The requirement of iron transport for lymphocyte function.
Lo, Bernice
2016-01-01
Iron is essential in multiple cellular processes and is especially critical for cellular respiration and division. A new study identified a mutation affecting the iron import receptor TfR1 as the cause of a human primary immunodeficiency, illuminating the importance of iron in immune cell function.
Gene, Immune and Cellular Responses to Single and Combined Space Flight Conditions-B (TripleLux-B):
2015-03-31
ISS043E070945 (03/31/2015) --- ESA (European Space Agency) astronaut Samantha Cristoforetti, Expedition 43 flight engineer aboard the International Space Station, is seen working on a science experiment that includes photographic documentation of Cellular Responses to Single and Combined Space Flight Conditions. Some effects of the space environment level appear to act at the cellular level and it is important to understand the underlying mechanisms of these effects. This science project uses invertebrate hemocytes to focus on two aspects of cellular function which may have medical importance. The synergy between the effects of the space radiation environment and microgravity on cellular function is the goal of this experiment along with studying the impairment of immune functions under spaceflight conditions.
Taming the Sphinx: Mechanisms of Cellular Sphingolipid Homeostasis
Olson, D. K.; Fröhlich, F.; Farese, R; Walther, T. C.
2016-01-01
Sphingolipids are important structural membrane components of eukaryotic cells, and potent signaling molecules. As such, their levels must be maintained to optimize cellular functions in different cellular membranes. Here, we review the current knowledge of homeostatic sphingolipid regulation. We describe recent studies in Saccharomyces cerevisiae that have provided insights into how cells sense changes in sphingolipid levels in the plasma membrane and acutely regulate sphingolipid biosynthesis by altering signaling pathways. We also discuss how cellular trafficking has emerged as an important determinant of sphingolipid homeostasis. Finally, we highlight areas where work is still needed to elucidate the mechanisms of sphingolipid regulation and the physiological functions of such regulatory networks, especially in mammalian cells. PMID:26747648
Impact of Labile Zinc on Heart Function: From Physiology to Pathophysiology.
Turan, Belma; Tuncay, Erkan
2017-11-12
Zinc plays an important role in biological systems as bound and histochemically reactive labile Zn 2+ . Although Zn 2+ concentration is in the nM range in cardiomyocytes at rest and increases dramatically under stimulation, very little is known about precise mechanisms controlling the intracellular distribution of Zn 2+ and its variations during cardiac function. Recent studies are focused on molecular and cellular aspects of labile Zn 2+ and its homeostasis in mammalian cells and growing evidence clarified the molecular mechanisms underlying Zn 2+ -diverse functions in the heart, leading to the discovery of novel physiological functions of labile Zn 2+ in parallel to the discovery of subcellular localization of Zn 2+ -transporters in cardiomyocytes. Additionally, important experimental data suggest a central role of intracellular labile Zn 2+ in excitation-contraction coupling in cardiomyocytes by shaping Ca 2+ dynamics. Cellular labile Zn 2+ is tightly regulated against its adverse effects through either Zn 2+ -transporters, Zn 2+ -binding molecules or Zn 2+ -sensors, and, therefore plays a critical role in cellular signaling pathways. The present review summarizes the current understanding of the physiological role of cellular labile Zn 2+ distribution in cardiomyocytes and how a remodeling of cellular Zn 2+ -homeostasis can be important in proper cell function with Zn 2+ -transporters under hyperglycemia. We also emphasize the recent investigations on Zn 2+ -transporter functions from the standpoint of human heart health to diseases together with their clinical interest as target proteins in the heart under pathological condition, such as diabetes.
Taming the sphinx: Mechanisms of cellular sphingolipid homeostasis.
Olson, D K; Fröhlich, F; Farese, R V; Walther, T C
2016-08-01
Sphingolipids are important structural membrane components of eukaryotic cells, and potent signaling molecules. As such, their levels must be maintained to optimize cellular functions in different cellular membranes. Here, we review the current knowledge of homeostatic sphingolipid regulation. We describe recent studies in Saccharomyces cerevisiae that have provided insights into how cells sense changes in sphingolipid levels in the plasma membrane and acutely regulate sphingolipid biosynthesis by altering signaling pathways. We also discuss how cellular trafficking has emerged as an important determinant of sphingolipid homeostasis. Finally, we highlight areas where work is still needed to elucidate the mechanisms of sphingolipid regulation and the physiological functions of such regulatory networks, especially in mammalian cells. This article is part of a Special Issue entitled: The cellular lipid landscape edited by Tim P. Levine and Anant K. Menon. Copyright © 2015. Published by Elsevier B.V.
Photobiomodulation on senescence
NASA Astrophysics Data System (ADS)
Liu, Timon Cheng-Yi; Cheng, Lei; Rong, Dong-Liang; Xu, Xiao-Yang; Cui, Li-Ping; Lu, Jian; Deng, Xiao-Yuan; Liu, Song-Hao
2006-09-01
Photobiomodulation (PBM) is an effect oflow intensity monochromatic light or laser irradiation (LIL) on biological systems. which stimulates or inhibits biological functions but does not result in irreducible damage. It has been observed that PBM can suppress cellular senescence, reverse skin photoageing and improve fibromyalgia. In this paper, the biological information model of photobiomodulation (BIMP) is used to discuss its mechanism. Cellular senescence can result from short, dysfunctional telomeres, oxidative stress, or oncogene expression, and may contribute to aging so that it can be seen as a decline of cellular function in which cAMP plays an important role, which provide a foundation for PBM on senescence since cellular senescence is a reasonable model of senescence and PBM is a cellular rehabilitation in which cAMP also plays an important role according to BIMP. The PBM in reversing skin photoageing and improving fibromyalgia are then discussed in detail.
Impact of Labile Zinc on Heart Function: From Physiology to Pathophysiology
Turan, Belma; Tuncay, Erkan
2017-01-01
Zinc plays an important role in biological systems as bound and histochemically reactive labile Zn2+. Although Zn2+ concentration is in the nM range in cardiomyocytes at rest and increases dramatically under stimulation, very little is known about precise mechanisms controlling the intracellular distribution of Zn2+ and its variations during cardiac function. Recent studies are focused on molecular and cellular aspects of labile Zn2+ and its homeostasis in mammalian cells and growing evidence clarified the molecular mechanisms underlying Zn2+-diverse functions in the heart, leading to the discovery of novel physiological functions of labile Zn2+ in parallel to the discovery of subcellular localization of Zn2+-transporters in cardiomyocytes. Additionally, important experimental data suggest a central role of intracellular labile Zn2+ in excitation-contraction coupling in cardiomyocytes by shaping Ca2+ dynamics. Cellular labile Zn2+ is tightly regulated against its adverse effects through either Zn2+-transporters, Zn2+-binding molecules or Zn2+-sensors, and, therefore plays a critical role in cellular signaling pathways. The present review summarizes the current understanding of the physiological role of cellular labile Zn2+ distribution in cardiomyocytes and how a remodeling of cellular Zn2+-homeostasis can be important in proper cell function with Zn2+-transporters under hyperglycemia. We also emphasize the recent investigations on Zn2+-transporter functions from the standpoint of human heart health to diseases together with their clinical interest as target proteins in the heart under pathological condition, such as diabetes. PMID:29137144
Wang, Ting; McDonald, Caitlin; Petrenko, Nataliya B.; Leblanc, Mathias; Wang, Tao; Giguere, Vincent; Evans, Ronald M.; Patel, Vickas V.
2015-01-01
Almost all cellular functions are powered by a continuous energy supply derived from cellular metabolism. However, it is little understood how cellular energy production is coordinated with diverse energy-consuming cellular functions. Here, using the cardiac muscle system, we demonstrate that nuclear receptors estrogen-related receptor α (ERRα) and ERRγ are essential transcriptional coordinators of cardiac energy production and consumption. On the one hand, ERRα and ERRγ together are vital for intact cardiomyocyte metabolism by directly controlling expression of genes important for mitochondrial functions and dynamics. On the other hand, ERRα and ERRγ influence major cardiomyocyte energy consumption functions through direct transcriptional regulation of key contraction, calcium homeostasis, and conduction genes. Mice lacking both ERRα and cardiac ERRγ develop severe bradycardia, lethal cardiomyopathy, and heart failure featuring metabolic, contractile, and conduction dysfunctions. These results illustrate that the ERR transcriptional pathway is essential to couple cellular energy metabolism with energy consumption processes in order to maintain normal cardiac function. PMID:25624346
Global functional analyses of cellular responses to pore-forming toxins.
Kao, Cheng-Yuan; Los, Ferdinand C O; Huffman, Danielle L; Wachi, Shinichiro; Kloft, Nicole; Husmann, Matthias; Karabrahimi, Valbona; Schwartz, Jean-Louis; Bellier, Audrey; Ha, Christine; Sagong, Youn; Fan, Hui; Ghosh, Partho; Hsieh, Mindy; Hsu, Chih-Shen; Chen, Li; Aroian, Raffi V
2011-03-01
Here we present the first global functional analysis of cellular responses to pore-forming toxins (PFTs). PFTs are uniquely important bacterial virulence factors, comprising the single largest class of bacterial protein toxins and being important for the pathogenesis in humans of many Gram positive and Gram negative bacteria. Their mode of action is deceptively simple, poking holes in the plasma membrane of cells. The scattered studies to date of PFT-host cell interactions indicate a handful of genes are involved in cellular defenses to PFTs. How many genes are involved in cellular defenses against PFTs and how cellular defenses are coordinated are unknown. To address these questions, we performed the first genome-wide RNA interference (RNAi) screen for genes that, when knocked down, result in hypersensitivity to a PFT. This screen identifies 106 genes (∼0.5% of genome) in seven functional groups that protect Caenorhabditis elegans from PFT attack. Interactome analyses of these 106 genes suggest that two previously identified mitogen-activated protein kinase (MAPK) pathways, one (p38) studied in detail and the other (JNK) not, form a core PFT defense network. Additional microarray, real-time PCR, and functional studies reveal that the JNK MAPK pathway, but not the p38 MAPK pathway, is a key central regulator of PFT-induced transcriptional and functional responses. We find C. elegans activator protein 1 (AP-1; c-jun, c-fos) is a downstream target of the JNK-mediated PFT protection pathway, protects C. elegans against both small-pore and large-pore PFTs and protects human cells against a large-pore PFT. This in vivo RNAi genomic study of PFT responses proves that cellular commitment to PFT defenses is enormous, demonstrates the JNK MAPK pathway as a key regulator of transcriptionally-induced PFT defenses, and identifies AP-1 as the first cellular component broadly important for defense against large- and small-pore PFTs.
Growing knowledge of the mTOR signaling network.
Huang, Kezhen; Fingar, Diane C
2014-12-01
The kinase mTOR (mechanistic target of rapamycin) integrates diverse environmental signals and translates these cues into appropriate cellular responses. mTOR forms the catalytic core of at least two functionally distinct signaling complexes, mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). mTORC1 promotes anabolic cellular metabolism in response to growth factors, nutrients, and energy and functions as a master controller of cell growth. While significantly less well understood than mTORC1, mTORC2 responds to growth factors and controls cell metabolism, cell survival, and the organization of the actin cytoskeleton. mTOR plays critical roles in cellular processes related to tumorigenesis, metabolism, immune function, and aging. Consequently, aberrant mTOR signaling contributes to myriad disease states, and physicians employ mTORC1 inhibitors (rapamycin and analogs) for several pathological conditions. The clinical utility of mTOR inhibition underscores the important role of mTOR in organismal physiology. Here we review our growing knowledge of cellular mTOR regulation by diverse upstream signals (e.g. growth factors; amino acids; energy) and how mTORC1 integrates these signals to effect appropriate downstream signaling, with a greater emphasis on mTORC1 over mTORC2. We highlight dynamic subcellular localization of mTORC1 and associated factors as an important mechanism for control of mTORC1 activity and function. We will cover major cellular functions controlled by mTORC1 broadly. While significant advances have been made in the last decade regarding the regulation and function of mTOR within complex cell signaling networks, many important findings remain to be discovered. Copyright © 2014 Elsevier Ltd. All rights reserved.
Regulation of the cellular and physiological effects of glutamine.
Chwals, Walter J
2004-10-01
Glutamine is the most abundant amino acid in humans and possesses many functions in the body. It is the major transporter of amino-nitrogen between cells and an important fuel source for rapidly dividing cells such as cells of the immune and gastrointestinal systems. It is important in the synthesis of nucleic acids, glutathione, citrulline, arginine, gamma aminobutyric acid, and glucose. It is important for growth, gastrointestinal integrity, acid-base homeostasis, and optimal immune function. The regulation of glutamine levels in cells via glutaminase and glutamine synthetase is discussed. The cellular and physiologic effects of glutamine upon the central nervous system, gastrointestinal function, during metabolic support, and following tissue injury and critical illness is also discussed.
RING-type E3 ligases: Master manipulators of E2 ubiquitin-conjugating enzymes and ubiquitination
Metzger, Meredith B.; Pruneda, Jonathan N.; Klevit, Rachel E.; Weissman, Allan M.
2013-01-01
RING finger domain and RING finger-like ubiquitin ligases (E3s), such as U-box proteins, constitute the vast majority of known E3s. RING-type E3s function together with ubiquitin-conjugating enzymes (E2s) to mediate ubiquitination and are implicated in numerous cellular processes. In part because of their importance in human physiology and disease, these proteins and their cellular functions represent an intense area of study. Here we review recent advances in RING-type E3 recognition of substrates, their cellular regulation, and their varied architecture. Additionally, recent structural insights into RING-type E3 function, with a focus on important interactions with E2s and ubiquitin, are reviewed. This article is part of a Special Issue entitled: Ubiquitin-Proteasome System. PMID:23747565
Lima-Fernandes, Evelyne; Enslen, Hervé; Camand, Emeline; Kotelevets, Larissa; Boularan, Cédric; Achour, Lamia; Benmerah, Alexandre; Gibson, Lucien C D; Baillie, George S; Pitcher, Julie A; Chastre, Eric; Etienne-Manneville, Sandrine; Marullo, Stefano; Scott, Mark G H
2011-01-01
The tumour suppressor PTEN (phosphatase and tensin deleted on chromosome 10) regulates major cellular functions via lipid phosphatase-dependent and -independent mechanisms. Despite its fundamental pathophysiological importance, how PTEN's cellular activity is regulated has only been partially elucidated. We report that the scaffolding proteins β-arrestins (β-arrs) are important regulators of PTEN. Downstream of receptor-activated RhoA/ROCK signalling, β-arrs activate the lipid phosphatase activity of PTEN to negatively regulate Akt and cell proliferation. In contrast, following wound-induced RhoA activation, β-arrs inhibit the lipid phosphatase-independent anti-migratory effects of PTEN. β-arrs can thus differentially control distinct functional outputs of PTEN important for cell proliferation and migration. PMID:21642958
Understanding D-Ribose and Mitochondrial Function.
Mahoney, Diane E; Hiebert, John B; Thimmesch, Amanda; Pierce, John T; Vacek, James L; Clancy, Richard L; Sauer, Andrew J; Pierce, Janet D
2018-01-01
Mitochondria are important organelles referred to as cellular powerhouses for their unique properties of cellular energy production. With many pathologic conditions and aging, mitochondrial function declines, and there is a reduction in the production of adenosine triphosphate. The energy carrying molecule generated by cellular respiration and by pentose phosphate pathway, an alternative pathway of glucose metabolism. D-ribose is a naturally occurring monosaccharide found in the cells and particularly in the mitochondria is essential in energy production. Without sufficient energy, cells cannot maintain integrity and function. Supplemental D-ribose has been shown to improve cellular processes when there is mitochondrial dysfunction. When individuals take supplemental D-ribose, it can bypass part of the pentose pathway to produce D-ribose-5-phosphate for the production of energy. In this article, we review how energy is produced by cellular respiration, the pentose pathway, and the use of supplemental D-ribose.
Lipids, lysosomes, and autophagy
2016-01-01
Lipids are essential components of a cell providing energy substrates for cellular processes, signaling intermediates, and building blocks for biological membranes. Lipids are constantly recycled and redistributed within a cell. Lysosomes play an important role in this recycling process that involves the recruitment of lipids to lysosomes via autophagy or endocytosis for their degradation by lysosomal hydrolases. The catabolites produced are redistributed to various cellular compartments to support basic cellular function. Several studies demonstrated a bidirectional relationship between lipids and lysosomes that regulate autophagy. While lysosomal degradation pathways regulate cellular lipid metabolism, lipids also regulate lysosome function and autophagy. In this review, we focus on this bidirectional relationship in the context of dietary lipids and provide an overview of recent evidence of how lipid-overload lipotoxicity, as observed in obesity and metabolic syndrome, impairs lysosomal function and autophagy that may eventually lead to cellular dysfunction or cell death. PMID:27330054
From Vesicles to Protocells: The Roles of Amphiphilic Molecules
Sakuma, Yuka; Imai, Masayuki
2015-01-01
It is very challenging to construct protocells from molecular assemblies. An important step in this challenge is the achievement of vesicle dynamics that are relevant to cellular functions, such as membrane trafficking and self-reproduction, using amphiphilic molecules. Soft matter physics will play an important role in the development of vesicles that have these functions. Here, we show that simple binary phospholipid vesicles have the potential to reproduce the relevant functions of adhesion, pore formation and self-reproduction of vesicles, by coupling the lipid geometries (spontaneous curvatures) and the phase separation. This achievement will elucidate the pathway from molecular assembly to cellular life. PMID:25738256
Adapting to stress - chaperome networks in cancer.
Joshi, Suhasini; Wang, Tai; Araujo, Thaís L S; Sharma, Sahil; Brodsky, Jeffrey L; Chiosis, Gabriela
2018-05-23
In this Opinion article, we aim to address how cells adapt to stress and the repercussions chronic stress has on cellular function. We consider acute and chronic stress-induced changes at the cellular level, with a focus on a regulator of cellular stress, the chaperome, which is a protein assembly that encompasses molecular chaperones, co-chaperones and other co-factors. We discuss how the chaperome takes on distinct functions under conditions of stress that are executed in ways that differ from the one-on-one cyclic, dynamic functions exhibited by distinct molecular chaperones. We argue that through the formation of multimeric stable chaperome complexes, a state of chaperome hyperconnectivity, or networking, is gained. The role of these chaperome networks is to act as multimolecular scaffolds, a particularly important function in cancer, where they increase the efficacy and functional diversity of several cellular processes. We predict that these concepts will change how we develop and implement drugs targeting the chaperome to treat cancer.
Gautam, Mukesh; Jara, Javier H; Sekerkova, Gabriella; Yasvoina, Marina V; Martina, Marco; Özdinler, P Hande
2016-03-15
Mutations in the ALS2 gene result in early-onset amyotrophic lateral sclerosis, infantile-onset ascending hereditary spastic paraplegia and juvenile primary lateral sclerosis, suggesting prominent upper motor neuron involvement. However, the importance of alsin function for corticospinal motor neuron (CSMN) health and stability remains unknown. To date, four separate alsin knockout (Alsin(KO)) mouse models have been generated, and despite hopes of mimicking human pathology, none displayed profound motor function defects. This, however, does not rule out the possibility of neuronal defects within CSMN, which is not easy to detect in these mice. Detailed cellular analysis of CSMN has been hampered due to their limited numbers and the complex and heterogeneous structure of the cerebral cortex. In an effort to visualize CSMN in vivo and to investigate precise aspects of neuronal abnormalities in the absence of alsin function, we generated Alsin(KO)-UeGFP mice, by crossing Alsin(KO) and UCHL1-eGFP mice, a CSMN reporter line. We find that CSMN display vacuolated apical dendrites with increased autophagy, shrinkage of soma size and axonal pathology even in the pons region. Immunocytochemistry coupled with electron microscopy reveal that alsin is important for maintaining cellular cytoarchitecture and integrity of cellular organelles. In its absence, CSMN displays selective defects both in mitochondria and Golgi apparatus. UCHL1-eGFP mice help understand the underlying cellular factors that lead to CSMN vulnerability in diseases, and our findings reveal unique importance of alsin function for CSMN health and stability. © The Author 2016. Published by Oxford University Press.
Liang, Xiaomeng; Dempski, Robert E.; Burdette, Shawn C.
2016-01-01
Zinc is an essential micronutrient for cellular homeostasis. Initially proposed to only contribute to cellular viability through structural roles and non-redox catalysis, advances in quantifying changes in nM and pM quantities of Zn2+ have elucidated increasing functions as an important signaling molecule. This includes Zn2+-mediated regulation of transcription factors and subsequent protein expression, storage and release of intracellular compartments of zinc quanta into the extracellular space which modulates plasma membrane protein function, as well as intracellular signaling pathways which contribute to the immune response. This review highlights some recent advances in our understanding of zinc signaling. PMID:27010344
Primary Cilia and Dendritic Spines: Different but Similar Signaling Compartments
Nechipurenko, Inna V.; Doroquez, David B.; Sengupta, Piali
2013-01-01
Primary non-motile cilia and dendritic spines are cellular compartments that are specialized to sense and transduce environmental cues and presynaptic signals, respectively. Despite their unique cellular roles, both compartments exhibit remarkable parallels in the general principles, as well as molecular mechanisms, by which their protein composition, membrane domain architecture, cellular interactions, and structural and functional plasticity are regulated. We compare and contrast the pathways required for the generation and function of cilia and dendritic spines, and suggest that insights from the study of one may inform investigations into the other of these critically important signaling structures. PMID:24048681
Lee, Junho; Kim, Dae Heon; Hwang, Inhwan
2014-01-01
Chloroplasts and mitochondria are endosymbiotic organelles thought to be derived from endosymbiotic bacteria. In present-day eukaryotic cells, these two organelles play pivotal roles in photosynthesis and ATP production. In addition to these major activities, numerous reactions, and cellular processes that are crucial for normal cellular functions occur in chloroplasts and mitochondria. To function properly, these organelles constantly communicate with the surrounding cellular compartments. This communication includes the import of proteins, the exchange of metabolites and ions, and interactions with other organelles, all of which heavily depend on membrane proteins localized to the outer envelope membranes. Therefore, correct and efficient targeting of these membrane proteins, which are encoded by the nuclear genome and translated in the cytosol, is critically important for organellar function. In this review, we summarize the current knowledge of the mechanisms of protein targeting to the outer membranes of mitochondria and chloroplasts in two different directions, as well as targeting signals and cytosolic factors. PMID:24808904
Srivastava, S; Sinha, D; Saha, P P; Marthala, H; D'Silva, P
2014-01-01
Redox imbalance generates multiple cellular damages leading to oxidative stress-mediated pathological conditions such as neurodegenerative diseases and cancer progression. Therefore, maintenance of reactive oxygen species (ROS) homeostasis is most important that involves well-defined antioxidant machinery. In the present study, we have identified for the first time a component of mammalian protein translocation machinery Magmas to perform a critical ROS regulatory function. Magmas overexpression has been reported in highly metabolically active tissues and cancer cells that are prone to oxidative damage. We found that Magmas regulates cellular ROS levels by controlling its production as well as scavenging. Magmas promotes cellular tolerance toward oxidative stress by enhancing antioxidant enzyme activity, thus preventing induction of apoptosis and damage to cellular components. Magmas enhances the activity of electron transport chain (ETC) complexes, causing reduced ROS production. Our results suggest that J-like domain of Magmas is essential for maintenance of redox balance. The function of Magmas as a ROS sensor was found to be independent of its role in protein import. The unique ROS modulatory role of Magmas is highlighted by its ability to increase cell tolerance to oxidative stress even in yeast model organism. The cytoprotective capability of Magmas against oxidative damage makes it an important candidate for future investigation in therapeutics of oxidative stress-related diseases. PMID:25165880
Endoplasmic Reticulum and the Unfolded Protein Response: Dynamics and Metabolic Integration
Bravo, Roberto; Parra, Valentina; Gatica, Damián; Rodriguez, Andrea E.; Torrealba, Natalia; Paredes, Felipe; Wang, Zhao V.; Zorzano, Antonio; Hill, Joseph A.; Jaimovich, Enrique; Quest, Andrew F.G.; Lavandero, Sergio
2013-01-01
The endoplasmic reticulum (ER) is a dynamic intracellular organelle with multiple functions essential for cellular homeostasis, development, and stress responsiveness. In response to cellular stress, a well-established signaling cascade, the unfolded protein response (UPR), is activated. This intricate mechanism is an important means of reestablishing cellular homeostasis and alleviating the inciting stress. Now, emerging evidence has demonstrated that the UPR influences cellular metabolism through diverse mechanisms, including calcium and lipid transfer, raising the prospect of involvement of these processes in the pathogenesis of disease, including neurodegeneration, cancer, diabetes mellitus and cardiovascular disease. Here, we review the distinct functions of the ER and UPR from a metabolic point of view, highlighting their association with prevalent pathologies. PMID:23317820
Aravamudan, Bharathi; Thompson, Michael A.; Pabelick, Christina M.; Prakash, Y. S.
2014-01-01
Summary Mitochondria are autonomous cellular organelles that oversee a variety of functions such as metabolism, energy production, calcium buffering, and cell fate determination. Regulation of their morphology and diverse activities beyond energy production are being recognized as playing major roles in cellular health and dysfunction. This review is aimed at summarizing what is known regarding mitochondrial contributions to pathogenesis of lung diseases. Emphasis is given to understanding the importance of structural and functional aspects of mitochondria in both normal cellular function (based on knowledge from other cell types) and in development and modulation of lung diseases such as asthma, COPD, cystic fibrosis and cancer. Emerging techniques that allow examination of mitochondria, and potential strategies to target mitochondria in the treatment of lung diseases are also discussed. PMID:23978003
Mechanisms by Which Different Functional States of Mitochondria Define Yeast Longevity
Beach, Adam; Leonov, Anna; Arlia-Ciommo, Anthony; Svistkova, Veronika; Lutchman, Vicky; Titorenko, Vladimir I.
2015-01-01
Mitochondrial functionality is vital to organismal physiology. A body of evidence supports the notion that an age-related progressive decline in mitochondrial function is a hallmark of cellular and organismal aging in evolutionarily distant eukaryotes. Studies of the baker’s yeast Saccharomyces cerevisiae, a unicellular eukaryote, have led to discoveries of genes, signaling pathways and chemical compounds that modulate longevity-defining cellular processes in eukaryotic organisms across phyla. These studies have provided deep insights into mechanistic links that exist between different traits of mitochondrial functionality and cellular aging. The molecular mechanisms underlying the essential role of mitochondria as signaling organelles in yeast aging have begun to emerge. In this review, we discuss recent progress in understanding mechanisms by which different functional states of mitochondria define yeast longevity, outline the most important unanswered questions and suggest directions for future research. PMID:25768339
Organelle communication: signaling crossroads between homeostasis and disease.
Bravo-Sagua, Roberto; Torrealba, Natalia; Paredes, Felipe; Morales, Pablo E; Pennanen, Christian; López-Crisosto, Camila; Troncoso, Rodrigo; Criollo, Alfredo; Chiong, Mario; Hill, Joseph A; Simmen, Thomas; Quest, Andrew F; Lavandero, Sergio
2014-05-01
Cellular organelles do not function as isolated or static units, but rather form dynamic contacts between one another that can be modulated according to cellular needs. The physical interfaces between organelles are important for Ca2+ and lipid homeostasis, and serve as platforms for the control of many essential functions including metabolism, signaling, organelle integrity and execution of the apoptotic program. Emerging evidence also highlights the importance of organelle communication in disorders such as Alzheimer's disease, pulmonary arterial hypertension, cancer, skeletal and cardiac muscle dysfunction. Here, we provide an overview of the current literature on organelle communication and the link to human pathologies. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Xiong, Gordon M.; Foord, John S.; Griffiths, Jon-Paul; Parker, Emily M.; Moloney, Mark G.; Choong, Cleo
2014-08-01
This work reports the effects of introducing diverse chemical functionalities onto the surface of polystyrene microcarrier beads on their ability to function as injectable cell carriers. Cellular adhesion and proliferation, as well as cellular outgrowths from microcarrier surfaces, using human umbilical vein endothelial cells (HUVECs), were examined in detail. It was observed that initial cell adhesion appeared to be most significantly decreased by hydrophobicity, whilst cell proliferation appeared to be improved in most chemical functional groups over unmodified polystyrene. Overall, our study highlights the importance of surface chemistry in directing the growth and function of human endothelial cells.
Lammerding, Jan
2015-01-01
The nucleus is the distinguishing feature of eukaryotic cells. Until recently, it was often considered simply as a unique compartment containing the genetic information of the cell and associated machinery, without much attention to its structure and mechanical properties. This article provides compelling examples that illustrate how specific nuclear structures are associated with important cellular functions, and how defects in nuclear mechanics can cause a multitude of human diseases. During differentiation, embryonic stem cells modify their nuclear envelope composition and chromatin structure, resulting in stiffer nuclei that reflect decreased transcriptional plasticity. In contrast, neutrophils have evolved characteristic lobulated nuclei that increase their physical plasticity, enabling passage through narrow tissue spaces in their response to inflammation. Research on diverse cell types further demonstrates how induced nuclear deformations during cellular compression or stretch can modulate cellular function. Pathological examples of disturbed nuclear mechanics include the many diseases caused by mutations in the nuclear envelope proteins lamin A/C and associated proteins, as well as cancer cells that are often characterized by abnormal nuclear morphology. In this article, we will focus on determining the functional relationship between nuclear mechanics and cellular (dys-)function, describing the molecular changes associated with physiological and pathological examples, the resulting defects in nuclear mechanics, and the effects on cellular function. New insights into the close relationship between nuclear mechanics and cellular organization and function will yield a better understanding of normal biology and will offer new clues into therapeutic approaches to the various diseases associated with defective nuclear mechanics. PMID:23737203
The Role of microRNAs in the Pathogenesis of Herpesvirus Infection.
Piedade, Diogo; Azevedo-Pereira, José Miguel
2016-06-02
MicroRNAs (miRNAs) are small non-coding RNAs important in gene regulation. They are able to regulate mRNA translation through base-pair complementarity. Cellular miRNAs have been involved in the regulation of nearly all cellular pathways, and their deregulation has been associated with several diseases such as cancer. Given the importance of microRNAs to cell homeostasis, it is no surprise that viruses have evolved to take advantage of this cellular pathway. Viruses have been reported to be able to encode and express functional viral microRNAs that target both viral and cellular transcripts. Moreover, viral inhibition of key proteins from the microRNA pathway and important changes in cellular microRNA pool have been reported upon viral infection. In addition, viruses have developed multiple mechanisms to avoid being targeted by cellular microRNAs. This complex interaction between host and viruses to control the microRNA pathway usually favors viral infection and persistence by either reducing immune detection, avoiding apoptosis, promoting cell growth, or promoting lytic or latent infection. One of the best examples of this virus-host-microRNA interplay emanates from members of the Herperviridae family, namely the herpes simplex virus type 1 and type 2 (HSV-1 and HSV-2), human cytomegalovirus (HCMV), human herpesvirus 8 (HHV-8), and the Epstein-Barr virus (EBV). In this review, we will focus on the general functions of microRNAs and the interactions between herpesviruses, human hosts, and microRNAs and will delve into the related mechanisms that contribute to infection and pathogenesis.
The Role of microRNAs in the Pathogenesis of Herpesvirus Infection
Piedade, Diogo; Azevedo-Pereira, José Miguel
2016-01-01
MicroRNAs (miRNAs) are small non-coding RNAs important in gene regulation. They are able to regulate mRNA translation through base-pair complementarity. Cellular miRNAs have been involved in the regulation of nearly all cellular pathways, and their deregulation has been associated with several diseases such as cancer. Given the importance of microRNAs to cell homeostasis, it is no surprise that viruses have evolved to take advantage of this cellular pathway. Viruses have been reported to be able to encode and express functional viral microRNAs that target both viral and cellular transcripts. Moreover, viral inhibition of key proteins from the microRNA pathway and important changes in cellular microRNA pool have been reported upon viral infection. In addition, viruses have developed multiple mechanisms to avoid being targeted by cellular microRNAs. This complex interaction between host and viruses to control the microRNA pathway usually favors viral infection and persistence by either reducing immune detection, avoiding apoptosis, promoting cell growth, or promoting lytic or latent infection. One of the best examples of this virus-host-microRNA interplay emanates from members of the Herperviridae family, namely the herpes simplex virus type 1 and type 2 (HSV-1 and HSV-2), human cytomegalovirus (HCMV), human herpesvirus 8 (HHV-8), and the Epstein–Barr virus (EBV). In this review, we will focus on the general functions of microRNAs and the interactions between herpesviruses, human hosts, and microRNAs and will delve into the related mechanisms that contribute to infection and pathogenesis. PMID:27271654
Price, Jeffrey H; Goodacre, Angela; Hahn, Klaus; Hodgson, Louis; Hunter, Edward A; Krajewski, Stanislaw; Murphy, Robert F; Rabinovich, Andrew; Reed, John C; Heynen, Susanne
2002-01-01
Cellular behavior is complex. Successfully understanding systems at ever-increasing complexity is fundamental to advances in modern science and unraveling the functional details of cellular behavior is no exception. We present a collection of prospectives to provide a glimpse of the techniques that will aid in collecting, managing and utilizing information on complex cellular processes via molecular imaging tools. These include: 1) visualizing intracellular protein activity with fluorescent markers, 2) high throughput (and automated) imaging of multilabeled cells in statistically significant numbers, and 3) machine intelligence to analyze subcellular image localization and pattern. Although not addressed here, the importance of combining cell-image-based information with detailed molecular structure and ligand-receptor binding models cannot be overlooked. Advanced molecular imaging techniques have the potential to impact cellular diagnostics for cancer screening, clinical correlations of tissue molecular patterns for cancer biology, and cellular molecular interactions for accelerating drug discovery. The goal of finally understanding all cellular components and behaviors will be achieved by advances in both instrumentation engineering (software and hardware) and molecular biochemistry. Copyright 2002 Wiley-Liss, Inc.
Using cellular automata to generate image representation for biological sequences.
Xiao, X; Shao, S; Ding, Y; Huang, Z; Chen, X; Chou, K-C
2005-02-01
A novel approach to visualize biological sequences is developed based on cellular automata (Wolfram, S. Nature 1984, 311, 419-424), a set of discrete dynamical systems in which space and time are discrete. By transforming the symbolic sequence codes into the digital codes, and using some optimal space-time evolvement rules of cellular automata, a biological sequence can be represented by a unique image, the so-called cellular automata image. Many important features, which are originally hidden in a long and complicated biological sequence, can be clearly revealed thru its cellular automata image. With biological sequences entering into databanks rapidly increasing in the post-genomic era, it is anticipated that the cellular automata image will become a very useful vehicle for investigation into their key features, identification of their function, as well as revelation of their "fingerprint". It is anticipated that by using the concept of the pseudo amino acid composition (Chou, K.C. Proteins: Structure, Function, and Genetics, 2001, 43, 246-255), the cellular automata image approach can also be used to improve the quality of predicting protein attributes, such as structural class and subcellular location.
Functional Implications of Novel Human Acid Sphingomyelinase Splice Variants
Rhein, Cosima; Tripal, Philipp; Seebahn, Angela; Konrad, Alice; Kramer, Marcel; Nagel, Christine; Kemper, Jonas; Bode, Jens; Mühle, Christiane; Gulbins, Erich; Reichel, Martin; Becker, Cord-Michael; Kornhuber, Johannes
2012-01-01
Background Acid sphingomyelinase (ASM) hydrolyses sphingomyelin and generates the lipid messenger ceramide, which mediates a variety of stress-related cellular processes. The pathological effects of dysregulated ASM activity are evident in several human diseases and indicate an important functional role for ASM regulation. We investigated alternative splicing as a possible mechanism for regulating cellular ASM activity. Methodology/Principal Findings We identified three novel ASM splice variants in human cells, termed ASM-5, -6 and -7, which lack portions of the catalytic- and/or carboxy-terminal domains in comparison to full-length ASM-1. Differential expression patterns in primary blood cells indicated that ASM splicing might be subject to regulatory processes. The newly identified ASM splice variants were catalytically inactive in biochemical in vitro assays, but they decreased the relative cellular ceramide content in overexpression studies and exerted a dominant-negative effect on ASM activity in physiological cell models. Conclusions/Significance These findings indicate that alternative splicing of ASM is of functional significance for the cellular stress response, possibly representing a mechanism for maintaining constant levels of cellular ASM enzyme activity. PMID:22558155
Kurokawa, Hirofumi; Sugiyama, Seigo; Nozaki, Toshimitsu; Sugamura, Koichi; Toyama, Kensuke; Matsubara, Junichi; Fujisue, Koichiro; Ohba, Keisuke; Maeda, Hirofumi; Konishi, Masaaki; Akiyama, Eiichi; Sumida, Hitoshi; Izumiya, Yasuhiro; Yasuda, Osamu; Kim-Mitsuyama, Shokei; Ogawa, Hisao
2015-04-01
Mitochondrial dysfunction plays an important role in cellular senescence and impaired function of vascular endothelium, resulted in cardiovascular diseases. Telmisartan is a unique angiotensin II type I receptor blocker that has been shown to prevent cardiovascular events in high risk patients. AMP-activated protein kinase (AMPK) plays a critical role in mitochondrial biogenesis and endothelial function. This study assessed whether telmisartan enhances mitochondrial function and alters cellular functions via AMPK in human coronary artery endothelial cells (HCAECs). In cultured HCAECs, telmisartan significantly enhanced mitochondrial activity assessed by mitochondrial reductase activity and intracellular ATP production and increased the expression of mitochondria related genes. Telmisartan prevented cellular senescence and exhibited the anti-apoptotic and pro-angiogenic properties. The expression of genes related anti-oxidant and pro-angiogenic properties were increased by telmisartan. Telmisartan increased endothelial NO synthase and AMPK phosphorylation. Peroxisome proliferator-activated receptor gamma signaling was not involved in telmisartan-induced improvement of mitochondrial function. All of these effects were abolished by inhibition of AMPK. Telmisartan enhanced mitochondrial activity and exhibited anti-senescence effects and improving endothelial function through AMPK in HCAECs. Telmisartan could provide beneficial effects on vascular diseases via enhancement of mitochondrial activity and modulating endothelial function through AMPK activation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Controlling nuclear RNA levels.
Schmid, Manfred; Jensen, Torben Heick
2018-05-10
RNA turnover is an integral part of cellular RNA homeostasis and gene expression regulation. Whereas the cytoplasmic control of protein-coding mRNA is often the focus of study, we discuss here the less appreciated role of nuclear RNA decay systems in controlling RNA polymerase II (RNAPII)-derived transcripts. Historically, nuclear RNA degradation was found to be essential for the functionalization of transcripts through their proper maturation. Later, it was discovered to also be an important caretaker of nuclear hygiene by removing aberrant and unwanted transcripts. Recent years have now seen a set of new protein complexes handling a variety of new substrates, revealing functions beyond RNA processing and the decay of non-functional transcripts. This includes an active contribution of nuclear RNA metabolism to the overall cellular control of RNA levels, with mechanistic implications during cellular transitions.
Developmental consequences of cryopreservation of mammalian oocytes and embryos.
Smith, Gary D; Silva E Silva, Cristine Ane
2004-08-01
During the last three decades, significant advances have been made in successful cryopreservation of mammalian preimplantation embryos, and more recently oocytes. The ability to cryopreserve, thaw, and establish pregnancies with supernumerary preimplantation embryos has become an important tool in fertility treatment. Human oocyte cryopreservation has practical application in preserving fertility for individuals at risk of compromised egg quality due to cancer treatments or advanced maternal age. While oocyte/embryo cryopreservation success has increased over time, there is still room for improvement. Oocytes and embryos are susceptible to cryo-damage, which collectively entails cellular damage caused by mechanical, chemical, or thermal forces during the freeze-thaw process. Basic studies focused on understanding cellular structures, their composition, and more importantly their functions, in normal cell developments will continue to be critical in assessing, understanding, and correcting oocyte/embryo cryo-damage. This review will delineate many of the oocyte/embryo intracellular and extracellular structures that are or may be compromised during cryopreservation. A global theme presented throughout this review is that many structural components of the oocyte/embryo also have essential functional roles in development. Compromising these cellular structures, and thus their cellular homeostatic functions, can deleteriously influence initial cryo-survival or compromise subsequent normal development through effects on the oocyte and/or early embryo.
Marchitti, Satori A.; Chen, Ying; Thompson, David C.; Vasiliou, Vasilis
2011-01-01
Solar ultraviolet radiation (UVR) exposes the human eye to near constant oxidative stress. Evidence suggests that UVR is the most important environmental insult leading to the development of a variety of ophthalmoheliosis disorders. UVR-induced reactive oxygen species are highly reactive with DNA, proteins and cellular membranes, resulting in cellular and tissue damage. Antioxidant defense systems present in ocular tissues function to combat reactive oxygen species and protect the eye from oxidative damage. Important enzymatic antioxidants are the superoxide dismutases, catalase, glutathione peroxidases, glutathione reductase and members of the aldehyde dehydrogenase (ALDH) superfamily. Glutathione, ascorbic and uric acids, α-tocopherol, NADPH and ferritin serve as small molecule, nonenzymatic antioxidants. Ocular tissues have high levels of these antioxidants which are essential for the maintenance of redox homeostasis in the eye and protection against oxidative damage. ALDH1A1 and ALDH3A1, present abundantly in the cornea and lens, have been shown to have unique roles in the defense against UVR and the downstream effects of oxidative stress. This review presents the properties and functions of ocular antioxidants that play critical roles in the cellular response to UVR exposure, including a focused discussion of the unique roles that the ALDH1A1 and ALDH3A1 enzymes have as multi-functional ocular antioxidants. PMID:21670692
Son, Ji-Hye; Hwang, Eurim C; Kim, Joungmok
2016-03-01
Ultraviolet radiation resistance-associated gene product (UVRAG) was originally identified as a protein involved in cellular responses to UV irradiation. Subsequent studies have demonstrated that UVRAG plays as an important role in autophagy, a lysosome-dependent catabolic program, as a part of a pro-autophagy PIK3C3/VPS34 lipid kinase complex. Several recent studies have shown that UVRAG is also involved in autophagy-independent cellular functions, such as DNA repair/stability and vesicular trafficking/fusion. Here, we examined the UVRAG protein interactome to obtain information about its functional network. To this end, we screened UVRAG-interacting proteins using a tandem affinity purification method coupled with MALDI-TOF/MS analysis. Our results demonstrate that UVRAG interacts with various proteins involved in a wide spectrum of cellular functions, including genome stability, protein translational elongation, protein localization (trafficking), vacuole organization, transmembrane transport as well as autophagy. Notably, the interactome list of high-confidence UVRAG-interacting proteins is enriched for proteins involved in the regulation of genome stability. Our systematic UVRAG interactome analysis should provide important clues for understanding a variety of UVRAG functions.
Dual Coordination of Post Translational Modifications in Human Protein Networks
Woodsmith, Jonathan; Kamburov, Atanas; Stelzl, Ulrich
2013-01-01
Post-translational modifications (PTMs) regulate protein activity, stability and interaction profiles and are critical for cellular functioning. Further regulation is gained through PTM interplay whereby modifications modulate the occurrence of other PTMs or act in combination. Integration of global acetylation, ubiquitination and tyrosine or serine/threonine phosphorylation datasets with protein interaction data identified hundreds of protein complexes that selectively accumulate each PTM, indicating coordinated targeting of specific molecular functions. A second layer of PTM coordination exists in these complexes, mediated by PTM integration (PTMi) spots. PTMi spots represent very dense modification patterns in disordered protein regions and showed an equally high mutation rate as functional protein domains in cancer, inferring equivocal importance for cellular functioning. Systematic PTMi spot identification highlighted more than 300 candidate proteins for combinatorial PTM regulation. This study reveals two global PTM coordination mechanisms and emphasizes dataset integration as requisite in proteomic PTM studies to better predict modification impact on cellular signaling. PMID:23505349
Cellular Mechanisms of Somatic Stem Cell Aging
Jung, Yunjoon
2014-01-01
Tissue homeostasis and regenerative capacity rely on rare populations of somatic stem cells endowed with the potential to self-renew and differentiate. During aging, many tissues show a decline in regenerative potential coupled with a loss of stem cell function. Cells including somatic stem cells have evolved a series of checks and balances to sense and repair cellular damage to maximize tissue function. However, during aging the mechanisms that protect normal cell function begin to fail. In this review, we will discuss how common cellular mechanisms that maintain tissue fidelity and organismal lifespan impact somatic stem cell function. We will highlight context-dependent changes and commonalities that define aging, by focusing on three age-sensitive stem cell compartments: blood, neural, and muscle. Understanding the interaction between extrinsic regulators and intrinsic effectors that operate within different stem cell compartments is likely to have important implications for identifying strategies to improve health span and treat age-related degenerative diseases. PMID:24439814
Molecular chaperones and photoreceptor function
Kosmaoglou, Maria; Schwarz, Nele; Bett, John S.; Cheetham, Michael E.
2008-01-01
Molecular chaperones facilitate and regulate protein conformational change within cells. This encompasses many fundamental cellular processes: including the correct folding of nascent chains; protein transport and translocation; signal transduction and protein quality control. Chaperones are, therefore, important in several forms of human disease, including neurodegeneration. Within the retina, the highly specialized photoreceptor cell presents a fascinating paradigm to investigate the specialization of molecular chaperone function and reveals unique chaperone requirements essential to photoreceptor function. Mutations in several photoreceptor proteins lead to protein misfolding mediated neurodegeneration. The best characterized of these are mutations in the molecular light sensor, rhodopsin, which cause autosomal dominant retinitis pigmentosa. Rhodopsin biogenesis is likely to require chaperones, while rhodopsin misfolding involves molecular chaperones in quality control and the cellular response to protein aggregation. Furthermore, the specialization of components of the chaperone machinery to photoreceptor specific roles has been revealed by the identification of mutations in molecular chaperones that cause inherited retinal dysfunction and degeneration. These chaperones are involved in several important cellular pathways and further illuminate the essential and diverse roles of molecular chaperones. PMID:18490186
Verma, Amit K; Diwan, Danish; Raut, Sandeep; Dobriyal, Neha; Brown, Rebecca E; Gowda, Vinita; Hines, Justin K; Sahi, Chandan
2017-06-07
Heat shock proteins of 70 kDa (Hsp70s) partner with structurally diverse Hsp40s (J proteins), generating distinct chaperone networks in various cellular compartments that perform myriad housekeeping and stress-associated functions in all organisms. Plants, being sessile, need to constantly maintain their cellular proteostasis in response to external environmental cues. In these situations, the Hsp70:J protein machines may play an important role in fine-tuning cellular protein quality control. Although ubiquitous, the functional specificity and complexity of the plant Hsp70:J protein network has not been studied. Here, we analyzed the J protein network in the cytosol of Arabidopsis thaliana and, using yeast genetics, show that the functional specificities of most plant J proteins in fundamental chaperone functions are conserved across long evolutionary timescales. Detailed phylogenetic and functional analysis revealed that increased number, regulatory differences, and neofunctionalization in J proteins together contribute to the emerging functional diversity and complexity in the Hsp70:J protein network in higher plants. Based on the data presented, we propose that higher plants have orchestrated their "chaperome," especially their J protein complement, according to their specialized cellular and physiological stipulations. Copyright © 2017 Verma et al.
Sonntag, Eric; Milbradt, Jens; Svrlanska, Adriana; Strojan, Hanife; Häge, Sigrun; Kraut, Alexandra; Hesse, Anne-Marie; Amin, Bushra; Sonnewald, Uwe; Couté, Yohann; Marschall, Manfred
2017-10-01
Nuclear egress of herpesvirus capsids is mediated by a multi-component nuclear egress complex (NEC) assembled by a heterodimer of two essential viral core egress proteins. In the case of human cytomegalovirus (HCMV), this core NEC is defined by the interaction between the membrane-anchored pUL50 and its nuclear cofactor, pUL53. NEC protein phosphorylation is considered to be an important regulatory step, so this study focused on the respective role of viral and cellular protein kinases. Multiply phosphorylated pUL50 varieties were detected by Western blot and Phos-tag analyses as resulting from both viral and cellular kinase activities. In vitro kinase analyses demonstrated that pUL50 is a substrate of both PKCα and CDK1, while pUL53 can also be moderately phosphorylated by CDK1. The use of kinase inhibitors further illustrated the importance of distinct kinases for core NEC phosphorylation. Importantly, mass spectrometry-based proteomic analyses identified five major and nine minor sites of pUL50 phosphorylation. The functional relevance of core NEC phosphorylation was confirmed by various experimental settings, including kinase knock-down/knock-out and confocal imaging, in which it was found that (i) HCMV core NEC proteins are not phosphorylated solely by viral pUL97, but also by cellular kinases; (ii) both PKC and CDK1 phosphorylation are detectable for pUL50; (iii) no impact of PKC phosphorylation on NEC functionality has been identified so far; (iv) nonetheless, CDK1-specific phosphorylation appears to be required for functional core NEC interaction. In summary, our findings provide the first evidence that the HCMV core NEC is phosphorylated by cellular kinases, and that the complex pattern of NEC phosphorylation has functional relevance.
Lombardi, Maria L; Lammerding, Jan
2011-12-01
Providing a stable physical connection between the nucleus and the cytoskeleton is essential for a wide range of cellular functions and it could also participate in mechanosensing by transmitting intra- and extra-cellular mechanical stimuli via the cytoskeleton to the nucleus. Nesprins and SUN proteins, located at the nuclear envelope, form the LINC (linker of nucleoskeleton and cytoskeleton) complex that connects the nucleus to the cytoskeleton; underlying nuclear lamins contribute to anchoring LINC complex components at the nuclear envelope. Disruption of the LINC complex or loss of lamins can result in disturbed perinuclear actin and intermediate filament networks and causes severe functional defects, including impaired nuclear positioning, cell polarization and cell motility. Recent studies have identified the LINC complex as the major force-transmitting element at the nuclear envelope and suggest that many of the aforementioned defects can be attributed to disturbed force transmission between the nucleus and the cytoskeleton. Thus mutations in nesprins, SUN proteins or lamins, which have been linked to muscular dystrophies and cardiomyopathies, may weaken or completely eliminate LINC complex function at the nuclear envelope and result in impaired intracellular force transmission, thereby disrupting critical cellular functions.
Mediators of Physical Activity on Neurocognitive Function: A Review at Multiple Levels of Analysis.
Stillman, Chelsea M; Cohen, Jamie; Lehman, Morgan E; Erickson, Kirk I
2016-01-01
Physical activity (PA) is known to maintain and improve neurocognitive health. However, there is still a poor understanding of the mechanisms by which PA exerts its effects on the brain and cognition in humans. Many of the most widely discussed mechanisms of PA are molecular and cellular and arise from animal models. While information about basic cellular and molecular mechanisms is an important foundation from which to build our understanding of how PA promotes cognitive health in humans, there are other pathways that could play a role in this relationship. For example, PA-induced changes to cellular and molecular pathways likely initiate changes to macroscopic properties of the brain and/or to behavior that in turn influence cognition. The present review uses a more macroscopic lens to identify potential brain and behavioral/socioemotional mediators of the association between PA and cognitive function. We first summarize what is known regarding cellular and molecular mechanisms, and then devote the remainder of the review to discussing evidence for brain systems and behavioral/socioemotional pathways by which PA influences cognition. It is our hope that discussing mechanisms at multiple levels of analysis will stimulate the field to examine both brain and behavioral mediators. Doing so is important, as it could lead to a more complete characterization of the processes by which PA influences neurocognitive function, as well as a greater variety of targets for modifying neurocognitive function in clinical contexts.
Computer Modeling of the Earliest Cellular Structures and Functions
NASA Technical Reports Server (NTRS)
Pohorille, Andrew; Chipot, Christophe; Schweighofer, Karl
2000-01-01
In the absence of extinct or extant record of protocells (the earliest ancestors of contemporary cells). the most direct way to test our understanding of the origin of cellular life is to construct laboratory models of protocells. Such efforts are currently underway in the NASA Astrobiology Program. They are accompanied by computational studies aimed at explaining self-organization of simple molecules into ordered structures and developing designs for molecules that perform proto-cellular functions. Many of these functions, such as import of nutrients, capture and storage of energy. and response to changes in the environment are carried out by proteins bound to membrane< We will discuss a series of large-scale, molecular-level computer simulations which demonstrate (a) how small proteins (peptides) organize themselves into ordered structures at water-membrane interfaces and insert into membranes, (b) how these peptides aggregate to form membrane-spanning structures (eg. channels), and (c) by what mechanisms such aggregates perform essential proto-cellular functions, such as proton transport of protons across cell walls, a key step in cellular bioenergetics. The simulations were performed using the molecular dynamics method, in which Newton's equations of motion for each item in the system are solved iteratively. The problems of interest required simulations on multi-nanosecond time scales, which corresponded to 10(exp 6)-10(exp 8) time steps.
Baqader, Noor O.; Radulovic, Marko; Crawford, Mark; Stoeber, Kai; Godovac-Zimmermann, Jasminka
2014-01-01
We have used a subcellular spatial razor approach based on LC–MS/MS-based proteomics with SILAC isotope labeling to determine changes in protein abundances in the nuclear and cytoplasmic compartments of human IMR90 fibroblasts subjected to mild oxidative stress. We show that response to mild tert-butyl hydrogen peroxide treatment includes redistribution between the nucleus and cytoplasm of numerous proteins not previously associated with oxidative stress. The 121 proteins with the most significant changes encompass proteins with known functions in a wide variety of subcellular locations and of cellular functional processes (transcription, signal transduction, autophagy, iron metabolism, TCA cycle, ATP synthesis) and are consistent with functional networks that are spatially dispersed across the cell. Both nuclear respiratory factor 2 and the proline regulatory axis appear to contribute to the cellular metabolic response. Proteins involved in iron metabolism or with iron/heme as a cofactor as well as mitochondrial proteins are prominent in the response. Evidence suggesting that nuclear import/export and vesicle-mediated protein transport contribute to the cellular response was obtained. We suggest that measurements of global changes in total cellular protein abundances need to be complemented with measurements of the dynamic subcellular spatial redistribution of proteins to obtain comprehensive pictures of cellular function. PMID:25133973
Terrados, Gloria; Finkernagel, Florian; Stielow, Bastian; Sadic, Dennis; Neubert, Juliane; Herdt, Olga; Krause, Michael; Scharfe, Maren; Jarek, Michael; Suske, Guntram
2012-01-01
The transcription factor Sp2 is essential for early mouse development and for proliferation of mouse embryonic fibroblasts in culture. Yet its mechanisms of action and its target genes are largely unknown. In this study, we have combined RNA interference, in vitro DNA binding, chromatin immunoprecipitation sequencing and global gene-expression profiling to investigate the role of Sp2 for cellular functions, to define target sites and to identify genes regulated by Sp2. We show that Sp2 is important for cellular proliferation that it binds to GC-boxes and occupies proximal promoters of genes essential for vital cellular processes including gene expression, replication, metabolism and signalling. Moreover, we identified important key target genes and cellular pathways that are directly regulated by Sp2. Most significantly, Sp2 binds and activates numerous sequence-specific transcription factor and co-activator genes, and represses the whole battery of cholesterol synthesis genes. Our results establish Sp2 as a sequence-specific regulator of vitally important genes. PMID:22684502
Regulation of cell function by methionine oxidation and reduction
Hoshi, Toshinori; Heinemann, Stefan H
2001-01-01
Reactive oxygen species (ROS) are generated during normal cellular activity and may exist in excess in some pathophysiological conditions, such as inflammation or reperfusion injury. These molecules oxidize a variety of cellular constituents, but sulfur-containing amino acid residues are especially susceptible. While reversible cysteine oxidation and reduction is part of well-established signalling systems, the oxidation and the enzymatically catalysed reduction of methionine is just emerging as a novel molecular mechanism for cellular regulation. Here we discuss how the oxidation of methionine to methionine sulfoxide in signalling proteins such as ion channels affects the function of these target proteins. Methionine sulfoxide reductase, which reduces methionine sulfoxide to methionine in a thioredoxin-dependent manner, is therefore not only an enzyme important for the repair of age- or degenerative disease-related protein modifications. It is also a potential missing link in the post-translational modification cycle involved in the specific oxidation and reduction of methionine residues in cellular signalling proteins, which may give rise to activity-dependent plastic changes in cellular excitability. PMID:11179387
Cellular Automata Generalized To An Inferential System
NASA Astrophysics Data System (ADS)
Blower, David J.
2007-11-01
Stephen Wolfram popularized elementary one-dimensional cellular automata in his book, A New Kind of Science. Among many remarkable things, he proved that one of these cellular automata was a Universal Turing Machine. Such cellular automata can be interpreted in a different way by viewing them within the context of the formal manipulation rules from probability theory. Bayes's Theorem is the most famous of such formal rules. As a prelude, we recapitulate Jaynes's presentation of how probability theory generalizes classical logic using modus ponens as the canonical example. We emphasize the important conceptual standing of Boolean Algebra for the formal rules of probability manipulation and give an alternative demonstration augmenting and complementing Jaynes's derivation. We show the complementary roles played in arguments of this kind by Bayes's Theorem and joint probability tables. A good explanation for all of this is afforded by the expansion of any particular logic function via the disjunctive normal form (DNF). The DNF expansion is a useful heuristic emphasized in this exposition because such expansions point out where relevant 0s should be placed in the joint probability tables for logic functions involving any number of variables. It then becomes a straightforward exercise to rely on Boolean Algebra, Bayes's Theorem, and joint probability tables in extrapolating to Wolfram's cellular automata. Cellular automata are seen as purely deductive systems, just like classical logic, which probability theory is then able to generalize. Thus, any uncertainties which we might like to introduce into the discussion about cellular automata are handled with ease via the familiar inferential path. Most importantly, the difficult problem of predicting what cellular automata will do in the far future is treated like any inferential prediction problem.
Evolutionary tradeoffs in cellular composition across diverse bacteria
Kempes, Christopher P; Wang, Lawrence; Amend, Jan P; Doyle, John; Hoehler, Tori
2016-01-01
One of the most important classic and contemporary interests in biology is the connection between cellular composition and physiological function. Decades of research have allowed us to understand the detailed relationship between various cellular components and processes for individual species, and have uncovered common functionality across diverse species. However, there still remains the need for frameworks that can mechanistically predict the tradeoffs between cellular functions and elucidate and interpret average trends across species. Here we provide a comprehensive analysis of how cellular composition changes across the diversity of bacteria as connected with physiological function and metabolism, spanning five orders of magnitude in body size. We present an analysis of the trends with cell volume that covers shifts in genomic, protein, cellular envelope, RNA and ribosomal content. We show that trends in protein content are more complex than a simple proportionality with the overall genome size, and that the number of ribosomes is simply explained by cross-species shifts in biosynthesis requirements. Furthermore, we show that the largest and smallest bacteria are limited by physical space requirements. At the lower end of size, cell volume is dominated by DNA and protein content—the requirement for which predicts a lower limit on cell size that is in good agreement with the smallest observed bacteria. At the upper end of bacterial size, we have identified a point at which the number of ribosomes required for biosynthesis exceeds available cell volume. Between these limits we are able to discuss systematic and dramatic shifts in cellular composition. Much of our analysis is connected with the basic energetics of cells where we show that the scaling of metabolic rate is surprisingly superlinear with all cellular components. PMID:27046336
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, Fengxia; Zhang, Minjie; University of Chinese Academy of Sciences, Beijing 100049
2014-10-03
Highlights: • ATM phosphorylates the opposite strand of the dimer in response to DNA damage. • The PETPVFRLT box of ATM plays a key role in its dimer dissociation in DNA repair. • The dephosphorylation of ATM is critical for dimer re-formation after DNA repair. - Abstract: The ATM protein kinase, is a serine/threonine protein kinase that is recruited and activated by DNA double-strand breaks, mediates responses to ionizing radiation in mammalian cells. Here we show that ATM is held inactive in unirradiated cells as a dimer and phosphorylates the opposite strand of the dimer in response to DNA damage.more » Cellular irradiation induces rapid intermolecular autophosphorylation of serine 1981 that causes dimer dissociation and initiates cellular ATM kinase activity. ATM cannot phosphorylate the substrates when it could not undergo dimer monomer transition. After DNA repair, the active monomer will undergo dephosphorylation to form dimer again and dephosphorylation is critical for dimer re-formation. Our work reveals novel function of ATM dimer monomer transition and explains why ATM dimer monomer transition plays such important role for ATM cellular activity during DNA repair.« less
Walton, Paul A; Brees, Chantal; Lismont, Celien; Apanasets, Oksana; Fransen, Marc
2017-10-01
Accumulating evidence indicates that peroxisome functioning, catalase localization, and cellular oxidative balance are intimately interconnected. Nevertheless, it remains largely unclear why modest increases in the cellular redox state especially interfere with the subcellular localization of catalase, the most abundant peroxisomal antioxidant enzyme. This study aimed at gaining more insight into this phenomenon. Therefore, we first established a simple and powerful approach to study peroxisomal protein import and protein-protein interactions in living cells in response to changes in redox state. By employing this approach, we confirm and extend previous observations that Cys-11 of human PEX5, the shuttling import receptor for peroxisomal matrix proteins containing a C-terminal peroxisomal targeting signal (PTS1), functions as a redox switch that modulates the protein's activity in response to intracellular oxidative stress. In addition, we show that oxidative stress affects the import of catalase, a non-canonical PTS1-containing protein, more than the import of a reporter protein containing a canonical PTS1. Furthermore, we demonstrate that changes in the local redox state do not affect PEX5-substrate binding and that human PEX5 does not oligomerize in cellulo, not even when the cells are exposed to oxidative stress. Finally, we present evidence that catalase retained in the cytosol can protect against H 2 O 2 -mediated redox changes in a manner that peroxisomally targeted catalase does not. Together, these findings lend credit to the idea that inefficient catalase import, when coupled with the role of PEX5 as a redox-regulated import receptor, constitutes a cellular defense mechanism to combat oxidative insults of extra-peroxisomal origin. Copyright © 2017 Elsevier B.V. All rights reserved.
Luger, Anna-Luisa; Sauer, Benedikt; Lorenz, Nadja I; Engel, Anna L; Braun, Yannick; Voss, Martin; Harter, Patrick N; Steinbach, Joachim P; Ronellenfitsch, Michael W
2018-05-17
Inducible gene expression is an important tool in molecular biology research to study protein function. Most frequently, the antibiotic doxycycline is used for regulation of so-called tetracycline (Tet)-inducible systems. In contrast to stable gene overexpression, these systems allow investigation of acute and reversible effects of cellular protein induction. Recent reports have already called for caution when using Tet-inducible systems as the employed antibiotics can disturb mitochondrial function and alter cellular metabolism by interfering with mitochondrial translation. Reprogramming of energy metabolism has lately been recognized as an important emerging hallmark of cancer and is a central focus of cancer research. Therefore, the scope of this study was to systematically analyze dose-dependent metabolic effects of doxycycline on a panel of glioma cell lines with concomitant monitoring of gene expression from Tet-inducible systems. We report that doxycycline doses commonly used with inducible expression systems (0.01⁻1 µg/mL) substantially alter cellular metabolism: Mitochondrial protein synthesis was inhibited accompanied by reduced oxygen and increased glucose consumption. Furthermore, doxycycline protected human glioma cells from hypoxia-induced cell death. An impairment of cell growth was only detectable with higher doxycycline doses (10 µg/mL). Our findings describe settings where doxycycline exerts effects on eukaryotic cellular metabolism, limiting the employment of Tet-inducible systems.
In search of cellular control: signal transduction in context
NASA Technical Reports Server (NTRS)
Ingber, D.
1998-01-01
The field of molecular cell biology has experienced enormous advances over the last century by reducing the complexity of living cells into simpler molecular components and binding interactions that are amenable to rigorous biochemical analysis. However, as our tools become more powerful, there is a tendency to define mechanisms by what we can measure. The field is currently dominated by efforts to identify the key molecules and sequences that mediate the function of critical receptors, signal transducers, and molecular switches. Unfortunately, these conventional experimental approaches ignore the importance of supramolecular control mechanisms that play a critical role in cellular regulation. Thus, the significance of individual molecular constituents cannot be fully understood when studied in isolation because their function may vary depending on their context within the structural complexity of the living cell. These higher-order regulatory mechanisms are based on the cell's use of a form of solid-state biochemistry in which molecular components that mediate biochemical processing and signal transduction are immobilized on insoluble cytoskeletal scaffolds in the cytoplasm and nucleus. Key to the understanding of this form of cellular regulation is the realization that chemistry is structure and hence, recognition of the the importance of architecture and mechanics for signal integration and biochemical control. Recent work that has unified chemical and mechanical signaling pathways provides a glimpse of how this form of higher-order cellular control may function and where paths may lie in the future.
The reticulons: Guardians of the structure and function of the endoplasmic reticulum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di Sano, Federica; Bernardoni, Paolo; Piacentini, Mauro, E-mail: mauro.piacentini@uniroma2.it
2012-07-01
The endoplasmic reticulum (ER) consists of the nuclear envelope and a peripheral network of tubules and membrane sheets. The tubules are shaped by a specific class of curvature stabilizing proteins, the reticulons and DP1; however it is still unclear how the sheets are assembled. The ER is the cellular compartment responsible for secretory and membrane protein synthesis. The reducing conditions of ER lead to the intra/inter-chain formation of new disulphide bonds into polypeptides during protein folding assessed by enzymatic or spontaneous reactions. Moreover, ER represents the main intracellular calcium storage site and it plays an important role in calcium signalingmore » that impacts many cellular processes. Accordingly, the maintenance of ER function represents an essential condition for the cell, and ER morphology constitutes an important prerogative of it. Furthermore, it is well known that ER undergoes prominent shape transitions during events such as cell division and differentiation. Thus, maintaining the correct ER structure is an essential feature for cellular physiology. Now, it is known that proper ER-associated proteins play a fundamental role in ER tubules formation. Among these ER-shaping proteins are the reticulons (RTN), which are acquiring a relevant position. In fact, beyond the structural role of reticulons, in very recent years new and deeper functional implications of these proteins are emerging in relation to their involvement in several cellular processes.« less
Metabolomics reveals mycoplasma contamination interferes with the metabolism of PANC-1 cells.
Yu, Tao; Wang, Yongtao; Zhang, Huizhen; Johnson, Caroline H; Jiang, Yiming; Li, Xiangjun; Wu, Zeming; Liu, Tian; Krausz, Kristopher W; Yu, Aiming; Gonzalez, Frank J; Huang, Min; Bi, Huichang
2016-06-01
Mycoplasma contamination is a common problem in cell culture and can alter cellular functions. Since cell metabolism is either directly or indirectly involved in every aspect of cell function, it is important to detect changes to the cellular metabolome after mycoplasma infection. In this study, liquid chromatography mass spectrometry (LC/MS)-based metabolomics was used to investigate the effect of mycoplasma contamination on the cellular metabolism of human pancreatic carcinoma cells (PANC-1). Multivariate analysis demonstrated that mycoplasma contamination induced significant metabolic changes in PANC-1 cells. Twenty-three metabolites were identified and found to be involved in arginine and purine metabolism and energy supply. This study demonstrates that mycoplasma contamination significantly alters cellular metabolite levels, confirming the compelling need for routine checking of cell cultures for mycoplasma contamination, particularly when used for metabolomics studies. Graphical abstract Metabolomics reveals mycoplasma contamination changes the metabolome of PANC-1 cells.
Hainsworth, Atticus H; Randall, Andrew D; Stefani, Alessandro
2005-01-01
Voltage-sensitive Ca(2+) channels (VSCC) play a central role in an extensive array of physiological processes. Their importance in cellular function arises from their ability both to sense membrane voltage and to conduct Ca(2+) ions, two facets that couple membrane excitability to a key intracellular second messenger. Through this relationship, activation of VSCCs is tightly coupled to the gamut of cellular functions dependent on intracellular Ca(2+), including muscle contraction, energy metabolism, gene expression, and exocytotic/endocytotic cycling.
Building robust functionality in synthetic circuits using engineered feedback regulation.
Chen, Susan; Harrigan, Patrick; Heineike, Benjamin; Stewart-Ornstein, Jacob; El-Samad, Hana
2013-08-01
The ability to engineer novel functionality within cells, to quantitatively control cellular circuits, and to manipulate the behaviors of populations, has many important applications in biotechnology and biomedicine. These applications are only beginning to be explored. In this review, we advocate the use of feedback control as an essential strategy for the engineering of robust homeostatic control of biological circuits and cellular populations. We also describe recent works where feedback control, implemented in silico or with biological components, was successfully employed for this purpose. Copyright © 2013 Elsevier Ltd. All rights reserved.
Cellular interactions with tissue-engineered microenvironments and nanoparticles
NASA Astrophysics Data System (ADS)
Pan, Zhi
Tissue-engineered hydrogels composed of intermolecularlly crosslinked hyaluronan (HA-DTPH) and fibronectin functional domains (FNfds) were applied as a physiological relevant ECM mimic with controlled mechanical and biochemical properties. Cellular interactions with this tissue-engineered environment, especially physical interactions (cellular traction forces), were quantitatively measured by using the digital image speckle correlation (DISC) technique and finite element method (FEM). By correlating with other cell functions such as cell morphology and migration, a comprehensive structure-function relationship between cells and their environments was identified. Furthermore, spatiotemporal redistribution of cellular traction stresses was time-lapse measured during cell migration to better understand the dynamics of cell mobility. The results suggest that the reinforcement of the traction stresses around the nucleus, as well as the relaxation of nuclear deformation, are critical steps during cell migration, serving as a speed regulator, which must be considered in any dynamic molecular reconstruction model of tissue cell migration. Besides single cell migration, en masse cell migration was studied by using agarose droplet migration assay. Cell density was demonstrated to be another important parameter to influence cell behaviors besides substrate properties. Findings from these studies will provide fundamental design criteria to develop novel and effective tissue-engineered constructs. Cellular interactions with rutile and anatase TiO2 nanoparticles were also studied. These particles can penetrate easily through the cell membrane and impair cell function, with the latter being more damaging. The exposure to nanoparticles was found to decrease cell area, cell proliferation, motility, and contractility. To prevent this, a dense grafted polymer brush coating was applied onto the nanoparticle surface. These modified nanoparticles failed to adhere to and penetrate through the cell membrane. As a consequence, the coating effectively decreased reactive oxygen species (ROS) formation and protected the cells. Considering the broad applications of these nanoparticles in personal health care products, the functionalized polymer coating will likely play an important role in protecting cells and tissue from damage.
Glutathione, Glutaredoxins, and Iron.
Berndt, Carsten; Lillig, Christopher Horst
2017-11-20
Glutathione (GSH) is the most abundant cellular low-molecular-weight thiol in the majority of organisms in all kingdoms of life. Therefore, functions of GSH and disturbed regulation of its concentration are associated with numerous physiological and pathological situations. Recent Advances: The function of GSH as redox buffer or antioxidant is increasingly being questioned. New functions, especially functions connected to the cellular iron homeostasis, were elucidated. Via the formation of iron complexes, GSH is an important player in all aspects of iron metabolism: sensing and regulation of iron levels, iron trafficking, and biosynthesis of iron cofactors. The variety of GSH coordinated iron complexes and their functions with a special focus on FeS-glutaredoxins are summarized in this review. Interestingly, GSH analogues that function as major low-molecular-weight thiols in organisms lacking GSH resemble the functions in iron homeostasis. Since these iron-related functions are most likely also connected to thiol redox chemistry, it is difficult to distinguish between mechanisms related to either redox or iron metabolisms. The ability of GSH to coordinate iron in different complexes with or without proteins needs further investigation. The discovery of new Fe-GSH complexes and their physiological functions will significantly advance our understanding of cellular iron homeostasis. Antioxid. Redox Signal. 27, 1235-1251.
Tsujii, Akira; Miyamoto, Yoichi; Moriyama, Tetsuji; Tsuchiya, Yuko; Obuse, Chikashi; Mizuguchi, Kenji; Oka, Masahiro; Yoneda, Yoshihiro
2015-01-01
Nucleocytoplasmic trafficking is a fundamental cellular process in eukaryotic cells. Here, we demonstrated that retinoblastoma-binding protein 4 (RBBP4) functions as a novel regulatory factor to increase the efficiency of importin α/β-mediated nuclear import. RBBP4 accelerates the release of importin β1 from importin α via competitive binding to the importin β-binding domain of importin α in the presence of RanGTP. Therefore, it facilitates importin α/β-mediated nuclear import. We showed that the importin α/β pathway is down-regulated in replicative senescent cells, concomitant with a decrease in RBBP4 level. Knockdown of RBBP4 caused both suppression of nuclear transport and induction of cellular senescence. This is the first report to identify a factor that competes with importin β1 to bind to importin α, and it demonstrates that the loss of this factor can trigger cellular senescence. PMID:26491019
Zinc Signal in Brain Diseases.
Portbury, Stuart D; Adlard, Paul A
2017-11-23
The divalent cation zinc is an integral requirement for optimal cellular processes, whereby it contributes to the function of over 300 enzymes, regulates intracellular signal transduction, and contributes to efficient synaptic transmission in the central nervous system. Given the critical role of zinc in a breadth of cellular processes, its cellular distribution and local tissue level concentrations remain tightly regulated via a series of proteins, primarily including zinc transporter and zinc import proteins. A loss of function of these regulatory pathways, or dietary alterations that result in a change in zinc homeostasis in the brain, can all lead to a myriad of pathological conditions with both acute and chronic effects on function. This review aims to highlight the role of zinc signaling in the central nervous system, where it may precipitate or potentiate diverse issues such as age-related cognitive decline, depression, Alzheimer's disease or negative outcomes following brain injury.
Bioelectronic Sensors and Devices
NASA Astrophysics Data System (ADS)
Reed, Mark
Nanoscale electronic devices have recently enabled the ability to controllably probe biological systems, from the molecular to the cellular level, opening up new applications and understanding of biological function and response. This talk reviews some of the advances in the field, ranging from diagnostic and therapeutic applications, to cellular manipulation and response, to the emulation of biological response. In diagnostics, integrated nanodevice biosensors compatible with CMOS technology have achieved unprecedented sensitivity, enabling a wide range of label-free biochemical and macromolecule sensing applications down to femtomolar concentrations. These systems have demonstrated integrated assays of biomarkers at clinically important concentrations for both diagnostics and as a quantitative tool for drug design and discovery. Cellular level response can also be observed, including immune response function and dynamics. Finally, the field is beginning to create devices that emulate function, and the demonstration of a solid state artificial ion channel will be discussed.
Apoptotic transition of senescent cells accompanied with mitochondrial hyper-function
Wang, Danli; Liu, Yang; Zhang, Rui; Zhang, Fen; Sui, Weihao; Chen, Li; Zheng, Ran; Chen, Xiaowen; Wen, Feiqiu; Ouyang, Hong-Wei; Ji, Junfeng
2016-01-01
Defined as stable cell-cycle arrest, cellular senescence plays an important role in diverse biological processes including tumorigenesis, organismal aging, and embryonic development. Although increasing evidence has documented the metabolic changes in senescent cells, mitochondrial function and its potential contribution to the fate of senescent cells remain largely unknown. Here, using two in vitro models of cellular senescence induced by doxorubicin treatment and prolonged passaging of neonatal human foreskin fibroblasts, we report that senescent cells exhibited high ROS level and augmented glucose metabolic rate concomitant with both morphological and quantitative changes of mitochondria. Furthermore, mitochondrial membrane potential depolarized at late stage of senescent cells which eventually led to apoptosis. Our study reveals that mitochondrial hyper-function contributes to the implementation of cellular senescence and we propose a model in which the mitochondrion acts as the key player in promoting fate-determination in senescent cells. PMID:27056883
Cellular Telephones Measure Activity and Lifespace in Community-Dwelling Adults: Proof of Principle
Schenk, Ana Katrin; Witbrodt, Bradley C.; Hoarty, Carrie A.; Carlson, Richard H.; Goulding, Evan H.; Potter, Jane F.; Bonasera, Stephen J.
2011-01-01
OBJECTIVES To describe a system that uses off-the-shelf sensor and telecommunication technologies to continuously measure individual lifespace and activity levels in a novel way. DESIGN Proof of concept involving three field trials of 30, 30, and 21 days. SETTING Omaha, Nebraska, metropolitan and surrounding rural region. PARTICIPANTS Three participants (48-year-old man, 33-year-old woman, and 27-year-old male), none with any functional limitations. MEASUREMENTS Cellular telephones were used to detect in-home position and in-community location and to measure physical activity. Within the home, cellular telephones and Bluetooth transmitters (beacons) were used to locate participants at room-level resolution. Outside the home, the same cellular telephones and global positioning system (GPS) technology were used to locate participants at a community-level resolution. Physical activity was simultaneously measured using the cellular telephone accelerometer. RESULTS This approach had face validity to measure activity and lifespace. More importantly, this system could measure the spatial and temporal organization of these metrics. For example, an individual’s lifespace was automatically calculated across multiple time intervals. Behavioral time budgets showing how people allocate time to specific regions within the home were also automatically generated. CONCLUSION Mobile monitoring shows much promise as an easily deployed system to quantify activity and lifespace, important indicators of function, in community-dwelling adults. PMID:21288235
Mitochondrial poly(ADP-ribose) polymerase: The Wizard of Oz at work.
Brunyanszki, Attila; Szczesny, Bartosz; Virág, László; Szabo, Csaba
2016-11-01
Among multiple members of the poly(ADP-ribose) polymerase (PARP) family, PARP1 accounts for the majority of PARP activity in mammalian cells. Although PARP1 is predominantly localized to the nucleus, and its nuclear regulatory roles are most commonly studied and are the best characterized, several lines of data demonstrate that PARP1 is also present in the mitochondria, and suggest that mitochondrial PARP (mtPARP) plays an important role in the regulation of various cellular functions in health and disease. The goal of the current article is to review the experimental evidence for the mitochondrial localization of PARP1 and its intra-mitochondrial functions, with focus on cellular bioenergetics, mitochondrial DNA repair and mitochondrial dysfunction. In addition, we also propose a working model for the interaction of mitochondrial and nuclear PARP during oxidant-induced cell death. MtPARP is similar to the Wizard of Oz in the sense that it is enigmatic, it has been elusive for a long time and it remains difficult to be interrogated. mtPARP - at least in some cell types - works incessantly "behind the curtains" as an orchestrator of many important cellular functions. Copyright © 2016 Elsevier Inc. All rights reserved.
Lipids in the cell: organisation regulates function.
Santos, Ana L; Preta, Giulio
2018-06-01
Lipids are fundamental building blocks of all cells and play important roles in the pathogenesis of different diseases, including inflammation, autoimmune disease, cancer, and neurodegeneration. The lipid composition of different organelles can vary substantially from cell to cell, but increasing evidence demonstrates that lipids become organised specifically in each compartment, and this organisation is essential for regulating cell function. For example, lipid microdomains in the plasma membrane, known as lipid rafts, are platforms for concentrating protein receptors and can influence intra-cellular signalling. Lipid organisation is tightly regulated and can be observed across different model organisms, including bacteria, yeast, Drosophila, and Caenorhabditis elegans, suggesting that lipid organisation is evolutionarily conserved. In this review, we summarise the importance and function of specific lipid domains in main cellular organelles and discuss recent advances that investigate how these specific and highly regulated structures contribute to diverse biological processes.
The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction
Hoshyar, Nazanin; Gray, Samantha; Han, Hongbin; Bao, Gang
2016-01-01
Nanoparticle-based technologies offer exciting new approaches to disease diagnostics and therapeutics. To take advantage of unique properties of nanoscale materials and structures, the size, shape and/or surface chemistry of nanoparticles need to be optimized, allowing their functionalities to be tailored for different biomedical applications. Here we review the effects of nanoparticle size on cellular interaction and in vivo pharmacokinetics, including cellular uptake, biodistribution and circulation half-life of nanoparticles. Important features of nanoparticle probes for molecular imaging and modeling of nanoparticle size effects are also discussed. PMID:27003448
Emmett, Sarah; Whiteman, David C; Panizza, Benedict J; Antonsson, Annika
2018-06-19
Squamous cell carcinoma of mucosal sites in the head and neck (HNSCC) is the sixth most common cause of cancer worldwide, and despite advances in conventional management, it still has significant morbidity and mortality associated with both diagnosis and treatment. Advances in our understanding of the biological mechanisms underlying this disease have demonstrated a significant difference between human papillomavirus (HPV)-associated, HPV and tobacco associated, and HPV-negative disease. It remains important to further elucidate the biologic and genetic differences between HPV-associated and tobacco-associated disease, with the aim of earlier diagnosis through screening, and advances in management including the development of novel therapeutic agents. MicroRNAs (miRNAs) are small, non-coding RNAs that function as post-transcriptional regulators of gene expression, and have effects on almost every cellular function, and have potentially important applications to diagnosis, management and prognosis in HNSCC. Establishing a cellular miRNA expression profile for HPV-associated disease may therefore have important implications for the screening and treatment of this disease. This review summarises the current findings regarding miRNA expression in mucosal HNSCC, and focuses particularly on miRNA expression in HPV-associated tumours. © 2018 S. Karger AG, Basel.
Kavianpour, Hamidreza; Vasighi, Mahdi
2017-02-01
Nowadays, having knowledge about cellular attributes of proteins has an important role in pharmacy, medical science and molecular biology. These attributes are closely correlated with the function and three-dimensional structure of proteins. Knowledge of protein structural class is used by various methods for better understanding the protein functionality and folding patterns. Computational methods and intelligence systems can have an important role in performing structural classification of proteins. Most of protein sequences are saved in databanks as characters and strings and a numerical representation is essential for applying machine learning methods. In this work, a binary representation of protein sequences is introduced based on reduced amino acids alphabets according to surrounding hydrophobicity index. Many important features which are hidden in these long binary sequences can be clearly displayed through their cellular automata images. The extracted features from these images are used to build a classification model by support vector machine. Comparing to previous studies on the several benchmark datasets, the promising classification rates obtained by tenfold cross-validation imply that the current approach can help in revealing some inherent features deeply hidden in protein sequences and improve the quality of predicting protein structural class.
Receptor Tyrosine Kinase ErbB2 Translocates into Mitochondria and Regulates Cellular Metabolism
Ding, Yan; Liu, Zixing; Desai, Shruti; Zhao, Yuhua; Liu, Hao; Pannell, Lewis K; Yi, Hong; Wright, Elizabeth R; Owen, Laurie B; Dean-Colomb, Windy; Fodstad, Oystein; Lu, Jianrong; LeDoux, Susan P; Wilson, Glenn L; Tan, Ming
2012-01-01
It is well known that ErbB2, a receptor tyrosine kinase, localizes on the plasma membrane. Here we describe a novel observation that ErbB2 also localizes in mitochondria of cancer cells and patient samples. We found that ErbB2 translocates into mitochondria through the association with mtHSP70. Additionally, mitochondrial ErbB2 (mtErbB2) negatively regulates mitochondrial respiratory functions. Oxygen consumption and activities of complexes of the mitochondrial electron transport chain were decreased in mtErbB2-overexpressing cells. Mitochondrial membrane potential and the cellular ATP level also were decreased. In contrast, mtErbB2 enhanced cellular glycolysis. The translocation of ErbB2 and its impact on mitochondrial function are kinase dependent. Interestingly, cancer cells with higher levels of mtErbB2 were more resistant to ErbB2 targeting antibody trastuzumab. Our study provides a novel perspective on the metabolic regulatory function of ErbB2 and reveals that mtErbB2 plays an important role in the regulation of cellular metabolism and cancer cell resistance to therapeutics. PMID:23232401
The regulatory software of cellular metabolism.
Segrè, Daniel
2004-06-01
Understanding the regulation of metabolic pathways in the cell is like unraveling the 'software' that is running on the 'hardware' of the metabolic network. Transcriptional regulation of enzymes is an important component of this software. A recent systematic analysis of metabolic gene-expression data in Saccharomyces cerevisiae reveals a complex modular organization of co-expressed genes, which could increase our ability to understand and engineer cellular metabolic functions.
2013-01-01
Reversible protein ubiquitination is emerging as a key process for maintaining cell homeostasis, and the enzymes that participate in this process, in particular E3 ubiquitin ligases and deubiquitinases (DUBs), are increasingly being regarded as candidates for drug discovery. Human DUBs are a group of approximately 100 proteins, whose cellular functions and regulatory mechanisms remain, with some exceptions, poorly characterized. One of the best-characterized human DUBs is ubiquitin-specific protease 1 (USP1), which plays an important role in the cellular response to DNA damage. USP1 levels, localization and activity are modulated through several mechanisms, including protein-protein interactions, autocleavage/degradation and phosphorylation, ensuring that USP1 function is carried out in a properly regulated spatio-temporal manner. Importantly, USP1 expression is deregulated in certain types of human cancer, suggesting that USP1 could represent a valid target in cancer therapy. This view has gained recent support with the finding that USP1 inhibition may contribute to revert cisplatin resistance in an in vitro model of non-small cell lung cancer (NSCLC). Here, we describe the current knowledge on the cellular functions and regulatory mechanisms of USP1. We also summarize USP1 alterations found in cancer, combining data from the literature and public databases with our own data. Finally, we discuss the emerging potential of USP1 as a target, integrating published data with our novel findings on the effects of the USP1 inhibitor pimozide in combination with cisplatin in NSCLC cells. PMID:23937906
Myers, Katie N; Barone, Giancarlo; Ganesh, Anil; Staples, Christopher J; Howard, Anna E; Beveridge, Ryan D; Maslen, Sarah; Skehel, J Mark; Collis, Spencer J
2016-10-14
It was recently discovered that vertebrate genomes contain multiple endogenised nucleotide sequences derived from the non-retroviral RNA bornavirus. Strikingly, some of these elements have been evolutionary maintained as open reading frames in host genomes for over 40 million years, suggesting that some endogenised bornavirus-derived elements (EBL) might encode functional proteins. EBLN1 is one such element established through endogenisation of the bornavirus N gene (BDV N). Here, we functionally characterise human EBLN1 as a novel regulator of genome stability. Cells depleted of human EBLN1 accumulate DNA damage both under non-stressed conditions and following exogenously induced DNA damage. EBLN1-depleted cells also exhibit cell cycle abnormalities and defects in microtubule organisation as well as premature centrosome splitting, which we attribute in part, to improper localisation of the nuclear envelope protein TPR. Our data therefore reveal that human EBLN1 possesses important cellular functions within human cells, and suggest that other EBLs present within vertebrate genomes may also possess important cellular functions.
Cellular functions of the microprocessor.
Macias, Sara; Cordiner, Ross A; Cáceres, Javier F
2013-08-01
The microprocessor is a complex comprising the RNase III enzyme Drosha and the double-stranded RNA-binding protein DGCR8 (DiGeorge syndrome critical region 8 gene) that catalyses the nuclear step of miRNA (microRNA) biogenesis. DGCR8 recognizes the RNA substrate, whereas Drosha functions as an endonuclease. Recent global analyses of microprocessor and Dicer proteins have suggested novel functions for these components independent of their role in miRNA biogenesis. A HITS-CLIP (high-throughput sequencing of RNA isolated by cross-linking immunoprecipitation) experiment designed to identify novel substrates of the microprocessor revealed that this complex binds and regulates a large variety of cellular RNAs. The microprocessor-mediated cleavage of several classes of RNAs not only regulates transcript levels, but also modulates alternative splicing events, independently of miRNA function. Importantly, DGCR8 can also associate with other nucleases, suggesting the existence of alternative DGCR8 complexes that may regulate the fate of a subset of cellular RNAs. The aim of the present review is to provide an overview of the diverse functional roles of the microprocessor.
Regulation of Cellular Communication by Signaling Microdomains in the Blood Vessel Wall
Billaud, Marie; Lohman, Alexander W.; Johnstone, Scott R.; Biwer, Lauren A.; Mutchler, Stephanie; Isakson, Brant E.
2014-01-01
It has become increasingly clear that the accumulation of proteins in specific regions of the plasma membrane can facilitate cellular communication. These regions, termed signaling microdomains, are found throughout the blood vessel wall where cellular communication, both within and between cell types, must be tightly regulated to maintain proper vascular function. We will define a cellular signaling microdomain and apply this definition to the plethora of means by which cellular communication has been hypothesized to occur in the blood vessel wall. To that end, we make a case for three broad areas of cellular communication where signaling microdomains could play an important role: 1) paracrine release of free radicals and gaseous molecules such as nitric oxide and reactive oxygen species; 2) role of ion channels including gap junctions and potassium channels, especially those associated with the endothelium-derived hyperpolarization mediated signaling, and lastly, 3) mechanism of exocytosis that has considerable oversight by signaling microdomains, especially those associated with the release of von Willebrand factor. When summed, we believe that it is clear that the organization and regulation of signaling microdomains is an essential component to vessel wall function. PMID:24671377
Regulation of cellular communication by signaling microdomains in the blood vessel wall.
Billaud, Marie; Lohman, Alexander W; Johnstone, Scott R; Biwer, Lauren A; Mutchler, Stephanie; Isakson, Brant E
2014-01-01
It has become increasingly clear that the accumulation of proteins in specific regions of the plasma membrane can facilitate cellular communication. These regions, termed signaling microdomains, are found throughout the blood vessel wall where cellular communication, both within and between cell types, must be tightly regulated to maintain proper vascular function. We will define a cellular signaling microdomain and apply this definition to the plethora of means by which cellular communication has been hypothesized to occur in the blood vessel wall. To that end, we make a case for three broad areas of cellular communication where signaling microdomains could play an important role: 1) paracrine release of free radicals and gaseous molecules such as nitric oxide and reactive oxygen species; 2) role of ion channels including gap junctions and potassium channels, especially those associated with the endothelium-derived hyperpolarization mediated signaling, and lastly, 3) mechanism of exocytosis that has considerable oversight by signaling microdomains, especially those associated with the release of von Willebrand factor. When summed, we believe that it is clear that the organization and regulation of signaling microdomains is an essential component to vessel wall function.
Cellular and multicellular form and function.
Liu, Wendy F; Chen, Christopher S
2007-11-10
Engineering artificial tissue constructs requires the appropriate spatial arrangement of cells within scaffolds. The introduction of microengineering tools to the biological community has provided a valuable set of techniques to manipulate the cellular environment, and to examine how cell structure affects cellular function. Using micropatterning techniques, investigators have found that the geometric presentation of cell-matrix adhesions are important regulators of various cell behaviors including cell growth, proliferation, differentiation, polarity and migration. Furthermore, the presence of neighboring cells in multicellular aggregates has a significant impact on the proliferative and differentiated state of cells. Using microengineering tools, it will now be possible to manipulate the various environmental factors for practical applications such as engineering tissue constructs with greater control over the physical structure and spatial arrangement of cells within their surrounding microenvironment.
Alemani, Davide; Pappalardo, Francesco; Pennisi, Marzio; Motta, Santo; Brusic, Vladimir
2012-02-28
In the last decades the Lattice Boltzmann method (LB) has been successfully used to simulate a variety of processes. The LB model describes the microscopic processes occurring at the cellular level and the macroscopic processes occurring at the continuum level with a unique function, the probability distribution function. Recently, it has been tried to couple deterministic approaches with probabilistic cellular automata (probabilistic CA) methods with the aim to model temporal evolution of tumor growths and three dimensional spatial evolution, obtaining hybrid methodologies. Despite the good results attained by CA-PDE methods, there is one important issue which has not been completely solved: the intrinsic stochastic nature of the interactions at the interface between cellular (microscopic) and continuum (macroscopic) level. CA methods are able to cope with the stochastic phenomena because of their probabilistic nature, while PDE methods are fully deterministic. Even if the coupling is mathematically correct, there could be important statistical effects that could be missed by the PDE approach. For such a reason, to be able to develop and manage a model that takes into account all these three level of complexity (cellular, molecular and continuum), we believe that PDE should be replaced with a statistic and stochastic model based on the numerical discretization of the Boltzmann equation: The Lattice Boltzmann (LB) method. In this work we introduce a new hybrid method to simulate tumor growth and immune system, by applying Cellular Automata Lattice Boltzmann (CA-LB) approach. Copyright © 2011 Elsevier B.V. All rights reserved.
Rolled-up Functionalized Nanomembranes as Three-Dimensional Cavities for Single Cell Studies
2014-01-01
We use micropatterning and strain engineering to encapsulate single living mammalian cells into transparent tubular architectures consisting of three-dimensional (3D) rolled-up nanomembranes. By using optical microscopy, we demonstrate that these structures are suitable for the scrutiny of cellular dynamics within confined 3D-microenvironments. We show that spatial confinement of mitotic mammalian cells inside tubular architectures can perturb metaphase plate formation, delay mitotic progression, and cause chromosomal instability in both a transformed and nontransformed human cell line. These findings could provide important clues into how spatial constraints dictate cellular behavior and function. PMID:24598026
Badiola, Iker; Santaolalla, Francisco; Garcia-Gallastegui, Patricia; Ana, Sánchez-Del Rey; Unda, Fernando; Ibarretxe, Gaskon
2015-09-01
Human ageing is associated with a gradual decline in the physiological functions of the body at multiple levels and it is a key risk factor for many diseases, including cancer. Ageing process is intimately related to widespread cellular senescence, characterised by an irreversible loss of proliferative capacity and altered functioning associated with telomere attrition, accumulation of DNA damage and compromised mitochondrial and metabolic function. Tumour and senescent cells may be generated in response to the same stimuli, where either cellular senescence or transformation would constitute two opposite outcomes of the same degenerative process. This paper aims to review the state of knowledge on the biomolecular relationship between cellular senescence, ageing and cancer. Importantly, many of the cell signalling pathways that are found to be altered during both cellular senescence and tumourigenesis are regulated through shared epigenetic mechanisms and, therefore, they are potentially reversible. MicroRNAs are emerging as pivotal players linking ageing and cancer. These small RNA molecules have generated great interest from the point of view of future clinical therapy for cancer because successful experimental results have been obtained in animal models. Micro-RNA therapies for cancer are already being tested in clinical phase trials. These findings have potential importance in cancer treatment in aged people although further research-based knowledge is needed to convert them into an effective molecular therapies for cancer linked to ageing. Copyright © 2015 Elsevier B.V. All rights reserved.
Sirtuins in dermatology: applications for future research and therapeutics.
Serravallo, Melissa; Jagdeo, Jared; Glick, Sharon A; Siegel, Daniel M; Brody, Neil I
2013-05-01
Sirtuins are a family of seven proteins in humans (SIRT1-SIRT7) that are involved in multiple cellular processes relevant to dermatology. The role of sirtuins in other organ systems is established. However, the importance of these proteins in dermatology is less defined. Recently, sirtuins gained international attention because of their role as "longevity proteins" that may extend and enhance human life. Sirtuins function in the cell via histone deacetylase and/or adenosine diphosphate ribosyltransferase enzymatic activity that target histone and non-histone substrates, including transcription regulators, tumor suppressors, structural proteins, DNA repair proteins, cell signaling proteins, transport proteins, and enzymes. Sirtuins are involved in cellular pathways related to skin structure and function, including aging, ultraviolet-induced photoaging, inflammation, epigenetics, cancer, and a variety of cellular functions including cell cycle, DNA repair and proliferation. This review highlights sirtuin-related cellular pathways, therapeutics and pharmacological targets in atopic dermatitis, bullous dermatoses, collagen vascular disorders, psoriasis, systemic lupus erythematosus, hypertrophic and keloid scars, cutaneous infections, and non-melanoma and melanoma skin cancer. Also discussed is the role of sirtuins in the following genodermatoses: ataxia telangiectasia, Cowden's syndrome, dyskeratosis congenita, Rubenstein-Taybi, Werner syndrome, and xeroderma pigmentosum. The pathophysiology of these inherited diseases is not well understood, and sirtuin-related processes represent potential therapeutic targets for diseases lacking suitable alternative treatments. The goal of this review is to bring attention to the dermatology community, physicians, and scientists, the importance of sirtuins in dermatology and provide a foundation and impetus for future discussion, research and pharmacologic discovery.
Endoplasmic reticulum mediated signaling in cellular microdomains
Biwer, Lauren; Isakson, Brant E
2016-01-01
The endoplasmic reticulum (ER) is a prime mediator of cellular signaling due to its functions as an internal cellular store for calcium, as well as a site for synthesis of proteins and lipids. Its peripheral network of sheets and tubules facilitate calcium and lipid signaling, especially in areas of the cell that are more distant to the main cytoplasmic network. Specific membrane proteins shape the peripheral ER architecture and influence the network stability in order to project into restricted spaces. The signaling microdomains are anatomically separate from the cytoplasm as a whole and exhibit localized protein, ion channel and cytoskeletal element expression. Signaling can also occur between the ER and other organelles, such as the Golgi or mitochondria. Lipids made in the ER membrane can be sent to the Golgi via specialized transfer proteins and specific phospholipid synthases are enriched at ER-mitochondria junctions to more efficiently expedite phospholipid transfer. As a hub for protein and lipid synthesis, a store for intracellular calcium [Ca2+]i, and a mediator of cellular stress, the ER is an important cellular organelle. Its ability to organize into tubules and project into restricted spaces allows for discrete and temporal signaling, which is important for cellular physiology and organism homeostasis. PMID:26973141
Shao, Fangjie; Jiang, Wenhong; Gao, Qingqing; Li, Baizhou; Sun, Chongran; Wang, Qiyuan; Chen, Qin; Sun, Bing; Shen, Hong; Zhu, Keqing; Zhang, Jianmin; Liu, Chong
2017-10-01
The availability of a comprehensive tissue library is essential for elucidating the function and pathology of human brains. Considering the irreplaceable status of the formalin-fixation-paraffin-embedding (FFPE) preparation in routine pathology and the advantage of ultra-low temperature to preserve nucleic acids and proteins for multi-omics studies, these methods have become major modalities for the construction of brain tissue libraries. Nevertheless, the use of FFPE and snap-frozen samples is limited in high-resolution histological analyses because the preparation destroys tissue integrity and/or many important cellular markers. To overcome these limitations, we detailed a protocol to prepare and analyze frozen human brain samples that is particularly suitable for high-resolution multiplex immunohistological studies. As an alternative, we offered an optimized procedure to rescue snap-frozen tissues for the same purpose. Importantly, we provided a guideline to construct libraries of frozen tissue with minimal effort, cost and space. Taking advantage of this new tissue preparation modality to nicely preserve the cellular information that was otherwise damaged using conventional methods and to effectively remove tissue autofluorescence, we described the high-resolution landscape of the cellular composition in both lower-grade gliomas and glioblastoma multiforme samples. Our work showcases the great value of fixed frozen tissue in understanding the cellular mechanisms of CNS functions and abnormalities.
Caveolins and caveolae in ocular physiology and pathophysiology.
Gu, Xiaowu; Reagan, Alaina M; McClellan, Mark E; Elliott, Michael H
2017-01-01
Caveolae are specialized, invaginated plasma membrane domains that are defined morphologically and by the expression of signature proteins called, caveolins. Caveolae and caveolins are abundant in a variety of cell types including vascular endothelium, glia, and fibroblasts where they play critical roles in transcellular transport, endocytosis, mechanotransduction, cell proliferation, membrane lipid homeostasis, and signal transduction. Given these critical cellular functions, it is surprising that ablation of the caveolae organelle does not result in lethality suggesting instead that caveolae and caveolins play modulatory roles in cellular homeostasis. Caveolar components are also expressed in ocular cell types including retinal vascular cells, Müller glia, retinal pigment epithelium (RPE), conventional aqueous humor outflow cells, the corneal epithelium and endothelium, and the lens epithelium. In the eye, studies of caveolae and other membrane microdomains (i.e., "lipid rafts") have lagged behind what is a substantial body of literature outside vision science. However, interest in caveolae and their molecular components has increased with accumulating evidence of important roles in vision-related functions such as blood-retinal barrier homeostasis, ocular inflammatory signaling, pathogen entry at the ocular surface, and aqueous humor drainage. The recent association of CAV1/2 gene loci with primary open angle glaucoma and intraocular pressure has further enhanced the need to better understand caveolar functions in the context of ocular physiology and disease. Herein, we provide the first comprehensive review of literature on caveolae, caveolins, and other membrane domains in the context of visual system function. This review highlights the importance of caveolae domains and their components in ocular physiology and pathophysiology and emphasizes the need to better understand these important modulators of cellular function. Copyright © 2016 Elsevier Ltd. All rights reserved.
Caveolins and caveolae in ocular physiology and pathophysiology
Gu, Xiaowu; Reagan, Alaina M.; McClellan, Mark E.; Elliott, Michael H.
2016-01-01
Caveolae are specialized, invaginated plasma membrane domains that are defined morphologically and by the expression of signature proteins called, caveolins. Caveolae and caveolins are abundant in a variety of cell types including vascular endothelium, glia, and fibroblasts where they play critical roles in transcellular transport, endocytosis, mechanotransduction, cell proliferation, membrane lipid homeostasis, and signal transduction. Given these critical cellular functions, it is surprising that ablation of the caveolae organelle does not result in lethality suggesting instead that caveolae and caveolins play modulatory roles in cellular homeostasis. Caveolar components are also expressed in ocular cell types including retinal vascular cells, Müller glia, retinal pigment epithelium (RPE), conventional aqueous humor outflow cells, the corneal epithelium and endothelium, and the lens epithelium. In the eye, studies of caveolae and other membrane microdomains (i.e., “lipid rafts”) have lagged behind what is a substantial body of literature outside vision science. However, interest in caveolae and their molecular components has increased with accumulating evidence of important roles in vision-related functions such as blood-retinal barrier homeostasis, ocular inflammatory signalling, pathogen entry at the ocular surface, and aqueous humor drainage. The recent association of CAV1/2 gene loci with primary open angle glaucoma and intraocular pressure has further enhanced the need to better understand caveolar functions in the context of ocular physiology and disease. Herein, we provide the first comprehensive review of literature on caveolae, caveolins, and other membrane domains in the context of visual system function. This review highlights the importance of caveolae domains and their components in ocular physiology and pathophysiology and emphasizes the need to better understand these important modulators of cellular function. PMID:27664379
An Essential Role for COPI in mRNA Localization to Mitochondria and Mitochondrial Function.
Zabezhinsky, Dmitry; Slobodin, Boris; Rapaport, Doron; Gerst, Jeffrey E
2016-04-19
Nuclear-encoded mRNAs encoding mitochondrial proteins (mMPs) can localize directly to the mitochondrial surface, yet how mMPs target mitochondria and whether RNA targeting contributes to protein import into mitochondria and cellular metabolism are unknown. Here, we show that the COPI vesicle coat complex is necessary for mMP localization to mitochondria and mitochondrial function. COPI inactivation leads to reduced mMP binding to COPI itself, resulting in the dissociation of mMPs from mitochondria, a reduction in mitochondrial membrane potential, a decrease in protein import in vivo and in vitro, and severe deficiencies in mitochondrial respiration. Using a model mMP (OXA1), we observed that COPI inactivation (or mutation of the potential COPI-interaction site) led to altered mRNA localization and impaired cellular respiration. Overall, COPI-mediated mMP targeting is critical for mitochondrial protein import and function, and transcript delivery to the mitochondria or endoplasmic reticulum is regulated by cis-acting RNA sequences and trans-acting proteins. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
The Plasma Membrane Calcium Pump
NASA Technical Reports Server (NTRS)
Rasmussen, H.
1983-01-01
Three aspect of cellular calcium metabolism in animal cells was discussed including the importance of the plasma membrane in calcium homeostasis, experiments dealing with the actual mechanism of the calcium pump, and the function of the pump in relationship to the mitochondria and to the function of calmodulin in the intact cell.
Nitrosothiol signaling and protein nitrosation in cell death.
Iyer, Anand Krishnan V; Rojanasakul, Yon; Azad, Neelam
2014-11-15
Nitric oxide, a reactive free radical, is an important signaling molecule that can lead to a plethora of cellular effects affecting homeostasis. A well-established mechanism by which NO manifests its effect on cellular functions is the post-translational chemical modification of cysteine thiols in substrate proteins by a process known as S-nitrosation. Studies that investigate regulation of cellular functions through NO have increasingly established S-nitrosation as the primary modulatory mechanism in their respective systems. There has been a substantial increase in the number of reports citing various candidate proteins undergoing S-nitrosation, which affects cell-death and -survival pathways in a number of tissues including heart, lung, brain and blood. With an exponentially growing list of proteins being identified as substrates for S-nitrosation, it is important to assimilate this information in different cell/tissue systems in order to gain an overall view of protein regulation of both individual proteins and a class of protein substrates. This will allow for broad mapping of proteins as a function of S-nitrosation, and help delineate their global effects on pathophysiological responses including cell death and survival. This information will not only provide a much better understanding of overall functional relevance of NO in the context of various disease states, it will also facilitate the generation of novel therapeutics to combat specific diseases that are driven by NO-mediated S-nitrosation. Copyright © 2014 Elsevier Inc. All rights reserved.
Autophagy in the eye: Development, degeneration, and aging.
Boya, Patricia; Esteban-Martínez, Lorena; Serrano-Puebla, Ana; Gómez-Sintes, Raquel; Villarejo-Zori, Beatriz
2016-11-01
Autophagy is a catabolic pathway that promotes the degradation and recycling of cellular components. Proteins, lipids, and even whole organelles are engulfed in autophagosomes and delivered to the lysosome for elimination. In response to stress, autophagy mediates the degradation of cell components, which are recycled to generate the nutrients and building blocks required to sustain cellular homeostasis. Moreover, it plays an important role in cellular quality control, particularly in neurons, in which the total burden of altered proteins and damaged organelles cannot be reduced by redistribution to daughter cells through cell division. Research has only begun to examine the role of autophagy in the visual system. The retina, a light-sensitive tissue, detects and transmits electrical impulses through the optic nerve to the visual cortex in the brain. Both the retina and the eye are exposed to a variety of environmental insults and stressors, including genetic mutations and age-associated alterations that impair their function. Here, we review the main studies that have sought to explain autophagy's importance in visual function. We describe the role of autophagy in retinal development and cell differentiation, and discuss the implications of autophagy dysregulation both in physiological aging and in important diseases such as age-associated macular degeneration and glaucoma. We also address the putative role of autophagy in promoting photoreceptor survival and discuss how selective autophagy could provide alternative means of protecting retinal cells. The findings reviewed here underscore the important role of autophagy in maintaining proper retinal function and highlight novel therapeutic approaches for blindness and other diseases of the eye. Copyright © 2016 Elsevier Ltd. All rights reserved.
Mechanism and function of type IV secretion during infection of the human host
Gonzalez-Rivera, Christian; Bhatty, Minny; Christie, Peter J.
2015-01-01
Bacterial pathogens employ type IV secretion systems (T4SSs) for various purposes to aid in survival and proliferation in eukaryotic host. One large T4SS subfamily, the conjugation systems, confers a selective advantage to the invading pathogen in clinical settings through dissemination of antibiotic resistance genes and virulence traits. Besides their intrinsic importance as principle contributors to the emergence of multiply drug-resistant ‘superbugs’, detailed studies of these highly tractable systems have generated important new insights into the mode of action and architectures of paradigmatic T4SSs as a foundation for future efforts aimed at suppressing T4SS machine function. Over the past decade, extensive work on the second large T4SS subfamily, the effector translocators, has identified a myriad of mechanisms employed by pathogens to subvert, subdue, or bypass cellular processes and signaling pathways of the host cell. An overarching theme in the evolution of many effectors is that of molecular mimicry. These effectors carry domains similar to those of eukaryotic proteins and exert their effects through stealthy interdigitation of cellular pathways, often with the outcome not of inducing irreversible cell damage but rather of reversibly modulating cellular functions. This chapter summarizes the major developments for the actively studied pathogens with an emphasis on the structural and functional diversity of the T4SSs and the emerging common themes surrounding effector function in the human host. PMID:27337453
Cell-to-cell communication and cellular environment alter the somatostatin status of delta cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelly, Catriona, E-mail: catriona.kelly@qub.ac.uk; Flatt, Peter R.; McClenaghan, Neville H.
2010-08-20
Research highlights: {yields} TGP52 cells display enhanced functionality in pseudoislet form. {yields} Somatostatin content was reduced, but secretion increased in high glucose conditions. {yields} Cellular interactions and environment alter the somatostatin status of TGP52 cells. -- Abstract: Introduction: Somatostatin, released from pancreatic delta cells, is a potent paracrine inhibitor of insulin and glucagon secretion. Islet cellular interactions and glucose homeostasis are essential to maintain normal patterns of insulin secretion. However, the importance of cell-to-cell communication and cellular environment in the regulation of somatostatin release remains unclear. Methods: This study employed the somatostatin-secreting TGP52 cell line maintained in DMEM:F12 (17.5 mMmore » glucose) or DMEM (25 mM glucose) culture media. The effect of pseudoislet formation and culture medium on somatostatin content and release in response to a variety of stimuli was measured by somatostatin EIA. In addition, the effect of pseudoislet formation on cellular viability (MTT and LDH assays) and proliferation (BrdU ELISA) was determined. Results: TGP52 cells readily formed pseudoislets and showed enhanced functionality in three-dimensional form with increased E-cadherin expression irrespective of the culture environment used. However, culture in DMEM decreased cellular somatostatin content (P < 0.01) and increased somatostatin secretion in response to a variety of stimuli including arginine, calcium and PMA (P < 0.001) when compared with cells grown in DMEM:F12. Configuration of TGP52 cells as pseudoislets reduced the proliferative rate and increased cellular cytotoxicity irrespective of culture medium used. Conclusions: Somatostatin secretion is greatly facilitated by cell-to-cell interactions and E-cadherin expression. Cellular environment and extracellular glucose also significantly influence the function of delta cells.« less
Wang, Peng-Wei; Liu, Tai-Ling; Ko, Chih-Hung; Lin, Huang-Chi; Huang, Mei-Feng; Yeh, Yi-Chun; Yen, Cheng-Fang
2014-02-01
Suicidal ideation and attempt among adolescents are risk factors for eventual completed suicide. Cellular phone use (CPU) has markedly changed the everyday lives of adolescents. Issues about how cellular phone use relates to adolescent mental health, such as suicidal ideation and attempts, are important because of the high rate of cellular phone usage among children in that age group. This study explored the association between problematic CPU and suicidal ideation and attempts among adolescents and investigated how family function and depression influence the association between problematic CPU and suicidal ideation and attempts. A total of 5051 (2872 girls and 2179 boys) adolescents who owned at least one cellular phone completed the research questionnaires. We collected data on participants' CPU and suicidal behavior (ideation and attempts) during the past month as well as information on family function and history of depression. Five hundred thirty-two adolescents (10.54%) had problematic CPU. The rates of suicidal ideation were 23.50% and 11.76% in adolescents with problematic CPU and without problematic CPU, respectively. The rates of suicidal attempts in both groups were 13.70% and 5.45%, respectively. Family function, but not depression, had a moderating effect on the association between problematic CPU and suicidal ideation and attempt. This study highlights the association between problematic CPU and suicidal ideation as well as attempts and indicates that good family function may have a more significant role on reducing the risks of suicidal ideation and attempts in adolescents with problematic CPU than in those without problematic CPU. © 2014.
Kwak, Minsuk; Mu, Luye; Lu, Yao; Chen, Jonathan J.; Brower, Kara; Fan, Rong
2013-01-01
Secreted proteins including cytokines, chemokines, and growth factors represent important functional regulators mediating a range of cellular behavior and cell–cell paracrine/autocrine signaling, e.g., in the immunological system (Rothenberg, 2007), tumor microenvironment (Hanahan and Weinberg, 2011), or stem cell niche (Gnecchi etal., 2008). Detection of these proteins is of great value not only in basic cell biology but also for diagnosis and therapeutic monitoring of human diseases such as cancer. However, due to co-production of multiple effector proteins from a single cell, referred to as polyfunctionality, it is biologically informative to measure a panel of secreted proteins, or secretomic signature, at the level of single cells. Recent evidence further indicates that a genetically identical cell population can give rise to diverse phenotypic differences (Niepel etal., 2009). Non-genetic heterogeneity is also emerging as a potential barrier to accurate monitoring of cellular immunity and effective pharmacological therapies (Cohen etal., 2008; Gascoigne and Taylor, 2008), but can hardly assessed using conventional approaches that do not examine cellular phenotype at the functional level. It is known that cytokines, for example, in the immune system define the effector functions and lineage differentiation of immune cells. In this article, we hypothesize that protein secretion profile may represent a universal measure to identify the definitive correlate in the larger context of cellular functions to dissect cellular heterogeneity and evolutionary lineage relationship in human cancer. PMID:23390614
Calcium and ROS: A mutual interplay
Görlach, Agnes; Bertram, Katharina; Hudecova, Sona; Krizanova, Olga
2015-01-01
Calcium is an important second messenger involved in intra- and extracellular signaling cascades and plays an essential role in cell life and death decisions. The Ca2+ signaling network works in many different ways to regulate cellular processes that function over a wide dynamic range due to the action of buffers, pumps and exchangers on the plasma membrane as well as in internal stores. Calcium signaling pathways interact with other cellular signaling systems such as reactive oxygen species (ROS). Although initially considered to be potentially detrimental byproducts of aerobic metabolism, it is now clear that ROS generated in sub-toxic levels by different intracellular systems act as signaling molecules involved in various cellular processes including growth and cell death. Increasing evidence suggests a mutual interplay between calcium and ROS signaling systems which seems to have important implications for fine tuning cellular signaling networks. However, dysfunction in either of the systems might affect the other system thus potentiating harmful effects which might contribute to the pathogenesis of various disorders. PMID:26296072
A high throughput mutagenic analysis of yeast sumo structure and function
Newman, Heather A.; Lu, Jian; Carson, Caryn; Boeke, Jef D.
2017-01-01
Sumoylation regulates a wide range of essential cellular functions through diverse mechanisms that remain to be fully understood. Using S. cerevisiae, a model organism with a single essential SUMO gene (SMT3), we developed a library of >250 mutant strains with single or multiple amino acid substitutions of surface or core residues in the Smt3 protein. By screening this library using plate-based assays, we have generated a comprehensive structure-function based map of Smt3, revealing essential amino acid residues and residues critical for function under a variety of genotoxic and proteotoxic stress conditions. Functionally important residues mapped to surfaces affecting Smt3 precursor processing and deconjugation from protein substrates, covalent conjugation to protein substrates, and non-covalent interactions with E3 ligases and downstream effector proteins containing SUMO-interacting motifs. Lysine residues potentially involved in formation of polymeric chains were also investigated, revealing critical roles for polymeric chains, but redundancy in specific chain linkages. Collectively, our findings provide important insights into the molecular basis of signaling through sumoylation. Moreover, the library of Smt3 mutants represents a valuable resource for further exploring the functions of sumoylation in cellular stress response and other SUMO-dependent pathways. PMID:28166236
The ins and outs of intracellular ion homeostasis: NHX-type cation/H(+) transporters.
Bassil, Elias; Blumwald, Eduardo
2014-12-01
The biochemical characterization of cation/H(+) exchange has been known since 1985 [1], yet only recently have we begun to understand the contribution of individual exchangers to ion homeostasis in plants. One particularly important class of exchangers is the NHX-type that is associated with Na(+) transport and therefore salinity tolerance. New evidence suggests that under normal growth conditions NHXs are critical regulators of K(+) and pH homeostasis and have important roles, depending on their cellular localization, in the generation of turgor as well as in vesicular trafficking. Recent advances highlight novel and exciting functions of intracellular NHXs in growth and development, stress adaptation and osmotic adjustment. Here, we elaborate on new and emerging cellular and physiological functions of this group of H(+)-coupled cation exchangers. Copyright © 2014 Elsevier Ltd. All rights reserved.
The emerging complexity of ubiquitin architecture.
Ohtake, Fumiaki; Tsuchiya, Hikaru
2017-02-01
Ubiquitylation is an essential post-translational modification (PTM) of proteins with diverse cellular functions. Polyubiquitin chains with different topologies have different cellular roles, and are referred to as a 'ubiquitin code'. Recent studies have begun to reveal that more complex ubiquitin architectures function as important signals in several biological pathways. These include PTMs of ubiquitin itself, such as acetylated ubiquitin and phospho-ubiquitin. Moreover, important roles for heterogeneous polyubiquitin chains, such as mixed or branched chains, have been reported, which significantly increase the diversity of the ubiquitin code. In this review, we describe mass spectrometry-based methods to characterize the ubiquitin signal. We also describe recent advances in our understanding of complex ubiquitin architectures, including our own findings concerning ubiquitin acetylation and branching within polyubiquitin chains. © The Authors 2016. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.
Simultaneous Multiparameter Cellular Energy Metabolism Profiling of Small Populations of Cells.
Kelbauskas, Laimonas; Ashili, Shashaanka P; Lee, Kristen B; Zhu, Haixin; Tian, Yanqing; Meldrum, Deirdre R
2018-03-12
Functional and genomic heterogeneity of individual cells are central players in a broad spectrum of normal and disease states. Our knowledge about the role of cellular heterogeneity in tissue and organism function remains limited due to analytical challenges one encounters when performing single cell studies in the context of cell-cell interactions. Information based on bulk samples represents ensemble averages over populations of cells, while data generated from isolated single cells do not account for intercellular interactions. We describe a new technology and demonstrate two important advantages over existing technologies: first, it enables multiparameter energy metabolism profiling of small cell populations (<100 cells)-a sample size that is at least an order of magnitude smaller than other, commercially available technologies; second, it can perform simultaneous real-time measurements of oxygen consumption rate (OCR), extracellular acidification rate (ECAR), and mitochondrial membrane potential (MMP)-a capability not offered by any other commercially available technology. Our results revealed substantial diversity in response kinetics of the three analytes in dysplastic human epithelial esophageal cells and suggest the existence of varying cellular energy metabolism profiles and their kinetics among small populations of cells. The technology represents a powerful analytical tool for multiparameter studies of cellular function.
Cellular pH regulators: potentially promising molecular targets for cancer chemotherapy.
Izumi, Hiroto; Torigoe, Takayuki; Ishiguchi, Hiroshi; Uramoto, Hidetaka; Yoshida, Yoichiro; Tanabe, Mizuho; Ise, Tomoko; Murakami, Tadashi; Yoshida, Takeshi; Nomoto, Minoru; Kohno, Kimitoshi
2003-12-01
One of the major obstacles to the successful treatment of cancer is the complex biology of solid tumour development. Although regulation of intracellular pH has been shown to be critically important for many cellular functions, pH regulation has not been fully investigated in the field of cancer. It has, however, been shown that cellular pH is crucial for biological functions such as cell proliferation, invasion and metastasis, drug resistance and apoptosis. Hypoxic conditions are often observed during the development of solid tumours and lead to intracellular and extracellular acidosis. Cellular acidosis has been shown to be a trigger in the early phase of apoptosis and leads to activation of endonucleases inducing DNA fragmentation. To avoid intracellular acidification under such conditions, pH regulators are thought to be up-regulated in tumour cells. Four major types of pH regulator have been identified: the proton pump, the sodium-proton exchanger family (NHE), the bicarbonate transporter family (BCT) and the monocarboxylate transporter family (MCT). Here, we describe the structure and function of pH regulators expressed in tumour tissue. Understanding pH regulation in tumour cells may provide new ways of inducing tumour-specific apoptosis, thus aiding cancer chemotherapy.
Kathum, Omer Abid; Schräder, Tobias; Anhlan, Darisuren; Nordhoff, Carolin; Liedmann, Swantje; Pande, Amit; Mellmann, Alexander; Ehrhardt, Christina; Wixler, Viktor; Ludwig, Stephan
2016-06-01
Phosphorylation and dephosphorylation acts as a fundamental molecular switch that alters protein function and thereby regulates many cellular processes. The non-structural protein 1 (NS1) of influenza A virus is an important factor regulating virulence by counteracting cellular immune responses against viral infection. NS1 was shown to be phosphorylated at several sites; however, so far, no function has been conclusively assigned to these post-translational events yet. Here, we show that the newly identified phospho-site threonine 49 of NS1 is differentially phosphorylated in the viral replication cycle. Phosphorylation impairs binding of NS1 to double-stranded RNA and TRIM25 as well as complex formation with RIG-I, thereby switching off its interferon antagonistic activity. Because phosphorylation was shown to occur at later stages of infection, we hypothesize that at this stage other functions of the multifunctional NS1 beyond its interferon-antagonistic activity are needed. © 2016 The Authors Cellular Microbiology published by John Wiley & Sons Ltd.
Cellular and molecular mechanisms of tooth root development
Li, Jingyuan; Parada, Carolina
2017-01-01
ABSTRACT The tooth root is an integral, functionally important part of our dentition. The formation of a functional root depends on epithelial-mesenchymal interactions and integration of the root with the jaw bone, blood supply and nerve innervations. The root development process therefore offers an attractive model for investigating organogenesis. Understanding how roots develop and how they can be bioengineered is also of great interest in the field of regenerative medicine. Here, we discuss recent advances in understanding the cellular and molecular mechanisms underlying tooth root formation. We review the function of cellular structure and components such as Hertwig's epithelial root sheath, cranial neural crest cells and stem cells residing in developing and adult teeth. We also highlight how complex signaling networks together with multiple transcription factors mediate tissue-tissue interactions that guide root development. Finally, we discuss the possible role of stem cells in establishing the crown-to-root transition, and provide an overview of root malformations and diseases in humans. PMID:28143844
Cellular organization of cortical barrel columns is whisker-specific
Meyer, Hanno S.; Egger, Robert; Guest, Jason M.; Foerster, Rita; Reissl, Stefan; Oberlaender, Marcel
2013-01-01
The cellular organization of the cortex is of fundamental importance for elucidating the structural principles that underlie its functions. It has been suggested that reconstructing the structure and synaptic wiring of the elementary functional building block of mammalian cortices, the cortical column, might suffice to reverse engineer and simulate the functions of entire cortices. In the vibrissal area of rodent somatosensory cortex, whisker-related “barrel” columns have been referred to as potential cytoarchitectonic equivalents of functional cortical columns. Here, we investigated the structural stereotypy of cortical barrel columns by measuring the 3D neuronal composition of the entire vibrissal area in rat somatosensory cortex and thalamus. We found that the number of neurons per cortical barrel column and thalamic “barreloid” varied substantially within individual animals, increasing by ∼2.5-fold from dorsal to ventral whiskers. As a result, the ratio between whisker-specific thalamic and cortical neurons was remarkably constant. Thus, we hypothesize that the cellular architecture of sensory cortices reflects the degree of similarity in sensory input and not columnar and/or cortical uniformity principles. PMID:24101458
Control systems and coordination protocols of the secretory pathway.
Luini, Alberto; Mavelli, Gabriella; Jung, Juan; Cancino, Jorge
2014-01-01
Like other cellular modules, the secretory pathway and the Golgi complex are likely to be supervised by control systems that support homeostasis and optimal functionality under all conditions, including external and internal perturbations. Moreover, the secretory apparatus must be functionally connected with other cellular modules, such as energy metabolism and protein degradation, via specific rules of interaction, or "coordination protocols". These regulatory devices are of fundamental importance for optimal function; however, they are generally "hidden" at steady state. The molecular components and the architecture of the control systems and coordination protocols of the secretory pathway are beginning to emerge through studies based on the use of controlled transport-specific perturbations aimed specifically at the detection and analysis of these internal regulatory devices.
A family of cellular proteins related to snake venom disintegrins.
Weskamp, G; Blobel, C P
1994-03-29
Disintegrins are short soluble integrin ligands that were initially identified in snake venom. A previously recognized cellular protein with a disintegrin domain was the guinea pig sperm protein PH-30, a protein implicated in sperm-egg membrane binding and fusion. Here we present peptide sequences that are characteristic for several cellular disintegrin-domain proteins. These peptide sequences were deduced from cDNA sequence tags that were generated by polymerase chain reaction from various mouse tissue and a mouse muscle cell line. Northern blot analysis with four sequence tags revealed distinct mRNA expression patterns. Evidently, cellular proteins containing a disintegrin domain define a superfamily of potential integrin ligands that are likely to function in important cell-cell and cell-matrix interactions.
Lysosomal Adaptation: How the Lysosome Responds to External Cues
Settembre, Carmine; Ballabio, Andrea
2014-01-01
Recent evidence indicates that the importance of the lysosome in cell metabolism and organism physiology goes far beyond the simple disposal of cellular garbage. This dynamic organelle is situated at the crossroad of the most important cellular pathways and is involved in sensing, signaling, and transcriptional mechanisms that respond to environmental cues, such as nutrients. Two main mediators of these lysosomal adaptation mechanisms are the mTORC1 kinase complex and the transcription factor EB (TFEB). These two factors are linked in a lysosome-to-nucleus signaling pathway that provides the lysosome with the ability to adapt to extracellular cues and control its own biogenesis. Modulation of lysosomal function by acting on TFEB has a profound impact on cellular clearance and energy metabolism and is a promising therapeutic target for a large variety of disease conditions. PMID:24799353
ON THE BIOMECHANICS OF HEART VALVE FUNCTION
Sacks, Michael S.; Merryman, W. David; Schmidt, David E.
2009-01-01
Heart valves (HVs) are fluidic control components of the heart that ensure unidirectional blood flow during the cardiac cycle. However, this description does not adequately describe the biomechanical ramifications of their function in that their mechanics are multi-modal. Moreover, they must replicate their cyclic function over an entire lifetime, with an estimated total functional demand of least 3×109 cycles. The focus of the present review is on the functional biomechanics of heart valves. Thus, the focus of the present review is on functional biomechanics, referring primarily to biosolid as well as several key biofluid mechanical aspects underlying heart valve physiological function. Specifically, we refer to the mechanical behaviors of the extra-cellular matrix structural proteins, underlying cellular function, and their integrated relation to the major aspects of valvular hemodynamic function. While we focus on the work from the author’s laboratories, relevant works of other investigators have been included whenever appropriate. We conclude with a summary of important future trends. PMID:19540499
Myers, Katie N.; Barone, Giancarlo; Ganesh, Anil; Staples, Christopher J.; Howard, Anna E.; Beveridge, Ryan D.; Maslen, Sarah; Skehel, J. Mark; Collis, Spencer J.
2016-01-01
It was recently discovered that vertebrate genomes contain multiple endogenised nucleotide sequences derived from the non-retroviral RNA bornavirus. Strikingly, some of these elements have been evolutionary maintained as open reading frames in host genomes for over 40 million years, suggesting that some endogenised bornavirus-derived elements (EBL) might encode functional proteins. EBLN1 is one such element established through endogenisation of the bornavirus N gene (BDV N). Here, we functionally characterise human EBLN1 as a novel regulator of genome stability. Cells depleted of human EBLN1 accumulate DNA damage both under non-stressed conditions and following exogenously induced DNA damage. EBLN1-depleted cells also exhibit cell cycle abnormalities and defects in microtubule organisation as well as premature centrosome splitting, which we attribute in part, to improper localisation of the nuclear envelope protein TPR. Our data therefore reveal that human EBLN1 possesses important cellular functions within human cells, and suggest that other EBLs present within vertebrate genomes may also possess important cellular functions. PMID:27739501
USDA-ARS?s Scientific Manuscript database
This short article indicated that greater understanding of the biological functions of carotenoids mediated via their oxidative metabolites through their effects on these important cellular pathways and molecular targets, as well as their significance to cancer prevention, is needed. In considering ...
The CK1 Family: Contribution to Cellular Stress Response and Its Role in Carcinogenesis
Knippschild, Uwe; Krüger, Marc; Richter, Julia; Xu, Pengfei; García-Reyes, Balbina; Peifer, Christian; Halekotte, Jakob; Bakulev, Vasiliy; Bischof, Joachim
2014-01-01
Members of the highly conserved and ubiquitously expressed pleiotropic CK1 family play major regulatory roles in many cellular processes including DNA-processing and repair, proliferation, cytoskeleton dynamics, vesicular trafficking, apoptosis, and cell differentiation. As a consequence of cellular stress conditions, interaction of CK1 with the mitotic spindle is manifold increased pointing to regulatory functions at the mitotic checkpoint. Furthermore, CK1 is able to alter the activity of key proteins in signal transduction and signal integration molecules. In line with this notion, CK1 is tightly connected to the regulation and degradation of β-catenin, p53, and MDM2. Considering the importance of CK1 for accurate cell division and regulation of tumor suppressor functions, it is not surprising that mutations and alterations in the expression and/or activity of CK1 isoforms are often detected in various tumor entities including cancer of the kidney, choriocarcinomas, breast carcinomas, oral cancer, adenocarcinomas of the pancreas, and ovarian cancer. Therefore, scientific effort has enormously increased (i) to understand the regulation of CK1 and its involvement in tumorigenesis- and tumor progression-related signal transduction pathways and (ii) to develop CK1-specific inhibitors for the use in personalized therapy concepts. In this review, we summarize the current knowledge regarding CK1 regulation, function, and interaction with cellular proteins playing central roles in cellular stress-responses and carcinogenesis. PMID:24904820
Cellular automata with object-oriented features for parallel molecular network modeling.
Zhu, Hao; Wu, Yinghui; Huang, Sui; Sun, Yan; Dhar, Pawan
2005-06-01
Cellular automata are an important modeling paradigm for studying the dynamics of large, parallel systems composed of multiple, interacting components. However, to model biological systems, cellular automata need to be extended beyond the large-scale parallelism and intensive communication in order to capture two fundamental properties characteristic of complex biological systems: hierarchy and heterogeneity. This paper proposes extensions to a cellular automata language, Cellang, to meet this purpose. The extended language, with object-oriented features, can be used to describe the structure and activity of parallel molecular networks within cells. Capabilities of this new programming language include object structure to define molecular programs within a cell, floating-point data type and mathematical functions to perform quantitative computation, message passing capability to describe molecular interactions, as well as new operators, statements, and built-in functions. We discuss relevant programming issues of these features, including the object-oriented description of molecular interactions with molecule encapsulation, message passing, and the description of heterogeneity and anisotropy at the cell and molecule levels. By enabling the integration of modeling at the molecular level with system behavior at cell, tissue, organ, or even organism levels, the program will help improve our understanding of how complex and dynamic biological activities are generated and controlled by parallel functioning of molecular networks. Index Terms-Cellular automata, modeling, molecular network, object-oriented.
USDA-ARS?s Scientific Manuscript database
SUMOylation is the post-translational modification of proteins by the addition of the small ubiquitin-like modifier (SUMO), which plays an important role in various cellular processes. It has been reported that SUMO and its related proteins are important in diverse reproductive functions such as ovu...
2010-01-01
Background Porcine reproductive and respiratory syndrome virus (PRRSV) is an enveloped virus, bearing severe economic consequences to the swine industry worldwide. Previous studies on enveloped viruses have shown that many incorporated cellular proteins associated with the virion's membranes that might play important roles in viral infectivity. In this study, we sought to proteomically profile the cellular proteins incorporated into or associated with the virions of a highly virulent PRRSV strain GDBY1, and to provide foundation for further investigations on the roles of incorporated/associated cellular proteins on PRRSV's infectivity. Results In our experiment, sixty one cellular proteins were identified in highly purified PRRSV virions by two-dimensional gel electrophoresis coupled with mass spectrometric approaches. The identified cellular proteins could be grouped into eight functional categories including cytoskeletal proteins, chaperones, macromolecular biosynthesis proteins, metabolism-associated proteins, calcium-dependent membrane-binding proteins and other functional proteins. Among the identified proteins, four have not yet been reported in other studied envelope viruses, namely, guanine nucleotide-binding proteins, tyrosine 3-monooxygenase/tryptophan 5-monooxygenase, peroxiredoxin 1 and galectin-1 protein. The presence of five selected cellular proteins (i.e., β-actin, Tubulin, Annexin A2, heat shock protein Hsp27, and calcium binding proteins S100) in the highly purified PRRSV virions was validated by Western blot and immunogold labeling assays. Conclusions Taken together, the present study has demonstrated the incorporation of cellular proteins in PRRSV virions, which provides valuable information for the further investigations for the effects of individual cellular proteins on the viral replication, assembly, and pathogenesis. PMID:20849641
Large-scale topology and the default mode network in the mouse connectome
Stafford, James M.; Jarrett, Benjamin R.; Miranda-Dominguez, Oscar; Mills, Brian D.; Cain, Nicholas; Mihalas, Stefan; Lahvis, Garet P.; Lattal, K. Matthew; Mitchell, Suzanne H.; David, Stephen V.; Fryer, John D.; Nigg, Joel T.; Fair, Damien A.
2014-01-01
Noninvasive functional imaging holds great promise for serving as a translational bridge between human and animal models of various neurological and psychiatric disorders. However, despite a depth of knowledge of the cellular and molecular underpinnings of atypical processes in mouse models, little is known about the large-scale functional architecture measured by functional brain imaging, limiting translation to human conditions. Here, we provide a robust processing pipeline to generate high-resolution, whole-brain resting-state functional connectivity MRI (rs-fcMRI) images in the mouse. Using a mesoscale structural connectome (i.e., an anterograde tracer mapping of axonal projections across the mouse CNS), we show that rs-fcMRI in the mouse has strong structural underpinnings, validating our procedures. We next directly show that large-scale network properties previously identified in primates are present in rodents, although they differ in several ways. Last, we examine the existence of the so-called default mode network (DMN)—a distributed functional brain system identified in primates as being highly important for social cognition and overall brain function and atypically functionally connected across a multitude of disorders. We show the presence of a potential DMN in the mouse brain both structurally and functionally. Together, these studies confirm the presence of basic network properties and functional networks of high translational importance in structural and functional systems in the mouse brain. This work clears the way for an important bridge measurement between human and rodent models, enabling us to make stronger conclusions about how regionally specific cellular and molecular manipulations in mice relate back to humans. PMID:25512496
Mechanotransduction in Endothelial Cells Studied with Fluorescence Imaging
NASA Astrophysics Data System (ADS)
Chien, Shu
2011-01-01
Mechanotransduction involves the conversion of mechanical stimuli to intracellular signaling to modulate gene and protein expressions and hence cellular functions in endothelial cells, thus playing importance roles in the regulation of homeostasis in health and disease. The aim of this paper is to investigate the dynamics of mechanotransduction in endothelial cells by the use of fluorescent resonance energy transfer (FRET) to study the temporal and spatial activation of Src kinase and focal adhesion kinase, both of which play critical roles in many cellular processes. The results have contributed to the elucidation of the roles of these two important signaling molecules and their interactions in mediating mechanotransduction.
Intracellular Transport and Kinesin Superfamily Proteins: Structure, Function and Dynamics
NASA Astrophysics Data System (ADS)
Hirokawa, N.; Takemura, R.
Using various molecular cell biological and molecular genetic approaches, we identified kinesin superfamily proteins (KIFs) and characterized their significant functions in intracellular transport, which is fundamental for cellular morphogenesis, functioning, and survival. We showed that KIFs not only transport various membranous organelles, proteins complexes and mRNAs fundamental for cellular functions but also play significant roles in higher brain functions such as memory and learning, determination of important developmental processes such as left-right asymmetry formation and brain wiring. We also elucidated that KIFs recognize and bind to their specific cargoes using scaffolding or adaptor protein complexes. Concerning the mechanism of motility, we discovered the simplest unique monomeric motor KIF1A and determined by molecular biophysics, cryoelectron microscopy and X-ray crystallography that KIF1A can move on a microtubule processively as a monomer by biased Brownian motion and by hydolyzing ATP.
SEPT9_v1 Functions in Breast Cancer Cell Division
2012-01-01
the regulation and function of septin filaments, and define new mechanisms regulating important cellular functions. BODY: 1). Study the effects...ciliogenesis. However, mechanisms for retaining these proteins and lipids in the primary cilia are not clear. We directly tested the presence of a diffusion...polarity and morphogenesis; Defined mechanisms involving the roles of septins and microtubules in vesicle trafficking and epithelial morphogenesis
Light-dependent governance of cell shape dimensions in cyanobacteria.
Montgomery, Beronda L
2015-01-01
The regulation of cellular dimension is important for the function and survival of cells. Cellular dimensions, such as size and shape, are regulated throughout the life cycle of bacteria and can be adapted in response to environmental changes to fine-tune cellular fitness. Cell size and shape are generally coordinated with cell growth and division. Cytoskeletal regulation of cell shape and cell wall biosynthesis and/or deposition occurs in a range of organisms. Photosynthetic organisms, such as cyanobacteria, particularly exhibit light-dependent regulation of morphogenes and generation of reactive oxygen species and other signals that can impact cellular dimensions. Environmental signals initiate adjustments of cellular dimensions, which may be vitally important for optimizing resource acquisition and utilization or for coupling the cellular dimensions with the regulation of subcellular organization to maintain optimal metabolism. Although the involvement of cytoskeletal components in the regulation of cell shape is widely accepted, the signaling factors that regulate cytoskeletal and other distinct components involved in cell shape control, particularly in response to changes in external light cues, remain to be fully elucidated. In this review, factors impacting the inter-coordination of growth and division, the relationship between the regulation of cellular dimensions and central carbon metabolism, and consideration of the effects of specific environment signals, primarily light, on cell dimensions in cyanobacteria will be discussed. Current knowledge about the molecular bases of the light-dependent regulation of cellular dimensions and cell shape in cyanobacteria will be highlighted.
Macho, Alberto P
2016-04-01
Most bacterial plant pathogens employ a type-III secretion system to inject type-III effector (T3E) proteins directly inside plant cells. These T3Es manipulate host cellular processes in order to create a permissive niche for bacterial proliferation, allowing development of the disease. An important role of T3Es in plant pathogenic bacteria is the suppression of plant immune responses. However, in recent years, research has uncovered T3E functions different from direct immune suppression, including the modulation of plant hormone signaling, metabolism or organelle function. This insight article discusses T3E functions other than suppression of immunity, which may contribute to the modulation of plant cells in order to promote bacterial survival, nutrient release, and bacterial replication and dissemination. © 2015 The Author. New Phytologist © 2015 New Phytologist Trust.
The Role of Akt in Chronic Liver Disease and Liver Regeneration.
Morales-Ruiz, Manuel; Santel, Ansgar; Ribera, Jordi; Jiménez, Wladimiro
2017-02-01
The liver is continuously exposed to diverse insults, which may culminate in pathological processes causing liver disease. An effective therapeutic strategy for chronic liver disease should control the causal factors of the disease and stimulate functional liver regeneration. Preclinical studies have shown that interventions aimed at maintaining Akt activity in a dysfunctional liver meet most of the criteria. Although the central function of Akt is cell survival, other cellular aspects such as glucose uptake, glycogen synthesis, cell-cycle progression, and lipid metabolism have been shown to be prominent functions of Akt in the context of hepatic physiology. In this review, the authors describe the benefits of the Akt signaling pathway, emphasizing its importance in coordinating proper cellular growth and differentiation during liver regeneration, hepatic function, and liver disease. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Checkpoints to the Brain: Directing Myeloid Cell Migration to the Central Nervous System
Harrison-Brown, Meredith; Liu, Guo-Jun; Banati, Richard
2016-01-01
Myeloid cells are a unique subset of leukocytes with a diverse array of functions within the central nervous system during health and disease. Advances in understanding of the unique properties of these cells have inspired interest in their use as delivery vehicles for therapeutic genes, proteins, and drugs, or as “assistants” in the clean-up of aggregated proteins and other molecules when existing drainage systems are no longer adequate. The trafficking of myeloid cells from the periphery to the central nervous system is subject to complex cellular and molecular controls with several ‘checkpoints’ from the blood to their destination in the brain parenchyma. As important components of the neurovascular unit, the functional state changes associated with lineage heterogeneity of myeloid cells are increasingly recognized as important for disease progression. In this review, we discuss some of the cellular elements associated with formation and function of the neurovascular unit, and present an update on the impact of myeloid cells on central nervous system (CNS) diseases in the laboratory and the clinic. We then discuss emerging strategies for harnessing the potential of site-directed myeloid cell homing to the CNS, and identify promising avenues for future research, with particular emphasis on the importance of untangling the functional heterogeneity within existing myeloid subsets. PMID:27918464
Ge, Wanzhong; Chew, Ting Gang; Wachtler, Volker; Naqvi, Suniti N.; Balasubramanian, Mohan K.
2005-01-01
The establishment and maintenance of characteristic cellular morphologies is a fundamental property of all cells. Here we describe Schizosaccharomyces pombe Pal1p, a protein important for maintenance of cylindrical cellular morphology. Pal1p is a novel membrane-associated protein that localizes to the growing tips of interphase cells and to the division site in cells undergoing cytokinesis in an F-actin- and microtubule-independent manner. Cells deleted for pal1 display morphological defects, characterized by the occurrence of spherical and pear-shaped cells with an abnormal cell wall. Pal1p physically interacts and displays overlapping localization with the Huntingtin-interacting-protein (Hip1)-related protein Sla2p/End4p, which is also required for establishment of cylindrical cellular morphology. Sla2p is important for efficient localization of Pal1p to the sites of polarized growth and appears to function upstream of Pal1p. Interestingly, spherical pal1Δ mutants polarize to establish a pearlike morphology before mitosis in a manner dependent on the kelch-repeat protein Tea1p and the cell cycle inhibitory kinase Wee1p. Thus, overlapping mechanisms involving Pal1p, Tea1p, and Sla2p contribute to the establishment of cylindrical cellular morphology, which is important for proper spatial regulation of cytokinesis. PMID:15975911
Ge, Wanzhong; Chew, Ting Gang; Wachtler, Volker; Naqvi, Suniti N; Balasubramanian, Mohan K
2005-09-01
The establishment and maintenance of characteristic cellular morphologies is a fundamental property of all cells. Here we describe Schizosaccharomyces pombe Pal1p, a protein important for maintenance of cylindrical cellular morphology. Pal1p is a novel membrane-associated protein that localizes to the growing tips of interphase cells and to the division site in cells undergoing cytokinesis in an F-actin- and microtubule-independent manner. Cells deleted for pal1 display morphological defects, characterized by the occurrence of spherical and pear-shaped cells with an abnormal cell wall. Pal1p physically interacts and displays overlapping localization with the Huntingtin-interacting-protein (Hip1)-related protein Sla2p/End4p, which is also required for establishment of cylindrical cellular morphology. Sla2p is important for efficient localization of Pal1p to the sites of polarized growth and appears to function upstream of Pal1p. Interestingly, spherical pal1Delta mutants polarize to establish a pearlike morphology before mitosis in a manner dependent on the kelch-repeat protein Tea1p and the cell cycle inhibitory kinase Wee1p. Thus, overlapping mechanisms involving Pal1p, Tea1p, and Sla2p contribute to the establishment of cylindrical cellular morphology, which is important for proper spatial regulation of cytokinesis.
Rampersad, Sephra N.
2012-01-01
Accurate prediction of the adverse effects of test compounds on living systems, detection of toxic thresholds, and expansion of experimental data sets to include multiple toxicity end-point analysis are required for any robust screening regime. Alamar Blue is an important redox indicator that is used to evaluate metabolic function and cellular health. The Alamar Blue bioassay has been utilized over the past 50 years to assess cell viability and cytotoxicity in a range of biological and environmental systems and in a number of cell types including bacteria, yeast, fungi, protozoa and cultured mammalian and piscine cells. It offers several advantages over other metabolic indicators and other cytotoxicity assays. However, as with any bioassay, suitability must be determined for each application and cell model. This review seeks to highlight many of the important considerations involved in assay use and design in addition to the potential pitfalls. PMID:23112716
Ultraweak photon emission in the brain.
Salari, V; Valian, H; Bassereh, H; Bókkon, I; Barkhordari, A
2015-09-01
Besides the low-frequency electromagnetic body-processes measurable through the electroencephalography (EEG), electrocardiography (ECG), etc. there are processes that do not need external excitation, emitting light within or close to the visible spectra. Such ultraweak photon emission (UPE), also named biophoton emission, reflects the cellular (and body) oxidative status. Recently, a growing body of evidence shows that UPE may play an important role in the basic functioning of living cells. Moreover, interesting evidences are beginning to emerge that UPE may well play an important role in neuronal functions. In fact, biophotons are byproducts in cellular metabolism and produce false signals (e.g., retinal discrete dark noise) but on the other side neurons contain many light sensitive molecules that makes it hard to imagine how they might not be influenced by UPE, and thus UPE may carry informational contents. Here, we investigate UPE in the brain from different points of view such as experimental evidences, theoretical modeling, and physiological significance.
Structure and Function of Viral Deubiquitinating Enzymes.
Bailey-Elkin, Ben A; Knaap, Robert C M; Kikkert, Marjolein; Mark, Brian L
2017-11-10
Post-translational modification of cellular proteins by ubiquitin regulates numerous cellular processes, including innate and adaptive immune responses. Ubiquitin-mediated control over these processes can be reversed by cellular deubiquitinating enzymes (DUBs), which remove ubiquitin from cellular targets and depolymerize polyubiquitin chains. The importance of protein ubiquitination to host immunity has been underscored by the discovery of viruses that encode proteases with deubiquitinating activity, many of which have been demonstrated to actively corrupt cellular ubiquitin-dependent processes to suppress innate antiviral responses and promote viral replication. DUBs have now been identified in diverse viral lineages, and their characterization is providing valuable insights into virus biology and the role of the ubiquitin system in host antiviral mechanisms. Here, we provide an overview of the structural biology of these fascinating viral enzymes and their role innate immune evasion and viral replication. Copyright © 2017 Elsevier Ltd. All rights reserved.
The Role of Hydrophobicity in the Cellular Uptake of Negatively Charged Macromolecules.
Abou Matar, Tamara; Karam, Pierre
2018-02-01
It is generally accepted that positively charged molecules are the gold standard to by-pass the negatively charged cell membrane. Here, it is shown that cellular uptake is also possible for polymers with negatively charged side chains and hydrophobic backbones. Specifically, poly[5-methoxy-2-(3-sulfopropoxy)-1,4-phenylenevinylene], a conjugated polyelectrolyte with sulfonate, as water-soluble functional groups, is shown to accumulate in the intracellular region. When the polymer hydrophobic backbone is dissolved using polyvinylpyrrolidone, an amphiphilic macromolecule, the cellular uptake is dramatically reduced. The report sheds light on the fine balance between negatively charged side groups and the hydrophobicity of polymers to either enhance or reduce cellular uptake. As a result, these findings will have important ramifications on the future design of targeted cellular delivery nanocarriers for imaging and therapeutic applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Phosphate toxicity: new insights into an old problem
RAZZAQUE, M. Shawkat
2011-01-01
Phosphorus is an essential nutrient required for critical biological reactions that maintain the normal homoeostatic control of the cell. This element is an important component of different cellular structures, including nucleic acids and cell membranes. Adequate phosphorus balance is vital for maintaining basic cellular functions, ranging from energy metabolism to cell signalling. In addition, many intracellular pathways utilize phosphate ions for important cellular reactions; therefore, homoeostatic control of phosphate is one of the most delicate biological regulations. Impaired phosphorus balance can affect the functionality of almost every human system, including musculoskeletal and cardiovascular systems, ultimately leading to an increase in morbidity and mortality of the affected patients. Human and experimental studies have found that delicate balance among circulating factors, like vitamin D, PTH (parathyroid hormone) and FGF23 (fibroblast growth factor 23), are essential for regulation of physiological phosphate balance. Dysregulation of these factors, either alone or in combination, can induce phosphorus imbalance. Recent studies have shown that suppression of the FGF23–klotho system can lead to hyperphosphataemia with extensive tissue damage caused by phosphate toxicity. The cause and consequences of phosphate toxicity will be briefly summarized in the present review. PMID:20958267
Phosphate toxicity: new insights into an old problem.
Razzaque, M Shawkat
2011-02-01
Phosphorus is an essential nutrient required for critical biological reactions that maintain the normal homoeostatic control of the cell. This element is an important component of different cellular structures, including nucleic acids and cell membranes. Adequate phosphorus balance is vital for maintaining basic cellular functions, ranging from energy metabolism to cell signalling. In addition, many intracellular pathways utilize phosphate ions for important cellular reactions; therefore, homoeostatic control of phosphate is one of the most delicate biological regulations. Impaired phosphorus balance can affect the functionality of almost every human system, including musculoskeletal and cardiovascular systems, ultimately leading to an increase in morbidity and mortality of the affected patients. Human and experimental studies have found that delicate balance among circulating factors, like vitamin D, PTH (parathyroid hormone) and FGF23 (fibroblast growth factor 23), are essential for regulation of physiological phosphate balance. Dysregulation of these factors, either alone or in combination, can induce phosphorus imbalance. Recent studies have shown that suppression of the FGF23-klotho system can lead to hyperphosphataemia with extensive tissue damage caused by phosphate toxicity. The cause and consequences of phosphate toxicity will be briefly summarized in the present review.
CAM: A high-performance cellular-automaton machine
NASA Astrophysics Data System (ADS)
Toffoli, Tommaso
1984-01-01
CAM is a high-performance machine dedicated to the simulation of cellular automata and other distributed dynamical systems. Its speed is about one-thousand times greater than that of a general-purpose computer programmed to do the same task; in practical terms, this means that CAM can show the evolution of cellular automata on a color monitor with an update rate, dynamic range, and spatial resolution comparable to those of a Super-8 movie, thus permitting intensive interactive experimentation. Machines of this kind can open up novel fields of research, and in this context it is important that results be easy to obtain, reproduce, and transmit. For these reasons, in designing CAM it was important to achieve functional simplicity, high flexibility, and moderate production cost. We expect that many research groups will be able to own their own copy of the machine to do research with.
RAGE is a key cellular target for Aβ-induced perturbation in Alzheimer's disease
Yan, Shirley ShiDu; Chen, Doris; Yan, Shiqian; Guo, Lan; Chen, John Xi
2013-01-01
RAGE, a receptor for advanced glycation endproducts, is an immunoglobulin-like cell surface receptor that is often described as a pattern recognition receptor due to the structural heterogeneity of its ligand. RAGE is an important cellular cofactor for amyloid β-peptide (Aβ)-mediated cellular perturbation relevant to the pathogenesis of Alzheimer's disease (AD). The interaction of RAGE with Aβ in neurons, microglia, and vascular cells accelerates and amplifies deleterious effects on neuronal and synaptic function. RAGE-dependent signaling contributes to Aβ-mediated amyloid pathology and cognitive dysfunction observed in the AD mouse model. Blockade of RAGE significantly attenuates neuronal and synaptic injury. In this review, we summarize the role of RAGE in the pathogenesis of AD, specifically in Aβ-induced cellular perturbation. PMID:22202057
Bertazzoni, Umberto; Turci, Marco; Avesani, Francesca; Di Gennaro, Gianfranco; Bidoia, Carlo; Romanelli, Maria Grazia
2011-01-01
Human T-lymphotropic viruses type 1 (HTLV-1) and type 2 (HTLV-2) present very similar genomic structures but HTLV-1 is more pathogenic than HTLV-2. Is this difference due to their transactivating Tax proteins, Tax-1 and Tax-2, which are responsible for viral and cellular gene activation? Do Tax-1 and Tax-2 differ in their cellular localization and in their interaction pattern with cellular factors? In this review, we summarize Tax-1 and Tax-2 structural and phenotypic properties, their interaction with factors involved in signal transduction and their localization-related behavior within the cell. Special attention will be given to the distinctions between Tax-1 and Tax-2 that likely play an important role in their transactivation activity. PMID:21994745
Sub-cellular distribution and translocation of TRP channels.
Toro, Carlos A; Arias, Luis A; Brauchi, Sebastian
2011-01-01
Cellular electrical activity is the result of a highly complex processes that involve the activation of ion channel proteins. Ion channels make pores on cell membranes that rapidly transit between conductive and non-conductive states, allowing different ions to flow down their electrochemical gradients across cell membranes. In the case of neuronal cells, ion channel activity orchestrates action potentials traveling through axons, enabling electrical communication between cells in distant parts of the body. Somatic sensation -our ability to feel touch, temperature and noxious stimuli- require ion channels able to sense and respond to our peripheral environment. Sensory integration involves the summing of various environmental cues and their conversion into electrical signals. Members of the Transient Receptor Potential (TRP) family of ion channels have emerged as important mediators of both cellular sensing and sensory integration. The regulation of the spatial and temporal distribution of membrane receptors is recognized as an important mechanism for controlling the magnitude of the cellular response and the time scale on which cellular signaling occurs. Several studies have shown that this mechanism is also used by TRP channels to modulate cellular response and ultimately fulfill their physiological function as sensors. However, the inner-working of this mode of control for TRP channels remains poorly understood. The question of whether TRPs intrinsically regulate their own vesicular trafficking or weather the dynamic regulation of TRP channel residence on the cell surface is caused by extrinsic changes in the rates of vesicle insertion or retrieval remain open. This review will examine the evidence that sub-cellular redistribution of TRP channels plays an important role in regulating their activity and explore the mechanisms that control the trafficking of vesicles containing TRP channels.
Anselmo, Aaron C; Gilbert, Jonathan B; Kumar, Sunny; Gupta, Vivek; Cohen, Robert E; Rubner, Michael F; Mitragotri, Samir
2015-02-10
Targeted delivery of drugs and imaging agents to inflamed tissues, as in the cases of cancer, Alzheimer's disease, Parkinson's disease, and arthritis, represents one of the major challenges in drug delivery. Monocytes possess a unique ability to target and penetrate into sites of inflammation. Here, we describe a broad approach to take advantage of the natural ability of monocytes to target and deliver flat polymeric particles ("Cellular Backpacks") to inflamed tissues. Cellular backpacks attach strongly to the surface of monocytes but do not undergo phagocytosis due to backpack's size, disk-like shape and flexibility. Following attachment of backpacks, monocytes retain important cellular functions including transmigration through an endothelial monolayer and differentiation into macrophages. In two separate in vivo inflammation models, backpack-laden monocytes exhibit increased targeting to inflamed tissues. Cellular backpacks, and their abilities to attach to monocytes without impairing monocyte functions and 'hitchhike' to a variety of inflamed tissues, offer a new platform for both cell-mediated therapies and broad targeting of inflamed tissues. Copyright © 2014 Elsevier B.V. All rights reserved.
Regulation of cellular senescence by the essential caveolar component PTRF/Cavin-1
Bai, Lin; Deng, Xiaoli; Li, Juanjuan; Wang, Miao; Li, Qian; An, Wei; A, Deli; Cong, Yu-Sheng
2011-01-01
Polymerase I and transcript release factor (PTRF, also known as Cavin-1) is an essential component in the biogenesis and function of caveolae. Here, we show that PTRF expression is increased in senescent human fibroblasts. Importantly, overexpression of PTRF induced features characteristic of cellular senescence, whereas reduced PTRF expression extended the cellular replicative lifespan. Interestingly, we found that PTRF localized primarily to the nuclei of young and quiescent WI-38 human fibroblasts, but translocated to the cytosol and plasma membrane during cellular senescence. Furthermore, electron microscopic analysis demonstrated an increased number of caveolar structures in senescent and PTRF-transfected WI-38 cells. Our data suggest that the role of PTRF in cellular senescence is dependent on its targeting to caveolae and its interaction with caveolin-1, which appeared to be regulated by the phosphorylation of PTRF. Taken together, our findings identify PTRF as a novel regulator of cellular senescence that acts through the p53/p21 and caveolar pathways. PMID:21445100
Effects of regular exercise training on skeletal muscle contractile function
NASA Technical Reports Server (NTRS)
Fitts, Robert H.
2003-01-01
Skeletal muscle function is critical to movement and one's ability to perform daily tasks, such as eating and walking. One objective of this article is to review the contractile properties of fast and slow skeletal muscle and single fibers, with particular emphasis on the cellular events that control or rate limit the important mechanical properties. Another important goal of this article is to present the current understanding of how the contractile properties of limb skeletal muscle adapt to programs of regular exercise.
Bürstenbinder, Katharina; Mitra, Dipannita; Quegwer, Jakob
2017-06-03
Calcium (Ca 2+ ) ions play pivotal roles as second messengers in intracellular signal transduction, and coordinate many biological processes. Changes in intracellular Ca 2+ levels are perceived by Ca 2+ sensors such as calmodulin (CaM) and CaM-like (CML) proteins, which transduce Ca 2+ signals into cellular responses by regulation of diverse target proteins. Insights into molecular functions of CaM targets are thus essential to understand the molecular and cellular basis of Ca 2+ signaling. During the last decade, IQ67-domain (IQD) proteins emerged as the largest class of CaM targets in plants with mostly unknown functions. In the March issue of Plant Physiology, we presented the first comprehensive characterization of the 33-membered IQD family in Arabidopsis thaliana. We showed, by analysis of the subcellular localization of translational green fluorescent protein (GFP) fusion proteins, that most IQD members label microtubules (MTs), and additionally often localize to the cell nucleus or to membranes, where they recruit CaM Ca 2+ sensors. Important functions at MTs are supported by altered MT organization and plant growth in IQD gain-of-function lines. Because IQD proteins share structural hallmarks of scaffold proteins, we propose roles of IQDs in the assembly of macromolecular complexes to orchestrate Ca 2+ CaM signaling from membranes to the nucleus. Interestingly, expression of several IQDs is regulated by auxin, which suggests functions of IQDs as hubs in cellular auxin and calcium signaling to regulate plant growth and development.
Pimentel, David; Haeussler, Dagmar Johanna; Matsui, Reiko; Burgoyne, Joseph Robert; Cohen, Richard Alan
2012-01-01
Abstract Significance: Reactive oxygen and nitrogen species contributing to homeostatic regulation and the pathogenesis of various cardiovascular diseases, including atherosclerosis, hypertension, endothelial dysfunction, and cardiac hypertrophy, is well established. The ability of oxidant species to mediate such effects is in part dependent on their ability to induce specific modifications on particular amino acids, which alter protein function leading to changes in cell signaling and function. The thiol containing amino acids, methionine and cysteine, are the only oxidized amino acids that undergo reduction by cellular enzymes and are, therefore, prime candidates in regulating physiological signaling. Various reports illustrate the significance of reversible oxidative modifications on cysteine thiols and their importance in modulating cardiovascular function and physiology. Recent Advances: The use of mass spectrometry, novel labeling techniques, and live cell imaging illustrate the emerging importance of reversible thiol modifications in cellular redox signaling and have advanced our analytical abilities. Critical Issues: Distinguishing redox signaling from oxidative stress remains unclear. S-nitrosylation as a precursor of S-glutathionylation is controversial and needs further clarification. Subcellular distribution of glutathione (GSH) may play an important role in local regulation, and targeted tools need to be developed. Furthermore, cellular redundancies of thiol metabolism complicate analysis and interpretation. Future Directions: The development of novel pharmacological analogs that specifically target subcellular compartments of GSH to promote or prevent local protein S-glutathionylation as well as the establishment of conditional gene ablation and transgenic animal models are needed. Antioxid. Redox Signal. 16, 524–542. PMID:22010840
Flexible substrata for the detection of cellular traction forces
NASA Technical Reports Server (NTRS)
Beningo, Karen A.; Wang, Yu-Li
2002-01-01
By modulating adhesion signaling and cytoskeletal organization, mechanical forces play an important role in various cellular functions, from propelling cell migration to mediating communication between cells. Recent developments have resulted in several new approaches for the detection, analysis and visualization of mechanical forces generated by cultured cells. Combining these methods with other approaches, such as green-fluorescent protein (GFP) imaging and gene manipulation, proves to be particularly powerful for analyzing the interplay between extracellular physical forces and intracellular chemical events.
Murad, K L; Mahany, K L; Brugnara, C; Kuypers, F A; Eaton, J W; Scott, M D
1999-03-15
We previously showed that the covalent modification of the red blood cell (RBC) surface with methoxypoly(ethylene glycol) [mPEG; MW approximately 5 kD] could significantly attenuate the immunologic recognition of surface antigens. However, to make these antigenically silent RBC a clinically viable option, the mPEG-modified RBC must maintain normal cellular structure and functions. To this end, mPEG-derivatization was found to have no significant detrimental effects on RBC structure or function at concentrations that effectively blocked antigenic recognition of a variety of RBC antigens. Importantly, RBC lysis, morphology, and hemoglobin oxidation state were unaffected by mPEG-modification. Furthermore, as shown by functional studies of Band 3, a major site of modification, PEG-binding does not affect protein function, as evidenced by normal SO4- flux. Similarly, Na+ and K+ homeostasis were unaffected. The functional aspects of the mPEG-modified RBC were also maintained, as evidenced by normal oxygen binding and cellular deformability. Perhaps most importantly, mPEG-derivatized mouse RBC showed normal in vivo survival ( approximately 50 days) with no sensitization after repeated transfusions. These data further support the hypothesis that the covalent attachment of nonimmunogenic materials (eg, mPEG) to intact RBC may have significant application in transfusion medicine, especially for the chronically transfused and/or allosensitized patient.
Quantitative Analysis of Cellular Metabolic Dissipative, Self-Organized Structures
de la Fuente, Ildefonso Martínez
2010-01-01
One of the most important goals of the postgenomic era is understanding the metabolic dynamic processes and the functional structures generated by them. Extensive studies during the last three decades have shown that the dissipative self-organization of the functional enzymatic associations, the catalytic reactions produced during the metabolite channeling, the microcompartmentalization of these metabolic processes and the emergence of dissipative networks are the fundamental elements of the dynamical organization of cell metabolism. Here we present an overview of how mathematical models can be used to address the properties of dissipative metabolic structures at different organizational levels, both for individual enzymatic associations and for enzymatic networks. Recent analyses performed with dissipative metabolic networks have shown that unicellular organisms display a singular global enzymatic structure common to all living cellular organisms, which seems to be an intrinsic property of the functional metabolism as a whole. Mathematical models firmly based on experiments and their corresponding computational approaches are needed to fully grasp the molecular mechanisms of metabolic dynamical processes. They are necessary to enable the quantitative and qualitative analysis of the cellular catalytic reactions and also to help comprehend the conditions under which the structural dynamical phenomena and biological rhythms arise. Understanding the molecular mechanisms responsible for the metabolic dissipative structures is crucial for unraveling the dynamics of cellular life. PMID:20957111
Running, William E; Reilly, James P
2010-10-01
Ribosomes occupy a central position in cellular metabolism, converting stored genetic information into active cellular machinery. Ribosomal proteins modulate both the intrinsic function of the ribosome and its interaction with other cellular complexes, such as chaperonins or the signal recognition particle. Chemical modification of proteins combined with mass spectrometric detection of the extent and position of covalent modifications is a rapid, sensitive method for the study of protein structure and flexibility. By altering the pH of the solution, we have induced non-denaturing changes in the structure of bacterial ribosomal proteins and detected these conformational changes by covalent labeling. Changes in ribosomal protein modification across a pH range from 6.6 to 8.3 are unique to each protein, and correlate with their structural environment in the ribosome. Lysine residues whose extent of modification increases as a function of increasing pH are on the surface of proteins, but in close proximity either to glutamate and aspartate residues, or to rRNA backbone phosphates. Increasing pH disrupts tertiary and quaternary interactions mediated by hydrogen bonding or ionic interactions, and regions of protein structure whose conformations are sensitive to these changes are of potential importance in modulating the flexibility of the ribosome or its interaction with other cellular complexes.
Cell source determines the immunological impact of biomimetic nanoparticles.
Evangelopoulos, Michael; Parodi, Alessandro; Martinez, Jonathan O; Yazdi, Iman K; Cevenini, Armando; van de Ven, Anne L; Quattrocchi, Nicoletta; Boada, Christian; Taghipour, Nima; Corbo, Claudia; Brown, Brandon S; Scaria, Shilpa; Liu, Xuewu; Ferrari, Mauro; Tasciotti, Ennio
2016-03-01
Recently, engineering the surface of nanotherapeutics with biologics to provide them with superior biocompatibility and targeting towards pathological tissues has gained significant popularity. Although the functionalization of drug delivery vectors with cellular materials has been shown to provide synthetic particles with unique biological properties, these approaches may have undesirable immunological repercussions upon systemic administration. Herein, we comparatively analyzed unmodified multistage nanovectors and particles functionalized with murine and human leukocyte cellular membrane, dubbed Leukolike Vectors (LLV), and the immunological effects that may arise in vitro and in vivo. Previously, LLV demonstrated an avoidance of opsonization and phagocytosis, in addition to superior targeting of inflammation and prolonged circulation. In this work, we performed a comprehensive evaluation of the importance of the source of cellular membrane in increasing their systemic tolerance and minimizing an inflammatory response. Time-lapse microscopy revealed LLV developed using a cellular coating derived from a murine (i.e., syngeneic) source resulted in an active avoidance of uptake by macrophage cells. Additionally, LLV composed of a murine membrane were found to have decreased uptake in the liver with no significant effect on hepatic function. As biomimicry continues to develop, this work demonstrates the necessity to consider the source of biological material in the development of future drug delivery carriers. Copyright © 2015. Published by Elsevier Ltd.
Hoff, Max; Balfanz, Sabine; Ehling, Petra; Gensch, Thomas; Baumann, Arnd
2011-07-01
Rhythmic activity of cells and cellular networks plays an important role in physiology. In the nervous system oscillations of electrical activity and/or second messenger concentrations are important to synchronize neuronal activity. At the molecular level, rhythmic activity can be initiated by different routes. We have recently shown that an octopamine-activated G-protein-coupled receptor (GPCR; DmOctα1Rb, CG3856) from Drosophila initiates Ca(2+) oscillations. Here, we have unraveled the molecular basis of cellular Ca(2+) signaling controlled by the DmOctα1Rb receptor using a combination of pharmacological intervention, site-directed mutagenesis, and functional cellular Ca(2+) imaging on heterologously expressed receptors. Phosphorylation of a single amino acid residue in the third intracellular loop of the GPCR by PKC is necessary and sufficient to desensitize the receptor. From its desensitized state, DmOctα1Rb is resensitized by dephosphorylation, and a new Ca(2+) signal occurs on octopamine stimulation. Our findings show that transient changes of the receptor's surface profile have a strong effect on its physiological signaling properties. We expect that the detailed knowledge of DmOctα1Rb-dependent signal transduction fosters the identification of specific drugs that can be used for GPCR-mediated pest control, since octopamine serves important physiological and behavioral functions in arthropods.
Sharma, Shukriti; Tivendale, Kelly A.; Markham, Philip F.
2015-01-01
ABSTRACT Although the complete genome sequences of three strains of Mycoplasma bovis are available, few studies have examined gene function in this important pathogen. Mycoplasmas lack the biosynthetic machinery for the de novo synthesis of nucleic acid precursors, so nucleases are likely to be essential for them to acquire nucleotide precursors. Three putative membrane nucleases have been annotated in the genome of M. bovis strain PG45, MBOVPG45_0089 and MBOVPG45_0310, both of which have the thermonuclease (TNASE_3) functional domain, and MBOVPG45_0215 (mnuA), which has an exonuclease/endonuclease/phosphatase domain. While previous studies have demonstrated the function of TNASE_3 domain nucleases in several mycoplasmas, quantitative comparisons of the contributions of different nucleases to cellular nuclease activity have been lacking. Mapping of a library of 319 transposon mutants of M. bovis PG45 by direct genome sequencing identified mutants with insertions in MBOVPG45_0310 (the Δ0310 mutant) and MBOVPG45_0215 (the Δ0215 mutant). In this study, the detection of the product of MBOVPG45_0215 in the Triton X-114 fraction of M. bovis cell lysates, its cell surface exposure, and its predicted signal peptide suggested that it is a surface-exposed lipoprotein nuclease. Comparison of a ΔmnuA mutant with wild-type M. bovis on native and denatured DNA gels and in digestion assays using double-stranded phage λ DNA and closed circular plasmid DNA demonstrated that inactivation of this gene abolishes most of the cellular exonuclease and endonuclease activity of M. bovis. This activity could be fully restored by complementation with the wild-type mnuA gene, demonstrating that MnuA is the major cellular nuclease of M. bovis. IMPORTANCE Nucleases are thought to be important contributors to virulence and crucial for the maintenance of a nutritional supply of nucleotides in mycoplasmas that are pathogenic in animals. This study demonstrates for the first time that of the three annotated cell surface nuclease genes in an important pathogenic mycoplasma, the homologue of the thermostable nuclease identified in Gram-positive bacteria is responsible for the majority of the nuclease activity detectable in vitro. PMID:25691526
Lipton, Jonathan O; Sahin, Mustafa
2014-10-22
The mechanistic target of rapamycin (mTOR) signaling pathway is a crucial cellular signaling hub that, like the nervous system itself, integrates internal and external cues to elicit critical outputs including growth control, protein synthesis, gene expression, and metabolic balance. The importance of mTOR signaling to brain function is underscored by the myriad disorders in which mTOR pathway dysfunction is implicated, such as autism, epilepsy, and neurodegenerative disorders. Pharmacological manipulation of mTOR signaling holds therapeutic promise and has entered clinical trials for several disorders. Here, we review the functions of mTOR signaling in the normal and pathological brain, highlighting ongoing efforts to translate our understanding of cellular physiology into direct medical benefit for neurological disorders.
Szabó, Edit; Türk, Dóra; Telbisz, Ágnes; Kucsma, Nóra; Horváth, Tamás; Szakács, Gergely; Homolya, László; Sarkadi, Balázs; Várady, György
2018-01-01
ABC multidrug transporters are key players in cancer multidrug resistance and in general xenobiotic elimination, thus their functional assays provide important tools for research and diagnostic applications. In this study we have examined the potential interactions of three key human ABC multidrug transporters with PhenGreen diacetate (PGD), a cell permeable fluorescent metal ion indicator. The non-fluorescent, hydrophobic PGD rapidly enters the cells and, after cleavage by cellular esterases, in the absence of quenching metal ions, PhenGreen (PG) becomes highly fluorescent. We found that in cells expressing functional ABCG2, ABCB1, or ABCC1 transporters, cellular PG fluorescence is strongly reduced. This fluorescence signal in the presence of specific transporter inhibitors is increased to the fluorescence levels in the control cells. Thus the PG accumulation assay is a new, unique tool for the parallel determination of the function of the ABCG2, ABCB1, and ABCC1 multidrug transporters. Since PG has very low cellular toxicity, the PG accumulation assay also allows the selection, separation and culturing of selected cell populations expressing either of these transporters.
Prohibitin( PHB) roles in granulosa cell physiology.
Chowdhury, Indrajit; Thomas, Kelwyn; Thompson, Winston E
2016-01-01
Ovarian granulosa cells (GC) play an important role in the growth and development of the follicle in the process known as folliculogenesis. In the present review, we focus on recent developments in prohibitin (PHB) research in relation to GC physiological functions. PHB is a member of a highly conserved eukaryotic protein family containing the repressor of estrogen activity (REA)/stomatin/PHB/flotillin/HflK/C (SPFH) domain (also known as the PHB domain) found in diverse species from prokaryotes to eukaryotes. PHB is ubiquitously expressed in a circulating free form or is present in multiple cellular compartments including mitochondria, nucleus and plasma membrane. In mitochondria, PHB is anchored to the mitochondrial inner membrane and forms complexes with the ATPases associated with proteases having diverse cellular activities. PHB continuously shuttles between the mitochondria, cytosol and nucleus. In the nucleus, PHB interacts with various transcription factors and modulates transcriptional activity directly or through interactions with chromatin remodeling proteins. Many functions have been attributed to the mitochondrial and nuclear PHB complexes such as cellular differentiation, anti-proliferation, morphogenesis and maintenance of the functional integrity of the mitochondria. However, to date, the regulation of PHB expression patterns and GC physiological functions are not completely understood.
Prohibitin (PHB) roles in granulosa cell physiology
Chowdhury, Indrajit; Thomas, Kelwyn; Thompson, Winston E.
2015-01-01
Ovarian granulosa cells (GC) play an important role in the growth and development of the follicle in the process known as folliculogenesis. In the present review, we focus on the recent developments in prohibitin (PHB) research in relation to GC physiological functions. PHB is a member of highly conserved eukaryotic protein family containing the repressor of estrogen activity (REA)/stomatin/prohibitin/flotillin/HflK/C (SPFH) domain [also known as the PHB domain] found in divergent species from prokaryotes to eukaryotes. PHB is ubiquitously expressed either in circulating free form or is present in multiple cellular compartments including mitochondria, nucleus and plasma membrane. In mitochondria, PHB is anchored to the mitochondrial inner membrane (IMM), and form complexes with the ATPases Associated with diverse cellular Activities (m-AAA) proteases. PHB continuously shuttles between the mitochondria, cytosol and nucleus. In the nucleus, PHB interacts with various transcription factors and modulate transcriptional activity directly or through interactions with chromatin remodeling proteins. Multiple functions have been attributed to the mitochondrial and nuclear prohibitin complexes such as cellular differentiation, anti-proliferation, morphogenesis and maintaining the functional integrity of the mitochondria. However, to date, the regulation of PHB expression patterns and GC physiological functions are not completely understood. PMID:26496733
The Potential Role of Senescence As a Modulator of Platelets and Tumorigenesis
Valenzuela, Claudio A.; Quintanilla, Ricardo; Moore-Carrasco, Rodrigo; Brown, Nelson E.
2017-01-01
In addition to thrombus formation, alterations in platelet function are frequently observed in cancer patients. Importantly, both thrombus and tumor formation are influenced by age, although the mechanisms through which physiological aging modulates these processes remain poorly understood. In this context, the potential effects of senescent cells on platelet function represent pathophysiological mechanisms that deserve further exploration. Cellular senescence has traditionally been viewed as a barrier to tumorigenesis. However, far from being passive bystanders, senescent cells are metabolically active and able to secrete a variety of soluble and insoluble factors. This feature, known as the senescence-associated secretory phenotype (SASP), may provide senescent cells with the capacity to modify the tissue environment and, paradoxically, promote proliferation and neoplastic transformation of neighboring cells. In fact, the SASP-dependent ability of senescent cells to enhance tumorigenesis has been confirmed in cellular systems involving epithelial cells and fibroblasts, leaving open the question as to whether similar interactions can be extended to other cellular contexts. In this review, we discuss the diverse functions of platelets in tumorigenesis and suggest the possibility that senescent cells might also influence tumorigenesis through their ability to modulate the functional status of platelets through the SASP. PMID:28894697
A knock-in mouse line conditionally expressing the tumor suppressor WTX/AMER1.
Boutet, Agnès; Comai, Glenda; Charlet, Aurélie; Jian Motamedi, Fariba; Dhib, Haroun; Bandiera, Roberto; Schedl, Andreas
2017-11-01
WTX/AMER1 is an important developmental regulator, mutations in which have been identified in a proportion of patients suffering from the renal neoplasm Wilms' tumor and in the bone malformation syndrome Osteopathia Striata with Cranial Sclerosis (OSCS). Its cellular functions appear complex and the protein can be found at the membrane, within the cytoplasm and the nucleus. To understand its developmental and cellular function an allelic series for Wtx in the mouse is crucial. Whereas mice carrying a conditional knock out allele for Wtx have been previously reported, a gain-of-function mouse model that would allow studying the molecular, cellular and developmental role of Wtx is still missing. Here we describe the generation of a novel mouse strain that permits the conditional activation of WTX expression. Wtx fused to GFP was introduced downstream a stop cassette flanked by loxP sites into the Rosa26 locus by gene targeting. Ectopic WTX expression is reported after crosses with several Cre transgenic mice in different embryonic tissues. Further, functionality of the fusion protein was demonstrated in the context of a Wtx null allele. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Wei, Lin; Yang, Qiaoyu; Xiao, Lehui
2014-08-01
Understanding the cellular uptake mechanism and intracellular fate of nanocarriers in living cells is of great importance for the rational design of efficient drug delivery cargos as well as the development of robust biomedical diagnostic probes. In present study, with a dual wavelength view darkfield microscope (DWVD), the tempo-spatially resolved dynamics of Tat peptide-functionalized gold nanoparticles (TGNPs, with size similar to viruses) in living HeLa cells were extensively explored. It was found that energy-dependent endocytosis (both clathrin- and caveolae-mediated processes were involved) was the prevailing pathway for the cellular uptake of TGNPs. The time-correlated dynamic spatial distribution information revealed that TGNPs could not actively target the cell nuclei, which is contrary to previous observations based on fixed cell results. More importantly, the inheritance of TGNPs to the daughter cells through mitosis was found to be the major route to metabolize TGNPs by HeLa cells. These understandings on the cellular uptake mechanism and intracellular fate of nanocargos in living cells would provide deep insight on how to improve and controllably manipulate their translocation efficiency for targeted drug delivery.Understanding the cellular uptake mechanism and intracellular fate of nanocarriers in living cells is of great importance for the rational design of efficient drug delivery cargos as well as the development of robust biomedical diagnostic probes. In present study, with a dual wavelength view darkfield microscope (DWVD), the tempo-spatially resolved dynamics of Tat peptide-functionalized gold nanoparticles (TGNPs, with size similar to viruses) in living HeLa cells were extensively explored. It was found that energy-dependent endocytosis (both clathrin- and caveolae-mediated processes were involved) was the prevailing pathway for the cellular uptake of TGNPs. The time-correlated dynamic spatial distribution information revealed that TGNPs could not actively target the cell nuclei, which is contrary to previous observations based on fixed cell results. More importantly, the inheritance of TGNPs to the daughter cells through mitosis was found to be the major route to metabolize TGNPs by HeLa cells. These understandings on the cellular uptake mechanism and intracellular fate of nanocargos in living cells would provide deep insight on how to improve and controllably manipulate their translocation efficiency for targeted drug delivery. Electronic supplementary information (ESI) available: Experimental section and additional supporting results as noted in the text. See DOI: 10.1039/c4nr02732a
Molecular, Cellular and Functional Effects of Radiation-Induced Brain Injury: A Review
Balentova, Sona; Adamkov, Marian
2015-01-01
Radiation therapy is the most effective non-surgical treatment of primary brain tumors and metastases. Preclinical studies have provided valuable insights into pathogenesis of radiation-induced injury to the central nervous system. Radiation-induced brain injury can damage neuronal, glial and vascular compartments of the brain and may lead to molecular, cellular and functional changes. Given its central role in memory and adult neurogenesis, the majority of studies have focused on the hippocampus. These findings suggested that hippocampal avoidance in cranial radiotherapy prevents radiation-induced cognitive impairment of patients. However, multiple rodent studies have shown that this problem is more complex. As the radiation-induced cognitive impairment reflects hippocampal and non-hippocampal compartments, it is of critical importance to investigate molecular, cellular and functional modifications in various brain regions as well as their integration at clinically relevant doses and schedules. We here provide a literature overview, including our previously published results, in order to support the translation of preclinical findings to clinical practice, and improve the physical and mental status of patients with brain tumors. PMID:26610477
Erythrocyte and blood antibacterial defense.
Minasyan, Hayk
2014-06-01
It is an axiom that blood cellular immunity is provided by leukocytes. As to erythrocytes, it is generally accepted that their main function is respiration. Our research provides objective video and photo evidence regarding erythrocyte bactericidal function. Phase-contrast immersion vital microscopy of the blood of patients with bacteremia was performed, and the process of bacteria entrapping and killing by erythrocytes was shot by means of video camera. Video evidence demonstrates that human erythrocytes take active part in blood bactericidal action and can repeatedly engulf and kill bacteria of different species and size. Erythrocytes are extremely important integral part of human blood cellular immunity. a) are more numerous; b) are able to entrap and kill microorganisms repeatedly without being injured; c) are more resistant to infection and better withstand the attacks of pathogens; d) have longer life span and are produced faster; e) are inauspicious media for proliferation of microbes and do not support replication of chlamidiae, mycoplasmas, rickettsiae, viruses, etc.; and f) are more effective and uncompromised bacterial killers. Blood cellular immunity theory and traditional view regarding the function of erythrocytes in human blood should be revised.
Jain, Shruti; Bhattacharyya, Kausik; Bakshi, Rachit; Narang, Ankita; Brahmachari, Vani
2017-04-01
The genome annotation and identification of gene function depends on conserved biochemical activity. However, in the cell, proteins with the same biochemical function can participate in different cellular pathways and cannot complement one another. Similarly, two proteins of very different biochemical functions are put in the same class of cellular function; for example, the classification of a gene as an oncogene or a tumour suppressor gene is not related to its biochemical function, but is related to its cellular function. We have taken an approach to identify peptide signatures for cellular function in proteins with known biochemical function. ATPases as a test case, we classified ATPases (2360 proteins) and kinases (517 proteins) from the human genome into different cellular function categories such as transcriptional, replicative, and chromatin remodelling proteins. Using publicly available tool, MEME, we identify peptide signatures shared among the members of a given category but not between cellular functional categories; for example, no motif sharing is seen between chromatin remodelling and transporter ATPases, similarly between receptor Serine/Threonine Kinase and Receptor Tyrosine Kinase. There are motifs shared within each category with significant E value and high occurrence. This concept of signature for cellular function was applied to developmental regulators, the polycomb and trithorax proteins which led to the prediction of the role of INO80, a chromatin remodelling protein, in development. This has been experimentally validated earlier for its role in homeotic gene regulation and its interaction with regulatory complexes like the Polycomb and Trithorax complex. Proteins 2017; 85:682-693. © 2016 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Effect of supplemental taurine on juvenile channel catfish Ictalurus punctatus growth
USDA-ARS?s Scientific Manuscript database
Taurine is a beta-amino sulfur amino acid found in most animal tissues. It has many important biological functions in mammals including membrane stabilization, antioxidation, cellular osmoregulation, detoxification, neuromodulation, and brain and eye development. Taurine supplementation in juvenil...
Haas, Laura T.; Salazar, Santiago V.; Kostylev, Mikhail A.; Um, Ji Won; Kaufman, Adam C.
2016-01-01
Alzheimer’s disease-related phenotypes in mice can be rescued by blockade of either cellular prion protein or metabotropic glutamate receptor 5. We sought genetic and biochemical evidence that these proteins function cooperatively as an obligate complex in the brain. We show that cellular prion protein associates via transmembrane metabotropic glutamate receptor 5 with the intracellular protein mediators Homer1b/c, calcium/calmodulin-dependent protein kinase II, and the Alzheimer’s disease risk gene product protein tyrosine kinase 2 beta. Coupling of cellular prion protein to these intracellular proteins is modified by soluble amyloid-β oligomers, by mouse brain Alzheimer’s disease transgenes or by human Alzheimer’s disease pathology. Amyloid-β oligomer-triggered phosphorylation of intracellular protein mediators and impairment of synaptic plasticity in vitro requires Prnp–Grm5 genetic interaction, being absent in transheterozygous loss-of-function, but present in either single heterozygote. Importantly, genetic coupling between Prnp and Grm5 is also responsible for signalling, for survival and for synapse loss in Alzheimer’s disease transgenic model mice. Thus, the interaction between metabotropic glutamate receptor 5 and cellular prion protein has a central role in Alzheimer’s disease pathogenesis, and the complex is a potential target for disease-modifying intervention. PMID:26667279
The role of bile acids in metabolic regulation.
Vítek, Libor; Haluzík, Martin
2016-03-01
Bile acids (BA), long believed to only have lipid-digestive functions, have emerged as novel metabolic modulators. They have important endocrine effects through multiple cytoplasmic as well as nuclear receptors in various organs and tissues. BA affect multiple functions to control energy homeostasis, as well as glucose and lipid metabolism, predominantly by activating the nuclear farnesoid X receptor and the cytoplasmic G protein-coupled BA receptor TGR5 in a variety of tissues. However, BA also are aimed at many other cellular targets in a wide array of organs and cell compartments. Their role in the pathogenesis of diabetes, obesity and other 'diseases of civilization' becomes even more clear. They also interact with the gut microbiome, with important clinical implications, further extending the complexity of their biological functions. Therefore, it is not surprising that BA metabolism is substantially modulated by bariatric surgery, a phenomenon contributing favorably to the therapeutic effects of these surgical procedures. Based on these data, several therapeutic approaches to ameliorate obesity and diabetes have been proposed to affect the cellular targets of BA. © 2016 Society for Endocrinology.
MiRNAs: dynamic regulators of immune cell functions in inflammation and cancer.
Hirschberger, Simon; Hinske, Ludwig Christian; Kreth, Simone
2018-09-01
MicroRNAs (miRNAs), small noncoding RNA molecules, have emerged as important regulators of almost all cellular processes. By binding to specific sequence motifs within the 3'- untranslated region of their target mRNAs, they induce either mRNA degradation or translational repression. In the human immune system, potent miRNAs and miRNA-clusters have been discovered, that exert pivotal roles in the regulation of gene expression. By targeting cellular signaling hubs, these so-called immuno-miRs have fundamental regulative impact on both innate and adaptive immune cells in health and disease. Importantly, they also act as mediators of tumor immune escape. Secreted by cancer cells and consecutively taken up by immune cells, immuno-miRs are capable to influence immune functions towards a blunted anti-tumor response, thus shaping a permissive tumor environment. This review provides an overview of immuno-miRs and their functional impact on individual immune cell entities. Further, implications of immuno-miRs in the amelioration of tumor surveillance are discussed. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Attenuated BMP1 Function Compromises Osteogenesis, Leading to Bone Fragility in Humans and Zebrafish
Asharani, P.V.; Keupp, Katharina; Semler, Oliver; Wang, Wenshen; Li, Yun; Thiele, Holger; Yigit, Gökhan; Pohl, Esther; Becker, Jutta; Frommolt, Peter; Sonntag, Carmen; Altmüller, Janine; Zimmermann, Katharina; Greenspan, Daniel S.; Akarsu, Nurten A.; Netzer, Christian; Schönau, Eckhard; Wirth, Radu; Hammerschmidt, Matthias; Nürnberg, Peter; Wollnik, Bernd; Carney, Thomas J.
2012-01-01
Bone morphogenetic protein 1 (BMP1) is an astacin metalloprotease with important cellular functions and diverse substrates, including extracellular-matrix proteins and antagonists of some TGFβ superfamily members. Combining whole-exome sequencing and filtering for homozygous stretches of identified variants, we found a homozygous causative BMP1 mutation, c.34G>C, in a consanguineous family affected by increased bone mineral density and multiple recurrent fractures. The mutation is located within the BMP1 signal peptide and leads to impaired secretion and an alteration in posttranslational modification. We also characterize a zebrafish bone mutant harboring lesions in bmp1a, demonstrating conservation of BMP1 function in osteogenesis across species. Genetic, biochemical, and histological analyses of this mutant and a comparison to a second, similar locus reveal that Bmp1a is critically required for mature-collagen generation, downstream of osteoblast maturation, in bone. We thus define the molecular and cellular bases of BMP1-dependent osteogenesis and show the importance of this protein for bone formation and stability. PMID:22482805
Creating the Chemistry in Cellular Respiration Concept Inventory (CCRCI)
NASA Astrophysics Data System (ADS)
Forshee, Jay Lance, II
Students at our institution report cellular respiration to be the most difficult concept they encounter in undergraduate biology, but why students find this difficult is unknown. Students may find cellular respiration difficult because there is a large amount of steps, or because there are persistent, long-lasting misconceptions and misunderstandings surrounding their knowledge of chemistry, which affect their performance on cellular respiration assessments. Most studies of cellular respiration focus on student macro understanding of the process related to breathing, and matter and energy. To date, no studies identify which chemistry concepts are most relevant to students' development of an understanding of the process of cellular respiration or have developed an assessment to measure student understanding of them. Following the Delphi method, the researchers conducted expert interviews with faculty members from four-year, masters-, and PhD-granting institutions who teach undergraduate general biology, and are experts in their respective fields of biology. From these interviews, researchers identified twelve chemistry concepts important to understanding cellular respiration and using surveys, these twelve concepts were refined into five (electron transfer, energy transfer, thermodynamics (law/conservation), chemical reactions, and gradients). The researchers then interviewed undergraduate introductory biology students at a large Midwestern university to identify their knowledge and misconceptions of the chemistry concepts that the faculty had identified previously as important. The CCRCI was developed using the five important chemistry concepts underlying cellular respiration. The final version of the CCRCI was administered to n=160 introductory biology students during the spring 2017 semester. Reliability of the CCRCI was evaluated using Cronbach's alpha (=.7) and split-half reliability (=.769), and validity of the instrument was assessed through content validity via expert agreement, response process validity through student think-aloud interviews, and via the Delphi survey methodology. Included is a discussion of item function (difficulty, discrimination, and point-biserial correlation), persistent misconceptions and the interpretation, uses, and future directions of the CCRCI.
The Universally Conserved Prokaryotic GTPases
Verstraeten, Natalie; Fauvart, Maarten; Versées, Wim; Michiels, Jan
2011-01-01
Summary: Members of the large superclass of P-loop GTPases share a core domain with a conserved three-dimensional structure. In eukaryotes, these proteins are implicated in various crucial cellular processes, including translation, membrane trafficking, cell cycle progression, and membrane signaling. As targets of mutation and toxins, GTPases are involved in the pathogenesis of cancer and infectious diseases. In prokaryotes also, it is hard to overestimate the importance of GTPases in cell physiology. Numerous papers have shed new light on the role of bacterial GTPases in cell cycle regulation, ribosome assembly, the stress response, and other cellular processes. Moreover, bacterial GTPases have been identified as high-potential drug targets. A key paper published over 2 decades ago stated that, “It may never again be possible to capture [GTPases] in a family portrait” (H. R. Bourne, D. A. Sanders, and F. McCormick, Nature 348:125-132, 1990) and indeed, the last 20 years have seen a tremendous increase in publications on the subject. Sequence analysis identified 13 bacterial GTPases that are conserved in at least 75% of all bacterial species. We here provide an overview of these 13 protein subfamilies, covering their cellular functions as well as cellular localization and expression levels, three-dimensional structures, biochemical properties, and gene organization. Conserved roles in eukaryotic homologs will be discussed as well. A comprehensive overview summarizing current knowledge on prokaryotic GTPases will aid in further elucidating the function of these important proteins. PMID:21885683
Günter, Julia; Ruiz-Serrano, Amalia; Pickel, Christina; Wenger, Roland H; Scholz, Carsten C
2017-07-15
The hypoxia inducible factor (HIF) pathway and the ubiquitin system represent major cellular processes that are involved in the regulation of a plethora of cellular signaling pathways and tissue functions. The ubiquitin system controls the ubiquitination of proteins, which is the covalent linkage of one or several ubiquitin molecules to specific targets. This ubiquitination is catalyzed by approximately 1000 different E3 ubiquitin ligases and can lead to different effects, depending on the type of internal ubiquitin chain linkage. The best-studied function is the targeting of proteins for proteasomal degradation. The activity of E3 ligases is antagonized by proteins called deubiquitinases (or deubiquitinating enzymes), which negatively regulate ubiquitin chains. This is performed in most cases by the catalytic removal of these chains from the targeted protein. The HIF pathway is regulated in an oxygen-dependent manner by oxygen-sensing hydroxylases. Covalent modification of HIFα subunits leads to the recruitment of an E3 ligase complex via the von Hippel-Lindau (VHL) protein and the subsequent polyubiquitination and proteasomal degradation of HIFα subunits, demonstrating the regulation of the HIF pathway by the ubiquitin system. This unidirectional effect of an E3 ligase on the HIF pathway is the best-studied example for the interplay between these two important cellular processes. However, additional regulatory mechanisms of the HIF pathway through the ubiquitin system are emerging and, more recently, also the reciprocal regulation of the ubiquitin system through components of the HIF pathway. Understanding these mechanisms and their relevance for the activity of each other is of major importance for the comprehensive elucidation of the oxygen-dependent regulation of cellular processes. This review describes the current knowledge of the functional bidirectional interplay between the HIF pathway and the ubiquitin system on the protein level. Copyright © 2017 Elsevier Inc. All rights reserved.
In vitro cellular adhesion and antimicrobial property of SiO2-MgO-Al2O3-K2O-B2O3-F glass ceramic.
Kalmodia, Sushma; Molla, Atiar Rahaman; Basu, Bikramjit
2010-04-01
The aim of the present study was to examine the cellular functionality and antimicrobial properties of SiO(2)-MgO-Al(2)O(3)-K(2)O-B(2)O(3)-F glass ceramics (GC) containing fluorophlogopite as major crystalline phase. The cellular morphology and cell adhesion study using human osteoblast-like Saos-2 cells and mouse fibroblast L929 cells reveals good in vitro cytocompatibility of GC. The potential use of the GC for biomedical application was also assessed by in vitro synthesis of the alkaline phosphatase (ALP) activity of Saos-2 cells. It is proposed that B(2)O(3) actively enhances the cell adhesion and supports osteoconduction process, whereas, fluorine component significantly influences cell viability. The Saos-2 and L929 cells on GC shows extensive multidirectional network of actin cytoskeleton. The in vitro results of this study illustrate how small variation in fluorine and boron in base glass composition influences significantly the biocompatibility and antimicrobial bactericidal property, as evaluated using a range of biochemical assays. Importantly, it shows that the cell viability and osteoconduction can be promoted in glass ceramics with lower fluorine content. The underlying reasons for difference in biological properties are analyzed and reported. It is suggested that oriented crystalline morphology in the lowest fluorine containing glass ceramic enhanced cellular spreading. Overall, the in vitro cell adhesion, cell flattening, cytocompatibility and antimicrobial study of the three different compositions of glass ceramic clearly reveals that microstructure and base glass composition play an important role in enhancing the cellular functionality and antimicrobial property.
Yancey, Paul H; Siebenaller, Joseph F
2015-06-01
Organisms experience a wide range of environmental factors such as temperature, salinity and hydrostatic pressure, which pose challenges to biochemical processes. Studies on adaptations to such factors have largely focused on macromolecules, especially intrinsic adaptations in protein structure and function. However, micromolecular cosolutes can act as cytoprotectants in the cellular milieu to affect biochemical function and they are now recognized as important extrinsic adaptations. These solutes, both inorganic and organic, have been best characterized as osmolytes, which accumulate to reduce osmotic water loss. Singly, and in combination, many cosolutes have properties beyond simple osmotic effects, e.g. altering the stability and function of proteins in the face of numerous stressors. A key example is the marine osmolyte trimethylamine oxide (TMAO), which appears to enhance water structure and is excluded from peptide backbones, favoring protein folding and stability and counteracting destabilizers like urea and temperature. Co-evolution of intrinsic and extrinsic adaptations is illustrated with high hydrostatic pressure in deep-living organisms. Cytosolic and membrane proteins and G-protein-coupled signal transduction in fishes under pressure show inhibited function and stability, while revealing a number of intrinsic adaptations in deep species. Yet, intrinsic adaptations are often incomplete, and those fishes accumulate TMAO linearly with depth, suggesting a role for TMAO as an extrinsic 'piezolyte' or pressure cosolute. Indeed, TMAO is able to counteract the inhibitory effects of pressure on the stability and function of many proteins. Other cosolutes are cytoprotective in other ways, such as via antioxidation. Such observations highlight the importance of considering the cellular milieu in biochemical and cellular adaptation. © 2015. Published by The Company of Biologists Ltd.
Cell-Specific Establishment of Poliovirus Resistance to an Inhibitor Targeting a Cellular Protein
Viktorova, Ekaterina G.; Nchoutmboube, Jules; Ford-Siltz, Lauren A.
2015-01-01
ABSTRACT It is hypothesized that targeting stable cellular factors involved in viral replication instead of virus-specific proteins may raise the barrier for development of resistant mutants, which is especially important for highly adaptable small (+)RNA viruses. However, contrary to this assumption, the accumulated evidence shows that these viruses easily generate mutants resistant to the inhibitors of cellular proteins at least in some systems. We investigated here the development of poliovirus resistance to brefeldin A (BFA), an inhibitor of the cellular protein GBF1, a guanine nucleotide exchange factor for the small cellular GTPase Arf1. We found that while resistant viruses can be easily selected in HeLa cells, they do not emerge in Vero cells, in spite that in the absence of the drug both cultures support robust virus replication. Our data show that the viral replication is much more resilient to BFA than functioning of the cellular secretory pathway, suggesting that the role of GBF1 in the viral replication is independent of its Arf activating function. We demonstrate that the level of recruitment of GBF1 to the replication complexes limits the establishment and expression of a BFA resistance phenotype in both HeLa and Vero cells. Moreover, the BFA resistance phenotype of poliovirus mutants is also cell type dependent in different cells of human origin and results in a fitness loss in the form of reduced efficiency of RNA replication in the absence of the drug. Thus, a rational approach to the development of host-targeting antivirals may overcome the superior adaptability of (+)RNA viruses. IMPORTANCE Compared to the number of viral diseases, the number of available vaccines is miniscule. For some viruses vaccine development has not been successful after multiple attempts, and for many others vaccination is not a viable option. Antiviral drugs are needed for clinical practice and public health emergencies. However, viruses are highly adaptable and can easily generate mutants resistant to practically any compounds targeting viral proteins. An alternative approach is to target stable cellular factors recruited for the virus-specific functions. In the present study, we analyzed the factors permitting and restricting the establishment of the resistance of poliovirus, a small (+)RNA virus, to brefeldin A (BFA), a drug targeting a cellular component of the viral replication complex. We found that the emergence and replication potential of resistant mutants is cell type dependent and that BFA resistance reduces virus fitness. Our data provide a rational approach to the development of antiviral therapeutics targeting host factors. PMID:25653442
Importance of sequence specific hydrophobicity in synthetic protein transduction domain mimics.
Sgolastra, Federica; Minter, Lisa M; Osborne, Barbara A; Tew, Gregory N
2014-03-10
A new series of synthetic protein transduction domain mimics (PTDMs) was designed to analyze the importance of guanidine and phenyl group segregation along the backbone on their membrane interaction and cellular internalization abilities. ROMP was utilized to synthesize three polymers: nonsegregated homopolymers, intermediately segregated gradient copolymers, and strongly segregated block copolymers. In order to understand the role of functional group segregation on activity, it was important to design monomers that enabled these three different polymer topologies, or constitutional macromolecular isomers, to be prepared with identical chemical compositions. The structure-activity relationships were evaluated by both a biophysical assay, using dye-loaded vesicles, and by in vitro cellular uptake studies of fluorescently labeled chains. The results showed that functional group segregation impacts activity. In general, the nonsegregated homopolymer was the most active in both assays but also showed larger, ill-defined aggregates compared to either the gradient or block copolymers. It was also the most cytotoxic of the three isomers. As a result, the gradient copolymer with intermediate segregation optimizes activity and solubility with low cytotoxicity. This study gives new design guidelines for the development of PTDMs.
Morphological and functional aspects of progenitors perturbed in cortical malformations
Bizzotto, Sara; Francis, Fiona
2015-01-01
In this review, we discuss molecular and cellular mechanisms important for the function of neuronal progenitors during development, revealed by their perturbation in different cortical malformations. We focus on a class of neuronal progenitors, radial glial cells (RGCs), which are renowned for their unique morphological and behavioral characteristics, constituting a key element during the development of the mammalian cerebral cortex. We describe how the particular morphology of these cells is related to their roles in the orchestration of cortical development and their influence on other progenitor types and post-mitotic neurons. Important for disease mechanisms, we overview what is currently known about RGC cellular components, cytoskeletal mechanisms, signaling pathways and cell cycle characteristics, focusing on how defects lead to abnormal development and cortical malformation phenotypes. The multiple recent entry points from human genetics and animal models are contributing to our understanding of this important cell type. Combining data from phenotypes in the mouse reveals molecules which potentially act in common pathways. Going beyond this, we discuss future directions that may provide new data in this expanding area. PMID:25729350
What are the origins and relevance of spontaneous bladder contractions? ICI-RS 2017.
Drake, Marcus J; Fry, Christopher H; Hashitani, Hikaru; Kirschner-Hermanns, Ruth; Rahnama'i, Mohammad S; Speich, John E; Tomoe, Hikaru; Kanai, Anthony J; McCloskey, Karen D
2018-01-23
Storage phase bladder activity is a counter-intuitive observation of spontaneous contractions. They are potentially an intrinsic feature of the smooth muscle, but interstitial cells in the mucosa and the detrusor itself, as well as other muscular elements in the mucosa may substantially influence them. They are identified in several models explaining lower urinary tract dysfunction. A consensus meeting at the International Consultation on Incontinence Research Society (ICI-RS) 2017 congress considered the origins and relevance of spontaneous bladder contractions by debating which cell type(s) modulate bladder spontaneous activity, whether the methodologies are sufficiently robust, and implications for healthy and abnormal lower urinary tract function. The identified research priorities reflect a wide range of unknown aspects. Cellular contributions to spontaneous contractions in detrusor smooth muscle are still uncertain. Accordingly, insight into the cellular physiology of the bladder wall, particularly smooth muscle cells, interstitial cells, and urothelium, remains important. Upstream influences, such as innervation, endocrine, and paracrine factors, are particularly important. The cellular interactions represent the key understanding to derive the integrative physiology of organ function, notably the nature of signalling between mucosa and detrusor layers. Indeed, it is still not clear to what extent spontaneous contractions generated in isolated preparations mirror their normal and pathological counterparts in the intact bladder. Improved models of how spontaneous contractions influence pressure generation and sensory nerve function are also needed. Deriving approaches to robust evaluation of spontaneous contractions and their influences for experimental and clinical use could yield considerable progress in functional urology. © 2018 Wiley Periodicals, Inc.
PKCλ/ι signaling-a common node for normal cellular development and breast oncogenesis.
Paul, Arindam; Paul, Soumen
2015-01-01
We recently demonstrated that PKCλ/ι signaling is an important contributor to breast cancer development. Strikingly, PKCλ/ι signaling is also important to balance self-renewal versus differentiation in pluripotent stem cells and is essential for embryonic development. This commentary highlights some key functions of PKCλ/ι signaling that are integral to both normal development and cancer progression.
Systems and Photosystems: Cellular Limits of Autotrophic Productivity in Cyanobacteria
Burnap, Robert L.
2014-01-01
Recent advances in the modeling of microbial growth and metabolism have shown that growth rate critically depends upon the optimal allocation of finite proteomic resources among different cellular functions and that modeling growth rates becomes more realistic with the explicit accounting for the costs of macromolecular synthesis, most importantly, protein expression. The “proteomic constraint” is considered together with its application to understanding photosynthetic microbial growth. The central hypothesis is that physical limits of cellular space (and corresponding solvation capacity) in conjunction with cell surface-to-volume ratios represent the underlying constraints on the maximal rate of autotrophic microbial growth. The limitation of cellular space thus constrains the size the total complement of macromolecules, dissolved ions, and metabolites. To a first approximation, the upper limit in the cellular amount of the total proteome is bounded this space limit. This predicts that adaptation to osmotic stress will result in lower maximal growth rates due to decreased cellular concentrations of core metabolic proteins necessary for cell growth owing the accumulation of compatible osmolytes, as surmised previously. The finite capacity of membrane and cytoplasmic space also leads to the hypothesis that the species-specific differences in maximal growth rates likely reflect differences in the allocation of space to niche-specific proteins with the corresponding diminution of space devoted to other functions including proteins of core autotrophic metabolism, which drive cell reproduction. An optimization model for autotrophic microbial growth, the autotrophic replicator model, was developed based upon previous work investigating heterotrophic growth. The present model describes autotrophic growth in terms of the allocation protein resources among core functional groups including the photosynthetic electron transport chain, light-harvesting antennae, and the ribosome groups. PMID:25654078
A core viral protein binds host nucleosomes to sequester immune danger signals
Avgousti, Daphne C.; Herrmann, Christin; Kulej, Katarzyna; Pancholi, Neha J.; Sekulic, Nikolina; Petrescu, Joana; Molden, Rosalynn C.; Blumenthal, Daniel; Paris, Andrew J.; Reyes, Emigdio D.; Ostapchuk, Philomena; Hearing, Patrick; Seeholzer, Steven H.; Worthen, G. Scott; Black, Ben E.; Garcia, Benjamin A.; Weitzman, Matthew D.
2016-01-01
Viral proteins mimic host protein structure and function to redirect cellular processes and subvert innate defenses1. Small basic proteins compact and regulate both viral and cellular DNA genomes. Nucleosomes are the repeating units of cellular chromatin and play an important role in innate immune responses2. Viral encoded core basic proteins compact viral genomes but their impact on host chromatin structure and function remains unexplored. Adenoviruses encode a highly basic protein called protein VII that resembles cellular histones3. Although protein VII binds viral DNA and is incorporated with viral genomes into virus particles4,5, it is unknown whether protein VII impacts cellular chromatin. Our observation that protein VII alters cellular chromatin led us to hypothesize that this impacts antiviral responses during adenovirus infection. We found that protein VII forms complexes with nucleosomes and limits DNA accessibility. We identified post-translational modifications on protein VII that are responsible for chromatin localization. Furthermore, proteomic analysis demonstrated that protein VII is sufficient to alter protein composition of host chromatin. We found that protein VII is necessary and sufficient for retention in chromatin of members of the high-mobility group protein B family (HMGB1, HMGB2, and HMGB3). HMGB1 is actively released in response to inflammatory stimuli and functions as a danger signal to activate immune responses6,7. We showed that protein VII can directly bind HMGB1 in vitro and further demonstrated that protein VII expression in mouse lungs is sufficient to decrease inflammation-induced HMGB1 content and neutrophil recruitment in the bronchoalveolar lavage fluid. Together our in vitro and in vivo results show that protein VII sequesters HMGB1 and can prevent its release. This study uncovers a viral strategy in which nucleosome binding is exploited to control extracellular immune signaling. PMID:27362237
Cellular Metabolic and Autophagic Pathways: Traffic Control by Redox Signaling
Dodson, Matthew; Darley-Usmar, Victor; Zhang, Jianhua
2013-01-01
It has been established that the key metabolic pathways of glycolysis and oxidative phosphorylation are intimately related to redox biology through control of cell signaling. Under physiological conditions glucose metabolism is linked to control of the NADH/NAD redox couple, as well as providing the major reductant, NADPH, for thiol-dependent antioxidant defenses. Retrograde signaling from the mitochondrion to the nucleus or cytosol controls cell growth and differentiation. Under pathological conditions mitochondria are targets for reactive oxygen and nitrogen species and are critical in controlling apoptotic cell death. At the interface of these metabolic pathways, the autophagy-lysosomal pathway functions to maintain mitochondrial quality, and generally serves an important cytoprotective function. In this review we will discuss the autophagic response to reactive oxygen and nitrogen species that are generated from perturbations of cellular glucose metabolism and bioenergetic function. PMID:23702245
Hepatitis B virus and hepatocellular carcinoma
Arbuthnot, Patrick; Kew, Michael
2001-01-01
Chronic hepatitis B virus (HBV) infection is a major global cause of hepatocellular carcinoma (HCC). Individuals who are chronic carriers have a greater than 100-fold increased relative risk of developing the tumour. Several mechanisms of HBV-induced HCC have been proposed. Integration of HBV DNA into the genome of hepatocytes occurs commonly, although integration at cellular sites that are important for regulation of hepatocyte proliferation appears to be a rare event. Functions of the HBx protein are also potentially oncogenic. These include transcriptional activation of cellular growth regulatory genes, modulation of apoptosis and inhibition of nucleotide excision repair of damaged cellular DNA. The effects of HBx are mediated by interaction with cellular proteins and activation of cell signalling pathways. Variations in HBV genome sequences may be important in hepatocarcinogenesis, although their significance has not yet been completely elucidated. Necroinflammatory hepatic disease, which often accompanies chronic HBV infection, may contribute indirectly to hepatocyte transformation in a number of ways, including by facilitating HBV DNA integration, predisposing to the acquisition of cellular mutations and generating mutagenic oxygen reactive species. Although HCC is a malignancy with a poor prognosis, the availability of an effective vaccine against HBV infection, and its inclusion in the Expanded Programme of Immunization of many countries, augurs well for the eventual elimination of HBV-associated HCC. PMID:11454100
Bergua, María; Zwart, Mark P.; El-Mohtar, Choaa; Shilts, Turksen; Elena, Santiago F.
2014-01-01
ABSTRACT Superinfection exclusion (SIE), the ability of an established virus infection to interfere with a secondary infection by the same or a closely related virus, has been described for different viruses, including important pathogens of humans, animals, and plants. Citrus tristeza virus (CTV), a positive-sense RNA virus, represents a valuable model system for studying SIE due to the existence of several phylogenetically distinct strains. Furthermore, CTV allows SIE to be examined at the whole-organism level. Previously, we demonstrated that SIE by CTV is a virus-controlled function that requires the viral protein p33. In this study, we show that p33 mediates SIE at the whole-organism level, while it is not required for exclusion at the cellular level. Primary infection of a host with a fluorescent protein-tagged CTV variant lacking p33 did not interfere with the establishment of a secondary infection by the same virus labeled with a different fluorescent protein. However, cellular coinfection by both viruses was rare. The obtained observations, along with estimates of the cellular multiplicity of infection (MOI) and MOI model selection, suggested that low levels of cellular coinfection appear to be best explained by exclusion at the cellular level. Based on these results, we propose that SIE by CTV is operated at two levels—the cellular and the whole-organism levels—by two distinct mechanisms that could function independently. This novel aspect of viral SIE highlights the intriguing complexity of this phenomenon, further understanding of which may open up new avenues to manage virus diseases. IMPORTANCE Many viruses exhibit superinfection exclusion (SIE), the ability of an established virus infection to interfere with a secondary infection by related viruses. SIE plays an important role in the pathogenesis and evolution of virus populations. The observations described here suggest that SIE could be controlled independently at different levels of the host: the whole-organism level or the level of individual cells. The p33 protein of citrus tristeza virus (CTV), an RNA virus, was shown to mediate SIE at the whole-organism level, while it appeared not to be required for exclusion at the cellular level. SIE by CTV is, therefore, highly complex and appears to use mechanisms different from those proposed for other viruses. A better understanding of this phenomenon may lead to the development of new strategies for controlling viral diseases in human populations and agroecosystems. PMID:25031351
Pérez-Moreno, Guiomar; Sealey-Cardona, Marco; Rodrigues-Poveda, Carlos; Gelb, Michael H; Ruiz-Pérez, Luis Miguel; Castillo-Acosta, Víctor; Urbina, Julio A; González-Pacanowska, Dolores
2012-10-01
Sterol biosynthesis inhibitors are promising entities for the treatment of trypanosomal diseases. Insect forms of Trypanosoma brucei, the causative agent of sleeping sickness, synthesize ergosterol and other 24-alkylated sterols, yet also incorporate cholesterol from the medium. While sterol function has been investigated by pharmacological manipulation of sterol biosynthesis, molecular mechanisms by which endogenous sterols influence cellular processes remain largely unknown in trypanosomes. Here we analyse by RNA interference, the effects of a perturbation of three specific steps of endogenous sterol biosynthesis in order to dissect the role of specific intermediates in proliferation, mitochondrial function and cellular morphology in procyclic cells. A decrease in the levels of squalene synthase and squalene epoxidase resulted in a depletion of cellular sterol intermediates and end products, impaired cell growth and led to aberrant morphologies, DNA fragmentation and a profound modification of mitochondrial structure and function. In contrast, cells deficient in sterol methyl transferase, the enzyme involved in 24-alkylation, exhibited a normal growth phenotype in spite of a complete abolition of the synthesis and content of 24-alkyl sterols. Thus, the data provided indicates that while the depletion of squalene and post-squalene endogenous sterol metabolites results in profound cellular defects, bulk 24-alkyl sterols are not strictly required to support growth in insect forms of T. brucei in vitro. Copyright © 2012 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
Beermann, Julia; Kirste, Dominique; Iwanov, Katharina; Lu, Dongchao; Kleemiß, Felix; Kumarswamy, Regalla; Schimmel, Katharina; Bär, Christian; Thum, Thomas
2018-01-01
The mammalian cell cycle is a complex and tightly controlled event. Myriads of different control mechanisms are involved in its regulation. Long non-coding RNAs (lncRNA) have emerged as important regulators of many cellular processes including cellular proliferation. However, a more global and unbiased approach to identify lncRNAs with importance for cell proliferation is missing. Here, we present a lentiviral shRNA library-based approach for functional lncRNA profiling. We validated our library approach in NIH3T3 (3T3) fibroblasts by identifying lncRNAs critically involved in cell proliferation. Using stringent selection criteria we identified lncRNA NR_015491.1 out of 3842 different RNA targets represented in our library. We termed this transcript Ntep (non-coding transcript essential for proliferation), as a bona fide lncRNA essential for cell cycle progression. Inhibition of Ntep in 3T3 and primary fibroblasts prevented normal cell growth and expression of key fibroblast markers. Mechanistically, we discovered that Ntep is important to activate P53 concomitant with increased apoptosis and cell cycle blockade in late G2/M. Our findings suggest Ntep to serve as an important regulator of fibroblast proliferation and function. In summary, our study demonstrates the applicability of an innovative shRNA library approach to identify long non-coding RNA functions in a massive parallel approach. PMID:29099486
Shimokawa, Hiroaki; Satoh, Kimio
2015-05-01
Vascular-derived hydrogen peroxide (H2O2) serves as an important signaling molecule in the cardiovascular system and contributes to vascular homeostasis. H2O2 is a second messenger, transducing the oxidative signal into biological responses through posttranslational protein modification. The balance between oxidant and antioxidant systems regulates intracellular redox status, and their imbalance causes oxidative or reductive stress, leading to cellular damage in cardiovascular systems. Excessive H2O2 deteriorates vascular functions and promotes vascular disease through multiple pathways. The RhoA/Rho-kinase pathway plays an important role in various fundamental cellular functions, including production of excessive reactive oxygen species, leading to the development of cardiovascular diseases. Rho-kinase (ROCK1 and ROCK2) belongs to the family of serine/threonine kinases and is an important downstream effector of the small GTP-binding protein RhoA. Rho-kinase plays a crucial role in the pathogenesis of vasospasm, arteriosclerosis, ischemia/reperfusion injury, hypertension, pulmonary hypertension, stroke, and heart failure. Thus, Rho-kinase inhibitors may be useful for the treatment of cardiovascular diseases in humans. In this review, we will briefly discuss the roles of vascular-derived H2O2 and review the recent progress in the translational research on the therapeutic importance of the Rho-kinase pathway in cardiovascular medicine.
Plant Abiotic Stress Proteomics: The Major Factors Determining Alterations in Cellular Proteome
Kosová, Klára; Vítámvás, Pavel; Urban, Milan O.; Prášil, Ilja T.; Renaut, Jenny
2018-01-01
HIGHLIGHTS: Major environmental and genetic factors determining stress-related protein abundance are discussed.Major aspects of protein biological function including protein isoforms and PTMs, cellular localization and protein interactions are discussed.Functional diversity of protein isoforms and PTMs is discussed. Abiotic stresses reveal profound impacts on plant proteomes including alterations in protein relative abundance, cellular localization, post-transcriptional and post-translational modifications (PTMs), protein interactions with other protein partners, and, finally, protein biological functions. The main aim of the present review is to discuss the major factors determining stress-related protein accumulation and their final biological functions. A dynamics of stress response including stress acclimation to altered ambient conditions and recovery after the stress treatment is discussed. The results of proteomic studies aimed at a comparison of stress response in plant genotypes differing in stress adaptability reveal constitutively enhanced levels of several stress-related proteins (protective proteins, chaperones, ROS scavenging- and detoxification-related enzymes) in the tolerant genotypes with respect to the susceptible ones. Tolerant genotypes can efficiently adjust energy metabolism to enhanced needs during stress acclimation. Stress tolerance vs. stress susceptibility are relative terms which can reflect different stress-coping strategies depending on the given stress treatment. The role of differential protein isoforms and PTMs with respect to their biological functions in different physiological constraints (cellular compartments and interacting partners) is discussed. The importance of protein functional studies following high-throughput proteome analyses is presented in a broader context of plant biology. In summary, the manuscript tries to provide an overview of the major factors which have to be considered when interpreting data from proteomic studies on stress-treated plants. PMID:29472941
Manzoni, Claudia; Mamais, Adamantios; Dihanich, Sybille; McGoldrick, Phillip; Devine, Michael J; Zerle, Julia; Kara, Eleanna; Taanman, Jan-Willem; Healy, Daniel G; Marti-Masso, Jose-Felix; Schapira, Anthony H; Plun-Favreau, Helene; Tooze, Sharon; Hardy, John; Bandopadhyay, Rina; Lewis, Patrick A
2013-11-29
LRRK2 is one of the most important genetic contributors to Parkinson's disease (PD). Point mutations in this gene cause an autosomal dominant form of PD, but to date no cellular phenotype has been consistently linked with mutations in each of the functional domains (ROC, COR and Kinase) of the protein product of this gene. In this study, primary fibroblasts from individuals carrying pathogenic mutations in the three central domains of LRRK2 were assessed for alterations in the autophagy/lysosomal pathway using a combination of biochemical and cellular approaches. Mutations in all three domains resulted in alterations in markers for autophagy/lysosomal function compared to wild type cells. These data highlight the autophagy and lysosomal pathways as read outs for pathogenic LRRK2 function and as a marker for disease, and provide insight into the mechanisms linking LRRK2 function and mutations. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
Disruption of Hox9,10,11 function results in cellular level lineage infidelity in the kidney.
Drake, Keri A; Adam, Mike; Mahoney, Robert; Potter, S Steven
2018-04-20
Hox genes are important regulators of development. The 39 mammalian Hox genes have considerable functional overlap, greatly confounding their study. In this report, we generated mice with multiple combinations of paralogous and flanking Abd-B Hox gene mutations to investigate functional redundancies in kidney development. The resulting mice developed a number of kidney abnormalities, including hypoplasia, agenesis, and severe cysts, with distinct Hox functions observed in early metanephric kidney formation and nephron progenitor maintenance. Most surprising, however, was that extensive removal of Hox shared function in these kidneys resulted in cellular level lineage infidelity. Strikingly, mutant nephron tubules consisted of intermixed cells with proximal tubule, loop of Henle, and collecting duct identities, with some single cells expressing markers associated with more than one nephron segment. These results indicate that Hox genes are required for proper lineage selection/maintenance and full repression of genes involved in cell fate restriction in the developing kidney.
Li, Zixian; de Barros, Andre Luis Branco; Soares, Daniel Cristian Ferreira; Moss, Sara Nicole; Alisaraie, Laleh
2017-05-30
The unique properties of single-walled carbon nanotubes (SWNTs) enable them to play important roles in many fields. One of their functional roles is to transport cargo into cell. SWNTs are able to traverse amphipathic cell membranes due to their large surface area, flexible interactions with cargo, customizable dimensions, and surface chemistry. The cargoes delivered by SWNTs include peptides, proteins, nucleic acids, as well as drug molecules for therapeutic purpose. The drug delivery functions of SWNTs have been explored over the past decade. Many breakthrough studies have shown the high specificity and potency of functionalized SWNT-based drug delivery systems for the treatment of cancers and other diseases. In this review, we discuss different aspects of drug delivery by functionalized SWNT carriers, diving into the cellular uptake mechanisms, biodistribution of the delivery system, and safety concerns on degradation of the carriers. We emphasize the delivery of several common drugs to highlight the recent achievements of SWNT-based drug delivery. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Liwei; Zhao, Wenting; Zheng, Quanhui
2016-01-15
The expression change of cellular senescence-associated genes is underlying the genetic foundation of cellular senescence. Using a suppressive subtractive hybridization system, we identified CSIG (cellular senescence-inhibited gene protein; RSL1D1) as a novel senescence-associated gene. CSIG is implicated in various process including cell cycle regulation, apoptosis, and tumor metastasis. We previously showed that CSIG plays an important role in regulating cell proliferation and cellular senescence progression through inhibiting PTEN, however, which domain or region of CSIG contributes to this function? To clarify this question, we investigated the functional importance of ribosomal L1 domain and lysine (Lys) -rich region of CSIG. Themore » data showed that expression of CSIG potently reduced PTEN expression, increased cell proliferation rates, and reduced the senescent phenotype (lower SA-β-gal activity). By contrast, neither the expression of CSIG N- terminal (NT) fragment containing the ribosomal L1 domain nor C-terminal (CT) fragment containing Lys-rich region could significantly altered the levels of PTEN; instead of promoting cell proliferation and delaying cellular senescence, expression of CSIG-NT or CSIG-CT inhibited cell proliferation and accelerated cell senescence (increased SA-β-gal activity) compared to either CSIG over-expressing or control (empty vector transfected) cells. The further immunofluorescence analysis showed that CSIG-CT and CSIG-NT truncated proteins exhibited different subcellular distribution with that of wild-type CSIG. Conclusively, both ribosomal L1 domain and Lys-rich region of CSIG are critical for CSIG to act as a regulator of cell proliferation and cellular senescence. - Highlights: • The ribosomal L1 domain and lysine-rich region of CSIG were expressed. • They are critical for CSIG to regulate proliferation and senescence. • CSIG and its domains exhibit different subcellular distribution.« less
Integrated regulation of PIKK-mediated stress responses by AAA+ proteins RUVBL1 and RUVBL2
Izumi, Natsuko; Yamashita, Akio; Ohno, Shigeo
2012-01-01
Proteins of the phosphatidylinositol 3-kinase-related protein kinase (PIKK) family are activated by various cellular stresses, including DNA damage, premature termination codon and nutritional status, and induce appropriate cellular responses. The importance of PIKK functions in the maintenance of genome integrity, accurate gene expression and the proper control of cell growth/proliferation is established. Recently, ATPase associated diverse cellular activities (AAA+) proteins RUVBL1 and RUVBL2 (RUVBL1/2) have been shown to be common regulators of PIKKs. The RUVBL1/2 complex regulates PIKK-mediated stress responses through physical interactions with PIKKs and by controlling PIKK mRNA levels. In this review, the functions of PIKKs in stress responses are outlined and the physiological significance of the integrated regulation of PIKKs by the RUVBL1/2 complex is presented. We also discuss a putative “PIKK regulatory chaperone complex” including other PIKK regulators, Hsp90 and the Tel2 complex. PMID:22540023
Hallett, Penelope J; Cooper, Oliver; Sadi, Damaso; Robertson, Harold; Mendez, Ivar; Isacson, Ole
2014-01-01
Summary To determine the long-term health and function of transplanted dopamine neurons in Parkinson’s disease (PD) patients, the expression of dopamine transporters (DAT) and mitochondrial morphology was examined in human fetal midbrain cellular transplants. DAT was robustly expressed in transplanted dopamine neuron terminals in the reinnervated host putamen and caudate, for at least 14 years after transplantation. The transplanted dopamine neurons showed a healthy and non-atrophied morphology at all time points. Labeling of the mitochondrial outer membrane protein Tom20 and alpha-synuclein showed typical cellular pathology in the patients’ own substantia nigra, which was not observed in transplanted dopamine neurons. These results show that the vast majority of transplanted neurons remain healthy long-term in PD patients, consistent with the clinically maintained function of fetal dopamine neuron transplants for up to 15–18 years in patients. These findings are critically important for the rational development of stem cell-based dopamine neuronal replacement therapies for PD. PMID:24910427
Crosstalk between the nucleolus and the DNA damage response.
Ogawa, L M; Baserga, S J
2017-02-28
Nucleolar function and the cellular response to DNA damage have long been studied as distinct disciplines. New research and a new appreciation for proteins holding multiple functional roles, however, is beginning to change the way we think about the crosstalk among distinct cellular processes. Here, we focus on the crosstalk between the DNA damage response and the nucleolus, including a comprehensive review of the literature that reveals a role for conventional DNA repair proteins in ribosome biogenesis, and conversely, ribosome biogenesis proteins in DNA repair. Furthermore, with recent advances in nucleolar proteomics and a growing list of proteins that localize to the nucleolus, it is likely that we will continue to identify new DNA repair proteins with a nucleolar-specific role. Given the importance of ribosome biogenesis and DNA repair in essential cellular processes and the role that they play in diverse pathologies, continued elucidation of the overlap between these two disciplines will be essential to the advancement of both fields and to the development of novel therapeutics.
No evidence for a local renin-angiotensin system in liver mitochondria
Astin, Ronan; Bentham, Robert; Djafarzadeh, Siamak; Horscroft, James A.; Kuc, Rhoda E.; Leung, Po Sing; Skipworth, James R. A.; Vicencio, Jose M.; Davenport, Anthony P.; Murray, Andrew J.; Takala, Jukka; Jakob, Stephan M.; Montgomery, Hugh; Szabadkai, Gyorgy
2013-01-01
The circulating, endocrine renin-angiotensin system (RAS) is important to circulatory homeostasis, while ubiquitous tissue and cellular RAS play diverse roles, including metabolic regulation. Indeed, inhibition of RAS is associated with improved cellular oxidative capacity. Recently it has been suggested that an intra-mitochondrial RAS directly impacts on metabolism. Here we sought to rigorously explore this hypothesis. Radiolabelled ligand-binding and unbiased proteomic approaches were applied to purified mitochondrial sub-fractions from rat liver, and the impact of AngII on mitochondrial function assessed. Whilst high-affinity AngII binding sites were found in the mitochondria-associated membrane (MAM) fraction, no RAS components could be detected in purified mitochondria. Moreover, AngII had no effect on the function of isolated mitochondria at physiologically relevant concentrations. We thus found no evidence of endogenous mitochondrial AngII production, and conclude that the effects of AngII on cellular energy metabolism are not mediated through its direct binding to mitochondrial targets. PMID:23959064
CRISPR/Cas9 and cancer targets: future possibilities and present challenges.
White, Martyn K; Khalili, Kamel
2016-03-15
All cancers have multiple mutations that can largely be grouped into certain classes depending on the function of the gene in which they lie and these include oncogenic changes that enhance cellular proliferation, loss of function of tumor suppressors that regulate cell growth potential and induction of metabolic enzymes that confer resistance to chemotherapeutic agents. Thus the ability to correct such mutations is an important goal in cancer treatment. Recent research has led to the developments of reagents which specifically target nucleotide sequences within the cellular genome and these have a huge potential for expanding our anticancer armamentarium. One such a reagent is the clustered regulatory interspaced short palindromic repeat (CRISPR)-associated 9 (Cas9) system, a powerful, highly specific and adaptable tool that provides unparalleled control for editing the cellular genome. In this short review, we discuss the potential of CRISPR/Cas9 against human cancers and the current difficulties in translating this for novel therapeutic approaches.
Barteneva, Natasha S; Vorobjev, Ivan A
2018-01-01
In this paper, we review some of the recent advances in cellular heterogeneity and single-cell analysis methods. In modern research of cellular heterogeneity, there are four major approaches: analysis of pooled samples, single-cell analysis, high-throughput single-cell analysis, and lately integrated analysis of cellular population at a single-cell level. Recently developed high-throughput single-cell genetic analysis methods such as RNA-Seq require purification step and destruction of an analyzed cell often are providing a snapshot of the investigated cell without spatiotemporal context. Correlative analysis of multiparameter morphological, functional, and molecular information is important for differentiation of more uniform groups in the spectrum of different cell types. Simplified distributions (histograms and 2D plots) can underrepresent biologically significant subpopulations. Future directions may include the development of nondestructive methods for dissecting molecular events in intact cells, simultaneous correlative cellular analysis of phenotypic and molecular features by hybrid technologies such as imaging flow cytometry, and further progress in supervised and non-supervised statistical analysis algorithms.
Microengineering of cellular interactions.
Folch, A; Toner, M
2000-01-01
Tissue function is modulated by an intricate architecture of cells and biomolecules on a micrometer scale. Until now, in vitro cellular interactions were mainly studied by random seeding over homogeneous substrates. Although this strategy has led to important discoveries, it is clearly a nonoptimal analog of the in vivo scenario. With the incorporation--and adaptation--of microfabrication technology into biology, it is now possible to design surfaces that reproduce some of the aspects of that architecture. This article reviews past research on the engineering of cell-substrate, cell-cell, and cell-medium interactions on the micrometer scale.
Intersection of autophagy with pathways of antigen presentation.
Patterson, Natalie L; Mintern, Justine D
2012-12-01
Traditionally, macroautophagy (autophagy) is viewed as a pathway of cell survival. Autophagy ensures the elimination of damaged or unwanted cytosolic components and provides a source of cellular nutrients during periods of stress. Interestingly, autophagy can also directly intersect with, and impact, other major pathways of cellular function. Here, we will review the contribution of autophagy to pathways of antigen presentation. The autophagy machinery acts to modulate both MHCI and MHCII antigen presentation. As such autophagy is an important participant in pathways that elicit host cell immunity and the elimination of infectious pathogens.
S-Nitrosylation: NO-Related Redox Signaling to Protect Against Oxidative Stress
STEENBERGEN, CHARLES; MURPHY, ELIZABETH
2007-01-01
Nitric oxide (NO) plays an important role in the regulation of cardiovascular function. S-nitrosylation, the covalent attachment of an NO moiety to sulfhydryl residues of proteins, resulting in the formation of S-nitrosothiols (SNOs), is a prevalent posttranslational protein modification involved in redox-based cellular signaling. Under physiologic conditions, protein S>-nitrosylation and SNOs provide protection preventing further cellular oxidative and nitrosative stress. However, oxidative stress and the resultant dysfunction of NO signaling have been implicated in the pathogenesis of cardiovascular diseases. PMID:16987022
NASA Technical Reports Server (NTRS)
Chien, E. S. K.; Marinho, J. A.; Russell, J. E., Sr.
1988-01-01
The Cellular Access Digital Network (CADN) is the access vehicle through which cellular technology is brought into the mainstream of the evolving integrated telecommunications network. Beyond the integrated end-to-end digital access and per call network services provisioning of the Integrated Services Digital Network (ISDN), the CADN engenders the added capability of mobility freedom via wireless access. One key element of the CADN network architecture is the standard user to network interface that is independent of RF transmission technology. Since the Mobile Satellite System (MSS) is envisioned to not only complement but also enhance the capabilities of the terrestrial cellular telecommunications network, compatibility and interoperability between terrestrial cellular and mobile satellite systems are vitally important to provide an integrated moving telecommunications network of the future. From a network standpoint, there exist very strong commonalities between the terrestrial cellular system and the mobile satellite system. Therefore, the MSS architecture should be designed as an integral part of the CADN. This paper describes the concept of the CADN, the functional architecture of the MSS, and the user-network interface signaling protocols.
The Role of Glia in Sleep Regulation and Function.
Frank, Marcos G
2018-01-28
The cellular mechanisms governing the expression, regulation, and function of sleep are not entirely understood. The traditional view is that these mechanisms are neuronal. An alternative view is that glial brain cells may play important roles in these processes. Their ubiquity in the central nervous system makes them well positioned to modulate neuronal circuits that gate sleep and wake. Their ability to respond to chemical neuronal signals suggests that they form feedback loops with neurons that may globally regulate neuronal activity. Their potential role in detoxifying the brain, regulating neuronal metabolism, and promoting synaptic plasticity raises the intriguing possibility that glia mediate important functions ascribed to sleep.
Tan, Brandon; Gao, Shou-Jiang
2018-04-26
N 6 -methyladenosine (m 6 A) was discovered 4 decades ago. However, the functions of m 6 A and the cellular machinery that regulates its changes have just been revealed in the last few years. m 6 A is an abundant internal mRNA modification on cellular RNA and is implicated in diverse cellular functions. Recent works have demonstrated the presence of m 6 A in the genomes of RNA viruses and transcripts of a DNA virus with either a proviral or antiviral role. Here, we first summarize what is known about the m 6 A "writers," "erasers," "readers," and "antireaders" as well as the role of m 6 A in mRNA metabolism. We then review how the replications of numerous viruses are enhanced and restricted by m 6 A with emphasis on the oncogenic DNA virus, Kaposi sarcoma-associated herpesvirus (KSHV), whose m 6 A epitranscriptome was recently mapped. In the context of KSHV, m 6 A and the reader protein YTHDF2 acts as an antiviral mechanism during viral lytic replication. During viral latency, KSHV alters m 6 A on genes that are implicated in cellular transformation and viral latency. Lastly, we discuss future studies that are important to further delineate the functions of m 6 A in KSHV latent and lytic replication and KSHV-induced oncogenesis. Copyright © 2018 John Wiley & Sons, Ltd.
New approaches for solving old problems in neuronal protein trafficking.
Bourke, Ashley M; Bowen, Aaron B; Kennedy, Matthew J
2018-04-10
Fundamental cellular properties are determined by the repertoire and abundance of proteins displayed on the cell surface. As such, the trafficking mechanisms for establishing and maintaining the surface proteome must be tightly regulated for cells to respond appropriately to extracellular cues, yet plastic enough to adapt to ever-changing environments. Not only are the identity and abundance of surface proteins critical, but in many cases, their regulated spatial positioning within surface nanodomains can greatly impact their function. In the context of neuronal cell biology, surface levels and positioning of ion channels and neurotransmitter receptors play essential roles in establishing important properties, including cellular excitability and synaptic strength. Here we review our current understanding of the trafficking pathways that control the abundance and localization of proteins important for synaptic function and plasticity, as well as recent technological advances that are allowing the field to investigate protein trafficking with increasing spatiotemporal precision. Copyright © 2018 Elsevier Inc. All rights reserved.
Lipid Cell Biology: A Focus on Lipids in Cell Division.
Storck, Elisabeth M; Özbalci, Cagakan; Eggert, Ulrike S
2018-06-20
Cells depend on hugely diverse lipidomes for many functions. The actions and structural integrity of the plasma membrane and most organelles also critically depend on membranes and their lipid components. Despite the biological importance of lipids, our understanding of lipid engagement, especially the roles of lipid hydrophobic alkyl side chains, in key cellular processes is still developing. Emerging research has begun to dissect the importance of lipids in intricate events such as cell division. This review discusses how these structurally diverse biomolecules are spatially and temporally regulated during cell division, with a focus on cytokinesis. We analyze how lipids facilitate changes in cellular morphology during division and how they participate in key signaling events. We identify which cytokinesis proteins are associated with membranes, suggesting lipid interactions. More broadly, we highlight key unaddressed questions in lipid cell biology and techniques, including mass spectrometry, advanced imaging, and chemical biology, which will help us gain insights into the functional roles of lipids.
Hoff, Max; Balfanz, Sabine; Ehling, Petra; Gensch, Thomas; Baumann, Arnd
2011-01-01
Rhythmic activity of cells and cellular networks plays an important role in physiology. In the nervous system oscillations of electrical activity and/or second messenger concentrations are important to synchronize neuronal activity. At the molecular level, rhythmic activity can be initiated by different routes. We have recently shown that an octopamine-activated G-protein-coupled receptor (GPCR; DmOctα1Rb, CG3856) from Drosophila initiates Ca2+ oscillations. Here, we have unraveled the molecular basis of cellular Ca2+ signaling controlled by the DmOctα1Rb receptor using a combination of pharmacological intervention, site-directed mutagenesis, and functional cellular Ca2+ imaging on heterologously expressed receptors. Phosphorylation of a single amino acid residue in the third intracellular loop of the GPCR by PKC is necessary and sufficient to desensitize the receptor. From its desensitized state, DmOctα1Rb is resensitized by dephosphorylation, and a new Ca2+ signal occurs on octopamine stimulation. Our findings show that transient changes of the receptor's surface profile have a strong effect on its physiological signaling properties. We expect that the detailed knowledge of DmOctα1Rb-dependent signal transduction fosters the identification of specific drugs that can be used for GPCR-mediated pest control, since octopamine serves important physiological and behavioral functions in arthropods.—Hoff M., Balfanz, S., Ehling, P., Gensch, T., Baumann, A. A single amino acid residue controls Ca2+ signaling by an octopamine receptor from Drosophila melanogaster. PMID:21478261
Bankapalli, Kondalarao; Saladi, SreeDivya; Awadia, Sahezeel S.; Goswami, Arvind Vittal; Samaddar, Madhuja; D'Silva, Patrick
2015-01-01
Methylglyoxal (MG) is a reactive metabolic intermediate generated during various cellular biochemical reactions, including glycolysis. The accumulation of MG indiscriminately modifies proteins, including important cellular antioxidant machinery, leading to severe oxidative stress, which is implicated in multiple neurodegenerative disorders, aging, and cardiac disorders. Although cells possess efficient glyoxalase systems for detoxification, their functions are largely dependent on the glutathione cofactor, the availability of which is self-limiting under oxidative stress. Thus, higher organisms require alternate modes of reducing the MG-mediated toxicity and maintaining redox balance. In this report, we demonstrate that Hsp31 protein, a member of the ThiJ/DJ-1/PfpI family in Saccharomyces cerevisiae, plays an indispensable role in regulating redox homeostasis. Our results show that Hsp31 possesses robust glutathione-independent methylglyoxalase activity and suppresses MG-mediated toxicity and ROS levels as compared with another paralog, Hsp34. On the other hand, glyoxalase-defective mutants of Hsp31 were found highly compromised in regulating the ROS levels. Additionally, Hsp31 maintains cellular glutathione and NADPH levels, thus conferring protection against oxidative stress, and Hsp31 relocalizes to mitochondria to provide cytoprotection to the organelle under oxidative stress conditions. Importantly, human DJ-1, which is implicated in the familial form of Parkinson disease, complements the function of Hsp31 by suppressing methylglyoxal and oxidative stress, thus signifying the importance of these proteins in the maintenance of ROS homeostasis across phylogeny. PMID:26370081
Walker, Mathew W; Lloyd-Evans, Emyr
2015-01-01
Lysosomes are an emerging and increasingly important cellular organelle. With every passing year, more novel proteins and key cellular functions are associated with lysosomes. Despite this, the methodologies for their purification have largely remained unchanged since the days of their discovery. With little advancement in this area, it is no surprise that analysis of lysosomal function has been somewhat stymied, largely in part by the change in buoyant densities that occur under conditions where lysosomes accumulate macromolecules. Such phenotypes are often associated with the lysosomal storage diseases but are increasingly being observed under conditions where lysosomal proteins or, in some cases, cellular functions associated with lysosomal proteins are being manipulated. These altered lysosomes poise a problem to the classical methods to purify lysosomes that are reliant largely on their correct sedimentation by density gradient centrifugation. Building upon a technique developed by others to purify lysosomes magnetically, we have developed a unique assay using superparamagnetic iron oxide nanoparticles (SPIONs) to purify high yields of ultrapure functional lysosomes from multiple cell types including the lysosomal storage disorders. Here we describe this method in detail, including the rationale behind using SPIONs, the potential pitfalls that can be avoided and the potential functional assays these lysosomes can be used for. Finally we also summarize the other methodologies and the exact reasons why magnetic purification of lysosomes is now the method of choice for lysosomal researchers. Copyright © 2015 Elsevier Inc. All rights reserved.
Skeletal muscle plasticity: cellular and molecular responses to altered physical activity paradigms
NASA Technical Reports Server (NTRS)
Baldwin, Kenneth M.; Haddad, Fadia
2002-01-01
The goal of this article is to examine our current understanding of the chain of events known to be involved in the adaptive process whereby specific genes and their protein products undergo altered expression; specifically, skeletal muscle adaptation in response to altered loading states will be discussed, with a special focus on the regulation of the contractile protein, myosin heavy chain gene expression. This protein, which is both an important structural and regulatory protein comprising the contractile apparatus, can be expressed as different isoforms, thereby having an impact on the functional diversity of the muscle. Because the regulation of the myosin gene family is under the control of a complex set of processes including, but not limited to, activity, hormonal, and metabolic factors, this protein will serve as a cellular "marker" for studies of muscle plasticity in response to various mechanical perturbations in which the quantity and type of myosin isoform, along with other important cellular proteins, are altered in expression.
Logan, Ryan W; Parekh, Puja K; Kaplan, Gabrielle N; Becker-Krail, Darius D; Williams, Wilbur P; Yamaguchi, Shintaro; Yoshino, Jun; Shelton, Micah A; Zhu, Xiyu; Zhang, Hui; Waplinger, Spencer; Fitzgerald, Ethan; Oliver-Smith, Jeffrey; Sundarvelu, Poornima; Enwright, John F; Huang, Yanhua H; McClung, Colleen A
2018-05-04
The diurnal regulation of dopamine is important for normal physiology and diseases such as addiction. Here we find a novel role for the CLOCK protein to antagonize CREB-mediated transcriptional activity at the tyrosine hydroxylase (TH) promoter, which is mediated by the interaction with the metabolic sensing protein, Sirtuin 1 (SIRT1). Additionally, we demonstrate that the transcriptional activity of TH is modulated by the cellular redox state, and daily rhythms of redox balance in the ventral tegmental area (VTA), along with TH transcription, are highly disrupted following chronic cocaine administration. Furthermore, CLOCK and SIRT1 are important for regulating cocaine reward and dopaminergic (DAergic) activity, with interesting differences depending on whether DAergic activity is in a heightened state and if there is a functional CLOCK protein. Taken together, we find that rhythms in cellular metabolism and circadian proteins work together to regulate dopamine synthesis and the reward value for drugs of abuse.
Huai, Jisen; Firat, Elke; Nil, Ahmed; Million, Daniele; Gaedicke, Simone; Kanzler, Benoit; Freudenberg, Marina; van Endert, Peter; Kohler, Gabriele; Pahl, Heike L.; Aichele, Peter; Eichmann, Klaus; Niedermann, Gabriele
2008-01-01
The giant cytosolic protease tripeptidyl peptidase II (TPPII) has been implicated in the regulation of proliferation and survival of malignant cells, particularly lymphoma cells. To address its functions in normal cellular and systemic physiology we have generated TPPII-deficient mice. TPPII deficiency activates cell type-specific death programs, including proliferative apoptosis in several T lineage subsets and premature cellular senescence in fibroblasts and CD8+ T cells. This coincides with up-regulation of p53 and dysregulation of NF-κB. Prominent degenerative alterations at the organismic level were a decreased lifespan and symptoms characteristic of immunohematopoietic senescence. These symptoms include accelerated thymic involution, lymphopenia, impaired proliferative T cell responses, extramedullary hematopoiesis, and inflammation. Thus, TPPII is important for maintaining normal cellular and systemic physiology, which may be relevant for potential therapeutic applications of TPPII inhibitors. PMID:18362329
Towards a virtual lung: multi-scale, multi-physics modelling of the pulmonary system.
Burrowes, K S; Swan, A J; Warren, N J; Tawhai, M H
2008-09-28
The essential function of the lung, gas exchange, is dependent on adequate matching of ventilation and perfusion, where air and blood are delivered through complex branching systems exposed to regionally varying transpulmonary and transmural pressures. Structure and function in the lung are intimately related, yet computational models in pulmonary physiology usually simplify or neglect structure. The geometries of the airway and vascular systems and their interaction with parenchymal tissue have an important bearing on regional distributions of air and blood, and therefore on whole lung gas exchange, but this has not yet been addressed by modelling studies. Models for gas exchange have typically incorporated considerable detail at the level of chemical reactions, with little thought for the influence of structure. To date, relatively little attention has been paid to modelling at the cellular or subcellular level in the lung, or to linking information from the protein structure/interaction and cellular levels to the operation of the whole lung. We review previous work in developing anatomically based models of the lung, airways, parenchyma and pulmonary vasculature, and some functional studies in which these models have been used. Models for gas exchange at several spatial scales are briefly reviewed, and the challenges and benefits from modelling cellular function in the lung are discussed.
Kandasamy, Mahesh; Aigner, Ludwig
2018-01-01
The cellular and molecular mechanisms underlying the reciprocal relationship between adult neurogenesis, cognitive and motor functions have been an important focus of investigation in the establishment of effective neural replacement therapies for neurodegenerative disorders. While neuronal loss, reactive gliosis and defects in the self-repair capacity have extensively been characterized in neurodegenerative disorders, the transient excess production of neuroblasts detected in the adult striatum of animal models of Huntington’s disease (HD) and in post-mortem brain of HD patients, has only marginally been addressed. This abnormal cellular response in the striatum appears to originate from the selective proliferation and ectopic migration of neuroblasts derived from the subventricular zone (SVZ). Based on and in line with the term “reactive astrogliosis”, we propose to name the observed cellular event “reactive neuroblastosis”. Although, the functional relevance of reactive neuroblastosis is unknown, we speculate that this process may provide support for the tissue regeneration in compensating the structural and physiological functions of the striatum in lieu of aging or of the neurodegenerative process. Thus, in this review article, we comprehend different possibilities for the regulation of striatal neurogenesis, neuroblastosis and their functional relevance in the context of HD. PMID:29593498
Rai-Bhogal, Ravneet; Ahmad, Eizaaz; Li, Hongyan; Crawford, Dorota A
2018-03-01
The cellular and molecular events that take place during brain development play an important role in governing function of the mature brain. Lipid-signalling molecules such as prostaglandin E 2 (PGE 2 ) play an important role in healthy brain development. Abnormalities along the COX-PGE 2 signalling pathway due to genetic or environmental causes have been linked to autism spectrum disorder (ASD). This study aims to evaluate the effect of altered COX-PGE 2 signalling on development and function of the prenatal brain using male mice lacking cyclooxygenase-1 and cyclooxygenase-2 (COX-1 -/- and COX-2 -/- ) as potential model systems of ASD. Microarray analysis was used to determine global changes in gene expression during embryonic days 16 (E16) and 19 (E19). Gene Ontology: Biological Process (GO:BP) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were implemented to identify affected developmental genes and cellular processes. We found that in both knockouts the brain at E16 had nearly twice as many differentially expressed genes, and affected biological pathways containing various ASD-associated genes important in neuronal function. Interestingly, using GeneMANIA and Cytoscape we also show that the ASD-risk genes identified in both COX-1 -/- and COX-2 -/- models belong to protein-interaction networks important for brain development despite of different cellular localization of these enzymes. Lastly, we identified eight genes that belong to the Wnt signalling pathways exclusively in the COX-2 -/- mice at E16. The level of PKA-phosphorylated β-catenin (S552), a major activator of the Wnt pathway, was increased in this model, suggesting crosstalk between the COX-2-PGE 2 and Wnt pathways during early brain development. Overall, these results provide further molecular insight into the contribution of the COX-PGE 2 pathways to ASD and demonstrate that COX-1 -/- and COX-2 -/- animals might be suitable new model systems for studying the disorders. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Non-specific cellular uptake of surface-functionalized quantum dots
NASA Astrophysics Data System (ADS)
Kelf, T. A.; Sreenivasan, V. K. A.; Sun, J.; Kim, E. J.; Goldys, E. M.; Zvyagin, A. V.
2010-07-01
We report a systematic empirical study of nanoparticle internalization into cells via non-specific pathways. The nanoparticles were comprised of commercial quantum dots (QDs) that were highly visible under a fluorescence confocal microscope. Surface-modified QDs with basic biologically significant moieties, e.g. carboxyl, amino, and streptavidin, were used, in combination with surface derivatization with polyethylene glycol (PEG) for a range of immortalized cell lines. Internalization rates were derived from image analysis and a detailed discussion about the effect of nanoparticle size, charge and surface groups is presented. We find that PEG derivatization dramatically suppresses the non-specific uptake while PEG-free carboxyl and amine functional groups promote QD internalization. These uptake variations displayed a remarkable consistency across different cell types. The reported results are important for experiments concerned with cellular uptake of surface-functionalized nanomaterials, both when non-specific internalization is undesirable and when it is intended for material to be internalized as efficiently as possible.
Blocker, Kory M; Britton, Zachary T; Naranjo, Andrea N; McNeely, Patrick M; Young, Carissa L; Robinson, Anne S
2015-01-01
G protein-coupled receptors (GPCRs) are membrane proteins that mediate signaling across the cellular membrane and facilitate cellular responses to external stimuli. Due to the critical role that GPCRs play in signal transduction, therapeutics have been developed to influence GPCR function without an extensive understanding of the receptors themselves. Closing this knowledge gap is of paramount importance to improving therapeutic efficacy and specificity, where efforts to achieve this end have focused chiefly on improving our knowledge of the structure-function relationship. The purpose of this chapter is to review methods for the heterologous expression of GPCRs in Saccharomyces cerevisiae, including whole-cell assays that enable quantitation of expression, localization, and function in vivo. In addition, we describe methods for the micellular solubilization of the human adenosine A2a receptor and for reconstitution of the receptor in liposomes that have enabled its biophysical characterization. © 2015 Elsevier Inc. All rights reserved.
FRET-based genetically-encoded sensors for quantitative monitoring of metabolites.
Mohsin, Mohd; Ahmad, Altaf; Iqbal, Muhammad
2015-10-01
Neighboring cells in the same tissue can exist in different states of dynamic activities. After genomics, proteomics and metabolomics, fluxomics is now equally important for generating accurate quantitative information on the cellular and sub-cellular dynamics of ions and metabolite, which is critical for functional understanding of organisms. Various spectrometry techniques are used for monitoring ions and metabolites, although their temporal and spatial resolutions are limited. Discovery of the fluorescent proteins and their variants has revolutionized cell biology. Therefore, novel tools and methods targeting sub-cellular compartments need to be deployed in specific cells and targeted to sub-cellular compartments in order to quantify the target-molecule dynamics directly. We require tools that can measure cellular activities and protein dynamics with sub-cellular resolution. Biosensors based on fluorescence resonance energy transfer (FRET) are genetically encoded and hence can specifically target sub-cellular organelles by fusion to proteins or targetted sequences. Since last decade, FRET-based genetically encoded sensors for molecules involved in energy production, reactive oxygen species and secondary messengers have helped to unravel key aspects of cellular physiology. This review, describing the design and principles of sensors, presents a database of sensors for different analytes/processes, and illustrate examples of application in quantitative live cell imaging.
Incubation period and immune function: A comparative field study among coexisting birds
Palacios, M.G.; Martin, T.E.
2006-01-01
Developmental periods are integral components of life history strategies that can have important fitness consequences and vary enormously among organisms. However, the selection pressures and mechanisms causing variation in length of developmental periods are poorly understood. Particularly puzzling are prolonged developmental periods, because their selective advantage is unclear. Here we tested the hypotheses that immune function is stronger in species that are attacked at a higher rate by parasites and that prolonged embryonic development allows the development of this stronger immune system. Through a comparative field study among 12 coexisting passerine bird species, we show that species with higher blood parasite prevalence mounted stronger cellular immune responses than species with lower prevalence. These results provide support for the hypothesis that species facing greater selection pressure from parasites invest more in immune function. However, species with longer incubation periods mounted weaker cellular immune responses than species with shorter periods. Therefore, cellular immune responses do not support the hypothesis that longer development time enhances immunocompentence. Future studies should assess other components of the immune system and test alternative causes of variation in incubation periods among bird species. ?? Springer-Verlag 2005.
Muscle mitohormesis promotes cellular survival via serine/glycine pathway flux.
Ost, Mario; Keipert, Susanne; van Schothorst, Evert M; Donner, Verena; van der Stelt, Inge; Kipp, Anna P; Petzke, Klaus-Jürgen; Jove, Mariona; Pamplona, Reinald; Portero-Otin, Manuel; Keijer, Jaap; Klaus, Susanne
2015-04-01
Recent studies on mouse and human skeletal muscle (SM) demonstrated the important link between mitochondrial function and the cellular metabolic adaptation. To identify key compensatory molecular mechanisms in response to chronic mitochondrial distress, we analyzed mice with ectopic SM respiratory uncoupling in uncoupling protein 1 transgenic (UCP1-TG) mice as model of muscle-specific compromised mitochondrial function. Here we describe a detailed metabolic reprogramming profile associated with mitochondrial perturbations in SM, triggering an increased protein turnover and amino acid metabolism with induced biosynthetic serine/1-carbon/glycine pathway and the longevity-promoting polyamine spermidine as well as the trans-sulfuration pathway. This is related to an induction of NADPH-generating pathways and glutathione metabolism as an adaptive mitohormetic response and defense against increased oxidative stress. Strikingly, consistent muscle retrograde signaling profiles were observed in acute stress states such as muscle cell starvation and lipid overload, muscle regeneration, and heart muscle inflammation, but not in response to exercise. We provide conclusive evidence for a key compensatory stress-signaling network that preserves cellular function, oxidative stress tolerance, and survival during conditions of increased SM mitochondrial distress, a metabolic reprogramming profile so far only demonstrated for cancer cells and heart muscle. © FASEB.
Erythrocyte and blood antibacterial defense
2014-01-01
It is an axiom that blood cellular immunity is provided by leukocytes. As to erythrocytes, it is generally accepted that their main function is respiration. Our research provides objective video and photo evidence regarding erythrocyte bactericidal function. Phase-contrast immersion vital microscopy of the blood of patients with bacteremia was performed, and the process of bacteria entrapping and killing by erythrocytes was shot by means of video camera. Video evidence demonstrates that human erythrocytes take active part in blood bactericidal action and can repeatedly engulf and kill bacteria of different species and size. Erythrocytes are extremely important integral part of human blood cellular immunity. Compared with phagocytic leukocytes, the erythrocytes: a) are more numerous; b) are able to entrap and kill microorganisms repeatedly without being injured; c) are more resistant to infection and better withstand the attacks of pathogens; d) have longer life span and are produced faster; e) are inauspicious media for proliferation of microbes and do not support replication of chlamidiae, mycoplasmas, rickettsiae, viruses, etc.; and f) are more effective and uncompromised bacterial killers. Blood cellular immunity theory and traditional view regarding the function of erythrocytes in human blood should be revised. PMID:24883200
The statistical mechanics of complex signaling networks: nerve growth factor signaling
NASA Astrophysics Data System (ADS)
Brown, K. S.; Hill, C. C.; Calero, G. A.; Myers, C. R.; Lee, K. H.; Sethna, J. P.; Cerione, R. A.
2004-10-01
The inherent complexity of cellular signaling networks and their importance to a wide range of cellular functions necessitates the development of modeling methods that can be applied toward making predictions and highlighting the appropriate experiments to test our understanding of how these systems are designed and function. We use methods of statistical mechanics to extract useful predictions for complex cellular signaling networks. A key difficulty with signaling models is that, while significant effort is being made to experimentally measure the rate constants for individual steps in these networks, many of the parameters required to describe their behavior remain unknown or at best represent estimates. To establish the usefulness of our approach, we have applied our methods toward modeling the nerve growth factor (NGF)-induced differentiation of neuronal cells. In particular, we study the actions of NGF and mitogenic epidermal growth factor (EGF) in rat pheochromocytoma (PC12) cells. Through a network of intermediate signaling proteins, each of these growth factors stimulates extracellular regulated kinase (Erk) phosphorylation with distinct dynamical profiles. Using our modeling approach, we are able to predict the influence of specific signaling modules in determining the integrated cellular response to the two growth factors. Our methods also raise some interesting insights into the design and possible evolution of cellular systems, highlighting an inherent property of these systems that we call 'sloppiness.'
Intra- and inter-dairy heifer variation of cellular neutrophil functions
USDA-ARS?s Scientific Manuscript database
Immune competence of dairy cattle is difficult to determine as a healthy immune system requires the resolution of pathogen invasion without excessive host-tissue damage. Neutrophil phagocytosis (PG) is important for eliminating pathogens, but PG induces an oxidative burst (OB), which helps destroy t...
Varela, Cristian; Mauriaca, Cecilia; Paradela, Alberto; Albar, Juan P; Jerez, Carlos A; Chávez, Francisco P
2010-01-12
Inorganic polyphosphate (polyP), a polymer of tens or hundreds of phosphate residues linked by ATP-like bonds, is found in all organisms and performs a wide variety of functions. PolyP is synthesized in bacterial cells by the actions of polyphosphate kinases (PPK1 and PPK2) and degraded by exopolyphosphatase (PPX). Bacterial cells with polyP deficiencies due to knocking out the ppk1 gene are affected in many structural and important cellular functions such as motility, quorum sensing, biofilm formation and virulence among others. The cause of this pleiotropy is not entirely understood. The overexpression of exopolyphosphatase in bacteria mimicked some pleitropic defects found in ppk1 mutants. By using this approach we found new structural and functional defects in the polyP-accumulating bacteria Pseudomonas sp. B4, which are most likely due to differences in the polyP-removal strategy. Colony morphology phenotype, lipopolysaccharide (LPS) structure changes and cellular division malfunction were observed. Finally, we used comparative proteomics in order to elucidate the cellular adjustments that occurred during polyP deficiency in this bacterium and found some clues that helped to understand the structural and functional defects observed. The results obtained suggest that during polyP deficiency energy metabolism and particularly nucleoside triphosphate (NTP) formation were affected and that bacterial cells overcame this problem by increasing the flux of energy-generating metabolic pathways such as tricarboxilic acid (TCA) cycle, beta-oxidation and oxidative phosphorylation and by reducing energy-consuming ones such as active transporters and amino acid biosynthesis. Furthermore, our results suggest that a general stress response also took place in the cell during polyP deficiency.
The mechanics of the primary cilium: an intricate structure with complex function.
Hoey, David A; Downs, Matthew E; Jacobs, Christopher R
2012-01-03
The primary cilium is a non-motile singular cellular structure that extends from the surface of nearly every cell in the body. The cilium has been shown to play numerous roles in maintaining tissue homeostasis, through regulating signaling pathways and sensing both biophysical and biochemical changes in the extracellular environment. The structural performance of the cilium is paramount to its function as defective cilia have been linked to numerous pathologies. In particular, the cilium has demonstrated a mechanosensory role in tissues such as the kidney, liver, endothelium and bone, where cilium deflection under mechanical loading triggers a cellular response. Understanding of how cilium structure and subsequent mechanical behavior contributes to the roles that cilium plays in regulating cellular behavior is a compelling question, yet is a relatively untouched research area. Recent advances in biophysical measurements have demonstrated the cilium to be a structurally intricate organelle containing an array of load bearing proteins. Furthermore advances in modeling of this organelle have revealed the importance of these proteins at regulating the cilium's mechanosensitivity. Remarkably, the cilium is capable of adapting its mechanical state, altering its length and possibly it's bending resistance, to regulate its mechanosensitivity demonstrating the importance of cilium mechanics in cellular responses. In this review, we introduce the cilium as a mechanosensor; discuss the advances in the mechanical modeling of cilia; explore the structural features of the cilium, which contribute to its mechanics and finish with possible mechanisms in which alteration in structure may affect ciliary mechanics, consequently affecting ciliary based mechanosensing. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ban, Sungbea; Cho, Nam Hyun; Ryu, Yongjae; Jung, Sunwoo; Vavilin, Andrey; Min, Eunjung; Jung, Woonggyu
2016-04-01
Optical projection tomography is a new optical imaging method for visualizing small biological specimens in three dimension. The most important advantage of OPT is to fill the gap between MRI and confocal microscope for the specimen having the range of 1-10 mm. Thus, it has been mainly used for whole-mount small animals and developmental study since this imaging modality was developed. The ability of OPT delivering anatomical and functional information of relatively large tissue in 3D has made it a promising platform in biomedical research. Recently, the potential of OPT spans its coverage to cellular scale. Even though there are increasing demand to obtain better understanding of cellular dynamics, only few studies to visualize cellular structure, shape, size and functional morphology over tissue has been investigated in existing OPT system due to its limited field of view. In this study, we develop a novel optical imaging system for 3D cellular imaging with OPT integrated with dynamic focusing technique. Our tomographic setup has great potential to be used for identifying cell characteristic in tissue because it can provide selective contrast on dynamic focal plane allowing for fluorescence as well as absorption. While the dominant contrast of optical imaging technique is to use the fluorescence for detecting certain target only, the newly developed OPT system will offer considerable advantages over currently available method when imaging cellar molecular dynamics by permitting contrast variation. By achieving multi-contrast, it is expected for this new imaging system to play an important role in delivering better cytological information to pathologist.
Bhardwaj, Garima; Webster, Thomas J
2015-01-01
Traditional flat tissue cell culture dishes have consisted of polystyrene treated with plasma gases for growing, subculturing, and studying cell behavior in vitro. However, increasingly it has been observed that mimicking natural tissue properties (such as chemistry, three-dimensional structure, mechanical properties, etc) in vitro can lead to a better correlation of in vitro to in vivo cellular functions. The following studies compared traditional NIH 3T3 fibroblasts' functions on XanoMatrix scaffolds to standard tissue culture polystyrene. Results found significantly greater fibroblast adhesion and proliferation on XanoMatrix cell culture dishes which mimic the nanoscale geometry of natural tissue fibers with true, tortuous fiber beds creating a robust, consistent, and versatile growth platform. In this manner, this study supports that cell culture dishes which mimic features of natural tissues should be continually studied for a wide range of applications in which mimicking natural cellular functions are important.
Papini, Christina; Royer, Catherine A
2018-02-01
Biological function results from properly timed bio-molecular interactions that transduce external or internal signals, resulting in any number of cellular fates, including triggering of cell-state transitions (division, differentiation, transformation, apoptosis), metabolic homeostasis and adjustment to changing physical or nutritional environments, amongst many more. These bio-molecular interactions can be modulated by chemical modifications of proteins, nucleic acids, lipids and other small molecules. They can result in bio-molecular transport from one cellular compartment to the other and often trigger specific enzyme activities involved in bio-molecular synthesis, modification or degradation. Clearly, a mechanistic understanding of any given high level biological function requires a quantitative characterization of the principal bio-molecular interactions involved and how these may change dynamically. Such information can be obtained using fluctation analysis, in particular scanning number and brightness, and used to build and test mechanistic models of the functional network to define which characteristics are the most important for its regulation.
Porter, Katie; Day, Brad
2016-04-01
The eukaryotic actin cytoskeleton is required for numerous cellular processes, including cell shape, development and movement, gene expression and signal transduction, and response to biotic and abiotic stress. In recent years, research in both plants and animal systems have described a function for actin as the ideal surveillance platform, linking the function and activity of primary physiological processes to the immune system. In this review, we will highlight recent advances that have defined the regulation and breadth of function of the actin cytoskeleton as a network required for defense signaling following pathogen infection. Coupled with an overview of recent work demonstrating specific targeting of the plant actin cytoskeleton by a diversity of pathogens, including bacteria, fungi and viruses, we will highlight the importance of actin as a key signaling hub in plants, one that mediates surveillance of cellular homeostasis and the activation of specific signaling responses following pathogen perception. Based on the studies highlighted herein, we propose a working model that posits changes in actin filament organization is in and of itself a highly specific signal, which induces, regulates and physically directs stimulus-specific signaling processes, most importantly, those associated with response to pathogens. © 2015 Institute of Botany, Chinese Academy of Sciences.
Marmary, Yitzhak; Adar, Revital; Gaska, Svetlana; Wygoda, Annette; Maly, Alexander; Cohen, Jonathan; Eliashar, Ron; Mizrachi, Lina; Orfaig-Geva, Carmit; Baum, Bruce J; Rose-John, Stefan; Galun, Eithan; Axelrod, Jonathan H
2016-03-01
Head and neck cancer patients treated by radiation commonly suffer from a devastating side effect known as dry-mouth syndrome, which results from the irreversible loss of salivary gland function via mechanisms that are not completely understood. In this study, we used a mouse model of radiation-induced salivary hypofunction to investigate the outcomes of DNA damage in the head and neck region. We demonstrate that the loss of salivary function was closely accompanied by cellular senescence, as evidenced by a persistent DNA damage response (γH2AX and 53BP1) and the expression of senescence-associated markers (SA-βgal, p19ARF, and DcR2) and secretory phenotype (SASP) factors (PAI-1 and IL6). Notably, profound apoptosis or necrosis was not observed in irradiated regions. Signs of cellular senescence were also apparent in irradiated salivary glands surgically resected from human patients who underwent radiotherapy. Importantly, using IL6 knockout mice, we found that sustained expression of IL6 in the salivary gland long after initiation of radiation-induced DNA damage was required for both senescence and hypofunction. Additionally, we demonstrate that IL6 pretreatment prevented both senescence and salivary gland hypofunction via a mechanism involving enhanced DNA damage repair. Collectively, these results indicate that cellular senescence is a fundamental mechanism driving radiation-induced damage in the salivary gland and suggest that IL6 pretreatment may represent a promising therapeutic strategy to preserve salivary gland function in head and neck cancer patients undergoing radiotherapy. ©2016 American Association for Cancer Research.
NASA Astrophysics Data System (ADS)
Ennist, Jessica Helen
Galectin-3 is beta-galactoside binding protein which is found in many healthy cells. In cancer, the galectin-3/tumor-associated Thomsen-Friedenreich antigen (TF antigen) interaction has been implicated in heterotypic and homotypic cellular adhesion and apoptotic signaling pathways. However, a stronger mechanistic understanding of the role of galectin-3 in these processes is needed. N-acetyllactosamine (LacNAc) is a non-native ligand for galectin-3 which binds with comparable affinity to the TF antigen and therefore an important ligand to study galectin-3 mediated processes. To study galectin-3 mediated homotypic cellular aggregation, four generations of polyamidoamine (PAMAM) dendrimers were functionalized with N-acetyllactosamine using a four-step chemoenzymatic route. The enzymatic step controlled the regiochemistry of the galactose addition to N-acetylglucosamine functionalized dendrimers using a recombinant beta-1,4-Galactosyltransferase-/UDP-4'-Gal Epimerase Fusion Protein (lgtB-galE). Homotypic cellular aggregation, which is promoted by the presence of galectin-3 as it binds to glycosides at the cell surface, was studied using HT-1080 fibrosarcoma, A549 lung, and DU-145 prostate cancer cell lines. In the presence of small LacNAc functionalized PAMAM dendrimers, galectin-3 induced cancer cellular aggregation was inhibited. However, the larger glycodendrimers induced homotypic cellular aggregation. Additionally, novel poly(aryl ether) dendronized silica surfaces designed for reversible adsorbtion of targeted analytes were synthesized, and characterization using X-ray Photoelectron Spectroscopy (XPS) was performed. Using a Cu(I) mediated cycloaddition "click" reaction, beta-cyclodextrin was appended to dendronized surfaces via triazole formation and also to a non-dendronized surface for comparison purposes. First generation G(1) dendrons have more than 6 times greater capacity to adsorb targeted analytes than slides functionalized with monomeric beta-cyclodextrin and are 2 times greater than slides functionalized with larger generation dendrons. This study reported beta-cyclodextrin functionalized surfaces can undergo a triggered release of the adsorbent, but otherwise retained the targeted analyte through multiple aqueous washes. Therefore, a new generation of G(1) dendronized surfaces capable of reversible adsorption were developed by heterogeneously appending sulfonic acid/pyridine end-groups. Auger Electron Spectroscopy (AES) was used to quantify the ratio of groups installed. Furthermore, G(1) dendronized surfaces were functionalized homogenously with sulfonic acid and pyridine for comparison and with chiral amino acids for chiral recognition studies.
Fee, Corey; Banasr, Mounira; Sibille, Etienne
2017-10-15
The functional integration of external and internal signals forms the basis of information processing and is essential for higher cognitive functions. This occurs in finely tuned cortical microcircuits whose functions are balanced at the cellular level by excitatory glutamatergic pyramidal neurons and inhibitory gamma-aminobutyric acidergic (GABAergic) interneurons. The balance of excitation and inhibition, from cellular processes to neural network activity, is characteristically disrupted in multiple neuropsychiatric disorders, including major depressive disorder (MDD), bipolar disorder, anxiety disorders, and schizophrenia. Specifically, nearly 3 decades of research demonstrate a role for reduced inhibitory GABA level and function across disorders. In MDD, recent evidence from human postmortem and animal studies suggests a selective vulnerability of GABAergic interneurons that coexpress the neuropeptide somatostatin (SST). Advances in cell type-specific molecular genetics have now helped to elucidate several important roles for SST interneurons in cortical processing (regulation of pyramidal cell excitatory input) and behavioral control (mood and cognition). Here, we review evidence for altered inhibitory function arising from GABAergic deficits across disorders and specifically in MDD. We then focus on properties of the cortical microcircuit, where SST-positive GABAergic interneuron deficits may disrupt functioning in several ways. Finally, we discuss the putative origins of SST cell deficits, as informed by recent research, and implications for therapeutic approaches. We conclude that deficits in SST interneurons represent a contributing cellular pathology and therefore a promising target for normalizing altered inhibitory function in MDD and other disorders with reduced SST cell and GABA functions. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giuliani, Sarah E; Frank, Ashley M; Corgliano, Danielle M
Abstract Background: Transporter proteins are one of an organism s primary interfaces with the environment. The expressed set of transporters mediates cellular metabolic capabilities and influences signal transduction pathways and regulatory networks. The functional annotation of most transporters is currently limited to general classification into families. The development of capabilities to map ligands with specific transporters would improve our knowledge of the function of these proteins, improve the annotation of related genomes, and facilitate predictions for their role in cellular responses to environmental changes. Results: To improve the utility of the functional annotation for ABC transporters, we expressed and purifiedmore » the set of solute binding proteins from Rhodopseudomonas palustris and characterized their ligand-binding specificity. Our approach utilized ligand libraries consisting of environmental and cellular metabolic compounds, and fluorescence thermal shift based high throughput ligand binding screens. This process resulted in the identification of specific binding ligands for approximately 64% of the purified and screened proteins. The collection of binding ligands is representative of common functionalities associated with many bacterial organisms as well as specific capabilities linked to the ecological niche occupied by R. palustris. Conclusion: The functional screen identified specific ligands that bound to ABC transporter periplasmic binding subunits from R. palustris. These assignments provide unique insight for the metabolic capabilities of this organism and are consistent with the ecological niche of strain isolation. This functional insight can be used to improve the annotation of related organisms and provides a route to evaluate the evolution of this important and diverse group of transporter proteins.« less
The Cajal school and the physiological role of astrocytes: a way of thinking
Navarrete, Marta; Araque, Alfonso
2014-01-01
Cajal is widely recognized by the scientific community for his important contributions to our knowledge of the neuronal organization of the nervous system. His studies on neuroglial cells are less recognized, yet they are no less relevant to our current understanding of the cellular bases of brain structure. Two pioneering studies published a century ago –“Something about the physiological significance of neuroglia” (Ramón y Cajal, 1897) and “A contribution to the understanding of neuroglia in the human brain” (Ramón y Cajal, 1913)—focused on glial cells and their role in brain physiology. Novel findings obtained using state-of-the-art and sophisticated technologies largely confirm many of the groundbreaking hypotheses proposed by Cajal related to the structural-functional properties of neuroglia. Here we propose to the reader a journey guided by the ideas of Cajal through the recent findings on the functional significance of astrocytes, the most abundant neuroglial cell type in the nervous system. Astrocyte–neuron interaction, which represents an emerging field in current neuroscience with important implications for our understanding of the cellular processes underlying brain function, has its roots in many of the original concepts proposed by Cajal. PMID:24904302
Zinc transporters and dysregulated channels in cancers
Pan, Zui; Choi, Sangyong; Ouadid-Ahidouch, Halima; Yang, Jin-Ming; Beattie, John H.; Korichneva, Irina
2016-01-01
As a nutritionally essential metal ion, zinc (Zn) not only constitutes a structural element for more than 3000 proteins but also plays important regulatory functions in cellular signal transduction. Zn homeostasis is tightly controlled by regulating the flux of Zn across cell membranes through specific transporters, i.e. ZnT and ZIP family proteins. Zn deficiency and malfunction of Zn transporters have been associated with many chronic diseases including cancer. However, the mechanisms underlying Zn regulatory functions in cellular signaling and their impact on the pathogenesis and progression of cancers remain largely unknown. In addition to these acknowledged multifunctions, Zn modulates a wide range of ion channels that in turn may also play an important role in cancer biology. The goal of this review is to propose how zinc deficiency, through modified Zn homeostasis, transporter activity and the putative regulatory function of Zn can influence ion channel activity, and thereby contribute to carcinogenesis and tumorigenesis. This review intends to stimulate interest in, and support for research into the understanding of Zn-modulated channels in cancers, and to search for novel biomarkers facilitating effective clinical stratification of high risk cancer patients as well as improved prevention and therapy in this emerging field. PMID:27814637
Forbes-Beadle, Lauren; Crossman, Tova; Johnson, Travis K; Burke, Richard; Warr, Coral G; Whisstock, James C
2016-10-01
Pore-forming members of the membrane attack complex/perforin-like (MACPF) protein superfamily perform well-characterized roles as mammalian immune effectors. For example, complement component 9 and perforin function to directly form pores in the membrane of Gram-negative pathogens or virally infected/transformed cells, respectively. In contrast, the only known MACPF protein in Drosophila melanogaster, Torso-like, plays crucial roles during development in embryo patterning and larval growth. Here, we report that in addition to these functions, Torso-like plays an important role in Drosophila immunity. However, in contrast to a hypothesized effector function in, for example, elimination of Gram-negative pathogens, we find that torso-like null mutants instead show increased susceptibility to certain Gram-positive pathogens such as Staphylococcus aureus and Enterococcus faecalis We further show that this deficit is due to a severely reduced number of circulating immune cells and, as a consequence, an impaired ability to phagocytose bacterial particles. Together these data suggest that Torso-like plays an important role in controlling the development of the Drosophila cellular immune system. Copyright © 2016 by the Genetics Society of America.
Isoforms, structures, and functions of versatile spectraplakin MACF1.
Hu, Lifang; Su, Peihong; Li, Runzhi; Yin, Chong; Zhang, Yan; Shang, Peng; Yang, Tuanmin; Qian, Airong
2016-01-01
Spectraplakins are crucially important communicators, linking cytoskeletal components to each other and cellular junctions. Microtubule actin crosslinking factor 1 (MACF1), also known as actin crosslinking family 7 (ACF7), is a member of the spectraplakin family. It is expressed in numerous tissues and cells as one extensively studied spectraplakin. MACF1 has several isoforms with unique structures and well-known function to be able to crosslink F-actin and microtubules. MACF1 is one versatile spectraplakin with various functions in cell processes, embryo development, tissue-specific functions, and human diseases. The importance of MACF1 has become more apparent in recent years. Here, we summarize the current knowledge on the presence and function of MACF1 and provide perspectives on future research of MACF1 based on our studies and others.
Dynamics of biological systems: role of systems biology in medical research.
Assmus, Heike E; Herwig, Ralf; Cho, Kwang-Hyun; Wolkenhauer, Olaf
2006-11-01
Cellular systems are networks of interacting components that change with time in response to external and internal events. Studying the dynamic behavior of these networks is the basis for an understanding of cellular functions and disease mechanisms. Quantitative time-series data leading to meaningful models can improve our knowledge of human physiology in health and disease, and aid the search for earlier diagnoses, better therapies and a healthier life. The advent of systems biology is about to take the leap into clinical research and medical applications. This review emphasizes the importance of a dynamic view and understanding of cell function. We discuss the potential for computer-aided mathematical modeling of biological systems in medical research with examples from some of the major therapeutic areas: cancer, cardiovascular, diabetic and neurodegenerative medicine.
Proteomic analysis identifies a novel function for galectin-3 in the cell entry of parvovirus.
Garcin, Pierre; Cohen, Sarah; Terpstra, Sanne; Kelly, Isabelle; Foster, Leonard J; Panté, Nelly
2013-02-21
Cellular factors associated with the parvovirus minute virus of mice (MVM) during infection are thought to play important roles in the MVM life cycle but only a few of these have been identified. Here we used a proteomic-based approach in order to identify host-binding partners of MVM. Using purified MVM as bait for immunoprecipitation assays, a total of 150 proteins were identified in MVM immunoprecipitates by quantitative liquid chromatography-tandem mass spectrometry. Galectin-3 was one of six proteins showing a statistically significant enrichment across replicates. Small interfering RNA depletion studies revealed an important role for galectin-3 in MVM endocytosis and infectivity in LA9 mouse fibroblast cells. Galectin-3-depleted cells were less susceptible to MVM infection than control cells and showed a significant reduction of MVM cellular uptake, but not of MVM binding to the cell surface. Our results indicate an important role for galectin-3 in the cellular uptake of MVM. We propose that galectin-3 facilitates the access of MVM to its receptor(s) at the plasma membrane and in this way promotes MVM endocytosis. Copyright © 2012 Elsevier B.V. All rights reserved.
Modifications in small nuclear RNAs and their roles in spliceosome assembly and function.
Bohnsack, Markus T; Sloan, Katherine E
2018-06-01
Modifications in cellular RNAs have emerged as key regulators of all aspects of gene expression, including pre-mRNA splicing. During spliceosome assembly and function, the small nuclear RNAs (snRNAs) form numerous dynamic RNA-RNA and RNA-protein interactions, which are required for spliceosome assembly, correct positioning of the spliceosome on substrate pre-mRNAs and catalysis. The human snRNAs contain several base methylations as well as a myriad of pseudouridines and 2'-O-methylated nucleotides, which are largely introduced by small Cajal body-specific-RNPs. Modified nucleotides typically cluster in functionally important regions of the snRNAs, suggesting that their presence could optimise the interactions of snRNAs with each other or with pre-mRNAs, or may affect the binding of spliceosomal proteins. snRNA modifications appear to play important roles in snRNP biogenesis and spliceosome assembly, and have also been proposed to influence the efficiency and fidelity of pre-mRNAs splicing. Interestingly, alterations in the modification status of snRNAs have recently been observed in different cellular conditions, implying that some snRNA modifications are dynamic and raising the possibility that these modifications may fine-tune the spliceosome for particular functions. Here, we review the current knowledge on the snRNA modification machinery and discuss the timing, functions and dynamics of modifications in snRNAs.
Functional analysis of the MAPK pathways in fungi.
Martínez-Soto, Domingo; Ruiz-Herrera, José
The Mitogen-Activated Protein Kinase (MAPK) signaling pathways constitute one of the most important and evolutionarily conserved mechanisms for the perception of extracellular information in all the eukaryotic organisms. The MAPK pathways are involved in the transfer to the cell of the information perceived from extracellular stimuli, with the final outcome of activation of different transcription factors that regulate gene expression in response to them. In all species of fungi, the MAPK pathways have important roles in their physiology and development; e.g. cell cycle control, mating, morphogenesis, response to different stresses, resistance to UV radiation and to temperature changes, cell wall assembly and integrity, degradation of cellular organelles, virulence, cell-cell signaling, fungus-plant interaction, and response to damage-associated molecular patterns (DAMPs). Considering the importance of the phylogenetically conserved MAPK pathways in fungi, an updated review of the knowledge on them is discussed in this article. This information reveals their importance, their distribution in fungal species evolutionarily distant and with different lifestyles, their organization and function, and the interactions occurring between different MAPK pathways, and with other signaling pathways, for the regulation of the most complex cellular processes. Copyright © 2017 Asociación Española de Micología. Publicado por Elsevier España, S.L.U. All rights reserved.
Imae, Rieko; Dejima, Katsufumi; Kage-Nakadai, Eriko; Arai, Hiroyuki; Mitani, Shohei
2016-01-01
RNA silencing signals in C. elegans spread among cells, leading to RNAi throughout the body. During systemic spread of RNAi, membrane trafficking is thought to play important roles. Here, we show that RNAi Spreading Defective-3 (rsd-3), which encodes a homolog of epsinR, a conserved ENTH (epsin N-terminal homology) domain protein, generally participates in cellular uptake of silencing RNA. RSD-3 is previously thought to be involved in systemic RNAi only in germ cells, but we isolated several deletion alleles of rsd-3, and found that these mutants are defective in the spread of silencing RNA not only into germ cells but also into somatic cells. RSD-3 is ubiquitously expressed, and intracellularly localized to the trans-Golgi network (TGN) and endosomes. Tissue-specific rescue experiments indicate that RSD-3 is required for importing silencing RNA into cells rather than exporting from cells. Structure/function analysis showed that the ENTH domain alone is sufficient, and membrane association of the ENTH domain is required, for RSD-3 function in systemic RNAi. Our results suggest that endomembrane trafficking through the TGN and endosomes generally plays an important role in cellular uptake of silencing RNA. PMID:27306325
Imae, Rieko; Dejima, Katsufumi; Kage-Nakadai, Eriko; Arai, Hiroyuki; Mitani, Shohei
2016-06-16
RNA silencing signals in C. elegans spread among cells, leading to RNAi throughout the body. During systemic spread of RNAi, membrane trafficking is thought to play important roles. Here, we show that RNAi Spreading Defective-3 (rsd-3), which encodes a homolog of epsinR, a conserved ENTH (epsin N-terminal homology) domain protein, generally participates in cellular uptake of silencing RNA. RSD-3 is previously thought to be involved in systemic RNAi only in germ cells, but we isolated several deletion alleles of rsd-3, and found that these mutants are defective in the spread of silencing RNA not only into germ cells but also into somatic cells. RSD-3 is ubiquitously expressed, and intracellularly localized to the trans-Golgi network (TGN) and endosomes. Tissue-specific rescue experiments indicate that RSD-3 is required for importing silencing RNA into cells rather than exporting from cells. Structure/function analysis showed that the ENTH domain alone is sufficient, and membrane association of the ENTH domain is required, for RSD-3 function in systemic RNAi. Our results suggest that endomembrane trafficking through the TGN and endosomes generally plays an important role in cellular uptake of silencing RNA.
The human efflux transporter P-glycoprotein (P-gp; MDR1) functions an important cellular defense system against a variety of xenobiotics; however, little information exists on whether environmental chemicals interact with P-gp. Conazoles provide a unique challenge to exposure ass...
The human efflux transporter P-glycoprotein (P-gp, MDR1) functions an important cellular defense system against a variety of xenobiotics; however, little information exists on whether environmental chemicals interact with P-gp. Conazoles provide a unique challenge to exposure ass...
Growth phase-dependent activation of the DccRS regulon of Campylobacter jejuni
USDA-ARS?s Scientific Manuscript database
Two-component systems are widespread prokaryotic signal transduction devices which allow the regulation of cellular functions in response to changing environmental conditions. The two-component system DccRS (Cj1223-Cj1222) of Campylobacter jejuni is important for the colonization of chickens. Here w...
Kumar, Dinesh; Kumar, Ashutosh; Misra, Jyoti Ranjan; Chugh, Jeetender; Sharma, Shilpy; Hosur, Ramakrishna V
2008-06-01
SUMO, an important post-translational modifier of variety of substrate proteins, regulates different cellular functions. Here, we report the NMR resonance assignment of the folded and 8 M urea-denatured state of SUMO from Drosophila melanogaster (dsmt3).
Effect of supplemental taurine on juvenile channel catfish Ictalurus punctatus growth performance
USDA-ARS?s Scientific Manuscript database
Taurine is a beta-amino sulfur amino acid found in most animal tissues that has many important biological functions including bile salt conjugation, cellular osmoregulation, neuromodulation, calcium signaling. The benefits of supplementing diets with taurine are just beginning to be realized in a n...
[P21-activated kinases and their role in the nervous system].
Qin, Yuan; Ding, Yue-Min; Xia, Qiang
2012-12-25
P21-activated kinases (PAK) participate in a variety of important cellular activities, such as cytoskeleton remodeling, cell migration, cell cycle regulation, and apoptosis or survival. PAK also has an important impact on brain development, neuronal differentiation, and regulation of synaptic plasticity in the nervous system. PAK abnormalities result in diseases including cancer, Parkinson's disease (PD), Alzheimer's disease (AD) and neural retardation. Therefore, it is of vital physiological significance to investigate the neuronal function of PAK. In this paper we review the advancement of research on the neuronal biological function and the underlying mechanisms of PAK.
PARP13 and RNA regulation in immunity and cancer
Todorova, Tanya; Bock, Florian; Chang, Paul
2015-01-01
Posttranscriptional regulation of RNA is an important mechanism for activating and resolving cellular stress responses. Poly(ADP-ribose) Polymerase-13 (PARP13), also known as ZC3HAV1 and Zinc-finger Antiviral Protein (ZAP), is an RNA-binding protein that regulates the stability, and translation of specific mRNAs, and modulates the miRNA silencing pathway to globally impact miRNA targets. These functions of PARP13 are important components of the cellular response to stress. In addition, the ability of PARP13 to restrict oncogenic viruses and to repress the pro-survival cytokine receptor TRAILR4 suggests that it can be protective against malignant transformation and cancer development. The relevance of PARP13 to human health and disease make it a promising therapeutic target. PMID:25851173
Cellular dynamics in the muscle satellite cell niche
Bentzinger, C Florian; Wang, Yu Xin; Dumont, Nicolas A; Rudnicki, Michael A
2013-01-01
Satellite cells, the quintessential skeletal muscle stem cells, reside in a specialized local environment whose anatomy changes dynamically during tissue regeneration. The plasticity of this niche is attributable to regulation by the stem cells themselves and to a multitude of functionally diverse cell types. In particular, immune cells, fibrogenic cells, vessel-associated cells and committed and differentiated cells of the myogenic lineage have emerged as important constituents of the satellite cell niche. Here, we discuss the cellular dynamics during muscle regeneration and how disease can lead to perturbation of these mechanisms. To define the role of cellular components in the muscle stem cell niche is imperative for the development of cell-based therapies, as well as to better understand the pathobiology of degenerative conditions of the skeletal musculature. PMID:24232182
Liu, Suxuan; Xiong, Xinyu; Zhao, Xianxian; Yang, Xiaofeng; Wang, Hong
2015-05-09
Eukaryotic cell membrane dynamics change in curvature during physiological and pathological processes. In the past ten years, a novel protein family, Fes/CIP4 homology-Bin/Amphiphysin/Rvs (F-BAR) domain proteins, has been identified to be the most important coordinators in membrane curvature regulation. The F-BAR domain family is a member of the Bin/Amphiphysin/Rvs (BAR) domain superfamily that is associated with dynamic changes in cell membrane. However, the molecular basis in membrane structure regulation and the biological functions of F-BAR protein are unclear. The pathophysiological role of F-BAR protein is unknown. This review summarizes the current understanding of structure and function in the BAR domain superfamily, classifies F-BAR family proteins into nine subfamilies based on domain structure, and characterizes F-BAR protein structure, domain interaction, and functional relevance. In general, F-BAR protein binds to cell membrane via F-BAR domain association with membrane phospholipids and initiates membrane curvature and scission via Src homology-3 (SH3) domain interaction with its partner proteins. This process causes membrane dynamic changes and leads to seven important cellular biological functions, which include endocytosis, phagocytosis, filopodium, lamellipodium, cytokinesis, adhesion, and podosome formation, via distinct signaling pathways determined by specific domain-binding partners. These cellular functions play important roles in many physiological and pathophysiological processes. We further summarize F-BAR protein expression and mutation changes observed in various diseases and developmental disorders. Considering the structure feature and functional implication of F-BAR proteins, we anticipate that F-BAR proteins modulate physiological and pathophysiological processes via transferring extracellular materials, regulating cell trafficking and mobility, presenting antigens, mediating extracellular matrix degradation, and transmitting signaling for cell proliferation.
Cell biology in China: Focusing on the lysosome.
Yang, Chonglin; Wang, Xiaochen
2017-06-01
The view that lysosomes are merely the recycling bins of the cell has changed greatly during recent years. Lysosomes are now known to play a central role in signal transduction, cellular adaptation, plasma membrane repair, immune responses and many other fundamental cellular processes. In conjunction with the seminal discoveries made by international colleagues, many important questions regarding lysosomes are being addressed by Chinese scientists. In this review, we briefly summarize recent exciting findings in China on lysosomal signaling, biogenesis, integrity and physiological functions. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Srivastava, Vineet Kumar; Raikwar, Shailendra; Tuteja, Renu; Tuteja, Narendra
2016-05-01
PsSEOF-1 binds to calcium and its expression is upregulated by salinity treatment. PsSEOF - 1 -overexpressing transgenic tobacco showed enhanced salinity stress tolerance by maintaining cellular ion homeostasis and modulating ROS-scavenging pathway. Calcium (Ca(2+)) plays important role in growth, development and stress tolerance in plants. Cellular Ca(2+) homeostasis is achieved by the collective action of channels, pumps, antiporters and by Ca(2+) chelators present in the cell like calcium-binding proteins. Forisomes are ATP-independent mechanically active motor proteins known to function in wound sealing of injured sieve elements of phloem tissue. The Ca(2+)-binding activity of forisome and its role in abiotic stress signaling were largely unknown. Here we report the Ca(2+)-binding activity of pea forisome (PsSEO-F1) and its novel function in promoting salinity tolerance in transgenic tobacco. Native PsSEO-F1 promoter positively responded in salinity stress as confirmed using GUS reporter. Overexpression of PsSEO-F1 tobacco plants confers salinity tolerance by alleviating ionic toxicity and increased ROS scavenging activity which probably results in reduced membrane damage and improved yield under salinity stress. Evaluation of several physiological indices shows an increase in relative water content, electrolyte leakage, proline accumulation and chlorophyll content in transgenic lines as compared with null-segregant control. Expression of several genes involved in cellular homeostasis is perturbed by PsSEO-F1 overexpression. These findings suggest that PsSEO-F1 provides salinity tolerance through cellular Ca(2+) homeostasis which in turn modulates ROS machinery providing indirect link between Ca(2+) and ROS signaling under salinity-induced perturbation. PsSEO-F1 most likely functions in salinity stress tolerance by improving antioxidant machinery and mitigating ion toxicity in transgenic lines. This finding should make an important contribution in our better understanding of the significance of calcium signaling in phloem tissue leading to salinity stress tolerance.
Kotiadis, Vassilios N.; Duchen, Michael R.; Osellame, Laura D.
2014-01-01
Background The maintenance of cell metabolism and homeostasis is a fundamental characteristic of living organisms. In eukaryotes, mitochondria are the cornerstone of these life supporting processes, playing leading roles in a host of core cellular functions, including energy transduction, metabolic and calcium signalling, and supporting roles in a number of biosynthetic pathways. The possession of a discrete mitochondrial genome dictates that the maintenance of mitochondrial ‘fitness’ requires quality control mechanisms which involve close communication with the nucleus. Scope of review This review explores the synergistic mechanisms that control mitochondrial quality and function and ensure cellular bioenergetic homeostasis. These include antioxidant defence mechanisms that protect against oxidative damage caused by reactive oxygen species, while regulating signals transduced through such free radicals. Protein homeostasis controls import, folding, and degradation of proteins underpinned by mechanisms that regulate bioenergetic capacity through the mitochondrial unfolded protein response. Autophagic machinery is recruited for mitochondrial turnover through the process of mitophagy. Mitochondria also communicate with the nucleus to exact specific transcriptional responses through retrograde signalling pathways. Major conclusions The outcome of mitochondrial quality control is not only reliant on the efficient operation of the core homeostatic mechanisms but also in the effective interaction of mitochondria with other cellular components, namely the nucleus. General significance Understanding mitochondrial quality control and the interactions between the organelle and the nucleus will be crucial in developing therapies for the plethora of diseases in which the pathophysiology is determined by mitochondrial dysfunction. This article is part of a Special Issue entitled Frontiers of Mitochondrial Research. PMID:24211250
ERIC Educational Resources Information Center
Daher, Wajeeh; Baya'a, Nimer
2012-01-01
Learning in the cellular phone environment enables utilizing the multiple functions of the cellular phone, such as mobility, availability, interactivity, verbal and voice communication, taking pictures or recording audio and video, measuring time and transferring information. These functions together with mathematics-designated cellular phone…
Regulation of µ-Opioid Receptors: Desensitization, Phosphorylation, Internalization, and Tolerance
Williams, John T.; Ingram, Susan L.; Henderson, Graeme; Chavkin, Charles; von Zastrow, Mark; Schulz, Stefan; Koch, Thomas; Evans, Christopher J.
2013-01-01
Morphine and related µ-opioid receptor (MOR) agonists remain among the most effective drugs known for acute relief of severe pain. A major problem in treating painful conditions is that tolerance limits the long-term utility of opioid agonists. Considerable effort has been expended on developing an understanding of the molecular and cellular processes that underlie acute MOR signaling, short-term receptor regulation, and the progression of events that lead to tolerance for different MOR agonists. Although great progress has been made in the past decade, many points of contention and controversy cloud the realization of this progress. This review attempts to clarify some confusion by clearly defining terms, such as desensitization and tolerance, and addressing optimal pharmacological analyses for discerning relative importance of these cellular mechanisms. Cellular and molecular mechanisms regulating MOR function by phosphorylation relative to receptor desensitization and endocytosis are comprehensively reviewed, with an emphasis on agonist-biased regulation and areas where knowledge is lacking or controversial. The implications of these mechanisms for understanding the substantial contribution of MOR signaling to opioid tolerance are then considered in detail. While some functional MOR regulatory mechanisms contributing to tolerance are clearly understood, there are large gaps in understanding the molecular processes responsible for loss of MOR function after chronic exposure to opioids. Further elucidation of the cellular mechanisms that are regulated by opioids will be necessary for the successful development of MOR-based approaches to new pain therapeutics that limit the development of tolerance. PMID:23321159
Cationic liposome/DNA complexes: from structure to interactions with cellular membranes.
Caracciolo, Giulio; Amenitsch, Heinz
2012-10-01
Gene-based therapeutic approaches are based upon the concept that, if a disease is caused by a mutation in a gene, then adding back the wild-type gene should restore regular function and attenuate the disease phenotype. To deliver the gene of interest, both viral and nonviral vectors are used. Viruses are efficient, but their application is impeded by detrimental side-effects. Among nonviral vectors, cationic liposomes are the most promising candidates for gene delivery. They form stable complexes with polyanionic DNA (lipoplexes). Despite several advantages over viral vectors, the transfection efficiency (TE) of lipoplexes is too low compared with those of engineered viral vectors. This is due to lack of knowledge about the interactions between complexes and cellular components. Rational design of efficient lipoplexes therefore requires deeper comprehension of the interactions between the vector and the DNA as well as the cellular pathways and mechanisms involved. The importance of the lipoplex structure in biological function is revealed in the application of synchrotron small-angle X-ray scattering in combination with functional TE measurements. According to current understanding, the structure of lipoplexes can change upon interaction with cellular membranes and such changes affect the delivery efficiency. Recently, a correlation between the mechanism of gene release from complexes, the structure, and the physical and chemical parameters of the complexes has been established. Studies aimed at correlating structure and activity of lipoplexes are reviewed herein. This is a fundamental step towards rational design of highly efficient lipid gene vectors.
Zhang, Nan; Qiao, Zhenyi; Liang, Zheng; Mei, Bing; Xu, Zhengkai; Song, Rentao
2012-01-01
Zea mays (maize) Opaque-2 (ZmO2) protein is an important bZIP transcription factor that regulates the expression of major storage proteins (22-kD zeins) and other important genes during maize seed development. ZmO2 is subject to functional regulation through protein-protein interactions. To unveil the potential regulatory network associated with ZmO2, a protein-protein interaction study was carried out using the truncated version of ZmO2 (O2-2) as bait in a yeast two-hybrid screen with a maize seed cDNA library. A protein with homology to Taxilin was found to have stable interaction with ZmO2 in yeast and was designated as ZmTaxilin. Sequence analysis indicated that ZmTaxilin has a long coiled-coil domain containing three conserved zipper motifs. Each of the three zipper motifs is individually able to interact with ZmO2 in yeast. A GST pull-down assay demonstrated the interaction between GST-fused ZmTaxilin and ZmO2 extracted from developing maize seeds. Using onion epidermal cells as in vivo assay system, we found that ZmTaxilin could change the sub-cellular distribution of ZmO2. We also demonstrated that this change significantly repressed the transcriptional activity of ZmO2 on the 22-kD zein promoter. Our study suggests that a Taxilin-mediated change in sub-cellular distribution of ZmO2 may have important functional consequences for ZmO2 activity. PMID:22937104
Targeting Cellular Calcium Homeostasis to Prevent Cytokine-Mediated Beta Cell Death.
Clark, Amy L; Kanekura, Kohsuke; Lavagnino, Zeno; Spears, Larry D; Abreu, Damien; Mahadevan, Jana; Yagi, Takuya; Semenkovich, Clay F; Piston, David W; Urano, Fumihiko
2017-07-17
Pro-inflammatory cytokines are important mediators of islet inflammation, leading to beta cell death in type 1 diabetes. Although alterations in both endoplasmic reticulum (ER) and cytosolic free calcium levels are known to play a role in cytokine-mediated beta cell death, there are currently no treatments targeting cellular calcium homeostasis to combat type 1 diabetes. Here we show that modulation of cellular calcium homeostasis can mitigate cytokine- and ER stress-mediated beta cell death. The calcium modulating compounds, dantrolene and sitagliptin, both prevent cytokine and ER stress-induced activation of the pro-apoptotic calcium-dependent enzyme, calpain, and partly suppress beta cell death in INS1E cells and human primary islets. These agents are also able to restore cytokine-mediated suppression of functional ER calcium release. In addition, sitagliptin preserves function of the ER calcium pump, sarco-endoplasmic reticulum Ca 2+ -ATPase (SERCA), and decreases levels of the pro-apoptotic protein thioredoxin-interacting protein (TXNIP). Supporting the role of TXNIP in cytokine-mediated cell death, knock down of TXNIP in INS1-E cells prevents cytokine-mediated beta cell death. Our findings demonstrate that modulation of dynamic cellular calcium homeostasis and TXNIP suppression present viable pharmacologic targets to prevent cytokine-mediated beta cell loss in diabetes.
From Stochastic Foam to Designed Structure: Balancing Cost and Performance of Cellular Metals
Lehmhus, Dirk; Vesenjak, Matej
2017-01-01
Over the past two decades, a large number of metallic foams have been developed. In recent years research on this multi-functional material class has further intensified. However, despite their unique properties only a limited number of large-scale applications have emerged. One important reason for this sluggish uptake is their high cost. Many cellular metals require expensive raw materials, complex manufacturing procedures, or a combination thereof. Some attempts have been made to decrease costs by introducing novel foams based on cheaper components and new manufacturing procedures. However, this has often yielded materials with unreliable properties that inhibit utilization of their full potential. The resulting balance between cost and performance of cellular metals is probed in this editorial, which attempts to consider cost not in absolute figures, but in relation to performance. To approach such a distinction, an alternative classification of cellular metals is suggested which centers on structural aspects and the effort of realizing them. The range thus covered extends from fully stochastic foams to cellular structures designed-to-purpose. PMID:28786935
Haemoglobin function in vertebrates: evolutionary changes in cellular regulation in hypoxia.
Nikinmaa, M
2001-11-15
The evolution of erythrocytic hypoxia responses is reviewed by comparing the cellular control of haemoglobin-oxygen affinity in agnathans, teleost fish and terrestrial vertebrates. The most ancient response to hypoxic conditions appears to be an increase in cell volume, which increases the haemoglobin-oxygen affinity in lampreys. In teleost fish, an increase of cell volume in hypoxic conditions is also evident. The volume increase is coupled to an increase in erythrocyte pH. These changes are caused by an adrenergic activation of sodium/proton exchange across the erythrocyte membrane. The mechanism is important in acute hypoxia and is followed by a decrease in cellular adenosine triphosphate (ATP) and guanosine triphosphate (GTP) concentrations in continued hypoxia. In hypoxic bird embryos, the ATP levels are also reduced. The mechanisms by which hypoxia decreases cellular ATP and GTP concentrations remains unknown, although at least in bird embryos cAMP-dependent mechanisms have been implicated. In mammals, hypoxia responses appear to occur mainly via modulation of cellular organic phosphate concentrations. In moderate hypoxia, 2,3-diphosphoglycerate levels are increased as a result of alkalosis caused by increased ventilation.
Standing your Ground to Exoribonucleases: Function of Flavivirus Long Non-coding RNAs
Charley, Phillida A.; Wilusz, Jeffrey
2015-01-01
Members of the Flaviviridae (e.g. Dengue virus, West Nile virus, and Hepatitis C virus) contain a positive-sense RNA genome that encodes a large polyprotein. It is now also clear most if not all of these viruses also produce an abundant subgenomic long non-coding RNA. These non-coding RNAs, which are called subgenomicflavivirus RNAs (sfRNAs) or Xrn1-resistant RNAs (xrRNAs), are stable decay intermediates generated from the viral genomic RNA through the stalling of the cellular exoribonuclease Xrn1 at highly structured regions. Several functions of these flavivirus long non-coding RNAs have been revealed in recent years. The generation of these sfRNAs/xrRNAs from viral transcripts results in the repression of Xrn1 and the dysregulation of cellular mRNA stability. The abundant sfRNAs also serve directly as a decoy for important cellular protein regulators of the interferon and RNA interference antiviral pathways. Thus the generation of long non-coding RNAs from flaviviruses, hepaciviruses and pestiviruses likely disrupts aspects of innate immunity and may directly contribute to viral replication, cytopathology and pathogenesis. PMID:26368052
Structural and functional insights into sorting nexin 5/6 interaction with bacterial effector IncE.
Sun, Qingxiang; Yong, Xin; Sun, Xiaodong; Yang, Fan; Dai, Zhonghua; Gong, Yanqiu; Zhou, Liming; Zhang, Xia; Niu, Dawen; Dai, Lunzhi; Liu, Jia-Jia; Jia, Da
2017-01-01
The endosomal trafficking pathways are essential for many cellular activities. They are also important targets by many intracellular pathogens. Key regulators of the endosomal trafficking include the retromer complex and sorting nexins (SNXs). Chlamydia trachomatis effector protein IncE directly targets the retromer components SNX5 and SNX6 and suppresses retromer-mediated transport, but the exact mechanism has remained unclear. We present the crystal structure of the PX domain of SNX5 in complex with IncE, showing that IncE binds to a highly conserved hydrophobic groove of SNX5. The unique helical hairpin of SNX5/6 is essential for binding, explaining the specificity of SNX5/6 for IncE. The SNX5/6-IncE interaction is required for cellular localization of IncE and its inhibitory function. Mechanistically, IncE inhibits the association of CI-MPR cargo with retromer-containing endosomal subdomains. Our study provides new insights into the regulation of retromer-mediated transport and illustrates the intricate competition between host and pathogens in controlling cellular trafficking.
Functional advantages of dynamic protein disorder.
Berlow, Rebecca B; Dyson, H Jane; Wright, Peter E
2015-09-14
Intrinsically disordered proteins participate in many important cellular regulatory processes. The absence of a well-defined structure in the free state of a disordered domain, and even on occasion when it is bound to physiological partners, is fundamental to its function. Disordered domains are frequently the location of multiple sites for post-translational modification, the key element of metabolic control in the cell. When a disordered domain folds upon binding to a partner, the resulting complex buries a far greater surface area than in an interaction of comparably-sized folded proteins, thus maximizing specificity at modest protein size. Disorder also maintains accessibility of sites for post-translational modification. Because of their inherent plasticity, disordered domains frequently adopt entirely different structures when bound to different partners, increasing the repertoire of available interactions without the necessity for expression of many different proteins. This feature also adds to the faithfulness of cellular regulation, as the availability of a given disordered domain depends on competition between various partners relevant to different cellular processes. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Tuet, Wing Y.; Chen, Yunle; Fok, Shierly; Champion, Julie A.; Ng, Nga L.
2017-09-01
Cardiopulmonary health implications resulting from exposure to secondary organic aerosols (SOA), which comprise a significant fraction of ambient particulate matter (PM), have received increasing interest in recent years. In this study, alveolar macrophages were exposed to SOA generated from the photooxidation of biogenic and anthropogenic precursors (isoprene, α-pinene, β-caryophyllene, pentadecane, m-xylene, and naphthalene) under different formation conditions (RO2 + HO2 vs. RO2 + NO dominant, dry vs. humid). Various cellular responses were measured, including reactive oxygen and nitrogen species (ROS/RNS) production and secreted levels of cytokines, tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). SOA precursor identity and formation condition affected all measured responses in a hydrocarbon-specific manner. With the exception of naphthalene SOA, cellular responses followed a trend where TNF-α levels reached a plateau with increasing IL-6 levels. ROS/RNS levels were consistent with relative levels of TNF-α and IL-6, due to their respective inflammatory and anti-inflammatory effects. Exposure to naphthalene SOA, whose aromatic-ring-containing products may trigger different cellular pathways, induced higher levels of TNF-α and ROS/RNS than suggested by the trend. Distinct cellular response patterns were identified for hydrocarbons whose photooxidation products shared similar chemical functionalities and structures, which suggests that the chemical structure (carbon chain length and functionalities) of photooxidation products may be important for determining cellular effects. A positive nonlinear correlation was also detected between ROS/RNS levels and previously measured DTT (dithiothreitol) activities for SOA samples. In the context of ambient samples collected during summer and winter in the greater Atlanta area, all laboratory-generated SOA produced similar or higher levels of ROS/RNS and DTT activities. These results suggest that the health effects of SOA are important considerations for understanding the health implications of ambient aerosols.
Wang, Qian; Li, Yanwei; Dong, Hong; Wang, Li; Peng, Jinmei; An, Tongqing; Yang, Xufu; Tian, Zhijun; Cai, Xuehui
2017-02-22
The highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) continues to pose one of the greatest threats to the swine industry. M protein is the most conserved and important structural protein of PRRSV. However, information about the host cellular proteins that interact with M protein remains limited. Host cellular proteins that interact with the M protein of HP-PRRSV were immunoprecipitated from MARC-145 cells infected with PRRSV HuN4-F112 using the M monoclonal antibody (mAb). The differentially expressed proteins were identified by LC-MS/MS. The screened proteins were used for bioinformatics analysis including Gene Ontology, the interaction network, and the enriched KEGG pathways. Some interested cellular proteins were validated to interact with M protein by CO-IP. The PRRSV HuN4-F112 infection group had 10 bands compared with the control group. The bands included 219 non-redundant cellular proteins that interact with M protein, which were identified by LC-MS/MS with high confidence. The gene ontology and Kyoto encyclopedia of genes and genomes (KEGG) pathway bioinformatic analyses indicated that the identified proteins could be assigned to several different subcellular locations and functional classes. Functional analysis of the interactome profile highlighted cellular pathways associated with protein translation, infectious disease, and signal transduction. Two interested cellular proteins-nuclear factor of activated T cells 45 kDa (NF45) and proliferating cell nuclear antigen (PCNA)-that could interact with M protein were validated by Co-IP and confocal analyses. The interactome data between PRRSV M protein and cellular proteins were identified and contribute to the understanding of the roles of M protein in the replication and pathogenesis of PRRSV. The interactome of M protein will aid studies of virus/host interactions and provide means to decrease the threat of PRRSV to the swine industry in the future.
Rewiring of cellular membrane homeostasis by picornaviruses.
Belov, George A; Sztul, Elizabeth
2014-09-01
Viruses are obligatory intracellular parasites and utilize host elements to support key viral processes, including penetration of the plasma membrane, initiation of infection, replication, and suppression of the host's antiviral defenses. In this review, we focus on picornaviruses, a family of positive-strand RNA viruses, and discuss the mechanisms by which these viruses hijack the cellular machinery to form and operate membranous replication complexes. Studies aimed at revealing factors required for the establishment of viral replication structures identified several cellular-membrane-remodeling proteins and led to the development of models in which the virus used a preexisting cellular-membrane-shaping pathway "as is" for generating its replication organelles. However, as more data accumulate, this view is being increasingly questioned, and it is becoming clearer that viruses may utilize cellular factors in ways that are distinct from the normal functions of these proteins in uninfected cells. In addition, the proteincentric view is being supplemented by important new studies showing a previously unappreciated deep remodeling of lipid homeostasis, including extreme changes to phospholipid biosynthesis and cholesterol trafficking. The data on viral modifications of lipid biosynthetic pathways are still rudimentary, but it appears once again that the viruses may rewire existing pathways to generate novel functions. Despite remarkable progress, our understanding of how a handful of viral proteins can completely overrun the multilayered, complex mechanisms that control the membrane organization of a eukaryotic cell remains very limited. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Schmidt, Béla Z; Lehmann, Martin; Gutbier, Simon; Nembo, Erastus; Noel, Sabrina; Smirnova, Lena; Forsby, Anna; Hescheler, Jürgen; Avci, Hasan X; Hartung, Thomas; Leist, Marcel; Kobolák, Julianna; Dinnyés, András
2017-01-01
Neurotoxicity and developmental neurotoxicity are important issues of chemical hazard assessment. Since the interpretation of animal data and their extrapolation to man is challenging, and the amount of substances with information gaps exceeds present animal testing capacities, there is a big demand for in vitro tests to provide initial information and to prioritize for further evaluation. During the last decade, many in vitro tests emerged. These are based on animal cells, human tumour cell lines, primary cells, immortalized cell lines, embryonic stem cells, or induced pluripotent stem cells. They differ in their read-outs and range from simple viability assays to complex functional endpoints such as neural crest cell migration. Monitoring of toxicological effects on differentiation often requires multiomics approaches, while the acute disturbance of neuronal functions may be analysed by assessing electrophysiological features. Extrapolation from in vitro data to humans requires a deep understanding of the test system biology, of the endpoints used, and of the applicability domains of the tests. Moreover, it is important that these be combined in the right way to assess toxicity. Therefore, knowledge on the advantages and disadvantages of all cellular platforms, endpoints, and analytical methods is essential when establishing in vitro test systems for different aspects of neurotoxicity. The elements of a test, and their evaluation, are discussed here in the context of comprehensive prediction of potential hazardous effects of a compound. We summarize the main cellular characteristics underlying neurotoxicity, present an overview of cellular platforms and read-out combinations assessing distinct parts of acute and developmental neurotoxicology, and highlight especially the use of stem cell-based test systems to close gaps in the available battery of tests.
Isoforms, structures, and functions of versatile spectraplakin MACF1
Hu, Lifang; Su, Peihong; Li, Runzhi; Yin, Chong; Zhang, Yan; Shang, Peng; Yang, Tuanmin; Qian, Airong
2016-01-01
Spectraplakins are crucially important communicators, linking cytoskeletal components to each other and cellular junctions. Microtubule actin crosslinking factor 1 (MACF1), also known as actin crosslinking family 7 (ACF7), is a member of the spectraplakin family. It is expressed in numerous tissues and cells as one extensively studied spectraplakin. MACF1 has several isoforms with unique structures and well-known function to be able to crosslink F-actin and microtubules. MACF1 is one versatile spectraplakin with various functions in cell processes, embryo development, tissue-specific functions, and human diseases. The importance of MACF1 has become more apparent in recent years. Here, we summarize the current knowledge on the presence and function of MACF1 and provide perspectives on future research of MACF1 based on our studies and others. [BMB Reports 2016; 49(1): 37-44] PMID:26521939
NASA Technical Reports Server (NTRS)
Roux, S. J. (Editor)
1983-01-01
The hypothesis that calcium plays an important part in regulating cellular response to gravity and to other environmental stimuli is explored. Topics covered include the role of calmodulin and other proteins, gravitropic responses, bone demineralization during space flight, and intracellular communication.
USDA-ARS?s Scientific Manuscript database
Fatty acid binding protein 4 plays an important role in fatty acid transportation in adipocytes and its expression is related to obesity, insulin resistance, metabolic syndrome and intramuscular fat content. Yet little is understood about FABP4 functions at the cellular level in the bovine. Thus, we...
USDA-ARS?s Scientific Manuscript database
The ubiquitin–proteasome pathway (UPP) plays important roles in many cellular functions, such as protein quality control, cell cycle control, and signal transduction. The selective degradation of aberrant proteins by the UPP is essential for the timely removal of potential cytotoxic damaged or other...
Attenuation of Diabetes-induced Cardiac and Subcellular Defects by Sulphur-containing Amino Acids.
Tappia, Paramjit S; Adameova, Adriana; Dhalla, Naranjan S
2018-01-30
Patients with diabetes mellitus have an increased risk of mortality due to cardiovascular complications. Supplementation with specific sulphur-containing amino acids is rapidly emerging as a possible therapeutic adjuvant for diabetes and associated cardiovascular complications. It is well-known that oxidative stress plays an important role in the pathogenesis of diabetes-induced cardiovascular disease, which is invariably associated with abnormal blood lipid profile, insulin resistance and other symptoms of metabolic syndrome. Cysteine and taurine are among the most common sulphur-containing amino acids and their cellular levels decline during diabetes that may contribute to the development of the cardiomyopathy. Although sulphur-containing agents exert multiple actions on cellular and subcellular functions in the heart, they also exhibit antioxidant properties and thus may exert beneficial effects in different pathophysiological conditions. It is concluded that reduction of oxidative stress by cysteine and taurine may serve as an important mechanism for the attenuation of diabetes-induced subcellular and functional abnormalities in the heart. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Lamina-independent lamins in the nuclear interior serve important functions.
Dechat, T; Gesson, K; Foisner, R
2010-01-01
Nuclear lamins were originally described as the main constituents of the nuclear lamina, a filamentous meshwork closely associated with the inner nuclear membrane. However, within recent years, it has become increasingly evident that a fraction of lamins also resides throughout the nuclear interior. As intermediate-filament-type proteins, lamins have been suggested to fulfill mainly structural functions such as providing shape and mechanical stability to the nucleus. But recent findings show that both peripheral and nucleoplasmic lamins also have important roles in essential cellular processes such as transcription, DNA replication, cell cycle progression, and chromatin organization. Furthermore, more than 300 mutations in the gene encoding A-type lamins have been associated with several human diseases now generally termed laminopathies and comprising muscular dystrophies, lipodystrophies, cardiomyopathies, and premature aging diseases. This review focuses on the lamina-independent pool of lamins in the nuclear interior, which surprisingly has not been studied in much detail so far. We discuss the properties and regulation of nucleoplasmic lamins during the cell cycle, their interaction partners, and their potential involvement in cellular processes and the development of laminopathies.
The influenza virus NS1 protein as a therapeutic target.
Engel, Daniel A
2013-09-01
Nonstructural protein 1 (NS1) of influenza A virus plays a central role in virus replication and blockade of the host innate immune response, and is therefore being considered as a potential therapeutic target. The primary function of NS1 is to dampen the host interferon (IFN) response through several distinct molecular mechanisms that are triggered by interactions with dsRNA or specific cellular proteins. Sequestration of dsRNA by NS1 results in inhibition of the 2'-5' oligoadenylate synthetase/RNase L antiviral pathway, and also inhibition of dsRNA-dependent signaling required for new IFN production. Binding of NS1 to the E3 ubiquitin ligase TRIM25 prevents activation of RIG-I signaling and subsequent IFN induction. Cellular RNA processing is also targeted by NS1, through recognition of cleavage and polyadenylation specificity factor 30 (CPSF30), leading to inhibition of IFN-β mRNA processing as well as that of other cellular mRNAs. In addition NS1 binds to and inhibits cellular protein kinase R (PKR), thus blocking an important arm of the IFN system. Many additional proteins have been reported to interact with NS1, either directly or indirectly, which may serve its anti-IFN and additional functions, including the regulation of viral and host gene expression, signaling pathways and viral pathogenesis. Many of these interactions are potential targets for small-molecule intervention. Structural, biochemical and functional studies have resulted in hypotheses for drug discovery approaches that are beginning to bear experimental fruit, such as targeting the dsRNA-NS1 interaction, which could lead to restoration of innate immune function and inhibition of virus replication. This review describes biochemical, cell-based and nucleic acid-based approaches to identifying NS1 antagonists. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.
The influenza virus NS1 protein as a therapeutic target
Engel, Daniel A.
2015-01-01
Nonstructural protein 1 (NS1) of influenza A virus plays a central role in virus replication and blockade of the host innate immune response, and is therefore being considered as a potential therapeutic target. The primary function of NS1 is to dampen the host interferon (IFN) response through several distinct molecular mechanisms that are triggered by interactions with dsRNA or specific cellular proteins. Sequestration of dsRNA by NS1 results in inhibition of the 2’-5’ oligoadenylate synthetase/RNase L antiviral pathway, and also inhibition of dsRNA-dependent signaling required for new IFN production. Binding of NS1 to the E3 ubiquitin ligase TRIM25 prevents activation of RIG-I signaling and subsequent IFN induction. Cellular RNA processing is also targeted by NS1, through recognition of cleavage and polyadenylation specificity factor 30 (CPSF30), leading to inhibition of IFN- mRNA processing as well as that of other cellular mRNAs. In addition NS1 binds to and inhibits cellular protein kinase R (PKR), thus blocking an important arm of the IFN system. Many additional proteins have been reported to interact with NS1, either directly or indirectly, which may serve its anti-IFN and additional functions, including the regulation of viral and host gene expression, signaling pathways and viral pathogenesis. Many of these interactions are potential targets for small-molecule intervention. Structural, biochemical and functional studies have resulted in hypotheses for drug discovery approaches that are beginning to bear experimental fruit, such as targeting the dsRNA-NS1 interaction, which could lead to restoration of innate immune function and inhibition of virus replication. This review describes biochemical, cell-based and nucleic acid-based approaches to identifying NS1 antagonists. PMID:23796981
Rank, Lisa; Veith, Sebastian; Gwosch, Eva C; Demgenski, Janine; Ganz, Magdalena; Jongmans, Marjolijn C; Vogel, Christopher; Fischbach, Arthur; Buerger, Stefanie; Fischer, Jan M F; Zubel, Tabea; Stier, Anna; Renner, Christina; Schmalz, Michael; Beneke, Sascha; Groettrup, Marcus; Kuiper, Roland P; Bürkle, Alexander; Ferrando-May, Elisa; Mangerich, Aswin
2016-12-01
Genotoxic stress activates PARP1, resulting in the post-translational modification of proteins with poly(ADP-ribose) (PAR). We genetically deleted PARP1 in one of the most widely used human cell systems, i.e. HeLa cells, via TALEN-mediated gene targeting. After comprehensive characterization of these cells during genotoxic stress, we analyzed structure-function relationships of PARP1 by reconstituting PARP1 KO cells with a series of PARP1 variants. Firstly, we verified that the PARP1\\E988K mutant exhibits mono-ADP-ribosylation activity and we demonstrate that the PARP1\\L713F mutant is constitutively active in cells. Secondly, both mutants exhibit distinct recruitment kinetics to sites of laser-induced DNA damage, which can potentially be attributed to non-covalent PARP1-PAR interaction via several PAR binding motifs. Thirdly, both mutants had distinct functional consequences in cellular patho-physiology, i.e. PARP1\\L713F expression triggered apoptosis, whereas PARP1\\E988K reconstitution caused a DNA-damage-induced G2 arrest. Importantly, both effects could be rescued by PARP inhibitor treatment, indicating distinct cellular consequences of constitutive PARylation and mono(ADP-ribosyl)ation. Finally, we demonstrate that the cancer-associated PARP1 SNP variant (V762A) as well as a newly identified inherited PARP1 mutation (F304L\\V762A) present in a patient with pediatric colorectal carcinoma exhibit altered biochemical and cellular properties, thereby potentially supporting human carcinogenesis. Together, we establish a novel cellular model for PARylation research, by revealing strong structure-function relationships of natural and artificial PARP1 variants. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Rank, Lisa; Veith, Sebastian; Gwosch, Eva C.; Demgenski, Janine; Ganz, Magdalena; Jongmans, Marjolijn C.; Vogel, Christopher; Fischbach, Arthur; Buerger, Stefanie; Fischer, Jan M.F.; Zubel, Tabea; Stier, Anna; Renner, Christina; Schmalz, Michael; Beneke, Sascha; Groettrup, Marcus; Kuiper, Roland P.; Bürkle, Alexander; Ferrando-May, Elisa; Mangerich, Aswin
2016-01-01
Genotoxic stress activates PARP1, resulting in the post-translational modification of proteins with poly(ADP-ribose) (PAR). We genetically deleted PARP1 in one of the most widely used human cell systems, i.e. HeLa cells, via TALEN-mediated gene targeting. After comprehensive characterization of these cells during genotoxic stress, we analyzed structure–function relationships of PARP1 by reconstituting PARP1 KO cells with a series of PARP1 variants. Firstly, we verified that the PARP1\\E988K mutant exhibits mono-ADP-ribosylation activity and we demonstrate that the PARP1\\L713F mutant is constitutively active in cells. Secondly, both mutants exhibit distinct recruitment kinetics to sites of laser-induced DNA damage, which can potentially be attributed to non-covalent PARP1–PAR interaction via several PAR binding motifs. Thirdly, both mutants had distinct functional consequences in cellular patho-physiology, i.e. PARP1\\L713F expression triggered apoptosis, whereas PARP1\\E988K reconstitution caused a DNA-damage-induced G2 arrest. Importantly, both effects could be rescued by PARP inhibitor treatment, indicating distinct cellular consequences of constitutive PARylation and mono(ADP-ribosyl)ation. Finally, we demonstrate that the cancer-associated PARP1 SNP variant (V762A) as well as a newly identified inherited PARP1 mutation (F304L\\V762A) present in a patient with pediatric colorectal carcinoma exhibit altered biochemical and cellular properties, thereby potentially supporting human carcinogenesis. Together, we establish a novel cellular model for PARylation research, by revealing strong structure–function relationships of natural and artificial PARP1 variants. PMID:27694308
Traenkle, Bjoern; Rothbauer, Ulrich
2017-01-01
Single-domain antibodies (sdAbs) have substantially expanded the possibilities of advanced cellular imaging such as live-cell or super-resolution microscopy to visualize cellular antigens and their dynamics. In addition to their unique properties including small size, high stability, and solubility in many environments, sdAbs can be efficiently functionalized according to the needs of the respective imaging approach. Genetically encoded intrabodies fused to fluorescent proteins (chromobodies) have become versatile tools to study dynamics of endogenous proteins in living cells. Additionally, sdAbs conjugated to organic dyes were shown to label cellular structures with high density and minimal fluorophore displacement making them highly attractive probes for super-resolution microscopy. Here, we review recent advances of the chromobody technology to visualize localization and dynamics of cellular targets and the application of chromobody-based cell models for compound screening. Acknowledging the emerging importance of super-resolution microscopy in cell biology, we further discuss advantages and challenges of sdAbs for this technology.
Ray, Atrayee; Sarkar, Srimonti
2017-08-01
Giardia lamblia is the causative agent of the diarrheal disease giardiasis, against which only a limited number of drugs are currently available. Increasing reports of resistance to these drugs makes it necessary to identify new cellular targets for designing the next generation of anti-giardial drugs. Towards this goal, therapeutic agents that target the parasitic cellular machinery involved in the functioning of the unique microtubule-based cytoskeleton of the Giardia trophozoites are likely to be effective as microtubule function is not only important for the survival of trophozoites within the host, but also their extensive remodeling is necessary during the transition from trophozoites to cysts. Thus, drugs that affect microtubule remodeling have the potential to not only kill the disease-causing trophozoites, but also inhibit transmission of cysts in the community. Recent studies in other model organisms have indicated that the proteasome plays an integral role in the formation and remodeling of the microtubule-based cytoskeleton. This review draws attention to the various processes by which the giardial proteasome may impact the functioning of its microtubule cytoskeleton and highlights the possible differences of the parasitic proteasome and some of other cellular machinery involved in microtubule remodeling, compared to that of the higher eukaryotic host.
NASA Astrophysics Data System (ADS)
Misra, Santosh K.; Chang, Huei-Huei; Mukherjee, Prabuddha; Tiwari, Saumya; Ohoka, Ayako; Pan, Dipanjan
2015-10-01
A plethora of nanoarchitectures have been evaluated preclincially for applications in early detection and treatment of diseases at molecular and cellular levels resulted in limited success of their clinical translation. It is important to identify the factors that directly or indirectly affect their use in human. We bring a fundamental understanding of how to adjust the biocompatibility of carbon based spherical nanoparticles (CNPs) through defined chemistry and a vigilant choice of surface functionalities. CNPs of various size are designed by tweaking size (2-250 nm), surface chemistries (positive, or negatively charged), molecular chemistries (linear, dendritic, hyperbranched) and the molecular weight of the coating agents (MW 400-20 kDa). A combination of in vitro assays as tools were performed to determine the critical parameters that may trigger toxicity. Results indicated that hydrodynamic sizes are potentially not a risk factor for triggering cellular and systemic toxicity, whereas the presence of a highly positive surface charge and increasing molecular weight enhance the chance of inducing complement activation. Bare and carboxyl-terminated CNPs did present some toxicity at the cellular level which, however, is not comparable to those caused by positively charged CNPs. Similarly, negatively charged CNPs with hydroxyl and carboxylic functionalities did not cause any hemolysis.
2012-01-01
Background Bovine leukemia virus (BLV) is associated with enzootic bovine leukosis and is closely related to human T-cell leukemia virus type I. The Tax protein of BLV is a transcriptional activator of viral replication and a key contributor to oncogenic potential. We previously identified interesting mutant forms of Tax with elevated (TaxD247G) or reduced (TaxS240P) transactivation effects on BLV replication and propagation. However, the effects of these mutations on functions other than transcriptional activation are unknown. In this study, to identify genes that play a role in the cascade of signal events regulated by wild-type and mutant Tax proteins, we used a large-scale host cell gene-profiling approach. Results Using a microarray containing approximately 18,400 human mRNA transcripts, we found several alterations after the expression of Tax proteins in genes involved in many cellular functions such as transcription, signal transduction, cell growth, apoptosis, stress response, and immune response, indicating that Tax protein has multiple biological effects on various cellular environments. We also found that TaxD247G strongly regulated more genes involved in transcription, signal transduction, and cell growth functions, contrary to TaxS240P, which regulated fewer genes. In addition, the expression of genes related to stress response significantly increased in the presence of TaxS240P as compared to wild-type Tax and TaxD247G. By contrast, the largest group of downregulated genes was related to immune response, and the majority of these genes belonged to the interferon family. However, no significant difference in the expression level of downregulated genes was observed among the Tax proteins. Finally, the expression of important cellular factors obtained from the human microarray results were validated at the RNA and protein levels by real-time quantitative reverse transcription-polymerase chain reaction and western blotting, respectively, after transfecting Tax proteins into bovine cells and human HeLa cells. Conclusion A comparative analysis of wild-type and mutant Tax proteins indicates that Tax protein exerts a significant impact on cellular functions as diverse as transcription, signal transduction, cell growth, stress response and immune response. Importantly, our study is the first report that shows the extent to which BLV Tax regulates the innate immune response. PMID:22455445
A global characterization and identification of multifunctional enzymes.
Cheng, Xian-Ying; Huang, Wei-Juan; Hu, Shi-Chang; Zhang, Hai-Lei; Wang, Hao; Zhang, Jing-Xian; Lin, Hong-Huang; Chen, Yu-Zong; Zou, Quan; Ji, Zhi-Liang
2012-01-01
Multi-functional enzymes are enzymes that perform multiple physiological functions. Characterization and identification of multi-functional enzymes are critical for communication and cooperation between different functions and pathways within a complex cellular system or between cells. In present study, we collected literature-reported 6,799 multi-functional enzymes and systematically characterized them in structural, functional, and evolutionary aspects. It was found that four physiochemical properties, that is, charge, polarizability, hydrophobicity, and solvent accessibility, are important for characterization of multi-functional enzymes. Accordingly, a combinational model of support vector machine and random forest model was constructed, based on which 6,956 potential novel multi-functional enzymes were successfully identified from the ENZYME database. Moreover, it was observed that multi-functional enzymes are non-evenly distributed in species, and that Bacteria have relatively more multi-functional enzymes than Archaebacteria and Eukaryota. Comparative analysis indicated that the multi-functional enzymes experienced a fluctuation of gene gain and loss during the evolution from S. cerevisiae to H. sapiens. Further pathway analyses indicated that a majority of multi-functional enzymes were well preserved in catalyzing several essential cellular processes, for example, metabolisms of carbohydrates, nucleotides, and amino acids. What's more, a database of known multi-functional enzymes and a server for novel multi-functional enzyme prediction were also constructed for free access at http://bioinf.xmu.edu.cn/databases/MFEs/index.htm.
Cellular and molecular mechanisms of HGF/Met in the cardiovascular system.
Gallo, Simona; Sala, Valentina; Gatti, Stefano; Crepaldi, Tiziana
2015-12-01
Met tyrosine kinase receptor, also known as c-Met, is the HGF (hepatocyte growth factor) receptor. The HGF/Met pathway has a prominent role in cardiovascular remodelling after tissue injury. The present review provides a synopsis of the cellular and molecular mechanisms underlying the effects of HGF/Met in the heart and blood vessels. In vivo, HGF/Met function is particularly important for the protection of the heart in response to both acute and chronic insults, including ischaemic injury and doxorubicin-induced cardiotoxicity. Accordingly, conditional deletion of Met in cardiomyocytes results in impaired organ defence against oxidative stress. After ischaemic injury, activation of Met provides strong anti-apoptotic stimuli for cardiomyocytes through PI3K (phosphoinositide 3-kinase)/Akt and MAPK (mitogen-activated protein kinase) cascades. Recently, we found that HGF/Met is also important for autophagy regulation in cardiomyocytes via the mTOR (mammalian target of rapamycin) pathway. HGF/Met induces proliferation and migration of endothelial cells through Rac1 (Ras-related C3 botulinum toxin substrate 1) activation. In fibroblasts, HGF/Met antagonizes the actions of TGFβ1 (transforming growth factor β1) and AngII (angiotensin II), thus preventing fibrosis. Moreover, HGF/Met influences the inflammatory response of macrophages and the immune response of dendritic cells, indicating its protective function against atherosclerotic and autoimmune diseases. The HGF/Met axis also plays an important role in regulating self-renewal and myocardial regeneration through the enhancement of cardiac progenitor cells. HGF/Met has beneficial effects against myocardial infarction and endothelial dysfunction: the cellular and molecular mechanisms underlying repair function in the heart and blood vessels are common and include pro-angiogenic, anti-inflammatory and anti-fibrotic actions. Thus administration of HGF or HGF mimetics may represent a promising therapeutic agent for the treatment of both coronary and peripheral artery disease. © 2015 Authors; published by Portland Press Limited.
Carabetta, Valerie J.; Greco, Todd M.; Tanner, Andrew W.
2016-01-01
ABSTRACT Nε-Lysine acetylation has been recognized as a ubiquitous regulatory posttranslational modification that influences a variety of important biological processes in eukaryotic cells. Recently, it has been realized that acetylation is also prevalent in bacteria. Bacteria contain hundreds of acetylated proteins, with functions affecting diverse cellular pathways. Still, little is known about the regulation or biological relevance of nearly all of these modifications. Here we characterize the cellular growth-associated regulation of the Bacillus subtilis acetylome. Using acetylation enrichment and quantitative mass spectrometry, we investigate the logarithmic and stationary growth phases, identifying over 2,300 unique acetylation sites on proteins that function in essential cellular pathways. We determine an acetylation motif, EK(ac)(D/Y/E), which resembles the eukaryotic mitochondrial acetylation signature, and a distinct stationary-phase-enriched motif. By comparing the changes in acetylation with protein abundances, we discover a subset of critical acetylation events that are temporally regulated during cell growth. We functionally characterize the stationary-phase-enriched acetylation on the essential shape-determining protein MreB. Using bioinformatics, mutational analysis, and fluorescence microscopy, we define a potential role for the temporal acetylation of MreB in restricting cell wall growth and cell diameter. IMPORTANCE The past decade highlighted Nε-lysine acetylation as a prevalent posttranslational modification in bacteria. However, knowledge regarding the physiological importance and temporal regulation of acetylation has remained limited. To uncover potential regulatory roles for acetylation, we analyzed how acetylation patterns and abundances change between growth phases in B. subtilis. To demonstrate that the identification of cell growth-dependent modifications can point to critical regulatory acetylation events, we further characterized MreB, the cell shape-determining protein. Our findings led us to propose a role for MreB acetylation in controlling cell width by restricting cell wall growth. PMID:27376153
Mammalian Polyamine Metabolism and Function
Pegg, Anthony E.
2009-01-01
Summary Polyamines are ubiquitous small basic molecules that play multiple essential roles in mammalian physiology. Their cellular content is highly regulated and there is convincing evidence that altered metabolism is involvement in many disease states. Drugs altering polyamine levels may therefore have a variety of important targets. This review will summarize the current state of understanding of polyamine metabolism and function, the regulation of polyamine content, and heritable pathological conditions that may be derived from altered polyamine metabolism. PMID:19603518
NASA Technical Reports Server (NTRS)
Braam, J.; McIntire, L. V. (Principal Investigator)
1999-01-01
The plant cell wall is very complex, both in structure and function. The wall components and the mechanical properties of the wall have been implicated in conveying information that is important for morphogenesis. Proteoglycans, fragments of polysaccharides and the structural integrity of the wall may relay signals that influence cellular differentiation and growth control. Furthering our knowledge of cell wall structure and function is likely to have a profound impact on our understanding of how plant cells communicate with the extracellular environment.
Multi-scale Functional and Molecular Photoacoustic Tomography
Yao, Junjie; Xia, Jun; Wang, Lihong V.
2015-01-01
Photoacoustic tomography (PAT) combines rich optical absorption contrast with the high spatial resolution of ultrasound at depths in tissue. The high scalability of PAT has enabled anatomical imaging of biological structures ranging from organelles to organs. The inherent functional and molecular imaging capabilities of PAT have further allowed it to measure important physiological parameters and track critical cellular activities. Integration of PAT with other imaging technologies provides complementary capabilities and can potentially accelerate the clinical translation of PAT. PMID:25933617
Potentials of single-cell biology in identification and validation of disease biomarkers.
Niu, Furong; Wang, Diane C; Lu, Jiapei; Wu, Wei; Wang, Xiangdong
2016-09-01
Single-cell biology is considered a new approach to identify and validate disease-specific biomarkers. However, the concern raised by clinicians is how to apply single-cell measurements for clinical practice, translate the message of single-cell systems biology into clinical phenotype or explain alterations of single-cell gene sequencing and function in patient response to therapies. This study is to address the importance and necessity of single-cell gene sequencing in the identification and development of disease-specific biomarkers, the definition and significance of single-cell biology and single-cell systems biology in the understanding of single-cell full picture, the development and establishment of whole-cell models in the validation of targeted biological function and the figure and meaning of single-molecule imaging in single cell to trace intra-single-cell molecule expression, signal, interaction and location. We headline the important role of single-cell biology in the discovery and development of disease-specific biomarkers with a special emphasis on understanding single-cell biological functions, e.g. mechanical phenotypes, single-cell biology, heterogeneity and organization of genome function. We have reason to believe that such multi-dimensional, multi-layer, multi-crossing and stereoscopic single-cell biology definitely benefits the discovery and development of disease-specific biomarkers. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
Vitamin C transport and its role in the central nervous system
May, James M.
2013-01-01
Vitamin C, or ascorbic acid, is important as an antioxidant and participates in numerous cellular functions. Although it circulates in plasma in micromolar concentrations, it reaches millimolar concentrations in most tissues. These high ascorbate cellular concentrations are thought to be generated and maintained by the SVCT2 (Slc23a2), a specific transporter for ascorbate. The vitamin is also readily recycled from its oxidized forms inside cells. Neurons in the central nervous system (CNS) contain some of the highest ascorbic acid concentrations of mammalian tissues. Intracellular ascorbate serves several functions in the CNS, including antioxidant protection, peptide amidation, myelin formation, synaptic potentiation, and protection against glutamate toxicity. The importance of the SVCT2 for CNS function is supported by the finding that its targeted deletion in mice causes widespread cerebral hemorrhage and death on post-natal day one. Neuronal ascorbate content as maintained by this protein also has relevance for human disease, since ascorbate supplements decrease infarct size in ischemia-reperfusion injury models of stroke, and since ascorbate may protect neurons from the oxidant damage associated with neurodegenerative diseases such as Alzheimer’s, Parkinson’s, and Huntington’s. The aim of this review is to assess the role of the SVCT2 in regulating neuronal ascorbate homeostasis and the extent to which ascorbate affects brain function and antioxidant defenses in the CNS. PMID:22116696
Close Encounters - Probing Proximal Proteins in Live or Fixed Cells.
Lönn, Peter; Landegren, Ulf
2017-07-01
The well-oiled machinery of the cellular proteome operates via variable expression, modifications, and interactions of proteins, relaying genomic and transcriptomic information to coordinate cellular functions. In recent years, a number of techniques have emerged that serve to identify sets of proteins acting in close proximity in the course of orchestrating cellular activities. These proximity-dependent assays, including BiFC, BioID, APEX, FRET, and isPLA, have opened up new avenues to examine protein interactions in live or fixed cells. We review herein the current status of proximity-dependent in situ techniques. We compare the advantages and limitations of the methods, underlining recent progress and the growing importance of these techniques in basic research, and we discuss their potential as tools for drug development and diagnostics. Copyright © 2017 Elsevier Ltd. All rights reserved.
Quantifying lipid changes in various membrane compartments using lipid binding protein domains.
Várnai, Péter; Gulyás, Gergő; Tóth, Dániel J; Sohn, Mira; Sengupta, Nivedita; Balla, Tamas
2017-06-01
One of the largest challenges in cell biology is to map the lipid composition of the membranes of various organelles and define the exact location of processes that control the synthesis and distribution of lipids between cellular compartments. The critical role of phosphoinositides, low-abundant lipids with rapid metabolism and exceptional regulatory importance in the control of almost all aspects of cellular functions created the need for tools to visualize their localizations and dynamics at the single cell level. However, there is also an increasing need for methods to determine the cellular distribution of other lipids regulatory or structural, such as diacylglycerol, phosphatidic acid, or other phospholipids and cholesterol. This review will summarize recent advances in this research field focusing on the means by which changes can be described in more quantitative terms. Published by Elsevier Ltd.
Lee, Yoon Kyeung; Jang, Kyung-In; Ma, Yinji; Koh, Ahyeon; Chen, Hang; Jung, Han Na; Kim, Yerim; Kwak, Jean Won; Wang, Liang; Xue, Yeguang; Yang, Yiyuan; Tian, Wenlong; Jiang, Yu; Zhang, Yihui; Feng, Xue; Huang, Yonggang
2017-01-01
A collection of materials and device architectures are introduced for thin, stretchable arrays of ion sensors that mount on open cellular substrates to facilitate solution exchange for use in biointegrated electronics. The results include integration strategies and studies of fundamental characteristics in chemical sensing and mechanical response. The latter involves experimental measurements and theoretical simulations that establish important considerations in the design of low modulus, stretchable properties in cellular substrates, and in the realization of advanced capabilities in spatiotemporal mapping of chemicals' gradients. As the chemical composition of extracellular fluids contains valuable information related to biological function, the concepts introduced here have potential utility across a range of skin- and internal-organ-integrated electronics where soft mechanics, fluidic permeability, and advanced chemical sensing capabilities are key requirements. PMID:28989338
Engineering a biospecific communication pathway between cells and electrodes
NASA Astrophysics Data System (ADS)
Collier, Joel H.; Mrksich, Milan
2006-02-01
Methods for transducing the cellular activities of mammalian cells into measurable electronic signals are important in many biotechnical applications, including biosensors, cell arrays, and other cell-based devices. This manuscript describes an approach for functionally integrating cellular activities and electrical processes in an underlying substrate. The cells are engineered with a cell-surface chimeric receptor that presents the nonmammalian enzyme cutinase. Action of this cell-surface cutinase on enzyme substrate self-assembled monolayers switches a nonelectroactive hydroxyphenyl ester to an electroactive hydroquinone, providing an electrical activity that can be identified with cyclic voltammetry. In this way, cell-surface enzymatic activity is transduced into electronic signals. The development of strategies to directly interface the activities of cells with materials will be important to enabling a broad class of hybrid microsystems that combine living and nonliving components. biomaterial | extracellular matrix | signal transduction
The dynamic regulation of NAD metabolism in mitochondria
Stein, Liana Roberts; Imai, Shin-ichiro
2012-01-01
Mitochondria are intracellular powerhouses that produce ATP and carry out diverse functions for cellular energy metabolism. While the maintenance of an optimal NAD/NADH ratio is essential for mitochondrial function, it has recently become apparent that the maintenance of the mitochondrial NAD pool also has critical importance. The biosynthesis, transport, and catabolism of NAD and its key intermediates play an important role in the regulation of NAD-consuming mediators, such as sirtuins, poly-ADP-ribose polymerases, and CD38/157 ectoenzymes, in intra- and extracellular compartments. Mitochondrial NAD biosynthesis is also modulated in response to nutritional and environmental stimuli. In this article, we discuss this dynamic regulation of NAD metabolism in mitochondria to shed light on the intimate connection between NAD and mitochondrial function. PMID:22819213
Positioning of centrioles is a conserved readout of Frizzled planar cell polarity signalling
Carvajal-Gonzalez, Jose Maria; Roman, Angel-Carlos; Mlodzik, Marek
2016-01-01
Planar cell polarity (PCP) signalling is a well-conserved developmental pathway regulating cellular orientation during development. An evolutionarily conserved pathway readout is not established and, moreover, it is thought that PCP mediated cellular responses are tissue-specific. A key PCP function in vertebrates is to regulate coordinated centriole/cilia positioning, a function that has not been associated with PCP in Drosophila. Here we report instructive input of Frizzled-PCP (Fz/PCP) signalling into polarized centriole positioning in Drosophila wings. We show that centrioles are polarized in pupal wing cells as a readout of PCP signalling, with both gain and loss-of-function Fz/PCP signalling affecting centriole polarization. Importantly, loss or gain of centrioles does not affect Fz/PCP establishment, implicating centriolar positioning as a conserved PCP-readout, likely downstream of PCP-regulated actin polymerization. Together with vertebrate data, these results suggest a unifying model of centriole/cilia positioning as a common downstream effect of PCP signalling from flies to mammals. PMID:27021213
Positioning of centrioles is a conserved readout of Frizzled planar cell polarity signalling.
Carvajal-Gonzalez, Jose Maria; Roman, Angel-Carlos; Mlodzik, Marek
2016-03-29
Planar cell polarity (PCP) signalling is a well-conserved developmental pathway regulating cellular orientation during development. An evolutionarily conserved pathway readout is not established and, moreover, it is thought that PCP mediated cellular responses are tissue-specific. A key PCP function in vertebrates is to regulate coordinated centriole/cilia positioning, a function that has not been associated with PCP in Drosophila. Here we report instructive input of Frizzled-PCP (Fz/PCP) signalling into polarized centriole positioning in Drosophila wings. We show that centrioles are polarized in pupal wing cells as a readout of PCP signalling, with both gain and loss-of-function Fz/PCP signalling affecting centriole polarization. Importantly, loss or gain of centrioles does not affect Fz/PCP establishment, implicating centriolar positioning as a conserved PCP-readout, likely downstream of PCP-regulated actin polymerization. Together with vertebrate data, these results suggest a unifying model of centriole/cilia positioning as a common downstream effect of PCP signalling from flies to mammals.
Mechanical Properties of Primary Cilia
NASA Astrophysics Data System (ADS)
Battle, Christopher; Schmidt, Christoph F.
2013-03-01
Recent studies have shown that the primary cilium, long thought to be a vestigial cellular appendage with no function, is involved in a multitude of sensory functions. One example, interesting from both a biophysical and medical standpoint, is the primary cilium of kidney epithelial cells, which acts as a mechanosensitive flow sensor. Genetic defects in ciliary function can cause, e.g., polycystic kidney disease (PKD). The material properties of these non-motile, microtubule-based 9 +0 cilia, and the way they are anchored to the cell cytoskeleton, are important to know if one wants to understand the mechano-electrochemical response of these cells, which is mediated by their cilia. We have probed the mechanical properties, boundary conditions, and dynamics of the cilia of MDCK cells using optical traps and DIC/fluorescence microscopy. We found evidence for both elastic relaxation of the cilia themselves after bending and for compliance in the intracellular anchoring structures. Angular and positional fluctuations of the cilia reflect both thermal excitations and cellular driving forces.
Wang, Fei; Kovacs, Mihaly; Hu, Aihua; Limouze, John; Harvey, Estelle V; Sellers, James R
2003-07-25
Besides driving contraction of various types of muscle tissue, conventional (class II) myosins serve essential cellular functions and are ubiquitously expressed in eukaryotic cells. Three different isoforms in the human myosin complement have been identified as non-muscle class II myosins. Here we report the kinetic characterization of a human non-muscle myosin IIB subfragment-1 construct produced in the baculovirus expression system. Transient kinetic data show that most steps of the actomyosin ATPase cycle are slowed down compared with other class II myosins. The ADP affinity of subfragment-1 is unusually high even in the presence of actin filaments, and the rate of ADP release is close to the steady-state ATPase rate. Thus, non-muscle myosin IIB subfragment-1 spends a significantly higher proportion of its kinetic cycle strongly attached to actin than do the muscle myosins. This feature is even more pronounced at slightly elevated ADP levels, and it may be important in carrying out the cellular functions of this isoform working in small filamentous assemblies.
Structure and function of a compound eye, more than half a billion years old.
Schoenemann, Brigitte; Pärnaste, Helje; Clarkson, Euan N K
2017-12-19
Until now, the fossil record has not been capable of revealing any details of the mechanisms of complex vision at the beginning of metazoan evolution. Here, we describe functional units, at a cellular level, of a compound eye from the base of the Cambrian, more than half a billion years old. Remains of early Cambrian arthropods showed the external lattices of enormous compound eyes, but not the internal structures or anything about how those compound eyes may have functioned. In a phosphatized trilobite eye from the lower Cambrian of the Baltic, we found lithified remnants of cellular systems, typical of a modern focal apposition eye, similar to those of a bee or dragonfly. This shows that sophisticated eyes already existed at the beginning of the fossil record of higher organisms, while the differences between the ancient system and the internal structures of a modern apposition compound eye open important insights into the evolution of vision. Copyright © 2017 the Author(s). Published by PNAS.
Photochemical stability of lipoic acid and its impact on skin ageing.
Matsugo, Seiichi; Bito, Toshinori; Konishi, Tetsuya
2011-08-01
It is well known that α-lipoic acid (LA) functions as an essential co-factor of the mitochondrial multi-enzyme complex and thus plays an important role in energy metabolism. Currently, it is attracting attention as a nutritional supplement because of its unique antioxidant properties and broad spectra of cellular functions. Skin protection from photodamage and ageing is one of the functional applications of LA. Medical and cosmetic application has been widely realized in the world. However, LA has a unique structure bearing a distorted five membered 1, 2-dithiolane ring, making it quite vulnerable to UV radiation. The present article briefly reviews skin ageing from the viewpoint of oxidative stress and sun exposure and analyses the photochemical properties of LA. It also discusses the effect of LA to cellular signalling and its adequate applications to treat skin ageing caused by oxidation. Data presented in this review suggest that LA is a powerful anti-ageing agent under the appropriate usage.
Ahmad Waza, Ajaz; Ahmad Bhat, Shabir; Ul Hussain, Mahboob; Ganai, Bashir A
2018-02-01
Connexin 43 (Cx43) is a gap junction protein expressed in various tissues and organs of vertebrates. Besides functioning as a gap junction, Cx43 also regulates diverse cellular processes like cell growth and differentiation, cell migration, cell survival, etc. Cx43 is critical for normal cardiac functioning and is therefore abundantly expressed in cardiomyocytes. On the other hand, ATP-sensitive potassium (K ATP ) channels are metabolic sensors converting metabolic changes into electrical activity. These channels are important in maintaining the neurotransmitter release, smooth muscle relaxation, cardiac action potential repolarization, normal physiology of cellular repolarization, insulin secretion and immune function. Cx43 and K ATP channels are part of the same signaling pathway, regulating cell survival during stress conditions and ischemia/hypoxia preconditioning. However, the underlying molecular mechanism for their combined role in ischemia/hypoxia preconditioning is largely unknown. The current review focuses on understanding the molecular mechanism responsible for the coordinated role of Cx43 and K ATP channel protein in protecting cardiomyocytes against ischemia/hypoxia stress.
Challenges and opportunities for tissue-engineering polarized epithelium.
Paz, Ana C; Soleas, John; Poon, James C H; Trieu, Dennis; Waddell, Thomas K; McGuigan, Alison P
2014-02-01
The epithelium is one of the most important tissue types in the body and the specific organization of the epithelial cells in these tissues is important for achieving appropriate function. Since many tissues contain an epithelial component, engineering functional epithelium and understanding the factors that control epithelial maturation and organization are important for generating whole artificial organ replacements. Furthermore, disruption of the cellular organization leads to tissue malfunction and disease; therefore, engineered epithelium could provide a valuable in vitro model to study disease phenotypes. Despite the importance of epithelial tissues, a surprisingly limited amount of effort has been focused on organizing epithelial cells into artificial polarized epithelium with an appropriate structure that resembles that seen in vivo. In this review, we provide an overview of epithelial tissue organization and highlight the importance of cell polarization to achieve appropriate epithelium function. We next describe the in vitro models that exist to create polarized epithelium and summarize attempts to engineer artificial epithelium for clinical use. Finally, we highlight the opportunities that exist to translate strategies from tissue engineering other tissues to generate polarized epithelium with a functional structure.
Chemical and Enzymatic Strategies for Bacterial and Mammalian Cell Surface Engineering.
Bi, Xiaobao; Yin, Juan; Chen Guanbang, Ashley; Liu, Chuan-Fa
2018-06-07
The cell surface serves important functions such as the regulation of cell-cell and cell-environment interactions. The understanding and manipulation of the cell surface is important for a wide range of fundamental studies of cellular behavior and for biotechnological and medical applications. With the rapid advance of biology, chemistry and materials science, many strategies have been developed for the functionalization of bacterial and mammalian cell surfaces. Here, we review the recent development of chemical and enzymatic approaches to cell surface engineering with particular emphasis on discussing the advantages and limitations of each of these strategies. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yeast aquaporin regulation by 4-hydroxynonenal is implicated in oxidative stress response.
Rodrigues, Claudia; Tartaro Bujak, Ivana; Mihaljević, Branka; Soveral, Graça; Cipak Gasparovic, Ana
2017-05-01
Reactive oxygen species, especially hydrogen peroxide (H 2 O 2 ), contribute to functional molecular impairment and cellular damage, but also are necessary in normal cellular metabolism, and in low doses play stimulatory role in cell proliferation and stress resistance. In parallel, reactive aldehydes such as 4-hydroxynonenal (HNE), are lipid peroxidation breakdown products which also contribute to regulation of numerous cellular processes. Recently, channeling of H 2 O 2 by some mammalian aquaporin isoforms has been reported and suggested to contribute to aquaporin involvement in cancer malignancies, although the mechanism by which these membrane water channels are implicated in oxidative stress is not clear. In this study, two yeast models with increased levels of membrane polyunsaturated fatty acids (PUFAs) and aquaporin AQY1 overexpression, respectively, were used to evaluate their interplay in cell's oxidative status. In particular, the aim of the study was to investigate if HNE accumulation could affect aquaporin function with an outcome in oxidative stress response. The data showed that induction of aquaporin expression by PUFAs results in increased water permeability in yeast membranes and that AQY1 activity is impaired by HNE. Moreover, AQY1 expression increases cellular sensitivity to oxidative stress by facilitating H 2 O 2 influx. On the other hand, AQY1 expression has no influence on the cellular antioxidant GSH levels and catalase activity. These results strongly suggest that aquaporins are important players in oxidative stress response and could contribute to regulation of cellular processes by regulation of H 2 O 2 influx. © 2017 IUBMB Life, 69(5):355-362, 2017. © 2017 International Union of Biochemistry and Molecular Biology.
Chemical Fluxes in Cellular Steady States Measured by Fluorescence Correlation Spectroscopy
NASA Astrophysics Data System (ADS)
Qian, Hong; Elson, Elliot L.
Genetically, identical cells adopt phenotypes that have different structures, functions, and metabolic properties. In multi-cellular organisms, for example, tissue-specific phenotypes distinguish muscle cells, liver cells, fibroblasts, and blood cells that differ in biochemical functions, geometric forms, and interactions with extracellular environments. Tissue-specific cells usually have different metabolic functions such as synthesis of distinct spectra of secreted proteins, e.g., by liver or pancreatic cells, or of structural proteins, e.g., muscle vs. epithelial cells. But more importantly, a phenotype should include a dynamic aspect: different phenotypes can have distinctly different dynamic functions such as contraction of muscle cells and locomotion of leukocytes. The phenotypes of differentiated tissue cells are typically stable, but they can respond to changes in external conditions, e.g., as in the hypertrophy of muscle cells in response to extra load [1] or the phenotypic shift of fibroblasts to myofibroblasts as part of the wound healing response [2]. Cells pass through sequences of phenotypes during development and also undergo malignant phenotypic transformations as occur in cancer and heart disease.
Lee, Mihwa; Sadowska, Agata; Bekere, Indra; Ho, Diwei; Gully, Benjamin S.; Lu, Yanling; Iyer, K. Swaminathan; Trewhella, Jill; Fox, Archa H.; Bond, Charles S.
2015-01-01
SFPQ, (a.k.a. PSF), is a human tumor suppressor protein that regulates many important functions in the cell nucleus including coordination of long non-coding RNA molecules into nuclear bodies. Here we describe the first crystal structures of Splicing Factor Proline and Glutamine Rich (SFPQ), revealing structural similarity to the related PSPC1/NONO heterodimer and a strikingly extended structure (over 265 Å long) formed by an unusual anti-parallel coiled-coil that results in an infinite linear polymer of SFPQ dimers within the crystals. Small-angle X-ray scattering and transmission electron microscopy experiments show that polymerization is reversible in solution and can be templated by DNA. We demonstrate that the ability to polymerize is essential for the cellular functions of SFPQ: disruptive mutation of the coiled-coil interaction motif results in SFPQ mislocalization, reduced formation of nuclear bodies, abrogated molecular interactions and deficient transcriptional regulation. The coiled-coil interaction motif thus provides a molecular explanation for the functional aggregation of SFPQ that directs its role in regulating many aspects of cellular nucleic acid metabolism. PMID:25765647
The Function of V-ATPases in Cancer
Stransky, Laura; Cotter, Kristina
2016-01-01
The vacuolar ATPases (V-ATPases) are a family of proton pumps that couple ATP hydrolysis to proton transport into intracellular compartments and across the plasma membrane. They function in a wide array of normal cellular processes, including membrane traffic, protein processing and degradation, and the coupled transport of small molecules, as well as such physiological processes as urinary acidification and bone resorption. The V-ATPases have also been implicated in a number of disease processes, including viral infection, renal disease, and bone resorption defects. This review is focused on the growing evidence for the important role of V-ATPases in cancer. This includes functions in cellular signaling (particularly Wnt, Notch, and mTOR signaling), cancer cell survival in the highly acidic environment of tumors, aiding the development of drug resistance, as well as crucial roles in tumor cell invasion, migration, and metastasis. Of greatest excitement is evidence that at least some tumors express isoforms of V-ATPase subunits whose disruption is not lethal, leading to the possibility of developing anti-cancer therapeutics that selectively target V-ATPases that function in cancer cells. PMID:27335445
The Impact of Sleep Deprivation on the Brain
Trošt Bobić, Tatjana; Šečić, Ana; Zavoreo, Iris; Matijević, Valentina; Filipović, Branimir; Kolak, Željka; Bašić Kes, Vanja; Ciliga, Dubravka; Sajković, Dubravka
2016-09-01
Each sleep phase is characterized by specific chemical, cellular and anatomic events of vital importance for normal neural functioning. Different forms of sleep deprivation may lead to a decline of cognitive functions in individuals. Studies in this field make a distinction between total sleep deprivation, chronic sleep restriction, and the situation of sleep disruption. Investigations covering the acute effects of sleep deprivation on the brain show that the discovered behavioral deficits in most cases regenerate after two nights of complete sleep. However, some studies done on mice emphasize the possible chronic effects of long-term sleep deprivation or chronic restriction on the occurrence of neurodegenerative diseases such as Alzheimer’s disease and dementia. In order to better understand the acute and chronic effects of sleep loss, the mechanisms of neural adaptation in the situations of insufficient sleep need to be further investigated. Future integrative research on the impact of sleep deprivation on neural functioning measured through the macro level of cognitive functions and the micro molecular and cell level could contribute to more accurate conclusions about the basic cellular mechanisms responsible for the detected behavioral deficits occurring due to sleep deprivation.
Yeast Genetics and Biotechnological Applications
NASA Astrophysics Data System (ADS)
Mishra, Saroj; Baranwal, Richa
Yeast can be recognized as one of the very important groups of microorganisms on account of its extensive use in the fermentation industry and as a basic eukaryotic model cellular system. The yeast Saccharomyces cerevisiae has been extensively used to elucidate the genetics and regulation of several key functions in the cell such as cell mating, electron transport chain, protein trafficking, cell cycle events and others. Even before the genome sequence of the yeast was out, the structural organization and function of several of its genes was known. With the availability of the origin of replication from the 2 μm plasmid and the development of transformation system, it became the host of choice for expression of a number of important proteins. A large number of episomal and integrative shuttle vectors are available for expression of mammalian proteins. The latest developments in genomics and micro-array technology have allowed investigations of individual gene function by site-specific deletion method. The application of metabolic profiling has also assisted in understanding the cellular network operating in this yeast. This chapter is aimed at reviewing the use of this system as an experimental tool for conducting classical genetics. Various vector systems available, foreign genes expressed and the limitations as a host will be discussed. Finally, the use of various yeast enzymes in biotechnology sector will be reviewed.
Mammalian Fe-S cluster biogenesis and its implication in disease.
Beilschmidt, Lena K; Puccio, Hélène M
2014-05-01
Iron-sulfur (Fe-S) clusters are inorganic cofactors that are ubiquitous and essential. Due to their chemical versatility, Fe-S clusters are implicated in a wide range of protein functions including mitochondrial respiration and DNA repair. Composed of iron and sulfur, they are sensible to oxygen and their biogenesis requires a highly conserved protein machinery that facilitates assembly of the cluster as well as its insertion into apoproteins. Mitochondria are the central cellular compartment for Fe-S cluster biogenesis in eukaryotic cells and the importance of proper function of this biogenesis for life is highlighted by a constantly increasing number of human genetic diseases that are associated with dysfunction of this Fe-S cluster biogenesis pathway. Although these disorders are rare and appear dissimilar, common aspects are found among them. This review will give an overview on what is known on mammalian Fe-S cluster biogenesis today, by putting it into the context of what is known from studies from lower model organisms, and focuses on the associated diseases, by drawing attention to the respective mutations. Finally, it outlines the importance of adequate cellular and murine models to uncover not only each protein function, but to resolve their role and requirement throughout the mammalian organism. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Seet, Li-Fong; Su, Roseline; Toh, Li Zhen; Wong, Tina T
2012-06-01
Failure of glaucoma filtration surgery (GFS) is commonly attributed to scarring at the surgical site. The human Tenon's fibroblasts (HTFs) are considered the major cell type contributing to the fibrotic response. We previously showed that SPARC (secreted protein, acidic, rich in cysteine) knockout mice had improved surgical success in a murine model of GFS. To understand the mechanisms of SPARC deficiency in delaying subconjunctival fibrosis, we used the gene silencing approach to reduce SPARC expression in HTFs and examined parameters important for wound repair and fibrosis. Mitomycin C-treated HTFs were used for comparison. We demonstrate that SPARC-silenced HTFs showed normal proliferation and negligible cellular necrosis but were impaired in motility and collagen gel contraction. The expression of pro-fibrotic genes including collagen I, MMP-2, MMP-9, MMP-14, IL-8, MCP-1 and TGF-β(2) were also reduced. Importantly, TGF-β(2) failed to induce significant collagen I and fibronectin expressions in the SPARC-silenced HTFs. Together, these data demonstrate that SPARC knockdown in HTFs modulates fibroblast functions important for wound fibrosis and is therefore a promising strategy in the development of anti-scarring therapeutics. © 2011 The Authors Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.
The cytoskeleton in cell-autonomous immunity: structural determinants of host defence
Mostowy, Serge; Shenoy, Avinash R.
2016-01-01
Host cells use antimicrobial proteins, pathogen-restrictive compartmentalization and cell death in their defence against intracellular pathogens. Recent work has revealed that four components of the cytoskeleton — actin, microtubules, intermediate filaments and septins, which are well known for their roles in cell division, shape and movement — have important functions in innate immunity and cellular self-defence. Investigations using cellular and animal models have shown that these cytoskeletal proteins are crucial for sensing bacteria and for mobilizing effector mechanisms to eliminate them. In this Review, we highlight the emerging roles of the cytoskeleton as a structural determinant of cell-autonomous host defence. PMID:26292640
The β-Arrestins: Multifunctional Regulators of G Protein-coupled Receptors*
Smith, Jeffrey S.; Rajagopal, Sudarshan
2016-01-01
The β-arrestins (βarrs) are versatile, multifunctional adapter proteins that are best known for their ability to desensitize G protein-coupled receptors (GPCRs), but also regulate a diverse array of cellular functions. To signal in such a complex fashion, βarrs adopt multiple conformations and are regulated at multiple levels to differentially activate downstream pathways. Recent structural studies have demonstrated that βarrs have a conserved structure and activation mechanism, with plasticity of their structural fold, allowing them to adopt a wide array of conformations. Novel roles for βarrs continue to be identified, demonstrating the importance of these dynamic regulators of cellular signaling. PMID:26984408
Inhibiting the NF-kappaB pathway to assess its function in the cellular response to space radiation
NASA Astrophysics Data System (ADS)
Koch, Kristina; Baumstark-Khan, Christa; Hellweg, Christine; Testard, Isabelle; Reitz, Guenther
2012-07-01
Radiation is regarded as one of the limiting factors for space missions. Therefore the cellular radiation response needs to be studied in order to estimate risks and to develop appropriate countermeasures. Exposure of human cells to ionizing radiation can provoke cell cycle arrest, leading to cellular senescence or premature differentiation, and different types of cell death. Previous heavy ion experiments have shown that the Nuclear Factor κB (NF-κB) pathway is activated by fluences that can be reached during long-term missions and thereby NF-κB was identified as an important modulating factor in the cellular radiation response. It could improve cellular survival after exposure to high radiation doses and influence the cancer risk of astronauts. The classical and the genotoxic stress induced NF-κB pathway result in nuclear translocation of the p65/p50 dimer. Both pathways might contribute to the cellular radiation response. Chemical inhibitors were tested to suppress the NF-κB pathway in recombinant HEK-pNF-κB-d2EGFP/Neo cells. The efficacy and cytotoxicity of the inhibitors targeting different elements of the NF-κB pathway were analyzed and found mostly inappropriate as inhibitors were partly cytotoxic or unspecific. Alternatively a functional knock-out of RelA (p65) was used to identify the contribution of the NF-κB pathway to different cellular outcomes. Small hairpin RNA constructs (shRNA) were transfected into the HEK-pNF-κB-d2EGFP/Neo cell line. Their functionality was assessed by quantitative Reverse Transcriptase real-time PCR (qRT-PCR) to verify that the RelA mRNA amount was reduced by more than 80% in the knock-down cells The original cell line had been stably transfected with a reporter system to monitor NF-κB activation by measuring destabilized Enhanced Green Fluorescent Protein (d2EGFP)-expression. It was shown that after 18 hours d2EGFP reaches its highest expression level after activation of NF-κB and can be measured by FACS analysis. Results of measuring d2EGFP showed a suppressed level of EGFP(+) cells in the knock-down cell line, indicating a decreased NF-κB level. Growth behavior of the original and the knock-down cell line was investigated, showing that the decreased RelA level leads to an elongated lag phase while the doubling time during the exponential growth phase remained unaltered. Further the colony forming ability of both cell lines was compared. Both cell lines were irradiated with X-Rays. The RelA-knock-down cell line showed an increased radiosensitivity towards X-Rays, proving that NF-κB plays an important role in the survival ability of the cell. The knock-down cell line will now be used to study the involvement of NF-κB pathway in the cellular response to heavy ion exposure and other space relevant radiation qualities.
The emergence of ECM mechanics and cytoskeletal tension as important regulators of cell function.
Peyton, Shelly R; Ghajar, Cyrus M; Khatiwala, Chirag B; Putnam, Andrew J
2007-01-01
The ability to harvest and maintain viable cells from mammalian tissues represented a critical advance in biomedical research, enabling individual cells to be cultured and studied in molecular detail. However, in these traditional cultures, cells are grown on rigid glass or polystyrene substrates, the mechanical properties of which often do not match those of the in vivo tissue from which the cells were originally derived. This mechanical mismatch likely contributes to abrupt changes in cellular phenotype. In fact, it has been proposed that mechanical changes in the cellular microenvironment may alone be responsible for driving specific cellular behaviors. Recent multidisciplinary efforts from basic scientists and engineers have begun to address this hypothesis more explicitly by probing the effects of ECM mechanics on cell and tissue function. Understanding the consequences of such mechanical changes is physiologically relevant in the context of a number of tissues in which altered mechanics may either correlate with or play an important role in the onset of pathology. Examples include changes in the compliance of blood vessels associated with atherosclerosis and intimal hyperplasia, as well as changes in the mechanical properties of developing tumors. Compelling evidence from 2-D in vitro model systems has shown that substrate mechanical properties induce changes in cell shape, migration, proliferation, and differentiation, but it remains to be seen whether or not these same effects translate to 3-D systems or in vivo. Furthermore, the molecular "mechanotransduction" mechanisms by which cells respond to changes in ECM mechanics remain unclear. Here, we provide some historical context for this emerging area of research, and discuss recent evidence that regulation of cytoskeletal tension by changes in ECM mechanics (either directly or indirectly) may provide a critical switch that controls cell function.
Effects of ration level on immune functions in chinook salmon (Oncorhynchus tshawytscha)
Alcorn, S.W.; Pascho, R.J.; Murray, A.L.; Shearer, K.D.
2003-01-01
The relationship between nutritional status and disease resistance in cultured salmonids can be affected by dietary manipulations. Careful attention to feeding levels may be important to avoid imbalances in nutrient levels that could ultimately impair a fish's ability to resist infectious microorganisms. In the current study, fish in three feed-level groups were fed an experimental diet either to satiation, 64% of satiation or 40% of satiation. A fourth group of fish were fed a commercial diet at the 64% of satiation level and served as controls. To evaluate certain indices of disease resistance in the test and control fish, a panel of assays was employed to measure humoral and cellular immune functions 30, 39 and 54 weeks after starting the dietary treatments. The panel included measures of blood hematocrit and leucocrit levels, plasma protein concentration and serum lysozyme and complement activity. Cellular analyses included differential blood leucocyte counts, NBT reduction and phagocytosis by pronephros macrophages and myeloperoxidase activity of pronephros neutrophils. No differences were observed in those indices between fish tested from the control-diet group (commercial diet fed at the 64% rate) and fish tested from the 64% feed-level group, except that fish fed the commercial diet had a greater concentration of plasma protein. Leucocrit values and plasma protein concentrations tended to increase among the experimental feed groups as the ration increased from 40% to satiation. More importantly, phagocytic activity by anterior kidney leucocytes was found to be inversely proportional to the feed level. Whereas the results of this study provide evidence that the salmonid immune system may be fairly robust with regard to available metabolic energy, the significant changes observed in phagocytic cell activity suggest that some cellular immune functions may be affected by the feed level.
Protein intrinsic disorder in plants.
Pazos, Florencio; Pietrosemoli, Natalia; García-Martín, Juan A; Solano, Roberto
2013-09-12
To some extent contradicting the classical paradigm of the relationship between protein 3D structure and function, now it is clear that large portions of the proteomes, especially in higher organisms, lack a fixed structure and still perform very important functions. Proteins completely or partially unstructured in their native (functional) form are involved in key cellular processes underlain by complex networks of protein interactions. The intrinsic conformational flexibility of these disordered proteins allows them to bind multiple partners in transient interactions of high specificity and low affinity. In concordance, in plants this type of proteins has been found in processes requiring these complex and versatile interaction networks. These include transcription factor networks, where disordered proteins act as integrators of different signals or link different transcription factor subnetworks due to their ability to interact (in many cases simultaneously) with different partners. Similarly, they also serve as signal integrators in signaling cascades, such as those related to response to external stimuli. Disordered proteins have also been found in plants in many stress-response processes, acting as protein chaperones or protecting other cellular components and structures. In plants, it is especially important to have complex and versatile networks able to quickly and efficiently respond to changing environmental conditions since these organisms cannot escape and have no other choice than adapting to them. Consequently, protein disorder can play an especially important role in plants, providing them with a fast mechanism to obtain complex, interconnected and versatile molecular networks.
Protein intrinsic disorder in plants
Pazos, Florencio; Pietrosemoli, Natalia; García-Martín, Juan A.; Solano, Roberto
2013-01-01
To some extent contradicting the classical paradigm of the relationship between protein 3D structure and function, now it is clear that large portions of the proteomes, especially in higher organisms, lack a fixed structure and still perform very important functions. Proteins completely or partially unstructured in their native (functional) form are involved in key cellular processes underlain by complex networks of protein interactions. The intrinsic conformational flexibility of these disordered proteins allows them to bind multiple partners in transient interactions of high specificity and low affinity. In concordance, in plants this type of proteins has been found in processes requiring these complex and versatile interaction networks. These include transcription factor networks, where disordered proteins act as integrators of different signals or link different transcription factor subnetworks due to their ability to interact (in many cases simultaneously) with different partners. Similarly, they also serve as signal integrators in signaling cascades, such as those related to response to external stimuli. Disordered proteins have also been found in plants in many stress-response processes, acting as protein chaperones or protecting other cellular components and structures. In plants, it is especially important to have complex and versatile networks able to quickly and efficiently respond to changing environmental conditions since these organisms cannot escape and have no other choice than adapting to them. Consequently, protein disorder can play an especially important role in plants, providing them with a fast mechanism to obtain complex, interconnected and versatile molecular networks. PMID:24062761
Tashiro, Manabu; Horikawa, Etsuo; Mochizuki, Hideki; Sakurada, Yumiko; Kato, Motohisa; Inokuchi, Takatoshi; Ridout, Fran; Hindmarch, Ian; Yanai, Kazuhiko
2005-10-01
Antihistamines are a mainstay treatment for allergic rhinitis; however, many older agents cause adverse events, including sedation and central nervous system (CNS) impairment. Research has shown sedating effects of antihistamines on driving; currently, no known study has examined whether cellular phone usage while driving further compounds impairment in individuals administered antihistamines. The aim of this study was to examine this endpoint. In a randomized, double-blind, placebo-controlled, three-way crossover study, healthy volunteers received fexofenadine HCl 120 mg, hydroxyzine HCl 30 mg and placebo. Brake reaction time (BRT) was used to examine driving performance across four conditions: driving only; driving while completing simple calculations; complex calculations; and conversing on a cellular phone. Subjective sedation assessments were also conducted. Brake reaction time with and without cellular phone usage in fexofenadine-treated subjects did not differ significantly from placebo in any condition. In contrast, hydroxyzine-treated subjects were significantly more sedated and had slower BRTs, suggesting slower hazard recognition and brake application, compared with the fexofenadine and placebo groups in all conditions. Importantly, cellular phone operation was an additive factor, increasing BRTs in hydroxyzine-treated volunteers. Fexofenadine did not impair CNS function in subjects involved in a divided attention task of driving and cellular phone operation. Copyright (c) 2005 John Wiley & Sons, Ltd.
At a glance: cellular biology for engineers.
Khoshmanesh, K; Kouzani, A Z; Nahavandi, S; Baratchi, S; Kanwar, J R
2008-10-01
Engineering contributions have played an important role in the rise and evolution of cellular biology. Engineering technologies have helped biologists to explore the living organisms at cellular and molecular levels, and have created new opportunities to tackle the unsolved biological problems. There is now a growing demand to further expand the role of engineering in cellular biology research. For an engineer to play an effective role in cellular biology, the first essential step is to understand the cells and their components. However, the stumbling block of this step is to comprehend the information given in the cellular biology literature because it best suits the readers with a biological background. This paper aims to overcome this bottleneck by describing the human cell components as micro-plants that form cells as micro-bio-factories. This concept can accelerate the engineers' comprehension of the subject. In this paper, first the structure and function of different cell components are described. In addition, the engineering attempts to mimic various cell components through numerical modelling or physical implementation are highlighted. Next, the interaction of different cell components that facilitate complicated chemical processes, such as energy generation and protein synthesis, are described. These complex interactions are translated into simple flow diagrams, generally used by engineers to represent multi-component processes.
Zeng, Heng; Vaka, Venkata Ramana; He, Xiaochen; Booz, George W; Chen, Jian-Xiong
2015-08-01
Mitochondrial dysfunction plays an important role in obesity-induced cardiac impairment. SIRT3 is a mitochondrial protein associated with increased human life span and metabolism. This study investigated the functional role of SIRT3 in obesity-induced cardiac dysfunction. Wild-type (WT) and SIRT3 knockout (KO) mice were fed a normal diet (ND) or high-fat diet (HFD) for 16 weeks. Body weight, fasting glucose levels, reactive oxygen species (ROS) levels, myocardial capillary density, cardiac function and expression of hypoxia-inducible factor (HIF)-1α/-2α were assessed. HFD resulted in a significant reduction in SIRT3 expression in the heart. Both HFD and SIRT3 KO mice showed increased ROS formation, impaired HIF signalling and reduced capillary density in the heart. HFD induced cardiac hypertrophy and impaired cardiac function. SIRT3 KO mice fed HFD showed greater ROS production and a further reduction in cardiac function compared to SIRT3 KO mice on ND. Thus, the adverse effects of HFD on cardiac function were not attributable to SIRT3 loss alone. However, HFD did not further reduce capillary density in SIRT3 KO hearts, implicating SIRT3 loss in HFD-induced capillary rarefaction. Our study demonstrates the importance of SIRT3 in preserving heart function and capillary density in the setting of obesity. Thus, SIRT3 may be a potential therapeutic target for obesity-induced heart failure. © 2015 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
Burgos, Rosilene Cristina Rossetto; Zhang, Wei; van Wijk, Eduard P A; Hankemeier, Thomas; Ramautar, Rawi; van der Greef, Jan
2017-10-01
Recently, ultra-weak photon emission (UPE) was developed as a novel tool for measuring oxidative metabolic processes, as its generation is related to reactive oxygen species (ROS). Both an imbalance in ROS or the uncontrolled production of ROS can lead to oxidative stress, which is commonly associated with many diseases. In addition to playing several biological functions, the thiol amino acid glutathione has an important antioxidant function in the body's defense against ROS. Specifically, glutathione is an important endogenous antioxidant that helps maintain oxidant levels. At the cellular level, glutathione is present in its reduced form (GSH) at relatively high concentrations (in the millimolar range) and in its oxidized form (GSSG) at low concentrations (in the micromolar range). Thus, the GSH/GSSG ratio is often used as an indicator of cellular redox state. Here, we used the HL-60 cell line as a model system in order to determine whether UPE is correlated with intracellular GSH and GSSG levels. HL-60 cells were differentiated into neutrophil-like cells and then stimulated to undergo respiratory burst. We then recorded UPE in real time for 9000 seconds and used capillary electrophoresis coupled to mass spectrometry to measure GSH and GSSG levels in cell extracts. We found that although respiratory burst significantly decreased the GSH/GSSG ratio, this change was not significantly correlated with the UPE profile. Copyright © 2017 Elsevier B.V. All rights reserved.
Dávalos, Alberto; Fernández-Hernando, Carlos
2013-01-01
There has been strong evolutionary pressure to ensure that an animal cell maintain levels of cholesterol within tight limits for normal function. Imbalances in cellular cholesterol levels are a major player in the development of different pathologies associated to dietary excess. Although epidemiological studies indicate that elevated levels of high-density lipoprotein (HDL)-cholesterol reduce the risk of cardiovascular disease, recent genetic evidence and pharmacological therapies to raise HDL levels do not support their beneficial effects. Cholesterol efflux as the first and probably the most important step in reverse cholesterol transport is an important biological process relevant to HDL function. Small non-coding RNAs (microRNAs), post-transcriptional control different aspects of cellular cholesterol homeostasis including cholesterol efflux. miRNA families miR-33, miR-758, miR-10b, miR-26 and miR-106b directly modulates cholesterol efflux by targeting the ATP-binding cassette transporter A1 (ABCA1). Pre-clinical studies with anti-miR therapies to inhibit some of these miRNAs have increased cellular cholesterol efflux, reverse cholesterol transport and reduce pathologies associated to dyslipidemia. Although miRNAs as therapy have benefits from existing antisense technology, different obstacles need to be solved before we incorporate such research into clinical care. Here we focus on the clinical potential of miRNAs as therapeutic target to increase cholesterol efflux and reverse cholesterol transport as a new alternative to ameliorate cholesterol-related pathologies. PMID:23435093
Hepatic expression and cellular distribution of the glucose transporter family
Karim, Sumera; Adams, David H; Lalor, Patricia F
2012-01-01
Glucose and other carbohydrates are transported into cells using members of a family of integral membrane glucose transporter (GLUT) molecules. To date 14 members of this family, also called the solute carrier 2A proteins have been identified which are divided on the basis of transport characteristics and sequence similarities into several families (Classes 1 to 3). The expression of these different receptor subtypes varies between different species, tissues and cellular subtypes and each has differential sensitivities to stimuli such as insulin. The liver is a contributor to metabolic carbohydrate homeostasis and is a major site for synthesis, storage and redistribution of carbohydrates. Situations in which the balance of glucose homeostasis is upset such as diabetes or the metabolic syndrome can lead metabolic disturbances that drive chronic organ damage and failure, confirming the importance of understanding the molecular regulation of hepatic glucose homeostasis. There is a considerable literature describing the expression and function of receptors that regulate glucose uptake and release by hepatocytes, the most import cells in glucose regulation and glycogen storage. However there is less appreciation of the roles of GLUTs expressed by non parenchymal cell types within the liver, all of which require carbohydrate to function. A better understanding of the detailed cellular distribution of GLUTs in human liver tissue may shed light on mechanisms underlying disease pathogenesis. This review summarises the available literature on hepatocellular expression of GLUTs in health and disease and highlights areas where further investigation is required. PMID:23239915
Jamin, Augusta; Wicklund, April; Wiebe, Matthew S
2014-05-01
Barrier-to-autointegration factor (BAF) is a DNA binding protein with multiple cellular functions, including the ability to act as a potent defense against vaccinia virus infection. This antiviral function involves BAF's ability to condense double-stranded DNA and subsequently prevent viral DNA replication. In recent years, it has become increasingly evident that dynamic phosphorylation involving the vaccinia virus B1 kinase and cellular enzymes is likely a key regulator of multiple BAF functions; however, the precise mechanisms are poorly understood. Here we analyzed how phosphorylation impacts BAF's DNA binding, subcellular localization, dimerization, and antipoxviral activity through the characterization of BAF phosphomimetic and unphosphorylatable mutants. Our studies demonstrate that increased phosphorylation enhances BAF's mobilization from the nucleus to the cytosol, while dephosphorylation restricts BAF to the nucleus. Phosphorylation also impairs both BAF's dimerization and its DNA binding activity. Furthermore, our studies of BAF's antiviral activity revealed that hyperphosphorylated BAF is unable to suppress viral DNA replication or virus production. Interestingly, the unphosphorylatable BAF mutant, which is capable of binding DNA but localizes predominantly to the nucleus, was also incapable of suppressing viral replication. Thus, both DNA binding and localization are important determinants of BAF's antiviral function. Finally, our examination of how phosphatases are involved in regulating BAF revealed that PP2A dephosphorylates BAF during vaccinia infection, thus counterbalancing the activity of the B1 kinase. Altogether, these data demonstrate that phosphoregulation of BAF by viral and cellular enzymes modulates this protein at multiple molecular levels, thus determining its effectiveness as an antiviral factor and likely other functions as well. The barrier-to-autointegration factor (BAF) contributes to cellular genomic integrity in multiple ways, the best characterized of which are as a host defense against cytoplasmic DNA and as a regulator of mitotic nuclear reassembly. Although dynamic phosphorylation involving both viral and cellular enzymes is likely a key regulator of multiple BAF functions, the precise mechanisms involved are poorly understood. Here we demonstrate that phosphorylation coordinately regulates BAF's DNA binding, subcellular localization, dimerization, and antipoxviral activity. Overall, our findings provide new insights into how phosphoregulation of BAF modulates this protein at multiple levels and governs its effectiveness as an antiviral factor against foreign DNA.
Zepeda, Angélica; Arias, Clorinda; Flores-Jasso, Fabian; Vaca, Luis
2013-01-01
RNAs are present within eukaryotic cells and are involved in several biological processes. RNA transport within cell compartments is important for proper cell function. To understand in depth the cellular processes in which RNA is involved requires a method that reveals RNA localization in real time in a sub-cellular context in living cells. In this protocol we describe a method for imaging RNA in living cells and in particular in neuronal cultures based on cell microinjection of molecular beacons in conjunction with confocal microscopy. This methodology overcomes some of the main obstacles for imaging RNA in live cells since microinjection allows the delivery of the probe to a desired cellular compartment and MBs bind with high specificity to its target RNA without inhibiting its function. The proper design of the MBs is essential to obtain RNA-MB association at the temperature of the cell cytosol. MBs design with other purposes in mind (such as PCR experiments) have a design that facilitates association to its target at high temperatures, rendering them unsuitable for live cell imaging. Using the methodology described in this chapter allows the study of RNA transport to different regions of neurons and may be combined with the tagging of proteins of interest to measure co-transport of the protein and the RNA to different cellular regions. Copyright © 2013 Elsevier Inc. All rights reserved.
Fernández, Dolores; García-Gómez, Concepción; Babín, Mar
2013-05-01
Zinc oxide nanoparticles (ZnO-NPs) are inevitably released into the environment and are potentially dangerous for aquatic life. However, the potential mechanisms of cytotoxicity of zinc nanoparticles remain unclear. Studying the toxicity of ZnO-NPs with In vitro systems will help to determine their interactions with cellular biomolecules. The aim of this study was to evaluate the cytotoxic potentials of ZnO-NPs in established fish cell lines (RTG-2, RTH-149 and RTL-W1) and compare them with those of bulk ZnO and Zn(2+) ions. Membrane function (CFDA-AM assay), mitochondrial function (MTT assay), cell growth (KBP assay), cellular stress (β-galactosidase assay), reductase enzyme activity (AB assay), reactive oxygen species (ROS), total glutathione cellular content (tGSH assay) and glutathione S-transferase (GST) activities were assessed for all cell lines. ZnO-NPs cytotoxicity was greater than those of bulk ZnO and Zn(2+). ZnO-NPs induced oxidative stress is dependent on their dose. Low cost tests, such as CFDA-AM, ROS, GST activity and tGSH cell content test that use fish cell lines, may be used to detect oxidative stress and redox status changes. Particle dissolution of the ZnO-NPs did not appear to play an important role in the observed toxicity in this study. Published by Elsevier B.V.
Principles of Unconventional Myosin Function and Targeting
Hartman, M. Amanda; Finan, Dina; Sivaramakrishnan, Sivaraj; Spudich, James A.
2016-01-01
Unconventional myosins are a superfamily of actin-based motors implicated in diverse cellular processes. In recent years, much progress has been made in describing their biophysical properties, and headway has been made into analyzing their cellular functions. Here, we focus on the principles that guide in vivo motor function and targeting to specific cellular locations. Rather than describe each motor comprehensively, we outline the major themes that emerge from research across the superfamily and use specific examples to illustrate each. In presenting the data in this format, we seek to identify open questions in each field as well as to point out commonalities between them. To advance our understanding of myosins’ roles in vivo, clearly we must identify their cellular cargoes and the protein complexes that regulate motor attachment to fully appreciate their functions on the cellular and developmental levels. PMID:21639800
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, B.; Sugiman-Marangos, S; Junop, M
2009-01-01
The Actinobacteria phylum represents one of the largest and most diverse groups of bacteria, encompassing many important and well-characterized organisms including Streptomyces, Bifidobacterium, Corynebacterium and Mycobacterium. Members of this phylum are remarkably diverse in terms of life cycle, morphology, physiology and ecology. Recent comparative genomic analysis of 19 actinobacterial species determined that only 5 genes of unknown function uniquely define this large phylum [1]. The cellular functions of these actinobacteria-specific proteins (ASP) are not known.
Post-translational modifications in secreted peptide hormones in plants.
Matsubayashi, Yoshikatsu
2011-01-01
More than a dozen secreted peptides are now recognized as important hormones that coordinate and specify cellular functions in plants. Recent evidence has shown that secreted peptide hormones often undergo post-translational modification and proteolytic processing, which are critical for their function. Such 'small post-translationally modified peptide hormones' constitute one of the largest groups of peptide hormones in plants. This short review highlights recent progress in research on post-translationally modified peptide hormones, with particular emphasis on their structural characteristics and modification mechanisms.
Goshima, Yoshio; Hida, Tomonobu; Gotoh, Toshiyuki
2012-01-01
Axonal transport plays a crucial role in neuronal morphogenesis, survival and function. Despite its importance, however, the molecular mechanisms of axonal transport remain mostly unknown because a simple and quantitative assay system for monitoring this cellular process has been lacking. In order to better characterize the mechanisms involved in axonal transport, we formulate a novel computer-assisted monitoring system of axonal transport. Potential uses of this system and implications for future studies will be discussed.
Centrin 3 is an inhibitor of centrosomal Mps1 and antagonizes centrin 2 function
Sawant, Dwitiya B.; Majumder, Shubhra; Perkins, Jennifer L.; Yang, Ching-Hui; Eyers, Patrick A.; Fisk, Harold A.
2015-01-01
Centrins are a family of small, calcium-binding proteins with diverse cellular functions that play an important role in centrosome biology. We previously identified centrin 2 and centrin 3 (Cetn2 and Cetn3) as substrates of the protein kinase Mps1. However, although Mps1 phosphorylation sites control the function of Cetn2 in centriole assembly and promote centriole overproduction, Cetn2 and Cetn3 are not functionally interchangeable, and we show here that Cetn3 is both a biochemical inhibitor of Mps1 catalytic activity and a biological inhibitor of centrosome duplication. In vitro, Cetn3 inhibits Mps1 autophosphorylation at Thr-676, a known site of T-loop autoactivation, and interferes with Mps1-dependent phosphorylation of Cetn2. The cellular overexpression of Cetn3 attenuates the incorporation of Cetn2 into centrioles and centrosome reduplication, whereas depletion of Cetn3 generates extra centrioles. Finally, overexpression of Cetn3 reduces Mps1 Thr-676 phosphorylation at centrosomes, and mimicking Mps1-dependent phosphorylation of Cetn2 bypasses the inhibitory effect of Cetn3, suggesting that the biological effects of Cetn3 are due to the inhibition of Mps1 function at centrosomes. PMID:26354417
The destiny of Ca(2+) released by mitochondria.
Takeuchi, Ayako; Kim, Bongju; Matsuoka, Satoshi
2015-01-01
Mitochondrial Ca(2+) is known to regulate diverse cellular functions, for example energy production and cell death, by modulating mitochondrial dehydrogenases, inducing production of reactive oxygen species, and opening mitochondrial permeability transition pores. In addition to the action of Ca(2+) within mitochondria, Ca(2+) released from mitochondria is also important in a variety of cellular functions. In the last 5 years, the molecules responsible for mitochondrial Ca(2+) dynamics have been identified: a mitochondrial Ca(2+) uniporter (MCU), a mitochondrial Na(+)-Ca(2+) exchanger (NCLX), and a candidate for a mitochondrial H(+)-Ca(2+) exchanger (Letm1). In this review, we focus on the mitochondrial Ca(2+) release system, and discuss its physiological and pathophysiological significance. Accumulating evidence suggests that the mitochondrial Ca(2+) release system is not only crucial in maintaining mitochondrial Ca(2+) homeostasis but also participates in the Ca(2+) crosstalk between mitochondria and the plasma membrane and between mitochondria and the endoplasmic/sarcoplasmic reticulum.
Hereditary spastic paraplegia.
Blackstone, Craig
2018-01-01
The hereditary spastic paraplegias (HSPs) are a heterogeneous group of neurologic disorders with the common feature of prominent lower-extremity spasticity, resulting from a length-dependent axonopathy of corticospinal upper motor neurons. The HSPs exist not only in "pure" forms but also in "complex" forms that are associated with additional neurologic and extraneurologic features. The HSPs are among the most genetically diverse neurologic disorders, with well over 70 distinct genetic loci, for which about 60 mutated genes have already been identified. Numerous studies elucidating the molecular pathogenesis underlying HSPs have highlighted the importance of basic cellular functions - especially membrane trafficking, mitochondrial function, organelle shaping and biogenesis, axon transport, and lipid/cholesterol metabolism - in axon development and maintenance. An encouragingly small number of converging cellular pathogenic themes have been identified for the most common HSPs, and some of these pathways present compelling targets for future therapies. Copyright © 2018 Elsevier B.V. All rights reserved.
The comparative immunology of wild and laboratory mice, Mus musculus domesticus
Abolins, Stephen; King, Elizabeth C.; Lazarou, Luke; Weldon, Laura; Hughes, Louise; Drescher, Paul; Raynes, John G.; Hafalla, Julius C. R.; Viney, Mark E.; Riley, Eleanor M.
2017-01-01
The laboratory mouse is the workhorse of immunology, used as a model of mammalian immune function, but how well immune responses of laboratory mice reflect those of free-living animals is unknown. Here we comprehensively characterize serological, cellular and functional immune parameters of wild mice and compare them with laboratory mice, finding that wild mouse cellular immune systems are, comparatively, in a highly activated (primed) state. Associations between immune parameters and infection suggest that high level pathogen exposure drives this activation. Moreover, wild mice have a population of highly activated myeloid cells not present in laboratory mice. By contrast, in vitro cytokine responses to pathogen-associated ligands are generally lower in cells from wild mice, probably reflecting the importance of maintaining immune homeostasis in the face of intense antigenic challenge in the wild. These data provide a comprehensive basis for validating (or not) laboratory mice as a useful and relevant immunological model system. PMID:28466840
Redox Aspects of Chaperones in Cardiac Function
Penna, Claudia; Sorge, Matteo; Femminò, Saveria; Pagliaro, Pasquale; Brancaccio, Mara
2018-01-01
Molecular chaperones are stress proteins that allow the correct folding or unfolding as well as the assembly or disassembly of macromolecular cellular components. Changes in expression and post-translational modifications of chaperones have been linked to a number of age- and stress-related diseases including cancer, neurodegeneration, and cardiovascular diseases. Redox sensible post-translational modifications, such as S-nitrosylation, glutathionylation and phosphorylation of chaperone proteins have been reported. Redox-dependent regulation of chaperones is likely to be a phenomenon involved in metabolic processes and may represent an adaptive response to several stress conditions, especially within mitochondria, where it impacts cellular bioenergetics. These post-translational modifications might underlie the mechanisms leading to cardioprotection by conditioning maneuvers as well as to ischemia/reperfusion injury. In this review, we discuss this topic and focus on two important aspects of redox-regulated chaperones, namely redox regulation of mitochondrial chaperone function and cardiac protection against ischemia/reperfusion injury. PMID:29615920
Fluorogenic RNA Mango aptamers for imaging small non-coding RNAs in mammalian cells.
Autour, Alexis; C Y Jeng, Sunny; D Cawte, Adam; Abdolahzadeh, Amir; Galli, Angela; Panchapakesan, Shanker S S; Rueda, David; Ryckelynck, Michael; Unrau, Peter J
2018-02-13
Despite having many key roles in cellular biology, directly imaging biologically important RNAs has been hindered by a lack of fluorescent tools equivalent to the fluorescent proteins available to study cellular proteins. Ideal RNA labelling systems must preserve biological function, have photophysical properties similar to existing fluorescent proteins, and be compatible with established live and fixed cell protein labelling strategies. Here, we report a microfluidics-based selection of three new high-affinity RNA Mango fluorogenic aptamers. Two of these are as bright or brighter than enhanced GFP when bound to TO1-Biotin. Furthermore, we show that the new Mangos can accurately image the subcellular localization of three small non-coding RNAs (5S, U6, and a box C/D scaRNA) in fixed and live mammalian cells. These new aptamers have many potential applications to study RNA function and dynamics both in vitro and in mammalian cells.
Thioredoxin and redox signaling: Roles of the thioredoxin system in control of cell fate.
Matsuzawa, Atsushi
2017-03-01
Reactive oxygen species (ROS) are not only cytotoxic products from external and internal environment, but also important mediators of redox signaling. Therefore, thioredoxin (Trx) as an antioxidant maintains the balance of the thiol-related redox status, and also plays pivotal roles in the regulation of redox signaling. Trx senses and responds to environmental oxidative stress and ROS generated by cellular respiration, metabolism, and immune response, and then modulates the redox status, function, and activity of its target signaling proteins. Dysregulation of such the Trx system affects various cellular functions and cell fate such as survival and cell death, leading to human diseases including cancer and inflammation. This review focuses on Trx and its target proteins involved in redox signaling, which are critical for the control of cell fate such as cell survival and apoptosis, and addresses how Trx regulates those effector proteins and redox signaling. Copyright © 2016 Elsevier Inc. All rights reserved.
Systems biology of cellular membranes: a convergence with biophysics.
Chabanon, Morgan; Stachowiak, Jeanne C; Rangamani, Padmini
2017-09-01
Systems biology and systems medicine have played an important role in the last two decades in shaping our understanding of biological processes. While systems biology is synonymous with network maps and '-omics' approaches, it is not often associated with mechanical processes. Here, we make the case for considering the mechanical and geometrical aspects of biological membranes as a key step in pushing the frontiers of systems biology of cellular membranes forward. We begin by introducing the basic components of cellular membranes, and highlight their dynamical aspects. We then survey the functions of the plasma membrane and the endomembrane system in signaling, and discuss the role and origin of membrane curvature in these diverse cellular processes. We further give an overview of the experimental and modeling approaches to study membrane phenomena. We close with a perspective on the converging futures of systems biology and membrane biophysics, invoking the need to include physical variables such as location and geometry in the study of cellular membranes. WIREs Syst Biol Med 2017, 9:e1386. doi: 10.1002/wsbm.1386 For further resources related to this article, please visit the WIREs website. © 2017 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nicolay, Nils H., E-mail: n.nicolay@dkfz.de; Department of Molecular and Radiation Oncology, German Cancer Research Center, Heidelberg; Sommer, Eva
2013-12-01
Purpose: Mesenchymal stem cells (MSCs) have the ability to migrate to lesion sites and undergo differentiation into functional tissues. Although this function may be important for tissue regeneration after radiation therapy, the influence of ionizing radiation (IR) on cellular survival and the functional aspects of differentiation and stem cell characteristics of MSCs have remained largely unknown. Methods and Materials: Radiation sensitivity of human primary MSCs from healthy volunteers and primary human fibroblast cells was examined, and cellular morphology, cell cycle effects, apoptosis, and differentiation potential after exposure to IR were assessed. Stem cell gene expression patterns after exposure to IRmore » were studied using gene arrays. Results: MSCs were not more radiosensitive than human primary fibroblasts, whereas there were considerable differences regarding radiation sensitivity within individual MSCs. Cellular morphology, cytoskeletal architecture, and cell motility were not markedly altered by IR. Even after high radiation doses up to 10 Gy, MSCs maintained their differentiation potential. Compared to primary fibroblast cells, MSCs did not show an increase in irradiation-induced apoptosis. Gene expression analyses revealed an upregulation of various genes involved in DNA damage response and DNA repair, but expression of established MSC surface markers appeared only marginally influenced by IR. Conclusions: These data suggest that human MSCs are not more radiosensitive than differentiated primary fibroblasts. In addition, upon photon irradiation, MSCs were able to retain their defining stem cell characteristics both on a functional level and regarding stem cell marker expression.« less
Wang, Liang; Zhou, Donger; Ren, Haitao; Chen, Yan
2018-01-01
Tumor immunosuppression serves an important role in the occurrence and development of gastric cancer. However, the effect of chemotherapy on the immune function of patients remains unclear. The present study aimed to investigate changes in cellular immune function and regulatory T cells (Tregs) in patients with gastric cancer prior to and following chemotherapy. In the peripheral blood of patients with gastric cancer, the percentage of CD4+ T cells was substantially decreased compared with that of healthy controls (11.39±5.91 vs. 22.34±3.37%, respectively; P<0.05). High frequencies of CD8+ T cells and Tregs were also observed in the peripheral blood of patients. Although the number of T cells decreased following chemotherapy (the proportions of CD4+ and CD8+ cells were 8.99±7.31 and 16.00±4.51%, respectively), the ratio of CD4+/CD8+ T cells increased (0.31±0.17 vs. 0.56±0.22; P<0.05). Furthermore, the level of C-C motif chemokine ligand 20 (CCL20) was increased in patients prior to chemotherapy compared with healthy controls. As the sole receptor for CCL20, a high level of expression of C-C motif chemokine receptor 6 on circulating Tregs was also identified in the patients, which decreased following chemotherapy. These results suggest that chemotherapy may efficiently promote cellular immune function and inhibit immunosuppression in patients with gastric cancer.
Cheong, Jin-Gyu; Song, Dae-Geun; Song, Haeng Eun; Berditchevski, Fedor; Nam, Seo Hee; Jung, Jae Woo; Kim, Hye-Jin; Kim, Ji Eon; Kim, Somi; Ryu, Jihye; Cho, Chang Yun; Lee, Kyung-Min; Lee, Jung Weon
2017-02-21
The transmembrane 4 L six family proteins TM4SF1, TM4SF4, and TM4SF5 share 40-50% overall sequence identity, but their C-terminus identity is limited. It may be likely that the C-termini of the members are important and unique for own regulatory functions. We thus examined how the TM4SF5 C-terminus affected cellular functions differentially from other family members. Using colon cancer cells expressing wildtype (WT), C-terminus-deleted, or chimeric mutants, diverse cellular functions were explored in 2-dimensional (2D) and 3-dimensional (3D) condition. The C-termini of the proteins were relatively comparable with respect to 2D cell proliferation, although each C-terminal-deletion mutant exhibited increased proliferation relative to the WT. Using chimeric constructs, we found that the TM4SF5 C-terminus was critical for regulating the diverse metastatic functions of TM4SF5, and could positively replace the C-termini of other family members. Replacement of the TM4SF1 or TM4SF4 C-terminus with that of TM4SF5 increased spheroids growth, transwell migration, and invasive dissemination from spheroids in 3D collagen gels. TM4SF5-mediated effects required its extracellular loop 2 linked to the C-terminus via the transmembrane domain 4, with causing c-Src activation. Altogether, the C-terminus of TM4SF5 appears to mediate pro-migratory roles, depending on a structural relay from the second extracellular loop to the C-terminus.
Genome-scale prediction of proteins with long intrinsically disordered regions.
Peng, Zhenling; Mizianty, Marcin J; Kurgan, Lukasz
2014-01-01
Proteins with long disordered regions (LDRs), defined as having 30 or more consecutive disordered residues, are abundant in eukaryotes, and these regions are recognized as a distinct class of biologically functional domains. LDRs facilitate various cellular functions and are important for target selection in structural genomics. Motivated by the lack of methods that directly predict proteins with LDRs, we designed Super-fast predictor of proteins with Long Intrinsically DisordERed regions (SLIDER). SLIDER utilizes logistic regression that takes an empirically chosen set of numerical features, which consider selected physicochemical properties of amino acids, sequence complexity, and amino acid composition, as its inputs. Empirical tests show that SLIDER offers competitive predictive performance combined with low computational cost. It outperforms, by at least a modest margin, a comprehensive set of modern disorder predictors (that can indirectly predict LDRs) and is 16 times faster compared to the best currently available disorder predictor. Utilizing our time-efficient predictor, we characterized abundance and functional roles of proteins with LDRs over 110 eukaryotic proteomes. Similar to related studies, we found that eukaryotes have many (on average 30.3%) proteins with LDRs with majority of proteomes having between 25 and 40%, where higher abundance is characteristic to proteomes that have larger proteins. Our first-of-its-kind large-scale functional analysis shows that these proteins are enriched in a number of cellular functions and processes including certain binding events, regulation of catalytic activities, cellular component organization, biogenesis, biological regulation, and some metabolic and developmental processes. A webserver that implements SLIDER is available at http://biomine.ece.ualberta.ca/SLIDER/. Copyright © 2013 Wiley Periodicals, Inc.
Jeon, Yoon; Ko, Eun; Lee, Kyung Yong; Ko, Min Ji; Park, Seo Young; Kang, Jeeheon; Jeon, Chang Hwan; Lee, Ho; Hwang, Deog Su
2011-02-18
TopBP1 plays important roles in chromosome replication, DNA damage response, and other cellular regulatory functions in vertebrates. Although the roles of TopBP1 have been studied mostly in cancer cell lines, its physiological function remains unclear in mice and untransformed cells. We generated conditional knock-out mice in which exons 5 and 6 of the TopBP1 gene are flanked by loxP sequences. Although TopBP1-deficient embryos developed to the blastocyst stage, no homozygous mutant embryos were recovered at E8.5 or beyond, and completely resorbed embryos were frequent at E7.5, indicating that mutant embryos tend to die at the peri-implantation stage. This finding indicated that TopBP1 is essential for cell proliferation during early embryogenesis. Ablation of TopBP1 in TopBP1(flox/flox) mouse embryonic fibroblasts and 3T3 cells using Cre recombinase-expressing retrovirus arrests cell cycle progression at the G(1), S, and G(2)/M phases. The TopBP1-ablated mouse cells exhibit phosphorylation of H2AX and Chk2, indicating that the cells contain DNA breaks. The TopBP1-ablated mouse cells enter cellular senescence. Although RNA interference-mediated knockdown of TopBP1 induced cellular senescence in human primary cells, it induced apoptosis in cancer cells. Therefore, TopBP1 deficiency in untransformed mouse and human primary cells induces cellular senescence rather than apoptosis. These results indicate that TopBP1 is essential for cell proliferation and maintenance of chromosomal integrity.
Papillomavirus E7 Oncoproteins Share Functions with Polyomavirus Small T Antigens
White, Elizabeth A.; Kramer, Rebecca E.; Hwang, Justin H.; Pores Fernando, Arun T.; Naetar, Nana; Hahn, William C.; Roberts, Thomas M.; Schaffhausen, Brian S.; Livingston, David M.
2014-01-01
ABSTRACT Many of the small DNA tumor viruses encode transforming proteins that function by targeting critical cellular pathways involved in cell proliferation and survival. In this study, we have examined whether some of the functions of the polyomavirus small T antigens (ST) are shared by the E6 and E7 oncoproteins of two oncogenic papillomaviruses. Using three different assays, we have found that E7 can provide some simian virus 40 (SV40) or murine polyomavirus (PyV) ST functions. Both human papillomavirus 16 (HPV16) and bovine papillomavirus (BPV1) E7 proteins are capable of partially substituting for SV40 ST in a transformation assay that also includes SV40 large T antigen, the catalytic subunit of cellular telomerase, and oncogenic Ras. Like SV40 ST, HPV16 E7 has the ability to override a quiescence block induced by mitogen deprivation. Like PyV ST, it also has the ability to inhibit myoblast differentiation. At least two of these activities are dependent upon the interaction of HPV16 E7 with retinoblastoma protein family members. For small T antigens, interaction with PP2A is needed for each of these functions. Even though there is no strong evidence that E6 or E7 share the ability of small T to interact with PP2A, E7 provides these functions related to cellular transformation. IMPORTANCE DNA tumor viruses have provided major insights into how cancers develop. Some viruses, like the human papillomaviruses, can cause cancer directly. Both the papillomaviruses and the polyomaviruses have served as tools for understanding pathways that are often perturbed in cancer. Here, we have compared the functions of transforming proteins from several DNA tumor viruses, including two papillomaviruses and two polyomaviruses. We tested the papillomavirus E6 and E7 oncoproteins in three functional assays and found that E7 can provide some or all of the functions of the SV40 small T antigen, another well-characterized oncoprotein, in two of these assays. In a third assay, papillomavirus E7 has the same effect as the murine polyomavirus small T protein. In summary, we report several new functions for the papillomavirus E7 proteins, which will contribute new insights into the roles of viruses in cancer and the cellular pathways they perturb in carcinogenesis. PMID:25540383
Using ToxCast data to reconstruct dynamic cell state ...
AbstractBackground. High-throughput in vitro screening is an important tool for evaluating the potential biological activity of the thousands of existing chemicals in commerce and the hundreds more introduced each year. Among the assay technologies available, high-content imaging (HCI) allows multiplexed measurements of cellular phenotypic changes induced by chemical exposures. For a large chemical inventory having limited concentration-time series data, the deconvolution of cellular response profiles into transitive or irrevocable state trajectories is an important consideration. Objectives. Our goal was to analyze temporal and concentration-related cellular changes measured using HCI to identify the “tipping point” at which the cells did not show recovery towards a normal phenotypic state. Methods. The effects of 976 chemicals (ToxCast Phase I and II) were evaluated using HCI as a function of concentration and time in HepG2 cells over a 72-hr exposure period to concentrations ranging from 0.4- to 200 µM. The cellular endpoints included nuclear p53 accumulation, JNK, markers of oxidative stress, cytoskeletal changes, mitochondrial energization and density, cell viability and cell cycle progression. A novel computational model was developed to interpret dynamic multidimensional system responses as cell-state trajectories. Results. Analysis of cell-state trajectories showed that HepG2 cells were resilient to the effects of 178 chemicals up to the highest co
A technical review of cellular radio and analysis of a possible protocol
NASA Astrophysics Data System (ADS)
Reese, William D.
1992-09-01
Radio and television technology made the field of cellular radio possible. This thesis shows the development of radio and television technology from both a historical and technical aspect. A review of the important researchers and their contributions is followed by a technical explanation of the theories behind electromagnetic radiation of radio and television signals and the technology which was developed to implement such transmissions. The evolution of development which the paper outlines begins with some of the first theories about electricity and magnetism and the subsequent mathematical foundation developed to explain them. This is followed by a number of experimental and developmental researchers and their contributions. The bulk of the paper is concentrated on explaining the earliest generations of radio and all generations of television. The major components of both radio and television are described in detail along with an explanation of what they do and how they work. Such components, in many cases, found important uses in fields outside those for which they were developed. A brief overview of the regulatory environment of each technology and the U.S. and international standardization efforts is also included. Finally, the paper illustrates a modern-day application of radio technology--the cellular radio industry. A description of the components and their functions is followed by a possible cellular radio protocol and analysis.
Viral Evasion and Manipulation of Host RNA Quality Control Pathways
2016-01-01
Viruses have evolved diverse strategies to maximize the functional and coding capacities of their genetic material. Individual viral RNAs are often used as substrates for both replication and translation and can contain multiple, sometimes overlapping open reading frames. Further, viral RNAs engage in a wide variety of interactions with both host and viral proteins to modify the activities of important cellular factors and direct their own trafficking, packaging, localization, stability, and translation. However, adaptations increasing the information density of small viral genomes can have unintended consequences. In particular, viral RNAs have developed features that mark them as potential targets of host RNA quality control pathways. This minireview focuses on ways in which viral RNAs run afoul of the cellular mRNA quality control and decay machinery, as well as on strategies developed by viruses to circumvent or exploit cellular mRNA surveillance. PMID:27226372
Viral Evasion and Manipulation of Host RNA Quality Control Pathways.
Hogg, J Robert
2016-08-15
Viruses have evolved diverse strategies to maximize the functional and coding capacities of their genetic material. Individual viral RNAs are often used as substrates for both replication and translation and can contain multiple, sometimes overlapping open reading frames. Further, viral RNAs engage in a wide variety of interactions with both host and viral proteins to modify the activities of important cellular factors and direct their own trafficking, packaging, localization, stability, and translation. However, adaptations increasing the information density of small viral genomes can have unintended consequences. In particular, viral RNAs have developed features that mark them as potential targets of host RNA quality control pathways. This minireview focuses on ways in which viral RNAs run afoul of the cellular mRNA quality control and decay machinery, as well as on strategies developed by viruses to circumvent or exploit cellular mRNA surveillance. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
BmNHR96 participate BV entry of BmN-SWU1 cells via affecting the cellular cholesterol level.
Dong, Xiao-Long; Liu, Tai-Hang; Wang, Wei; Pan, Cai-Xia; Du, Guo-Yu; Wu, Yun-Fei; Pan, Min-Hui; Lu, Cheng
2017-01-22
B.mori nucleopolyhedrovirus (BmNPV), which produces BV and ODV two virion phenotypes in its life cycle, caused the amount of economic loss in sericulture. But the mechanism of its infection was still unclear. In this study we characterized B.mori nuclear hormone receptor 96 (BmNHR96) as a NHR96 family member, which was localized in the nucleus. We also found BmNHR96 over-expression could enhance the entry of BV as well as cellular cholesterol level. Furthermore, we validated that BmNHR96 increased membrane fusion mediated by GP64, which could probably promote BV-infection. In summary, our study suggested that BmNHR96 plays an important role in BV infection and this function probably actualized by affecting cellular cholesterol level, and our results provided insights to the mechanisms of BV-infection of B.mori. Copyright © 2016 Elsevier Inc. All rights reserved.
Novel targets for the treatment of autosomal dominant polycystic kidney disease
Belibi, Franck A; Edelstein, Charles L
2010-01-01
Importance of the field Autosomal dominant (AD) polycystic kidney disease (PKD) is the most common life-threatening hereditary disorder. There is currently no therapy that slows or prevents cyst formation and kidney enlargement in humans. An increasing number of animal studies have advanced our understanding of molecular and cellular targets of PKD. Areas covered in the review The purpose of this review is to summarize the molecular and cellular targets involved in cystogenesis and to update on the promising therapies that are being developed and tested based on knowledge of these molecular and cellular targets. What the reader will gain Insight into the pathogenesis of PKD and how a better understanding of the pathogenesis of PKD has led to the development of potential therapies to inhibit cyst formation and/or growth and improve kidney function. Take home message The results of animal studies in PKD have led to the development of clinical trials testing potential new therapies to reduce cyst formation and/or growth. A vasopressin V2 receptor antagonist, mTOR inhibitors, blockade of the renin–angiotensin system and statins that reduce cyst formation and improve renal function in animal models of PKD are being tested in interventional studies in humans. PMID:20141351
Molecular substrates of action control in cortico-striatal circuits.
Shiflett, Michael W; Balleine, Bernard W
2011-09-15
The purpose of this review is to describe the molecular mechanisms in the striatum that mediate reward-based learning and action control during instrumental conditioning. Experiments assessing the neural bases of instrumental conditioning have uncovered functional circuits in the striatum, including dorsal and ventral striatal sub-regions, involved in action-outcome learning, stimulus-response learning, and the motivational control of action by reward-associated cues. Integration of dopamine (DA) and glutamate neurotransmission within these striatal sub-regions is hypothesized to enable learning and action control through its role in shaping synaptic plasticity and cellular excitability. The extracellular signal regulated kinase (ERK) appears to be particularly important for reward-based learning and action control due to its sensitivity to combined DA and glutamate receptor activation and its involvement in a range of cellular functions. ERK activation in striatal neurons is proposed to have a dual role in both the learning and performance factors that contribute to instrumental conditioning through its regulation of plasticity-related transcription factors and its modulation of intrinsic cellular excitability. Furthermore, perturbation of ERK activation by drugs of abuse may give rise to behavioral disorders such as addiction. Copyright © 2011 Elsevier Ltd. All rights reserved.
N6-methyladenine: a conserved and dynamic DNA mark
O’Brown, Zach Klapholz; Greer, Eric Lieberman
2017-01-01
Chromatin, consisting of deoxyribonucleic acid (DNA) wrapped around histone proteins, facilitates DNA compaction and allows identical DNA code to confer many different cellular phenotypes. This biological versatility is accomplished in large part by post-translational modifications to histones and chemical modifications to DNA. These modifications direct the cellular machinery to expand or compact specific chromatin regions, and mark regions of the DNA as important for cellular functions. While each of the four bases that make up DNA can be modified (Iyer et al. 2011), this chapter will focus on methylation of the 6th position on adenines (6mA), as this modification has been poorly characterized in recently evolved eukaryotes but shows promise as a new conserved layer of epigenetic regulation. 6mA was previously thought to be restricted to unicellular organisms, but recent work has revealed its presence in more recently evolved metazoa. Here, we will briefly describe the history of 6mA, examine its evolutionary conservation, and evaluate the current methods for detecting 6mA. We will discuss the enzymes that bind and regulate this mark and finally examine known and potential functions of 6mA in eukaryotes. PMID:27826841
Automatic Segmentation of High-Throughput RNAi Fluorescent Cellular Images
Yan, Pingkum; Zhou, Xiaobo; Shah, Mubarak; Wong, Stephen T. C.
2010-01-01
High-throughput genome-wide RNA interference (RNAi) screening is emerging as an essential tool to assist biologists in understanding complex cellular processes. The large number of images produced in each study make manual analysis intractable; hence, automatic cellular image analysis becomes an urgent need, where segmentation is the first and one of the most important steps. In this paper, a fully automatic method for segmentation of cells from genome-wide RNAi screening images is proposed. Nuclei are first extracted from the DNA channel by using a modified watershed algorithm. Cells are then extracted by modeling the interaction between them as well as combining both gradient and region information in the Actin and Rac channels. A new energy functional is formulated based on a novel interaction model for segmenting tightly clustered cells with significant intensity variance and specific phenotypes. The energy functional is minimized by using a multiphase level set method, which leads to a highly effective cell segmentation method. Promising experimental results demonstrate that automatic segmentation of high-throughput genome-wide multichannel screening can be achieved by using the proposed method, which may also be extended to other multichannel image segmentation problems. PMID:18270043
Plectin isoforms as organizers of intermediate filament cytoarchitecture
Winter, Lilli
2011-01-01
Intermediate filaments (IFs) form cytoplamic and nuclear networks that provide cells with mechanical strength. Perturbation of this structural support causes cell and tissue fragility and accounts for a number of human genetic diseases. In recent years, important additional roles, nonmechanical in nature, were ascribed to IFs, including regulation of signaling pathways that control survival and growth of the cells, and vectorial processes such as protein targeting in polarized cellular settings. The cytolinker protein plectin anchors IF networks to junctional complexes, the nuclear envelope and cytoplasmic organelles and it mediates their cross talk with the actin and tubulin cytoskeleton. These functions empower plectin to wield significant influence over IF network cytoarchitecture. Moreover, the unusual diversity of plectin isoforms with different N termini and a common IF-binding (C-terminal) domain enables these isoforms to specifically associate with and thereby bridge IF networks to distinct cellular structures. Here we review the evidence for IF cytoarchitecture being controlled by specific plectin isoforms in different cell systems, including fibroblasts, endothelial cells, lens fibers, lymphocytes, myocytes, keratinocytes, neurons and astrocytes, and discuss what impact the absence of these isoforms has on IF cytoarchitecture-dependent cellular functions. PMID:21866256
Gaspar, Ludmila; Howald, Cedric; Popadin, Konstantin; Maier, Bert; Mauvoisin, Daniel; Moriggi, Ermanno; Gutierrez-Arcelus, Maria; Falconnet, Emilie; Borel, Christelle; Kunz, Dieter; Kramer, Achim; Gachon, Frederic; Dermitzakis, Emmanouil T; Antonarakis, Stylianos E
2017-01-01
The importance of natural gene expression variation for human behavior is undisputed, but its impact on circadian physiology remains mostly unexplored. Using umbilical cord fibroblasts, we have determined by genome-wide association how common genetic variation impacts upon cellular circadian function. Gene set enrichment points to differences in protein catabolism as one major source of clock variation in humans. The two most significant alleles regulated expression of COPS7B, a subunit of the COP9 signalosome. We further show that the signalosome complex is imported into the nucleus in timed fashion to stabilize the essential circadian protein BMAL1, a novel mechanism to oppose its proteasome-mediated degradation. Thus, circadian clock properties depend in part upon a genetically-encoded competition between stabilizing and destabilizing forces, and genetic alterations in these mechanisms provide one explanation for human chronotype. PMID:28869038
Scaffolding protein RanBPM and its interactions in diverse signaling pathways in health and disease.
Das, Soumyadip; Haq, Saba; Ramakrishna, Suresh
2018-04-01
Ran-binding protein in the microtubule-organizing center (RanBPM) is an evolutionarily conserved, nucleocytoplasmic scaffolding protein involved in various cellular processes and several signal transduction pathways. RanBPM has a crucial role in mediating disease pathology by interacting with diverse proteins to regulate their functions. Previously, we compiled diverse cellular functions of RanBPM. Since then the functions of RanBPM have increased exponentially. In this article, we have updated the functions of RanBPM through its manifold interactions that have been investigated to date, according to their roles in protein stability, transcriptional activity, cellular development, neurobiology, and the cell cycle. Our review provides a complete guide on RanBPM interactors, the physiological role of RanBPM in cellular functions, and potential applications in disease therapeutics.
A scientific role for Space Station Freedom: Research at the cellular level
NASA Technical Reports Server (NTRS)
Johnson, Terry C.; Brady, John N.
1993-01-01
The scientific importance of Space Station Freedom is discussed in light of the valuable information that can be gained in cellular and developmental biology with regard to the microgravity environment on the cellular cytoskeleton, cellular responses to extracellular signal molecules, morphology, events associated with cell division, and cellular physiology. Examples of studies in basic cell biology, as well as their potential importance to concerns for future enabling strategies, are presented.
Molecular Signaling Network Motifs Provide a Mechanistic Basis for Cellular Threshold Responses
Bhattacharya, Sudin; Conolly, Rory B.; Clewell, Harvey J.; Kaminski, Norbert E.; Andersen, Melvin E.
2014-01-01
Background: Increasingly, there is a move toward using in vitro toxicity testing to assess human health risk due to chemical exposure. As with in vivo toxicity testing, an important question for in vitro results is whether there are thresholds for adverse cellular responses. Empirical evaluations may show consistency with thresholds, but the main evidence has to come from mechanistic considerations. Objectives: Cellular response behaviors depend on the molecular pathway and circuitry in the cell and the manner in which chemicals perturb these circuits. Understanding circuit structures that are inherently capable of resisting small perturbations and producing threshold responses is an important step towards mechanistically interpreting in vitro testing data. Methods: Here we have examined dose–response characteristics for several biochemical network motifs. These network motifs are basic building blocks of molecular circuits underpinning a variety of cellular functions, including adaptation, homeostasis, proliferation, differentiation, and apoptosis. For each motif, we present biological examples and models to illustrate how thresholds arise from specific network structures. Discussion and Conclusion: Integral feedback, feedforward, and transcritical bifurcation motifs can generate thresholds. Other motifs (e.g., proportional feedback and ultrasensitivity)produce responses where the slope in the low-dose region is small and stays close to the baseline. Feedforward control may lead to nonmonotonic or hormetic responses. We conclude that network motifs provide a basis for understanding thresholds for cellular responses. Computational pathway modeling of these motifs and their combinations occurring in molecular signaling networks will be a key element in new risk assessment approaches based on in vitro cellular assays. Citation: Zhang Q, Bhattacharya S, Conolly RB, Clewell HJ III, Kaminski NE, Andersen ME. 2014. Molecular signaling network motifs provide a mechanistic basis for cellular threshold responses. Environ Health Perspect 122:1261–1270; http://dx.doi.org/10.1289/ehp.1408244 PMID:25117432
Chen, Shu-Chuan; Jeng, King-Song; Lai, Michael M C
2017-10-15
Influenza A virus (IAV) replication relies on an intricate interaction between virus and host cells. How the cellular proteins are usurped for IAV replication remains largely obscure. The aim of this study was to search for novel and potential cellular factors that participate in IAV replication. ZBTB25, a transcription repressor of a variety of cellular genes, was identified by an RNA interference (RNAi) genomic library screen. Depletion of ZBTB25 significantly reduced IAV production. Conversely, overexpression of ZBTB25 enhanced it. ZBTB25 interacted with the viral RNA-dependent RNA polymerase (RdRp) protein and modulated its transcription activity. In addition, ZBTB25 also functioned as a viral RNA (vRNA)-binding protein, binding preferentially to the U-rich sequence within the 5' untranslated region (UTR) of vRNA. Both protein-protein and protein-RNA interactions involving ZBTB25 facilitated viral RNA transcription and replication. In addition, ZBTB25 suppressed interferon production, further enhancing viral replication. ZBTB25-associated functions required an intact zinc finger domain and posttranslational SUMO-1 modification of ZBTB25. Furthermore, treatment with disulfiram (a zinc ejector) of ZBTB25-overexpressing cells showed significantly reduced IAV production as a result of reduced RNA synthesis. Our findings indicate that IAV usurps ZBTB25 for IAV RNA synthesis and serves as a novel and potential therapeutic antiviral target. IMPORTANCE IAV-induced seasonal influenza causes severe illness and death in high-risk populations. However, IAV has developed resistance to current antiviral drugs due to its high mutation rate. Therefore, development of drugs targeting cellular factors required for IAV replication is an attractive alternative for IAV therapy. Here, we discovered a cellular protein, ZBTB25, that enhances viral RdRp activity by binding to both viral RdRp and viral RNA to stimulate viral RNA synthesis. A unique feature of ZBTB25 in the regulation of viral replication is its dual transcription functions, namely, promoting viral RNA transcription through binding to the U-rich region of vRNA and suppressing cellular interferon production. ZBTB25 contains a zinc finger domain that is required for RNA-inhibitory activity by chelating zinc ions. Disulfiram treatment disrupts the zinc finger functions, effectively repressing IAV replication. Based on our findings, we demonstrate that ZBTB25 regulates IAV RNA transcription and replication and serves as a promising antiviral target for IAV treatment. Copyright © 2017 American Society for Microbiology.
Chen, Shu-Chuan; Jeng, King-Song
2017-01-01
ABSTRACT Influenza A virus (IAV) replication relies on an intricate interaction between virus and host cells. How the cellular proteins are usurped for IAV replication remains largely obscure. The aim of this study was to search for novel and potential cellular factors that participate in IAV replication. ZBTB25, a transcription repressor of a variety of cellular genes, was identified by an RNA interference (RNAi) genomic library screen. Depletion of ZBTB25 significantly reduced IAV production. Conversely, overexpression of ZBTB25 enhanced it. ZBTB25 interacted with the viral RNA-dependent RNA polymerase (RdRp) protein and modulated its transcription activity. In addition, ZBTB25 also functioned as a viral RNA (vRNA)-binding protein, binding preferentially to the U-rich sequence within the 5′ untranslated region (UTR) of vRNA. Both protein-protein and protein-RNA interactions involving ZBTB25 facilitated viral RNA transcription and replication. In addition, ZBTB25 suppressed interferon production, further enhancing viral replication. ZBTB25-associated functions required an intact zinc finger domain and posttranslational SUMO-1 modification of ZBTB25. Furthermore, treatment with disulfiram (a zinc ejector) of ZBTB25-overexpressing cells showed significantly reduced IAV production as a result of reduced RNA synthesis. Our findings indicate that IAV usurps ZBTB25 for IAV RNA synthesis and serves as a novel and potential therapeutic antiviral target. IMPORTANCE IAV-induced seasonal influenza causes severe illness and death in high-risk populations. However, IAV has developed resistance to current antiviral drugs due to its high mutation rate. Therefore, development of drugs targeting cellular factors required for IAV replication is an attractive alternative for IAV therapy. Here, we discovered a cellular protein, ZBTB25, that enhances viral RdRp activity by binding to both viral RdRp and viral RNA to stimulate viral RNA synthesis. A unique feature of ZBTB25 in the regulation of viral replication is its dual transcription functions, namely, promoting viral RNA transcription through binding to the U-rich region of vRNA and suppressing cellular interferon production. ZBTB25 contains a zinc finger domain that is required for RNA-inhibitory activity by chelating zinc ions. Disulfiram treatment disrupts the zinc finger functions, effectively repressing IAV replication. Based on our findings, we demonstrate that ZBTB25 regulates IAV RNA transcription and replication and serves as a promising antiviral target for IAV treatment. PMID:28768860
Important cellular targets for antimicrobial photodynamic therapy.
Awad, Mariam M; Tovmasyan, Artak; Craik, James D; Batinic-Haberle, Ines; Benov, Ludmil T
2016-09-01
The persistent problem of antibiotic resistance has created a strong demand for new methods for therapy and disinfection. Photodynamic inactivation (PDI) of microbes has demonstrated promising results for eradication of antibiotic-resistant strains. PDI is based on the use of a photosensitive compound (photosensitizer, PS), which upon illumination with visible light generates reactive species capable of damaging and killing microorganisms. Since photogenerated reactive species are short lived, damage is limited to close proximity of the PS. It is reasonable to expect that the larger the number of damaged targets is and the greater their variety is, the higher the efficiency of PDI is and the lower the chances for development of resistance are. Exact molecular mechanisms and specific targets whose damage is essential for microbial inactivation have not been unequivocally established. Two main cellular components, DNA and plasma membrane, are regarded as the most important PDI targets. Using Zn porphyrin-based PSs and Escherichia coli as a model Gram-negative microorganism, we demonstrate that efficient photoinactivation of bacteria can be achieved without detectable DNA modification. Among the cellular components which are modified early during illumination and constitute key PDI targets are cytosolic enzymes, membrane-bound protein complexes, and the plasma membrane. As a result, membrane barrier function is lost, and energy and reducing equivalent production is disrupted, which in turn compromises cell defense mechanisms, thus augmenting the photoinduced oxidative injury. In conclusion, high PDI antimicrobial effectiveness does not necessarily require impairment of a specific critical cellular component and can be achieved by inducing damage to multiple cellular targets.
Endogenous extra-cellular heat shock protein 72: releasing signal(s) and function.
Fleshner, M; Johnson, J D
2005-08-01
Exposure to acute physical and/or psychological stressors induces a cascade of physiological changes collectively termed the stress response. The stress response is demonstrable at the behavioural, neural, endocrine and cellular levels. Stimulation of the stress response functions to improve an organism's chance of survival during acute stressor challenge. The current review focuses on one ubiquitous cellular stress response, up-regulation of heat shock protein 72 (Hsp72). Although a great deal is known about the function of intra-cellular Hsp72 during exposure to acute stressors, little is understood about the potential function of endogenous extra-cellular Hsp72 (eHsp72). The current review will develop the hypothesis that eHsp72 release may be a previously unrecognized feature of the acute stress response and may function as an endogenous 'danger signal' for the immune system. Specifically, it is proposed that exposure to physical or psychological acute stressors stimulate the release of endogenous eHsp72 into the blood via an alpha1-adrenergic receptor-mediated mechanism and that elevated eHsp72 functions to facilitate innate immunity in the presence of bacterial challenge.
Emerging roles for neurosteroids in sexual behavior and function.
King, Steven R
2008-01-01
Although gonadal and adrenal steroids heavily impact sexual function at the level of the brain, the nervous system also produces its own steroids de novo that may regulate sexual behavior and reproduction. Current evidence points to important roles for neurosteroids in sexual and gender-typical behaviors, control of ovulation, and behaviors that strongly influence sexual interest and motivation like aggression, anxiety and depression. At the cellular level, neurosteroids act through stimulating rapid changes in excitability and direct activation of membrane receptors in neurons. Thus, unlike peripheral steroids, neurosteroids can have immediate and specific effects on select neuronal pathways to regulate sexual function.
Nucleolus-derived mediators in oncogenic stress response and activation of p53-dependent pathways.
Stępiński, Dariusz
2016-08-01
Rapid growth and division of cells, including tumor ones, is correlated with intensive protein biosynthesis. The output of nucleoli, organelles where translational machineries are formed, depends on a rate of particular stages of ribosome production and on accessibility of elements crucial for their effective functioning, including substrates, enzymes as well as energy resources. Different factors that induce cellular stress also often lead to nucleolar dysfunction which results in ribosome biogenesis impairment. Such nucleolar disorders, called nucleolar or ribosomal stress, usually affect cellular functioning which in fact is a result of p53-dependent pathway activation, elicited as a response to stress. These pathways direct cells to new destinations such as cell cycle arrest, damage repair, differentiation, autophagy, programmed cell death or aging. In the case of impaired nucleolar functioning, nucleolar and ribosomal proteins mediate activation of the p53 pathways. They are also triggered as a response to oncogenic factor overexpression to protect tissues and organs against extensive proliferation of abnormal cells. Intentional impairment of any step of ribosome biosynthesis which would direct the cells to these destinations could be a strategy used in anticancer therapy. This review presents current knowledge on a nucleolus, mainly in relation to cancer biology, which is an important and extremely sensitive element of the mechanism participating in cellular stress reaction mediating activation of the p53 pathways in order to counteract stress effects, especially cancer development.
Insights into the Sigma-1 receptor chaperone’s cellular functions: a microarray report
Tsai, Shang-Yi; Rothman, Richard Kyle; Su, Tsung-Ping
2013-01-01
We previously demonstrated that Sig-1Rs are critical regulators in neuronal morphogenesis and development via the regulation of oxidative stress and mitochondrial functions. In the present study, we sought to identify pathways and genes that are affected by Sig-1R. Gene expression profiles were examined in rat hippocampal neurons that had been cultured for18 days in vitro (DIV). The cells were transduced with AAV siRNA targeting Sig-1R on DIV 10 for 7 days, followed by gene expression analysis using a rat genome cDNA array. The gene array results indicated that Sig-1R knockdown hampered cellular functions including steroid biogenesis, protein ubiquitination, actin cytoskeleton network, and Nrf-2 mediated oxidative stress. Many of the cellular components important for actin polymerization and synapse plasticity, including F-actin capping protein and neurofilaments, were significantly changed in AAV-siSig-1R neurons. Further, cytochrome c was reduced in AAV-Sig-1R neurons whereas free-radical generating enzymes including cytochrome p450 and cytochrome b-245 were increased. The microarray results also suggest that Sig-1Rs may regulate genes that are involved in the pathogenesis of many CNS diseases including Alzheimer’s disease and Parkinson’s disease. These data further confirmed that Sig-1Rs play critical roles in the CNS and thus these findings may aid in future development of therapeutic treatments targeting neurodegenerative disorders. PMID:21905129
Measuring the elasticity of plant cells with atomic force microscopy.
Braybrook, Siobhan A
2015-01-01
The physical properties of biological materials impact their functions. This is most evident in plants where the cell wall contains each cell's contents and connects each cell to its neighbors irreversibly. Examining the physical properties of the plant cell wall is key to understanding how plant cells, tissues, and organs grow and gain the shapes important for their respective functions. Here, we present an atomic force microscopy-based nanoindentation method for examining the elasticity of plant cells at the subcellular, cellular, and tissue level. We describe the important areas of experimental design to be considered when planning and executing these types of experiments and provide example data as illustration. Copyright © 2015 Elsevier Inc. All rights reserved.
Hyaluronic acid: its role in voice.
Ward, P Daniel; Thibeault, Susan L; Gray, Steven D
2002-09-01
The extracellular matrix (ECM), once regarded simply as a structural scaffold, is now recognized as an important modulator of cellular behavior and function. One component that plays a prominent role in this process is hyaluronic acid (HA)--a molecule found in many different tissues. Research into the roles of HA indicates that it plays a key role in tissue viscosity, shock absorption, and space filling. Specifically, research into the role of HA in laryngology indicates that it has profound effects on the structure and viscosity of vocal folds. This article provides an introduction to the structure and biological functions of HA and its importance in voice. In addition, an overview of the pharmaceutical applications of HA is discussed.
A local autocrine axis in the testes that regulates spermatogenesis
Cheng, C. Yan; Mruk, Dolores D.
2014-01-01
Spermiation—the release of mature spermatozoa from Sertoli cells into the seminiferous tubule lumen—occurs by the disruption of an anchoring device known as the apical ectoplasmic specialization (apical ES). At the same time, the blood–testis barrier (BTB) undergoes extensive restructuring to facilitate the transit of preleptotene spermatocytes. While these two cellular events take place at opposite ends of the Sertoli cell epithelium, the events are in fact tightly coordinated, as any disruption in either process will lead to infertility. A local regulatory axis exists between the apical ES and the BTB in which biologically active laminin fragments produced at the apical ES by the action of matrix metalloproteinase 2 can regulate BTB restructuring directly or indirectly via the hemidesmosome. Equally important, polarity proteins play a crucial part in coordinating cellular events within this apical ES–BTB–hemidesmosome axis. Additionally, testosterone and cytokines work in concert to facilitate BTB restructuring, which enables the transit of spermatocytes while maintaining immunological barrier function. Herein, we will discuss this important autocrine-based cellular axis that parallels the hormonal-based hypothalamic–pituitary–testicular axis that regulates spermatogenesis. This local regulatory axis is the emerging target for male contraception. PMID:20571538
Zebrafish: An Important Tool for Liver Disease Research
Goessling, Wolfram; Sadler, Kirsten C.
2016-01-01
As the incidence of hepatobiliary diseases increases, we must improve our understanding of the molecular, cellular, and physiological factors that contribute to the pathogenesis of liver disease. Animal models help us identify disease mechanisms that might be targeted therapeutically. Zebrafish (Danio rerio) have traditionally been used to study embryonic development but are also important to the study of liver disease. Zebrafish embryos develop rapidly; all of their digestive organs are mature in larvae by 5 days of age. At this stage, they can develop hepatobiliary diseases caused by developmental defects or toxin- or ethanol-induced injury and manifest premalignant changes within weeks. Zebrafish are similar to humans in hepatic cellular composition, function, signaling, and response to injury as well as the cellular processes that mediate liver diseases. Genes are highly conserved between humans and zebrafish, making them a useful system to study the basic mechanisms of liver disease. We can perform genetic screens to identify novel genes involved in specific disease processes and chemical screens to identify pathways and compounds that act on specific processes. We review how studies of zebrafish have advanced our understanding of inherited and acquired liver diseases as well as liver cancer and regeneration. PMID:26319012
Polycomb Group (PcG) Proteins and Human Cancers: Multifaceted Functions and Therapeutic Implications
Wang, Wei; Qin, Jiang-Jiang; Voruganti, Sukesh; Nag, Subhasree; Zhou, Jianwei; Zhang, Ruiwen
2016-01-01
Polycomb group (PcG) proteins are transcriptional repressors that regulate several crucial developmental and physiological processes in the cell. More recently, they have been found to play important roles in human carcinogenesis and cancer development and progression. The deregulation and dysfunction of PcG proteins often lead to blocking or inappropriate activation of developmental pathways, enhancing cellular proliferation, inhibiting apoptosis, and increasing the cancer stem cell population. Genetic and molecular investigations of PcG proteins have long been focused on their PcG functions. However, PcG proteins have recently been shown to exert non-polycomb functions, contributing to the regulation of diverse cellular functions. We and others have demonstrated that PcG proteins regulate the expression and function of several oncogenes and tumor suppressor genes in a PcG-independent manner, and PcG proteins are associated with the survival of patients with cancer. In this review, we summarize the recent advances in the research on PcG proteins, including both the polycomb-repressive and non-polycomb functions. We specifically focus on the mechanisms by which PcG proteins play roles in cancer initiation, development, and progression. Finally, we discuss the potential value of PcG proteins as molecular biomarkers for the diagnosis and prognosis of cancer, and as molecular targets for cancer therapy. PMID:26227500
Takahashi, Melissa K.; Watters, Kyle E.; Gasper, Paul M.; Abbott, Timothy R.; Carlson, Paul D.; Chen, Alan A.
2016-01-01
Antisense RNA-mediated transcriptional regulators are powerful tools for controlling gene expression and creating synthetic gene networks. RNA transcriptional repressors derived from natural mechanisms called attenuators are particularly versatile, though their mechanistic complexity has made them difficult to engineer. Here we identify a new structure–function design principle for attenuators that enables the forward engineering of new RNA transcriptional repressors. Using in-cell SHAPE-Seq to characterize the structures of attenuator variants within Escherichia coli, we show that attenuator hairpins that facilitate interaction with antisense RNAs require interior loops for proper function. Molecular dynamics simulations of these attenuator variants suggest these interior loops impart structural flexibility. We further observe hairpin flexibility in the cellular structures of natural RNA mechanisms that use antisense RNA interactions to repress translation, confirming earlier results from in vitro studies. Finally, we design new transcriptional attenuators in silico using an interior loop as a structural requirement and show that they function as desired in vivo. This work establishes interior loops as an important structural element for designing synthetic RNA gene regulators. We anticipate that the coupling of experimental measurement of cellular RNA structure and function with computational modeling will enable rapid discovery of structure–function design principles for a diverse array of natural and synthetic RNA regulators. PMID:27103533
Computational analysis of microRNA function in heart development.
Liu, Ganqiang; Ding, Min; Chen, Jiajia; Huang, Jinyan; Wang, Haiyun; Jing, Qing; Shen, Bairong
2010-09-01
Emerging evidence suggests that specific spatio-temporal microRNA (miRNA) expression is required for heart development. In recent years, hundreds of miRNAs have been discovered. In contrast, functional annotations are available only for a very small fraction of these regulatory molecules. In order to provide a global perspective for the biologists who study the relationship between differentially expressed miRNAs and heart development, we employed computational analysis to uncover the specific cellular processes and biological pathways targeted by miRNAs in mouse heart development. Here, we utilized Gene Ontology (GO) categories, KEGG Pathway, and GeneGo Pathway Maps as a gene functional annotation system for miRNA target enrichment analysis. The target genes of miRNAs were found to be enriched in functional categories and pathway maps in which miRNAs could play important roles during heart development. Meanwhile, we developed miRHrt (http://sysbio.suda.edu.cn/mirhrt/), a database aiming to provide a comprehensive resource of miRNA function in regulating heart development. These computational analysis results effectively illustrated the correlation of differentially expressed miRNAs with cellular functions and heart development. We hope that the identified novel heart development-associated pathways and the database presented here would facilitate further understanding of the roles and mechanisms of miRNAs in heart development.
Ionic channels: natural nanotubes described by the drift diffusion equations
NASA Astrophysics Data System (ADS)
Eisenberg, Bob
2000-05-01
Ionic channels are a large class of proteins with holes down their middle that control a wide range of cellular functions important in health and disease. Ionic channels can be analysed using a combination of the Poisson and drift diffusion equations familiar from computational electronics because their behavior is dominated by the electrical properties of their simple structure.
Nitric oxide-based protein modification: formation and site-specificity of protein S-nitrosylation
Kovacs, Izabella; Lindermayr, Christian
2013-01-01
Nitric oxide (NO) is a reactive free radical with pleiotropic functions that participates in diverse biological processes in plants, such as germination, root development, stomatal closing, abiotic stress, and defense responses. It acts mainly through redox-based modification of cysteine residue(s) of target proteins, called protein S-nitrosylation.In this way NO regulates numerous cellular functions and signaling events in plants. Identification of S-nitrosylated substrates and their exact target cysteine residue(s) is very important to reveal the molecular mechanisms and regulatory roles of S-nitrosylation. In addition to the necessity of protein–protein interaction for trans-nitrosylation and denitrosylation reactions, the cellular redox environment and cysteine thiol micro-environment have been proposed important factors for the specificity of protein S-nitrosylation. Several methods have recently been developed for the proteomic identification of target proteins. However, the specificity of NO-based cysteine modification is still less defined. In this review, we discuss formation and specificity of S-nitrosylation. Special focus will be on potential S-nitrosylation motifs, site-specific proteomic analyses, computational predictions using different algorithms, and on structural analysis of cysteine S-nitrosylation. PMID:23717319
Phosphoinositide kinases and the synthesis of polyphosphoinositides in higher plant cells
NASA Technical Reports Server (NTRS)
Drobak, B. K.; Dewey, R. E.; Boss, W. F.; Davies, E. (Principal Investigator)
1999-01-01
Phosphoinositides are a family of inositol-containing phospholipids which are present in all eukaryotic cells. Although in most cells these lipids, with the exception of phosphatidylinositol, constitute only a very minor proportion of total cellular lipids, they have received immense attention by researchers in the past 15-20 years. This is due to the discovery that these lipids, rather than just having structural functions, play key roles in a wide range of important cellular processes. Much less is known about the plant phosphoinositides than about their mammalian counterparts. However, it has been established that a functional phosphoinositide system exists in plant cells and it is becoming increasingly clear that inositol-containing lipids are likely to play many important roles throughout the life of a plant. It is not our intention to give an exhaustive overview of all aspects of the field, but rather we focus on the phosphoinositide kinases responsible for the synthesis of all phosphorylated forms of phosphatidylinositol. Also, we mention some of the aspects of current phosphoinositide research which, in our opinion, are most likely to provide a suitable starting point for further research into the role of phosphoinositides in plants.
Batra, Jyoti; Tripathi, Shashank; Kumar, Amrita; Katz, Jacqueline M; Cox, Nancy J; Lal, Renu B; Sambhara, Suryaprakash; Lal, Sunil K
2016-01-11
A unique feature of influenza A virus (IAV) life cycle is replication of the viral genome in the host cell nucleus. The nuclear import of IAV genome is an indispensable step in establishing virus infection. IAV nucleoprotein (NP) is known to mediate the nuclear import of viral genome via its nuclear localization signals. Here, we demonstrate that cellular heat shock protein 40 (Hsp40/DnaJB1) facilitates the nuclear import of incoming IAV viral ribonucleoproteins (vRNPs) and is important for efficient IAV replication. Hsp40 was found to interact with NP component of IAV RNPs during early stages of infection. This interaction is mediated by the J domain of Hsp40 and N-terminal region of NP. Drug or RNAi mediated inhibition of Hsp40 resulted in reduced nuclear import of IAV RNPs, diminished viral polymerase function and attenuates overall viral replication. Hsp40 was also found to be required for efficient association between NP and importin alpha, which is crucial for IAV RNP nuclear translocation. These studies demonstrate an important role for cellular chaperone Hsp40/DnaJB1 in influenza A virus life cycle by assisting nuclear trafficking of viral ribonucleoproteins.
Batra, Jyoti; Tripathi, Shashank; Kumar, Amrita; Katz, Jacqueline M.; Cox, Nancy J.; Lal, Renu B.; Sambhara, Suryaprakash; Lal, Sunil K.
2016-01-01
A unique feature of influenza A virus (IAV) life cycle is replication of the viral genome in the host cell nucleus. The nuclear import of IAV genome is an indispensable step in establishing virus infection. IAV nucleoprotein (NP) is known to mediate the nuclear import of viral genome via its nuclear localization signals. Here, we demonstrate that cellular heat shock protein 40 (Hsp40/DnaJB1) facilitates the nuclear import of incoming IAV viral ribonucleoproteins (vRNPs) and is important for efficient IAV replication. Hsp40 was found to interact with NP component of IAV RNPs during early stages of infection. This interaction is mediated by the J domain of Hsp40 and N-terminal region of NP. Drug or RNAi mediated inhibition of Hsp40 resulted in reduced nuclear import of IAV RNPs, diminished viral polymerase function and attenuates overall viral replication. Hsp40 was also found to be required for efficient association between NP and importin alpha, which is crucial for IAV RNP nuclear translocation. These studies demonstrate an important role for cellular chaperone Hsp40/DnaJB1 in influenza A virus life cycle by assisting nuclear trafficking of viral ribonucleoproteins. PMID:26750153
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Lu; Gallagher, Evan P., E-mail: evang3@uw.edu
2013-01-15
Exposure to trace metals can disrupt olfactory function in fish leading to a loss of behaviors critical to survival. Cadmium (Cd) is an olfactory toxicant that elicits cellular oxidative stress as a mechanism of toxicity while also inducing protective cellular antioxidant genes via activation of the nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathway. However, the molecular mechanisms of Cd-induced olfactory injury have not been characterized. In the present study, we investigated the role of the Nrf2-mediated antioxidant defense pathway in protecting against Cd-induced olfactory injury in zebrafish. A dose-dependent induction of Nrf2-regulated antioxidant genes associated with cellular responses to oxidativemore » stress was observed in the olfactory system of adult zebrafish following 24 h Cd exposure. Zebrafish larvae exposed to Cd for 3 h showed increased glutathione S-transferase pi (gst pi), glutamate–cysteine ligase catalytic subunit (gclc), heme oxygenase 1 (hmox1) and peroxiredoxin 1 (prdx1) mRNA levels indicative of Nrf2 activation, and which were blocked by morpholino-mediated Nrf2 knockdown. The inhibition of antioxidant gene induction in Cd-exposed Nrf2 morphants was associated with disruption of olfactory driven behaviors, increased cell death and loss of olfactory sensory neurons (OSNs). Nrf2 morphants also exhibited a downregulation of OSN-specific genes after Cd exposure. Pre-incubation of embryos with sulforaphane (SFN) partially protected against Cd-induced olfactory tissue damage. Collectively, our results indicate that oxidative stress is an important mechanism of Cd-mediated injury in the zebrafish olfactory system. Moreover, the Nrf2 pathway plays a protective role against cellular oxidative damage and is important in maintaining zebrafish olfactory function. -- Highlights: ► Oxidative stress is an important mechanism of Cd-mediated olfactory injury. ► Cd induces antioxidant gene expression in the zebrafish olfactory system. ► The olfactory antioxidant response is blocked by Nrf2 knockdown. ► Disruption of olfactory neurobehaviors is associated with Nrf2 knockdown. ► Nrf2 morphants show increased cell death and olfactory sensory neuron loss.« less
Roshchina, Victoria V
2016-01-01
The evolutionary perspective on the universal roles of compounds known as neurotransmitters may help in the analysis of relations between all organisms in biocenosis-from microorganisms to plant and animals. This phenomenon, significant for chemosignaling and cellular endocrinology, has been important in human health and the ability to cause disease or immunity, because the "living environment" influences every organism in a biocenosis relationship (microorganism-microorganism, microorganism-plant, microorganism-animal, plant-animal, plant-plant and animal-animal). Non-nervous functions of neurotransmitters (rather "biomediators" on a cellular level) are considered in this review and ample consideration is given to similarities and differences that unite, as well as distinguish, taxonomical kingdoms.
Wang, Yan; Xu, Heng-Yong; Zhu, Qing
2007-10-01
Diacylglycerol acyltransferase (DGAT; EC 2.3.1.20) is a microsomal enzyme that plays a central role in the metabolism of cellular glycerolipids. DGAT catalyzes the final step in triacylglycerol (TAG) biosynthesis by converting diacylgycerol (DAG) and fatty acyl-coenzyme A (CoA) into triacylglycero1. DGAT plays a fundamental role in the metabolism of cellular diacylglycerol and is important in higher eukaryotes for physiologic processes involving triacylglycerol metabolism such as intestinal fat absorption, lipoprotein assembly, adipose tissue formation, and lactation. Therefore, DGAT is not only an key factor for control triglycerides and fatty acids, but also may play a key modulatory role in animal fat deposition.
Location and cellular stages of NK cell development
Yu, Jianhua; Freud, Aharon G.; Caligiuri, Michael A
2013-01-01
The identification of distinct tissue-specific natural killer (NK) cell populations that apparently mature from local precursor populations has brought new insight into the diversity and developmental regulation of this important lymphoid subset. NK cells provide a necessary link between the early (innate) and late (adaptive) immune responses to infection. Gaining a better understanding of the processes that govern NK cell development should allow us to better harness NK cell functions in multiple clinical settings as well as to gain further insight into how these cells undergo malignant transformation. In this review, we summarize recent advances in understanding sites and cellular stages of NK cell development in humans and mice. PMID:24055329
Approaches to Validate and Manipulate RNA Targets with Small Molecules in Cells.
Childs-Disney, Jessica L; Disney, Matthew D
2016-01-01
RNA has become an increasingly important target for therapeutic interventions and for chemical probes that dissect and manipulate its cellular function. Emerging targets include human RNAs that have been shown to directly cause cancer, metabolic disorders, and genetic disease. In this review, we describe various routes to obtain bioactive compounds that target RNA, with a particular emphasis on the development of small molecules. We use these cases to describe approaches that are being developed for target validation, which include target-directed cleavage, classic pull-down experiments, and covalent cross-linking. Thus, tools are available to design small molecules to target RNA and to identify the cellular RNAs that are their targets.
Alternative Polyadenylation in Human Diseases
Chang, Jae-Woong; Yeh, Hsin-Sung
2017-01-01
Varying length of messenger RNA (mRNA) 3′-untranslated region is generated by alternating the usage of polyadenylation sites during pre-mRNA processing. It is prevalent through all eukaryotes and has emerged as a key mechanism for controlling gene expression. Alternative polyadenylation (APA) plays an important role for cell growth, proliferation, and differentiation. In this review, we discuss the functions of APA related with various physiological conditions including cellular metabolism, mRNA processing, and protein diversity in a variety of disease models. We also discuss the molecular mechanisms underlying APA regulation, such as variations in the concentration of mRNA processing factors and RNA-binding proteins, as well as global transcriptome changes under cellular signaling pathway. PMID:29271615
The β-Arrestins: Multifunctional Regulators of G Protein-coupled Receptors.
Smith, Jeffrey S; Rajagopal, Sudarshan
2016-04-22
The β-arrestins (βarrs) are versatile, multifunctional adapter proteins that are best known for their ability to desensitize G protein-coupled receptors (GPCRs), but also regulate a diverse array of cellular functions. To signal in such a complex fashion, βarrs adopt multiple conformations and are regulated at multiple levels to differentially activate downstream pathways. Recent structural studies have demonstrated that βarrs have a conserved structure and activation mechanism, with plasticity of their structural fold, allowing them to adopt a wide array of conformations. Novel roles for βarrs continue to be identified, demonstrating the importance of these dynamic regulators of cellular signaling. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Cellular Factors Targeting APCs to Modulate Adaptive T Cell Immunity
Do, Jeongsu; Min, Booki
2014-01-01
The fate of adaptive T cell immunity is determined by multiple cellular and molecular factors, among which the cytokine milieu plays the most important role in this process. Depending on the cytokines present during the initial T cell activation, T cells become effector cells that produce different effector molecules and execute adaptive immune functions. Studies thus far have primarily focused on defining how these factors control T cell differentiation by targeting T cells themselves. However, other non-T cells, particularly APCs, also express receptors for the factors and are capable of responding to them. In this review, we will discuss how APCs, by responding to those cytokines, influence T cell differentiation and adaptive immunity. PMID:25126585
Thrombospondins: old players, new games.
Stenina-Adognravi, Olga
2013-10-01
Thrombospondins (TSPs) are secreted extracellular matrix (ECM) proteins from TSP family, which consists of five homologous members. They share a complex domain structure and have numerous binding partners in ECM and multiple cell surface receptors. Information that has emerged over the past decade identifies TSPs as important mediators of cellular homeostasis, assigning new important roles in cardiovascular pathology to these proteins. Recent studies of the functions of TSP in the cardiovascular system, diabetes and aging, which placed several TSPs in a position of critical regulators, demonstrated the involvement of these proteins in practically every aspect of cardiovascular pathophysiology related to atherosclerosis: inflammation, immunity, leukocyte recruitment and function, function of vascular cells, angiogenesis, and responses to hypoxia, ischemia and hyperglycemia. TSPs are also critically important in the development and ultimate outcome of the complications associated with atherosclerosis--myocardial infarction, and heart hypertrophy and failure. Their expression and significance increase with age and with the progression of diabetes, two major contributors to the development of atherosclerosis and its complications. This overview of recent literature examines the latest information on the newfound functions of TSPs that emphasize the importance of ECM in cardiovascular homeostasis and pathology. The functions of TSPs in myocardium, vasculature, vascular complications of diabetes, aging and immunity are discussed.
Gimenez, Ana Paula Lappas; Richter, Larissa Morato Luciani; Atherino, Mariana Campos; Beirão, Breno Castello Branco; Fávaro, Celso; Costa, Michele Dietrich Moura; Zanata, Silvio Marques; Malnic, Bettina; Mercadante, Adriana Frohlich
2015-01-01
ABSTRACT Prion diseases involve the conversion of the endogenous cellular prion protein, PrPC, into a misfolded infectious isoform, PrPSc. Several functions have been attributed to PrPC, and its role has also been investigated in the olfactory system. PrPC is expressed in both the olfactory bulb (OB) and olfactory epithelium (OE) and the nasal cavity is an important route of transmission of diseases caused by prions. Moreover, Prnp−/− mice showed impaired behavior in olfactory tests. Given the high PrPC expression in OE and its putative role in olfaction, we screened a mouse OE cDNA library to identify novel PrPC-binding partners. Ten different putative PrPC ligands were identified, which were involved in functions such as cellular proliferation and apoptosis, cytoskeleton and vesicle transport, ubiquitination of proteins, stress response, and other physiological processes. In vitro binding assays confirmed the interaction of PrPC with STIP1 homology and U-Box containing protein 1 (Stub1) and are reported here for the first time. Stub1 is a co-chaperone with ubiquitin E3-ligase activity, which is associated with neurodegenerative diseases characterized by protein misfolding and aggregation. Physiological and pathological implications of PrPC-Stub1 interaction are under investigation. The PrPC-binding proteins identified here are not exclusive to the OE, suggesting that these interactions may occur in other tissues and play general biological roles. These data corroborate the proposal that PrPC is part of a multiprotein complex that modulates several cellular functions and provide a platform for further studies on the physiological and pathological roles of prion protein. PMID:26237451
Misra, R D K; Nune, C; Pesacreta, T C; Somani, M C; Karjalainen, L P
2013-04-01
Metallic biomedical devices with nanometer-sized grains (NGs) provide surfaces that are different from their coarse-grained (CG) (tens of micrometer) counterparts in terms of increased fraction of grain boundaries (NG>50%; CG<2-3%). The novel concept of 'phase-reversion' involving a controlled deformation-annealing sequence is used to obtain a wide range of grain structures, starting from the NG regime to the CG regime, to demonstrate that the grain structure significantly impacts cellular interactions and osteoblast functions. The uniqueness of this concept is the ability to address the critical aspect of cellular activity in nanostructured materials, because a range of grain sizes from NG to CG are obtained in a single material using an identical set of parameters. This is in addition to a high strength/weight ratio and superior wear and corrosion resistance. These multiple attributes are important for the long-term stability of biomedical devices. Experiments on the interplay between grain structure from the NG regime to CG in austenitic stainless steel on osteoblast functions indicated that cell attachment, proliferation, viability, morphology and spread varied with grain size and were favorably modulated on the NG and ultrafine-grain structure. Furthermore, immunofluorescence studies demonstrated stronger vinculin signals associated with actin stress fibers in the outer regions of the cells and cellular extensions on the NG surface. The differences in the cellular response with change in grain structure are attributed to grain structure and degree of hydrophilicity. The study lays the foundation for a new branch of nanostructured materials for biomedical applications. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Senatore, Adriano; Raiss, Hamad; Le, Phuong
2016-01-01
Voltage-gated calcium (Cav) channels serve dual roles in the cell, where they can both depolarize the membrane potential for electrical excitability, and activate transient cytoplasmic Ca2+ signals. In animals, Cav channels play crucial roles including driving muscle contraction (excitation-contraction coupling), gene expression (excitation-transcription coupling), pre-synaptic and neuroendocrine exocytosis (excitation-secretion coupling), regulation of flagellar/ciliary beating, and regulation of cellular excitability, either directly or through modulation of other Ca2+-sensitive ion channels. In recent years, genome sequencing has provided significant insights into the molecular evolution of Cav channels. Furthermore, expanded gene datasets have permitted improved inference of the species phylogeny at the base of Metazoa, providing clearer insights into the evolution of complex animal traits which involve Cav channels, including the nervous system. For the various types of metazoan Cav channels, key properties that determine their cellular contribution include: Ion selectivity, pore gating, and, importantly, cytoplasmic protein-protein interactions that direct sub-cellular localization and functional complexing. It is unclear when these defining features, many of which are essential for nervous system function, evolved. In this review, we highlight some experimental observations that implicate Cav channels in the physiology and behavior of the most early-diverging animals from the phyla Cnidaria, Placozoa, Porifera, and Ctenophora. Given our limited understanding of the molecular biology of Cav channels in these basal animal lineages, we infer insights from better-studied vertebrate and invertebrate animals. We also highlight some apparently conserved cellular functions of Cav channels, which might have emerged very early on during metazoan evolution, or perhaps predated it. PMID:27867359
Intermediates of Metabolism: From Bystanders to Signalling Molecules.
Haas, Robert; Cucchi, Danilo; Smith, Joanne; Pucino, Valentina; Macdougall, Claire Elizabeth; Mauro, Claudio
2016-05-01
The integration of biochemistry into immune cell biology has contributed immensely to our understanding of immune cell function and the associated pathologies. So far, most studies have focused on the regulation of metabolic pathways during an immune response and their contribution to its success. More recently, novel signalling functions of metabolic intermediates are being discovered that might play important roles in the regulation of immunity. Here we describe the three long-known small metabolites lactate, acetyl-CoA, and succinate in the context of immunometabolic signalling. Functions of these ubiquitous molecules are largely dependent on their intra- and extracellular concentrations as well as their subcompartmental localisation. Importantly, the signalling functions of these metabolic intermediates extend beyond self-regulatory roles and include cell-to-cell communication and sensing of microenvironmental conditions to elicit stress responses and cellular adaptation. Copyright © 2016 Elsevier Ltd. All rights reserved.
The role of actin networks in cellular mechanosensing
NASA Astrophysics Data System (ADS)
Azatov, Mikheil
Physical processes play an important role in many biological phenomena, such as wound healing, organ development, and tumor metastasis. During these processes, cells constantly interact with and adapt to their environment by exerting forces to mechanically probe the features of their surroundings and generating appropriate biochemical responses. The mechanisms underlying how cells sense the physical properties of their environment are not well understood. In this thesis, I present my studies to investigate cellular responses to the stiffness and topography of the environment. In order to sense the physical properties of their environment, cells dynamically reorganize the structure of their actin cytoskeleton, a dynamic network of biopolymers, altering the shape and spatial distribution of protein assemblies. Several observations suggest that proteins that crosslink actin filaments may play an important role in cellular mechanosensitivity. Palladin is an actin-crosslinking protein that is found in the lamellar actin network, stress fibers and focal adhesions, cellular structures that are critical for mechanosensing of the physical environment. By virtue of its close interactions with these structures in the cell, palladin may play an important role in cell mechanics. However, the role of actin crosslinkers in general, and palladin in particular, in cellular force generation and mechanosensing is not well known. I have investigated the role of palladin in regulating the plasticity of the actin cytoskeleton and cellular force generation in response to alterations in substrate stiffness. I have shown that the expression levels of palladin modulate the forces exerted by cells and their ability to sense substrate stiffness. Perturbation experiments also suggest that palladin levels in cells altered myosin motor activity. These results suggest that the actin crosslinkers, such as palladin, and myosin motors coordinate for optimal cell function and to prevent aberrant behavior as in cancer metastasis. In addition to stiffness, the local geometry or topography of the surface has been shown to modulate the movement, morphology, and cytoskeletal organization of cells. However, the effect of topography on fluctuations of intracellular structures, which arise from motor driven activity on a viscoelastic actin network are not known. I have used nanofabricated substrates with parallel ridges to show that the cell shape, the actin cytoskeleton and focal adhesions all align along the direction of the ridges, exhibiting a biphasic dependence on the spacing between ridges. I further demonstrated that palladin bands along actin stress fibers undergo a complex diffusive motion with velocities aligned along the direction of ridges. These results provide insight into the mechanisms of cellular mechanosensing of the environment, suggesting a complex interplay between the actin cytoskeleton and cellular adhesions in coordinating cellular response to surface topography. Overall, this work has advanced our understanding of mechanisms that govern cellular responses to their physical environment.
Liu, Ailing; Wu, Jinxiang; Li, Aijun; Bi, Wenxiang; Liu, Tian; Cao, Liuzhao; Liu, Yahui; Dong, Liang
2016-01-01
Cellular senescence is a state of irreversible growth arrest induced either by telomere shortening (replicative senescence) or stress. The bronchial epithelial cell is often injured by inhaled toxic substances, such as cigarette smoke. In the present study, we investigated whether exposure to cigarette smoke extract (CSE) induces senescence of bronchial epithelial cells; and Cordyceps sinensis mechanism of inhibition of CSE-induced cellular senescence. Human bronchial epithelial cells (16HBE cells) cultured in vitro were treated with CSE and/or C. sinensis. p16, p21, and senescence-associated-galactosidase activity were used to detect cellular senescence with immunofluorescence, quantitative polymerase chain reaction, and Western blotting. Reactive oxygen species (ROS), PI3K/AKT/mTOR and their phosphorylated proteins were examined to testify the activation of signaling pathway by ROS fluorescent staining and Western blotting. Then, inhibitors of ROS and PI3K were used to further confirm the function of this pathway. Cellular senescence was upregulated by CSE treatment, and C. sinensis can decrease CSE-induced cellular senescence. Activation of ROS/PI3K/AKT/mTOR signaling pathway was enhanced by CSE treatment, and decreased when C. sinensis was added. Blocking ROS/PI3K/AKT/mTOR signaling pathway can attenuate CSE-induced cellular senescence. CSE can induce cellular senescence in human bronchial epithelial cells, and ROS/PI3K/AKT/mTOR signaling pathway may play an important role in this process. C. sinensis can inhibit the CSE-induced senescence.
Cellular context-dependent consequences of Apc mutations on gene regulation and cellular behavior.
Hashimoto, Kyoichi; Yamada, Yosuke; Semi, Katsunori; Yagi, Masaki; Tanaka, Akito; Itakura, Fumiaki; Aoki, Hitomi; Kunisada, Takahiro; Woltjen, Knut; Haga, Hironori; Sakai, Yoshiharu; Yamamoto, Takuya; Yamada, Yasuhiro
2017-01-24
The spectrum of genetic mutations differs among cancers in different organs, implying a cellular context-dependent effect for genetic aberrations. However, the extent to which the cellular context affects the consequences of oncogenic mutations remains to be fully elucidated. We reprogrammed colon tumor cells in an Apc Min/+ (adenomatous polyposis coli) mouse model, in which the loss of the Apc gene plays a critical role in tumor development and subsequently, established reprogrammed tumor cells (RTCs) that exhibit pluripotent stem cell (PSC)-like signatures of gene expression. We show that the majority of the genes in RTCs that were affected by Apc mutations did not overlap with the genes affected in the intestine. RTCs lacked pluripotency but exhibited an increased expression of Cdx2 and a differentiation propensity that was biased toward the trophectoderm cell lineage. Genetic rescue of the mutated Apc allele conferred pluripotency on RTCs and enabled their differentiation into various cell types in vivo. The redisruption of Apc in RTC-derived differentiated cells resulted in neoplastic growth that was exclusive to the intestine, but the majority of the intestinal lesions remained as pretumoral microadenomas. These results highlight the significant influence of cellular context on gene regulation, cellular plasticity, and cellular behavior in response to the loss of the Apc function. Our results also imply that the transition from microadenomas to macroscopic tumors is reprogrammable, which underscores the importance of epigenetic regulation on tumor promotion.
Cellular context-dependent consequences of Apc mutations on gene regulation and cellular behavior
Hashimoto, Kyoichi; Yamada, Yosuke; Semi, Katsunori; Yagi, Masaki; Tanaka, Akito; Itakura, Fumiaki; Aoki, Hitomi; Kunisada, Takahiro; Woltjen, Knut; Haga, Hironori; Sakai, Yoshiharu; Yamamoto, Takuya; Yamada, Yasuhiro
2017-01-01
The spectrum of genetic mutations differs among cancers in different organs, implying a cellular context-dependent effect for genetic aberrations. However, the extent to which the cellular context affects the consequences of oncogenic mutations remains to be fully elucidated. We reprogrammed colon tumor cells in an ApcMin/+ (adenomatous polyposis coli) mouse model, in which the loss of the Apc gene plays a critical role in tumor development and subsequently, established reprogrammed tumor cells (RTCs) that exhibit pluripotent stem cell (PSC)-like signatures of gene expression. We show that the majority of the genes in RTCs that were affected by Apc mutations did not overlap with the genes affected in the intestine. RTCs lacked pluripotency but exhibited an increased expression of Cdx2 and a differentiation propensity that was biased toward the trophectoderm cell lineage. Genetic rescue of the mutated Apc allele conferred pluripotency on RTCs and enabled their differentiation into various cell types in vivo. The redisruption of Apc in RTC-derived differentiated cells resulted in neoplastic growth that was exclusive to the intestine, but the majority of the intestinal lesions remained as pretumoral microadenomas. These results highlight the significant influence of cellular context on gene regulation, cellular plasticity, and cellular behavior in response to the loss of the Apc function. Our results also imply that the transition from microadenomas to macroscopic tumors is reprogrammable, which underscores the importance of epigenetic regulation on tumor promotion. PMID:28057861
Darbani, Behrooz; Noeparvar, Shahin; Borg, Søren
2016-01-01
RNA circularization made by head-to-tail back-splicing events is involved in the regulation of gene expression from transcriptional to post-translational levels. By exploiting RNA-Seq data and down-stream analysis, we shed light on the importance of circular RNAs in plants. The results introduce circular RNAs as novel interactors in the regulation of gene expression in plants and imply the comprehensiveness of this regulatory pathway by identifying circular RNAs for a diverse set of genes. These genes are involved in several aspects of cellular metabolism as hormonal signaling, intracellular protein sorting, carbohydrate metabolism and cell-wall biogenesis, respiration, amino acid biosynthesis, transcription and translation, and protein ubiquitination. Additionally, these parental loci of circular RNAs, from both nuclear and mitochondrial genomes, encode for different transcript classes including protein coding transcripts, microRNA, rRNA, and long non-coding/microprotein coding RNAs. The results shed light on the mitochondrial exonic circular RNAs and imply the importance of circular RNAs for regulation of mitochondrial genes. Importantly, we introduce circular RNAs in barley and elucidate their cellular-level alterations across tissues and in response to micronutrients iron and zinc. In further support of circular RNAs' functional roles in plants, we report several cases where fluctuations of circRNAs do not correlate with the levels of their parental-loci encoded linear transcripts. PMID:27375638
Parasitoid wasp venom SERCA regulates Drosophila calcium levels and inhibits cellular immunity.
Mortimer, Nathan T; Goecks, Jeremy; Kacsoh, Balint Z; Mobley, James A; Bowersock, Gregory J; Taylor, James; Schlenke, Todd A
2013-06-04
Because parasite virulence factors target host immune responses, identification and functional characterization of these factors can provide insight into poorly understood host immune mechanisms. The fruit fly Drosophila melanogaster is a model system for understanding humoral innate immunity, but Drosophila cellular innate immune responses remain incompletely characterized. Fruit flies are regularly infected by parasitoid wasps in nature and, following infection, flies mount a cellular immune response culminating in the cellular encapsulation of the wasp egg. The mechanistic basis of this response is largely unknown, but wasps use a mixture of virulence proteins derived from the venom gland to suppress cellular encapsulation. To gain insight into the mechanisms underlying wasp virulence and fly cellular immunity, we used a joint transcriptomic/proteomic approach to identify venom genes from Ganaspis sp.1 (G1), a previously uncharacterized Drosophila parasitoid species, and found that G1 venom contains a highly abundant sarco/endoplasmic reticulum calcium ATPase (SERCA) pump. Accordingly, we found that fly immune cells termed plasmatocytes normally undergo a cytoplasmic calcium burst following infection, and that this calcium burst is required for activation of the cellular immune response. We further found that the plasmatocyte calcium burst is suppressed by G1 venom in a SERCA-dependent manner, leading to the failure of plasmatocytes to become activated and migrate toward G1 eggs. Finally, by genetically manipulating plasmatocyte calcium levels, we were able to alter fly immune success against G1 and other parasitoid species. Our characterization of parasitoid wasp venom proteins led us to identify plasmatocyte cytoplasmic calcium bursts as an important aspect of fly cellular immunity.
Böhnlein, E; Siekevitz, M; Ballard, D W; Lowenthal, J W; Rimsky, L; Bogérd, H; Hoffman, J; Wano, Y; Franza, B R; Greene, W C
1989-04-01
The human immunodeficiency virus type 1 (HIV-1) preferentially infects CD4+ T lymphocytes and may exist as a latent provirus within these cells for extended periods. The transition to a productive retroviral infection results in T-cell death and clinically may lead to the acquired immune deficiency syndrome. Accelerated production of infectious HIV-1 virions appears to be closely linked to a heightened state of T-cell activation. The transactivator (Tax) protein of the type I human T-cell leukemia virus (HTLV-I) can produce such an activated T-cell phenotype and augments activity of the HIV-1 long terminal repeat. One Tax-responsive region within the HIV-1 long terminal repeat has been mapped to a locus composed of two 10-base-pair direct repeats sharing homology with the binding site for the eucaryotic transcription factor NF-kappaB (GGGACTTTCC). Tax-expressing Jurkat T cells contain one or more inducible cellular proteins that specifically associate with the HIV-1 enhancer at these binding sites. Microscale DNA affinity precipitation assays identified a Tax-inducible 86-kilodalton protein, HIVEN86A, as one of these HIV-1 enhancer-binding factors. The interaction of HIVEN86A, and presumably other cellular proteins, with the HIV-1 enhancer appears functionally important as oligonucleotides corresponding to this enhancer were sufficient to impart Tax inducibility to an unresponsive heterologous promoter. These findings suggest that the Tax-inducible cellular protein HIVEN86A plays an important role in the transcriptional activation of the HIV-1 enhancer. These specific protein-DNA interactions may also be important for the transition of HIV-1 from a latent to a productive mode of infection. Furthermore, these findings highlight an intriguing biological interplay between HTLV-1 and HIV-1 through a cellular transcriptional pathway that is normally involved in T-cell activation and growth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fukushima, Kaori; Takahashi, Kaede; Yamasaki, Eri
Lysophosphatidic acid (LPA) signaling via G protein-coupled LPA receptors exhibits a variety of biological effects, such as cell proliferation, motility and differentiation. The aim of this study was to evaluate the roles of LPA{sub 1} and LPA{sub 3} in cellular functions during tumor progression in pancreatic cancer cells. LPA{sub 1} and LPA{sub 3} knockdown cells were generated from PANC-1 cells. The cell motile and invasive activities of PANC-1 cells were inhibited by LPA{sub 1} and LPA{sub 3} knockdown. In gelatin zymography, LPA{sub 1} and LPA{sub 3} knockdown cells indicated the low activation of matrix metalloproteinase-2 (MMP-2) in the presence ofmore » LPA. Next, to assess whether LPA{sub 1} and LPA{sub 3} regulate cellular functions induced by anticancer drug, PANC-1 cells were treated with cisplatin (CDDP) for approximately 6 months. The cell motile and invasive activities of long-term CDDP treated cells were markedly higher than those of PANC-1 cells, correlating with the expression levels of LPAR1 and LPAR3 genes. In soft agar assay, the long-term CDDP treated cells formed markedly large sized colonies. In addition, the cell motile and invasive activities enhanced by CDDP were significantly suppressed by LPA{sub 1} and LPA{sub 3} knockdown as well as colony formation. These results suggest that LPA signaling via LPA{sub 1} and LPA{sub 3} play an important role in the regulation of cellular functions during tumor progression in PANC-1 cells. - Highlights: • The cell motile and invasive activities of PANC-1 cells were stimulated by LPA{sub 1} and LPA{sub 3}. • LPA{sub 1} and LPA{sub 3} enhanced MMP-2 activation in PANC-1 cells. • The expressions of LPAR1 and LPAR3 genes were elevated in PANC-1 cells treated with cisplatin. • The cell motile and invasive activities of PANC-1 cells treated with cisplatin were suppressed by LPA{sub 1} and LPA{sub 3} knockdown. • LPA{sub 1} and LPA{sub 3} are involved in the regulation of cellular functions during tumor progression in PANC-1 cells.« less
Pooley, Hannah B.; de Silva, Kumudika; Purdie, Auriol C.; Begg, Douglas J.; Whittington, Richard J.
2016-01-01
ABSTRACT Determining the viability of bacteria is a key outcome of in vitro cellular infection assays. Currently, this is done by culture, which is problematic for fastidious slow-growing bacteria such as Mycobacterium avium subsp. paratuberculosis, where it can take up to 4 months to confirm growth. This study aimed to identify an assay that can rapidly quantify the number of viable M. avium subsp. paratuberculosis cells in a cellular sample. Three commercially available bacterial viability assays along with a modified liquid culture method coupled with high-throughput quantitative PCR growth detection were assessed. Criteria for assessment included the ability of each assay to differentiate live and dead M. avium subsp. paratuberculosis organisms and their accuracy at low bacterial concentrations. Using the culture-based method, M. avium subsp. paratuberculosis growth was reliably detected and quantified within 2 weeks. There was a strong linear association between the 2-week growth rate and the initial inoculum concentration. The number of viable M. avium subsp. paratuberculosis cells in an unknown sample was quantified based on the growth rate, by using growth standards. In contrast, none of the commercially available viability assays were suitable for use with samples from in vitro cellular infection assays. IMPORTANCE Rapid quantification of the viability of Mycobacterium avium subsp. paratuberculosis in samples from in vitro cellular infection assays is important, as it allows these assays to be carried out on a large scale. In vitro cellular infection assays can function as a preliminary screening tool, for vaccine development or antimicrobial screening, and also to extend findings derived from experimental animal trials. Currently, by using culture, it takes up to 4 months to obtain quantifiable results regarding M. avium subsp. paratuberculosis viability after an in vitro infection assay; however, with the quantitative PCR and liquid culture method developed, reliable results can be obtained at 2 weeks. This method will be important for vaccine and antimicrobial screening work, as it will allow a greater number of candidates to be screened in the same amount of time, which will increase the likelihood that a favorable candidate will be found to be subjected to further testing. PMID:27371585
2012-01-01
Background Linaclotide has been proposed as a treatment for the same gastrointestinal indications for which lubiprostone has been approved, chronic idiopathic constipation and irritable bowel syndrome with constipation. Stressors damage the epithelial cell barrier and cellular homeostasis leading to loss of these functions. Effects of active linaclotide on repair of barrier and cell function in pig jejunum after ischemia and in T84 cells after treatment with proinflammatory cytokines, interferon-γ and tumor necrosis factor-α were examined. Comparison with effects of lubiprostone, known to promote repair of barrier function was carried out. Results In ischemia-damaged pig jejunum, using measurements of transepithelial resistance, 3H-mannitol fluxes, short-circuit current (Cl− secretion) and occludin localization, active linaclotide failed to effectively promote repair of the epithelial barrier or recovery of short-circuit current, whereas lubiprostone promoted barrier repair and increased short-circuit current. In control pig jejunum, 1 μM linaclotide and 1 μM lubiprostone both caused similar increases in short-circuit current (Cl− secretion). In T84 cells, using measurements of transepithelial resistance, fluxes of fluorescent macromolecules, occludin and mitochondrial membrane potential, active linaclotide was virtually ineffective against damage caused by interferon-γ and tumor necrosis factor-α, while lubiprostone protected or promoted repair of epithelial barrier and cell function. Barrier protection/repair by lubiprostone was inhibited by methadone, a ClC-2 inhibitor. Linaclotide, but not lubiprostone increased [cGMP]i as expected and [Ca2+]i and linaclotide depolarized while lubiprostone hyperpolarized the T84 plasma membrane potential suggesting that lubiprostone may lead to greater cellular stability compared to linaclotide. In T84 cells, as found with linaclotide but not with lubiprostone, transepithelial resistance was slightly but significantly decreased by guanylin, STa and 8-bromo cGMP and fluorescent dextran fluxes were increased by guanylin. However the physiological implications of these small but statistically significant changes remain unclear. Conclusions Considering the physiological importance of epithelial barrier function and cell integrity and the known impact of stressors, the finding that lubiprostone, but not active linaclotide, exhibits the additional distinct property of effective protection or repair of the epithelial barrier and cell function after stress suggests potential clinical importance for patients with impaired or compromised barrier function such as might occur in IBS. PMID:22553939
Cuppoletti, John; Blikslager, Anthony T; Chakrabarti, Jayati; Nighot, Prashant K; Malinowska, Danuta H
2012-05-03
Linaclotide has been proposed as a treatment for the same gastrointestinal indications for which lubiprostone has been approved, chronic idiopathic constipation and irritable bowel syndrome with constipation. Stressors damage the epithelial cell barrier and cellular homeostasis leading to loss of these functions. Effects of active linaclotide on repair of barrier and cell function in pig jejunum after ischemia and in T84 cells after treatment with proinflammatory cytokines, interferon-γ and tumor necrosis factor-α were examined. Comparison with effects of lubiprostone, known to promote repair of barrier function was carried out. In ischemia-damaged pig jejunum, using measurements of transepithelial resistance, (3)H-mannitol fluxes, short-circuit current (Cl(-) secretion) and occludin localization, active linaclotide failed to effectively promote repair of the epithelial barrier or recovery of short-circuit current, whereas lubiprostone promoted barrier repair and increased short-circuit current. In control pig jejunum, 1 μM linaclotide and 1 μM lubiprostone both caused similar increases in short-circuit current (Cl(-) secretion). In T84 cells, using measurements of transepithelial resistance, fluxes of fluorescent macromolecules, occludin and mitochondrial membrane potential, active linaclotide was virtually ineffective against damage caused by interferon-γ and tumor necrosis factor-α, while lubiprostone protected or promoted repair of epithelial barrier and cell function. Barrier protection/repair by lubiprostone was inhibited by methadone, a ClC-2 inhibitor. Linaclotide, but not lubiprostone increased [cGMP]i as expected and [Ca(2+)]i and linaclotide depolarized while lubiprostone hyperpolarized the T84 plasma membrane potential suggesting that lubiprostone may lead to greater cellular stability compared to linaclotide. In T84 cells, as found with linaclotide but not with lubiprostone, transepithelial resistance was slightly but significantly decreased by guanylin, STa and 8-bromo cGMP and fluorescent dextran fluxes were increased by guanylin. However the physiological implications of these small but statistically significant changes remain unclear. Considering the physiological importance of epithelial barrier function and cell integrity and the known impact of stressors, the finding that lubiprostone, but not active linaclotide, exhibits the additional distinct property of effective protection or repair of the epithelial barrier and cell function after stress suggests potential clinical importance for patients with impaired or compromised barrier function such as might occur in IBS.
Polyamines and Hypusination Are Required for Ebolavirus Gene Expression and Replication
Olsen, Michelle E.; Filone, Claire Marie; Rozelle, Dan; Mire, Chad E.; Agans, Krystle N.; Hensley, Lisa
2016-01-01
ABSTRACT Ebolavirus (EBOV) is an RNA virus that is known to cause severe hemorrhagic fever in humans and other primates. EBOV successfully enters and replicates in many cell types. This replication is dependent on the virus successfully coopting a number of cellular factors. Many of these factors are currently unidentified but represent potential targets for antiviral therapeutics. Here we show that cellular polyamines are critical for EBOV replication. We found that small-molecule inhibitors of polyamine synthesis block gene expression driven by the viral RNA-dependent RNA polymerase. Short hairpin RNA (shRNA) knockdown of the polyamine pathway enzyme spermidine synthase also resulted in reduced EBOV replication. These findings led us to further investigate spermidine, a polyamine that is essential for the hypusination of eukaryotic initiation factor 5A (eIF5A). Blocking the hypusination of eIF5A (and thereby inhibiting its function) inhibited both EBOV gene expression and viral replication. The mechanism appears to be due to the importance of hypusinated eIF5A for the accumulation of VP30, an essential component of the viral polymerase. The same reduction in hypusinated eIF5A did not alter the accumulation of other viral polymerase components. This action makes eIF5A function an important gate for proper EBOV polymerase assembly and function through the control of a single virus protein. PMID:27460797
Lutz, David; Wolters-Eisfeld, Gerrit; Joshi, Gunjan; Djogo, Nevena; Jakovcevski, Igor; Schachner, Melitta; Kleene, Ralf
2012-01-01
The functions of the cell adhesion molecule L1 in the developing and adult nervous system are triggered by homophilic and heterophilic interactions that stimulate signal transductions that activate cellular responses. Here, we show that stimulation of signaling by function-triggering L1 antibodies or L1-Fc leads to serine protease-dependent cleavage of full-length L1 at the plasma membrane and generation of a sumoylated transmembrane 70-kDa fragment comprising the intracellular and transmembrane domains and part of the extracellular domain. The 70-kDa transmembrane fragment is transported from the plasma membrane to a late endosomal compartment, released from endosomal membranes into the cytoplasm, and transferred from there into the nucleus by a pathway that depends on importin and chromatin-modifying protein 1. Mutation of the sumoylation site at Lys1172 or of the nuclear localization signal at Lys1147 abolished L1-stimulated generation or nuclear import of the 70-kDa fragment, respectively. Nuclear import of the 70-kDa fragment may activate cellular responses in parallel or in association with phosphorylation-dependent signaling pathways. Alterations in the levels of the 70-kDa fragment during development and in the adult after spinal cord injury or in a mouse model of Alzheimer disease suggest that this fragment is functionally implicated in development, regeneration, neurodegeneration, tumorigenesis, and possibly synaptic plasticity in the mature nervous system. PMID:22431726
Functional Analysis of the Aspergillus nidulans Kinome
De Souza, Colin P.; Hashmi, Shahr B.; Osmani, Aysha H.; Andrews, Peter; Ringelberg, Carol S.; Dunlap, Jay C.; Osmani, Stephen A.
2013-01-01
The filamentous fungi are an ecologically important group of organisms which also have important industrial applications but devastating effects as pathogens and agents of food spoilage. Protein kinases have been implicated in the regulation of virtually all biological processes but how they regulate filamentous fungal specific processes is not understood. The filamentous fungus Aspergillus nidulans has long been utilized as a powerful molecular genetic system and recent technical advances have made systematic approaches to study large gene sets possible. To enhance A. nidulans functional genomics we have created gene deletion constructs for 9851 genes representing 93.3% of the encoding genome. To illustrate the utility of these constructs, and advance the understanding of fungal kinases, we have systematically generated deletion strains for 128 A. nidulans kinases including expanded groups of 15 histidine kinases, 7 SRPK (serine-arginine protein kinases) kinases and an interesting group of 11 filamentous fungal specific kinases. We defined the terminal phenotype of 23 of the 25 essential kinases by heterokaryon rescue and identified phenotypes for 43 of the 103 non-essential kinases. Uncovered phenotypes ranged from almost no growth for a small number of essential kinases implicated in processes such as ribosomal biosynthesis, to conditional defects in response to cellular stresses. The data provide experimental evidence that previously uncharacterized kinases function in the septation initiation network, the cell wall integrity and the morphogenesis Orb6 kinase signaling pathways, as well as in pathways regulating vesicular trafficking, sexual development and secondary metabolism. Finally, we identify ChkC as a third effector kinase functioning in the cellular response to genotoxic stress. The identification of many previously unknown functions for kinases through the functional analysis of the A. nidulans kinome illustrates the utility of the A. nidulans gene deletion constructs. PMID:23505451
The relationship between in vitro cellular aging and in vivo human age.
Schneider, E L; Mitsui, Y
1976-01-01
Differences between early and late passage cell cultures on the organelle and macromolecular levels have been attributed to cellular "aging". However, concern has been expressed over whether changes in diploid cell populations after serial passage in vitro accurately reflect human cellular aging in vivo. Studies were therefore undertaken to determine if significant differences would be observed in the in vitro lifespans of skin fibroblast cultures from old and young normal, non-hospitalized volunteers and to examine if parameters that change with in vitro "aging" are altered as a function of age in vivo. Statistically signigificant (P less than 0.05) decreases were found in the rate of fibroblast migration, onset of cell culture senescence, in vitro lifespan, cell population replication rate, and cell number at confluency of fibroblast cultures derived from the old donor group when compared to parallel cultures from young donors. No significant differences were observed in modal cell volumes and cellular macromolecular contents. The differences observed in cell cultures from old and young donors were quantitatively and qualitatively distinct from those cellular alterations observed in early and late passage WI-38 cells (in vitro "aging"). Therefore, although early and late passage cultures of human diploid cells may provide an important cell system for examining loss of replicative potential, fibroblast cultures derived from old and young human donors may be a more appropriate model system for studying human cellular aging. PMID:1068470
Intracellular cargo delivery by virus capsid protein-based vehicles: From nano to micro.
Gao, Ding; Lin, Xiu-Ping; Zhang, Zhi-Ping; Li, Wei; Men, Dong; Zhang, Xian-En; Cui, Zong-Qiang
2016-02-01
Cellular delivery is an important concern for the efficiency of medicines and sensors for disease diagnoses and therapy. However, this task is quite challenging. Self-assembly virus capsid proteins might be developed as building blocks for multifunctional cellular delivery vehicles. In this work, we found that SV40 VP1 (Simian virus 40 major capsid protein) could function as a new cell-penetrating protein. The VP1 protein could carry foreign proteins into cells in a pentameric structure. A double color structure, with red QDs (Quantum dots) encapsulated by viral capsids fused with EGFP, was created for imaging cargo delivery and release from viral capsids. The viral capsids encapsulating QDs were further used for cellular delivery of micron-sized iron oxide particles (MPIOs). MPIOs were efficiently delivered into live cells and controlled by a magnetic field. Therefore, our study built virus-based cellular delivery systems for different sizes of cargos: protein molecules, nanoparticles, and micron-sized particles. Much research is being done to investigate methods for efficient and specific cellular delivery of drugs, proteins or genetic material. In this article, the authors describe their approach in using self-assembly virus capsid proteins SV40 VP1 (Simian virus 40 major capsid protein). The cell-penetrating behavior provided excellent cellular delivery and should give a new method for biomedical applications. Copyright © 2015 Elsevier Inc. All rights reserved.
A cellular star atlas: using astrocytes from human pluripotent stem cells for disease studies
Krencik, Robert; Ullian, Erik M.
2013-01-01
What roles do astrocytes play in human disease?This question remains unanswered for nearly every human neurological disorder. Yet, because of their abundance and complexity astrocytes can impact neurological function in many ways. The differentiation of human pluripotent stem cells (hPSCs) into neuronal and glial subtypes, including astrocytes, is becoming routine, thus their use as tools for modeling neurodevelopment and disease will provide one important approach to answer this question. When designing experiments, careful consideration must be given to choosing paradigms for differentiation, maturation, and functional analysis of these temporally asynchronous cellular populations in culture. In the case of astrocytes, they display heterogeneous characteristics depending upon species of origin, brain region, developmental stage, environmental factors, and disease states, all of which may render experimental results highly variable. In this review, challenges and future directions are discussed for using hPSC-derived astroglial progenitors and mature astrocytes for neurodevelopmental studies with a focus on exploring human astrocyte effects upon neuronal function. As new technologies emerge to measure the functions of astrocytes in vitro and in vivo, there is also a need for a standardized source of human astrocytes that are most relevant to the diseases of interest. PMID:23503583
Malina, Carl; Larsson, Christer; Nielsen, Jens
2018-08-01
Mitochondria are dynamic organelles of endosymbiotic origin that are essential components of eukaryal cells. They contain their own genetic machinery, have multicopy genomes and like their bacterial ancestors they consist of two membranes. However, the majority of the ancestral genome has been lost or transferred to the nuclear genome of the host, preserving only a core set of genes involved in oxidative phosphorylation. Mitochondria perform numerous biological tasks ranging from bioenergetics to production of protein co-factors, including heme and iron-sulfur clusters. Due to the importance of mitochondria in many cellular processes, mitochondrial dysfunction is implicated in a wide variety of human disorders. Much of our current knowledge on mitochondrial function and dysfunction comes from studies using Saccharomyces cerevisiae. This yeast has good fermenting capacity, rendering tolerance to mutations that inactivate oxidative phosphorylation and complete loss of mitochondrial DNA. Here, we review yeast mitochondrial metabolism and function with focus on S. cerevisiae and its contribution in understanding mitochondrial biology. We further review how systems biology studies, including mathematical modeling, has allowed gaining new insight into mitochondrial function, and argue that this approach may enable us to gain a holistic view on how mitochondrial function interacts with different cellular processes.
Comparative bioinformatics analyses and profiling of lysosome-related organelle proteomes
NASA Astrophysics Data System (ADS)
Hu, Zhang-Zhi; Valencia, Julio C.; Huang, Hongzhan; Chi, An; Shabanowitz, Jeffrey; Hearing, Vincent J.; Appella, Ettore; Wu, Cathy
2007-01-01
Complete and accurate profiling of cellular organelle proteomes, while challenging, is important for the understanding of detailed cellular processes at the organelle level. Mass spectrometry technologies coupled with bioinformatics analysis provide an effective approach for protein identification and functional interpretation of organelle proteomes. In this study, we have compiled human organelle reference datasets from large-scale proteomic studies and protein databases for seven lysosome-related organelles (LROs), as well as the endoplasmic reticulum and mitochondria, for comparative organelle proteome analysis. Heterogeneous sources of human organelle proteins and rodent homologs are mapped to human UniProtKB protein entries based on ID and/or peptide mappings, followed by functional annotation and categorization using the iProXpress proteomic expression analysis system. Cataloging organelle proteomes allows close examination of both shared and unique proteins among various LROs and reveals their functional relevance. The proteomic comparisons show that LROs are a closely related family of organelles. The shared proteins indicate the dynamic and hybrid nature of LROs, while the unique transmembrane proteins may represent additional candidate marker proteins for LROs. This comparative analysis, therefore, provides a basis for hypothesis formulation and experimental validation of organelle proteins and their functional roles.
2014-01-01
Current soil management strategies are mainly dependent on inorganic chemical-based fertilizers, which caused a serious threat to human health and environment. The exploitation of beneficial microbes as a biofertilizer has become paramount importance in agriculture sector for their potential role in food safety and sustainable crop production. The eco-friendly approaches inspire a wide range of application of plant growth promoting rhizobacteria (PGPRs), endo- and ectomycorrhizal fungi, cyanobacteria and many other useful microscopic organisms led to improved nutrient uptake, plant growth and plant tolerance to abiotic and biotic stress. The present review highlighted biofertilizers mediated crops functional traits such as plant growth and productivity, nutrient profile, plant defense and protection with special emphasis to its function to trigger various growth- and defense-related genes in signaling network of cellular pathways to cause cellular response and thereby crop improvement. The knowledge gained from the literature appraised herein will help us to understand the physiological bases of biofertlizers towards sustainable agriculture in reducing problems associated with the use of chemicals fertilizers. PMID:24885352
Jang, Sang-Min; Redon, Christophe E.; Aladjem, Mirit I.
2018-01-01
Cullin-RING (Really Interesting New Gene) E3 ubiquitin ligases (CRLs), the largest family of E3 ubiquitin ligases, are functional multi-subunit complexes including substrate receptors, adaptors, cullin scaffolds, and RING-box proteins. CRLs are responsible for ubiquitination of ~20% of cellular proteins and are involved in diverse biological processes including cell cycle progression, genome stability, and oncogenesis. Not surprisingly, cullins are deregulated in many diseases and instances of cancer. Recent studies have highlighted the importance of CRL-mediated ubiquitination in the regulation of DNA replication/repair, including specific roles in chromatin assembly and disassembly of the replication machinery. The development of novel therapeutics targeting the CRLs that regulate the replication machinery and chromatin in cancer is now an attractive therapeutic strategy. In this review, we summarize the structure and assembly of CRLs and outline their cellular functions and their diverse roles in cancer, emphasizing the regulatory functions of nuclear CRLs in modulating the DNA replication machinery. Finally, we discuss the current strategies for targeting CRLs against cancer in the clinic. PMID:29594129
Aging and male reproductive function: a mitochondrial perspective.
Amaral, Sandra; Amaral, Alexandra; Ramalho-Santos, Joao
2013-01-01
Researching the effects of aging in the male reproductive system is not trivial. Not only are multiple changes at molecular, cellular and endocrine levels involved, but any findings must be discussed with variable individual characteristics, as well as with lifestyle and environmental factors. Age-related changes in the reproductive system include any aspect of reproductive function, from deregulation of the hypothalamic-pituitary-gonadal axis and of local auto/paracrine interactions, to effects on testicular stem cells, defects in testicular architecture and spermatogenesis, or sperm with decreased functionality. Several theories place mitochondria at the hub of cellular events related to aging, namely regarding the accumulation of oxidative damage to cells and tissues, a process in which these organelles play a prominent role, although alternative theories have also emerged. However, oxidative stress is not the only process involved in mitochondrial-related aging; mitochondrial energy metabolism, changes in mitochondrial DNA or in mitochondrial-dependent testosterone production are also important. Crucially, all these issues are likely interdependent. We will review evidence that suggests that mitochondria constitute a common link between aging and fertility loss.
NASA Astrophysics Data System (ADS)
Fei, T.; Skidmore, A.; Liu, Y.
2012-07-01
Thermal environment is especially important to ectotherm because a lot of physiological functions rely on the body temperature such as thermoregulation. The so-called behavioural thermoregulation function made use of the heterogeneity of the thermal properties within an individual's habitat to sustain the animal's physiological processes. This function links the spatial utilization and distribution of individual ectotherm with the thermal properties of habitat (thermal habitat). In this study we modelled the relationship between the two by a spatial explicit model that simulates the movements of a lizard in a controlled environment. The model incorporates a lizard's transient body temperatures with a cellular automaton algorithm as a way to link the physiology knowledge of the animal with the spatial utilization of its microhabitat. On a larger spatial scale, 'thermal roughness' of the habitat was defined and used to predict the habitat occupancy of the target species. The results showed the habitat occupancy can be modelled by the cellular automaton based algorithm at a smaller scale, and can be modelled by the thermal roughness index at a larger scale.
Cardiovascular and Hemostatic Disorders: Role of STIM and Orai Proteins in Vascular Disorders.
Tanwar, Jyoti; Trebak, Mohamed; Motiani, Rajender K
2017-01-01
Store-operated Ca 2+ entry (SOCE) mediated by STIM and Orai proteins is a highly regulated and ubiquitous signaling pathway that plays an important role in various cellular and physiological functions. Endoplasmic reticulum (ER) serves as the major site for intracellular Ca 2+ storage. Stromal Interaction Molecule 1/2 (STIM1/2) sense decrease in ER Ca 2+ levels and transmits the message to plasma membrane Ca 2+ channels constituted by Orai family members (Orai1/2/3) resulting in Ca 2+ influx into the cells. This increase in cytosolic Ca 2+ in turn activates a variety of signaling cascades to regulate a plethora of cellular functions. Evidence from the literature suggests that SOCE dysregulation is associated with several pathophysiologies, including vascular disorders. Interestingly, recent studies have suggested that STIM proteins may also regulate vascular functions independent of their contribution to SOCE. In this updated book chapter, we will focus on the physiological role of STIM and Orai proteins in the vasculature (endothelial cells and vascular smooth muscle cells). We will further retrospect the literature implicating a critical role for these proteins in vascular disease.
SMN control of RNP assembly: from post-transcriptional gene regulation to motor neuron disease
Li, Darrick K.; Tisdale, Sarah; Lotti, Francesco; Pellizzoni, Livio
2014-01-01
At the post-transcriptional level, expression of protein-coding genes is controlled by a series of RNA regulatory events including nuclear processing of primary transcripts, transport of mature mRNAs to specific cellular compartments, translation and ultimately, turnover. These processes are orchestrated through the dynamic association of mRNAs with RNA binding proteins and ribonucleoprotein (RNP) complexes. Accurate formation of RNPs in vivo is fundamentally important to cellular development and function, and its impairment often leads to human disease. The survival motor neuron (SMN) protein is key to this biological paradigm: SMN is essential for the biogenesis of various RNPs that function in mRNA processing, and genetic mutations leading to SMN deficiency cause the neurodegenerative disease spinal muscular atrophy. Here we review the expanding role of SMN in the regulation of gene expression through its multiple functions in RNP assembly. We discuss advances in our understanding of SMN activity as a chaperone of RNPs and how disruption of SMN-dependent RNA pathways can cause motor neuron disease. PMID:24769255
Popa-Wagner, A; Pirici, D; Petcu, E B; Mogoanta, L; Buga, A-M; Rosen, C L; Leon, R; Huber, J
2010-08-01
Chronic hypertension and cerebral amyloid angiopathy (CAA) are the main pathologies which can induce the rupture of cerebral vessels and intracerebral hemorrhages, as a result of degenerative changes in the vascular wall. A lot of progress has been made in this direction since the successful creation of the first mouse model for the study of Alzheimer's disease (AD), as the spectrum of AD pathology includes a plethora of changes found in pure cerebrovascular diseases. We describe here some of these mouse models having important vascular changes that parallel human AD pathology, and more importantly, we show how these models have helped us understand more about the mechanisms that lead to CAA formation. An important cellular event associated with reduced structural and functional recovery after stroke in aged animals is the early formation of a scar in the infarcted region that impairs subsequent neural recovery and repair. We review recent evidence showing that the rapid formation of the glial scar following stroke in aged rats is associated with premature cellular proliferation that originates primarily from the walls of capillaries in the corpus callosum adjacent to the infarcted region. After stroke several vascular mechanisms are turned-on immediately to protect the brain from further damage and help subsequent neuroregeneration and functional recovery. Although does occur after stroke, vasculogenesis is overshadowed in its protective/restorative role by the angiogenesis and arteriogenesis. Understanding the basic mechanisms underlying functional recovery after cerebral stroke in aging subjects is likely to yield new insights into the treatment of brain injury in the clinic.
Protecting the retinal neurons from glaucoma: lowering ocular pressure is not enough.
Pascale, Alessia; Drago, Filippo; Govoni, Stefano
2012-07-01
The retina is theater of a number of biochemical reactions allowing, within its layers, the conversion of light impulses into electrical signals. The axons of the last neuronal elements, the ganglion cells, form the optic nerve and transfer the signals to the brain. Therefore, an appropriate cellular communication, not only within the different retinal cells, but also between the retina itself and the other brain structures, is fundamental. One of the most diffuse pathologies affecting retinal function and communication, which thus reverberates in the whole visual system, is glaucoma. This insidious disease is characterized by a progressive optic nerve degeneration and sight loss which may finally lead to irreversible blindness. Nevertheless, the progressive nature of this pathology offers an opportunity for therapeutic intervention. To better understand the cellular processes implicated in the development of glaucoma useful to envision a targeted pharmacological strategy, this manuscript first examines the complex cellular and functional organization of the retina and subsequently identifies the targets sensitive to neurodegeneration. Within this context, high ocular pressure represents a key risk factor. However, recent literature findings highlight the concept that lowering ocular pressure is not enough to prevent/slow down glaucomatous damage, suggesting the importance of combining the hypotensive treatment with other pharmacological approaches, such as the use of neuroprotectants. Therefore, this important and more novel aspect is extensively considered in this review, also emphasizing the idea that the neuroprotective strategy should be extended to the entire visual system and not restricted to the retina. Copyright © 2012 Elsevier Ltd. All rights reserved.
Animal models to study microRNA function
Pal, Arpita S.; Kasinski, Andrea L.
2018-01-01
The discovery of the microRNAs, lin-4 and let-7 as critical mediators of normal development in Caenorhabditis elegans and their conservation throughout evolution has spearheaded research towards identifying novel roles of microRNAs in other cellular processes. To accurately elucidate these fundamental functions, especially in the context of an intact organism various microRNA transgenic models have been generated and evaluated. Transgenic C. elegans (worms), Drosophila melanogaster (flies), Danio rerio (zebrafish), and Mus musculus (mouse) have contributed immensely towards uncovering the roles of multiple microRNAs in cellular processes such as proliferation, differentiation, and apoptosis, pathways that are severely altered in human diseases such as cancer. The simple model organisms, C. elegans, D. melanogaster and D. rerio do not develop cancers, but have proved to be convenient systesm in microRNA research, especially in characterizing the microRNA biogenesis machinery which is often dysregulated during human tumorigenesis. The microRNA-dependent events delineated via these simple in vivo systems have been further verified in vitro, and in more complex models of cancers, such as M. musculus. The focus of this review is to provide an overview of the important contributions made in the microRNA field using model organisms. The simple model systems provided the basis for the importance of microRNAs in normal cellular physiology, while the more complex animal systems provided evidence for the role of microRNAs dysregulation in cancers. Highlights include an overview of the various strategies used to generate transgenic organisms and a review of the use of transgenic mice for evaluating pre-clinical efficacy of microRNA-based cancer therapeutics. PMID:28882225
Shestopaloff, Yuri K
2016-08-15
Living organisms need energy to be 'alive'. Energy is produced by the biochemical processing of nutrients, and the rate of energy production is called the metabolic rate. Metabolism is very important from evolutionary and ecological perspectives, and for organismal development and functioning. It depends on different parameters, of which organism mass is considered to be one of the most important. Simple relationships between the mass of organisms and their metabolic rates were empirically discovered by M. Kleiber in 1932. Such dependence is described by a power function, whose exponent is referred to as the allometric scaling coefficient. With the increase of mass, the metabolic rate usually increases more slowly; if mass increases by two times, the metabolic rate increases less than two times. This fact has far-reaching implications for the organization of life. The fundamental biological and biophysical mechanisms underlying this phenomenon are still not well understood. The present study shows that one such primary mechanism relates to transportation of substances, such as nutrients and waste, at a cellular level. Variations in cell size and associated cellular transportation costs explain the known variance of the allometric exponent. The introduced model also includes heat dissipation constraints. The model agrees with experimental observations and reconciles experimental results across different taxa. It ties metabolic scaling to organismal and environmental characteristics, helps to define perspective directions of future research and allows the prediction of allometric exponents based on characteristics of organisms and the environments they live in. © 2016. Published by The Company of Biologists Ltd.
Lee, Irene; Berdis, Anthony J
2016-01-01
Historically, the study of proteins has relied heavily on characterizing the activity of a single purified protein isolated from other cellular components. This classic approach allowed scientists to unambiguously define the intrinsic kinetic and chemical properties of that protein. The ultimate hope was to extrapolate this information toward understanding how the enzyme or receptor behaves within its native cellular context. These types of detailed in vitro analyses were necessary to reduce the innate complexities of measuring the singular activity and biochemical properties of a specific enzyme without interference from other enzymes and potential competing substrates. However, recent developments in fields encompassing cell biology, molecular imaging, and chemical biology now provide the unique chemical tools and instrumentation to study protein structure, function, and regulation in their native cellular environment. These advancements provide the foundation for a new field, coined physiological enzymology, which quantifies the function and regulation of enzymes and proteins at the cellular level. In this Special Edition, we explore the area of Physiological Enzymology and Protein Function through a series of review articles that focus on the tools and techniques used to measure the cellular activity of proteins inside living cells. This article is part of a Special Issue entitled: Physiological Enzymology and Protein Functions. Copyright © 2015 Elsevier B.V. All rights reserved.
The role of focal adhesion kinase in the regulation of cellular mechanical properties
NASA Astrophysics Data System (ADS)
Mierke, Claudia Tanja
2013-12-01
The regulation of mechanical properties is necessary for cell invasion into connective tissue or intra- and extravasation through the endothelium of blood or lymph vessels. Cell invasion is important for the regulation of many healthy processes such as immune response reactions and wound healing. In addition, cell invasion plays a role in disease-related processes such as tumor metastasis and autoimmune responses. Until now the role of focal adhesion kinase (FAK) in regulating mechanical properties of cells and its impact on cell invasion efficiency is still not well known. Thus, this review focuses on mechanical properties regulated by FAK in comparison to the mechano-regulating protein vinculin. Moreover, it points out the connection between cancer cell invasion and metastasis and FAK by showing that FAK regulates cellular mechanical properties required for cellular motility. Furthermore, it sheds light on the indirect interaction of FAK with vinculin by binding to paxillin, which then impairs the binding of paxillin to vinculin. In addition, this review emphasizes whether FAK fulfills regulatory functions similar to vinculin. In particular, it discusses the differences and the similarities between FAK and vinculin in regulating the biomechanical properties of cells. Finally, this paper highlights that both focal adhesion proteins, vinculin and FAK, synergize their functions to regulate the mechanical properties of cells such as stiffness and contractile forces. Subsequently, these mechanical properties determine cellular invasiveness into tissues and provide a source sink for future drug developments to inhibit excessive cell invasion and hence, metastases formation.
Li, Shuyan; Sun, Yan; Qi, Xiaodan; Shi, Yan; Gao, Han; Wu, Qi; Liu, Xiucai; Yu, Haitao; Zhang, Chunjing
2014-01-01
In recent years, diabetes and its associated complications have become a major public health concern. The cardiovascular risk increases significantly in diabetes patients. It is a complex disease characterized by multiple metabolic derangements and is known to impair cardiac function by disrupting the balance between pro-oxidants and antioxidants at the cellular level. The subsequent generation of reactive oxygen species (ROS) and accompanying oxidative stress are hallmarks of the molecular mechanisms responsible for cardiovascular disease. Protein thiols act as redox-sensitive switches and are believed to be a key element in maintaining the cellular redox balance. The redox state of protein thiols is regulated by oxidative stress and redox signaling and is important to cellular functions. The potential of the thiol-disulfide oxidoreductase enzymes (thioredoxin and glutaredoxin systems) in defense against oxidative stress has been noted previously. Increasing evidence demonstrates that glutaredoxin 1 (Grx1), a cytosolic enzyme responsible for the catalysis of protein deglutathionylation, plays distinct roles in inflammation and apoptosis by inducing changes in the cellular redox system. This study investigates whether and how Grx1 protects coronary artery vascular endothelial cells against high glucose (HG) induced damage. Results indicate that the activation of eNOS/NO system is regulated by Grx 1 and coupled with inhibition of JNK and NF-κB signaling pathway which could alleviate the oxidative stress and apoptosis damage in coronary arteries endothelial cells induced by HG.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Ping; Mobasher, Maral E.; Alawi, Faizan, E-mail: falawi@upenn.edu
Highlights: • Dyskerin depletion triggers cellular senescence in U2OS osteosarcoma cells. • Dyskerin-depleted cells are resistant to apoptosis induced by genotoxic stress. • Chromatin relaxation sensitizes dyskerin-depleted cells to apoptosis. - Abstract: Dyskerin is a conserved, nucleolar RNA-binding protein implicated in an increasing array of fundamental cellular processes. Germline mutation in the dyskerin gene (DKC1) is the cause of X-linked dyskeratosis congenita (DC). Conversely, wild-type dyskerin is overexpressed in sporadic cancers, and high-levels may be associated with poor prognosis. It was previously reported that acute loss of dyskerin function via siRNA-mediated depletion slowed the proliferation of transformed cell lines. However,more » the mechanisms remained unclear. Using human U2OS osteosarcoma cells, we show that siRNA-mediated dyskerin depletion induced cellular senescence as evidenced by proliferative arrest, senescence-associated heterochromatinization and a senescence-associated molecular profile. Senescence can render cells resistant to apoptosis. Conversely, chromatin relaxation can reverse the repressive effects of senescence-associated heterochromatinization on apoptosis. To this end, genotoxic stress-induced apoptosis was suppressed in dyskerin-depleted cells. In contrast, agents that induce chromatin relaxation, including histone deacetylase inhibitors and the DNA intercalator chloroquine, sensitized dyskerin-depleted cells to apoptosis. Dyskerin is a core component of the telomerase complex and plays an important role in telomere homeostasis. Defective telomere maintenance resulting in premature senescence is thought to primarily underlie the pathogenesis of X-linked DC. Since U2OS cells are telomerase-negative, this leads us to conclude that loss of dyskerin function can also induce cellular senescence via mechanisms independent of telomere shortening.« less
TiO2 nanoparticle-induced ROS correlates with modulated immune cell function
NASA Astrophysics Data System (ADS)
Maurer-Jones, Melissa A.; Christenson, Jenna R.; Haynes, Christy L.
2012-12-01
Design of non-toxic nanoparticles will be greatly facilitated by understanding the nanoparticle-cell interaction mechanism on a cell function level. Mast cells are important cells for the immune system's first line of defense, and we can utilize their exocytotic behavior as a model cellular function as it is a conserved process across cell types and species. Perturbations in exocytosis can also have implications for whole organism health. One proposed mode of toxicity is nanoparticle-induced reactive oxygen species (ROS), particularly for titanium dioxide (TiO2) nanoparticles. Herein, we have correlated changes in ROS with the perturbation of the critical cell function of exocytosis, using UV light to induce greater levels of ROS in TiO2 exposed cells. The primary culture mouse peritoneal mast cells (MPMCs) were exposed to varying concentrations of TiO2 nanoparticles for 24 h. ROS content was determined using 2,7-dihydrodichlorofluorescein diacetate (DCFDA). Cellular viability was determined with the MTT and Trypan blue assays, and exocytosis was measured by the analytical electrochemistry technique of carbon-fiber microelectrode amperometry. MPMCs exposed to TiO2 nanoparticles experienced a dose-dependent increase in total ROS content. While there was minimal impact of ROS on cellular viability, there is a correlation between ROS amount and exocytosis perturbation. As nanoparticle-induced ROS increases, there is a significant decrease (45 %) in the number of serotonin molecules being released during exocytosis, increase (26 %) in the amount of time for each exocytotic granule to release, and decrease (28 %) in the efficiency of granule trafficking and docking. This is the first evidence that nanoparticle-induced ROS correlates with chemical messenger molecule secretion, possibly making a critical connection between functional impairment and mechanisms contributing to that impairment.
Cheong, Jin-Gyu; Song, Dae-Geun; Song, Haeng Eun; Berditchevski, Fedor; Nam, Seo Hee; Jung, Jae Woo; Kim, Hye-Jin; Kim, Ji Eon; Kim, Somi; Ryu, Jihye; Cho, Chang Yun; Lee, Kyung-Min; Lee, Jung Weon
2017-01-01
The transmembrane 4 L six family proteins TM4SF1, TM4SF4, and TM4SF5 share 40-50% overall sequence identity, but their C-terminus identity is limited. It may be likely that the C-termini of the members are important and unique for own regulatory functions. We thus examined how the TM4SF5 C-terminus affected cellular functions differentially from other family members. Using colon cancer cells expressing wildtype (WT), C-terminus-deleted, or chimeric mutants, diverse cellular functions were explored in 2-dimensional (2D) and 3-dimensional (3D) condition. The C-termini of the proteins were relatively comparable with respect to 2D cell proliferation, although each C-terminal-deletion mutant exhibited increased proliferation relative to the WT. Using chimeric constructs, we found that the TM4SF5 C-terminus was critical for regulating the diverse metastatic functions of TM4SF5, and could positively replace the C-termini of other family members. Replacement of the TM4SF1 or TM4SF4 C-terminus with that of TM4SF5 increased spheroids growth, transwell migration, and invasive dissemination from spheroids in 3D collagen gels. TM4SF5-mediated effects required its extracellular loop 2 linked to the C-terminus via the transmembrane domain 4, with causing c-Src activation. Altogether, the C-terminus of TM4SF5 appears to mediate pro-migratory roles, depending on a structural relay from the second extracellular loop to the C-terminus. PMID:28129652
The underlying pathway structure of biochemical reaction networks
Schilling, Christophe H.; Palsson, Bernhard O.
1998-01-01
Bioinformatics is yielding extensive, and in some cases complete, genetic and biochemical information about individual cell types and cellular processes, providing the composition of living cells and the molecular structure of its components. These components together perform integrated cellular functions that now need to be analyzed. In particular, the functional definition of biochemical pathways and their role in the context of the whole cell is lacking. In this study, we show how the mass balance constraints that govern the function of biochemical reaction networks lead to the translation of this problem into the realm of linear algebra. The functional capabilities of biochemical reaction networks, and thus the choices that cells can make, are reflected in the null space of their stoichiometric matrix. The null space is spanned by a finite number of basis vectors. We present an algorithm for the synthesis of a set of basis vectors for spanning the null space of the stoichiometric matrix, in which these basis vectors represent the underlying biochemical pathways that are fundamental to the corresponding biochemical reaction network. In other words, all possible flux distributions achievable by a defined set of biochemical reactions are represented by a linear combination of these basis pathways. These basis pathways thus represent the underlying pathway structure of the defined biochemical reaction network. This development is significant from a fundamental and conceptual standpoint because it yields a holistic definition of biochemical pathways in contrast to definitions that have arisen from the historical development of our knowledge about biochemical processes. Additionally, this new conceptual framework will be important in defining, characterizing, and studying biochemical pathways from the rapidly growing information on cellular function. PMID:9539712
ABC transporters affect the elimination and toxicity of CdTe quantum dots in liver and kidney cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Mingli; Yin, Huancai; Bai, Pengli
This paper aimed to investigate the role of adenosine triphosphate-binding cassette (ABC) transporters on the efflux and the toxicity of nanoparticles in liver and kidney cells. In this study, we synthesized CdTe quantum dots (QDs) that were monodispersed and emitted green fluorescence (maximum peak at 530 nm). Such QDs tended to accumulate in human hepatocellular carcinoma cells (HepG2), human kidney cells 2 (HK-2), and Madin-Darby canine kidney (MDCK) cells, and cause significant toxicity in all the three cell lines. Using specific inhibitors and inducers of P-glycoprotein (Pgp) and multidrug resistance associated proteins (Mrps), the cellular accumulation and subsequent toxicity ofmore » QDs in HepG2 and HK-2 cells were significantly affected, while only slight changes appeared in MDCK cells, corresponding well with the functional expressions of ABC transporters in cells. Moreover, treatment of QDs caused concentration- and time- dependent induction of ABC transporters in HepG2 and HK-2 cells, but such phenomenon was barely found in MDCK cells. Furthermore, the effects of CdTe QDs on ABC transporters were found to be greater than those of CdCl{sub 2} at equivalent concentrations of cadmium, indicating that the effects of QDs should be a combination of free Cd{sup 2+} and specific properties of QDs. Overall, these results indicated a strong dependence between the functional expressions of ABC transporters and the efflux of QDs, which could be an important reason for the modulation of QDs toxicity by ABC transporters. - Highlights: • ABC transporters contributed actively to the cellular efflux of CdTe quantum dots. • ABC transporters affected the cellular toxicity of CdTe quantum dots. • Treatment of CdTe quantum dots induced the gene expression of ABC transporters. • Free Cd{sup 2+} should be partially involved in the effects of QDs on ABC transporters. • Cellular efflux of quantum dots could be an important modulator for its toxicity.« less
Xu, Ning; Cheng, Xinxin; Yu, Qilin; Qian, Kefan; Ding, Xiaohui; Liu, Ruming; Zhang, Biao; Xing, Laijun; Li, Mingchun
2013-01-01
Morphological transition and iron metabolism are closely relevant to Candida albicans pathogenicity and virulence. In our previous study, we demonstrated that C. albicans Aft2 plays an important role in ferric reductase activity and virulence. Here, we further explored the roles of C. albicans Aft2 in numerous cellular processes. We found that C. albicans Aft2 exhibited an important role in iron metabolism through bi-directional regulation effects on iron-regulon expression. Deletion of AFT2 reduced cellular iron accumulation under iron-deficient conditions. Furthermore, both reactive oxygen species (ROS) generation and superoxide dismutase (SOD) activity were remarkably increased in the aft2Δ/Δ mutant, which were thought to be responsible for the defective responses to oxidative stress. However, we found that over-expression of C. albicans AFT2 under the regulation of the strong PGK1 promoter could not effectively rescue Saccharomyces cerevisiae aft1Δ mutant defects in some cellular processes, such as cell-wall assembly, ion homeostasis and alkaline resistance, suggesting a possibility that C. albicans Aft2 weakened its functional role of regulating some cellular metabolism during the evolutionary process. Interestingly, deletion of AFT2 in C. albicans increased cell surface hydrophobicity, cell flocculation and the ability of adhesion to polystyrene surfaces. In addition, our results also revealed that C. albicans Aft2 played a dual role in regulating hypha-specific genes under solid and liquid hyphal inducing conditions. Deletion of AFT2 caused an impaired invasive growth in solid medium, but an increased filamentous aggregation and growth in liquid conditions. Moreover, iron deficiency and environmental cues induced nuclear import of Aft2, providing additional evidence for the roles of Aft2 in transcriptional regulation. PMID:23626810
Cellular zinc fluxes and the regulation of apoptosis/gene-directed cell death.
Truong-Tran, A Q; Ho, L H; Chai, F; Zalewski, P D
2000-05-01
The maintenance of discrete subcellular pools of zinc (Zn) is critical for the functional and structural integrity of cells. Among the important biological processes influenced by Zn is apoptosis, a process that is important in cellular homeostasis (an important cellular homeostatic process). It has also been identified as a major mechanism contributing to cell death in response to toxins and in disease, offering hope that novel therapies that target apoptotic pathways may be developed. Because Zn levels in the body can be increased in a relatively nontoxic manner, it may be possible to prevent or ameliorate degenerative disorders that are associated with high rates of apoptotic cell death. This review begins with brief introductions that address, first, the cellular biology of Zn, especially the critical labile Zn pools, and, second, the phenomenon of apoptosis. We then review the evidence relating Zn to apoptosis and address three major hypotheses: (1) that a specific pool or pools of intracellular labile Zn regulates apoptosis; (2) that systemic changes in Zn levels in the body, due to dietary factors, altered physiological states or disease, can influence cell susceptibility to apoptosis, and (3) that this altered susceptibility to apoptosis contributes to pathophysiological changes in the body. Other key issues are the identity of the molecular targets of Zn in the apoptotic cascade, the types of cells and tissues most susceptible to Zn-regulated apoptosis, the role of Zn as a coordinate regulator of mitosis and apoptosis and the apparent release of tightly bound intracellular pools of Zn during the later stages of apoptosis. This review concludes with a section highlighting areas of priority for future studies.
Metabolic enzymes: key modulators of functionality in cancer stem-like cells
Dong, Bo-Wen; Qin, Guang-Ming; Luo, Yan; Mao, Jian-Shan
2017-01-01
Cancer Stem-like Cells (CSCs) are a subpopulation of cancer cells with self-renewal capacity and are important for the initiation, progression and recurrence of cancer diseases. The metabolic profile of CSCs is consistent with their stem-like properties. Studies have indicated that enzymes, the main regulators of cellular metabolism, dictate functionalities of CSCs in both catalysis-dependent and catalysis-independent manners. This paper reviews diverse studies of metabolic enzymes, and describes the effects of these enzymes on metabolic adaptation, gene transcription and signal transduction, in CSCs. PMID:28009990
Metabolic enzymes: key modulators of functionality in cancer stem-like cells.
Dong, Bo-Wen; Qin, Guang-Ming; Luo, Yan; Mao, Jian-Shan
2017-02-21
Cancer Stem-like Cells (CSCs) are a subpopulation of cancer cells with self-renewal capacity and are important for the initiation, progression and recurrence of cancer diseases. The metabolic profile of CSCs is consistent with their stem-like properties. Studies have indicated that enzymes, the main regulators of cellular metabolism, dictate functionalities of CSCs in both catalysis-dependent and catalysis-independent manners. This paper reviews diverse studies of metabolic enzymes, and describes the effects of these enzymes on metabolic adaptation, gene transcription and signal transduction, in CSCs.
Mutations in NONO lead to syndromic intellectual disability and inhibitory synaptic defects.
Mircsof, Dennis; Langouët, Maéva; Rio, Marlène; Moutton, Sébastien; Siquier-Pernet, Karine; Bole-Feysot, Christine; Cagnard, Nicolas; Nitschke, Patrick; Gaspar, Ludmila; Žnidarič, Matej; Alibeu, Olivier; Fritz, Ann-Kristina; Wolfer, David P; Schröter, Aileen; Bosshard, Giovanna; Rudin, Markus; Koester, Christina; Crestani, Florence; Seebeck, Petra; Boddaert, Nathalie; Prescott, Katrina; Hines, Rochelle; Moss, Steven J; Fritschy, Jean-Marc; Munnich, Arnold; Amiel, Jeanne; Brown, Steven A; Tyagarajan, Shiva K; Colleaux, Laurence
2015-12-01
The NONO protein has been characterized as an important transcriptional regulator in diverse cellular contexts. Here we show that loss of NONO function is a likely cause of human intellectual disability and that NONO-deficient mice have cognitive and affective deficits. Correspondingly, we find specific defects at inhibitory synapses, where NONO regulates synaptic transcription and gephyrin scaffold structure. Our data identify NONO as a possible neurodevelopmental disease gene and highlight the key role of the DBHS protein family in functional organization of GABAergic synapses.
Insight into the tumor suppressor function of CBP through the viral oncoprotein tax.
Van Orden, K; Nyborg, J K
2000-01-01
CREB binding protein (CBP) is a cellular coactivator protein that regulates essentially all known pathways of gene expression. The transcriptional coactivator properties of CBP are utilized by at least 25 different transcription factors representing nearly all known classes of DNA binding proteins. Once bound to their target genes, these transcription factors are believed to tether CBP to the promoter, leading to activated transcription. CBP functions to stimulate transcription through direct recruitment of the general transcription machinery as well as acetylation of both histone and transcription factor substrates. Recent observations indicate that a critical dosage of CBP is required for normal development and tumor suppression, and that perturbations in CBP concentrations may disrupt cellular homeostasis. Furthermore, there is accumulating evidence that CBP deregulation plays a direct role in hematopoietic malignancies. However, the molecular events linking CBP deregulation and malignant transformation are unclear. Further insight into the function of CBP, and its role as a tumor suppressor, can be gained through recent studies of the human T-cell leukemia virus, type I (HTLV-I) Tax oncoprotein. Tax is known to utilize CBP to stimulate transcription from the viral promoter. However, recent data suggest that as a consequence of the Tax-CBP interaction, many cellular transcription factor pathways may be deregulated. Tax disruption of CBP function may play a key role in transformation of the HTLV-I-infected cell. Thus, Tax derailment of CBP may lend important information about the tumor suppressor properties of CBP and serve as a model for the role of CBP in hematopoietic malignancies.
Swedan, Samer; Andrews, Joel; Majumdar, Tanmay; Musiyenko, Alla; Barik, Sailen
2011-01-01
Human respiratory syncytial virus (RSV), a major cause of severe respiratory diseases, efficiently suppresses cellular innate immunity, represented by type I interferon (IFN), using its two unique nonstructural proteins, NS1 and NS2. In a search for their mechanism, NS1 was previously shown to decrease levels of TRAF3 and IKKε, whereas NS2 interacted with RIG-I and decreased TRAF3 and STAT2. Here, we report on the interaction, cellular localization, and functional domains of these two proteins. We show that recombinant NS1 and NS2, expressed in lung epithelial A549 cells, can form homo- as well as heteromers. Interestingly, when expressed alone, substantial amounts of NS1 and NS2 localized to the nuclei and to the mitochondria, respectively. However, when coexpressed with NS2, as in RSV infection, NS1 could be detected in the mitochondria as well, suggesting that the NS1-NS2 heteromer localizes to the mitochondria. The C-terminal tetrapeptide sequence, DLNP, common to both NS1 and NS2, was required for some functions, but not all, whereas only the NS1 N-terminal region was important for IKKε reduction. Finally, NS1 and NS2 both interacted specifically with host microtubule-associated protein 1B (MAP1B). The contribution of MAP1B in NS1 function was not tested, but in NS2 it was essential for STAT2 destruction, suggesting a role of the novel DLNP motif in protein-protein interaction and IFN suppression. PMID:21795342
Swedan, Samer; Andrews, Joel; Majumdar, Tanmay; Musiyenko, Alla; Barik, Sailen
2011-10-01
Human respiratory syncytial virus (RSV), a major cause of severe respiratory diseases, efficiently suppresses cellular innate immunity, represented by type I interferon (IFN), using its two unique nonstructural proteins, NS1 and NS2. In a search for their mechanism, NS1 was previously shown to decrease levels of TRAF3 and IKKε, whereas NS2 interacted with RIG-I and decreased TRAF3 and STAT2. Here, we report on the interaction, cellular localization, and functional domains of these two proteins. We show that recombinant NS1 and NS2, expressed in lung epithelial A549 cells, can form homo- as well as heteromers. Interestingly, when expressed alone, substantial amounts of NS1 and NS2 localized to the nuclei and to the mitochondria, respectively. However, when coexpressed with NS2, as in RSV infection, NS1 could be detected in the mitochondria as well, suggesting that the NS1-NS2 heteromer localizes to the mitochondria. The C-terminal tetrapeptide sequence, DLNP, common to both NS1 and NS2, was required for some functions, but not all, whereas only the NS1 N-terminal region was important for IKKε reduction. Finally, NS1 and NS2 both interacted specifically with host microtubule-associated protein 1B (MAP1B). The contribution of MAP1B in NS1 function was not tested, but in NS2 it was essential for STAT2 destruction, suggesting a role of the novel DLNP motif in protein-protein interaction and IFN suppression.
Breaking into the epithelial apical–junctional complex — news from pathogen hackers
Vogelmann, Roger; Amieva, Manuel R; Falkow, Stanley; Nelson, W James
2012-01-01
The epithelial apical–junctional complex is a key regulator of cellular functions. In addition, it is an important target for microbial pathogens that manipulate the cell to survive, proliferate and sometimes persist within a host. Out of a myriad of potential molecular targets, some bacterial and viral pathogens have selected a subset of protein targets at the apical–junctional complex of epithelial cells. Studying how microbes use these targets also teaches us about the inherent physiological properties of host molecules in the context of normal junctional structure and function. Thus, we have learned that three recently uncovered components of the apical–junctional complex of the Ig superfamily — junctional adhesion molecule, Nectin and the coxsackievirus and adenovirus receptor — are important regulators of junction structure and function and represent critical targets of microbial virulence gene products. PMID:15037310
Breaking into the epithelial apical-junctional complex--news from pathogen hackers.
Vogelmann, Roger; Amieva, Manuel R; Falkow, Stanley; Nelson, W James
2004-02-01
The epithelial apical-junctional complex is a key regulator of cellular functions. In addition, it is an important target for microbial pathogens that manipulate the cell to survive, proliferate and sometimes persist within a host. Out of a myriad of potential molecular targets, some bacterial and viral pathogens have selected a subset of protein targets at the apical-junctional complex of epithelial cells. Studying how microbes use these targets also teaches us about the inherent physiological properties of host molecules in the context of normal junctional structure and function. Thus, we have learned that three recently uncovered components of the apical-junctional complex of the Ig superfamily--junctional adhesion molecule, Nectin and the coxsackievirus and adenovirus receptor--are important regulators of junction structure and function and represent critical targets of microbial virulence gene products.
Mechanism for the Cellular Uptake of Targeted Gold Nanorods of Defined Aspect Ratios.
Yang, Hongrong; Chen, Zhong; Zhang, Lei; Yung, Wing-Yin; Leung, Ken Cham-Fai; Chan, Ho Yin Edwin; Choi, Chung Hang Jonathan
2016-10-01
Biomedical applications of non-spherical nanoparticles such as photothermal therapy and molecular imaging require their efficient intracellular delivery, yet reported details on their interactions with the cell remain inconsistent. Here, the effects of nanoparticle geometry and receptor targeting on the cellular uptake and intracellular trafficking are systematically explored by using C166 (mouse endothelial) cells and gold nanoparticles of four different aspect ratios (ARs) from 1 to 7. When coated with poly(ethylene glycol) strands, the cellular uptake of untargeted nanoparticles monotonically decreases with AR. Next, gold nanoparticles are functionalized with DNA oligonucleotides to target Class A scavenger receptors expressed by C166 cells. Intriguingly, cellular uptake is maximized at a particular AR: shorter nanorods (AR = 2) enter C166 cells more than nanospheres (AR = 1) and longer nanorods (AR = 4 or 7). Strikingly, long targeted nanorods align to the cell membrane in a near-parallel manner followed by rotating by ≈90° to enter the cell via a caveolae-mediated pathway. Upon cellular entry, targeted nanorods of all ARs predominantly traffic to the late endosome without progressing to the lysosome. The studies yield important materials design rules for drug delivery carriers based on targeted, anisotropic nanoparticles. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Determinants of the rate of protein sequence evolution
Zhang, Jianzhi; Yang, Jian-Rong
2015-01-01
The rate and mechanism of protein sequence evolution have been central questions in evolutionary biology since the 1960s. Although the rate of protein sequence evolution depends primarily on the level of functional constraint, exactly what constitutes functional constraint has remained unclear. The increasing availability of genomic data has allowed for much needed empirical examinations on the nature of functional constraint. These studies found that the evolutionary rate of a protein is predominantly influenced by its expression level rather than functional importance. A combination of theoretical and empirical analyses have identified multiple mechanisms behind these observations and demonstrated a prominent role that selection against errors in molecular and cellular processes plays in protein evolution. PMID:26055156
Profiling protein function with small molecule microarrays
Winssinger, Nicolas; Ficarro, Scott; Schultz, Peter G.; Harris, Jennifer L.
2002-01-01
The regulation of protein function through posttranslational modification, local environment, and protein–protein interaction is critical to cellular function. The ability to analyze on a genome-wide scale protein functional activity rather than changes in protein abundance or structure would provide important new insights into complex biological processes. Herein, we report the application of a spatially addressable small molecule microarray to an activity-based profile of proteases in crude cell lysates. The potential of this small molecule-based profiling technology is demonstrated by the detection of caspase activation upon induction of apoptosis, characterization of the activated caspase, and inhibition of the caspase-executed apoptotic phenotype using the small molecule inhibitor identified in the microarray-based profile. PMID:12167675
[Genome organization and life cycle of the hepatitis c virus].
Kalinina, O V; Dmitriev, A V
2015-01-01
The review summarizes the current data about the hepatitis C viral genome and polyprotein organization. The functional role of the structural and non-structural viral proteins including their interaction with cellular regulatory proteins and cell structural elements is discussed. Specific peculiarities of the life cycle of the hepatitis C virus important for the understanding of the viral hepatitis C pathogenesis are summarized.
ORF phage display to identify cellular proteins with different functions.
Li, Wei
2012-09-01
Open reading frame (ORF) phage display is a new branch of phage display aimed at improving its efficiency to identify cellular proteins with specific binding or functional activities. Despite the success of phage display with antibody libraries and random peptide libraries, phage display with cDNA libraries of cellular proteins identifies a high percentage of non-ORF clones encoding unnatural short peptides with minimal biological implications. This is mainly because of the uncontrollable reading frames of cellular proteins in conventional cDNA libraries. ORF phage display solves this problem by eliminating non-ORF clones to generate ORF cDNA libraries. Here I summarize the procedures of ORF phage display, discuss the factors influencing its efficiency, present examples of its versatile applications, and highlight evidence of its capability of identifying biologically relevant cellular proteins. ORF phage display coupled with different selection strategies is capable of delineating diverse functions of cellular proteins with unique advantages. Copyright © 2012 Elsevier Inc. All rights reserved.
SUMOylation in Neurological Diseases.
Liu, F-Y; Liu, Y-F; Yang, Y; Luo, Z-W; Xiang, J-W; Chen, Z-G; Qi, R-L; Yang, T-H; Xiao, Y; Qing, W-J; Li, D W-C
2017-01-01
Since the discovery of SUMOs (small ubiquitin-like modifiers) over 20 years ago, sumoylation has recently emerged as an important posttranslational modification involved in almost all aspects of cellular physiology. In neurons, sumoylation dynamically modulates protein function and consequently plays an important role in neuronal maturation, synapse formation and plasticity. Thus, the dysfunction of sumoylation pathway is associated with many different neurological disorders. Hundreds of different proteins implicated in the pathogenesis of neurological disorders are SUMO-modified, indicating the importance of sumoylation involved in the neurological diseases. In this review, we summarize the growing findings on protein sumoylation in neuronal function and dysfunction. It is essential to have a thorough understanding on the mechanism how sumoylation contributes to neurological diseases in developing efficient therapy for these diseases. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Mitochondrial dynamics in the regulation of neurogenesis: From development to the adult brain.
Khacho, Mireille; Slack, Ruth S
2018-01-01
Mitochondria are classically known to be the cellular energy producers, but a renewed appreciation for these organelles has developed with the accumulating discoveries of additional functions. The importance of mitochondria within the brain has been long known, particularly given the high-energy demanding nature of neurons. The energy demands imposed by neurons require the well-orchestrated morphological adaptation and distribution of mitochondria. Recent studies now reveal the importance of mitochondrial dynamics not only in mature neurons but also during neural development, particularly during the process of neurogenesis and neural stem cell fate decisions. In this review, we will highlight the recent findings that illustrate the importance of mitochondrial dynamics in neurodevelopment and neural stem cell function. Developmental Dynamics 247:47-53, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Xiao, Bo; Han, Moon Kwon; Viennois, Emilie; Wang, Lixin; Zhang, Mingzhen; Si, Xiaoying; Merlin, Didier
2015-10-01
Nanoparticle (NP)-based combination chemotherapy has been proposed as an effective strategy for achieving synergistic effects and targeted drug delivery for colon cancer therapy. Here, we fabricated a series of hyaluronic acid (HA)-functionalized camptothecin (CPT)/curcumin (CUR)-loaded polymeric NPs (HA-CPT/CUR-NPs) with various weight ratios of CPT to CUR (1 : 1, 2 : 1 and 4 : 1). The resultant spherical HA-CPT/CUR-NPs had a desirable particle size (around 289 nm), relative narrow size distribution, and slightly negative zeta potential. These NPs exhibited a simultaneous sustained release profile for both drugs throughout the time frame examined. Subsequent cellular uptake experiments demonstrated that the introduction of HA to the NP surface endowed NPs with colon cancer-targeting capability and markedly increased cellular uptake efficiency compared with chitosan-coated NPs. Importantly, the combined delivery of CPT and CUR in one HA-functionalized NP exerted strong synergistic effects. HA-CPT/CUR-NP (1 : 1) showed the highest antitumor activity among the three HA-CPT/CUR-NPs, resulting in an extremely low combination index. Collectively, our findings indicate that this HA-CPT/CUR-NP can be exploited as an efficient formulation for colon cancer-targeted combination chemotherapy.Nanoparticle (NP)-based combination chemotherapy has been proposed as an effective strategy for achieving synergistic effects and targeted drug delivery for colon cancer therapy. Here, we fabricated a series of hyaluronic acid (HA)-functionalized camptothecin (CPT)/curcumin (CUR)-loaded polymeric NPs (HA-CPT/CUR-NPs) with various weight ratios of CPT to CUR (1 : 1, 2 : 1 and 4 : 1). The resultant spherical HA-CPT/CUR-NPs had a desirable particle size (around 289 nm), relative narrow size distribution, and slightly negative zeta potential. These NPs exhibited a simultaneous sustained release profile for both drugs throughout the time frame examined. Subsequent cellular uptake experiments demonstrated that the introduction of HA to the NP surface endowed NPs with colon cancer-targeting capability and markedly increased cellular uptake efficiency compared with chitosan-coated NPs. Importantly, the combined delivery of CPT and CUR in one HA-functionalized NP exerted strong synergistic effects. HA-CPT/CUR-NP (1 : 1) showed the highest antitumor activity among the three HA-CPT/CUR-NPs, resulting in an extremely low combination index. Collectively, our findings indicate that this HA-CPT/CUR-NP can be exploited as an efficient formulation for colon cancer-targeted combination chemotherapy. Electronic supplementary information (ESI) available: Representative flow cytometry plots of cells incubated with or without cationic CPT/CUR-NPs (1 : 1) for 3 h; Cytotoxicity of blank chitosan-coated NPs and blank HA-functionalized NPs at different concentrations against Colon-26 cells after 48 h of co-incubation. See DOI: 10.1039/c5nr04831a
Copper toxicity, oxidative stress, and antioxidant nutrients.
Gaetke, Lisa M; Chow, Ching Kuang
2003-07-15
Copper (Cu) is an integral part of many important enzymes involved in a number of vital biological processes. Although normally bound to proteins, Cu may be released and become free to catalyze the formation of highly reactive hydroxyl radicals. Data obtained from in vitro and cell culture studies are largely supportive of Cu's capacity to initiate oxidative damage and interfere with important cellular events. Oxidative damage has been linked to chronic Cu-overload and/or exposure to excess Cu caused by accidents, occupational hazards, and environmental contamination. Additionally, Cu-induced oxidative damage has been implicated in disorders associated with abnormal Cu metabolism and neurodegenerative changes. Interestingly, a deficiency in dietary Cu also increases cellular susceptibility to oxidative damage. A number of nutrients have been shown to interact with Cu and alter its cellular effects. Vitamin E is generally protective against Cu-induced oxidative damage. While most in vitro or cell culture studies show that ascorbic acid aggravates Cu-induced oxidative damage, results obtained from available animal studies suggest that the compound is protective. High intakes of ascorbic acid and zinc may provide protection against Cu toxicity by preventing excess Cu uptake. Zinc also removes Cu from its binding site, where it may cause free radical formation. Beta-carotene, alpha-lipoic acid and polyphenols have also been shown to attenuate Cu-induced oxidative damage. Further studies are needed to better understand the cellular effects of this essential, but potentially toxic, trace mineral and its functional interaction with other nutrients.
Kinetic memory based on the enzyme-limited competition.
Hatakeyama, Tetsuhiro S; Kaneko, Kunihiko
2014-08-01
Cellular memory, which allows cells to retain information from their environment, is important for a variety of cellular functions, such as adaptation to external stimuli, cell differentiation, and synaptic plasticity. Although posttranslational modifications have received much attention as a source of cellular memory, the mechanisms directing such alterations have not been fully uncovered. It may be possible to embed memory in multiple stable states in dynamical systems governing modifications. However, several experiments on modifications of proteins suggest long-term relaxation depending on experienced external conditions, without explicit switches over multi-stable states. As an alternative to a multistability memory scheme, we propose "kinetic memory" for epigenetic cellular memory, in which memory is stored as a slow-relaxation process far from a stable fixed state. Information from previous environmental exposure is retained as the long-term maintenance of a cellular state, rather than switches over fixed states. To demonstrate this kinetic memory, we study several models in which multimeric proteins undergo catalytic modifications (e.g., phosphorylation and methylation), and find that a slow relaxation process of the modification state, logarithmic in time, appears when the concentration of a catalyst (enzyme) involved in the modification reactions is lower than that of the substrates. Sharp transitions from a normal fast-relaxation phase into this slow-relaxation phase are revealed, and explained by enzyme-limited competition among modification reactions. The slow-relaxation process is confirmed by simulations of several models of catalytic reactions of protein modifications, and it enables the memorization of external stimuli, as its time course depends crucially on the history of the stimuli. This kinetic memory provides novel insight into a broad class of cellular memory and functions. In particular, applications for long-term potentiation are discussed, including dynamic modifications of calcium-calmodulin kinase II and cAMP-response element-binding protein essential for synaptic plasticity.
Chu, Alison; Thamotharan, Shanthie; Ganguly, Amit; Wadehra, Madhuri; Pellegrini, Matteo; Devaskar, Sherin U
2016-10-01
Intrauterine growth restriction (IUGR) affects up to 10% of pregnancies and often results in short- and long-term sequelae for offspring. The mechanisms underlying IUGR are poorly understood, but it is known that healthy placentation is essential for nutrient provision to fuel fetal growth, and is regulated by immunologic inputs. We hypothesized that in pregnancy, maternal food restriction (FR) resulting in IUGR would decrease the overall immunotolerant milieu in the placenta, leading to increased cellular stress and death. Our specific objectives were to evaluate (1) key cytokines (eg, IL-10) that regulate maternal-fetal tolerance, (2) cellular processes (autophagy and endoplasmic reticulum [ER] stress) that are immunologically mediated and important for cellular survival and functioning, and (3) the resulting IUGR phenotype and placental histopathology in this animal model. After subjecting pregnant mice to mild and moderate FR from gestational day 10 to 19, we collected placentas and embryos at gestational day 19. We examined RNA sequencing data to identify immunologic pathways affected in IUGR-associated placentas and validated messenger RNA expression changes of genes important in cellular integrity. We also evaluated histopathologic changes in vascular and trophoblastic structures as well as protein expression changes in autophagy, ER stress, and apoptosis in the mouse placentas. Several differentially expressed genes were identified in FR compared with control mice, including a considerable subset that regulates immune tolerance, inflammation, and cellular integrity. In summary, maternal FR decreases the anti-inflammatory effect of IL-10 and suppresses placental autophagic and ER stress responses, despite evidence of dysregulated vascular and trophoblast structures leading to IUGR. Copyright © 2016 Elsevier Inc. All rights reserved.
Furuta, Nobumichi; Takeuchi, Hiroki; Amano, Atsuo
2009-11-01
Porphyromonas gingivalis, a periodontal pathogen, secretes outer membrane vesicles (MVs) that contain major virulence factors, including proteases termed gingipains (Arg-gingipain [Rgp] and Lys-gingipain [Kgp]). We recently showed that P. gingivalis MVs swiftly enter host epithelial cells via an endocytosis pathway and are finally sorted to lytic compartments. However, it remains unknown whether MV entry impairs cellular function. Herein, we analyzed cellular functional impairment following entry of P. gingivalis into epithelial cells, including HeLa and immortalized human gingival epithelial (IHGE) cells. After being taken up by endocytic vacuoles, MVs degraded the cellular transferrin receptor (TfR) and integrin-related signaling molecules, such as paxillin and focal adhesion kinase (FAK), which resulted in depletion of intracellular transferrin and inhibition of cellular migration. Few Rgp-null MVs entered the cells, and these negligibly degraded TfR, whereas paxillin and FAK degradation was significant. In contrast, Kgp-null MVs clearly entered the cells and degraded TfR, while they scarcely degraded paxillin and FAK. In addition, both wild-type and Kgp-null MVs significantly impaired cellular migration, whereas the effect of Rgp-null MVs was limited. Our findings suggest that, following entry of P. gingivalis MVs into host cells, MV-associated gingipains degrade cellular functional molecules such as TfR and paxillin/FAK, resulting in cellular impairment, indicating that P. gingivalis MVs are potent vehicles for transmission of virulence factors into host cells and are involved in the etiology of periodontitis.
Furuta, Nobumichi; Takeuchi, Hiroki; Amano, Atsuo
2009-01-01
Porphyromonas gingivalis, a periodontal pathogen, secretes outer membrane vesicles (MVs) that contain major virulence factors, including proteases termed gingipains (Arg-gingipain [Rgp] and Lys-gingipain [Kgp]). We recently showed that P. gingivalis MVs swiftly enter host epithelial cells via an endocytosis pathway and are finally sorted to lytic compartments. However, it remains unknown whether MV entry impairs cellular function. Herein, we analyzed cellular functional impairment following entry of P. gingivalis into epithelial cells, including HeLa and immortalized human gingival epithelial (IHGE) cells. After being taken up by endocytic vacuoles, MVs degraded the cellular transferrin receptor (TfR) and integrin-related signaling molecules, such as paxillin and focal adhesion kinase (FAK), which resulted in depletion of intracellular transferrin and inhibition of cellular migration. Few Rgp-null MVs entered the cells, and these negligibly degraded TfR, whereas paxillin and FAK degradation was significant. In contrast, Kgp-null MVs clearly entered the cells and degraded TfR, while they scarcely degraded paxillin and FAK. In addition, both wild-type and Kgp-null MVs significantly impaired cellular migration, whereas the effect of Rgp-null MVs was limited. Our findings suggest that, following entry of P. gingivalis MVs into host cells, MV-associated gingipains degrade cellular functional molecules such as TfR and paxillin/FAK, resulting in cellular impairment, indicating that P. gingivalis MVs are potent vehicles for transmission of virulence factors into host cells and are involved in the etiology of periodontitis. PMID:19737899
Cytoskeleton Molecular Motors: Structures and Their Functions in Neuron.
Xiao, Qingpin; Hu, Xiaohui; Wei, Zhiyi; Tam, Kin Yip
2016-01-01
Cells make use of molecular motors to transport small molecules, macromolecules and cellular organelles to target region to execute biological functions, which is utmost important for polarized cells, such as neurons. In particular, cytoskeleton motors play fundamental roles in neuron polarization, extension, shape and neurotransmission. Cytoskeleton motors comprise of myosin, kinesin and cytoplasmic dynein. F-actin filaments act as myosin track, while kinesin and cytoplasmic dynein move on microtubules. Cytoskeleton motors work together to build a highly polarized and regulated system in neuronal cells via different molecular mechanisms and functional regulations. This review discusses the structures and working mechanisms of the cytoskeleton motors in neurons.
RNA interference: learning gene knock-down from cell physiology
Mocellin, Simone; Provenzano, Maurizio
2004-01-01
Over the past decade RNA interference (RNAi) has emerged as a natural mechanism for silencing gene expression. This ancient cellular antiviral response can be exploited to allow specific inhibition of the function of any chosen target gene. RNAi is proving to be an invaluable research tool, allowing much more rapid characterization of the function of known genes. More importantly, RNAi technology considerably bolsters functional genomics to aid in the identification of novel genes involved in disease processes. This review briefly describes the molecular principles underlying the biology of RNAi phenomenon and discuss the main technical issues regarding optimization of RNAi experimental design. PMID:15555080
Exercise and the brain: something to chew on
van Praag, Henriette
2009-01-01
Evidence is accumulating that exercise has profound benefits for brain function. Physical activity improves learning and memory in humans and animals. Moreover, an active lifestyle might prevent or delay loss of cognitive function with aging or neurodegenerative disease. Recent research indicates that the effects of exercise on the brain can be enhanced by concurrent consumption of natural products such as omega fatty acids or plant polyphenols. The potential synergy between diet and exercise could involve common cellular pathways important for neurogenesis, cell survival, synaptic plasticity and vascular function. Optimal maintenance of brain health might depend on exercise and intake of natural products. PMID:19349082
Nicolson, Garth L
2014-06-01
In 1972 the Fluid-Mosaic Membrane Model of membrane structure was proposed based on thermodynamic principals of organization of membrane lipids and proteins and available evidence of asymmetry and lateral mobility within the membrane matrix [S. J. Singer and G. L. Nicolson, Science 175 (1972) 720-731]. After over 40years, this basic model of the cell membrane remains relevant for describing the basic nano-structures of a variety of intracellular and cellular membranes of plant and animal cells and lower forms of life. In the intervening years, however, new information has documented the importance and roles of specialized membrane domains, such as lipid rafts and protein/glycoprotein complexes, in describing the macrostructure, dynamics and functions of cellular membranes as well as the roles of membrane-associated cytoskeletal fences and extracellular matrix structures in limiting the lateral diffusion and range of motion of membrane components. These newer data build on the foundation of the original model and add new layers of complexity and hierarchy, but the concepts described in the original model are still applicable today. In updated versions of the model more emphasis has been placed on the mosaic nature of the macrostructure of cellular membranes where many protein and lipid components are limited in their rotational and lateral motilities in the membrane plane, especially in their natural states where lipid-lipid, protein-protein and lipid-protein interactions as well as cell-matrix, cell-cell and intracellular membrane-associated protein and cytoskeletal interactions are important in restraining the lateral motility and range of motion of particular membrane components. The formation of specialized membrane domains and the presence of tightly packed integral membrane protein complexes due to membrane-associated fences, fenceposts and other structures are considered very important in describing membrane dynamics and architecture. These structures along with membrane-associated cytoskeletal and extracellular structures maintain the long-range, non-random mosaic macro-organization of membranes, while smaller membrane nano- and submicro-sized domains, such as lipid rafts and protein complexes, are important in maintaining specialized membrane structures that are in cooperative dynamic flux in a crowded membrane plane. This Article is Part of a Special Issue Entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy. © 2013.
Acidic Ca2+ stores in neurodegeneration
Lloyd-Evans, Emyr
2017-01-01
Lysosomes have emerged in the last decade as an immensely important intracellular site of Ca2+ storage and signalling. More recently there has been an increase in the number of new ion channels found to be functional on lysosomes and the potential roles that these signalling pathways might play in fundamental cellular processes are being uncovered. Defects in lysosomal function have been shown to result in changes in lysosomal Ca2+ homeostasis and ultimately can result in cell death. Several neurodegenerative diseases, from rare lysosomal storage diseases through to more common diseases of ageing, have recently been identified as having alterations in lysosomal Ca2+ homeostasis that may play an important role in neuronal excitotoxicity and ultimately cell death. This review will critically summarise these recent findings. PMID:28593104
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chai, Juanjuan; Kora, Guruprasad; Ahn, Tae-Hyuk
2014-10-09
To supply some background, phylogenetic studies have provided detailed knowledge on the evolutionary mechanisms of genes and species in Bacteria and Archaea. However, the evolution of cellular functions, represented by metabolic pathways and biological processes, has not been systematically characterized. Many clades in the prokaryotic tree of life have now been covered by sequenced genomes in GenBank. This enables a large-scale functional phylogenomics study of many computationally inferred cellular functions across all sequenced prokaryotes. Our results show a total of 14,727 GenBank prokaryotic genomes were re-annotated using a new protein family database, UniFam, to obtain consistent functional annotations for accuratemore » comparison. The functional profile of a genome was represented by the biological process Gene Ontology (GO) terms in its annotation. The GO term enrichment analysis differentiated the functional profiles between selected archaeal taxa. 706 prokaryotic metabolic pathways were inferred from these genomes using Pathway Tools and MetaCyc. The consistency between the distribution of metabolic pathways in the genomes and the phylogenetic tree of the genomes was measured using parsimony scores and retention indices. The ancestral functional profiles at the internal nodes of the phylogenetic tree were reconstructed to track the gains and losses of metabolic pathways in evolutionary history. In conclusion, our functional phylogenomics analysis shows divergent functional profiles of taxa and clades. Such function-phylogeny correlation stems from a set of clade-specific cellular functions with low parsimony scores. On the other hand, many cellular functions are sparsely dispersed across many clades with high parsimony scores. These different types of cellular functions have distinct evolutionary patterns reconstructed from the prokaryotic tree.« less
Chronic Lymphocytic Leukemia B-Cell Normal Cellular Counterpart: Clues From a Functional Perspective
Darwiche, Walaa; Gubler, Brigitte; Marolleau, Jean-Pierre; Ghamlouch, Hussein
2018-01-01
Chronic lymphocytic leukemia (CLL) is characterized by the clonal expansion of small mature-looking CD19+ CD23+ CD5+ B-cells that accumulate in the blood, bone marrow, and lymphoid organs. To date, no consensus has been reached concerning the normal cellular counterpart of CLL B-cells and several B-cell types have been proposed. CLL B-cells have remarkable phenotypic and gene expression profile homogeneity. In recent years, the molecular and cellular biology of CLL has been enriched by seminal insights that are leading to a better understanding of the natural history of the disease. Immunophenotypic and molecular approaches (including immunoglobulin heavy-chain variable gene mutational status, transcriptional and epigenetic profiling) comparing the normal B-cell subset and CLL B-cells provide some new insights into the normal cellular counterpart. Functional characteristics (including activation requirements and propensity for plasma cell differentiation) of CLL B-cells have now been investigated for 50 years. B-cell subsets differ substantially in terms of their functional features. Analysis of shared functional characteristics may reveal similarities between normal B-cell subsets and CLL B-cells, allowing speculative assignment of a normal cellular counterpart for CLL B-cells. In this review, we summarize current data regarding peripheral B-cell differentiation and human B-cell subsets and suggest possibilities for a normal cellular counterpart based on the functional characteristics of CLL B-cells. However, a definitive normal cellular counterpart cannot be attributed on the basis of the available data. We discuss the functional characteristics required for a cell to be logically considered to be the normal counterpart of CLL B-cells. PMID:29670635
D'Sa, Raechelle A; Raj, Jog; Dickinson, Peter J; McCabe, Fiona; Meenan, Brian J
2016-06-22
Recent advances in materials sciences have allowed for the development and fabrication of biomaterials that are capable of providing requisite cues to instigate cells to respond in a predictable fashion. We have developed a series of poly(methyl methacrylate)/polystyrene (PMMA/PS) polymer demixed thin films with nanotopographies ranging from nanoislands to nanopits to study the response of human fetal osteoblast cells (hFOBs). When PMMA was in excess in the blend composition, a nanoisland topography dominated, whereas a nanopit topography dominated when PS was in excess. PMMA was found to segregate to the top of the nanoisland morphology with PS preferring the substrate interface. To further ascertain the effects of surface chemistry vs topography, we plasma treated the polymer demixed films using an atmospheric pressure dielectric barrier discharge reactor to alter the surface chemistry. Our results have shown that hFOBs did not have an increased short-term cellular response on pristine polymer demixed surfaces. However, increasing the hydrophilicty/wettability of the surfaces by oxygen functionalization causes an increase in the cellular response. These results indicate that topography alone is not sufficient to induce a positive cellular response, but the underlying surface chemistry is also important in regulating cell function.
Kibra and aPKC regulate starvation-induced autophagy in Drosophila.
Jin, Ahrum; Neufeld, Thomas P; Choe, Joonho
Autophagy is a bulk degradation system that functions in response to cellular stresses such as metabolic stress, endoplasmic reticulum stress, oxidative stress, and developmental processes. During autophagy, cytoplasmic components are captured in double-membrane vesicles called autophagosomes. The autophagosome fuses with the lysosome, producing a vacuole known as an autolysosome. The cellular components are degraded by lysosomal proteases and recycled. Autophagy is important for maintaining cellular homeostasis, and the process is evolutionarily conserved. Kibra is an upstream regulator of the hippo signaling pathway, which controls organ size by affecting cell growth, proliferation, and apoptosis. Kibra is mainly localized in the apical membrane domain of epithelial cells and acts as a scaffold protein. We found that Kibra is required for autophagy to function properly. The absence of Kibra caused defects in the formation of autophagic vesicles and autophagic degradation. We also found that the well-known cell polarity protein aPKC interacts with Kibra, and its activity affects autophagy upstream of Kibra. Constitutively active aPKC decreased autophagic vesicle formation and autophagic degradation. We confirmed the interaction between aPKC and Kibra in S2 cells and Drosophila larva. Taken together, our data suggest that Kibra and aPKC are essential for regulating starvation-induced autophagy. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Lenz, B; Braendli-Baiocco, A; Engelhardt, J; Fant, P; Fischer, H; Francke, S; Fukuda, R; Gröters, S; Harada, T; Harleman, H; Kaufmann, W; Kustermann, S; Nolte, T; Palazzi, X; Pohlmeyer-Esch, G; Popp, A; Romeike, A; Schulte, A; Lima, B Silva; Tomlinson, L; Willard, J; Wood, C E; Yoshida, M
2018-02-01
Lysosomes have a central role in cellular catabolism, trafficking, and processing of foreign particles. Accumulation of endogenous and exogenous materials in lysosomes represents a common finding in nonclinical toxicity studies. Histologically, these accumulations often lack distinctive features indicative of lysosomal or cellular dysfunction, making it difficult to consistently interpret and assign adverse dose levels. To help address this issue, the European Society of Toxicologic Pathology organized a workshop where representative types of lysosomal accumulation induced by pharmaceuticals and environmental chemicals were presented and discussed. The expert working group agreed that the diversity of lysosomal accumulations requires a case-by-case weight-of-evidence approach and outlined several factors to consider in the adversity assessment, including location and type of cell affected, lysosomal contents, severity of the accumulation, and related pathological effects as evidence of cellular or organ dysfunction. Lysosomal accumulations associated with cytotoxicity, inflammation, or fibrosis were generally considered to be adverse, while those found in isolation (without morphologic or functional consequences) were not. Workshop examples highlighted the importance of thoroughly characterizing the biological context of lysosomal effects, including mechanistic data and functional in vitro readouts if available. The information provided here should facilitate greater consistency and transparency in the interpretation of lysosomal effects.
Calcium and Reactive Oxygen Species in Acute Pancreatitis: Friend or Foe?
Booth, David M.; Mukherjee, Rajarshi; Sutton, Robert
2011-01-01
Abstract Significance Acute pancreatitis (AP) is a debilitating and, at times, lethal inflammatory disease, the causes and progression of which are incompletely understood. Disruption of Ca2+ homeostasis in response to precipitants of AP leads to loss of mitochondrial integrity and cellular necrosis. Recent Advances While oxidative stress has been implicated as a major player in the pathogenesis of this disease, its precise roles remain to be defined. Recent developments are challenging the perception of reactive oxygen species (ROS) as nonspecific cytotoxic agents, suggesting that ROS promote apoptosis that may play a vital protective role in cellular stress since necrosis is avoided. Critical Issues Fresh clinical findings have indicated that antioxidant treatment does not ameliorate AP and may actually worsen the outcome. This review explores the complex links between cellular Ca2+ signaling and the intracellular redox environment, with particular relevance to AP. Future Directions Recent publications have underlined the importance of both Ca2+ and ROS within the pathogenesis of AP, particularly in the determination of cell fate. Future research should elucidate the subtle interplay between Ca2+ and redox mechanisms that operate to modulate mitochondrial function, with a view to devising strategies for the preservation of organellar function. Antioxid. Redox Signal. 15, 2683–2698. PMID:21861696
Endothelial microvesicles in hypoxic hypoxia diseases.
Deng, Fan; Wang, Shuang; Xu, Riping; Yu, Wenqian; Wang, Xianyu; Zhang, Liangqing
2018-05-29
Hypoxic hypoxia, including abnormally low partial pressure of inhaled oxygen, external respiratory dysfunction-induced respiratory hypoxia and venous blood flow into the arterial blood, is characterized by decreased arterial oxygen partial pressure, resulting in tissue oxygen deficiency. The specific characteristics include reduced arterial oxygen partial pressure and oxygen content. Hypoxic hypoxia diseases (HHDs) have attracted increased attention due to their high morbidity and mortality and mounting evidence showing that hypoxia-induced oxidative stress, coagulation, inflammation and angiogenesis play extremely important roles in the physiological and pathological processes of HHDs-related vascular endothelial injury. Interestingly, endothelial microvesicles (EMVs), which can be induced by hypoxia, hypoxia-induced oxidative stress, coagulation and inflammation in HHDs, have emerged as key mediators of intercellular communication and cellular functions. EMVs shed from activated or apoptotic endothelial cells (ECs) reflect the degree of ECs damage, and elevated EMVs levels are present in several HHDs, including obstructive sleep apnoea syndrome and chronic obstructive pulmonary disease. Furthermore, EMVs have procoagulant, proinflammatory and angiogenic functions that affect the pathological processes of HHDs. This review summarizes the emerging roles of EMVs in the diagnosis, staging, treatment and clinical prognosis of HHDs. © 2018 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
K-Cl cotransport function and its potential contribution to cardiovascular disease.
Adragna, Norma C; Lauf, Peter K
2007-12-01
K-Cl cotransport is the coupled electroneutral movement of K and Cl ions carried out by at least four protein isoforms, KCC1-4. These transporters belong to the SLC12A family of coupled cotransporters and, due to their multiple functions, play an important role in the maintenance of cellular homeostasis. Significant information exists on the overall function of these transporters, but less is known about the role of the specific isoforms. Most functional studies were done on K-Cl cotransport fluxes without knowing the molecular details, and only recently attention has been paid to the isoforms and their individual contribution to the fluxes. This review summarizes briefly and updates the information on the overall functions of this transporter, and offers some ideas on its potential contribution to the pathophysiological basis of cardiovascular disease. By virtue of its properties and the cellular ionic distribution, K-Cl cotransport participates in volume regulation of the nucleated and some enucleated cells studied thus far. One of the hallmarks in cardiovascular disease is the inability of the organism to maintain water and electrolyte balance in effectors and/or target tissues. Oxidative stress is another compounding factor in cardiovascular disease and of great significance in our modern life styles. Several functions of the transporter are modulated by oxidative stress, which in turn may cause the transporter to operate in either "overdrive" with the purpose to counteract homeostatic changes, or not to respond at all, again setting the stage for pathological changes leading to cardiovascular disease. Intracellular Mg, a second messenger, acts as an inhibitor of K-Cl cotransport and plays a crucial role in regulating the activity of protein kinases and phosphatases, which, in turn, regulate a myriad of cellular functions. Although the role of Mg in cardiovascular disease has been dealt with for several decades, this chapter is evolving nowadays at a faster pace and the relationships between Mg, K-Cl cotransport, and cardiovascular disease is an area that awaits further experimentation. We envision that further studies on the role of K-Cl cotransport, and ideally on its specific isoforms, in mammalian cells will add missing links and help to understand the cellular mechanisms involved in the pathophysiology of cardiovascular disease.
Cellular Manufacturing System with Dynamic Lot Size Material Handling
NASA Astrophysics Data System (ADS)
Khannan, M. S. A.; Maruf, A.; Wangsaputra, R.; Sutrisno, S.; Wibawa, T.
2016-02-01
Material Handling take as important role in Cellular Manufacturing System (CMS) design. In several study at CMS design material handling was assumed per pieces or with constant lot size. In real industrial practice, lot size may change during rolling period to cope with demand changes. This study develops CMS Model with Dynamic Lot Size Material Handling. Integer Linear Programming is used to solve the problem. Objective function of this model is minimizing total expected cost consisting machinery depreciation cost, operating costs, inter-cell material handling cost, intra-cell material handling cost, machine relocation costs, setup costs, and production planning cost. This model determines optimum cell formation and optimum lot size. Numerical examples are elaborated in the paper to ilustrate the characterictic of the model.
NAD+ in Aging: Molecular Mechanisms and Translational Implications.
Fang, Evandro F; Lautrup, Sofie; Hou, Yujun; Demarest, Tyler G; Croteau, Deborah L; Mattson, Mark P; Bohr, Vilhelm A
2017-10-01
The coenzyme NAD + is critical in cellular bioenergetics and adaptive stress responses. Its depletion has emerged as a fundamental feature of aging that may predispose to a wide range of chronic diseases. Maintenance of NAD + levels is important for cells with high energy demands and for proficient neuronal function. NAD + depletion is detected in major neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases, cardiovascular disease and muscle atrophy. Emerging evidence suggests that NAD + decrements occur in various tissues during aging, and that physiological and pharmacological interventions bolstering cellular NAD + levels might retard aspects of aging and forestall some age-related diseases. Here, we discuss aspects of NAD + biosynthesis, together with putative mechanisms of NAD + action against aging, including recent preclinical and clinical trials. Published by Elsevier Ltd.
Essential role of TNF family molecule LIGHT as a cytokine in the pathogenesis of hepatitis
Anand, Sudarshan; Wang, Pu; Yoshimura, Kiyoshi; Choi, In-Hak; Hilliard, Anja; Chen, Youhai H.; Wang, Chyung-Ru; Schulick, Richard; Flies, Andrew S.; Flies, Dallas B.; Zhu, Gefeng; Xu, Yanhui; Pardoll, Drew M.; Chen, Lieping; Tamada, Koji
2006-01-01
LIGHT is an important costimulatory molecule for T cell immunity. Recent studies have further implicated its role in innate immunity and inflammatory diseases, but its cellular and molecular mechanisms remain elusive. We report here that LIGHT is upregulated and functions as a proinflammatory cytokine in 2 independent experimental hepatitis models, induced by concanavalin A and Listeria monocytogenes. Molecular mutagenesis studies suggest that soluble LIGHT protein produced by cleavage from the cell membrane plays an important role in this effect through the interaction with the lymphotoxin-β receptor (LTβR) but not herpes virus entry mediator. NK1.1+ T cells contribute to the production, but not the cleavage or effector functions, of soluble LIGHT. Importantly, treatment with a mAb that specifically interferes with the LIGHT-LTβR interaction protects mice from lethal hepatitis. Our studies thus identify a what we believe to be a novel function of soluble LIGHT in vivo and offer a potential target for therapeutic interventions in hepatic inflammatory diseases. PMID:16557300
Structured crowding and its effects on enzyme catalysis.
Ma, Buyong; Nussinov, Ruth
2013-01-01
Macromolecular crowding decreases the diffusion rate, shifts the equilibrium of protein-protein and protein-substrate interactions, and changes protein conformational dynamics. Collectively, these effects contribute to enzyme catalysis. Here we describe how crowding may bias the conformational change and dynamics of enzyme populations and in this way affect catalysis. Crowding effects have been studied using artificial crowding agents and in vivo-like environments. These studies revealed a correlation between protein dynamics and function in the crowded environment. We suggest that crowded environments be classified into uniform crowding and structured crowding. Uniform crowding represents random crowding conditions created by synthetic particles with a narrow size distribution. Structured crowding refers to the highly coordinated cellular environment, where proteins and other macromolecules are clustered and organized. In structured crowded environments the perturbation of protein thermal stability may be lower; however, it may still be able to modulate functions effectively and dynamically. Dynamic, allosteric enzymes could be more sensitive to cellular perturbations if their free energy landscape is flatter around the native state; on the other hand, if their free energy landscape is rougher, with high kinetic barriers separating deep minima, they could be more robust. Above all, cells are structured; and this holds both for the cytosol and for the membrane environment. The crowded environment is organized, which limits the search, and the crowders are not necessarily inert. More likely, they too transmit allosteric effects, and as such play important functional roles. Overall, structured cellular crowding may lead to higher enzyme efficiency and specificity.
Exosomal miRNAs as potential biomarkers of cardiovascular risk in children
2014-01-01
Intercellular interactions are essential for basic cellular activities and errors in either receiving or transferring these signals have shown to cause pathological conditions. These signals are not only regulated by membrane surface molecules but also by soluble secreted proteins, thereby allowing for an exquisite coordination of cell functions. Exosomes are released by cells upon fusion of multivesicular bodies (MVB) with the plasma membrane. Their envelope reflects their cellular origin and their surface and internal contents include important signaling components. Exosomes contain a wide variety of proteins, lipids, RNAs, non-transcribed RNAs, miRNAs and small RNAs that are representative to their cellular origin and shuttle from donor cells to recipient cells. The exosome formation cargo content and delivery is of immense biological interest because exosomes are believed to play major roles in various pathological conditions, and therefore provide unique opportunities for biomarker discovery and development of non-invasive diagnostics when examined in biological fluids such as urine and blood plasma. For example, circulating miRNAs in exosomes have been applied as functional biomarkers for diagnosis and outcomes prediction, while synthetic miRNAs in polymer-based nanoparticles are applicable for therapeutics. This review provides insights into the composition and functional properties of exosomes, and focuses on their potential value as diagnostic markers in the context of cardiovascular disease risk estimates in children who suffer from conditions associated with heightened prevalence of adverse cardiovascular disease, namely obesity and sleep-disordered-breathing. PMID:24912806
GTP- and GDP-Dependent Rab27a Effectors in Pancreatic Beta-Cells.
Yamaoka, Mami; Ishizaki, Toshimasa; Kimura, Toshihide
2015-01-01
Small guanosine triphosphatases (GTPases) participate in a wide variety of cellular functions including proliferation, differentiation, adhesion, and intracellular transport. Conventionally, only the guanosine 5'-triphosphate (GTP)-bound small GTPase interacts with effector proteins, and the resulting downstream signals control specific cellular functions. Therefore, the GTP-bound form is regarded as active, and the focus has been on searching for proteins that bind the GTP form to look for their effectors. The Rab family small GTPase Rab27a is highly expressed in some secretory cells and is involved in the control of membrane traffic. The present study reviews recent progress in our understanding of the roles of Rab27a and its effectors in pancreatic beta-cells. In the basal state, GTP-bound Rab27a controls insulin secretion at pre-exocytic stages via its GTP-dependent effectors. We previously identified novel guanosine 5'-diphosphate (GDP)-bound Rab27-interacting proteins. Interestingly, GDP-bound Rab27a controls endocytosis of the secretory membrane via its interaction with these proteins. We also demonstrated that the insulin secretagogue glucose converts Rab27a from its GTP- to GDP-bound forms. Thus, GTP- and GDP-bound Rab27a regulate pre-exocytic and endocytic stages in membrane traffic, respectively. Since the physiological importance of GDP-bound GTPases has been largely overlooked, we consider that the investigation of GDP-dependent effectors for other GTPases is necessary for further understanding of cellular function.
Aberrant Mitochondrial Homeostasis in the Skeletal Muscle of Sedentary Older Adults
Safdar, Adeel; Hamadeh, Mazen J.; Kaczor, Jan J.; Raha, Sandeep; deBeer, Justin; Tarnopolsky, Mark A.
2010-01-01
The role of mitochondrial dysfunction and oxidative stress has been extensively characterized in the aetiology of sarcopenia (aging-associated loss of muscle mass) and muscle wasting as a result of muscle disuse. What remains less clear is whether the decline in skeletal muscle mitochondrial oxidative capacity is purely a function of the aging process or if the sedentary lifestyle of older adult subjects has confounded previous reports. The objective of the present study was to investigate if a recreationally active lifestyle in older adults can conserve skeletal muscle strength and functionality, chronic systemic inflammation, mitochondrial biogenesis and oxidative capacity, and cellular antioxidant capacity. To that end, muscle biopsies were taken from the vastus lateralis of young and age-matched recreationally active older and sedentary older men and women (N = 10/group; ♀ = ♂). We show that a physically active lifestyle is associated with the partial compensatory preservation of mitochondrial biogenesis, and cellular oxidative and antioxidant capacity in skeletal muscle of older adults. Conversely a sedentary lifestyle, associated with osteoarthritis-mediated physical inactivity, is associated with reduced mitochondrial function, dysregulation of cellular redox status and chronic systemic inflammation that renders the skeletal muscle intracellular environment prone to reactive oxygen species-mediated toxicity. We propose that an active lifestyle is an important determinant of quality of life and molecular progression of aging in skeletal muscle of the elderly, and is a viable therapy for attenuating and/or reversing skeletal muscle strength declines and mitochondrial abnormalities associated with aging. PMID:20520725
Tsuji, Takahiro; Sheehy, Noreen; Gautier, Virginie W; Hayakawa, Hitoshi; Sawa, Hirofumi; Hall, William W
2007-05-04
HTLV-1 is the etiologic agent of the adult T cell leukemialymphoma (ATLL). The viral regulatory protein Tax plays a central role in leukemogenesis as a transcriptional transactivator of both viral and cellular gene expression, and this requires Tax activity in both the cytoplasm and the nucleus. In the present study, we have investigated the mechanisms involved in the nuclear localization of Tax. Employing a GFP fusion expression system and a range of Tax mutants, we could confirm that the N-terminal 60 amino acids, and specifically residues within the zinc finger motif in this region, are important for nuclear localization. Using an in vitro nuclear import assay, it could be demonstrated that the transportation of Tax to the nucleus required neither energy nor carrier proteins. Specific and direct binding between Tax and p62, a nucleoporin with which the importin beta family of proteins have been known to interact was also observed. The nuclear import activity of wild type Tax and its mutants and their binding affinity for p62 were also clearly correlated, suggesting that the entry of Tax into the nucleus involves a direct interaction with nucleoporins within the nuclear pore complex (NPC). The nuclear export of Tax was also shown to be carrier independent. It could be also demonstrated that Tax it self may have a carrier function and that the NF-kappaB subunit p65 could be imported into the nucleus by Tax. These studies suggest that Tax could alter the nucleocytoplasmic distribution of cellular proteins, and this could contribute to the deregulation of cellular processes observed in HTLV-1 infection.
Functional analysis of a viroid RNA motif mediating cell-to-cell movement in Nicotiana benthamiana.
Jiang, Dongmei; Wang, Meng; Li, Shifang
2017-01-01
Cell-to-cell trafficking through different cellular layers is a key process for various RNAs including those of plant viruses and viroids, but the regulatory mechanisms involved are still not fully elucidated and good model systems are important. Here, we analyse the function of a simple RNA motif (termed 'loop19') in potato spindle tuber viroid (PSTVd) which is required for trafficking in Nicotiana benthamiana leaves. Northern blotting, reverse transcriptase PCR (RT-PCR) and in situ hybridization analyses demonstrated that unlike wild-type PSTVd, which was present in the nuclei in all cell types, the trafficking-defective loop19 mutants were visible only in the nuclei of upper epidermal and palisade mesophyll cells, which shows that PSTVd loop19 plays a role in mediating RNA trafficking from palisade to spongy mesophyll cells in N.benthamiana leaves. Our findings and approaches have broad implications for studying the RNA motifs mediating trafficking of RNAs across specific cellular boundaries in other biological systems.
Non-coding RNAs in lung cancer
Ricciuti, Biagio; Mecca, Carmen; Crinò, Lucio; Baglivo, Sara; Cenci, Matteo; Metro, Giulio
2014-01-01
The discovery that protein-coding genes represent less than 2% of all human genome, and the evidence that more than 90% of it is actively transcribed, changed the classical point of view of the central dogma of molecular biology, which was always based on the assumption that RNA functions mainly as an intermediate bridge between DNA sequences and protein synthesis machinery. Accumulating data indicates that non-coding RNAs are involved in different physiological processes, providing for the maintenance of cellular homeostasis. They are important regulators of gene expression, cellular differentiation, proliferation, migration, apoptosis, and stem cell maintenance. Alterations and disruptions of their expression or activity have increasingly been associated with pathological changes of cancer cells, this evidence and the prospect of using these molecules as diagnostic markers and therapeutic targets, make currently non-coding RNAs among the most relevant molecules in cancer research. In this paper we will provide an overview of non-coding RNA function and disruption in lung cancer biology, also focusing on their potential as diagnostic, prognostic and predictive biomarkers. PMID:25593996
Moreno, Andrea; Jego, Pierrick; de la Cruz, Feliberto; Canals, Santiago
2013-01-01
Complete understanding of the mechanisms that coordinate work and energy supply of the brain, the so called neurovascular coupling, is fundamental to interpreting brain energetics and their influence on neuronal coding strategies, but also to interpreting signals obtained from brain imaging techniques such as functional magnetic resonance imaging. Interactions between neuronal activity and cerebral blood flow regulation are largely compartmentalized. First, there exists a functional compartmentalization in which glutamatergic peri-synaptic activity and its electrophysiological events occur in close proximity to vascular responses. Second, the metabolic processes that fuel peri-synaptic activity are partially segregated between glycolytic and oxidative compartments. Finally, there is cellular segregation between astrocytic and neuronal compartments, which has potentially important implications on neurovascular coupling. Experimental data is progressively showing a tight interaction between the products of energy consumption and neurotransmission-driven signaling molecules that regulate blood flow. Here, we review some of these issues in light of recent findings with special attention to the neuron-glia interplay on the generation of neuroimaging signals. PMID:23543907
Endoplasmic Reticulum Stress in Beta Cells and Development of Diabetes
Fonseca, Sonya G.; Burcin, Mark; Gromada, Jesper; Urano, Fumihiko
2009-01-01
The endoplasmic reticulum (ER) is a cellular compartment responsible for multiple important cellular functions including the biosynthesis and folding of newly synthesized proteins destined for secretion, such as insulin. A myriad of pathological and physiological factors perturb ER function and cause dysregulation of ER homeostasis, leading to ER stress. ER stress elicits a signaling cascade to mitigate stress, the Unfolded Protein Response (UPR). As long as the UPR can relieve stress, cells can produce the proper amount of proteins and maintain ER homeostasis. If the UPR, however, fails to maintain ER homeostasis, cells will undergo apoptosis. Activation of the UPR is critical to the survival of insulin-producing pancreatic β-cells with high secretory protein production. Any disruption of ER homeostasis in β-cells can lead to cell death and contribute to the pathogenesis of diabetes. There are several models of ER stress-mediated diabetes. In this review, we outline the underlying molecular mechanisms of ER stress-mediated β-cell dysfunction and death during the progression of diabetes. PMID:19665428
A Systematic Analysis of a Deep Mouse Epididymal Sperm Proteome
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chauvin, Theodore; Xie, Fang; Liu, Tao
Spermatozoa are highly specialized cells that, when mature, are capable of navigating the female reproductive tract and fertilizing an oocyte. The sperm cell is thought to be largely quiescent in terms of transcriptional and translational activity. As a result, once it has left the male reproductive tract, the sperm cell is essentially operating with a static population of proteins. It is therefore theoretically possible to understand the protein networks contained in a sperm cell and to deduce its cellular function capabilities. To this end we have performed a proteomic analysis of mouse sperm isolated from the cauda epididymis and havemore » confidently identified 2,850 proteins, which is the most comprehensive sperm proteome for any species reported to date. These proteins comprise many complete cellular pathways, including those for energy production via glycolysis, β-oxidation and oxidative phosphorylation, protein folding and transport, and cell signaling systems. This proteome should prove a useful tool for assembly and testing of protein networks important for sperm function.« less
Genome wide identification of Staufen2-bound mRNAs in embryonic rat brains.
Maher-Laporte, Marjolaine; DesGroseillers, Luc
2010-05-01
Messenger ribonucleoprotein particles (mRNPs) are used to transport mRNAs along neuronal dendrites to their site of translation. Staufen2 is an mRNA-binding protein expressed in the cell bodies and cellular processes of different brain cells. It is notably involved in the transport of dendritic mRNAs along microtubules. Its knockdown expression was shown to change spine morphology and impair synaptic functions. However, the identity of Staufen2-bound mRNAs in brain cells is still completely unknown. As a mean to identify these mRNAs, we immunoprecipitated Staufen2-containing mRNPs from embryonic rat brains and used a genome wide approach to identify Staufen2-associated mRNAs. The genome wide approach identified 1780 mRNAs in Staufen2-containing mRNPs that code for proteins involved in cellular processes such as post-translational protein modifications, RNA metabolism, intracellular transport and translation. These results represent an additional and important step in the characterization of Staufen2- mediated neuronal functions in rat brains.
Variation in Macro and Trace Elements in Progression of Type 2 Diabetes
2014-01-01
Macro elements are the minerals of which the body needs more amounts and are more important than any other elements. Trace elements constitute a minute part of the living tissues and have various metabolic characteristics and functions. Trace elements participate in tissue and cellular and subcellular functions; these include immune regulation by humoral and cellular mechanisms, nerve conduction, muscle contractions, membrane potential regulations, and mitochondrial activity and enzyme reactions. The status of micronutrients such as iron and vanadium is higher in type 2 diabetes. The calcium, magnesium, sodium, chromium, cobalt, iodine, iron, selenium, manganese, and zinc seem to be low in type 2 diabetes while elements such as potassium and copper have no effect. In this review, we emphasized the status of macro and trace elements in type 2 diabetes and its advantages or disadvantages; this helps to understand the mechanism, progression, and prevention of type 2 diabetes due to the lack and deficiency of different macro and trace elements. PMID:25162051
The multiple roles of TDP-43 in pre-mRNA processing and gene expression regulation.
Buratti, Emanuele; Baralle, Francisco Ernesto
2010-01-01
Heterogeneous ribonucleoproteins (hnRNPs) are multifunctional RNA-binding proteins (RBPs) involved in many cellular processes. They participate in most gene expression pathways, from DNA replication and repair to mRNA translation. Among this class of proteins, TDP-43 (and more recently FUS/TLS) have received considerable attention due to their involvement in several neurodegenerative diseases. This finding has prompted many research groups to focus on the gene expression pathways that are regulated by these proteins. The results have uncovered a considerable complexity of TDP-43 and FUS/TLS functions due to the many independent mechanisms by which they may act to influence various cellular processes (such as DNA transcription, pre-mRNA splicing, mRNA export/import). The aim of this chapter will be to review especially some of the novel functions that have been uncovered, such as role in miRNA synthesis, regulation of transcript levels, and potential autoregulatory mechanisms in order to provide the basis for further investigations.
Long-term health of dopaminergic neuron transplants in Parkinson's disease patients.
Hallett, Penelope J; Cooper, Oliver; Sadi, Damaso; Robertson, Harold; Mendez, Ivar; Isacson, Ole
2014-06-26
To determine the long-term health and function of transplanted dopamine neurons in Parkinson's disease (PD) patients, the expression of dopamine transporters (DATs) and mitochondrial morphology were examined in human fetal midbrain cellular transplants. DAT was robustly expressed in transplanted dopamine neuron terminals in the reinnervated host putamen and caudate for at least 14 years after transplantation. The transplanted dopamine neurons showed a healthy and nonatrophied morphology at all time points. Labeling of the mitochondrial outer membrane protein Tom20 and α-synuclein showed a typical cellular pathology in the patients' own substantia nigra, which was not observed in transplanted dopamine neurons. These results show that the vast majority of transplanted neurons remain healthy for the long term in PD patients, consistent with clinical findings that fetal dopamine neuron transplants maintain function for up to 15-18 years in patients. These findings are critically important for the rational development of stem-cell-based dopamine neuronal replacement therapies for PD. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
The importance of controlling in vitro oxygen tension to accurately model in vivo neurophysiology.
Bordt, Evan A
2018-05-01
The majority of in vitro studies modeling in vivo conditions are performed on the lab bench in atmospheric air. However, the oxygen tension (pO 2 ) present in atmospheric air (160mm Hg, ∼21% O 2 ) is in great excess to the pO 2 that permeates tissues within the brain (5-45mm Hg, ∼1-6% O 2 ). This review will discuss the differentiation between pO 2 in the in vivo environment and the pO 2 commonly used during in vitro experiments, and how this could affect assay outcomes. Also highlighted are studies linking changes in pO 2 to changes in cellular function, particularly the role of pO 2 in mitochondrial function, reactive oxygen species production, and cellular growth and differentiation. The role of hypoxia inducible factor 1 and oxygen sensing is also presented. Finally, emerging literature exploring sex differences in tissue oxygenation is discussed. Copyright © 2017 Elsevier B.V. All rights reserved.
Early loss of Crebbp confers malignant stem cell properties on lymphoid progenitors.
Horton, Sarah J; Giotopoulos, George; Yun, Haiyang; Vohra, Shabana; Sheppard, Olivia; Bashford-Rogers, Rachael; Rashid, Mamunur; Clipson, Alexandra; Chan, Wai-In; Sasca, Daniel; Yiangou, Loukia; Osaki, Hikari; Basheer, Faisal; Gallipoli, Paolo; Burrows, Natalie; Erdem, Ayşegül; Sybirna, Anastasiya; Foerster, Sarah; Zhao, Wanfeng; Sustic, Tonci; Petrunkina Harrison, Anna; Laurenti, Elisa; Okosun, Jessica; Hodson, Daniel; Wright, Penny; Smith, Ken G; Maxwell, Patrick; Fitzgibbon, Jude; Du, Ming Q; Adams, David J; Huntly, Brian J P
2017-09-01
Loss-of-function mutations of cyclic-AMP response element binding protein, binding protein (CREBBP) are prevalent in lymphoid malignancies. However, the tumour suppressor functions of CREBBP remain unclear. We demonstrate that loss of Crebbp in murine haematopoietic stem and progenitor cells (HSPCs) leads to increased development of B-cell lymphomas. This is preceded by accumulation of hyperproliferative lymphoid progenitors with a defective DNA damage response (DDR) due to a failure to acetylate p53. We identify a premalignant lymphoma stem cell population with decreased H3K27ac, which undergoes transcriptional and genetic evolution due to the altered DDR, resulting in lymphomagenesis. Importantly, when Crebbp is lost later in lymphopoiesis, cellular abnormalities are lost and tumour generation is attenuated. We also document that CREBBP mutations may occur in HSPCs from patients with CREBBP-mutated lymphoma. These data suggest that earlier loss of Crebbp is advantageous for lymphoid transformation and inform the cellular origins and subsequent evolution of lymphoid malignancies.
Protein Quality Control and the Amyotrophic Lateral Sclerosis/Frontotemporal Dementia Continuum
Shahheydari, Hamideh; Ragagnin, Audrey; Walker, Adam K.; Toth, Reka P.; Vidal, Marta; Jagaraj, Cyril J.; Perri, Emma R.; Konopka, Anna; Sultana, Jessica M.; Atkin, Julie D.
2017-01-01
Protein homeostasis, or proteostasis, has an important regulatory role in cellular function. Protein quality control mechanisms, including protein folding and protein degradation processes, have a crucial function in post-mitotic neurons. Cellular protein quality control relies on multiple strategies, including molecular chaperones, autophagy, the ubiquitin proteasome system, endoplasmic reticulum (ER)-associated degradation (ERAD) and the formation of stress granules (SGs), to regulate proteostasis. Neurodegenerative diseases are characterized by the presence of misfolded protein aggregates, implying that protein quality control mechanisms are dysfunctional in these conditions. Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are neurodegenerative diseases that are now recognized to overlap clinically and pathologically, forming a continuous disease spectrum. In this review article, we detail the evidence for dysregulation of protein quality control mechanisms across the whole ALS-FTD continuum, by discussing the major proteins implicated in ALS and/or FTD. We also discuss possible ways in which protein quality mechanisms could be targeted therapeutically in these disorders and highlight promising protein quality control-based therapeutics for clinical trials. PMID:28539871
Uversky, Vladimir N.
2014-01-01
Biologically active proteins without stable tertiary structure are common in all known proteomes. Functions of these intrinsically disordered proteins (IDPs) are typically related to regulation, signaling, and control. Cellular levels of these important regulators are tightly regulated by a variety mechanisms ranging from firmly controlled expression to precisely targeted degradation. Functions of IDPs are controlled by binding to specific partners, alternative splicing, and posttranslational modifications among other means. In the norm, right amounts of precisely activated IDPs have to be present in right time at right places. Wrecked regulation brings havoc to the ordered world of disordered proteins, leading to protein misfolding, misidentification, and missignaling that give rise to numerous human diseases, such as cancer, cardiovascular disease, neurodegenerative diseases, and diabetes. Among factors inducing pathogenic transformations of IDPs are various cellular mechanisms, such as chromosomal translocations, damaged splicing, altered expression, frustrated posttranslational modifications, aberrant proteolytic degradation, and defective trafficking. This review presents some of the aspects of deregulated regulation of IDPs leading to human diseases. PMID:25988147
Liddle, Danyelle M.; Wellings, Hannah R.; Power, Krista A.; Robinson, Lindsay E.; Monk, Jennifer M.
2017-01-01
Obesity is a global health concern with rising prevalence that increases the risk of developing other chronic diseases. A causal link connecting overnutrition, the development of obesity and obesity-associated co-morbidities is visceral adipose tissue (AT) dysfunction, characterized by changes in the cellularity of various immune cell populations, altered production of inflammatory adipokines that sustain a chronic state of low-grade inflammation and, ultimately, dysregulated AT metabolic function. Therefore, dietary intervention strategies aimed to halt the progression of obese AT dysfunction through any of the aforementioned processes represent an important active area of research. In this connection, fish oil-derived dietary long-chain n-3 polyunsaturated fatty acids (PUFA) in the form of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been demonstrated to attenuate obese AT dysfunction through multiple mechanisms, ultimately affecting AT immune cellularity and function, adipokine production, and metabolic signaling pathways, all of which will be discussed herein. PMID:29186929
Functional imaging of hippocampal place cells at cellular resolution during virtual navigation
Dombeck, Daniel A.; Harvey, Christopher D.; Tian, Lin; Looger, Loren L.; Tank, David W.
2010-01-01
Spatial navigation is a widely employed behavior in rodent studies of neuronal circuits underlying cognition, learning and memory. In vivo microscopy combined with genetically-encoded indicators provides important new tools to study neuronal circuits, but has been technically difficult to apply during navigation. We describe methods to image the activity of hippocampal CA1 neurons with sub-cellular resolution in behaving mice. Neurons expressing the genetically encoded calcium indicator GCaMP3 were imaged through a chronic hippocampal window. Head-fixed mice performed spatial behaviors within a setup combining a virtual reality system and a custom built two-photon microscope. Populations of place cells were optically identified, and the correlation between the location of their place fields in the virtual environment and their anatomical location in the local circuit was measured. The combination of virtual reality and high-resolution functional imaging should allow for a new generation of studies to probe neuronal circuit dynamics during behavior. PMID:20890294
Cloonan, Suzanne M.; Choi, Augustine M.K.
2016-01-01
Mitochondria are a distinguishing feature of eukaryotic cells. Best known for their critical function in energy production via oxidative phosphorylation (OXPHOS), mitochondria are essential for nutrient and oxygen sensing and for the regulation of critical cellular processes, including cell death and inflammation. Such diverse functional roles for organelles that were once thought to be simple may be attributed to their distinct heteroplasmic genome, exclusive maternal lineage of inheritance, and ability to generate signals to communicate with other cellular organelles. Mitochondria are now thought of as one of the cell’s most sophisticated and dynamic responsive sensing systems. Specific signatures of mitochondrial dysfunction that are associated with disease pathogenesis and/or progression are becoming increasingly important. In particular, the centrality of mitochondria in the pathological processes and clinical phenotypes associated with a range of lung diseases is emerging. Understanding the molecular mechanisms regulating the mitochondrial processes of lung cells will help to better define phenotypes and clinical manifestations associated with respiratory disease and to identify potential diagnostic and therapeutic targets. PMID:26928034
Ahr function in lymphocytes: emerging concepts
Zhou, Liang
2015-01-01
The aryl hydrocarbon receptor (Ahr) is an important regulator of the development and function of both innate and adaptive immune cells through roles associated with Ahr's ability to respond to cellular and dietary ligands. Recent findings have revealed tissue and context-specific functions for Ahr in both homeostasis and in during an immune response. I review these findings here, and integrate them into the current understanding of the mechanisms that regulate Ahr transcription and function. I propose a conceptual framework in which Ahr function is determined by three factors: the amount of Ahr in any given cell, the abundance and potency of Ahr ligands within certain tissues, and the tissue microenvironment wherein Ahr+ cells reside. This complexity emphasizes the necessity cell-type specific genetic approaches towards the study of Ahr function. PMID:26700314
Analyzing Pseudophosphatase Function.
Hinton, Shantá D
2016-01-01
Pseudophosphatases regulate signal transduction cascades, but their mechanisms of action remain enigmatic. Reflecting this mystery, the prototypical pseudophosphatase STYX (phospho-serine-threonine/tyrosine-binding protein) was named with allusion to the river of the dead in Greek mythology to emphasize that these molecules are "dead" phosphatases. Although proteins with STYX domains do not catalyze dephosphorylation, this in no way precludes their having other functions as integral elements of signaling networks. Thus, understanding their roles in signaling pathways may mark them as potential novel drug targets. This chapter outlines common strategies used to characterize the functions of pseudophosphatases, using as an example MK-STYX [mitogen-activated protein kinase (MAPK) phospho-serine-threonine/tyrosine binding], which has been linked to tumorigenesis, apoptosis, and neuronal differentiation. We start with the importance of "restoring" (when possible) phosphatase activity in a pseudophosphatase so that the active mutant may be used as a comparison control throughout immunoprecipitation and mass spectrometry analyses. To this end, we provide protocols for site-directed mutagenesis, mammalian cell transfection, co-immunoprecipitation, phosphatase activity assays, and immunoblotting that we have used to investigate MK-STYX and the active mutant MK-STYXactive. We also highlight the importance of utilizing RNA interference (RNAi) "knockdown" technology to determine a cellular phenotype in various cell lines. Therefore, we outline our protocols for introducing short hairpin RNA (shRNA) expression plasmids into mammalians cells and quantifying knockdown of gene expression with real-time quantitative PCR (qPCR). A combination of cellular, molecular, biochemical, and proteomic techniques has served as powerful tools in identifying novel functions of the pseudophosphatase MK-STYX. Likewise, the information provided here should be a helpful guide to elucidating the function of other pseudophosphatases.
Functional optical imaging of tracheal health (Conference Presentation)
NASA Astrophysics Data System (ADS)
Gil, Daniel A.; Sharick, Joe T.; Gamm, Ute A.; Choma, Michael A.; Skala, Melissa C.
2017-04-01
The health of the tracheal mucosa is an important, but poorly understood, aspect of critical care medicine. Many critical care patients are mechanically ventilated through an endotracheal tube that can cause local inflammation and blunt damage to the ciliated epithelial cells lining the trachea. These cilia clear mucus and infectious agents from the respiratory tract, so impaired ciliary function may lead to increased susceptibility to respiratory infection. Therefore, a minimally-invasive method to monitor mucosal health and ciliary function in intubated patients would be valuable to critical care medicine. Optical metabolic imaging (OMI) can quantitatively assess the metabolic state of cells by measuring the fluorescence intensities of endogenous metabolic co-enzymes NAD(P)H and FAD. OMI is especially attractive for assessing tracheal health because OMI is label-free, and ciliary function is tightly linked to the levels of NAD(P)H and FAD. In this study, we apply widefield OMI to ex vivo mouse tracheae (n=6), and demonstrate that the optical redox ratio (fluorescence intensity of NAD(P)H divided by the intensity of FAD) is sensitive to changes in the cellular metabolism of the tracheal mucosa. We observed a 46% increase in the redox ratio 20 minutes after treatment with 10mM of sodium cyanide (p<0.001, 95% CI [40%, 52%]), an inhibitor of oxidative cellular respiration. In addition to being a proof-of-concept demonstration, Pseudomonas aeruginosa, an important cause of morbidity and mortality in CF patients and in the ICU, produces hydrogen cyanide. Our results support the development of minimally-invasive fiber-optic probes for in vivo monitoring of tracheal health.
Proteomic Analysis of the Multimeric Nuclear Egress Complex of Human Cytomegalovirus*
Milbradt, Jens; Kraut, Alexandra; Hutterer, Corina; Sonntag, Eric; Schmeiser, Cathrin; Ferro, Myriam; Wagner, Sabrina; Lenac, Tihana; Claus, Claudia; Pinkert, Sandra; Hamilton, Stuart T.; Rawlinson, William D.; Sticht, Heinrich; Couté, Yohann; Marschall, Manfred
2014-01-01
Herpesviral capsids are assembled in the host cell nucleus before being translocated into the cytoplasm for further maturation. The crossing of the nuclear envelope represents a major event that requires the formation of the nuclear egress complex (NEC). Previous studies demonstrated that human cytomegalovirus (HCMV) proteins pUL50 and pUL53, as well as their homologs in all members of Herpesviridae, interact with each other at the nuclear envelope and form the heterodimeric core of the NEC. In order to characterize further the viral and cellular protein content of the multimeric NEC, the native complex was isolated from HCMV-infected human primary fibroblasts at various time points and analyzed using quantitative proteomics. Previously postulated components of the HCMV-specific NEC, as well as novel potential NEC-associated proteins such as emerin, were identified. In this regard, interaction and colocalization between emerin and pUL50 were confirmed by coimmunoprecipitation and confocal microscopy analyses, respectively. A functional validation of viral and cellular NEC constituents was achieved through siRNA-mediated knockdown experiments. The important role of emerin in NEC functionality was demonstrated by a reduction of viral replication when emerin expression was down-regulated. Moreover, under such conditions, reduced production of viral proteins and deregulation of viral late cytoplasmic maturation were observed. Combined, these data prove the functional importance of emerin as an NEC component, associated with pUL50, pUL53, pUL97, p32/gC1qR, and further regulatory proteins. Summarized, our findings provide the first proteomics-based characterization and functional validation of the HCMV-specific multimeric NEC. PMID:24969177
Rink, Jonathan S; Yang, Shuo; Cen, Osman; Taxter, Tim; McMahon, Kaylin M; Misener, Sol; Behdad, Amir; Longnecker, Richard; Gordon, Leo I; Thaxton, C Shad
2017-11-06
Cancer cells have altered metabolism and, in some cases, an increased demand for cholesterol. It is important to identify novel, rational treatments based on biology, and cellular cholesterol metabolism as a potential target for cancer is an innovative approach. Toward this end, we focused on diffuse large B-cell lymphoma (DLBCL) as a model because there is differential cholesterol biosynthesis driven by B-cell receptor (BCR) signaling in germinal center (GC) versus activated B-cell (ABC) DLBCL. To specifically target cellular cholesterol homeostasis, we employed high-density lipoprotein-like nanoparticles (HDL NP) that can generally reduce cellular cholesterol by targeting and blocking cholesterol uptake through the high-affinity HDL receptor, scavenger receptor type B-1 (SCARB1). As we previously reported, GC DLBCL are exquisitely sensitive to HDL NP as monotherapy, while ABC DLBCL are less sensitive. Herein, we report that enhanced BCR signaling and resultant de novo cholesterol synthesis in ABC DLBCL drastically reduces the ability of HDL NPs to reduce cellular cholesterol and induce cell death. Therefore, we combined HDL NP with the BCR signaling inhibitor ibrutinib and the SYK inhibitor R406. By targeting both cellular cholesterol uptake and BCR-associated de novo cholesterol synthesis, we achieved cellular cholesterol reduction and induced apoptosis in otherwise resistant ABC DLBCL cell lines. These results in lymphoma demonstrate that reduction of cellular cholesterol is a powerful mechanism to induce apoptosis. Cells rich in cholesterol require HDL NP therapy to reduce uptake and molecularly targeted agents that inhibit upstream pathways that stimulate de novo cholesterol synthesis, thus, providing a new paradigm for rationally targeting cholesterol metabolism as therapy for cancer.
Sarkar, Anwesha; Zhao, Yuanchang; Wang, Yongliang; Wang, Xuefeng
2018-06-25
Integrin-transmitted cellular forces are crucial mechanical signals regulating a vast range of cell functions. Although various methods have been developed to visualize and quantify cellular forces at the cell-matrix interface, a method with high performance and low technical barrier is still in demand. Here we developed a force-activatable coating (FAC), which can be simply coated on regular cell culture apparatus' surfaces by physical adsorption, and turn these surfaces to force reporting platforms that enable cellular force mapping directly by fluorescence imaging. The FAC molecule consists of an adhesive domain for surface coating and a force-reporting domain which can be activated to fluoresce by integrin molecular tension. The tension threshold required for FAC activation is tunable in 10-60 piconewton (pN), allowing the selective imaging of cellular force contributed by integrin tension at different force levels. We tested the performance of two FACs with tension thresholds of 12 and 54 pN (nominal values), respectively, on both glass and polystyrene surfaces. Cellular forces were successfully mapped by fluorescence imaging on all the surfaces. FAC-coated surfaces also enable co-imaging of cellular forces and cell structures in both live cells and immunostained cells, therefore opening a new avenue for the study of the interplay of force and structure. We demonstrated the co-imaging of integrin tension and talin clustering in live cells, and concluded that talin clustering always occurs before the generation of integrin tension above 54 pN, reinforcing the notion that talin is an important adaptor protein for integrin tension transmission. Overall, FAC provides a highly convenient approach that is accessible to general biological laboratories for the study of cellular forces with high sensitivity and resolution, thus holding the potential to greatly boost the research of cell mechanobiology.
Premature aging/senescence in cancer cells facing therapy: good or bad?
Gonzalez, Llilians Calvo; Ghadaouia, Sabrina; Martinez, Aurélie; Rodier, Francis
2016-02-01
Normal and cancer cells facing their demise following exposure to radio-chemotherapy can actively participate in choosing their subsequent fate. These programmed cell fate decisions include true cell death (apoptosis-necroptosis) and therapy-induced cellular senescence (TIS), a permanent "proliferative arrest" commonly portrayed as premature cellular aging. Despite a permanent loss of proliferative potential, senescent cells remain viable and are highly bioactive at the microenvironment level, resulting in a prolonged impact on tissue architecture and functions. Cellular senescence is primarily documented as a tumor suppression mechanism that prevents cellular transformation. In the context of normal tissues, cellular senescence also plays important roles in tissue repair, but contributes to age-associated tissue dysfunction when senescent cells accumulate. Theoretically, in multi-step cancer progression models, cancer cells have already bypassed cellular senescence during their immortalization step (see hallmarks of cancer). It is then perhaps surprising to find that cancer cells often retain the ability to undergo TIS, or premature aging. This occurs because cellular senescence results from multiple signalling pathways, some retained in cancer cells, aiming to prevent cell cycle progression in damaged cells. Since senescent cancer cells persist after therapy and secrete an array of cytokines and growth factors that can modulate the tumor microenvironment, these cells may have beneficial and detrimental effects regarding immune modulation and survival of remaining proliferation-competent cancer cells. Similarly, while normal cells undergoing senescence are believed to remain indefinitely growth arrested, whether this is true for senescent cancer cells remains unclear, raising the possibility that these cells may represent a reservoir for cancer recurrence after treatment. This review discusses our current knowledge on cancer cell senescence and highlight questions that must be addressed to fully understand the beneficial and detrimental impacts of cellular senescence during cancer therapy.
Wang, Wei; Qin, Jiang-Jiang; Voruganti, Sukesh; Nag, Subhasree; Zhou, Jianwei; Zhang, Ruiwen
2015-11-01
Polycomb group (PcG) proteins are transcriptional repressors that regulate several crucial developmental and physiological processes in the cell. More recently, they have been found to play important roles in human carcinogenesis and cancer development and progression. The deregulation and dysfunction of PcG proteins often lead to blocking or inappropriate activation of developmental pathways, enhancing cellular proliferation, inhibiting apoptosis, and increasing the cancer stem cell population. Genetic and molecular investigations of PcG proteins have long been focused on their PcG functions. However, PcG proteins have recently been shown to exert non-classical-Pc-functions, contributing to the regulation of diverse cellular functions. We and others have demonstrated that PcG proteins regulate the expression and function of several oncogenes and tumor suppressor genes in a PcG-independent manner, and PcG proteins are associated with the survival of patients with cancer. In this review, we summarize the recent advances in the research on PcG proteins, including both the Pc-repressive and non-classical-Pc-functions. We specifically focus on the mechanisms by which PcG proteins play roles in cancer initiation, development, and progression. Finally, we discuss the potential value of PcG proteins as molecular biomarkers for the diagnosis and prognosis of cancer, and as molecular targets for cancer therapy. © 2015 Wiley Periodicals, Inc.
Takahashi, Melissa K; Watters, Kyle E; Gasper, Paul M; Abbott, Timothy R; Carlson, Paul D; Chen, Alan A; Lucks, Julius B
2016-06-01
Antisense RNA-mediated transcriptional regulators are powerful tools for controlling gene expression and creating synthetic gene networks. RNA transcriptional repressors derived from natural mechanisms called attenuators are particularly versatile, though their mechanistic complexity has made them difficult to engineer. Here we identify a new structure-function design principle for attenuators that enables the forward engineering of new RNA transcriptional repressors. Using in-cell SHAPE-Seq to characterize the structures of attenuator variants within Escherichia coli, we show that attenuator hairpins that facilitate interaction with antisense RNAs require interior loops for proper function. Molecular dynamics simulations of these attenuator variants suggest these interior loops impart structural flexibility. We further observe hairpin flexibility in the cellular structures of natural RNA mechanisms that use antisense RNA interactions to repress translation, confirming earlier results from in vitro studies. Finally, we design new transcriptional attenuators in silico using an interior loop as a structural requirement and show that they function as desired in vivo. This work establishes interior loops as an important structural element for designing synthetic RNA gene regulators. We anticipate that the coupling of experimental measurement of cellular RNA structure and function with computational modeling will enable rapid discovery of structure-function design principles for a diverse array of natural and synthetic RNA regulators. © 2016 Takahashi et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.
Origin and evolution of the protein-repairing enzymes methionine sulphoxide reductases.
Zhang, Xing-Hai; Weissbach, Herbert
2008-08-01
The majority of extant life forms thrive in an O2-rich environment, which unavoidably induces the production of reactive oxygen species (ROS) during cellular activities. ROS readily oxidize methionine (Met) residues in proteins/peptides to form methionine sulphoxide [Met(O)] that can lead to impaired protein function. Two methionine sulphoxide reductases, MsrA and MsrB, catalyse the reduction of the S and R epimers, respectively, of Met(O) in proteins to Met. The Msr system has two known functions in protecting cells against oxidative damage. The first is to repair proteins that have lost activity due to Met oxidation and the second is to function as part of a scavenger system to remove ROS through the reversible oxidation/reduction of Met residues in proteins. Bacterial, plant and animal cells lacking MsrA are known to be more sensitive to oxidative stress. The Msr system is considered an important cellular defence mechanism to protect against oxidative stress and may be involved in ageing/senescence. MsrA is present in all known eukaryotes and eubacteria and a majority of archaea, reflecting its essential role in cellular life. MsrB is found in all eukaryotes and the majority of eubacteria and archaea but is absent in some eubacteria and archaea, which may imply a less important role of MsrB compared to MsrA. MsrA and MsrB share no sequence or structure homology, and therefore probably emerged as a result of independent evolutionary events. The fact that some archaea lack msr genes raises the question of how these archaea cope with oxidative damage to proteins and consequently of the significance of msr evolution in oxic eukaryotes dealing with oxidative stress. Our best hypothesis is that the presence of ROS-destroying enzymes such as peroxiredoxins and a lower dissolved O2 concentration in those msr-lacking organisms grown at high temperatures might account for the successful survival of these organisms under oxidative stress.
Carabetta, Valerie J; Greco, Todd M; Tanner, Andrew W; Cristea, Ileana M; Dubnau, David
2016-05-01
N ε -Lysine acetylation has been recognized as a ubiquitous regulatory posttranslational modification that influences a variety of important biological processes in eukaryotic cells. Recently, it has been realized that acetylation is also prevalent in bacteria. Bacteria contain hundreds of acetylated proteins, with functions affecting diverse cellular pathways. Still, little is known about the regulation or biological relevance of nearly all of these modifications. Here we characterize the cellular growth-associated regulation of the Bacillus subtilis acetylome. Using acetylation enrichment and quantitative mass spectrometry, we investigate the logarithmic and stationary growth phases, identifying over 2,300 unique acetylation sites on proteins that function in essential cellular pathways. We determine an acetylation motif, EK(ac)(D/Y/E), which resembles the eukaryotic mitochondrial acetylation signature, and a distinct stationary-phase-enriched motif. By comparing the changes in acetylation with protein abundances, we discover a subset of critical acetylation events that are temporally regulated during cell growth. We functionally characterize the stationary-phase-enriched acetylation on the essential shape-determining protein MreB. Using bioinformatics, mutational analysis, and fluorescence microscopy, we define a potential role for the temporal acetylation of MreB in restricting cell wall growth and cell diameter. The past decade highlighted N ε -lysine acetylation as a prevalent posttranslational modification in bacteria. However, knowledge regarding the physiological importance and temporal regulation of acetylation has remained limited. To uncover potential regulatory roles for acetylation, we analyzed how acetylation patterns and abundances change between growth phases in B. subtilis . To demonstrate that the identification of cell growth-dependent modifications can point to critical regulatory acetylation events, we further characterized MreB, the cell shape-determining protein. Our findings led us to propose a role for MreB acetylation in controlling cell width by restricting cell wall growth.
Madsen, Christian T.; Sylvestersen, Kathrine B.; Young, Clifford; Larsen, Sara C.; Poulsen, Jon W.; Andersen, Marianne A.; Palmqvist, Eva A.; Hey-Mogensen, Martin; Jensen, Per B.; Treebak, Jonas T.; Lisby, Michael; Nielsen, Michael L.
2015-01-01
The essential vitamin biotin is a covalent and tenaciously attached prosthetic group in several carboxylases that play important roles in the regulation of energy metabolism. Here we describe increased acetyl-CoA levels and mitochondrial hyperacetylation as downstream metabolic effects of biotin deficiency. Upregulated mitochondrial acetylation sites correlate with the cellular deficiency of the Hst4p deacetylase, and a biotin-starvation-induced accumulation of Hst4p in mitochondria supports a role for Hst4p in lowering mitochondrial acetylation. We show that biotin starvation and knockout of Hst4p cause alterations in cellular respiration and an increase in reactive oxygen species (ROS). These results suggest that Hst4p plays a pivotal role in biotin metabolism and cellular energy homeostasis, and supports that Hst4p is a functional yeast homologue of the sirtuin deacetylase SIRT3. With biotin deficiency being involved in various metabolic disorders, this study provides valuable insight into the metabolic effects biotin exerts on eukaryotic cells. PMID:26158509
Wong, Stephanie; Guo, Wei-hui; Hoffecker, Ian; Wang, Yu-li
2014-01-01
Substrate rigidity has been recognized as an important property that affects cellular physiology and functions. While the phenomenon has been well recognized, understanding the underlying mechanism may be greatly facilitated by creating a microenvironment with designed rigidity patterns. This chapter describes in detail an optimized method for preparing substrates with micropatterned rigidity, taking advantage of the ability to dehydrate polyacrylamide gels for micropatterning with photolithography, and subsequently rehydrate the gel to regain the original elastic state. While a wide range of micropatterns may be prepared, typical composite substrates consist of micron-sized islands of rigid photoresist grafted on the surface of polyacrylamide hydrogels of defined rigidity. These islands are displaced by cellular traction forces, for a distance determined by the size of the island, the rigidity of the underlying hydrogel, and the magnitude of traction forces. Domains of rigidity may be created using this composite material to allow systematic investigations of rigidity sensing and durotaxis. Copyright © 2014 Elsevier Inc. All rights reserved.
Cellular Cations Control Conformational Switching of Inositol Pyrophosphate Analogues
Hager, Anastasia; Wu, Mingxuan; Wang, Huanchen; Brown, Nathaniel W.; Shears, Stephen B.
2016-01-01
The inositol pyrophosphate messengers (PP-InsPs) are emerging as an important class of cellular regulators. These molecules have been linked to numerous biological processes, including insulin secretion and cancer cell migration, but how they trigger such a wide range of cellular responses has remained unanswered in many cases. Here, we show that the PP-InsPs exhibit complex speciation behaviour and propose that a unique conformational switching mechanism could contribute to their multifunctional effects. We synthesised non-hydrolysable bisphosphonate analogues and crystallised the analogues in complex with mammalian PPIP5K2 kinase. Subsequently, the bisphosphonate analogues were used to investigate the protonation sequence, metal-coordination properties, and conformation in solution. Remarkably, the presence of potassium and magnesium ions enabled the analogues to adopt two different conformations near physiological pH. Understanding how the intrinsic chemical properties of the PP-InsPs can contribute to their complex signalling outputs will be essential to elucidate their regulatory functions. PMID:27460418
Hacking the Cell: Network Intrusion and Exploitation by Adenovirus E1A.
King, Cason R; Zhang, Ali; Tessier, Tanner M; Gameiro, Steven F; Mymryk, Joe S
2018-05-01
As obligate intracellular parasites, viruses are dependent on their infected hosts for survival. Consequently, viruses are under enormous selective pressure to utilize available cellular components and processes to their own advantage. As most, if not all, cellular activities are regulated at some level via protein interactions, host protein interaction networks are particularly vulnerable to viral exploitation. Indeed, viral proteins frequently target highly connected "hub" proteins to "hack" the cellular network, defining the molecular basis for viral control over the host. This widespread and successful strategy of network intrusion and exploitation has evolved convergently among numerous genetically distinct viruses as a result of the endless evolutionary arms race between pathogens and hosts. Here we examine the means by which a particularly well-connected viral hub protein, human adenovirus E1A, compromises and exploits the vulnerabilities of eukaryotic protein interaction networks. Importantly, these interactions identify critical regulatory hubs in the human proteome and help define the molecular basis of their function. Copyright © 2018 King et al.
NOX4 regulates autophagy during energy deprivation.
Sciarretta, Sebastiano; Volpe, Massimo; Sadoshima, Junichi
2014-04-01
NADPH oxidase is a cellular enzyme devoted to the production of reactive oxygen species (ROS). NOX4 and NOX2 are the main isoforms of NADPH oxidase in the cardiovascular system. In our recent study, we demonstrated that NOX4, but not NOX2, is a critical mediator of the cardiomyocyte adaptive response to energy stress. NOX4 activity and protein levels are increased in the endoplasmic reticulum (ER) but not in mitochondria of cardiomyocytes during the early phase of energy deprivation. NOX4-derived production of ROS in the ER is a critical event that activates autophagy through stimulation of the EIF2AK3/PERK-EIF2S1/eIF-2α-ATF4 pathway. NOX4-dependent autophagy is an important mechanism to preserve cellular energy and limit cell death in energy-deprived cardiomyocytes. Aside from elucidating a crucial physiological function of NOX4 during cellular energy stress, our study dissects a novel signaling mechanism that regulates autophagy under this condition.
NOX4 regulates autophagy during energy deprivation
Sciarretta, Sebastiano; Volpe, Massimo; Sadoshima, Junichi
2014-01-01
NADPH oxidase is a cellular enzyme devoted to the production of reactive oxygen species (ROS). NOX4 and NOX2 are the main isoforms of NADPH oxidase in the cardiovascular system. In our recent study, we demonstrated that NOX4, but not NOX2, is a critical mediator of the cardiomyocyte adaptive response to energy stress. NOX4 activity and protein levels are increased in the endoplasmic reticulum (ER) but not in mitochondria of cardiomyocytes during the early phase of energy deprivation. NOX4-derived production of ROS in the ER is a critical event that activates autophagy through stimulation of the EIF2AK3/PERK-EIF2S1/eIF-2α-ATF4 pathway. NOX4-dependent autophagy is an important mechanism to preserve cellular energy and limit cell death in energy-deprived cardiomyocytes. Aside from elucidating a crucial physiological function of NOX4 during cellular energy stress, our study dissects a novel signaling mechanism that regulates autophagy under this condition. PMID:24492492
Label-free imaging of gold nanoparticles in single live cells by photoacoustic microscopy
NASA Astrophysics Data System (ADS)
Tian, Chao; Qian, Wei; Shao, Xia; Xie, Zhixing; Cheng, Xu; Liu, Shengchun; Cheng, Qian; Liu, Bing; Wang, Xueding
2016-03-01
Gold nanoparticles (AuNPs) have been extensively explored as a model nanostructure in nanomedicine and have been widely used to provide advanced biomedical research tools in diagnostic imaging and therapy. Due to the necessity of targeting AuNPs to individual cells, evaluation and visualization of AuNPs in the cellular level is critical to fully understand their interaction with cellular environment. Currently imaging technologies, such as fluorescence microscopy and transmission electron microscopy all have advantages and disadvantages. In this paper, we synthesized AuNPs by femtosecond pulsed laser ablation, modified their surface chemistry through sequential bioconjugation, and targeted the functionalized AuNPs with individual cancer cells. Based on their high optical absorption contrast, we developed a novel, label-free imaging method to evaluate and visualize intracellular AuNPs using photoacoustic microscopy (PAM). Preliminary study shows that the PAM imaging technique is capable of imaging cellular uptake of AuNPs in vivo at single-cell resolution, which provide an important tool for the study of AuNPs in nanomedicine.