and antimicrobial properties of SiO(2)-MgO-Al(2)O(3)-K(2)O-B(2)O(3)-F glass ceramics (GC) containing fluorophlogopite as major crystalline phase. The cellular morphology and cell adhesion study using human osteoblast-like Saos-2 cells and mouse fibroblast L929 cells reveals good in vitro cytocompatibility of GC. The potential use of the GC for biomedical application was also assessed by in vitro synthesis of the alkaline phosphatase (ALP) activity of Saos-2 cells. It is proposed that B(2)O(3) actively enhances the cell adhesion and supports osteoconduction process, whereas, fluorine component significantly influences cell viability. The Saos-2 and L929 cells on GC shows extensive multidirectional network of actin cytoskeleton. The in vitro results of this study illustrate how small variation in fluorine and boron in base glass composition influences significantly the biocompatibility and antimicrobial bactericidal property, as evaluated using a range of biochemical assays. Importantly, it shows that the cell viability and osteoconduction can be promoted in glass ceramics with lower fluorine content. The underlying reasons for difference in biological properties are analyzed and reported. It is suggested that oriented crystalline morphology in the lowest fluorine containing glass ceramic enhanced cellular spreading. Overall, the in vitro cell adhesion, cell flattening, cytocompatibility and antimicrobial study of the three different compositions of glass ceramic clearly reveals that microstructure and base glass composition play an important role in enhancing the cellular functionality and antimicrobial property.

  15. Epstein-Barr virus/complement fragment C3d receptor (CR2) reacts with p53, a cellular antioncogene-encoded membrane phosphoprotein: detection by polyclonal anti-idiotypic anti-CR2 antibodies.

    PubMed Central

    Barel, M; Fiandino, A; Lyamani, F; Frade, R

    1989-01-01

    Epstein-Barr virus and the C3d fragment of the third component of complement are specific extracellular ligands for complement receptor type 2 (CR2). However, intracellular proteins that react specifically with CR2 and are involved in post-membrane signals remain unknown. We recently prepared polyclonal anti-idiotypic anti-CR2 antibodies (Ab2) by using the highly purified CR2 molecule as original immunogen. We showed that Ab2 contained anti-idiotypic specificities that mimicked extracellular domains of CR2 and detected two distinct binding sites on CR2 for its specific extracellular ligands, Epstein-Barr virus and C3d. We postulated that Ab2 might also contain specificities that could mimic intracellular domains of CR2. Here we report that Ab2, which did not react with Raji B-lymphoma cell surface components, detected specifically, among all components solubilized from Raji cell membranes, a single intracellular membrane protein of apparent molecular mass of 53 kDa. This protein was identified as the p53 cellular antioncogene-encoded membrane phosphoprotein by analyzing its antigenic properties with Pab1801, a monoclonal anti-p53 antibody, and by comparing its biochemical properties with those of p53. Additionally, solubilized and purified CR2 bound to solubilized p53 immobilized on Pab1801-Sepharose. p53, like CR2, was localized only in purified plasma membranes and nuclei of Raji cells. These data suggest strongly that p53, a cellular antioncogene-encoded phosphoprotein, reacted specifically with CR2 in Raji membranes. This interaction may represent one of the important steps through which CR2 could be involved in human B-lymphocyte proliferation and transformation. Images PMID:2557614

  16. If walls could talk

    NASA Technical Reports Server (NTRS)

    Braam, J.; McIntire, L. V. (Principal Investigator)

    1999-01-01

    The plant cell wall is very complex, both in structure and function. The wall components and the mechanical properties of the wall have been implicated in conveying information that is important for morphogenesis. Proteoglycans, fragments of polysaccharides and the structural integrity of the wall may relay signals that influence cellular differentiation and growth control. Furthering our knowledge of cell wall structure and function is likely to have a profound impact on our understanding of how plant cells communicate with the extracellular environment.

  17. Polyamines and Hypusination Are Required for Ebolavirus Gene Expression and Replication

    PubMed Central

    Olsen, Michelle E.; Filone, Claire Marie; Rozelle, Dan; Mire, Chad E.; Agans, Krystle N.; Hensley, Lisa

    2016-01-01

    ABSTRACT Ebolavirus (EBOV) is an RNA virus that is known to cause severe hemorrhagic fever in humans and other primates. EBOV successfully enters and replicates in many cell types. This replication is dependent on the virus successfully coopting a number of cellular factors. Many of these factors are currently unidentified but represent potential targets for antiviral therapeutics. Here we show that cellular polyamines are critical for EBOV replication. We found that small-molecule inhibitors of polyamine synthesis block gene expression driven by the viral RNA-dependent RNA polymerase. Short hairpin RNA (shRNA) knockdown of the polyamine pathway enzyme spermidine synthase also resulted in reduced EBOV replication. These findings led us to further investigate spermidine, a polyamine that is essential for the hypusination of eukaryotic initiation factor 5A (eIF5A). Blocking the hypusination of eIF5A (and thereby inhibiting its function) inhibited both EBOV gene expression and viral replication. The mechanism appears to be due to the importance of hypusinated eIF5A for the accumulation of VP30, an essential component of the viral polymerase. The same reduction in hypusinated eIF5A did not alter the accumulation of other viral polymerase components. This action makes eIF5A function an important gate for proper EBOV polymerase assembly and function through the control of a single virus protein. PMID:27460797

  18. Myosin II Activity Softens Cells in Suspension.

    PubMed

    Chan, Chii J; Ekpenyong, Andrew E; Golfier, Stefan; Li, Wenhong; Chalut, Kevin J; Otto, Oliver; Elgeti, Jens; Guck, Jochen; Lautenschläger, Franziska

    2015-04-21

    The cellular cytoskeleton is crucial for many cellular functions such as cell motility and wound healing, as well as other processes that require shape change or force generation. Actin is one cytoskeleton component that regulates cell mechanics. Important properties driving this regulation include the amount of actin, its level of cross-linking, and its coordination with the activity of specific molecular motors like myosin. While studies investigating the contribution of myosin activity to cell mechanics have been performed on cells attached to a substrate, we investigated mechanical properties of cells in suspension. To do this, we used multiple probes for cell mechanics including a microfluidic optical stretcher, a microfluidic microcirculation mimetic, and real-time deformability cytometry. We found that nonadherent blood cells, cells arrested in mitosis, and naturally adherent cells brought into suspension, stiffen and become more solidlike upon myosin inhibition across multiple timescales (milliseconds to minutes). Our results hold across several pharmacological and genetic perturbations targeting myosin. Our findings suggest that myosin II activity contributes to increased whole-cell compliance and fluidity. This finding is contrary to what has been reported for cells attached to a substrate, which stiffen via active myosin driven prestress. Our results establish the importance of myosin II as an active component in modulating suspended cell mechanics, with a functional role distinctly different from that for substrate-adhered cells. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  19. The composition of West Nile virus lipid envelope unveils a role of sphingolipid metabolism in flavivirus biogenesis.

    PubMed

    Martín-Acebes, Miguel A; Merino-Ramos, Teresa; Blázquez, Ana-Belén; Casas, Josefina; Escribano-Romero, Estela; Sobrino, Francisco; Saiz, Juan-Carlos

    2014-10-01

    West Nile virus (WNV) is an emerging zoonotic mosquito-borne flavivirus responsible for outbreaks of febrile illness and meningoencephalitis. The replication of WNV takes place on virus-modified membranes from the endoplasmic reticulum of the host cell, and virions acquire their envelope by budding into this organelle. Consistent with this view, the cellular biology of this pathogen is intimately linked to modifications of the intracellular membranes, and the requirement for specific lipids, such as cholesterol and fatty acids, has been documented. In this study, we evaluated the impact of WNV infection on two important components of cellular membranes, glycerophospholipids and sphingolipids, by mass spectrometry of infected cells. A significant increase in the content of several glycerophospholipids (phosphatidylcholine, plasmalogens, and lysophospholipids) and sphingolipids (ceramide, dihydroceramide, and sphingomyelin) was noticed in WNV-infected cells, suggesting that these lipids have functional roles during WNV infection. Furthermore, the analysis of the lipid envelope of WNV virions and recombinant virus-like particles revealed that their envelopes had a unique composition. The envelopes were enriched in sphingolipids (sphingomyelin) and showed reduced levels of phosphatidylcholine, similar to sphingolipid-enriched lipid microdomains. Inhibition of neutral sphingomyelinase (which catalyzes the hydrolysis of sphingomyelin into ceramide) by either pharmacological approaches or small interfering RNA-mediated silencing reduced the release of flavivirus virions as well as virus-like particles, suggesting a role of sphingomyelin-to-ceramide conversion in flavivirus budding and confirming the importance of sphingolipids in the biogenesis of WNV. Importance: West Nile virus (WNV) is a neurotropic flavivirus spread by mosquitoes that can infect multiple vertebrate hosts, including humans. There is no specific vaccine or therapy against this pathogen licensed for human use. Since the multiplication of this virus is associated with rearrangements of host cell membranes, we analyzed the effect of WNV infection on different cellular lipids that constitute important membrane components. The levels of multiple lipid species were increased in infected cells, pointing to the induction of major alterations of cellular lipid metabolism by WNV infection. Interestingly, certain sphingolipids, which were increased in infected cells, were also enriched in the lipid envelope of the virus, thus suggesting a potential role during virus assembly. We further verified the role of sphingolipids in the production of WNV by means of functional analyses. This study provides new insight into the formation of flavivirus infectious particles and the involvement of sphingolipids in the WNV life cycle. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  20. The Composition of West Nile Virus Lipid Envelope Unveils a Role of Sphingolipid Metabolism in Flavivirus Biogenesis

    PubMed Central

    Martín-Acebes, Miguel A.; Merino-Ramos, Teresa; Blázquez, Ana-Belén; Casas, Josefina; Escribano-Romero, Estela

    2014-01-01

    ABSTRACT West Nile virus (WNV) is an emerging zoonotic mosquito-borne flavivirus responsible for outbreaks of febrile illness and meningoencephalitis. The replication of WNV takes place on virus-modified membranes from the endoplasmic reticulum of the host cell, and virions acquire their envelope by budding into this organelle. Consistent with this view, the cellular biology of this pathogen is intimately linked to modifications of the intracellular membranes, and the requirement for specific lipids, such as cholesterol and fatty acids, has been documented. In this study, we evaluated the impact of WNV infection on two important components of cellular membranes, glycerophospholipids and sphingolipids, by mass spectrometry of infected cells. A significant increase in the content of several glycerophospholipids (phosphatidylcholine, plasmalogens, and lysophospholipids) and sphingolipids (ceramide, dihydroceramide, and sphingomyelin) was noticed in WNV-infected cells, suggesting that these lipids have functional roles during WNV infection. Furthermore, the analysis of the lipid envelope of WNV virions and recombinant virus-like particles revealed that their envelopes had a unique composition. The envelopes were enriched in sphingolipids (sphingomyelin) and showed reduced levels of phosphatidylcholine, similar to sphingolipid-enriched lipid microdomains. Inhibition of neutral sphingomyelinase (which catalyzes the hydrolysis of sphingomyelin into ceramide) by either pharmacological approaches or small interfering RNA-mediated silencing reduced the release of flavivirus virions as well as virus-like particles, suggesting a role of sphingomyelin-to-ceramide conversion in flavivirus budding and confirming the importance of sphingolipids in the biogenesis of WNV. IMPORTANCE West Nile virus (WNV) is a neurotropic flavivirus spread by mosquitoes that can infect multiple vertebrate hosts, including humans. There is no specific vaccine or therapy against this pathogen licensed for human use. Since the multiplication of this virus is associated with rearrangements of host cell membranes, we analyzed the effect of WNV infection on different cellular lipids that constitute important membrane components. The levels of multiple lipid species were increased in infected cells, pointing to the induction of major alterations of cellular lipid metabolism by WNV infection. Interestingly, certain sphingolipids, which were increased in infected cells, were also enriched in the lipid envelope of the virus, thus suggesting a potential role during virus assembly. We further verified the role of sphingolipids in the production of WNV by means of functional analyses. This study provides new insight into the formation of flavivirus infectious particles and the involvement of sphingolipids in the WNV life cycle. PMID:25122799

  1. Carotenoids, versatile components of oxygenic photosynthesis.

    PubMed

    Domonkos, Ildikó; Kis, Mihály; Gombos, Zoltán; Ughy, Bettina

    2013-10-01

    Carotenoids (CARs) are a group of pigments that perform several important physiological functions in all kingdoms of living organisms. CARs serve as protective agents, which are essential structural components of photosynthetic complexes and membranes, and they play an important role in the light harvesting mechanism of photosynthesizing plants and cyanobacteria. The protection against reactive oxygen species, realized by quenching of singlet oxygen and the excited states of photosensitizing molecules, as well as by the scavenging of free radicals, is one of the main biological functions of CARs. X-ray crystallographic localization of CARs revealed that they are present at functionally and structurally important sites of both the PSI and PSII reaction centers. Characterization of a CAR-less cyanobacterial mutant revealed that while the absence of CARs prevents the formation of PSII complexes, it does not abolish the assembly and function of PSI. CAR molecules assist in the formation of protein subunits of the photosynthetic complexes by gluing together their protein components. In addition to their aforementioned indispensable functions, CARs have a substantial role in the formation and maintenance of proper cellular architecture, and potentially also in the protection of the translational machinery under stress conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Instabilities in rapid solidification of multi-component alloys

    NASA Astrophysics Data System (ADS)

    Altieri, Anthony L.; Davis, Stephen H.

    2017-10-01

    Rapid solidification of multi-component liquids occurs in many modern applications such as additive manufacturing. In the present work the interface departures from equilibrium consist of the segregation coefficient and liquidus slope depending on front speed, the one-sided, frozen-temperature approximation, and the alloy behaving as the superposition of individual components. Linear-stability theory is applied, showing that the cellular and oscillatory instabilities of the binary case are modified. The addition of components tends to destabilize the interface while the addition of a single large-diffusivity material can entirely suppress the oscillatory mode. Multiple minima in the neutral curve for the cellular mode occur.

  3. PhosphoregDB: The tissue and sub-cellular distribution of mammalian protein kinases and phosphatases

    PubMed Central

    Forrest, Alistair RR; Taylor, Darrin F; Fink, J Lynn; Gongora, M Milena; Flegg, Cameron; Teasdale, Rohan D; Suzuki, Harukazu; Kanamori, Mutsumi; Kai, Chikatoshi; Hayashizaki, Yoshihide; Grimmond, Sean M

    2006-01-01

    Background Protein kinases and protein phosphatases are the fundamental components of phosphorylation dependent protein regulatory systems. We have created a database for the protein kinase-like and phosphatase-like loci of mouse that integrates protein sequence, interaction, classification and pathway information with the results of a systematic screen of their sub-cellular localization and tissue specific expression data mined from the GNF tissue atlas of mouse. Results The database lets users query where a specific kinase or phosphatase is expressed at both the tissue and sub-cellular levels. Similarly the interface allows the user to query by tissue, pathway or sub-cellular localization, to reveal which components are co-expressed or co-localized. A review of their expression reveals 30% of these components are detected in all tissues tested while 70% show some level of tissue restriction. Hierarchical clustering of the expression data reveals that expression of these genes can be used to separate the samples into tissues of related lineage, including 3 larger clusters of nervous tissue, developing embryo and cells of the immune system. By overlaying the expression, sub-cellular localization and classification data we examine correlations between class, specificity and tissue restriction and show that tyrosine kinases are more generally expressed in fewer tissues than serine/threonine kinases. Conclusion Together these data demonstrate that cell type specific systems exist to regulate protein phosphorylation and that for accurate modelling and for determination of enzyme substrate relationships the co-location of components needs to be considered. PMID:16504016

  4. Formalizing Knowledge in Multi-Scale Agent-Based Simulations

    PubMed Central

    Somogyi, Endre; Sluka, James P.; Glazier, James A.

    2017-01-01

    Multi-scale, agent-based simulations of cellular and tissue biology are increasingly common. These simulations combine and integrate a range of components from different domains. Simulations continuously create, destroy and reorganize constituent elements causing their interactions to dynamically change. For example, the multi-cellular tissue development process coordinates molecular, cellular and tissue scale objects with biochemical, biomechanical, spatial and behavioral processes to form a dynamic network. Different domain specific languages can describe these components in isolation, but cannot describe their interactions. No current programming language is designed to represent in human readable and reusable form the domain specific knowledge contained in these components and interactions. We present a new hybrid programming language paradigm that naturally expresses the complex multi-scale objects and dynamic interactions in a unified way and allows domain knowledge to be captured, searched, formalized, extracted and reused. PMID:29338063

  5. Formalizing Knowledge in Multi-Scale Agent-Based Simulations.

    PubMed

    Somogyi, Endre; Sluka, James P; Glazier, James A

    2016-10-01

    Multi-scale, agent-based simulations of cellular and tissue biology are increasingly common. These simulations combine and integrate a range of components from different domains. Simulations continuously create, destroy and reorganize constituent elements causing their interactions to dynamically change. For example, the multi-cellular tissue development process coordinates molecular, cellular and tissue scale objects with biochemical, biomechanical, spatial and behavioral processes to form a dynamic network. Different domain specific languages can describe these components in isolation, but cannot describe their interactions. No current programming language is designed to represent in human readable and reusable form the domain specific knowledge contained in these components and interactions. We present a new hybrid programming language paradigm that naturally expresses the complex multi-scale objects and dynamic interactions in a unified way and allows domain knowledge to be captured, searched, formalized, extracted and reused.

  6. Cellular structures with interconnected microchannels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaefer, Robert Shahram; Ghoniem, Nasr M.; Williams, Brian

    A method for fabricating a cellular tritium breeder component includes obtaining a reticulated carbon foam skeleton comprising a network of interconnected ligaments. The foam skeleton is then melt-infiltrated with a tritium breeder material, for example, lithium zirconate or lithium titanate. The foam skeleton is then removed to define a cellular breeder component having a network of interconnected tritium purge channels. In an embodiment the ligaments of the foam skeleton are enlarged by adding carbon using chemical vapor infiltration (CVI) prior to melt-infiltration. In an embodiment the foam skeleton is coated with a refractory material, for example, tungsten, prior to meltmore » infiltration.« less

  7. Cellular fatty acids and aldehydes of oral Eubacterium.

    PubMed

    Itoh, U; Sato, M; Tsuchiya, H; Namikawa, I

    1995-02-01

    The cellular fatty acids and aldehydes of oral Eubacterium species were determined by gas chromatography-mass spectrometry. E. brachy and E. lentum contained mainly branched-chain fatty acids, whereas the others contained straight-chain acids. E. brachy, E. lentum, E. yurii ssp. yurii, E. yurii spp. margaretiae, E. limosum, E. plauti and E. aerofaciens also contained aldehydes with even carbon numbers. In addition to species-specific components, the compositional ratios of fatty acids and aldehydes characterized each individual species. The 10 species tested were divided into 5 groups by the principal component analysis. Cellular fatty acids and aldehydes would be chemical markers for interspecies differentiation of oral Eubacterium.

  8. Cellular automata with object-oriented features for parallel molecular network modeling.

    PubMed

    Zhu, Hao; Wu, Yinghui; Huang, Sui; Sun, Yan; Dhar, Pawan

    2005-06-01

    Cellular automata are an important modeling paradigm for studying the dynamics of large, parallel systems composed of multiple, interacting components. However, to model biological systems, cellular automata need to be extended beyond the large-scale parallelism and intensive communication in order to capture two fundamental properties characteristic of complex biological systems: hierarchy and heterogeneity. This paper proposes extensions to a cellular automata language, Cellang, to meet this purpose. The extended language, with object-oriented features, can be used to describe the structure and activity of parallel molecular networks within cells. Capabilities of this new programming language include object structure to define molecular programs within a cell, floating-point data type and mathematical functions to perform quantitative computation, message passing capability to describe molecular interactions, as well as new operators, statements, and built-in functions. We discuss relevant programming issues of these features, including the object-oriented description of molecular interactions with molecule encapsulation, message passing, and the description of heterogeneity and anisotropy at the cell and molecule levels. By enabling the integration of modeling at the molecular level with system behavior at cell, tissue, organ, or even organism levels, the program will help improve our understanding of how complex and dynamic biological activities are generated and controlled by parallel functioning of molecular networks. Index Terms-Cellular automata, modeling, molecular network, object-oriented.

  9. The plant cell nucleus: a true arena for the fight between plants and pathogens.

    PubMed

    Deslandes, Laurent; Rivas, Susana

    2011-01-01

    Communication between the cytoplasm and the nucleus is a fundamental feature shared by both plant and animal cells. Cellular factors involved in the transport of macromolecules through the nuclear envelope, including nucleoporins, importins and Ran-GTP related components, are conserved among a variety of eukaryotic systems. Interestingly, mutations in these nuclear components compromise resistance signalling, illustrating the importance of nucleocytoplasmic trafficking in plant innate immunity. Indeed, spatial restriction of defence regulators by the nuclear envelope and stimulus-induced nuclear translocation constitute an important level of defence-associated gene regulation in plants. A significant number of effectors from different microbial pathogens are targeted to the plant cell nucleus. In addition, key host factors, including resistance proteins, immunity components, transcription factors and transcriptional regulators shuttle between the cytoplasm and the nucleus, and their level of nuclear accumulation determines the output of the defence response, further confirming the crucial role played by the nucleus during the interaction between plants and pathogens. Here, we discuss recent findings that situate the nucleus at the frontline of the mutual recognition between plants and invading microbes.

  10. Integration of Mobil Satellite and Cellular Systems

    NASA Technical Reports Server (NTRS)

    Drucker, E. H.; Estabrook, P.; Pinck, D.; Ekroot, L.

    1993-01-01

    By integrating the ground based infrastructure component of a mobile satellite system with the infrastructure systems of terrestrial 800 MHz cellular service providers, a seamless network of universal coverage can be established.

  11. Transcriptomic analysis of the dimorphic transition of Ustilago maydis induced in vitro by a change in pH.

    PubMed

    Martínez-Soto, Domingo; Ruiz-Herrera, José

    2013-01-01

    Dimorphism is the property of fungi to grow as budding yeasts or mycelium, depending on the environmental conditions. This phenomenon is important as a model of differentiation in eukaryotic organisms, and since a large number of fungal diseases are caused by dimorphic fungi, its study is important for practical reasons. In this work, we examined the transcriptome during the dimorphic transition of the basidiomycota phytopathogenic fungus Ustilago maydis using microarrays, utilizing yeast and mycelium monomorphic mutants as controls. This way, we thereby identified 154 genes of the fungus that are specifically involved in the dimorphic transition induced by a pH change. Of these, 82 genes were up-regulated, and 72 were down-regulated. Differential categorization of these genes revealed that they mostly belonged to the classes of metabolism, cell cycle and DNA processing, transcription and protein fate, transport and cellular communication, stress, cell differentiation and biogenesis of cellular components, while a significant number of them corresponded to unclassified proteins. The data reported in this work are important for our understanding of the molecular bases of dimorphism in U. maydis, and possibly of other fungi. Copyright © 2013. Published by Elsevier Inc.

  12. Cryo-FIB-SEM serial milling and block face imaging: Large volume structural analysis of biological tissues preserved close to their native state.

    PubMed

    Vidavsky, Netta; Akiva, Anat; Kaplan-Ashiri, Ifat; Rechav, Katya; Addadi, Lia; Weiner, Steve; Schertel, Andreas

    2016-12-01

    Many important biological questions can be addressed by studying in 3D large volumes of intact, cryo fixed hydrated tissues (⩾10,000μm 3 ) at high resolution (5-20nm). This can be achieved using serial FIB milling and block face surface imaging under cryo conditions. Here we demonstrate the unique potential of the cryo-FIB-SEM approach using two extensively studied model systems; sea urchin embryos and the tail fin of zebrafish larvae. We focus in particular on the environment of mineral deposition sites. The cellular organelles, including mitochondria, Golgi, ER, nuclei and nuclear pores are made visible by the image contrast created by differences in surface potential of different biochemical components. Auto segmentation and/or volume rendering of the image stacks and 3D reconstruction of the skeleton and the cellular environment, provides a detailed view of the relative distribution in space of the tissue/cellular components, and thus of their interactions. Simultaneous acquisition of secondary and back-scattered electron images adds additional information. For example, a serial view of the zebrafish tail reveals the presence of electron dense mineral particles inside mitochondrial networks extending more than 20μm in depth in the block. Large volume imaging using cryo FIB SEM, as demonstrated here, can contribute significantly to the understanding of the structures and functions of diverse biological tissues. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Kibra and aPKC regulate starvation-induced autophagy in Drosophila

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Ahrum; Neufeld, Thomas P.; Choe, Joonho, E-mail: jchoe@kaist.ac.kr

    Autophagy is a bulk degradation system that functions in response to cellular stresses such as metabolic stress, endoplasmic reticulum stress, oxidative stress, and developmental processes. During autophagy, cytoplasmic components are captured in double-membrane vesicles called autophagosomes. The autophagosome fuses with the lysosome, producing a vacuole known as an autolysosome. The cellular components are degraded by lysosomal proteases and recycled. Autophagy is important for maintaining cellular homeostasis, and the process is evolutionarily conserved. Kibra is an upstream regulator of the hippo signaling pathway, which controls organ size by affecting cell growth, proliferation, and apoptosis. Kibra is mainly localized in the apicalmore » membrane domain of epithelial cells and acts as a scaffold protein. We found that Kibra is required for autophagy to function properly. The absence of Kibra caused defects in the formation of autophagic vesicles and autophagic degradation. We also found that the well-known cell polarity protein aPKC interacts with Kibra, and its activity affects autophagy upstream of Kibra. Constitutively active aPKC decreased autophagic vesicle formation and autophagic degradation. We confirmed the interaction between aPKC and Kibra in S2 cells and Drosophila larva. Taken together, our data suggest that Kibra and aPKC are essential for regulating starvation-induced autophagy. - Highlights: • Loss of Kibra causes defects in autophagosome formation and autophagic degradation. • Constitutively-active aPKCs negatively regulate autophagy. • Kibra interacts with aPKC in vitro and in vivo. • Kibra regulates autophagy downstream of aPKC.« less

  14. Inhibition by fenoterol of human eosinophil functions including β2-adrenoceptor-independent actions

    PubMed Central

    TACHIBANA, A; KATO, M; KIMURA, H; FUJIU, T; SUZUKI, M; MORIKAWA, A

    2002-01-01

    Agonists at β2 adrenoceptors are used widely as bronchodilators in treating bronchial asthma. These agents also may have important anti-inflammatory effects on eosinophils in asthma. We examined whether widely prescribed β2-adrenoceptor agonists differ in ability to suppress stimulus-induced eosinophil effector functions such as superoxide anion (O2−) generation and degranulation. To examine involvement of cellular adhesion in such responses, we also investigated effects of β2 agonists on cellular adhesion and on CD11b expression by human eosinophils. O2− was measured using chemiluminescence. Eosinophil degranulation and adhesion were assessed by a radioimmunoassay for eosinophil protein X (EPX). CD11b expression was measured by flow cytometry. Fenoterol inhibited platelet-activating factor (PAF)-induced O2− generation by eosinophils significantly more than salbutamol or procaterol. Fenoterol partially inhibited PAF-induced degranulation by eosinophils similarly to salbutamol or procaterol. Fenoterol inhibited phorbol myristate acetate (PMA)-induced O2− generation and degranulation by eosinophils, while salbutamol or procaterol did not. Fenoterol inhibition of PMA-induced O2− generation was not reversed by ICI-118551, a selective β2-adrenoceptor antagonist. Fenoterol, but not salbutamol or procaterol, significantly inhibited PAF-induced eosinophil adhesion. Fenoterol inhibited O2− generation and degranulation more effectively than salbutamol or procaterol; these effects may include a component involving cellular adhesion. Inhibition also might include a component not mediated via β2 adrenoceptors. PMID:12452831

  15. Imaging Cytoskeleton Components by Electron Microscopy.

    PubMed

    Svitkina, Tatyana

    2016-01-01

    The cytoskeleton is a complex of detergent-insoluble components of the cytoplasm playing critical roles in cell motility, shape generation, and mechanical properties of a cell. Fibrillar polymers-actin filaments, microtubules, and intermediate filaments-are major constituents of the cytoskeleton, which constantly change their organization during cellular activities. The actin cytoskeleton is especially polymorphic, as actin filaments can form multiple higher order assemblies performing different functions. Structural information about cytoskeleton organization is critical for understanding its functions and mechanisms underlying various forms of cellular activity. Because of the nanometer-scale thickness of cytoskeletal fibers, electron microscopy (EM) is a key tool to determine the structure of the cytoskeleton. This article describes application of rotary shadowing (or metal replica) EM for visualization of the cytoskeleton. The procedure is applicable to thin cultured cells growing on glass coverslips and consists of detergent extraction of cells to expose their cytoskeleton, chemical fixation to provide stability, ethanol dehydration and critical point drying to preserve three-dimensionality, rotary shadowing with platinum to create contrast, and carbon coating to stabilize replicas. This technique provides easily interpretable three-dimensional images, in which individual cytoskeletal fibers are clearly resolved, and individual proteins can be identified by immunogold labeling. More importantly, replica EM is easily compatible with live cell imaging, so that one can correlate the dynamics of a cell or its components, e.g., expressed fluorescent proteins, with high resolution structural organization of the cytoskeleton in the same cell.

  16. Super-Resolution Microscopy: Shedding Light on the Cellular Plasma Membrane.

    PubMed

    Stone, Matthew B; Shelby, Sarah A; Veatch, Sarah L

    2017-06-14

    Lipids and the membranes they form are fundamental building blocks of cellular life, and their geometry and chemical properties distinguish membranes from other cellular environments. Collective processes occurring within membranes strongly impact cellular behavior and biochemistry, and understanding these processes presents unique challenges due to the often complex and myriad interactions between membrane components. Super-resolution microscopy offers a significant gain in resolution over traditional optical microscopy, enabling the localization of individual molecules even in densely labeled samples and in cellular and tissue environments. These microscopy techniques have been used to examine the organization and dynamics of plasma membrane components, providing insight into the fundamental interactions that determine membrane functions. Here, we broadly introduce the structure and organization of the mammalian plasma membrane and review recent applications of super-resolution microscopy to the study of membranes. We then highlight some inherent challenges faced when using super-resolution microscopy to study membranes, and we discuss recent technical advancements that promise further improvements to super-resolution microscopy and its application to the plasma membrane.

  17. Organization of the ER–Golgi interface for membrane traffic control

    PubMed Central

    Brandizzi, Federica; Barlowe, Charles

    2014-01-01

    Coat protein complex I (COPI) and COPII are required for bidirectional membrane trafficking between the endoplasmic reticulum (ER) and the Golgi. While these core coat machineries and other transport factors are highly conserved across species, high-resolution imaging studies indicate that the organization of the ER–Golgi interface is varied in eukaryotic cells. Regulation of COPII assembly, in some cases to manage distinct cellular cargo, is emerging as one important component in determining this structure. Comparison of the ER–Golgi interface across different systems, particularly mammalian and plant cells, reveals fundamental elements and distinct organization of this interface. A better understanding of how these interfaces are regulated to meet varying cellular secretory demands should provide key insights into the mechanisms that control efficient trafficking of proteins and lipids through the secretory pathway. PMID:23698585

  18. Non-alcoholic fatty liver disease, to struggle with the strangle: Oxygen availability in fatty livers.

    PubMed

    Anavi, Sarit; Madar, Zecharia; Tirosh, Oren

    2017-10-01

    Nonalcoholic fatty liver diseases (NAFLD) is one of the most common chronic liver disease in Western countries. Oxygen is a central component of the cellular microenvironment, which participate in the regulation of cell survival, differentiation, functions and energy metabolism. Accordingly, sufficient oxygen supply is an important factor for tissue durability, mainly in highly metabolic tissues, such as the liver. Accumulating evidence from the past few decades provides strong support for the existence of interruptions in oxygen availability in fatty livers. This outcome may be the consequence of both, impaired systemic microcirculation and cellular membrane modifications which occur under steatotic conditions. This review summarizes current knowledge regarding the main factors which can affect oxygen supply in fatty liver. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Scaling by shrinking: empowering single-cell ‘omics’ with microfluidic devices

    PubMed Central

    Prakadan, Sanjay M.; Shalek, Alex K.; Weitz, David A.

    2017-01-01

    Recent advances in cellular profiling have demonstrated substantial heterogeneity in the behaviour of cells once deemed ‘identical’, challenging fundamental notions of cell ‘type’ and ‘state’. Not surprisingly, these findings have elicited substantial interest in deeply characterizing the diversity, interrelationships and plasticity among cellular phenotypes. To explore these questions, experimental platforms are needed that can extensively and controllably profile many individual cells. Here, microfluidic structures—whether valve-, droplet- or nanowell-based—have an important role because they can facilitate easy capture and processing of single cells and their components, reducing labour and costs relative to conventional plate-based methods while also improving consistency. In this article, we review the current state-of-the-art methodologies with respect to microfluidics for mammalian single-cell ‘omics’ and discuss challenges and future opportunities. PMID:28392571

  20. Nuclear Migration During Retinal Development

    PubMed Central

    Baye, Lisa M.; Link, Brian A.

    2009-01-01

    In this review we focus on the mechanisms, regulation, and cellular consequences of nuclear migration in the developing retina. In the nervous system, nuclear migration is prominent during both proliferative and post-mitotic phases of development. Interkinetic nuclear migration is the process where the nucleus oscillates from the apical to basal surfaces in proliferative neuroepithelia. Proliferative nuclear movement occurs in step with the cell cycle, with M-phase being confined to the apical surface and G1-, S-, and G2-phases occurring at more basal locations. Later, following cell cycle exit, some neuron precursors migrate by nuclear translocation. In this mode of cellular migration, nuclear movement is the driving force for motility. Following discussion of the key components and important regulators for each of these processes, we present an emerging model where interkinetic nuclear migration functions to distinguish cell fates among retinal neuroepithelia. PMID:17560964

  1. Structural and functional insights into sorting nexin 5/6 interaction with bacterial effector IncE.

    PubMed

    Sun, Qingxiang; Yong, Xin; Sun, Xiaodong; Yang, Fan; Dai, Zhonghua; Gong, Yanqiu; Zhou, Liming; Zhang, Xia; Niu, Dawen; Dai, Lunzhi; Liu, Jia-Jia; Jia, Da

    2017-01-01

    The endosomal trafficking pathways are essential for many cellular activities. They are also important targets by many intracellular pathogens. Key regulators of the endosomal trafficking include the retromer complex and sorting nexins (SNXs). Chlamydia trachomatis effector protein IncE directly targets the retromer components SNX5 and SNX6 and suppresses retromer-mediated transport, but the exact mechanism has remained unclear. We present the crystal structure of the PX domain of SNX5 in complex with IncE, showing that IncE binds to a highly conserved hydrophobic groove of SNX5. The unique helical hairpin of SNX5/6 is essential for binding, explaining the specificity of SNX5/6 for IncE. The SNX5/6-IncE interaction is required for cellular localization of IncE and its inhibitory function. Mechanistically, IncE inhibits the association of CI-MPR cargo with retromer-containing endosomal subdomains. Our study provides new insights into the regulation of retromer-mediated transport and illustrates the intricate competition between host and pathogens in controlling cellular trafficking.

  2. Cellular functions of the microprocessor.

    PubMed

    Macias, Sara; Cordiner, Ross A; Cáceres, Javier F

    2013-08-01

    The microprocessor is a complex comprising the RNase III enzyme Drosha and the double-stranded RNA-binding protein DGCR8 (DiGeorge syndrome critical region 8 gene) that catalyses the nuclear step of miRNA (microRNA) biogenesis. DGCR8 recognizes the RNA substrate, whereas Drosha functions as an endonuclease. Recent global analyses of microprocessor and Dicer proteins have suggested novel functions for these components independent of their role in miRNA biogenesis. A HITS-CLIP (high-throughput sequencing of RNA isolated by cross-linking immunoprecipitation) experiment designed to identify novel substrates of the microprocessor revealed that this complex binds and regulates a large variety of cellular RNAs. The microprocessor-mediated cleavage of several classes of RNAs not only regulates transcript levels, but also modulates alternative splicing events, independently of miRNA function. Importantly, DGCR8 can also associate with other nucleases, suggesting the existence of alternative DGCR8 complexes that may regulate the fate of a subset of cellular RNAs. The aim of the present review is to provide an overview of the diverse functional roles of the microprocessor.

  3. Information content and cross-talk in biological signal transduction: An information theory study

    NASA Astrophysics Data System (ADS)

    Prasad, Ashok; Lyons, Samanthe

    2014-03-01

    Biological cells respond to chemical cues provided by extra-cellular chemical signals, but many of these chemical signals and the pathways they activate interfere and overlap with one another. How well cells can distinguish between interfering extra-cellular signals is thus an important question in cellular signal transduction. Here we use information theory with stochastic simulations of networks to address the question of what happens to total information content when signals interfere. We find that both total information transmitted by the biological pathway, as well as its theoretical capacity to discriminate between overlapping signals, are relatively insensitive to cross-talk between the extracellular signals, until significantly high levels of cross-talk have been reached. This robustness of information content against cross-talk requires that the average amplitude of the signals are large. We predict that smaller systems, as exemplified by simple phosphorylation relays (two-component systems) in bacteria, should be significantly much less robust against cross-talk. Our results suggest that mammalian signal transduction can tolerate a high amount of cross-talk without degrading information content, while smaller bacterial systems cannot.

  4. Redox signaling: Potential arbitrator of autophagy and apoptosis in therapeutic response.

    PubMed

    Zhang, Lu; Wang, Kui; Lei, Yunlong; Li, Qifu; Nice, Edouard Collins; Huang, Canhua

    2015-12-01

    Redox signaling plays important roles in the regulation of cell death and survival in response to cancer therapy. Autophagy and apoptosis are discrete cellular processes mediated by distinct groups of regulatory and executioner molecules, and both are thought to be cellular responses to various stress conditions including oxidative stress, therefore controlling cell fate. Basic levels of reactive oxygen species (ROS) may function as signals to promote cell proliferation and survival, whereas increase of ROS can induce autophagy and apoptosis by damaging cellular components. Growing evidence in recent years argues for ROS that below detrimental levels acting as intracellular signal transducers that regulate autophagy and apoptosis. ROS-regulated autophagy and apoptosis can cross-talk with each other. However, how redox signaling determines different cell fates by regulating autophagy and apoptosis remains unclear. In this review, we will focus on understanding the delicate molecular mechanism by which autophagy and apoptosis are finely orchestrated by redox signaling and discuss how this understanding can be used to develop strategies for the treatment of cancer. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Fluorescent nanosensors for intracellular measurements: synthesis, characterization, calibration, and measurement

    PubMed Central

    Desai, Arpan S.; Chauhan, Veeren M.; Johnston, Angus P. R.; Esler, Tim; Aylott, Jonathan W.

    2013-01-01

    Measurement of intracellular acidification is important for understanding fundamental biological pathways as well as developing effective therapeutic strategies. Fluorescent pH nanosensors are an enabling technology for real-time monitoring of intracellular acidification. The physicochemical characteristics of nanosensors can be engineered to target specific cellular compartments and respond to external stimuli. Therefore, nanosensors represent a versatile approach for probing biological pathways inside cells. The fundamental components of nanosensors comprise a pH-sensitive fluorophore (signal transducer) and a pH-insensitive reference fluorophore (internal standard) immobilized in an inert non-toxic matrix. The inert matrix prevents interference of cellular components with the sensing elements as well as minimizing potentially harmful effects of some fluorophores on cell function. Fluorescent nanosensors are synthesized using standard laboratory equipment and are detectable by non-invasive widely accessible imaging techniques. The outcomes of studies employing this technology are dependent on reliable methodology for performing measurements. In particular, special consideration must be given to conditions for sensor calibration, uptake conditions and parameters for image analysis. We describe procedures for: (1) synthesis and characterization of polyacrylamide and silica based nanosensors, (2) nanosensor calibration and (3) performing measurements using fluorescence microscopy. PMID:24474936

  6. Mitochondrial protein acetylation mediates nutrient sensing of mitochondrial protein synthesis and mitonuclear protein balance.

    PubMed

    Di Domenico, Antonella; Hofer, Annette; Tundo, Federica; Wenz, Tina

    2014-11-01

    Changes in nutrient supply require global metabolic reprogramming to optimize the utilization of the nutrients. Mitochondria as a central component of the cellular metabolism play a key role in this adaptive process. Since mitochondria harbor their own genome, which encodes essential enzymes, mitochondrial protein synthesis is a determinant of metabolic adaptation. While regulation of cytoplasmic protein synthesis in response to metabolic challenges has been studied in great detail, mechanisms which adapt mitochondrial translation in response to metabolic challenges remain elusive. Our results suggest that the mitochondrial acetylation status controlled by Sirt3 and its proposed opponent GCN5L1 is an important regulator of the metabolic adaptation of mitochondrial translation. Moreover, both proteins modulate regulators of cytoplasmic protein synthesis as well as the mitonuclear protein balance making Sirt3 and GCN5L1 key players in synchronizing mitochondrial and cytoplasmic translation. Our results thereby highlight regulation of mitochondrial translation as a novel component in the cellular nutrient sensing scheme and identify mitochondrial acetylation as a new regulatory principle for the metabolic competence of mitochondrial protein synthesis. © 2014 International Union of Biochemistry and Molecular Biology.

  7. Engineering cancer microenvironments for in vitro 3-D tumor models

    PubMed Central

    Asghar, Waseem; El Assal, Rami; Shafiee, Hadi; Pitteri, Sharon; Paulmurugan, Ramasamy; Demirci, Utkan

    2017-01-01

    The natural microenvironment of tumors is composed of extracellular matrix (ECM), blood vasculature, and supporting stromal cells. The physical characteristics of ECM as well as the cellular components play a vital role in controlling cancer cell proliferation, apoptosis, metabolism, and differentiation. To mimic the tumor microenvironment outside the human body for drug testing, two-dimensional (2-D) and murine tumor models are routinely used. Although these conventional approaches are employed in preclinical studies, they still present challenges. For example, murine tumor models are expensive and difficult to adopt for routine drug screening. On the other hand, 2-D in vitro models are simple to perform, but they do not recapitulate natural tumor microenvironment, because they do not capture important three-dimensional (3-D) cell–cell, cell–matrix signaling pathways, and multi-cellular heterogeneous components of the tumor microenvironment such as stromal and immune cells. The three-dimensional (3-D) in vitro tumor models aim to closely mimic cancer microenvironments and have emerged as an alternative to routinely used methods for drug screening. Herein, we review recent advances in 3-D tumor model generation and highlight directions for future applications in drug testing. PMID:28458612

  8. Invasion of Epithelial Cells and Proteolysis of Cellular Focal Adhesion Components by Distinct Types of Porphyromonas gingivalis Fimbriae

    PubMed Central

    Nakagawa, Ichiro; Inaba, Hiroaki; Yamamura, Taihei; Kato, Takahiro; Kawai, Shinji; Ooshima, Takashi; Amano, Atsuo

    2006-01-01

    Porphyromonas gingivalis fimbriae are classified into six types (types I to V and Ib) based on the fimA genes encoding FimA (a subunit of fimbriae), and they play a critical role in bacterial interactions with host tissues. In this study, we compared the efficiencies of P. gingivalis strains with distinct types of fimbriae for invasion of epithelial cells and for degradation of cellular focal adhesion components, paxillin, and focal adhesion kinase (FAK). Six representative strains with the different types of fimbriae were tested, and P. gingivalis with type II fimbriae (type II P. gingivalis) adhered to and invaded epithelial cells at significantly greater levels than the other strains. There were negligible differences in gingipain activities among the six strains; however, type II P. gingivalis apparently degraded intracellular paxillin in association with a loss of phosphorylation 30 min after infection. Degradation was blocked with cytochalasin D or in mutants with fimA disrupted. Paxillin was degraded by the mutant with Lys-gingipain disrupted, and this degradation was prevented by inhibition of Arg-gingipain activity by Nα-p-tosyl-l-lysine chloromethyl ketone. FAK was also degraded by type II P. gingivalis. Cellular focal adhesions with green fluorescent protein-paxillin macroaggregates were clearly destroyed, and this was associated with cellular morphological changes and microtubule disassembly. In an in vitro wound closure assay, type II P. gingivalis significantly inhibited cellular migration and proliferation compared to the cellular migration and proliferation observed with the other types. These results suggest that type II P. gingivalis efficiently invades epithelial cells and degrades focal adhesion components with Arg-gingipain, which results in cellular impairment during wound healing and periodontal tissue regeneration. PMID:16790749

  9. Role of the Antigen Capture Pathway in the Induction of a Neutralizing Antibody Response to Anthrax Protective Antigen.

    PubMed

    Verma, Anita; Ngundi, Miriam M; Price, Gregory A; Takeda, Kazuyo; Yu, James; Burns, Drusilla L

    2018-02-27

    Toxin neutralizing antibodies represent the major mode of protective immunity against a number of toxin-mediated bacterial diseases, including anthrax; however, the cellular mechanisms that lead to optimal neutralizing antibody responses remain ill defined. Here we show that the cellular binding pathway of anthrax protective antigen (PA), the binding component of anthrax toxin, determines the toxin neutralizing antibody response to this antigen. PA, which binds cellular receptors and efficiently enters antigen-presenting cells by receptor-mediated endocytosis, was found to elicit robust anti-PA IgG and toxin neutralizing antibody responses. In contrast, a receptor binding-deficient mutant of PA, which does not bind receptors and only inefficiently enters antigen-presenting cells by macropinocytosis, elicited very poor antibody responses. A chimeric protein consisting of the receptor binding-deficient PA mutant tethered to the binding subunit of cholera toxin, which efficiently enters cells using the cholera toxin receptor rather than the PA receptor, elicited an anti-PA IgG antibody response similar to that elicited by wild-type PA; however, the chimeric protein elicited a poor toxin neutralizing antibody response. Taken together, our results demonstrate that the antigen capture pathway can dictate the magnitudes of the total IgG and toxin neutralizing antibody responses to PA as well as the ratio of the two responses. IMPORTANCE Neutralizing antibodies provide protection against a number of toxin-mediated bacterial diseases by inhibiting toxin action. Therefore, many bacterial vaccines are designed to induce a toxin neutralizing antibody response. We have used protective antigen (PA), the binding component of anthrax toxin, as a model antigen to investigate immune mechanisms important for the induction of robust toxin neutralizing antibody responses. We found that the pathway used by antigen-presenting cells to capture PA dictates the robustness of the neutralizing antibody response to this antigen. These results provide new insights into immune mechanisms that play an important role in the induction of toxin neutralizing antibody responses and may be useful in the design of new vaccines against toxin-mediated bacterial diseases.

  10. Advances in the cellular and molecular biology of angiogenesis.

    PubMed

    Egginton, Stuart; Bicknell, Roy

    2011-12-01

    Capillaries have been recognized for over a century as one of the most important components in regulating tissue oxygen transport, and their formation or angiogenesis a pivotal element of tissue remodelling during development and adaptation. Clinical interest stems from observations that both excessive and inadequate vascular growth plays a major role in human diseases, and novel developments in treatments for cancer and eye disease increasingly rely on anti-angiogenic therapies. Although the discovery of VEGF (vascular endothelial growth factor) provided the first clue for specificity of signalling in endothelial cell activation, understanding the integrative response that drives angiogenesis requires a much broader perspective. The Advances in the Cellular and Molecular Biology of Angiogenesis meeting brought together researchers at the forefront of this rapidly moving field to provide an update on current understanding, and the most recent insights into molecular and cellular mechanisms of vascular growth. The plenary lecture highlighted the integrative nature of the angiogenic process, whereas invited contributions from basic and clinician scientists described fundamental mechanisms and disease-associated issues of blood vessel formation, grouped under a number of themes to aid discussion. These articles will appeal to academic, clinical and pharmaceutical scientists interested in the molecular and cellular basis of angiogenesis, their modulation or dysfunction in human diseases, and application of these findings towards translational medicine.

  11. Fetal Membranes-Derived Stem Cells Microenvironment.

    PubMed

    Favaron, Phelipe Oliveira; Miglino, Maria Angelica

    2017-01-01

    Recently, the regenerative medicine has been trying to congregate different areas such as tissue engineering and cellular therapy, in order to offer effective treatments to overcome several human and veterinary medical problems. In this regard, fetal membranes have been proposed as a powerful source for obtainment of multipotent stem cells with low immunogenicity, anti-inflammatory properties and nontumorigenicity properties for the treatment of several diseases, including replacing cells lost due to tissue injuries or degenerative diseases. Morpho-physiological data have shown that fetal membranes, especially the yolk sac and amnion play different functions according to the gestational period, which are direct related to the features of the microenvironment that their cells are subject. The characteristics of the microenvironment affect or controls important cellular events involved with proliferation, division and maintenance of the undifferentiated stage or differentiation, especially acting on the extracellular matrix components. Considering the importance of the microenvironment and the diversity of embryonic and fetal membrane-derived stem cells, this chapter will addressed advances in the isolation, phenotyping, characteristics of the microenvironment, and applications of yolk sac and amniotic membrane-derived stem cells for human and veterinary regenerative medicine.

  12. Epigenetics and type II diabetes mellitus: underlying mechanisms of prenatal predisposition

    PubMed Central

    Sterns, J. David; Smith, Colin B.; Steele, John R.; Stevenson, Kimberly L.; Gallicano, G. Ian

    2014-01-01

    Type II diabetes mellitus (T2DM) is a widespread metabolic disorder characterized by insulin resistance precipitating abnormally high blood glucose levels. While the onset of T2DM is known to be the consequence of a multifactorial interplay with a strong genetic component, emerging research has demonstrated the additional role of a variety of epigenetic mechanisms in the development of this disorder. Heritable epigenetic modifications, such as DNA methylation and histone modifications, play a vital role in many important cellular processes, including pancreatic cellular differentiation and maintenance of normal β-cell function. Recent studies have found possible epigenetic mechanisms to explain observed risk factors, such as altered atherogenic lipid profiles, elevated body mass index (BMI), and impaired glucose tolerance (IGT), for later development of T2DM in children born to mothers experiencing both famine and hyperglycemic conditions. It is suggested that these epigenetic influences happen early during gestation and are less susceptible to the effects of postnatal environmental modification as was previously thought, highlighting the importance of early preventative measures in minimizing the global burden of T2DM. PMID:25364722

  13. NAD and the aging process: Role in life, death and everything in between.

    PubMed

    Chini, Claudia C S; Tarragó, Mariana G; Chini, Eduardo N

    2017-11-05

    Life as we know it cannot exist without the nucleotide nicotinamide adenine dinucleotide (NAD). From the simplest organism, such as bacteria, to the most complex multicellular organisms, NAD is a key cellular component. NAD is extremely abundant in most living cells and has traditionally been described to be a cofactor in electron transfer during oxidation-reduction reactions. In addition to participating in these reactions, NAD has also been shown to play a key role in cell signaling, regulating several pathways from intracellular calcium transients to the epigenetic status of chromatin. Thus, NAD is a molecule that provides an important link between signaling and metabolism, and serves as a key molecule in cellular metabolic sensoring pathways. Importantly, it has now been clearly demonstrated that cellular NAD levels decline during chronological aging. This decline appears to play a crucial role in the development of metabolic dysfunction and age-related diseases. In this review we will discuss the molecular mechanisms responsible for the decrease in NAD levels during aging. Since other reviews on this subject have been recently published, we will concentrate on presenting a critical appraisal of the current status of the literature and will highlight some controversial topics in the field. In particular, we will discuss the potential role of the NADase CD38 as a driver of age-related NAD decline. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Heme oxygenase-1: a metabolic nike.

    PubMed

    Wegiel, Barbara; Nemeth, Zsuzsanna; Correa-Costa, Matheus; Bulmer, Andrew C; Otterbein, Leo E

    2014-04-10

    Heme degradation, which was described more than 30 years ago, is still very actively explored with many novel discoveries on its role in various disease models every year. The heme oxygenases (HO) are metabolic enzymes that utilize NADPH and oxygen to break apart the heme moiety liberating biliverdin (BV), carbon monoxide (CO), and iron. Heme that is derived from hemoproteins can be toxic to the cells and if not removed immediately, it causes cell apoptosis and local inflammation. Elimination of heme from the milieu enables generation of three products that influences numerous metabolic changes in the cell. CO has profound effects on mitochondria and cellular respiration and other hemoproteins to which it can bind and affect their function, while BV and bilirubin (BR), the substrate and product of BV, reductase, respectively, are potent antioxidants. Sequestration of iron into ferritin and its recycling in the tissues is a part of the homeodynamic processes that control oxidation-reduction in cellular metabolism. Further, heme is an important component of a number of metabolic enzymes, and, therefore, HO-1 plays an important role in the modulation of cellular bioenergetics. In this review, we describe the cross-talk between heme oxygenase-1 (HO-1) and its products with other metabolic pathways. HO-1, which we have labeled Nike, the goddess who personified victory, dictates triumph over pathophysiologic conditions, including diabetes, ischemia, and cancer.

  15. Nuclear alternate estrogen receptor GPR30 mediates 17beta-estradiol-induced gene expression and migration in breast cancer-associated fibroblasts.

    PubMed

    Madeo, Antonio; Maggiolini, Marcello

    2010-07-15

    Fibroblasts are the principal cellular component of connective tissue and are associated with cancer cells at all stages of tumor progression. Structural and functional contributions of fibroblasts to the growth, survival, and invasive capacity of cancer cells are beginning to emerge. In breast carcinoma, approximately 80% of stromal fibroblasts termed cancer-associated fibroblasts (CAF) are thought to manifest an activated phenotype that promotes cancer cell proliferation tumor growth at metastatic sites similar to the primary tumor. In this report, we show that CAFs respond to physiologic concentrations of 17beta-estradiol (E2) by rapidly inducing extracellular signal-regulated kinase phosphorylation and immediate early gene expression, including c-fos and connective tissue growth factor, and cyclin D1. Notably, the E2 response is mediated by the alternate estrogen receptor GPR30, which interfaces with the epidermal growth factor receptor (EGFR) signaling pathway. In particular, E2 stimulates a physical interaction between GPR30 and phosphorylated EGFR, recruiting them to the cyclin D1 gene promoter. Nuclear localization induced by E2 was confirmed by cellular immunofluorescence methods. GPR30 was required for CAF proliferation and migration induced by E2. Our results provide important new mechanistic insights into how CAFs are stimulated by estrogen through a GPR30-mediated nuclear signaling pathway. More generally, they define estrogenic GPR30 signaling as a functionally important component of the tumor microenvironment. (c)2010 AACR.

  16. Plant RNA Regulatory Network and RNA Granules in Virus Infection.

    PubMed

    Mäkinen, Kristiina; Lõhmus, Andres; Pollari, Maija

    2017-01-01

    Regulation of post-transcriptional gene expression on mRNA level in eukaryotic cells includes translocation, translation, translational repression, storage, mRNA decay, RNA silencing, and nonsense-mediated decay. These processes are associated with various RNA-binding proteins and cytoplasmic ribonucleoprotein complexes many of which are conserved across eukaryotes. Microscopically visible aggregations formed by ribonucleoprotein complexes are termed RNA granules. Stress granules where the translationally inactive mRNAs are stored and processing bodies where mRNA decay may occur present the most studied RNA granule types. Diverse RNP-granules are increasingly being assigned important roles in viral infections. Although the majority of the molecular level studies on the role of RNA granules in viral translation and replication have been conducted in mammalian systems, some studies link also plant virus infection to RNA granules. An increasing body of evidence indicates that plant viruses require components of stress granules and processing bodies for their replication and translation, but how extensively the cellular mRNA regulatory network is utilized by plant viruses has remained largely enigmatic. Antiviral RNA silencing, which is an important regulator of viral RNA stability and expression in plants, is commonly counteracted by viral suppressors of RNA silencing. Some of the RNA silencing suppressors localize to cellular RNA granules and have been proposed to carry out their suppression functions there. Moreover, plant nucleotide-binding leucine-rich repeat protein-mediated virus resistance has been linked to enhanced processing body formation and translational repression of viral RNA. Many interesting questions relate to how the pathways of antiviral RNA silencing leading to viral RNA degradation and/or repression of translation, suppression of RNA silencing and viral RNA translation converge in plants and how different RNA granules and their individual components contribute to these processes. In this review we discuss the roles of cellular RNA regulatory mechanisms and RNA granules in plant virus infection in the light of current knowledge and compare the findings to those made in animal virus studies.

  17. Dynein Regulators Are Important for Ecotropic Murine Leukemia Virus Infection

    PubMed Central

    Valle-Tenney, Roger; Opazo, Tatiana; Cancino, Jorge; Goff, Stephen P.

    2016-01-01

    ABSTRACT During the early steps of infection, retroviruses must direct the movement of the viral genome into the nucleus to complete their replication cycle. This process is mediated by cellular proteins that interact first with the reverse transcription complex and later with the preintegration complex (PIC), allowing it to reach and enter the nucleus. For simple retroviruses, such as murine leukemia virus (MLV), the identities of the cellular proteins involved in trafficking of the PIC in infection are unknown. To identify cellular proteins that interact with the MLV PIC, we developed a replication-competent MLV in which the integrase protein was tagged with a FLAG epitope. Using a combination of immunoprecipitation and mass spectrometry, we established that the microtubule motor dynein regulator DCTN2/p50/dynamitin interacts with the MLV preintegration complex early in infection, suggesting a direct interaction between the incoming viral particles and the dynein complex regulators. Further experiments showed that RNA interference (RNAi)-mediated silencing of either DCTN2/p50/dynamitin or another dynein regulator, NudEL, profoundly reduced the efficiency of infection by ecotropic, but not amphotropic, MLV reporters. We propose that the cytoplasmic dynein regulators are a critical component of the host machinery needed for infection by the retroviruses entering the cell via the ecotropic envelope pathway. IMPORTANCE Retroviruses must access the chromatin of host cells to integrate the viral DNA, but before this crucial event, they must reach the nucleus. The movement through the cytoplasm—a crowded environment where diffusion is slow—is thought to utilize retrograde transport along the microtubule network by the dynein complex. Different viruses use different components of this multisubunit complex. We found that the preintegration complex of murine leukemia virus (MLV) interacts with the dynein complex and that regulators of this complex are essential for infection. Our study provides the first insight into the requirements for retrograde transport of the MLV preintegration complex. PMID:27194765

  18. A Novel Function for the nm23-Hl Gene: Overexpression in Human Breast Carcinoma Cells Leads to the Formation of Basement Membrane and Growth Arrest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howlett, Anthony R; Petersen, Ole W; Steeg, Patricia S

    1994-01-01

    We have developed a culture system using reconstituted basement membrane components in which normal human mammary epithelial cells exhibit several aspects of the development and differentiation process, including formation of acinar-like structures, production and basal deposition of basement membrane components, and production and apical secretion of sialomucins. Cell lines and cultures from human breast carcinomas failed to recapitulate this process. The data indicate the importance of cellular interactions with the basement membrane in the regulation of normal breast differentiation and, potentially, its loss in neoplasia. Our purpose was to use this assay to investigate the role of the putative metastasismore » suppressor gene nm23-H1 in mammary development and differentiation. The metastatic human breast carcinoma cell line MDA-MB-435, clones transfected with a control pCMVBamneo vector, and clones transfected with pCMVBamneo vector containing nm23-H1 complementary DNA (the latter of which exhibited a substantial reduction in spontaneous metastatic potential in vivo) were cultured within a reconstituted basement membrane. Clones were examined for formation of acinus-like spheres, deposition of basement membrane components, production of sialomucin, polarization, and growth arrest. In contrast to the parental cell line and control transfectants, MDA-MB-435 breast carcinoma cells overexpressing Nm23-H1 protein regained several aspects of the normal phenotype within reconstituted basement membrane. Nm23-H1 protein-positive cells formed organized acinus-like spheres, deposited the basement membrane components type IV collagen and, to some extent, laminin to the outside of the spheres, expressed sialomucin, and growth arrested. Growth arrest of Nm23-H1 protein-positive cells was preceded by and correlated with formation of a basement membrane, suggesting a causal relationship. The data indicate a previously unidentified cause-and-effect relationship between nm23-H1 gene expression and morphological-biosynthetic-growth aspects of breast differentiation in this model system. While the basement membrane microenvironment is capable of directing the differentiation of normal human breast cells, neoplastic transformation abrogates this relationship, suggesting that intrinsic cellular events are also critical to this process. The data identify nm23-H1 gene expression as one of these events, suggesting an important role in the modulation of cellular responsiveness to the microenvironment. The data also identify previously unknown growth inhibitory effects of nm23-H1 gene overexpression.« less

  19. High content cell-based assay for the inflammatory pathway

    NASA Astrophysics Data System (ADS)

    Mukherjee, Abhishek; Song, Joon Myong

    2015-07-01

    Cellular inflammation is a non-specific immune response to tissue injury that takes place via cytokine network orchestration to maintain normal tissue homeostasis. However chronic inflammation that lasts for a longer period, plays the key role in human diseases like neurodegenerative disorders and cancer development. Understanding the cellular and molecular mechanisms underlying the inflammatory pathways may be effective in targeting and modulating their outcome. Tumor necrosis factor alpha (TNF-α) is a pro-inflammatory cytokine that effectively combines the pro-inflammatory features with the pro-apoptotic potential. Increased levels of TNF-α observed during acute and chronic inflammatory conditions are believed to induce adverse phenotypes like glucose intolerance and abnormal lipid profile. Natural products e. g., amygdalin, cinnamic acid, jasmonic acid and aspirin have proven efficacy in minimizing the TNF-α induced inflammation in vitro and in vivo. Cell lysis-free quantum dot (QDot) imaging is an emerging technique to identify the cellular mediators of a signaling cascade with a single assay in one run. In comparison to organic fluorophores, the inorganic QDots are bright, resistant to photobleaching and possess tunable optical properties that make them suitable for long term and multicolor imaging of various components in a cellular crosstalk. Hence we tested some components of the mitogen activated protein kinase (MAPK) pathway during TNF-α induced inflammation and the effects of aspirin in HepG2 cells by QDot multicolor imaging technique. Results demonstrated that aspirin showed significant protective effects against TNF-α induced cellular inflammation. The developed cell based assay paves the platform for the analysis of cellular components in a smooth and reliable way.

  20. Proteomic Dissection of the Mitochondrial DNA Metabolism Apparatus in Arabidopsis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SAlly A. Mackenzie

    2004-01-06

    This study involves the investigation of nuclear genetic components that regulate mitochondrial genome behavior in higher plants. The approach utilizes the advanced plant model system of Arabidopsis thaliana to identify and functionally characterize multiple components of the mitochondrial DNA replication, recombination and mismatch repair system and their interaction partners. The rationale for the research stems from the central importance of mitochondria to overall cellular metabolism and the essential nature of the mitochondrial genome to mitochondrial function. Relatively little is understood about mitochondrial DNA maintenance and transmission in higher eukaryotes, and the higher plant mitochondrial genome displays unique properties and behavior.more » This investigation has revealed at least three important properties of plant mitochondrial DNA metabolism components. (1) Many are dual targeted to mitochondrial and chloroplasts by novel mechanisms, suggesting that the mitochondria a nd chloroplast share their genome maintenance apparatus. (2)The MSH1 gene, originating as a component of mismatch repair, has evolved uniquely in plants to participate in differential replication of the mitochondrial genome. (3) This mitochondrial differential replication process, termed substoichiometric shifting and also involving a RecA-related gene, appears to represent an adaptive mechanism to expand plant reproductive capacity and is likely present throughout the plant kingdom.« less

  1. Challenges in structural approaches to cell modeling

    PubMed Central

    Im, Wonpil; Liang, Jie; Olson, Arthur; Zhou, Huan-Xiang; Vajda, Sandor; Vakser, Ilya A.

    2016-01-01

    Computational modeling is essential for structural characterization of biomolecular mechanisms across the broad spectrum of scales. Adequate understanding of biomolecular mechanisms inherently involves our ability to model them. Structural modeling of individual biomolecules and their interactions has been rapidly progressing. However, in terms of the broader picture, the focus is shifting toward larger systems, up to the level of a cell. Such modeling involves a more dynamic and realistic representation of the interactomes in vivo, in a crowded cellular environment, as well as membranes and membrane proteins, and other cellular components. Structural modeling of a cell complements computational approaches to cellular mechanisms based on differential equations, graph models, and other techniques to model biological networks, imaging data, etc. Structural modeling along with other computational and experimental approaches will provide a fundamental understanding of life at the molecular level and lead to important applications to biology and medicine. A cross section of diverse approaches presented in this review illustrates the developing shift from the structural modeling of individual molecules to that of cell biology. Studies in several related areas are covered: biological networks; automated construction of three-dimensional cell models using experimental data; modeling of protein complexes; prediction of non-specific and transient protein interactions; thermodynamic and kinetic effects of crowding; cellular membrane modeling; and modeling of chromosomes. The review presents an expert opinion on the current state-of-the-art in these various aspects of structural modeling in cellular biology, and the prospects of future developments in this emerging field. PMID:27255863

  2. Cellular damage in bacterial meningitis: an interplay of bacterial and host driven toxicity.

    PubMed

    Weber, Joerg R; Tuomanen, Elaine I

    2007-03-01

    Bacterial meningitis is still an important infectious disease causing death and disability. Invasive bacterial infections of the CNS generate some of the most powerful inflammatory responses known in medicine. Although the components of bacterial cell surfaces are now chemically defined in exquisite detail and the interaction with several receptor pathways has been discovered, it is only very recently that studies combining these advanced biochemical and cell biological tools have been done. Additional to the immunological response direct bacterial toxicity has been identified as an important contributor to neuronal damage. A detailed understanding of the complex interaction of bacterial toxicity and host response may generate opportunities for innovative and specific neuroprotective therapies.

  3. Hyaluronic acid: its role in voice.

    PubMed

    Ward, P Daniel; Thibeault, Susan L; Gray, Steven D

    2002-09-01

    The extracellular matrix (ECM), once regarded simply as a structural scaffold, is now recognized as an important modulator of cellular behavior and function. One component that plays a prominent role in this process is hyaluronic acid (HA)--a molecule found in many different tissues. Research into the roles of HA indicates that it plays a key role in tissue viscosity, shock absorption, and space filling. Specifically, research into the role of HA in laryngology indicates that it has profound effects on the structure and viscosity of vocal folds. This article provides an introduction to the structure and biological functions of HA and its importance in voice. In addition, an overview of the pharmaceutical applications of HA is discussed.

  4. The GARP complex is required for cellular sphingolipid homeostasis.

    PubMed

    Fröhlich, Florian; Petit, Constance; Kory, Nora; Christiano, Romain; Hannibal-Bach, Hans-Kristian; Graham, Morven; Liu, Xinran; Ejsing, Christer S; Farese, Robert V; Walther, Tobias C

    2015-09-10

    Sphingolipids are abundant membrane components and important signaling molecules in eukaryotic cells. Their levels and localization are tightly regulated. However, the mechanisms underlying this regulation remain largely unknown. In this study, we identify the Golgi-associated retrograde protein (GARP) complex, which functions in endosome-to-Golgi retrograde vesicular transport, as a critical player in sphingolipid homeostasis. GARP deficiency leads to accumulation of sphingolipid synthesis intermediates, changes in sterol distribution, and lysosomal dysfunction. A GARP complex mutation analogous to a VPS53 allele causing progressive cerebello-cerebral atrophy type 2 (PCCA2) in humans exhibits similar, albeit weaker, phenotypes in yeast, providing mechanistic insights into disease pathogenesis. Inhibition of the first step of de novo sphingolipid synthesis is sufficient to mitigate many of the phenotypes of GARP-deficient yeast or mammalian cells. Together, these data show that GARP is essential for cellular sphingolipid homeostasis and suggest a therapeutic strategy for the treatment of PCCA2.

  5. Redox Aspects of Chaperones in Cardiac Function

    PubMed Central

    Penna, Claudia; Sorge, Matteo; Femminò, Saveria; Pagliaro, Pasquale; Brancaccio, Mara

    2018-01-01

    Molecular chaperones are stress proteins that allow the correct folding or unfolding as well as the assembly or disassembly of macromolecular cellular components. Changes in expression and post-translational modifications of chaperones have been linked to a number of age- and stress-related diseases including cancer, neurodegeneration, and cardiovascular diseases. Redox sensible post-translational modifications, such as S-nitrosylation, glutathionylation and phosphorylation of chaperone proteins have been reported. Redox-dependent regulation of chaperones is likely to be a phenomenon involved in metabolic processes and may represent an adaptive response to several stress conditions, especially within mitochondria, where it impacts cellular bioenergetics. These post-translational modifications might underlie the mechanisms leading to cardioprotection by conditioning maneuvers as well as to ischemia/reperfusion injury. In this review, we discuss this topic and focus on two important aspects of redox-regulated chaperones, namely redox regulation of mitochondrial chaperone function and cardiac protection against ischemia/reperfusion injury. PMID:29615920

  6. Inflammation--a lifelong companion. Attempt at a non-analytical holistic view.

    PubMed

    Ferencík, M; Stvrtinová, V; Hulín, I; Novák, M

    2007-01-01

    Inflammation is a key component of the immune system. It has important functions in both defense and pathophysiological events maintaining the dynamic homeostasis of a host organism including its tissues, organs and individual cells. On the cellular level it is controlled by more than 400 currently known genes. Their polymorphisms and environmental conditions give rise to different genotypes in human population. Pro-inflammatory genotype, which dominates in the present population, may be advantageous in childhood but not in elderly people because it is characterized by an increased vulnerability to, and intensity of, inflammatory reactions. These reactions may be the possible reasons of chronic inflammatory diseases, especially in old age. Better understanding of complex molecular and cellular inflammatory mechanisms is indispensable for detailed knowledge of pathogenesis of many diseases, their prevention and directed drug therapy. Here we summarize the basic current knowledge on these mechanisms.

  7. Parkinson disease: a role for autophagy?

    PubMed

    Yang, Qian; Mao, Zixu

    2010-08-01

    Autophagy is a term used to describe the process by which lysosomes degrade intracellular components. Known originally as an adaptive response to nutrient deprivation, autophagy has now been recognized to play important roles in several human disorders including neurodegenerative diseases. Experimental results from genetic, cellular, and toxicological studies indicate that many of the etiological factors associated with Parkinson disease (PD) can perturb the autophagic process in various model systems. Thus, the emerging data support the view that dysregulation of autophagy may play a critical role in the pathogenic process of PD.

  8. Mechanisms regulating skin immunity and inflammation.

    PubMed

    Pasparakis, Manolis; Haase, Ingo; Nestle, Frank O

    2014-05-01

    Immune responses in the skin are important for host defence against pathogenic microorganisms. However, dysregulated immune reactions can cause chronic inflammatory skin diseases. Extensive crosstalk between the different cellular and microbial components of the skin regulates local immune responses to ensure efficient host defence, to maintain and restore homeostasis, and to prevent chronic disease. In this Review, we discuss recent findings that highlight the complex regulatory networks that control skin immunity, and we provide new paradigms for the mechanisms that regulate skin immune responses in host defence and in chronic inflammation.

  9. Structural analysis of the complex between influenza B nucleoprotein and human importin-α.

    PubMed

    Labaronne, Alice; Milles, Sigrid; Donchet, Amélie; Jensen, Malene Ringkjøbing; Blackledge, Martin; Bourhis, Jean-Marie; Ruigrok, Rob W H; Crépin, Thibaut

    2017-12-07

    Influenza viruses are negative strand RNA viruses that replicate in the nucleus of the cell. The viral nucleoprotein (NP) is the major component of the viral ribonucleoprotein. In this paper we show that the NP of influenza B has a long N-terminal tail of 70 residues with intrinsic flexibility. This tail contains the Nuclear Location Signal (NLS). The nuclear trafficking of the viral components mobilizes cellular import factors at different stages, making these host-pathogen interactions promising targets for new therapeutics. NP is imported into the nucleus by the importin-α/β pathway, through a direct interaction with importin-α isoforms. Here we provide a combined nuclear magnetic resonance and small-angle X-ray scattering (NMR/SAXS) analysis to describe the dynamics of the interaction between influenza B NP and the human importin-α. The NP of influenza B does not have a single NLS nor a bipartite NLS but our results suggest that the tail harbors several adjacent NLS sequences, located between residues 30 and 71.

  10. The emerging role of lysosomes in copper homeostasis.

    PubMed

    Polishchuk, Elena V; Polishchuk, Roman S

    2016-09-01

    The lysosomal system operates as a focal point where a number of important physiological processes such as endocytosis, autophagy and nutrient sensing converge. One of the key functions of lysosomes consists of regulating the metabolism/homeostasis of metals. Metal-containing components are carried to the lysosome through incoming membrane flows, while numerous transporters allow metal ions to move across the lysosome membrane. These properties enable lysosomes to direct metal fluxes to the sites where metal ions are either used by cellular components or sequestered. Copper belongs to a group of metals that are essential for the activity of vitally important enzymes, although it is toxic when in excess. Thus, copper uptake, supply and intracellular compartmentalization have to be tightly regulated. An increasing number of publications have indicated that these processes involve lysosomes. Here we review studies that reveal the expanding role of the lysosomal system as a hub for the control of Cu homeostasis and for the regulation of key Cu-dependent processes in health and disease.

  11. New tricks by an old dogma: mechanisms of the Organizational/Activational Hypothesis of steroid-mediated sexual differentiation of brain and behavior.

    PubMed

    McCarthy, Margaret M; Wright, Christopher L; Schwarz, Jaclyn M

    2009-05-01

    The hormonal regulation of sexual behavior has been the topic of study for over 50 years and yet controversies persist regarding the importance of early versus late events and the identity of the critical neural and cellular substrates. We have taken a mechanistic approach toward the masculinizing actions of the gonadal steroid estradiol, as a means to understand how organization of the neuroarchitechture during a perinatal sensitive period exerts enduring influences on adult behavior. We have identified important roles for prostaglandins, FAK and paxillin, PI3 kinase and glutamate, and determined that cell-to-cell signaling is a critical component of the early organizational events. We have further determined that the mechanisms mediating different components of sexual behavior are distinct and regionally specific. The multitude of mechanisms by which the steroid estradiol, exerts divergent effects on the developing nervous system provides for a multitude of phenotypes which can vary significantly both within and between the sexes.

  12. New tricks by an old dogma: Mechanisms of the Organizational/Activational Hypothesis of steroid-mediated sexual differentiation of brain and behavior

    PubMed Central

    McCarthy, Margaret M.; Wright, Christopher L.; Schwarz, Jaclyn M.

    2009-01-01

    The hormonal regulation of sexual behavior has been the topic of study for over 50 years and yet controversies persist regarding the importance of early versus late events and the identity of the critical neural and cellular substrates. We have taken a mechanistic approach toward the masculinizing actions of the gonadal steroid estradiol, as a means to understand how organization of the neuroarchitechture during a perinatal sensitive period exerts enduring influences on adult behavior. We have identified important roles for prostaglandins, FAK and paxillin, PI3 kinase and glutamate, and determined that cell-to-cell signaling is a critical component of the early organizational events. We have further determined that the mechanisms mediating different components of sexual behavior are distinct and regionally specific. The multitude of mechanisms by which the steroid estradiol, exerts divergent effects on the developing nervous system provides for a multitude of phenotypes which can vary significantly both within and between the sexes. PMID:19682425

  13. Free radicals and related reactive species as mediators of tissue injury and disease: implications for Health.

    PubMed

    Kehrer, James P; Klotz, Lars-Oliver

    2015-01-01

    A radical is any molecule that contains one or more unpaired electrons. Radicals are normal products of many metabolic pathways. Some exist in a controlled (caged) form as they perform essential functions. Others exist in a free form and interact with various tissue components. Such interactions can cause both acute and chronic dysfunction, but can also provide essential control of redox regulated signaling pathways. The potential roles of endogenous or xenobiotic-derived free radicals in several human pathologies have stimulated extensive research linking the toxicity of numerous xenobiotics and disease processes to a free radical mechanism. In recent years, improvements in analytical methodologies, as well as the realization that subtle effects induced by free radicals and oxidants are important in modulating cellular signaling, have greatly improved our understanding of the roles of these reactive species in toxic mechanisms and disease processes. However, because free radical-mediated changes are pervasive, and a consequence as well as a cause of injury, whether such species are a major cause of tissue injury and human disease remains unclear. This concern is supported by the fact that the bulk of antioxidant defenses are enzymatic and the findings of numerous studies showing that exogenously administered small molecule antioxidants are unable to affect the course of most toxicities and diseases purported to have a free radical mechanism. This review discusses cellular sources of various radical species and their reactions with vital cellular constituents, and provides examples of selected disease processes that may have a free radical component.

  14. Reappraisal of xenobiotic-induced, oxidative stress-mediated cellular injury in chronic pancreatitis: A systematic review

    PubMed Central

    Siriwardena, Ajith K

    2014-01-01

    AIM: To reappraise the hypothesis of xenobiotic induced, cytochrome P450-mediated, micronutrient-deficient oxidative injury in chronic pancreatitis. METHODS: Individual searches of the Medline and Embase databases were conducted for each component of the theory of oxidative-stress mediated cellular injury for the period from 1st January 1990 to 31st December 2012 using appropriate medical subject headings. Boolean operators were used. The individual components were drawn from a recent update on theory of oxidative stress-mediated cellular injury in chronic pancreatitis. RESULTS: In relation to the association between exposure to volatile hydrocarbons and chronic pancreatitis the studies fail to adequately control for alcohol intake. Cytochrome P450 (CYP) induction occurs as a diffuse hepatic and extra-hepatic response to xenobiotic exposure rather than an acinar cell-specific process. GSH depletion is not consistently confirmed. There is good evidence of superoxide dismutase depletion in acute phases of injury but less to support a chronic intra-acinar depletion. Although the liver is the principal site of CYP induction there is no evidence to suggest that oxidative by-products are carried in bile and reflux into the pancreatic duct to cause injury. CONCLUSION: Pancreatic acinar cell injury due to short-lived oxygen free radicals (generated by injury mediated by prematurely activated intra-acinar trypsin) is an important mechanism of cell damage in chronic pancreatitis. However, in contemporary paradigms of chronic pancreatitis this should be seen as one of a series of cell-injury mechanisms rather than a sole mediator. PMID:24659895

  15. Cellular Protein WDR11 Interacts with Specific Herpes Simplex Virus Proteins at the trans-Golgi Network To Promote Virus Replication

    PubMed Central

    Taylor, Kathryne E.

    2015-01-01

    ABSTRACT It has recently been proposed that the herpes simplex virus (HSV) protein ICP0 has cytoplasmic roles in blocking antiviral signaling and in promoting viral replication in addition to its well-known proteasome-dependent functions in the nucleus. However, the mechanisms through which it produces these effects remain unclear. While investigating this further, we identified a novel cytoplasmic interaction between ICP0 and the poorly characterized cellular protein WDR11. During an HSV infection, WDR11 undergoes a dramatic change in localization at late times in the viral replication cycle, moving from defined perinuclear structures to a dispersed cytoplasmic distribution. While this relocation was not observed during infection with viruses other than HSV-1 and correlated with efficient HSV-1 replication, the redistribution was found to occur independently of ICP0 expression, instead requiring viral late gene expression. We demonstrate for the first time that WDR11 is localized to the trans-Golgi network (TGN), where it interacts specifically with some, but not all, HSV virion components, in addition to ICP0. Knockdown of WDR11 in cultured human cells resulted in a modest but consistent decrease in yields of both wild-type and ICP0-null viruses, in the supernatant and cell-associated fractions, without affecting viral gene expression. Although further study is required, we propose that WDR11 participates in viral assembly and/or secondary envelopment. IMPORTANCE While the TGN has been proposed to be the major site of HSV-1 secondary envelopment, this process is incompletely understood, and in particular, the role of cellular TGN components in this pathway is unknown. Additionally, little is known about the cellular functions of WDR11, although the disruption of this protein has been implicated in multiple human diseases. Therefore, our finding that WDR11 is a TGN-resident protein that interacts with specific viral proteins to enhance viral yields improves both our understanding of basic cellular biology as well as how this protein is co-opted by HSV. PMID:26178983

  16. Proteomic composition of Nipah virus-like particles.

    PubMed

    Vera-Velasco, Natalia Mara; García-Murria, Maria Jesús; Sánchez Del Pino, Manuel M; Mingarro, Ismael; Martinez-Gil, Luis

    2018-02-10

    Virions are often described as virus-only entities with no cellular components with the exception of the lipids in their membranes. However, advances in proteomics are revealing substantial amounts of host proteins in the viral particles. In the case of Nipah virus (NiV), the viral components in the virion have been known for some time. Nonetheless, no information has been obtained regarding the cellular proteins in the viral particles. To address this question, we produced Virus-Like Particles (VLPs) for NiV by expressing the F, G and M proteins in human-derived cells. Next, the proteomic content in these VLPs was analyzed by LC-MS/MS. We identified 67 human proteins including soluble and membrane-bound proteins involved in vesicle sorting and transport. Interestingly, many of them have been reported to interact with other viruses. Finally, thanks to the semi-quantitative nature of our data we were able to estimate the ratio among F, G and M proteins and also the ratio between cellular and viral proteins in the VLPs. We believe our data contribute to the better understanding of NiV life cycle and might facilitate future attempts for developing antiviral agents and the design of further experimental studies for this deadly infection. Traditionally viral particles have been described as pure entities carrying only viral-derived proteins. Advances in proteomics are changing this simplified view. Host proteins have been identified in many viruses (especially in enveloped viruses). These cell-derived proteins participate in multiple steps in the viral life cycle and might be as important for the survival of the virus as any other viral-encoded protein. In this work, we analyze utilizing LC-MS/MS the cellular proteins incorporated or bound to the virions of Nipah virus (NiV), an emerging, highly pathogenic, zoonotic virus from the Paramyxoviridiae family. Furthermore, we analyzed the ratio between cellular and viral proteins and among the viral F, G and M proteins in the viral particles. The characterization of the Nipah virus-human interactions occurring in the virion might facilitate the development of new therapeutic and prophylactic therapies for this viral illness. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. 454 Transcriptome sequencing suggests a role for two-component signalling in cellularization and differentiation of barley endosperm transfer cells.

    PubMed

    Thiel, Johannes; Hollmann, Julien; Rutten, Twan; Weber, Hans; Scholz, Uwe; Weschke, Winfriede

    2012-01-01

    Cell specification and differentiation in the endosperm of cereals starts at the maternal-filial boundary and generates the endosperm transfer cells (ETCs). Besides the importance in assimilate transfer, ETCs are proposed to play an essential role in the regulation of endosperm differentiation by affecting development of proximate endosperm tissues. We attempted to identify signalling elements involved in early endosperm differentiation by using a combination of laser-assisted microdissection and 454 transcriptome sequencing. 454 sequencing of the differentiating ETC region from the syncytial state until functionality in transfer processes captured a high proportion of novel transcripts which are not available in existing barley EST databases. Intriguingly, the ETC-transcriptome showed a high abundance of elements of the two-component signalling (TCS) system suggesting an outstanding role in ETC differentiation. All components and subfamilies of the TCS, including distinct kinds of membrane-bound receptors, have been identified to be expressed in ETCs. The TCS system represents an ancient signal transduction system firstly discovered in bacteria and has previously been shown to be co-opted by eukaryotes, like fungi and plants, whereas in animals and humans this signalling route does not exist. Transcript profiling of TCS elements by qRT-PCR suggested pivotal roles for specific phosphorelays activated in a coordinated time flow during ETC cellularization and differentiation. ETC-specificity of transcriptionally activated TCS phosphorelays was assessed for early differentiation and cellularization contrasting to an extension of expression to other grain tissues at the beginning of ETC maturation. Features of candidate genes of distinct phosphorelays and transcriptional activation of genes putatively implicated in hormone signalling pathways hint at a crosstalk of hormonal influences, putatively ABA and ethylene, and TCS signalling. Our findings suggest an integral function for the TCS in ETC differentiation possibly coupled to sequent hormonal regulation by ABA and ethylene.

  18. 454 Transcriptome Sequencing Suggests a Role for Two-Component Signalling in Cellularization and Differentiation of Barley Endosperm Transfer Cells

    PubMed Central

    Thiel, Johannes; Hollmann, Julien; Rutten, Twan; Weber, Hans; Scholz, Uwe; Weschke, Winfriede

    2012-01-01

    Background Cell specification and differentiation in the endosperm of cereals starts at the maternal-filial boundary and generates the endosperm transfer cells (ETCs). Besides the importance in assimilate transfer, ETCs are proposed to play an essential role in the regulation of endosperm differentiation by affecting development of proximate endosperm tissues. We attempted to identify signalling elements involved in early endosperm differentiation by using a combination of laser-assisted microdissection and 454 transcriptome sequencing. Principal Findings 454 sequencing of the differentiating ETC region from the syncytial state until functionality in transfer processes captured a high proportion of novel transcripts which are not available in existing barley EST databases. Intriguingly, the ETC-transcriptome showed a high abundance of elements of the two-component signalling (TCS) system suggesting an outstanding role in ETC differentiation. All components and subfamilies of the TCS, including distinct kinds of membrane-bound receptors, have been identified to be expressed in ETCs. The TCS system represents an ancient signal transduction system firstly discovered in bacteria and has previously been shown to be co-opted by eukaryotes, like fungi and plants, whereas in animals and humans this signalling route does not exist. Transcript profiling of TCS elements by qRT-PCR suggested pivotal roles for specific phosphorelays activated in a coordinated time flow during ETC cellularization and differentiation. ETC-specificity of transcriptionally activated TCS phosphorelays was assessed for early differentiation and cellularization contrasting to an extension of expression to other grain tissues at the beginning of ETC maturation. Features of candidate genes of distinct phosphorelays and transcriptional activation of genes putatively implicated in hormone signalling pathways hint at a crosstalk of hormonal influences, putatively ABA and ethylene, and TCS signalling. Significance Our findings suggest an integral function for the TCS in ETC differentiation possibly coupled to sequent hormonal regulation by ABA and ethylene. PMID:22848641

  19. Targeting inflammation in pancreatic cancer: Clinical translation

    PubMed Central

    Steele, Colin William; Kaur Gill, Nina Angharad; Jamieson, Nigel Balfour; Carter, Christopher Ross

    2016-01-01

    Preclinical modelling studies are beginning to aid development of therapies targeted against key regulators of pancreatic cancer progression. Pancreatic cancer is an aggressive, stromally-rich tumor, from which few people survive. Within the tumor microenvironment cellular and extracellular components exist, shielding tumor cells from immune cell clearance, and chemotherapy, enhancing progression of the disease. The cellular component of this microenvironment consists mainly of stellate cells and inflammatory cells. New findings suggest that manipulation of the cellular component of the tumor microenvironment is possible to promote immune cell killing of tumor cells. Here we explore possible immunogenic therapeutic strategies. Additionally extracellular stromal elements play a key role in protecting tumor cells from chemotherapies targeted at the pancreas. We describe the experimental findings and the pitfalls associated with translation of stromally targeted therapies to clinical trial. Finally, we discuss the key inflammatory signal transducers activated subsequent to driver mutations in oncogenic Kras in pancreatic cancer. We present the preclinical findings that have led to successful early trials of STAT3 inhibitors in pancreatic adenocarcinoma. PMID:27096033

  20. Checkpoints to the Brain: Directing Myeloid Cell Migration to the Central Nervous System

    PubMed Central

    Harrison-Brown, Meredith; Liu, Guo-Jun; Banati, Richard

    2016-01-01

    Myeloid cells are a unique subset of leukocytes with a diverse array of functions within the central nervous system during health and disease. Advances in understanding of the unique properties of these cells have inspired interest in their use as delivery vehicles for therapeutic genes, proteins, and drugs, or as “assistants” in the clean-up of aggregated proteins and other molecules when existing drainage systems are no longer adequate. The trafficking of myeloid cells from the periphery to the central nervous system is subject to complex cellular and molecular controls with several ‘checkpoints’ from the blood to their destination in the brain parenchyma. As important components of the neurovascular unit, the functional state changes associated with lineage heterogeneity of myeloid cells are increasingly recognized as important for disease progression. In this review, we discuss some of the cellular elements associated with formation and function of the neurovascular unit, and present an update on the impact of myeloid cells on central nervous system (CNS) diseases in the laboratory and the clinic. We then discuss emerging strategies for harnessing the potential of site-directed myeloid cell homing to the CNS, and identify promising avenues for future research, with particular emphasis on the importance of untangling the functional heterogeneity within existing myeloid subsets. PMID:27918464

  1. Nuclear autophagy: An evolutionarily conserved mechanism of nuclear degradation in the cytoplasm.

    PubMed

    Luo, Majing; Zhao, Xueya; Song, Ying; Cheng, Hanhua; Zhou, Rongjia

    2016-11-01

    Macroautophagy/autophagy is a catabolic process that is essential for cellular homeostasis. Studies on autophagic degradation of cytoplasmic components have generated interest in nuclear autophagy. Although its mechanisms and roles have remained elusive, tremendous progress has been made toward understanding nuclear autophagy. Nuclear autophagy is evolutionarily conserved in eukaryotes that may target various nuclear components through a series of processes, including nuclear sensing, nuclear export, autophagic substrate encapsulation and autophagic degradation in the cytoplasm. However, the molecular processes and regulatory mechanisms involved in nuclear autophagy remain largely unknown. Numerous studies have highlighted the importance of nuclear autophagy in physiological and pathological processes such as cancer. This review focuses on current advances in nuclear autophagy and provides a summary of its research history and landmark discoveries to offer new perspectives.

  2. Connecting Photosynthesis and Cellular Respiration: Preservice Teachers' Conceptions

    ERIC Educational Resources Information Center

    Brown, Mary H.; Schwartz, Renee S.

    2009-01-01

    The biological processes of photosynthesis and plant cellular respiration include multiple biochemical steps, occur simultaneously within plant cells, and share common molecular components. Yet, learners often compartmentalize functions and specialization of cell organelles relevant to these two processes, without considering the interconnections…

  3. Ovarian mucinous tumors arising from mature cystic teratomas--a molecular genetic approach for understanding the cellular origin.

    PubMed

    Fujii, Kaho; Yamashita, Yoriko; Yamamoto, Toshimichi; Takahashi, Koji; Hashimoto, Katsunori; Miyata, Tomoko; Kawai, Kumi; Kikkawa, Fumitaka; Toyokuni, Shinya; Nagasaka, Tetsuro

    2014-04-01

    Mucinous tumors of the ovary are frequently associated with mature cystic teratomas, and it has been speculated that the mucinous tumors arise from teratoma components. The cellular origins of mature cystic teratomas are believed to be post-meiotic ovarian germ cells, and the analysis of microsatellite markers such as short tandem repeats is suitable for determining the cellular origin of tumors. In this study, we analyzed 3 ovarian mature cystic teratomas, all of which were associated with simultaneous ovarian mucinous tumors within the same ovary. Two of the 3 mucinous tumors were intestinal-type and the other was endocervical type. A laser capture microdissection technique was used to separate the epithelial component of the mucinous tumor, the components of the mature cystic teratoma, and control ovarian somatic tissue. Using short tandem repeat analysis based on 6 markers (D20S480, D6S2439, D6S1056, D9S1118, D4S2639, and D17S1290), we could distinguish the germ cell (homozygous) or somatic (heterozygous) origin of a given component in each sample. The epithelial components of the intestinal-type mucinous tumors in cases 1 and 2 were homozygous, and the epithelial component in case 3 (endocervical type) was heterozygous. All teratomatous components were homozygous, and the control components were heterozygous. In addition, we analyzed 3 mature cystic teratomas without mucinous tumors, and all 3 were homozygous in the tumor component. Our data suggest that the origin of mucinous tumors in the ovary may differ among histological subtypes, and intestinal-type mucinous tumors may arise from mature cystic teratomas, although endocervical-type mucinous tumors may not. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. The Integrated Role of Wnt/β-Catenin, N-Glycosylation, and E-Cadherin-Mediated Adhesion in Network Dynamics

    PubMed Central

    Vargas, Diego A.; Sun, Meng; Sadykov, Khikmet; Kukuruzinska, Maria A.; Zaman, Muhammad H.

    2016-01-01

    The cellular network composed of the evolutionarily conserved metabolic pathways of protein N-glycosylation, Wnt/β-catenin signaling pathway, and E-cadherin-mediated cell-cell adhesion plays pivotal roles in determining the balance between cell proliferation and intercellular adhesion during development and in maintaining homeostasis in differentiated tissues. These pathways share a highly conserved regulatory molecule, β-catenin, which functions as both a structural component of E-cadherin junctions and as a co-transcriptional activator of the Wnt/β-catenin signaling pathway, whose target is the N-glycosylation-regulating gene, DPAGT1. Whereas these pathways have been studied independently, little is known about the dynamics of their interaction. Here we present the first numerical model of this network in MDCK cells. Since the network comprises a large number of molecules with varying cell context and time-dependent levels of expression, it can give rise to a wide range of plausible cellular states that are difficult to track. Using known kinetic parameters for individual reactions in the component pathways, we have developed a theoretical framework and gained new insights into cellular regulation of the network. Specifically, we developed a mathematical model to quantify the fold-change in concentration of any molecule included in the mathematical representation of the network in response to a simulated activation of the Wnt/ β-catenin pathway with Wnt3a under different conditions. We quantified the importance of protein N-glycosylation and synthesis of the DPAGT1 encoded enzyme, GPT, in determining the abundance of cytoplasmic β-catenin. We confirmed the role of axin in β-catenin degradation. Finally, our data suggest that cell-cell adhesion is insensitive to E-cadherin recycling in the cell. We validate the model by inhibiting β-catenin-mediated activation of DPAGT1 expression and predicting changes in cytoplasmic β-catenin concentration and stability of E-cadherin junctions in response to DPAGT1 inhibition. We show the impact of pathway dysregulation through measurements of cell migration in scratch-wound assays. Collectively, our results highlight the importance of numerical analyses of cellular networks dynamics to gain insights into physiological processes and potential design of therapeutic strategies to prevent epithelial cell invasion in cancer. PMID:27427963

  5. A scientific role for Space Station Freedom: Research at the cellular level

    NASA Technical Reports Server (NTRS)

    Johnson, Terry C.; Brady, John N.

    1993-01-01

    The scientific importance of Space Station Freedom is discussed in light of the valuable information that can be gained in cellular and developmental biology with regard to the microgravity environment on the cellular cytoskeleton, cellular responses to extracellular signal molecules, morphology, events associated with cell division, and cellular physiology. Examples of studies in basic cell biology, as well as their potential importance to concerns for future enabling strategies, are presented.

  6. Localization and Sub-Cellular Shuttling of HTLV-1 Tax with the miRNA Machinery

    PubMed Central

    Van Duyne, Rachel; Guendel, Irene; Klase, Zachary; Narayanan, Aarthi; Coley, William; Jaworski, Elizabeth; Roman, Jessica; Popratiloff, Anastas; Mahieux, Renaud; Kehn-Hall, Kylene; Kashanchi, Fatah

    2012-01-01

    The innate ability of the human cell to silence endogenous retroviruses through RNA sequences encoding microRNAs, suggests that the cellular RNAi machinery is a major means by which the host mounts a defense response against present day retroviruses. Indeed, cellular miRNAs target and hybridize to specific sequences of both HTLV-1 and HIV-1 viral transcripts. However, much like the variety of host immune responses to retroviral infection, the virus itself contains mechanisms that assist in the evasion of viral inhibition through control of the cellular RNAi pathway. Retroviruses can hijack both the enzymatic and catalytic components of the RNAi pathway, in some cases to produce novel viral miRNAs that can either assist in active viral infection or promote a latent state. Here, we show that HTLV-1 Tax contributes to the dysregulation of the RNAi pathway by altering the expression of key components of this pathway. A survey of uninfected and HTLV-1 infected cells revealed that Drosha protein is present at lower levels in all HTLV-1 infected cell lines and in infected primary cells, while other components such as DGCR8 were not dramatically altered. We show colocalization of Tax and Drosha in the nucleus in vitro as well as coimmunoprecipitation in the presence of proteasome inhibitors, indicating that Tax interacts with Drosha and may target it to specific areas of the cell, namely, the proteasome. In the presence of Tax we observed a prevention of primary miRNA cleavage by Drosha. Finally, the changes in cellular miRNA expression in HTLV-1 infected cells can be mimicked by the add back of Drosha or the addition of antagomiRs against the cellular miRNAs which are downregulated by the virus. PMID:22808228

  7. Cellular generators of the cortical auditory evoked potential initial component.

    PubMed

    Steinschneider, M; Tenke, C E; Schroeder, C E; Javitt, D C; Simpson, G V; Arezzo, J C; Vaughan, H G

    1992-01-01

    Cellular generators of the initial cortical auditory evoked potential (AEP) component were determined by analyzing laminar profiles of click-evoked AEPs, current source density, and multiple unit activity (MUA) in primary auditory cortex of awake monkeys. The initial AEP component is a surface-negative wave, N8, that peaks at 8-9 msec and inverts in polarity below lamina 4. N8 is generated by a lamina 4 current sink and a deeper current source. Simultaneous MUA is present from lower lamina 3 to the subjacent white matter. Findings indicate that thalamocortical afferents are a generator of N8 and support a role for lamina 4 stellate cells. Relationships to the human AEP are discussed.

  8. Anthrax Toxin

    DTIC Science & Technology

    1984-10-26

    focused initially on EF because it seemed possible that this component, like cholera toxin, might cause edema in skin through elevation of cellular cAMP...behavior differed from that seen in cells exposed to cholera toxin, where cellular cAMP levels remain elevated upon toxin removal. Studies in CHO cell...LF, the rat bioassay is not likely to be an appropriate system for studying the cellular and molecular mechanisms of action of LF. Therefore, a survey

  9. Absence of cellular hypersensitivity to muscle and thymic antigens in myasthenia gravis.

    PubMed Central

    Behan, W M; Behan, P O; Simpson, J A

    1975-01-01

    Humoral antibodies to skeletal muscle and its components and to thymus have been demonstrated in the sera of patients with myasthenia gravis. A role for cellular hypersensitivity to similar antigens in the pathogenesis of the disease has been suggested by some reports of the presence of cellular immunity. A detailed immunological study using muscle and thymic antigens, including those prepared from the patients' own tissues, failed to confirm these findings. It is suggested that previous reports of cellular hypersensitivity represent the demonstration of an epiphenomenon. PMID:1206412

  10. Integration of mobile satellite and cellular systems

    NASA Technical Reports Server (NTRS)

    Drucker, Elliott H.; Estabrook, Polly; Pinck, Deborah; Ekroot, Laura

    1993-01-01

    By integrating the ground based infrastructure component of a mobile satellite system with the infrastructure systems of terrestrial 800 MHz cellular service providers, a seamless network of universal coverage can be established. Users equipped for both cellular and satellite service can take advantage of a number of features made possible by such integration, including seamless handoff and universal roaming. To provide maximum benefit at lowest posible cost, the means by which these systems are integrated must be carefully considered. Mobile satellite hub stations must be configured to efficiently interface with cellular Mobile Telephone Switching Offices (MTSO's), and cost effective mobile units that provide both cellular and satellite capability must be developed.

  11. Integration of mobile satellite and cellular systems

    NASA Astrophysics Data System (ADS)

    Drucker, Elliott H.; Estabrook, Polly; Pinck, Deborah; Ekroot, Laura

    By integrating the ground based infrastructure component of a mobile satellite system with the infrastructure systems of terrestrial 800 MHz cellular service providers, a seamless network of universal coverage can be established. Users equipped for both cellular and satellite service can take advantage of a number of features made possible by such integration, including seamless handoff and universal roaming. To provide maximum benefit at lowest posible cost, the means by which these systems are integrated must be carefully considered. Mobile satellite hub stations must be configured to efficiently interface with cellular Mobile Telephone Switching Offices (MTSO's), and cost effective mobile units that provide both cellular and satellite capability must be developed.

  12. Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism

    USDA-ARS?s Scientific Manuscript database

    Cancer-associated fibroblasts (CAFs) are a major cellular component of tumor microenvironment in most solid cancers. Altered cellular metabolism is a hallmark of cancer, and much of the published literature has focused on neoplastic cell-autonomous processes for these adaptations. We demonstrate tha...

  13. Microfabricated Nanotopological Surfaces for Study of Adhesion-dependent Cell mechanosensitivity**

    PubMed Central

    Chen, Weiqiang; Sun, Yubing

    2014-01-01

    Cells display high sensitivity and exhibit diverse responses to the intrinsic nanotopography of the extracellular matrix through their nanoscale cellular sensing machinery. Here, we reported a simple microfabrication method for precise control and spatial patterning of the local nanoroughness on glass surfaces using photolithography and reactive ion etching (RIE). Using RIE-generated nanorough glass surfaces, we demonstrated that local nanoroughness could provide a potent biophysical signal to regulate a diverse array of NIH/3T3 fibroblast behaviors, including cell morphology, adhesion, proliferation and migration. We further showed that cellular responses to nanotopography might be regulated by cell adhesion signaling and actin cytoskeleton remodeling. To further investigate the role of cytoskeleton contractility in nanoroughness sensing, we applied the RIE method to generate nanoroughness on the tops of an array of elastomeric poly-dimethylsiloxane (PDMS) microposts. We utilized the PDMS microposts as force sensors and demonstrated that nanoroughness could indeed regulate the cytoskeleton contractility of NIH/3T3 fibroblasts. Our results suggested that a feedback regulation and mechano-chemical integration mechanism involving adhesion signaling, actin cytoskeleton, and intracellular mechanosensory components might play an important role in regulating mechanosensitive behaviors of NIH/3T3 fibroblasts. The capability to control and further predict cellular responses to nanoroughness might suggest novel methods for developing biomaterials mimicking nanotopographic structures in vivo and suitable local cellular microenvironments for functional tissue engineering. PMID:22887768

  14. Insulin Resistance in Alzheimer Disease: p53 and MicroRNAs as Important Players.

    PubMed

    Gasiorowski, Kazimierz; Brokos, Barbara; Leszek, Jerzy; Tarasov, Vadim V; Ashraf, Ghulam Md; Aliev, Gjumrakch

    2017-01-01

    Glucose homeostasis is crucial for neuronal survival, synaptic plasticity, and is indispensable for learning and memory. Reduced sensitivity of cells to insulin and impaired insulin signaling in brain neurons participate in the pathogenesis of Alzheimer disease (AD). The tumor suppressor protein p53 coordinates with multiple cellular pathways in response to DNA damage and cellular stresses. However, prolonged stress conditions unveil deleterious effects of p53-evoked insulin resistance in neurons; enhancement of transcription of pro-oxidant factors, accumulation of toxic metabolites (e.g. ceramide and products of advanced glycation) and ROS-modified cellular components, together with the activation of proapoptotic genes, could finally induce a suicide death program of autophagy/apoptosis in neurons. Recent studies reveal the impact of p53 on expression and processing of several microRNAs (miRs) under DNA damage-inducing conditions. Additionally, the role of miRs in promotion of insulin resistance and type 2 diabetes mellitus has been well documented. Detailed recognition of the role of p53/miRs crosstalk in driving insulin resistance in AD brains could improve the disease diagnostics and aid future therapy. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Identification and High-Resolution Imaging of α-Tocopherol from Human Cells to Whole Animals by TOF-SIMS Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Bruinen, Anne L.; Fisher, Gregory L.; Balez, Rachelle; van der Sar, Astrid M.; Ooi, Lezanne; Heeren, Ron M. A.

    2018-06-01

    A unique method for identification of biomolecular components in different biological specimens, while preserving the capability for high speed 2D and 3D molecular imaging, is employed to investigate cellular response to oxidative stress. The employed method enables observing the distribution of the antioxidant α-tocopherol and other molecules in cellular structures via time-of-flight secondary ion mass spectrometry (TOF-SIMS (MS1)) imaging in parallel with tandem mass spectrometry (MS2) imaging, collected simultaneously. The described method is employed to examine a network formed by neuronal cells differentiated from human induced pluripotent stem cells (iPSCs), a model for investigating human neurons in vitro. The antioxidant α-tocopherol is identified in situ within different cellular layers utilizing a 3D TOF-SIMS tandem MS imaging analysis. As oxidative stress also plays an important role in mediating inflammation, the study was expanded to whole body tissue sections of M. marinum-infected zebrafish, a model organism for tuberculosis. The TOF-SIMS tandem MS imaging results reveal an increased presence of α-tocopherol in response to the pathogen. [Figure not available: see fulltext.

  16. The ribosome as a missing link in the evolution of life.

    PubMed

    Root-Bernstein, Meredith; Root-Bernstein, Robert

    2015-02-21

    Many steps in the evolution of cellular life are still mysterious. We suggest that the ribosome may represent one important missing link between compositional (or metabolism-first), RNA-world (or genes-first) and cellular (last universal common ancestor) approaches to the evolution of cells. We present evidence that the entire set of transfer RNAs for all twenty amino acids are encoded in both the 16S and 23S rRNAs of Escherichia coli K12; that nucleotide sequences that could encode key fragments of ribosomal proteins, polymerases, ligases, synthetases, and phosphatases are to be found in each of the six possible reading frames of the 16S and 23S rRNAs; and that every sequence of bases in rRNA has information encoding more than one of these functions in addition to acting as a structural component of the ribosome. Ribosomal RNA, in short, is not just a structural scaffold for proteins, but the vestigial remnant of a primordial genome that may have encoded a self-organizing, self-replicating, auto-catalytic intermediary between macromolecules and cellular life. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Drosophila Neuronal Injury Follows a Temporal Sequence of Cellular Events Leading to Degeneration at the Neuromuscular Junction

    PubMed Central

    Lincoln, Barron L.; Alabsi, Sahar H.; Frendo, Nicholas; Freund, Robert; Keller, Lani C.

    2015-01-01

    Neurodegenerative diseases affect millions of people worldwide, and as the global population ages, there is a critical need to improve our understanding of the molecular and cellular mechanisms that drive neurodegeneration. At the molecular level, neurodegeneration involves the activation of complex signaling pathways that drive the active destruction of neurons and their intracellular components. Here, we use an in vivo motor neuron injury assay to acutely induce neurodegeneration in order to follow the temporal order of events that occur following injury in Drosophila melanogaster. We find that sites of injury can be rapidly identified based on structural defects to the neuronal cytoskeleton that result in disrupted axonal transport. Additionally, the neuromuscular junction accumulates ubiquitinated proteins prior to the neurodegenerative events, occurring at 24 hours post injury. Our data provide insights into the early molecular events that occur during axonal and neuromuscular degeneration in a genetically tractable model organism. Importantly, the mechanisms that mediate neurodegeneration in flies are conserved in humans. Thus, these studies have implications for our understanding of the cellular and molecular events that occur in humans and will facilitate the identification of biomedically relevant targets for future treatments. PMID:26512206

  18. A high-content image-based method for quantitatively studying context-dependent cell population dynamics

    PubMed Central

    Garvey, Colleen M.; Spiller, Erin; Lindsay, Danika; Chiang, Chun-Te; Choi, Nathan C.; Agus, David B.; Mallick, Parag; Foo, Jasmine; Mumenthaler, Shannon M.

    2016-01-01

    Tumor progression results from a complex interplay between cellular heterogeneity, treatment response, microenvironment and heterocellular interactions. Existing approaches to characterize this interplay suffer from an inability to distinguish between multiple cell types, often lack environmental context, and are unable to perform multiplex phenotypic profiling of cell populations. Here we present a high-throughput platform for characterizing, with single-cell resolution, the dynamic phenotypic responses (i.e. morphology changes, proliferation, apoptosis) of heterogeneous cell populations both during standard growth and in response to multiple, co-occurring selective pressures. The speed of this platform enables a thorough investigation of the impacts of diverse selective pressures including genetic alterations, therapeutic interventions, heterocellular components and microenvironmental factors. The platform has been applied to both 2D and 3D culture systems and readily distinguishes between (1) cytotoxic versus cytostatic cellular responses; and (2) changes in morphological features over time and in response to perturbation. These important features can directly influence tumor evolution and clinical outcome. Our image-based approach provides a deeper insight into the cellular dynamics and heterogeneity of tumors (or other complex systems), with reduced reagents and time, offering advantages over traditional biological assays. PMID:27452732

  19. A Symphony of Regulations Centered on p63 to Control Development of Ectoderm-Derived Structures

    PubMed Central

    Guerrini, Luisa; Costanzo, Antonio; Merlo, Giorgio R.

    2011-01-01

    The p53-related transcription factor p63 is critically important for basic cellular functions during development of the ectoderm and derived structure and tissues, including skin, limb, palate, and hair. On the one side, p63 is required to sustain the proliferation of keratinocyte progenitors, while on the other side it is required for cell stratification, commitment to differentiate, cell adhesion, and epithelial-mesenchymal signaling. Molecules that are components or regulators of the p63 pathway(s) are rapidly being identified, and it comes with no surprise that alterations in the p63 pathway lead to congenital conditions in which the skin and other ectoderm-derived structures are affected. In this paper, we summarize the current knowledge of the molecular and cellular regulations centered on p63, derived from the comprehension of p63-linked human diseases and the corresponding animal models, as well as from cellular models and high-throughput molecular approaches. We point out common themes and features, that allow to speculate on the possible role of p63 downstream events and their potential exploitation in future attempts to correct the congenital defect in preclinical studies. PMID:21716671

  20. A high-content image-based method for quantitatively studying context-dependent cell population dynamics

    NASA Astrophysics Data System (ADS)

    Garvey, Colleen M.; Spiller, Erin; Lindsay, Danika; Chiang, Chun-Te; Choi, Nathan C.; Agus, David B.; Mallick, Parag; Foo, Jasmine; Mumenthaler, Shannon M.

    2016-07-01

    Tumor progression results from a complex interplay between cellular heterogeneity, treatment response, microenvironment and heterocellular interactions. Existing approaches to characterize this interplay suffer from an inability to distinguish between multiple cell types, often lack environmental context, and are unable to perform multiplex phenotypic profiling of cell populations. Here we present a high-throughput platform for characterizing, with single-cell resolution, the dynamic phenotypic responses (i.e. morphology changes, proliferation, apoptosis) of heterogeneous cell populations both during standard growth and in response to multiple, co-occurring selective pressures. The speed of this platform enables a thorough investigation of the impacts of diverse selective pressures including genetic alterations, therapeutic interventions, heterocellular components and microenvironmental factors. The platform has been applied to both 2D and 3D culture systems and readily distinguishes between (1) cytotoxic versus cytostatic cellular responses; and (2) changes in morphological features over time and in response to perturbation. These important features can directly influence tumor evolution and clinical outcome. Our image-based approach provides a deeper insight into the cellular dynamics and heterogeneity of tumors (or other complex systems), with reduced reagents and time, offering advantages over traditional biological assays.

  1. An energy and cost efficient majority-based RAM cell in quantum-dot cellular automata

    NASA Astrophysics Data System (ADS)

    Khosroshahy, Milad Bagherian; Moaiyeri, Mohammad Hossein; Navi, Keivan; Bagherzadeh, Nader

    Nanotechnologies, notably quantum-dot cellular automata, have achieved major attentions for their prominent features as compared to the conventional CMOS circuitry. Quantum-dot cellular automata, particularly owning to its considerable reduction in size, high switching speed and ultra-low energy consumption, is considered as a potential alternative for the CMOS technology. As the memory unit is one of the most essential components in a digital system, designing a well-optimized QCA random access memory (RAM) cell is an important area of research. In this paper, a new five-input majority gate is presented which is suitable for implementing efficient single-layer QCA circuits. In addition, a new RAM cell with set and reset capabilities is designed based on the proposed majority gate, which has an efficient and low-energy structure. The functionality, performance and energy consumption of the proposed designs are evaluated based on the QCADesigner and QCAPro tools. According to the simulation results, the proposed RAM design leads to on average 38% lower total energy dissipation, 25% smaller area, 20% lower cell count, 28% lower delay and 60% lower QCA cost as compared to its previous counterparts.

  2. The effect of growth phase and medium on the use of the firefly adenosine triphosphate (ATP) assay for the quantitation of bacteria

    NASA Technical Reports Server (NTRS)

    Bush, V. N.; Picciolo, G. L.; Chappelle, E. W.

    1975-01-01

    Luciferase assay for adenosine triphosphate (ATP) was used as a rapid method to determine the number of bacteria in a urine sample after nonbacterial components were removed. Accurate cellular ATP values, determined when bacteria were grown in an environment similar to that in which they were found, were necessary for the calculation of bacterial titer in urine. Cellular ATP values vary depending on the extraction method, the cell growth phase, and cell growth conditions. ATP per cell values of stationary E. coli grown in urine were two times greater than ATP per cell values of cells grown in trypticase soy broth. Glucose and urea were examined as possible components responsible for the cellular ATP variation.

  3. X-ray fluorescence microscopy reveals the role of selenium in spermatogenesis

    PubMed Central

    Kehr, Sebastian; Malinouski, Mikalai; Finney, Lydia; Vogt, Stefan; Labunskyy, Vyacheslav M.; Kasaikina, Marina V.; Carlson, Bradley A.; Zhou, You; Hatfield, Dolph L.; Gladyshev, Vadim N.

    2009-01-01

    Selenium (Se) is a trace element with important roles in human health. Several selenoproteins have essential functions in development. However, the cellular and tissue distribution of Se remains largely unknown because of the lack of analytical techniques that image this element with sufficient sensitivity and resolution. Herein, we report that X-ray fluorescence microscopy (XFM) can be used to visualize and quantify the tissue, cellular and subcellular topography of Se. We applied this technique to characterize the role of Se in spermatogenesis and identified a dramatic Se enrichment specifically in late spermatids, a pattern that was not seen in any other elemental maps. This enrichment was due to elevated levels of the mitochondrial form of glutathione peroxidase 4 and was fully dependent on the supplies of Se by Selenoprotein P. High-resolution scans revealed that Se concentrated near the lumen side of elongating spermatids, where structural components of sperm are formed. During spermatogenesis, maximal Se associated with decreased phosphorus, whereas Zn did not change. In sperm, Se was primarily in the midpiece and co-localized with Cu and Fe. XFM allowed quantification of Se in the midpiece (0.8 fg) and head (0.14 fg) of individual sperm cells, revealing the ability of sperm cells to handle the amounts of this element well above its toxic levels. Overall, the use of XFM allowed visualization of tissue and cellular Se and provided important insights in the role of this and other trace elements in spermatogenesis. PMID:19379757

  4. A Legionella Effector Disrupts Host Cytoskeletal Structure by Cleaving Actin

    DOE PAGES

    Liu, Yao; Zhu, Wenhan; Tan, Yunhao; ...

    2017-01-27

    Legionella pneumophila, the etiological agent of Legionnaires' disease, replicates intracellularly in protozoan and human hosts. Successful colonization and replication of this pathogen in host cells requires the Dot/Icm type IVB secretion system, which translocates approximately 300 effector proteins into the host cell to modulate various cellular processes. In this study, we identified RavK as a Dot/Icm substrate that targets the host cytoskeleton and reduces actin filament abundance in mammalian cells upon ectopic expression. RavK harbors an H 95E XXH 99 motif associated with diverse metalloproteases, which is essential for the inhibition of yeast growth and for the induction of cellmore » rounding in HEK293T cells. We demonstrate that the actin protein itself is the cellular target of RavK and that this effector cleaves actin at a site between residues Thr351 and Phe352. Importantly, RavK-mediated actin cleavage also occurs during L. pneumophila infection. Cleavage by RavK abolishes the ability of actin to form polymers. Furthermore, an F352A mutation renders actin resistant to RavK-mediated cleavage; expression of the mutant in mammalian cells suppresses the cell rounding phenotype caused by RavK, further establishing that actin is the physiological substrate of RavK. Furthermore, L. pneumophila exploits components of the host cytoskeleton by multiple effectors with distinct mechanisms, highlighting the importance of modulating cellular processes governed by the actin cytoskeleton in the intracellular life cycle of this pathogen.« less

  5. YB-1 Is Important for Late-Stage Embryonic Development, Optimal Cellular Stress Responses, and the Prevention of Premature Senescence

    PubMed Central

    Lu, Zhi Hong; Books, Jason T.; Ley, Timothy J.

    2005-01-01

    Proteins containing “cold shock” domains belong to the most evolutionarily conserved family of nucleic acid-binding proteins known among bacteria, plants, and animals. One of these proteins, YB-1, is widely expressed throughout development and has been implicated as a cell survival factor that regulates the transcription and/or translation of many cellular growth and death-related genes. For these reasons, YB-1 deficiency has been predicted to be incompatible with cell survival. However, the majority of YB-1−/− embryos develop normally up to embryonic day 13.5 (E13.5). After E13.5, YB-1−/− embryos exhibit severe growth retardation and progressive mortality, revealing a nonredundant role of YB-1 in late embryonic development. Fibroblasts derived from YB-1−/− embryos displayed a normal rate of protein synthesis and minimal alterations in the transcriptome and proteome but demonstrated reduced abilities to respond to oxidative, genotoxic, and oncogene-induced stresses. YB-1−/− cells under oxidative stress expressed high levels of the G1-specific CDK inhibitors p16Ink4a and p21Cip1 and senesced prematurely; this defect was corrected by knocking down CDK inhibitor levels with specific small interfering RNAs. These data suggest that YB-1 normally represses the transcription of CDK inhibitors, making it an important component of the cellular stress response signaling pathway. PMID:15899865

  6. Heme Oxygenase-1: A Metabolic Nike

    PubMed Central

    Nemeth, Zsuzsanna; Correa-Costa, Matheus; Bulmer, Andrew C.; Otterbein, Leo E.

    2014-01-01

    Abstract Significance: Heme degradation, which was described more than 30 years ago, is still very actively explored with many novel discoveries on its role in various disease models every year. Recent Advances: The heme oxygenases (HO) are metabolic enzymes that utilize NADPH and oxygen to break apart the heme moiety liberating biliverdin (BV), carbon monoxide (CO), and iron. Heme that is derived from hemoproteins can be toxic to the cells and if not removed immediately, it causes cell apoptosis and local inflammation. Elimination of heme from the milieu enables generation of three products that influences numerous metabolic changes in the cell. Critical Issues: CO has profound effects on mitochondria and cellular respiration and other hemoproteins to which it can bind and affect their function, while BV and bilirubin (BR), the substrate and product of BV, reductase, respectively, are potent antioxidants. Sequestration of iron into ferritin and its recycling in the tissues is a part of the homeodynamic processes that control oxidation-reduction in cellular metabolism. Further, heme is an important component of a number of metabolic enzymes, and, therefore, HO-1 plays an important role in the modulation of cellular bioenergetics. Future Directions: In this review, we describe the cross-talk between heme oxygenase-1 (HO-1) and its products with other metabolic pathways. HO-1, which we have labeled Nike, the goddess who personified victory, dictates triumph over pathophysiologic conditions, including diabetes, ischemia, and cancer. Antioxid. Redox Signal. 20, 1709–1722. PMID:24180257

  7. Angiofibroma of soft tissue: clinicopathologic study of 2 cases of a recently characterized benign soft tissue tumor.

    PubMed

    Zhao, Ming; Sun, Ke; Li, Changshui; Zheng, Jiangjiang; Yu, Jingjing; Jin, Jie; Xia, Wenping

    2013-01-01

    Angiofibroma of soft tissue is a very recently characterized, histologically distinctive benign mesenchymal neoplasm of unknown cellular origin composed of 2 principal components, the spindle cell component and very prominent stromal vasculatures. It usually occurs in middle-aged adults, with a female predominance. Herein, we describe the clinical and pathologic details of 2 other examples of this benign tumor. Both patients were middle-aged male and presented with a slow-growing, painless mass located in the deep-seated soft tissue of thigh and left posterior neck region, respectively. Grossly, both tumors were well-demarcated, partial encapsulated of a grayish-white color with firm consistence. Histologically, one case showed morphology otherwise identical to those have been described before, whereas the other case showed in areas being more cellular than most examples of this subtype tumor had, with the lesional cells frequently exhibiting short fascicular, vaguely storiform and occasionally swirling arrangements, which posed a challenging differential diagnosis. Immunostains performed on both tumors did not confirm any specific cell differentiation with lesional cells only reactive for vimentin and focally desmin and negative for all the other markers tested. This report serves to broaden the morphologic spectrum of angiofibroma of soft tumor. Awareness of this tumor is important to prevent misdiagnosis as other more aggressive soft tissue tumor.

  8. A strategy to estimate the rate of recruitment of inflammatory cells during bovine intramammary infection under field management.

    PubMed

    Detilleux, J

    2017-06-08

    In most infectious diseases, among which bovine mastitis, promptness of the recruitment of inflammatory cells (mainly neutrophils) in inflamed tissues has been shown to be of prime importance in the resolution of the infection. Although this information should aid in designing efficient control strategies, it has never been quantified in field studies. Here, a system of ordinary differential equations is proposed that describes the dynamic process of the inflammatory response to mammary pathogens. The system was tested, by principal differential analysis, on 1947 test-day somatic cell counts collected on 756 infected cows, from 50 days before to 50 days after the diagnosis of clinical mastitis. Cell counts were log-transformed before estimating recruitment rates. Daily rates of cellular recruitment was estimated at 0.052 (st. err. = 0.005) during health. During disease, an additional cellular rate of recruitment was estimated at 0.004 (st. err. = 0.001) per day and per bacteria. These estimates are in agreement with analogous measurements of in vitro neutrophil functions. Results suggest the method is adequate to estimate one of the components of innate resistance to mammary pathogens at the individual level and in field studies. Extension of the method to estimate components of innate tolerance and limits of the study are discussed.

  9. Lamin A/C deficiency reduces circulating tumor cell resistance to fluid shear stress

    PubMed Central

    Denais, Celine; Chan, Maxine F.; Wang, Zhexiao; Lammerding, Jan

    2015-01-01

    Metastasis contributes to over 90% of cancer-related deaths and is initiated when cancer cells detach from the primary tumor, invade the basement membrane, and enter the circulation as circulating tumor cells (CTCs). While metastasis is viewed as an inefficient process with most CTCs dying within the bloodstream, it is evident that some CTCs are capable of resisting hemodynamic shear forces to form secondary tumors in distant tissues. We hypothesized that nuclear lamins A and C (A/C) act as key structural components within CTCs necessary to resist destruction from elevated shear forces of the bloodstream. Herein, we show that, compared with nonmalignant epithelial cells, tumor cells are resistant to elevated fluid shear forces in vitro that mimic those within the bloodstream, as evidenced by significant decreases in cellular apoptosis and necrosis. Knockdown of lamin A/C significantly reduced tumor cell resistance to fluid shear stress, with significantly increased cell death compared with parental tumor cell and nontargeting controls. Interestingly, lamin A/C knockdown increased shear stress-induced tumor cell apoptosis, but did not significantly affect cellular necrosis. These data demonstrate that lamin A/C is an important structural component that enables tumor cell resistance to fluid shear stress-mediated death in the bloodstream, and may thus facilitate survival and hematogenous metastasis of CTCs. PMID:26447202

  10. MicroRNAs and non-coding RNAs in virus-infected cells

    PubMed Central

    Ouellet, Dominique L.; Provost, Patrick

    2010-01-01

    Within the past few years, microRNAs (miRNAs) and other non-coding RNAs (ncRNAs) have emerged as elements with critically high importance in post-transcriptional control of cellular and, more recently, viral processes. Endogenously produced by a component of the miRNA-guided RNA silencing machinery known as Dicer, miRNAs are known to control messenger RNA (mRNA) translation through recognition of specific binding sites usually located in their 3′ untranslated region. Recent evidences indicate that the host miRNA pathway may represent an adapted antiviral defense mechanism that can act either by direct miRNA-mediated modulation of viral gene expression or through recognition and inactivation of structured viral RNA species by the protein components of the RNA silencing machinery, such as Dicer. This latter process, however, is a double-edge sword, as it may yield viral miRNAs exerting gene regulatory properties on both host and viral mRNAs. Our knowledge of the interaction between viruses and host RNA silencing machineries, and how this influences the course of infection, is becoming increasingly complex. This review article aims to summarize our current knowledge about viral miRNAs/ncRNAs and their targets, as well as cellular miRNAs that are modulated by viruses upon infection. PMID:20217543

  11. Dynamic transcription profiles of “Qinguan” apple (Malus × domestica) leaves in response to Marssonina coronaria inoculation

    PubMed Central

    Xu, Jianhua; Li, Miaomiao; Jiao, Peng; Tao, Hongxia; Wei, Ningning; Ma, Fengwang; Zhang, Junke

    2015-01-01

    Marssonina apple blotch, caused by the fungus Marssonina coronaria, is one of the most destructive apple diseases in China and East Asia. A better understanding of the plant's response to fungi during pathogenesis is urgently needed to improve plant resistance and to breed resistant cultivars. To address this, the transcriptomes of “Qinguan” (a cultivar with high resistance to M. coronaria) apple leaves were sequenced at 12, 24, 48, and 72 h post-inoculation (hpi) with Marssonina coronaria. The comparative results showed that a total of 1956 genes were differentially expressed between the inoculated and control samples at the 4 time points. Gene ontology (GO) term enrichment analysis of differentially expressed genes (DEGs) revealed changes in cellular component, secondary metabolism including chalcone isomerase activity, phytoalexin biosynthetic process, anthocyanin-containing compound biosynthetic process, lignin biosynthetic process, positive regulation of flavonoid biosynthetic process; and molecular functions or biological processes related to the defense response, biotic stimulus response, wounding response and fungus response. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that DEGs were significantly enriched in flavonoid biosynthesis, vitamin B6 metabolism, phenylpropanoid biosynthesis, and the stilbenoid, diarylheptanoid and gingerol biosynthesis pathways. Furthermore, the importance of changes in cellular components and partial polyphenol compounds when encountering M. coronaria are discussed. PMID:26528306

  12. Regulation of adeno-associated virus DNA replication by the cellular TAF-I/set complex.

    PubMed

    Pegoraro, Gianluca; Marcello, Alessandro; Myers, Michael P; Giacca, Mauro

    2006-07-01

    The Rep proteins of the adeno-associated virus (AAV) are required for viral replication in the presence of adenovirus helper functions and as yet poorly characterized cellular factors. In an attempt to identify such factors, we purified Flag-Rep68-interacting proteins from human cell lysates. Several polypeptides were identified by mass spectrometry, among which was ANP32B, a member of the acidic nuclear protein 32 family which takes part in the formation of the template-activating factor I/Set oncoprotein (TAF-I/Set) complex. The N terminus of Rep was found to specifically bind the acidic domain of ANP32B; through this interaction, Rep was also able to recruit other members of the TAF-I/Set complex, including the ANP32A protein and the histone chaperone TAF-I/Set. Further experiments revealed that silencing of ANP32A and ANP32B inhibited AAV replication, while overexpression of all of the components of the TAF-I/Set complex increased de novo AAV DNA synthesis in permissive cells. Besides being the first indication that the TAF-I/Set complex participates in wild-type AAV replication, these findings have important implications for the generation of recombinant AAV vectors since overexpression of the TAF-I/Set components was found to markedly increase viral vector production.

  13. Neural and behavioral mechanisms of proactive and reactive inhibition

    PubMed Central

    Meyer, Heidi C.

    2016-01-01

    Response inhibition is an important component of adaptive behavior. Substantial prior research has focused on reactive inhibition, which refers to the cessation of a motor response that is already in progress. More recently, a growing number of studies have begun to examine mechanisms underlying proactive inhibition, whereby preparatory processes result in a response being withheld before it is initiated. It has become apparent that proactive inhibition is an essential component of the overall ability to regulate behavior and has implications for the success of reactive inhibition. Moreover, successful inhibition relies on learning the meaning of specific environmental cues that signal when a behavioral response should be withheld. Proactive inhibitory control is mediated by stopping goals, which reflect the desired outcome of inhibition and include information about how and when inhibition should be implemented. However, little is known about the circuits and cellular processes that encode and represent features in the environment that indicate the necessity for proactive inhibition or how these representations are implemented in response inhibition. In this article, we will review the brain circuits and systems involved in implementing inhibitory control through both reactive and proactive mechanisms. We also comment on possible cellular mechanisms that may contribute to inhibitory control processes, noting that substantial further research is necessary in this regard. Furthermore, we will outline a number of ways in which the temporal dynamics underlying the generation of the proactive inhibitory signal may be particularly important for parsing out the neurobiological correlates that contribute to the learning processes underlying various aspects of inhibitory control. PMID:27634142

  14. Proteomic Analysis of the Multimeric Nuclear Egress Complex of Human Cytomegalovirus*

    PubMed Central

    Milbradt, Jens; Kraut, Alexandra; Hutterer, Corina; Sonntag, Eric; Schmeiser, Cathrin; Ferro, Myriam; Wagner, Sabrina; Lenac, Tihana; Claus, Claudia; Pinkert, Sandra; Hamilton, Stuart T.; Rawlinson, William D.; Sticht, Heinrich; Couté, Yohann; Marschall, Manfred

    2014-01-01

    Herpesviral capsids are assembled in the host cell nucleus before being translocated into the cytoplasm for further maturation. The crossing of the nuclear envelope represents a major event that requires the formation of the nuclear egress complex (NEC). Previous studies demonstrated that human cytomegalovirus (HCMV) proteins pUL50 and pUL53, as well as their homologs in all members of Herpesviridae, interact with each other at the nuclear envelope and form the heterodimeric core of the NEC. In order to characterize further the viral and cellular protein content of the multimeric NEC, the native complex was isolated from HCMV-infected human primary fibroblasts at various time points and analyzed using quantitative proteomics. Previously postulated components of the HCMV-specific NEC, as well as novel potential NEC-associated proteins such as emerin, were identified. In this regard, interaction and colocalization between emerin and pUL50 were confirmed by coimmunoprecipitation and confocal microscopy analyses, respectively. A functional validation of viral and cellular NEC constituents was achieved through siRNA-mediated knockdown experiments. The important role of emerin in NEC functionality was demonstrated by a reduction of viral replication when emerin expression was down-regulated. Moreover, under such conditions, reduced production of viral proteins and deregulation of viral late cytoplasmic maturation were observed. Combined, these data prove the functional importance of emerin as an NEC component, associated with pUL50, pUL53, pUL97, p32/gC1qR, and further regulatory proteins. Summarized, our findings provide the first proteomics-based characterization and functional validation of the HCMV-specific multimeric NEC. PMID:24969177

  15. Circadian Rhythm Connections to Oxidative Stress: Implications for Human Health

    PubMed Central

    Wilking, Melissa; Ndiaye, Mary; Mukhtar, Hasan

    2013-01-01

    Abstract Significance: Oxygen and circadian rhythmicity are essential in a myriad of physiological processes to maintain homeostasis, from blood pressure and sleep/wake cycles, down to cellular signaling pathways that play critical roles in health and disease. If the human body or cells experience significant stress, their ability to regulate internal systems, including redox levels and circadian rhythms, may become impaired. At cellular as well as organismal levels, impairment in redox regulation and circadian rhythms may lead to a number of adverse effects, including the manifestation of a variety of diseases such as heart diseases, neurodegenerative conditions, and cancer. Recent Advances: Researchers have come to an understanding as to the basics of the circadian rhythm mechanism, as well as the importance of the numerous species of oxidative stress components. The effects of oxidative stress and dysregulated circadian rhythms have been a subject of intense investigations since they were first discovered, and recent investigations into the molecular mechanisms linking the two have started to elucidate the bases of their connection. Critical Issues: While much is known about the mechanics and importance of oxidative stress systems and circadian rhythms, the front where they interact has had very little research focused on it. This review discusses the idea that these two systems are together intricately involved in the healthy body, as well as in disease. Future Directions: We believe that for a more efficacious management of diseases that have both circadian rhythm and oxidative stress components in their pathogenesis, targeting both systems in tandem would be far more successful. Antioxid. Redox Signal. 19, 192–208 PMID:23198849

  16. Old foes, new understandings: nuclear entry of small non-enveloped DNA viruses.

    PubMed

    Fay, Nikta; Panté, Nelly

    2015-06-01

    The nuclear import of viral genomes is an important step of the infectious cycle for viruses that replicate in the nucleus of their host cells. Although most viruses use the cellular nuclear import machinery or some components of this machinery, others have developed sophisticated ways to reach the nucleus. Some of these have been known for some time; however, recent studies have changed our understanding of how some non-enveloped DNA viruses access the nucleus. For example, parvoviruses enter the nucleus through small disruptions of the nuclear membranes and nuclear lamina, and adenovirus tugs at the nuclear pore complex, using kinesin-1, to disassemble their capsids and deliver viral proteins and genomes into the nucleus. Here we review recent findings of the nuclear import strategies of three small non-enveloped DNA viruses, including adenovirus, parvovirus, and the polyomavirus simian virus 40. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. The import of the transcription factor STAT3 into mitochondria depends on GRIM-19, a component of the electron transport chain.

    PubMed

    Tammineni, Prasad; Anugula, Chandrashekhar; Mohammed, Fareed; Anjaneyulu, Murari; Larner, Andrew C; Sepuri, Naresh Babu Venkata

    2013-02-15

    The signal transducer and activator of transcription 3 (STAT3), a nuclear transcription factor, is also present in mitochondria and regulates cellular respiration in a transcriptional-independent manner. The mechanism of STAT3 import into mitochondria remains obscure. In this report we show that mitochondrial-localized STAT3 resides in the inner mitochondrial membrane. In vitro import studies show that the gene associated with retinoid interferon induced cell mortality 19 (GRIM-19), a complex I subunit that acts as a chaperone to recruit STAT3 into mitochondria. In addition, GRIM-19 enhances the integration of STAT3 into complex I. A S727A mutation in STAT3 reduces its import and assembly even in the presence of GRIM-19. Together, our studies unveil a novel chaperone function for GRIM-19 in the recruitment of STAT3 into mitochondria.

  18. Agent-based modeling of autophagy reveals emergent regulatory behavior of spatio-temporal autophagy dynamics.

    PubMed

    Börlin, Christoph S; Lang, Verena; Hamacher-Brady, Anne; Brady, Nathan R

    2014-09-10

    Autophagy is a vesicle-mediated pathway for lysosomal degradation, essential under basal and stressed conditions. Various cellular components, including specific proteins, protein aggregates, organelles and intracellular pathogens, are targets for autophagic degradation. Thereby, autophagy controls numerous vital physiological and pathophysiological functions, including cell signaling, differentiation, turnover of cellular components and pathogen defense. Moreover, autophagy enables the cell to recycle cellular components to metabolic substrates, thereby permitting prolonged survival under low nutrient conditions. Due to the multi-faceted roles for autophagy in maintaining cellular and organismal homeostasis and responding to diverse stresses, malfunction of autophagy contributes to both chronic and acute pathologies. We applied a systems biology approach to improve the understanding of this complex cellular process of autophagy. All autophagy pathway vesicle activities, i.e. creation, movement, fusion and degradation, are highly dynamic, temporally and spatially, and under various forms of regulation. We therefore developed an agent-based model (ABM) to represent individual components of the autophagy pathway, subcellular vesicle dynamics and metabolic feedback with the cellular environment, thereby providing a framework to investigate spatio-temporal aspects of autophagy regulation and dynamic behavior. The rules defining our ABM were derived from literature and from high-resolution images of autophagy markers under basal and activated conditions. Key model parameters were fit with an iterative method using a genetic algorithm and a predefined fitness function. From this approach, we found that accurate prediction of spatio-temporal behavior required increasing model complexity by implementing functional integration of autophagy with the cellular nutrient state. The resulting model is able to reproduce short-term autophagic flux measurements (up to 3 hours) under basal and activated autophagy conditions, and to measure the degree of cell-to-cell variability. Moreover, we experimentally confirmed two model predictions, namely (i) peri-nuclear concentration of autophagosomes and (ii) inhibitory lysosomal feedback on mTOR signaling. Agent-based modeling represents a novel approach to investigate autophagy dynamics, function and dysfunction with high biological realism. Our model accurately recapitulates short-term behavior and cell-to-cell variability under basal and activated conditions of autophagy. Further, this approach also allows investigation of long-term behaviors emerging from biologically-relevant alterations to vesicle trafficking and metabolic state.

  19. Exploration of cellular reaction systems.

    PubMed

    Kirkilionis, Markus

    2010-01-01

    We discuss and review different ways to map cellular components and their temporal interaction with other such components to different non-spatially explicit mathematical models. The essential choices made in the literature are between discrete and continuous state spaces, between rule and event-based state updates and between deterministic and stochastic series of such updates. The temporal modelling of cellular regulatory networks (dynamic network theory) is compared with static network approaches in two first introductory sections on general network modelling. We concentrate next on deterministic rate-based dynamic regulatory networks and their derivation. In the derivation, we include methods from multiscale analysis and also look at structured large particles, here called macromolecular machines. It is clear that mass-action systems and their derivatives, i.e. networks based on enzyme kinetics, play the most dominant role in the literature. The tools to analyse cellular reaction networks are without doubt most complete for mass-action systems. We devote a long section at the end of the review to make a comprehensive review of related tools and mathematical methods. The emphasis is to show how cellular reaction networks can be analysed with the help of different associated graphs and the dissection into modules, i.e. sub-networks.

  20. [Human milk, immune responses and health effects].

    PubMed

    Løland, Beate Fossum; Baerug, Anne B; Nylander, Gro

    2007-09-20

    Besides providing optimal nutrition to infants, human milk contains a multitude of immunological components. These components are important for protection against infections and also support the development and maturation of the infant's own immune system. This review focuses on the function of some classical immunocomponents of human milk. Relevant studies are presented that describe health benefits of human milk for the child and of lactation for the mother. Relevant articles were found mainly by searching PubMed. Humoral and cellular components of human milk confer protection against infections in the respiratory--, gastrointestinal--and urinary tract. Human milk also protects premature children from neonatal sepsis and necrotizing enterocolitis. There is evidence that human milk may confer long-term benefits such as lower risk of certain autoimmune diseases, inflammatory bowel disease and probably some malignancies. Human milk possibly affects components of the metabolic syndrome. Recent studies demonstrate long-term health benefits of lactation also for the mother. A reduced incidence of breast cancer is best documented. An increasing number of studies indicate protection against ovarian cancer, rheumatoid arthritis and type II diabetes.

  1. The extracellular matrix: A dynamic niche in cancer progression

    PubMed Central

    Lu, Pengfei; Weaver, Valerie M.

    2012-01-01

    The local microenvironment, or niche, of a cancer cell plays important roles in cancer development. A major component of the niche is the extracellular matrix (ECM), a complex network of macromolecules with distinctive physical, biochemical, and biomechanical properties. Although tightly controlled during embryonic development and organ homeostasis, the ECM is commonly deregulated and becomes disorganized in diseases such as cancer. Abnormal ECM affects cancer progression by directly promoting cellular transformation and metastasis. Importantly, however, ECM anomalies also deregulate behavior of stromal cells, facilitate tumor-associated angiogenesis and inflammation, and thus lead to generation of a tumorigenic microenvironment. Understanding how ECM composition and topography are maintained and how their deregulation influences cancer progression may help develop new therapeutic interventions by targeting the tumor niche. PMID:22351925

  2. Paramyxovirus Assembly and Budding: Building Particles that Transmit Infections

    PubMed Central

    Harrison, Megan S.; Sakaguchi, Takemasa; Schmitt, Anthony P.

    2010-01-01

    The paramyxoviruses define a diverse group of enveloped RNA viruses that includes a number of important human and animal pathogens. Examples include human respiratory syncytial virus and the human parainfluenza viruses, which cause respiratory illnesses in young children and the elderly; measles and mumps viruses, which have caused recent resurgences of disease in developed countries; the zoonotic Hendra and Nipah viruses, which have caused several outbreaks of fatal disease in Australia and Asia; and Newcastle disease virus, which infects chickens and other avian species. Like other enveloped viruses, paramyxoviruses form particles that assemble and bud from cellular membranes, allowing the transmission of infections to new cells and hosts. Here, we review recent advances that have improved our understanding of events involved in paramyxovirus particle formation. Contributions of viral matrix proteins, glycoproteins, nucleocapsid proteins, and accessory proteins to particle formation are discussed, as well as the importance of host factor recruitment for efficient virus budding. Trafficking of viral structural components within infected cells is described, together with mechanisms that allow for the selection of specific sites on cellular membranes for the coalescence of viral proteins in preparation of bud formation and virion release. PMID:20398786

  3. Development of the Cellular Immune System of Drosophila Requires the Membrane Attack Complex/Perforin-Like Protein Torso-Like.

    PubMed

    Forbes-Beadle, Lauren; Crossman, Tova; Johnson, Travis K; Burke, Richard; Warr, Coral G; Whisstock, James C

    2016-10-01

    Pore-forming members of the membrane attack complex/perforin-like (MACPF) protein superfamily perform well-characterized roles as mammalian immune effectors. For example, complement component 9 and perforin function to directly form pores in the membrane of Gram-negative pathogens or virally infected/transformed cells, respectively. In contrast, the only known MACPF protein in Drosophila melanogaster, Torso-like, plays crucial roles during development in embryo patterning and larval growth. Here, we report that in addition to these functions, Torso-like plays an important role in Drosophila immunity. However, in contrast to a hypothesized effector function in, for example, elimination of Gram-negative pathogens, we find that torso-like null mutants instead show increased susceptibility to certain Gram-positive pathogens such as Staphylococcus aureus and Enterococcus faecalis We further show that this deficit is due to a severely reduced number of circulating immune cells and, as a consequence, an impaired ability to phagocytose bacterial particles. Together these data suggest that Torso-like plays an important role in controlling the development of the Drosophila cellular immune system. Copyright © 2016 by the Genetics Society of America.

  4. Challenges in structural approaches to cell modeling.

    PubMed

    Im, Wonpil; Liang, Jie; Olson, Arthur; Zhou, Huan-Xiang; Vajda, Sandor; Vakser, Ilya A

    2016-07-31

    Computational modeling is essential for structural characterization of biomolecular mechanisms across the broad spectrum of scales. Adequate understanding of biomolecular mechanisms inherently involves our ability to model them. Structural modeling of individual biomolecules and their interactions has been rapidly progressing. However, in terms of the broader picture, the focus is shifting toward larger systems, up to the level of a cell. Such modeling involves a more dynamic and realistic representation of the interactomes in vivo, in a crowded cellular environment, as well as membranes and membrane proteins, and other cellular components. Structural modeling of a cell complements computational approaches to cellular mechanisms based on differential equations, graph models, and other techniques to model biological networks, imaging data, etc. Structural modeling along with other computational and experimental approaches will provide a fundamental understanding of life at the molecular level and lead to important applications to biology and medicine. A cross section of diverse approaches presented in this review illustrates the developing shift from the structural modeling of individual molecules to that of cell biology. Studies in several related areas are covered: biological networks; automated construction of three-dimensional cell models using experimental data; modeling of protein complexes; prediction of non-specific and transient protein interactions; thermodynamic and kinetic effects of crowding; cellular membrane modeling; and modeling of chromosomes. The review presents an expert opinion on the current state-of-the-art in these various aspects of structural modeling in cellular biology, and the prospects of future developments in this emerging field. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Cell-Specific Establishment of Poliovirus Resistance to an Inhibitor Targeting a Cellular Protein

    PubMed Central

    Viktorova, Ekaterina G.; Nchoutmboube, Jules; Ford-Siltz, Lauren A.

    2015-01-01

    ABSTRACT It is hypothesized that targeting stable cellular factors involved in viral replication instead of virus-specific proteins may raise the barrier for development of resistant mutants, which is especially important for highly adaptable small (+)RNA viruses. However, contrary to this assumption, the accumulated evidence shows that these viruses easily generate mutants resistant to the inhibitors of cellular proteins at least in some systems. We investigated here the development of poliovirus resistance to brefeldin A (BFA), an inhibitor of the cellular protein GBF1, a guanine nucleotide exchange factor for the small cellular GTPase Arf1. We found that while resistant viruses can be easily selected in HeLa cells, they do not emerge in Vero cells, in spite that in the absence of the drug both cultures support robust virus replication. Our data show that the viral replication is much more resilient to BFA than functioning of the cellular secretory pathway, suggesting that the role of GBF1 in the viral replication is independent of its Arf activating function. We demonstrate that the level of recruitment of GBF1 to the replication complexes limits the establishment and expression of a BFA resistance phenotype in both HeLa and Vero cells. Moreover, the BFA resistance phenotype of poliovirus mutants is also cell type dependent in different cells of human origin and results in a fitness loss in the form of reduced efficiency of RNA replication in the absence of the drug. Thus, a rational approach to the development of host-targeting antivirals may overcome the superior adaptability of (+)RNA viruses. IMPORTANCE Compared to the number of viral diseases, the number of available vaccines is miniscule. For some viruses vaccine development has not been successful after multiple attempts, and for many others vaccination is not a viable option. Antiviral drugs are needed for clinical practice and public health emergencies. However, viruses are highly adaptable and can easily generate mutants resistant to practically any compounds targeting viral proteins. An alternative approach is to target stable cellular factors recruited for the virus-specific functions. In the present study, we analyzed the factors permitting and restricting the establishment of the resistance of poliovirus, a small (+)RNA virus, to brefeldin A (BFA), a drug targeting a cellular component of the viral replication complex. We found that the emergence and replication potential of resistant mutants is cell type dependent and that BFA resistance reduces virus fitness. Our data provide a rational approach to the development of antiviral therapeutics targeting host factors. PMID:25653442

  6. Simulation Based Optimization of Complex Monolithic Composite Structures Using Cellular Core Technology

    NASA Astrophysics Data System (ADS)

    Hickmott, Curtis W.

    Cellular core tooling is a new technology which has the capability to manufacture complex integrated monolithic composite structures. This novel tooling method utilizes thermoplastic cellular cores as inner tooling. The semi-rigid nature of the cellular cores makes them convenient for lay-up, and under autoclave temperature and pressure they soften and expand providing uniform compaction on all surfaces including internal features such as ribs and spar tubes. This process has the capability of developing fully optimized aerospace structures by reducing or eliminating assembly using fasteners or bonded joints. The technology is studied in the context of evaluating its capabilities, advantages, and limitations in developing high quality structures. The complex nature of these parts has led to development of a model using the Finite Element Analysis (FEA) software Abaqus and the plug-in COMPRO Common Component Architecture (CCA) provided by Convergent Manufacturing Technologies. This model utilizes a "virtual autoclave" technique to simulate temperature profiles, resin flow paths, and ultimately deformation from residual stress. A model has been developed simulating the temperature profile during curing of composite parts made with the cellular core technology. While modeling of composites has been performed in the past, this project will look to take this existing knowledge and apply it to this new manufacturing method capable of building more complex parts and develop a model designed specifically for building large, complex components with a high degree of accuracy. The model development has been carried out in conjunction with experimental validation. A double box beam structure was chosen for analysis to determine the effects of the technology on internal ribs and joints. Double box beams were manufactured and sectioned into T-joints for characterization. Mechanical behavior of T-joints was performed using the T-joint pull-off test and compared to traditional tooling methods. Components made with the cellular core tooling method showed an improved strength at the joints. It is expected that this knowledge will help optimize the processing of complex, integrated structures and benefit applications in aerospace where lighter, structurally efficient components would be advantageous.

  7. Emerging Biomimetic Applications of DNA Nanotechnology.

    PubMed

    Shen, Haijing; Wang, Yingqian; Wang, Jie; Li, Zhihao; Yuan, Quan

    2018-06-25

    Re-engineering cellular components and biological processes has received great interest and promised compelling advantages in applications ranging from basic cell biology to biomedicine. With the advent of DNA nanotechnology, the programmable self-assembly ability makes DNA an appealing candidate for rational design of artificial components with different structures and functions. This Forum Article summarizes recent developments of DNA nanotechnology in mimicking the structures and functions of existing cellular components. We highlight key successes in the achievements of DNA-based biomimetic membrane proteins and discuss the assembly behavior of these artificial proteins. Then, we focus on the construction of higher-order structures by DNA nanotechnology to recreate cell-like structures. Finally, we explore the current challenges and speculate on future directions of DNA nanotechnology in biomimetics.

  8. Drug target identification using network analysis: Taking active components in Sini decoction as an example

    NASA Astrophysics Data System (ADS)

    Chen, Si; Jiang, Hailong; Cao, Yan; Wang, Yun; Hu, Ziheng; Zhu, Zhenyu; Chai, Yifeng

    2016-04-01

    Identifying the molecular targets for the beneficial effects of active small-molecule compounds simultaneously is an important and currently unmet challenge. In this study, we firstly proposed network analysis by integrating data from network pharmacology and metabolomics to identify targets of active components in sini decoction (SND) simultaneously against heart failure. To begin with, 48 potential active components in SND against heart failure were predicted by serum pharmacochemistry, text mining and similarity match. Then, we employed network pharmacology including text mining and molecular docking to identify the potential targets of these components. The key enriched processes, pathways and related diseases of these target proteins were analyzed by STRING database. At last, network analysis was conducted to identify most possible targets of components in SND. Among the 25 targets predicted by network analysis, tumor necrosis factor α (TNF-α) was firstly experimentally validated in molecular and cellular level. Results indicated that hypaconitine, mesaconitine, higenamine and quercetin in SND can directly bind to TNF-α, reduce the TNF-α-mediated cytotoxicity on L929 cells and exert anti-myocardial cell apoptosis effects. We envisage that network analysis will also be useful in target identification of a bioactive compound.

  9. Drug target identification using network analysis: Taking active components in Sini decoction as an example

    PubMed Central

    Chen, Si; Jiang, Hailong; Cao, Yan; Wang, Yun; Hu, Ziheng; Zhu, Zhenyu; Chai, Yifeng

    2016-01-01

    Identifying the molecular targets for the beneficial effects of active small-molecule compounds simultaneously is an important and currently unmet challenge. In this study, we firstly proposed network analysis by integrating data from network pharmacology and metabolomics to identify targets of active components in sini decoction (SND) simultaneously against heart failure. To begin with, 48 potential active components in SND against heart failure were predicted by serum pharmacochemistry, text mining and similarity match. Then, we employed network pharmacology including text mining and molecular docking to identify the potential targets of these components. The key enriched processes, pathways and related diseases of these target proteins were analyzed by STRING database. At last, network analysis was conducted to identify most possible targets of components in SND. Among the 25 targets predicted by network analysis, tumor necrosis factor α (TNF-α) was firstly experimentally validated in molecular and cellular level. Results indicated that hypaconitine, mesaconitine, higenamine and quercetin in SND can directly bind to TNF-α, reduce the TNF-α-mediated cytotoxicity on L929 cells and exert anti-myocardial cell apoptosis effects. We envisage that network analysis will also be useful in target identification of a bioactive compound. PMID:27095146

  10. Survey statistics of automated segmentations applied to optical imaging of mammalian cells.

    PubMed

    Bajcsy, Peter; Cardone, Antonio; Chalfoun, Joe; Halter, Michael; Juba, Derek; Kociolek, Marcin; Majurski, Michael; Peskin, Adele; Simon, Carl; Simon, Mylene; Vandecreme, Antoine; Brady, Mary

    2015-10-15

    The goal of this survey paper is to overview cellular measurements using optical microscopy imaging followed by automated image segmentation. The cellular measurements of primary interest are taken from mammalian cells and their components. They are denoted as two- or three-dimensional (2D or 3D) image objects of biological interest. In our applications, such cellular measurements are important for understanding cell phenomena, such as cell counts, cell-scaffold interactions, cell colony growth rates, or cell pluripotency stability, as well as for establishing quality metrics for stem cell therapies. In this context, this survey paper is focused on automated segmentation as a software-based measurement leading to quantitative cellular measurements. We define the scope of this survey and a classification schema first. Next, all found and manually filteredpublications are classified according to the main categories: (1) objects of interests (or objects to be segmented), (2) imaging modalities, (3) digital data axes, (4) segmentation algorithms, (5) segmentation evaluations, (6) computational hardware platforms used for segmentation acceleration, and (7) object (cellular) measurements. Finally, all classified papers are converted programmatically into a set of hyperlinked web pages with occurrence and co-occurrence statistics of assigned categories. The survey paper presents to a reader: (a) the state-of-the-art overview of published papers about automated segmentation applied to optical microscopy imaging of mammalian cells, (b) a classification of segmentation aspects in the context of cell optical imaging, (c) histogram and co-occurrence summary statistics about cellular measurements, segmentations, segmented objects, segmentation evaluations, and the use of computational platforms for accelerating segmentation execution, and (d) open research problems to pursue. The novel contributions of this survey paper are: (1) a new type of classification of cellular measurements and automated segmentation, (2) statistics about the published literature, and (3) a web hyperlinked interface to classification statistics of the surveyed papers at https://isg.nist.gov/deepzoomweb/resources/survey/index.html.

  11. Laboratory models for central nervous system tumor stem cell research.

    PubMed

    Khan, Imad Saeed; Ehtesham, Moneeb

    2015-01-01

    Central nervous system (CNS) tumors are complex organ systems comprising of a neoplastic component with associated vasculature, inflammatory cells, and reactive cellular and extracellular components. Research has identified a subset of cells in CNS tumors that portray defining properties of neural stem cells, namely, that of self-renewal and multi-potency. Growing evidence suggests that these tumor stem cells (TSC) play an important role in the maintenance and growth of the tumor. Furthermore, these cells have also been shown to be refractory to conventional therapy and may be crucial for tumor recurrence and metastasis. Current investigations are focusing on isolating these TSC from CNS tumors to investigate their unique biological processes. This understanding will help identify and develop more effective and comprehensive treatment strategies. This chapter provides an overview of some of the most commonly used laboratory models for CNSTSC research.

  12. Extracellular Matrix Degradation and Remodeling in Development and Disease

    PubMed Central

    Lu, Pengfei; Takai, Ken; Weaver, Valerie M.; Werb, Zena

    2011-01-01

    The extracellular matrix (ECM) serves diverse functions and is a major component of the cellular microenvironment. The ECM is a highly dynamic structure, constantly undergoing a remodeling process where ECM components are deposited, degraded, or otherwise modified. ECM dynamics are indispensible during restructuring of tissue architecture. ECM remodeling is an important mechanism whereby cell differentiation can be regulated, including processes such as the establishment and maintenance of stem cell niches, branching morphogenesis, angiogenesis, bone remodeling, and wound repair. In contrast, abnormal ECM dynamics lead to deregulated cell proliferation and invasion, failure of cell death, and loss of cell differentiation, resulting in congenital defects and pathological processes including tissue fibrosis and cancer. Understanding the mechanisms of ECM remodeling and its regulation, therefore, is essential for developing new therapeutic interventions for diseases and novel strategies for tissue engineering and regenerative medicine. PMID:21917992

  13. Development of a pericardial acellular matrix biomaterial: biochemical and mechanical effects of cell extraction.

    PubMed

    Courtman, D W; Pereira, C A; Kashef, V; McComb, D; Lee, J M; Wilson, G J

    1994-06-01

    There is evidence to suggest that the cellular components of homografts and bioprosthetic xenografts may contribute to calcification or immunogenic reactions. A four-step detergent and enzymatic extraction process has been developed to remove cellular components from bovine pericardial tissue. The process results in an acellular matrix material consisting primarily of elastin, insoluble collagen, and tightly bound glycosaminoglycans. Light and electron microscopy confirmed that nearly all cellular constituents are removed without ultrastructural evidence of damage to fibrous components. Collagen denaturation temperatures remained unaltered. Biochemical analysis confirmed the retention of collagen and elastin and some differential extraction of glycosaminoglycans. Low strain rate fracture testing and high strain rate viscoelastic characterization showed that, with the exception of slightly increased stress relaxation, the mechanical properties of the fresh tissue were preserved in the pericardial acellular matrix. Crosslinking of the material in glutaraldehyde or poly(glycidyl ether) produced mechanical changes consistent with the same treatments of fresh tissue. The pericardial acellular matrix is a promising approach to the production of biomaterials for heart valve or cardiovascular patching applications.

  14. Body Fluids Monitor

    NASA Technical Reports Server (NTRS)

    Siconolfi, Steven F. (Inventor)

    2000-01-01

    Method and apparatus are described for determining volumes of body fluids in a subject using bioelectrical response spectroscopy. The human body is represented using an electrical circuit. Intra-cellular water is represented by a resistor in series with a capacitor; extra-cellular water is represented by a resistor in series with two parallel inductors. The parallel inductors represent the resistance due to vascular fluids. An alternating, low amperage, multifrequency signal is applied to determine a subject's impedance and resistance. From these data, statistical regression is used to determine a 1% impedance where the subject's impedance changes by no more than 1% over a 25 kHz interval. Circuit component, of the human body circuit are determined based on the 1% impedance. Equations for calculating total body water, extra-cellular water, total blood volume, and plasma volume are developed based on the circuit components.

  15. CellNetVis: a web tool for visualization of biological networks using force-directed layout constrained by cellular components.

    PubMed

    Heberle, Henry; Carazzolle, Marcelo Falsarella; Telles, Guilherme P; Meirelles, Gabriela Vaz; Minghim, Rosane

    2017-09-13

    The advent of "omics" science has brought new perspectives in contemporary biology through the high-throughput analyses of molecular interactions, providing new clues in protein/gene function and in the organization of biological pathways. Biomolecular interaction networks, or graphs, are simple abstract representations where the components of a cell (e.g. proteins, metabolites etc.) are represented by nodes and their interactions are represented by edges. An appropriate visualization of data is crucial for understanding such networks, since pathways are related to functions that occur in specific regions of the cell. The force-directed layout is an important and widely used technique to draw networks according to their topologies. Placing the networks into cellular compartments helps to quickly identify where network elements are located and, more specifically, concentrated. Currently, only a few tools provide the capability of visually organizing networks by cellular compartments. Most of them cannot handle large and dense networks. Even for small networks with hundreds of nodes the available tools are not able to reposition the network while the user is interacting, limiting the visual exploration capability. Here we propose CellNetVis, a web tool to easily display biological networks in a cell diagram employing a constrained force-directed layout algorithm. The tool is freely available and open-source. It was originally designed for networks generated by the Integrated Interactome System and can be used with networks from others databases, like InnateDB. CellNetVis has demonstrated to be applicable for dynamic investigation of complex networks over a consistent representation of a cell on the Web, with capabilities not matched elsewhere.

  16. The underlying pathway structure of biochemical reaction networks

    PubMed Central

    Schilling, Christophe H.; Palsson, Bernhard O.

    1998-01-01

    Bioinformatics is yielding extensive, and in some cases complete, genetic and biochemical information about individual cell types and cellular processes, providing the composition of living cells and the molecular structure of its components. These components together perform integrated cellular functions that now need to be analyzed. In particular, the functional definition of biochemical pathways and their role in the context of the whole cell is lacking. In this study, we show how the mass balance constraints that govern the function of biochemical reaction networks lead to the translation of this problem into the realm of linear algebra. The functional capabilities of biochemical reaction networks, and thus the choices that cells can make, are reflected in the null space of their stoichiometric matrix. The null space is spanned by a finite number of basis vectors. We present an algorithm for the synthesis of a set of basis vectors for spanning the null space of the stoichiometric matrix, in which these basis vectors represent the underlying biochemical pathways that are fundamental to the corresponding biochemical reaction network. In other words, all possible flux distributions achievable by a defined set of biochemical reactions are represented by a linear combination of these basis pathways. These basis pathways thus represent the underlying pathway structure of the defined biochemical reaction network. This development is significant from a fundamental and conceptual standpoint because it yields a holistic definition of biochemical pathways in contrast to definitions that have arisen from the historical development of our knowledge about biochemical processes. Additionally, this new conceptual framework will be important in defining, characterizing, and studying biochemical pathways from the rapidly growing information on cellular function. PMID:9539712

  17. Partial Resistance of Carrot to Alternaria dauci Correlates with In Vitro Cultured Carrot Cell Resistance to Fungal Exudates

    PubMed Central

    Voisine, Linda; Gatto, Julia; Hélesbeux, Jean-Jacques; Séraphin, Denis; Peña-Rodriguez, Luis M.; Richomme, Pascal; Boedo, Cora; Yovanopoulos, Claire; Gyomlai, Melvina; Briard, Mathilde; Simoneau, Philippe; Poupard, Pascal; Berruyer, Romain

    2014-01-01

    Although different mechanisms have been proposed in the recent years, plant pathogen partial resistance is still poorly understood. Components of the chemical warfare, including the production of plant defense compounds and plant resistance to pathogen-produced toxins, are likely to play a role. Toxins are indeed recognized as important determinants of pathogenicity in necrotrophic fungi. Partial resistance based on quantitative resistance loci and linked to a pathogen-produced toxin has never been fully described. We tested this hypothesis using the Alternaria dauci – carrot pathosystem. Alternaria dauci, causing carrot leaf blight, is a necrotrophic fungus known to produce zinniol, a compound described as a non-host selective toxin. Embryogenic cellular cultures from carrot genotypes varying in resistance against A. dauci were confronted with zinniol at different concentrations or to fungal exudates (raw, organic or aqueous extracts). The plant response was analyzed through the measurement of cytoplasmic esterase activity, as a marker of cell viability, and the differentiation of somatic embryos in cellular cultures. A differential response to toxicity was demonstrated between susceptible and partially resistant genotypes, with a good correlation noted between the resistance to the fungus at the whole plant level and resistance at the cellular level to fungal exudates from raw and organic extracts. No toxic reaction of embryogenic cultures was observed after treatment with the aqueous extract or zinniol used at physiological concentration. Moreover, we did not detect zinniol in toxic fungal extracts by UHPLC analysis. These results suggest that strong phytotoxic compounds are present in the organic extract and remain to be characterized. Our results clearly show that carrot tolerance to A. dauci toxins is one component of its partial resistance. PMID:24983469

  18. Microfluidics-Based in Vivo Mimetic Systems for the Study of Cellular Biology

    PubMed Central

    2015-01-01

    Conspectus The human body is a complex network of molecules, organelles, cells, tissues, and organs: an uncountable number of interactions and transformations interconnect all the system’s components. In addition to these biochemical components, biophysical components, such as pressure, flow, and morphology, and the location of all of these interactions play an important role in the human body. Technical difficulties have frequently limited researchers from observing cellular biology as it occurs within the human body, but some state-of-the-art analytical techniques have revealed distinct cellular behaviors that occur only in the context of the interactions. These types of findings have inspired bioanalytical chemists to provide new tools to better understand these cellular behaviors and interactions. What blocks us from understanding critical biological interactions in the human body? Conventional approaches are often too naïve to provide realistic data and in vivo whole animal studies give complex results that may or may not be relevant for humans. Microfluidics offers an opportunity to bridge these two extremes: while these studies will not model the complexity of the in vivo human system, they can control the complexity so researchers can examine critical factors of interest carefully and quantitatively. In addition, the use of human cells, such as cells isolated from donated blood, captures human-relevant data and limits the use of animals in research. In addition, researchers can adapt these systems easily and cost-effectively to a variety of high-end signal transduction mechanisms, facilitating high-throughput studies that are also spatially, temporally, or chemically resolved. These strengths should allow microfluidic platforms to reveal critical parameters in the human body and provide insights that will help with the translation of pharmacological advances to clinical trials. In this Account, we describe selected microfluidic innovations within the last 5 years that focus on modeling both biophysical and biochemical interactions in cellular communication, such as flow and cell–cell networks. We also describe more advanced systems that mimic higher level biological networks, such as organ on-a-chip and animal on-a-chip models. Since the first papers in the early 1990s, interest in the bioanalytical use of microfluidics has grown significantly. Advances in micro-/nanofabrication technology have allowed researchers to produce miniaturized, biocompatible assay platforms suitable for microfluidic studies in biochemistry and chemical biology. Well-designed microfluidic platforms can achieve quick, in vitro analyses on pico- and femtoliter volume samples that are temporally, spatially, and chemically resolved. In addition, controlled cell culture techniques using a microfluidic platform have produced biomimetic systems that allow researchers to replicate and monitor physiological interactions. Pioneering work has successfully created cell–fluid, cell–cell, cell–tissue, tissue–tissue, even organ-like level interfaces. Researchers have monitored cellular behaviors in these biomimetic microfluidic environments, producing validated model systems to understand human pathophysiology and to support the development of new therapeutics. PMID:24555566

  19. Microfluidics-based in vivo mimetic systems for the study of cellular biology.

    PubMed

    Kim, Donghyuk; Wu, Xiaojie; Young, Ashlyn T; Haynes, Christy L

    2014-04-15

    The human body is a complex network of molecules, organelles, cells, tissues, and organs: an uncountable number of interactions and transformations interconnect all the system's components. In addition to these biochemical components, biophysical components, such as pressure, flow, and morphology, and the location of all of these interactions play an important role in the human body. Technical difficulties have frequently limited researchers from observing cellular biology as it occurs within the human body, but some state-of-the-art analytical techniques have revealed distinct cellular behaviors that occur only in the context of the interactions. These types of findings have inspired bioanalytical chemists to provide new tools to better understand these cellular behaviors and interactions. What blocks us from understanding critical biological interactions in the human body? Conventional approaches are often too naïve to provide realistic data and in vivo whole animal studies give complex results that may or may not be relevant for humans. Microfluidics offers an opportunity to bridge these two extremes: while these studies will not model the complexity of the in vivo human system, they can control the complexity so researchers can examine critical factors of interest carefully and quantitatively. In addition, the use of human cells, such as cells isolated from donated blood, captures human-relevant data and limits the use of animals in research. In addition, researchers can adapt these systems easily and cost-effectively to a variety of high-end signal transduction mechanisms, facilitating high-throughput studies that are also spatially, temporally, or chemically resolved. These strengths should allow microfluidic platforms to reveal critical parameters in the human body and provide insights that will help with the translation of pharmacological advances to clinical trials. In this Account, we describe selected microfluidic innovations within the last 5 years that focus on modeling both biophysical and biochemical interactions in cellular communication, such as flow and cell-cell networks. We also describe more advanced systems that mimic higher level biological networks, such as organ on-a-chip and animal on-a-chip models. Since the first papers in the early 1990s, interest in the bioanalytical use of microfluidics has grown significantly. Advances in micro-/nanofabrication technology have allowed researchers to produce miniaturized, biocompatible assay platforms suitable for microfluidic studies in biochemistry and chemical biology. Well-designed microfluidic platforms can achieve quick, in vitro analyses on pico- and femtoliter volume samples that are temporally, spatially, and chemically resolved. In addition, controlled cell culture techniques using a microfluidic platform have produced biomimetic systems that allow researchers to replicate and monitor physiological interactions. Pioneering work has successfully created cell-fluid, cell-cell, cell-tissue, tissue-tissue, even organ-like level interfaces. Researchers have monitored cellular behaviors in these biomimetic microfluidic environments, producing validated model systems to understand human pathophysiology and to support the development of new therapeutics.

  20. [Effects of different trophic modes on growth characteristics, metabolism and cellular components of Chlorella vulgaris].

    PubMed

    Kong, Weibao; Wang, Yang; Yang, Hong; Xi, Yuqin; Han, Rui; Niu, Shiquan

    2015-03-04

    We studied the effects of trophic modes related to glucose and light (photoautotrophy, mixotrophy and heterotrophy) on growth, cellular components and carbon metabolic pathway of Chlorella vulgaris. The parameters about growth of algal cells were investigated by using spectroscopy and chromatography techniques. When trophic mode changed from photoautotrophy to mixotrophy and to heterotrophy successively, the concentrations of soluble sugar, lipid and saturated C16/C18 fatty acids in C. vulgaris increased, whereas the concentrations of unsaturated C16, C18 fatty acids, proteins, photosynthetic pigments and 18 relative amino acids decreased. Light and glucose affect the growth, metabolism and the biochemical components biosynthesis of C. vulgaris. Addition of glucose can promote algal biomass accumulation, stimulate the synthesis of carbonaceous components, but inhibit nitrogenous components. Under illumination cultivation, concentration and consumption level of glucose decided the main trophic modes of C. vulgaris. Mixotrophic and heterotrophic cultivation could promote the growth of algal cells.

  1. Neem components as potential agents for cancer prevention and treatment

    PubMed Central

    Hao, Fang; Kumar, Sandeep; Yadav, Neelu; Chandra, Dhyan

    2016-01-01

    Azadirachta indica, also known as neem, is commonly found in many semi-tropical and tropical countries including India, Pakistan, and Bangladesh. The components extracted from neem plant have been used in traditional medicine for the cure of multiple diseases including cancer for centuries. The extracts of seeds, leaves, flowers, and fruits of neem have consistently shown chemopreventive and antitumor effects in different types of cancer. Azadirachtin and nimbolide are among the few bioactive components in neem that have been studied extensively, but research on a great number of additional bioactive components is warranted. The key anticancer effects of neem components on malignant cells include inhibition of cell proliferation, induction of cell death, suppression of cancer angiogenesis, restoration of cellular reduction/oxidation (redox) balance, and enhancement of the host immune responses against tumor cells. While the underlying mechanisms of these effects are mostly unclear, the suppression of NF-κB signaling pathway is, at least partially, involved in the anticancer functions of neem components. Importantly, the anti-proliferative and apoptosis-inducing effects of neem components are tumor selective as the effects on normal cells are significantly weaker. In addition, neem extracts sensitize cancer cells to immunotherapy and radiotherapy, and enhance the efficacy of certain cancer chemotherapeutic agents. This review summarizes the current updates on the anticancer effects of neem components and their possible impact on managing cancer incidence and treatment. PMID:25016141

  2. Bridging the gap between modules in isolation and as part of networks: A systems framework for elucidating interaction and regulation of signalling modules

    NASA Astrophysics Data System (ADS)

    Menon, Govind; Krishnan, J.

    2016-07-01

    While signalling and biochemical modules have been the focus of numerous studies, they are typically studied in isolation, with no examination of the effects of the ambient network. In this paper we formulate and develop a systems framework, rooted in dynamical systems, to understand such effects, by studying the interaction of signalling modules. The modules we consider are (i) basic covalent modification, (ii) monostable switches, (iii) bistable switches, (iv) adaptive modules, and (v) oscillatory modules. We systematically examine the interaction of these modules by analyzing (a) sequential interaction without shared components, (b) sequential interaction with shared components, and (c) oblique interactions. Our studies reveal that the behaviour of a module in isolation may be substantially different from that in a network, and explicitly demonstrate how the behaviour of a given module, the characteristics of the ambient network, and the possibility of shared components can result in new effects. Our global approach illuminates different aspects of the structure and functioning of modules, revealing the importance of dynamical characteristics as well as biochemical features; this provides a methodological platform for investigating the complexity of natural modules shaped by evolution, elucidating the effects of ambient networks on a module in multiple cellular contexts, and highlighting the capabilities and constraints for engineering robust synthetic modules. Overall, such a systems framework provides a platform for bridging the gap between non-linear information processing modules, in isolation and as parts of networks, and a basis for understanding new aspects of natural and engineered cellular networks.

  3. Assessing the impact of case sensitivity and term information gain on biomedical concept recognition.

    PubMed

    Groza, Tudor; Verspoor, Karin

    2015-01-01

    Concept recognition (CR) is a foundational task in the biomedical domain. It supports the important process of transforming unstructured resources into structured knowledge. To date, several CR approaches have been proposed, most of which focus on a particular set of biomedical ontologies. Their underlying mechanisms vary from shallow natural language processing and dictionary lookup to specialized machine learning modules. However, no prior approach considers the case sensitivity characteristics and the term distribution of the underlying ontology on the CR process. This article proposes a framework that models the CR process as an information retrieval task in which both case sensitivity and the information gain associated with tokens in lexical representations (e.g., term labels, synonyms) are central components of a strategy for generating term variants. The case sensitivity of a given ontology is assessed based on the distribution of so-called case sensitive tokens in its terms, while information gain is modelled using a combination of divergence from randomness and mutual information. An extensive evaluation has been carried out using the CRAFT corpus. Experimental results show that case sensitivity awareness leads to an increase of up to 0.07 F1 against a non-case sensitive baseline on the Protein Ontology and GO Cellular Component. Similarly, the use of information gain leads to an increase of up to 0.06 F1 against a standard baseline in the case of GO Biological Process and Molecular Function and GO Cellular Component. Overall, subject to the underlying token distribution, these methods lead to valid complementary strategies for augmenting term label sets to improve concept recognition.

  4. Bridging the gap between modules in isolation and as part of networks: A systems framework for elucidating interaction and regulation of signalling modules.

    PubMed

    Menon, Govind; Krishnan, J

    2016-07-21

    While signalling and biochemical modules have been the focus of numerous studies, they are typically studied in isolation, with no examination of the effects of the ambient network. In this paper we formulate and develop a systems framework, rooted in dynamical systems, to understand such effects, by studying the interaction of signalling modules. The modules we consider are (i) basic covalent modification, (ii) monostable switches, (iii) bistable switches, (iv) adaptive modules, and (v) oscillatory modules. We systematically examine the interaction of these modules by analyzing (a) sequential interaction without shared components, (b) sequential interaction with shared components, and (c) oblique interactions. Our studies reveal that the behaviour of a module in isolation may be substantially different from that in a network, and explicitly demonstrate how the behaviour of a given module, the characteristics of the ambient network, and the possibility of shared components can result in new effects. Our global approach illuminates different aspects of the structure and functioning of modules, revealing the importance of dynamical characteristics as well as biochemical features; this provides a methodological platform for investigating the complexity of natural modules shaped by evolution, elucidating the effects of ambient networks on a module in multiple cellular contexts, and highlighting the capabilities and constraints for engineering robust synthetic modules. Overall, such a systems framework provides a platform for bridging the gap between non-linear information processing modules, in isolation and as parts of networks, and a basis for understanding new aspects of natural and engineered cellular networks.

  5. A Unique Fungal Two-Component System Regulates Stress Responses, Drug Sensitivity, Sexual Development, and Virulence of Cryptococcus neoformans

    PubMed Central

    Bahn, Yong-Sun; Kojima, Kaihei; Cox, Gary M.

    2006-01-01

    The stress-activated mitogen-activated protein kinase (MAPK) pathway is widely used by eukaryotic organisms as a central conduit via which cellular responses to the environment effect growth and differentiation. The basidiomycetous human fungal pathogen Cryptococcus neoformans uniquely uses the stress-activated Pbs2-Hog1 MAPK system to govern a plethora of cellular events, including stress responses, drug sensitivity, sexual reproduction, and virulence. Here, we characterized a fungal “two-component” system that controls these fundamental cellular functions via the Pbs2-Hog1 MAPK cascade. A typical response regulator, Ssk1, modulated all Hog1-dependent phenotypes by controlling Hog1 phosphorylation, indicating that Ssk1 is the major upstream signaling component of the Pbs2-Hog1 pathway. A second response regulator, Skn7, governs sensitivity to Na+ ions and the antifungal agent fludioxonil, negatively controls melanin production, and functions independently of Hog1 regulation. To control these response regulators, C. neoformans uses multiple sensor kinases, including two-component–like (Tco) 1 and Tco2. Tco1 and Tco2 play shared and distinct roles in stress responses and drug sensitivity through the Hog1 MAPK system. Furthermore, each sensor kinase mediates unique cellular functions for virulence and morphological differentiation. Our findings highlight unique adaptations of this global two-component MAPK signaling cascade in a ubiquitous human fungal pathogen. PMID:16672377

  6. Manifestation of the shape-memory effect in polyetherurethane cellular plastics, fabric composites, and sandwich structures under microgravity

    NASA Astrophysics Data System (ADS)

    Babaevskii, P. G.; Kozlov, N. A.; Agapov, I. G.; Reznichenko, G. M.; Churilo, N. V.; Churilo, I. V.

    2016-09-01

    The results of experiments that were performed to test the feasibility of creating sandwich structures (consisting of thin-layer sheaths of polymer composites and a cellular polymer core) with the shapememory effect as models of the transformable components of space structures have been given. The data obtained indicate that samples of sandwich structures under microgravity conditions on board the International Space Station have recovered their shape to almost the same degree as under terrestrial conditions, which makes it possible to recommend them for creating components of transformable space structures on their basis.

  7. The 19S proteasome activator promotes human cytomegalovirus immediate early gene expression through proteolytic and nonproteolytic mechanisms.

    PubMed

    Winkler, Laura L; Kalejta, Robert F

    2014-10-01

    Proteasomes are large, multisubunit complexes that support normal cellular activities by executing the bulk of protein turnover. During infection, many viruses have been shown to promote viral replication by using proteasomes to degrade cellular factors that restrict viral replication. For example, the human cytomegalovirus (HCMV) pp71 protein induces the proteasomal degradation of Daxx, a cellular transcriptional repressor that can silence viral immediate early (IE) gene expression. We previously showed that this degradation requires both the proteasome catalytic 20S core particle (CP) and the 19S regulatory particle (RP). The 19S RP associates with the 20S CP to facilitate protein degradation but also plays a 20S CP-independent role promoting transcription. Here, we present a nonproteolytic role of the 19S RP in HCMV IE gene expression. We demonstrate that 19S RP subunits are recruited to the major immediate early promoter (MIEP) that directs IE transcription. Depletion of 19S RP subunits generated a defect in RNA polymerase II elongation through the MIE locus during HCMV infection. Our results reveal that HCMV commandeers proteasome components for both proteolytic and nonproteolytic roles to promote HCMV lytic infection. Importance: Proteasome inhibitors decrease or eliminate 20S CP activity and are garnering increasing interest as chemotherapeutics. However, an increasing body of evidence implicates 19S RP subunits in important proteolytic-independent roles during transcription. Thus, pharmacological inhibition of the 20S CP as a means to modulate proteasome function toward therapeutic effect is an incomplete capitalization on the potential of this approach. Here, we provide an additional example of nonproteolytic 19S RP function in promoting HCMV transcription. These data provide a novel system with which to study the roles of different proteasome components during transcription, a rationale for previously described shifts in 19S RP subunit localization during HCMV infection, and a potential therapeutic intervention point at a pre-immediate early stage for the inhibition of HCMV infection. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  8. Chemical Blistering: Cellular and Macromolecular Components

    DTIC Science & Technology

    1984-11-15

    accumulation of fluid appears to Sbe secondary to fundamental damage to cellular structures (1). As noted by Warthin and Weller (2) and by Sinclair (3...Medicine. fT. P. Fitzpatrick, A. Z. Eisen, K. Wolff, I. M. Freedberg and K. F. Austen, Eds.) McGraw-Hill, New York, pp. 287-294). 2.’ Warthin , A. S., and

  9. Membrane fluidity controls redox-regulated cold stress responses in cyanobacteria.

    PubMed

    Maksimov, Eugene G; Mironov, Kirill S; Trofimova, Marina S; Nechaeva, Natalya L; Todorenko, Daria A; Klementiev, Konstantin E; Tsoraev, Georgy V; Tyutyaev, Eugene V; Zorina, Anna A; Feduraev, Pavel V; Allakhverdiev, Suleyman I; Paschenko, Vladimir Z; Los, Dmitry A

    2017-09-01

    Membrane fluidity is the important regulator of cellular responses to changing ambient temperature. Bacteria perceive cold by the transmembrane histidine kinases that sense changes in thickness of the cytoplasmic membrane due to its rigidification. In the cyanobacterium Synechocystis, about a half of cold-responsive genes is controlled by the light-dependent transmembrane histidine kinase Hik33, which also partially controls the responses to osmotic, salt, and oxidative stress. This implies the existence of some universal, but yet unknown signal that triggers adaptive gene expression in response to various stressors. Here we selectively probed the components of photosynthetic machinery and functionally characterized the thermodynamics of cyanobacterial photosynthetic membranes with genetically altered fluidity. We show that the rate of oxidation of the quinone pool (PQ), which interacts with both photosynthetic and respiratory electron transport chains, depends on membrane fluidity. Inhibitor-induced stimulation of redox changes in PQ triggers cold-induced gene expression. Thus, the fluidity-dependent changes in the redox state of PQ may universally trigger cellular responses to stressors that affect membrane properties.

  10. Distinct role of IL-1β in instigating disease in Sharpincpdm mice

    PubMed Central

    Gurung, Prajwal; Sharma, Bhesh Raj; Kanneganti, Thirumala-Devi

    2016-01-01

    Mice deficient in SHARPIN (Sharpincpdm mice), a member of linear ubiquitin chain assembly complex (LUBAC), develop severe dermatitis associated with systemic inflammation. Previous studies have demonstrated that components of the TNF-signaling pathway, NLRP3 inflammasome and IL-1R signaling are required to provoke skin inflammation in Sharpincpdm mice. However, whether IL-1α or IL-1β, both of which signals through IL-1R, instigates skin inflammation and systemic disease is not known. Here, we have performed extensive cellular analysis of pre-diseased and diseased Sharpincpdm mice and demonstrated that cellular dysregulation precedes skin inflammation. Furthermore, we demonstrate a specific role for IL-1β, but not IL-1α, in instigating dermatitis in Sharpincpdm mice. Our results altogether demonstrate distinct roles of SHARPIN in initiating systemic inflammation and dermatitis. Furthermore, skin inflammation in Sharpincpdm mice is specifically modulated by IL-1β, highlighting the importance of specific targeted therapies in the IL-1 signaling blockade. PMID:27892465

  11. Quantitative imaging assay for NF-κB nuclear translocation in primary human macrophages

    PubMed Central

    Noursadeghi, Mahdad; Tsang, Jhen; Haustein, Thomas; Miller, Robert F.; Chain, Benjamin M.; Katz, David R.

    2008-01-01

    Quantitative measurement of NF-κB nuclear translocation is an important research tool in cellular immunology. Established methodologies have a number of limitations, such as poor sensitivity, high cost or dependence on cell lines. Novel imaging methods to measure nuclear translocation of transcriptionally active components of NF-κB are being used but are also partly limited by the need for specialist imaging equipment or image analysis software. Herein we present a method for quantitative detection of NF-κB rel A nuclear translocation, using immunofluorescence microscopy and the public domain image analysis software ImageJ that can be easily adopted for cellular immunology research without the need for specialist image analysis expertise and at low cost. The method presented here is validated by demonstrating the time course and dose response of NF-κB nuclear translocation in primary human macrophages stimulated with LPS, and by comparison with a commercial NF-κB activation reporter cell line. PMID:18036607

  12. ON THE BIOMECHANICS OF HEART VALVE FUNCTION

    PubMed Central

    Sacks, Michael S.; Merryman, W. David; Schmidt, David E.

    2009-01-01

    Heart valves (HVs) are fluidic control components of the heart that ensure unidirectional blood flow during the cardiac cycle. However, this description does not adequately describe the biomechanical ramifications of their function in that their mechanics are multi-modal. Moreover, they must replicate their cyclic function over an entire lifetime, with an estimated total functional demand of least 3×109 cycles. The focus of the present review is on the functional biomechanics of heart valves. Thus, the focus of the present review is on functional biomechanics, referring primarily to biosolid as well as several key biofluid mechanical aspects underlying heart valve physiological function. Specifically, we refer to the mechanical behaviors of the extra-cellular matrix structural proteins, underlying cellular function, and their integrated relation to the major aspects of valvular hemodynamic function. While we focus on the work from the author’s laboratories, relevant works of other investigators have been included whenever appropriate. We conclude with a summary of important future trends. PMID:19540499

  13. Chronic enrichment of hepatic endoplasmic reticulum-mitochondria contact leads to mitochondrial dysfunction in obesity.

    PubMed

    Arruda, Ana Paula; Pers, Benedicte M; Parlakgül, Güneş; Güney, Ekin; Inouye, Karen; Hotamisligil, Gökhan S

    2014-12-01

    Proper function of the endoplasmic reticulum (ER) and mitochondria is crucial for cellular homeostasis, and dysfunction at either site has been linked to pathophysiological states, including metabolic diseases. Although the ER and mitochondria play distinct cellular roles, these organelles also form physical interactions with each other at sites defined as mitochondria-associated ER membranes (MAMs), which are essential for calcium, lipid and metabolite exchange. Here we show that in the liver, obesity leads to a marked reorganization of MAMs resulting in mitochondrial calcium overload, compromised mitochondrial oxidative capacity and augmented oxidative stress. Experimental induction of ER-mitochondria interactions results in oxidative stress and impaired metabolic homeostasis, whereas downregulation of PACS-2 or IP3R1, proteins important for ER-mitochondria tethering or calcium transport, respectively, improves mitochondrial oxidative capacity and glucose metabolism in obese animals. These findings establish excessive ER-mitochondrial coupling as an essential component of organelle dysfunction in obesity that may contribute to the development of metabolic pathologies such as insulin resistance and diabetes.

  14. Chaperone turns gatekeeper: PCBP2 and DMT1 form an iron-transport pipeline.

    PubMed

    Lane, Darius J R; Richardson, Des R

    2014-08-15

    How is cellular iron (Fe) uptake and efflux regulated in mammalian cells? In this issue of the Biochemical Journal, Yanatori et al. report for the first time that a member of the emerging PCBP [poly(rC)-binding protein] Fe-chaperone family, PCBP2, physically interacts with the major Fe importer DMT1 (divalent metal transporter 1) and the Fe exporter FPN1 (ferroportin 1). In both cases, the interaction of the Fe transporter with PCBP2 is Fe-dependent. Interestingly, another PCBP Fe-chaperone, PCBP1, does not appear to bind to DMT1. Strikingly, the PCBP2-DMT1 interaction is required for DMT1-dependent cellular Fe uptake, suggesting that, in addition to functioning as an intracellular Fe chaperone, PCBP2 may be a molecular 'gate- keeper' for transmembrane Fe transport. These new data hint at the possibility that PCBP2 may be a component of a yet-to-be-described Fe-transport metabolon that engages in Fe channelling to and from Fe transporters and intracellular sites.

  15. Autophagy response: manipulating the mTOR-controlled machinery by amino acids and pathogens.

    PubMed

    Fader, Claudio Marcelo; Aguilera, Milton Osmar; Colombo, María Isabel

    2015-10-01

    Macroautophagy is a self-degradative process that normally maintains cellular homeostasis via a lysosomal pathway. It is induced by different stress signals, including nutrients and growth factors' restriction as well as pathogen invasions. These stimuli are modulated by the serine/threonine protein kinase mammalian target of rapamycin (mTOR) which control not only autophagy but also protein translation and gene expression. This review focuses on the important role of mTOR as a master regulator of cell growth and the autophagy pathway. Here, we have discussed the role of intracellular amino acid availability and intracellular pH in the redistribution of autophagic structures, which may contribute to mammalian target of rapamycin complex 1 (mTORC1) activity regulation. We have also discussed that mTORC1 complex and components of the autophagy machinery are localized at the lysosomal surface, representing a fascinating mechanism to control the metabolism, cellular clearance and also to restrain invading intracellular pathogens.

  16. Early patterning and specification of cardiac progenitors in gastrulating mesoderm

    PubMed Central

    Devine, W Patrick; Wythe, Joshua D; George, Matthew; Koshiba-Takeuchi, Kazuko; Bruneau, Benoit G

    2014-01-01

    Mammalian heart development requires precise allocation of cardiac progenitors. The existence of a multipotent progenitor for all anatomic and cellular components of the heart has been predicted but its identity and contribution to the two cardiac progenitor ‘fields’ has remained undefined. Here we show, using clonal genetic fate mapping, that Mesp1+ cells in gastrulating mesoderm are rapidly specified into committed cardiac precursors fated for distinct anatomic regions of the heart. We identify Smarcd3 as a marker of early specified cardiac precursors and identify within these precursors a compartment boundary at the future junction of the left and right ventricles that arises prior to morphogenesis. Our studies define the timing and hierarchy of cardiac progenitor specification and demonstrate that the cellular and anatomical fate of mesoderm-derived cardiac cells is specified very early. These findings will be important to understand the basis of congenital heart defects and to derive cardiac regeneration strategies. DOI: http://dx.doi.org/10.7554/eLife.03848.001 PMID:25296024

  17. Mutations in SMG9, Encoding an Essential Component of Nonsense-Mediated Decay Machinery, Cause a Multiple Congenital Anomaly Syndrome in Humans and Mice

    PubMed Central

    Shaheen, Ranad; Anazi, Shams; Ben-Omran, Tawfeg; Seidahmed, Mohammed Zain; Caddle, L. Brianna; Palmer, Kristina; Ali, Rehab; Alshidi, Tarfa; Hagos, Samya; Goodwin, Leslie; Hashem, Mais; Wakil, Salma M.; Abouelhoda, Mohamed; Colak, Dilek; Murray, Stephen A.; Alkuraya, Fowzan S.

    2016-01-01

    Nonsense-mediated decay (NMD) is an important process that is best known for degrading transcripts that contain premature stop codons (PTCs) to mitigate their potentially harmful consequences, although its regulatory role encompasses other classes of transcripts as well. Despite the critical role of NMD at the cellular level, our knowledge about the consequences of deficiency of its components at the organismal level is largely limited to model organisms. In this study, we report two consanguineous families in which a similar pattern of congenital anomalies was found to be most likely caused by homozygous loss-of-function mutations in SMG9, encoding an essential component of the SURF complex that generates phospho-UPF1, the single most important step in NMD. By knocking out Smg9 in mice via CRISPR/Cas9, we were able to recapitulate the major features of the SMG9-related multiple congenital anomaly syndrome we observed in humans. Surprisingly, human cells devoid of SMG9 do not appear to have reduction of PTC-containing transcripts but do display global transcriptional dysregulation. We conclude that SMG9 is required for normal human and murine development, most likely through a transcriptional regulatory role, the precise nature of which remains to be determined. PMID:27018474

  18. Capacity on wireless quantum cellular communication system

    NASA Astrophysics Data System (ADS)

    Zhou, Xiang-Zhen; Yu, Xu-Tao; Zhang, Zai-Chen

    2018-03-01

    Quantum technology is making excellent prospects in future communication networks. Entanglement generation and purification are two major components in quantum networks. Combining these two techniques with classical cellular mobile communication, we proposed a novel wireless quantum cellular(WQC) communication system which is possible to realize commercial mobile quantum communication. In this paper, the architecture and network topology of WQC communication system are discussed, the mathematical model of WQC system is extracted and the serving capacity, indicating the ability to serve customers, is defined and calculated under certain circumstances.

  19. Pericentrin in cellular function and disease

    PubMed Central

    Delaval, Benedicte

    2010-01-01

    Pericentrin is an integral component of the centrosome that serves as a multifunctional scaffold for anchoring numerous proteins and protein complexes. Through these interactions, pericentrin contributes to a diversity of fundamental cellular processes. Recent studies link pericentrin to a growing list of human disorders. Studies on pericentrin at the cellular, molecular, and, more recently, organismal level, provide a platform for generating models to elucidate the etiology of these disorders. Although the complexity of phenotypes associated with pericentrin-mediated disorders is somewhat daunting, insights into the cellular basis of disease are beginning to come into focus. In this review, we focus on human conditions associated with loss or elevation of pericentrin and propose cellular and molecular models that might explain them. PMID:19951897

  20. Metadata Standard and Data Exchange Specifications to Describe, Model, and Integrate Complex and Diverse High-Throughput Screening Data from the Library of Integrated Network-based Cellular Signatures (LINCS).

    PubMed

    Vempati, Uma D; Chung, Caty; Mader, Chris; Koleti, Amar; Datar, Nakul; Vidović, Dušica; Wrobel, David; Erickson, Sean; Muhlich, Jeremy L; Berriz, Gabriel; Benes, Cyril H; Subramanian, Aravind; Pillai, Ajay; Shamu, Caroline E; Schürer, Stephan C

    2014-06-01

    The National Institutes of Health Library of Integrated Network-based Cellular Signatures (LINCS) program is generating extensive multidimensional data sets, including biochemical, genome-wide transcriptional, and phenotypic cellular response signatures to a variety of small-molecule and genetic perturbations with the goal of creating a sustainable, widely applicable, and readily accessible systems biology knowledge resource. Integration and analysis of diverse LINCS data sets depend on the availability of sufficient metadata to describe the assays and screening results and on their syntactic, structural, and semantic consistency. Here we report metadata specifications for the most important molecular and cellular components and recommend them for adoption beyond the LINCS project. We focus on the minimum required information to model LINCS assays and results based on a number of use cases, and we recommend controlled terminologies and ontologies to annotate assays with syntactic consistency and semantic integrity. We also report specifications for a simple annotation format (SAF) to describe assays and screening results based on our metadata specifications with explicit controlled vocabularies. SAF specifically serves to programmatically access and exchange LINCS data as a prerequisite for a distributed information management infrastructure. We applied the metadata specifications to annotate large numbers of LINCS cell lines, proteins, and small molecules. The resources generated and presented here are freely available. © 2014 Society for Laboratory Automation and Screening.

  1. Epidermal Homeostasis and Radiation Responses in a Multiscale Tissue Modeling Framework

    NASA Technical Reports Server (NTRS)

    Hu, Shaowen; Cucinotta, Francis A.

    2013-01-01

    The surface of skin is lined with several thin layers of epithelial cells that are maintained throughout life time by a small population of stem cells. High dose radiation exposures could injure and deplete the underlying proliferative cells and induce cutaneous radiation syndrome. In this work we propose a multiscale computational model for skin epidermal dynamics that links phenomena occurring at the subcellular, cellular, and tissue levels of organization, to simulate the experimental data of the radiation response of swine epidermis, which is closely similar to human epidermis. Incorporating experimentally measured histological and cell kinetic parameters, we obtain results of population kinetics and proliferation indexes comparable to observations in unirradiated and acutely irradiated swine experiments. At the sub-cellular level, several recently published Wnt signaling controlled cell-cycle models are applied and the roles of key components and parameters are analyzed. Based on our simulation results, we demonstrate that a moderate increase of proliferation rate for the survival proliferative cells is sufficient to fully repopulate the area denuded by high dose radiation, as long as the integrity of underlying basement membrane is maintained. Our work highlights the importance of considering proliferation kinetics as well as the spatial organization of tissues when conducting in vivo investigations of radiation responses. This integrated model allow us to test the validity of several basic biological rules at the cellular level and sub-cellular mechanisms by qualitatively comparing simulation results with published research, and enhance our understanding of the pathophysiological effects of ionizing radiation on skin.

  2. Cationic liposome/DNA complexes: from structure to interactions with cellular membranes.

    PubMed

    Caracciolo, Giulio; Amenitsch, Heinz

    2012-10-01

    Gene-based therapeutic approaches are based upon the concept that, if a disease is caused by a mutation in a gene, then adding back the wild-type gene should restore regular function and attenuate the disease phenotype. To deliver the gene of interest, both viral and nonviral vectors are used. Viruses are efficient, but their application is impeded by detrimental side-effects. Among nonviral vectors, cationic liposomes are the most promising candidates for gene delivery. They form stable complexes with polyanionic DNA (lipoplexes). Despite several advantages over viral vectors, the transfection efficiency (TE) of lipoplexes is too low compared with those of engineered viral vectors. This is due to lack of knowledge about the interactions between complexes and cellular components. Rational design of efficient lipoplexes therefore requires deeper comprehension of the interactions between the vector and the DNA as well as the cellular pathways and mechanisms involved. The importance of the lipoplex structure in biological function is revealed in the application of synchrotron small-angle X-ray scattering in combination with functional TE measurements. According to current understanding, the structure of lipoplexes can change upon interaction with cellular membranes and such changes affect the delivery efficiency. Recently, a correlation between the mechanism of gene release from complexes, the structure, and the physical and chemical parameters of the complexes has been established. Studies aimed at correlating structure and activity of lipoplexes are reviewed herein. This is a fundamental step towards rational design of highly efficient lipid gene vectors.

  3. Mitochondrial quality control and communications with the nucleus are important in maintaining mitochondrial function and cell health☆☆☆

    PubMed Central

    Kotiadis, Vassilios N.; Duchen, Michael R.; Osellame, Laura D.

    2014-01-01

    Background The maintenance of cell metabolism and homeostasis is a fundamental characteristic of living organisms. In eukaryotes, mitochondria are the cornerstone of these life supporting processes, playing leading roles in a host of core cellular functions, including energy transduction, metabolic and calcium signalling, and supporting roles in a number of biosynthetic pathways. The possession of a discrete mitochondrial genome dictates that the maintenance of mitochondrial ‘fitness’ requires quality control mechanisms which involve close communication with the nucleus. Scope of review This review explores the synergistic mechanisms that control mitochondrial quality and function and ensure cellular bioenergetic homeostasis. These include antioxidant defence mechanisms that protect against oxidative damage caused by reactive oxygen species, while regulating signals transduced through such free radicals. Protein homeostasis controls import, folding, and degradation of proteins underpinned by mechanisms that regulate bioenergetic capacity through the mitochondrial unfolded protein response. Autophagic machinery is recruited for mitochondrial turnover through the process of mitophagy. Mitochondria also communicate with the nucleus to exact specific transcriptional responses through retrograde signalling pathways. Major conclusions The outcome of mitochondrial quality control is not only reliant on the efficient operation of the core homeostatic mechanisms but also in the effective interaction of mitochondria with other cellular components, namely the nucleus. General significance Understanding mitochondrial quality control and the interactions between the organelle and the nucleus will be crucial in developing therapies for the plethora of diseases in which the pathophysiology is determined by mitochondrial dysfunction. This article is part of a Special Issue entitled Frontiers of Mitochondrial Research. PMID:24211250

  4. bantam miRNA is important for Drosophila blood cell homeostasis and a regulator of proliferation in the hematopoietic progenitor niche

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lam, Victoria; Tokusumi, Tsuyoshi; Tokusumi, Yumiko

    Highlights: • bantam miRNA is endogenously expressed in the hematopoietic progenitor niche. • bantam is necessary and sufficient to induce cellular proliferation in the PSC. • bantam is upstream of the Insulin Receptor signaling pathway. • A model for positive regulation of hematopoietic niche growth is proposed. - Abstract: The Drosophila hematopoietic system is utilized in this study to gain novel insights into the process of growth control of the hematopoietic progenitor niche in blood development. The niche microenvironment is an essential component controlling the balance between progenitor populations and differentiated, mature blood cells and has been shown to leadmore » to hematopoietic malignancies in humans when misregulated. MicroRNAs are one class of regulators associated with blood malignancies; however, there remains a relative paucity of information about the role of miRNAs in the niche. Here we demonstrate that bantam miRNA is endogenously active in the Drosophila hematopoietic progenitor niche, the posterior signaling center (PSC), and functions in the primary hematopoietic organ, the lymph gland, as a positive regulator of growth. Loss of bantam leads to a significant reduction in the PSC and overall lymph gland size, as well as a loss of the progenitor population and correlative premature differentiation of mature hemocytes. Interestingly, in addition to being essential for proper lymph gland development, we have determined bantam to be a novel upstream component of the insulin signaling cascade in the PSC and have unveiled dMyc as one factor central to bantam activity. These important findings identify bantam as a new hematopoietic regulator, place it in an evolutionarily conserved signaling pathway, present one way in which it is regulated, and provide a mechanism through which it facilitates cellular proliferation in the hematopoietic niche.« less

  5. Learning and evolution in bacterial taxis: an operational amplifier circuit modeling the computational dynamics of the prokaryotic 'two component system' protein network.

    PubMed

    Di Paola, Vieri; Marijuán, Pedro C; Lahoz-Beltra, Rafael

    2004-01-01

    Adaptive behavior in unicellular organisms (i.e., bacteria) depends on highly organized networks of proteins governing purposefully the myriad of molecular processes occurring within the cellular system. For instance, bacteria are able to explore the environment within which they develop by utilizing the motility of their flagellar system as well as a sophisticated biochemical navigation system that samples the environmental conditions surrounding the cell, searching for nutrients or moving away from toxic substances or dangerous physical conditions. In this paper we discuss how proteins of the intervening signal transduction network could be modeled as artificial neurons, simulating the dynamical aspects of the bacterial taxis. The model is based on the assumption that, in some important aspects, proteins can be considered as processing elements or McCulloch-Pitts artificial neurons that transfer and process information from the bacterium's membrane surface to the flagellar motor. This simulation of bacterial taxis has been carried out on a hardware realization of a McCulloch-Pitts artificial neuron using an operational amplifier. Based on the behavior of the operational amplifier we produce a model of the interaction between CheY and FliM, elements of the prokaryotic two component system controlling chemotaxis, as well as a simulation of learning and evolution processes in bacterial taxis. On the one side, our simulation results indicate that, computationally, these protein 'switches' are similar to McCulloch-Pitts artificial neurons, suggesting a bridge between evolution and learning in dynamical systems at cellular and molecular levels and the evolutive hardware approach. On the other side, important protein 'tactilizing' properties are not tapped by the model, and this suggests further complexity steps to explore in the approach to biological molecular computing.

  6. Physical and in silico approaches identify DNA-PK in a Tax DNA-damage response interactome

    PubMed Central

    Ramadan, Emad; Ward, Michael; Guo, Xin; Durkin, Sarah S; Sawyer, Adam; Vilela, Marcelo; Osgood, Christopher; Pothen, Alex; Semmes, Oliver J

    2008-01-01

    Background We have initiated an effort to exhaustively map interactions between HTLV-1 Tax and host cellular proteins. The resulting Tax interactome will have significant utility toward defining new and understanding known activities of this important viral protein. In addition, the completion of a full Tax interactome will also help shed light upon the functional consequences of these myriad Tax activities. The physical mapping process involved the affinity isolation of Tax complexes followed by sequence identification using tandem mass spectrometry. To date we have mapped 250 cellular components within this interactome. Here we present our approach to prioritizing these interactions via an in silico culling process. Results We first constructed an in silico Tax interactome comprised of 46 literature-confirmed protein-protein interactions. This number was then reduced to four Tax-interactions suspected to play a role in DNA damage response (Rad51, TOP1, Chk2, 53BP1). The first-neighbor and second-neighbor interactions of these four proteins were assembled from available human protein interaction databases. Through an analysis of betweenness and closeness centrality measures, and numbers of interactions, we ranked proteins in the first neighborhood. When this rank list was compared to the list of physical Tax-binding proteins, DNA-PK was the highest ranked protein common to both lists. An overlapping clustering of the Tax-specific second-neighborhood protein network showed DNA-PK to be one of three bridge proteins that link multiple clusters in the DNA damage response network. Conclusion The interaction of Tax with DNA-PK represents an important biological paradigm as suggested via consensus findings in vivo and in silico. We present this methodology as an approach to discovery and as a means of validating components of a consensus Tax interactome. PMID:18922151

  7. Imaging analysis of nuclear antiviral factors through direct detection of incoming adenovirus genome complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Komatsu, Tetsuro; Department of Infection Biology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575; Will, Hans

    2016-04-22

    Recent studies involving several viral systems have highlighted the importance of cellular intrinsic defense mechanisms through nuclear antiviral proteins that restrict viral propagation. These factors include among others components of PML nuclear bodies, the nuclear DNA sensor IFI16, and a potential restriction factor PHF13/SPOC1. For several nuclear replicating DNA viruses, it was shown that these factors sense and target viral genomes immediately upon nuclear import. In contrast to the anticipated view, we recently found that incoming adenoviral genomes are not targeted by PML nuclear bodies. Here we further explored cellular responses against adenoviral infection by focusing on specific conditions asmore » well as additional nuclear antiviral factors. In line with our previous findings, we show that neither interferon treatment nor the use of specific isoforms of PML nuclear body components results in co-localization between incoming adenoviral genomes and the subnuclear domains. Furthermore, our imaging analyses indicated that neither IFI16 nor PHF13/SPOC1 are likely to target incoming adenoviral genomes. Thus our findings suggest that incoming adenoviral genomes may be able to escape from a large repertoire of nuclear antiviral mechanisms, providing a rationale for the efficient initiation of lytic replication cycle. - Highlights: • Host nuclear antiviral factors were analyzed upon adenovirus genome delivery. • Interferon treatments fail to permit PML nuclear bodies to target adenoviral genomes. • Neither Sp100A nor B targets adenoviral genomes despite potentially opposite roles. • The nuclear DNA sensor IFI16 does not target incoming adenoviral genomes. • PHF13/SPOC1 targets neither incoming adenoviral genomes nor genome-bound protein VII.« less

  8. Hippo Signaling: Key Emerging Pathway in Cellular and Whole-Body Metabolism.

    PubMed

    Ardestani, Amin; Lupse, Blaz; Maedler, Kathrin

    2018-05-05

    The evolutionarily conserved Hippo pathway is a key regulator of organ size and tissue homeostasis. Its dysregulation is linked to multiple pathological disorders. In addition to regulating development and growth, recent studies show that Hippo pathway components such as MST1/2 and LATS1/2 kinases, as well as YAP/TAZ transcriptional coactivators, are regulated by metabolic pathways and that the Hippo pathway controls metabolic processes at the cellular and organismal levels in physiological and metabolic disease states such as obesity, type 2 diabetes (T2D), nonalcoholic fatty liver disease (NAFLD), cardiovascular disorders, and cancer. In this review we summarize the connection between key Hippo components and metabolism, and how this interplay regulates cellular metabolism and metabolic pathways. The emerging function of Hippo in the regulation of metabolic homeostasis under physiological and pathological conditions is highlighted. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Feline leukemia virus infection requires a post-receptor binding envelope-dependent cellular component.

    PubMed

    Hussain, Naveen; Thickett, Kelly R; Na, Hong; Leung, Cherry; Tailor, Chetankumar S

    2011-12-01

    Gammaretrovirus receptors have been suggested to contain the necessary determinants to mediate virus binding and entry. Here, we show that murine NIH 3T3 and baby hamster kidney (BHK) cells overexpressing receptors for subgroup A, B, and C feline leukemia viruses (FeLVs) are weakly susceptible (10(1) to 10(2) CFU/ml) to FeLV pseudotype viruses containing murine leukemia virus (MLV) core (Gag-Pol) proteins, whereas FeLV receptor-expressing murine Mus dunni tail fibroblast (MDTF) cells are highly susceptible (10(4) to 10(6) CFU/ml). However, NIH 3T3 cells expressing the FeLV subgroup B receptor PiT1 are highly susceptible to gibbon ape leukemia virus pseudotype virus, which differs from the FeLV pseudotype viruses only in the envelope protein. FeLV resistance is not caused by a defect in envelope binding, low receptor expression levels, or N-linked glycosylation. Resistance is not alleviated by substitution of the MLV core in the FeLV pseudotype virus with FeLV core proteins. Interestingly, FeLV resistance is alleviated by fusion of receptor-expressing NIH 3T3 and BHK cells with MDTF or human TE671 cells, suggesting the absence of an additional cellular component in NIH 3T3 and BHK cells that is required for FeLV infection. The putative FeLV-specific cellular component is not a secreted factor, as MDTF conditioned medium does not alleviate the block to FeLV infection. Together, our findings suggest that FeLV infection requires an additional envelope-dependent cellular component that is absent in NIH 3T3 and BHK cells but that is present in MDTF and TE671 cells.

  10. Cellular Precipitates Of Iron Oxide in Olivine in a Stratospheric Interplanetary Dust Particle

    NASA Technical Reports Server (NTRS)

    Rietmeijer, Frans J. M.

    1996-01-01

    The petrology of a massive olivine-sulphide interplanetary dust particle shows melting of Fe,Ni-sulphide plus complete loss of sulphur and subsequent quenching to a mixture of iron-oxides and Fe,Ni-metal. Oxidation of the fayalite component in olivine produced maghemite discs and cellular intergrowths with olivine and rare andradite-rich garnet. Cellular reactions require no long-range solid-state diffusion and are kinetically favourable during pyrometamorphic oxidation. Local melting of the cellular intergrowths resulted in three dimensional symplectic textures. Dynamic pyrometamorphism of this asteroidal particle occurred at approx. 1100 C during atmospheric entry flash (5-15 s) heating.

  11. Scleroderma pathogenesis: a pivotal role for fibroblasts as effector cells

    PubMed Central

    2013-01-01

    Scleroderma (systemic sclerosis; SSc) is characterised by fibrosis of the skin and internal organs in the context of autoimmunity and vascular perturbation. Overproduction of extracellular matrix components and loss of specialised epithelial structures are analogous to the process of scar formation after tissue injury. Fibroblasts are the resident cells of connective tissue that become activated at sites of damage and are likely to be important effector cells in SSc. Differentiation into myofibroblasts is a hallmark process, although the mechanisms and cellular origins of this important fibroblastic cell are still unclear. This article reviews fibroblast biology in the context of SSc and highlights the potentially important place of fibroblast effector cells in fibrosis. Moreover, the heterogeneity of fibroblast properties, multiplicity of regulatory pathways and diversity of origin for myofibroblasts may underpin clinical diversity in SSc, and provide novel avenues for targeted therapy. PMID:23796020

  12. Isoforms, structures, and functions of versatile spectraplakin MACF1.

    PubMed

    Hu, Lifang; Su, Peihong; Li, Runzhi; Yin, Chong; Zhang, Yan; Shang, Peng; Yang, Tuanmin; Qian, Airong

    2016-01-01

    Spectraplakins are crucially important communicators, linking cytoskeletal components to each other and cellular junctions. Microtubule actin crosslinking factor 1 (MACF1), also known as actin crosslinking family 7 (ACF7), is a member of the spectraplakin family. It is expressed in numerous tissues and cells as one extensively studied spectraplakin. MACF1 has several isoforms with unique structures and well-known function to be able to crosslink F-actin and microtubules. MACF1 is one versatile spectraplakin with various functions in cell processes, embryo development, tissue-specific functions, and human diseases. The importance of MACF1 has become more apparent in recent years. Here, we summarize the current knowledge on the presence and function of MACF1 and provide perspectives on future research of MACF1 based on our studies and others.

  13. Receptor-mediated endocytosis generates nanomechanical force reflective of ligand identity and cellular property.

    PubMed

    Zhang, Xiao; Ren, Juan; Wang, Jingren; Li, Shixie; Zou, Qingze; Gao, Nan

    2018-08-01

    Whether environmental (thermal, chemical, and nutrient) signals generate quantifiable, nanoscale, mechanophysical changes in the cellular plasma membrane has not been well elucidated. Assessment of such mechanophysical properties of plasma membrane may shed lights on fundamental cellular process. Atomic force microscopic (AFM) measurement of the mechanical properties of live cells was hampered by the difficulty in accounting for the effects of the cantilever motion and the associated hydrodynamic force on the mechanical measurement. These challenges have been addressed in our recently developed control-based AFM nanomechanical measurement protocol, which enables a fast, noninvasive, broadband measurement of the real-time changes in plasma membrane elasticity in live cells. Here we show using this newly developed AFM platform that the plasma membrane of live mammalian cells exhibits a constant and quantifiable nanomechanical property, the membrane elasticity. This mechanical property sensitively changes in response to environmental factors, such as the thermal, chemical, and growth factor stimuli. We demonstrate that different chemical inhibitors of endocytosis elicit distinct changes in plasma membrane elastic modulus reflecting their specific molecular actions on the lipid configuration or the endocytic machinery. Interestingly, two different growth factors, EGF and Wnt3a, elicited distinct elastic force profiles revealed by AFM at the plasma membrane during receptor-mediated endocytosis. By applying this platform to genetically modified cells, we uncovered a previously unknown contribution of Cdc42, a key component of the cellular trafficking network, to EGF-stimulated endocytosis at plasma membrane. Together, this nanomechanical AFM study establishes an important foundation that is expandable and adaptable for investigation of cellular membrane evolution in response to various key extracellular signals. © 2017 Wiley Periodicals, Inc.

  14. Coupling biomechanics to a cellular level model: an approach to patient-specific image driven multi-scale and multi-physics tumor simulation.

    PubMed

    May, Christian P; Kolokotroni, Eleni; Stamatakos, Georgios S; Büchler, Philippe

    2011-10-01

    Modeling of tumor growth has been performed according to various approaches addressing different biocomplexity levels and spatiotemporal scales. Mathematical treatments range from partial differential equation based diffusion models to rule-based cellular level simulators, aiming at both improving our quantitative understanding of the underlying biological processes and, in the mid- and long term, constructing reliable multi-scale predictive platforms to support patient-individualized treatment planning and optimization. The aim of this paper is to establish a multi-scale and multi-physics approach to tumor modeling taking into account both the cellular and the macroscopic mechanical level. Therefore, an already developed biomodel of clinical tumor growth and response to treatment is self-consistently coupled with a biomechanical model. Results are presented for the free growth case of the imageable component of an initially point-like glioblastoma multiforme tumor. The composite model leads to significant tumor shape corrections that are achieved through the utilization of environmental pressure information and the application of biomechanical principles. Using the ratio of smallest to largest moment of inertia of the tumor material to quantify the effect of our coupled approach, we have found a tumor shape correction of 20% by coupling biomechanics to the cellular simulator as compared to a cellular simulation without preferred growth directions. We conclude that the integration of the two models provides additional morphological insight into realistic tumor growth behavior. Therefore, it might be used for the development of an advanced oncosimulator focusing on tumor types for which morphology plays an important role in surgical and/or radio-therapeutic treatment planning. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. In vivo cellular imaging with microscopes enabled by MEMS scanners

    NASA Astrophysics Data System (ADS)

    Ra, Hyejun

    High-resolution optical imaging plays an important role in medical diagnosis and biomedical research. Confocal microscopy is a widely used imaging method for obtaining cellular and sub-cellular images of biological tissue in reflectance and fluorescence modes. Its characteristic optical sectioning capability also enables three-dimensional (3-D) image reconstruction. However, its use has mostly been limited to excised tissues due to the requirement of high numerical aperture (NA) lenses for cellular resolution. Microscope miniaturization can enable in vivo imaging to make possible early cancer diagnosis and biological studies in the innate environment. In this dissertation, microscope miniaturization for in vivo cellular imaging is presented. The dual-axes confocal (DAC) architecture overcomes limitations of the conventional single-axis confocal (SAC) architecture to allow for miniaturization with high resolution. A microelectromechanical systems (MEMS) scanner is the central imaging component that is key in miniaturization of the DAC architecture. The design, fabrication, and characterization of the two-dimensional (2-D) MEMS scanner are presented. The gimbaled MEMS scanner is fabricated on a double silicon-on-insulator (SOI) wafer and is actuated by self-aligned vertical electrostatic combdrives. The imaging performance of the MEMS scanner in a DAC configuration is shown in a breadboard microscope setup, where reflectance and fluorescence imaging is demonstrated. Then, the MEMS scanner is integrated into a miniature DAC microscope. The whole imaging system is integrated into a portable unit for research in small animal models of human biology and disease. In vivo 3-D imaging is demonstrated on mouse skin models showing gene transfer and siRNA silencing. The siRNA silencing process is sequentially imaged in one mouse over time.

  16. Acute dyskerin depletion triggers cellular senescence and renders osteosarcoma cells resistant to genotoxic stress-induced apoptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Ping; Mobasher, Maral E.; Alawi, Faizan, E-mail: falawi@upenn.edu

    Highlights: • Dyskerin depletion triggers cellular senescence in U2OS osteosarcoma cells. • Dyskerin-depleted cells are resistant to apoptosis induced by genotoxic stress. • Chromatin relaxation sensitizes dyskerin-depleted cells to apoptosis. - Abstract: Dyskerin is a conserved, nucleolar RNA-binding protein implicated in an increasing array of fundamental cellular processes. Germline mutation in the dyskerin gene (DKC1) is the cause of X-linked dyskeratosis congenita (DC). Conversely, wild-type dyskerin is overexpressed in sporadic cancers, and high-levels may be associated with poor prognosis. It was previously reported that acute loss of dyskerin function via siRNA-mediated depletion slowed the proliferation of transformed cell lines. However,more » the mechanisms remained unclear. Using human U2OS osteosarcoma cells, we show that siRNA-mediated dyskerin depletion induced cellular senescence as evidenced by proliferative arrest, senescence-associated heterochromatinization and a senescence-associated molecular profile. Senescence can render cells resistant to apoptosis. Conversely, chromatin relaxation can reverse the repressive effects of senescence-associated heterochromatinization on apoptosis. To this end, genotoxic stress-induced apoptosis was suppressed in dyskerin-depleted cells. In contrast, agents that induce chromatin relaxation, including histone deacetylase inhibitors and the DNA intercalator chloroquine, sensitized dyskerin-depleted cells to apoptosis. Dyskerin is a core component of the telomerase complex and plays an important role in telomere homeostasis. Defective telomere maintenance resulting in premature senescence is thought to primarily underlie the pathogenesis of X-linked DC. Since U2OS cells are telomerase-negative, this leads us to conclude that loss of dyskerin function can also induce cellular senescence via mechanisms independent of telomere shortening.« less

  17. Network Analysis of Epidermal Growth Factor Signaling Using Integrated Genomic, Proteomic and Phosphorylation Data

    PubMed Central

    Waters, Katrina M.; Liu, Tao; Quesenberry, Ryan D.; Willse, Alan R.; Bandyopadhyay, Somnath; Kathmann, Loel E.; Weber, Thomas J.; Smith, Richard D.; Wiley, H. Steven; Thrall, Brian D.

    2012-01-01

    To understand how integration of multiple data types can help decipher cellular responses at the systems level, we analyzed the mitogenic response of human mammary epithelial cells to epidermal growth factor (EGF) using whole genome microarrays, mass spectrometry-based proteomics and large-scale western blots with over 1000 antibodies. A time course analysis revealed significant differences in the expression of 3172 genes and 596 proteins, including protein phosphorylation changes measured by western blot. Integration of these disparate data types showed that each contributed qualitatively different components to the observed cell response to EGF and that varying degrees of concordance in gene expression and protein abundance measurements could be linked to specific biological processes. Networks inferred from individual data types were relatively limited, whereas networks derived from the integrated data recapitulated the known major cellular responses to EGF and exhibited more highly connected signaling nodes than networks derived from any individual dataset. While cell cycle regulatory pathways were altered as anticipated, we found the most robust response to mitogenic concentrations of EGF was induction of matrix metalloprotease cascades, highlighting the importance of the EGFR system as a regulator of the extracellular environment. These results demonstrate the value of integrating multiple levels of biological information to more accurately reconstruct networks of cellular response. PMID:22479638

  18. Differential Proteome Analysis of a Flor Yeast Strain under Biofilm Formation

    PubMed Central

    Moreno-García, Jaime; Mauricio, Juan Carlos; Moreno, Juan; García-Martínez, Teresa

    2017-01-01

    Several Saccharomyces cerevisiae strains (flor yeasts) form a biofilm (flor velum) on the surface of Sherry wines after fermentation, when glucose is depleted. This flor velum is fundamental to biological aging of these particular wines. In this study, we identify abundant proteins in the formation of the biofilm of an industrial flor yeast strain. A database search to enrich flor yeast “biological process” and “cellular component” according to Gene Ontology Terminology (GO Terms) and, “pathways” was carried out. The most abundant proteins detected were largely involved in respiration, translation, stress damage prevention and repair, amino acid metabolism (glycine, isoleucine, leucine and arginine), glycolysis/gluconeogenesis and biosynthesis of vitamin B9 (folate). These proteins were located in cellular components as in the peroxisome, mitochondria, vacuole, cell wall and extracellular region; being these two last directly related with the flor formation. Proteins like Bgl2p, Gcv3p, Hyp2p, Mdh1p, Suc2p and Ygp1p were quantified in very high levels. This study reveals some expected processes and provides new and important information for the design of conditions and genetic constructions of flor yeasts for improving the cellular survival and, thus, to optimize biological aging of Sherry wine production. PMID:28350350

  19. Managing the cellular redox hub in photosynthetic organisms.

    PubMed

    Foyer, Christine H; Noctor, Graham

    2012-02-01

    Light-driven redox chemistry is a powerful source of redox signals that has a decisive input into transcriptional control within the cell nucleus. Like photosynthetic electron transport pathways, the respiratory electron transport chain exerts a profound control over gene function, in order to balance energy (reductant and ATP) supply with demand, while preventing excessive over-reduction or over-oxidation that would be adversely affect metabolism. Photosynthetic and respiratory redox chemistries are not merely housekeeping processes but they exert a controlling influence over every aspect of plant biology, participating in the control of gene transcription and translation, post-translational modifications and the regulation of assimilatory reactions, assimilate partitioning and export. The number of processes influenced by redox controls and signals continues to increase as do the components that are recognized participants in the associated signalling pathways. A step change in our understanding of the overall importance of the cellular redox hub to plant cells has occurred in recent years as the complexity of the management of the cellular redox hub in relation to metabolic triggers and environmental cues has been elucidated. This special issue describes aspects of redox regulation and signalling at the cutting edge of current research in this dynamic and rapidly expanding field. © 2011 Blackwell Publishing Ltd.

  20. Investigation of biochemical property changes in activation-induced CD 8 + T cell apoptosis using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Lee, Young Ju; Ahn, Hyung Joon; Lee, Gi-Ja; Jung, Gyeong Bok; Lee, Gihyun; Kim, Dohyun; Shin, Jae-Ho; Jin, Kyung-Hyun; Park, Hun-Kuk

    2015-07-01

    The study was to investigate the changes in biochemical properties of activated mature CD8+ T cells related to apoptosis at a molecular level. We confirmed the activation and apoptosis of CD8+ T cells by fluorescence-activated cell sorting and atomic force microscopy and then performed Raman spectral measurements on activated mature CD8+ T cells and cellular deoxyribose nucleic acid (DNA). In the activated mature CD8+ T cells, there were increases in protein spectra at 1002 and 1234 cm-1. In particular, to assess the apoptosis-related DNA spectral signatures, we investigated the spectra of the cellular DNA isolated from resting and activated mature CD8+ T cells. Raman spectra at 765 to 786 cm-1 and 1053 to 1087 cm-1 were decreased in activated mature DNA. In addition, we analyzed Raman spectrum using the multivariate statistical method including principal component analysis. Raman spectra of activated mature DNA are especially well-discriminated from those of resting DNA. Our findings regarding the biochemical and structural changes associated with apoptosis in activated mature T cells and cellular DNA according to Raman spectroscopy provide important insights into allospecific immune responses generated after organ transplantation, and may be useful for therapeutic manipulation of the immune response.

  1. Angiofibroma of soft tissue: clinicopathologic study of 2 cases of a recently characterized benign soft tissue tumor

    PubMed Central

    Zhao, Ming; Sun, Ke; Li, Changshui; Zheng, Jiangjiang; Yu, Jingjing; Jin, Jie; Xia, Wenping

    2013-01-01

    Angiofibroma of soft tissue is a very recently characterized, histologically distinctive benign mesenchymal neoplasm of unknown cellular origin composed of 2 principal components, the spindle cell component and very prominent stromal vasculatures. It usually occurs in middle-aged adults, with a female predominance. Herein, we describe the clinical and pathologic details of 2 other examples of this benign tumor. Both patients were middle-aged male and presented with a slow-growing, painless mass located in the deep-seated soft tissue of thigh and left posterior neck region, respectively. Grossly, both tumors were well-demarcated, partial encapsulated of a grayish-white color with firm consistence. Histologically, one case showed morphology otherwise identical to those have been described before, whereas the other case showed in areas being more cellular than most examples of this subtype tumor had, with the lesional cells frequently exhibiting short fascicular, vaguely storiform and occasionally swirling arrangements, which posed a challenging differential diagnosis. Immunostains performed on both tumors did not confirm any specific cell differentiation with lesional cells only reactive for vimentin and focally desmin and negative for all the other markers tested. This report serves to broaden the morphologic spectrum of angiofibroma of soft tumor. Awareness of this tumor is important to prevent misdiagnosis as other more aggressive soft tissue tumor. PMID:24133600

  2. Autophagy Regulatory Network - a systems-level bioinformatics resource for studying the mechanism and regulation of autophagy.

    PubMed

    Türei, Dénes; Földvári-Nagy, László; Fazekas, Dávid; Módos, Dezső; Kubisch, János; Kadlecsik, Tamás; Demeter, Amanda; Lenti, Katalin; Csermely, Péter; Vellai, Tibor; Korcsmáros, Tamás

    2015-01-01

    Autophagy is a complex cellular process having multiple roles, depending on tissue, physiological, or pathological conditions. Major post-translational regulators of autophagy are well known, however, they have not yet been collected comprehensively. The precise and context-dependent regulation of autophagy necessitates additional regulators, including transcriptional and post-transcriptional components that are listed in various datasets. Prompted by the lack of systems-level autophagy-related information, we manually collected the literature and integrated external resources to gain a high coverage autophagy database. We developed an online resource, Autophagy Regulatory Network (ARN; http://autophagy-regulation.org), to provide an integrated and systems-level database for autophagy research. ARN contains manually curated, imported, and predicted interactions of autophagy components (1,485 proteins with 4,013 interactions) in humans. We listed 413 transcription factors and 386 miRNAs that could regulate autophagy components or their protein regulators. We also connected the above-mentioned autophagy components and regulators with signaling pathways from the SignaLink 2 resource. The user-friendly website of ARN allows researchers without computational background to search, browse, and download the database. The database can be downloaded in SQL, CSV, BioPAX, SBML, PSI-MI, and in a Cytoscape CYS file formats. ARN has the potential to facilitate the experimental validation of novel autophagy components and regulators. In addition, ARN helps the investigation of transcription factors, miRNAs and signaling pathways implicated in the control of the autophagic pathway. The list of such known and predicted regulators could be important in pharmacological attempts against cancer and neurodegenerative diseases.

  3. Upon Infection the Cellular WD Repeat-containing Protein 5 (WDR5) Localizes to Cytoplasmic Inclusion Bodies and Enhances Measles Virus Replication.

    PubMed

    Ma, Dzwokai; George, Cyril X; Nomburg, Jason; Pfaller, Christian K; Cattaneo, Roberto; Samuel, Charles E

    2017-12-13

    Replication of negative-strand RNA viruses occurs in association with discrete cytoplasmic foci called inclusion bodies. Whereas inclusion bodies represent a prominent subcellular structure induced by viral infection, our knowledge of the cellular protein components involved in inclusion body formation and function is limited. Using measles virus-infected HeLa cells, we found that the WD repeat-containing protein 5 (WDR5), a subunit of histone H3 lysine 4 methyltransferases, was selectively recruited to virus-induced inclusion bodies. Furthermore, WDR5 was found in complexes containing viral proteins associated with RNA replication. WDR5 was not detected with mitochondria, stress granules, or other known secretory or endocytic compartments of infected cells. WDR5 deficiency decreased both viral protein production and infectious virus yields. Interferon production was modestly increased in WDR5 deficient cells. Thus, our study identifies WDR5 as a novel viral inclusion body-associated cellular protein and suggests a role for WDR5 in promoting viral replication. IMPORTANCE Measles virus is a human pathogen that remains a global concern with more than 100,000 measles-related deaths annually despite the availability of an effective vaccine. As measles continues to cause significant morbidity and mortality, understanding the virus-host interactions at the molecular level that affect virus replication efficiency is important for development and optimization of treatment procedures. Measles virus is an RNA virus that encodes six genes and replicates in the cytoplasm of infected cells in discrete cytoplasmic replication bodies, though little is known of the biochemical nature of these structures. Here we show that the cellular protein WDR5 is enriched in the cytoplasmic viral replication factories and enhances virus growth. WDR5-containing protein complex includes viral proteins responsible for viral RNA replication. Thus, we have identified WDR5 as a host factor that enhances the replication of measles virus. Copyright © 2017 American Society for Microbiology.

  4. The functional interplay between the HIF pathway and the ubiquitin system - more than a one-way road.

    PubMed

    Günter, Julia; Ruiz-Serrano, Amalia; Pickel, Christina; Wenger, Roland H; Scholz, Carsten C

    2017-07-15

    The hypoxia inducible factor (HIF) pathway and the ubiquitin system represent major cellular processes that are involved in the regulation of a plethora of cellular signaling pathways and tissue functions. The ubiquitin system controls the ubiquitination of proteins, which is the covalent linkage of one or several ubiquitin molecules to specific targets. This ubiquitination is catalyzed by approximately 1000 different E3 ubiquitin ligases and can lead to different effects, depending on the type of internal ubiquitin chain linkage. The best-studied function is the targeting of proteins for proteasomal degradation. The activity of E3 ligases is antagonized by proteins called deubiquitinases (or deubiquitinating enzymes), which negatively regulate ubiquitin chains. This is performed in most cases by the catalytic removal of these chains from the targeted protein. The HIF pathway is regulated in an oxygen-dependent manner by oxygen-sensing hydroxylases. Covalent modification of HIFα subunits leads to the recruitment of an E3 ligase complex via the von Hippel-Lindau (VHL) protein and the subsequent polyubiquitination and proteasomal degradation of HIFα subunits, demonstrating the regulation of the HIF pathway by the ubiquitin system. This unidirectional effect of an E3 ligase on the HIF pathway is the best-studied example for the interplay between these two important cellular processes. However, additional regulatory mechanisms of the HIF pathway through the ubiquitin system are emerging and, more recently, also the reciprocal regulation of the ubiquitin system through components of the HIF pathway. Understanding these mechanisms and their relevance for the activity of each other is of major importance for the comprehensive elucidation of the oxygen-dependent regulation of cellular processes. This review describes the current knowledge of the functional bidirectional interplay between the HIF pathway and the ubiquitin system on the protein level. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Protein components of the microRNA pathway and human diseases

    PubMed Central

    Perron, Marjorie P.; Provost, Patrick

    2010-01-01

    Summary MicroRNAs (miRNAs) are key regulators of messenger RNA (mRNA) translation known to be involved in a wide variety of cellular processes. In fact, their individual importance is reflected in the diseases that may arise upon the loss, mutation or dysfunction of specific miRNAs. It has been appreciated only recently that diseases may also develop when the protein components of the miRNA machinery itself are affected. The core enzymes of the major protein complexes involved in miRNA biogenesis and function, such as the ribonucleases III (RNases III) Drosha and Dicer as well as Argonaute 2 (Ago2), appear to be essential. However, the accessory proteins of the miRNA pathway, such as the DiGeorge syndrome critical region gene 8 (DGCR8) protein, Exportin-5 (Exp-5), TAR RNA binding protein (TRBP) and Fragile X mental retardation protein (FMRP), are each related, in various ways, to specific genetic diseases. PMID:19301657

  6. The Role of Biologically Active Ingredients from Chinese Herbal Medicines in the Regulation of Autophagy in Treating Cardiovascular Diseases and Other Chronic Diseases.

    PubMed

    Li, Jie; Gao, Yonghong; Ren, Xiaomeng; Li, Yanda; Wu, Lijun; Yang, Xinyu; Wang, Jie; Shang, Hongcai; Xiong, Xingjiang; Xing, Yanwei

    2017-01-01

    Autophagy, a highly conserved starvation response mechanism with both defensive and protective effects in eukaryotic cells, is a lysosome-mediated degradation process for non-essential or damaged cellular constituents. It plays an important role in the cell survival, differentiation and development to maintain homeostasis. Autophagy is involved in cardiovascular diseases, cerebrovascular diseases, and neurodegenerative diseases, as well as tumours. Thus, modulating autophagy may provide potential therapeutic strategies. Recently, many active components of Chinese herbal medicines (CHM) have been found to modulate autophagy in myocardial cells, cerebral vascular cells, endothelial cells and tumour cells. This paper reviews the advances in studies on the active components of CHM that modulating autophagy in treating cardiovascular diseases and other chronic diseases over the past five years. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Monitoring of environmental UV radiation by biological dosimeters

    NASA Astrophysics Data System (ADS)

    Rontó, Gy.; Bérces, A.; Gróf, P.; Fekete, A.; Kerékgyártó, T.; Gáspár, S.; Stick, C.

    As a consequence of the stratospheric ozone layer depletion biological systems can be damaged due to increased UV-B radiation. The aim of biological dosimetry is to establish a quantitative basis for the risk assessment of the biosphere. DNA is the most important target molecule of biological systems having special sensitivity against short wavelength components of the environmental radiation. Biological dosimeters are usually simple organisms, or components of them, modeling the cellular DNA. Phage T7 and polycrystalline uracil biological dosimeters have been developed and used in our laboratory for monitoring the environmental radiation in different radiation conditions (from the polar to equatorial regions). Comparisons with Robertson-Berger (RB) meter data, as well as with model calculation data weighted by the corresponding spectral sensitivities of the dosimeters are presented. Suggestion is given how to determine the trend of the increase in the biological risk due to ozone depletion.

  8. Agent-based models of cellular systems.

    PubMed

    Cannata, Nicola; Corradini, Flavio; Merelli, Emanuela; Tesei, Luca

    2013-01-01

    Software agents are particularly suitable for engineering models and simulations of cellular systems. In a very natural and intuitive manner, individual software components are therein delegated to reproduce "in silico" the behavior of individual components of alive systems at a given level of resolution. Individuals' actions and interactions among individuals allow complex collective behavior to emerge. In this chapter we first introduce the readers to software agents and multi-agent systems, reviewing the evolution of agent-based modeling of biomolecular systems in the last decade. We then describe the main tools, platforms, and methodologies available for programming societies of agents, possibly profiting also of toolkits that do not require advanced programming skills.

  9. The long history of hematoxylin.

    PubMed

    Titford, M

    2005-01-01

    Hematoxylin is a naturally occurring chemical used as the basis of a dye in laboratories throughout the world to stain nuclei in microscope slide preparations. This chemical is extracted from the logwood tree Hematoxylon campechianum and was discovered by Spanish explorers to the Yucatan in 1502. A vigorous trade soon developed related to growing and preparing hematoxylin for use in dyeing fabrics in Europe. In the mid 1800s, amateur microscopists first used hematoxylin to stain cellular components. Later scientists developed a wide range of techniques to demonstrate different cellular components. Hematoxylin remains the most popular nuclear stain in histology. This paper briefly describes the history of hematoxylin production and use in histology.

  10. Using Movies to Analyse Gene Circuit Dynamics in Single Cells

    PubMed Central

    Locke, James CW; Elowitz, Michael B

    2010-01-01

    Preface Many bacterial systems rely on dynamic genetic circuits to control critical processes. A major goal of systems biology is to understand these behaviours in terms of individual genes and their interactions. However, traditional techniques based on population averages wash out critical dynamics that are either unsynchronized between cells or driven by fluctuations, or ‘noise,’ in cellular components. Recently, the combination of time-lapse microscopy, quantitative image analysis, and fluorescent protein reporters has enabled direct observation of multiple cellular components over time in individual cells. In conjunction with mathematical modelling, these techniques are now providing powerful insights into genetic circuit behaviour in diverse microbial systems. PMID:19369953

  11. Nanokit for single-cell electrochemical analyses.

    PubMed

    Pan, Rongrong; Xu, Mingchen; Jiang, Dechen; Burgess, Jame D; Chen, Hong-Yuan

    2016-10-11

    The development of more intricate devices for the analysis of small molecules and protein activity in single cells would advance our knowledge of cellular heterogeneity and signaling cascades. Therefore, in this study, a nanokit was produced by filling a nanometer-sized capillary with a ring electrode at the tip with components from traditional kits, which could be egressed outside the capillary by electrochemical pumping. At the tip, femtoliter amounts of the kit components were reacted with the analyte to generate hydrogen peroxide for the electrochemical measurement by the ring electrode. Taking advantage of the nanotip and small volume injection, the nanokit was easily inserted into a single cell to determine the intracellular glucose levels and sphingomyelinase (SMase) activity, which had rarely been achieved. High cellular heterogeneities of these two molecules were observed, showing the significance of the nanokit. Compared with the current methods that use a complicated structural design or surface functionalization for the recognition of the analytes, the nanokit has adapted features of the well-established kits and integrated the kit components and detector in one nanometer-sized capillary, which provides a specific device to characterize the reactivity and concentrations of cellular compounds in single cells.

  12. Mutations in the NHEJ Component XRCC4 Cause Primordial Dwarfism

    PubMed Central

    Murray, Jennie E.; van der Burg, Mirjam; IJspeert, Hanna; Carroll, Paula; Wu, Qian; Ochi, Takashi; Leitch, Andrea; Miller, Edward S.; Kysela, Boris; Jawad, Alireza; Bottani, Armand; Brancati, Francesco; Cappa, Marco; Cormier-Daire, Valerie; Deshpande, Charu; Faqeih, Eissa A.; Graham, Gail E.; Ranza, Emmanuelle; Blundell, Tom L.; Jackson, Andrew P.; Stewart, Grant S.; Bicknell, Louise S.

    2015-01-01

    Non-homologous end joining (NHEJ) is a key cellular process ensuring genome integrity. Mutations in several components of the NHEJ pathway have been identified, often associated with severe combined immunodeficiency (SCID), consistent with the requirement for NHEJ during V(D)J recombination to ensure diversity of the adaptive immune system. In contrast, we have recently found that biallelic mutations in LIG4 are a common cause of microcephalic primordial dwarfism (MPD), a phenotype characterized by prenatal-onset extreme global growth failure. Here we provide definitive molecular genetic evidence supported by biochemical, cellular, and immunological data for mutations in XRCC4, encoding the obligate binding partner of LIG4, causing MPD. We report the identification of biallelic mutations in XRCC4 in five families. Biochemical and cellular studies demonstrate that these alterations substantially decrease XRCC4 protein levels leading to reduced cellular ligase IV activity. Consequently, NHEJ-dependent repair of ionizing-radiation-induced DNA double-strand breaks is compromised in XRCC4 cells. Similarly, immunoglobulin junctional diversification is impaired in cells. However, immunoglobulin levels are normal, and individuals lack overt signs of immunodeficiency. Additionally, in contrast to individuals with LIG4 mutations, pancytopenia leading to bone marrow failure has not been observed. Hence, alterations that alter different NHEJ proteins give rise to a phenotypic spectrum, from SCID to extreme growth failure, with deficiencies in certain key components of this repair pathway predominantly exhibiting growth deficits, reflecting differential developmental requirements for NHEJ proteins to support growth and immune maturation. PMID:25728776

  13. Innate immunity of fish (overview).

    PubMed

    Magnadóttir, Bergljót

    2006-02-01

    The innate immune system is the only defence weapon of invertebrates and a fundamental defence mechanism of fish. The innate system also plays an instructive role in the acquired immune response and homeostasis and is therefore equally important in higher vertebrates. The innate system's recognition of non-self and danger signals is served by a limited number of germ-line encoded pattern recognition receptors/proteins, which recognise pathogen associated molecular patterns like bacterial and fungal glycoproteins and lipopolysaccharides and intracellular components released through injury or infection. The innate immune system is divided into physical barriers, cellular and humoral components. Humoral parameters include growth inhibitors, various lytic enzymes and components of the complement pathways, agglutinins and precipitins (opsonins, primarily lectins), natural antibodies, cytokines, chemokines and antibacterial peptides. Several external and internal factors can influence the activity of innate immune parameters. Temperature changes, handling and crowding stress can have suppressive effects on innate parameters, whereas several food additives and immunostimulants can enhance different innate factors. There is limited data available about the ontogenic development of the innate immunological system in fish. Active phagocytes, complement components and enzyme activity, like lysozyme and cathepsins, are present early in the development, before or soon after hatching.

  14. Porcine circovirus type 2 replication is impaired by inhibition of the extracellular signal-regulated kinase (ERK) signaling pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei Li; Liu Jue

    Postweaning multisystemic wasting syndrome, which is primarily caused by porcine circovirus type 2 (PCV2), is an emerging and important swine disease. We have recently shown that PCV2 induces nuclear factor kappa B activation and its activation is required for active replication, but the other cellular factors involved in PCV2 replication are not well defined. The extracellular signal-regulated kinase (ERK) which served as an important component of cellular signal transduction pathways has been shown to regulate many viral infections. In this report, we show that PCV2 activates ERK1/2 in PCV2-infected PK15 cells dependent on viral replication. The PCV2-induced ERK1/2 leads tomore » phosphorylation of the ternary complex factor Elk-1, which kinetically paralleled ERK1/2 activation. Inhibition of ERK activation with U0126, a specific MEK1/2 inhibitor, significantly reduced viral progeny release. Investigations into the mechanism of ERK1/2 regulation revealed that inhibition of ERK activation leads to decreased viral transcription and lower virus protein expression. These data indicate that the ERK signaling pathway is involved in PCV2 infection and beneficial to PCV2 replication in the cultured cells.« less

  15. Brightness-compensated 3-D optical flow algorithm for monitoring cochlear motion patterns

    NASA Astrophysics Data System (ADS)

    von Tiedemann, Miriam; Fridberger, Anders; Ulfendahl, Mats; de Monvel, Jacques Boutet

    2010-09-01

    A method for three-dimensional motion analysis designed for live cell imaging by fluorescence confocal microscopy is described. The approach is based on optical flow computation and takes into account brightness variations in the image scene that are not due to motion, such as photobleaching or fluorescence variations that may reflect changes in cellular physiology. The 3-D optical flow algorithm allowed almost perfect motion estimation on noise-free artificial sequences, and performed with a relative error of <10% on noisy images typical of real experiments. The method was applied to a series of 3-D confocal image stacks from an in vitro preparation of the guinea pig cochlea. The complex motions caused by slow pressure changes in the cochlear compartments were quantified. At the surface of the hearing organ, the largest motion component was the transverse one (normal to the surface), but significant radial and longitudinal displacements were also present. The outer hair cell displayed larger radial motion at their basolateral membrane than at their apical surface. These movements reflect mechanical interactions between different cellular structures, which may be important for communicating sound-evoked vibrations to the sensory cells. A better understanding of these interactions is important for testing realistic models of cochlear mechanics.

  16. Brightness-compensated 3-D optical flow algorithm for monitoring cochlear motion patterns.

    PubMed

    von Tiedemann, Miriam; Fridberger, Anders; Ulfendahl, Mats; de Monvel, Jacques Boutet

    2010-01-01

    A method for three-dimensional motion analysis designed for live cell imaging by fluorescence confocal microscopy is described. The approach is based on optical flow computation and takes into account brightness variations in the image scene that are not due to motion, such as photobleaching or fluorescence variations that may reflect changes in cellular physiology. The 3-D optical flow algorithm allowed almost perfect motion estimation on noise-free artificial sequences, and performed with a relative error of <10% on noisy images typical of real experiments. The method was applied to a series of 3-D confocal image stacks from an in vitro preparation of the guinea pig cochlea. The complex motions caused by slow pressure changes in the cochlear compartments were quantified. At the surface of the hearing organ, the largest motion component was the transverse one (normal to the surface), but significant radial and longitudinal displacements were also present. The outer hair cell displayed larger radial motion at their basolateral membrane than at their apical surface. These movements reflect mechanical interactions between different cellular structures, which may be important for communicating sound-evoked vibrations to the sensory cells. A better understanding of these interactions is important for testing realistic models of cochlear mechanics.

  17. Exploring Genetic, Genomic, and Phenotypic Data at the Rat Genome Database

    PubMed Central

    Laulederkind, Stanley J. F.; Hayman, G. Thomas; Wang, Shur-Jen; Lowry, Timothy F.; Nigam, Rajni; Petri, Victoria; Smith, Jennifer R.; Dwinell, Melinda R.; Jacob, Howard J.; Shimoyama, Mary

    2013-01-01

    The laboratory rat, Rattus norvegicus, is an important model of human health and disease, and experimental findings in the rat have relevance to human physiology and disease. The Rat Genome Database (RGD, http://rgd.mcw.edu) is a model organism database that provides access to a wide variety of curated rat data including disease associations, phenotypes, pathways, molecular functions, biological processes and cellular components for genes, quantitative trait loci, and strains. We present an overview of the database followed by specific examples that can be used to gain experience in employing RGD to explore the wealth of functional data available for the rat. PMID:23255149

  18. Roles of F-box proteins in human digestive system tumors (Review).

    PubMed

    Gong, Jian; Lv, Liang; Huo, Jirong

    2014-12-01

    F-box proteins (FBPs), the substrate-recognition subunit of E3 ubiquitin (Ub) ligase, are the important components of Ub proteasome system (UPS). FBPs are involved in multiple cellular processes through ubiquitylation and subsequent degradation of their target proteins. Many studies have described the roles of FBPs in human cancers. Digestive system tumors account for a large proportion of all the tumors, and their mortality is very high. This review summarizes for the first time the roles of FBPs in digestive system tumorige-nesis and tumor progression, aiming at finding new routes for the rational design of targeted anticancer therapies in digestive system tumors.

  19. Coronary atherosclerosis: Significance of autophagic armour.

    PubMed

    Arora, Mansi; Kaul, Deepak

    2012-09-26

    Autophagy is a lysosomal degradation pathway of cellular components such as organelles and long-lived proteins. Though a protective role for autophagy has been established in various patho-physiologic conditions such as cancer, neurodegeneration, aging and heart failure, a growing body of evidence now reveals a protective role for autophagy in atherosclerosis, mainly by removing oxidatively damaged organelles and proteins and also by promoting cholesterol egress from the lipid-laden cells. Recent studies by Razani et al and Liao et al unravel novel pathways that might be involved in autophagic protection and in this commentary we highlight the importance of autophagy in atherosclerosis in the light of these two recent papers.

  20. Combined effects of pericytes in the tumor microenvironment.

    PubMed

    Ribeiro, Aline Lopes; Okamoto, Oswaldo Keith

    2015-01-01

    Pericytes are multipotent perivascular cells whose involvement in vasculature development is well established. Evidences in the literature also suggest that pericytes display immune properties and that these cells may serve as an in vivo reservoir of stem cells, contributing to the regeneration of diverse tissues. Pericytes are also capable of tumor homing and are important cellular components of the tumor microenvironment (TME). In this review, we highlight the contribution of pericytes to some classical hallmarks of cancer, namely, tumor angiogenesis, growth, metastasis, and evasion of immune destruction, and discuss how collectively these hallmarks could be tackled by therapies targeting pericytes, providing a rationale for cancer drugs aiming at the TME.

  1. Structural dynamics of the mitochondrial compartment.

    PubMed

    Thorsness, P E

    1992-09-01

    The metabolic activities of mitochondria have been extensively characterized. However, there is much less known about the morphogenic changes of the mitochondrial compartment during growth, development and aging of the cell and the consequences of those structural changes on cellular metabolism. There is a growing body of evidence for interactions of mitochondria with cytoskeletal components and changes of mitochondrial structure during development and in response to changing environmental conditions. Segregation and recombination of mitochondrial genomes are also processes dependent upon the dynamic nature of the mitochondrial compartment. These regulatory and structural aspects of mitochondrial compartment dynamics will play an important role in the analysis of mitochondrial function and pathology.

  2. Toxicity of parasporal crystals of Bacillus thuringiensis to the Indian meal moth, Plodia interpunctella.

    PubMed

    Schesser, J H; Bulla, L A

    1979-05-01

    Toxicity of Bacillus thuringiensis parasporal crystals to the Indian meal moth, Plodia interpunctella, is described. The numbers of insects killed were in relation to crystal dry weight. Mortality was determined by comparing adult emergence in diets treated with crystals to emergence in untreated diets. There was only a 30% survival at an application of 0.414 microgram/cm2, and the mean 50% lethal concentration value was found to be 0.299 microgram/cm2. The use of emergence data has provided a reliable and reproducible bioassay for comparing relative toxicities of crystals, spores, and other cellular components to this economically important insect.

  3. tRNA wobble modifications and protein homeostasis

    PubMed Central

    Ranjan, Namit; Rodnina, Marina V.

    2016-01-01

    Abstract tRNA is a central component of the protein synthesis machinery in the cell. In living cells, tRNAs undergo numerous post-transcriptional modifications. In particular, modifications at the anticodon loop play an important role in ensuring efficient protein synthesis, maintaining protein homeostasis, and helping cell adaptation and survival. Hypo-modification of the wobble position of the tRNA anticodon loop is of particular relevance for translation regulation and is implicated in various human diseases. In this review we summarize recent evidence of how methyl and thiol modifications in eukaryotic tRNA at position 34 affect cellular fitness and modulate regulatory circuits at normal conditions and under stress. PMID:27335723

  4. Point process models for localization and interdependence of punctate cellular structures.

    PubMed

    Li, Ying; Majarian, Timothy D; Naik, Armaghan W; Johnson, Gregory R; Murphy, Robert F

    2016-07-01

    Accurate representations of cellular organization for multiple eukaryotic cell types are required for creating predictive models of dynamic cellular function. To this end, we have previously developed the CellOrganizer platform, an open source system for generative modeling of cellular components from microscopy images. CellOrganizer models capture the inherent heterogeneity in the spatial distribution, size, and quantity of different components among a cell population. Furthermore, CellOrganizer can generate quantitatively realistic synthetic images that reflect the underlying cell population. A current focus of the project is to model the complex, interdependent nature of organelle localization. We built upon previous work on developing multiple non-parametric models of organelles or structures that show punctate patterns. The previous models described the relationships between the subcellular localization of puncta and the positions of cell and nuclear membranes and microtubules. We extend these models to consider the relationship to the endoplasmic reticulum (ER), and to consider the relationship between the positions of different puncta of the same type. Our results do not suggest that the punctate patterns we examined are dependent on ER position or inter- and intra-class proximity. With these results, we built classifiers to update previous assignments of proteins to one of 11 patterns in three distinct cell lines. Our generative models demonstrate the ability to construct statistically accurate representations of puncta localization from simple cellular markers in distinct cell types, capturing the complex phenomena of cellular structure interaction with little human input. This protocol represents a novel approach to vesicular protein annotation, a field that is often neglected in high-throughput microscopy. These results suggest that spatial point process models provide useful insight with respect to the spatial dependence between cellular structures. © 2016 International Society for Advancement of Cytometry. © 2016 International Society for Advancement of Cytometry.

  5. STED Imaging of Golgi Dynamics with Cer-SiR: A Two-Component, Photostable, High-Density Lipid Probe for Live Cells.

    PubMed

    Erdmann, Roman S; Toomre, Derek; Schepartz, Alanna

    2017-01-01

    Long time-lapse super-resolution imaging in live cells requires a labeling strategy that combines a bright, photostable fluorophore with a high-density localization probe. Lipids are ideal high-density localization probes, as they are >100 times more abundant than most membrane-bound proteins and simultaneously demark the boundaries of cellular organelles. Here, we describe Cer-SiR, a two-component, high-density lipid probe that is exceptionally photostable. Cer-SiR is generated in cells via a bioorthogonal reaction of two components: a ceramide lipid tagged with trans-cyclooctene (Cer-TCO) and a reactive, photostable Si-rhodamine dye (SiR-Tz). These components assemble within the Golgi apparatus of live cells to form Cer-SiR. Cer-SiR is benign to cellular function, localizes within the Golgi at a high density, and is sufficiently photostable to enable visualization of Golgi structure and dynamics by 3D confocal or long time-lapse STED microscopy.

  6. Chitosan based hydrogels: characteristics and pharmaceutical applications

    PubMed Central

    Ahmadi, F.; Oveisi, Z.; Samani, S. Mohammadi; Amoozgar, Z.

    2015-01-01

    Hydrogel scaffolds serve as semi synthetic or synthetic extra cellular matrix to provide an amenable environment for cellular adherence and cellular remodeling in three dimensional structures mimicking that of natural cellular environment. Additionally, hydrogels have the capacity to carry small molecule drugs and/or proteins, growth factors and other necessary components for cell growth and differentiation. In the context of drug delivery, hydrogels can be utilized to localize drugs, increase drugs concentration at the site of action and consequently reduce off-targeted side effects. The current review aims to describe and classify hydrogels and their methods of production. The main highlight is chitosan-based hydrogels as biocompatible and medically relevant hydrogels for drug delivery. PMID:26430453

  7. Genetically engineered mouse models for functional studies of SKP1-CUL1-F-box-protein (SCF) E3 ubiquitin ligases.

    PubMed

    Zhou, Weihua; Wei, Wenyi; Sun, Yi

    2013-05-01

    The SCF (SKP1 (S-phase-kinase-associated protein 1), Cullin-1, F-box protein) E3 ubiquitin ligases, the founding member of Cullin-RING ligases (CRLs), are the largest family of E3 ubiquitin ligases in mammals. Each individual SCF E3 ligase consists of one adaptor protein SKP1, one scaffold protein cullin-1 (the first family member of the eight cullins), one F-box protein out of 69 family members, and one out of two RING (Really Interesting New Gene) family proteins RBX1/ROC1 or RBX2/ROC2/SAG/RNF7. Various combinations of these four components construct a large number of SCF E3s that promote the degradation of many key regulatory proteins in cell-context, temporally, and spatially dependent manners, thus controlling precisely numerous important cellular processes, including cell cycle progression, apoptosis, gene transcription, signal transduction, DNA replication, maintenance of genome integrity, and tumorigenesis. To understand how the SCF E3 ligases regulate these cellular processes and embryonic development under in vivo physiological conditions, a number of mouse models with transgenic (Tg) expression or targeted deletion of components of SCF have been established and characterized. In this review, we will provide a brief introduction to the ubiquitin-proteasome system (UPS) and the SCF E3 ubiquitin ligases, followed by a comprehensive overview on the existing Tg and knockout (KO) mouse models of the SCF E3s, and discuss the role of each component in mouse embryogenesis, cell proliferation, apoptosis, carcinogenesis, as well as other pathogenic processes associated with human diseases. We will end with a brief discussion on the future directions of this research area and the potential applications of the knowledge gained to more effective therapeutic interventions of human diseases.

  8. The impact of Polycomb group (PcG) and Trithorax group (TrxG) epigenetic factors in plant plasticity.

    PubMed

    de la Paz Sanchez, Maria; Aceves-García, Pamela; Petrone, Emilio; Steckenborn, Stefan; Vega-León, Rosario; Álvarez-Buylla, Elena R; Garay-Arroyo, Adriana; García-Ponce, Berenice

    2015-11-01

    Current advances indicate that epigenetic mechanisms play important roles in the regulatory networks involved in plant developmental responses to environmental conditions. Hence, understanding the role of such components becomes crucial to understanding the mechanisms underlying the plasticity and variability of plant traits, and thus the ecology and evolution of plant development. We now know that important components of phenotypic variation may result from heritable and reversible epigenetic mechanisms without genetic alterations. The epigenetic factors Polycomb group (PcG) and Trithorax group (TrxG) are involved in developmental processes that respond to environmental signals, playing important roles in plant plasticity. In this review, we discuss current knowledge of TrxG and PcG functions in different developmental processes in response to internal and environmental cues and we also integrate the emerging evidence concerning their function in plant plasticity. Many such plastic responses rely on meristematic cell behavior, including stem cell niche maintenance, cellular reprogramming, flowering and dormancy as well as stress memory. This information will help to determine how to integrate the role of epigenetic regulation into models of gene regulatory networks, which have mostly included transcriptional interactions underlying various aspects of plant development and its plastic response to environmental conditions. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  9. iTRAQ-Based Proteomics Analysis and Network Integration for Kernel Tissue Development in Maize

    PubMed Central

    Dong, Yongbin; Wang, Qilei; Du, Chunguang; Xiong, Wenwei; Li, Xinyu; Zhu, Sailan; Li, Yuling

    2017-01-01

    Grain weight is one of the most important yield components and a developmentally complex structure comprised of two major compartments (endosperm and pericarp) in maize (Zea mays L.), however, very little is known concerning the coordinated accumulation of the numerous proteins involved. Herein, we used isobaric tags for relative and absolute quantitation (iTRAQ)-based comparative proteomic method to analyze the characteristics of dynamic proteomics for endosperm and pericarp during grain development. Totally, 9539 proteins were identified for both components at four development stages, among which 1401 proteins were non-redundant, 232 proteins were specific in pericarp and 153 proteins were specific in endosperm. A functional annotation of the identified proteins revealed the importance of metabolic and cellular processes, and binding and catalytic activities for the tissue development. Three and 76 proteins involved in 49 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were integrated for the specific endosperm and pericarp proteins, respectively, reflecting their complex metabolic interactions. In addition, four proteins with important functions and different expression levels were chosen for gene cloning and expression analysis. Different concordance between mRNA level and the protein abundance was observed across different proteins, stages, and tissues as in previous research. These results could provide useful message for understanding the developmental mechanisms in grain development in maize. PMID:28837076

  10. Extracellular matrix components expression in human pluripotent stem cell-derived retinal organoids recapitulates retinogenesis in vivo and reveals an important role for IMPG1 and CD44 in the development of photoreceptors and interphotoreceptor matrix.

    PubMed

    Felemban, Majed; Dorgau, Birthe; Hunt, Nicola Claire; Hallam, Dean; Zerti, Darin; Bauer, Roman; Ding, Yuchun; Collin, Joseph; Steel, David; Krasnogor, Natalio; Al-Aama, Jumana; Lindsay, Susan; Mellough, Carla; Lako, Majlinda

    2018-05-17

    The extracellular matrix (ECM) plays an important role in numerous processes including cellular proliferation, differentiation, migration, maturation, adhesion guidance and axonal growth. To date, there has been no detailed analysis of the ECM distribution during retinal ontogenesis in humans and the functional importance of many ECM components is poorly understood. In this study, the expression of key ECM components in adult mouse and monkey retina, developing and adult human retina and retinal organoids derived from human pluripotent stem cells was studied. Our data indicate that basement membrane ECMs (Fibronectin and Collagen IV) were expressed in Bruch's membrane and the inner limiting membrane of the developing human retina, whilst the hyalectins (Versican and Brevican), cluster of differentiation 44 (CD44), photoreceptor-specific ECMs Interphotoreceptor Matrix Proteoglycan 1 (IMPG1) and Interphotoreceptor Matrix Proteoglycan 2 (IMPG2) were detected in the developing interphotoreceptor matrix (IPM). The expression of IMPG1, Versican and Brevican in the developing IPM was conserved between human developing retina and human pluripotent stem cell-derived retinal organoids. Blocking the action of CD44 and IMPG1 in pluripotent stem cell derived retinal organoids affected the development of photoreceptors, their inner/outer segments and connecting cilia and disrupted IPM formation, with IMPG1 having an earlier and more significant impact. Together, our data suggest an important role for IMPG1 and CD44 in the development of photoreceptors and IPM formation during human retinogenesis. The expression and the role of many extracellular matrix (ECM) components during human retinal development is not fully understood. In this study, expression of key ECM components (Collagen IV, Fibronectin, Brevican, Versican, IMPG1 and IMPG2) was investigated during human retinal ontogenesis. Collagen IV and Fibronectin were expressed in Bruch's membrane; whereas Brevican, Versican, IMPG1 & IMPG2 in the developing interphotoreceptor matrix (IPM). Retinal organoids were successfully generated from pluripotent stem cells. The expression of ECM components was examined in the retinal organoids and found to recapitulate human retinal development in vivo. Using functional blocking experiments, we were able to highlight an important role for IMPG1 and CD44 in the development of photoreceptors and IPM formation. Copyright © 2018 Acta Materialia Inc. All rights reserved.

  11. Microfluidic systems and methods of transport and lysis of cells and analysis of cell lysate

    DOEpatents

    Culbertson, Christopher T.; Jacobson, Stephen C.; McClain, Maxine A.; Ramsey, J. Michael

    2004-08-31

    Microfluidic systems and methods are disclosed which are adapted to transport and lyse cellular components of a test sample for analysis. The disclosed microfluidic systems and methods, which employ an electric field to rupture the cell membrane, cause unusually rapid lysis, thereby minimizing continued cellular activity and resulting in greater accuracy of analysis of cell processes.

  12. Microfluidic systems and methods for transport and lysis of cells and analysis of cell lysate

    DOEpatents

    Culbertson, Christopher T [Oak Ridge, TN; Jacobson, Stephen C [Knoxville, TN; McClain, Maxine A [Knoxville, TN; Ramsey, J Michael [Knoxville, TN

    2008-09-02

    Microfluidic systems and methods are disclosed which are adapted to transport and lyse cellular components of a test sample for analysis. The disclosed microfluidic systems and methods, which employ an electric field to rupture the cell membrane, cause unusually rapid lysis, thereby minimizing continued cellular activity and resulting in greater accuracy of analysis of cell processes.

  13. In search of mitochondrial mechanisms: interfield excursions between cell biology and biochemistry.

    PubMed

    Bechtel, William; Abrahamsen, Adele

    2007-01-01

    Developing models of biological mechanisms, such as those involved in respiration in cells, often requires collaborative effort drawing upon techniques developed and information generated in different disciplines. Biochemists in the early decades of the 20th century uncovered all but the most elusive chemical operations involved in cellular respiration, but were unable to align the reaction pathways with particular structures in the cell. During the period 1940-1965 cell biology was emerging as a new discipline and made distinctive contributions to understanding the role of the mitochondrion and its component parts in cellular respiration. In particular, by developing techniques for localizing enzymes or enzyme systems in specific cellular components, cell biologists provided crucial information about the organized structures in which the biochemical reactions occurred. Although the idea that biochemical operations are intimately related to and depend on cell structures was at odds with the then-dominant emphasis on systems of soluble enzymes in biochemistry, a reconceptualization of energetic processes in the 1960s and 1970s made it clear why cell structure was critical to the biochemical account. This paper examines how numerous excursions between biochemistry and cell biology contributed a new understanding of the mechanism of cellular respiration.

  14. Raman microscopy of bladder cancer cells expressing green fluorescent protein

    NASA Astrophysics Data System (ADS)

    Mandair, Gurjit S.; Han, Amy L.; Keller, Evan T.; Morris, Michael D.

    2016-11-01

    Gene engineering is a commonly used tool in cellular biology to determine changes in function or expression of downstream targets. However, the impact of genetic modulation on biochemical effects is less frequently evaluated. The aim of this study is to use Raman microscopy to assess the biochemical effects of gene silencing on T24 and UMUC-13 bladder cancer cell lines. Cellular biochemical information related to nucleic acid and lipogenic components was obtained from deconvolved Raman spectra. We show that the green fluorescence protein (GFP), the chromophore that served as a fluorescent reporter for gene silencing, could also be detected by Raman microscopy. Only the gene-silenced UMUC-13 cell lines exhibited low-to-moderate GFP fluorescence as determined by fluorescence imaging and Raman spectroscopic studies. Moreover, we show that gene silencing and cell phenotype had a greater effect on nucleic acid and lipogenic components with minimal interference from GFP expression. Gene silencing was also found to perturb cellular protein secondary structure in which the amount of disorderd protein increased at the expense of more ordered protein. Overall, our study identified the spectral signature for cellular GFP expression and elucidated the effects of gene silencing on cancer cell biochemistry and protein secondary structure.

  15. Cellular Plasticity-Targeted Therapy in Head and Neck Cancers.

    PubMed

    Shang, W; Zhang, Q; Huang, Y; Shanti, R; Alawi, F; Le, A; Jiang, C

    2018-06-01

    Head and neck cancer is one of the most frequent human malignancies worldwide, with a high rate of recurrence and metastasis. Head and neck squamous cell carcinoma (HNSCC) is cellularly and molecularly heterogeneous, with subsets of undifferentiated cancer cells exhibiting stem cell-like properties, called cancer stem cells (CSCs). Epithelial-mesenchymal transition, gene mutation, and epigenetic modification are associated with the formation of cellular plasticity of tumor cells in HNSCC, contributing to the acquisition of invasive, recurrent, and metastatic properties and therapeutic resistance. Tumor microenvironment (TME) plays a supportive role in the initiation, progression, and metastasis of head and neck cancer. Stromal fibroblasts, vasculature, immune cells, cytokines, and hypoxia constitute the main components of TME in HNSCC, which contributes not only to the acquisition of CSC properties but also to the recurrence and therapeutic resistance of the malignancies. In this review, we discuss the potential mechanisms underlying the development of cellular plasticity, especially the emergence of CSCs, in HNSCC. We also highlight recent studies implicating the complex interplays among TME components, plastic CSCs, tumorigenesis, recurrence, and therapeutic resistance of HNSCC. Finally, we summarize the treatment modalities of HNSCC and reinforce the novel concept of therapeutic targeting CSCs in HNSCC.

  16. Skin aging and menopause : implications for treatment.

    PubMed

    Raine-Fenning, Nicholas J; Brincat, Mark P; Muscat-Baron, Yves

    2003-01-01

    The skin is one of the largest organs of the body, which is significantly affected by the aging process and menopause. The significant changes sustained by the skin during the menopause are due to the effect sustained on the skin's individual components. The estrogen receptor has been detected on the cellular components of the skin. Accordingly, dermal cellular metabolism is influenced by the hypoestrogenoemic state of menopause leading to changes in the collagen content, alterations in the concentration of glycoaminoglycans and most importantly the water content. Consequently changes in these basic components leads to an alteration in function compatible with skin aging. Changes in the skin collagen leads to diminished elasticity and skin strength. Collagen content may be measured by various methods such as direct skin biopsy, skin blister assessment for collagen markers and skin thickness measurement. All these variables indicate a reduction in collagen content following menopause. This may be reversed with the administration of estrogen given both topically and systemically.A reduction in hydrophilic glycoaminglycans leads to a direct reduction in water content, which influences the skin turgor. These effects on glycoaminoglycans, due to the hypoestrogenia, have been clearly shown in animal studies and appeared to be rapidly reversed with the application of estrogens. The sum total of these basic effects on the skin leads to wrinkles, the skin condition typifying skin aging.Structures resident in the skin are likewise influenced by menopause. Changes to the cutaneous vascular reactivity are noted following menopause. Capillary blood flow velocity decreases significantly in postmenopausal women. Postmenopausal flushing is due to profound vasodilatation in the dermal papillae. Hair growth is also influenced by the hormonal milieu and consequently hair loss has been associated with the beginning of menopause. Treatments administered for menopause, in particular hormone replacement therapy, appear to alter its effects on the basic components of the skin as well as the more complex structures residing in the skin, consequently retarding the skin aging process.

  17. Enhancing the cellular uptake of siRNA duplexes following noncovalent packaging with protein transduction domain peptides.

    PubMed

    Meade, Bryan R; Dowdy, Steven F

    2008-03-01

    The major limitation in utilizing information rich macromolecules for basic science and therapeutic applications is the inability of these large molecules to readily diffuse across the cellular membrane. While this restriction represents an efficient defense system against cellular penetration of unwanted foreign molecules and thus a crucial component of cell survival, overcoming this cellular characteristic for the intracellular delivery of macromolecules has been the focus of a large number of research groups worldwide. Recently, with the discovery of RNA interference, many of these groups have redirected their attention and have applied previously characterized cell delivery methodologies to synthetic short interfering RNA duplexes (siRNA). Protein transduction domain and cell penetrating peptides have been shown to enhance the delivery of multiple types of macromolecular cargo including peptides, proteins and antisense oligonucleotides and are now being utilized to enhance the cellular uptake of siRNA molecules. The dense cationic charge of these peptides that is critical for interaction with cell membrane components prior to internalization has also been shown to readily package siRNA molecules into stable nanoparticles that are capable of traversing the cell membrane. This review discusses the recent advances in noncovalent packaging of siRNA molecules with cationic peptides and the potential for the resulting complexes to successfully induce RNA interference within both in vitro and in vivo settings.

  18. Targeting Protein Quality Control Mechanisms by Natural Products to Promote Healthy Ageing.

    PubMed

    Wedel, Sophia; Manola, Maria; Cavinato, Maria; Trougakos, Ioannis P; Jansen-Dürr, Pidder

    2018-05-19

    Organismal ageing is associated with increased chance of morbidity or mortality and it is driven by diverse molecular pathways that are affected by both environmental and genetic factors. The progression of ageing correlates with the gradual accumulation of stressors and damaged biomolecules due to the time-dependent decline of stress resistance and functional capacity, which eventually compromise cellular homeodynamics. As protein machines carry out the majority of cellular functions, proteome quality control is critical for cellular functionality and is carried out through the curating activity of the proteostasis network (PN). Key components of the PN are the two main degradation machineries, namely the ubiquitin-proteasome and autophagy-lysosome pathways along with several stress-responsive pathways, such as that of nuclear factor erythroid 2-related factor 2 (Nrf2), which mobilises cytoprotective genomic responses against oxidative and/or xenobiotic damage. Reportedly, genetic or dietary interventions that activate components of the PN delay ageing in evolutionarily diverse organisms. Natural products (extracts or pure compounds) represent an extraordinary inventory of highly diverse structural scaffolds that offer promising activities towards meeting the challenge of increasing healthspan and/or delaying ageing (e.g., spermidine, quercetin or sulforaphane). Herein, we review those natural compounds that have been found to activate proteostatic and/or anti-stress cellular responses and hence have the potential to delay cellular senescence and/or in vivo ageing.

  19. Relationship between Maceral of Coal and Coal-bed Methane adsorption ability in Sihe Coalmine of Qinshui Basin, China

    NASA Astrophysics Data System (ADS)

    Wang, M. S.; Zou, G. G.; Zhu, R. B.

    2018-05-01

    Maceral components and its content of coal were divided based on the microscopic characteristics of coal. The Langmuir volume and the Langmuir pressure were tested, and the Langmuir volume represents the adsorption capacity of coal. The formation of coal bed methane is affected by the partition of the maceral components in coal. Therefore, the relationship between maceral composition and coal bed methane adsorption capacity of coal was analyzed. The results show that the maceral components of coal are dominated by vitrinite and inertinite in the study area, and the content of inertinite is below 32%. The vitrinite group has a negative linear correlation with the Langmuir volume, and the inertia composition has a positive linear correlation with it. The cellular structures in the inertinite are the main site of coal bed methane enrichment. The microstructure of coal affects the coalbed methane content and the stage of hydrocarbon generation in coal. This indicates that the microstructure of coal is one of the important factors influencing the adsorption capacity of coal seam.

  20. The humoral pattern recognition molecule PTX3 is a key component of innate immunity against urinary tract infection.

    PubMed

    Jaillon, Sébastien; Moalli, Federica; Ragnarsdottir, Bryndis; Bonavita, Eduardo; Puthia, Manoj; Riva, Federica; Barbati, Elisa; Nebuloni, Manuela; Cvetko Krajinovic, Lidija; Markotic, Alemka; Valentino, Sonia; Doni, Andrea; Tartari, Silvia; Graziani, Giorgio; Montanelli, Alessandro; Delneste, Yves; Svanborg, Catharina; Garlanda, Cecilia; Mantovani, Alberto

    2014-04-17

    Immunity in the urinary tract has distinct and poorly understood pathophysiological characteristics and urinary tract infections (UTIs) are important causes of morbidity and mortality. We investigated the role of the soluble pattern recognition molecule pentraxin 3 (PTX3), a key component of the humoral arm of innate immunity, in UTIs. PTX3-deficient mice showed defective control of UTIs and exacerbated inflammation. Expression of PTX3 was induced in uroepithelial cells by uropathogenic Escherichia coli (UPEC) in a Toll-like receptor 4 (TLR4)- and MyD88-dependent manner. PTX3 enhanced UPEC phagocytosis and phagosome maturation by neutrophils. PTX3 was detected in urine of UTI patients and amounts correlated with disease severity. In cohorts of UTI-prone patients, PTX3 gene polymorphisms correlated with susceptibility to acute pyelonephritis and cystitis. These results suggest that PTX3 is an essential component of innate resistance against UTIs. Thus, the cellular and humoral arms of innate immunity exert complementary functions in mediating resistance against UTIs. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Coexistence of Phases in a Protein Heterodimer

    PubMed Central

    Krokhotin, Andrey; Liwo, Adam; Niemi, Antti J.; Scheraga, Harold A.

    2012-01-01

    A heterodimer consisting of two or more different kinds of proteins can display an enormous number of distinct molecular architectures. The conformational entropy is an essential ingredient in the Helmholtz free energy and, consequently, these heterodimers can have a very complex phase structure. Here, it is proposed that there is a state of proteins, in which the different components of a heterodimer exist in different phases. For this purpose, the structures in the protein data bank (PDB) have been analyzed, with radius of gyration as the order parameter. Two major classes of heterodimers with their protein components coexisting in different phases have been identified. An example is the PDB structure 3DXC. This is a transcriptionally active dimer. One of the components is an isoform of the intra-cellular domain of the Alzheimer-disease related amyloid precursor protein (AICD), and the other is a nuclear multidomain adaptor protein in the Fe65 family. It is concluded from the radius of gyration that neither of the two components in this dimer is in its own collapsed phase, corresponding to a biologically active protein. The UNRES energy function has been utilized to confirm that, if the two components are separated from each other, each of them collapses. The results presented in this work show that heterodimers whose protein components coexist in different phases, can have intriguing physical properties with potentially important biological consequences. PMID:22830730

  2. Preventing Food Allergies by Tricking Dendritic Cells

    USDA-ARS?s Scientific Manuscript database

    Food allergies are adverse responses to components (usually proteins) within the foods we eat, which result in a self-damaging response from our immune system. A myriad of cellular and molecular components are involved in the decision to tolerate or respond to foreign molecules that pass through the...

  3. Protein intrinsic disorder in plants.

    PubMed

    Pazos, Florencio; Pietrosemoli, Natalia; García-Martín, Juan A; Solano, Roberto

    2013-09-12

    To some extent contradicting the classical paradigm of the relationship between protein 3D structure and function, now it is clear that large portions of the proteomes, especially in higher organisms, lack a fixed structure and still perform very important functions. Proteins completely or partially unstructured in their native (functional) form are involved in key cellular processes underlain by complex networks of protein interactions. The intrinsic conformational flexibility of these disordered proteins allows them to bind multiple partners in transient interactions of high specificity and low affinity. In concordance, in plants this type of proteins has been found in processes requiring these complex and versatile interaction networks. These include transcription factor networks, where disordered proteins act as integrators of different signals or link different transcription factor subnetworks due to their ability to interact (in many cases simultaneously) with different partners. Similarly, they also serve as signal integrators in signaling cascades, such as those related to response to external stimuli. Disordered proteins have also been found in plants in many stress-response processes, acting as protein chaperones or protecting other cellular components and structures. In plants, it is especially important to have complex and versatile networks able to quickly and efficiently respond to changing environmental conditions since these organisms cannot escape and have no other choice than adapting to them. Consequently, protein disorder can play an especially important role in plants, providing them with a fast mechanism to obtain complex, interconnected and versatile molecular networks.

  4. Protein intrinsic disorder in plants

    PubMed Central

    Pazos, Florencio; Pietrosemoli, Natalia; García-Martín, Juan A.; Solano, Roberto

    2013-01-01

    To some extent contradicting the classical paradigm of the relationship between protein 3D structure and function, now it is clear that large portions of the proteomes, especially in higher organisms, lack a fixed structure and still perform very important functions. Proteins completely or partially unstructured in their native (functional) form are involved in key cellular processes underlain by complex networks of protein interactions. The intrinsic conformational flexibility of these disordered proteins allows them to bind multiple partners in transient interactions of high specificity and low affinity. In concordance, in plants this type of proteins has been found in processes requiring these complex and versatile interaction networks. These include transcription factor networks, where disordered proteins act as integrators of different signals or link different transcription factor subnetworks due to their ability to interact (in many cases simultaneously) with different partners. Similarly, they also serve as signal integrators in signaling cascades, such as those related to response to external stimuli. Disordered proteins have also been found in plants in many stress-response processes, acting as protein chaperones or protecting other cellular components and structures. In plants, it is especially important to have complex and versatile networks able to quickly and efficiently respond to changing environmental conditions since these organisms cannot escape and have no other choice than adapting to them. Consequently, protein disorder can play an especially important role in plants, providing them with a fast mechanism to obtain complex, interconnected and versatile molecular networks. PMID:24062761

  5. Isoforms, structures, and functions of versatile spectraplakin MACF1

    PubMed Central

    Hu, Lifang; Su, Peihong; Li, Runzhi; Yin, Chong; Zhang, Yan; Shang, Peng; Yang, Tuanmin; Qian, Airong

    2016-01-01

    Spectraplakins are crucially important communicators, linking cytoskeletal components to each other and cellular junctions. Microtubule actin crosslinking factor 1 (MACF1), also known as actin crosslinking family 7 (ACF7), is a member of the spectraplakin family. It is expressed in numerous tissues and cells as one extensively studied spectraplakin. MACF1 has several isoforms with unique structures and well-known function to be able to crosslink F-actin and microtubules. MACF1 is one versatile spectraplakin with various functions in cell processes, embryo development, tissue-specific functions, and human diseases. The importance of MACF1 has become more apparent in recent years. Here, we summarize the current knowledge on the presence and function of MACF1 and provide perspectives on future research of MACF1 based on our studies and others. [BMB Reports 2016; 49(1): 37-44] PMID:26521939

  6. Life cycle specialization of filamentous pathogens - colonization and reproduction in plant tissues.

    PubMed

    Haueisen, Janine; Stukenbrock, Eva H

    2016-08-01

    Filamentous plant pathogens explore host tissues to obtain nutrients for growth and reproduction. Diverse strategies for tissue invasion, defense manipulation, and colonization of inter and intra-cellular spaces have evolved. Most research has focused on effector molecules, which are secreted to manipulate plant immunity and facilitate infection. Effector genes are often found to evolve rapidly in response to the antagonistic host-pathogen co-evolution but other traits are also subject to adaptive evolution during specialization to the anatomy, biochemistry and ecology of different plant hosts. Although not directly related to virulence, these traits are important components of specialization but little is known about them. We present and discuss specific life cycle traits that facilitate exploration of plant tissues and underline the importance of increasing our insight into the biology of plant pathogens. Copyright © 2016. Published by Elsevier Ltd.

  7. Modularized Smad-regulated TGFβ signaling pathway.

    PubMed

    Li, Yongfeng; Wang, Minli; Carra, Claudio; Cucinotta, Francis A

    2012-12-01

    The transforming Growth Factor β (TGFβ) signaling pathway is a prominent regulatory signaling pathway controlling various important cellular processes. TGFβ signaling can be induced by several factors including ionizing radiation. The pathway is regulated in a negative feedback loop through promoting the nuclear import of the regulatory Smads and a subsequent expression of inhibitory Smad7, that forms ubiquitin ligase with Smurf2, targeting active TGFβ receptors for degradation. In this work, we proposed a mathematical model to study the Smad-regulated TGFβ signaling pathway. By modularization, we are able to analyze mathematically each component subsystem and recover the nonlinear dynamics of the entire network system. Meanwhile the excitability, a common feature observed in the biological systems, in the TGFβ signaling pathway is discussed and supported as well by numerical simulation, indicating the robustness of the model. Published by Elsevier Inc.

  8. Breaking into the epithelial apical–junctional complex — news from pathogen hackers

    PubMed Central

    Vogelmann, Roger; Amieva, Manuel R; Falkow, Stanley; Nelson, W James

    2012-01-01

    The epithelial apical–junctional complex is a key regulator of cellular functions. In addition, it is an important target for microbial pathogens that manipulate the cell to survive, proliferate and sometimes persist within a host. Out of a myriad of potential molecular targets, some bacterial and viral pathogens have selected a subset of protein targets at the apical–junctional complex of epithelial cells. Studying how microbes use these targets also teaches us about the inherent physiological properties of host molecules in the context of normal junctional structure and function. Thus, we have learned that three recently uncovered components of the apical–junctional complex of the Ig superfamily — junctional adhesion molecule, Nectin and the coxsackievirus and adenovirus receptor — are important regulators of junction structure and function and represent critical targets of microbial virulence gene products. PMID:15037310

  9. Breaking into the epithelial apical-junctional complex--news from pathogen hackers.

    PubMed

    Vogelmann, Roger; Amieva, Manuel R; Falkow, Stanley; Nelson, W James

    2004-02-01

    The epithelial apical-junctional complex is a key regulator of cellular functions. In addition, it is an important target for microbial pathogens that manipulate the cell to survive, proliferate and sometimes persist within a host. Out of a myriad of potential molecular targets, some bacterial and viral pathogens have selected a subset of protein targets at the apical-junctional complex of epithelial cells. Studying how microbes use these targets also teaches us about the inherent physiological properties of host molecules in the context of normal junctional structure and function. Thus, we have learned that three recently uncovered components of the apical-junctional complex of the Ig superfamily--junctional adhesion molecule, Nectin and the coxsackievirus and adenovirus receptor--are important regulators of junction structure and function and represent critical targets of microbial virulence gene products.

  10. The basic biology of redoxosomes in cytokine-mediated signal transduction and implications for disease-specific therapies.

    PubMed

    Spencer, Netanya Y; Engelhardt, John F

    2014-03-18

    Redox reactions have been established as major biological players in many cellular signaling pathways. Here we review mechanisms of redox signaling with an emphasis on redox-active signaling endosomes. Signals are transduced by relatively few reactive oxygen species (ROS), through very specific redox modifications of numerous proteins and enzymes. Although ROS signals are typically associated with cellular injury, these signaling pathways are also critical for maintaining cellular health at homeostasis. An important component of ROS signaling pertains to localization and tightly regulated signal transduction events within discrete microenvironments of the cell. One major aspect of this specificity is ROS compartmentalization within membrane-enclosed organelles such as redoxosomes (redox-active endosomes) and the nuclear envelope. Among the cellular proteins that produce superoxide are the NADPH oxidases (NOXes), transmembrane proteins that are implicated in many types of redox signaling. NOXes produce superoxide on only one side of a lipid bilayer; as such, their orientation dictates the compartmentalization of ROS and the local control of signaling events limited by ROS diffusion and/or movement through channels associated with the signaling membrane. NOX-dependent ROS signaling pathways can also be self-regulating, with molecular redox sensors that limit the local production of ROS required for effective signaling. ROS regulation of the Rac-GTPase, a required co-activator of many NOXes, is an example of this type of sensor. A deeper understanding of redox signaling pathways and the mechanisms that control their specificity will provide unique therapeutic opportunities for aging, cancer, ischemia-reperfusion injury, and neurodegenerative diseases.

  11. The Basic Biology of Redoxosomes in Cytokine-Mediated Signal Transduction and Implications for Disease-Specific Therapies

    PubMed Central

    2015-01-01

    Redox reactions have been established as major biological players in many cellular signaling pathways. Here we review mechanisms of redox signaling with an emphasis on redox-active signaling endosomes. Signals are transduced by relatively few reactive oxygen species (ROS), through very specific redox modifications of numerous proteins and enzymes. Although ROS signals are typically associated with cellular injury, these signaling pathways are also critical for maintaining cellular health at homeostasis. An important component of ROS signaling pertains to localization and tightly regulated signal transduction events within discrete microenvironments of the cell. One major aspect of this specificity is ROS compartmentalization within membrane-enclosed organelles such as redoxosomes (redox-active endosomes) and the nuclear envelope. Among the cellular proteins that produce superoxide are the NADPH oxidases (NOXes), transmembrane proteins that are implicated in many types of redox signaling. NOXes produce superoxide on only one side of a lipid bilayer; as such, their orientation dictates the compartmentalization of ROS and the local control of signaling events limited by ROS diffusion and/or movement through channels associated with the signaling membrane. NOX-dependent ROS signaling pathways can also be self-regulating, with molecular redox sensors that limit the local production of ROS required for effective signaling. ROS regulation of the Rac-GTPase, a required co-activator of many NOXes, is an example of this type of sensor. A deeper understanding of redox signaling pathways and the mechanisms that control their specificity will provide unique therapeutic opportunities for aging, cancer, ischemia-reperfusion injury, and neurodegenerative diseases. PMID:24555469

  12. PhoU Allows Rapid Adaptation to High Phosphate Concentrations by Modulating PstSCAB Transport Rate in Sinorhizobium meliloti

    PubMed Central

    diCenzo, George C.; Sharthiya, Harsh; Nanda, Anish; Zamani, Maryam

    2017-01-01

    ABSTRACT Maintenance of cellular phosphate homeostasis is essential for cellular life. The PhoU protein has emerged as a key regulator of this process in bacteria, and it is suggested to modulate phosphate import by PstSCAB and control activation of the phosphate limitation response by the PhoR-PhoB two-component system. However, a proper understanding of PhoU has remained elusive due to numerous complications of mutating phoU, including loss of viability and the genetic instability of the mutants. Here, we developed two sets of strains of Sinorhizobium meliloti that overcame these limitations and allowed a more detailed and comprehensive analysis of the biological and molecular activities of PhoU. The data showed that phoU cannot be deleted in the presence of phosphate unless PstSCAB is inactivated also. However, phoU deletions were readily recovered in phosphate-free media, and characterization of these mutants revealed that addition of phosphate to the environment resulted in toxic levels of PstSCAB-mediated phosphate accumulation. Phosphate uptake experiments indicated that PhoU significantly decreased the PstSCAB transport rate specifically in phosphate-replete cells but not in phosphate-starved cells and that PhoU could rapidly respond to elevated environmental phosphate concentrations and decrease the PstSCAB transport rate. Site-directed mutagenesis results suggested that the ability of PhoU to respond to phosphate levels was independent of the conformation of the PstSCAB transporter. Additionally, PhoU-PhoU and PhoU-PhoR interactions were detected using a bacterial two-hybrid screen. We propose that PhoU modulates PstSCAB and PhoR-PhoB in response to local, internal fluctuations in phosphate concentrations resulting from PstSCAB-mediated phosphate import. IMPORTANCE Correct maintenance of cellular phosphate homeostasis is critical in all kingdoms of life and in bacteria involves the PhoU protein. This work provides novel insights into the role of the Sinorhizobium meliloti PhoU protein, which plays a key role in rapid adaptation to elevated phosphate concentrations. It is shown that PhoU rapidly responds to elevated phosphate levels by significantly decreasing the phosphate transport of PstSCAB, thereby preventing phosphate toxicity and cell death. Additionally, a new model for phosphate sensing in bacterial species which involves the PhoR-PhoB two-component system is presented. This work provides new insights into the bacterial response to changing environmental conditions and into regulation of the phosphate limitation response that influences numerous bacterial processes, including antibiotic production and virulence. PMID:28416708

  13. Integrated experimental and model-based analysis reveals the spatial aspects of EGFR activation dynamics

    PubMed Central

    Shankaran, Harish; Zhang, Yi; Chrisler, William B.; Ewald, Jonathan A.; Wiley, H. Steven; Resat, Haluk

    2012-01-01

    The epidermal growth factor receptor (EGFR) belongs to the ErbB family of receptor tyrosine kinases, and controls a diverse set of cellular responses relevant to development and tumorigenesis. ErbB activation is a complex process involving receptor-ligand binding, receptor dimerization, phosphorylation, and trafficking (internalization, recycling and degradation), which together dictate the spatio-temporal distribution of active receptors within the cell. The ability to predict this distribution, and elucidation of the factors regulating it, would help to establish a mechanistic link between ErbB expression levels and the cellular response. Towards this end, we constructed mathematical models to determine the contributions of receptor dimerization and phosphorylation to EGFR activation, and to examine the dependence of these processes on sub-cellular location. We collected experimental datasets for EGFR activation dynamics in human mammary epithelial cells, with the specific goal of model parameterization, and used the data to estimate parameters for several alternate models. Model-based analysis indicated that: 1) signal termination via receptor dephosphorylation in late endosomes, prior to degradation, is an important component of the response, 2) less than 40% of the receptors in the cell are phosphorylated at any given time, even at saturating ligand doses, and 3) receptor phosphorylation kinetics at the cell surface and early endosomes are comparable. We validated the last finding by measuring the EGFR dephosphorylation rates at various times following ligand addition both in whole cells and in endosomes using ELISAs and fluorescent imaging. Overall, our results provide important information on how EGFR phosphorylation levels are regulated within cells. This study demonstrates that an iterative cycle of experiments and modeling can be used to gain mechanistic insight regarding complex cell signaling networks. PMID:22952062

  14. The Screening of Genes Sensitive to Long-Term, Low-Level Microwave Exposure and Bioinformatic Analysis of Potential Correlations to Learning and Memory.

    PubMed

    Zhao, Ya Li; Li, Ying Xian; Ma, Hong Bo; Li, Dong; Li, Hai Liang; Jiang, Rui; Kan, Guang Han; Yang, Zhen Zhong; Huang, Zeng Xin

    2015-08-01

    To gain a better understanding of gene expression changes in the brain following microwave exposure in mice. This study hopes to reveal mechanisms contributing to microwave-induced learning and memory dysfunction. Mice were exposed to whole body 2100 MHz microwaves with specific absorption rates (SARs) of 0.45 W/kg, 1.8 W/kg, and 3.6 W/kg for 1 hour daily for 8 weeks. Differentially expressing genes in the brains were screened using high-density oligonucleotide arrays, with genes showing more significant differences further confirmed by RT-PCR. The gene chip results demonstrated that 41 genes (0.45 W/kg group), 29 genes (1.8 W/kg group), and 219 genes (3.6 W/kg group) were differentially expressed. GO analysis revealed that these differentially expressed genes were primarily involved in metabolic processes, cellular metabolic processes, regulation of biological processes, macromolecular metabolic processes, biosynthetic processes, cellular protein metabolic processes, transport, developmental processes, cellular component organization, etc. KEGG pathway analysis showed that these genes are mainly involved in pathways related to ribosome, Alzheimer's disease, Parkinson's disease, long-term potentiation, Huntington's disease, and Neurotrophin signaling. Construction of a protein interaction network identified several important regulatory genes including synbindin (sbdn), Crystallin (CryaB), PPP1CA, Ywhaq, Psap, Psmb1, Pcbp2, etc., which play important roles in the processes of learning and memorye. Long-term, low-level microwave exposure may inhibit learning and memory by affecting protein and energy metabolic processes and signaling pathways relating to neurological functions or diseases. Copyright © 2015 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  15. Method for Texturing Surfaces of Optical Fiber Sensors Used for Blood Glucose Monitoring

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A. (Inventor)

    2007-01-01

    Disclosed is a method and the resulting product thereof comprising a solid light-conducting fiber with a point of attachment and having a textured surface site consisting a textured distal end prepared by being placed in a vacuum and then subjected to directed hyperthermal beams comprising oxygen ions or atoms. The textured distal end comprises cones or pillars that are spaced upon from each other by less than 1 micron and are extremely suitable to prevent cellular components of blood from entering the valleys between the cones or pillars so as to effectively separate the cellular components in the blood from interfering with optical sensing of the glucose concentration for diabetic patients.

  16. Energetic Atomic and Ionic Oxygen Textured Optical Surfaces for Blood Glucose Monitoring

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A. (Inventor)

    2007-01-01

    Disclosed is a method and the resulting product thereof comprising a solid light-conducting fiber with a point of attachment and having a textured surface site consisting of a textured distal end prepared by being placed in a vacuum and then subjected to directed hyperthermal beams comprising oxygen ions or atoms. The textured distal end comprises cones or pillars that are spaced upon from each other by less than 1 micron and are extremely suitable to prevent cellular components of blood from entering the valleys between the cones or pillars so as to effectively separate the cellular components in the blood from interfering with optical sensing of the glucose concentration for diabetic patients.

  17. Energetic atomic and ionic oxygen textured optical surfaces for blood glucose monitoring

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A. (Inventor)

    2007-01-01

    Disclosed is a method and the resulting product thereof comprising a solid light-conducting fiber with a point of attachment and having a textured surface site consisting a textured distal end prepared by being placed in a vacuum and then subjected to directed hyperthermal beams comprising oxygen ions or atoms. The textured distal end comprises cones or pillars that are spaced upon from each other by less than 1 micron and are extremely suitable to prevent cellular components of blood from entering the valleys between the cones or pillars so as to effectively separate the cellular components in the blood from interfering with optical sensing of the glucose concentration for diabetic patients.

  18. The effects of perception of risk and importance of answering and initiating a cellular phone call while driving.

    PubMed

    Nelson, Erik; Atchley, Paul; Little, Todd D

    2009-05-01

    Recent data suggest that laws banning cellular phone use while driving may not change use patterns, especially among young drivers with high rates of mobile phone adoption. We examined reasons younger drivers choose or do not choose to talk on a phone while driving among a sample of young drivers (n=276) with very high ownership of cellular phones (over 99%) and a very high use of cellular phones while driving (100% for those that were primary operators of an automobile). Respondents were surveyed for patterns of use, types of call, perceived risk, and motivations for use. The data were analyzed using structural equation modeling (SEM) to explore the relationships between perceived risk of the behavior, emotionality of the call, perceived importance of the call, and how often calls were initiated versus answered. The model suggests that even though people believe that talking on a cellular phone while driving is dangerous, they will tend to initiate a cellular conversation if they believe that the call is important.

  19. Zilpaterol hydrochloride affects cellular muscle metabolism and lipid components of ten different muscles in feedlot heifers

    USDA-ARS?s Scientific Manuscript database

    This study determined if zilpaterol hydrochloride (ZH) altered muscle metabolism and lipid components of ten muscles. Crossbred heifers were either supplemented with ZH (n = 9) or not (Control; n = 10). Muscle tissue was collected (adductor femoris, biceps femoris, gluteus medius, infraspinatus, lat...

  20. Condition monitoring of 3G cellular networks through competitive neural models.

    PubMed

    Barreto, Guilherme A; Mota, João C M; Souza, Luis G M; Frota, Rewbenio A; Aguayo, Leonardo

    2005-09-01

    We develop an unsupervised approach to condition monitoring of cellular networks using competitive neural algorithms. Training is carried out with state vectors representing the normal functioning of a simulated CDMA2000 network. Once training is completed, global and local normality profiles (NPs) are built from the distribution of quantization errors of the training state vectors and their components, respectively. The global NP is used to evaluate the overall condition of the cellular system. If abnormal behavior is detected, local NPs are used in a component-wise fashion to find abnormal state variables. Anomaly detection tests are performed via percentile-based confidence intervals computed over the global and local NPs. We compared the performance of four competitive algorithms [winner-take-all (WTA), frequency-sensitive competitive learning (FSCL), self-organizing map (SOM), and neural-gas algorithm (NGA)] and the results suggest that the joint use of global and local NPs is more efficient and more robust than current single-threshold methods.

  1. Sensing Size through Clustering in Non-Equilibrium Membranes and the Control of Membrane-Bound Enzymatic Reactions

    PubMed Central

    Vagne, Quentin; Turner, Matthew S.; Sens, Pierre

    2015-01-01

    The formation of dynamical clusters of proteins is ubiquitous in cellular membranes and is in part regulated by the recycling of membrane components. We show, using stochastic simulations and analytic modeling, that the out-of-equilibrium cluster size distribution of membrane components undergoing continuous recycling is strongly influenced by lateral confinement. This result has significant implications for the clustering of plasma membrane proteins whose mobility is hindered by cytoskeletal “corrals” and for protein clustering in cellular organelles of limited size that generically support material fluxes. We show how the confinement size can be sensed through its effect on the size distribution of clusters of membrane heterogeneities and propose that this could be regulated to control the efficiency of membrane-bound reactions. To illustrate this, we study a chain of enzymatic reactions sensitive to membrane protein clustering. The reaction efficiency is found to be a non-monotonic function of the system size, and can be optimal for sizes comparable to those of cellular organelles. PMID:26656912

  2. Mutations in the NHEJ component XRCC4 cause primordial dwarfism.

    PubMed

    Murray, Jennie E; van der Burg, Mirjam; IJspeert, Hanna; Carroll, Paula; Wu, Qian; Ochi, Takashi; Leitch, Andrea; Miller, Edward S; Kysela, Boris; Jawad, Alireza; Bottani, Armand; Brancati, Francesco; Cappa, Marco; Cormier-Daire, Valerie; Deshpande, Charu; Faqeih, Eissa A; Graham, Gail E; Ranza, Emmanuelle; Blundell, Tom L; Jackson, Andrew P; Stewart, Grant S; Bicknell, Louise S

    2015-03-05

    Non-homologous end joining (NHEJ) is a key cellular process ensuring genome integrity. Mutations in several components of the NHEJ pathway have been identified, often associated with severe combined immunodeficiency (SCID), consistent with the requirement for NHEJ during V(D)J recombination to ensure diversity of the adaptive immune system. In contrast, we have recently found that biallelic mutations in LIG4 are a common cause of microcephalic primordial dwarfism (MPD), a phenotype characterized by prenatal-onset extreme global growth failure. Here we provide definitive molecular genetic evidence supported by biochemical, cellular, and immunological data for mutations in XRCC4, encoding the obligate binding partner of LIG4, causing MPD. We report the identification of biallelic mutations in XRCC4 in five families. Biochemical and cellular studies demonstrate that these alterations substantially decrease XRCC4 protein levels leading to reduced cellular ligase IV activity. Consequently, NHEJ-dependent repair of ionizing-radiation-induced DNA double-strand breaks is compromised in XRCC4 cells. Similarly, immunoglobulin junctional diversification is impaired in cells. However, immunoglobulin levels are normal, and individuals lack overt signs of immunodeficiency. Additionally, in contrast to individuals with LIG4 mutations, pancytopenia leading to bone marrow failure has not been observed. Hence, alterations that alter different NHEJ proteins give rise to a phenotypic spectrum, from SCID to extreme growth failure, with deficiencies in certain key components of this repair pathway predominantly exhibiting growth deficits, reflecting differential developmental requirements for NHEJ proteins to support growth and immune maturation. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  3. Challenges and opportunities for tissue-engineering polarized epithelium.

    PubMed

    Paz, Ana C; Soleas, John; Poon, James C H; Trieu, Dennis; Waddell, Thomas K; McGuigan, Alison P

    2014-02-01

    The epithelium is one of the most important tissue types in the body and the specific organization of the epithelial cells in these tissues is important for achieving appropriate function. Since many tissues contain an epithelial component, engineering functional epithelium and understanding the factors that control epithelial maturation and organization are important for generating whole artificial organ replacements. Furthermore, disruption of the cellular organization leads to tissue malfunction and disease; therefore, engineered epithelium could provide a valuable in vitro model to study disease phenotypes. Despite the importance of epithelial tissues, a surprisingly limited amount of effort has been focused on organizing epithelial cells into artificial polarized epithelium with an appropriate structure that resembles that seen in vivo. In this review, we provide an overview of epithelial tissue organization and highlight the importance of cell polarization to achieve appropriate epithelium function. We next describe the in vitro models that exist to create polarized epithelium and summarize attempts to engineer artificial epithelium for clinical use. Finally, we highlight the opportunities that exist to translate strategies from tissue engineering other tissues to generate polarized epithelium with a functional structure.

  4. Matrix and Backstage: Cellular Substrates for Viral Vaccines

    PubMed Central

    Jordan, Ingo; Sandig, Volker

    2014-01-01

    Vaccines are complex products that are manufactured in highly dynamic processes. Cellular substrates are one critical component that can have an enormous impact on reactogenicity of the final preparation, level of attenuation of a live virus, yield of infectious units or antigens, and cost per vaccine dose. Such parameters contribute to feasibility and affordability of vaccine programs both in industrialized countries and developing regions. This review summarizes the diversity of cellular substrates for propagation of viral vaccines from primary tissue explants and embryonated chicken eggs to designed continuous cell lines of human and avian origin. PMID:24732259

  5. Predicting Protein Relationships to Human Pathways through a Relational Learning Approach Based on Simple Sequence Features.

    PubMed

    García-Jiménez, Beatriz; Pons, Tirso; Sanchis, Araceli; Valencia, Alfonso

    2014-01-01

    Biological pathways are important elements of systems biology and in the past decade, an increasing number of pathway databases have been set up to document the growing understanding of complex cellular processes. Although more genome-sequence data are becoming available, a large fraction of it remains functionally uncharacterized. Thus, it is important to be able to predict the mapping of poorly annotated proteins to original pathway models. We have developed a Relational Learning-based Extension (RLE) system to investigate pathway membership through a function prediction approach that mainly relies on combinations of simple properties attributed to each protein. RLE searches for proteins with molecular similarities to specific pathway components. Using RLE, we associated 383 uncharacterized proteins to 28 pre-defined human Reactome pathways, demonstrating relative confidence after proper evaluation. Indeed, in specific cases manual inspection of the database annotations and the related literature supported the proposed classifications. Examples of possible additional components of the Electron transport system, Telomere maintenance and Integrin cell surface interactions pathways are discussed in detail. All the human predicted proteins in the 2009 and 2012 releases 30 and 40 of Reactome are available at http://rle.bioinfo.cnio.es.

  6. E3 ubiquitin ligase Mule targets β-catenin under conditions of hyperactive Wnt signaling

    PubMed Central

    Dominguez-Brauer, Carmen; Khatun, Rahima; Elia, Andrew J.; Thu, Kelsie L.; Ramachandran, Parameswaran; Baniasadi, Shakiba P.; Hao, Zhenyue; Jones, Lisa D.; Haight, Jillian; Sheng, Yi; Mak, Tak W.

    2017-01-01

    Wnt signaling, named after the secreted proteins that bind to cell surface receptors to activate the pathway, plays critical roles both in embryonic development and the maintenance of homeostasis in many adult tissues. Two particularly important cellular programs orchestrated by Wnt signaling are proliferation and stem cell self-renewal. Constitutive activation of the Wnt pathway resulting from mutation or improper modulation of pathway components contributes to cancer development in various tissues. Colon cancers frequently bear inactivating mutations of the adenomatous polyposis coli (APC) gene, whose product is an important component of the destruction complex that regulates β-catenin levels. Stabilization and nuclear localization of β-catenin result in the expression of a panel of Wnt target genes. We previously showed that Mule/Huwe1/Arf-BP1 (Mule) controls murine intestinal stem and progenitor cell proliferation by modulating the Wnt pathway via c-Myc. Here we extend our investigation of Mule’s influence on oncogenesis by showing that Mule interacts directly with β-catenin and targets it for degradation under conditions of hyperactive Wnt signaling. Our findings suggest that Mule uses various mechanisms to fine-tune the Wnt pathway and provides multiple safeguards against tumorigenesis. PMID:28137882

  7. E3 ubiquitin ligase Mule targets β-catenin under conditions of hyperactive Wnt signaling.

    PubMed

    Dominguez-Brauer, Carmen; Khatun, Rahima; Elia, Andrew J; Thu, Kelsie L; Ramachandran, Parameswaran; Baniasadi, Shakiba P; Hao, Zhenyue; Jones, Lisa D; Haight, Jillian; Sheng, Yi; Mak, Tak W

    2017-02-14

    Wnt signaling, named after the secreted proteins that bind to cell surface receptors to activate the pathway, plays critical roles both in embryonic development and the maintenance of homeostasis in many adult tissues. Two particularly important cellular programs orchestrated by Wnt signaling are proliferation and stem cell self-renewal. Constitutive activation of the Wnt pathway resulting from mutation or improper modulation of pathway components contributes to cancer development in various tissues. Colon cancers frequently bear inactivating mutations of the adenomatous polyposis coli ( APC ) gene, whose product is an important component of the destruction complex that regulates β-catenin levels. Stabilization and nuclear localization of β-catenin result in the expression of a panel of Wnt target genes. We previously showed that Mule/Huwe1/Arf-BP1 (Mule) controls murine intestinal stem and progenitor cell proliferation by modulating the Wnt pathway via c-Myc. Here we extend our investigation of Mule's influence on oncogenesis by showing that Mule interacts directly with β-catenin and targets it for degradation under conditions of hyperactive Wnt signaling. Our findings suggest that Mule uses various mechanisms to fine-tune the Wnt pathway and provides multiple safeguards against tumorigenesis.

  8. Programmable in vivo selection of arbitrary DNA sequences.

    PubMed

    Ben Yehezkel, Tuval; Biezuner, Tamir; Linshiz, Gregory; Mazor, Yair; Shapiro, Ehud

    2012-01-01

    The extraordinary fidelity, sensory and regulatory capacity of natural intracellular machinery is generally confined to their endogenous environment. Nevertheless, synthetic bio-molecular components have been engineered to interface with the cellular transcription, splicing and translation machinery in vivo by embedding functional features such as promoters, introns and ribosome binding sites, respectively, into their design. Tapping and directing the power of intracellular molecular processing towards synthetic bio-molecular inputs is potentially a powerful approach, albeit limited by our ability to streamline the interface of synthetic components with the intracellular machinery in vivo. Here we show how a library of synthetic DNA devices, each bearing an input DNA sequence and a logical selection module, can be designed to direct its own probing and processing by interfacing with the bacterial DNA mismatch repair (MMR) system in vivo and selecting for the most abundant variant, regardless of its function. The device provides proof of concept for programmable, function-independent DNA selection in vivo and provides a unique example of a logical-functional interface of an engineered synthetic component with a complex endogenous cellular system. Further research into the design, construction and operation of synthetic devices in vivo may lead to other functional devices that interface with other complex cellular processes for both research and applied purposes.

  9. Community of protein complexes impacts disease association

    PubMed Central

    Wang, Qianghu; Liu, Weisha; Ning, Shangwei; Ye, Jingrun; Huang, Teng; Li, Yan; Wang, Peng; Shi, Hongbo; Li, Xia

    2012-01-01

    One important challenge in the post-genomic era is uncovering the relationships among distinct pathophenotypes by using molecular signatures. Given the complex functional interdependencies between cellular components, a disease is seldom the consequence of a defect in a single gene product, instead reflecting the perturbations of a group of closely related gene products that carry out specific functions together. Therefore, it is meaningful to explore how the community of protein complexes impacts disease associations. Here, by integrating a large amount of information from protein complexes and the cellular basis of diseases, we built a human disease network in which two diseases are linked if they share common disease-related protein complex. A systemic analysis revealed that linked disease pairs exhibit higher comorbidity than those that have no links, and that the stronger association two diseases have based on protein complexes, the higher comorbidity they are prone to display. Moreover, more connected diseases tend to be malignant, which have high prevalence. We provide novel disease associations that cannot be identified through previous analysis. These findings will potentially provide biologists and clinicians new insights into the etiology, classification and treatment of diseases. PMID:22549411

  10. Interpreting phenotypic antibiotic tolerance and persister cells as evolution via epigenetic inheritance.

    PubMed

    Day, Troy

    2016-04-01

    Epigenetic inheritance is the transmission of nongenetic material such as gene expression levels, RNA and other biomolecules from parents to offspring. There is a growing realization that such forms of inheritance can play an important role in evolution. Bacteria represent a prime example of epigenetic inheritance because a large array of cellular components is transmitted to offspring, in addition to genetic material. Interestingly, there is an extensive and growing empirical literature showing that many bacteria can form 'persister' cells that are phenotypically resistant or tolerant to antibiotics, but most of these results are not interpreted within the context of epigenetic inheritance. Instead, persister cells are usually viewed as a genetically encoded bet-hedging strategy that has evolved in response to a fluctuating environment. Here I show, using a relatively simple model, that many of these empirical findings can be more simply understood as arising from a combination of epigenetic inheritance and cellular noise. I therefore suggest that phenotypic drug tolerance in bacteria might represent one of the best-studied examples of evolution under epigenetic inheritance. © 2016 John Wiley & Sons Ltd.

  11. In vitro 3D corneal tissue model with epithelium, stroma, and innervation.

    PubMed

    Wang, Siran; Ghezzi, Chiara E; Gomes, Rachel; Pollard, Rachel E; Funderburgh, James L; Kaplan, David L

    2017-01-01

    The interactions between corneal nerve, epithelium, and stroma are essential for maintaining a healthy cornea. Thus, corneal tissue models that more fully mimic the anatomy, mechanical properties and cellular components of corneal tissue would provide useful systems to study cellular interactions, corneal diseases and provide options for improved drug screening. Here a corneal tissue model was constructed to include the stroma, epithelium, and innervation. Thin silk protein film stacks served as the scaffolding to support the corneal epithelial and stromal layers, while a surrounding silk porous sponge supported neuronal growth. The neurons innervated the stromal and epithelial layers and improved function and viability of the tissues. An air-liquid interface environment of the corneal tissue was also mimicked in vitro, resulting in a positive impact on epithelial maturity. The inclusion of three cell types in co-culture at an air-liquid interface provides an important advance for the field of in vitro corneal tissue engineering, to permit improvements in the study of innervation and corneal tissue development, corneal disease, and tissue responses to environmental factors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Alternate metabolism during the dauer stage of the nematode Caenorhabditis elegans.

    PubMed

    Burnell, Ann M; Houthoofd, Koen; O'Hanlon, Karen; Vanfleteren, Jacques R

    2005-11-01

    When environmental conditions are unsuitable to support nematode reproduction, Caenorhabditis elegans arrests development before the onset of sexual maturity and specialised 'dauer' larvae, adapted for dispersal, and extended diapause are formed. Dauer larvae do not feed and their metabolism is dependent on internal food reserves. Adult worms which express defects in the insulin/insulin-like growth factor receptor DAF-2 also display enhanced longevity. Whole genome mRNA expression profiling has demonstrated that C. elegans dauer larvae and daf-2 adults have similar transcription profiles for a cohort of longevity genes. Important components of this enhanced longevity system are the alpha-crystallin family of small heat shock proteins, anti-ROS defence systems, increased activity of cellular detoxification processes and possibly also increased chromatin stability and decreased protein turnover. Anaerobic fermentation pathways are upregulated in dauer larvae, while long-lived daf-2 adults appear to have normal oxidative metabolism. Anabolic pathways are down regulated in dauer larvae (and possibly in daf-2 adults as well), and energy consumption appears to be diverted to enhanced cellular maintenance and detoxification processes in both systems.

  13. M2-like macrophages are responsible for collagen degradation through a mannose receptor–mediated pathway

    PubMed Central

    Madsen, Daniel H.; Leonard, Daniel; Masedunskas, Andrius; Moyer, Amanda; Jürgensen, Henrik Jessen; Peters, Diane E.; Amornphimoltham, Panomwat; Selvaraj, Arul; Yamada, Susan S.; Brenner, David A.; Burgdorf, Sven; Engelholm, Lars H.; Behrendt, Niels; Holmbeck, Kenn; Weigert, Roberto

    2013-01-01

    Tissue remodeling processes critically depend on the timely removal and remodeling of preexisting collagen scaffolds. Nevertheless, many aspects related to the turnover of this abundant extracellular matrix component in vivo are still incompletely understood. We therefore took advantage of recent advances in optical imaging to develop an assay to visualize collagen turnover in situ and identify cell types and molecules involved in this process. Collagen introduced into the dermis of mice underwent cellular endocytosis in a partially matrix metalloproteinase–dependent manner and was subsequently routed to lysosomes for complete degradation. Collagen uptake was predominantly executed by a quantitatively minor population of M2-like macrophages, whereas more abundant Col1a1-expressing fibroblasts and Cx3cr1-expressing macrophages internalized collagen at lower levels. Genetic ablation of the collagen receptors mannose receptor (Mrc1) and urokinase plasminogen activator receptor–associated protein (Endo180 and Mrc2) impaired this intracellular collagen degradation pathway. This study demonstrates the importance of receptor-mediated cellular uptake to collagen turnover in vivo and identifies a key role of M2-like macrophages in this process. PMID:24019537

  14. Towards molecular medicine: a case for a biological periodic table.

    PubMed

    Gawad, Charles

    2005-01-01

    The recently amplified pace of development in the technologies to study both normal and aberrant cellular physiology has allowed for a transition from the traditional reductionist approaches to global interrogations of human biology. This transformation has created the anticipation that we will soon more effectively treat or contain most types of diseases through a 'systems-based' approach to understanding and correcting the underlying etiology of these processes. However, to accomplish these goals, we must first have a more comprehensive understanding of all the elements involved in human cellular physiology, as well as why and how they interact. With the vast number of biological components that have and are being discovered, creating methods with modern computational techniques to better organize biological elements is the next requisite step in this process. This article aims to articulate the importance of the organization of chemical elements into a periodic table had on the conversion of chemistry into a quantitative, translatable science, as well as how we can apply the lessons learned in that transition to the current transformation taking place in biology.

  15. Regulatory and effector functions of gamma-delta (γδ) T cells and their therapeutic potential in adoptive cellular therapy for cancer.

    PubMed

    Paul, Sourav; Lal, Girdhari

    2016-09-01

    γδ T cells are an important innate immune component of the tumor microenvironment and are known to affect the immune response in a wide variety of tumors. Unlike αβ T cells, γδ T cells are capable of spontaneous secretion of IL-17A and IFN-γ without undergoing clonal expansion. Although γδ T cells do not require self-MHC-restricted priming, they can distinguish "foreign" or transformed cells from healthy self-cells by using activating and inhibitory killer Ig-like receptors. γδ T cells were used in several clinical trials to treat cancer patient due to their MHC-unrestricted cytotoxicity, ability to distinguish transformed cells from normal cells, the capacity to secrete inflammatory cytokines and also their ability to enhance the generation of antigen-specific CD8(+) and CD4(+) T cell response. In this review, we discuss the effector and regulatory function of γδ T cells in the tumor microenvironment with special emphasis on the potential for their use in adoptive cellular immunotherapy. © 2016 UICC.

  16. In silico evidence for sequence-dependent nucleosome sliding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lequieu, Joshua; Schwartz, David C.; de Pablo, Juan J.

    Nucleosomes represent the basic building block of chromatin and provide an important mechanism by which cellular processes are controlled. The locations of nucleosomes across the genome are not random but instead depend on both the underlying DNA sequence and the dynamic action of other proteins within the nucleus. These processes are central to cellular function, and the molecular details of the interplay between DNA sequence and nudeosome dynamics remain poorly understood. In this work, we investigate this interplay in detail by relying on a molecular model, which permits development of a comprehensive picture of the underlying free energy surfaces andmore » the corresponding dynamics of nudeosome repositioning. The mechanism of nudeosome repositioning is shown to be strongly linked to DNA sequence and directly related to the binding energy of a given DNA sequence to the histone core. It is also demonstrated that chromatin remodelers can override DNA-sequence preferences by exerting torque, and the histone H4 tail is then identified as a key component by which DNA-sequence, histone modifications, and chromatin remodelers could in fact be coupled.« less

  17. Protease-Activated Receptor 4 (PAR4): A Promising Target for Antiplatelet Therapy.

    PubMed

    Rwibasira Rudinga, Gamariel; Khan, Ghulam Jilany; Kong, Yi

    2018-02-14

    Cardiovascular diseases (CVDs) are currently among the leading causes of death worldwide. Platelet aggregation is a key cellular component of arterial thrombi and major cause of CVDs. Protease-activated receptors (PARs), including PAR1, PAR2, PAR3 and PAR4, fall within a subfamily of seven-transmembrane G-protein-coupled receptors (GPCR). Human platelets express PAR1 and PAR4, which contribute to the signaling transduction processes. In association with CVDs, PAR4 not only contributes to platelet activation but also is a modulator of cellular responses that serve as hallmarks of inflammation. Although several antiplatelet drugs are available on the market, they have many side effects that limit their use. Emerging evidence shows that PAR4 targeting is a safer strategy for preventing thrombosis and consequently may improve the overall cardiac safety profile. Our present review summarizes the PAR4 structural characteristics, activation mechanism, role in the pathophysiology of diseases and understanding the association of PAR4 targeting for improved cardiac protection. Conclusively, this review highlights the importance of PAR4 antagonists and its potential utility in different CVDs.

  18. Potential mechanisms of hepatitis B virus induced liver injury

    PubMed Central

    Suhail, Mohd; Abdel-Hafiz, Hany; Ali, Ashraf; Fatima, Kaneez; Damanhouri, Ghazi A; Azhar, Esam; Chaudhary, Adeel GA; Qadri, Ishtiaq

    2014-01-01

    Chronic active hepatitis (CAH) is acknowledged as an imperative risk factor for the development of liver injury and hepatocellular carcinoma. The histological end points of CAH are chronic inflammation, fibrosis and cirrhosis which are coupled with increased DNA synthesis in cirrhotic vs healthy normal livers. The potential mechanism involved in CAH includes a combination of processes leading to liver cell necrosis, inflammation and cytokine production and liver scaring (fibrosis). The severity of liver damage is regulated by Hepatitis B virus genotypes and viral components. The viral and cellular factors that contribute to liver injury are discussed in this article. Liver injury caused by the viral infection affects many cellular processes such as cell signaling, apoptosis, transcription, DNA repair which in turn induce radical effects on cell survival, growth, transformation and maintenance. The consequence of such perturbations is resulted in the alteration of bile secretion, gluconeogenesis, glycolysis, detoxification and metabolism of carbohydrates, proteins, fat and balance of nutrients. The identification and elucidation of the molecular pathways perturbed by the viral proteins are important in order to design effective strategy to minimize and/or restore the hepatocytes injury. PMID:25253946

  19. Watching cellular machinery in action, one molecule at a time.

    PubMed

    Monachino, Enrico; Spenkelink, Lisanne M; van Oijen, Antoine M

    2017-01-02

    Single-molecule manipulation and imaging techniques have become important elements of the biologist's toolkit to gain mechanistic insights into cellular processes. By removing ensemble averaging, single-molecule methods provide unique access to the dynamic behavior of biomolecules. Recently, the use of these approaches has expanded to the study of complex multiprotein systems and has enabled detailed characterization of the behavior of individual molecules inside living cells. In this review, we provide an overview of the various force- and fluorescence-based single-molecule methods with applications both in vitro and in vivo, highlighting these advances by describing their applications in studies on cytoskeletal motors and DNA replication. We also discuss how single-molecule approaches have increased our understanding of the dynamic behavior of complex multiprotein systems. These methods have shown that the behavior of multicomponent protein complexes is highly stochastic and less linear and deterministic than previously thought. Further development of single-molecule tools will help to elucidate the molecular dynamics of these complex systems both inside the cell and in solutions with purified components. © 2017 Monachino et al.

  20. Exploring the interactome: microfluidic isolation of proteins and interacting partners for quantitative analysis by electron microscopy.

    PubMed

    Giss, Dominic; Kemmerling, Simon; Dandey, Venkata; Stahlberg, Henning; Braun, Thomas

    2014-05-20

    Multimolecular protein complexes are important for many cellular processes. However, the stochastic nature of the cellular interactome makes the experimental detection of complex protein assemblies difficult and quantitative analysis at the single molecule level essential. Here, we present a fast and simple microfluidic method for (i) the quantitative isolation of endogenous levels of untagged protein complexes from minute volumes of cell lysates under close to physiological conditions and (ii) the labeling of specific components constituting these complexes. The method presented uses specific antibodies that are conjugated via a photocleavable linker to magnetic beads that are trapped in microcapillaries to immobilize the target proteins. Proteins are released by photocleavage, eluted, and subsequently analyzed by quantitative transmission electron microscopy at the single molecule level. Additionally, before photocleavage, immunogold can be employed to label proteins that interact with the primary target protein. Thus, the presented method provides a new way to study the interactome and, in combination with single molecule transmission electron microscopy, to structurally characterize the large, dynamic, heterogeneous multimolecular protein complexes formed.

  1. Plant sphingolipids: Their importance in cellular organization and adaption.

    PubMed

    Michaelson, Louise V; Napier, Johnathan A; Molino, Diana; Faure, Jean-Denis

    2016-09-01

    Sphingolipids and their phosphorylated derivatives are ubiquitous bio-active components of cells. They are structural elements in the lipid bilayer and contribute to the dynamic nature of the membrane. They have been implicated in many cellular processes in yeast and animal cells, including aspects of signaling, apoptosis, and senescence. Although sphingolipids have a better defined role in animal systems, they have been shown to be central to many essential processes in plants including but not limited to, pollen development, signal transduction and in the response to biotic and abiotic stress. A fuller understanding of the roles of sphingolipids within plants has been facilitated by classical biochemical studies and the identification of mutants of model species. Recently the development of powerful mass spectrometry techniques hailed the advent of the emerging field of lipidomics enabling more accurate sphingolipid detection and quantitation. This review will consider plant sphingolipid biosynthesis and function in the context of these new developments. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Biological response to prosthetic debris

    PubMed Central

    Bitar, Diana; Parvizi, Javad

    2015-01-01

    Joint arthroplasty had revolutionized the outcome of orthopaedic surgery. Extensive and collaborative work of many innovator surgeons had led to the development of durable bearing surfaces, yet no single material is considered absolutely perfect. Generation of wear debris from any part of the prosthesis is unavoidable. Implant loosening secondary to osteolysis is the most common mode of failure of arthroplasty. Osteolysis is the resultant of complex contribution of the generated wear debris and the mechanical instability of the prosthetic components. Roughly speaking, all orthopedic biomaterials may induce a universal biologic host response to generated wear débris with little specific characteristics for each material; but some debris has been shown to be more cytotoxic than others. Prosthetic wear debris induces an extensive biological cascade of adverse cellular responses, where macrophages are the main cellular type involved in this hostile inflammatory process. Macrophages cause osteolysis indirectly by releasing numerous chemotactic inflammatory mediators, and directly by resorbing bone with their membrane microstructures. The bio-reactivity of wear particles depends on two major elements: particle characteristics (size, concentration and composition) and host characteristics. While any particle type may enhance hostile cellular reaction, cytological examination demonstrated that more than 70% of the debris burden is constituted of polyethylene particles. Comprehensive understanding of the intricate process of osteolysis is of utmost importance for future development of therapeutic modalities that may delay or prevent the disease progression. PMID:25793158

  3. Microfluidic Sample Preparation for Diagnostic Cytopathology

    PubMed Central

    Mach, Albert J.; Adeyiga, Oladunni B.; Di Carlo, Dino

    2014-01-01

    The cellular components of body fluids are routinely analyzed to identify disease and treatment approaches. While significant focus has been placed on developing cell analysis technologies, tools to automate the preparation of cellular specimens have been more limited, especially for body fluids beyond blood. Preparation steps include separating, concentrating, and exposing cells to reagents. Sample preparation continues to be routinely performed off-chip by technicians, preventing cell-based point-of-care diagnostics, increasing the cost of tests, and reducing the consistency of the final analysis following multiple manually-performed steps. Here, we review the assortment of biofluids for which suspended cells are analyzed, along with their characteristics and diagnostic value. We present an overview of the conventional sample preparation processes for cytological diagnosis. We finally discuss the challenges and opportunities in developing microfluidic devices for the purpose of automating or miniaturizing these processes, with particular emphases on preparing large or small volume samples, working with samples of high cellularity, automating multi-step processes, and obtaining high purity subpopulations of cells. We hope to convey the importance of and help identify new research directions addressing the vast biological and clinical applications in preparing and analyzing the array of available biological fluids. Successfully addressing the challenges described in this review can lead to inexpensive systems to improve diagnostic accuracy while simultaneously reducing overall systemic healthcare costs. PMID:23380972

  4. Measuring the Autocorrelation Function of Nanoscale Three-Dimensional Density Distribution in Individual Cells Using Scanning Transmission Electron Microscopy, Atomic Force Microscopy, and a New Deconvolution Algorithm.

    PubMed

    Li, Yue; Zhang, Di; Capoglu, Ilker; Hujsak, Karl A; Damania, Dhwanil; Cherkezyan, Lusik; Roth, Eric; Bleher, Reiner; Wu, Jinsong S; Subramanian, Hariharan; Dravid, Vinayak P; Backman, Vadim

    2017-06-01

    Essentially all biological processes are highly dependent on the nanoscale architecture of the cellular components where these processes take place. Statistical measures, such as the autocorrelation function (ACF) of the three-dimensional (3D) mass-density distribution, are widely used to characterize cellular nanostructure. However, conventional methods of reconstruction of the deterministic 3D mass-density distribution, from which these statistical measures can be calculated, have been inadequate for thick biological structures, such as whole cells, due to the conflict between the need for nanoscale resolution and its inverse relationship with thickness after conventional tomographic reconstruction. To tackle the problem, we have developed a robust method to calculate the ACF of the 3D mass-density distribution without tomography. Assuming the biological mass distribution is isotropic, our method allows for accurate statistical characterization of the 3D mass-density distribution by ACF with two data sets: a single projection image by scanning transmission electron microscopy and a thickness map by atomic force microscopy. Here we present validation of the ACF reconstruction algorithm, as well as its application to calculate the statistics of the 3D distribution of mass-density in a region containing the nucleus of an entire mammalian cell. This method may provide important insights into architectural changes that accompany cellular processes.

  5. A toolset of aequorin expression vectors for in planta studies of subcellular calcium concentrations in Arabidopsis thaliana

    PubMed Central

    Mehlmer, Norbert; Parvin, Nargis; Hurst, Charlotte H.; Knight, Marc R.; Teige, Markus; Vothknecht, Ute C.

    2014-01-01

    Calcium has long been acknowledged as one of the most important signalling components in plants. Many abiotic and biotic stimuli are transduced into a cellular response by temporal and spatial changes in cellular calcium concentration and the calcium-sensitive protein aequorin has been exploited as a genetically encoded calcium indicator for the measurement of calcium in planta. The objective of this work was to generate a compatible set of aequorin expression plasmids for the generation of transgenic plant lines to measure changes in calcium levels in different cellular subcompartments. Aequorin was fused to different targeting peptides or organellar proteins as a means to localize it to the cytosol, the nucleus, the plasma membrane, and the mitochondria. Furthermore, constructs were designed to localize aequorin in the stroma as well as the inner and outer surface of the chloroplast envelope membranes. The modular set-up of the plasmids also allows the easy replacement of targeting sequences to include other compartments. An additional YFP-fusion was included to verify the correct subcellular localization of all constructs by laser scanning confocal microscopy. For each construct, pBin19-based binary expression vectors driven by the 35S or UBI10 promoter were made for Agrobacterium-mediated transformation. Stable Arabidopsis lines were generated and initial tests of several lines confirmed their feasibility to measure calcium signals in vivo. PMID:22213817

  6. An Interaction between KSHV ORF57 and UIF Provides mRNA-Adaptor Redundancy in Herpesvirus Intronless mRNA Export

    PubMed Central

    Jackson, Brian R.; Boyne, James R.; Noerenberg, Marko; Taylor, Adam; Hautbergue, Guillaume M.; Walsh, Matthew J.; Wheat, Rachel; Blackbourn, David J.; Wilson, Stuart A.; Whitehouse, Adrian

    2011-01-01

    The hTREX complex mediates cellular bulk mRNA nuclear export by recruiting the nuclear export factor, TAP, via a direct interaction with the export adaptor, Aly. Intriguingly however, depletion of Aly only leads to a modest reduction in cellular mRNA nuclear export, suggesting the existence of additional mRNA nuclear export adaptor proteins. In order to efficiently export Kaposi's sarcoma-associated herpesvirus (KSHV) intronless mRNAs from the nucleus, the KSHV ORF57 protein recruits hTREX onto viral intronless mRNAs allowing access to the TAP-mediated export pathway. Similarly however, depletion of Aly only leads to a modest reduction in the nuclear export of KSHV intronless mRNAs. Herein, we identify a novel interaction between ORF57 and the cellular protein, UIF. We provide the first evidence that the ORF57-UIF interaction enables the recruitment of hTREX and TAP to KSHV intronless mRNAs in Aly-depleted cells. Strikingly, depletion of both Aly and UIF inhibits the formation of an ORF57-mediated nuclear export competent ribonucleoprotein particle and consequently prevents ORF57-mediated mRNA nuclear export and KSHV protein production. Importantly, these findings highlight that redundancy exists in the eukaryotic system for certain hTREX components involved in the mRNA nuclear export of intronless KSHV mRNAs. PMID:21814512

  7. Innate immunity and cellular senescence: The good and the bad in the developmental and aged brain.

    PubMed

    Santoro, Antonietta; Spinelli, Chiara Carmela; Martucciello, Stefania; Nori, Stefania Lucia; Capunzo, Mario; Puca, Annibale Alessandro; Ciaglia, Elena

    2018-03-01

    Ongoing studies evidence cellular senescence in undifferentiated and specialized cells from tissues of all ages. Although it is believed that senescence plays a wider role in several stress responses in the mature age, its participation in certain physiological and pathological processes throughout life is coming to light. The "senescence machinery" has been observed in all brain cell populations, including components of innate immunity (e.g., microglia and astrocytes). As the beneficial versus detrimental implications of senescence is an open question, we aimed to analyze the contribution of immune responses in regulatory mechanisms governing its distinct functions in healthy (development, organogenesis, danger patrolling events) and diseased brain (glioma, neuroinflammation, neurodeneration), and the putative connection between cellular and molecular events governing the 2 states. Particularly this review offers new insights into the complex roles of senescence both as a chronological event as age advances, and as a molecular mechanism of brain homeostasis through the important contribution of innate immune responses and their crosstalk with neighboring cells in brain parenchyma. We also highlight the impact of the recently described glymphatic system and brain lymphatic vasculature in the interplay between peripheral and central immune surveillance and its potential implication during aging. This will open new ways to understand brain development, its deterioration during aging, and the occurrence of several oncological and neurodegenerative diseases. ©2018 Society for Leukocyte Biology.

  8. Insights into the Sigma-1 receptor chaperone’s cellular functions: a microarray report

    PubMed Central

    Tsai, Shang-Yi; Rothman, Richard Kyle; Su, Tsung-Ping

    2013-01-01

    We previously demonstrated that Sig-1Rs are critical regulators in neuronal morphogenesis and development via the regulation of oxidative stress and mitochondrial functions. In the present study, we sought to identify pathways and genes that are affected by Sig-1R. Gene expression profiles were examined in rat hippocampal neurons that had been cultured for18 days in vitro (DIV). The cells were transduced with AAV siRNA targeting Sig-1R on DIV 10 for 7 days, followed by gene expression analysis using a rat genome cDNA array. The gene array results indicated that Sig-1R knockdown hampered cellular functions including steroid biogenesis, protein ubiquitination, actin cytoskeleton network, and Nrf-2 mediated oxidative stress. Many of the cellular components important for actin polymerization and synapse plasticity, including F-actin capping protein and neurofilaments, were significantly changed in AAV-siSig-1R neurons. Further, cytochrome c was reduced in AAV-Sig-1R neurons whereas free-radical generating enzymes including cytochrome p450 and cytochrome b-245 were increased. The microarray results also suggest that Sig-1Rs may regulate genes that are involved in the pathogenesis of many CNS diseases including Alzheimer’s disease and Parkinson’s disease. These data further confirmed that Sig-1Rs play critical roles in the CNS and thus these findings may aid in future development of therapeutic treatments targeting neurodegenerative disorders. PMID:21905129

  9. Measuring the Autocorrelation Function of Nanoscale Three-Dimensional Density Distribution in Individual Cells Using Scanning Transmission Electron Microscopy, Atomic Force Microscopy, and a New Deconvolution Algorithm

    PubMed Central

    Li, Yue; Zhang, Di; Capoglu, Ilker; Hujsak, Karl A.; Damania, Dhwanil; Cherkezyan, Lusik; Roth, Eric; Bleher, Reiner; Wu, Jinsong S.; Subramanian, Hariharan; Dravid, Vinayak P.; Backman, Vadim

    2018-01-01

    Essentially all biological processes are highly dependent on the nanoscale architecture of the cellular components where these processes take place. Statistical measures, such as the autocorrelation function (ACF) of the three-dimensional (3D) mass–density distribution, are widely used to characterize cellular nanostructure. However, conventional methods of reconstruction of the deterministic 3D mass–density distribution, from which these statistical measures can be calculated, have been inadequate for thick biological structures, such as whole cells, due to the conflict between the need for nanoscale resolution and its inverse relationship with thickness after conventional tomographic reconstruction. To tackle the problem, we have developed a robust method to calculate the ACF of the 3D mass–density distribution without tomography. Assuming the biological mass distribution is isotropic, our method allows for accurate statistical characterization of the 3D mass–density distribution by ACF with two data sets: a single projection image by scanning transmission electron microscopy and a thickness map by atomic force microscopy. Here we present validation of the ACF reconstruction algorithm, as well as its application to calculate the statistics of the 3D distribution of mass–density in a region containing the nucleus of an entire mammalian cell. This method may provide important insights into architectural changes that accompany cellular processes. PMID:28416035

  10. Regulation of inflammation and redox signaling by dietary polyphenols.

    PubMed

    Rahman, Irfan; Biswas, Saibal K; Kirkham, Paul A

    2006-11-30

    Reactive oxygen species (ROS) play a key role in enhancing the inflammation through the activation of NF-kappaB and AP-1 transcription factors, and nuclear histone acetylation and deacetylation in various inflammatory diseases. Such undesired effects of oxidative stress have been found to be controlled by the antioxidant and/or anti-inflammatory effects of dietary polyphenols such as curcumin (diferuloylmethane, a principal component of turmeric) and resveratrol (a flavonoid found in red wine). The phenolic compounds in fruits, vegetables, tea and wine are mostly derivatives, and/or isomers of flavones, isoflavones, flavonols, catechins, tocopherols, and phenolic acids. Polyphenols modulate important cellular signaling processes such as cellular growth, differentiation and host of other cellular features. In addition, they modulate NF-kappaB activation, chromatin structure, glutathione biosynthesis, nuclear redox factor (Nrf2) activation, scavenge effect of ROS directly or via glutathione peroxidase activity and as a consequence regulate inflammatory genes in macrophages and lung epithelial cells. However, recent data suggest that dietary polyphenols can work as modifiers of signal transduction pathways to elicit their beneficial effects. The effects of polyphenols however, have been reported to be more pronounced in vitro using high concentrations which are not physiological in vivo. This commentary discusses the recent data on dietary polyphenols in the control of signaling and inflammation particularly during oxidative stress, their metabolism and bioavailability.

  11. Hypothesis for thermal activation of the caspase cascade in apoptotic cell death at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Pearce, John A.

    2013-02-01

    Apoptosis is an especially important process affecting disease states from HIV-AIDS to auto-immune disease to cancer. A cascade of initiator and executioner capsase functional proteins is the hallmark of apoptosis. When activated the various caspases activate other caspases or cleave structural proteins of the cytoskeleton, resulting in "blebbing" of the plasma membrane forming apoptotic bodies that completely enclose the disassembled cellular components. Containment of the cytosolic components within the apoptotic bodies differentiates apoptosis from necroptosis and necrosis, both of which release fragmented cytosol and other cellular constituents into the intracellular space. Biochemical models of caspase activation reveal the extensive feedback loops characteristic of apoptosis. They clearly explain the failure of Arrhenius models to give accurate predictions of cell survival curves in hyperthermic heating protocols. Nevertheless, each of the individual reaction velocities can reasonably be assumed to follow Arrhenius kinetics. If so, the thermal sensitivity of the reaction velocity to temperature elevation is: ∂k/∂T = Ea [k/RT2]. Particular reaction steps described by higher activation energies, Ea, are likely more thermally-sensitive than lower energy reactions and may initiate apoptosis in the absence of other stress signals. Additionally, while the classical irreversible Arrhenius formulation fails to accurately represent many cell survival and/or dye uptake curves - those that display an early stage shoulder region - an expanded reversible model of the law of mass action equation seems to prove effective and is directly based on a firm theoretical thermodynamic foundation.

  12. Ayahuasca and cancer treatment.

    PubMed

    Schenberg, Eduardo E

    2013-01-01

    Comprehensively review the evidence regarding the use of ayahuasca, an Amerindian medicine traditionally used to treat many different illnesses and diseases, to treat some types of cancer. An in-depth review of the literature was conducted using PubMed, books, institutional magazines, conferences and online texts in nonprofessional sources regarding the biomedical knowledge about ayahuasca in general with a specific focus in its possible relations to the treatment of cancer. At least nine case reports regarding the use of ayahuasca in the treatment of prostate, brain, ovarian, uterine, stomach, breast, and colon cancers were found. Several of these were considered improvements, one case was considered worse, and one case was rated as difficult to evaluate. A theoretical model is presented which explains these effects at the cellular, molecular, and psychosocial levels. Particular attention is given to ayahuasca's pharmacological effects through the activity of N,N-dimethyltryptamine at intracellular sigma-1 receptors. The effects of other components of ayahuasca, such as harmine, tetrahydroharmine, and harmaline, are also considered. The proposed model, based on the molecular and cellular biology of ayahuasca's known active components and the available clinical reports, suggests that these accounts may have consistent biological underpinnings. Further study of ayahuasca's possible antitumor effects is important because cancer patients continue to seek out this traditional medicine. Consequently, based on the social and anthropological observations of the use of this brew, suggestions are provided for further research into the safety and efficacy of ayahuasca as a possible medicinal aid in the treatment of cancer.

  13. Chloroquine derivatives block the translocation pores and inhibit cellular entry of Clostridium botulinum C2 toxin and Bacillus anthracis lethal toxin.

    PubMed

    Kreidler, Anna-Maria; Benz, Roland; Barth, Holger

    2017-03-01

    The pathogenic bacteria Clostridium botulinum and Bacillus anthracis produce the binary protein toxins C2 and lethal toxin (LT), respectively. These toxins consist of a binding/transport (B 7 ) component that delivers the separate enzyme (A) component into the cytosol of target cells where it modifies its specific substrate and causes cell death. The B 7 components of C2 toxin and LT, C2IIa and PA 63 , respectively, are ring-shaped heptamers that bind to their cellular receptors and form complexes with their A components C2I and lethal factor (LF), respectively. After receptor-mediated endocytosis of the toxin complexes, C2IIa and PA 63 insert into the membranes of acidified endosomes and form trans-membrane pores through which C2I and LF translocate across endosomal membranes into the cytosol. C2IIa and PA 63 also form channels in planar bilayer membranes, and we used this approach earlier to identify chloroquine as a potent blocker of C2IIa and PA 63 pores. Here, a series of chloroquine derivatives was investigated to identify more efficient toxin inhibitors with less toxic side effects. Chloroquine, primaquine, quinacrine, and fluphenazine blocked C2IIa and PA 63 pores in planar lipid bilayers and in membranes of living epithelial cells and macrophages, thereby preventing the pH-dependent membrane transport of the A components into the cytosol and protecting cells from intoxication with C2 toxin and LT. These potent inhibitors of toxin entry underline the central role of the translocation pores for cellular uptake of binary bacterial toxins and as relevant drug targets, and might be lead compounds for novel pharmacological strategies against severe enteric diseases and anthrax.

  14. Sodium 22+ washout from cultured rat cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kino, M.; Nakamura, A.; Hopp, L.

    1986-10-01

    The washout of Na/sup +/ isotopes from tissues and cells is quite complex and not well defined. To further gain insight into this process, we have studied /sup 22/Na/sup +/ washout from cultured Wistar rat skin fibroblasts and vascular smooth muscle cells (VSMCs). In these preparations, /sup 22/Na/sup +/ washout is described by a general three-exponential function. The exponential factor of the fastest component (k1) and the initial exchange rate constant (kie) of cultured fibroblasts decrease in magnitude in response to incubation in K+-deficient medium or in the presence of ouabain and increase in magnitude when the cells are incubatedmore » in a Ca++-deficient medium. As the magnitude of the kie declines (in the presence of ouabain) to the level of the exponential factor of the middle component (k2), /sup 22/Na/sup +/ washout is adequately described by a two-exponential function. When the kie is further diminished (in the presence of both ouabain and phloretin) to the range of the exponential factor of the slowest component (k3), the washout of /sup 22/Na/sup +/ is apparently monoexponential. Calculations of the cellular Na/sup +/ concentrations, based on the /sup 22/Na/sup +/ activity in the cells at the initiation of the washout experiments, and the medium specific activity agree with atomic absorption spectrometry measurements of the cellular concentration of this ion. Thus, all three components of /sup 22/Na/sup +/ washout from cultured rat cells are of cellular origin. Using the exponential parameters, compartmental analyses of two models (in parallel and in series) with three cellular Na/sup +/ pools were performed. The results indicate that, independent of the model chosen, the relative size of the largest Na+ pool is 92-93% in fibroblasts and approximately 96% in VSMCs. This pool is most likely to represent the cytosol.« less

  15. Consequences of Landscape Fragmentation on Lyme Disease Risk: A Cellular Automata Approach

    PubMed Central

    Li, Sen; Hartemink, Nienke; Speybroeck, Niko; Vanwambeke, Sophie O.

    2012-01-01

    The abundance of infected Ixodid ticks is an important component of human risk of Lyme disease, and various empirical studies have shown that this is associated, at least in part, to landscape fragmentation. In this study, we aimed at exploring how varying woodland fragmentation patterns affect the risk of Lyme disease, through infected tick abundance. A cellular automata model was developed, incorporating a heterogeneous landscape with three interactive components: an age-structured tick population, a classical disease transmission function, and hosts. A set of simplifying assumptions were adopted with respect to the study objective and field data limitations. In the model, the landscape influences both tick survival and host movement. The validation of the model was performed with an empirical study. Scenarios of various landscape configurations (focusing on woodland fragmentation) were simulated and compared. Lyme disease risk indices (density and infection prevalence of nymphs) differed considerably between scenarios: (i) the risk could be higher in highly fragmented woodlands, which is supported by a number of recently published empirical studies, and (ii) grassland could reduce the risk in adjacent woodland, which suggests landscape fragmentation studies of zoonotic diseases should not focus on the patch-level woodland patterns only, but also on landscape-level adjacent land cover patterns. Further analysis of the simulation results indicated strong correlations between Lyme disease risk indices and the density, shape and aggregation level of woodland patches. These findings highlight the strong effect of the spatial patterns of local host population and movement on the spatial dynamics of Lyme disease risks, which can be shaped by woodland fragmentation. In conclusion, using a cellular automata approach is beneficial for modelling complex zoonotic transmission systems as it can be combined with either real world landscapes for exploring direct spatial effects or artificial representations for outlining possible empirical investigations. PMID:22761842

  16. O-GlcNAcylation of eIF2α regulates the phospho-eIF2α-mediated ER stress response.

    PubMed

    Jang, Insook; Kim, Han Byeol; Seo, Hojoong; Kim, Jin Young; Choi, Hyeonjin; Yoo, Jong Shin; Kim, Jae-woo; Cho, Jin Won

    2015-08-01

    O-GlcNAcylation is highly involved in cellular stress responses including the endoplasmic reticulum (ER) stress response. For example, glucosamine-induced flux through the hexosamine biosynthetic pathway can promote ER stress and ER stress inducers can change the total cellular level of O-GlcNAcylation. However, it is largely unknown which component(s) of the unfolded protein response (UPR) is directly regulated by O-GlcNAcylation. In this study, eukaryotic translation initiation factor 2α (eIF2α), a major branch of the UPR, was O-GlcNAcylated at Ser 219, Thr 239, and Thr 241. Upon ER stress, eIF2α is phosphorylated at Ser 51 by phosphorylated PKR-like ER kinase and this inhibits global translation initiation, except for that of specific mRNAs, including activating transcription factor 4, that induce stress-responsive genes such as C/EBP homologous protein (CHOP). Hyper-O-GlcNAcylation induced by O-GlcNAcase inhibitor (thiamet-G) treatment or O-GlcNAc transferase (OGT) overexpression hindered phosphorylation of eIF2α at Ser 51. The level of O-GlcNAcylation of eIF2α was changed by dithiothreitol treatment dependent on its phosphorylation at Ser 51. Point mutation of the O-GlcNAcylation sites of eIF2α increased its phosphorylation at Ser 51 and CHOP expression and resulted in increased apoptosis upon ER stress. These results suggest that O-GlcNAcylation of eIF2α affects its phosphorylation at Ser 51 and influences CHOP-mediated cell death. This O-GlcNAcylation of eIF2α was reproduced in thiamet-G-injected mouse liver. In conclusion, proper regulation of O-GlcNAcylation and phosphorylation of eIF2α is important to maintain cellular homeostasis upon ER stress. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Porcine bladder acellular matrix (ACM): protein expression, mechanical properties.

    PubMed

    Farhat, Walid A; Chen, Jun; Haig, Jennifer; Antoon, Roula; Litman, Jessica; Sherman, Christopher; Derwin, Kathleen; Yeger, Herman

    2008-06-01

    Experimentally, porcine bladder acellular matrix (ACM) that mimics extracellular matrix has excellent potential as a bladder substitute. Herein we investigated the spatial localization and expression of different key cellular and extracellular proteins in the ACM; furthermore, we evaluated the inherent mechanical properties of the resultant ACM prior to implantation. Using a proprietary decellularization method, the DNA contents in both ACM and normal bladder were measured; in addition we used immunohistochemistry and western blots to quantify and localize the different cellular and extracellular components, and finally the mechanical testing was performed using a uniaxial mechanical testing machine. The mean DNA content in the ACM was significantly lower in the ACM compared to the bladder. Furthermore, the immunohistochemical and western blot analyses showed that collagen I and IV were preserved in the ACM, but possibly denatured collagen III in the ACM. Furthermore, elastin, laminin and fibronectin were mildly reduced in the ACM. Although the ACM did not exhibit nucleated cells, residual cellular components (actin, myosin, vimentin and others) were still present. There was, on the other hand, no significant difference in the mean stiffness between the ACM and the bladder. Although our decellularization method is effective in removing nuclear material from the bladder while maintaining its inherent mechanical properties, further work is mandatory to determine whether these residual DNA and cellular remnants would lead to any immune reaction, or if the mechanical properties of the ACM are preserved upon implantation and cellularization.

  18. Chaperone-mediated autophagy and neurodegeneration: connections, mechanisms, and therapeutic implications.

    PubMed

    Liu, Xiaolei; Huang, Sihua; Wang, Xingqin; Tang, Beisha; Li, Wenming; Mao, Zixu

    2015-08-01

    Lysosomes degrade dysfunctional intracellular components via three pathways: macroautophagy, microautophagy, and chaperone-mediated autophagy (CMA). Unlike the other two, CMA degrades cytosolic proteins with a recognized KFERQ-like motif in lysosomes and is important for cellular homeostasis. CMA activity declines with age and is altered in neurodegenerative diseases. Its impairment leads to the accumulation of aggregated proteins, some of which may be directly tied to the pathogenic processes of neurodegenerative diseases. Its induction may accelerate the clearance of pathogenic proteins and promote cell survival, representing a potential therapeutic approach for the treatment of neurodegenerative diseases. In this review, we summarize the current findings on how CMA is involved in neurodegenerative diseases, especially in Parkinson's disease.

  19. Regulation of traffic and organelle architecture of the ER-Golgi interface by signal transduction.

    PubMed

    Tillmann, Kerstin D; Millarte, Valentina; Farhan, Hesso

    2013-09-01

    The components that control trafficking between organelles of the secretory pathway as well as their architecture were uncovered to a reasonable extent in the past decades. However, only recently did we begin to explore the regulation of the secretory pathway by cellular signaling. In the current review, we focus on trafficking between the endoplasmic reticulum and the Golgi apparatus. We highlight recent advances that have been made toward a better understanding of how the secretory pathway is regulated by signaling and discuss how this knowledge is important to obtain an integrative view of secretion in the context of other homeostatic processes such as growth and proliferation.

  20. Isolation of Eosinophils from the Lamina Propria of the Murine Small Intestine.

    PubMed

    Berek, Claudia; Beller, Alexander; Chu, Van Trung

    2016-01-01

    Only recently has it become apparent that eosinophils play a crucial role in mucosal immune homeostasis. Although eosinophils are the main cellular component of the lamina propria of the gastrointestinal tract, they have often been overlooked because they express numerous markers, which are normally used to characterize macrophages and/or dendritic cells. To study their function in mucosal immunity, it is important to isolate them with high purity and viability. Here, we describe a protocol to purify eosinophils from the lamina propria of the murine small intestine. The method involves preparation of the small intestine, removal of epithelial cells and digestion of the lamina propria to release eosinophils. A protocol to sort eosinophils is included.

  1. Toxicity of parasporal crystals of Bacillus thuringiensis to the Indian meal moth, Plodia interpunctella.

    PubMed Central

    Schesser, J H; Bulla, L A

    1979-01-01

    Toxicity of Bacillus thuringiensis parasporal crystals to the Indian meal moth, Plodia interpunctella, is described. The numbers of insects killed were in relation to crystal dry weight. Mortality was determined by comparing adult emergence in diets treated with crystals to emergence in untreated diets. There was only a 30% survival at an application of 0.414 microgram/cm2, and the mean 50% lethal concentration value was found to be 0.299 microgram/cm2. The use of emergence data has provided a reliable and reproducible bioassay for comparing relative toxicities of crystals, spores, and other cellular components to this economically important insect. Images PMID:485134

  2. Proteomic Analysis of Serum Opsonins Impacting Biodistribution and Cellular Association of Porous Silicon Microparticles

    PubMed Central

    Serda, Rita E.; Blanco, Elvin; Mack, Aaron; Stafford, Susan J.; Amra, Sarah; Li, Qingpo; van de Ven, Anne L.; Tanaka, Takemi; Torchilin, Vladimir P.; Wiktorowicz, John E.; Ferrari, Mauro

    2014-01-01

    Mass transport of drug delivery vehicles is guided by particle properties, such as shape, composition and surface chemistry, as well as biomolecules and serum proteins that adsorb to the particle surface. In an attempt to identify serum proteins influencing cellular associations and biodistribution of intravascularly injected particles, we used two dimensional gel electrophoresis and mass spectrometry to identify proteins eluted from the surface of cationic and anionic silicon microparticles. Cationic microparticles displayed a 25-fold greater abundance of Ig light chain variable region, fibrinogen, and complement component 1 compared to their anionic counterparts. The anionic-surface favored equal accumulation of microparticles in the liver and spleen, while cationic-surfaces favored preferential accumulation in the spleen. Immunohistochemistry supported macrophage internalization of both anionic and cationic silicon microparticles in the liver, as well as evidence of association of cationic microparticles with hepatic endothelial cells. Furthermore, scanning electron micrographs supported cellular competition for cationic microparticles by endothelial cells and macrophages. Despite high macrophage content in the lungs and tumor, microparticle uptake by these cells was minimal, supporting differences in the repertoire of surface receptors expressed by tissue-specific macrophages. In summary, particle surface chemistry drives selective binding of serum components impacting cellular interactions and biodistribution. PMID:21303614

  3. Modeling integrated cellular machinery using hybrid Petri-Boolean networks.

    PubMed

    Berestovsky, Natalie; Zhou, Wanding; Nagrath, Deepak; Nakhleh, Luay

    2013-01-01

    The behavior and phenotypic changes of cells are governed by a cellular circuitry that represents a set of biochemical reactions. Based on biological functions, this circuitry is divided into three types of networks, each encoding for a major biological process: signal transduction, transcription regulation, and metabolism. This division has generally enabled taming computational complexity dealing with the entire system, allowed for using modeling techniques that are specific to each of the components, and achieved separation of the different time scales at which reactions in each of the three networks occur. Nonetheless, with this division comes loss of information and power needed to elucidate certain cellular phenomena. Within the cell, these three types of networks work in tandem, and each produces signals and/or substances that are used by the others to process information and operate normally. Therefore, computational techniques for modeling integrated cellular machinery are needed. In this work, we propose an integrated hybrid model (IHM) that combines Petri nets and Boolean networks to model integrated cellular networks. Coupled with a stochastic simulation mechanism, the model simulates the dynamics of the integrated network, and can be perturbed to generate testable hypotheses. Our model is qualitative and is mostly built upon knowledge from the literature and requires fine-tuning of very few parameters. We validated our model on two systems: the transcriptional regulation of glucose metabolism in human cells, and cellular osmoregulation in S. cerevisiae. The model produced results that are in very good agreement with experimental data, and produces valid hypotheses. The abstract nature of our model and the ease of its construction makes it a very good candidate for modeling integrated networks from qualitative data. The results it produces can guide the practitioner to zoom into components and interconnections and investigate them using such more detailed mathematical models.

  4. Modeling Integrated Cellular Machinery Using Hybrid Petri-Boolean Networks

    PubMed Central

    Berestovsky, Natalie; Zhou, Wanding; Nagrath, Deepak; Nakhleh, Luay

    2013-01-01

    The behavior and phenotypic changes of cells are governed by a cellular circuitry that represents a set of biochemical reactions. Based on biological functions, this circuitry is divided into three types of networks, each encoding for a major biological process: signal transduction, transcription regulation, and metabolism. This division has generally enabled taming computational complexity dealing with the entire system, allowed for using modeling techniques that are specific to each of the components, and achieved separation of the different time scales at which reactions in each of the three networks occur. Nonetheless, with this division comes loss of information and power needed to elucidate certain cellular phenomena. Within the cell, these three types of networks work in tandem, and each produces signals and/or substances that are used by the others to process information and operate normally. Therefore, computational techniques for modeling integrated cellular machinery are needed. In this work, we propose an integrated hybrid model (IHM) that combines Petri nets and Boolean networks to model integrated cellular networks. Coupled with a stochastic simulation mechanism, the model simulates the dynamics of the integrated network, and can be perturbed to generate testable hypotheses. Our model is qualitative and is mostly built upon knowledge from the literature and requires fine-tuning of very few parameters. We validated our model on two systems: the transcriptional regulation of glucose metabolism in human cells, and cellular osmoregulation in S. cerevisiae. The model produced results that are in very good agreement with experimental data, and produces valid hypotheses. The abstract nature of our model and the ease of its construction makes it a very good candidate for modeling integrated networks from qualitative data. The results it produces can guide the practitioner to zoom into components and interconnections and investigate them using such more detailed mathematical models. PMID:24244124

  5. Periodic Cellular Structure Technology for Shape Memory Alloys

    NASA Technical Reports Server (NTRS)

    Chen, Edward Y.

    2015-01-01

    Shape memory alloys are being considered for a wide variety of adaptive components for engine and airframe applications because they can undergo large amounts of strain and then revert to their original shape upon heating or unloading. Transition45 Technologies, Inc., has developed an innovative periodic cellular structure (PCS) technology for shape memory alloys that enables fabrication of complex bulk configurations, such as lattice block structures. These innovative structures are manufactured using an advanced reactive metal casting technology that offers a relatively low cost and established approach for constructing near-net shape aerospace components. Transition45 is continuing to characterize these structures to determine how best to design a PCS to better exploit the use of shape memory alloys in aerospace applications.

  6. Gene, Immune and Cellular Responses to Single and Combined Space Flight Conditions-B (TripleLux-B):

    NASA Image and Video Library

    2015-03-31

    ISS043E070945 (03/31/2015) --- ESA (European Space Agency) astronaut Samantha Cristoforetti, Expedition 43 flight engineer aboard the International Space Station, is seen working on a science experiment that includes photographic documentation of Cellular Responses to Single and Combined Space Flight Conditions. Some effects of the space environment level appear to act at the cellular level and it is important to understand the underlying mechanisms of these effects. This science project uses invertebrate hemocytes to focus on two aspects of cellular function which may have medical importance. The synergy between the effects of the space radiation environment and microgravity on cellular function is the goal of this experiment along with studying the impairment of immune functions under spaceflight conditions.

  7. Designing Nanoscale Counter Using Reversible Gate Based on Quantum-Dot Cellular Automata

    NASA Astrophysics Data System (ADS)

    Moharrami, Elham; Navimipour, Nima Jafari

    2018-04-01

    Some new technologies such as Quantum-dot Cellular Automata (QCA) is suggested to solve the physical limits of the Complementary Metal-Oxide Semiconductor (CMOS) technology. The QCA as one of the novel technologies at nanoscale has potential applications in future computers. This technology has some advantages such as minimal size, high speed, low latency, and low power consumption. As a result, it is used for creating all varieties of memory. Counter circuits as one of the important circuits in the digital systems are composed of some latches, which are connected to each other in series and actually they count input pulses in the circuit. On the other hand, the reversible computations are very important because of their ability in reducing energy in nanometer circuits. Improving the energy efficiency, increasing the speed of nanometer circuits, increasing the portability of system, making smaller components of the circuit in a nuclear size and reducing the power consumption are considered as the usage of reversible logic. Therefore, this paper aims to design a two-bit reversible counter that is optimized on the basis of QCA using an improved reversible gate. The proposed reversible structure of 2-bit counter can be increased to 3-bit, 4-bit and more. The advantages of the proposed design have been shown using QCADesigner in terms of the delay in comparison with previous circuits.

  8. Origins of cellular geometry

    PubMed Central

    2011-01-01

    Cells are highly complex and orderly machines, with defined shapes and a startling variety of internal organizations. Complex geometry is a feature of both free-living unicellular organisms and cells inside multicellular animals. Where does the geometry of a cell come from? Many of the same questions that arise in developmental biology can also be asked of cells, but in most cases we do not know the answers. How much of cellular organization is dictated by global cell polarity cues as opposed to local interactions between cellular components? Does cellular structure persist across cell generations? What is the relationship between cell geometry and tissue organization? What ensures that intracellular structures are scaled to the overall size of the cell? Cell biology is only now beginning to come to grips with these questions. PMID:21880160

  9. Bringing new life to damaged bone: the importance of angiogenesis in bone repair and regeneration.

    PubMed

    Stegen, Steve; van Gastel, Nick; Carmeliet, Geert

    2015-01-01

    Bone has the unique capacity to heal without the formation of a fibrous scar, likely because several of the cellular and molecular processes governing bone healing recapitulate the events during skeletal development. A critical component in bone healing is the timely appearance of blood vessels in the fracture callus. Angiogenesis, the formation of new blood vessels from pre-existing ones, is stimulated after fracture by the local production of numerous angiogenic growth factors. The fracture vasculature not only supplies oxygen and nutrients, but also stem cells able to differentiate into osteoblasts and in a later phase also the ions necessary for mineralization. This review provides a concise report of the regulation of angiogenesis by bone cells, its importance during bone healing and its possible therapeutic applications in bone tissue engineering. This article is part of a Special Issue entitled "Stem Cells and Bone". Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Creating single-copy genetic circuits

    PubMed Central

    Lee, Jeong Wook; Gyorgy, Andras; Cameron, D. Ewen; Pyenson, Nora; Choi, Kyeong Rok; Way, Jeffrey C.; Silver, Pamela A.; Del Vecchio, Domitilla; Collins, James J.

    2017-01-01

    SUMMARY Synthetic biology is increasingly used to develop sophisticated living devices for basic and applied research. Many of these genetic devices are engineered using multi-copy plasmids, but as the field progresses from proof-of-principle demonstrations to practical applications, it is important to develop single-copy synthetic modules that minimize consumption of cellular resources and can be stably maintained as genomic integrants. Here we use empirical design, mathematical modeling and iterative construction and testing to build single-copy, bistable toggle switches with improved performance and reduced metabolic load that can be stably integrated into the host genome. Deterministic and stochastic models led us to focus on basal transcription to optimize circuit performance and helped to explain the resulting circuit robustness across a large range of component expression levels. The design parameters developed here provide important guidance for future efforts to convert functional multi-copy gene circuits into optimized single-copy circuits for practical, real-world use. PMID:27425413

  11. Pi sensing and signalling: from prokaryotic to eukaryotic cells.

    PubMed

    Qi, Wanjun; Baldwin, Stephen A; Muench, Stephen P; Baker, Alison

    2016-06-15

    Phosphorus is one of the most important macronutrients and is indispensable for all organisms as a critical structural component as well as participating in intracellular signalling and energy metabolism. Sensing and signalling of phosphate (Pi) has been extensively studied and is well understood in single-cellular organisms like bacteria (Escherichia coli) and Saccharomyces cerevisiae In comparison, the mechanism of Pi regulation in plants is less well understood despite recent advances in this area. In most soils the available Pi limits crop yield, therefore a clearer understanding of the molecular basis underlying Pi sensing and signalling is of great importance for the development of plants with improved Pi use efficiency. This mini-review compares some of the main Pi regulation pathways in prokaryotic and eukaryotic cells and identifies similarities and differences among different organisms, as well as providing some insight into future research. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  12. Oxygen and Oxygen Toxicity: The Birth of Concepts

    PubMed Central

    Zhu, Hong; Traore, Kassim; Santo, Arben; Trush, Michael A.; Li, Y. Robert

    2018-01-01

    Molecular dioxygen (O2) is an essential element of aerobic life, yet incomplete reduction or excitation of O2 during aerobic metabolisms generates diverse oxygen-containing reactive species, commonly known as reactive oxygen species (ROS). On the one hand, ROS pose a serious threat to aerobic organisms via inducing oxidative damage to cellular constituents. On the other hand, these reactive species, when their generation is under homeostatic control, also play important physiological roles (e.g., constituting an important component of immunity and participating in redox signaling). This article defines oxygen and the key facts about oxygen, and discusses the relationship between oxygen and the emergence of early animals on Earth. The article then describes the discovery of oxygen by three historical figures and examines the birth of the concepts of oxygen toxicity and the underlying free radical mechanisms. The article ends with a brief introduction to the emerging field of ROS-mediated redox signaling and physiological responses. PMID:29707642

  13. Chromatin Insulators and Topological Domains: Adding New Dimensions to 3D Genome Architecture

    PubMed Central

    Matharu, Navneet K.; Ahanger, Sajad H.

    2015-01-01

    The spatial organization of metazoan genomes has a direct influence on fundamental nuclear processes that include transcription, replication, and DNA repair. It is imperative to understand the mechanisms that shape the 3D organization of the eukaryotic genomes. Chromatin insulators have emerged as one of the central components of the genome organization tool-kit across species. Recent advancements in chromatin conformation capture technologies have provided important insights into the architectural role of insulators in genomic structuring. Insulators are involved in 3D genome organization at multiple spatial scales and are important for dynamic reorganization of chromatin structure during reprogramming and differentiation. In this review, we will discuss the classical view and our renewed understanding of insulators as global genome organizers. We will also discuss the plasticity of chromatin structure and its re-organization during pluripotency and differentiation and in situations of cellular stress. PMID:26340639

  14. New Gene Evolution: Little Did We Know

    PubMed Central

    Long, Manyuan; VanKuren, Nicholas W.; Chen, Sidi; Vibranovski, Maria D.

    2014-01-01

    Genes are perpetually added to and deleted from genomes during evolution. Thus, it is important to understand how new genes are formed and evolve as critical components of the genetic systems determining the biological diversity of life. Two decades of effort have shed light on the process of new gene origination, and have contributed to an emerging comprehensive picture of how new genes are added to genomes, ranging from the mechanisms that generate new gene structures to the presence of new genes in different organisms to the rates and patterns of new gene origination and the roles of new genes in phenotypic evolution. We review each of these aspects of new gene evolution, summarizing the main evidence for the origination and importance of new genes in evolution. We highlight findings showing that new genes rapidly change existing genetic systems that govern various molecular, cellular and phenotypic functions. PMID:24050177

  15. Selective recruitment of nuclear factors to productively replicating herpes simplex virus genomes.

    PubMed

    Dembowski, Jill A; DeLuca, Neal A

    2015-05-01

    Much of the HSV-1 life cycle is carried out in the cell nucleus, including the expression, replication, repair, and packaging of viral genomes. Viral proteins, as well as cellular factors, play essential roles in these processes. Isolation of proteins on nascent DNA (iPOND) was developed to label and purify cellular replication forks. We adapted aspects of this method to label viral genomes to both image, and purify replicating HSV-1 genomes for the identification of associated proteins. Many viral and cellular factors were enriched on viral genomes, including factors that mediate DNA replication, repair, chromatin remodeling, transcription, and RNA processing. As infection proceeded, packaging and structural components were enriched to a greater extent. Among the more abundant proteins that copurified with genomes were the viral transcription factor ICP4 and the replication protein ICP8. Furthermore, all seven viral replication proteins were enriched on viral genomes, along with cellular PCNA and topoisomerases, while other cellular replication proteins were not detected. The chromatin-remodeling complexes present on viral genomes included the INO80, SWI/SNF, NURD, and FACT complexes, which may prevent chromatinization of the genome. Consistent with this conclusion, histones were not readily recovered with purified viral genomes, and imaging studies revealed an underrepresentation of histones on viral genomes. RNA polymerase II, the mediator complex, TFIID, TFIIH, and several other transcriptional activators and repressors were also affinity purified with viral DNA. The presence of INO80, NURD, SWI/SNF, mediator, TFIID, and TFIIH components is consistent with previous studies in which these complexes copurified with ICP4. Therefore, ICP4 is likely involved in the recruitment of these key cellular chromatin remodeling and transcription factors to viral genomes. Taken together, iPOND is a valuable method for the study of viral genome dynamics during infection and provides a comprehensive view of how HSV-1 selectively utilizes cellular resources.

  16. Genetics of human hydrocephalus

    PubMed Central

    Williams, Michael A.; Rigamonti, Daniele

    2006-01-01

    Human hydrocephalus is a common medical condition that is characterized by abnormalities in the flow or resorption of cerebrospinal fluid (CSF), resulting in ventricular dilatation. Human hydrocephalus can be classified into two clinical forms, congenital and acquired. Hydrocephalus is one of the complex and multifactorial neurological disorders. A growing body of evidence indicates that genetic factors play a major role in the pathogenesis of hydrocephalus. An understanding of the genetic components and mechanism of this complex disorder may offer us significant insights into the molecular etiology of impaired brain development and an accumulation of the cerebrospinal fluid in cerebral compartments during the pathogenesis of hydrocephalus. Genetic studies in animal models have started to open the way for understanding the underlying pathology of hydrocephalus. At least 43 mutants/loci linked to hereditary hydrocephalus have been identified in animal models and humans. Up to date, 9 genes associated with hydrocephalus have been identified in animal models. In contrast, only one such gene has been identified in humans. Most of known hydrocephalus gene products are the important cytokines, growth factors or related molecules in the cellular signal pathways during early brain development. The current molecular genetic evidence from animal models indicate that in the early development stage, impaired and abnormal brain development caused by abnormal cellular signaling and functioning, all these cellular and developmental events would eventually lead to the congenital hydrocephalus. Owing to our very primitive knowledge of the genetics and molecular pathogenesis of human hydrocephalus, it is difficult to evaluate whether data gained from animal models can be extrapolated to humans. Initiation of a large population genetics study in humans will certainly provide invaluable information about the molecular and cellular etiology and the developmental mechanisms of human hydrocephalus. This review summarizes the recent findings on this issue among human and animal models, especially with reference to the molecular genetics, pathological, physiological and cellular studies, and identifies future research directions. PMID:16773266

  17. [Morphology of basement membrane and associated matrix proteins in normal and pathological tissues].

    PubMed

    Nerlich, A

    1995-01-01

    Basement membranes (BM) are specialized structures of the extracellular matrix. Their composition is of particular importance for the maintenance of normal morphological and functional properties of a multitude of organs and tissue systems and it is thus required for regular homeostasis of body function. Generally, they possess three main functions, i.e. participation in the maintenance of tissue structure, control of fluid and substrate exchange, and regulation of cell growth and differentiation. BMs are made up by various components which are in part specifically localized within the BM zone, or which represent ubiquitous matrix constituents with specific quantitative and/or qualitative differences in their localization. On the basis of a thorough immunohistochemical analysis of normal and diseased tissues, we provide here a concept of "functional morphology/pathomorphology" of the different BM components analyzed: 1.) The ubiquitous BM-constituent collagen IV primarily stabilizes the BM-zone and thus represents the "backbone" of the BM providing mechanical strength. Its loss leads to cystic tissue transformation as it is evidenced from the analysis of polycystic nephropathies. Thus, in other cystic tissue transformations a similar formal pathogenesis may be present. 2.) The specific localization of collagen VII as the main structural component of anchoring fibrils underlines the mechanical anchoring function of this collagenous protein. Defects in this protein lead to hereditary epidermolysis. The rapid re-occurrence of epidermal collagen VII during normal human wound healing indicates a quick reconstitution of the mechanical tensile strength of healing wounds. 3.) The BM-specific heparan sulfate proteoglycan (HSPG, Perlecan) with its highly negative anionic charge can be assumed to exert filter control. This assumption is corroborated by the localizatory findings of a preferential deposition of HSPG in endothelial and particularly in glomerular BM. Similarly, the lack of HSPG in the BM of lymph capillaries can be regarded as the correlate for a free fluid influx into lymphatic capillaries. The relative reduction in HSPG-staining in the developing glomerular BM also explains the still immature filter function. Furthermore, the low content of HSPG in placental chorionic capillaries can be regarded as morphological correlate for the required free fluid exchange between maternal and fetal blood systems. In diabetic glomerulopathy, the loss of HSPG coincides with a reduced filter function providing further support for the function of the HSPG. In further analyses of diabetic glomerulopathy, we provide evidence for an extensive matrix dysregulation resulting in either the overexpression of certain BM-components (diffuse glomerulosclerosis) or microfibrillar collagen VI (nodular glomerulosclerosis) indicating changes in cell function and possibly also cellular "differentiation". The analysis of congenital nephropathies additionally indicates that also the HSPG side chains with their negative charges may be involved in certain diseases with filter impairment. 4.) Furthermore, HSPG serves as a binding site for growth factors, particularly for the basic fibroblast growth factor (bFGF). It is of particular interest that the localization of HSPG and bFGF is not completely identical indicating some tissue specific differences in the receptor-ligand interaction. The functional importance of the bFGF-HSPG-interaction is exemplified by arteriosclerotic intima lesions where in highly cellular lesions high amounts of bFGF and HSPG coincide and low levels of both appear in poorly cellular lesions. Similarly, the granulation tissue in wound healing contains large amounts of bFGF-positive mesenchymal cells. 5.) The role of individual matrix components can be deduced from the normal human wound healing process, where epithelial cells migrate on a fibronectin matrix without complete BM.

  18. Integrity of the Linker of Nucleoskeleton and Cytoskeleton Is Required for Efficient Herpesvirus Nuclear Egress.

    PubMed

    Klupp, Barbara G; Hellberg, Teresa; Granzow, Harald; Franzke, Kati; Dominguez Gonzalez, Beatriz; Goodchild, Rose E; Mettenleiter, Thomas C

    2017-10-01

    Herpesvirus capsids assemble in the nucleus, while final virion maturation proceeds in the cytoplasm. This requires that newly formed nucleocapsids cross the nuclear envelope (NE), which occurs by budding at the inner nuclear membrane (INM), release of the primary enveloped virion into the perinuclear space (PNS), and subsequent rapid fusion with the outer nuclear membrane (ONM). During this process, the NE remains intact, even at late stages of infection. In addition, the spacing between the INM and ONM is maintained, as is that between the primary virion envelope and nuclear membranes. The linker of nucleoskeleton and cytoskeleton (LINC) complex consists of INM proteins with a luminal SUN (Sad1/UNC-84 homology) domain connected to ONM proteins with a KASH (Klarsicht, ANC-1, SYNE homology) domain and is thought to be responsible for spacing the nuclear membranes. To investigate the role of the LINC complex during herpesvirus infection, we generated cell lines constitutively expressing dominant negative (dn) forms of SUN1 and SUN2. Ultrastructural analyses revealed a significant expansion of the PNS and the contiguous intracytoplasmic lumen, most likely representing endoplasmic reticulum (ER), especially in cells expressing dn-SUN2. After infection, primary virions accumulated in these expanded luminal regions, also very distant from the nucleus. The importance of the LINC complex was also confirmed by reduced progeny virus titers in cells expressing dn-SUN2. These data show that the intact LINC complex is required for efficient nuclear egress of herpesviruses, likely acting to promote fusion of primary enveloped virions with the ONM. IMPORTANCE While the viral factors for primary envelopment of nucleocapsids at the inner nuclear membrane are known to the point of high-resolution structures, the roles of cellular components and regulators remain enigmatic. Furthermore, the machinery responsible for fusion with the outer nuclear membrane is unsolved. We show here that dominant negative SUN2 interferes with efficient herpesvirus nuclear egress, apparently by interfering with fusion between the primary virion envelope and outer nuclear membrane. This identifies a new cellular component important for viral egress and implicates LINC complex integrity in nonconventional nuclear membrane trafficking. Copyright © 2017 American Society for Microbiology.

  19. Redox control of plant growth and development.

    PubMed

    Kocsy, Gábor; Tari, Irma; Vanková, Radomíra; Zechmann, Bernd; Gulyás, Zsolt; Poór, Péter; Galiba, Gábor

    2013-10-01

    Redox changes determined by genetic and environmental factors display well-organized interactions in the control of plant growth and development. Diurnal and seasonal changes in the environmental conditions are important for the normal course of these physiological processes and, similarly to their mild irregular alterations, for stress adaptation. However, fast or large-scale environmental changes may lead to damage or death of sensitive plants. The spatial and temporal redox changes influence growth and development due to the reprogramming of metabolism. In this process reactive oxygen and nitrogen species and antioxidants are involved as components of signalling networks. The control of growth, development and flowering by reactive oxygen and nitrogen species and antioxidants in interaction with hormones at organ, tissue, cellular and subcellular level will be discussed in the present review. Unsolved problems of the field, among others the need for identification of new components and interactions in the redox regulatory network at various organization levels using systems biology approaches will be also indicated. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  20. The mechanism of protein export enhancement by the SecDF membrane component

    PubMed Central

    Tsukazaki, Tomoya; Nureki, Osamu

    2011-01-01

    Protein transport across membranes is a fundamental and essential cellular activity in all organisms. In bacteria, protein export across the cytoplasmic membrane, driven by dynamic interplays between the protein-conducting SecYEG channel (Sec translocon) and the SecA ATPase, is enhanced by the proton motive force (PMF) and a membrane-integrated Sec component, SecDF. However, the structure and function of SecDF have remained unclear. We solved the first crystal structure of SecDF, consisting of a pseudo-symmetrical 12-helix transmembrane domain and two protruding periplasmic domains. Based on the structural features, we proposed that SecDF functions as a membrane-integrated chaperone, which drives protein movement without using the major energetic currency, ATP, but with remarkable cycles of conformational changes, powered by the proton gradient across the membrane. By a series of biochemical and biophysical approaches, several functionally important residues in the transmembrane region have been identified and our model of the SecDF function has been verified. PMID:27857601

  1. Exploring the Conserved Role of MANF in the Unfolded Protein Response in Drosophila melanogaster

    PubMed Central

    Lindström, Riitta; Lindholm, Päivi; Kallijärvi, Jukka; Palgi, Mari; Saarma, Mart; Heino, Tapio I.

    2016-01-01

    Disturbances in the homeostasis of endoplasmic reticulum (ER) referred to as ER stress is involved in a variety of human diseases. ER stress activates unfolded protein response (UPR), a cellular mechanism the purpose of which is to restore ER homeostasis. Previous studies show that Mesencephalic Astrocyte-derived Neurotrophic Factor (MANF) is an important novel component in the regulation of UPR. In vertebrates, MANF is upregulated by ER stress and protects cells against ER stress-induced cell death. Biochemical studies have revealed an interaction between mammalian MANF and GRP78, the major ER chaperone promoting protein folding. In this study we discovered that the upregulation of MANF expression in response to drug-induced ER stress is conserved between Drosophila and mammals. Additionally, by using a genetic in vivo approach we found genetic interactions between Drosophila Manf and genes encoding for Drosophila homologues of GRP78, PERK and XBP1, the key components of UPR. Our data suggest a role for Manf in the regulation of Drosophila UPR. PMID:26975047

  2. Proteomic profiling of human plasma exosomes identifies PPAR{gamma} as an exosome-associated protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Looze, Christopher; Yui, David; Leung, Lester

    Exosomes are nanovesicles that are released from cells as a mechanism of cell-free intercellular communication. Only a limited number of proteins have been identified from the plasma exosome proteome. Here, we developed a multi-step fractionation scheme incorporating gel exclusion chromatography, rate zonal centrifugation through continuous sucrose gradients, and high-speed centrifugation to purify exosomes from human plasma. Exosome-associated proteins were separated by SDS-PAGE and 66 proteins were identified by LC-MS/MS, which included both cellular and extracellular proteins. Furthermore, we identified and characterized peroxisome proliferator-activated receptor-{gamma} (PPAR{gamma}), a nuclear receptor that regulates adipocyte differentiation and proliferation, as well as immune and inflammatorymore » cell functions, as a novel component of plasma-derived exosomes. Given the important role of exosomes as intercellular messengers, the discovery of PPAR{gamma} as a component of human plasma exosomes identifies a potential new pathway for the paracrine transfer of nuclear receptors.« less

  3. Constraints, Trade-offs and the Currency of Fitness.

    PubMed

    Acerenza, Luis

    2016-03-01

    Understanding evolutionary trajectories remains a difficult task. This is because natural evolutionary processes are simultaneously affected by various types of constraints acting at the different levels of biological organization. Of particular importance are constraints where correlated changes occur in opposite directions, called trade-offs. Here we review and classify the main evolutionary constraints and trade-offs, operating at all levels of trait hierarchy. Special attention is given to life history trade-offs and the conflict between the survival and reproduction components of fitness. Cellular mechanisms underlying fitness trade-offs are described. At the metabolic level, a linear trade-off between growth and flux variability was found, employing bacterial genome-scale metabolic reconstructions. Its analysis indicates that flux variability can be considered as the currency of fitness. This currency is used for fitness transfer between fitness components during adaptations. Finally, a discussion is made regarding the constraints which limit the increase in the amount of fitness currency during evolution, suggesting that occupancy constraints are probably the main restrictions.

  4. Perturbation of the Akt/Gsk3-β signalling pathway is common to Drosophila expressing expanded untranslated CAG, CUG and AUUCU repeat RNAs.

    PubMed

    van Eyk, Clare L; O'Keefe, Louise V; Lawlor, Kynan T; Samaraweera, Saumya E; McLeod, Catherine J; Price, Gareth R; Venter, Deon J; Richards, Robert I

    2011-07-15

    Recent evidence supports a role for RNA as a common pathogenic agent in both the 'polyglutamine' and 'untranslated' dominant expanded repeat disorders. One feature of all repeat sequences currently associated with disease is their predicted ability to form a hairpin secondary structure at the RNA level. In order to investigate mechanisms by which hairpin-forming repeat RNAs could induce neurodegeneration, we have looked for alterations in gene transcript levels as hallmarks of the cellular response to toxic hairpin repeat RNAs. Three disease-associated repeat sequences--CAG, CUG and AUUCU--were specifically expressed in the neurons of Drosophila and resultant common transcriptional changes assessed by microarray analyses. Transcripts that encode several components of the Akt/Gsk3-β signalling pathway were altered as a consequence of expression of these repeat RNAs, indicating that this pathway is a component of the neuronal response to these pathogenic RNAs and may represent an important common therapeutic target in this class of diseases.

  5. Biomimetic and bioactive nanofibrous scaffolds from electrospun composite nanofibers

    PubMed Central

    Zhang, YZ; Su, B; Venugopal, J; Ramakrishna, S; Lim, CT

    2007-01-01

    Electrospinning is an enabling technology that can architecturally (in terms of geometry, morphology or topography) and biochemically fabricate engineered cellular scaffolds that mimic the native extracellular matrix (ECM). This is especially important and forms one of the essential paradigms in the area of tissue engineering. While biomimesis of the physical dimensions of native ECM’s major constituents (eg, collagen) is no longer a fabrication-related challenge in tissue engineering research, conveying bioactivity to electrospun nanofibrous structures will determine the efficiency of utilizing electrospun nanofibers for regenerating biologically functional tissues. This can certainly be achieved through developing composite nanofibers. This article gives a brief overview on the current development and application status of employing electrospun composite nanofibers for constructing biomimetic and bioactive tissue scaffolds. Considering that composites consist of at least two material components and phases, this review details three different configurations of nanofibrous composite structures by using hybridizing basic binary material systems as example. These are components blended composite nanofiber, core-shell structured composite nanofiber, and nanofibrous mingled structure. PMID:18203429

  6. Lysosomal enzymes and their receptors in invertebrates: an evolutionary perspective.

    PubMed

    Kumar, Nadimpalli Siva; Bhamidimarri, Poorna M

    2015-01-01

    Lysosomal biogenesis is an important process in eukaryotic cells to maintain cellular homeostasis. The key components that are involved in the biogenesis such as the lysosomal enzymes, their modifications and the mannose 6-phosphate receptors have been well studied and their evolutionary conservation across mammalian and non-mammalian vertebrates is clearly established. Invertebrate lysosomal biogenesis pathway on the other hand is not well studied. Although, details on mannose 6-phosphate receptors and enzymes involved in lysosomal enzyme modifications were reported earlier, a clear cut pathway has not been established. Recent research on the invertebrate species involving biogenesis of lysosomal enzymes suggests a possible conserved pathway in invertebrates. This review presents certain observations based on these processes that include biochemical, immunological and functional studies. Major conclusions include conservation of MPR-dependent pathway in higher invertebrates and recent evidence suggests that MPR-independent pathway might have been more prominent among lower invertebrates. The possible components of MPR-independent pathway that may play a role in lysosomal enzyme targeting are also discussed here.

  7. Gene ontology analysis of pairwise genetic associations in two genome-wide studies of sporadic ALS.

    PubMed

    Kim, Nora Chung; Andrews, Peter C; Asselbergs, Folkert W; Frost, H Robert; Williams, Scott M; Harris, Brent T; Read, Cynthia; Askland, Kathleen D; Moore, Jason H

    2012-07-28

    It is increasingly clear that common human diseases have a complex genetic architecture characterized by both additive and nonadditive genetic effects. The goal of the present study was to determine whether patterns of both additive and nonadditive genetic associations aggregate in specific functional groups as defined by the Gene Ontology (GO). We first estimated all pairwise additive and nonadditive genetic effects using the multifactor dimensionality reduction (MDR) method that makes few assumptions about the underlying genetic model. Statistical significance was evaluated using permutation testing in two genome-wide association studies of ALS. The detection data consisted of 276 subjects with ALS and 271 healthy controls while the replication data consisted of 221 subjects with ALS and 211 healthy controls. Both studies included genotypes from approximately 550,000 single-nucleotide polymorphisms (SNPs). Each SNP was mapped to a gene if it was within 500 kb of the start or end. Each SNP was assigned a p-value based on its strongest joint effect with the other SNPs. We then used the Exploratory Visual Analysis (EVA) method and software to assign a p-value to each gene based on the overabundance of significant SNPs at the α = 0.05 level in the gene. We also used EVA to assign p-values to each GO group based on the overabundance of significant genes at the α = 0.05 level. A GO category was determined to replicate if that category was significant at the α = 0.05 level in both studies. We found two GO categories that replicated in both studies. The first, 'Regulation of Cellular Component Organization and Biogenesis', a GO Biological Process, had p-values of 0.010 and 0.014 in the detection and replication studies, respectively. The second, 'Actin Cytoskeleton', a GO Cellular Component, had p-values of 0.040 and 0.046 in the detection and replication studies, respectively. Pathway analysis of pairwise genetic associations in two GWAS of sporadic ALS revealed a set of genes involved in cellular component organization and actin cytoskeleton, more specifically, that were not reported by prior GWAS. However, prior biological studies have implicated actin cytoskeleton in ALS and other motor neuron diseases. This study supports the idea that pathway-level analysis of GWAS data may discover important associations not revealed using conventional one-SNP-at-a-time approaches.

  8. Cellular and Physiological Effects of Anthrax Exotoxin and Its Relevance to Disease

    PubMed Central

    Lowe, David E.; Glomski, Ian J.

    2012-01-01

    Bacillus anthracis, the causative agent of anthrax, secretes a tri-partite exotoxin that exerts pleiotropic effects on the host. The purification of the exotoxin components, protective antigen, lethal factor, and edema factor allowed the rapid characterization of their physiologic effects on the host. As molecular biology matured, interest focused on the molecular mechanisms and cellular alterations induced by intoxication. Only recently have researchers begun to connect molecular and cellular knowledge back to the broader physiological effects of the exotoxin. This review focuses on the progress that has been made bridging molecular knowledge back to the exotoxin’s physiological effects on the host. PMID:22919667

  9. Spatially correlated phenotyping reveals K5-positive luminal progenitor cells and p63-K5/14-positive stem cell-like cells in human breast epithelium.

    PubMed

    Boecker, Werner; van Horn, Laura; Stenman, Göran; Stürken, Christine; Schumacher, Udo; Loening, Thomas; Liesenfeld, Lukas; Korsching, Eberhard; Gläser, Doreen; Tiemann, Katharina; Buchwalow, Igor

    2018-05-09

    Understanding the mechanisms regulating human mammary epithelium requires knowledge of the cellular constituents of this tissue. Different and partially contradictory definitions and concepts describing the cellular hierarchy of mammary epithelium have been proposed, including our studies of keratins K5 and/or K14 as markers of progenitor cells. Furthermore, we and others have suggested that the p53 homolog p63 is a marker of human breast epithelial stem cells. In this investigation, we expand our previous studies by testing whether immunohistochemical staining with monospecific anti-keratin antibodies in combination with an antibody against the stem cell marker p63 might help refine the different morphologic phenotypes in normal breast epithelium. We used in situ multilabel staining for p63, different keratins, the myoepithelial marker smooth muscle actin (SMA), the estrogen receptor (ER), and Ki67 to dissect and quantify the cellular components of 16 normal pre- and postmenopausal human breast epithelial tissue samples at the single-cell level. Importantly, we confirm the existence of K5+ only cells and suggest that they, in contrast to the current view, are key luminal precursor cells from which K8/18+ progeny cells evolve. These cells are further modified by the expression of ER and Ki67. We have also identified a population of p63+K5+ cells that are only found in nipple ducts. Based on our findings, we propose a new concept of the cellular hierarchy of human breast epithelium, including K5 luminal lineage progenitors throughout the ductal-lobular axis and p63+K5+ progenitors confined to the nipple ducts.

  10. Multimorbidity, age-related comorbidities and mortality: association of activation, senescence and inflammation markers in HIV adults.

    PubMed

    Duffau, Pierre; Ozanne, Alexandra; Bonnet, Fabrice; Lazaro, Estibaliz; Cazanave, Charles; Blanco, Patrick; Rivière, Etienne; Desclaux, Arnaud; Hyernard, Caroline; Gensous, Noemie; Pellegrin, I; Wittkop, L

    2018-05-11

    The widespread introduction of combination antiretroviral therapy (cART) has increased survival of HIV+ patients. However, the prevalence of age-related comorbidities remains higher than that of the general population, suggesting that individuals with HIV suffer from accelerated aging. Immune activation, -senescence and inflammation could play an important role in this process. The CIADIS (Chronic Immune Activation anD Senescence) sub-study analyzed biomarkers of activation, differentiation, and senescence of T-cells in a cellular-CIADIS weighted score, while biomarkers of inflammation were analyzed in a soluble-CIADIS weighted score using principal component analysis. Adjusted logistic regression and Cox proportional hazard models were used to determine the association between CIADIS weighted scores and 1) the presence of multimorbidity, 2) time to occurrence of the first new age-related comorbidity, and 3) time to death, over a 3-year follow-up period. Of 828 patients with an undetectable viral load, a higher cellular-CIADIS weighted score and higher TNFRI levels were independently associated with the presence of multimorbidity (OR=1.3; 95% CI 1.0-1.6; P=0.02), but the soluble-CIADIS weighted score was not (OR=1.1; 95% CI 0.9-1.3; P=0.33). A higher cellular-CIADIS weighted score (HR=2.2; P < 0.01), higher levels of CD8 activation and a lower CD4/CD8 ratio were associated with a higher risk of age-related comorbidities. Only TNFRI was associated with mortality in a 3-year period. The cellular-CIADIS weighted score was independently associated with both multimorbidity at inclusion and the risk of new age-related comorbidity during a 3- year follow-up. TNFRI was associated a higher risk for mortality.

  11. Cerebellar learning properties are modulated by the CRF receptor in granular cells.

    PubMed

    Ezra-Nevo, Gili; Prestori, Francesca; Locatelli, Francesca; Soda, Teresa; Ten Brinke, Michiel M; Engel, Mareen; Boele, Henk-Jan; Botta, Laura; Leshkowitz, Dena; Ramot, Assaf; Tsoory, Michael; Biton, Inbal E; Deussing, Jan; D'Angelo, Egidio; De Zeeuw, Chris I; Chen, Alon

    2018-06-22

    Corticotropin-releasing factor (CRF) and its type 1 receptor (CRFR 1 ) play an important role in the responses to stressful challenges. Despite the well-established expression of CRFR 1 in granular cells (GrCs), its role in procedural motor performance and memory formation remains elusive. To investigate the role of CRFR 1 expression in cerebellar GrCs, we used a mouse model depleted of CRFR 1 in these cells. We detected changes in the cellular learning mechanisms in GrCs depleted of CRFR 1 in that they showed changes in intrinsic excitability and long-term synaptic plasticity. Moreover, male mice depleted of CRFR 1 specifically in GrCs showed accelerated Pavlovian associative eye-blink conditioning, but no differences in baseline motor performance, locomotion or fear and anxiety-related behaviors. Last, we analyzed cerebella transcriptome of KO and control mice and detected prominent alterations in the expression of calcium signaling pathways components. Our findings shed light on the interplay between stress-related central mechanisms and cerebellar motor conditioning, highlighting the role of the CRF system in regulating particular forms of cerebellar learning. SIGNIFICANCE STATEMENT Although it is known that CRFR 1 is highly expressed in the cerebellum, little attention has been given to its role in cerebellar functions in the behaving animal. Moreover, most of the attention was directed to the effect of CRF on Purkinje cells at the cellular level, and to this date, almost no data exist on the role of this stress-related receptor in other cerebellar structures. Here, we explored the behavioral and cellular effect of GrCs specific ablation of CRFR 1 We found a profound effect on learning, both at the cellular and behavioral levels, without affecting baseline motor skills. Copyright © 2018 the authors.

  12. Clusterin in the protein corona plays a key role in the stealth effect of nanoparticles against phagocytes.

    PubMed

    Aoyama, Michihiko; Hata, Katsutomo; Higashisaka, Kazuma; Nagano, Kazuya; Yoshioka, Yasuo; Tsutsumi, Yasuo

    2016-11-25

    In biological fluids, nanoparticles interact with biological components such as proteins, and a layer called the "protein corona" forms around the nanoparticles. It is believed that the composition of the protein corona affects the cellular uptake and in vivo biodistribution of nanoparticles; however, the key proteins of the protein corona that control the biological fate of nanoparticles remain unclear. Recently, it was reported that clusterin binding to pegylated nanoparticles is important for the stealth effect of pegylated nanoparticles in phagocytes. However, the effect of clusterin on non-pegylated nanoparticles is unknown, although it is known that clusterin is present in the protein corona of non-pegylated nanoparticles. Here, we assessed the stealth effect of clusterin in the corona of non-pegylated silver nanoparticles and silica nanoparticles. We found that serum- and plasma-protein corona inhibited the cellular uptake of silver nanoparticles and silica nanoparticles in phagocytes and that the plasma-protein corona showed a greater stealth effect compared with the serum-protein corona. Clusterin was present in both the serum- and plasma-protein corona, but was present at a higher level in the plasma-protein corona than in the serum-protein corona. Clusterin binding to silver nanoparticles and silica nanoparticles suppressed the cellular uptake of nanoparticles in human macrophage-like cells (THP-1 cells). Although further studies are required to determine how clusterin suppresses non-specific cellular uptake in phagocytes, our data suggest that clusterin plays a key role in the stealth effect of not only pegylated nanoparticles but also non-pegylated nanoparticles. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Mangiferin inhibits macrophage classical activation via downregulating interferon regulatory factor 5 expression.

    PubMed

    Wei, Zhiquan; Yan, Li; Chen, Yixin; Bao, Chuanhong; Deng, Jing; Deng, Jiagang

    2016-08-01

    Mangiferin is a natural polyphenol and the predominant effective component of Mangifera indica Linn. leaves. For hundreds of years, Mangifera indica Linn. leaf has been used as an ingredient in numerous traditional Chinese medicine preparations for the treatment of bronchitis. However, the pharmacological mechanism of mangiferin in the treatment of bronchitis remains to be elucidated. Macrophage classical activation is important role in the process of bronchial airway inflammation, and interferon regulatory factor 5 (IRF5) has been identified as a key regulatory factor for macrophage classical activation. The present study used the THP‑1 human monocyte cell line to investigate whether mangiferin inhibits macrophage classical activation via suppressing IRF5 expression in vitro. THP‑1 cells were differentiated to macrophages by phorbol 12‑myristate 13‑acetate. Macrophages were polarized to M1 macrophages following stimulation with lipopolysaccharide (LPS)/interferon‑γ (IFN‑γ). Flow cytometric analysis was conducted to detect the M1 macrophages. Reverse transcription‑quantitative polymerase chain reaction was used to investigate cellular IRF5 gene expression. Levels of proinflammatory cytokines and IRF5 were assessed following cell culture and cellular homogenization using enzyme‑linked immunosorbent assay. IRF5 protein and nuclei co‑localization was performed in macrophages with laser scanning confocal microscope immunofluorescence analysis. The results of the present study demonstrated that mangiferin significantly inhibits LPS/IFN‑γ stimulation‑induced classical activation of macrophages in vitro and markedly decreases proinflammatory cytokine release. In addition, cellular IRF5 expression was markedly downregulated. These results suggest that the inhibitory effect of mangiferin on classical activation of macrophages may be exerted via downregulation of cellular IRF5 expression levels.

  14. Mangiferin inhibits macrophage classical activation via downregulating interferon regulatory factor 5 expression

    PubMed Central

    Wei, Zhiquan; Yan, Li; Chen, Yixin; Bao, Chuanhong; Deng, Jing; Deng, Jiagang

    2016-01-01

    Mangiferin is a natural polyphenol and the predominant effective component of Mangifera indica Linn. leaves. For hundreds of years, Mangifera indica Linn. leaf has been used as an ingredient in numerous traditional Chinese medicine preparations for the treatment of bronchitis. However, the pharmacological mechanism of mangiferin in the treatment of bronchitis remains to be elucidated. Macrophage classical activation is important role in the process of bronchial airway inflammation, and interferon regulatory factor 5 (IRF5) has been identified as a key regulatory factor for macrophage classical activation. The present study used the THP-1 human monocyte cell line to investigate whether mangiferin inhibits macrophage classical activation via suppressing IRF5 expression in vitro. THP-1 cells were differentiated to macrophages by phorbol 12-myristate 13-acetate. Macrophages were polarized to M1 macrophages following stimulation with lipopolysaccharide (LPS)/interferon-γ (IFN-γ). Flow cytometric analysis was conducted to detect the M1 macrophages. Reverse transcription-quantitative polymerase chain reaction was used to investigate cellular IRF5 gene expression. Levels of proinflammatory cytokines and IRF5 were assessed following cell culture and cellular homogenization using enzyme-linked immunosorbent assay. IRF5 protein and nuclei co-localization was performed in macrophages with laser scanning confocal microscope immunofluorescence analysis. The results of the present study demonstrated that mangiferin significantly inhibits LPS/IFN-γ stimulation-induced classical activation of macrophages in vitro and markedly decreases proinflammatory cytokine release. In addition, cellular IRF5 expression was markedly downregulated. These results suggest that the inhibitory effect of mangiferin on classical activation of macrophages may be exerted via downregulation of cellular IRF5 expression levels. PMID:27277156

  15. Mannan-Binding Lectin Inhibits Candida albicans-Induced Cellular Responses in PMA-Activated THP-1 Cells through Toll-Like Receptor 2 and Toll-Like Receptor 4

    PubMed Central

    Yang, Jianbin; Zhao, Dongfang; Wang, Hongpo; Shao, Feng; Wang, Wenjun; Sun, Ruili; Ling, Mingzhi; Zhai, Jingjing; Song, Shijun

    2013-01-01

    Background Candida albicans (C. albicans), the most common human fungal pathogen, can cause fatal systemic infections under certain circumstances. Mannan-binding lectin (MBL),a member of the collectin family in the C-type lectin superfamily, is an important serum component associated with innate immunity. Toll-like receptors (TLRs) are expressed extensively, and have been shown to be involved in C. albicans-induced cellular responses. We first examined whether MBL modulated heat-killed (HK) C. albicans-induced cellular responses in phorbol 12-myristate 13-acetate (PMA)-activated human THP-1 macrophages. We then investigated the possible mechanisms of its inhibitory effect. Methodology/Principal Finding Enzyme-linked immunosorbent assay (ELISA) and reverse transcriptasepolymerase chain reaction (RT-PCR) analysis showed that MBL at higher concentrations (10–20 µg/ml) significantly attenuated C. albicans-induced chemokine (e.g., IL-8) and proinflammatory cytokine (e.g., TNF-α) production from PMA-activated THP-1 cells at both protein and mRNA levels. Electrophoretic mobility shift assay (EMSA) and Western blot (WB) analysis showed that MBL could inhibit C. albicans-induced nuclear factor-κB (NF-κB) DNA binding and its translocation in PMA-activated THP-1 cells. MBL could directly bind to PMA-activated THP-1 cells in the presence of Ca2+, and this binding decreased TLR2 and TLR4 expressions in C. albicans-induced THP-1 macrophages. Furthermore, the binding could be partially inhibited by both anti-TLR2 monoclonal antibody (clone TL2.1) and anti-TLR4 monoclonal antibody (clone HTA125). In addition, co-immunoprecipitation experiments and microtiter wells assay showed that MBL could directly bind to the recombinant soluble form of extracellular TLR2 domain (sTLR2) and sTLR4. Conclusions/Significance Our study demonstrates that MBL can affect proinflammatory cytokine and chemokine expressions by modifying C. albicans-/TLR-signaling pathways. This study supports an important role for MBL on the regulation of C. albicans-induced cellular responses. PMID:24391778

  16. New cellular automaton model for magnetohydrodynamics

    NASA Technical Reports Server (NTRS)

    Chen, Hudong; Matthaeus, William H.

    1987-01-01

    A new type of two-dimensional cellular automation method is introduced for computation of magnetohydrodynamic fluid systems. Particle population is described by a 36-component tensor referred to a hexagonal lattice. By appropriate choice of the coefficients that control the modified streaming algorithm and the definition of the macroscopic fields, it is possible to compute both Lorentz-force and magnetic-induction effects. The method is local in the microscopic space and therefore suited to massively parallel computations.

  17. Species as Stressors: Heterospecific Interactions and the Cellular Stress Response under Global Change.

    PubMed

    Gunderson, Alex R; King, Emily E; Boyer, Kirsten; Tsukimura, Brian; Stillman, Jonathon H

    2017-07-01

    Anthropogenic global change is predicted to increase the physiological stress of organisms through changes in abiotic conditions such as temperature, pH, and pollution. However, organisms can also experience physiological stress through interactions with other species, especially parasites, predators, and competitors. The stress of species interactions could be an important driver of species' responses to global change as the composition of biological communities change through factors such as distributional and phenological shifts. Interactions between biotic and abiotic stressors could also induce non-linear physiological stress responses under global change. One of the primary means by which organisms deal with physiological stress is through the cellular stress response (CSR), which is broadly the upregulation of a conserved set of genes that facilitate the removal and repair of damaged macromolecules. Here, we present data on behavioral interactions and CSR gene expression for two competing species of intertidal zone porcelain crab (Petrolisthes cinctipes and Petrolisthes manimaculis). We found that P. cinctipes and P. manimaculis engage in more agonistic behaviors when interacting with heterospecifics than conspecifics; however, we found no evidence that heterospecific interactions induced a CSR in these species. In addition to our new data, we review the literature with respect to CSR induction via species interactions, focusing on predator-prey systems and heterospecific competition. We find extensive evidence for predators to induce cellular stress and aspects of the CSR in prey, even in the absence of direct physical contact between species. Effects of heterospecific competition on the CSR have been studied far less, but we do find evidence that agonistic interactions with heterospecifics can induce components of the CSR. Across all published studies, there is clear evidence that species interactions can lead to cellular stress and induction of the CSR. Nonetheless, our understanding of species-induced cellular stress lags far behind our understanding of abiotic cellular stress. © The Author 2017. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  18. From syncitium to regulated pump: a cardiac muscle cellular update

    PubMed Central

    2011-01-01

    The primary purpose of this article is to present a basic overview of some key teaching concepts that should be considered for inclusion in an six- to eight-lecture introductory block on the regulation of cardiac performance for graduate students. Within the context of cardiac excitation-contraction coupling, this review incorporates information on Ca2+ microdomains and local control theory, with particular emphasis on the role of Ca2+ sparks as a key regulatory component of ventricular myocyte contraction dynamics. Recent information pertaining to local Ca2+ cycling in sinoatrial nodal cells (SANCs) as a mechanism underlying cardiac automaticity is also presented as part of the recently described coupled-clock pacemaker system. The details of this regulation are emerging; however, the notion that the sequestration and release of Ca2+ from internal stores in SANCs (similar to that observed in ventricular myocytes) regulates the rhythmic excitation of the heart (i.e., membrane ion channels) is an important advancement in this area. The regulatory role of cardiac adrenergic receptors on cardiac rate and function is also included, and fundamental concepts related to intracellular signaling are discussed. An important point of emphasis is that whole organ cardiac dynamics can be traced back to cellular events regulating intracellular Ca2+ homeostasis and, as such, provides an important conceptual framework from which students can begin to think about whole organ physiology in health and disease. Greater synchrony of Ca2+-regulatory mechanisms between ventricular and pacemaker cells should enhance student comprehension of complex regulatory phenomenon in cardiac muscle. PMID:21385997

  19. Selenium uptake through cystine transporter mediated by glutathione conjugation.

    PubMed

    Tobe, Takao; Ueda, Koji; Aoki, Akira; Okamoto, Yoshinori; Kojima, Nakao; Jinno, Hideto

    2017-01-01

    Selenium (Se) is an essential trace element and is regarded as a protective agent against cancer. In particular, antioxidant effects of selenoenzymes contribute to cancer prevention. Se can also produce reactive oxygen species and, thereby, exert cancer-selective cytotoxicity. Selenodiglutathione (SDG) is a primary Se metabolite conjugated to two glutathione (GSH) moieties. SDG increases intracellular Se accumulation and is more toxic than selenous acid (H 2 SeO 3 ), but the mechanisms for importing Se compounds into cells are not fully understood. Here, we propose a novel mechanism for importing Se, in the form of SDG. Cellular intake of Se compounds was assessed based on Se accumulation, as detected by ICP-MS. SDG incorporation was decreased in the presence of thiols (GSH, cysteine or their oxidized forms, GSSG and cystine), whereas H 2 SeO 3 uptake was increased by addition of GSH or cysteine. Cellular SDG uptake was decreased by pretreatment with specific inhibitors against gamma-glutamyl transpeptidase (GGT) or the cystine/glutamate antiporter (system x c - ). Furthermore, siRNA against xCT, which is the light chain component of system x c - , significantly decreased SDG incorporation. These data suggest an involvement of SDG in Se incorporation, with SDG processed at the cell surface by GGT, leading to formation of selenodicysteine which, in turn, is likely to be imported via xCT. Because GGT and xCT are highly expressed in cancer cells, these mechanisms mediated by the cystine transporter might underlie the cancer-selective toxicity of Se. In addition, the system described in our study appears to represent a physiological transport mechanism for the essential element Se.

  20. The requirement of iron transport for lymphocyte function.

    PubMed

    Lo, Bernice

    2016-01-01

    Iron is essential in multiple cellular processes and is especially critical for cellular respiration and division. A new study identified a mutation affecting the iron import receptor TfR1 as the cause of a human primary immunodeficiency, illuminating the importance of iron in immune cell function.

  1. Genomic analysis of NF-κB signaling pathway reveals its complexity in Crassostrea gigas.

    PubMed

    Yu, Mingjia; Chen, Jianming; Bao, Yongbo; Li, Jun

    2018-01-01

    NF-κB signaling pathway is an evolutionarily conserved pathway that plays highly important roles in several developmental, cellular and immune response processes. With the recent release of the draft Pacific oyster (Crassostra gigas) genome sequence, we have sought to identify the various components of the NF-κB signaling pathway in these mollusks and investigate their gene structure. We further constructed phylogenetic trees to establish the evolutionary relationship of the oyster proteins with their homologues in vertebrates and invertebrates using BLASTX and neighbor-joining method. We report the presence of two classic NF-κB/Rel homologues in the pacific oyster namely Cgp100 and CgRel, which possess characteristic RHD domain and a consensus nuclear localization signal, similar to mammalian homologues and an additional CgRel-like protein, unique to C. gigas. Further, in addition to two classical IκB homologues, CgIκB1 and CgIκB2, we have identified three atypical IκB family members namely CgIκB3, CgIκB4 and CgBCL3 which lack the IκB degradation motif and consist of only one exon that might have arisen by retrotransposition from CgIκB1. Finally, we report the presence of three IKKs and one NEMO genes in oyster genome, named CgIKK1, CgIKK2, CgIKK3 and CgNEMO, respectively. While CgIKK1 and CgIKK3 domain structure is similar to their mammalian homologues, CgIKK2 was found to lack the HLH and NBD domains. Overall, the high conservation of the NF-κB/Rel, IκB and IKK family components in the pacific oyster and their structural similarity to the vertebrate and invertebrate homologues underline the functional importance of this pathway in regulation of critical cellular processes across species. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Cellular and molecular actions of binary toxins possessing ADP-ribosyltransferase activity.

    PubMed

    Considine, R V; Simpson, L L

    1991-01-01

    Clostridial organisms produce a number of binary toxins. Thus far, three complete toxins (botulinum, perfringens and spiroforme) and one incomplete toxin (difficile) have been identified. In the case of complete toxins, there is a heavy chain component (Mr approximately 100,000) that binds to target cells and helps create a docking site for the light chain component (Mr approximately 50,000). The latter is an enzyme that possesses mono(ADP-ribosyl)transferase activity. The toxins appear to proceed through a three step sequence to exert their effects, including a binding step, an internalization step and an intracellular poisoning step. The substrate for the toxins is G-actin. By virtue of ADP-ribosylating monomeric actin, the toxins prevent polymerization as well as promoting depolymerization. The most characteristic cellular effect of the toxins is alteration of the cytoskeleton, which leads directly to changes in cellular morphology and indirectly to changes in cell function (e.g. release of chemical mediators). Binary toxins capable of modifying actin are likely to be useful tools in the study of cell biology.

  3. Decomposing Oncogenic Transcriptional Signatures to Generate Maps of Divergent Cellular States.

    PubMed

    Kim, Jong Wook; Abudayyeh, Omar O; Yeerna, Huwate; Yeang, Chen-Hsiang; Stewart, Michelle; Jenkins, Russell W; Kitajima, Shunsuke; Konieczkowski, David J; Medetgul-Ernar, Kate; Cavazos, Taylor; Mah, Clarence; Ting, Stephanie; Van Allen, Eliezer M; Cohen, Ofir; Mcdermott, John; Damato, Emily; Aguirre, Andrew J; Liang, Jonathan; Liberzon, Arthur; Alexe, Gabriella; Doench, John; Ghandi, Mahmoud; Vazquez, Francisca; Weir, Barbara A; Tsherniak, Aviad; Subramanian, Aravind; Meneses-Cime, Karina; Park, Jason; Clemons, Paul; Garraway, Levi A; Thomas, David; Boehm, Jesse S; Barbie, David A; Hahn, William C; Mesirov, Jill P; Tamayo, Pablo

    2017-08-23

    The systematic sequencing of the cancer genome has led to the identification of numerous genetic alterations in cancer. However, a deeper understanding of the functional consequences of these alterations is necessary to guide appropriate therapeutic strategies. Here, we describe Onco-GPS (OncoGenic Positioning System), a data-driven analysis framework to organize individual tumor samples with shared oncogenic alterations onto a reference map defined by their underlying cellular states. We applied the methodology to the RAS pathway and identified nine distinct components that reflect transcriptional activities downstream of RAS and defined several functional states associated with patterns of transcriptional component activation that associates with genomic hallmarks and response to genetic and pharmacological perturbations. These results show that the Onco-GPS is an effective approach to explore the complex landscape of oncogenic cellular states across cancers, and an analytic framework to summarize knowledge, establish relationships, and generate more effective disease models for research or as part of individualized precision medicine paradigms. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Machine Learning Helps Identify CHRONO as a Circadian Clock Component

    PubMed Central

    Venkataraman, Anand; Ramanathan, Chidambaram; Kavakli, Ibrahim H.; Hughes, Michael E.; Baggs, Julie E.; Growe, Jacqueline; Liu, Andrew C.; Kim, Junhyong; Hogenesch, John B.

    2014-01-01

    Over the last decades, researchers have characterized a set of “clock genes” that drive daily rhythms in physiology and behavior. This arduous work has yielded results with far-reaching consequences in metabolic, psychiatric, and neoplastic disorders. Recent attempts to expand our understanding of circadian regulation have moved beyond the mutagenesis screens that identified the first clock components, employing higher throughput genomic and proteomic techniques. In order to further accelerate clock gene discovery, we utilized a computer-assisted approach to identify and prioritize candidate clock components. We used a simple form of probabilistic machine learning to integrate biologically relevant, genome-scale data and ranked genes on their similarity to known clock components. We then used a secondary experimental screen to characterize the top candidates. We found that several physically interact with known clock components in a mammalian two-hybrid screen and modulate in vitro cellular rhythms in an immortalized mouse fibroblast line (NIH 3T3). One candidate, Gene Model 129, interacts with BMAL1 and functionally represses the key driver of molecular rhythms, the BMAL1/CLOCK transcriptional complex. Given these results, we have renamed the gene CHRONO (computationally highlighted repressor of the network oscillator). Bi-molecular fluorescence complementation and co-immunoprecipitation demonstrate that CHRONO represses by abrogating the binding of BMAL1 to its transcriptional co-activator CBP. Most importantly, CHRONO knockout mice display a prolonged free-running circadian period similar to, or more drastic than, six other clock components. We conclude that CHRONO is a functional clock component providing a new layer of control on circadian molecular dynamics. PMID:24737000

  5. Increased Long Chain acyl-Coa Synthetase Activity and Fatty Acid Import Is Linked to Membrane Synthesis for Development of Picornavirus Replication Organelles

    PubMed Central

    Scott, Alison J.; Ford, Lauren A.; Pei, Zhengtong; Watkins, Paul A.; Ernst, Robert K.; Belov, George A.

    2013-01-01

    All positive strand (+RNA) viruses of eukaryotes replicate their genomes in association with membranes. The mechanisms of membrane remodeling in infected cells represent attractive targets for designing future therapeutics, but our understanding of this process is very limited. Elements of autophagy and/or the secretory pathway were proposed to be hijacked for building of picornavirus replication organelles. However, even closely related viruses differ significantly in their requirements for components of these pathways. We demonstrate here that infection with diverse picornaviruses rapidly activates import of long chain fatty acids. While in non-infected cells the imported fatty acids are channeled to lipid droplets, in infected cells the synthesis of neutral lipids is shut down and the fatty acids are utilized in highly up-regulated phosphatidylcholine synthesis. Thus the replication organelles are likely built from de novo synthesized membrane material, rather than from the remodeled pre-existing membranes. We show that activation of fatty acid import is linked to the up-regulation of cellular long chain acyl-CoA synthetase activity and identify the long chain acyl-CoA syntheatse3 (Acsl3) as a novel host factor required for polio replication. Poliovirus protein 2A is required to trigger the activation of import of fatty acids independent of its protease activity. Shift in fatty acid import preferences by infected cells results in synthesis of phosphatidylcholines different from those in uninfected cells, arguing that the viral replication organelles possess unique properties compared to the pre-existing membranes. Our data show how poliovirus can change the overall cellular membrane homeostasis by targeting one critical process. They explain earlier observations of increased phospholipid synthesis in infected cells and suggest a simple model of the structural development of the membranous scaffold of replication complexes of picorna-like viruses, that may be relevant for other (+)RNA viruses as well. PMID:23762027

  6. Photobiomodulation on senescence

    NASA Astrophysics Data System (ADS)

    Liu, Timon Cheng-Yi; Cheng, Lei; Rong, Dong-Liang; Xu, Xiao-Yang; Cui, Li-Ping; Lu, Jian; Deng, Xiao-Yuan; Liu, Song-Hao

    2006-09-01

    Photobiomodulation (PBM) is an effect oflow intensity monochromatic light or laser irradiation (LIL) on biological systems. which stimulates or inhibits biological functions but does not result in irreducible damage. It has been observed that PBM can suppress cellular senescence, reverse skin photoageing and improve fibromyalgia. In this paper, the biological information model of photobiomodulation (BIMP) is used to discuss its mechanism. Cellular senescence can result from short, dysfunctional telomeres, oxidative stress, or oncogene expression, and may contribute to aging so that it can be seen as a decline of cellular function in which cAMP plays an important role, which provide a foundation for PBM on senescence since cellular senescence is a reasonable model of senescence and PBM is a cellular rehabilitation in which cAMP also plays an important role according to BIMP. The PBM in reversing skin photoageing and improving fibromyalgia are then discussed in detail.

  7. Intragranular cellular segregation network structure strengthening 316L stainless steel prepared by selective laser melting

    NASA Astrophysics Data System (ADS)

    Zhong, Yuan; Liu, Leifeng; Wikman, Stefan; Cui, Daqing; Shen, Zhijian

    2016-03-01

    A feasibility study was performed to fabricate ITER In-Vessel components by Selective Laser Melting (SLM) supported by Fusion for Energy (F4E). Almost fully dense 316L stainless steel (SS316L) components were prepared from gas-atomized powder and with optimized SLM processing parameters. Tensile tests and Charpy-V tests were carried out at 22 °C and 250 °C and the results showed that SLM SS316L fulfill the RCC-MR code. Microstructure characterization reveals the presence of hierarchical macro-, micro- and nano-structures in as-built samples that were very different from SS316L microstructures prepared by other established methods. The formation of a characteristic intragranular cellular segregation network microstructure appears to contribute to the increase of yield strength without losing ductility. Silicon oxide nano-inclusions were formed during the SLM process that generated a micro-hardness fluctuation in the building direction. The combined influence of a cellular microstructure and the nano-inclusions constraints the size of ductile dimples to nano-scale. The crack propagation is hindered by a pinning effect that improves the defect-tolerance of the SLM SS316L. This work proves that it was possible to manufacture SS316L with properties suitable for ITER First Wall panels. Further studies on irradiation properties of SLM SS316L and manufacturing of larger real-size components are needed.

  8. Identification of the cellular receptor for anthrax toxin

    NASA Astrophysics Data System (ADS)

    Bradley, Kenneth A.; Mogridge, Jeremy; Mourez, Michael; Collier, R. John; Young, John A. T.

    2001-11-01

    The tripartite toxin secreted by Bacillus anthracis, the causative agent of anthrax, helps the bacterium evade the immune system and can kill the host during a systemic infection. Two components of the toxin enzymatically modify substrates within the cytosol of mammalian cells: oedema factor (OF) is an adenylate cyclase that impairs host defences through a variety of mechanisms including inhibiting phagocytosis; lethal factor (LF) is a zinc-dependent protease that cleaves mitogen-activated protein kinase kinase and causes lysis of macrophages. Protective antigen (PA), the third component, binds to a cellular receptor and mediates delivery of the enzymatic components to the cytosol. Here we describe the cloning of the human PA receptor using a genetic complementation approach. The receptor, termed ATR (anthrax toxin receptor), is a type I membrane protein with an extracellular von Willebrand factor A domain that binds directly to PA. In addition, a soluble version of this domain can protect cells from the action of the toxin.

  9. Cellular Particle Dynamics simulation of biomechanical relaxation processes of multi-cellular systems

    NASA Astrophysics Data System (ADS)

    McCune, Matthew; Kosztin, Ioan

    2013-03-01

    Cellular Particle Dynamics (CPD) is a theoretical-computational-experimental framework for describing and predicting the time evolution of biomechanical relaxation processes of multi-cellular systems, such as fusion, sorting and compression. In CPD, cells are modeled as an ensemble of cellular particles (CPs) that interact via short range contact interactions, characterized by an attractive (adhesive interaction) and a repulsive (excluded volume interaction) component. The time evolution of the spatial conformation of the multicellular system is determined by following the trajectories of all CPs through numerical integration of their equations of motion. Here we present CPD simulation results for the fusion of both spherical and cylindrical multi-cellular aggregates. First, we calibrate the relevant CPD model parameters for a given cell type by comparing the CPD simulation results for the fusion of two spherical aggregates to the corresponding experimental results. Next, CPD simulations are used to predict the time evolution of the fusion of cylindrical aggregates. The latter is relevant for the formation of tubular multi-cellular structures (i.e., primitive blood vessels) created by the novel bioprinting technology. Work supported by NSF [PHY-0957914]. Computer time provided by the University of Missouri Bioinformatics Consortium.

  10. Fungal histidine phosphotransferase plays a crucial role in photomorphogenesis and pathogenesis in Magnaporthe oryzae

    NASA Astrophysics Data System (ADS)

    Mohanan, Varsha C.; Chandarana, Pinal M.; Chattoo, Bharat. B.; Patkar, Rajesh N.; Manjrekar, Johannes

    2017-05-01

    Two-component signal transduction (TCST) pathways play crucial roles in many cellular functions such as stress responses, biofilm formation and sporulation. The histidine phosphotransferase (HPt), which is an intermediate phosphotransfer protein in a two-component system, transfers a phosphate group to a phosphorylatable aspartate residue in the target protein(s), and up-regulates stress-activated MAP kinase cascades. Most fungal genomes carry a single copy of the gene coding for HPt, which are potential antifungal targets. However, unlike the histidine kinases (HK) or the downstream response regulators (RR) in two-component system, the HPts have not been well studied in phytopathogenic fungi. In this study, we investigated the role of HPt in the model rice-blast fungal pathogen Magnaporthe oryzae. We found that in M. oryzae an additional isoform of the HPT gene YPD1 was expressed specifically in response to light. Further, the expression of light-regulated genes such as those encoding envoy and blue-light-harvesting protein, and PAS domain containing HKs was significantly reduced upon down-regulation of YPD1 in M. oryzae. Importantly, down-regulation of YPD1 led to a significant decrease in the ability to penetrate the host cuticle and in light-dependent conidiation in M. oryzae. Thus, our results indicate that Ypd1 plays an important role in asexual development and host invasion, and suggest that YPD1 isoforms likely have distinct roles to play in the rice-blast pathogen M. oryzae.

  11. Thermal aging of traditional and additively manufactured foams: analysis by time-temperature-superposition, constitutive, and finite-element models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maiti, A.; Weisgraber, T. H.; Small, W.

    Cellular solids or foams are a very important class of materials with diverse applications ranging from thermal insulation and shock absorbing support cushions, to light-weight structural and floatation components, and constitute crucial components in a large number of industries including automotive, aerospace, electronics, marine, biomedical, packaging, and defense. In many of these applications the foam material is subjected to long periods of continuous stress, which can, over time, lead to a permanent change in structure and a degradation in performance. In this report we summarize our modeling efforts to date on polysiloxane foam materials that form an important component inmore » our systems. Aging of the materials was characterized by two measured quantities, i.e., compression set and load retention. Results of accelerated aging experiments were analyzed by an automated time-temperaturesuperposition (TTS) approach, which creates a master curve that can be used for long-term predictions (over decades) under ambient conditions. When comparing such master curves for traditional (stochastic) foams with those for recently 3D-printed (i.e., additively manufactured, or AM) foams, it became clear that AM foams have superior aging behavior. To gain deeper understanding, we imaged the microstructure of both foams using X-ray computed tomography, and performed finite-element analysis of the mechanical response within these microstructures. This indicates a wider stress variation in the stochastic foam with points of more extreme local stress as compared to the 3D printed material.« less

  12. Model of OSBP-Mediated Cholesterol Supply to Aichi Virus RNA Replication Sites Involving Protein-Protein Interactions among Viral Proteins, ACBD3, OSBP, VAP-A/B, and SAC1.

    PubMed

    Ishikawa-Sasaki, Kumiko; Nagashima, Shigeo; Taniguchi, Koki; Sasaki, Jun

    2018-04-15

    Positive-strand RNA viruses, including picornaviruses, utilize cellular machinery for genome replication. Previously, we reported that each of the 2B, 2BC, 2C, 3A, and 3AB proteins of Aichi virus (AiV), a picornavirus, forms a complex with the Golgi apparatus protein ACBD3 and phosphatidylinositol 4-kinase IIIβ (PI4KB) at viral RNA replication sites (replication organelles [ROs]), enhancing PI4KB-dependent phosphatidylinositol 4-phosphate (PI4P) production. Here, we demonstrate AiV hijacking of the cellular cholesterol transport system involving oxysterol-binding protein (OSBP), a PI4P-binding cholesterol transfer protein. AiV RNA replication was inhibited by silencing cellular proteins known to be components of this pathway, OSBP, the ER membrane proteins VAPA and VAPB (VAP-A/B), the PI4P-phosphatase SAC1, and PI-transfer protein β. OSBP, VAP-A/B, and SAC1 were present at RNA replication sites. We also found various previously unknown interactions among the AiV proteins (2B, 2BC, 2C, 3A, and 3AB), ACBD3, OSBP, VAP-A/B, and SAC1, and the interactions were suggested to be involved in recruiting the component proteins to AiV ROs. Importantly, the OSBP-2B interaction enabled PI4P-independent recruitment of OSBP to AiV ROs, indicating preferential recruitment of OSBP among PI4P-binding proteins. Protein-protein interaction-based OSBP recruitment has not been reported for other picornaviruses. Cholesterol was accumulated at AiV ROs, and inhibition of OSBP-mediated cholesterol transfer impaired cholesterol accumulation and AiV RNA replication. Electron microscopy showed that AiV-induced vesicle-like structures were close to ER membranes. Altogether, we conclude that AiV directly recruits the cholesterol transport machinery through protein-protein interactions, resulting in formation of membrane contact sites between the ER and AiV ROs and cholesterol supply to the ROs. IMPORTANCE Positive-strand RNA viruses utilize host pathways to modulate the lipid composition of viral RNA replication sites for replication. Previously, we demonstrated that Aichi virus (AiV), a picornavirus, forms a complex comprising certain proteins of AiV, the Golgi apparatus protein ACBD3, and the lipid kinase PI4KB to synthesize PI4P lipid at the sites for AiV RNA replication. Here, we confirmed cholesterol accumulation at the AiV RNA replication sites, which are established by hijacking the host cholesterol transfer machinery mediated by a PI4P-binding cholesterol transfer protein, OSBP. We showed that the component proteins of the machinery, OSBP, VAP, SAC1, and PITPNB, are all essential host factors for AiV replication. Importantly, the machinery is directly recruited to the RNA replication sites through previously unknown interactions of VAP/OSBP/SAC1 with the AiV proteins and with ACBD3. Consequently, we propose a specific strategy employed by AiV to efficiently accumulate cholesterol at the RNA replication sites via protein-protein interactions. Copyright © 2018 American Society for Microbiology.

  13. Targeting Tumor Microenvironment with Silibinin: Promise and Potential for a Translational Cancer Chemopreventive Strategy

    PubMed Central

    Deep, Gagan; Agarwal, Rajesh

    2014-01-01

    Tumor microenvironment (TME) refers to the dynamic cellular and extra-cellular components surrounding tumor cells at each stage of the carcinogenesis. TME has now emerged as an integral and inseparable part of the carcinogenesis that plays a critical role in tumor growth, angiogenesis, epithelial to mesenchymal transition (EMT), invasion, migration and metastasis. Besides its vital role in carcinogenesis, TME is also a better drug target because of its relative genetic stability with lesser probability for the development of drug-resistance. Several drugs targeting the TME (endothelial cells, macrophages, cancer-associated fibroblasts, or extra-cellular matrix) have either been approved or are in clinical trials. Recently, non-steroidal anti-inflammatory drugs targeting inflammation were reported to also prevent several cancers. These exciting developments suggest that cancer chemopreventive strategies targeting both tumor and TME would be better and effective towards preventing, retarding or reversing the process of carcinogenesis. Here, we have reviewed the effect of a well established hepatoprotective and chemopreventive agent silibinin on cellular (endothelial, fibroblast and immune cells) and non-cellular components (cytokines, growth factors, proteinases etc.) of the TME. Silibinin targets TME constituents as well as their interaction with cancer cells, thereby inhibiting tumor growth, angiogenesis, inflammation, EMT, and metastasis. Silibinin is already in clinical trials, and based upon completed studies we suggest that its chemopreventive effectiveness should be verified through its effect on biological end points in both tumor and TME. Overall, we believe that the chemopreventive strategies targeting both tumor and TME have practical and translational utility in lowering the cancer burden. PMID:23617249

  14. Impact of food components during in vitro digestion of silver nanoparticles on cellular uptake and cytotoxicity in intestinal cells.

    PubMed

    Lichtenstein, Dajana; Ebmeyer, Johanna; Knappe, Patrick; Juling, Sabine; Böhmert, Linda; Selve, Sören; Niemann, Birgit; Braeuning, Albert; Thünemann, Andreas F; Lampen, Alfonso

    2015-11-01

    Because of the rising application of nanoparticles in food and food-related products, we investigated the influence of the digestion process on the toxicity and cellular uptake of silver nanoparticles for intestinal cells. The main food components--carbohydrates, proteins and fatty acids--were implemented in an in vitro digestion process to simulate realistic conditions. Digested and undigested silver nanoparticle suspensions were used for uptake studies in the well-established Caco-2 model. Small-angle X-ray scattering was used to estimate particle core size, size distribution and stability in cell culture medium. Particles proved to be stable and showed radii from 3.6 to 16.0 nm. Undigested particles and particles digested in the presence of food components were comparably taken up by Caco-2 cells, whereas the uptake of particles digested without food components was decreased by 60%. Overall, these findings suggest that in vivo ingested poly (acrylic acid)-coated silver nanoparticles may reach the intestine in a nanoscaled form even if enclosed in a food matrix. While appropriate for studies on the uptake into intestinal cells, the Caco-2 model might be less suited for translocation studies. Moreover, we show that nanoparticle digestion protocols lacking food components may lead to misinterpretation of uptake studies and inconclusive results.

  15. Taking Food Away

    Cancer.gov

    Cancers driven by mutant KRAS genes are more dependent on scavenging nutrients from the tumor microenvironment, via macropinocytosis, and from internal recycling of cellular components, via autophagy. These differences may be cancer vulnerabilities.

  16. Creation of a virtual cutaneous tissue bank

    NASA Astrophysics Data System (ADS)

    LaFramboise, William A.; Shah, Sujal; Hoy, R. W.; Letbetter, D.; Petrosko, P.; Vennare, R.; Johnson, Peter C.

    2000-04-01

    Cellular and non-cellular constituents of skin contain fundamental morphometric features and structural patterns that correlate with tissue function. High resolution digital image acquisitions performed using an automated system and proprietary software to assemble adjacent images and create a contiguous, lossless, digital representation of individual microscope slide specimens. Serial extraction, evaluation and statistical analysis of cutaneous feature is performed utilizing an automated analysis system, to derive normal cutaneous parameters comprising essential structural skin components. Automated digital cutaneous analysis allows for fast extraction of microanatomic dat with accuracy approximating manual measurement. The process provides rapid assessment of feature both within individual specimens and across sample populations. The images, component data, and statistical analysis comprise a bioinformatics database to serve as an architectural blueprint for skin tissue engineering and as a diagnostic standard of comparison for pathologic specimens.

  17. Cellular uptake of modified oligonucleotides: fluorescence approach

    NASA Astrophysics Data System (ADS)

    Kočišová, Eva; Praus, Petr; Rosenberg, Ivan; Seksek, Olivier; Sureau, Franck; Štěpánek, Josef; Turpin, Pierre-Yves

    2005-06-01

    Cellular uptake and intracellular distribution of the synthetic antisense analogue of dT 15 oligonucleotide (homogenously containing 3'-O-P-CH 2-O-5' internucleotide linkages and labeled with tetramethylrhodamine dye) was studied on B16 melanoma cell line by fluorescence micro-imaging and time-resolved microspectrofluorimetry. By using amphotericin B 3-dimethylaminopropyl amide as an enhancer molecule for the uptake process, homogenous staining of the cells with rather distinct nucleoli staining was achieved after 4 h of incubation. Two spectral components of 2.7 and 1.3 ns lifetime, respectively, were resolved in the emission collected from the cell nucleus. The way of staining and the long-lived component differed from our previous experiments demonstrating complexity of the intracellular oligonucleotide distribution and in particular of the binding inside the nucleus.

  18. Context Specificity of Stress-activated Mitogen-activated Protein (MAP) Kinase Signaling: The Story as Told by Caenorhabditis elegans*

    PubMed Central

    Andrusiak, Matthew G.; Jin, Yishi

    2016-01-01

    Stress-associated p38 and JNK mitogen-activated protein (MAP) kinase signaling cascades trigger specific cellular responses and are involved in multiple disease states. At the root of MAP kinase signaling complexity is the differential use of common components on a context-specific basis. The roundworm Caenorhabditis elegans was developed as a system to study genes required for development and nervous system function. The powerful genetics of C. elegans in combination with molecular and cellular dissections has led to a greater understanding of how p38 and JNK signaling affects many biological processes under normal and stress conditions. This review focuses on the studies revealing context specificity of different stress-activated MAPK components in C. elegans. PMID:26907690

  19. Cellular Organization and Cytoskeletal Regulation of the Hippo Signaling Network

    PubMed Central

    Sun, Shuguo; Irvine, Kenneth D.

    2016-01-01

    The Hippo signaling network integrates diverse upstream signals to control cell fate decisions and regulate organ growth. Recent studies have provided new insights into the cellular organization of Hippo signaling, its relationship to cell-cell junctions, and how the cytoskeleton modulates Hippo signaling. Cell-cell junctions serve as platforms for Hippo signaling by localizing scaffolding proteins that interact with core components of the pathway. Interactions of Hippo pathway components with cell-cell junctions and the cytoskeleton also suggest potential mechanisms for the regulation of the pathway by cell contact and cell polarity. As our understanding of the complexity of Hippo signaling increases, a future challenge will be to understand how the diverse inputs into the pathway are integrated, and to define their respective contributions in vivo. PMID:27268910

  20. Tissue Engineering Strategies for Myocardial Regeneration: Acellular Versus Cellular Scaffolds?

    PubMed

    Domenech, Maribella; Polo-Corrales, Lilliana; Ramirez-Vick, Jaime E; Freytes, Donald O

    2016-12-01

    Heart disease remains one of the leading causes of death in industrialized nations with myocardial infarction (MI) contributing to at least one fifth of the reported deaths. The hypoxic environment eventually leads to cellular death and scar tissue formation. The scar tissue that forms is not mechanically functional and often leads to myocardial remodeling and eventual heart failure. Tissue engineering and regenerative medicine principles provide an alternative approach to restoring myocardial function by designing constructs that will restore the mechanical function of the heart. In this review, we will describe the cellular events that take place after an MI and describe current treatments. We will also describe how biomaterials, alone or in combination with a cellular component, have been used to engineer suitable myocardium replacement constructs and how new advanced culture systems will be required to achieve clinical success.

  1. Visualizing Viral Protein Structures in Cells Using Genetic Probes for Correlated Light and Electron Microscopy

    PubMed Central

    Ou, Horng D.; Deerinck, Thomas J.; Bushong, Eric; Ellisman, Mark H.; O’Shea, Clodagh C.

    2015-01-01

    Structural studies of viral proteins most often use high-resolution techniques such as X-ray crystallography, nuclear magnetic resonance, single particle negative stain, or cryo-electron microscopy (EM) to reveal atomic interactions of soluble, homogeneous viral proteins or viral protein complexes. Once viral proteins or complexes are separated from their host’s cellular environment, their natural in-situ structure and details of how they interact with other cellular components may be lost. EM has been an invaluable tool in virology since its introduction in the late 1940’s and subsequent application to cells in the 1950’s. EM studies have expanded our knowledge of viral entry, viral replication, alteration of cellular components, and viral lysis. Most of these early studies were focused on conspicuous morphological cellular changes, because classic EM metal stains were designed to highlight classes of cellular structures rather than specific molecular structures. Much later, to identify viral proteins inducing specific structural configurations at the cellular level, immunostaining with a primary antibody followed by colloidal gold secondary antibody was employed to mark the location of specific viral proteins. This technique can suffer from artifacts in cellular ultrastructure due to compromises required to provide access to the immuno-reagents. Immunolocalization methods also require the generation of highly specific antibodies, which may not be available for every viral protein. Here we discuss new methods to visualize viral proteins and structures at high resolutions in-situ using correlated light and electron microscopy (CLEM). We discuss the use of genetically encoded protein fusions that oxidize diaminobenzidine (DAB) into an osmiophilic polymer that can be visualized by EM. Detailed protocols for applying the genetically encoded photo-oxidizing protein MiniSOG to a viral protein, photo-oxidation of the fusion protein to yield DAB polymer staining, and preparation of photo-oxidized samples for TEM and serial block-face scanning EM (SBEM) for large-scale volume EM data acquisition are also presented. As an example, we discuss the recent multi-scale analysis of Adenoviral protein E4-ORF3 that reveals a new type of multi-functional polymer that disrupts multiple cellular proteins. This new capability to visualize unambiguously specific viral protein structures at high resolutions in the native cellular environment is revealing new insights into how they usurp host proteins and functions to drive pathological viral replication. PMID:26066760

  2. Visualizing viral protein structures in cells using genetic probes for correlated light and electron microscopy.

    PubMed

    Ou, Horng D; Deerinck, Thomas J; Bushong, Eric; Ellisman, Mark H; O'Shea, Clodagh C

    2015-11-15

    Structural studies of viral proteins most often use high-resolution techniques such as X-ray crystallography, nuclear magnetic resonance, single particle negative stain, or cryo-electron microscopy (EM) to reveal atomic interactions of soluble, homogeneous viral proteins or viral protein complexes. Once viral proteins or complexes are separated from their host's cellular environment, their natural in situ structure and details of how they interact with other cellular components may be lost. EM has been an invaluable tool in virology since its introduction in the late 1940's and subsequent application to cells in the 1950's. EM studies have expanded our knowledge of viral entry, viral replication, alteration of cellular components, and viral lysis. Most of these early studies were focused on conspicuous morphological cellular changes, because classic EM metal stains were designed to highlight classes of cellular structures rather than specific molecular structures. Much later, to identify viral proteins inducing specific structural configurations at the cellular level, immunostaining with a primary antibody followed by colloidal gold secondary antibody was employed to mark the location of specific viral proteins. This technique can suffer from artifacts in cellular ultrastructure due to compromises required to provide access to the immuno-reagents. Immunolocalization methods also require the generation of highly specific antibodies, which may not be available for every viral protein. Here we discuss new methods to visualize viral proteins and structures at high resolutions in situ using correlated light and electron microscopy (CLEM). We discuss the use of genetically encoded protein fusions that oxidize diaminobenzidine (DAB) into an osmiophilic polymer that can be visualized by EM. Detailed protocols for applying the genetically encoded photo-oxidizing protein MiniSOG to a viral protein, photo-oxidation of the fusion protein to yield DAB polymer staining, and preparation of photo-oxidized samples for TEM and serial block-face scanning EM (SBEM) for large-scale volume EM data acquisition are also presented. As an example, we discuss the recent multi-scale analysis of Adenoviral protein E4-ORF3 that reveals a new type of multi-functional polymer that disrupts multiple cellular proteins. This new capability to visualize unambiguously specific viral protein structures at high resolutions in the native cellular environment is revealing new insights into how they usurp host proteins and functions to drive pathological viral replication. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Microstructural architecture developed in the fabrication of solid and open-cellular copper components by additive manufacturing using electron beam melting

    NASA Astrophysics Data System (ADS)

    Ramirez, Diana Alejandra

    The fabrication of Cu components were first built by additive manufacturing using electron beam melting (EBM) from low-purity, atomized Cu powder containing a high density of Cu2O precipitates leading to a novel example of precipitate-dislocation architecture. These microstructures exhibit cell-like arrays (1-3microm) in the horizontal reference plane perpendicular to the build direction with columnar-like arrays extending from ~12 to >60 microm in length and corresponding spatial dimensions of 1-3 microm. These observations were observed by the use of optical metallography, and scanning and transmission electron microscopy. The hardness measurements were taken both on the atomized powder and the Cu components. The hardness for these architectures ranged from ~HV 83 to 88, in contrast to the original Cu powder microindentation hardness of HV 72 and the commercial Cu base plate hardness of HV 57. These observations were utilized for the fabrication of open-cellular copper structures by additive manufacturing using EBM and illustrated the ability to fabricate some form of controlled microstructural architecture by EBM parameter alteration or optimizing. The fabrication of these structures ranged in densities from 0.73g/cm3 to 6.67g/cm3. These structures correspond to four different articulated mesh arrays. While these components contained some porosity as a consequence of some unmelted regions, the Cu2O precipitates also contributed to a reduced density. Using X-ray Diffraction showed the approximate volume fraction estimated to be ~2%. The addition of precipitates created in the EBM melt scan formed microstructural arrays which contributed to hardening contributing to the strength of mesh struts and foam ligaments. The measurements of relative stiffness versus relative density plots for Cu compared very closely with Ti-6Al-4V open cellular structures - both mesh and foams. The Cu reticulated mesh structures exhibit a slope of n = 2 in contrast to a slope of n = 2.4 for the stochastic Cu foams, consistent with the Gibson-Ashby foam model where n = 2. These open cellular structure components exhibit considerable potential for novel, complex, multi-functional electrical and thermal management systems, especially complex, monolithic heat exchange device.

  4. The coming of age of chaperone-mediated autophagy.

    PubMed

    Kaushik, Susmita; Cuervo, Ana Maria

    2018-06-01

    Chaperone-mediated autophagy (CMA) was the first studied process that indicated that degradation of intracellular components by the lysosome can be selective - a concept that is now well accepted for other forms of autophagy. Lysosomes can degrade cellular cytosol in a nonspecific manner but can also discriminate what to target for degradation with the involvement of a degradation tag, a chaperone and a sophisticated mechanism to make the selected proteins cross the lysosomal membrane through a dedicated translocation complex. Recent studies modulating CMA activity in vivo using transgenic mouse models have demonstrated that selectivity confers on CMA the ability to participate in the regulation of multiple cellular functions. Timely degradation of specific cellular proteins by CMA modulates, for example, glucose and lipid metabolism, DNA repair, cellular reprograming and the cellular response to stress. These findings expand the physiological relevance of CMA beyond its originally identified role in protein quality control and reveal that CMA failure with age may aggravate diseases, such as ageing-associated neurodegeneration and cancer.

  5. Landauer in the Age of Synthetic Biology: Energy Consumption and Information Processing in Biochemical Networks

    NASA Astrophysics Data System (ADS)

    Mehta, Pankaj; Lang, Alex H.; Schwab, David J.

    2016-03-01

    A central goal of synthetic biology is to design sophisticated synthetic cellular circuits that can perform complex computations and information processing tasks in response to specific inputs. The tremendous advances in our ability to understand and manipulate cellular information processing networks raises several fundamental physics questions: How do the molecular components of cellular circuits exploit energy consumption to improve information processing? Can one utilize ideas from thermodynamics to improve the design of synthetic cellular circuits and modules? Here, we summarize recent theoretical work addressing these questions. Energy consumption in cellular circuits serves five basic purposes: (1) increasing specificity, (2) manipulating dynamics, (3) reducing variability, (4) amplifying signal, and (5) erasing memory. We demonstrate these ideas using several simple examples and discuss the implications of these theoretical ideas for the emerging field of synthetic biology. We conclude by discussing how it may be possible to overcome these limitations using "post-translational" synthetic biology that exploits reversible protein modification.

  6. A simple and fast method for fixation of cultured cell lines that preserves cellular structures containing gamma-tubulin.

    PubMed

    Alvarado-Kristensson, Maria

    2018-01-01

    When using fluorescence microscope techniques to study cells, it is essential that the cell structure and contents are preserved after preparation of the samples, and that the preparation method employed does not create artefacts that can be perceived as cellular structure/components. γ-Tubulin forms filaments that in some cases are immunostained with an anti-γ-tubulin antibody, but this immunostaining is not reproducible [[1], [2

  7. Dissecting the transcriptional phenotype of ribosomal protein deficiency: implications for Diamond-Blackfan Anemia

    PubMed Central

    Aspesi, Anna; Pavesi, Elisa; Robotti, Elisa; Crescitelli, Rossella; Boria, Ilenia; Avondo, Federica; Moniz, Hélène; Da Costa, Lydie; Mohandas, Narla; Roncaglia, Paola; Ramenghi, Ugo; Ronchi, Antonella; Gustincich, Stefano; Merlin, Simone; Marengo, Emilio; Ellis, Steven R.; Follenzi, Antonia; Santoro, Claudio; Dianzani, Irma

    2014-01-01

    Defects in genes encoding ribosomal proteins cause Diamond Blackfan Anemia (DBA), a red cell aplasia often associated with physical abnormalities. Other bone marrow failure syndromes have been attributed to defects in ribosomal components but the link between erythropoiesis and the ribosome remains to be fully defined. Several lines of evidence suggest that defects in ribosome synthesis lead to “ribosomal stress” with p53 activation and either cell cycle arrest or induction of apoptosis. Pathways independent of p53 have also been proposed to play a role in DBA pathogenesis. We took an unbiased approach to identify p53-independent pathways activated by defects in ribosome synthesis by analyzing global gene expression in various cellular models of DBA. Ranking-Principal Component Analysis (Ranking-PCA) was applied to the identified datasets to determine whether there are common sets of genes whose expression is altered in these different cellular models. We observed consistent changes in the expression of genes involved in cellular amino acid metabolic process, negative regulation of cell proliferation and cell redox homeostasis. These data indicate that cells respond to defects in ribosome synthesis by changing the level of expression of a limited subset of genes involved in critical cellular processes. Moreover, our data support a role for p53-independent pathways in the pathophysiology of DBA. PMID:24835311

  8. The Immunology of Posttransplant CMV Infection: Potential Effect of CMV Immunoglobulins on Distinct Components of the Immune Response to CMV

    PubMed Central

    Carbone, Javier

    2016-01-01

    Abstract The immune response to cytomegalovirus (CMV) infection is highly complex, including humoral, cellular, innate, and adaptive immune responses. Detection of CMV by the innate immune system triggers production of type I IFNs and inflammatory cytokines which initiate cellular and humoral responses that are critical during the early viremic phase of CMV infection. Sustained control of CMV infection is largely accounted for by cellular immunity, involving various T-cell and B-cell subsets. In solid organ transplant patients, global suppression of innate and adaptive immunities by immunosuppressive agents limits immunological defense, including inhibition of natural killer cell activity with ongoing lowering of Ig levels and CMV-specific antibody titers. This is coupled with a short-term suppression of CMV-specific T cells, the extent and duration of which can predict risk of progression to CMV viremia. CMV immunoglobulin (CMVIG) preparations have the potential to exert immunomodulatory effects as well as providing passive immunization. Specific CMVIG antibodies and virus neutralization might be enhanced by modulation of dendritic cell activity and by a decrease in T-cell activation, effects which are of importance during the initial phase of infection. In summary, the role of CMVIG in reconstituting specific anti-CMV antibodies may be enhanced by some degree of modulation of the innate and adaptive immune responses, which could help to control some of the direct and indirect effects of CMV infection. PMID:26900990

  9. [Peripheral neuropathy and blood-nerve barrier].

    PubMed

    Kanda, Takashi

    2009-11-01

    It is important to know the cellular properties of endoneurial microvascular endothelial cells (PnMECs) and microvascular pericytes which constitute blood-nerve barrier (BNB), since this barrier structure in the peripheral nervous system (PNS) may play pivotal pathophysiological roles in various disorders of the PNS including inflammatory neuropathies (i.e. Guillain-Barré syndrome), vasculitic neuropathies, hereditary neuropathies and diabetic neuropathy. However, in contrast to blood-brain barrier (BBB), very few studies have been directed to BNB and no adequate cell lines originating from BNB had been launched. In our laboratory, we successfully established human immortalized cell lines originating from BNB using temperature-sensitive SV40 large T antigen and the cellular properties of human cell lines are presented in this paper. Human PnMEC cell line showed high transendothelial electrical resistance and expressed tight junction components and various types of influx as well as efflux transporters that have been reported to function at BBB. Human pericyte cell line also possessed tight junction proteins except claudin-5 and secrete various cytokines and growth factors including bFGF, VEGF, GDNF, NGF, BDNF and angiopoietin-1. Co-culture with pericytes or pericyte-conditioned media strengthend barrier properties of PnMEC, suggesting that in the PNS, peripheral nerve pericytes support the BNB function and play the same role of astrocytes in the BBB. Future accumulation of the knowledge concerning the cellular properties of BNB-forming cells will open the door to novel therapeutic strategies for intractable peripheral neuropathies.

  10. The atypical Rho GTPase RhoD is a regulator of actin cytoskeleton dynamics and directed cell migration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blom, Magdalena; Reis, Katarina; Heldin, Johan

    RhoD belongs to the Rho GTPases, a protein family responsible for the regulation and organization of the actin cytoskeleton, and, consequently, many cellular processes like cell migration, cell division and vesicle trafficking. Here, we demonstrate that the actin cytoskeleton is dynamically regulated by increased or decreased protein levels of RhoD. Ectopic expression of RhoD has previously been shown to give an intertwined weave of actin filaments. We show that this RhoD-dependent effect is detected in several cell types and results in a less dynamic actin filament system. In contrast, RhoD depletion leads to increased actin filament-containing structures, such as corticalmore » actin, stress fibers and edge ruffles. Moreover, vital cellular functions such as cell migration and proliferation are defective when RhoD is silenced. Taken together, we present data suggesting that RhoD is an important component in the control of actin dynamics and directed cell migration. - Highlights: • Increased RhoD expression leads to loss of actin structures, e.g. stress fibers and gives rise to decreased actin dynamics. • RhoD knockdown induces various actin-containing structures such as edge ruffles, stress fibers and cortical actin, in a cell-type specific manner. • RhoD induces specific actin rearrangements depending on its subcellular localization. • RhoD knockdown has effects on cellular processes, such as directed cell migration and proliferation.« less

  11. The Immunology of Posttransplant CMV Infection: Potential Effect of CMV Immunoglobulins on Distinct Components of the Immune Response to CMV.

    PubMed

    Carbone, Javier

    2016-03-01

    The immune response to cytomegalovirus (CMV) infection is highly complex, including humoral, cellular, innate, and adaptive immune responses. Detection of CMV by the innate immune system triggers production of type I IFNs and inflammatory cytokines which initiate cellular and humoral responses that are critical during the early viremic phase of CMV infection. Sustained control of CMV infection is largely accounted for by cellular immunity, involving various T-cell and B-cell subsets. In solid organ transplant patients, global suppression of innate and adaptive immunities by immunosuppressive agents limits immunological defense, including inhibition of natural killer cell activity with ongoing lowering of Ig levels and CMV-specific antibody titers. This is coupled with a short-term suppression of CMV-specific T cells, the extent and duration of which can predict risk of progression to CMV viremia. CMV immunoglobulin (CMVIG) preparations have the potential to exert immunomodulatory effects as well as providing passive immunization. Specific CMVIG antibodies and virus neutralization might be enhanced by modulation of dendritic cell activity and by a decrease in T-cell activation, effects which are of importance during the initial phase of infection. In summary, the role of CMVIG in reconstituting specific anti-CMV antibodies may be enhanced by some degree of modulation of the innate and adaptive immune responses, which could help to control some of the direct and indirect effects of CMV infection.

  12. Exosomal miRNAs as potential biomarkers of cardiovascular risk in children

    PubMed Central

    2014-01-01

    Intercellular interactions are essential for basic cellular activities and errors in either receiving or transferring these signals have shown to cause pathological conditions. These signals are not only regulated by membrane surface molecules but also by soluble secreted proteins, thereby allowing for an exquisite coordination of cell functions. Exosomes are released by cells upon fusion of multivesicular bodies (MVB) with the plasma membrane. Their envelope reflects their cellular origin and their surface and internal contents include important signaling components. Exosomes contain a wide variety of proteins, lipids, RNAs, non-transcribed RNAs, miRNAs and small RNAs that are representative to their cellular origin and shuttle from donor cells to recipient cells. The exosome formation cargo content and delivery is of immense biological interest because exosomes are believed to play major roles in various pathological conditions, and therefore provide unique opportunities for biomarker discovery and development of non-invasive diagnostics when examined in biological fluids such as urine and blood plasma. For example, circulating miRNAs in exosomes have been applied as functional biomarkers for diagnosis and outcomes prediction, while synthetic miRNAs in polymer-based nanoparticles are applicable for therapeutics. This review provides insights into the composition and functional properties of exosomes, and focuses on their potential value as diagnostic markers in the context of cardiovascular disease risk estimates in children who suffer from conditions associated with heightened prevalence of adverse cardiovascular disease, namely obesity and sleep-disordered-breathing. PMID:24912806

  13. The cystic fibrosis transmembrane recruiter the alter ego of CFTR as a multi-kinase anchor.

    PubMed

    Mehta, Anil

    2007-11-01

    This review focuses on a newly discovered interaction between protein kinases involved in cellular energetics, a process that may be disturbed in cystic fibrosis for unknown reasons. I propose a new model where kinase-mediated cellular transmission of energy provides mechanistic insight to a latent role of the cystic fibrosis transmembrane conductance regulator (CFTR). I suggest that CFTR acts as a multi-kinase recruiter to the apical epithelial membrane. My group finds that, in the cytosol, two protein kinases involved in cell energy homeostasis, nucleoside diphosphate kinase (NDPK) and AMP-activated kinase (AMPK), bind one another. Preliminary data suggest that both can also bind CFTR (function unclear). The disrupted role of this CFTR-kinase complex as 'membrane transmitter to the cell' is proposed as an alternative paradigm to the conventional ion transport mediated and CFTR/chloride-centric view of cystic fibrosis pathogenesis. Chloride remains important, but instead, chloride-induced control of the phosphohistidine content of one kinase component (NDPK, via a multi-kinase complex that also includes a third kinase, CK2; formerly casein kinase 2). I suggest that this complex provides the necessary near-equilibrium conditions needed for efficient transmission of phosphate energy to proteins controlling cellular energetics. Crucially, a new role for CFTR as a kinase controller is proposed with ionic concentration acting as a signal. The model posits a regulatory control relay for energy sensing involving a cascade of protein kinases bound to CFTR.

  14. Achromobacter denitrificans Strain YD35 Pyruvate Dehydrogenase Controls NADH Production To Allow Tolerance to Extremely High Nitrite Levels

    PubMed Central

    Doi, Yuki; Shimizu, Motoyuki; Fujita, Tomoya; Nakamura, Akira; Takizawa, Noboru

    2014-01-01

    We identified the extremely nitrite-tolerant bacterium Achromobacter denitrificans YD35 that can grow in complex medium containing 100 mM nitrite (NO2−) under aerobic conditions. Nitrite induced global proteomic changes and upregulated tricarboxylate (TCA) cycle enzymes as well as antioxidant proteins in YD35. Transposon mutagenesis generated NO2−-hypersensitive mutants of YD35 that had mutations at genes for aconitate hydratase and α-ketoglutarate dehydrogenase in the TCA cycle and a pyruvate dehydrogenase (Pdh) E1 component, indicating the importance of TCA cycle metabolism to NO2− tolerance. A mutant in which the pdh gene cluster was disrupted (Δpdh mutant) could not grow in the presence of 100 mM NO2−. Nitrite decreased the cellular NADH/NAD+ ratio and the cellular ATP level. These defects were more severe in the Δpdh mutant, indicating that Pdh contributes to upregulating cellular NADH and ATP and NO2−-tolerant growth. Exogenous acetate, which generates acetyl coenzyme A and then is metabolized by the TCA cycle, compensated for these defects caused by disruption of the pdh gene cluster and those caused by NO2−. These findings demonstrate a link between NO2− tolerance and pyruvate/acetate metabolism through the TCA cycle. The TCA cycle mechanism in YD35 enhances NADH production, and we consider that this contributes to a novel NO2−-tolerating mechanism in this strain. PMID:24413603

  15. Sporadic inclusion-body myositis: conformational multifactorial ageing-related degenerative muscle disease associated with proteasomal and lysosomal inhibition, endoplasmic reticulum stress, and accumulation of amyloid-β42 oligomers and phosphorylated tau.

    PubMed

    Askanas, Valerie; Engel, W King

    2011-04-01

    The pathogenesis of sporadic inclusion-body myositis (s-IBM), the most common muscle disease of older persons, is complex and multifactorial. Both the muscle fiber degeneration and the mononuclear-cell inflammation are components of the s-IBM pathology, but how each relates to the pathogenesis remains unsettled. We consider that the intramuscle fiber degenerative component plays the primary and the major pathogenic role leading to muscle fiber destruction and clinical weakness. In this article we review the newest research advances that provide a better understanding of the s-IBM pathogenesis. Cellular abnormalities occurring in s-IBM muscle fibers are discussed, including: several proteins that are accumulated in the form of aggregates within muscle fibers, including amyloid-β42 and its oligomers, and phosphorylated tau in the form of paired helical filaments, and we consider their putative detrimental influence; cellular mechanisms leading to protein misfolding and aggregation, including evidence of their inadequate disposal; pathogenic importance of endoplasmic reticulum stress and the unfolded protein response demonstrated in s-IBM muscle fibers; and decreased deacetylase activity of SIRT1. All these factors are combined with, and perhaps provoked by, an ageing intracellular milieu. Also discussed are the intriguing phenotypic similarities between s-IBM muscle fibers and the brains of Alzheimer and Parkinson's disease patients, the two most common neurodegenerative diseases associated with ageing. Muscle biopsy diagnostic criteria are also described and illustrated. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  16. Towards systems biology of the gravity response of higher plants -multiscale analysis of Arabidopsis thaliana root growth

    NASA Astrophysics Data System (ADS)

    Palme, Klaus; Aubry, D.; Bensch, M.; Schmidt, T.; Ronneberger, O.; Neu, C.; Li, X.; Wang, H.; Santos, F.; Wang, B.; Paponov, I.; Ditengou, F. A.; Teale, W. T.; Volkmann, D.; Baluska, F.; Nonis, A.; Trevisan, S.; Ruperti, B.; Dovzhenko, A.

    Gravity plays a fundamental role in plant growth and development. Up to now, little is known about the molecular organisation of the signal transduction cascades and networks which co-ordinate gravity perception and response. By using an integrated systems biological approach, a systems analysis of gravity perception and the subsequent tightly-regulated growth response is planned in the model plant Arabidopsis thaliana. This approach will address questions such as: (i) what are the components of gravity signal transduction pathways? (ii) what are the dynamics of these components? (iii) what is their spatio-temporal regulation in different tis-sues? Using Arabidopsis thaliana as a model-we use root growth to obtain insights in the gravity response. New techniques enable identification of the individual genes affected by grav-ity and further integration of transcriptomics and proteomics data into interaction networks and cell communication events that operate during gravitropic curvature. Using systematic multiscale analysis we have identified regulatory networks consisting of transcription factors, the protein degradation machinery, vesicle trafficking and cellular signalling during the gravire-sponse. We developed approach allowing to incorporate key features of the root system across all relevant spatial and temporal scales to describe gene-expression patterns and correlate them with individual gene and protein functions. Combination of high-resolution microscopy and novel computational tools resulted in development of the root 3D model in which quantitative descriptions of cellular network properties and of multicellular interactions important in root growth and gravitropism can be integrated for the first time.

  17. Therapeutic targeting of replicative immortality

    PubMed Central

    Yaswen, Paul; MacKenzie, Karen L.; Keith, W. Nicol; Hentosh, Patricia; Rodier, Francis; Zhu, Jiyue; Firestone, Gary L.; Matheu, Ander; Carnero, Amancio; Bilsland, Alan; Sundin, Tabetha; Honoki, Kanya; Fujii, Hiromasa; Georgakilas, Alexandros G.; Amedei, Amedeo; Amin, Amr; Helferich, Bill; Boosani, Chandra S.; Guha, Gunjan; Ciriolo, Maria Rosa; Chen, Sophie; Mohammed, Sulma I.; Azmi, Asfar S.; Bhakta, Dipita; Halicka, Dorota; Niccolai, Elena; Aquilano, Katia; Ashraf, S. Salman; Nowsheen, Somaira; Yang, Xujuan

    2015-01-01

    One of the hallmarks of malignant cell populations is the ability to undergo continuous proliferation. This property allows clonal lineages to acquire sequential aberrations that can fuel increasingly autonomous growth, invasiveness, and therapeutic resistance. Innate cellular mechanisms have evolved to regulate replicative potential as a hedge against malignant progression. When activated in the absence of normal terminal differentiation cues, these mechanisms can result in a state of persistent cytostasis. This state, termed “senescence,” can be triggered by intrinsic cellular processes such as telomere dysfunction and oncogene expression, and by exogenous factors such as DNA damaging agents or oxidative environments. Despite differences in upstream signaling, senescence often involves convergent interdependent activation of tumor suppressors p53 and p16/pRB, but can be induced, albeit with reduced sensitivity, when these suppressors are compromised. Doses of conventional genotoxic drugs required to achieve cancer cell senescence are often much lower than doses required to achieve outright cell death. Additional therapies, such as those targeting cyclin dependent kinases or components of the PI3K signaling pathway, may induce senescence specifically in cancer cells by circumventing defects in tumor suppressor pathways or exploiting cancer cells’ heightened requirements for telomerase. Such treatments sufficient to induce cancer cell senescence could provide increased patient survival with fewer and less severe side effects than conventional cytotoxic regimens. This positive aspect is countered by important caveats regarding senescence reversibility, genomic instability, and paracrine effects that may increase heterogeneity and adaptive resistance of surviving cancer cells. Nevertheless, agents that effectively disrupt replicative immortality will likely be valuable components of new combinatorial approaches to cancer therapy. PMID:25869441

  18. Steady-state kinetic modeling constrains cellular resting states and dynamic behavior.

    PubMed

    Purvis, Jeremy E; Radhakrishnan, Ravi; Diamond, Scott L

    2009-03-01

    A defining characteristic of living cells is the ability to respond dynamically to external stimuli while maintaining homeostasis under resting conditions. Capturing both of these features in a single kinetic model is difficult because the model must be able to reproduce both behaviors using the same set of molecular components. Here, we show how combining small, well-defined steady-state networks provides an efficient means of constructing large-scale kinetic models that exhibit realistic resting and dynamic behaviors. By requiring each kinetic module to be homeostatic (at steady state under resting conditions), the method proceeds by (i) computing steady-state solutions to a system of ordinary differential equations for each module, (ii) applying principal component analysis to each set of solutions to capture the steady-state solution space of each module network, and (iii) combining optimal search directions from all modules to form a global steady-state space that is searched for accurate simulation of the time-dependent behavior of the whole system upon perturbation. Importantly, this stepwise approach retains the nonlinear rate expressions that govern each reaction in the system and enforces constraints on the range of allowable concentration states for the full-scale model. These constraints not only reduce the computational cost of fitting experimental time-series data but can also provide insight into limitations on system concentrations and architecture. To demonstrate application of the method, we show how small kinetic perturbations in a modular model of platelet P2Y(1) signaling can cause widespread compensatory effects on cellular resting states.

  19. Ayahuasca and cancer treatment

    PubMed Central

    2013-01-01

    Objectives: Comprehensively review the evidence regarding the use of ayahuasca, an Amerindian medicine traditionally used to treat many different illnesses and diseases, to treat some types of cancer. Methods: An in-depth review of the literature was conducted using PubMed, books, institutional magazines, conferences and online texts in nonprofessional sources regarding the biomedical knowledge about ayahuasca in general with a specific focus in its possible relations to the treatment of cancer. Results: At least nine case reports regarding the use of ayahuasca in the treatment of prostate, brain, ovarian, uterine, stomach, breast, and colon cancers were found. Several of these were considered improvements, one case was considered worse, and one case was rated as difficult to evaluate. A theoretical model is presented which explains these effects at the cellular, molecular, and psychosocial levels. Particular attention is given to ayahuasca’s pharmacological effects through the activity of N,N-dimethyltryptamine at intracellular sigma-1 receptors. The effects of other components of ayahuasca, such as harmine, tetrahydroharmine, and harmaline, are also considered. Conclusion: The proposed model, based on the molecular and cellular biology of ayahuasca’s known active components and the available clinical reports, suggests that these accounts may have consistent biological underpinnings. Further study of ayahuasca’s possible antitumor effects is important because cancer patients continue to seek out this traditional medicine. Consequently, based on the social and anthropological observations of the use of this brew, suggestions are provided for further research into the safety and efficacy of ayahuasca as a possible medicinal aid in the treatment of cancer. PMID:26770688

  20. Mitochondrial transcription in mammalian cells

    PubMed Central

    Shokolenko, Inna N.; Alexeyev, Mikhail F.

    2017-01-01

    As a consequence of recent discoveries of intimate involvement of mitochondria with key cellular processes, there has been a resurgence of interest in all aspects of mitochondrial biology, including the intricate mechanisms of mitochondrial DNA maintenance and expression. Despite four decades of research, there remains a lot to be learned about the processes that enable transcription of genetic information from mitochondrial DNA to RNA, as well as their regulation. These processes are vitally important, as evidenced by the lethality of inactivating the central components of mitochondrial transcription machinery. Here, we review the current understanding of mitochondrial transcription and its regulation in mammalian cells. We also discuss key theories in the field and highlight controversial subjects and future directions as we see them. PMID:27814650

  1. The lymphoid cell network in the skin.

    PubMed

    Tikoo, Shweta; Jain, Rohit; Kurz, Angela Rm; Weninger, Wolfgang

    2018-05-01

    Cutaneous immunity represents a crucial component of the mammalian immune response. The presence of a large array of commensal microorganisms along with a myriad of environmental stresses necessitates constant immuno-surveillance of the tissue. To achieve a perfect balance between immune-tolerance and immune-activation, the skin harbors strategically localized immune cell populations that modulate these responses. To maintain homeostasis, innate and adaptive immune cells assimilate microenvironmental cues and coordinate cellular and molecular functions in a spatiotemporal manner. The role of lymphoid cells in cutaneous immunity is gaining much appreciation due to their important roles in regulating skin health and pathology. In this review, we aim to highlight the recent advances in the field of cutaneous lymphoid biology. © 2018 Australasian Society for Immunology Inc.

  2. Cellular Factors Shape 3D Genome Landscape

    Cancer.gov

    Researchers, using novel large-scale imaging technology, have mapped the spatial location of individual genes in the nucleus of human cells and identified 50 cellular factors required for the proper 3D positioning of genes. These spatial locations play important roles in gene expression, DNA repair, genome stability, and other cellular activities.

  3. Cellular and molecular modifier pathways in tauopathies: the big picture from screening invertebrate models.

    PubMed

    Hannan, Shabab B; Dräger, Nina M; Rasse, Tobias M; Voigt, Aaron; Jahn, Thomas R

    2016-04-01

    Abnormal tau accumulations were observed and documented in post-mortem brains of patients affected by Alzheimer's disease (AD) long before the identification of mutations in the Microtubule-associated protein tau (MAPT) gene, encoding the tau protein, in a different neurodegenerative disease called Frontotemporal dementia and Parkinsonism linked to chromosome 17 (FTDP-17). The discovery of mutations in the MAPT gene associated with FTDP-17 highlighted that dysfunctions in tau alone are sufficient to cause neurodegeneration. Invertebrate models have been diligently utilized in investigating tauopathies, contributing to the understanding of cellular and molecular pathways involved in disease etiology. An important discovery came with the demonstration that over-expression of human tau in Drosophila leads to premature mortality and neuronal dysfunction including neurodegeneration, recapitulating some key neuropathological features of the human disease. The simplicity of handling invertebrate models combined with the availability of a diverse range of experimental resources make these models, in particular Drosophila a powerful invertebrate screening tool. Consequently, several large-scale screens have been performed using Drosophila, to identify modifiers of tau toxicity. The screens have revealed not only common cellular and molecular pathways, but in some instances the same modifier has been independently identified in two or more screens suggesting a possible role for these modifiers in regulating tau toxicity. The purpose of this review is to discuss the genetic modifier screens on tauopathies performed in Drosophila and C. elegans models, and to highlight the common cellular and molecular pathways that have emerged from these studies. Here, we summarize results of tau toxicity screens providing mechanistic insights into pathological alterations in tauopathies. Key pathways or modifiers that have been identified are associated with a broad range of processes including, but not limited to, phosphorylation, cytoskeleton organization, axonal transport, regulation of cellular proteostasis, transcription, RNA metabolism, cell cycle regulation, and apoptosis. We discuss the utility and application of invertebrate models in elucidating the cellular and molecular functions of novel and uncharacterized disease modifiers identified in large-scale screens as well as for investigating the function of genes identified as risk factors in genome-wide association studies from human patients in the post-genomic era. In this review, we combined and summarized several large-scale modifier screens performed in invertebrate models to identify modifiers of tau toxicity. A summary of the screens show that diverse cellular processes are implicated in the modification of tau toxicity. Kinases and phosphatases are the most predominant class of modifiers followed by components required for cellular proteostasis and axonal transport and cytoskeleton elements. © 2016 International Society for Neurochemistry.

  4. Methyl jasmonate deficiency alters cellular metabolome including the aminome of tomato (Solanum lycopersicum L.) fruit

    USDA-ARS?s Scientific Manuscript database

    Lipoxygenase (LOX) catalyzes oxidation of C-13 atom of C:18 polyunsaturated fatty acids and produces jasmonic acid and other oxylipins that have important biological relevance. However, the role of these important molecules in cellular metabolism is barely understood. We have used a transgenic appro...

  5. Genome-wide localization and expression profiling establish Sp2 as a sequence-specific transcription factor regulating vitally important genes

    PubMed Central

    Terrados, Gloria; Finkernagel, Florian; Stielow, Bastian; Sadic, Dennis; Neubert, Juliane; Herdt, Olga; Krause, Michael; Scharfe, Maren; Jarek, Michael; Suske, Guntram

    2012-01-01

    The transcription factor Sp2 is essential for early mouse development and for proliferation of mouse embryonic fibroblasts in culture. Yet its mechanisms of action and its target genes are largely unknown. In this study, we have combined RNA interference, in vitro DNA binding, chromatin immunoprecipitation sequencing and global gene-expression profiling to investigate the role of Sp2 for cellular functions, to define target sites and to identify genes regulated by Sp2. We show that Sp2 is important for cellular proliferation that it binds to GC-boxes and occupies proximal promoters of genes essential for vital cellular processes including gene expression, replication, metabolism and signalling. Moreover, we identified important key target genes and cellular pathways that are directly regulated by Sp2. Most significantly, Sp2 binds and activates numerous sequence-specific transcription factor and co-activator genes, and represses the whole battery of cholesterol synthesis genes. Our results establish Sp2 as a sequence-specific regulator of vitally important genes. PMID:22684502

  6. Cellular copper homeostasis: current concepts on its interplay with glutathione homeostasis and its implication in physiology and human diseases.

    PubMed

    Bhattacharjee, Ashima; Chakraborty, Kaustav; Shukla, Aditya

    2017-10-18

    Copper is a trace element essential for almost all living organisms. But the level of intracellular copper needs to be tightly regulated. Dysregulation of cellular copper homeostasis leading to various diseases demonstrates the importance of this tight regulation. Copper homeostasis is regulated not only within the cell but also within individual intracellular compartments. Inactivation of export machinery results in excess copper being redistributed into various intracellular organelles. Recent evidence suggests the involvement of glutathione in playing an important role in regulating copper entry and intracellular copper homeostasis. Therefore interplay of both homeostases might play an important role within the cell. Similar to copper, glutathione balance is tightly regulated within individual cellular compartments. This review explores the existing literature on the role of glutathione in regulating cellular copper homeostasis. On the one hand, interplay of glutathione and copper homeostasis performs an important role in normal physiological processes, for example neuronal differentiation. On the other hand, perturbation of the interplay might play a key role in the pathogenesis of copper homeostasis disorders.

  7. Understanding cellular architecture in cancer cells

    NASA Astrophysics Data System (ADS)

    Bianco, Simone; Tang, Chao

    2011-03-01

    Understanding the development of cancer is an important goal for today's science. The morphology of cellular organelles, such as the nucleus, the nucleoli and the mitochondria, which is referred to as cellular architecture or cytoarchitecture, is an important indicator of the state of the cell. In particular, there are striking difference between the cellular architecture of a healthy cell versus a cancer cell. In this work we present a dynamical model for the evolution of organelles morphology in cancer cells. Using a dynamical systems approach, we describe the evolution of a cell on its way to cancer as a trajectory in a multidimensional morphology state. The results provided by this work may increase our insight on the mechanism of tumorigenesis and help build new therapeutic strategies.

  8. Protein-based hydrogels for tissue engineering

    PubMed Central

    Schloss, Ashley C.; Williams, Danielle M.; Regan, Lynne J.

    2017-01-01

    The tunable mechanical and structural properties of protein-based hydrogels make them excellent scaffolds for tissue engineering and repair. Moreover, using protein-based components provides the option to insert sequences associated with the promoting both cellular adhesion to the substrate and overall cell growth. Protein-based hydrogel components are appealing for their structural designability, specific biological functionality, and stimuli-responsiveness. Here we present highlights in the field of protein-based hydrogels for tissue engineering applications including design requirements, components, and gel types. PMID:27677513

  9. Gold nanoparticles induce transcriptional activity of NF-κB in a B-lymphocyte cell line

    NASA Astrophysics Data System (ADS)

    Sharma, Monita; Salisbury, Richard L.; Maurer, Elizabeth I.; Hussain, Saber M.; Sulentic, Courtney E. W.

    2013-04-01

    Gold nanoparticles (Au-NPs) have been designated as superior tools for biological applications owing to their characteristic surface plasmon absorption/scattering and amperometric (electron transfer) properties, in conjunction with low or no immediate toxicity towards biological systems. Many studies have shown the ease of designing application-based tools using Au-NPs but the interaction of this nanosized material with biomolecules in a physiological environment is an area requiring deeper investigation. Immune cells such as lymphocytes circulate through the blood and lymph and therefore are likely cellular components to come in contact with Au-NPs. The main aim of this study was to mechanistically determine the functional impact of Au-NPs on B-lymphocytes. Using a murine B-lymphocyte cell line (CH12.LX), treatment with citrate-stabilized 10 nm Au-NPs induced activation of an NF-κB-regulated luciferase reporter, which correlated with altered B lymphocyte function (i.e. increased antibody expression). TEM imaging demonstrated that Au-NPs can pass through the cellular membrane and therefore could interact with intracellular components of the NF-κB signaling pathway. Based on the inherent property of Au-NPs to bind to -thiol groups and the presence of cysteine residues on the NF-κB signal transduction proteins IκB kinases (IKK), proteins specifically bound to Au-NPs were extracted from CH12.LX cellular lysate exposed to 10 nm Au-NPs. Electrophoresis identified several bands, of which IKKα and IKKβ were immunoreactive. Further evaluation revealed activation of the canonical NF-κB signaling pathway as evidenced by IκBα phosphorylation at serine residues 32 and 36 followed by IκBα degradation and increased nuclear RelA. Additionally, expression of an IκBα super-repressor (resistant to proteasomal degradation) reversed Au-NP-induced NF-κB activation. Altered NF-κB signaling and cellular function in B-lymphocytes suggests a potential for off-target effects with in vivo applications of gold nanomaterials and underscores the need for more studies evaluating the interactions of nanomaterials with biomolecules and cellular components.

  10. The autophagy interaction network of the aging model Podospora anserina.

    PubMed

    Philipp, Oliver; Hamann, Andrea; Osiewacz, Heinz D; Koch, Ina

    2017-03-27

    Autophagy is a conserved molecular pathway involved in the degradation and recycling of cellular components. It is active either as response to starvation or molecular damage. Evidence is emerging that autophagy plays a key role in the degradation of damaged cellular components and thereby affects aging and lifespan control. In earlier studies, it was found that autophagy in the aging model Podospora anserina acts as a longevity assurance mechanism. However, only little is known about the individual components controlling autophagy in this aging model. Here, we report a biochemical and bioinformatics study to detect the protein-protein interaction (PPI) network of P. anserina combining experimental and theoretical methods. We constructed the PPI network of autophagy in P. anserina based on the corresponding networks of yeast and human. We integrated PaATG8 interaction partners identified in an own yeast two-hybrid analysis using ATG8 of P. anserina as bait. Additionally, we included age-dependent transcriptome data. The resulting network consists of 89 proteins involved in 186 interactions. We applied bioinformatics approaches to analyze the network topology and to prove that the network is not random, but exhibits biologically meaningful properties. We identified hub proteins which play an essential role in the network as well as seven putative sub-pathways, and interactions which are likely to be evolutionary conserved amongst species. We confirmed that autophagy-associated genes are significantly often up-regulated and co-expressed during aging of P. anserina. With the present study, we provide a comprehensive biological network of the autophagy pathway in P. anserina comprising PPI and gene expression data. It is based on computational prediction as well as experimental data. We identified sub-pathways, important hub proteins, and evolutionary conserved interactions. The network clearly illustrates the relation of autophagy to aging processes and enables further specific studies to understand autophagy and aging in P. anserina as well as in other systems.

  11. Diet and Energy-Sensing Inputs Affect TorC1-Mediated Axon Misrouting but Not TorC2-Directed Synapse Growth in a Drosophila Model of Tuberous Sclerosis

    PubMed Central

    Dimitroff, Brian; Lee, Hyun-Gwan; Zhao, Na; O'Connor, Michael B.; Neufeld, Thomas P.; Selleck, Scott B.

    2012-01-01

    The Target of Rapamycin (TOR) growth regulatory system is influenced by a number of different inputs, including growth factor signaling, nutrient availability, and cellular energy levels. While the effects of TOR on cell and organismal growth have been well characterized, this pathway also has profound effects on neural development and behavior. Hyperactivation of the TOR pathway by mutations in the upstream TOR inhibitors TSC1 (tuberous sclerosis complex 1) or TSC2 promotes benign tumors and neurological and behavioral deficits, a syndrome known as tuberous sclerosis (TS). In Drosophila, neuron-specific overexpression of Rheb, the direct downstream target inhibited by Tsc1/Tsc2, produced significant synapse overgrowth, axon misrouting, and phototaxis deficits. To understand how misregulation of Tor signaling affects neural and behavioral development, we examined the influence of growth factor, nutrient, and energy sensing inputs on these neurodevelopmental phenotypes. Neural expression of Pi3K, a principal mediator of growth factor inputs to Tor, caused synapse overgrowth similar to Rheb, but did not disrupt axon guidance or phototaxis. Dietary restriction rescued Rheb-mediated behavioral and axon guidance deficits, as did overexpression of AMPK, a component of the cellular energy sensing pathway, but neither was able to rescue synapse overgrowth. While axon guidance and behavioral phenotypes were affected by altering the function of a Tor complex 1 (TorC1) component, Raptor, or a TORC1 downstream element (S6k), synapse overgrowth was only suppressed by reducing the function of Tor complex 2 (TorC2) components (Rictor, Sin1). These findings demonstrate that different inputs to Tor signaling have distinct activities in nervous system development, and that Tor provides an important connection between nutrient-energy sensing systems and patterning of the nervous system. PMID:22319582

  12. Cellular uptake of Clostridium botulinum C2 toxin: membrane translocation of a fusion toxin requires unfolding of its dihydrofolate reductase domain.

    PubMed

    Haug, Gerd; Wilde, Christian; Leemhuis, Jost; Meyer, Dieter K; Aktories, Klaus; Barth, Holger

    2003-12-30

    The Clostridium botulinum C2 toxin is the prototype of the family of binary actin-ADP-ribosylating toxins. C2 toxin is composed of two separated nonlinked proteins. The enzyme component C2I ADP-ribosylates actin in the cytosol of target cells. The binding/translocation component C2II mediates cell binding of the enzyme component and its translocation from acidic endosomes into the cytosol. After proteolytic activation, C2II forms heptameric pores in endosomal membranes, and most likely, C2I translocates through these pores into the cytosol. For this step, the cellular heat shock protein Hsp90 is essential. We analyzed the effect of methotrexate on the cellular uptake of a fusion toxin in which the enzyme dihydrofolate reductase (DHFR) was fused to the C-terminus of C2I. Here, we report that unfolding of C2I-DHFR is required for cellular uptake of the toxin via the C2IIa component. The C2I-DHFR fusion toxin catalyzed ADP-ribosylation of actin in vitro and was able to intoxicate cultured cells when applied together with C2IIa. Binding of the folate analogue methotrexate favors a stable three-dimensional structure of the dihydrofolate reductase domain. Pretreatment of C2I-DHFR with methotrexate prevented cleavage of C2I-DHFR by trypsin. In the presence of methotrexate, intoxication of cells with C2I-DHFR/C2II was inhibited. The presence of methotrexate diminished the translocation of the C2I-DHFR fusion toxin from endosomal compartments into the cytosol and the direct C2IIa-mediated translocation of C2I-DHFR across cell membranes. Methotrexate had no influence on the intoxication of cells with C2I/C2IIa and did not alter the C2IIa-mediated binding of C2I-DHFR to cells. The data indicate that methotrexate prevented unfolding of the C2I-DHFR fusion toxin, and thereby the translocation of methotrexate-bound C2I-DHFR from endosomes into the cytosol of target cells is inhibited.

  13. Foraminiferal Metabolism Under Hypoxia: Sub-Cellular NanoSIMS Imaging of Intertidal Ammonia tepida Feeding Behavior

    NASA Astrophysics Data System (ADS)

    LeKieffre, C.; Spangenberg, J.; Geslin, E.; Meibom, A.

    2016-02-01

    Hypoxic events particularly affect benthic ecosystems on continental shelves and in coastal areas where renewal of bottom waters slow. Foraminifera living in such environments are among the most tolerant to hypoxia in the meiofauna. Some foraminifera species are able to survive hypoxia, and even anoxia, for weeks to months. Different species must have developed different mechanisms for survival - hypotheses include reduction of the metabolism, symbiosis with bacteria, or denitrification. NanoSIMS (Secondary Ion Mass Spectrometry) imaging is a powerful analytical technique to visualize and quantify the incorporation and transfer of isotopically labeled compounds in organisms with subcellular resolution. We used NanoSIMS imaging, correlated with TEM ultrastructural observations of individual foraminifera, to study the metabolism of intertidal Ammonia tepida, which has shown strongly reduced metabolism under anoxia. Individuals were fed with a 13C-labeled microalgal biofilm and incubated for 4 weeks in oxic and anoxic conditions, respectively. NanoSIMS imaging reveal strongly contrasting cellular-level dynamics of integration and transfer of the ingested biofilm components under the two conditions. In oxic conditions, ingested biofilm components are internalized, metabolized, and used for biosynthesis of different cellular components on a time scale of 24 hours: Lipid droplets are formed, then consumed through respiration. In contrast, upon the onset of anoxia, individual internalized biofilm components remain visible within the cytoplasm after 4 weeks. Lipids of different compositions are initially formed but then not respired. These observations indicate that foraminifera do initially have an active heterotrophic metabolism in the absence of oxygen, but this it is strongly reduced when oxygen is no longer available. Isotopic labeling experiments, NanoSIMS and TEM imaging, and GC-MS will be key to study metabolic mechanisms under anoxic conditions in marine environments.

  14. Blue-Print Autophagy: Potential for Cancer Treatment

    PubMed Central

    Ruocco, Nadia; Costantini, Susan; Costantini, Maria

    2016-01-01

    The marine environment represents a very rich source of biologically active compounds with pharmacological applications. This is due to its chemical richness, which is claiming considerable attention from the health science communities. In this review we give a general overview on the marine natural products involved in stimulation and inhibition of autophagy (a type of programmed cell death) linked to pharmacological and pathological conditions. Autophagy represents a complex multistep cellular process, wherein a double membrane vesicle (the autophagosome) captures organelles and proteins and delivers them to the lysosome. This natural and destructive mechanism allows the cells to degrade and recycle its cellular components, such as amino acids, monosaccharides, and lipids. Autophagy is an important mechanism used by cells to clear pathogenic organism and deal with stresses. Therefore, it has also been implicated in several diseases, predominantly in cancer. In fact, pharmacological stimulation or inhibition of autophagy have been proposed as approaches to develop new therapeutic treatments of cancers. In conclusion, this blue-print autophagy (so defined because it is induced and/or inhibited by marine natural products) represents a new strategy for the future of biomedicine and of biotechnology in cancer treatment. PMID:27455284

  15. Restoration of promyelocytic leukemia protein-nuclear bodies in neuroblastoma cells enhances retinoic acid responsiveness.

    PubMed

    Yu, Jiang Hong; Nakajima, Ayako; Nakajima, Hiroshi; Diller, Lisa R; Bloch, Kenneth D; Bloch, Donald B

    2004-02-01

    Neuroblastoma is the most common solid tumor of infancy and is believed to result from impaired differentiation of neuronal crest embryonal cells. The promyelocytic leukemia protein (PML)-nuclear body is a cellular structure that is disrupted during the pathogenesis of acute promyelocytic leukemia, a disease characterized by impaired myeloid cell differentiation. During the course of studies to examine the composition and function of PML-nuclear bodies, we observed that the human neuroblastoma cell line SH-SY5Y lacked these structures and that the absence of PML-nuclear bodies was a feature of N- and I-type, but not S-type, neuroblastoma cell lines. Induction of neuroblastoma cell differentiation with 5-bromo-2'deoxyuridine, all-trans-retinoic acid, or IFN-gamma induced PML-nuclear body formation. PML-nuclear bodies were not detected in tissue sections prepared from undifferentiated neuroblastomas but were present in neuroblasts in differentiating tumors. Expression of PML in neuroblastoma cells restored PML-nuclear bodies, enhanced responsiveness to all-trans-retinoic acid, and induced cellular differentiation. Pharmacological therapies that increase PML expression may prove to be important components of combined modalities for the treatment of neuroblastoma.

  16. Methods to Monitor and Manipulate TFEB Activity During Autophagy.

    PubMed

    Medina, D L; Settembre, C; Ballabio, A

    2017-01-01

    Macroautophagy is a catabolic process deputed to the turnover of intracellular components. Recent studies have revealed that transcriptional regulation is a major mechanism controlling autophagy. Currently, more than 20 transcription factors have been shown to modulate cellular autophagy levels. Among them, the transcription factor EB (TFEB) appears to have the broadest proautophagy role, given its capacity to control the biogenesis of lysosomes and autophagosomes, the two main organelles required for the autophagy pathway. TFEB has attracted major attention owing to its ability to enhance cellular clearance of pathogenic substrates in a variety of animal models of disease, such as lysosomal storage disorders, Parkinson's, Alzheimer's, α1-antitrypsin, obesity as well as others, suggesting that the TFEB pathway represents an extraordinary possibility for future development of innovative therapies. Importantly, the subcellular localization and activity of TFEB are regulated by its phosphorylation status, suggesting that TFEB activity can be pharmacologically targeted. Given the growing list of common and rare diseases in which manipulation of autophagy may be beneficial, in this chapter we describe a set of validated protocols developed to modulate and analyze TFEB-mediated enhancement of autophagy both in vitro and in vivo conditions. © 2017 Elsevier Inc. All rights reserved.

  17. Body weight, metabolism and clock genes

    PubMed Central

    2010-01-01

    Biological rhythms are present in the lives of almost all organisms ranging from plants to more evolved creatures. These oscillations allow the anticipation of many physiological and behavioral mechanisms thus enabling coordination of rhythms in a timely manner, adaption to environmental changes and more efficient organization of the cellular processes responsible for survival of both the individual and the species. Many components of energy homeostasis exhibit circadian rhythms, which are regulated by central (suprachiasmatic nucleus) and peripheral (located in other tissues) circadian clocks. Adipocyte plays an important role in the regulation of energy homeostasis, the signaling of satiety and cellular differentiation and proliferation. Also, the adipocyte circadian clock is probably involved in the control of many of these functions. Thus, circadian clocks are implicated in the control of energy balance, feeding behavior and consequently in the regulation of body weight. In this regard, alterations in clock genes and rhythms can interfere with the complex mechanism of metabolic and hormonal anticipation, contributing to multifactorial diseases such as obesity and diabetes. The aim of this review was to define circadian clocks by describing their functioning and role in the whole body and in adipocyte metabolism, as well as their influence on body weight control and the development of obesity. PMID:20712885

  18. Molecular Chaperones of Leishmania: Central Players in Many Stress-Related and -Unrelated Physiological Processes

    PubMed Central

    Requena, Jose M.; Montalvo, Ana M.; Fraga, Jorge

    2015-01-01

    Molecular chaperones are key components in the maintenance of cellular homeostasis and survival, not only during stress but also under optimal growth conditions. Folding of nascent polypeptides is supported by molecular chaperones, which avoid the formation of aggregates by preventing nonspecific interactions and aid, when necessary, the translocation of proteins to their correct intracellular localization. Furthermore, when proteins are damaged, molecular chaperones may also facilitate their refolding or, in the case of irreparable proteins, their removal by the protein degradation machinery of the cell. During their digenetic lifestyle, Leishmania parasites encounter and adapt to harsh environmental conditions, such as nutrient deficiency, hypoxia, oxidative stress, changing pH, and shifts in temperature; all these factors are potential triggers of cellular stress. We summarize here our current knowledge on the main types of molecular chaperones in Leishmania and their functions. Among them, heat shock proteins play important roles in adaptation and survival of this parasite against temperature changes associated with its passage from the poikilothermic insect vector to the warm-blooded vertebrate host. The study of structural features and the function of chaperones in Leishmania biology is providing opportunities (and challenges) for drug discovery and improving of current treatments against leishmaniasis. PMID:26167482

  19. Yeast mitochondria: an overview of mitochondrial biology and the potential of mitochondrial systems biology.

    PubMed

    Malina, Carl; Larsson, Christer; Nielsen, Jens

    2018-08-01

    Mitochondria are dynamic organelles of endosymbiotic origin that are essential components of eukaryal cells. They contain their own genetic machinery, have multicopy genomes and like their bacterial ancestors they consist of two membranes. However, the majority of the ancestral genome has been lost or transferred to the nuclear genome of the host, preserving only a core set of genes involved in oxidative phosphorylation. Mitochondria perform numerous biological tasks ranging from bioenergetics to production of protein co-factors, including heme and iron-sulfur clusters. Due to the importance of mitochondria in many cellular processes, mitochondrial dysfunction is implicated in a wide variety of human disorders. Much of our current knowledge on mitochondrial function and dysfunction comes from studies using Saccharomyces cerevisiae. This yeast has good fermenting capacity, rendering tolerance to mutations that inactivate oxidative phosphorylation and complete loss of mitochondrial DNA. Here, we review yeast mitochondrial metabolism and function with focus on S. cerevisiae and its contribution in understanding mitochondrial biology. We further review how systems biology studies, including mathematical modeling, has allowed gaining new insight into mitochondrial function, and argue that this approach may enable us to gain a holistic view on how mitochondrial function interacts with different cellular processes.

  20. Cell mediated immune response of the Mediterranean sea urchin Paracentrotus lividus after PAMPs stimulation.

    PubMed

    Romero, A; Novoa, B; Figueras, A

    2016-09-01

    The Mediterranean sea urchin (Paracentrotus lividus) is of great ecological and economic importance for the European aquaculture. Yet, most of the studies regarding echinoderm's immunological defense mechanisms reported so far have used the sea urchin Strongylocentrotus purpuratus as a model, and information on the immunological defense mechanisms of Paracentrotus lividus and other sea urchins, is scarce. To remedy this gap in information, in this study, flow cytometry was used to evaluate several cellular immune mechanisms, such as phagocytosis, cell cooperation, and ROS production in P. lividus coelomocytes after PAMP stimulation. Two cell populations were described. Of the two, the amoeboid-phagocytes were responsible for the phagocytosis and ROS production. Cooperation between amoeboid-phagocytes and non-adherent cells resulted in an increased phagocytic response. Stimulation with several PAMPs modified the phagocytic activity and the production of ROS. The premise that the coelomocytes were activated by the bacterial components was confirmed by the expression levels of two cell mediated immune genes: LPS-Induced TNF-alpha Factor (LITAF) and macrophage migration inhibitory factor (MIF). These results have helped us understand the cellular immune mechanisms in P. lividus and their modulation after PAMP stimulation. Copyright © 2016 Elsevier Ltd. All rights reserved.

Top