Baldissera, Ronei; Rodrigues, Everton N L; Hartz, Sandra M
2012-01-01
The distribution of beta diversity is shaped by factors linked to environmental and spatial control. The relative importance of both processes in structuring spider metacommunities has not yet been investigated in the Atlantic Forest. The variance explained by purely environmental, spatially structured environmental, and purely spatial components was compared for a metacommunity of web spiders. The study was carried out in 16 patches of Atlantic Forest in southern Brazil. Field work was done in one landscape mosaic representing a slight gradient of urbanization. Environmental variables encompassed plot- and patch-level measurements and a climatic matrix, while principal coordinates of neighbor matrices (PCNMs) acted as spatial variables. A forward selection procedure was carried out to select environmental and spatial variables influencing web-spider beta diversity. Variation partitioning was used to estimate the contribution of pure environmental and pure spatial effects and their shared influence on beta-diversity patterns, and to estimate the relative importance of selected environmental variables. Three environmental variables (bush density, land use in the surroundings of patches, and shape of patches) and two spatial variables were selected by forward selection procedures. Variation partitioning revealed that 15% of the variation of beta diversity was explained by a combination of environmental and PCNM variables. Most of this variation (12%) corresponded to pure environmental and spatially environmental structure. The data indicated that (1) spatial legacy was not important in explaining the web-spider beta diversity; (2) environmental predictors explained a significant portion of the variation in web-spider composition; (3) one-third of environmental variation was due to a spatial structure that jointly explains variation in species distributions. We were able to detect important factors related to matrix management influencing the web-spider beta-diversity patterns, which are probably linked to historical deforestation events.
NASA Astrophysics Data System (ADS)
Liu, Jinliang; Qian, Hong; Jin, Yi; Wu, Chuping; Chen, Jianhua; Yu, Shuquan; Wei, Xinliang; Jin, Xiaofeng; Liu, Jiajia; Yu, Mingjian
2016-10-01
Understanding the relative importance of dispersal limitation and environmental filtering processes in structuring the beta diversities of subtropical forests in human disturbed landscapes is still limited. Here we used taxonomic (TBD) and phylogenetic (PBD), including terminal PBD (PBDt) and basal PBD (PBDb), beta diversity indices to quantify the taxonomic and phylogenetic turnovers at different depths of evolutionary history in disturbed and undisturbed subtropical forests. Multiple linear regression model and distance-based redundancy analysis were used to disentangle the relative importance of environmental and spatial variables. Environmental variables were significantly correlated with TBD and PBDt metrics. Temperature and precipitation were major environmental drivers of beta diversity patterns, which explained 7-27% of the variance in TBD and PBDt, whereas the spatial variables independently explained less than 1% of the variation for all forests. The relative importance of environmental and spatial variables differed between disturbed and undisturbed forests (e.g., when Bray-Curtis was used as a beta diversity metric, environmental variable had a significant effect on beta diversity for disturbed forests but had no effect on undisturbed forests). We conclude that environmental filtering plays a more important role than geographical limitation and disturbance history in driving taxonomic and terminal phylogenetic beta diversity.
Liu, Jinliang; Qian, Hong; Jin, Yi; Wu, Chuping; Chen, Jianhua; Yu, Shuquan; Wei, Xinliang; Jin, Xiaofeng; Liu, Jiajia; Yu, Mingjian
2016-01-01
Understanding the relative importance of dispersal limitation and environmental filtering processes in structuring the beta diversities of subtropical forests in human disturbed landscapes is still limited. Here we used taxonomic (TBD) and phylogenetic (PBD), including terminal PBD (PBDt) and basal PBD (PBDb), beta diversity indices to quantify the taxonomic and phylogenetic turnovers at different depths of evolutionary history in disturbed and undisturbed subtropical forests. Multiple linear regression model and distance-based redundancy analysis were used to disentangle the relative importance of environmental and spatial variables. Environmental variables were significantly correlated with TBD and PBDt metrics. Temperature and precipitation were major environmental drivers of beta diversity patterns, which explained 7–27% of the variance in TBD and PBDt, whereas the spatial variables independently explained less than 1% of the variation for all forests. The relative importance of environmental and spatial variables differed between disturbed and undisturbed forests (e.g., when Bray-Curtis was used as a beta diversity metric, environmental variable had a significant effect on beta diversity for disturbed forests but had no effect on undisturbed forests). We conclude that environmental filtering plays a more important role than geographical limitation and disturbance history in driving taxonomic and terminal phylogenetic beta diversity. PMID:27775021
van de Pol, Martijn; Vindenes, Yngvild; Sæther, Bernt-Erik; Engen, Steinar; Ens, Bruno J.; Oosterbeek, Kees; Tinbergen, Joost M.
2011-01-01
The relative importance of environmental colour for extinction risk compared with other aspects of environmental noise (mean and interannual variability) is poorly understood. Such knowledge is currently relevant, as climate change can cause the mean, variability and temporal autocorrelation of environmental variables to change. Here, we predict that the extinction risk of a shorebird population increases with the colour of a key environmental variable: winter temperature. However, the effect is weak compared with the impact of changes in the mean and interannual variability of temperature. Extinction risk was largely insensitive to noise colour, because demographic rates are poor in tracking the colour of the environment. We show that three mechanisms—which probably act in many species—can cause poor environmental tracking: (i) demographic rates that depend nonlinearly on environmental variables filter the noise colour, (ii) demographic rates typically depend on several environmental signals that do not change colour synchronously, and (iii) demographic stochasticity whitens the colour of demographic rates at low population size. We argue that the common practice of assuming perfect environmental tracking may result in overemphasizing the importance of noise colour for extinction risk. Consequently, ignoring environmental autocorrelation in population viability analysis could be less problematic than generally thought. PMID:21561978
Linking environmental variability to population and community dynamics: Chapter 7
Pantel, Jelena H.; Pendleton, Daniel E.; Walters, Annika W.; Rogers, Lauren A.
2014-01-01
Linking population and community responses to environmental variability lies at the heart of ecology, yet methodological approaches vary and existence of broad patterns spanning taxonomic groups remains unclear. We review the characteristics of environmental and biological variability. Classic approaches to link environmental variability to population and community variability are discussed as are the importance of biotic factors such as life history and community interactions. In addition to classic approaches, newer techniques such as information theory and artificial neural networks are reviewed. The establishment and expansion of observing networks will provide new long-term ecological time-series data, and with it, opportunities to incorporate environmental variability into research. This review can help guide future research in the field of ecological and environmental variability.
Wu, Naicheng; Qu, Yueming; Guse, Björn; Makarevičiūtė, Kristė; To, Szewing; Riis, Tenna; Fohrer, Nicola
2018-03-01
There has been increasing interest in algae-based bioassessment, particularly, trait-based approaches are increasingly suggested. However, the main drivers, especially the contribution of hydrological variables, of species composition, trait composition, and beta diversity of algae communities are less studied. To link species and trait composition to multiple factors (i.e., hydrological variables, local environmental variables, and spatial factors) that potentially control species occurrence/abundance and to determine their relative roles in shaping species composition, trait composition, and beta diversities of pelagic algae communities, samples were collected from a German lowland catchment, where a well-proven ecohydrological modeling enabled to predict long-term discharges at each sampling site. Both trait and species composition showed significant correlations with hydrological, environmental, and spatial variables, and variation partitioning revealed that the hydrological and local environmental variables outperformed spatial variables. A higher variation of trait composition (57.0%) than species composition (37.5%) could be explained by abiotic factors. Mantel tests showed that both species and trait-based beta diversities were mostly related to hydrological and environmental heterogeneity with hydrological contributing more than environmental variables, while purely spatial impact was less important. Our findings revealed the relative importance of hydrological variables in shaping pelagic algae community and their spatial patterns of beta diversities, emphasizing the need to include hydrological variables in long-term biomonitoring campaigns and biodiversity conservation or restoration. A key implication for biodiversity conservation was that maintaining the instream flow regime and keeping various habitats among rivers are of vital importance. However, further investigations at multispatial and temporal scales are greatly needed.
The underlying processes of a soil mite metacommunity on a small scale.
Dong, Chengxu; Gao, Meixiang; Guo, Chuanwei; Lin, Lin; Wu, Donghui; Zhang, Limin
2017-01-01
Metacommunity theory provides an understanding of how ecological processes regulate local community assemblies. However, few field studies have evaluated the underlying mechanisms of a metacommunity on a small scale through revealing the relative roles of spatial and environmental filtering in structuring local community composition. Based on a spatially explicit sampling design in 2012 and 2013, this study aims to evaluate the underlying processes of a soil mite metacommunity on a small spatial scale (50 m) in a temperate deciduous forest located at the Maoershan Ecosystem Research Station, Northeast China. Moran's eigenvector maps (MEMs) were used to model independent spatial variables. The relative importance of spatial (including trend variables, i.e., geographical coordinates, and broad- and fine-scale spatial variables) and environmental factors in driving the soil mite metacommunity was determined by variation partitioning. Mantel and partial Mantel tests and a redundancy analysis (RDA) were also used to identify the relative contributions of spatial and environmental variables. The results of variation partitioning suggested that the relatively large and significant variance was a result of spatial variables (including broad- and fine-scale spatial variables and trend), indicating the importance of dispersal limitation and autocorrelation processes. The significant contribution of environmental variables was detected in 2012 based on a partial Mantel test, and soil moisture and soil organic matter were especially important for the soil mite metacommunity composition in both years. The study suggested that the soil mite metacommunity was primarily regulated by dispersal limitation due to broad-scale and neutral biotic processes at a fine-scale and that environmental filtering might be of subordinate importance. In conclusion, a combination of metacommunity perspectives between neutral and species sorting theories was suggested to be important in the observed structure of the soil mite metacommunity at the studied small scale.
The underlying processes of a soil mite metacommunity on a small scale
Guo, Chuanwei; Lin, Lin; Wu, Donghui; Zhang, Limin
2017-01-01
Metacommunity theory provides an understanding of how ecological processes regulate local community assemblies. However, few field studies have evaluated the underlying mechanisms of a metacommunity on a small scale through revealing the relative roles of spatial and environmental filtering in structuring local community composition. Based on a spatially explicit sampling design in 2012 and 2013, this study aims to evaluate the underlying processes of a soil mite metacommunity on a small spatial scale (50 m) in a temperate deciduous forest located at the Maoershan Ecosystem Research Station, Northeast China. Moran’s eigenvector maps (MEMs) were used to model independent spatial variables. The relative importance of spatial (including trend variables, i.e., geographical coordinates, and broad- and fine-scale spatial variables) and environmental factors in driving the soil mite metacommunity was determined by variation partitioning. Mantel and partial Mantel tests and a redundancy analysis (RDA) were also used to identify the relative contributions of spatial and environmental variables. The results of variation partitioning suggested that the relatively large and significant variance was a result of spatial variables (including broad- and fine-scale spatial variables and trend), indicating the importance of dispersal limitation and autocorrelation processes. The significant contribution of environmental variables was detected in 2012 based on a partial Mantel test, and soil moisture and soil organic matter were especially important for the soil mite metacommunity composition in both years. The study suggested that the soil mite metacommunity was primarily regulated by dispersal limitation due to broad-scale and neutral biotic processes at a fine-scale and that environmental filtering might be of subordinate importance. In conclusion, a combination of metacommunity perspectives between neutral and species sorting theories was suggested to be important in the observed structure of the soil mite metacommunity at the studied small scale. PMID:28481906
Guadayol, Òscar; Silbiger, Nyssa J.; Donahue, Megan J.; Thomas, Florence I. M.
2014-01-01
Spatial and temporal environmental variability are important drivers of ecological processes at all scales. As new tools allow the in situ exploration of individual responses to fluctuations, ecologically meaningful ways of characterizing environmental variability at organism scales are needed. We investigated the fine-scale spatial heterogeneity of high-frequency temporal variability in temperature, dissolved oxygen concentration, and pH experienced by benthic organisms in a shallow coastal coral reef. We used a spatio-temporal sampling design, consisting of 21 short-term time-series located along a reef flat-to-reef slope transect, coupled to a long-term station monitoring water column changes. Spectral analyses revealed sharp gradients in variance decomposed by frequency, as well as differences between physically-driven and biologically-reactive parameters. These results highlight the importance of environmental variance at organismal scales and present a new sampling scheme for exploring this variability in situ. PMID:24416364
Personality and Sociodemographic Variables as Sources of Variation in Environmental Perception.
ERIC Educational Resources Information Center
Feimer, Nickolaus R.
This research paper examines the relationship between individual differences in environmental perception, and variables which may be important in predicting, if not explaining those variations. The analyses reported were based upon an environmental perception research study previously conducted at the University of California at Berkeley during…
Tredennick, Andrew T; Adler, Peter B; Adler, Frederick R
2017-08-01
Theory relating species richness to ecosystem variability typically ignores the potential for environmental variability to promote species coexistence. Failure to account for fluctuation-dependent coexistence may explain deviations from the expected negative diversity-ecosystem variability relationship, and limits our ability to predict the consequences of increases in environmental variability. We use a consumer-resource model to explore how coexistence via the temporal storage effect and relative nonlinearity affects ecosystem variability. We show that a positive, rather than negative, diversity-ecosystem variability relationship is possible when ecosystem function is sampled across a natural gradient in environmental variability and diversity. We also show how fluctuation-dependent coexistence can buffer ecosystem functioning against increasing environmental variability by promoting species richness and portfolio effects. Our work provides a general explanation for variation in observed diversity-ecosystem variability relationships and highlights the importance of conserving regional species pools to help buffer ecosystems against predicted increases in environmental variability. © 2017 John Wiley & Sons Ltd/CNRS.
Yu, Xiao-Dong; Lü, Liang; Wang, Feng-Yan; Luo, Tian-Hong; Zou, Si-Si; Wang, Cheng-Bin; Song, Ting-Ting; Zhou, Hong-Zhang
2016-01-01
The aim of this paper is to increase understanding of the relative importance of the input of geographic and local environmental factors on richness and composition of epigaeic steppe beetles (Coleoptera: Carabidae and Tenebrionidae) along a geographic (longitudinal/precipitation) gradient in the Inner Mongolia grassland. Specifically, we evaluate the associations of environmental variables representing climate and environmental heterogeneity with beetle assemblages. Beetles were sampled using pitfall traps at 25 sites scattered across the full geographic extent of the study biome in 2011-2012. We used variance partitioning techniques and multi-model selection based on the Akaike information criterion to assess the relative importance of the spatial and environmental variables on beetle assemblages. Species richness and abundance showed unimodal patterns along the geographic gradient. Together with space, climate variables associated with precipitation, water-energy balance and harshness of climate had strong explanatory power in richness pattern. Abundance pattern showed strongest association with variation in temperature and environmental heterogeneity. Climatic factors associated with temperature and precipitation variables and the interaction between climate with space were able to explain a substantial amount of variation in community structure. In addition, the turnover of species increased significantly as geographic distances increased. We confirmed that spatial and local environmental factors worked together to shape epigaeic beetle communities along the geographic gradient in the Inner Mongolia grassland. Moreover, the climate features, especially precipitation, water-energy balance and temperature, and the interaction between climate with space and environmental heterogeneity appeared to play important roles on controlling richness and abundance, and species compositions of epigaeic beetles.
Ecology and geography of human monkeypox case occurrences across Africa.
Ellis, Christine K; Carroll, Darin S; Lash, Ryan R; Peterson, A Townsend; Damon, Inger K; Malekani, Jean; Formenty, Pierre
2012-04-01
As ecologic niche modeling (ENM) evolves as a tool in spatial epidemiology and public health, selection of the most appropriate and informative environmental data sets becomes increasingly important. Here, we build on a previous ENM analysis of the potential distribution of human monkeypox in Africa by refining georeferencing criteria and using more-diverse environmental data to identify environmental parameters contributing to monkeypox distributional ecology. Significant environmental variables include annual precipitation, several temperature-related variables, primary productivity, evapotranspiration, soil moisture, and pH. The potential distribution identified with this set of variables was broader than that identified in previous analyses but does not include areas recently found to hold monkeypox in southern Sudan. Our results emphasize the importance of selecting the most appropriate and informative environmental data sets for ENM analyses in pathogen transmission mapping.
Planillo, Aimara; Malo, Juan E
2018-01-01
Human disturbance is widespread across landscapes in the form of roads that alter wildlife populations. Knowing which road features are responsible for the species response and their relevance in comparison with environmental variables will provide useful information for effective conservation measures. We sampled relative abundance of European rabbits, a very widespread species, in motorway verges at regional scale, in an area with large variability in environmental and infrastructure conditions. Environmental variables included vegetation structure, plant productivity, distance to water sources, and altitude. Infrastructure characteristics were the type of vegetation in verges, verge width, traffic volume, and the presence of embankments. We performed a variance partitioning analysis to determine the relative importance of two sets of variables on rabbit abundance. Additionally, we identified the most important variables and their effects model averaging after model selection by AICc on hypothesis-based models. As a group, infrastructure features explained four times more variability in rabbit abundance than environmental variables, being the effects of the former critical in motorway stretches located in altered landscapes with no available habitat for rabbits, such as agricultural fields. Model selection and Akaike weights showed that verge width and traffic volume are the most important variables explaining rabbit abundance index, with positive and negative effects, respectively. In the light of these results, the response of species to the infrastructure can be modulated through the modification of motorway features, being some of them manageable in the design phase. The identification of such features leads to suggestions for improvement through low-cost corrective measures and conservation plans. As a general indication, keeping motorway verges less than 10 m wide will prevent high densities of rabbits and avoid the unwanted effects that rabbit populations can generate in some areas.
Goldstein, R.M.; Carlisle, D.M.; Meador, M.R.; Short, T.M.
2007-01-01
The environmental setting (e.g., climate, topography, geology) and land use affect stream physical characteristics singly and cumulatively. At broad geographic scales, we determined the importance of environmental setting and land use in explaining variation in stream physical characteristics. We hypothesized that as the spatial scale decreased from national to regional, land use would explain more of the variation in stream physical characteristics because environmental settings become more homogeneous. At a national scale, stepwise linear regression indicated that environmental setting was more important in explaining variability in stream physical characteristics. Although statistically discernible, the amount of variation explained by land use was not remarkable due to low partial correlations. At level II ecoregion spatial scales (southeastern USA plains, central USA plains, and a combination of the western Cordillera and the western interior basins and ranges), environmental setting variables were again more important predictors of stream physical characteristics, however, as the spatial scale decreased from national to regional, the portion of variability in stream physical characteristics explained by basin land use increased. Development of stream habitat indicators of land use will depend upon an understanding of relations between stream physical characteristics and environmental factors at multiple spatial scales. Smaller spatial scales will be necessary to reduce the confounding effects of variable environmental settings before the effects of land use can be reliably assessed. ?? Springer Science+Business Media B.V. 2006.
Macpherson, Alexander J; Principe, Peter P; Shao, Yang
2013-04-15
Researchers are increasingly using data envelopment analysis (DEA) to examine the efficiency of environmental policies and resource allocations. An assumption of the basic DEA model is that decisionmakers operate within homogeneous environments. But, this assumption is not valid when environmental performance is influenced by variables beyond managerial control. Understanding the influence of these variables is important to distinguish between characterizing environmental conditions and identifying opportunities to improve environmental performance. While environmental assessments often focus on characterizing conditions, the point of using DEA is to identify opportunities to improve environmental performance and thereby prevent (or rectify) an inefficient allocation of resources. We examine the role of exogenous variables such as climate, hydrology, and topography in producing environmental impacts such as deposition, runoff, invasive species, and forest fragmentation within the United States Mid-Atlantic region. We apply a four-stage procedure to adjust environmental impacts in a DEA model that seeks to minimize environmental impacts while obtaining given levels of socioeconomic outcomes. The approach creates a performance index that bundles multiple indicators while adjusting for variables that are outside management control, offering numerous advantages for environmental assessment. Published by Elsevier Ltd.
Hewitt, Judi E; Ellis, Joanne I; Thrush, Simon F
2016-08-01
Global climate change will undoubtedly be a pressure on coastal marine ecosystems, affecting not only species distributions and physiology but also ecosystem functioning. In the coastal zone, the environmental variables that may drive ecological responses to climate change include temperature, wave energy, upwelling events and freshwater inputs, and all act and interact at a variety of spatial and temporal scales. To date, we have a poor understanding of how climate-related environmental changes may affect coastal marine ecosystems or which environmental variables are likely to produce priority effects. Here we use time series data (17 years) of coastal benthic macrofauna to investigate responses to a range of climate-influenced variables including sea-surface temperature, southern oscillation indices (SOI, Z4), wind-wave exposure, freshwater inputs and rainfall. We investigate responses from the abundances of individual species to abundances of functional traits and test whether species that are near the edge of their tolerance to another stressor (in this case sedimentation) may exhibit stronger responses. The responses we observed were all nonlinear and some exhibited thresholds. While temperature was most frequently an important predictor, wave exposure and ENSO-related variables were also frequently important and most ecological variables responded to interactions between environmental variables. There were also indications that species sensitive to another stressor responded more strongly to weaker climate-related environmental change at the stressed site than the unstressed site. The observed interactions between climate variables, effects on key species or functional traits, and synergistic effects of additional anthropogenic stressors have important implications for understanding and predicting the ecological consequences of climate change to coastal ecosystems. © 2015 John Wiley & Sons Ltd.
Liébanas, G.; Guerrero, P.; Martín-García, J.-M.; Peña-Santiago, R.
2004-01-01
The aim of this study was to determine the incidence of 18 environmental variables in the spatial distribution of 30 chorotypes (species groups with significantly similar distribution patterns) of dorylaimid and mononchid nematodes by means of logistic regression in a natural area in the southeastern Iberian Peninsula. Six variables (elevation, color chroma, clay content, nitrogen content, CaCO₃, and plant community associated) were the most important environmental factors that helped explain the distribution of chorotypes. The distribution of most chorotypes was characterized by some (one to three) environmental variables; only two chorotypes were characterized by five or more variables, and four have not been characterized. PMID:19262795
Padial, André A.; Ceschin, Fernanda; Declerck, Steven A. J.; De Meester, Luc; Bonecker, Cláudia C.; Lansac-Tôha, Fabio A.; Rodrigues, Liliana; Rodrigues, Luzia C.; Train, Sueli; Velho, Luiz F. M.; Bini, Luis M.
2014-01-01
Recently, community ecologists are focusing on the relative importance of local environmental factors and proxies to dispersal limitation to explain spatial variation in community structure. Albeit less explored, temporal processes may also be important in explaining species composition variation in metacommunities occupying dynamic systems. We aimed to evaluate the relative role of environmental, spatial and temporal variables on the metacommunity structure of different organism groups in the Upper Paraná River floodplain (Brazil). We used data on macrophytes, fish, benthic macroinvertebrates, zooplankton, periphyton, and phytoplankton collected in up to 36 habitats during a total of eight sampling campaigns over two years. According to variation partitioning results, the importance of predictors varied among biological groups. Spatial predictors were particularly important for organisms with comparatively lower dispersal ability, such as aquatic macrophytes and fish. On the other hand, environmental predictors were particularly important for organisms with high dispersal ability, such as microalgae, indicating the importance of species sorting processes in shaping the community structure of these organisms. The importance of watercourse distances increased when spatial variables were the main predictors of metacommunity structure. The contribution of temporal predictors was low. Our results emphasize the strength of a trait-based analysis and of better defining spatial variables. More importantly, they supported the view that “all-or- nothing” interpretations on the mechanisms structuring metacommunities are rather the exception than the rule. PMID:25340577
Tsumura, Y; Uchiyama, K; Moriguchi, Y; Ueno, S; Ihara-Ujino, T
2012-12-01
Local adaptation is important in evolutionary processes and speciation. We used multiple tests to identify several candidate genes that may be involved in local adaptation from 1026 loci in 14 natural populations of Cryptomeria japonica, the most economically important forestry tree in Japan. We also studied the relationships between genotypes and environmental variables to obtain information on the selective pressures acting on individual populations. Outlier loci were mapped onto a linkage map, and the positions of loci associated with specific environmental variables are considered. The outlier loci were not randomly distributed on the linkage map; linkage group 11 was identified as a genomic island of divergence. Three loci in this region were also associated with environmental variables such as mean annual temperature, daily maximum temperature, maximum snow depth, and so on. Outlier loci identified with high significance levels will be essential for conservation purposes and for future work on molecular breeding.
Climate and soil attributes determine plant species turnover in global drylands.
Ulrich, Werner; Soliveres, Santiago; Maestre, Fernando T; Gotelli, Nicholas J; Quero, José L; Delgado-Baquerizo, Manuel; Bowker, Matthew A; Eldridge, David J; Ochoa, Victoria; Gozalo, Beatriz; Valencia, Enrique; Berdugo, Miguel; Escolar, Cristina; García-Gómez, Miguel; Escudero, Adrián; Prina, Aníbal; Alfonso, Graciela; Arredondo, Tulio; Bran, Donaldo; Cabrera, Omar; Cea, Alex; Chaieb, Mohamed; Contreras, Jorge; Derak, Mchich; Espinosa, Carlos I; Florentino, Adriana; Gaitán, Juan; Muro, Victoria García; Ghiloufi, Wahida; Gómez-González, Susana; Gutiérrez, Julio R; Hernández, Rosa M; Huber-Sannwald, Elisabeth; Jankju, Mohammad; Mau, Rebecca L; Hughes, Frederic Mendes; Miriti, Maria; Monerris, Jorge; Muchane, Muchai; Naseri, Kamal; Pucheta, Eduardo; Ramírez-Collantes, David A; Raveh, Eran; Romão, Roberto L; Torres-Díaz, Cristian; Val, James; Veiga, José Pablo; Wang, Deli; Yuan, Xia; Zaady, Eli
2014-12-01
Geographic, climatic, and soil factors are major drivers of plant beta diversity, but their importance for dryland plant communities is poorly known. This study aims to: i) characterize patterns of beta diversity in global drylands, ii) detect common environmental drivers of beta diversity, and iii) test for thresholds in environmental conditions driving potential shifts in plant species composition. 224 sites in diverse dryland plant communities from 22 geographical regions in six continents. Beta diversity was quantified with four complementary measures: the percentage of singletons (species occurring at only one site), Whittake's beta diversity (β(W)), a directional beta diversity metric based on the correlation in species occurrences among spatially contiguous sites (β(R 2 )), and a multivariate abundance-based metric (β(MV)). We used linear modelling to quantify the relationships between these metrics of beta diversity and geographic, climatic, and soil variables. Soil fertility and variability in temperature and rainfall, and to a lesser extent latitude, were the most important environmental predictors of beta diversity. Metrics related to species identity (percentage of singletons and β(W)) were most sensitive to soil fertility, whereas those metrics related to environmental gradients and abundance ((β(R 2 )) and β(MV)) were more associated with climate variability. Interactions among soil variables, climatic factors, and plant cover were not important determinants of beta diversity. Sites receiving less than 178 mm of annual rainfall differed sharply in species composition from more mesic sites (> 200 mm). Soil fertility and variability in temperature and rainfall are the most important environmental predictors of variation in plant beta diversity in global drylands. Our results suggest that those sites annually receiving ~ 178 mm of rainfall will be especially sensitive to future climate changes. These findings may help to define appropriate conservation strategies for mitigating effects of climate change on dryland vegetation.
Environmental variables can be important factors in recreation demand. Analysts wishing to quantify environmental quality impacts face the difficult issue of isolating them from unobserved variables. Quality changes may occur in space, varying between sites, or in time, varying b...
The occurrence of arsenic in groundwater is a recognized environmental hazard with worldwide importance and much effort has been focused on surveying and predicting where arsenic occurs. Temporal variability is one aspect of this environmental hazard that has until recently recei...
NASA Astrophysics Data System (ADS)
Bi, R.; Liu, H.
2016-02-01
Understanding how biological components respond to environmental changes could be insightful to predict ecosystem trajectories under different climate scenarios. Zooplankton are key components of marine ecosystems and changes in their dynamics could have major impact on ecosystem structure. We developed an individual-based model of a common coastal calanoid copepod Acartia tonsa to examine how environmental factors affect zooplankton population dynamics and explore the role of individual variability in sustaining population under various environmental conditions consisting of temperature, food concentration and salinity. Total abundance, egg production and proportion of survival were used to measure population success. Results suggested population benefits from high level of individual variability under extreme environmental conditions including unfavorable temperature, salinity, as well as low food concentration, and selection on fast-growers becomes stronger with increasing individual variability and increasing environmental stress. Multiple regression analysis showed that temperature, food concentration, salinity and individual variability have significant effects on survival of A. tonsa population. These results suggest that environmental factors have great influence on zooplankton population, and individual variability has important implications for population survivability under unfavorable conditions. Given that marine ecosystems are at risk from drastic environmental changes, understanding how individual variability sustains populations could increase our capability to predict population dynamics in a changing environment.
Environmental Variation Generates Environmental Opportunist Pathogen Outbreaks.
Anttila, Jani; Kaitala, Veijo; Laakso, Jouni; Ruokolainen, Lasse
2015-01-01
Many socio-economically important pathogens persist and grow in the outside host environment and opportunistically invade host individuals. The environmental growth and opportunistic nature of these pathogens has received only little attention in epidemiology. Environmental reservoirs are, however, an important source of novel diseases. Thus, attempts to control these diseases require different approaches than in traditional epidemiology focusing on obligatory parasites. Conditions in the outside-host environment are prone to fluctuate over time. This variation is a potentially important driver of epidemiological dynamics and affect the evolution of novel diseases. Using a modelling approach combining the traditional SIRS models to environmental opportunist pathogens and environmental variability, we show that epidemiological dynamics of opportunist diseases are profoundly driven by the quality of environmental variability, such as the long-term predictability and magnitude of fluctuations. When comparing periodic and stochastic environmental factors, for a given variance, stochastic variation is more likely to cause outbreaks than periodic variation. This is due to the extreme values being further away from the mean. Moreover, the effects of variability depend on the underlying biology of the epidemiological system, and which part of the system is being affected. Variation in host susceptibility leads to more severe pathogen outbreaks than variation in pathogen growth rate in the environment. Positive correlation in variation on both targets can cancel the effect of variation altogether. Moreover, the severity of outbreaks is significantly reduced by increase in the duration of immunity. Uncovering these issues helps in understanding and controlling diseases caused by environmental pathogens.
Goldstein, R.M.; Stauffer, J.C.; Larson, P.R.; Lorenz, D.L.
1996-01-01
Within the instream habitat data set, measures of habitat volume (channel width and depth) and habitat diversity were most significant in explaining the variability of the fish communities. The amount of nonagricultural land and riparian zone integrity from the terrestrial habitat data set were also useful in explaining fish community composition. Variability of mean monthly discharge and the frequency of high and low discharge events during the three years prior to fish sampling were the most influential of the hydrologic variables.The first two axes of the canonical correspondence analysis accounted for 43.3 percent of the variation in the fish community and 52.5 percent of the variation in the environmental-species relation. Water-quality indicators such as the percent of fine material in suspended sediment, minimum dissolved oxygen concentrations, minimum concentrations of dissolved organic carbon, and the range of concentrations of major ions and nutrients were the variables that were most important in the canonical correspondence analysis of water-quality data with fish. No single environmental variable or data set appeared to be more important than another in explaining variation in the fish community. The environmental factors affecting the fish communities of the Red River of the North are interrelated. For the most part, instream environmental conditions (instream habitat, hydrology, and water chemistry) appear to be more important in explaining variability in fish community composition than factors related to the agricultural nature of the basin.
Roubeix, Vincent; Danis, Pierre-Alain; Feret, Thibaut; Baudoin, Jean-Marc
2016-04-01
In aquatic ecosystems, the identification of ecological thresholds may be useful for managers as it can help to diagnose ecosystem health and to identify key levers to enable the success of preservation and restoration measures. A recent statistical method, gradient forest, based on random forests, was used to detect thresholds of phytoplankton community change in lakes along different environmental gradients. It performs exploratory analyses of multivariate biological and environmental data to estimate the location and importance of community thresholds along gradients. The method was applied to a data set of 224 French lakes which were characterized by 29 environmental variables and the mean abundances of 196 phytoplankton species. Results showed the high importance of geographic variables for the prediction of species abundances at the scale of the study. A second analysis was performed on a subset of lakes defined by geographic thresholds and presenting a higher biological homogeneity. Community thresholds were identified for the most important physico-chemical variables including water transparency, total phosphorus, ammonia, nitrates, and dissolved organic carbon. Gradient forest appeared as a powerful method at a first exploratory step, to detect ecological thresholds at large spatial scale. The thresholds that were identified here must be reinforced by the separate analysis of other aquatic communities and may be used then to set protective environmental standards after consideration of natural variability among lakes.
Benthic algae of benchmark streams in agricultural areas of eastern Wisconsin
Scudder, Barbara C.; Stewart, Jana S.
2001-01-01
Multivariate analyses indicated multiple scales of environmental factors affect algae. Although two-way indicator species analysis (TWINSPAN), detrended correspondence analysis (DCA), and canonical correspondence analysis (CCA) generally separated sites according to RHU, only DCA ordination indicated a separation of sites according to ecoregion. Environmental variables con-elated with DCA axes 1 and 2 and therefore indicated as important explanatory factors for algal distribution and abundance were factors related to stream size, basin land use/cover, geomorphology, hydrogeology, and riparian disturbance. CCA analyses with a more limited set of environmental variables indicated that pH, average width of natural riparian vegetation (segment scale), basin land use/cover and Q/Q2 were the most important variables affecting the distribution and relative abundance of benthic algae at the 20 benchmark streams,
Al-Kindi, Khalifa M.; Andrew, Nigel; Welch, Mitchell
2017-01-01
Date palm cultivation is economically important in the Sultanate of Oman, with significant financial investment coming from both the government and from private individuals. However, a global infestation of Dubas bug (Ommatissus lybicus Bergevin) has impacted the Middle East region, and infestations of date palms have been widespread. In this study, spatial analysis and geostatistical techniques were used to model the spatial distribution of Dubas bug infestations to (a) identify correlations between Dubas bug densities and different environmental variables, and (b) predict the locations of future Dubas bug infestations in Oman. Firstly, we considered individual environmental variables and their correlations with infestation locations. Then, we applied more complex predictive models and regression analysis techniques to investigate the combinations of environmental factors most conducive to the survival and spread of the Dubas bug. Environmental variables including elevation, geology, and distance to drainage pathways were found to significantly affect Dubas bug infestations. In contrast, aspect and hillshade did not significantly impact on Dubas bug infestations. Understanding their distribution and therefore applying targeted controls on their spread is important for effective mapping, control and management (e.g., resource allocation) of Dubas bug infestations. PMID:28558069
Al-Kindi, Khalifa M; Kwan, Paul; Andrew, Nigel; Welch, Mitchell
2017-01-01
Date palm cultivation is economically important in the Sultanate of Oman, with significant financial investment coming from both the government and from private individuals. However, a global infestation of Dubas bug (Ommatissus lybicus Bergevin) has impacted the Middle East region, and infestations of date palms have been widespread. In this study, spatial analysis and geostatistical techniques were used to model the spatial distribution of Dubas bug infestations to (a) identify correlations between Dubas bug densities and different environmental variables, and (b) predict the locations of future Dubas bug infestations in Oman. Firstly, we considered individual environmental variables and their correlations with infestation locations. Then, we applied more complex predictive models and regression analysis techniques to investigate the combinations of environmental factors most conducive to the survival and spread of the Dubas bug. Environmental variables including elevation, geology, and distance to drainage pathways were found to significantly affect Dubas bug infestations. In contrast, aspect and hillshade did not significantly impact on Dubas bug infestations. Understanding their distribution and therefore applying targeted controls on their spread is important for effective mapping, control and management (e.g., resource allocation) of Dubas bug infestations.
Leveraging organismal biology to forecast the effects of climate change.
Buckley, Lauren B; Cannistra, Anthony F; John, Aji
2018-04-26
Despite the pressing need for accurate forecasts of ecological and evolutionary responses to environmental change, commonly used modelling approaches exhibit mixed performance because they omit many important aspects of how organisms respond to spatially and temporally variable environments. Integrating models based on organismal phenotypes at the physiological, performance and fitness levels can improve model performance. We summarize current limitations of environmental data and models and discuss potential remedies. The paper reviews emerging techniques for sensing environments at fine spatial and temporal scales, accounting for environmental extremes, and capturing how organisms experience the environment. Intertidal mussel data illustrate biologically important aspects of environmental variability. We then discuss key challenges in translating environmental conditions into organismal performance including accounting for the varied timescales of physiological processes, for responses to environmental fluctuations including the onset of stress and other thresholds, and for how environmental sensitivities vary across lifecycles. We call for the creation of phenotypic databases to parameterize forecasting models and advocate for improved sharing of model code and data for model testing. We conclude with challenges in organismal biology that must be solved to improve forecasts over the next decade.acclimation, biophysical models, ecological forecasting, extremes, microclimate, spatial and temporal variability.
Boamah, Kofi Baah; Du, Jianguo; Boamah, Angela Jacinta; Appiah, Kingsley
2018-02-01
This study seeks to contribute to the recent literature by empirically investigating the causal effect of urban population growth and international trade on environmental pollution of China, for the period 1980-2014. The Johansen cointegration confirmed a long-run cointegration association among the utilised variables for the case of China. The direction of causality among the variables was, consequently, investigated using the recent bootstrapped Granger causality test. This bootstrapped Granger causality approach is preferred as it provides robust and accurate critical values for statistical inferences. The findings from the causality analysis revealed the existence of a bi-directional causality between import and urban population. The three most paramount variables that explain the environmental pollution in China, according to the impulse response function, are imports, urbanisation and energy consumption. Our study further established the presence of an N-shaped environmental Kuznets curve relationship between economic growth and environmental pollution of China. Hence, our study recommends that China should adhere to stricter environmental regulations in international trade, as well as enforce policies that promote energy efficiency in the urban residential and commercial sector, in the quest to mitigate environmental pollution issues as the economy advances.
Environmental variability and acoustic signals: a multi-level approach in songbirds.
Medina, Iliana; Francis, Clinton D
2012-12-23
Among songbirds, growing evidence suggests that acoustic adaptation of song traits occurs in response to habitat features. Despite extensive study, most research supporting acoustic adaptation has only considered acoustic traits averaged for species or populations, overlooking intraindividual variation of song traits, which may facilitate effective communication in heterogeneous and variable environments. Fewer studies have explicitly incorporated sexual selection, which, if strong, may favour variation across environments. Here, we evaluate the prevalence of acoustic adaptation among 44 species of songbirds by determining how environmental variability and sexual selection intensity are associated with song variability (intraindividual and intraspecific) and short-term song complexity. We show that variability in precipitation can explain short-term song complexity among taxonomically diverse songbirds, and that precipitation seasonality and the intensity of sexual selection are related to intraindividual song variation. Our results link song complexity to environmental variability, something previously found for mockingbirds (Family Mimidae). Perhaps more importantly, our results illustrate that individual variation in song traits may be shaped by both environmental variability and strength of sexual selection.
Closed Loop Control of Automotive Engines
DOT National Transportation Integrated Search
1981-12-01
Internal combustion engine economy and emissions are known to be sensitive to changes in engine control variables. Two of the most important variables are fuel/air ratio (f/a) and spark advance. These variables are affected by environmental changes, ...
Strecker, Angela L; Casselman, John M; Fortin, Marie-Josée; Jackson, Donald A; Ridgway, Mark S; Abrams, Peter A; Shuter, Brian J
2011-07-01
Species present in communities are affected by the prevailing environmental conditions, and the traits that these species display may be sensitive indicators of community responses to environmental change. However, interpretation of community responses may be confounded by environmental variation at different spatial scales. Using a hierarchical approach, we assessed the spatial and temporal variation of traits in coastal fish communities in Lake Huron over a 5-year time period (2001-2005) in response to biotic and abiotic environmental factors. The association of environmental and spatial variables with trophic, life-history, and thermal traits at two spatial scales (regional basin-scale, local site-scale) was quantified using multivariate statistics and variation partitioning. We defined these two scales (regional, local) on which to measure variation and then applied this measurement framework identically in all 5 study years. With this framework, we found that there was no change in the spatial scales of fish community traits over the course of the study, although there were small inter-annual shifts in the importance of regional basin- and local site-scale variables in determining community trait composition (e.g., life-history, trophic, and thermal). The overriding effects of regional-scale variables may be related to inter-annual variation in average summer temperature. Additionally, drivers of fish community traits were highly variable among study years, with some years dominated by environmental variation and others dominated by spatially structured variation. The influence of spatial factors on trait composition was dynamic, which suggests that spatial patterns in fish communities over large landscapes are transient. Air temperature and vegetation were significant variables in most years, underscoring the importance of future climate change and shoreline development as drivers of fish community structure. Overall, a trait-based hierarchical framework may be a useful conservation tool, as it highlights the multi-scaled interactive effect of variables over a large landscape.
Climate and soil attributes determine plant species turnover in global drylands
Maestre, Fernando T.; Gotelli, Nicholas J.; Quero, José L.; Delgado-Baquerizo, Manuel; Bowker, Matthew A.; Eldridge, David J.; Ochoa, Victoria; Gozalo, Beatriz; Valencia, Enrique; Berdugo, Miguel; Escolar, Cristina; García-Gómez, Miguel; Escudero, Adrián; Prina, Aníbal; Alfonso, Graciela; Arredondo, Tulio; Bran, Donaldo; Cabrera, Omar; Cea, Alex; Chaieb, Mohamed; Contreras, Jorge; Derak, Mchich; Espinosa, Carlos I.; Florentino, Adriana; Gaitán, Juan; Muro, Victoria García; Ghiloufi, Wahida; Gómez-González, Susana; Gutiérrez, Julio R.; Hernández, Rosa M.; Huber-Sannwald, Elisabeth; Jankju, Mohammad; Mau, Rebecca L.; Hughes, Frederic Mendes; Miriti, Maria; Monerris, Jorge; Muchane, Muchai; Naseri, Kamal; Pucheta, Eduardo; Ramírez-Collantes, David A.; Raveh, Eran; Romão, Roberto L.; Torres-Díaz, Cristian; Val, James; Veiga, José Pablo; Wang, Deli; Yuan, Xia; Zaady, Eli
2015-01-01
Aim Geographic, climatic, and soil factors are major drivers of plant beta diversity, but their importance for dryland plant communities is poorly known. This study aims to: i) characterize patterns of beta diversity in global drylands, ii) detect common environmental drivers of beta diversity, and iii) test for thresholds in environmental conditions driving potential shifts in plant species composition. Location 224 sites in diverse dryland plant communities from 22 geographical regions in six continents. Methods Beta diversity was quantified with four complementary measures: the percentage of singletons (species occurring at only one site), Whittake’s beta diversity (β(W)), a directional beta diversity metric based on the correlation in species occurrences among spatially contiguous sites (β(R2)), and a multivariate abundance-based metric (β(MV)). We used linear modelling to quantify the relationships between these metrics of beta diversity and geographic, climatic, and soil variables. Results Soil fertility and variability in temperature and rainfall, and to a lesser extent latitude, were the most important environmental predictors of beta diversity. Metrics related to species identity (percentage of singletons and β(W)) were most sensitive to soil fertility, whereas those metrics related to environmental gradients and abundance ((β(R2)) and β(MV)) were more associated with climate variability. Interactions among soil variables, climatic factors, and plant cover were not important determinants of beta diversity. Sites receiving less than 178 mm of annual rainfall differed sharply in species composition from more mesic sites (> 200 mm). Main conclusions Soil fertility and variability in temperature and rainfall are the most important environmental predictors of variation in plant beta diversity in global drylands. Our results suggest that those sites annually receiving ~ 178 mm of rainfall will be especially sensitive to future climate changes. These findings may help to define appropriate conservation strategies for mitigating effects of climate change on dryland vegetation. PMID:25914437
Distribution of Chironomidae in a semiarid intermittent river of Brazil.
Farias, R L; Carvalho, L K; Medeiros, E S F
2012-12-01
The effects of the intermittency of water flow on habitat structure and substrate composition have been reported to create a patch dynamics for the aquatic fauna, mostly for that associated with the substrate. This study aims to describe the spatial distribution of Chironomidae in an intermittent river of semiarid Brazil and to associate assemblage composition with environmental variables. Benthic invertebrates were sampled during the wet and dry seasons using a D-shaped net (40 cm wide and 250 μm mesh), and the Chironomidae were identified to genus level. The most abundant genera were Tanytarsus, Polypedilum, and Saetheria with important contributions of the genera Procladius, Aedokritus, and Dicrotendipes. Richness and density were not significantly different between the study sites, and multiple regression showed that the variation in richness and density explained by the environmental variables was significant only for substrate composition. The composition of genera showed significant spatial segregation across the study sites. Canonical Correspondence Analysis showed significant correspondence between Chironomidae composition and the environmental variables, with submerged vegetation, elevation, and leaf litter being important predictors of the Chironomidae fauna. This study showed that Chironomidae presented important spatial variation along the river and that this variation was substantially explained by environmental variables associated with the habitat structure and river hierarchy. We suggest that the observed spatial segregation in the fauna results in the high diversity of this group of organisms in intermittent streams.
NASA Astrophysics Data System (ADS)
Wicks, L. C.; Gardner, J. P. A.; Davy, S. K.
2012-06-01
Tolerance of environmental variables differs between corals and their dinoflagellate symbionts ( Symbiodinium spp.), controlling the holobiont's (host and symbiont combined) resilience to environmental stress. However, the ecological role that environmental variables play in holobiont distribution remains poorly understood. We compared the drivers of symbiont and coral species distributions at Palmyra Atoll, a location with a range of reef environments from low to high sediment concentrations (1-52 g dry weight m-2 day-1). We observed uniform holobiont partnerships across the atoll (e.g. Montipora spp. with Symbiodinium type C15 at all sites). Multivariate analysis revealed that field-based estimates of settling sediment predominantly explained the spatial variation of coral species among sites ( P < 0.01). However, none of the environmental variables measured (sedimentation, temperature, chlorophyll concentration, salinity) affected symbiont distribution. The discord between environmental variables and symbiont distributions suggests that the symbionts are physiologically tolerant of the variable environmental regime across this location and that the distribution of different host-symbiont combinations present is largely dependent on coral rather than Symbiodinium physiology. The data highlight the importance of host tolerance to environmental stressors, which should be considered simultaneously with symbiont sensitivity when considering the impact of variations in environmental conditions on coral communities.
NASA Astrophysics Data System (ADS)
Sinang, S. C.; Reichwaldt, E. S.; Ghadouani, A.
2014-10-01
Toxic cyanobacterial blooms in urban lakes present serious health hazards to humans and animals and require effective management strategies. In the management of toxic cyanobacteria blooms, understanding the roles of environmental factors is crucial. To date, a range of environmental factors have been proposed as potential triggers for the spatiotemporal variability of cyanobacterial biomass and microcystins in freshwater systems. However, the environmental triggers of cyanobacteria and microcystin variability remain a subject of debate due to contrasting findings. This issue has raised the question if the environmental triggers are site-specific and unique between water bodies. In this study, we investigated the site-specificity of environmental triggers for cyanobacterial bloom and cyanotoxins dynamics. Our study suggests that cyanobacterial dominance and cyanobacterial microcystin content variability were significantly correlated to phosphorus and iron concentrations. However, the correlations between phosphorus and iron with cyanobacterial biomass and microcystin variability were not consistent between lakes, thus suggesting a site specificity of these environmental factors. The discrepancies in the correlations could be explained by differences in local nutrient concentration and the cyanobacterial community in the systems. The findings of this study suggest that identification of site-specific environmental factors under unique local conditions is an important strategy to enhance positive outcomes in cyanobacterial bloom control measures.
Folguera, Guillermo; Bastías, Daniel A; Caers, Jelle; Rojas, José M; Piulachs, Maria-Dolors; Bellés, Xavier; Bozinovic, Francisco
2011-07-01
Global climate change is one of the greatest threats to biodiversity; one of the most important effects is the increase in the mean earth surface temperature. However, another but poorly studied main characteristic of global change appears to be an increase in temperature variability. Most of the current analyses of global change have focused on mean values, paying less attention to the role of the fluctuations of environmental variables. We experimentally tested the effects of environmental temperature variability on characteristics associated to the fitness (body mass balance, growth rate, and survival), metabolic rate (VCO(2)) and molecular traits (heat shock protein expression, Hsp70), in an ectotherm, the terrestrial woodlouse Porcellio laevis. Our general hypotheses are that higher values of thermal amplitude may directly affect life-history traits, increasing metabolic cost and stress responses. At first, results supported our hypotheses showing a diversity of responses among characters to the experimental thermal treatments. We emphasize that knowledge about the cellular and physiological mechanisms by which animals cope with environmental changes is essential to understand the impact of mean climatic change and variability. Also, we consider that the studies that only incorporate only mean temperatures to predict the life-history, ecological and evolutionary impact of global temperature changes present important problems to predict the diversity of responses of the organism. This is because the analysis ignores the complexity and details of the molecular and physiological processes by which animals cope with environmental variability, as well as the life-history and demographic consequences of such variability. Copyright © 2011 Elsevier Inc. All rights reserved.
Chemidlin Prévost-Bouré, Nicolas; Dequiedt, Samuel; Thioulouse, Jean; Lelièvre, Mélanie; Saby, Nicolas P. A.; Jolivet, Claudy; Arrouays, Dominique; Plassart, Pierre; Lemanceau, Philippe; Ranjard, Lionel
2014-01-01
Spatial scaling of microorganisms has been demonstrated over the last decade. However, the processes and environmental filters shaping soil microbial community structure on a broad spatial scale still need to be refined and ranked. Here, we compared bacterial and fungal community composition turnovers through a biogeographical approach on the same soil sampling design at a broad spatial scale (area range: 13300 to 31000 km2): i) to examine their spatial structuring; ii) to investigate the relative importance of environmental selection and spatial autocorrelation in determining their community composition turnover; and iii) to identify and rank the relevant environmental filters and scales involved in their spatial variations. Molecular fingerprinting of soil bacterial and fungal communities was performed on 413 soils from four French regions of contrasting environmental heterogeneity (Landes
Chemidlin Prévost-Bouré, Nicolas; Dequiedt, Samuel; Thioulouse, Jean; Lelièvre, Mélanie; Saby, Nicolas P A; Jolivet, Claudy; Arrouays, Dominique; Plassart, Pierre; Lemanceau, Philippe; Ranjard, Lionel
2014-01-01
Spatial scaling of microorganisms has been demonstrated over the last decade. However, the processes and environmental filters shaping soil microbial community structure on a broad spatial scale still need to be refined and ranked. Here, we compared bacterial and fungal community composition turnovers through a biogeographical approach on the same soil sampling design at a broad spatial scale (area range: 13300 to 31000 km2): i) to examine their spatial structuring; ii) to investigate the relative importance of environmental selection and spatial autocorrelation in determining their community composition turnover; and iii) to identify and rank the relevant environmental filters and scales involved in their spatial variations. Molecular fingerprinting of soil bacterial and fungal communities was performed on 413 soils from four French regions of contrasting environmental heterogeneity (Landes
Kulinkina, Alexandra V; Walz, Yvonne; Koch, Magaly; Biritwum, Nana-Kwadwo; Utzinger, Jürg; Naumova, Elena N
2018-06-04
Schistosomiasis is a water-related neglected tropical disease. In many endemic low- and middle-income countries, insufficient surveillance and reporting lead to poor characterization of the demographic and geographic distribution of schistosomiasis cases. Hence, modeling is relied upon to predict areas of high transmission and to inform control strategies. We hypothesized that utilizing remotely sensed (RS) environmental data in combination with water, sanitation, and hygiene (WASH) variables could improve on the current predictive modeling approaches. Schistosoma haematobium prevalence data, collected from 73 rural Ghanaian schools, were used in a random forest model to investigate the predictive capacity of 15 environmental variables derived from RS data (Landsat 8, Sentinel-2, and Global Digital Elevation Model) with fine spatial resolution (10-30 m). Five methods of variable extraction were tested to determine the spatial linkage between school-based prevalence and the environmental conditions of potential transmission sites, including applying the models to known human water contact locations. Lastly, measures of local water access and groundwater quality were incorporated into RS-based models to assess the relative importance of environmental and WASH variables. Predictive models based on environmental characterization of specific locations where people contact surface water bodies offered some improvement as compared to the traditional approach based on environmental characterization of locations where prevalence is measured. A water index (MNDWI) and topographic variables (elevation and slope) were important environmental risk factors, while overall, groundwater iron concentration predominated in the combined model that included WASH variables. The study helps to understand localized drivers of schistosomiasis transmission. Specifically, unsatisfactory water quality in boreholes perpetuates reliance of surface water bodies, indirectly increasing schistosomiasis risk and resulting in rapid reinfection (up to 40% prevalence six months following preventive chemotherapy). Considering WASH-related risk factors in schistosomiasis prediction can help shift the focus of control strategies from treating symptoms to reducing exposure.
Aging and the Environment: Importance of Variability Issues in Understanding Risk
Of the many features of aging that could enhance susceptibility to environmental stressors, including toxic chemicals, the role of variability is arguably the least understood. This conclusion is surprising, since increased variability is a widely accepted feature of old age. In...
Minor, M A; Ermilov, S G; Philippov, D A; Prokin, A A
2016-11-01
We investigated communities of oribatid mites in five peat bogs in the north-west of the East European plain. We aimed to determine the extent to which geographic factors (latitude, separation distance), local environment (Sphagnum moss species, ground water level, biogeochemistry) and local habitat complexity (diversity of vascular plants and bryophytes in the surrounding plant community) influence diversity and community composition of Oribatida. There was a significant north-to-south increase in Oribatida abundance. In the variance partitioning, spatial factors explained 33.1 % of variability in abundance across samples; none of the environmental factors were significant. Across all bogs, Oribatida species richness and community composition were similar in Sphagnum rubellum and Sphagnum magellanicum, but significantly different and less diverse in Sphagnum cuspidatum. Sphagnum microhabitat explained 52.2 % of variability in Oribatida species richness, whereas spatial variables explained only 8.7 %. There was no distance decay in community similarity between bogs with increased geographical distance. The environmental variables explained 34.9 % of the variance in community structure, with vascular plants diversity, bryophytes diversity, and ground water level all contributing significantly; spatial variables explained 15.1 % of the total variance. Overall, only 50 % of the Oribatida community variance was explained by the spatial structure and environmental variables. We discuss relative importance of spatial and local environmental factors, and make general inferences about the formation of fauna in Sphagnum bogs.
Poulos, Helen M.; Chernoff, Barry; Fuller, Pam L.; Butman, David
2012-01-01
Predicting the future spread of non-native aquatic species continues to be a high priority for natural resource managers striving to maintain biodiversity and ecosystem function. Modeling the potential distributions of alien aquatic species through spatially explicit mapping is an increasingly important tool for risk assessment and prediction. Habitat modeling also facilitates the identification of key environmental variables influencing species distributions. We modeled the potential distribution of an aggressive invasive minnow, the red shiner (Cyprinella lutrensis), in waterways of the conterminous United States using maximum entropy (Maxent). We used inventory records from the USGS Nonindigenous Aquatic Species Database, native records for C. lutrensis from museum collections, and a geographic information system of 20 raster climatic and environmental variables to produce a map of potential red shiner habitat. Summer climatic variables were the most important environmental predictors of C. lutrensis distribution, which was consistent with the high temperature tolerance of this species. Results from this study provide insights into the locations and environmental conditions in the US that are susceptible to red shiner invasion.
The influence of drought on flow‐ecology relationships in Ozark Highland streams
Lynch, Dustin T.; Leasure, D. R.; Magoulick, Daniel D.
2018-01-01
Drought and summer drying can have strong effects on abiotic and biotic components of stream ecosystems. Environmental flow‐ecology relationships may be affected by drought and drying, adding further uncertainty to the already complex interaction of flow with other environmental variables, including geomorphology and water quality.Environment–ecology relationships in stream communities in Ozark Highland streams, USA, were examined over two years with contrasting environmental conditions, a drought year (2012) and a flood year (2013). We analysed fish, crayfish and benthic macroinvertebrate assemblages using two different approaches: (1) a multiple regression analysis incorporating predictor variables related to habitat, water quality, geomorphology and hydrology and (2) a canonical ordination procedure using only hydrologic variables in which forward selection was used to select predictors that were most related to our response variables.Reach‐scale habitat quality and geomorphology were found to be the most important influences on community structure, but hydrology was also important, particularly during the flood year. We also found substantial between‐year variation in environment–ecology relationships. Some ecological responses differed significantly between drought and flood years, while others remained consistent. We found that magnitude was the most important flow component overall, but that there was a shift in relative importance from low flow metrics during the drought year to average flow metrics during the flood year, and the specific metrics of importance varied markedly between assemblages and years.Findings suggest that understanding temporal variation in flow‐ecology relationships may be crucial for resource planning. While some relationships show temporal variation, others are consistent between years. Additionally, different kinds of hydrologic variables can differ greatly in terms of which assemblages they affect and how they affect them. Managers can address this complexity by focusing on relationships that are temporally stable and flow metrics that are consistently important across groups, such as flood frequency and flow variability.
Wu, Zhigang; Yu, Dan; Wang, Zhong; Li, Xing; Xu, Xinwei
2015-01-01
Understanding how natural processes affect population genetic structures is an important issue in evolutionary biology. One effective method is to assess the relative importance of environmental and geographical factors in the genetic structure of populations. In this study, we examined the spatial genetic variation of thirteen Myriophyllum spicatum populations from the Qinghai-Tibetan Plateau (QTP) and adjacent highlands (Yunnan-Guizhou Plateau, YGP) by using microsatellite loci and environmental and geographical factors. Bioclim layers, hydrological properties and elevation were considered as environmental variables and reduced by principal component analysis. The genetic isolation by geographic distance (IBD) was tested by Mantel tests and the relative importance of environmental variables on population genetic differentiation was determined by a partial Mantel test and multiple matrix regression with randomization (MMRR). Two genetic clusters corresponding to the QTP and YGP were identified. Both tests and MMRR revealed a significant and strong correlation between genetic divergence and geographic isolation under the influence of environmental heterogeneity at the overall and finer spatial scales. Our findings suggested the dominant role of geography on the evolution of M. spicatum under a steep environmental gradient in the alpine landscape as a result of dispersal limitation and genetic drift. PMID:26494202
Newhouse, V F; Choi, K; Holman, R C; Thacker, S B; D'Angelo, L J; Smith, J D
1986-01-01
For the period of 1961 through 1975, 10 geographic and sociologic variables in each of the 159 counties of Georgia were analyzed to determine how they were correlated with the occurrence of Rocky Mountain spotted fever (RMSF). Combinations of variables were transformed into a smaller number of factors using principal-component analysis. Based upon the relative values of these factors, geographic areas of similarity were delineated by cluster analysis. It was found by use of these analyses that the counties of the State formed four similarity clusters, which we called south, central, lower north and upper north. When the incidence of RMSF was subsequently calculated for each of these regions of similarity, the regions had differing RMSF incidence; low in the south and upper north, moderate in the central, and high in the lower north. The four similarity clusters agreed closely with the incidence of RMSF when both were plotted on a map. Thus, when analyzed simultaneously, the 10 variables selected could be used to predict the occurrence of RMSF. The most important variables were those of climate and geography. Of secondary, but still major importance, were the changes over the 15-year period in variables associated with humans and their environmental alterations. Detailed examination of these factors has permitted quantitative evaluation of the simultaneous impacts of the geographic and sociologic variables on the occurrence of RMSF in Georgia. These analyses could be updated to reflect changes in the relevant variables and tested as a means of identifying new high risk areas for RMSF in the State. More generally, this method might be adapted to clarify our understanding of the relative importance of individual variables in the ecology of other diseases or environmental health problems. PMID:3090609
Nolen, Matthew S.; Magoulick, Daniel D.; DiStefano, Robert J.; Imhoff, Emily M.; Wagner, Brian K.
2014-01-01
We found that a range of environmental variables were important in predicting crayfish distribution and abundance at multiple spatial scales and their importance was species-, response variable- and scale dependent. We would encourage others to examine the influence of spatial scale on species distribution and abundance patterns.
The importance of environment vs. disturbance in the vegetation mosaic of central Arizona
Cynthia D. Huebner; John L. Vankat
2003-01-01
The vegetation of central Arizona is a mosaic of four vegetation types: chaparral, chaparral grassland, woodland, and woodland grassland. We analysed ten environmental variables, three disturbance variables, and five disturbance indicators to answer the question: What is the relative importance of environment and disturbance in explaining the vegetation pattern of our...
Climate variability has a stabilizing effect on the coexistence of prairie grasses
Adler, Peter B.; HilleRisLambers, Janneke; Kyriakidis, Phaedon C.; Guan, Qingfeng; Levine, Jonathan M.
2006-01-01
How expected increases in climate variability will affect species diversity depends on the role of such variability in regulating the coexistence of competing species. Despite theory linking temporal environmental fluctuations with the maintenance of diversity, the importance of climate variability for stabilizing coexistence remains unknown because of a lack of appropriate long-term observations. Here, we analyze three decades of demographic data from a Kansas prairie to demonstrate that interannual climate variability promotes the coexistence of three common grass species. Specifically, we show that (i) the dynamics of the three species satisfy all requirements of “storage effect” theory based on recruitment variability with overlapping generations, (ii) climate variables are correlated with interannual variation in species performance, and (iii) temporal variability increases low-density growth rates, buffering these species against competitive exclusion. Given that environmental fluctuations are ubiquitous in natural systems, our results suggest that coexistence based on the storage effect may be underappreciated and could provide an important alternative to recent neutral theories of diversity. Field evidence for positive effects of variability on coexistence also emphasizes the need to consider changes in both climate means and variances when forecasting the effects of global change on species diversity. PMID:16908862
Weigel, B.M.; Robertson, Dale M.
2007-01-01
We sampled 41 sites on 34 nonwadeable rivers that represent the types of rivers in Wisconsin, and the kinds and intensities of nutrient and other anthropogenic stressors upon each river type. Sites covered much of United States Environmental Protection Agency national nutrient ecoregions VII-Mostly Glaciated Dairy Region, and VIII-Nutrient Poor, Largely Glaciated upper Midwest. Fish, macroinvertebrates, and three categories of environmental variables including nutrients, other water chemistry, and watershed features were collected using standard protocols. We summarized fish assemblages by index of biotic integrity (IBI) and its 10 component measures, and macroinvertebrates by 2 organic pollution tolerance and 12 proportional richness measures. All biotic and environmental variables represented a wide range of conditions, with biotic measures ranging from poor to excellent status, despite nutrient concentrations being consistently higher than reference concentrations reported for the regions. Regression tree analyses of nutrients on a suite of biotic measures identified breakpoints in total phosphorus (~0.06 mg/l) and total nitrogen (~0.64 mg/l) concentrations at which biotic assemblages were consistently impaired. Redundancy analyses (RDA) were used to identify the most important variables within each of the three environmental variable categories, which were then used to determine the relative influence of each variable category on the biota. Nutrient measures, suspended chlorophyll a, water clarity, and watershed land cover type (forest or row-crop agriculture) were the most important variables and they explained significant amounts of variation within the macroinvertebrate (R 2 = 60.6%) and fish (R 2 = 43.6%) assemblages. The environmental variables selected in the macroinvertebrate model were correlated to such an extent that partial RDA analyses could not attribute variation explained to individual environmental categories, assigning 89% of the explained variation to interactions among the categories. In contrast, partial RDA attributed much of the explained variation to the nutrient (25%) and other water chemistry (38%) categories for the fish model. Our analyses suggest that it would be beneficial to develop criteria based upon a suite of biotic and nutrient variables simultaneously to deem waters as not meeting their designated uses. ?? 2007 Springer Science+Business Media, LLC.
Weigel, Brian M; Robertson, Dale M
2007-10-01
We sampled 41 sites on 34 nonwadeable rivers that represent the types of rivers in Wisconsin, and the kinds and intensities of nutrient and other anthropogenic stressors upon each river type. Sites covered much of United States Environmental Protection Agency national nutrient ecoregions VII--Mostly Glaciated Dairy Region, and VIII--Nutrient Poor, Largely Glaciated upper Midwest. Fish, macroinvertebrates, and three categories of environmental variables including nutrients, other water chemistry, and watershed features were collected using standard protocols. We summarized fish assemblages by index of biotic integrity (IBI) and its 10 component measures, and macroinvertebrates by 2 organic pollution tolerance and 12 proportional richness measures. All biotic and environmental variables represented a wide range of conditions, with biotic measures ranging from poor to excellent status, despite nutrient concentrations being consistently higher than reference concentrations reported for the regions. Regression tree analyses of nutrients on a suite of biotic measures identified breakpoints in total phosphorus (approximately 0.06 mg/l) and total nitrogen (approximately 0.64 mg/l) concentrations at which biotic assemblages were consistently impaired. Redundancy analyses (RDA) were used to identify the most important variables within each of the three environmental variable categories, which were then used to determine the relative influence of each variable category on the biota. Nutrient measures, suspended chlorophyll a, water clarity, and watershed land cover type (forest or row-crop agriculture) were the most important variables and they explained significant amounts of variation within the macroinvertebrate (R(2) = 60.6%) and fish (R(2) = 43.6%) assemblages. The environmental variables selected in the macroinvertebrate model were correlated to such an extent that partial RDA analyses could not attribute variation explained to individual environmental categories, assigning 89% of the explained variation to interactions among the categories. In contrast, partial RDA attributed much of the explained variation to the nutrient (25%) and other water chemistry (38%) categories for the fish model. Our analyses suggest that it would be beneficial to develop criteria based upon a suite of biotic and nutrient variables simultaneously to deem waters as not meeting their designated uses.
NASA Astrophysics Data System (ADS)
Zhu, X.
2016-12-01
Mangrove wetlands play an important role in global carbon cycle due to their strong carbon sequestration resulting from high plant carbon assimilation and low soil respiration. However, temporal variability of carbon sequestration in mangrove wetlands is less understood since carbon processes of mangrove wetlands are influenced by many complicated and concurrent environmental controls including tidal activities, site climate and soil conditions. Canopy light use efficiency (LUE), is the most important plant physiological parameter that can be used to describe the temporal dynamics of canopy photosynthesis, and therefore a better characterization of temporal variability of canopy LUE will improve our understanding in mangrove photosynthesis and carbon balance. One of our aims is to study the temporal variability of canopy LUE and its environmental controls in a subtropical mangrove wetland. Half-hourly canopy LUE is derived from eddy covariance (EC) carbon flux and photosynthesis active radiation observations, and half-hourly environmental controls we measure include temperature, humidity, precipitation, radiation, tidal height, salinity, etc. Another aim is to explore the links between canopy LUE and spectral indices derived from near-surface tower-based remote sensing (normalized difference vegetation index, enhanced vegetation index, photochemical reflectance index, solar-induced chlorophyll fluorescence, etc.), and then identify potential quantitative relationships for developing remote sensing-based estimation methods of canopy LUE. At present, some instruments in our in-situ observation system have not yet been installed (planned in next months) and therefore we don't have enough measurements to support our analysis. However, a preliminary analysis of our historical EC and climate observations in past several years indicates that canopy LUE shows strong temporal variability and is greatly affected by environmental factors such as tidal activity. Detailed and systematic analyses of temporal variability of canopy LUE and its environmental controls and potential remote sensing estimation methods will be conducted when our in-situ observation system is ready in near future.
Muller, Benjamin J.; Cade, Brian S.; Schwarzkoph, Lin
2018-01-01
Many different factors influence animal activity. Often, the value of an environmental variable may influence significantly the upper or lower tails of the activity distribution. For describing relationships with heterogeneous boundaries, quantile regressions predict a quantile of the conditional distribution of the dependent variable. A quantile count model extends linear quantile regression methods to discrete response variables, and is useful if activity is quantified by trapping, where there may be many tied (equal) values in the activity distribution, over a small range of discrete values. Additionally, different environmental variables in combination may have synergistic or antagonistic effects on activity, so examining their effects together, in a modeling framework, is a useful approach. Thus, model selection on quantile counts can be used to determine the relative importance of different variables in determining activity, across the entire distribution of capture results. We conducted model selection on quantile count models to describe the factors affecting activity (numbers of captures) of cane toads (Rhinella marina) in response to several environmental variables (humidity, temperature, rainfall, wind speed, and moon luminosity) over eleven months of trapping. Environmental effects on activity are understudied in this pest animal. In the dry season, model selection on quantile count models suggested that rainfall positively affected activity, especially near the lower tails of the activity distribution. In the wet season, wind speed limited activity near the maximum of the distribution, while minimum activity increased with minimum temperature. This statistical methodology allowed us to explore, in depth, how environmental factors influenced activity across the entire distribution, and is applicable to any survey or trapping regime, in which environmental variables affect activity.
Wayne R. Erickson
2002-01-01
Knowledge of relationships among plant communities and environmental variables can be used in restoration, ecological assessments, predictive mapping and conservation planning. This information would be particularly important in the conservation of endangered ecosystems, such as those of Garry oak in British Columbia. To investigate relationships, sixteen environmental...
The use of crop rotation for mapping soil organic content in farmland
NASA Astrophysics Data System (ADS)
Yang, Lin; Song, Min; Zhu, A.-Xing; Qin, Chengzhi
2017-04-01
Most of the current digital soil mapping uses natural environmental covariates. However, human activities have significantly impacted the development of soil properties since half a century, and therefore become an important factor affecting soil spatial variability. Many researches have done field experiments to show how soil properties are impacted and changed by human activities, however, spatial variation data of human activities as environmental covariates have been rarely used in digital soil mapping. In this paper, we took crop rotation as an example of agricultural activities, and explored its effectiveness in characterizing and mapping the spatial variability of soil. The cultivated area of Xuanzhou city and Langxi County in Anhui Province was chosen as the study area. Three main crop rotations,including double-rice, wheat-rice,and oilseed rape-cotton were observed through field investigation in 2010. The spatial distribution of the three crop rotations in the study area was obtained by multi-phase remote sensing image interpretation using a supervised classification method. One-way analysis of variance (ANOVA) for topsoil organic content in the three crop rotation groups was performed. Factor importance of seven natural environmental covariates, crop rotation, Land use and NDVI were generated by variable importance criterion of Random Forest. Different combinations of environmental covariates were selected according to the importance rankings of environmental covariates for predicting SOC using Random Forest and Soil Landscape Inference Model (SOLIM). A cross validation was generated to evaluated the mapping accuracies. The results showed that there were siginificant differences of topsoil organic content among the three crop rotation groups. The crop rotation is more important than parent material, land use or NDVI according to the importance ranking calculated by Random Forest. In addition, crop rotation improved the mapping accuracy, especially for the flat clutivated area. This study demonstrates the usefulness of human activities in digital soil mapping and thus indicates the necessity for human activity factors in digital soil mapping studies.
Lecours, Vincent; Brown, Craig J; Devillers, Rodolphe; Lucieer, Vanessa L; Edinger, Evan N
2016-01-01
Selecting appropriate environmental variables is a key step in ecology. Terrain attributes (e.g. slope, rugosity) are routinely used as abiotic surrogates of species distribution and to produce habitat maps that can be used in decision-making for conservation or management. Selecting appropriate terrain attributes for ecological studies may be a challenging process that can lead users to select a subjective, potentially sub-optimal combination of attributes for their applications. The objective of this paper is to assess the impacts of subjectively selecting terrain attributes for ecological applications by comparing the performance of different combinations of terrain attributes in the production of habitat maps and species distribution models. Seven different selections of terrain attributes, alone or in combination with other environmental variables, were used to map benthic habitats of German Bank (off Nova Scotia, Canada). 29 maps of potential habitats based on unsupervised classifications of biophysical characteristics of German Bank were produced, and 29 species distribution models of sea scallops were generated using MaxEnt. The performances of the 58 maps were quantified and compared to evaluate the effectiveness of the various combinations of environmental variables. One of the combinations of terrain attributes-recommended in a related study and that includes a measure of relative position, slope, two measures of orientation, topographic mean and a measure of rugosity-yielded better results than the other selections for both methodologies, confirming that they together best describe terrain properties. Important differences in performance (up to 47% in accuracy measurement) and spatial outputs (up to 58% in spatial distribution of habitats) highlighted the importance of carefully selecting variables for ecological applications. This paper demonstrates that making a subjective choice of variables may reduce map accuracy and produce maps that do not adequately represent habitats and species distributions, thus having important implications when these maps are used for decision-making.
Measuring the Impact of Environment on the Health of Large Cities.
Stauber, Christine; Adams, Ellis A; Rothenberg, Richard; Dai, Dajun; Luo, Ruiyan; Weaver, Scott R; Prasad, Amit; Kano, Megumi; Heath, John
2018-06-09
The relative significance of indicators and determinants of health is important for local public health workers and planners. Of similar importance is a method for combining and evaluating such markers. We used a recently developed index, the Urban Health Index (UHI), to examine the impact of environmental variables on the overall health of cities. We used the UHI to rank 57 of the world’s largest cities (based on population size) in low- and middle-income countries. We examined nine variables in various combinations that were available from the Demographic and Health Surveys conducted in these countries. When arranged in ascending order, the distribution of UHIs follows the previously described pattern of gradual linear increase, with departures at each tail. The rank order of cities did not change materially with the omission of variables about women’s health knowledge or childhood vaccinations. Omission of environmental variables (a central water supply piped into homes, improved sanitation, and indoor solid fuel use) altered the rank order considerably. The data suggest that environmental indicators, measures of key household level risk to health, may play a vital role in the overall health of urban communities.
Sociopolitical and economic elements to explain the environmental performance of countries.
Almeida, Thiago Alexandre das Neves; García-Sánchez, Isabel-María
2017-01-01
The present research explains environmental performance using an ecological composite index as the dependent variable and focusing on two national dimensions: sociopolitical characteristics and economics. Environmental performance is measured using the Composite Index of Environmental Performance (CIEP) indicator proposed by García-Sánchez et al. (2015). The first model performs a factor analysis to aggregate the variables according to each analyzed dimension. In the second model, the estimation is run using only single variables. Both models are estimated using generalized least square estimation (GLS) using panel data from 152 countries and 6 years. The results show that sociopolitical factors and international trade have a positive effect on environmental performance. When the variables are separately analyzed, democracy and social policy have a positive effect on environmental performance while transport, infrastructure, consumption of goods, and tourism have a negative effect. Further observation is that the trade-off between importing and exporting countries overshadows the pollution caused by production. It was also observed that infrastructure has a negative coefficient for developing countries and positive for developed countries. The best performances are in the democratic and richer countries that are located in Europe, while the worst environmental performance is by the nondemocratic and the poorest countries, which are on the African continent.
Lin, Guojun; Stralberg, Diana; Gong, Guiquan; Huang, Zhongliang; Ye, Wanhui; Wu, Linfang
2013-01-01
Quantifying the relative contributions of environmental conditions and spatial factors to species distribution can help improve our understanding of the processes that drive diversity patterns. In this study, based on tree inventory, topography and soil data from a 20-ha stem-mapped permanent forest plot in Guangdong Province, China, we evaluated the influence of different ecological processes at different spatial scales using canonical redundancy analysis (RDA) at the community level and multiple linear regression at the species level. At the community level, the proportion of explained variation in species distribution increased with grid-cell sizes, primarily due to a monotonic increase in the explanatory power of environmental variables. At the species level, neither environmental nor spatial factors were important determinants of overstory species' distributions at small cell sizes. However, purely spatial variables explained most of the variation in the distributions of understory species at fine and intermediate cell sizes. Midstory species showed patterns that were intermediate between those of overstory and understory species. At the 20-m cell size, the influence of spatial factors was stronger for more dispersal-limited species, suggesting that much of the spatial structuring in this community can be explained by dispersal limitation. Comparing environmental factors, soil variables had higher explanatory power than did topography for species distribution. However, both topographic and edaphic variables were highly spatial structured. Our results suggested that dispersal limitation has an important influence on fine-intermediate scale (from several to tens of meters) species distribution, while environmental variability facilitates species distribution at intermediate (from ten to tens of meters) and broad (from tens to hundreds of meters) scales.
Drivers of metacommunity structure diverge for common and rare Amazonian tree species.
Bispo, Polyanna da Conceição; Balzter, Heiko; Malhi, Yadvinder; Slik, J W Ferry; Dos Santos, João Roberto; Rennó, Camilo Daleles; Espírito-Santo, Fernando D; Aragão, Luiz E O C; Ximenes, Arimatéa C; Bispo, Pitágoras da Conceição
2017-01-01
We analysed the flora of 46 forest inventory plots (25 m x 100 m) in old growth forests from the Amazonian region to identify the role of environmental (topographic) and spatial variables (obtained using PCNM, Principal Coordinates of Neighbourhood Matrix analysis) for common and rare species. For the analyses, we used multiple partial regression to partition the specific effects of the topographic and spatial variables on the univariate data (standardised richness, total abundance and total biomass) and partial RDA (Redundancy Analysis) to partition these effects on composition (multivariate data) based on incidence, abundance and biomass. The different attributes (richness, abundance, biomass and composition based on incidence, abundance and biomass) used to study this metacommunity responded differently to environmental and spatial processes. Considering standardised richness, total abundance (univariate) and composition based on biomass, the results for common species differed from those obtained for all species. On the other hand, for total biomass (univariate) and for compositions based on incidence and abundance, there was a correspondence between the data obtained for the total community and for common species. Our data also show that in general, environmental and/or spatial components are important to explain the variability in tree communities for total and common species. However, with the exception of the total abundance, the environmental and spatial variables measured were insufficient to explain the attributes of the communities of rare species. These results indicate that predicting the attributes of rare tree species communities based on environmental and spatial variables is a substantial challenge. As the spatial component was relevant for several community attributes, our results demonstrate the importance of using a metacommunities approach when attempting to understand the main ecological processes underlying the diversity of tropical forest communities.
Dembkowski, Daniel J.; Miranda, Leandro E.
2014-01-01
We examined the interaction between environmental variables measured at three different scales (i.e., landscape, lake, and in-lake) and fish assemblage descriptors across a range of over 50 floodplain lakes in the Mississippi Alluvial Valley of Mississippi and Arkansas. Our goal was to identify important local- and landscape-level determinants of fish assemblage structure. Relationships between fish assemblage structure and variables measured at broader scales (i.e., landscape-level and lake-level) were hypothesized to be stronger than relationships with variables measured at finer scales (i.e., in-lake variables). Results suggest that fish assemblage structure in floodplain lakes was influenced by variables operating on three different scales. However, and contrary to expectations, canonical correlations between in-lake environmental characteristics and fish assemblage structure were generally stronger than correlations between landscape-level and lake-level variables and fish assemblage structure, suggesting a hierarchy of influence. From a resource management perspective, our study suggests that landscape-level and lake-level variables may be manipulated for conservation or restoration purposes, and in-lake variables and fish assemblage structure may be used to monitor the success of such efforts.
ERIC Educational Resources Information Center
Aydos, Emine Hande; Yagci, Esed
2015-01-01
In today's world, the importance of environment education that is one of the most important issues is increasing rapidly. In the basis of the education, families and teachers take role together. It is aimed to grow up individuals who have positive attitudes and are sensitive the environment at every level of education. In order to achieve this…
ERIC Educational Resources Information Center
Stolberg, Arnold L.; And Others
1987-01-01
Examined psychological outcomes of divorce in 82 mother/child pairs from divorced homes and 47 pairs from intact homes. Environmental and familial variables were found to be more important than individual influences on children's divorce adjustment. (Author/ABL)
ASSESSING ACCURACY OF NET CHANGE DERIVED FROM LAND COVER MAPS
Net change derived from land-cover maps provides important descriptive information for environmental monitoring and is often used as an input or explanatory variable in environmental models. The sampling design and analysis for assessing net change accuracy differ from traditio...
Optimal traits of plant hydraulic capacitance as an adaptation to hydroclimatic variability
NASA Astrophysics Data System (ADS)
Hartzell, S. R.; Bartlett, M. S., Jr.; Porporato, A. M.
2016-12-01
Hydraulic capacitance allows plants to uptake and store water when it is abundant. This stored water is utilized during periods of water stress, decreasing tissue damage and increasing carbon assimilation. By providing a more consistent and readily accessible water supply, it buffers water stress variability across daily and seasonal timescales. The rate of plant water storage and withdrawal varies widely between plant species and is principally governed by several plant hydraulic parameters, principally the hydraulic capacitance, the total water storage capacity, and the conductance between xylem and water storage tissue. The timescale of the plant response to changes in environmental conditions may be related to the timescale of relevant environmental variability. For example, the Baobab tree (Adansonia), which grows in an environment with very strong seasonal rainfall variability, has a relatively long timescale of hydraulic response, while an evergreen tree such as Pinus taeda, which mainly contends with daily and inter-rainfall moisture variability, has a much shorter timescale of hydraulic response. Here a model of hydraulic capacitance is coupled to a resistance model of soil-plant-atmosphere continuum. We force this model with stochastic rainfall and examine plant responses to moisture variability at various timescales. Optimal plant hydraulic properties are examined as a function of mean soil moisture (daily variability), mean period between rainfall events (inter-rainfall variability), and seasonal rainfall variability, and the relative importance of each type of variability in shaping plant water use strategies is assessed. Results are compared to typical hydraulic parameters of plants growing under specific environmental conditions. Values of hydraulic traits which optimize carbon assimilation and water use efficiency are found; these values are dependent on mean environmental conditions as well as the timescale of environmental variability.
Xiao, H; Gao, L D; Li, X J; Lin, X L; Dai, X Y; Zhu, P J; Chen, B Y; Zhang, X X; Zhao, J; Tian, H Y
2013-09-01
The transmission of haemorrhagic fever with renal syndrome (HFRS) is influenced by climatic, reservoir and environmental variables. The epidemiology of the disease was studied over a 6-year period in Changsha. Variables relating to climate, environment, rodent host distribution and disease occurrence were collected monthly and analysed using a time-series adjusted Poisson regression model. It was found that the density of the rodent host and multivariate El Niño Southern Oscillation index had the greatest effect on the transmission of HFRS with lags of 2–6 months. However, a number of climatic and environmental factors played important roles in affecting the density and transmission potential of the rodent host population. It was concluded that the measurement of a number of these variables could be used in disease surveillance to give useful advance warning of potential disease epidemics.
Gudmundson, Sara; Eklöf, Anna; Wennergren, Uno
2015-08-07
How species respond to changes in environmental variability has been shown for single species, but the question remains whether these results are transferable to species when incorporated in ecological communities. Here, we address this issue by analysing the same species exposed to a range of environmental variabilities when (i) isolated or (ii) embedded in a food web. We find that all species in food webs exposed to temporally uncorrelated environments (white noise) show the same type of dynamics as isolated species, whereas species in food webs exposed to positively autocorrelated environments (red noise) can respond completely differently compared with isolated species. This is owing to species following their equilibrium densities in a positively autocorrelated environment that in turn enables species-species interactions to come into play. Our results give new insights into species' response to environmental variation. They especially highlight the importance of considering both species' interactions and environmental autocorrelation when studying population dynamics in a fluctuating environment. © 2015 The Author(s).
Santiago, Rogelio; Cao, Ana; Butrón, Ana
2015-01-01
Contamination of maize with fumonisins depends on the environmental conditions; the maize resistance to contamination and the interaction between both factors. Although the effect of environmental factors is a determinant for establishing the risk of kernel contamination in a region, there is sufficient genetic variability among maize to develop resistance to fumonisin contamination and to breed varieties with contamination at safe levels. In addition, ascertaining which environmental factors are the most important in a region will allow the implementation of risk monitoring programs and suitable cultural practices to reduce the impact of such environmental variables. The current paper reviews all works done to address the influence of environmental variables on fumonisin accumulation, the genetics of maize resistance to fumonisin accumulation, and the search for the biochemical and/or structural mechanisms of the maize plant that could be involved in resistance to fumonisin contamination. We also explore the outcomes of breeding programs and risk monitoring of undertaken projects. PMID:26308050
Santiago, Rogelio; Cao, Ana; Butrón, Ana
2015-08-20
Contamination of maize with fumonisins depends on the environmental conditions; the maize resistance to contamination and the interaction between both factors. Although the effect of environmental factors is a determinant for establishing the risk of kernel contamination in a region, there is sufficient genetic variability among maize to develop resistance to fumonisin contamination and to breed varieties with contamination at safe levels. In addition, ascertaining which environmental factors are the most important in a region will allow the implementation of risk monitoring programs and suitable cultural practices to reduce the impact of such environmental variables. The current paper reviews all works done to address the influence of environmental variables on fumonisin accumulation, the genetics of maize resistance to fumonisin accumulation, and the search for the biochemical and/or structural mechanisms of the maize plant that could be involved in resistance to fumonisin contamination. We also explore the outcomes of breeding programs and risk monitoring of undertaken projects.
Gudmundson, Sara; Eklöf, Anna; Wennergren, Uno
2015-01-01
How species respond to changes in environmental variability has been shown for single species, but the question remains whether these results are transferable to species when incorporated in ecological communities. Here, we address this issue by analysing the same species exposed to a range of environmental variabilities when (i) isolated or (ii) embedded in a food web. We find that all species in food webs exposed to temporally uncorrelated environments (white noise) show the same type of dynamics as isolated species, whereas species in food webs exposed to positively autocorrelated environments (red noise) can respond completely differently compared with isolated species. This is owing to species following their equilibrium densities in a positively autocorrelated environment that in turn enables species–species interactions to come into play. Our results give new insights into species' response to environmental variation. They especially highlight the importance of considering both species' interactions and environmental autocorrelation when studying population dynamics in a fluctuating environment. PMID:26224705
Shabangu, Fannie W.; Yemane, Dawit; Stafford, Kathleen M.; Ensor, Paul; Findlay, Ken P.
2017-01-01
Harvested to perilously low numbers by commercial whaling during the past century, the large scale response of Antarctic blue whales Balaenoptera musculus intermedia to environmental variability is poorly understood. This study uses acoustic data collected from 586 sonobuoys deployed in the austral summers of 1997 through 2009, south of 38°S, coupled with visual observations of blue whales during the IWC SOWER line-transect surveys. The characteristic Z-call and D-call of Antarctic blue whales were detected using an automated detection template and visual verification method. Using a random forest model, we showed the environmental preferences pattern, spatial occurrence and acoustic behaviour of Antarctic blue whales. Distance to the southern boundary of the Antarctic Circumpolar Current (SBACC), latitude and distance from the nearest Antarctic shores were the main geographic predictors of blue whale call occurrence. Satellite-derived sea surface height, sea surface temperature, and productivity (chlorophyll-a) were the most important environmental predictors of blue whale call occurrence. Call rates of D-calls were strongly predicted by the location of the SBACC, latitude and visually detected number of whales in an area while call rates of Z-call were predicted by the SBACC, latitude and longitude. Satellite-derived sea surface height, wind stress, wind direction, water depth, sea surface temperatures, chlorophyll-a and wind speed were important environmental predictors of blue whale call rates in the Southern Ocean. Blue whale call occurrence and call rates varied significantly in response to inter-annual and long term variability of those environmental predictors. Our results identify the response of Antarctic blue whales to inter-annual variability in environmental conditions and highlighted potential suitable habitats for this population. Such emerging knowledge about the acoustic behaviour, environmental and habitat preferences of Antarctic blue whales is important in improving the management and conservation of this highly depleted species. PMID:28222124
Shabangu, Fannie W; Yemane, Dawit; Stafford, Kathleen M; Ensor, Paul; Findlay, Ken P
2017-01-01
Harvested to perilously low numbers by commercial whaling during the past century, the large scale response of Antarctic blue whales Balaenoptera musculus intermedia to environmental variability is poorly understood. This study uses acoustic data collected from 586 sonobuoys deployed in the austral summers of 1997 through 2009, south of 38°S, coupled with visual observations of blue whales during the IWC SOWER line-transect surveys. The characteristic Z-call and D-call of Antarctic blue whales were detected using an automated detection template and visual verification method. Using a random forest model, we showed the environmental preferences pattern, spatial occurrence and acoustic behaviour of Antarctic blue whales. Distance to the southern boundary of the Antarctic Circumpolar Current (SBACC), latitude and distance from the nearest Antarctic shores were the main geographic predictors of blue whale call occurrence. Satellite-derived sea surface height, sea surface temperature, and productivity (chlorophyll-a) were the most important environmental predictors of blue whale call occurrence. Call rates of D-calls were strongly predicted by the location of the SBACC, latitude and visually detected number of whales in an area while call rates of Z-call were predicted by the SBACC, latitude and longitude. Satellite-derived sea surface height, wind stress, wind direction, water depth, sea surface temperatures, chlorophyll-a and wind speed were important environmental predictors of blue whale call rates in the Southern Ocean. Blue whale call occurrence and call rates varied significantly in response to inter-annual and long term variability of those environmental predictors. Our results identify the response of Antarctic blue whales to inter-annual variability in environmental conditions and highlighted potential suitable habitats for this population. Such emerging knowledge about the acoustic behaviour, environmental and habitat preferences of Antarctic blue whales is important in improving the management and conservation of this highly depleted species.
Distribution of sea anemones (Cnidaria, Actiniaria) in Korea analyzed by environmental clustering
Cha, H.-R.; Buddemeier, R.W.; Fautin, D.G.; Sandhei, P.
2004-01-01
Using environmental data and the geospatial clustering tools LOICZView and DISCO, we empirically tested the postulated existence and boundaries of four biogeographic regions in the southern part of the Korean peninsula. Environmental variables used included wind speed, sea surface temperature (SST), salinity, tidal amplitude, and the chlorophyll spectral signal. Our analysis confirmed the existence of four biogeographic regions, but the details of the borders between them differ from those previously postulated. Specimen-level distribution records of intertidal sea anemones were mapped; their distribution relative to the environmental data supported the importance of the environmental parameters we selected in defining suitable habitats. From the geographic coincidence between anemone distribution and the clusters based on environmental variables, we infer that geospatial clustering has the power to delimit ranges for marine organisms within relatively small geographical areas.
Short-term variability and predictors of urinary pentachlorophenol levels in Ohio preschool children
Pentachlorophenol (PCP) is a persistent and ubiquitous environmental contaminant. No published data exist on the temporal variability or important predictors of urinary PCP concentrations in young children. In this further analysis of study data, we have examined the associations...
Hoffman, Eric A.; Tye, Matthew R.; Hether, Tyler D.; Savage, Anna E.
2017-01-01
North American amphibians have recently been impacted by two major emerging pathogens, the fungus Batrachochytrium dendrobatidis (Bd) and iridoviruses in the genus Ranavirus (Rv). Environmental factors and host genetics may play important roles in disease dynamics, but few studies incorporate both of these components into their analyses. Here, we investigated the role of environmental and genetic factors in driving Bd and Rv infection prevalence and severity in a biodiversity hot spot, the southeastern United States. We used quantitative PCR to characterize Bd and Rv dynamics in natural populations of three amphibian species: Notophthalmus perstriatus, Hyla squirella and Pseudacris ornata. We combined pathogen data, genetic diversity metrics generated from neutral markers, and environmental variables into general linear models to evaluate how these factors impact infectious disease dynamics. Occurrence, prevalence and intensity of Bd and Rv varied across species and populations, but only one species, Pseudacris ornata, harbored high Bd intensities in the majority of sampled populations. Genetic diversity and climate variables both predicted Bd prevalence, whereas climatic variables alone predicted infection intensity. We conclude that Bd is more abundant in the southeastern United States than previously thought and that genetic and environmental factors are both important for predicting amphibian pathogen dynamics. Incorporating both genetic and environmental information into conservation plans for amphibians is necessary for the development of more effective management strategies to mitigate the impact of emerging infectious diseases. PMID:28448517
Temporally variable environments maintain more beta-diversity in Mediterranean landscapes
NASA Astrophysics Data System (ADS)
Martin, Beatriz; Ferrer, Miguel
2015-10-01
We examined the relationships between different environmental factors and the alpha and beta-diversity of terrestrial vertebrates (birds, mammals, amphibians and reptiles) in a Mediterranean region at the landscape level. We investigated whether the mechanisms underlying alpha and beta-diversity patterns are influenced by energy availability, habitat heterogeneity and temporal variability and if the drivers of the diversity patterns differed between both components of diversity. We defined alpha-diversity as synonym of species richness whereas beta-diversity was measured as distinctiveness. We evaluated a total of 13 different predictors using generalized linear mixed model (GLMM) analysis. Habitat spatial heterogeneity increased alpha-diversity, but contrastingly, it did not significantly affect beta-diversity among sites. Disturbed landscapes may show higher habitat spatial variation and higher alpha-diversity due to the contribution of highly generalist species that are wide-distributed and do not differ in composition (beta-diversity) among different sites within the region. Contrastingly, higher beta-diversity levels were negatively related to more stable sites in terms of temporal environmental variation. This negative relationship between environmental stability and beta-diversity levels is explained in terms of species adaptation to the local environmental conditions. Our study highlights the importance of temporal environmental variability in maintaining beta-diversity patterns under highly variable environmental conditions.
Dong, Xiaoli; Cohen, Matthew J.; Martin, Jonathan B.; ...
2018-05-18
Here, chemical weathering of bedrock plays an essential role in the formation and evolution of Earth's critical zone. Over geologic time, the negative feedback between temperature and chemical weathering rates contributes to the regulation of Earth climate. The challenge of understanding weathering rates and the resulting evolution of critical zone structures lies in complicated interactions and feedbacks among environmental variables, local ecohydrologic processes, and soil thickness, the relative importance of which remains unresolved. We investigate these interactions using a reactive-transport kinetics model, focusing on a low-relief, wetland-dominated karst landscape (Big Cypress National Preserve, South Florida, USA) as a case study.more » Across a broad range of environmental variables, model simulations highlight primary controls of climate and soil biological respiration, where soil thickness both supplies and limits transport of biologically derived acidity. Consequently, the weathering rate maximum occurs at intermediate soil thickness. The value of the maximum weathering rate and the precise soil thickness at which it occurs depend on several environmental variables, including precipitation regime, soil inundation, vegetation characteristics, and rate of groundwater drainage. Simulations for environmental conditions specific to Big Cypress suggest that wetland depressions in this landscape began to form around beginning of the Holocene with gradual dissolution of limestone bedrock and attendant soil development, highlighting large influence of age-varying soil thickness on weathering rates and consequent landscape development. While climatic variables are often considered most important for chemical weathering, our results indicate that soil thickness and biotic activity are equally important. Weathering rates reflect complex interactions among soil thickness, climate, and local hydrologic and biotic processes, which jointly shape the supply and delivery of chemical reactants, and the resulting trajectories of critical zone and karst landscape development.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Xiaoli; Cohen, Matthew J.; Martin, Jonathan B.
Here, chemical weathering of bedrock plays an essential role in the formation and evolution of Earth's critical zone. Over geologic time, the negative feedback between temperature and chemical weathering rates contributes to the regulation of Earth climate. The challenge of understanding weathering rates and the resulting evolution of critical zone structures lies in complicated interactions and feedbacks among environmental variables, local ecohydrologic processes, and soil thickness, the relative importance of which remains unresolved. We investigate these interactions using a reactive-transport kinetics model, focusing on a low-relief, wetland-dominated karst landscape (Big Cypress National Preserve, South Florida, USA) as a case study.more » Across a broad range of environmental variables, model simulations highlight primary controls of climate and soil biological respiration, where soil thickness both supplies and limits transport of biologically derived acidity. Consequently, the weathering rate maximum occurs at intermediate soil thickness. The value of the maximum weathering rate and the precise soil thickness at which it occurs depend on several environmental variables, including precipitation regime, soil inundation, vegetation characteristics, and rate of groundwater drainage. Simulations for environmental conditions specific to Big Cypress suggest that wetland depressions in this landscape began to form around beginning of the Holocene with gradual dissolution of limestone bedrock and attendant soil development, highlighting large influence of age-varying soil thickness on weathering rates and consequent landscape development. While climatic variables are often considered most important for chemical weathering, our results indicate that soil thickness and biotic activity are equally important. Weathering rates reflect complex interactions among soil thickness, climate, and local hydrologic and biotic processes, which jointly shape the supply and delivery of chemical reactants, and the resulting trajectories of critical zone and karst landscape development.« less
Effects of temporal variation in temperature and density dependence on insect population dynamics
USDA-ARS?s Scientific Manuscript database
Understanding effects of environmental variation on insect populations is important in light of predictions about increasing future climatic variability. In order to understand the effects of changing environmental variation on population dynamics and life history evolution in insects one would need...
Magoulick, Daniel D.; DiStefano, Robert J.; Imhoff, Emily M.; Nolen, Matthew S.; Wagner, Brian K.
2017-01-01
Crayfish are ecologically important in freshwater systems worldwide and are imperiled in North America and globally. We sought to examine landscape- to local-scale environmental variables related to occupancy and detection probability of a suite of stream-dwelling crayfish species. We used a quantitative kickseine method to sample crayfish presence at 102 perennial stream sites with eight surveys per site. We modeled occupancy (psi) and detection probability (P) and local- and landscape-scale environmental covariates. We developed a set of a priori candidate models for each species and ranked models using (Q)AICc. Detection probabilities and occupancy estimates differed among crayfish species with Orconectes eupunctus, O. marchandi, and Cambarus hubbsi being relatively rare (psi < 0.20) with moderate (0.46–0.60) to high (0.81) detection probability and O. punctimanus and O. ozarkae being relatively common (psi > 0.60) with high detection probability (0.81). Detection probability was often related to local habitat variables current velocity, depth, or substrate size. Important environmental variables for crayfish occupancy were species dependent but were mainly landscape variables such as stream order, geology, slope, topography, and land use. Landscape variables strongly influenced crayfish occupancy and should be considered in future studies and conservation plans.
Svenning, J.-C.; Engelbrecht, B.M.J.; Kinner, D.A.; Kursar, T.A.; Stallard, R.F.; Wright, S.J.
2006-01-01
We used regression models and information-theoretic model selection to assess the relative importance of environment, local dispersal and historical contingency as controls of the distributions of 26 common plant species in tropical forest on Barro Colorado Island (BCI), Panama. We censused eighty-eight 0.09-ha plots scattered across the landscape. Environmental control, local dispersal and historical contingency were represented by environmental variables (soil moisture, slope, soil type, distance to shore, old-forest presence), a spatial autoregressive parameter (??), and four spatial trend variables, respectively. We built regression models, representing all combinations of the three hypotheses, for each species. The probability that the best model included the environmental variables, spatial trend variables and ?? averaged 33%, 64% and 50% across the study species, respectively. The environmental variables, spatial trend variables, ??, and a simple intercept model received the strongest support for 4, 15, 5 and 2 species, respectively. Comparing the model results to information on species traits showed that species with strong spatial trends produced few and heavy diaspores, while species with strong soil moisture relationships were particularly drought-sensitive. In conclusion, history and local dispersal appeared to be the dominant controls of the distributions of common plant species on BCI. Copyright ?? 2006 Cambridge University Press.
Thermal barriers constrain microbial elevational range size via climate variability.
Wang, Jianjun; Soininen, Janne
2017-08-01
Range size is invariably limited and understanding range size variation is an important objective in ecology. However, microbial range size across geographical gradients remains understudied, especially on mountainsides. Here, the patterns of range size of stream microbes (i.e., bacteria and diatoms) and macroorganisms (i.e., macroinvertebrates) along elevational gradients in Asia and Europe were examined. In bacteria, elevational range size showed non-significant phylogenetic signals. In all taxa, there was a positive relationship between niche breadth and species elevational range size, driven by local environmental and climatic variables. No taxa followed the elevational Rapoport's rule. Climate variability explained the most variation in microbial mean elevational range size, whereas local environmental variables were more important for macroinvertebrates. Seasonal and annual climate variation showed negative effects, while daily climate variation had positive effects on community mean elevational range size for all taxa. The negative correlation between range size and species richness suggests that understanding the drivers of range is key for revealing the processes underlying diversity. The results advance the understanding of microbial species thermal barriers by revealing the importance of seasonal and diurnal climate variation, and highlight that aquatic and terrestrial biota may differ in their response to short- and long-term climate variability. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.
Esperón-Rodríguez, Manuel; Baumgartner, John B.; Beaumont, Linda J.
2017-01-01
Background Shrubs play a key role in biogeochemical cycles, prevent soil and water erosion, provide forage for livestock, and are a source of food, wood and non-wood products. However, despite their ecological and societal importance, the influence of different environmental variables on shrub distributions remains unclear. We evaluated the influence of climate and soil characteristics, and whether including soil variables improved the performance of a species distribution model (SDM), Maxent. Methods This study assessed variation in predictions of environmental suitability for 29 Australian shrub species (representing dominant members of six shrubland classes) due to the use of alternative sets of predictor variables. Models were calibrated with (1) climate variables only, (2) climate and soil variables, and (3) soil variables only. Results The predictive power of SDMs differed substantially across species, but generally models calibrated with both climate and soil data performed better than those calibrated only with climate variables. Models calibrated solely with soil variables were the least accurate. We found regional differences in potential shrub species richness across Australia due to the use of different sets of variables. Conclusions Our study provides evidence that predicted patterns of species richness may be sensitive to the choice of predictor set when multiple, plausible alternatives exist, and demonstrates the importance of considering soil properties when modeling availability of habitat for plants. PMID:28652933
Bird diversity along a gradient of fragmented habitats of the Cerrado.
Jesus, Shayana DE; Pedro, Wagner A; Bispo, Arthur A
2018-01-01
Understanding the factors that affect biodiversity is of central interest to ecology, and essential to species conservation and ecosystems management. We sampled bird communities in 17 forest fragments in the Cerrado biome, the Central-West region of Brazil. We aimed to know the communities structure pattern and the influence of geographical distance and environmental variables on them, along a gradient of fragmented habitats at both local and landscape scales. Eight structural variables of the fragments served as an environmental distance measurement at the local scale while five metrics served as an environmental distance measurement at the landscape scale. Species presence-absence data were used to calculate the dissimilarity index. Beta diversity was calculated using three indices (βsim, βnes and βsor), representing the spatial species turnover, nestedness and total beta diversity, respectively. Spatial species turnover was the predominant pattern in the structure of the communities. Variations in beta diversity were explained only by the environmental variables of the landscape with spatial configuration being more important than the composition. This fact indicates that, in Cerrado of Goiás avian communities structure, deterministic ecological processes associated to differences in species responses to landscape fragmentation are more important than stochastic processes driven by species dispersal.
Environmental factors affecting understory diversity in second-growth deciduous forests
Cynthia D. Huebner; J.C. Randolph; G.R. Parker
1995-01-01
The purpose of this study was to determine the most important nonanthropogenic factors affecting understory (herbs, shrubs and low-growing vines) diversity in forested landscapes of southern Indiana. Fourteen environmental variables were measured for 46 sites. Multiple regression analysis showed significant positive correlation between understory diversity and tree...
USDA-ARS?s Scientific Manuscript database
The ability to accurately predict land-atmosphere exchange of mass, energy, and momentum over the coming century requires the consideration of plant biochemical, ecophysiological and structural acclimation to modifications of the ambient environment. Amongst the most important environmental changes ...
Soil resources and topography shape local tree community structure in tropical forests
Baldeck, Claire A.; Harms, Kyle E.; Yavitt, Joseph B.; John, Robert; Turner, Benjamin L.; Valencia, Renato; Navarrete, Hugo; Davies, Stuart J.; Chuyong, George B.; Kenfack, David; Thomas, Duncan W.; Madawala, Sumedha; Gunatilleke, Nimal; Gunatilleke, Savitri; Bunyavejchewin, Sarayudh; Kiratiprayoon, Somboon; Yaacob, Adzmi; Supardi, Mohd N. Nur; Dalling, James W.
2013-01-01
Both habitat filtering and dispersal limitation influence the compositional structure of forest communities, but previous studies examining the relative contributions of these processes with variation partitioning have primarily used topography to represent the influence of the environment. Here, we bring together data on both topography and soil resource variation within eight large (24–50 ha) tropical forest plots, and use variation partitioning to decompose community compositional variation into fractions explained by spatial, soil resource and topographic variables. Both soil resources and topography account for significant and approximately equal variation in tree community composition (9–34% and 5–29%, respectively), and all environmental variables together explain 13–39% of compositional variation within a plot. A large fraction of variation (19–37%) was spatially structured, yet unexplained by the environment, suggesting an important role for dispersal processes and unmeasured environmental variables. For the majority of sites, adding soil resource variables to topography nearly doubled the inferred role of habitat filtering, accounting for variation in compositional structure that would previously have been attributable to dispersal. Our results, illustrated using a new graphical depiction of community structure within these plots, demonstrate the importance of small-scale environmental variation in shaping local community structure in diverse tropical forests around the globe. PMID:23256196
Benson, Emily R.; Wipfli, Mark S.; Clapcott, Joanne E.; Hughes, Nicholas F.
2013-01-01
Relationships between environmental variables, ecosystem metabolism, and benthos are not well understood in sub-arctic ecosystems. The goal of this study was to investigate environmental drivers of river ecosystem metabolism and macroinvertebrate density in a sub-arctic river. We estimated primary production and respiration rates, sampled benthic macroinvertebrates, and monitored light intensity, discharge rate, and nutrient concentrations in the Chena River, interior Alaska, over two summers. We employed Random Forests models to identify predictor variables for metabolism rates and benthic macroinvertebrate density and biomass, and calculated Spearman correlations between in-stream nutrient levels and metabolism rates. Models indicated that discharge and length of time between high water events were the most important factors measured for predicting metabolism rates. Discharge was the most important variable for predicting benthic macroinvertebrate density and biomass. Primary production rate peaked at intermediate discharge, respiration rate was lowest at the greatest time since last high water event, and benthic macroinvertebrate density was lowest at high discharge rates. The ratio of dissolved inorganic nitrogen to soluble reactive phosphorus ranged from 27:1 to 172:1. We found that discharge plays a key role in regulating stream ecosystem metabolism, but that low phosphorous levels also likely limit primary production in this sub-arctic stream.
Murphy, Stephen J; Audino, Livia D; Whitacre, James; Eck, Jenalle L; Wenzel, John W; Queenborough, Simon A; Comita, Liza S
2015-03-01
Patterns of diversity and community composition in forests are controlled by a combination of environmental factors, historical events, and stochastic or neutral mechanisms. Each of these processes has been linked to forest community assembly, but their combined contributions to alpha and beta-diversity in forests has not been well explored. Here we use variance partitioning to analyze approximately 40,000 individual trees of 49 species, collected within 137 ha of sampling area spread across a 900-ha temperate deciduous forest reserve in Pennsylvania to ask (1) To what extent is site-to-site variation in species richness and community composition of a temperate forest explained by measured environmental gradients and by spatial descriptors (used here to estimate dispersal-assembly or unmeasured, spatially structured processes)? (2) How does the incorporation of land-use history information increase the importance attributed to deterministic community assembly? and (3) How do the distributions and abundances of individual species within the community correlate with these factors? Environmental variables (i.e., topography, soils, and distance to stream), spatial descriptors (i.e., spatial eigenvectors derived from Cartesian coordinates), and land-use history variables (i.e., land-use type and intensity, forest age, and distance to road), explained about half of the variation in both species richness and community composition. Spatial descriptors explained the most variation, followed by measured environmental variables and then by land- use history. Individual species revealed variable responses to each of these sets of predictor variables. Several species were associated with stream habitats, and others were strictly delimited across opposing north- and south-facing slopes. Several species were also associated with areas that experienced recent (i.e., <100 years) human land-use impacts. These results indicate that deterministic factors, including environmental and land-use history variables, are important drivers of community response. The large amount of "unexplained" variation seen here (about 50%) is commonly observed in other such studies attempting to explain distribution and abundance patterns of plant communities. Determining whether such large fractions of unaccounted for variation are caused by a lack of sufficient data, or are an indication of stochastic features of forest communities globally, will remain an important challenge for ecologists in the future.
Menke, S.B.; Holway, D.A.; Fisher, R.N.; Jetz, W.
2009-01-01
Aim: Species distribution models (SDMs) or, more specifically, ecological niche models (ENMs) are a useful and rapidly proliferating tool in ecology and global change biology. ENMs attempt to capture associations between a species and its environment and are often used to draw biological inferences, to predict potential occurrences in unoccupied regions and to forecast future distributions under environmental change. The accuracy of ENMs, however, hinges critically on the quality of occurrence data. ENMs often use haphazardly collected data rather than data collected across the full spectrum of existing environmental conditions. Moreover, it remains unclear how processes affecting ENM predictions operate at different spatial scales. The scale (i.e. grain size) of analysis may be dictated more by the sampling regime than by biologically meaningful processes. The aim of our study is to jointly quantify how issues relating to region and scale affect ENM predictions using an economically important and ecologically damaging invasive species, the Argentine ant (Linepithema humile). Location: California, USA. Methods: We analysed the relationship between sampling sufficiency, regional differences in environmental parameter space and cell size of analysis and resampling environmental layers using two independently collected sets of presence/absence data. Differences in variable importance were determined using model averaging and logistic regression. Model accuracy was measured with area under the curve (AUC) and Cohen's kappa. Results: We first demonstrate that insufficient sampling of environmental parameter space can cause large errors in predicted distributions and biological interpretation. Models performed best when they were parametrized with data that sufficiently sampled environmental parameter space. Second, we show that altering the spatial grain of analysis changes the relative importance of different environmental variables. These changes apparently result from how environmental constraints and the sampling distributions of environmental variables change with spatial grain. Conclusions: These findings have clear relevance for biological inference. Taken together, our results illustrate potentially general limitations for ENMs, especially when such models are used to predict species occurrences in novel environments. We offer basic methodological and conceptual guidelines for appropriate sampling and scale matching. ?? 2009 The Authors Journal compilation ?? 2009 Blackwell Publishing.
Probabilistic and spatially variable niches inferred from demography
Jeffrey M. Diez; Itamar Giladi; Robert Warren; H. Ronald Pulliam
2014-01-01
Summary 1. Mismatches between species distributions and habitat suitability are predicted by niche theory and have important implications for forecasting how species may respond to environmental changes. Quantifying these mismatches is challenging, however, due to the high dimensionality of species niches and the large spatial and temporal variability in population...
A motivational model for environmentally responsible behavior.
Tabernero, Carmen; Hernández, Bernardo
2012-07-01
This paper presents a study examining whether self-efficacy and intrinsic motivation are related to environmentally responsible behavior (ERB). The study analysed past environmental behavior, self-regulatory mechanisms (self-efficacy, satisfaction, goals), and intrinsic and extrinsic motivation in relation to ERBs in a sample of 156 university students. Results show that all the motivational variables studied are linked to ERB. The effects of self-efficacy on ERB are mediated by the intrinsic motivation responses of the participants. A theoretical model was created by means of path analysis, revealing the power of motivational variables to predict ERB. Structural equation modeling was used to test and fit the research model. The role of motivational variables is discussed with a view to creating adequate learning contexts and experiences to generate interest and new sensations in which self-efficacy and affective reactions play an important role.
Ulrich, Werner; Piwczyński, Marcin; Zaplata, Markus Klemens; Winter, Susanne; Schaaf, Wolfgang; Fischer, Anton
2014-07-01
During early plant succession, the phylogenetic structure of a community changes in response to important environmental filters and emerging species interactions. We traced the development of temperate-zone plant communities during the first 7 years of primary succession on catchment soils to explore patterns of initial species assembly. We found pronounced small-scale differences in the phylogenetic composition of neighbouring plant assemblages and a large-scale trend towards phylogenetic evenness. This small-scale variability appears to be mediated by soil properties, particularly carbonate content. Therefore, abiotic environmental conditions might counteract or even supersede the effects of interspecific competition among closely related species, which are usually predicted to exhibit patterns of phylogenetic evenness. We conclude that theories on phylogenetic community composition need to incorporate effects of small-scale variability of environmental factors.
Young, Mary Alida; Cavanaugh, Kyle C.; Bell, Tom W.; Raimondi, Peter T.; Edwards, Christopher A.; Drake, Patrick T.; Erikson, Li H.; Storlazzi, Curt
2016-01-01
As marine management is moving towards the practice of protecting static areas, it is 44 important to make sure protected areas capture and protect persistent populations. Rocky reefs in 45 many temperate areas worldwide serve as habitat for canopy forming macroalgae and these 46 structure forming species of kelps (order Laminariales) often serve as important habitat for a great 47 diversity of species. Macrocystis pyrifera is the most common canopy forming kelp species found 48 along the coast of California but the distribution and abundance of M. pyrifera varies in space and 49 time. The purpose of this study is to determine what environmental parameters are correlated with 50 the spatial and temporal persistence of M. pyrifera along the central coast of California and how 51 well those environmental parameters can be used to predict areas where M. pyrifera is more likely 52 to persist. Nine environmental variables considered in this study included depth of the seafloor, 53 structure of the rocky reef, proportion of rocky reef, size of kelp patch, biomass of kelp within a 54 patch, distance from the edge of a kelp patch, sea surface temperature, wave orbital velocities, and 55 population connectivity of individual kelp patches. Using a generalized linear mixed effects model 56 (GLMM), the persistence of M. pyrifera was significantly associated with seven of the nine 57 variables considered: depth, complexity of the rocky reef, proportion of rock, patch biomass, 58 distance from the edge of a patch, population connectivity, and wave-orbital velocities. These 59 seven environmental variables were then used to predict the persistence of kelp across the central 60 coast and these predictions were compared to a reserved dataset of M. pyrifera persistence, which 61 was not used in the creation of the GLMM. The environmental variables were shown to accurately 62 predict the persistence of M. pyrifera within the central coast of California (r = 0.71, P<0.001). 63 Because persistence of giant kelp is important to the community structure of kelp forests, 64 understanding those factors that support persistent populations of M. pyrifera will enable more 65 effective management of these ecosystems.
Angelieri, Cintia Camila Silva; Adams-Hosking, Christine; Ferraz, Katia Maria Paschoaletto Micchi de Barros; de Souza, Marcelo Pereira; McAlpine, Clive Alexander
2016-01-01
A mosaic of intact native and human-modified vegetation use can provide important habitat for top predators such as the puma (Puma concolor), avoiding negative effects on other species and ecological processes due to cascade trophic interactions. This study investigates the effects of restoration scenarios on the puma's habitat suitability in the most developed Brazilian region (São Paulo State). Species Distribution Models incorporating restoration scenarios were developed using the species' occurrence information to (1) map habitat suitability of pumas in São Paulo State, Southeast, Brazil; (2) test the relative contribution of environmental variables ecologically relevant to the species habitat suitability and (3) project the predicted habitat suitability to future native vegetation restoration scenarios. The Maximum Entropy algorithm was used (Test AUC of 0.84 ± 0.0228) based on seven environmental non-correlated variables and non-autocorrelated presence-only records (n = 342). The percentage of native vegetation (positive influence), elevation (positive influence) and density of roads (negative influence) were considered the most important environmental variables to the model. Model projections to restoration scenarios reflected the high positive relationship between pumas and native vegetation. These projections identified new high suitability areas for pumas (probability of presence >0.5) in highly deforested regions. High suitability areas were increased from 5.3% to 8.5% of the total State extension when the landscapes were restored for ≥ the minimum native vegetation cover rule (20%) established by the Brazilian Forest Code in private lands. This study highlights the importance of a landscape planning approach to improve the conservation outlook for pumas and other species, including not only the establishment and management of protected areas, but also the habitat restoration on private lands. Importantly, the results may inform environmental policies and land use planning in São Paulo State, Brazil.
Gluchowska, Marta; Trudnowska, Emilia; Goszczko, Ilona; Kubiszyn, Anna Maria; Blachowiak-Samolyk, Katarzyna; Walczowski, Waldemar; Kwasniewski, Slawomir
2017-01-01
A multi-scale approach was used to evaluate which spatial gradient of environmental variability is the most important in structuring zooplankton diversity in the West Spitsbergen Current (WSC). The WSC is the main conveyor of warm and biologically rich Atlantic water to the Arctic Ocean through the Fram Strait. The data set included 85 stratified vertical zooplankton samples (obtained from depths up to 1000 metres) covering two latitudinal sections (76°30'N and 79°N) located across the multi-path WSC system. The results indicate that the most important environmental variables shaping the zooplankton structural and functional diversity and standing stock variability are those associated with depth, whereas variables acting in the horizontal dimension are of lesser importance. Multivariate analysis of the zooplankton assemblages, together with different univariate descriptors of zooplankton diversity, clearly illustrated the segregation of zooplankton taxa in the vertical plane. The epipelagic zone (upper 200 m) hosted plentiful, Oithona similis-dominated assemblages with a high proportion of filter-feeding zooplankton. Although total zooplankton abundance declined in the mesopelagic zone (200-1000 m), zooplankton assemblages in that zone were more diverse and more evenly distributed, with high contributions from both herbivorous and carnivorous taxa. The vertical distribution of integrated biomass (mg DW m-2) indicated that the total zooplankton biomass in the epipelagic and mesopelagic zones was comparable. Environmental gradients acting in the horizontal plane, such as the ones associated with different ice cover and timing of the spring bloom, were reflected in the latitudinal variability in protist community structure and probably caused differences in succession in the zooplankton community. High abundances of Calanus finmarchicus in the WSC core branch suggest the existence of mechanisms advantageous for higher productivity or/and responsible for physical concentration of zooplankton. Our results indicate that regional hydrography plays a primary role in shaping zooplankton variability in the WSC on the way to the Arctic Ocean, with additional effects caused by biological factors related to seasonality in pelagic ecosystem development, resulting in regional differences in food availability or biological production between the continental slope and the deep ocean regions.
A Model Based on Environmental Factors for Diameter Distribution in Black Wattle in Brazil
Sanquetta, Carlos Roberto; Behling, Alexandre; Dalla Corte, Ana Paula; Péllico Netto, Sylvio; Rodrigues, Aurelio Lourenço; Simon, Augusto Arlindo
2014-01-01
This article discusses the dynamics of a diameter distribution in stands of black wattle throughout its growth cycle using the Weibull probability density function. Moreover, the parameters of this distribution were related to environmental variables from meteorological data and surface soil horizon with the aim of finding a model for diameter distribution which their coefficients were related to the environmental variables. We found that the diameter distribution of the stand changes only slightly over time and that the estimators of the Weibull function are correlated with various environmental variables, with accumulated rainfall foremost among them. Thus, a model was obtained in which the estimators of the Weibull function are dependent on rainfall. Such a function can have important applications, such as in simulating growth potential in regions where historical growth data is lacking, as well as the behavior of the stand under different environmental conditions. The model can also be used to project growth in diameter, based on the rainfall affecting the forest over a certain time period. PMID:24932909
Mdladla, K; Dzomba, E F; Muchadeyi, F C
2018-04-01
In Africa, extensively raised livestock populations in most smallholder farming communities are exposed to harsh and heterogeneous climatic conditions and disease pathogens that they adapt to in order to survive. Majority of these livestock species, including goats, are of non-descript and uncharacterized breeds and their response to natural selection presented by heterogeneous environments is still unresolved. This study investigated genetic diversity and its association with environmental and geographic conditions in 194 South African indigenous goats from different geographic locations genotyped on the Illumina goat SNP50K panel. Population structure analysis revealed a homogeneous genetic cluster of the Tankwa goats, restricted to the Northern Cape province. Overall, the Boer, Kalahari Red, and Savanna showed a wide geographic spread of shared genetic components, whereas the village ecotypes revealed a longitudinal distribution. The relative importance of environmental factors on genetic variation of goat populations was assessed using redundancy analysis (RDA). Climatic and geographic variables explained 22% of the total variation while climatic variables alone accounted for 17% of the diversity. Geographic variables solitarily explained 1% of the total variation. The first axis (Model I) of the RDA analysis revealed 329 outlier SNPs. Landscape genomic approaches of spatial analysis method (SAM) identified a total of 843 (1.75%) SNPs, while latent factor mixed models (LFMM) identified 714 (1.48%) SNPs significantly associated with environmental variables. Significant markers were within genes involved in biological functions potentially important for environmental adaptation. Overall, the study suggested environmental factors to have some effect in shaping the genetic variation of South African indigenous goat populations. Loci observed to be significant and under selection may be responsible for the adaption of the goat populations to local production systems.
Burdett, Heidi L.; Donohue, Penelope J. C.; Hatton, Angela D.; Alwany, Magdy A.; Kamenos, Nicholas A.
2013-01-01
Oceanic pH is projected to decrease by up to 0.5 units by 2100 (a process known as ocean acidification, OA), reducing the calcium carbonate saturation state of the oceans. The coastal ocean is expected to experience periods of even lower carbonate saturation state because of the inherent natural variability of coastal habitats. Thus, in order to accurately project the impact of OA on the coastal ocean, we must first understand its natural variability. The production of dimethylsulphoniopropionate (DMSP) by marine algae and the release of DMSP’s breakdown product dimethylsulphide (DMS) are often related to environmental stress. This study investigated the spatiotemporal response of tropical macroalgae (Padina sp., Amphiroa sp. and Turbinaria sp.) and the overlying water column to natural changes in reefal carbonate chemistry. We compared macroalgal intracellular DMSP and water column DMSP+DMS concentrations between the environmentally stable reef crest and environmentally variable reef flat of the fringing Suleman Reef, Egypt, over 45-hour sampling periods. Similar diel patterns were observed throughout: maximum intracellular DMSP and water column DMS/P concentrations were observed at night, coinciding with the time of lowest carbonate saturation state. Spatially, water column DMS/P concentrations were highest over areas dominated by seagrass and macroalgae (dissolved DMS/P) and phytoplankton (particulate DMS/P) rather than corals. This research suggests that macroalgae may use DMSP to maintain metabolic function during periods of low carbonate saturation state. In the reef system, seagrass and macroalgae may be more important benthic producers of dissolved DMS/P than corals. An increase in DMS/P concentrations during periods of low carbonate saturation state may become ecologically important in the future under an OA regime, impacting larval settlement and increasing atmospheric emissions of DMS. PMID:23724073
Ravesloot, Craig; Berendts, Cathy; Schiwal, Alex
2017-01-01
Measurement of the environment is taking on increased importance for understanding variability in participation. Most measures of the environment use subjective ratings, yet little is known about how people appraise the environment. /Hypothesis: We conducted this post-hoc study to examine whether or not catastrophizing, an important variable for understanding how pain contributes to disability, may be related to ratings of the environment. We hypothesized higher pain catastrophizing scores would be associated with greater environmental barriers and fewer facilitators. Individuals with functional impairments (N = 525) were recruited from a population-based random sample of households in a small western city in the United States to complete a paper-based survey about their health and community living experiences. We conducted exploratory regression analyses to investigate associations with environmental factor ratings. We found substantial associations between pain catastrophizing and both environmental barriers and personal factor problems after controlling for demographics, participation assessed by community trips per week, health conditions, impairment and pain level. The models accounted for 28% of the variance in environmental factor ratings and 52% of the variability personal factor ratings. We also present odds ratios for the association between personal characteristics and the likelihood of endorsing EF and PF. A variety of individual characteristics are associated with ratings of both environmental and personal factors that impact participation. Among these, pain catastrophizing is a robust predictor of EF and PF ratings which suggests future research designed specifically to test this relationship may generate useful results for developing interventions to increase participation. Copyright © 2016 Elsevier Inc. All rights reserved.
Environmental influence on mussel (Mytilus edulis) growth - A quantile regression approach
NASA Astrophysics Data System (ADS)
Bergström, Per; Lindegarth, Mats
2016-03-01
The need for methods for sustainable management and use of coastal ecosystems has increased in the last century. A key aspect for obtaining ecologically and economically sustainable aquaculture in threatened coastal areas is the requirement of geographic information of growth and potential production capacity. Growth varies over time and space and depends on a complex pattern of interactions between the bivalve and a diverse range of environmental factors (e.g. temperature, salinity, food availability). Understanding these processes and modelling the environmental control of bivalve growth has been central in aquaculture. In contrast to the most conventional modelling techniques, quantile regression can handle cases where not all factors are measured and provide the possibility to estimate the effect at different levels of the response distribution and give therefore a more complete picture of the relationship between environmental factors and biological response. Observation of the relationships between environmental factors and growth of the bivalve Mytilus edulis revealed relationships that varied both among level of growth rate and within the range of environmental variables along the Swedish west coast. The strongest patterns were found for water oxygen concentration level which had a negative effect on growth for all oxygen levels and growth levels. However, these patterns coincided with differences in growth among periods and very little of the remaining variability within periods could be explained indicating that interactive processes masked the importance of the individual variables. By using quantile regression and local regression (LOESS) this study was able to provide valuable information on environmental factors influencing the growth of M. edulis and important insight for the development of ecosystem based management tools of aquaculture activities, its use in mitigation efforts and successful management of human use of coastal areas.
The Production of Health, An Exploratory Study
ERIC Educational Resources Information Center
Auster, Richard; and others
1969-01-01
The relationship of mortality of whites to both medical care and environmental variables is examined in a regression analysis. Environmental factors are found to be more important in relation to death rate than medical care. High education is associated with low death rates and high income is associated with high death rates. (Author/AP)
Quantifying patterns of change in marine ecosystem response to multiple pressures.
Large, Scott I; Fay, Gavin; Friedland, Kevin D; Link, Jason S
2015-01-01
The ability to understand and ultimately predict ecosystem response to multiple pressures is paramount to successfully implement ecosystem-based management. Thresholds shifts and nonlinear patterns in ecosystem responses can be used to determine reference points that identify levels of a pressure that may drastically alter ecosystem status, which can inform management action. However, quantifying ecosystem reference points has proven elusive due in large part to the multi-dimensional nature of both ecosystem pressures and ecosystem responses. We used ecological indicators, synthetic measures of ecosystem status and functioning, to enumerate important ecosystem attributes and to reduce the complexity of the Northeast Shelf Large Marine Ecosystem (NES LME). Random forests were used to quantify the importance of four environmental and four anthropogenic pressure variables to the value of ecological indicators, and to quantify shifts in aggregate ecological indicator response along pressure gradients. Anthropogenic pressure variables were critical defining features and were able to predict an average of 8-13% (up to 25-66% for individual ecological indicators) of the variation in ecological indicator values, whereas environmental pressures were able to predict an average of 1-5 % (up to 9-26% for individual ecological indicators) of ecological indicator variation. Each pressure variable predicted a different suite of ecological indicator's variation and the shapes of ecological indicator responses along pressure gradients were generally nonlinear. Threshold shifts in ecosystem response to exploitation, the most important pressure variable, occurred when commercial landings were 20 and 60% of total surveyed biomass. Although present, threshold shifts in ecosystem response to environmental pressures were much less important, which suggests that anthropogenic pressures have significantly altered the ecosystem structure and functioning of the NES LME. Gradient response curves provide ecologically informed transformations of pressure variables to explain patterns of ecosystem structure and functioning. By concurrently identifying thresholds for a suite of ecological indicator responses to multiple pressures, we demonstrate that ecosystem reference points can be evaluated and used to support ecosystem-based management.
King, Hayley C; Murphy, Andrew; James, Phillip; Travis, Emma; Porter, David; Hung, Yu-Jiun; Sawyer, Jason; Cork, Jennifer; Delahay, Richard J; Gaze, William; Courtenay, Orin; Wellington, Elizabeth M
2015-08-06
The incidence of Mycobacterium bovis, the causative agent of bovine tuberculosis, has been increasing in UK cattle herds resulting in substantial economic losses. The European badger (Meles meles) is implicated as a wildlife reservoir of infection. One likely route of transmission to cattle is through exposure to infected badger urine and faeces. The relative importance of the environment in transmission remains unknown, in part due to the lack of information on the distribution and magnitude of environmental reservoirs. Here we identify potential infection hotspots in the badger population and quantify the heterogeneity in bacterial load; with infected badgers shedding between 1 × 10(3)- 4 × 10(5) M. bovis cells g(-1) of faeces, creating a substantial and seasonally variable environmental reservoir. Our findings highlight the potential importance of monitoring environmental reservoirs of M. bovis which may constitute a component of disease spread that is currently overlooked and yet may be responsible for a proportion of transmission amongst badgers and onwards to cattle.
King, Hayley C.; Murphy, Andrew; James, Phillip; Travis, Emma; Porter, David; Hung, Yu-Jiun; Sawyer, Jason; Cork, Jennifer; Delahay, Richard J.; Gaze, William; Courtenay, Orin; Wellington, Elizabeth M.
2015-01-01
The incidence of Mycobacterium bovis, the causative agent of bovine tuberculosis, has been increasing in UK cattle herds resulting in substantial economic losses. The European badger (Meles meles) is implicated as a wildlife reservoir of infection. One likely route of transmission to cattle is through exposure to infected badger urine and faeces. The relative importance of the environment in transmission remains unknown, in part due to the lack of information on the distribution and magnitude of environmental reservoirs. Here we identify potential infection hotspots in the badger population and quantify the heterogeneity in bacterial load; with infected badgers shedding between 1 × 103 − 4 × 105 M. bovis cells g−1 of faeces, creating a substantial and seasonally variable environmental reservoir. Our findings highlight the potential importance of monitoring environmental reservoirs of M. bovis which may constitute a component of disease spread that is currently overlooked and yet may be responsible for a proportion of transmission amongst badgers and onwards to cattle. PMID:26247348
Malanson, George P.; Zimmerman, Dale L.; Kinney, Mitch; Fagre, Daniel B.
2017-01-01
Alpine plant communities vary, and their environmental covariates could influence their response to climate change. A single multilevel model of how alpine plant community composition is determined by hierarchical relations is compared to a separate examination of those relations at different scales. Nonmetric multidimensional scaling of species cover for plots in four regions across the Rocky Mountains created dependent variables. Climate variables are derived for the four regions from interpolated data. Plot environmental variables are measured directly and the presence of thirty-seven site characteristics is recorded and used to create additional independent variables. Multilevel and best subsets regressions are used to determine the strength of the hypothesized relations. The ordinations indicate structure in the assembly of plant communities. The multilevel analyses, although revealing significant relations, provide little explanation; of the site variables, those related to site microclimate are most important. In multiscale analyses (whole and separate regions), different variables are better explanations within the different regions. This result indicates weak environmental niche control of community composition. The weak relations of the structure in the patterns of species association to the environment indicates that either alpine vegetation represents a case of the neutral theory of biogeography being a valid explanation or that it represents disequilibrium conditions. The implications of neutral theory and disequilibrium explanations are similar: Response to climate change will be difficult to quantify above equilibrium background turnover.
NASA Astrophysics Data System (ADS)
Wilmking, Martin; Buras, Allan; Heinrich, Ingo; Scharnweber, Tobias; Simard, Sonia; Smiljanic, Marko; van der Maaten, Ernst; van der Maaten-Theunissen, Marieke
2014-05-01
Trees are sessile, long-living organisms and as such constantly need to adapt to changing environmental conditions. Accordingly, they often show high phenotypic plasticity (the ability to change phenotypic traits, such as allocation of resources) in response to environmental change. This high phenotypic plasticity is generally considered as one of the main ingredients for a sessile organism to survive and reach high ages. Precisely because of the ability of trees to reach old age and their in-ability to simply run away when conditions get worse, growth information recorded in tree rings has long been used as a major environmental proxy, covering time scales from decades to millennia. Past environmental conditions (e.g. climate) are recorded in i.e. annual tree-ring width, early- and latewood width, wood density, isotopic concentrations, cell anatomy or wood chemistry. One prerequisite for a reconstruction is that the relationship between the environmental variable influencing tree growth and the tree-growth variable itself is stable through time. This, however, might contrast the ecological theory of high plasticity and the trees ability to adapt to change. To untangle possible mechanisms leading to stable or unstable relationships between tree growth and environmental variables, it is helpful to have exact site information and several proxy variables of each tree-ring series available. Although we gain insight into the environmental history of a sampling site when sampling today, this is extremely difficult when using archeological wood. In this latter case, we face the additional challenge of unknown origin, provenance and (or) site conditions, making it even more important to use multiple proxy time-series from the same sample. Here, we review typical examples, where the relationship between tree growth and environmental variables seems 1) stable and 2) instable through time, and relate these two cases to ecological theory. Based on ecological theory, we then give recommendations to improve the reliability of environmental reconstructions using tree rings.
NASA Astrophysics Data System (ADS)
Kuo, Yi-Ming; Lin, Hsing-Juh
2010-01-01
We examined environmental factors which are most responsible for the 8-year temporal dynamics of the intertidal seagrass Thalassia hemprichii in southern Taiwan. A dynamic factor analysis (DFA), a dimension-reduction technique, was applied to identify common trends in a multivariate time series and the relationships between this series and interacting environmental variables. The results of dynamic factor models (DFMs) showed that the leaf growth rate of the seagrass was mainly influenced by salinity (Sal), tidal range (TR), turbidity ( K), and a common trend representing an unexplained variability in the observed time series. Sal was the primary variable that explained the temporal dynamics of the leaf growth rate compared to TR and K. K and TR had larger influences on the leaf growth rate in low- than in high-elevation beds. In addition to K, TR, and Sal, UV-B radiation (UV-B), sediment depth (SD), and a common trend accounted for long-term temporal variations of the above-ground biomass. Thus, K, TR, Sal, UV-B, and SD are the predominant environmental variables that described temporal growth variations of the intertidal seagrass T. hemprichii in southern Taiwan. In addition to environmental variables, human activities may be contributing to negative impacts on the seagrass beds; this human interference may have been responsible for the unexplained common trend in the DFMs. Due to successfully applying the DFA to analyze complicated ecological and environmental data in this study, important environmental variables and impacts of human activities along the coast should be taken into account when managing a coastal environment for the conservation of intertidal seagrass beds.
Luiz, Amom Mendes; Sawaya, Ricardo J.
2018-01-01
Ecological communities are complex entities that can be maintained and structured by niche-based processes such as environmental conditions, and spatial processes such as dispersal. Thus, diversity patterns may be shaped simultaneously at different spatial scales by very distinct processes. Herein we assess whether and how functional, taxonomic, and phylogenetic beta diversities of frog tadpoles are explained by environmental and/or spatial predictors. We implemented a distance–based redundancy analysis to explore variation in components of beta diversity explained by pure environmental and pure spatial predictors, as well as their interactions, at both fine and broad spatial scales. Our results indicated important but complex roles of spatial and environmental predictors in structuring phylogenetic, taxonomic and functional beta diversities. The pure fine-scales spatial fraction was more important in structuring all beta diversity components, especially to functional and taxonomical spatial turnover. Environmental variables such as canopy cover and vegetation structure were important predictors of all components, but especially to functional and taxonomic beta diversity. We emphasize that distinct factors related to environment and space are affecting distinct components of beta diversity in different ways. Although weaker, phylogenetic beta diversity, which is structured more on biogeographical scales, and thus can be represented by spatially structured processes, was more related to broad spatial processes than other components. However, selected fine-scale spatial predictors denoted negative autocorrelation, which may be revealing the existence of differences in unmeasured habitat variables among samples. Although overall important, local environmental-based processes explained better functional and taxonomic beta diversity, as these diversity components carry an important ecological value. We highlight the importance of assessing different components of diversity patterns at different scales by spatially explicit models in order to improve our understanding of community structure and help to unravel the complex nature of biodiversity. PMID:29672575
Pennington, Victoria E.; Palmquist, Kyle A.; Bradford, John B.; Lauenroth, William K.
2017-01-01
Article for outlet: Plant Ecology. Abstract: Big sagebrush (Artemisia tridentata Nutt.) plant communities are widespread non-forested drylands in western North American and similar to all shrub steppe ecosystems world-wide are composed of a shrub overstory layer and a forb and graminoid understory layer. Forbs account for the majority of plant species diversity in big sagebrush plant communities and are important for ecosystem function. Few studies have explored the geographic patterns of forb species richness and composition and their relationships with environmental variables in these communities. Our objectives were to examine the small and large-scale spatial patterns in forb species richness and composition and the influence of environmental variables. We sampled forb species richness and composition along transects at 15 field sites in Colorado, Idaho, Montana, Nevada, Oregon, Utah, and Wyoming, built species-area relationships to quantify differences in forb species richness at sites, and used Principal Components Analysis and nonmetric multidimensional scaling to identify relationships among environmental variables and forb species richness and composition. We found that species richness was most strongly correlated with soil texture, while species composition was most related to climate. The combination of climate and soil texture influences water availability, with important consequences for forb species richness and composition, which suggests climate-change induced modification of soil water availability may have important implications for plant species diversity in the future. Our paper is the first to our knowledge to examine forb biodiversity patterns in big sagebrush ecosystems in relation to environmental factors across the big sagebrush region.
Balaswamy, S; Richardson, V E
2001-01-01
A multidimensional Life Stress Model was used to test the independent contributions of background characteristics, personal resources, life event, and environmental influences on 200 widowers' levels of well-being, measured by the Affect Balance Scale. Stepwise regression analyses revealed that environmental resources were unrelated to negative affect which is influenced more by the life event and personal resource variables. The environmental resource variables, particularly interactions with friends and neighbors, mostly influenced positive affect. The explanatory model for well-being included multiple variables and explained 33 percent of the variance. Although background characteristics had the greatest impact, absence of hospitalization, higher mastery, higher self-esteem, contacts with friends, and interaction with neighbors enhanced well-being. The results support previous speculations on the importance of positive exchanges for positive affect. African-American widowers showed higher levels of well-being than Caucasian widowers did. The results advance knowledge about differences among elderly men.
Sheridan, Christopher D.; Puettmann, Klaus J.; Huso, Manuela M.P.; Hagar, Joan C.; Falk, Kristen R.
2013-01-01
Many land managers in the Pacific Northwest have the goal of increasing late-successional forest structures. Despite the documented importance of Douglas-fir tree bark structure in forested ecosystems, little is known about factors influencing bark development and how foresters can manage development. This study investigated the relative importance of tree size, growth, environmental factors, and thinning on Douglas-fir bark furrow characteristics in the Oregon Coast Range. Bark furrow depth, area, and bark roughness were measured for Douglas-fir trees in young heavily thinned and unthinned sites and compared to older reference sites. We tested models for relationships between bark furrow response and thinning, tree diameter, diameter growth, and environmental factors. Separately, we compared bark responses measured on trees used by bark-foraging birds with trees with no observed usage. Tree diameter and diameter growth were the most important variables in predicting bark characteristics in young trees. Measured environmental variables were not strongly related to bark characteristics. Bark furrow characteristics in old trees were influenced by tree diameter and surrounding tree densities. Young trees used by bark foragers did not have different bark characteristics than unused trees. Efforts to enhance Douglas-fir bark characteristics should emphasize retention of larger diameter trees' growth enhancement.
Identify the dominant variables to predict stream water temperature
NASA Astrophysics Data System (ADS)
Chien, H.; Flagler, J.
2016-12-01
Stream water temperature is a critical variable controlling water quality and the health of aquatic ecosystems. Accurate prediction of water temperature and the assessment of the impacts of environmental variables on water temperature variation are critical for water resources management, particularly in the context of water quality and aquatic ecosystem sustainability. The objective of this study is to measure stream water temperature and air temperature and to examine the importance of streamflow on stream water temperature prediction. The measured stream water temperature and air temperature will be used to test two hypotheses: 1) streamflow is a relatively more important factor than air temperature in regulating water temperature, and 2) by combining air temperature and streamflow data stream water temperature can be more accurately estimated. Water and air temperature data loggers are placed at two USGS stream gauge stations #01362357and #01362370, located in the upper Esopus Creek watershed in Phonecia, NY. The ARIMA (autoregressive integrated moving average) time series model is used to analyze the measured water temperature data, identify the dominant environmental variables, and predict the water temperature with identified dominant variable. The preliminary results show that streamflow is not a significant variable in predicting stream water temperature at both USGS gauge stations. Daily mean air temperature is sufficient to predict stream water temperature at this site scale.
Luo, Zhenhua; Tang, Songhua; Li, Chunwang; Fang, Hongxia; Hu, Huijian; Yang, Ji; Ding, Jingjing; Jiang, Zhigang
2012-01-01
Explaining species richness patterns is a central issue in biogeography and macroecology. Several hypotheses have been proposed to explain the mechanisms driving biodiversity patterns, but the causes of species richness gradients remain unclear. In this study, we aimed to explain the impacts of energy, environmental stability, and habitat heterogeneity factors on variation of vertebrate species richness (VSR), based on the VSR pattern in China, so as to test the energy hypothesis, the environmental stability hypothesis, and the habitat heterogeneity hypothesis. A dataset was compiled containing the distributions of 2,665 vertebrate species and eleven ecogeographic predictive variables in China. We grouped these variables into categories of energy, environmental stability, and habitat heterogeneity and transformed the data into 100 × 100 km quadrat systems. To test the three hypotheses, AIC-based model selection was carried out between VSR and the variables in each group and correlation analyses were conducted. There was a decreasing VSR gradient from the southeast to the northwest of China. Our results showed that energy explained 67.6% of the VSR variation, with the annual mean temperature as the main factor, which was followed by annual precipitation and NDVI. Environmental stability factors explained 69.1% of the VSR variation and both temperature annual range and precipitation seasonality had important contributions. By contrast, habitat heterogeneity variables explained only 26.3% of the VSR variation. Significantly positive correlations were detected among VSR, annual mean temperature, annual precipitation, and NDVI, whereas the relationship of VSR and temperature annual range was strongly negative. In addition, other variables showed moderate or ambiguous relations to VSR. The energy hypothesis and the environmental stability hypothesis were supported, whereas little support was found for the habitat heterogeneity hypothesis.
Luo, Zhenhua; Tang, Songhua; Li, Chunwang; Fang, Hongxia; Hu, Huijian; Yang, Ji; Ding, Jingjing; Jiang, Zhigang
2012-01-01
Background Explaining species richness patterns is a central issue in biogeography and macroecology. Several hypotheses have been proposed to explain the mechanisms driving biodiversity patterns, but the causes of species richness gradients remain unclear. In this study, we aimed to explain the impacts of energy, environmental stability, and habitat heterogeneity factors on variation of vertebrate species richness (VSR), based on the VSR pattern in China, so as to test the energy hypothesis, the environmental stability hypothesis, and the habitat heterogeneity hypothesis. Methodology/Principal Findings A dataset was compiled containing the distributions of 2,665 vertebrate species and eleven ecogeographic predictive variables in China. We grouped these variables into categories of energy, environmental stability, and habitat heterogeneity and transformed the data into 100×100 km quadrat systems. To test the three hypotheses, AIC-based model selection was carried out between VSR and the variables in each group and correlation analyses were conducted. There was a decreasing VSR gradient from the southeast to the northwest of China. Our results showed that energy explained 67.6% of the VSR variation, with the annual mean temperature as the main factor, which was followed by annual precipitation and NDVI. Environmental stability factors explained 69.1% of the VSR variation and both temperature annual range and precipitation seasonality had important contributions. By contrast, habitat heterogeneity variables explained only 26.3% of the VSR variation. Significantly positive correlations were detected among VSR, annual mean temperature, annual precipitation, and NDVI, whereas the relationship of VSR and temperature annual range was strongly negative. In addition, other variables showed moderate or ambiguous relations to VSR. Conclusions/Significance The energy hypothesis and the environmental stability hypothesis were supported, whereas little support was found for the habitat heterogeneity hypothesis. PMID:22530038
Pioz, Maryline; Guis, Hélène; Crespin, Laurent; Gay, Emilie; Calavas, Didier; Durand, Benoît; Abrial, David; Ducrot, Christian
2012-01-01
Understanding where and how fast an infectious disease will spread during an epidemic is critical for its control. However, the task is a challenging one as numerous factors may interact and drive the spread of a disease, specifically when vector-borne diseases are involved. We advocate the use of simultaneous autoregressive models to identify environmental features that significantly impact the velocity of disease spread. We illustrate this approach by exploring several environmental factors influencing the velocity of bluetongue (BT) spread in France during the 2007-2008 epizootic wave to determine which ones were the most important drivers. We used velocities of BT spread estimated in 4,495 municipalities and tested sixteen covariates defining five thematic groups of related variables: elevation, meteorological-related variables, landscape-related variables, host availability, and vaccination. We found that ecological factors associated with vector abundance and activity (elevation and meteorological-related variables), as well as with host availability, were important drivers of the spread of the disease. Specifically, the disease spread more slowly in areas with high elevation and when heavy rainfall associated with extreme temperature events occurred one or two months prior to the first clinical case. Moreover, the density of dairy cattle was correlated negatively with the velocity of BT spread. These findings add substantially to our understanding of BT spread in a temperate climate. Finally, the approach presented in this paper can be used with other infectious diseases, and provides a powerful tool to identify environmental features driving the velocity of disease spread.
Pioz, Maryline; Guis, Hélène; Crespin, Laurent; Gay, Emilie; Calavas, Didier; Durand, Benoît; Abrial, David; Ducrot, Christian
2012-01-01
Understanding where and how fast an infectious disease will spread during an epidemic is critical for its control. However, the task is a challenging one as numerous factors may interact and drive the spread of a disease, specifically when vector-borne diseases are involved. We advocate the use of simultaneous autoregressive models to identify environmental features that significantly impact the velocity of disease spread. We illustrate this approach by exploring several environmental factors influencing the velocity of bluetongue (BT) spread in France during the 2007–2008 epizootic wave to determine which ones were the most important drivers. We used velocities of BT spread estimated in 4,495 municipalities and tested sixteen covariates defining five thematic groups of related variables: elevation, meteorological-related variables, landscape-related variables, host availability, and vaccination. We found that ecological factors associated with vector abundance and activity (elevation and meteorological-related variables), as well as with host availability, were important drivers of the spread of the disease. Specifically, the disease spread more slowly in areas with high elevation and when heavy rainfall associated with extreme temperature events occurred one or two months prior to the first clinical case. Moreover, the density of dairy cattle was correlated negatively with the velocity of BT spread. These findings add substantially to our understanding of BT spread in a temperate climate. Finally, the approach presented in this paper can be used with other infectious diseases, and provides a powerful tool to identify environmental features driving the velocity of disease spread. PMID:22916249
Cunning, R; Vaughan, N; Gillette, P; Capo, T R; Matté, J L; Baker, A C
2015-05-01
Regulating partner abunclance may allow symmotic organisms to mediate interaction outcomes, facilitating adaptive responses to environmental change. To explore the capacity for-adaptive regulation in an ecologically important endosymbiosis, we studied the population dynamics of symbiotic algae in reef-building corals under different abiotic contexts. We found high natural variability in symbiont abundance in corals across reefs, but this variability converged to different symbiont-specific abundances when colonies were maintained under constant conditions. When conditions changed seasonally, symbiont abundance readjusted to new equilibria. We explain these patterns using an a priori model of symbiotic costs and benefits to the coral host, which shows that the observed changes in symbiont abundance are consistent with the maximization of interaction benefit under different environmental conditions. These results indicate that, while regulating symbiont abundance helps hosts sustain maximum benefit in a dynamic environment, spatiotemporal variation in abiotic factors creates a broad range of symbiont abundances (and interaction outcomes) among corals that may account for observed natural variability in performance (e.g., growth rate) and stress tolerance (e.g., bleaching susceptibility). This cost or benefit framework provides a new perspective on the dynamic regulation of reef coral symbioses and illustrates that the dependence of interaction outcomes on biotic and abiotic contexts may be important in understanding how diverse mutualisms respond to environmental change.
McGuire, A.D.; Wirth, C.; Apps, M.; Beringer, J.; Clein, J.; Epstein, H.; Kicklighter, D.W.; Bhatti, J.; Chapin, F. S.; De Groot, B.; Efremov, D.; Eugster, W.; Fukuda, M.; Gower, T.; Hinzman, L.; Huntley, B.; Jia, G.J.; Kasischke, E.; Melillo, J.; Romanovsky, V.; Shvidenko, A.; Vaganov, E.; Walker, D.
2002-01-01
The responses of high latitude ecosystems to global change involve complex interactions among environmental variables, vegetation distribution, carbon dynamics, and water and energy exchange. These responses may have important consequences for the earth system. In this study, we evaluated how vegetation distribution, carbon stocks and turnover, and water and energy exchange are related to environmental variation spanned by the network of the IGBP high latitude transects. While the most notable feature of the high latitude transects is that they generally span temperature gradients from southern to northern latitudes, there are substantial differences in temperature among the transects. Also, along each transect temperature co-varies with precipitation and photosynthetically active radiation, which are also variable among the transects. Both climate and disturbance interact to influence latitudinal patterns of vegetation and soil carbon storage among the transects, and vegetation distribution appears to interact with climate to determine exchanges of heat and moisture in high latitudes. Despite limitations imposed by the data we assembled, the analyses in this study have taken an important step toward clarifying the complexity of interactions among environmental variables, vegetation distribution, carbon stocks and turnover, and water and energy exchange in high latitude regions. This study reveals the need to conduct coordinated global change studies in high latitudes to further elucidate how interactions among climate, disturbance, and vegetation distribution influence carbon dynamics and water and energy exchange in high latitudes.
Ramírez, Alonso; Pringle, Catherine M.
2018-01-01
Understanding how environmental variables influence the distribution and density of organisms over relatively long temporal scales is a central question in ecology given increased climatic variability (e.g., precipitation, ENSO events). The primary goal of our study was to evaluate long-term (15y time span) patterns of climate, as well as environmental parameters in two Neotropical streams in lowland Costa Rica, to assess potential effects on aquatic macroinvertebrates. We also examined the relative effects of an 8y whole-stream P-enrichment experiment on macroinvertebrate assemblages against the backdrop of this long-term study. Climate, environmental variables and macroinvertebrate samples were measured monthly for 7y and then quarterly for an additional 8y in each stream. Temporal patterns in climatic and environmental variables showed high variability over time, without clear inter-annual or intra-annual patterns. Macroinvertebrate richness and abundance decreased with increasing discharge and was positively related to the number of days since the last high discharge event. Findings show that fluctuations in stream physicochemistry and macroinvertebrate assemblage structure are ultimately the result of large-scale climatic phenomena, such as ENSO events, while the 8y P-enrichment did not appear to affect macroinvertebrates. Our study demonstrates that Neotropical lowland streams are highly dynamic and not as stable as is commonly presumed, with high intra- and inter-annual variability in environmental parameters that change the structure and composition of freshwater macroinvertebrate assemblages. PMID:29420548
Godoy, B S; Queiroz, L L; Lodi, S; Oliveira, L G
2017-04-01
The aquatic insect community is an important element for stream functionality and diversity, but the effects of altitude and conservation areas on the aquatic insect community have been poorly explored in neotropical ecozone. The lack of studies about the relative importance of space and environment on community structure is another obstacle within aquatic insect ecology, which precludes the inclusion of these studies in more current frameworks, like the metacommunity dynamics. We evaluated the relationship between the aquatic insect community structure at 19 streams in the Brazilian Cerrado and spatial and environmental variables, namely geographical distance among sites, stream altitude, chemical variables, and environmental protection areas. We partitioned the variance explained by spatial and environmental components using a partial redundancy analysis. The environment exhibited a strong spatial structure for abundance and number of genera, increasing these community parameters with elevated water conductivity. Only community composition had a large unexplained portion of variance, with a small portion constrained by environmental (altitude and conductivity) and spatial factors. A relevant point in the result was the streams with high conductivity were located outside of the conservation areas. These results suggest that the relationship between number of genera and abundance with environmental conditions is always associated with spatial configuration of streams. Our study shows that altitude is an important determinant of community structure, as it exerts indirect influences, and electrical conductivity directly determines community composition, and that some national parks may be inefficient in maintaining the diversity of aquatic insects in the Cerrado region.
NASA Astrophysics Data System (ADS)
Liu, H.; Minello, T.; Sutton, G.
2016-02-01
Coastal marine ecosystems are both productive and vulnerable to human and natural stressors. Examining the relative importance of fishing, environmental variability, and habitat alteration on ecosystem dynamics is challenging. Intensive harvest and habitat loss have resulted in widespread concerns related to declines in fisheries production, but causal mechanisms are rarely clear. In this study, we modeled trophic dynamics in Galveston Bay, Texas, using fishery-independent catch data for blue crab, shrimp, red drum, Atlantic croaker and spotted seatrout along with habitat information collected by the Texas Parks and Wildlife Department during 1984 - 2014. We developed a multispecies state-space model to examine ecological interactions and partition the relative effects of trophic interactions and environmental conditions on the community dynamics. Preliminary results showed the importance of salinity, density-dependence, and trophic interactions. We are continuing to explore these results from a perspective of fish community compensatory responses to exploitation, reflecting both direct and indirect effects of harvesting under the influence of climate variability.
He, Dong; Chen, Yongfa; Zhao, Kangning; Cornelissen, J H C; Chu, Chengjin
2018-02-03
How functional traits vary with environmental conditions is of fundamental importance in trait-based community ecology. However, how intraspecific variability in functional traits is connected to species distribution is not well understood. This study investigated inter- and intraspecific variation of a key functional trait, i.e. specific leaf area (leaf area per unit dry mass; SLA), in relation to soil factors and tested if trait variation is more closely associated with specific environmental regimes for low-variability species than for high-variability species. In a subtropical evergreen forest plot (50 ha, southern China), 106 700 leaves from 5335 individuals of 207 woody species were intensively collected, with 30 individuals sampled for most species to ensure a sufficient sample size representative of intraspecific variability. Soil conditions for each plant were estimated by kriging from more than 1700 observational soil locations across the plot. Intra- and interspecific variation in SLA were separately related to environmental factors. Based on the species-specific variation of SLA, species were categorized into three groups: low-, intermediate- and high-intraspecific variability. Intraspecific habitat ranges and the strength of SLA-habitat relationships were compared among these three groups. Interspecific variation in SLA overrides the intraspecific variation (77 % vs. 8 %). Total soil nitrogen (TN, positively) and total organic carbon (TOC, negatively) are the most important explanatory factors for SLA variation at both intra- and interspecific levels. SLA, both within and between species, decreases with decreasing soil nitrogen availability. As predicted, species with low intraspecific variability in SLA have narrower habitat ranges with respect to soil TOC and TN and show a stronger SLA-habitat association than high-variability species. For woody plants low SLA is a phenotypic and probably adaptive response to nitrogen stress, which drives the predominance of species with ever-decreasing SLA towards less fertile habitats. Intraspecific variability in SLA is positively connected to species' niche breadth, suggesting that low-variability species may play a more deterministic role in structuring plant assemblages than high-variability species. This study highlights the importance of quantifying intraspecific trait variation to improve our understanding of species distributions across a vegetated landscape. © The Author(s) 2018. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Temporal change in biological community structure in the Fountain Creek basin, Colorado, 2001-2008
Zuellig, Robert E.; Bruce, James F.; Stogner, Sr., Robert W.
2010-01-01
In 2001, the U.S. Geological Survey, in cooperation with Colorado Springs City Engineering, began a study to better understand the relations between environmental characteristics and biological communities in the Fountain Creek basin in order to aide water-resource management and guide future monitoring activities. To accomplish this task, environmental (streamflow, habitat, and water chemistry) and biological (fish and macroinvertebrate) data were collected annually at 24 sites over a 6- or 8-year period (fish, 2003 to 2008; macroinvertebrates, 2001 to 2008). For this report, these data were first analyzed to determine the presence of temporal change in macroinvertebrate and fish community structure among years using nonparametric multivariate statistics. Where temporal change in the biological communities was found, these data were further analyzed using additional nonparametric multivariate techniques to determine which subset of selected streamflow, habitat, or water-chemistry variables best described site-specific changes in community structure relative to a gradient of urbanization. This study identified significant directional patterns of temporal change in macroinvertebrate and fish community structure at 15 of 24 sites in the Fountain Creek basin. At four of these sites, changes in environmental variables were significantly correlated with the concurrent temporal change identified in macroinvertebrate and fish community structure (Monument Creek above Woodmen Road at Colorado Springs, Colo.; Monument Creek at Bijou Street at Colorado Springs, Colo.; Bear Creek near Colorado Springs, Colo.; Fountain Creek at Security, Colo.). Combinations of environmental variables describing directional temporal change in the biota appeared to be site specific as no single variable dominated the results; however, substrate composition variables (percent substrate composition composed of sand, gravel, or cobble) collectively were present in 80 percent of the environmental variable subsets that were significantly correlated with temporal change in the macroinvertebrate and fish community structure. Other important environmental variables related to temporal change in the biological community structure included those describing channel form (streambank height) and streamflow (normalized annual mean daily flow, high flood-pulse count). Site-specific results from this study were derived from a relatively small number of observations (6 or 8 years of data); therefore, additional years of data may reveal other sites with temporal change in biological community structure, or could define stronger and more consistent linkages between environmental variables and observed temporal change. Likewise current variable subsets could become weaker. Nonetheless, there were several sites where temporal change was detected in this study that could not be explained by the available environmental variables studied herein. Modification of current data-collection activities may be necessary to better understand site-specific temporal relations between biological communities and environmental variables.
García-Vázquez, Uri; D’Addario, Maristella
2018-01-01
Land use and climate change are affecting the abundance and distribution of species. The Trans-Mexican Volcanic Belt (TMVB) is a very diverse region due to geological history, geographic position, and climate. It is also one of the most disturbed regions in Mexico. Reptiles are particularly sensitive to environmental changes due to their low dispersal capacity and thermal ecology. In this study, we define the important environmental variables (considering climate, topography, and land use) and potential distribution (present and future) of the five Thamnophis species present in TMVB. To do so, we used the maximum entropy modeling software (MAXENT). First, we modeled to select the most important variables to explain the distribution of each species, then we modeled again using only the most important variables and projected these models to the future considering a middle-moderate climate change scenario (rcp45), and land use and vegetation variables for the year 2050 (generated according to land use changes that occurred between years 2002 and 2011). Arid vegetation had an important negative effect on habitat suitability for all species, and minimum temperature of the coldest month was important for four of the five species. Thamnophis cyrtopsis was the species with the lowest tolerance to minimum temperatures. The maximum temperature of the warmest month was important for T. scalaris and T. cyrtopsis. Low percentages of agriculture were positive for T. eques and T. melanogaster but, at higher values, agriculture had a negative effect on habitat suitability for both species. Elevation was the most important variable to explain T. eques and T. melanogaster potential distribution while distance to Abies forests was the most important variable for T. scalaris and T. scaliger. All species had a high proportion of their potential distribution in the TMVB. However, according to our models, all Thamnophis species will experience reductions in their potential distribution in this region. T. scalaris will suffer the biggest reduction because this species is limited by high temperatures and will not be able to shift its distribution upward, as it is already present in the highest elevations of the TMVB. PMID:29666767
Singer, Steve; Wang, Guangxing; Howard, Heidi; Anderson, Alan
2012-08-01
Environment functions in various aspects including soil and water conservation, biodiversity and habitats, and landscape aesthetics. Comprehensive assessment of environmental condition is thus a great challenge. The issues include how to assess individual environmental components such as landscape aesthetics and integrate them into an indicator that can comprehensively quantify environmental condition. In this study, a geographic information systems based spatial multi-criteria decision analysis was used to integrate environmental variables and create the indicator. This approach was applied to Fort Riley Military installation in which land condition and its dynamics due to military training activities were assessed. The indicator was derived by integrating soil erosion, water quality, landscape fragmentation, landscape aesthetics, and noise based on the weights from the experts by assessing and ranking the environmental variables in terms of their importance. The results showed that landscape level indicator well quantified the overall environmental condition and its dynamics, while the indicator at level of patch that is defined as a homogeneous area that is different from its surroundings detailed the spatiotemporal variability of environmental condition. The environmental condition was mostly determined by soil erosion, then landscape fragmentation, water quality, landscape aesthetics, and noise. Overall, environmental condition at both landscape and patch levels greatly varied depending on the degree of ground and canopy disturbance and their spatial patterns due to military training activities and being related to slope. It was also determined the environment itself could be recovered quickly once military training was halt or reduced. Thus, this study provided an effective tool for the army land managers to monitor environmental dynamics and plan military training activities. Its limitation lies at that the obtained values of the indicator vary and are subjective to the experts' knowledge and experience. Thus, further advancing this approach is needed by developing a scientific method to derive the weights of environmental variables.
NASA Astrophysics Data System (ADS)
Zerbini, Alexandre N.; Friday, Nancy A.; Palacios, Daniel M.; Waite, Janice M.; Ressler, Patrick H.; Rone, Brenda K.; Moore, Sue E.; Clapham, Phillip J.
2016-12-01
The Bering Sea is one of the most productive marine ecosystems in the world and an important habitat for various marine mammal species. Once abundant in this region, most baleen whale species were severely depleted by commercial whaling in the 19th and early 20th centuries. Since their protection in mid-20th century, baleen whale populations have been recovering and reoccupying their historical habitats. These species can consume large amounts of their prey and thus can modify the local structure of ecosystems. Characterizing the extent to which environmental conditions and prey density influence baleen whale abundance in the Eastern Bering Sea is essential to improve our understanding of ecosystem dynamics and to predict how these species might respond to ecosystem variability associated with climate changes. In this study, physiographic, oceanographic, and biological datasets from 2008 to 2010 were combined to model the habitat characteristics of fin whales, humpback whales, and minke whales in the EBS in early summer (June and July) using generalized additive models (GAMs). The explained deviances of the best-supported models were 54.9%, 20.6%, and 68.3% for minke, fin and humpback whales, respectively. Minke and fin whales had similar distribution patterns in the EBS but their abundance was predicted by different explanatory variables. Euphausiid and pollock biomasses, and depth were important predictors of minke whale numbers, while distance to shore, euphausiid biomass, distance to the 200 m isobath, and chlorophyll-a concentration better explained fin whale abundance. Humpback whales showed a preference for shallow, coastal waters north of the Alaska Peninsula. For this species, sea surface temperature, depth, chlorophyll-a concentration and euphausid biomass were important predictors of abundance. This study is the first to provide a habitat baseline for baleen whales in the EBS based on a quantitative assessment of the relationship between whale abundance, environmental variables, and density of euphausiids and age-1 pollock in early summer. Because this study was conducted during a cold temperature regime in the Bering Sea, additional research is needed to assess how whales respond to environmental variables and prey biomass in years with warm conditions.
Effects of environmental factors on child survival in Bangladesh: a case control study.
Hoque, B A; Chakraborty, J; Chowdhury, J T; Chowdhury, U K; Ali, M; el Arifeen, S; Sack, R B
1999-03-01
The need for further studies on relationships between deaths and environmental variables has been reported in the literature. This case-control study was, therefore, carried out to find out the associations between several social and environmental variables and deaths of children due to infectious diseases such as those leading to diarrhoea, acute respiratory infection, measles and other diseases. Six hundred and twenty-five deaths (cases) and an equal number of matched living children (controls) aged 1-59 months, were studied in rural Matlab. An analysis of crude and adjusted odds ratio showed differential associations. Sources of drinking water, amount of stored water, conditions of latrines, number of persons sleeping with the child and the type of cooking site were statistically significantly associated with deaths due to infectious diseases after controlling for breast feeding, immunization, and the family size. Significant associations were also observed between: (i) the sources of drinking water and deaths due to ARI, and (ii) conditions of latrines and deaths due to diarrhoeal diseases, after controlling for the confounding variables. Several other environmental factors also showed associations with these various death groups, but they were not statistically significant. The size of the samples in death groups (small) and the prevalence of more or less homogeneous environmental health conditions probably diminished the magnitude of the effects. The results of the study reconfirm the importance of environmental health intervention in child survival, irrespective of breast-feeding, immunization, and selected social variables.
Boehnke, M; Moll, P P; Kottke, B A; Weidman, W H
1987-04-01
Fasting plasma glucose measurements made in 1972-1977 on normoglycemic individuals in three-generation Caucasian pedigrees from Rochester, Minnesota were analyzed. The authors determined the contributions of polygenic loci and environmental factors to fasting plasma glucose variability in these pedigrees. To that end, fasting plasma glucose measurements were normalized by an inverse normal scores transformation and then regressed separately for males and females on measured concomitants including age, body mass index (weight/height2), season of measurement, sex hormone use, and diuretic use. The authors found that 27.7% of the variability in normalized fasting plasma glucose in these pedigrees is explained by these measured concomitants. Subsequent variance components analysis suggested that unmeasured polygenic loci and unmeasured shared environmental factors together account for at least an additional 36.7% of the variability in normalized fasting plasma glucose, with genes alone accounting for at least 27.3%. These results are consistent with the known familiality of diabetes, for which fasting plasma glucose level is an important predictor. Further, these familial factors provide an explanation for at least half the variability in normalized fasting plasma glucose which remains after regression on known concomitants.
NASA Astrophysics Data System (ADS)
Jimenez, H.; Dumas, P.; Ponton, D.; Ferraris, J.
2012-03-01
Invertebrates represent an essential component of coral reef ecosystems; they are ecologically important and a major resource, but their assemblages remain largely unknown, particularly on Pacific islands. Understanding their distribution and building predictive models of community composition as a function of environmental variables therefore constitutes a key issue for resource management. The goal of this study was to define and classify the main environmental factors influencing tropical invertebrate distributions in New Caledonian reef flats and to test the resulting predictive model. Invertebrate assemblages were sampled by visual counting during 2 years and 2 seasons, then coupled to different environmental conditions (habitat composition, hydrodynamics and sediment characteristics) and harvesting status (MPA vs. non-MPA and islets vs. coastal flats). Environmental conditions were described by a principal component analysis (PCA), and contributing variables were selected. Permutational analysis of variance (PERMANOVA) was used to test the effects of different factors (status, flat, year and season) on the invertebrate assemblage composition. Multivariate regression trees (MRT) were then used to hierarchically classify the effects of environmental and harvesting variables. MRT model explained at least 60% of the variation in structure of invertebrate communities. Results highlighted the influence of status (MPA vs. non-MPA) and location (islet vs. coastal flat), followed by habitat composition, organic matter content, hydrodynamics and sampling year. Predicted assemblages defined by indicator families were very different for each environment-exploitation scenario and correctly matched a calibration data matrix. Predictions from MRT including both environmental variables and harvesting pressure can be useful for management of invertebrates in coral reef environments.
Detecting regulatory gene-environment interactions with unmeasured environmental factors.
Fusi, Nicoló; Lippert, Christoph; Borgwardt, Karsten; Lawrence, Neil D; Stegle, Oliver
2013-06-01
Genomic studies have revealed a substantial heritable component of the transcriptional state of the cell. To fully understand the genetic regulation of gene expression variability, it is important to study the effect of genotype in the context of external factors such as alternative environmental conditions. In model systems, explicit environmental perturbations have been considered for this purpose, allowing to directly test for environment-specific genetic effects. However, such experiments are limited to species that can be profiled in controlled environments, hampering their use in important systems such as human. Moreover, even in seemingly tightly regulated experimental conditions, subtle environmental perturbations cannot be ruled out, and hence unknown environmental influences are frequent. Here, we propose a model-based approach to simultaneously infer unmeasured environmental factors from gene expression profiles and use them in genetic analyses, identifying environment-specific associations between polymorphic loci and individual gene expression traits. In extensive simulation studies, we show that our method is able to accurately reconstruct environmental factors and their interactions with genotype in a variety of settings. We further illustrate the use of our model in a real-world dataset in which one environmental factor has been explicitly experimentally controlled. Our method is able to accurately reconstruct the true underlying environmental factor even if it is not given as an input, allowing to detect genuine genotype-environment interactions. In addition to the known environmental factor, we find unmeasured factors involved in novel genotype-environment interactions. Our results suggest that interactions with both known and unknown environmental factors significantly contribute to gene expression variability. and implementation: Software available at http://pmbio.github.io/envGPLVM/. Supplementary data are available at Bioinformatics online.
Simons, Ronald L.; Beach, Steven R. H.; Barr, Ashley B.
2013-01-01
The goal of this chapter is to demonstrate the importance of incorporating gene by environment (GxE) interactions into behavioral science theory and research. In pursuit of this aim, the chapter is organized in the following way. First, we provide a brief critique of the behavioral genetics paradigm, noting why one should be skeptical of its suggestion that genes exert large main effects, and only main effects, on social behavior. Second, we describe how the recent mapping of the human genome has facilitated molecular genetic research and the emergence of the new epigenetic paradigm that has begun to supplement and replace the simpler model of genetic determinism. Third, we turn our focus to the explosion of GxE research that has occurred in the wake of this paradigmatic shift. These studies find that genetic variation often interacts with environmental context to influence the probability of various behaviors. Importantly, in many, and perhaps most, of these studies the genetic variable, unlike the environmental variable, has little if any main effect on the outcome of interest. Rather, the influence of the genetic variable is limited to its moderation of the effect of the environmental construct. Such research does not undermine the importance of environmental factors; rather it shows how social scientific explanations of human behavior might be made more precise by incorporating genetic information. Finally, we consider various models of gene - environment interplay, paying particular attention to the differential susceptibility to context perspective. This model of GxE posits that a substantial proportion of the population is genetically predisposed to be more susceptible than others to environment influence. We argue that this model of GxE is particularly relevant to sociologists and psychologists. PMID:24379521
Use of glacier river-fed estuary channels by juvenile coho salmon: transitional or rearing habitats?
Hoem Neher, Tammy D.; Rosenberger, Amanda E.; Zimmerman, Christian E.; Walker, Coowe M.; Baird, Steven J.
2014-01-01
Estuaries are among the most productive ecosystems in the world and provide important rearing environments for a variety of fish species. Though generally considered important transitional habitats for smolting salmon, little is known about the role that estuaries serve for rearing and the environmental conditions important for salmon. We illustrate how juvenile coho salmonOncorhynchus kisutch use a glacial river-fed estuary based on examination of spatial and seasonal variability in patterns of abundance, fish size, age structure, condition, and local habitat use. Fish abundance was greater in deeper channels with cooler and less variable temperatures, and these habitats were consistently occupied throughout the season. Variability in channel depth and water temperature was negatively associated with fish abundance. Fish size was negatively related to site distance from the upper extent of the tidal influence, while fish condition did not relate to channel location within the estuary ecotone. Our work demonstrates the potential this glacially-fed estuary serves as both transitional and rearing habitat for juvenile coho salmon during smolt emigration to the ocean, and patterns of fish distribution within the estuary correspond to environmental conditions.
Castillón, Eduardo Estrada; Arévalo, José Ramón; Quintanilla, José Ángel Villarreal; Rodríguez, María Magdalena Salinas; Encina-Domínguez, Juan Antonio; Rodríguez, Humberto González; Ayala, César Martín Cantú
2015-10-01
Quantitative data on the ecology of the main plant communities along an altitudinal gradient in northeastern Mexico were obtained with the aim of identifying the most important environmental variables that affect plant distribution and composition. The main threats to these communities were also investigated. Importance value index (IVi) of the 39 most important species and 16 environmental variables were recorded at 35 altitudinal gradients each spaced at intervals of at least 100-m altitude. Classification and ordination of vegetation showed six well-differentiated but overlapping plant communities: alpine meadow, cold conifer forest, mesic mixed forest, xeric scrub, Tamaulipan piedmont scrub, and halophytic grassland. Altitude, minimum and average temperatures, and organic matter content are the main variables affecting the plant distribution in northeastern Mexico. Urban growth, mechanized agriculture, and changes in land use are the main threats in the short and medium term to plant communities in this area. Climate change also seems to be having an impact at present or in the near future as shown by the presence of exotic shrubs from warmer areas in mesic and temperate areas inhabited by oak and oak-pine forest.
Ishii, Kaori; Shibata, Ai; Oka, Koichiro
2010-08-05
An understanding of the contributing factors to be considered when examining how individuals engage in physical activity is important for promoting population-based physical activity. The environment influences long-term effects on population-based health behaviors. Personal variables, such as self-efficacy and social support, can act as mediators of the predictive relationship between the environment and physical activity. The present study examines the direct and indirect effects of environmental, psychological, and social factors on walking, moderate-intensity activity excluding walking, and vigorous-intensity activity among Japanese adults. The participants included 1,928 Japanese adults aged 20-79 years. Seven sociodemographic attributes (e.g., gender, age, education level, employment status), psychological variables (self-efficacy, pros, and cons), social variables (social support), environmental variables (home fitness equipment, access to facilities, neighborhood safety, aesthetic sensibilities, and frequency of observing others exercising), and the International Physical Activity Questionnaire were assessed via an Internet-based survey. Structural equation modeling was conducted to determine associations between environmental, psychological, and social factors with physical activity. Environmental factors could be seen to have indirect effects on physical activity through their influence on psychological and social variables such as self-efficacy, pros and cons, and social support. The strongest indirect effects could be observed by examining the consequences of environmental factors on physical activity through cons to self-efficacy. The total effects of environmental factors on physical activity were 0.02 on walking, 0.02 on moderate-intensity activity excluding walking, and 0.05 on vigorous-intensity activity. The present study indicates that environmental factors had indirect effects on walking, moderate-intensity activity excluding walking and vigorous-intensity activity among Japanese adults, especially through the effects on these factors of self-efficacy, social support, and pros and cons. The findings of the present study imply that intervention strategies to promote more engagement in physical activity for population-based health promotion may be necessary.
2010-01-01
Background An understanding of the contributing factors to be considered when examining how individuals engage in physical activity is important for promoting population-based physical activity. The environment influences long-term effects on population-based health behaviors. Personal variables, such as self-efficacy and social support, can act as mediators of the predictive relationship between the environment and physical activity. The present study examines the direct and indirect effects of environmental, psychological, and social factors on walking, moderate-intensity activity excluding walking, and vigorous-intensity activity among Japanese adults. Methods The participants included 1,928 Japanese adults aged 20-79 years. Seven sociodemographic attributes (e.g., gender, age, education level, employment status), psychological variables (self-efficacy, pros, and cons), social variables (social support), environmental variables (home fitness equipment, access to facilities, neighborhood safety, aesthetic sensibilities, and frequency of observing others exercising), and the International Physical Activity Questionnaire were assessed via an Internet-based survey. Structural equation modeling was conducted to determine associations between environmental, psychological, and social factors with physical activity. Results Environmental factors could be seen to have indirect effects on physical activity through their influence on psychological and social variables such as self-efficacy, pros and cons, and social support. The strongest indirect effects could be observed by examining the consequences of environmental factors on physical activity through cons to self-efficacy. The total effects of environmental factors on physical activity were 0.02 on walking, 0.02 on moderate-intensity activity excluding walking, and 0.05 on vigorous-intensity activity. Conclusions The present study indicates that environmental factors had indirect effects on walking, moderate-intensity activity excluding walking and vigorous-intensity activity among Japanese adults, especially through the effects on these factors of self-efficacy, social support, and pros and cons. The findings of the present study imply that intervention strategies to promote more engagement in physical activity for population-based health promotion may be necessary. PMID:20684794
Powell, Abigail; Smith, David J.; Hepburn, Leanne J.; Jones, Timothy; Berman, Jade; Jompa, Jamaluddin; Bell, James J.
2014-01-01
Although coral reef health across the globe is declining as a result of anthropogenic impacts, relatively little is known of how environmental variability influences reef organisms other than corals and fish. Sponges are an important component of coral reef fauna that perform many important functional roles and changes in their abundance and diversity as a result of environmental change has the potential to affect overall reef ecosystem functioning. In this study, we examined patterns of sponge biodiversity and abundance across a range of environments to assess the potential key drivers of differences in benthic community structure. We found that sponge assemblages were significantly different across the study sites, but were dominated by one species Lamellodysidea herbacea (42% of all sponges patches recorded) and that the differential rate of sediment deposition was the most important variable driving differences in abundance patterns. Lamellodysidea herbacea abundance was positively associated with sedimentation rates, while total sponge abundance excluding Lamellodysidea herbacea was negatively associated with rates of sedimentation. Overall variation in sponge assemblage composition was correlated with a number of variables although each variable explained only a small amount of the overall variation. Although sponge abundance remained similar across environments, diversity was negatively affected by sedimentation, with the most sedimented sites being dominated by a single sponge species. Our study shows how some sponge species are able to tolerate high levels of sediment and that any transition of coral reefs to more sedimented states may result in a shift to a low diversity sponge dominated system, which is likely to have subsequent effects on ecosystem functioning. PMID:24475041
Brooke E. Penaluna; Steve F. Railsback; Jason B. Dunham; Sherri Johnson; Robert E. Bilby; Arne E. Skaugset; Michael Bradford
2015-01-01
The importance of multiple processes and instream factors to aquatic biota has been explored extensively, but questions remain about how local spatiotemporal variability of aquatic biota is tied to environmental regimes and the geophysical template of streams. We used an individual-based trout model to explore the relative role of the geophysical template versus...
Population Structure and Gene Flow of the Yellow Anaconda (Eunectes notaeus) in Northern Argentina
McCartney-Melstad, Evan; Waller, Tomás; Micucci, Patricio A.; Barros, Mariano; Draque, Juan; Amato, George; Mendez, Martin
2012-01-01
Yellow anacondas (Eunectes notaeus) are large, semiaquatic boid snakes found in wetland systems in South America. These snakes are commercially harvested under a sustainable management plan in Argentina, so information regarding population structuring can be helpful for determination of management units. We evaluated genetic structure and migration using partial sequences from the mitochondrial control region and mitochondrial genes cyt-b and ND4 for 183 samples collected within northern Argentina. A group of landscape features and environmental variables including several treatments of temperature and precipitation were explored as potential drivers of observed genetic patterns. We found significant population structure between most putative population comparisons and bidirectional but asymmetric migration in several cases. The configuration of rivers and wetlands was found to be significantly associated with yellow anaconda population structure (IBD), and important for gene flow, although genetic distances were not significantly correlated with the environmental variables used here. More in-depth analyses of environmental data may be needed to fully understand the importance of environmental conditions on population structure and migration. These analyses indicate that our putative populations are demographically distinct and should be treated as such in Argentina's management plan for the harvesting of yellow anacondas. PMID:22675425
Heurich, Marco; Brand, Tom T. G.; Kaandorp, Manon Y.; Šustr, Pavel; Müller, Jörg; Reineking, Björn
2015-01-01
The Bohemian Forest Ecosystem encompasses various wildlife management systems. Two large, contiguous national parks (one in Germany and one in the Czech Republic) form the centre of the area, are surrounded by private hunting grounds, and hunting regulations in each country differ. Here we aimed at unravelling the influence of management-related and environmental factors on the distribution of red deer (Cervus elaphus) and roe deer (Capreolus capreolus) in this ecosystem. We used the standing crop method based on counts of pellet groups, with point counts every 100 m along 218 randomly distributed transects. Our analysis, which accounted for overdispersion as well as zero inflation and spatial autocorrelation, corroborated the view that both human management and the physical and biological environment drive ungulate distribution in mountainous areas in Central Europe. In contrast to our expectations, protection by national parks was the least important variable for red deer and the third important out of four variables for roe deer; protection negatively influenced roe deer distribution in both parks and positively influenced red deer distribution in Germany. Country was the most influential variable for both red and roe deer, with higher counts of pellet groups in the Czech Republic than in Germany. Elevation, which indicates increasing environmental harshness, was the second most important variable for both species. Forest cover was the least important variable for roe deer and the third important variable for red deer; the relationship for roe deer was positive and linear, and optimal forest cover for red deer was about 70% within a 500 m radius. Our results have direct implications for the future conservation management of deer in protected areas in Central Europe and show in particular that large non-intervention zones may not cause agglomerations of deer that could lead to conflicts along the border of protected, mountainous areas. PMID:25781942
Heurich, Marco; Brand, Tom T G; Kaandorp, Manon Y; Šustr, Pavel; Müller, Jörg; Reineking, Björn
2015-01-01
The Bohemian Forest Ecosystem encompasses various wildlife management systems. Two large, contiguous national parks (one in Germany and one in the Czech Republic) form the centre of the area, are surrounded by private hunting grounds, and hunting regulations in each country differ. Here we aimed at unravelling the influence of management-related and environmental factors on the distribution of red deer (Cervus elaphus) and roe deer (Capreolus capreolus) in this ecosystem. We used the standing crop method based on counts of pellet groups, with point counts every 100 m along 218 randomly distributed transects. Our analysis, which accounted for overdispersion as well as zero inflation and spatial autocorrelation, corroborated the view that both human management and the physical and biological environment drive ungulate distribution in mountainous areas in Central Europe. In contrast to our expectations, protection by national parks was the least important variable for red deer and the third important out of four variables for roe deer; protection negatively influenced roe deer distribution in both parks and positively influenced red deer distribution in Germany. Country was the most influential variable for both red and roe deer, with higher counts of pellet groups in the Czech Republic than in Germany. Elevation, which indicates increasing environmental harshness, was the second most important variable for both species. Forest cover was the least important variable for roe deer and the third important variable for red deer; the relationship for roe deer was positive and linear, and optimal forest cover for red deer was about 70% within a 500 m radius. Our results have direct implications for the future conservation management of deer in protected areas in Central Europe and show in particular that large non-intervention zones may not cause agglomerations of deer that could lead to conflicts along the border of protected, mountainous areas.
Ebhuoma, Osadolor; Gebreslasie, Michael
2016-06-14
Malaria is a serious public health threat in Sub-Saharan Africa (SSA), and its transmission risk varies geographically. Modelling its geographic characteristics is essential for identifying the spatial and temporal risk of malaria transmission. Remote sensing (RS) has been serving as an important tool in providing and assessing a variety of potential climatic/environmental malaria transmission variables in diverse areas. This review focuses on the utilization of RS-driven climatic/environmental variables in determining malaria transmission in SSA. A systematic search on Google Scholar and the Institute for Scientific Information (ISI) Web of Knowledge(SM) databases (PubMed, Web of Science and ScienceDirect) was carried out. We identified thirty-five peer-reviewed articles that studied the relationship between remotely-sensed climatic variable(s) and malaria epidemiological data in the SSA sub-regions. The relationship between malaria disease and different climatic/environmental proxies was examined using different statistical methods. Across the SSA sub-region, the normalized difference vegetation index (NDVI) derived from either the National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR) or Moderate-resolution Imaging Spectrometer (MODIS) satellite sensors was most frequently returned as a statistically-significant variable to model both spatial and temporal malaria transmission. Furthermore, generalized linear models (linear regression, logistic regression and Poisson regression) were the most frequently-employed methods of statistical analysis in determining malaria transmission predictors in East, Southern and West Africa. By contrast, multivariate analysis was used in Central Africa. We stress that the utilization of RS in determining reliable malaria transmission predictors and climatic/environmental monitoring variables would require a tailored approach that will have cognizance of the geographical/climatic setting, the stage of malaria elimination continuum, the characteristics of the RS variables and the analytical approach, which in turn, would support the channeling of intervention resources sustainably.
NASA Astrophysics Data System (ADS)
Blauw, Anouk N.; Benincà, Elisa; Laane, Remi W. P. M.; Greenwood, Naomi; Huisman, Jef
2018-02-01
Phytoplankton concentrations display strong temporal variability at different time scales. Recent advances in automated moorings enable detailed investigation of this variability. In this study, we analyzed phytoplankton fluctuations at four automated mooring stations in the North Sea, which measured phytoplankton abundance (chlorophyll) and several environmental variables at a temporal resolution of 12-30 min for two to nine years. The stations differed in tidal range, water depth and freshwater influence. This allowed comparison of the predictability and environmental drivers of phytoplankton variability across different time scales and geographical regions. We analyzed the time series using wavelet analysis, cross correlations and generalized additive models to quantify the response of chlorophyll fluorescence to various environmental variables (tidal and meteorological variables, salinity, suspended particulate matter, nitrate and sea surface temperature). Hour-to-hour and day-to-day fluctuations in chlorophyll fluorescence were substantial, and mainly driven by sinking and vertical mixing of phytoplankton cells, horizontal transport of different water masses, and non-photochemical quenching of the fluorescence signal. At the macro-tidal stations, these short-term phytoplankton fluctuations were strongly driven by the tides. Along the Dutch coast, variation in salinity associated with the freshwater influence of the river Rhine played an important role, while in the central North Sea variation in weather conditions was a major determinant of phytoplankton variability. At time scales of weeks to months, solar irradiance, nutrient conditions and thermal stratification were the dominant drivers of changes in chlorophyll concentrations. These results show that the dominant drivers of phytoplankton fluctuations differ across marine environments and time scales. Moreover, our findings show that phytoplankton variability on hourly to daily time scales should not be dismissed as environmental noise, but is related to vertical and horizontal particle transport driven by winds and tides. Quantification of these transport processes contributes to an improved predictability of marine phytoplankton concentrations.
Ebhuoma, Osadolor; Gebreslasie, Michael
2016-01-01
Malaria is a serious public health threat in Sub-Saharan Africa (SSA), and its transmission risk varies geographically. Modelling its geographic characteristics is essential for identifying the spatial and temporal risk of malaria transmission. Remote sensing (RS) has been serving as an important tool in providing and assessing a variety of potential climatic/environmental malaria transmission variables in diverse areas. This review focuses on the utilization of RS-driven climatic/environmental variables in determining malaria transmission in SSA. A systematic search on Google Scholar and the Institute for Scientific Information (ISI) Web of KnowledgeSM databases (PubMed, Web of Science and ScienceDirect) was carried out. We identified thirty-five peer-reviewed articles that studied the relationship between remotely-sensed climatic variable(s) and malaria epidemiological data in the SSA sub-regions. The relationship between malaria disease and different climatic/environmental proxies was examined using different statistical methods. Across the SSA sub-region, the normalized difference vegetation index (NDVI) derived from either the National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR) or Moderate-resolution Imaging Spectrometer (MODIS) satellite sensors was most frequently returned as a statistically-significant variable to model both spatial and temporal malaria transmission. Furthermore, generalized linear models (linear regression, logistic regression and Poisson regression) were the most frequently-employed methods of statistical analysis in determining malaria transmission predictors in East, Southern and West Africa. By contrast, multivariate analysis was used in Central Africa. We stress that the utilization of RS in determining reliable malaria transmission predictors and climatic/environmental monitoring variables would require a tailored approach that will have cognizance of the geographical/climatic setting, the stage of malaria elimination continuum, the characteristics of the RS variables and the analytical approach, which in turn, would support the channeling of intervention resources sustainably. PMID:27314369
Environmental Performance Information Use by Conservation Agency Staff
NASA Astrophysics Data System (ADS)
Wardropper, Chloe Bradley
2018-04-01
Performance-based conservation has long been recognized as crucial to improving program effectiveness, particularly when environmental conditions are dynamic. Yet few studies have investigated the use of environmental performance information by staff of conservation organizations. This article identifies attitudinal, policy and organizational factors influencing the use of a type of performance information—water quality information—by Soil and Water Conservation District staff in the Upper Mississippi River Basin region. An online survey ( n = 277) revealed a number of important variables associated with greater information use. Variables included employees' prosocial motivation, or the belief that they helped people and natural resources through their job, the perceived trustworthiness of data, the presence of a U.S. Clean Water Act Total Maximum Daily Load standard designation, and staff discretion to prioritize programs locally. Conservation programs that retain motivated staff and provide them the resources and flexibility to plan and evaluate their work with environmental data may increase conservation effectiveness under changing conditions.
Environment, Migratory Tendency, Phylogeny and Basal Metabolic Rate in Birds
Jetz, Walter; Freckleton, Robert P.; McKechnie, Andrew E.
2008-01-01
Basal metabolic rate (BMR) represents the minimum maintenance energy requirement of an endotherm and has far-reaching consequences for interactions between animals and their environments. Avian BMR exhibits considerable variation that is independent of body mass. Some long-distance migrants have been found to exhibit particularly high BMR, traditionally interpreted as being related to the energetic demands of long-distance migration. Here we use a global dataset to evaluate differences in BMR between migrants and non-migrants, and to examine the effects of environmental variables. The BMR of migrant species is significantly higher than that of non-migrants. Intriguingly, while the elevated BMR of migrants on their breeding grounds may reflect the metabolic machinery required for long-distance movements, an alternative (and statistically stronger) explanation is their occupation of predominantly cold high-latitude breeding areas. Among several environmental predictors, average annual temperature has the strongest effect on BMR, with a 50% reduction associated with a 20°C gradient. The negative effects of temperature variables on BMR hold separately for migrants and non-migrants and are not due their different climatic associations. BMR in migrants shows a much lower degree of phylogenetic inertia. Our findings indicate that migratory tendency need not necessarily be invoked to explain the higher BMR of migrants. A weaker phylogenetic signal observed in migrants supports the notion of strong phenotypic flexibility in this group which facilitates migration-related BMR adjustments that occur above and beyond environmental conditions. In contrast to the findings of previous analyses of mammalian BMR, primary productivity, aridity or precipitation variability do not appear to be important environmental correlates of avian BMR. The strong effects of temperature-related variables and varying phylogenetic effects reiterate the importance of addressing both broad-scale and individual-scale variation for understanding the determinants of BMR. PMID:18810267
Schneider, Berenice; Cunha, Eduardo R.; Marchese, Mercedes; Thomaz, Sidinei M.
2018-01-01
Macrophyte assemblages are composed of species with different life forms and various ecological functions. Our aim was to investigate the potential environmental determinants of changes in the biomass of individual life forms and of the composition of the macrophyte assemblage in terms of life forms diversity. We sampled 23 waterbodies at low and high water levels in the Middle Paraná River floodplain. Macrophyte biomass samples were collected and classified in terms of life forms. We performed a redundancy analysis using the biomass of the various life forms to assess the importance of environmental variables to the composition of macrophyte life forms. Linear regressions were applied to investigate the environmental determinants of the biomasses of individual life forms. The degree of connectivity and the combination of depth, hydrology and nitrate were the main determinants of the composition in terms of life forms. The biomass of each individual life form was explained by different combinations of environmental variables, but the connectivity was the most important one. Our study shows that groups of species with similar life forms respond to environmental factors in particular ways, which might alter the biomass composition of life forms. Given that the ecosystem functioning depends on the functional characteristics of local communities, our findings about the relation between environmental changes and the community composition in terms of life forms (or functional composition) can be a helpful tool for predicting changes on ecosystem processes (such as nutrient cycling) against possible future scenarios. PMID:29515608
Shryock, Daniel F.; Esque, Todd C.; Chen, Felicia
2015-01-01
We find substantial evidence that environmental filters, rather than TSF, drive the majority of variability in long-term, post-fire vegetation assembly within the Sonoran Desert. Careful consideration of spatial variability in abiotic conditions may benefit post-fire vegetation modelling, as well as fire management and restoration strategies.
General-Purpose Genotype or How Epigenetics Extend the Flexibility of a Genotype
Massicotte, Rachel; Angers, Bernard
2012-01-01
This project aims at investigating the link between individual epigenetic variability (not related to genetic variability) and the variation of natural environmental conditions. We studied DNA methylation polymorphisms of individuals belonging to a single genetic lineage of the clonal diploid fish Chrosomus eos-neogaeus sampled in seven geographically distant lakes. In spite of a low number of informative fragments obtained from an MSAP analysis, individuals of a given lake are epigenetically similar, and methylation profiles allow the clustering of individuals in two distinct groups of populations among lakes. More importantly, we observed a significant pH variation that is consistent with the two epigenetic groups. It thus seems that the genotype studied has the potential to respond differentially via epigenetic modifications under variable environmental conditions, making epigenetic processes a relevant molecular mechanism contributing to phenotypic plasticity over variable environments in accordance with the GPG model. PMID:22567383
Angelieri, Cintia Camila Silva; Adams-Hosking, Christine; Ferraz, Katia Maria Paschoaletto Micchi de Barros
2016-01-01
A mosaic of intact native and human-modified vegetation use can provide important habitat for top predators such as the puma (Puma concolor), avoiding negative effects on other species and ecological processes due to cascade trophic interactions. This study investigates the effects of restoration scenarios on the puma’s habitat suitability in the most developed Brazilian region (São Paulo State). Species Distribution Models incorporating restoration scenarios were developed using the species’ occurrence information to (1) map habitat suitability of pumas in São Paulo State, Southeast, Brazil; (2) test the relative contribution of environmental variables ecologically relevant to the species habitat suitability and (3) project the predicted habitat suitability to future native vegetation restoration scenarios. The Maximum Entropy algorithm was used (Test AUC of 0.84 ± 0.0228) based on seven environmental non-correlated variables and non-autocorrelated presence-only records (n = 342). The percentage of native vegetation (positive influence), elevation (positive influence) and density of roads (negative influence) were considered the most important environmental variables to the model. Model projections to restoration scenarios reflected the high positive relationship between pumas and native vegetation. These projections identified new high suitability areas for pumas (probability of presence >0.5) in highly deforested regions. High suitability areas were increased from 5.3% to 8.5% of the total State extension when the landscapes were restored for ≥ the minimum native vegetation cover rule (20%) established by the Brazilian Forest Code in private lands. This study highlights the importance of a landscape planning approach to improve the conservation outlook for pumas and other species, including not only the establishment and management of protected areas, but also the habitat restoration on private lands. Importantly, the results may inform environmental policies and land use planning in São Paulo State, Brazil. PMID:26735128
Alcala-Canto, Yazmin; Figueroa-Castillo, Juan Antonio; Ibarra-Velarde, Froylán; Vera-Montenegro, Yolanda; Cervantes-Valencia, María Eugenia; Salem, Abdelfattah Z M; Cuéllar-Ordaz, Jorge Alfredo
2018-05-07
The tick genus Ripicephalus (Boophilus), particularly R. microplus, is one of the most important ectoparasites that affects livestock health and considered an epidemiological risk because it causes significant economic losses due, mainly, to restrictions in the export of infested animals to several countries. Its spatial distribution has been tied to environmental factors, mainly warm temperatures and high relative humidity. In this work, we integrated a dataset consisting of 5843 records of Rhipicephalus spp., in Mexico covering close to 50 years to know which environmental variables mostly influence this ticks' distribution. Occurrences were georeferenced using the software DIVA-GIS and the potential current distribution was modelled using the maximum entropy method (Maxent). The algorithm generated a map of high predictive capability (Area under the curve = 0.942), providing the various contribution and permutation importance of the tested variables. Precipitation seasonality, particularly in March, and isothermality were found to be the most significant climate variables in determining the probability of spatial distribution of Rhipicephalus spp. in Mexico (15.7%, 36.0% and 11.1%, respectively). Our findings demonstrate that Rhipicephalus has colonized Mexico widely, including areas characterized by different types of climate. We conclude that the Maxent distribution model using Rhipicephalus records and a set of environmental variables can predict the extent of the tick range in this country, information that should support the development of integrated control strategies.
Environmental Variables That Influence Patient Satisfaction: A Review of the Literature.
MacAllister, Lorissa; Zimring, Craig; Ryherd, Erica
2016-10-01
Patient's perception of care-referred to as patient satisfaction-is of great interest in the healthcare industry, as it becomes more directly tied to the revenue of the health system providers. The perception of care has now become important in addition to the actual health outcome of the patient. The known influencers for the patient perception of care are the patient's own characteristics as well as the quality of service received. In patient surveys, the physical environment is noted as important for being clean and quiet but is not considered a critical part of patient satisfaction or other health outcomes. Patient perception of care is currently measured as patient satisfaction, a systematic collection of perceptions of social interactions from an individual person as well as their interaction with the environment. This exploration of the literature intends to explore the rigorous, statistically tested research conducted that has a spatial predictor variable and a health or behavior outcome, with the intent to begin to further test the relationships of these variables in the future studies. This literature review uses the patient satisfaction framework of components of influence and identifies at least 10 known spatial environmental variables that have been shown to have a direct connection to the health and behavior outcome of a patient. The results show that there are certain features of the spatial layout and environmental design in hospital or work settings that influence outcomes and should be noted in the future research. © The Author(s) 2016.
Campião, Karla Magalhães; Delatorre, Milena; Rodrigues, Rozangela Batista; da Silva, Reinaldo José; Ferreira, Vanda Lúcia
2012-04-01
Understanding the patterns of species distribution and abundance has been at the core of ecology. In general, these patterns are determined by species dispersion as well as by abiotic and biotic environmental conditions. Similarly, host-parasite relations and the structure of parasite assemblages are also shaped by environmental conditions and landscape composition. Herein, we assessed the influence of environmental variables and parasite species dispersion on the structure of helminth parasites communities in the frog Leptodactylus podicipinus. We sampled 10 ponds and recorded area, depth, altitude, pH, dissolved oxygen, salinity, temperature, and extent of soil, water, and vegetation cover as well as the distances between the ponds. We collected 121 frogs and found 9 helminth taxa; 2 of them were core species (prevalence higher than 50%), which contributed to the relatively high similarity observed among the ponds. Most of the helminths showed some variation in the frequencies of occurrence among communities from different ponds. The change in species composition among ponds was explained by the environmental variables but not by the distance between the ponds. Moreover, the results indicated that local processes (variation in environmental conditions) were more important than the regional processes (species distribution) in determining the structure of parasite communities. The variation in helminth communities among ponds in response to moderate differences in pond environmental characteristics points to the potential of helminth species as indicators of environmental conditions.
Verhoeven, Hannah; Simons, Dorien; Van Dyck, Delfien; Van Cauwenberg, Jelle; Clarys, Peter; De Bourdeaudhuij, Ilse; de Geus, Bas; Vandelanotte, Corneel; Deforche, Benedicte
2016-01-01
Background Active transport is a convenient way to incorporate physical activity in adolescents’ daily life. The present study aimed to investigate which psychosocial and environmental factors are associated with walking, cycling, public transport (train, tram, bus, metro) and passive transport (car, motorcycle, moped) over short distances (maximum eight kilometres) among older adolescents (17–18 years), to school and to other destinations. Methods 562 older adolescents completed an online questionnaire assessing socio-demographic variables, psychosocial variables, environmental variables and transport to school/other destinations. Zero-inflated negative binomial regression models were performed. Results More social modelling and a higher residential density were positively associated with walking to school and walking to other destinations, respectively. Regarding cycling, higher self-efficacy and a higher social norm were positively associated with cycling to school and to other destinations. Regarding public transport, a higher social norm, more social modelling of siblings and/or friends, more social support and a higher land use mix access were positively related to public transport to school and to other destinations, whereas a greater distance to school only related positively to public transport to school. Regarding passive transport, more social support and more perceived benefits were positively associated with passive transport to school and to other destinations. Perceiving less walking and cycling facilities at school was positively related to passive transport to school only, and more social modelling was positively related to passive transport to other destinations. Conclusions Overall, psychosocial variables seemed to be more important than environmental variables across the four transport modes. Social norm, social modelling and social support were the most consistent psychosocial factors which indicates that it is important to target both older adolescents and their social environment in interventions promoting active transport. Walking or cycling together with siblings or friends has the potential to increase social norm, social modelling and social support towards active transport. PMID:26784933
Verhoeven, Hannah; Simons, Dorien; Van Dyck, Delfien; Van Cauwenberg, Jelle; Clarys, Peter; De Bourdeaudhuij, Ilse; de Geus, Bas; Vandelanotte, Corneel; Deforche, Benedicte
2016-01-01
Active transport is a convenient way to incorporate physical activity in adolescents' daily life. The present study aimed to investigate which psychosocial and environmental factors are associated with walking, cycling, public transport (train, tram, bus, metro) and passive transport (car, motorcycle, moped) over short distances (maximum eight kilometres) among older adolescents (17-18 years), to school and to other destinations. 562 older adolescents completed an online questionnaire assessing socio-demographic variables, psychosocial variables, environmental variables and transport to school/other destinations. Zero-inflated negative binomial regression models were performed. More social modelling and a higher residential density were positively associated with walking to school and walking to other destinations, respectively. Regarding cycling, higher self-efficacy and a higher social norm were positively associated with cycling to school and to other destinations. Regarding public transport, a higher social norm, more social modelling of siblings and/or friends, more social support and a higher land use mix access were positively related to public transport to school and to other destinations, whereas a greater distance to school only related positively to public transport to school. Regarding passive transport, more social support and more perceived benefits were positively associated with passive transport to school and to other destinations. Perceiving less walking and cycling facilities at school was positively related to passive transport to school only, and more social modelling was positively related to passive transport to other destinations. Overall, psychosocial variables seemed to be more important than environmental variables across the four transport modes. Social norm, social modelling and social support were the most consistent psychosocial factors which indicates that it is important to target both older adolescents and their social environment in interventions promoting active transport. Walking or cycling together with siblings or friends has the potential to increase social norm, social modelling and social support towards active transport.
NASA Astrophysics Data System (ADS)
Zhang, Wenjing; Mo, Yuanyuan; Yang, Jun; Zhou, Jing; Lin, Yuanshao; Isabwe, Alain; Zhang, Jian; Gao, Xiu; Yu, Zheng
2018-07-01
Microeukaryotes play important roles in aquatic ecosystems, and could act as drivers of the biological nutrient cycling processes. However, compared with prokaryotic ones, little is known about the genetic diversity pattern of their community, and the environmental factors affecting their ecological pattern, especially in marine ecosystems. In this study, we used denaturing gradient gel electrophoresis (DGGE) and terminal restriction fragment length polymorphism (T-RFLP) to explore the genetic diversity structure of microeukaryotic communities in Dongshan Bay, southeast China. Our results revealed that microeukaryotic diversity ranged from 31 to 48 phylotypes (on average, 42) using the DGGE approach, while from 22 to 38 phylotypes (on average, 30) based on T-RFLP method, and the Shannon-Wiener diversity (DGGE-based) was relatively higher, suggesting that DGGE displayed a slightly higher resolution than T-RFLP. Surprisingly, the DGGE showed significant horizontal difference among microeukaryotic communities, but was similar with T-RFLP analysis that had no significant influence on microeukaryotic diversity at vertical scale. Further, redundancy analysis (RDA) indicated that the DGGE-based microeukaryotic communities distribution was significantly correlated with three environmental factors (Chl-a, TP and salinity), whereas microeukaryotic community revealed by T-RFLP was affected by four environmental factors namely salinity, temperature, depth and NOX-N. Compared with RDA, BIO-ENV analysis showed that heterotrophic bacteria and NOX-N were important environmental variable influencing microeukaryotic communities in both methods. These differences may be attributed to the noisy effects caused by the relatively large number of environmental variables. Generally speaking, despite differences in beta-diversity ordination for both DGGE and T-RFLP methods, there exists some consistency in the results of both techniques in terms of microeukaryotes responses to the environmental variables. These results suggested that environmental parameters had a great effect on spatial distribution of microeukaryotic community and contributed to marine ecosystem health to be further evaluated.
Human thermal comfort in urban outdoor spaces
Lee P. Herrington; J. S. Vittum
1977-01-01
Measurements of the physical environment of urban open spaces in Syracuse, New York, were used to compute the physiological responses of human users of the spaces. These calculations were then used to determine what environmental variables were both important to human comfort and susceptible to control by site design. Although air temperature and humidity are important...
Ozatac, Nesrin; Gokmenoglu, Korhan K; Taspinar, Nigar
2017-07-01
This study investigates the environmental Kuznets curve (EKC) hypothesis for the case of Turkey from 1960 to 2013 by considering energy consumption, trade, urbanization, and financial development variables. Although previous literature examines various aspects of the EKC hypothesis for the case of Turkey, our model augments the basic model with several covariates to develop a better understanding of the relationship among the variables and to refrain from omitted variable bias. The results of the bounds test and the error correction model under autoregressive distributed lag mechanism suggest long-run relationships among the variables as well as proof of the EKC and the scale effect in Turkey. A conditional Granger causality test reveals that there are causal relationships among the variables. Our findings can have policy implications including the imposition of a "polluter pays" mechanism, such as the implementation of a carbon tax for pollution trading, to raise the urban population's awareness about the importance of adopting renewable energy and to support clean, environmentally friendly technology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Jin; Guan, Kaiyu; Hayek, Matthew
Gross ecosystem productivity (GEP) in tropical forests varies both with the environment and with biotic changes in photosynthetic infrastructure, but our understanding of the relative effects of these factors across timescales is limited. Here, we used a statistical model to partition the variability of seven years of eddy covariance-derived GEP in a central Amazon evergreen forest into two main causes: variation in environmental drivers (solar radiation, diffuse light fraction, and vapor pressure deficit) that interact with model parameters that govern photosynthesis and biotic variation in canopy photosynthetic light-use efficiency associated with changes in the parameters themselves. Our fitted model wasmore » able to explain most of the variability in GEP at hourly (R 2 = 0.77) to interannual (R 2 = 0.80) timescales. At hourly timescales, we found that 75% of observed GEP variability could be attributed to environmental variability. When aggregating GEP to the longer timescales (daily, monthly, and yearly), however, environmental variation explained progressively less GEP variability: At monthly timescales, it explained only 3%, much less than biotic variation in canopy photosynthetic light-use efficiency, which accounted for 63%. These results challenge modeling approaches that assume GEP is primarily controlled by the environment at both short and long timescales. Our approach distinguishing biotic from environmental variability can help to resolve debates about environmental limitations to tropical forest photosynthesis. For example, we found that biotically regulated canopy photosynthetic light-use efficiency (associated with leaf phenology) increased with sunlight during dry seasons (consistent with light but not water limitation of canopy development) but that realized GEP was nonetheless lower relative to its potential efficiency during dry than wet seasons (consistent with water limitation of photosynthesis in given assemblages of leaves). Lastly, this work highlights the importance of accounting for differential regulation of GEP at different timescales and of identifying the underlying feedbacks and adaptive mechanisms.« less
Wu, Jin; Guan, Kaiyu; Hayek, Matthew; ...
2016-09-19
Gross ecosystem productivity (GEP) in tropical forests varies both with the environment and with biotic changes in photosynthetic infrastructure, but our understanding of the relative effects of these factors across timescales is limited. Here, we used a statistical model to partition the variability of seven years of eddy covariance-derived GEP in a central Amazon evergreen forest into two main causes: variation in environmental drivers (solar radiation, diffuse light fraction, and vapor pressure deficit) that interact with model parameters that govern photosynthesis and biotic variation in canopy photosynthetic light-use efficiency associated with changes in the parameters themselves. Our fitted model wasmore » able to explain most of the variability in GEP at hourly (R 2 = 0.77) to interannual (R 2 = 0.80) timescales. At hourly timescales, we found that 75% of observed GEP variability could be attributed to environmental variability. When aggregating GEP to the longer timescales (daily, monthly, and yearly), however, environmental variation explained progressively less GEP variability: At monthly timescales, it explained only 3%, much less than biotic variation in canopy photosynthetic light-use efficiency, which accounted for 63%. These results challenge modeling approaches that assume GEP is primarily controlled by the environment at both short and long timescales. Our approach distinguishing biotic from environmental variability can help to resolve debates about environmental limitations to tropical forest photosynthesis. For example, we found that biotically regulated canopy photosynthetic light-use efficiency (associated with leaf phenology) increased with sunlight during dry seasons (consistent with light but not water limitation of canopy development) but that realized GEP was nonetheless lower relative to its potential efficiency during dry than wet seasons (consistent with water limitation of photosynthesis in given assemblages of leaves). Lastly, this work highlights the importance of accounting for differential regulation of GEP at different timescales and of identifying the underlying feedbacks and adaptive mechanisms.« less
Wu, Jin; Guan, Kaiyu; Hayek, Matthew; Restrepo-Coupe, Natalia; Wiedemann, Kenia T; Xu, Xiangtao; Wehr, Richard; Christoffersen, Bradley O; Miao, Guofang; da Silva, Rodrigo; de Araujo, Alessandro C; Oliviera, Raimundo C; Camargo, Plinio B; Monson, Russell K; Huete, Alfredo R; Saleska, Scott R
2017-03-01
Gross ecosystem productivity (GEP) in tropical forests varies both with the environment and with biotic changes in photosynthetic infrastructure, but our understanding of the relative effects of these factors across timescales is limited. Here, we used a statistical model to partition the variability of seven years of eddy covariance-derived GEP in a central Amazon evergreen forest into two main causes: variation in environmental drivers (solar radiation, diffuse light fraction, and vapor pressure deficit) that interact with model parameters that govern photosynthesis and biotic variation in canopy photosynthetic light-use efficiency associated with changes in the parameters themselves. Our fitted model was able to explain most of the variability in GEP at hourly (R 2 = 0.77) to interannual (R 2 = 0.80) timescales. At hourly timescales, we found that 75% of observed GEP variability could be attributed to environmental variability. When aggregating GEP to the longer timescales (daily, monthly, and yearly), however, environmental variation explained progressively less GEP variability: At monthly timescales, it explained only 3%, much less than biotic variation in canopy photosynthetic light-use efficiency, which accounted for 63%. These results challenge modeling approaches that assume GEP is primarily controlled by the environment at both short and long timescales. Our approach distinguishing biotic from environmental variability can help to resolve debates about environmental limitations to tropical forest photosynthesis. For example, we found that biotically regulated canopy photosynthetic light-use efficiency (associated with leaf phenology) increased with sunlight during dry seasons (consistent with light but not water limitation of canopy development) but that realized GEP was nonetheless lower relative to its potential efficiency during dry than wet seasons (consistent with water limitation of photosynthesis in given assemblages of leaves). This work highlights the importance of accounting for differential regulation of GEP at different timescales and of identifying the underlying feedbacks and adaptive mechanisms. © 2016 John Wiley & Sons Ltd.
Habitat preferences of baleen whales in a mid-latitude habitat
NASA Astrophysics Data System (ADS)
Prieto, Rui; Tobeña, Marta; Silva, Mónica A.
2017-07-01
Understanding the dynamics of baleen whale distribution is essential to predict how environmental changes can affect their ecology and, in turn, ecosystem functioning. Recent work showed that mid-latitude habitats along migratory routes may play an important role on the feeding ecology of baleen whales. This study aimed to investigate the function of a mid-latitude habitat for blue (Balaenoptera musculus), fin (Balaenoptera physalus) and sei (Balaenoptera borealis) whales occurring in sympatry during spring and summer months and to what extent their environmental niches overlap. We addressed those questions by developing environmental niche models (ENM) for each species and then making pairwise comparisons of niche overlap and relative habitat patch importance among the three species. ENMs were created using sightings from the Azorean Fisheries Observer Program from May to November, between 2004 and 2009, and a set of 18 predictor environmental variables. We then assessed monthly (April-July) overlap among ENMs using a modified Hellinger's distance metric (I). Results show that the habitat niches of blue and fin whales are strongly influenced by primary productivity and sea surface temperature and are highly dynamic both spatially and temporally due to the oceanography of the region. Niche overlap analyses show that blue and fin whale environmental niches are similar and that the suitable habitats for the two species have high degree of spatial coincidence. These results in combination suggest that this habitat may function as a mid-latitude feeding ground to both species while conditions are adequate. The sei whale model, on the other hand, did not include variables considered to be proxies for prey distribution and little environmental niche overlap was found between this species and the other two. We argue that these results suggest that the region holds little importance as a foraging habitat for the sei whale.
McMahon, G.; Harned, D.A.
1998-01-01
Environmental settings were defined, through an overlay process, as areas of coincidence between categories of three mapped variables - land use, surficial geology, and soil drainage characteristics. Expert judgment was used in selecting factors thought to influence sediment and nutrient concentrations in the Albemarle-Pamlico drainage area. This study's findings support the hypothesis that environmental settings defined using these three variables can explain variations in the concentration of certain sediment and nutrient constituents. This finding underscores the importance of developing watershed management plans that account for differences associated with the mosaic of natural and anthropogenic factors that define a basin's environmental setting. At least in the case of sediment and nutrients in the Albemarle-Pamlico region, a watershed management plan that focuses only on anthropogenic factors, such as point-source discharges, and does not account for natural characteristics of a watershed and the influences of these characteristics on water quality, may lead to water-quality goals that are over- or underprotective of key environmental features and to a misallocation of the resources available for environmental protection.
Plass-Johnson, Jeremiah G; Taylor, Marc H; Husain, Aidah A A; Teichberg, Mirta C; Ferse, Sebastian C A
2016-01-01
Changes in the coral reef complex can affect predator-prey relationships, resource availability and niche utilisation in the associated fish community, which may be reflected in decreased stability of the functional traits present in a community. This is because particular traits may be favoured by a changing environment, or by habitat degradation. Furthermore, other traits can be selected against because degradation can relax the association between fishes and benthic habitat. We characterised six important ecological traits for fish species occurring at seven sites across a disturbed coral reef archipelago in Indonesia, where reefs have been exposed to eutrophication and destructive fishing practices for decades. Functional diversity was assessed using two complementary indices (FRic and RaoQ) and correlated to important environmental factors (live coral cover and rugosity, representing local reef health, and distance from shore, representing a cross-shelf environmental gradient). Indices were examined for both a change in their mean, as well as temporal (short-term; hours) and spatial (cross-shelf) variability, to assess whether fish-habitat association became relaxed along with habitat degradation. Furthermore, variability in individual traits was examined to identify the traits that are most affected by habitat change. Increases in the general reef health indicators, live coral cover and rugosity (correlated with distance from the mainland), were associated with decreases in the variability of functional diversity and with community-level changes in the abundance of several traits (notably home range size, maximum length, microalgae, detritus and small invertebrate feeding and reproductive turnover). A decrease in coral cover increased variability of RaoQ while rugosity and distance both inversely affected variability of FRic; however, averages for these indices did not reveal patterns associated with the environment. These results suggest that increased degradation of coral reefs is associated with increased variability in fish community functional composition resulting from selective impacts on specific traits, thereby affecting the functional response of these communities to increasing perturbations.
Plass-Johnson, Jeremiah G.; Taylor, Marc H.; Husain, Aidah A. A.; Teichberg, Mirta C.; Ferse, Sebastian C. A.
2016-01-01
Changes in the coral reef complex can affect predator-prey relationships, resource availability and niche utilisation in the associated fish community, which may be reflected in decreased stability of the functional traits present in a community. This is because particular traits may be favoured by a changing environment, or by habitat degradation. Furthermore, other traits can be selected against because degradation can relax the association between fishes and benthic habitat. We characterised six important ecological traits for fish species occurring at seven sites across a disturbed coral reef archipelago in Indonesia, where reefs have been exposed to eutrophication and destructive fishing practices for decades. Functional diversity was assessed using two complementary indices (FRic and RaoQ) and correlated to important environmental factors (live coral cover and rugosity, representing local reef health, and distance from shore, representing a cross-shelf environmental gradient). Indices were examined for both a change in their mean, as well as temporal (short-term; hours) and spatial (cross-shelf) variability, to assess whether fish-habitat association became relaxed along with habitat degradation. Furthermore, variability in individual traits was examined to identify the traits that are most affected by habitat change. Increases in the general reef health indicators, live coral cover and rugosity (correlated with distance from the mainland), were associated with decreases in the variability of functional diversity and with community-level changes in the abundance of several traits (notably home range size, maximum length, microalgae, detritus and small invertebrate feeding and reproductive turnover). A decrease in coral cover increased variability of RaoQ while rugosity and distance both inversely affected variability of FRic; however, averages for these indices did not reveal patterns associated with the environment. These results suggest that increased degradation of coral reefs is associated with increased variability in fish community functional composition resulting from selective impacts on specific traits, thereby affecting the functional response of these communities to increasing perturbations. PMID:27100189
Jones, Mirkka M; Tuomisto, Hanna; Borcard, Daniel; Legendre, Pierre; Clark, David B; Olivas, Paulo C
2008-03-01
The degree to which variation in plant community composition (beta-diversity) is predictable from environmental variation, relative to other spatial processes, is of considerable current interest. We addressed this question in Costa Rican rain forest pteridophytes (1,045 plots, 127 species). We also tested the effect of data quality on the results, which has largely been overlooked in earlier studies. To do so, we compared two alternative spatial models [polynomial vs. principal coordinates of neighbour matrices (PCNM)] and ten alternative environmental models (all available environmental variables vs. four subsets, and including their polynomials vs. not). Of the environmental data types, soil chemistry contributed most to explaining pteridophyte community variation, followed in decreasing order of contribution by topography, soil type and forest structure. Environmentally explained variation increased moderately when polynomials of the environmental variables were included. Spatially explained variation increased substantially when the multi-scale PCNM spatial model was used instead of the traditional, broad-scale polynomial spatial model. The best model combination (PCNM spatial model and full environmental model including polynomials) explained 32% of pteridophyte community variation, after correcting for the number of sampling sites and explanatory variables. Overall evidence for environmental control of beta-diversity was strong, and the main floristic gradients detected were correlated with environmental variation at all scales encompassed by the study (c. 100-2,000 m). Depending on model choice, however, total explained variation differed more than fourfold, and the apparent relative importance of space and environment could be reversed. Therefore, we advocate a broader recognition of the impacts that data quality has on analysis results. A general understanding of the relative contributions of spatial and environmental processes to species distributions and beta-diversity requires that methodological artefacts are separated from real ecological differences.
Li, Lina; Chesson, Peter
2016-08-01
Hutchinson's famous hypothesis for the "paradox of the plankton" has been widely accepted, but critical aspects have remained unchallenged. Hutchinson argued that environmental fluctuations would promote coexistence when the timescale for environmental change is comparable to the timescale for competitive exclusion. Using a consumer-resource model, we do find that timescales of processes are important. However, it is not the time to exclusion that must be compared with the time for environmental change but the time for resource depletion. Fast resource depletion, when resource consumption is favored for different species at different times, strongly promotes coexistence. The time for exclusion is independent of the rate of resource depletion. Therefore, the widely believed predictions of Hutchinson are misleading. Fast resource depletion, as determined by environmental conditions, ensures strong coupling of environmental processes and competition, which leads to enhancement over time of intraspecific competition relative to interspecific competition as environmental shifts favor different species at different times. This critical coupling is measured by the covariance between environment and competition. Changes in this quantity as densities change determine the stability of coexistence and provide the key to rigorous analysis, both theoretically and empirically, of coexistence in a variable environment. These ideas apply broadly to diversity maintenance in variable environments whether the issue is species diversity or genetic diversity and competition or apparent competition.
NASA Astrophysics Data System (ADS)
Rodriguez, J. M.; Gonzalez-Nuevo, G.; Gonzalez-Pola, C.; Cabal, J.
2009-05-01
Ichthyoplankton and mesozooplankton were sampled and fluorescence and physical environmental variables were measured off the NW and N Iberian Peninsula coasts, during April 2005. A total of 51 species of fish larvae, belonging to 26 families, were recorded. Sardina pilchardus, with 43.8% and 58.7% of the total fish egg and larval catches, respectively, dominated the ichthyoplankton assemblage. The study area was divided by a cross-shelf frontal structure into two hydrographic regions that coincided with the Atlantic and Cantabrian geographic regions. Ichthyoplankton abundance was higher in the Cantabrian region while larval diversity was higher in the Atlantic region. This was the main alongshore variability in the structure of the larval fish assemblage. Nevertheless, the stronger variability, related with the presence of a shelf-slope front, was found in the central-eastern Cantabrian region where two major larval fish assemblages, an "outer" and a "coastal", were distinguished. The Atlantic region, where the shelf-slope front was not found, was inhabited by a single larval fish assemblage. Canonical correspondence analysis revealed that, off the NW and N Iberian Peninsula coasts, the horizontal distribution of larval fish species in early spring may be explained by a limited number of environmental variables. Of these, the most important were the physical variables depth and sea surface temperature.
Malinowsky, Camilla; Almkvist, Ove; Nygård, Louise; Kottorp, Anders
2012-03-01
The ability to manage everyday technology (ET), such as computers and microwave ovens, is increasingly required in the performance of everyday activities and participation in society. This study aimed to identify aspects that influence the ability to manage ET among older adults with and without cognitive impairment. Older adults with mild Alzheimer's disease and mild cognitive impairment and without known cognitive impairment were assessed as they managed their ET at home. Data were collected using the Management of Everyday Technology Assessment (META). Rasch-based measures of the person's ability to manage ET were analyzed. These measures were used as dependent variables in backward procedure ANOVA analyses. Different predefined aspects that could influence the ability to manage ET were used as independent variables. Three aspects had a significant effect upon the ability to manage ET. These were: (1) variability in intrapersonal capacities (such as "the capacity to pay attention and focus", (2) environmental characteristics (such as "the impact of the design") and (3) diagnostic group. Variability in intrapersonal capacities seems to be of more importance than the actual level of intrapersonal capacity in relation to the ability to manage ET for this sample. This implies that investigations of ability to manage ET should also include intraperson variability. Additionally, adaptations in environmental characteristics could simplify the management of ET to support older adults as technology users.
NASA Astrophysics Data System (ADS)
Koenig, W.
2016-12-01
The ecological impacts of modern global climate change are detectable in a wide variety of phenomena ranging from shifts in species ranges to changes in community composition and human disease dynamics. Thus far, however, little attention has been given to temporal changes in environmental spatial synchrony-the coincident change in abundance or value across the landscape-or environmental variability, despite the importance of these factors as drivers of population rescue and extinction and reproductive dynamics of both animal and plant populations. We quantified spatial synchrony of widespread North American wintering birds species using Audubon Christmas Bird Counts over the past 50 years and seed set variability (mast fruiting) among trees over the past century and found that both spatial synchrony of the birds and seed set variability have significantly increased over these time periods. The first of these results was mirrored by significant increases in spatial synchrony of mean maximum air temperature across North America, primarily during the summer, while the second is consistent with the hypothesis that climate change is resulting in greater seed set variability. These findings suggest the potential for temporal changes in envioronmental synchrony and variability to be affecting a wide range of ecological phenomena by influencing the probability of population rescue and extinction and by affecting ecosystem processes that rely on the resource pulses provided by mast fruiting plants.
Systems effects on family planning innovativeness.
Lee, S B
1983-12-01
Data from Korea were used to explore the importance of community level variables in explaining family planning adoption at the individual level. An open system concept was applied, assuming that individual family planning behavior is influenced by both environmental and individual factors. The environmental factors were measured at the village level and designated as community characteristics. The dimension of communication network variables was introduced. Each individual was characterized in terms of the degree of her involvement in family planning communication with others in her village. It was assumed that the nature of the communication network linking individuals with each other effects family planning adoption at the individual level. Specific objectives were to determine 1) the relative importance of the specific independent variables in explaining family planning adoption and 2) the relative importance of the community level variables in comparison with the individual level variables in explaining family planning adoption at the individual level. The data were originally gathered in a 1973 research project on Korea's mothers' clubs. 1047 respondents were interviewed, comprising all married women in 25 sample villages having mothers' clubs. The dependent variable was family planning adoption behavior, defined as current use of any of the modern methods of family planning. The independent variables were defined at 3 levels: individual, community, and at a level intermediate between them involving communication links between individuals. More of the individual level independent variables were significantly correlated with the dependent variables than the community level variables. Among those variables with statistically significant correlations, the correlation coefficients were consistently higher for the individual level than for the community level variables. More of the variance in the dependent variable was explained by individual level than by community level variables. Community level variables accounted for only about 2.5% of the total variance in the dependent variable, in marked contrast to the result showing individual level variables accounting for as much as 19% of the total variance. When both individual and community level variables were entered into a multiple correlation analysis, a multiple correlation coefficient of .4714 was obtained together they explained about 20% of the total variance. The 2 communication network variables--connectedness and integrativeness--were correlated with the dependent variable at much higher levels than most of the individual or community level variables. Connectedness accounted for the greatest amount of the total variance. The communication network variables as a group explained as much of the total variance in the dependent variable as the individual level variables and greatly more that the community level variables.
Noh, J-W; Kwon, Y-D; Yoon, S-J; Hwang, J-I
2011-06-01
Numerous studies on HNC services have been carried out by signifying their needs, efficiency and effectiveness. However, no study has ever been performed to determine the critical factors associated with HNC's positive results despite the deluge of positive studies on the service. This study included all of the 89 training hospitals that were practising HNC service in Korea as of November 2006. The input factors affecting the performance were classified as either internal or external environmental factors. This analysis was conducted to understand the impact that the corresponding factors had on performance. Data were analysed by using multiple linear regressions. The internal and external environment variables affected the performance of HNC based on univariate analysis. The meaningful variables were internal environmental factors. Specifically, managerial resource (the number of operating beds and the outpatient/inpatient ratio) were meaningful when the multiple linear regression analysis was performed. Indeed, the importance of organizational culture (the passion of HNC nurses) was significant. This study, considering the limited market size of Korea, illustrates that the critical factor for the development of hospital-led HNC lies with internal environmental factors rather than external ones. Among the internal environmental factors, the hospitals' managerial resource-related factors (specifically, the passion of nurses) were the most important contributing element. © 2011 The Authors. International Nursing Review © 2011 International Council of Nurses.
Leyk, Stefan; Runfola, Dan; Nawrotzki, Raphael J; Hunter, Lori M; Riosmena, Fernando
2017-08-01
Migration provides a strategy for rural Mexican households to cope with, or adapt to, weather events and climatic variability. Yet prior studies on "environmental migration" in this context have not examined the differences between choices of internal (domestic) or international movement. In addition, much of the prior work relied on very coarse spatial scales to operationalize the environmental variables such as rainfall patterns. To overcome these limitations, we use fine-grain rainfall estimates derived from NASA's Tropical Rainfall Measuring Mission (TRMM) satellite. The rainfall estimates are combined with Population and Agricultural Census information to examine associations between environmental changes and municipal rates of internal and international migration 2005-2010. Our findings suggest that municipal-level rainfall deficits relative to historical levels are an important predictor of both international and internal migration, especially in areas dependent on seasonal rainfall for crop productivity. Although our findings do not contradict results of prior studies using coarse spatial resolution, they offer clearer results and a more spatially nuanced examination of migration as related to social and environmental vulnerability and thus higher degrees of confidence.
Rios, Rodrigo S.; Vargas-Rodriguez, Renzo; Novoa-Jerez, Jose-Enrique; Squeo, Francisco A.
2017-01-01
In birds, the environmental variables and intrinsic characteristics of the nest have important fitness consequences through its influence on the selection of nesting sites. However, the extent to which these variables interact with variables that operate at the landscape scale, and whether there is a hierarchy among the different scales that influences nest-site selection, is unknown. This interaction could be crucial in burrowing birds, which depend heavily on the availability of suitable nesting locations. One representative of this group is the burrowing parrot, Cyanoliseus patagonus that breeds on specific ravines and forms large breeding colonies. At a particular site, breeding aggregations require the concentration of adequate environmental elements for cavity nesting, which are provided by within ravine characteristics. Therefore, intrinsic ravine characteristics should be more important in determining nest site selection compared to landscape level characteristics. Here, we assess this hypothesis by comparing the importance of ravine characteristics operating at different scales on nest-site selection and their interrelation with reproductive success. We quantified 12 characteristics of 105 ravines in their reproductive habitat. For each ravine we quantified morphological variables, distance to resources and disturbance as well as nest number and egg production in order to compare selected and non-selected ravines and determine the interrelationship among variables in explaining ravine differences. In addition, the number of nests and egg production for each reproductive ravine was related to ravine characteristics to assess their relation to reproductive success. We found significant differences between non-reproductive and reproductive ravines in both intrinsic and extrinsic characteristics. The multidimensional environmental gradient of variation between ravines, however, shows that differences are mainly related to intrinsic morphological characteristics followed by extrinsic variables associated to human disturbance. Likewise, within reproductive ravines, intrinsic characteristics are more strongly related to the number of nests. The probability of producing eggs, however, was related only to distance to roads and human settlements. Patterns suggest that C. patagonus mainly selects nesting sites based on intrinsic morphological characteristics of ravines. Scale differences in the importance of ravine characteristics could be a consequence of the particular orography of the breeding habitat. The arrangement of resources is associated to the location of the gullies rather than to individual ravines, determining the spatial availability and disposition of resources and disturbances. Thus, nest selection is influenced by intrinsic characteristics that maximize the fitness of individuals. Scaling in nest-selection is discussed under an optimality approach that partitions patch selection based on foraging theory. PMID:28462019
Identifying community thresholds for lotic benthic diatoms in response to human disturbance.
Tang, Tao; Tang, Ting; Tan, Lu; Gu, Yuan; Jiang, Wanxiang; Cai, Qinghua
2017-06-23
Although human disturbance indirectly influences lotic assemblages through modifying physical and chemical conditions, identifying thresholds of human disturbance would provide direct evidence for preventing anthropogenic degradation of biological conditions. In the present study, we used data obtained from tributaries of the Three Gorges Reservoir in China to detect effects of human disturbance on streams and to identify disturbance thresholds for benthic diatoms. Diatom species composition was significantly affected by three in-stream stressors including TP, TN and pH. Diatoms were also influenced by watershed % farmland and natural environmental variables. Considering three in-stream stressors, TP was positively influenced by % farmland and % impervious surface area (ISA). In contrast, TN and pH were principally affected by natural environmental variables. Among measured natural environmental variables, average annual air temperature, average annual precipitation, and topsoil % CaCO 3 , % gravel, and total exchangeable bases had significant effects on study streams. When effects of natural variables were accounted for, substantial compositional changes in diatoms occurred when farmland or ISA land use exceeded 25% or 0.3%, respectively. Our study demonstrated the rationale for identifying thresholds of human disturbance for lotic assemblages and addressed the importance of accounting for effects of natural factors for accurate disturbance thresholds.
Purchase, Craig F; Moreau, Darek T R
2012-01-01
Genetic variation for phenotypic plasticity is ubiquitous and important. However, the scale of such variation including the relative variability present in reaction norms among different hierarchies of biological organization (e.g., individuals, populations, and closely related species) is unknown. Complicating interpretation is a trade-off in environmental scale. As plasticity can only be inferred over the range of environments tested, experiments focusing on fine tuned responses to normal or benign conditions may miss cryptic phenotypic variation expressed under novel or stressful environments. Here, we sought to discern the presence and shape of plasticity in the performance of brown trout sperm as a function of optimal to extremely stressful river pH, and demarcate if the reaction norm varies among genotypes. Our overarching goal was to determine if deteriorating environmental quality increases expressed variation among individuals. A more applied aim was to ascertain whether maintaining sperm performance over a wide pH range could help explain how brown trout are able to invade diverse river systems when transplanted outside of their native range. Individuals differed in their reaction norms of phenotypic expression of an important trait in response to environmental change. Cryptic variation was revealed under stressful conditions, evidenced through increasing among-individual variability. Importantly, data on population averages masked this variability in plasticity. In addition, canalized reaction norms in sperm swimming velocities of many individuals over a very large range in water chemistry may help explain why brown trout are able to colonize a wide variety of habitats. PMID:23145341
Lequy, Emeline; Saby, Nicolas P A; Ilyin, Ilia; Bourin, Aude; Sauvage, Stéphane; Leblond, Sébastien
2017-07-15
Air pollution in trace elements (TE) remains a concern for public health in Europe. For this reasons, networks of air pollution concentrations or exposure are deployed, including a moss bio-monitoring programme in Europe. Spatial determinants of TE concentrations in mosses remain unclear. In this study, the French dataset of TE in mosses is analyzed by spatial autoregressive model to account for spatial structure of the data and several variables proven or suspected to affect TE concentrations in mosses. Such variables include source (atmospheric deposition and soil concentrations), protocol (sampling month, collector, and moss species), and environment (forest type and canopy density, distance to the coast or the highway, and elevation). Modeled atmospheric deposition was only available for Cd and Pb and was one of the main explanatory variables of the concentrations in mosses. Predicted soil content was also an important explanatory variable except for Cr, Ni, and Zn. However, the moss species was the main factor for all the studied TE. The other environmental variables affected differently the TE. In particular, the forest type and canopy density were important in most cases. These results stress the need for further research on the effect of the moss species on the capture and retention of TE, as well as for accounting for several variables and the spatial structure of the data in statistical analyses. Copyright © 2017 Elsevier B.V. All rights reserved.
Huntzinger, D. N.; Michalak, A. M.; Schwalm, C.; ...
2017-07-06
Terrestrial ecosystems play a vital role in regulating the accumulation of carbon (C) in the atmosphere. Understanding the factors controlling land C uptake is critical for reducing uncertainties in projections of future climate. The relative importance of changing climate, rising atmospheric CO 2, and other factors, however, remains unclear despite decades of research. Here, we use an ensemble of land models to show that models disagree on the primary driver of cumulative C uptake for 85% of vegetated land area. Disagreement is largest in model sensitivity to rising atmospheric CO 2 which shows almost twice the variability in cumulative landmore » uptake since 1901 (1 s.d. of 212.8 PgC vs. 138.5 PgC, respectively). We find that variability in CO 2 and temperature sensitivity is attributable, in part, to their compensatory effects on C uptake, whereby comparable estimates of C uptake can arise by invoking different sensitivities to key environmental conditions. Conversely, divergent estimates of C uptake can occur despite being based on the same environmental sensitivities. Together, these findings imply an important limitation to the predictability of C cycling and climate under unprecedented environmental conditions. We suggest that the carbon modeling community prioritize a probabilistic multi-model approach to generate more robust C cycle projections.« less
Yang, Jian; Ma, Li'an; Jiang, Hongchen; Wu, Geng; Dong, Hailiang
2016-04-26
Investigating microbial response to environmental variables is of great importance for understanding of microbial acclimatization and evolution in natural environments. However, little is known about how microbial communities responded to environmental factors (e.g. salinity, geographic distance) in lake surface sediments of the Qinghai-Tibetan Plateau (QTP). In this study, microbial diversity and community structure in the surface sediments of nine lakes on the QTP were investigated by using the Illumina Miseq sequencing technique and the resulting microbial data were statistically analyzed in combination with environmental variables. The results showed total microbial community of the studied lakes was significantly correlated (r = 0.631, P < 0.001) with lake salinity instead of geographic distance. This suggests that lake salinity is more important than geographic distance in shaping the microbial diversity and community structure in the studied samples. In addition, the abundant and rare taxa (OTUs with relative abundance higher than 1% and lower than 0.01% within one sample, respectively) were significantly (P < 0.05) correlated (r = 0.427 and 0.783, respectively) with salinity, suggesting rare taxa might be more sensitive to salinity than their abundant counterparts, thus cautions should be taken in future when evaluating microbial response (abundant vs. rare sub-communities) to environmental conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huntzinger, D. N.; Michalak, A. M.; Schwalm, C.
2017-07-06
Terrestrial ecosystems play a vital role in regulating the accumulation of carbon (C) in the atmosphere. Understanding the factors controlling land C uptake is critical for reducing uncertainties in projections of future climate. The relative importance of changing climate, rising atmospheric CO2, and other factors, however, remains unclear despite decades of research. Here, we use an ensemble of land models to show that models disagree on the primary driver of cumulative C uptake for 85% of vegetated land area. Disagreement is largest in model sensitivity to rising atmospheric CO2 which shows almost twice the variability in cumulative land uptake sincemore » 1901 (1 s.d. of 212.8 PgC vs. 138.5 PgC, respectively). We find that variability in CO2 and temperature sensitivity is attributable, in part, to their compensatory effects on C uptake, whereby comparable estimates of C uptake can arise by invoking different sensitivities to key environmental conditions. Conversely, divergent estimates of C uptake can occur despite being based on the same environmental sensitivities. Together, these findings imply an important limitation to the predictability of C cycling and climate under unprecedented environmental conditions. We suggest that the carbon modeling community prioritize a probabilistic multi-model approach to generate more robust C cycle projections.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huntzinger, D. N.; Michalak, A. M.; Schwalm, C.
Terrestrial ecosystems play a vital role in regulating the accumulation of carbon (C) in the atmosphere. Understanding the factors controlling land C uptake is critical for reducing uncertainties in projections of future climate. The relative importance of changing climate, rising atmospheric CO 2, and other factors, however, remains unclear despite decades of research. Here, we use an ensemble of land models to show that models disagree on the primary driver of cumulative C uptake for 85% of vegetated land area. Disagreement is largest in model sensitivity to rising atmospheric CO 2 which shows almost twice the variability in cumulative landmore » uptake since 1901 (1 s.d. of 212.8 PgC vs. 138.5 PgC, respectively). We find that variability in CO 2 and temperature sensitivity is attributable, in part, to their compensatory effects on C uptake, whereby comparable estimates of C uptake can arise by invoking different sensitivities to key environmental conditions. Conversely, divergent estimates of C uptake can occur despite being based on the same environmental sensitivities. Together, these findings imply an important limitation to the predictability of C cycling and climate under unprecedented environmental conditions. We suggest that the carbon modeling community prioritize a probabilistic multi-model approach to generate more robust C cycle projections.« less
Wardhana, A H; Cecchi, G; Muharsini, S; Cameron, M M; Ready, P D; Hall, M J R
2014-10-01
The Old World screwworm (OWS) fly, Chrysomya bezziana, is an obligate parasite of livestock, and the myiasis caused by its larval infestations is economically important in Indonesia. The current spatial distribution of such a pest depends on two main factors: the current environmental conditions in which it can survive; and, its ability to occupy those environments by dispersal, which can be inferred from phylogeography and population genetics. These indicate that all OWS flies in Indonesia have mitochondrial cytochrome b (cyt b) haplotypes of the Asian lineage, and the regional separation of its four sub-lineages is the result of infrequent long-distance dispersal. We report the first investigation to associate regional cyt b sub-lineages of the OWS fly with environmental variables. Principal Components Analysis was used to demonstrate that these sub-lineages are associated with very similar macro-climates throughout Indonesia. Then, a species distribution model for the OWS fly in Indonesia was obtained by using the Maxent program. This indicated that elevation captured information not given by other environmental variables, and cattle density provided the most useful information by itself. The results of our study provide some important leads for future research, which will require better, stratified sampling. Copyright © 2014 International Atomic Energy Agency 2014. Published by Elsevier B.V. All rights reserved.
Genetic variation in heat-stress tolerance among South American Drosophila populations.
Fallis, Lindsey C; Fanara, Juan Jose; Morgan, Theodore J
2011-10-01
Spatial or temporal differences in environmental variables, such as temperature, are ubiquitous in nature and impose stress on organisms. This is especially true for organisms that are isothermal with the environment, such as insects. Understanding the means by which insects respond to temperature and how they will react to novel changes in environmental temperature is important for understanding the adaptive capacity of populations and to predict future trajectories of evolutionary change. The organismal response to heat has been identified as an important environmental variable for insects that can dramatically influence life history characters and geographic range. In the current study we surveyed the amount of variation in heat tolerance among Drosophila melanogaster populations collected at diverse sites along a latitudinal gradient in Argentina (24°-38°S). This is the first study to quantify heat tolerance in South American populations and our work demonstrates that most of the populations surveyed have abundant within-population phenotypic variation, while still exhibiting significant variation among populations. The one exception was the most heat tolerant population that comes from a climate exhibiting the warmest annual mean temperature. All together our results suggest there is abundant genetic variation for heat-tolerance phenotypes within and among natural populations of Drosophila and this variation has likely been shaped by environmental temperature.
Qian, Hong; Chen, Shengbin; Zhang, Jin-Long
2017-07-17
Niche-based and neutrality-based theories are two major classes of theories explaining the assembly mechanisms of local communities. Both theories have been frequently used to explain species diversity and composition in local communities but their relative importance remains unclear. Here, we analyzed 57 assemblages of angiosperm trees in 0.1-ha forest plots across China to examine the effects of environmental heterogeneity (relevant to niche-based processes) and spatial contingency (relevant to neutrality-based processes) on phylogenetic structure of angiosperm tree assemblages distributed across a wide range of environment and space. Phylogenetic structure was quantified with six phylogenetic metrics (i.e., phylogenetic diversity, mean pairwise distance, mean nearest taxon distance, and the standardized effect sizes of these three metrics), which emphasize on different depths of evolutionary histories and account for different degrees of species richness effects. Our results showed that the variation in phylogenetic metrics explained independently by environmental variables was on average much greater than that explained independently by spatial structure, and the vast majority of the variation in phylogenetic metrics was explained by spatially structured environmental variables. We conclude that niche-based processes have played a more important role than neutrality-based processes in driving phylogenetic structure of angiosperm tree species in forest communities in China.
Cruz-Motta, Juan José; Miloslavich, Patricia; Palomo, Gabriela; Iken, Katrin; Konar, Brenda; Pohle, Gerhard; Trott, Tom; Benedetti-Cecchi, Lisandro; Herrera, César; Hernández, Alejandra; Sardi, Adriana; Bueno, Andrea; Castillo, Julio; Klein, Eduardo; Guerra-Castro, Edlin; Gobin, Judith; Gómez, Diana Isabel; Riosmena-Rodríguez, Rafael; Mead, Angela; Bigatti, Gregorio; Knowlton, Ann; Shirayama, Yoshihisa
2010-01-01
Assemblages associated with intertidal rocky shores were examined for large scale distribution patterns with specific emphasis on identifying latitudinal trends of species richness and taxonomic distinctiveness. Seventy-two sites distributed around the globe were evaluated following the standardized sampling protocol of the Census of Marine Life NaGISA project (www.nagisa.coml.org). There were no clear patterns of standardized estimators of species richness along latitudinal gradients or among Large Marine Ecosystems (LMEs); however, a strong latitudinal gradient in taxonomic composition (i.e., proportion of different taxonomic groups in a given sample) was observed. Environmental variables related to natural influences were strongly related to the distribution patterns of the assemblages on the LME scale, particularly photoperiod, sea surface temperature (SST) and rainfall. In contrast, no environmental variables directly associated with human influences (with the exception of the inorganic pollution index) were related to assemblage patterns among LMEs. Correlations of the natural assemblages with either latitudinal gradients or environmental variables were equally strong suggesting that neither neutral models nor models based solely on environmental variables sufficiently explain spatial variation of these assemblages at a global scale. Despite the data shortcomings in this study (e.g., unbalanced sample distribution), we show the importance of generating biological global databases for the use in large-scale diversity comparisons of rocky intertidal assemblages to stimulate continued sampling and analyses. PMID:21179546
Combining Genotype, Phenotype, and Environment to Infer Potential Candidate Genes.
Talbot, Benoit; Chen, Ting-Wen; Zimmerman, Shawna; Joost, Stéphane; Eckert, Andrew J; Crow, Taylor M; Semizer-Cuming, Devrim; Seshadri, Chitra; Manel, Stéphanie
2017-03-01
Population genomic analysis can be an important tool in understanding local adaptation. Identification of potential adaptive loci in such analyses is usually based on the survey of a large genomic dataset in combination with environmental variables. Phenotypic data are less commonly incorporated into such studies, although combining a genome scan analysis with a phenotypic trait analysis can greatly improve the insights obtained from each analysis individually. Here, we aimed to identify loci potentially involved in adaptation to climate in 283 Loblolly pine (Pinus taeda) samples from throughout the species' range in the southeastern United States. We analyzed associations between phenotypic, molecular, and environmental variables from datasets of 3082 single nucleotide polymorphism (SNP) loci and 3 categories of phenotypic traits (gene expression, metabolites, and whole-plant traits). We found only 6 SNP loci that displayed potential signals of local adaptation. Five of the 6 identified SNPs are linked to gene expression traits for lignin development, and 1 is linked with whole-plant traits. We subsequently compared the 6 candidate genes with environmental variables and found a high correlation in only 3 of them (R2 > 0.2). Our study highlights the need for a combination of genotypes, phenotypes, and environmental variables, and for an appropriate sampling scheme and study design, to improve confidence in the identification of potential candidate genes. © The American Genetic Association 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Environmental assessment of metal exposure to corals living in Castle Harbour, Bermuda
Prouty, N.G.; Goodkin, N.F.; Jones, R.; Lamborg, C.H.; Storlazzi, C.D.; Hughen, K.A.
2013-01-01
Environmental contamination in Castle Harbour, Bermuda, has been linked to the dissolution and leaching of contaminants from the adjacent marine landfill. This study expands the evidence for environmental impact of leachate from the landfill by quantitatively demonstrating elevated metal uptake over the last 30 years in corals growing in Castle Harbour. Coral Pb/Ca, Zn/Ca and Mn/Ca ratios and total Hg concentrations are elevated relative to an adjacent control site in John Smith's Bay. The temporal variability in the Castle Harbour coral records suggests that while the landfill has increased in size over the last 35 years, the dominant input of metals is through periodic leaching of contaminants from the municipal landfill and surrounding sediment. Elevated contaminants in the surrounding sediment suggest that resuspension is an important transport medium for transferring heavy metals to corals. Increased winds, particularly during the 1990s, were accompanied by higher coral metal composition at Castle Harbour. Coupled with wind-induced resuspension, interannual changes in sea level within the Harbour can lead to increased bioavailability of sediment-bound metals and subsequent coral metal assimilation. At John Smith's Bay, large scale convective mixing may be driving interannual metal variability in the coral record rather than impacts from land-based activities. Results from this study provide important insights into the coupling of natural variability and anthropogenic input of contaminants to the nearshore environment.
Phylogenetic turnover along local environmental gradients in tropical forest communities.
Baldeck, C A; Kembel, S W; Harms, K E; Yavitt, J B; John, R; Turner, B L; Madawala, S; Gunatilleke, N; Gunatilleke, S; Bunyavejchewin, S; Kiratiprayoon, S; Yaacob, A; Supardi, M N N; Valencia, R; Navarrete, H; Davies, S J; Chuyong, G B; Kenfack, D; Thomas, D W; Dalling, J W
2016-10-01
While the importance of local-scale habitat niches in shaping tree species turnover along environmental gradients in tropical forests is well appreciated, relatively little is known about the influence of phylogenetic signal in species' habitat niches in shaping local community structure. We used detailed maps of the soil resource and topographic variation within eight 24-50 ha tropical forest plots combined with species phylogenies created from the APG III phylogeny to examine how phylogenetic beta diversity (indicating the degree of phylogenetic similarity of two communities) was related to environmental gradients within tropical tree communities. Using distance-based redundancy analysis we found that phylogenetic beta diversity, expressed as either nearest neighbor distance or mean pairwise distance, was significantly related to both soil and topographic variation in all study sites. In general, more phylogenetic beta diversity within a forest plot was explained by environmental variables this was expressed as nearest neighbor distance versus mean pairwise distance (3.0-10.3 % and 0.4-8.8 % of variation explained among plots, respectively), and more variation was explained by soil resource variables than topographic variables using either phylogenetic beta diversity metric. We also found that patterns of phylogenetic beta diversity expressed as nearest neighbor distance were consistent with previously observed patterns of niche similarity among congeneric species pairs in these plots. These results indicate the importance of phylogenetic signal in local habitat niches in shaping the phylogenetic structure of tropical tree communities, especially at the level of close phylogenetic neighbors, where similarity in habitat niches is most strongly preserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rozema, Jaap G., E-mail: j.rozema@uea.ac.uk; Bond, Alan J., E-mail: alan.bond@uea.ac.uk; Cashmore, Matthew, E-mail: cashmore@plan.aau.dk
2012-02-15
This paper investigates the discursive construction of the substantive purposes of environmental assessment (EA). It addresses these purposes by exploring the complex and often multifaceted linkages between political factors and plural views of democracy, public participation, and the role of science that are embedded in environmental and sustainability discourses. The interaction between policy-making and public actors leads to the formulation of divergent and potentially competing rationales for public participation, and for social appraisal more generally. Participatory approaches have also given impetus to the development of several interpretations on the role of science in assessment procedures. Science is important in mediatingmore » public participation and the two are therefore reciprocally linked. This leads to discourses that become manifest in the construction of substantive purposes. Discourse analysis in EA is a relevant method for examining trends and patterns in sustainable development. It is argued that public participation is an important, if not decisive, variable in the articulation and civil legitimacy of certain purposes. A general proposition that results from this paper is that EA, although typically presented as an objective scientific tool, is an intrinsically normative process. Enhanced knowledge on the construction, and reconstruction over time, of substantive purposes is required if environmental and sustainability discourses are to be used and understood as meaningful analytical instruments to assess the socio-political implications of EA. - Highlights: Black-Right-Pointing-Pointer Substantive purposes related to environmental assessment may be best analyzed through discourse analysis. Black-Right-Pointing-Pointer Environmental and sustainability discourses are contingent on the level of participatory democracy and civic science. Black-Right-Pointing-Pointer Public participation is a decisive variable in the construction of the substantive purpose of environmental assessment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Qichun; Zhang, Xuesong; Xu, Xingya
Riverine carbon cycling is an important, but insufficiently investigated component of the global carbon cycle. Analyses of environmental controls on riverine carbon cycling are critical for improved understanding of mechanisms regulating carbon processing and storage along the terrestrial-aquatic continuum. Here, we compile and analyze riverine dissolved organic carbon (DOC) concentration data from 1402 United States Geological Survey (USGS) gauge stations to examine the spatial variability and environmental controls of DOC concentrations in the United States (U.S.) surface waters. DOC concentrations exhibit high spatial variability, with an average of 6.42 ± 6.47 mg C/ L (Mean ± Standard Deviation). In general,more » high DOC concentrations occur in the Upper Mississippi River basin and the Southeastern U.S., while low concentrations are mainly distributed in the Western U.S. Single-factor analysis indicates that slope of drainage areas, wetlands, forests, percentage of first-order streams, and instream nutrients (such as nitrogen and phosphorus) pronouncedly influence DOC concentrations, but the explanatory power of each bivariate model is lower than 35%. Analyses based on the general multi-linear regression models suggest DOC concentrations are jointly impacted by multiple factors. Soil properties mainly show positive correlations with DOC concentrations; forest and shrub lands have positive correlations with DOC concentrations, but urban area and croplands demonstrate negative impacts; total instream phosphorus and dam density correlate positively with DOC concentrations. Notably, the relative importance of these environmental controls varies substantially across major U.S. water resource regions. In addition, DOC concentrations and environmental controls also show significant variability from small streams to large rivers, which may be caused by changing carbon sources and removal rates by river orders. In sum, our results reveal that general multi-linear regression analysis of twenty one terrestrial and aquatic environmental factors can partially explain (56%) the DOC concentration variation. In conclusion, this study highlights the complexity of the interactions among these environmental factors in determining DOC concentrations, thus calls for processes-based, non-linear methodologies to constrain uncertainties in riverine DOC cycling.« less
Nijhof, Carl O P; Huijbregts, Mark A J; Golsteijn, Laura; van Zelm, Rosalie
2016-04-01
We compared the influence of spatial variability in environmental characteristics and the uncertainty in measured substance properties of seven chemicals on freshwater fate factors (FFs), representing the residence time in the freshwater environment, and on exposure factors (XFs), representing the dissolved fraction of a chemical. The influence of spatial variability was quantified using the SimpleBox model in which Europe was divided in 100 × 100 km regions, nested in a regional (300 × 300 km) and supra-regional (500 × 500 km) scale. Uncertainty in substance properties was quantified by means of probabilistic modelling. Spatial variability and parameter uncertainty were expressed by the ratio k of the 95%ile and 5%ile of the FF and XF. Our analysis shows that spatial variability ranges in FFs of persistent chemicals that partition predominantly into one environmental compartment was up to 2 orders of magnitude larger compared to uncertainty. For the other (less persistent) chemicals, uncertainty in the FF was up to 1 order of magnitude larger than spatial variability. Variability and uncertainty in freshwater XFs of the seven chemicals was negligible (k < 1.5). We found that, depending on the chemical and emission scenario, accounting for region-specific environmental characteristics in multimedia fate modelling, as well as accounting for parameter uncertainty, can have a significant influence on freshwater fate factor predictions. Therefore, we conclude that it is important that fate factors should not only account for parameter uncertainty, but for spatial variability as well, as this further increases the reliability of ecotoxicological impacts in LCA. Copyright © 2016 Elsevier Ltd. All rights reserved.
Environmental variability facilitates coexistence within an alcid community at sea
Haney, J. Christopher; Schauer, Amy E.S.
1994-01-01
We examined coexistence at sea among 7 taxa of diving, wing-propelled seabirds (Alcidae) in the genera Aethia, Uria, Cepphus, and Fratercula. Species abundances were measured simultaneously with a suite of environmental factors in the northern Bering Sea, Alaska, USA; data from 260 adjacent and non-adjacent sites occupied by alcids foraging offshore near breeding colonies were then subjected to principal component analysis (PCA). We used PCA to group redundant environmental descriptors, to identify orthogonal axes for constructing a multi-dimensional niche, and to differentiate species associations within niche dimensions from species associations among niche dimensions. Decomposition of the correlation matrix for 22 environmental and 7 taxonomic variables with PCA gave 14 components (10 environmental and 4 species interactions) that retained 90% of the original available variance. Alcid abundances (all species) were most strongly correlated with axes representing tidal stage, a time-area interaction (due to sampling layout), water masses, and a temporal or intra-seasonal trend partially associated with weather changes. Axes representing tidal stage, 2 gradients in macro-habitat (Anadyr and Bering Shelf Water masses), the micro-habitat of the sea surface, and an air-sea interaction were most important for detecting differences among species within niche dimensions. Contrary to assumptions of competition, none of 4 compound variables describing primarily species-interactions gave strong evidence for negative associations between alcid taxa sharing similar body sizes and feeding requirements. This exploratory analysis supports the view that alcids may segregate along environmental gradients at sea. But in this community, segregation was unrelated to foraging distance from colonies, in part because foraging 'substrate' was highly variable in structure, location, and area1 extent. We contend that coexistence within this seabird group is facilitated via expanded niche dimensions created from a complex marine environment.
Environment and host as large-scale controls of ectomycorrhizal fungi.
van der Linde, Sietse; Suz, Laura M; Orme, C David L; Cox, Filipa; Andreae, Henning; Asi, Endla; Atkinson, Bonnie; Benham, Sue; Carroll, Christopher; Cools, Nathalie; De Vos, Bruno; Dietrich, Hans-Peter; Eichhorn, Johannes; Gehrmann, Joachim; Grebenc, Tine; Gweon, Hyun S; Hansen, Karin; Jacob, Frank; Kristöfel, Ferdinand; Lech, Paweł; Manninger, Miklós; Martin, Jan; Meesenburg, Henning; Merilä, Päivi; Nicolas, Manuel; Pavlenda, Pavel; Rautio, Pasi; Schaub, Marcus; Schröck, Hans-Werner; Seidling, Walter; Šrámek, Vít; Thimonier, Anne; Thomsen, Iben Margrete; Titeux, Hugues; Vanguelova, Elena; Verstraeten, Arne; Vesterdal, Lars; Waldner, Peter; Wijk, Sture; Zhang, Yuxin; Žlindra, Daniel; Bidartondo, Martin I
2018-06-06
Explaining the large-scale diversity of soil organisms that drive biogeochemical processes-and their responses to environmental change-is critical. However, identifying consistent drivers of belowground diversity and abundance for some soil organisms at large spatial scales remains problematic. Here we investigate a major guild, the ectomycorrhizal fungi, across European forests at a spatial scale and resolution that is-to our knowledge-unprecedented, to explore key biotic and abiotic predictors of ectomycorrhizal diversity and to identify dominant responses and thresholds for change across complex environmental gradients. We show the effect of 38 host, environment, climate and geographical variables on ectomycorrhizal diversity, and define thresholds of community change for key variables. We quantify host specificity and reveal plasticity in functional traits involved in soil foraging across gradients. We conclude that environmental and host factors explain most of the variation in ectomycorrhizal diversity, that the environmental thresholds used as major ecosystem assessment tools need adjustment and that the importance of belowground specificity and plasticity has previously been underappreciated.
Burggren, Warren
2018-05-10
The slow, inexorable rise in annual average global temperatures and acidification of the oceans are often advanced as consequences of global change. However, many environmental changes, especially those involving weather (as opposed to climate), are often stochastic, variable and extreme, particularly in temperate terrestrial or freshwater habitats. Moreover, few studies of animal and plant phenotypic plasticity employ realistic (i.e. short-term, stochastic) environmental change in their protocols. Here, I posit that the frequently abrupt environmental changes (days, weeks, months) accompanying much longer-term general climate change (e.g. global warming over decades or centuries) require consideration of the true nature of environmental change (as opposed to statistical means) coupled with an expansion of focus to consider developmental phenotypic plasticity. Such plasticity can be in multiple forms - obligatory/facultative, beneficial/deleterious - depending upon the degree and rate of environmental variability at specific points in organismal development. Essentially, adult phenotypic plasticity, as important as it is, will be irrelevant if developing offspring lack sufficient plasticity to create modified phenotypes necessary for survival. © 2018. Published by The Company of Biologists Ltd.
Integrated presentation of ecological risk from multiple stressors
NASA Astrophysics Data System (ADS)
Goussen, Benoit; Price, Oliver R.; Rendal, Cecilie; Ashauer, Roman
2016-10-01
Current environmental risk assessments (ERA) do not account explicitly for ecological factors (e.g. species composition, temperature or food availability) and multiple stressors. Assessing mixtures of chemical and ecological stressors is needed as well as accounting for variability in environmental conditions and uncertainty of data and models. Here we propose a novel probabilistic ERA framework to overcome these limitations, which focusses on visualising assessment outcomes by construct-ing and interpreting prevalence plots as a quantitative prediction of risk. Key components include environmental scenarios that integrate exposure and ecology, and ecological modelling of relevant endpoints to assess the effect of a combination of stressors. Our illustrative results demonstrate the importance of regional differences in environmental conditions and the confounding interactions of stressors. Using this framework and prevalence plots provides a risk-based approach that combines risk assessment and risk management in a meaningful way and presents a truly mechanistic alternative to the threshold approach. Even whilst research continues to improve the underlying models and data, regulators and decision makers can already use the framework and prevalence plots. The integration of multiple stressors, environmental conditions and variability makes ERA more relevant and realistic.
Integrated presentation of ecological risk from multiple stressors.
Goussen, Benoit; Price, Oliver R; Rendal, Cecilie; Ashauer, Roman
2016-10-26
Current environmental risk assessments (ERA) do not account explicitly for ecological factors (e.g. species composition, temperature or food availability) and multiple stressors. Assessing mixtures of chemical and ecological stressors is needed as well as accounting for variability in environmental conditions and uncertainty of data and models. Here we propose a novel probabilistic ERA framework to overcome these limitations, which focusses on visualising assessment outcomes by construct-ing and interpreting prevalence plots as a quantitative prediction of risk. Key components include environmental scenarios that integrate exposure and ecology, and ecological modelling of relevant endpoints to assess the effect of a combination of stressors. Our illustrative results demonstrate the importance of regional differences in environmental conditions and the confounding interactions of stressors. Using this framework and prevalence plots provides a risk-based approach that combines risk assessment and risk management in a meaningful way and presents a truly mechanistic alternative to the threshold approach. Even whilst research continues to improve the underlying models and data, regulators and decision makers can already use the framework and prevalence plots. The integration of multiple stressors, environmental conditions and variability makes ERA more relevant and realistic.
[Mapping environmental vulnerability from ETM + data in the Yellow River Mouth Area].
Wang, Rui-Yan; Yu, Zhen-Wen; Xia, Yan-Ling; Wang, Xiang-Feng; Zhao, Geng-Xing; Jiang, Shu-Qian
2013-10-01
The environmental vulnerability retrieval is important to support continuing data. The spatial distribution of regional environmental vulnerability was got through remote sensing retrieval. In view of soil and vegetation, the environmental vulnerability evaluation index system was built, and the environmental vulnerability of sampling points was calculated by the AHP-fuzzy method, then the correlation between the sampling points environmental vulnerability and ETM + spectral reflectance ratio including some kinds of conversion data was analyzed to determine the sensitive spectral parameters. Based on that, models of correlation analysis, traditional regression, BP neural network and support vector regression were taken to explain the quantitative relationship between the spectral reflectance and the environmental vulnerability. With this model, the environmental vulnerability distribution was retrieved in the Yellow River Mouth Area. The results showed that the correlation between the environmental vulnerability and the spring NDVI, the September NDVI and the spring brightness was better than others, so they were selected as the sensitive spectral parameters. The model precision result showed that in addition to the support vector model, the other model reached the significant level. While all the multi-variable regression was better than all one-variable regression, and the model accuracy of BP neural network was the best. This study will serve as a reliable theoretical reference for the large spatial scale environmental vulnerability estimation based on remote sensing data.
de Carvalho, Moisés Vieira; Marins, João Carlos Bouzas; Silami-Garcia, Emerson
2007-01-01
The purpose of this study was to identify and to compare the effects of ingesting liquids during a 16-km military march under moderate environmental conditions. Twenty-six volunteer male subjects were randomly divided into two groups. Group GW received water (n=12), and group GP received an electrolytic carbohydrate solution (n=14). Blood and urine samples were obtained immediately before and after the march. No significant differences between the drinks were found for any of the measured variables. However, important results (p < 0.05) were observed by comparing variables before and after exercise. The variables included sodium, hematocrit, red blood cell, hemoglobin, and lactic acid levels and body weight (group GW) and sodium, potassium, hematocrit, red blood cell, hemoglobin, and lactic acid levels (group GP). Under the environmental conditions and hydration procedures applied, the results of this study showed similarities in the behavior of the variables, regardless of the kind of beverage consumed.
Test methods for environment-assisted cracking
NASA Astrophysics Data System (ADS)
Turnbull, A.
1992-03-01
The test methods for assessing environment assisted cracking of metals in aqueous solution are described. The advantages and disadvantages are examined and the interrelationship between results from different test methods is discussed. The source of differences in susceptibility to cracking occasionally observed from the varied mechanical test methods arises often from the variation between environmental parameters in the different test conditions and the lack of adequate specification, monitoring, and control of environmental variables. Time is also a significant factor when comparing results from short term tests with long exposure tests. In addition to these factors, the intrinsic difference in the important mechanical variables, such as strain rate, associated with the various mechanical tests methods can change the apparent sensitivity of the material to stress corrosion cracking. The increasing economic pressure for more accelerated testing is in conflict with the characteristic time dependence of corrosion processes. Unreliable results may be inevitable in some cases but improved understanding of mechanisms and the development of mechanistically based models of environment assisted cracking which incorporate the key mechanical, material, and environmental variables can provide the framework for a more realistic interpretation of short term data.
Geoffrey J. Cary; Robert E. Keane; Robert H. Gardner; Sandra Lavorel; Mike D. Flannigan; Ian D. Davies; Chao Li; James M. Lenihan; T. Scott Rupp; Florent Mouillot
2006-01-01
The relative importance of variables in determining area burned is an important management consideration although gaining insights from existing empirical data has proven difficult. The purpose of this study was to compare the sensitivity of modeled area burned to environmental factors across a range of independently-developed landscape-fire-succession models. The...
Ecker, Simone; Chen, Lu; Pancaldi, Vera; Bagger, Frederik O; Fernández, José María; Carrillo de Santa Pau, Enrique; Juan, David; Mann, Alice L; Watt, Stephen; Casale, Francesco Paolo; Sidiropoulos, Nikos; Rapin, Nicolas; Merkel, Angelika; Stunnenberg, Hendrik G; Stegle, Oliver; Frontini, Mattia; Downes, Kate; Pastinen, Tomi; Kuijpers, Taco W; Rico, Daniel; Valencia, Alfonso; Beck, Stephan; Soranzo, Nicole; Paul, Dirk S
2017-01-26
A healthy immune system requires immune cells that adapt rapidly to environmental challenges. This phenotypic plasticity can be mediated by transcriptional and epigenetic variability. We apply a novel analytical approach to measure and compare transcriptional and epigenetic variability genome-wide across CD14 + CD16 - monocytes, CD66b + CD16 + neutrophils, and CD4 + CD45RA + naïve T cells from the same 125 healthy individuals. We discover substantially increased variability in neutrophils compared to monocytes and T cells. In neutrophils, genes with hypervariable expression are found to be implicated in key immune pathways and are associated with cellular properties and environmental exposure. We also observe increased sex-specific gene expression differences in neutrophils. Neutrophil-specific DNA methylation hypervariable sites are enriched at dynamic chromatin regions and active enhancers. Our data highlight the importance of transcriptional and epigenetic variability for the key role of neutrophils as the first responders to inflammatory stimuli. We provide a resource to enable further functional studies into the plasticity of immune cells, which can be accessed from: http://blueprint-dev.bioinfo.cnio.es/WP10/hypervariability .
Collaborative Research: Cloudiness transitions within shallow marine clouds near the Azores
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mechem, David B.; de Szoeke, Simon P.; Yuter, Sandra E.
Marine stratocumulus clouds are low, persistent, liquid phase clouds that cover large areas and play a significant role in moderating the climate by reflecting large quantities of incoming solar radiation. The deficiencies in simulating these clouds in global climate models are widely recognized. Much of the uncertainty arises from sub-grid scale variability in the cloud albedo that is not accurately parameterized in climate models. The Clouds, Aerosol and Precipitation in the Marine Boundary Layer (CAP–MBL) observational campaign and the ongoing ARM site measurements on Graciosa Island in the Azores aim to sample the Northeast Atlantic low cloud regime. These datamore » represent, the longest continuous research quality cloud radar/lidar/radiometer/aerosol data set of open-ocean shallow marine clouds in existence. Data coverage from CAP–MBL and the series of cruises to the southeast Pacific culminating in VOCALS will both be of sufficient length to contrast the two low cloud regimes and explore the joint variability of clouds in response to several environmental factors implicated in cloudiness transitions. Our research seeks to better understand cloud system processes in an underexplored but climatologically important maritime region. Our primary goal is an improved physical understanding of low marine clouds on temporal scales of hours to days. It is well understood that aerosols, synoptic-scale forcing, surface fluxes, mesoscale dynamics, and cloud microphysics all play a role in cloudiness transitions. However, the relative importance of each mechanism as a function of different environmental conditions is unknown. To better understand cloud forcing and response, we are documenting the joint variability of observed environmental factors and associated cloud characteristics. In order to narrow the realm of likely parameter ranges, we assess the relative importance of parameter conditions based primarily on two criteria: how often the condition occurs (frequency) and to what degree varying that condition within its typically observed range affects cloud characteristics (magnitude of impact given the condition). In this manner we will be able to address the relative importance of individual factors within a multivariate range of environmental conditions. We will determine the relative roles of the thermodynamic, aerosol, and synoptic environmental factors on low cloud and drizzle formation and lifetime.« less
Biodiversity and ecosystem stability across scales in metacommunities
Wang, Shaopeng; Loreau, Michel
2016-01-01
Although diversity-stability relationships have been extensively studied in local ecosystems, the global biodiversity crisis calls for an improved understanding of these relationships in a spatial context. Here we use a dynamical model of competitive metacommunities to study the relationships between species diversity and ecosystem variability across scales. We derive analytic relationships under a limiting case; these results are extended to more general cases with numerical simulations. Our model shows that, while alpha diversity decreases local ecosystem variability, beta diversity generally contributes to increasing spatial asynchrony among local ecosystems. Consequently, both alpha and beta diversity provide stabilizing effects for regional ecosystems, through local and spatial insurance effects, respectively. We further show that at the regional scale, the stabilizing effect of biodiversity increases as spatial environmental correlation increases. Our findings have important implications for understanding the interactive effects of global environmental changes (e.g. environmental homogenization) and biodiversity loss on ecosystem sustainability at large scales. PMID:26918536
Bird species and traits associated with logged and unlogged forest in Borneo.
Cleary, Daniel F R; Boyle, Timothy J B; Setyawati, Titiek; Anggraeni, Celina D; Van Loon, E Emiel; Menken, Steph B J
2007-06-01
The ecological consequences of logging have been and remain a focus of considerable debate. In this study, we assessed bird species composition within a logging concession in Central Kalimantan, Indonesian Borneo. Within the study area (approximately 196 km2) a total of 9747 individuals of 177 bird species were recorded. Our goal was to identify associations between species traits and environmental variables. This can help us to understand the causes of disturbance and predict whether species with given traits will persist under changing environmental conditions. Logging, slope position, and a number of habitat structure variables including canopy cover and liana abundance were significantly related to variation in bird composition. In addition to environmental variables, spatial variables also explained a significant amount of variation. However, environmental variables, particularly in relation to logging, were of greater importance in structuring variation in composition. Environmental change following logging appeared to have a pronounced effect on the feeding guild and size class structure but there was little evidence of an effect on restricted range or threatened species although certain threatened species were adversely affected. For example, species such as the terrestrial insectivore Argusianus argus and the hornbill Buceros rhinoceros, both of which are threatened, were rare or absent in recently logged forest. In contrast, undergrowth insectivores such as Orthotomus atrogularis and Trichastoma rostratum were abundant in recently logged forest and rare in unlogged forest. Logging appeared to have the strongest negative effect on hornbills, terrestrial insectivores, and canopy bark-gleaning insectivores while moderately affecting canopy foliage-gleaning insectivores and frugivores, raptors, and large species in general. In contrast, undergrowth insectivores responded positively to logging while most understory guilds showed little pronounced effect. Despite the high species richness of logged forest, logging may still have a negative impact on extant diversity by adversely affecting key ecological guilds. The sensitivity of hornbills in particular to logging disturbance may be expected to alter rainforest dynamics by seriously reducing the effective seed dispersal of associated tree species. However, logged forest represents an increasingly important habitat for most bird species and needs to be protected from further degradation. Biodiversity management within logging concessions should focus on maintaining large areas of unlogged forest and mitigating the adverse effects of logging on sensitive groups of species.
Liversage, Kiran; Nurkse, Kristiina; Kotta, Jonne; Järv, Leili
2017-12-01
Spatiotemporal environmental variation affects fish feeding behaviour and capacity for piscivorous control of prey populations, which is important for management when prey include invasive species causing ecosystem impacts. We assessed gut-contents of an important piscivore (European perch Perca fluviatilis) over two years, and analysed variables affecting initiation and amounts of feeding, focusing on an important invasive prey species, round goby (Neogobius melanostomus). We show that predation is primarily controlled by variation of physical and habitat characteristics surrounding perch. Fish prey began being incorporated in diets of perch that were >150 mm, with temperature conditions controlling initiation of their feeding. Total amounts of fish in perch diets, and amounts of round goby individually, were strongly affected by macrophyte cover; seldom were fish present in perch stomachs when macrophyte cover was >40%. Environmental densities of round goby were related to multivariate diet composition in ways that suggest predation of some native species may be relaxed in areas of dense round goby populations. There was evidence that perch predation is unlikely to limit populations of the invader, as there was only a weak relationship between round goby densities and amounts in gut contents. The results have ecosystem management implications, because some variables found to be important could be manipulated to control round goby or other similar invaders e.g. fisheries management of native piscivore stock-density and body-size, or modification of benthic environment structure. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bird Communities and Environmental Correlates in Southern Oregon and Northern California, USA.
Stephens, Jaime L; Dinger, Eric C; Alexander, John D; Mohren, Sean R; Ralph, C John; Sarr, Daniel A
2016-01-01
We examined avian community ecology in the Klamath Ecoregion and determined that individual bird species co-exist spatially to form 29 statistically distinguishable bird groups. We identified climate, geography, and vegetation metrics that are correlated with these 29 bird groups at three scales: Klamath Ecoregion, vegetation formation (agriculture, conifer, mixed conifer/hardwood, shrubland), and National Park Service unit. Two climate variables (breeding season mean temperature and temperature range) and one geography variable (elevation) were correlated at all scales, suggesting that for some vegetation formations and park units there is sufficient variation in climate and geography to be an important driver of bird communities, a level of variation we expected only at the broader scale. We found vegetation to be important at all scales, with coarse metrics (environmental site potential and existing vegetation formation) meaningful across all scales and structural vegetation patterns (e.g. succession, disturbance) important only at the scale of vegetation formation or park unit. Additionally, we examined how well six National Park Service units represent bird communities in the broader Klamath Ecoregion. Park units are inclusive of most bird communities with the exception of the oak woodland community; mature conifer forests are well represented, primarily associated with conifer canopy and lacking multi-layered structure. Identifying environmental factors that shape bird communities at three scales within this region is important; such insights can inform local and regional land management decisions necessary to ensure bird conservation in this globally significant region.
Bird Communities and Environmental Correlates in Southern Oregon and Northern California, USA
Dinger, Eric C.; Alexander, John D.; Mohren, Sean R.; Ralph, C. John; Sarr, Daniel A.
2016-01-01
We examined avian community ecology in the Klamath Ecoregion and determined that individual bird species co-exist spatially to form 29 statistically distinguishable bird groups. We identified climate, geography, and vegetation metrics that are correlated with these 29 bird groups at three scales: Klamath Ecoregion, vegetation formation (agriculture, conifer, mixed conifer/hardwood, shrubland), and National Park Service unit. Two climate variables (breeding season mean temperature and temperature range) and one geography variable (elevation) were correlated at all scales, suggesting that for some vegetation formations and park units there is sufficient variation in climate and geography to be an important driver of bird communities, a level of variation we expected only at the broader scale. We found vegetation to be important at all scales, with coarse metrics (environmental site potential and existing vegetation formation) meaningful across all scales and structural vegetation patterns (e.g. succession, disturbance) important only at the scale of vegetation formation or park unit. Additionally, we examined how well six National Park Service units represent bird communities in the broader Klamath Ecoregion. Park units are inclusive of most bird communities with the exception of the oak woodland community; mature conifer forests are well represented, primarily associated with conifer canopy and lacking multi-layered structure. Identifying environmental factors that shape bird communities at three scales within this region is important; such insights can inform local and regional land management decisions necessary to ensure bird conservation in this globally significant region. PMID:27732625
NASA Astrophysics Data System (ADS)
Mansuy, N. R.; Paré, D.; Thiffault, E.
2015-12-01
Large-scale mapping of soil properties is increasingly important for environmental resource management. Whileforested areas play critical environmental roles at local and global scales, forest soil maps are typically at lowresolution.The objective of this study was to generate continuous national maps of selected soil variables (C, N andsoil texture) for the Canadian managed forest landbase at 250 m resolution. We produced these maps using thekNN method with a training dataset of 538 ground-plots fromthe National Forest Inventory (NFI) across Canada,and 18 environmental predictor variables. The best predictor variables were selected (7 topographic and 5 climaticvariables) using the Least Absolute Shrinkage and Selection Operator method. On average, for all soil variables,topographic predictors explained 37% of the total variance versus 64% for the climatic predictors. Therelative root mean square error (RMSE%) calculated with the leave-one-out cross-validation method gave valuesranging between 22% and 99%, depending on the soil variables tested. RMSE values b 40% can be considered agood imputation in light of the low density of points used in this study. The study demonstrates strong capabilitiesfor mapping forest soil properties at 250m resolution, compared with the current Soil Landscape of CanadaSystem, which is largely oriented towards the agricultural landbase. The methodology used here can potentiallycontribute to the national and international need for spatially explicit soil information in resource managementscience.
Matos, Jislene B; Oliveira, Suellen M O DE; Pereira, Luci C C; Costa, Rauquírio M DA
2016-09-01
The present study aimed to analyze the structure and the temporal variation of the phytoplankton of Ajuruteua beach (Bragança, Pará) and to investigate the influence of environmental variables on the dynamics of this community to provide a basis about the trophic state of this environment. Biological, hydrological and hydrodynamic samplings were performed during a nyctemeral cycle in the months of November/08, March/09, June/09 and September/09. We identified 110 taxa, which were distributed among the diatoms (87.3%), dinoflagellates (11.8%) and cyanobacteria (0.9%), with the predominance of neritic species, followed by the tychoplankton species. Chlorophyll-a concentrations were the highest during the rainy period (24.5 mg m-3), whereas total phytoplankton density was higher in the dry period (1,255 x 103 cell L-1). However, phytoflagellates density was significantly higher during the rainy period. Cluster Analysis revealed the formation of four groups, which were influenced by the monthly differences in the environmental variables. The Principal Component Analysis indicated salinity and chlorophyll-a as the main variables that explained the components. Spearman correlation analysis supported the influence of these variables on the local phytoplankton community. Overall, the results obtained suggest that rainfall and strong local hydrodynamics play an important role in the dynamic of the phytoplankton of Ajuruteua beach, by influencing both environmental and biological variables.
Influence of school environments on childhood obesity in California.
Ortega Hinojosa, Alberto M; MacLeod, Kara E; Balmes, John; Jerrett, Michael
2018-06-05
To conduct a state-wide examination of public schools and the school neighborhood as potential targets for environmental public health tracking to address childhood obesity. We examined the relationship of social and physical environmental attributes of the school environment (within school and neighborhood) and childhood obesity in California with machine learning (Random Forest) and multilevel methods. We used data compiled from the California Department of Education, the U.S. Geological Survey, ESRI's Business Analyst, the U.S. Census, and other public sources for ecologic level variables for various years and assessed their relative importance to obesity as determined from the statewide Physical Fitness Test 2003 through 2007 for grades 5, 7, and 9 (n = 5,265,265). In addition to individual-level race and gender, the following within and school neighborhood variables ranked as the most important model contributors based on the Random Forest analysis and were included in multilevel regressions clustered on the county. Violent crime, English learners, socioeconomic disadvantage, fewer physical education (PE) and fully credentialed teachers, and diversity index were positively associated with obesity while academic performance index, PE participation, mean educational attainment and per capita income were negatively associated with obesity. The most highly ranked built or physical environment variables were distance to the nearest highway and greenness, which were 10th and 11th most important, respectively. Many states in the U.S. do not have school-based surveillance programs that collect body mass index data. System-level determinants of obesity can be important for tracking and intervention. The results of these analyses suggest that the school social environment factors may be especially important. Disadvantaged and low academic performing schools have a higher risk for obesity. Supporting such schools in a targeted way may be an efficient way to intervene and could impact both health and academic outcomes. Some of the more important variables, such as having credentialed teachers and participating in PE, are modifiable risk factors. Copyright © 2018. Published by Elsevier Inc.
Population dynamics of pond zooplankton II Daphnia ambigua Scourfield
Angino, E.E.; Armitage, K.B.; Saxena, B.
1973-01-01
Calcium was the most important of 27 environmental components affecting density for a 50 week period. Simultaneous stepwise regression accounted for more variability in total number/1 and in the number of ovigerous females/1 than did any of the lag analyses; 1-week lag accounted for the greatest amount of variability in clutch size. Total number and clutch size were little affected by measures of food. ?? 1973 Dr. W. Junk b.v. Publishers.
Intraseasonal Variability in the Atmosphere-Ocean Climate System. Second Edition
NASA Technical Reports Server (NTRS)
Lau, William K. M.; Waliser, Duane E.
2011-01-01
Understanding and predicting the intraseasonal variability (ISV) of the ocean and atmosphere is crucial to improving long-range environmental forecasts and the reliability of climate change projections through climate models. This updated, comprehensive and authoritative second edition has a balance of observation, theory and modeling and provides a single source of reference for all those interested in this important multi-faceted natural phenomenon and its relation to major short-term climatic variations.
Salter, Ian
2018-01-01
Environmental DNA (eDNA) can be defined as the DNA pool recovered from an environmental sample that includes both extracellular and intracellular DNA. There has been a significant increase in the number of recent studies that have demonstrated the possibility to detect macroorganisms using eDNA. Despite the enormous potential of eDNA to serve as a biomonitoring and conservation tool in aquatic systems, there remain some important limitations concerning its application. One significant factor is the variable persistence of eDNA over natural environmental gradients, which imposes a critical constraint on the temporal and spatial scales of species detection. In the present study, a radiotracer bioassay approach was used to quantify the kinetic parameters of dissolved eDNA (d-eDNA), a component of extracellular DNA, over an annual cycle in the coastal Northwest Mediterranean. Significant seasonal variability in the biological uptake and turnover of d-eDNA was observed, the latter ranging from several hours to over one month. Maximum uptake rates of d-eDNA occurred in summer during a period of intense phosphate limitation (turnover <5 hrs). Corresponding increases in bacterial production and uptake of adenosine triphosphate (ATP) demonstrated the microbial utilization of d-eDNA as an organic phosphorus substrate. Higher temperatures during summer may amplify this effect through a general enhancement of microbial metabolism. A partial least squares regression (PLSR) model was able to reproduce the seasonal cycle in d-eDNA persistence and explained 60% of the variance in the observations. Rapid phosphate turnover and low concentrations of bioavailable phosphate, both indicative of phosphate limitation, were the most important parameters in the model. Abiotic factors such as pH, salinity and oxygen exerted minimal influence. The present study demonstrates significant seasonal variability in the persistence of d-eDNA in a natural marine environment that can be linked to the metabolic response of microbial communities to nutrient limitation. Future studies should consider the effect of natural environmental gradients on the seasonal persistence of eDNA, which will be of particular relevance for time-series biomonitoring programs.
2018-01-01
Environmental DNA (eDNA) can be defined as the DNA pool recovered from an environmental sample that includes both extracellular and intracellular DNA. There has been a significant increase in the number of recent studies that have demonstrated the possibility to detect macroorganisms using eDNA. Despite the enormous potential of eDNA to serve as a biomonitoring and conservation tool in aquatic systems, there remain some important limitations concerning its application. One significant factor is the variable persistence of eDNA over natural environmental gradients, which imposes a critical constraint on the temporal and spatial scales of species detection. In the present study, a radiotracer bioassay approach was used to quantify the kinetic parameters of dissolved eDNA (d-eDNA), a component of extracellular DNA, over an annual cycle in the coastal Northwest Mediterranean. Significant seasonal variability in the biological uptake and turnover of d-eDNA was observed, the latter ranging from several hours to over one month. Maximum uptake rates of d-eDNA occurred in summer during a period of intense phosphate limitation (turnover <5 hrs). Corresponding increases in bacterial production and uptake of adenosine triphosphate (ATP) demonstrated the microbial utilization of d-eDNA as an organic phosphorus substrate. Higher temperatures during summer may amplify this effect through a general enhancement of microbial metabolism. A partial least squares regression (PLSR) model was able to reproduce the seasonal cycle in d-eDNA persistence and explained 60% of the variance in the observations. Rapid phosphate turnover and low concentrations of bioavailable phosphate, both indicative of phosphate limitation, were the most important parameters in the model. Abiotic factors such as pH, salinity and oxygen exerted minimal influence. The present study demonstrates significant seasonal variability in the persistence of d-eDNA in a natural marine environment that can be linked to the metabolic response of microbial communities to nutrient limitation. Future studies should consider the effect of natural environmental gradients on the seasonal persistence of eDNA, which will be of particular relevance for time-series biomonitoring programs. PMID:29474423
Fate of a mutation in a fluctuating environment
Cvijović, Ivana; Good, Benjamin H.; Jerison, Elizabeth R.; Desai, Michael M.
2015-01-01
Natural environments are never truly constant, but the evolutionary implications of temporally varying selection pressures remain poorly understood. Here we investigate how the fate of a new mutation in a fluctuating environment depends on the dynamics of environmental variation and on the selective pressures in each condition. We find that even when a mutation experiences many environmental epochs before fixing or going extinct, its fate is not necessarily determined by its time-averaged selective effect. Instead, environmental variability reduces the efficiency of selection across a broad parameter regime, rendering selection unable to distinguish between mutations that are substantially beneficial and substantially deleterious on average. Temporal fluctuations can also dramatically increase fixation probabilities, often making the details of these fluctuations more important than the average selection pressures acting on each new mutation. For example, mutations that result in a trade-off between conditions but are strongly deleterious on average can nevertheless be more likely to fix than mutations that are always neutral or beneficial. These effects can have important implications for patterns of molecular evolution in variable environments, and they suggest that it may often be difficult for populations to maintain specialist traits, even when their loss leads to a decline in time-averaged fitness. PMID:26305937
High taxonomic variability despite stable functional structure across microbial communities.
Louca, Stilianos; Jacques, Saulo M S; Pires, Aliny P F; Leal, Juliana S; Srivastava, Diane S; Parfrey, Laura Wegener; Farjalla, Vinicius F; Doebeli, Michael
2016-12-05
Understanding the processes that are driving variation of natural microbial communities across space or time is a major challenge for ecologists. Environmental conditions strongly shape the metabolic function of microbial communities; however, other processes such as biotic interactions, random demographic drift or dispersal limitation may also influence community dynamics. The relative importance of these processes and their effects on community function remain largely unknown. To address this uncertainty, here we examined bacterial and archaeal communities in replicate 'miniature' aquatic ecosystems contained within the foliage of wild bromeliads. We used marker gene sequencing to infer the taxonomic composition within nine metabolic functional groups, and shotgun environmental DNA sequencing to estimate the relative abundances of these groups. We found that all of the bromeliads exhibited remarkably similar functional community structures, but that the taxonomic composition within individual functional groups was highly variable. Furthermore, using statistical analyses, we found that non-neutral processes, including environmental filtering and potentially biotic interactions, at least partly shaped the composition within functional groups and were more important than spatial dispersal limitation and demographic drift. Hence both the functional structure and taxonomic composition within functional groups of natural microbial communities may be shaped by non-neutral and roughly separate processes.
Christopher, Micaela E.; Keenan, Janice M.; Hulslander, Jacqueline; DeFries, John C.; Miyake, Akira; Wadsworth, Sally J.; Willcutt, Erik; Pennington, Bruce; Olson, Richard K.
2016-01-01
While previous research has shown cognitive skills to be important predictors of reading ability in children, the respective roles for genetic and environmental influences on these relations is an open question. The present study explored the genetic and environmental etiologies underlying the relations between selected executive functions and cognitive abilities (working memory, inhibition, processing speed, and naming speed) with three components of reading ability (word reading, reading comprehension, and listening comprehension). Twin pairs drawn from the Colorado Front Range (n = 676; 224 monozygotic pairs; 452 dizygotic pairs) between the ages of eight and 16 (M = 11.11) were assessed on multiple measures of each cognitive and reading-related skill. Each cognitive and reading-related skill was modeled as a latent variable, and behavioral genetic analyses estimated the portions of phenotypic variance on each latent variable due to genetic, shared environmental, and nonshared environmental influences. The covariance between the cognitive skills and reading-related skills was driven primarily by genetic influences. The cognitive skills also shared large amounts of genetic variance, as did the reading-related skills. The common cognitive genetic variance was highly correlated with the common reading genetic variance, suggesting that genetic influences involved in general cognitive processing are also important for reading ability. Skill-specific genetic variance in working memory and processing speed also predicted components of reading ability. Taken together, the present study supports a genetic association between children’s cognitive ability and reading ability. PMID:26974208
NASA Astrophysics Data System (ADS)
Liu, Hui; Fogarty, Michael J.; Hare, Jonathan A.; Hsieh, Chih-hao; Glaser, Sarah M.; Ye, Hao; Deyle, Ethan; Sugihara, George
2014-03-01
The dynamics of marine fishes are closely related to lower trophic levels and the environment. Quantitatively understanding ecosystem dynamics linking environmental variability and prey resources to exploited fishes is crucial for ecosystem-based management of marine living resources. However, standard statistical models typically grounded in the concept of linear system may fail to capture the complexity of ecological processes. We have attempted to model ecosystem dynamics using a flexible, nonparametric class of nonlinear forecasting models. We analyzed annual time series of four environmental indices, 22 marine copepod taxa, and four ecologically and commercially important fish species during 1977 to 2009 on Georges Bank, a highly productive and intensively studied area of the northeast U.S. continental shelf ecosystem. We examined the underlying dynamic features of environmental indices and copepods, quantified the dynamic interactions and coherence with fishes, and explored the potential control mechanisms of ecosystem dynamics from a nonlinear perspective. We found: (1) the dynamics of marine copepods and environmental indices exhibiting clear nonlinearity; (2) little evidence of complex dynamics across taxonomic levels of copepods; (3) strong dynamic interactions and coherence between copepods and fishes; and (4) the bottom-up forcing of fishes and top-down control of copepods coexisting as target trophic levels vary. These findings highlight the nonlinear interactions among ecosystem components and the importance of marine zooplankton to fish populations which point to two forcing mechanisms likely interactively regulating the ecosystem dynamics on Georges Bank under a changing environment.
Improving the seed germination of little bluestem with selection
USDA-ARS?s Scientific Manuscript database
Rapid seed germination is an important characteristic when it comes to plant stand establishment under variable environmental conditions. This research was designed to improve the seed germination of six experimental Syn-0 lines of little bluestem [Schizachyrium scoparium (Michx.) Nash]. Two cycle...
Forest cover change, climate variability, and hydrological responses
Xiaohua Wei; Rita Winkler; Ge Sun
2017-01-01
Understanding ecohydrological response to environmental change is critical for protecting watershed functions, sustaining clean water supply, and other ecosystem services, safeguarding public safety, floods mitigation, and drought response. Understanding ecohyhdrological processes and their implications to forest and water management has become increasingly important...
Directions in healthcare research: pointers from retailing and services marketing.
Van Rompay, Thomas L J; Tanja-Dijkstra, Karin
2010-01-01
Although the importance of the environment in relation to healing processes has been well established, empirical evidence for environmental effects on patient well-being and behavior is sparse. In addition, few attempts have been made to integrate insights from related fields of research such as retailing and services marketing with findings from healthcare studies. In this paper, relevant findings and insights from these domains are discussed. What insights and findings from retailing and services marketing are (potentially) of interest to the healthcare context, and how should one interpret and follow up on these results in healthcare environments? Research in retailing and services marketing indicates that physical environmental factors (i.e., music and scent) and social environmental factors (i.e., crowded conditions) may affect consumer satisfaction and well-being. In addition, environmental effects have been shown to vary with contextual factors (e.g., the type of environment) and consumer needs (e.g., the extent to which consumers value social contact or stimulation in a specific setting). Although the evidence base for environmental factors in health environments is steadily growing, few attempts have been made to integrate findings from both domains. The findings presented indicate that environmental variables such as music and scent can contribute to patient well-being and overall satisfaction. In addition, findings suggest that these variables may be used to counteract the negative effects resulting from crowded conditions in different healthcare units. Taking into account recent developments in the healthcare industry, the importance of creating memorable and pleasant patient experiences is likely to grow in the years to come. Hence, the finding that subtle and relatively inexpensive manipulations may affect patient well-being in profound ways should inspire follow-up research aimed at unraveling the specifics of environmental influences in health environments.
Yang, Qichun; Zhang, Xuesong; Xu, Xingya; ...
2017-05-29
Riverine carbon cycling is an important, but insufficiently investigated component of the global carbon cycle. Analyses of environmental controls on riverine carbon cycling are critical for improved understanding of mechanisms regulating carbon processing and storage along the terrestrial-aquatic continuum. Here, we compile and analyze riverine dissolved organic carbon (DOC) concentration data from 1402 United States Geological Survey (USGS) gauge stations to examine the spatial variability and environmental controls of DOC concentrations in the United States (U.S.) surface waters. DOC concentrations exhibit high spatial variability, with an average of 6.42 ± 6.47 mg C/ L (Mean ± Standard Deviation). In general,more » high DOC concentrations occur in the Upper Mississippi River basin and the Southeastern U.S., while low concentrations are mainly distributed in the Western U.S. Single-factor analysis indicates that slope of drainage areas, wetlands, forests, percentage of first-order streams, and instream nutrients (such as nitrogen and phosphorus) pronouncedly influence DOC concentrations, but the explanatory power of each bivariate model is lower than 35%. Analyses based on the general multi-linear regression models suggest DOC concentrations are jointly impacted by multiple factors. Soil properties mainly show positive correlations with DOC concentrations; forest and shrub lands have positive correlations with DOC concentrations, but urban area and croplands demonstrate negative impacts; total instream phosphorus and dam density correlate positively with DOC concentrations. Notably, the relative importance of these environmental controls varies substantially across major U.S. water resource regions. In addition, DOC concentrations and environmental controls also show significant variability from small streams to large rivers, which may be caused by changing carbon sources and removal rates by river orders. In sum, our results reveal that general multi-linear regression analysis of twenty one terrestrial and aquatic environmental factors can partially explain (56%) the DOC concentration variation. In conclusion, this study highlights the complexity of the interactions among these environmental factors in determining DOC concentrations, thus calls for processes-based, non-linear methodologies to constrain uncertainties in riverine DOC cycling.« less
Soteriades, Andreas Diomedes; Stott, Alistair William; Moreau, Sindy; Charroin, Thierry; Blanchard, Melanie; Liu, Jiayi; Faverdin, Philippe
2016-01-01
We aimed at quantifying the extent to which agricultural management practices linked to animal production and land use affect environmental outcomes at a larger scale. Two practices closely linked to farm environmental performance at a larger scale are farming intensity, often resulting in greater off-farm environmental impacts (land, non-renewable energy use etc.) associated with the production of imported inputs (e.g. concentrates, fertilizer); and the degree of self-sufficiency, i.e. the farm's capacity to produce goods from its own resources, with higher control over nutrient recycling and thus minimization of losses to the environment, often resulting in greater on-farm impacts (eutrophication, acidification etc.). We explored the relationship of these practices with farm environmental performance for 185 French specialized dairy farms. We used Partial Least Squares Structural Equation Modelling to build, and relate, latent variables of environmental performance, intensification and self-sufficiency. Proxy indicators reflected the latent variables for intensification (milk yield/cow, use of maize silage etc.) and self-sufficiency (home-grown feed/total feed use, on-farm energy/total energy use etc.). Environmental performance was represented by an aggregate 'eco-efficiency' score per farm derived from a Data Envelopment Analysis model fed with LCA and farm output data. The dataset was split into two spatially heterogeneous (bio-physical conditions, production patterns) regions. For both regions, eco-efficiency was significantly negatively related with milk yield/cow and the use of maize silage and imported concentrates. However, these results might not necessarily hold for intensive yet more self-sufficient farms. This requires further investigation with latent variables for intensification and self-sufficiency that do not largely overlap- a modelling challenge that occurred here. We conclude that the environmental 'sustainability' of intensive dairy farming depends on particular farming systems and circumstances, although we note that more self-sufficient farms may be preferable when they may benefit from relatively low land prices and agri-environment schemes aimed at maintaining grasslands.
Soteriades, Andreas Diomedes; Stott, Alistair William; Moreau, Sindy; Charroin, Thierry; Blanchard, Melanie; Liu, Jiayi; Faverdin, Philippe
2016-01-01
We aimed at quantifying the extent to which agricultural management practices linked to animal production and land use affect environmental outcomes at a larger scale. Two practices closely linked to farm environmental performance at a larger scale are farming intensity, often resulting in greater off-farm environmental impacts (land, non-renewable energy use etc.) associated with the production of imported inputs (e.g. concentrates, fertilizer); and the degree of self-sufficiency, i.e. the farm’s capacity to produce goods from its own resources, with higher control over nutrient recycling and thus minimization of losses to the environment, often resulting in greater on-farm impacts (eutrophication, acidification etc.). We explored the relationship of these practices with farm environmental performance for 185 French specialized dairy farms. We used Partial Least Squares Structural Equation Modelling to build, and relate, latent variables of environmental performance, intensification and self-sufficiency. Proxy indicators reflected the latent variables for intensification (milk yield/cow, use of maize silage etc.) and self-sufficiency (home-grown feed/total feed use, on-farm energy/total energy use etc.). Environmental performance was represented by an aggregate ‘eco-efficiency’ score per farm derived from a Data Envelopment Analysis model fed with LCA and farm output data. The dataset was split into two spatially heterogeneous (bio-physical conditions, production patterns) regions. For both regions, eco-efficiency was significantly negatively related with milk yield/cow and the use of maize silage and imported concentrates. However, these results might not necessarily hold for intensive yet more self-sufficient farms. This requires further investigation with latent variables for intensification and self-sufficiency that do not largely overlap- a modelling challenge that occurred here. We conclude that the environmental ‘sustainability’ of intensive dairy farming depends on particular farming systems and circumstances, although we note that more self-sufficient farms may be preferable when they may benefit from relatively low land prices and agri-environment schemes aimed at maintaining grasslands. PMID:27832199
Factors regulating year‐class strength of Silver Carp throughout the Mississippi River basin
Sullivan, Christopher J.; Weber, Michael J.; Pierce, Clay; Wahl, David H.; Phelps, Quinton E.; Camacho, Carlos A.; Colombo, Robert E.
2018-01-01
Recruitment of many fish populations is inherently highly variable inter‐annually. However, this variability can be synchronous at broad geographic scales due to fish dispersal and climatic conditions. Herein, we investigated recruitment synchrony of Silver Carp Hypophthalmichthys molitrix across the Mississippi River basin. Year‐class strength (YCS) and synchrony of nine populations (max linear distance = 806.4 km) was indexed using catch‐curve residuals correlated between sites and related to local and regional climatic conditions. Overall, Silver Carp YCS was not synchronous among populations, suggesting local environmental factors are more important determinants of YCS than large‐scale environmental factors. Variation in Silver Carp YCS was influenced by river base flow and discharge variability at each site, indicating that extended periods of static local discharge benefit YCS. Further, river discharge and air temperature were correlated and synchronized among sites, but only similarities in river discharge was correlated with Silver Carp population synchrony, indicating that similarities in discharge (i.e., major flood) among sites can positively synchronize Silver Carp YCS. The positive correlation between Silver Carp YCS and river discharge synchrony suggests that regional flood regimes are an important force determining the degree of population synchrony among Mississippi River Silver Carp populations.
Jennings, Cecil A.; Sundmark, Aaron P.
2017-01-01
The relationships between environmental variables and the growth rates of fishes are important and rapidly expanding topics in fisheries ecology. We used an informationtheoretic approach to evaluate the influence of lake surface area and total phosphorus on the age-specific growth rates of Lepomis macrochirus (Bluegill) in 6 small impoundments in central Georgia. We used model averaging to create composite models and determine the relative importance of the variables within each model. Results indicated that surface area was the most important factor in the models predicting growth of Bluegills aged 1–4 years; total phosphorus was also an important predictor for the same age-classes. These results suggest that managers can use water quality and lake morphometry variables to create predictive models specific to their waterbody or region to help develop lake-specific management plans that select for and optimize local-level habitat factors for enhancing Bluegill growth.
NASA Astrophysics Data System (ADS)
Chouchane, Hatem; Krol, Maarten; Hoekstra, Arjen
2016-04-01
Water scarcity is among the main problems faced by many societies. Growing water demands put increasing pressure on local water resources, especially in water-short countries. Virtual water trade can play a key role in filling the gap between local demands and supply. This study aims to analyze the changes in virtual water trade of Tunisia in relation to environmental and socio-economic factors such as GDP, irrigated land, precipitation, population and water scarcity. The water footprint is estimated using Aquacrop for six crops over the period 1981-2010 at daily basis and a spatial resolution of 5 by 5 arc minutes. Virtual water trade is quantified at yearly basis. Regression models are used to investigate changes in virtual water trade in relation to various environmental and socio-economic factors. The explaining variables are selected in order to help understanding the trend and the inter-annual variability of the net virtual water import; GDP, population and irrigated land are hypothesized to explain the trend, and precipitation and water scarcity to explain variability. The selected crops are divided into three baskets. The first basket includes the two most imported crops, which are mainly rain-fed (wheat and barley). The second basket contains the two most exported crops, which are both irrigated and rain-fed (olives and dates). In the last basket we find the two highest economic blue water productive crops, which are mainly irrigated (tomatoes and potatoes). The results show the impact of each factor on net virtual water import of the selected crops during the period 1981-2010. Keywords: Virtual water, trade patterns, Aquacrop, Tunisia, water scarcity, water footprint.
Zhen, Ying; Harrigan, Ryan J; Ruegg, Kristen C; Anderson, Eric C; Ng, Thomas C; Lao, Sirena; Lohmueller, Kirk E; Smith, Thomas B
2017-10-01
The little greenbul, a common rainforest passerine from sub-Saharan Africa, has been the subject of long-term evolutionary studies to understand the mechanisms leading to rainforest speciation. Previous research found morphological and behavioural divergence across rainforest-savannah transition zones (ecotones), and a pattern of divergence with gene flow suggesting divergent natural selection has contributed to adaptive divergence and ecotones could be important areas for rainforests speciation. Recent advances in genomics and environmental modelling make it possible to examine patterns of genetic divergence in a more comprehensive fashion. To assess the extent to which natural selection may drive patterns of differentiation, here we investigate patterns of genomic differentiation among populations across environmental gradients and regions. We find compelling evidence that individuals form discrete genetic clusters corresponding to distinctive environmental characteristics and habitat types. Pairwise F ST between populations in different habitats is significantly higher than within habitats, and this differentiation is greater than what is expected from geographic distance alone. Moreover, we identified 140 SNPs that showed extreme differentiation among populations through a genomewide selection scan. These outliers were significantly enriched in exonic and coding regions, suggesting their functional importance. Environmental association analysis of SNP variation indicates that several environmental variables, including temperature and elevation, play important roles in driving the pattern of genomic diversification. Results lend important new genomic evidence for environmental gradients being important in population differentiation. © 2017 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Yu, Wei; Chen, Xinjun; Yi, Qian
2016-06-01
The neon flying squid, Ommastrephes bartramii, is a species of economically important cephalopod in the Northwest Pacific Ocean. Its short lifespan increases the susceptibility of the distribution and abundance to the direct impact of the environmental conditions. Based on the generalized linear model (GLM) and generalized additive model (GAM), the commercial fishery data from the Chinese squid-jigging fleets during 1995 to 2011 were used to examine the interannual and seasonal variability in the abundance of O. bartramii, and to evaluate the influences of variables on the abundance (catch per unit effort, CPUE). The results from GLM suggested that year, month, latitude, sea surface temperature (SST), mixed layer depth (MLD), and the interaction term ( SST×MLD) were significant factors. The optimal model based on GAM included all the six significant variables and could explain 42.43% of the variance in nominal CPUE. The importance of the six variables was ranked by decreasing magnitude: year, month, latitude, SST, MLD and SST×MLD. The squid was mainly distributed in the waters between 40°N and 44°N in the Northwest Pacific Ocean. The optimal ranges of SST and MLD were from 14 to 20°C and from 10 to 30 m, respectively. The squid abundance greatly fluctuated from 1995 to 2011. The CPUE was low during 1995-2002 and high during 2003-2008. Furthermore, the squid abundance was typically high in August. The interannual and seasonal variabilities in the squid abundance were associated with the variations of marine environmental conditions and the life history characteristics of squid.
Ben Hassine, Th; Calistri, P; Ippoliti, C; Conte, A; Danzetta, M L; Bruno, R; Lelli, R; Bejaoui, M; Hammami, S
2014-01-01
Eco-climatic conditions are often associated with the occurrence of West Nile Disease (WND) cases. Among the complex set of biotic and abiotic factors influencing the emergence and spread of this vector-borne disease, two main variables have been considered to have a great influence on the probability of West Nile Virus (WNV) introduction and circulation in Tunisia: the presence of susceptible bird populations and the existence of geographical areas where the environmental and climatic conditions are more favourable to mosquito multiplications. The aim of this study was to identify and classify the climatic and environmental variables possibly associated with the occurrence of WNVhuman cases in Tunisia. The following environmental and climatic variables have been considered: wetlands and humid areas, Normalised Difference Vegetation Index (NDVI), temperatures and elevation. A preliminary analysis for the characterization of main variables associated with areas with a history of WNV human cases in Tunisia between 1997 and 2011 has been made. This preliminary analysis clearly indicates the closeness to marshes ecosystem, where migratory bird populations are located, as an important risk factor for WNV infection. On the contrary the temperature absolute seems to be not a significant factor in Tunisian epidemiological situation. In relation to NDVI values, more complex considerations should be made.
Shryock, Daniel F.; Havrilla, Caroline A.; DeFalco, Lesley; Esque, Todd C.; Custer, Nathan; Wood, Troy E.
2015-01-01
Local adaptation influences plant species’ responses to climate change and their performance in ecological restoration. Fine-scale physiological or phenological adaptations that direct demographic processes may drive intraspecific variability when baseline environmental conditions change. Landscape genomics characterize adaptive differentiation by identifying environmental drivers of adaptive genetic variability and mapping the associated landscape patterns. We applied such an approach to Sphaeralcea ambigua, an important restoration plant in the arid southwestern United States, by analyzing variation at 153 amplified fragment length polymorphism loci in the context of environmental gradients separating 47 Mojave Desert populations. We identified 37 potentially adaptive loci through a combination of genome scan approaches. We then used a generalized dissimilarity model (GDM) to relate variability in potentially adaptive loci with spatial gradients in temperature, precipitation, and topography. We identified non-linear thresholds in loci frequencies driven by summer maximum temperature and water stress, along with continuous variation corresponding to temperature seasonality. Two GDM-based approaches for mapping predicted patterns of local adaptation are compared. Additionally, we assess uncertainty in spatial interpolations through a novel spatial bootstrapping approach. Our study presents robust, accessible methods for deriving spatially-explicit models of adaptive genetic variability in non-model species that will inform climate change modelling and ecological restoration.
Influential input classification in probabilistic multimedia models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maddalena, Randy L.; McKone, Thomas E.; Hsieh, Dennis P.H.
1999-05-01
Monte Carlo analysis is a statistical simulation method that is often used to assess and quantify the outcome variance in complex environmental fate and effects models. Total outcome variance of these models is a function of (1) the uncertainty and/or variability associated with each model input and (2) the sensitivity of the model outcome to changes in the inputs. To propagate variance through a model using Monte Carlo techniques, each variable must be assigned a probability distribution. The validity of these distributions directly influences the accuracy and reliability of the model outcome. To efficiently allocate resources for constructing distributions onemore » should first identify the most influential set of variables in the model. Although existing sensitivity and uncertainty analysis methods can provide a relative ranking of the importance of model inputs, they fail to identify the minimum set of stochastic inputs necessary to sufficiently characterize the outcome variance. In this paper, we describe and demonstrate a novel sensitivity/uncertainty analysis method for assessing the importance of each variable in a multimedia environmental fate model. Our analyses show that for a given scenario, a relatively small number of input variables influence the central tendency of the model and an even smaller set determines the shape of the outcome distribution. For each input, the level of influence depends on the scenario under consideration. This information is useful for developing site specific models and improving our understanding of the processes that have the greatest influence on the variance in outcomes from multimedia models.« less
Rethinking "normal": The role of stochasticity in the phenology of a synchronously breeding seabird.
Youngflesh, Casey; Jenouvrier, Stephanie; Hinke, Jefferson T; DuBois, Lauren; St Leger, Judy; Trivelpiece, Wayne Z; Trivelpiece, Susan G; Lynch, Heather J
2018-05-01
Phenological changes have been observed in a variety of systems over the past century. There is concern that, as a consequence, ecological interactions are becoming increasingly mismatched in time, with negative consequences for ecological function. Significant spatial heterogeneity (inter-site) and temporal variability (inter-annual) can make it difficult to separate intrinsic, extrinsic and stochastic drivers of phenological variability. The goal of this study was to understand the timing and variability in breeding phenology of Adélie penguins under fixed environmental conditions and to use those data to identify a "null model" appropriate for disentangling the sources of variation in wild populations. Data on clutch initiation were collected from both wild and captive populations of Adélie penguins. Clutch initiation in the captive population was modelled as a function of year, individual and age to better understand phenological patterns observed in the wild population. Captive populations displayed as much inter-annual variability in breeding phenology as wild populations, suggesting that variability in breeding phenology is the norm and thus may be an unreliable indicator of environmental forcing. The distribution of clutch initiation dates was found to be moderately asymmetric (right skewed) both in the wild and in captivity, consistent with the pattern expected under social facilitation. The role of stochasticity in phenological processes has heretofore been largely ignored. However, these results suggest that inter-annual variability in breeding phenology can arise independent of any environmental or demographic drivers and that synchronous breeding can enhance inherent stochasticity. This complicates efforts to relate phenological variation to environmental variability in the wild. Accordingly, we must be careful to consider random forcing in phenological processes, lest we fit models to data dominated by random noise. This is particularly true for colonial species where breeding synchrony may outweigh each individual's effort to time breeding with optimal environmental conditions. Our study highlights the importance of identifying appropriate null models for studying phenology. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.
Lima, Mauricio; Christie, Duncan A; Santoro, M Calogero; Latorre, Claudio
2016-01-01
Socio-economic and environmental changes are well known causes of demographic collapse of agrarian cultures. The collapse of human societies is a complex phenomenon where historical and cultural dimensions play a key role, and they may interact with the environmental context. However, the importance of the interaction between socio-economic and climatic factors in explaining possible breakdowns in Native American societies has been poorly explored. The aim of this study is to test the role of socio-economic causes and rainfall variability in the collapse suffered by the Aymara people of the semiarid Andean region of Tarapacá during the period 1820-1970. Our motivation is to demonstrate that simple population dynamic models can be helpful in understanding the causes and relative importance of population changes in Andean agro-pastoral societies in responses to socio-environmental variability. Simple logistic models that combine the effects of external socio-economic causes and past rainfall variability (inferred from Gross Domestic Product [GDP] and tree-rings, respectively) were quite accurate in predicting the sustained population decline of the Aymara people. Our results suggest that the depopulation in the semiarid Tarapacá province was caused by the interaction among external socio-economic pressures given by the economic growth of the lowlands and demands for labor coupled with a persistent decline in rainfall. This study constitutes an example of how applied ecological knowledge, in particular the application of the logistic equation and theories pertaining to nonlinear population dynamics and exogenous perturbations, can be used to better understand major demographic changes in human societies.
Lima, Mauricio; Christie, Duncan A.; Santoro, M. Calogero; Latorre, Claudio
2016-01-01
Socio-economic and environmental changes are well known causes of demographic collapse of agrarian cultures. The collapse of human societies is a complex phenomenon where historical and cultural dimensions play a key role, and they may interact with the environmental context. However, the importance of the interaction between socio-economic and climatic factors in explaining possible breakdowns in Native American societies has been poorly explored. The aim of this study is to test the role of socio-economic causes and rainfall variability in the collapse suffered by the Aymara people of the semiarid Andean region of Tarapacá during the period 1820–1970. Our motivation is to demonstrate that simple population dynamic models can be helpful in understanding the causes and relative importance of population changes in Andean agro-pastoral societies in responses to socio-environmental variability. Simple logistic models that combine the effects of external socio-economic causes and past rainfall variability (inferred from Gross Domestic Product [GDP] and tree-rings, respectively) were quite accurate in predicting the sustained population decline of the Aymara people. Our results suggest that the depopulation in the semiarid Tarapacá province was caused by the interaction among external socio-economic pressures given by the economic growth of the lowlands and demands for labor coupled with a persistent decline in rainfall. This study constitutes an example of how applied ecological knowledge, in particular the application of the logistic equation and theories pertaining to nonlinear population dynamics and exogenous perturbations, can be used to better understand major demographic changes in human societies. PMID:27560499
Kaufman, Leyla V; Wright, Mark G
2011-08-01
Understanding what ecological factors might predispose indigenous habitats to invasion by invasive species is an important aspect of conservation and invasive species management, particularly when biological control is considered for suppression of the invasive species. This study seeks to identify ecological factors that might play a role in determining the structure of the parasitoid assemblage associated with caterpillars of the endemic Hawaiian moth Udea stellata (Crambidae). Parasitoids were reared from field-collected U. stellata larvae at 18 locations. Fourteen environmental variables were measured at each site. Two multivariate analyses, principal component analysis (PCA) and partial redundancy analysis (RDA), were used to analyze the parasitoid assemblage across a range of habitats varying in environmental characteristics. The PCA analysis showed that the occurrence of some species were highly correlated, and associated with less disturbed sites, whereas other species were associated with sites of medium and high levels of disturbance. The RDA analysis showed that only three of the measured environmental variables (U. stellata density, elevation, and level of habitat disturbance) significantly explained variability in the parasitoid assemblage among sites. There was greater parasitoid species richness associated with U. stellata larvae at higher elevation sites with a lower degree of habitat disturbance by exotic vegetation. The purposely introduced parasitoid species were associated with the non-target moth at sites located at higher elevations with low levels of disturbance. Multivariate analysis has the potential to provide valuable insights into the identification of important environmental factors that mediate parasitoid assemblage structure and level of parasitism on a particular target or non-target species, and therefore facilitate identification of suitable target habitats or susceptible non-target habitats.
Ho, Hung Chak; Lau, Kevin Ka-Lun; Yu, Ruby; Wang, Dan; Woo, Jean; Kwok, Timothy Chi Yui; Ng, Edward
2017-08-31
Previous studies found a relationship between geriatric depression and social deprivation. However, most studies did not include environmental factors in the statistical models, introducing a bias to estimate geriatric depression risk because the urban environment was found to have significant associations with mental health. We developed a cross-sectional study with a binomial logistic regression to examine the geriatric depression risk of a high-density city based on five social vulnerability factors and four environmental measures. We constructed a socio-environmental vulnerability index by including the significant variables to map the geriatric depression risk in Hong Kong, a high-density city characterized by compact urban environment and high-rise buildings. Crude and adjusted odds ratios (ORs) of the variables were significantly different, indicating that both social and environmental variables should be included as confounding factors. For the comprehensive model controlled by all confounding factors, older adults who were of lower education had the highest geriatric depression risks (OR: 1.60 (1.21, 2.12)). Higher percentage of residential area and greater variation in building height within the neighborhood also contributed to geriatric depression risk in Hong Kong, while average building height had negative association with geriatric depression risk. In addition, the socio-environmental vulnerability index showed that higher scores were associated with higher geriatric depression risk at neighborhood scale. The results of mapping and cross-section model suggested that geriatric depression risk was associated with a compact living environment with low socio-economic conditions in historical urban areas in Hong Kong. In conclusion, our study found a significant difference in geriatric depression risk between unadjusted and adjusted models, suggesting the importance of including environmental factors in estimating geriatric depression risk. We also developed a framework to map geriatric depression risk across a city, which can be used for identifying neighborhoods with higher risk for public health surveillance and sustainable urban planning.
Lau, Kevin Ka-Lun; Yu, Ruby; Wang, Dan; Kwok, Timothy Chi Yui; Ng, Edward
2017-01-01
Previous studies found a relationship between geriatric depression and social deprivation. However, most studies did not include environmental factors in the statistical models, introducing a bias to estimate geriatric depression risk because the urban environment was found to have significant associations with mental health. We developed a cross-sectional study with a binomial logistic regression to examine the geriatric depression risk of a high-density city based on five social vulnerability factors and four environmental measures. We constructed a socio-environmental vulnerability index by including the significant variables to map the geriatric depression risk in Hong Kong, a high-density city characterized by compact urban environment and high-rise buildings. Crude and adjusted odds ratios (ORs) of the variables were significantly different, indicating that both social and environmental variables should be included as confounding factors. For the comprehensive model controlled by all confounding factors, older adults who were of lower education had the highest geriatric depression risks (OR: 1.60 (1.21, 2.12)). Higher percentage of residential area and greater variation in building height within the neighborhood also contributed to geriatric depression risk in Hong Kong, while average building height had negative association with geriatric depression risk. In addition, the socio-environmental vulnerability index showed that higher scores were associated with higher geriatric depression risk at neighborhood scale. The results of mapping and cross-section model suggested that geriatric depression risk was associated with a compact living environment with low socio-economic conditions in historical urban areas in Hong Kong. In conclusion, our study found a significant difference in geriatric depression risk between unadjusted and adjusted models, suggesting the importance of including environmental factors in estimating geriatric depression risk. We also developed a framework to map geriatric depression risk across a city, which can be used for identifying neighborhoods with higher risk for public health surveillance and sustainable urban planning. PMID:28858265
Piazza, Bryan P.; LaPeyre, Megan K.; Keim, B.D.
2010-01-01
Climate creates environmental constraints (filters) that affect the abundance and distribution of species. In estuaries, these constraints often result from variability in water flow properties and environmental conditions (i.e. water flow, salinity, water temperature) and can have significant effects on the abundance and distribution of commercially important nekton species. We investigated links between large-scale climate variability and juvenile brown shrimp Farfantepenaeus aztecus abundance in Breton Sound estuary, Louisiana (USA). Our goals were to (1) determine if a teleconnection exists between local juvenile brown shrimp abundance and the El Niño Southern Oscillation (ENSO) and (2) relate that linkage to environmental constraints that may affect juvenile brown shrimp recruitment to, and survival in, the estuary. Our results identified a teleconnection between winter ENSO conditions and juvenile brown shrimp abundance in Breton Sound estuary the following spring. The physical connection results from the impact of ENSO on winter weather conditions in Breton Sound (air pressure, temperature, and precipitation). Juvenile brown shrimp abundance effects lagged ENSO by 3 mo: lower than average abundances of juvenile brown shrimp were caught in springs following winter El Niño events, and higher than average abundances of brown shrimp were caught in springs following La Niña winters. Salinity was the dominant ENSO-forced environmental filter for juvenile brown shrimp. Spring salinity was cumulatively forced by winter river discharge, winter wind forcing, and spring precipitation. Thus, predicting brown shrimp abundance requires incorporating climate variability into models.
Urbina, Mauricio A
2016-12-15
The impacts of any activity on marine ecosystems will depend on the characteristics of the receptor medium and its resilience to external pressures. Salmon farming industry develops along a constant gradient of hydrodynamic conditions in the south of Chile. However, the influence of the hydrodynamic characteristics (weak or strong) on the impacts of intensive salmon farming is still poorly understood. This one year study evaluates the impacts of salmon farming on the marine sediments of both protected and exposed marine zones differing in their hydrodynamic characteristics. Six physico-chemical, five biological variables and seven indexes of marine sediments status were evaluated under the salmon farming cages and control sites. Our results identified a few key variables and indexes necessary to accurately evaluate the salmon farming impacts on both protected and exposed zones. Interestingly, the ranking of importance of the variables and the temporality of the observed changes, varied depending on the hydrodynamic characteristics. Biological variables (nematodes abundance) and environmental indexes (Simpson's dominance, Shannon's diversity and Pielou evenness) are the first to reflect detrimental impacts under the salmon farming cages. Then the physico-chemical variables such as redox, sulphurs and phosphorus in both zones also show detrimental impacts. Based on the present results we propose that the hydrodynamic regime is an important driver of the magnitude and temporality of the effects of salmon farming on marine sediments. The variables and indexes that best reflect the effects of salmon farming, in both protected and exposed zones, are also described. Copyright © 2016. Published by Elsevier B.V.
Wohlfahrt, Georg; Hammerle, Albin; Haslwanter, Alois; Bahn, Michael; Tappeiner, Ulrike; Cernusca, Alexander
2008-04-27
The role and relative importance of climate and cutting for the seasonal and inter-annual variability of the net ecosystem CO 2 (NEE) of a temperate mountain grassland was investigated. Eddy covariance CO 2 flux data and associated measurements of the green area index and the major environmental driving forces acquired during 2001-2006 at the study site Neustift (Austria) were analyzed. Driven by three cutting events per year which kept the investigated grassland in a stage of vigorous growth, the seasonal variability of NEE was primarily modulated by gross primary productivity (GPP). The role of environmental parameters in modulating the seasonal variability of NEE was obscured by the strong response of GPP to changes in the amount of green area, as well as the cutting-mediated decoupling of phenological development and the seasonal course of climate drivers. None of the climate and management metrics examined was able to explain the inter-annual variability of annual NEE. This is thought to result from (1) a high covariance between GPP and ecosystem respiration (R eco ) at the annual time scale which results in a comparatively small inter-annual variation of NEE, (2) compensating effects between carbon exchange during and outside the management period, and (3) changes in the biotic response to rather than the climate variables per se. GPP was more important in modulating inter-annual variations in NEE in spring and before the first and second cut, while R eco explained a larger fraction of the inter-annual variability of NEE during the remaining, in particular the post-cut, periods.
Çelekli, Abuzer; Arslanargun, Hamdullah; Soysal, Çiğdem; Gültekin, Emine; Bozkurt, Hüseyin
2016-11-01
To the best of our knowledge, any study about biochemical response of filamentous algae in the complex freshwater ecosystems has not been found in the literature. This study was designed to explore biochemical response of filamentous algae in different water bodies from May 2013 to October 2014, using multivariate approach in the South East of Turkey. Environmental variables were measured in situ: water temperature, oxygen concentration, saturation, conductivity, salinity, pH, redox potential, and total dissolved solid. Chemical variables of aqueous samples and biochemical compounds of filamentous algae were also measured. It was found that geographic position and anthropogenic activities had strong effect on physico-chemical variables of water bodies. Variation in environmental conditions caused change in algal biomass composition due to the different response of filamentous species, also indicated by FTIR analysis. Biochemical responses not only changed from species to species, but also varied for the same species at different sampling time and sampling stations. Multivariate analyses showed that heavy metals, nutrients, and water hardness were found as the important variables governing the temporal and spatial succession and biochemical compounds. Nutrients, especially nitrate, could stimulate pigment and total protein production, whereas high metal content had adverse effects. Amount of malondialdehyde (MDA), H2O2, total thiol groups, total phenolic compounds, proline, total carbohydrate, and metal bioaccumulation by filamentous algae could be closely related with heavy metals in the ecosystems. Significant increase in MDA, H2O2, total thiol group, total phenolic compounds, and proline productions by filamentous algae and chlorosis phenomenon seemed to be an important strategy for alleviating environmental factors-induced oxidative stress as biomarkers. Copyright © 2016 Elsevier Inc. All rights reserved.
Fakarayi, Togarasei; Mashapa, Clayton; Gandiwa, Edson; Kativu, Shakkie
2016-01-01
Three species of cranes are distributed widely throughout southern Africa, but little is known about how they respond to the changes in land-use that have occurred in this region. This study assessed habitat preference of the two crane species across land-use categories of the self contained small scale commercial farms of 30 to 40 ha per household (A1), large scale commercial agriculture farms of > 50 ha per household (A2) and Old Resettlement, farms of < 5 ha per household with communal grazing land in Driefontein Grasslands Important Bird Area (IBA), Zimbabwe. The study further explored how selected explanatory (environmental) habitat variables influence crane species abundance. Crane bird counts and data on influencing environmental variables were collected between June and August 2012. Our results show that varying land-use categories had an influence on the abundance and distribution of the Wattled Crane (Bugeranus carunculatus) and the Grey Crowned Crane (Belearica regulorum) across Driefontein Grasslands IBA. The Wattled Crane was widely distributed in the relatively undisturbed A2 farms while the Grey Crowned Crane was associated with the more disturbed land of A1 farms, Old Resettlement and its communal grazing land. Cyperus esculentus and percent (%) bare ground were strong environmental variables best explaining the observed patterns in Wattled Crane abundance across land-use categories. The pattern in Grey Crowned Crane abundance was best explained by soil penetrability, moisture and grass height variables. A holistic sustainable land-use management that takes into account conservation of essential habitats in Driefontein Grasslands IBA is desirable for crane populations and other wetland dependent species that include water birds.
Fakarayi, Togarasei; Mashapa, Clayton; Gandiwa, Edson; Kativu, Shakkie
2016-01-01
Three species of cranes are distributed widely throughout southern Africa, but little is known about how they respond to the changes in land-use that have occurred in this region. This study assessed habitat preference of the two crane species across land-use categories of the self contained small scale commercial farms of 30 to 40 ha per household (A1), large scale commercial agriculture farms of > 50 ha per household (A2) and Old Resettlement, farms of < 5 ha per household with communal grazing land in Driefontein Grasslands Important Bird Area (IBA), Zimbabwe. The study further explored how selected explanatory (environmental) habitat variables influence crane species abundance. Crane bird counts and data on influencing environmental variables were collected between June and August 2012. Our results show that varying land-use categories had an influence on the abundance and distribution of the Wattled Crane (Bugeranus carunculatus) and the Grey Crowned Crane (Belearica regulorum) across Driefontein Grasslands IBA. The Wattled Crane was widely distributed in the relatively undisturbed A2 farms while the Grey Crowned Crane was associated with the more disturbed land of A1 farms, Old Resettlement and its communal grazing land. Cyperus esculentus and percent (%) bare ground were strong environmental variables best explaining the observed patterns in Wattled Crane abundance across land-use categories. The pattern in Grey Crowned Crane abundance was best explained by soil penetrability, moisture and grass height variables. A holistic sustainable land-use management that takes into account conservation of essential habitats in Driefontein Grasslands IBA is desirable for crane populations and other wetland dependent species that include water birds. PMID:27875552
ERIC Educational Resources Information Center
Aydos, Emine Hande; Yagci, Esed
2015-01-01
In today's world, the importance of environment education that is one of the most important issues is increasing rapidly. In the basis of the education, families and teachers take role together. It is aimed to grow up individuals who have positive attitudes and are sensitive the environment at every level of education. In order to achieve this…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Xiaoying; Mao, Jiafu; Thornton, Peter E
In this study, spatial and temporal patterns of evapotranspiration (ET) over the period of 1982-2008 are investigated and attributed to multiple environmental factors using the Community Land Model version 4 (CLM4). Our results show that CLM4 captures the spatial distribution and interannual variability of ET well when compared to observation-based estimates derived from the FLUXNET network of eddy covariance towers using the model tree ensembles (MTE) approach. We find that climate trends and variability dominate predicted variability in ET. Elevated atmospheric CO2 concentration also plays an important role in modulating the trend of predicted ET over most land areas, andmore » functions as the dominant factor controlling ET changes over North America, South America and Asia regions. Compared to the effect of climate change and CO2 concentration, the roles of other factors such as nitrogen deposition, land use change and aerosol deposition are less pronounced and regionally dependent. For example, the aerosol deposition contribution is the third-most important factor for trends of ET over Europe, while it has the smallest impact on ET trend over other regions. As ET is a dominant component of the terrestrial water cycle, our results suggest that environmental factors like elevated CO2, nitrogen and aerosol depositions, and land use and land cover change, in addition to climate, could have significant impact on future projections of water resources and water cycle dynamics at global and regional scales.« less
Mota, Jorge; Gomes, Helena; Almeida, Mariana; Ribeiro, José Carlos; Santos, Maria Paula
2007-08-01
This study analyzes the relationships between leisure time physical activity (LTPA), sedentary behaviors, socioeconomic status, and perceived environmental variables. The sample comprised 815 girls and 746 boys. In girls, non-LTPA participants reported significantly more screen time. Girls with safety concerns were more likely to be in the non-LTPA group (OR = 0.60) and those who agreed with the importance of aesthetics were more likely to be in the active-LTPA group (OR = 1.59). In girls, an increase of 1 hr of TV watching was a significant predictor of non-LTPA (OR = 0.38). LTPA for girls, but not for boys, seems to be influenced by certain modifiable factors of the built environment, as well as by time watching TV.
Seebacher, Frank; Franklin, Craig E
2012-06-19
The emerging field of Conservation Physiology links environmental change and ecological success by the application of physiological theory, approaches and tools to elucidate and address conservation problems. Human activity has changed the natural environment to a point where the viability of many ecosystems is now under threat. There are already many descriptions of how changes in biological patterns are correlated with environmental changes. The next important step is to determine the causative relationship between environmental variability and biological systems. Physiology provides the mechanistic link between environmental change and ecological patterns. Physiological research, therefore, should be integrated into conservation to predict the biological consequences of human activity, and to identify those species or populations that are most vulnerable.
Environmental drivers of the distribution of nitrogen functional genes at a watershed scale.
Tsiknia, Myrto; Paranychianakis, Nikolaos V; Varouchakis, Emmanouil A; Nikolaidis, Nikolaos P
2015-06-01
To date only few studies have dealt with the biogeography of microbial communities at large spatial scales, despite the importance of such information to understand and simulate ecosystem functioning. Herein, we describe the biogeographic patterns of microorganisms involved in nitrogen (N)-cycling (diazotrophs, ammonia oxidizers, denitrifiers) as well as the environmental factors shaping these patterns across the Koiliaris Critical Zone Observatory, a typical Mediterranean watershed. Our findings revealed that a proportion of variance ranging from 40 to 80% of functional genes abundance could be explained by the environmental variables monitored, with pH, soil texture, total organic carbon and potential nitrification rate being identified as the most important drivers. The spatial autocorrelation of N-functional genes ranged from 0.2 to 6.2 km and prediction maps, generated by cokriging, revealed distinct patterns of functional genes. The inclusion of functional genes in statistical modeling substantially improved the proportion of variance explained by the models, a result possibly due to the strong relationships that were identified among microbial groups. Significant relationships were set between functional groups, which were further mediated by land use (natural versus agricultural lands). These relationships, in combination with the environmental variables, allow us to provide insights regarding the ecological preferences of N-functional groups and among them the recently identified clade II of nitrous oxide reducers. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Galloway, Aaron W. E.; Winder, Monika
2015-01-01
Essential fatty acids (EFA), which are primarily generated by phytoplankton, limit growth and reproduction in diverse heterotrophs. The biochemical composition of phytoplankton is well-known to be governed both by phylogeny and environmental conditions. Nutrients, light, salinity, and temperature all affect both phytoplankton growth and fatty acid composition. However, the relative importance of taxonomy and environment on algal fatty acid content has yet to be comparatively quantified, thus inhibiting predictions of changes to phytoplankton food quality in response to global environmental change. We compiled 1145 published marine and freshwater phytoplankton fatty acid profiles, consisting of 208 species from six major taxonomic groups, cultured in a wide range of environmental conditions, and used a multivariate distance-based linear model to quantify the total variation explained by each variable. Our results show that taxonomic group accounts for 3-4 times more variation in phytoplankton fatty acids than the most important growth condition variables. The results underscore that environmental conditions clearly affect phytoplankton fatty acid profiles, but also show that conditions account for relatively low variation compared to phylogeny. This suggests that the underlying mechanism determining basal food quality in aquatic habitats is primarily phytoplankton community composition, and allows for prediction of environmental-scale EFA dynamics based on phytoplankton community data. We used the compiled dataset to calculate seasonal dynamics of long-chain EFA (LCEFA; ≥C20 ɷ-3 and ɷ-6 polyunsaturated fatty acid) concentrations and ɷ-3:ɷ-6 EFA ratios in Lake Washington using a multi-decadal phytoplankton community time series. These analyses quantify temporal dynamics of algal-derived LCEFA and food quality in a freshwater ecosystem that has undergone large community changes as a result of shifting resource management practices, highlighting diatoms, cryptophytes and dinoflagellates as key sources of LCEFA. Moreover, the analyses indicate that future shifts towards cyanobacteria-dominated communities will result in lower LCEFA content in aquatic ecosystems. PMID:26076015
Quantifying Error in Survey Measures of School and Classroom Environments
ERIC Educational Resources Information Center
Schweig, Jonathan David
2014-01-01
Developing indicators that reflect important aspects of school and classroom environments has become central in a nationwide effort to develop comprehensive programs that measure teacher quality and effectiveness. Formulating teacher evaluation policy necessitates accurate and reliable methods for measuring these environmental variables. This…
FUNGAL-SPECIFIC PCR PRIMERS DEVELOPED FOR ANALYSIS OF THE ITS REGION OF ENVIRONMENTAL DNA EXTRACTS
Background The Internal Transcribed Spacer (ITS) regions of fungal ribosomal DNA (rDNA) are highly variable sequences of great importance in distinguishing fungal species by PCR analysis. Previously published PCR primers available for amplifying these sequences from environmenta...
Contrasting patterns of fine-scale herb layer species composition in temperate forests
NASA Astrophysics Data System (ADS)
Chudomelová, Markéta; Zelený, David; Li, Ching-Feng
2017-04-01
Although being well described at the landscape level, patterns in species composition of forest herb layer are rarely studied at smaller scales. Here, we examined fine-scale environmental determinants and spatial structures of herb layer communities in thermophilous oak- and hornbeam dominated forests of the south-eastern part of the Czech Republic. Species composition of herb layer vegetation and environmental variables were recorded within a fixed grid of 2 × 2 m subplots regularly distributed within 1-ha quadrate plots in three forest stands. For each site, environmental models best explaining species composition were constructed using constrained ordination analysis. Spatial eigenvector mapping was used to model and account for spatial structures in community variation. Mean Ellenberg indicator values calculated for each subplot were used for ecological interpretation of spatially structured residual variation. The amount of variation explained by environmental and spatial models as well as the selection of variables with the best explanatory power differed among sites. As an important environmental factor, relative elevation was common to all three sites, while pH and canopy openness were shared by two sites. Both environmental and community variation was mostly coarse-scaled, as was the spatially structured portion of residual variation. When corrected for bias due to spatial autocorrelation, those environmental factors with already weak explanatory power lost their significance. Only a weak evidence of possibly omitted environmental predictor was found for autocorrelated residuals of site models using mean Ellenberg indicator values. Community structure was determined by different factors at different sites. The relative importance of environmental filtering vs. spatial processes was also site specific, implying that results of fine-scale studies tend to be shaped by local conditions. Contrary to expectations based on other studies, overall dominance of spatial processes at fine scale has not been detected. Ecologists should keep this in mind when making generalizations about community dynamics.
Identification and detection of simple 3D objects with severely blurred vision.
Kallie, Christopher S; Legge, Gordon E; Yu, Deyue
2012-12-05
Detecting and recognizing three-dimensional (3D) objects is an important component of the visual accessibility of public spaces for people with impaired vision. The present study investigated the impact of environmental factors and object properties on the recognition of objects by subjects who viewed physical objects with severely reduced acuity. The experiment was conducted in an indoor testing space. We examined detection and identification of simple convex objects by normally sighted subjects wearing diffusing goggles that reduced effective acuity to 20/900. We used psychophysical methods to examine the effect on performance of important environmental variables: viewing distance (from 10-24 feet, or 3.05-7.32 m) and illumination (overhead fluorescent and artificial window), and object variables: shape (boxes and cylinders), size (heights from 2-6 feet, or 0.61-1.83 m), and color (gray and white). Object identification was significantly affected by distance, color, height, and shape, as well as interactions between illumination, color, and shape. A stepwise regression analysis showed that 64% of the variability in identification could be explained by object contrast values (58%) and object visual angle (6%). When acuity is severely limited, illumination, distance, color, height, and shape influence the identification and detection of simple 3D objects. These effects can be explained in large part by the impact of these variables on object contrast and visual angle. Basic design principles for improving object visibility are discussed.
Triggs, Alison; Knell, Robert J
2012-03-01
1. Animals raised in good environmental conditions are expected to have more resources to invest in immunity than those raised in poor conditions. Variation in immune activity and parasite resistance in response to changes in environmental temperature, population density and food quality have been shown in many invertebrate species. 2. Almost all studies to date have examined the effects of individual variables in isolation. The aim of this study was to address whether environmental factors interact to produce synergistic effects on phenoloxidase (PO) activity and haemocyte count, both indicators of immune system activity. Temperature, food quality and density were varied in a fully factorial design for a total of eight treatment combinations. 3. Strong interactions between the three environmental variables led to the magnitude and in some cases the direction of the effect of most variables changing as the other environmental factors were altered. Overall, food quality had the most important and consistent influence, larvae raised on a good-quality diet having substantially higher PO activity in every case and substantially higher haemocyte counts in all treatments except unheated/low density. 4. When food quality was good, the larvae showed 'density-dependent prophylaxis': raising their investment in immunity when population density is high. When food quality was poor and the temperature low, however, those larvae raised at high densities invested less in immunity. 5. Increased temperature is often thought to lead to increased immune reactivity in ectotherms, but we found that the effect of temperature was strongly dependent on the values of other environmental variables. PO activity increased with temperature when larvae were raised on good food or when density was high, but when food was poor and density low, a higher temperature led to reduced PO activity. A higher temperature led to higher haemocyte counts when density was high and food quality was poor, but in all other cases, the effect of increased temperature was either close to zero or somewhat negative. 6. Although PO activity and haemocyte count were weakly correlated across the whole data set, there were a number of treatments where the two measures responded in different ways to environmental change. Overall, effect sizes for PO activity were substantially higher than those for haemocyte count, indicating that the different components of the immune system vary in their sensitivity to environmental change. 7. Predictions of the effect of environmental or population change on immunity and disease dynamics based on laboratory experiments that only investigate the effects of single variable are likely to be inaccurate or even entirely wrong. © 2011 The Authors. Journal of Animal Ecology © 2011 British Ecological Society.
NASA Astrophysics Data System (ADS)
Lenz, Conny; Reinholdsson, Maja; Zillén, Lovisa; Conley, Daniel J.; Snowball, Ian
2010-05-01
The Baltic Sea has undergone large environmental changes since the retreat of the Weischselian Ice-sheet. In the Late Glacial Period and the early Holocene these changes were most likely caused by natural environmental changes (i.e. changes in the morphology and depths of the Baltic basin and the sills). In more recent time anthropogenic impacts have become more important as a possible and likely cause for changes. During the whole Holocene period climate variability played an important role. However, the relative importance between humans and nature is largely unknown. Here we present the results of a combined geophysical and geochemical study on selected sediment sequences from the Baltic Sea within the two BONUS (Baltic Organisations Network For Funding Science) funded projects HYPER (HYPoxia mitigation for Baltic Sea Ecosystem Restoration) and Baltic GAS (GAS storage and effects of climate change and eutrophication). The over-all aim of these projects is to understand large-scale Baltic Sea ecosystem responses to environmental, climate and anthropogenic forcing. During two Baltic Sea research cruises in 2009 long sediment cores from 8 different locations were recovered. We present preliminary results from one site (LL19) located in the north central Baltic Proper at 169 m water depth. The Littorina Sea sediment record (i.e. the last c. 8000 years) is characterised by alternating periods of homogenised sediments (indicative of oxic conditions) and laminated sediments (indicative of hypoxic/anoxic conditions). Mineral magnetic properties illustrate clear changes between laminated and non-laminated sections of the core. The concentration of ferrimagnetic minerals, as revealed by initial magnetic susceptibility (χ) and saturation isothermal remanent magnetization (SIRM) is variable. The laminated sections in particular show high concentrations and to reveal the origin of the ferrimagnetic signal additional magnetic properties were measured, specifically the acquisition of rotational remanent magnetization (RRM), frequency dependency of susceptibility (χfd) and magnetic loops. These data show that magnetic assemblage of the laminated sections is dominated by a single-domain magnetic grain size. The elemental composition was measured with a high resolution Itrax XRF-scanner throughout the core. In addition, biogenic silica (BSi) and total organic carbon (TOC) were determined. Distinct changes of elemental contents between the laminated and homogenous sections in the Littorina Sea sediments were identified. A combination of the physical and geochemical properties of the sediment sequences and the construction of geochronologies will provide information about past environmental variability to identify casual relationships to climate and human impact in the Baltic Sea.
Historical Arctic Logbooks Provide Insights into Past Diets and Climatic Responses of Cod
Townhill, Bryony L.; Maxwell, David; Engelhard, Georg H.; Simpson, Stephen D.; Pinnegar, John K.
2015-01-01
Gadus morhua (Atlantic cod) stocks in the Barents Sea are currently at levels not seen since the 1950s. Causes for the population increase last century, and understanding of whether such large numbers will be maintained in the future, are unclear. To explore this, we digitised and interrogated historical cod catch and diet datasets from the Barents Sea. Seventeen years of catch data and 12 years of prey data spanning 1930–1959 cover unexplored spatial and temporal ranges, and importantly capture the end of a previous warm period, when temperatures were similar to those currently being experienced. This study aimed to evaluate cod catch per unit effort and prey frequency in relation to spatial, temporal and environmental variables. There was substantial spatio-temporal heterogeneity in catches through the time series. The highest catches were generally in the 1930s and 1940s, although at some localities more cod were recorded late in the 1950s. Generalized Additive Models showed that environmental, spatial and temporal variables are all valuable descriptors of cod catches, with the highest occurring from 15–45°E longitude and 73–77°N latitude, at bottom temperatures between 2 and 4°C and at depths between 150 and 250 m. Cod diets were highly variable during the study period, with frequent changes in the relative frequencies of different prey species, particularly Mallotus villosus (capelin). Environmental variables were particularly good at describing the importance of capelin and Clupea harengus (herring) in the diet. These new analyses support existing knowledge about how the ecology of the region is controlled by climatic variability. When viewed in combination with more recent data, these historical relationships will be valuable in forecasting the future of Barents Sea fisheries, and in understanding how environments and ecosystems may respond. PMID:26331271
Bennett, S.N.; Olson, J.R.; Kershner, J.L.; Corbett, P.
2010-01-01
Hybridization and introgression between introduced and native salmonids threaten the continued persistence of many inland cutthroat trout species. Environmental models have been developed to predict the spread of introgression, but few studies have assessed the role of propagule pressure. We used an extensive set of fish stocking records and geographic information system (GIS) data to produce a spatially explicit index of potential propagule pressure exerted by introduced rainbow trout in the Upper Kootenay River, British Columbia, Canada. We then used logistic regression and the information-theoretic approach to test the ability of a set of environmental and spatial variables to predict the level of introgression between native westslope cutthroat trout and introduced rainbow trout. Introgression was assessed using between four and seven co-dominant, diagnostic nuclear markers at 45 sites in 31 different streams. The best model for predicting introgression included our GIS propagule pressure index and an environmental variable that accounted for the biogeoclimatic zone of the site (r2 = 0.62). This model was 1.4 times more likely to explain introgression than the next-best model, which consisted of only the propagule pressure index variable. We created a composite model based on the model-averaged results of the seven top models that included environmental, spatial, and propagule pressure variables. The propagule pressure index had the highest importance weight (0.995) of all variables tested and was negatively related to sites with no introgression. This study used an index of propagule pressure and demonstrated that propagule pressure had the greatest influence on the level of introgression between a native and introduced trout in a human-induced hybrid zone. ?? 2010 by the Ecological Society of America.
Hugo, Sanet; Altwegg, Res
2017-09-01
Using the Southern African Bird Atlas Project (SABAP2) as a case study, we examine the possible determinants of spatial bias in volunteer sampling effort and how well such biased data represent environmental gradients across the area covered by the atlas. For each province in South Africa, we used generalized linear mixed models to determine the combination of variables that explain spatial variation in sampling effort (number of visits per 5' × 5' grid cell, or "pentad"). The explanatory variables were distance to major road and exceptional birding locations or "sampling hubs," percentage cover of protected, urban, and cultivated area, and the climate variables mean annual precipitation, winter temperatures, and summer temperatures. Further, we used the climate variables and plant biomes to define subsets of pentads representing environmental zones across South Africa, Lesotho, and Swaziland. For each environmental zone, we quantified sampling intensity, and we assessed sampling completeness with species accumulation curves fitted to the asymptotic Lomolino model. Sampling effort was highest close to sampling hubs, major roads, urban areas, and protected areas. Cultivated area and the climate variables were less important. Further, environmental zones were not evenly represented by current data and the zones varied in the amount of sampling required representing the species that are present. SABAP2 volunteers' preferences in birding locations cause spatial bias in the dataset that should be taken into account when analyzing these data. Large parts of South Africa remain underrepresented, which may restrict the kind of ecological questions that may be addressed. However, sampling bias may be improved by directing volunteers toward undersampled regions while taking into account volunteer preferences.
Use of Wearable Sensors and Biometric Variables in an Artificial Pancreas System.
Turksoy, Kamuran; Monforti, Colleen; Park, Minsun; Griffith, Garett; Quinn, Laurie; Cinar, Ali
2017-03-07
An artificial pancreas (AP) computes the optimal insulin dose to be infused through an insulin pump in people with Type 1 Diabetes (T1D) based on information received from a continuous glucose monitoring (CGM) sensor. It has been recognized that exercise is a major challenge in the development of an AP system. The use of biometric physiological variables in an AP system may be beneficial for prevention of exercise-induced challenges and better glucose regulation. The goal of the present study is to find a correlation between biometric variables such as heart rate (HR), heat flux (HF), skin temperature (ST), near-body temperature (NBT), galvanic skin response (GSR), and energy expenditure (EE), 2D acceleration-mean of absolute difference (MAD) and changes in glucose concentrations during exercise via partial least squares (PLS) regression and variable importance in projection (VIP) in order to determine which variables would be most useful to include in a future artificial pancreas. PLS and VIP analyses were performed on data sets that included seven different types of exercises. Data were collected from 26 clinical experiments. Clinical results indicate ST to be the most consistently important (important for six out of seven tested exercises) variable over all different exercises tested. EE and HR are also found to be important variables over several types of exercise. We also found that the importance of GSR and NBT observed in our experiments might be related to stress and the effect of changes in environmental temperature on glucose concentrations. The use of the biometric measurements in an AP system may provide better control of glucose concentration.
The use of auxiliary variables in capture-recapture and removal experiments
Pollock, K.H.; Hines, J.E.; Nichols, J.D.
1984-01-01
The dependence of animal capture probabilities on auxiliary variables is an important practical problem which has not been considered in the development of estimation procedures for capture-recapture and removal experiments. In this paper the linear logistic binary regression model is used to relate the probability of capture to continuous auxiliary variables. The auxiliary variables could be environmental quantities such as air or water temperature, or characteristics of individual animals, such as body length or weight. Maximum likelihood estimators of the population parameters are considered for a variety of models which all assume a closed population. Testing between models is also considered. The models can also be used when one auxiliary variable is a measure of the effort expended in obtaining the sample.
NASA Astrophysics Data System (ADS)
Wan, Ji-Zhong; Wang, Chun-Jing; Yu, Fei-Hai
2017-11-01
Human footprint and soil variability may be important in shaping the spread of invasive plant species (IPS). However, until now, there is little knowledge on how human footprint and soil variability affect the potential distribution of IPS in different biomes. We used Maxent modeling to project the potential distribution of 29 IPS with wide distributions and long introduction histories in China based on various combinations of climatic correlates, soil characteristics and human footprint. Then, we evaluated the relative importance of each type of environmental variables (climate, soil and human footprint) as well as the difference in range and similarity of the potential distribution of IPS between different biomes. Human footprint and soil variables contributed to the prediction of the potential distribution of IPS, and different types of biomes had varying responses and degrees of impacts from the tested variables. Human footprint and soil variability had the highest tendency to increase the potential distribution of IPS in Montane Grasslands and Shrublands. We propose to integrate the assessment in impacts of human footprint and soil variability on the potential distribution of IPS in different biomes into the prevention and control of plant invasion.
Li, Jin; Tran, Maggie; Siwabessy, Justy
2016-01-01
Spatially continuous predictions of seabed hardness are important baseline environmental information for sustainable management of Australia’s marine jurisdiction. Seabed hardness is often inferred from multibeam backscatter data with unknown accuracy and can be inferred from underwater video footage at limited locations. In this study, we classified the seabed into four classes based on two new seabed hardness classification schemes (i.e., hard90 and hard70). We developed optimal predictive models to predict seabed hardness using random forest (RF) based on the point data of hardness classes and spatially continuous multibeam data. Five feature selection (FS) methods that are variable importance (VI), averaged variable importance (AVI), knowledge informed AVI (KIAVI), Boruta and regularized RF (RRF) were tested based on predictive accuracy. Effects of highly correlated, important and unimportant predictors on the accuracy of RF predictive models were examined. Finally, spatial predictions generated using the most accurate models were visually examined and analysed. This study confirmed that: 1) hard90 and hard70 are effective seabed hardness classification schemes; 2) seabed hardness of four classes can be predicted with a high degree of accuracy; 3) the typical approach used to pre-select predictive variables by excluding highly correlated variables needs to be re-examined; 4) the identification of the important and unimportant predictors provides useful guidelines for further improving predictive models; 5) FS methods select the most accurate predictive model(s) instead of the most parsimonious ones, and AVI and Boruta are recommended for future studies; and 6) RF is an effective modelling method with high predictive accuracy for multi-level categorical data and can be applied to ‘small p and large n’ problems in environmental sciences. Additionally, automated computational programs for AVI need to be developed to increase its computational efficiency and caution should be taken when applying filter FS methods in selecting predictive models. PMID:26890307
Li, Jin; Tran, Maggie; Siwabessy, Justy
2016-01-01
Spatially continuous predictions of seabed hardness are important baseline environmental information for sustainable management of Australia's marine jurisdiction. Seabed hardness is often inferred from multibeam backscatter data with unknown accuracy and can be inferred from underwater video footage at limited locations. In this study, we classified the seabed into four classes based on two new seabed hardness classification schemes (i.e., hard90 and hard70). We developed optimal predictive models to predict seabed hardness using random forest (RF) based on the point data of hardness classes and spatially continuous multibeam data. Five feature selection (FS) methods that are variable importance (VI), averaged variable importance (AVI), knowledge informed AVI (KIAVI), Boruta and regularized RF (RRF) were tested based on predictive accuracy. Effects of highly correlated, important and unimportant predictors on the accuracy of RF predictive models were examined. Finally, spatial predictions generated using the most accurate models were visually examined and analysed. This study confirmed that: 1) hard90 and hard70 are effective seabed hardness classification schemes; 2) seabed hardness of four classes can be predicted with a high degree of accuracy; 3) the typical approach used to pre-select predictive variables by excluding highly correlated variables needs to be re-examined; 4) the identification of the important and unimportant predictors provides useful guidelines for further improving predictive models; 5) FS methods select the most accurate predictive model(s) instead of the most parsimonious ones, and AVI and Boruta are recommended for future studies; and 6) RF is an effective modelling method with high predictive accuracy for multi-level categorical data and can be applied to 'small p and large n' problems in environmental sciences. Additionally, automated computational programs for AVI need to be developed to increase its computational efficiency and caution should be taken when applying filter FS methods in selecting predictive models.
Untapped genetic variability in Herefords: implications for climate change
USDA-ARS?s Scientific Manuscript database
Global climate change (CC) has the potential to significantly alter US cattle productivity. As a result, the creation of genetic resources for a specific environment may be necessary, given that genetic-environmental interactions are present and may become more important. Molecular evaluation of a s...
COSmic-ray soil moisture observing system (COSMOS) in grazing-cap fields at El Reno, Oklahoma
USDA-ARS?s Scientific Manuscript database
Soil water content (SWC), especially over large areas, is an important variable needed by hydrological, meteorological, climatological, agricultural, and environmental scientists. Point measurements of SWC are impractical to obtain over extensive areas; thus, methods that provide real-time, hectare...
Integrated presentation of ecological risk from multiple stressors
Goussen, Benoit; Price, Oliver R.; Rendal, Cecilie; Ashauer, Roman
2016-01-01
Current environmental risk assessments (ERA) do not account explicitly for ecological factors (e.g. species composition, temperature or food availability) and multiple stressors. Assessing mixtures of chemical and ecological stressors is needed as well as accounting for variability in environmental conditions and uncertainty of data and models. Here we propose a novel probabilistic ERA framework to overcome these limitations, which focusses on visualising assessment outcomes by construct-ing and interpreting prevalence plots as a quantitative prediction of risk. Key components include environmental scenarios that integrate exposure and ecology, and ecological modelling of relevant endpoints to assess the effect of a combination of stressors. Our illustrative results demonstrate the importance of regional differences in environmental conditions and the confounding interactions of stressors. Using this framework and prevalence plots provides a risk-based approach that combines risk assessment and risk management in a meaningful way and presents a truly mechanistic alternative to the threshold approach. Even whilst research continues to improve the underlying models and data, regulators and decision makers can already use the framework and prevalence plots. The integration of multiple stressors, environmental conditions and variability makes ERA more relevant and realistic. PMID:27782171
Determinants of energy efficiency across countries
NASA Astrophysics Data System (ADS)
Yao, Guolin
With economic development, environmental concerns become more important. Economies cannot be developed without energy consumption, which is the major source of greenhouse gas emissions. Higher energy efficiency is one means of reducing emissions, but what determines energy efficiency? In this research we attempt to find answers to this question by using cross-sectional country data; that is, we examine a wide range of possible determinants of energy efficiency at the country level in an attempt to find the most important causal factors. All countries are divided into three income groups: high-income countries, middle-income countries, and low-income countries. Energy intensity is used as a measurement of energy efficiency. All independent variables belong to two categories: quantitative and qualitative. Quantitative variables are measures of the economic conditions, development indicators and energy usage situations. Qualitative variables mainly measure political, societal and economic strengths of a country. The three income groups have different economic and energy attributes. Each group has different sets of variables to explain energy efficiency. Energy prices and winter temperature are both important in high-income and middle-income countries. No qualitative variables appear in the model of high-income countries. Basic economic factors, such as institutions, political stability, urbanization level, population density, are important in low-income countries. Besides similar variables, such as macroeconomic stability and index of rule of law, the hydroelectricity share in total electric generation is also a driver of energy efficiency in middle-income countries. These variables have different policy implications for each group of countries.
Population and prehistory III: food-dependent demography in variable environments.
Lee, Charlotte T; Puleston, Cedric O; Tuljapurkar, Shripad
2009-11-01
The population dynamics of preindustrial societies depend intimately on their surroundings, and food is a primary means through which environment influences population size and individual well-being. Food production requires labor; thus, dependence of survival and fertility on food involves dependence of a population's future on its current state. We use a perturbation approach to analyze the effects of random environmental variation on this nonlinear, age-structured system. We show that in expanding populations, direct environmental effects dominate induced population fluctuations, so environmental variability has little effect on mean hunger levels, although it does decrease population growth. The growth rate determines the time until population is limited by space. This limitation introduces a tradeoff between population density and well-being, so population effects become more important than the direct effects of the environment: environmental fluctuation increases mortality, releasing density dependence and raising average well-being for survivors. We discuss the social implications of these findings for the long-term fate of populations as they transition from expansion into limitation, given that conditions leading to high well-being during growth depress well-being during limitation.
Jore, Solveig; Vanwambeke, Sophie O; Viljugrein, Hildegunn; Isaksen, Ketil; Kristoffersen, Anja B; Woldehiwet, Zerai; Johansen, Bernt; Brun, Edgar; Brun-Hansen, Hege; Westermann, Sebastian; Larsen, Inger-Lise; Ytrehus, Bjørnar; Hofshagen, Merete
2014-01-08
Global environmental change is causing spatial and temporal shifts in the distribution of species and the associated diseases of humans, domesticated animals and wildlife. In the on-going debate on the influence of climate change on vectors and vector-borne diseases, there is a lack of a comprehensive interdisciplinary multi-factorial approach utilizing high quality spatial and temporal data. We explored biotic and abiotic factors associated with the latitudinal and altitudinal shifts in the distribution of Ixodes ricinus observed during the last three decades in Norway using antibodies against Anaplasma phagocytophilum in sheep as indicators for tick presence. Samples obtained from 2963 sheep from 90 farms in 3 ecologically different districts during 1978 - 2008 were analysed. We modelled the presence of antibodies against A. phagocytophilum to climatic-, environmental and demographic variables, and abundance of wild cervids and domestic animals, using mixed effect logistic regressions. Significant predictors were large diurnal fluctuations in ground surface temperature, spring precipitation, duration of snow cover, abundance of red deer and farm animals and bush encroachment/ecotones. The length of the growth season, mean temperature and the abundance of roe deer were not significant in the model. Our results highlight the need to consider climatic variables year-round to disentangle important seasonal variation, climatic threshold changes, climate variability and to consider the broader environmental change, including abiotic and biotic factors. The results offer novel insight in how tick and tick-borne disease distribution might be modified by future climate and environmental change.
Willems, Michelle; Sattin, Davide; Vingerhoets, Ad J.J.M.; Leonardi, Matilde
2015-01-01
Disorders of consciousness are neurological conditions associated with low levels of functioning which pose a serious challenge to public health systems. The current study aimed to examine longitudinal changes in functioning in patients with disorders of consciousness and to identify associated biopsychosocial factors using the International Classification of Functioning, Disability, and Health. An Italian sample of 248 patients was assessed longitudinally. Differences in relative variability (an index of change that controls for baseline levels) between acute and chronic patients and predictors of relative variability in “Activities & Participation” were examined. Results showed that there were subgroups of patients whose functioning improved over time. The number of problems in “Activities & Participation” decreased in acute patients over time, whereas in chronic patients, an increase was found. The significant difference in relative variability for the environmental factor “support and relationships” reflects the increase in facilitators in acute patients, whereas the number of facilitators in chronic patients remained unchanged over time. Age at event, time from event, and relative variability in “Environmental Factors” were significant predictors of relative variability in “Activities & Participation”. It is of clinical relevance that patients with disorders of consciousness are kept in a supportive and facilitative environment, in order to prevent a decline in their functioning. Moreover, caregivers should receive tailored support in order to enhance and facilitate appropriate care of patients with disorders of consciousness. PMID:25837348
Little, Eliza; Bajwa, Waheed; Shaman, Jeffrey
2017-08-01
Ae. albopictus, an invasive mosquito vector now endemic to much of the northeastern US, is a significant public health threat both as a nuisance biter and vector of disease (e.g. chikungunya virus). Here, we aim to quantify the relationships between local environmental and meteorological conditions and the abundance of Ae. albopictus mosquitoes in New York City. Using statistical modeling, we create a fine-scale spatially explicit risk map of Ae. albopictus abundance and validate the accuracy of spatiotemporal model predictions using observational data from 2016. We find that the spatial variability of annual Ae. albopictus abundance is greater than its temporal variability in New York City but that both local environmental and meteorological conditions are associated with Ae. albopictus numbers. Specifically, key land use characteristics, including open spaces, residential areas, and vacant lots, and spring and early summer meteorological conditions are associated with annual Ae. albopictus abundance. In addition, we investigate the distribution of imported chikungunya cases during 2014 and use these data to delineate areas with the highest rates of arboviral importation. We show that the spatial distribution of imported arboviral cases has been mostly discordant with mosquito production and thus, to date, has provided a check on local arboviral transmission in New York City. We do, however, find concordant areas where high Ae. albopictus abundance and chikungunya importation co-occur. Public health and vector control officials should prioritize control efforts to these areas and thus more cost effectively reduce the risk of local arboviral transmission. The methods applied here can be used to monitor and identify areas of risk for other imported vector-borne diseases.
Bajwa, Waheed; Shaman, Jeffrey
2017-01-01
Ae. albopictus, an invasive mosquito vector now endemic to much of the northeastern US, is a significant public health threat both as a nuisance biter and vector of disease (e.g. chikungunya virus). Here, we aim to quantify the relationships between local environmental and meteorological conditions and the abundance of Ae. albopictus mosquitoes in New York City. Using statistical modeling, we create a fine-scale spatially explicit risk map of Ae. albopictus abundance and validate the accuracy of spatiotemporal model predictions using observational data from 2016. We find that the spatial variability of annual Ae. albopictus abundance is greater than its temporal variability in New York City but that both local environmental and meteorological conditions are associated with Ae. albopictus numbers. Specifically, key land use characteristics, including open spaces, residential areas, and vacant lots, and spring and early summer meteorological conditions are associated with annual Ae. albopictus abundance. In addition, we investigate the distribution of imported chikungunya cases during 2014 and use these data to delineate areas with the highest rates of arboviral importation. We show that the spatial distribution of imported arboviral cases has been mostly discordant with mosquito production and thus, to date, has provided a check on local arboviral transmission in New York City. We do, however, find concordant areas where high Ae. albopictus abundance and chikungunya importation co-occur. Public health and vector control officials should prioritize control efforts to these areas and thus more cost effectively reduce the risk of local arboviral transmission. The methods applied here can be used to monitor and identify areas of risk for other imported vector-borne diseases. PMID:28832586
Delgado-Petrocelli, Laura; Córdova, Karenia; Camardiel, Alberto; Aguilar, Víctor H; Hernández, Denise; Ramos, Santiago
2012-09-01
The last decade has seen an unprecedented, worldwide acceleration of environmental and climate changes. These processes impact the dynamics of natural systems, which include components associated with human communities such as vector-borne diseases. The dynamics of environmental and climate variables, altered by global change as reported by the Intergovernmental Panel on Climate Change, affect the distribution of many tropical diseases. Complex systems, e.g. the El Niño/La Niña-Southern Oscillation (ENSO), in which environmental variables operate synergistically, can provoke the reemergence and emergence of vector-borne diseases at new sites. This research investigated the influence of ENSO events on malaria incidence by determining the relationship between climate variations, expressed as warm, cold and neutral phases, and their relation to the number of malaria cases in some north-eastern municipalities of Venezuela (Estado Sucre) during the period 1990-2000. Significant differences in malaria incidence were found, particularly in the La Niña ENSO phases (cold) of moderate intensity. These findings should be taken into account for surveillance and control in the future as they shed light on important indicators that can lead to reduced vulnerability to malaria.
Environmental stress increases variability in the expression of dental cusps.
Riga, Alessandro; Belcastro, Maria Giovanna; Moggi-Cecchi, Jacopo
2014-03-01
Teeth are an important model for developmental studies but, despite an extensive literature on the genetics of dental development, little is known about the environmental influences on dental morphology. Here we test whether and to what extent the environment plays a role in producing morphological variation in human teeth. We selected a sample of modern human skulls and used dental enamel hypoplasia as an environmental stress marker to identify two groups with different stress levels, referred to as SG ("stressed" group) and NSG ("nonstressed" group). We collected data on the occurrence and the relative development of 15 morphological traits on upper molars using a standard methodology (ASU-DAS system) and then we compared the frequencies of the traits in the two groups. Overall, the results suggest that (a) stressors like malnutrition and/or systemic diseases have a significant effect on upper molar morphology; (b) stress generates a developmental response which increases the morphological variability of the SG; and (c) the increase in variability is directional, since individuals belonging to the SG have more developed and extra cusps. These results are consistent with the expectations of the current model of dental development. Copyright © 2013 Wiley Periodicals, Inc.
Olea, Pedro P.; Mateo-Tomás, Patricia; de Frutos, Ángel
2010-01-01
Background Hierarchical partitioning (HP) is an analytical method of multiple regression that identifies the most likely causal factors while alleviating multicollinearity problems. Its use is increasing in ecology and conservation by its usefulness for complementing multiple regression analysis. A public-domain software “hier.part package” has been developed for running HP in R software. Its authors highlight a “minor rounding error” for hierarchies constructed from >9 variables, however potential bias by using this module has not yet been examined. Knowing this bias is pivotal because, for example, the ranking obtained in HP is being used as a criterion for establishing priorities of conservation. Methodology/Principal Findings Using numerical simulations and two real examples, we assessed the robustness of this HP module in relation to the order the variables have in the analysis. Results indicated a considerable effect of the variable order on the amount of independent variance explained by predictors for models with >9 explanatory variables. For these models the nominal ranking of importance of the predictors changed with variable order, i.e. predictors declared important by its contribution in explaining the response variable frequently changed to be either most or less important with other variable orders. The probability of changing position of a variable was best explained by the difference in independent explanatory power between that variable and the previous one in the nominal ranking of importance. The lesser is this difference, the more likely is the change of position. Conclusions/Significance HP should be applied with caution when more than 9 explanatory variables are used to know ranking of covariate importance. The explained variance is not a useful parameter to use in models with more than 9 independent variables. The inconsistency in the results obtained by HP should be considered in future studies as well as in those already published. Some recommendations to improve the analysis with this HP module are given. PMID:20657734
Environmental Literacy in Madeira Island (Portugal): The Influence of Demographic Variables
ERIC Educational Resources Information Center
Spinola, Hélder
2016-01-01
Demographic factors are among those that influence environmental literacy and, particularly, environmentally responsible behaviours, either directly or due to an aggregation effect dependent on other types of variables. Present study evaluates a set of demographic variables as predictors for environmental literacy among 9th grade students from…
Whittaker, Kerry A; Rynearson, Tatiana A
2017-03-07
The ability for organisms to disperse throughout their environment is thought to strongly influence population structure and thus evolution of diversity within species. A decades-long debate surrounds processes that generate and support high microbial diversity, particularly in the ocean. The debate concerns whether diversification occurs primarily through geographic partitioning (where distance limits gene flow) or through environmental selection, and remains unresolved due to lack of empirical data. Here we show that gene flow in a diatom, an ecologically important eukaryotic microbe, is not limited by global-scale geographic distance. Instead, environmental and ecological selection likely play a more significant role than dispersal in generating and maintaining diversity. We detected significantly diverged populations ( F ST > 0.130) and discovered temporal genetic variability at a single site that was on par with spatial genetic variability observed over distances of 15,000 km. Relatedness among populations was decoupled from geographic distance across the global ocean and instead, correlated significantly with water temperature and whole-community chlorophyll a Correlations with temperature point to the importance of environmental selection in structuring populations. Correlations with whole-community chlorophyll a , a proxy for autotrophic biomass, suggest that ecological selection via interactions with other plankton may generate and maintain population genetic structure in marine microbes despite global-scale dispersal. Here, we provide empirical evidence for global gene flow in a marine eukaryotic microbe, suggesting that everything holds the potential to be everywhere, with environmental and ecological selection rather than geography or dispersal dictating the structure and evolution of diversity over space and time.
Environmental stress and whole-tree physiology
Peter L. Jr. Lorio
1993-01-01
Interactions among bark beetles, pathogens, and conifers constitute a triangle. Another triangle of interactions exist among the invading organism (bark beetles and pathogens), the trees, and the environment. How important, variable or constant, simple or complex, is the role of trees in these triangles? Understanding the wide range of interactions that take place...
ERIC Educational Resources Information Center
Çalik Var, Esra; Kiliç, Sükran; Kumandas, Hatice
2015-01-01
Problem Statement: There are various environmental factors such as culture, socioeconomic status, family patterns, parental personality, family size, and education system among others, which affect development of individuals. Especially in the childhood period, parenting style is an important variable in forming physical, emotional, cognitive, and…
Growth and physiological responses of isohydric and anisohydric poplars to drought
Ziv Attia; Jean-Christophe Domec; Ram Oren; Danielle A. Way; Menachem Moshelion
2015-01-01
Understanding how different plants prioritize carbon gain and drought vulnerability under a variable water supply is important for predicting which trees will maximize woody biomass production under different environmental conditions. Here, Populus balsamifera (BS, isohydric genotype), P. simonii (SI, previously uncharacterized stomatal behaviour), and their cross, P....
ERIC Educational Resources Information Center
Nolte, Marianne
2012-01-01
Models of giftedness are aimed at creating a picture of aspects which are important for developing a special talent. Approved models of giftedness are based on influencing factors like genetic, environmental and individual orientated variables. Within the approach of these models lay a shift in the conceptions about giftedness from individual…
USDA-ARS?s Scientific Manuscript database
Arbuscular mycorrhizal (AM) fungi are known for colonizing plant roots, transporting water and nutrients from the soil to the plant. Therefore, environmental conditions set mainly by soil water and nutrient levels are important determinants of AM function and host plant response. Mechanisms of nitro...
Bonanno, Angelo; Giannoulaki, Marianna; Barra, Marco; Basilone, Gualtiero; Machias, Athanassios; Genovese, Simona; Goncharov, Sergey; Popov, Sergey; Rumolo, Paola; Di Bitetto, Massimiliano; Aronica, Salvatore; Patti, Bernardo; Fontana, Ignazio; Giacalone, Giovanni; Ferreri, Rosalia; Buscaino, Giuseppa; Somarakis, Stylianos; Pyrounaki, Maria-Myrto; Tsoukali, Stavroula; Mazzola, Salvatore
2014-01-01
A number of scientific papers in the last few years singled out the influence of environmental conditions on the spatial distribution of fish species, highlighting the need for the fisheries scientific community to investigate, besides biomass estimates, also the habitat selection of commercially important fish species. The Mediterranean Sea, although generally oligotrophic, is characterized by high habitat variability and represents an ideal study area to investigate the adaptive behavior of small pelagics under different environmental conditions. In this study the habitat selection of European anchovy Engraulis encrasicolus and European sardine Sardina pilchardus is analyzed in two areas of the Mediterranean Sea that largely differentiate in terms of environmental regimes: the Strait of Sicily and the North Aegean Sea. A number of environmental parameters were used to investigate factors influencing anchovy and sardine habitat selection. Acoustic surveys data, collected during the summer period 2002–2010, were used for this purpose. The quotient analysis was used to identify the association between high density values and environmental variables; it was applied to the entire dataset in each area in order to identify similarities or differences in the “mean” spatial behavioral pattern for each species. Principal component analysis was applied to selected environmental variables in order to identify those environmental regimes which drive each of the two ecosystems. The analysis revealed the effect of food availability along with bottom depth selection on the spatial distribution of both species. Furthermore PCA results highlighted that observed selectivity for shallower waters is mainly associated to specific environmental processes that locally increase productivity. The common trends in habitat selection of the two species, as observed in the two regions although they present marked differences in hydrodynamics, seem to be driven by the oligotrophic character of the study areas, highlighting the role of areas where the local environmental regimes meet ‘the ocean triad hypothesis’. PMID:24992576
Bisson, P.A.; Dunham, J.B.; Reeves, G.H.
2009-01-01
In spite of numerous habitat restoration programs in fresh waters with an aggregate annual funding of millions of dollars, many populations of Pacific salmon remain significantly imperiled. Habitat restoration strategies that address limited environmental attributes and partial salmon life-history requirements or approaches that attempt to force aquatic habitat to conform to idealized but ecologically unsustainable conditions may partly explain this lack of response. Natural watershed processes generate highly variable environmental conditions and population responses, i.e., multiple life histories, that are often not considered in restoration. Examples from several locations underscore the importance of natural variability to the resilience of Pacific salmon. The implication is that habitat restoration efforts will be more likely to foster salmon resilience if they consider processes that generate and maintain natural variability in fresh water. We identify three specific criteria for management based on natural variability: the capacity of aquatic habitat to recover from disturbance, a range of habitats distributed across stream networks through time sufficient to fulfill the requirements of diverse salmon life histories, and ecological connectivity. In light of these considerations, we discuss current threats to habitat resilience and describe how regulatory and restoration approaches can be modified to better incorporate natural variability. ?? 2009 by the author(s).
Andrianov, B V; Goryacheva, I I; Vlasov, S V; Gorelova, T V; Harutyunova, M V; Harutyunova, K V; Mayilyan, K R; Zakharov, I A
2015-03-01
Black flies (Diptera, Simuliidae) are well known for their medical, environmental, and veterinary importance. The simuliid fauna of Armenia includes 53 species. A number of dominant species are of ecological importance. Complex analysis, which involved morphometric, cytogenetic, and molecular genetic approaches, was conducted to characterize the species status of black flies inhabiting the territory of Armenia. It was shown that the predominant simuliid species, Simulium paraequinum and Simulium kiritshenkoi, belong to a group of species with minimal variability of the cox1 gene. The recently discovered species, Simulium noellery and Simulium [B.] erythrocephalum, which are new to Armenia, can be considered as potentially invasive, which is supported by the low level of variability of the cox1 gene.
Fobil, Julius; May, Juergen; Kraemer, Alexander
2010-01-01
The influence of socioeconomic status (SES) on health inequalities is widely known, but there is still poor understanding of the precise relationship between area-based socioeconomic conditions and neighborhood environmental quality. This study aimed to investigate the socioeconomic conditions which predict urban neighbourhood environmental quality. The results showed wide variation in levels of association between the socioeconomic variables and environmental conditions, with strong evidence of a real difference in environmental quality across the five socioeconomic classes with respect to total waste generation (p < 0.001), waste collection rate (p < 0.001), sewer disposal rate (p < 0.001), non-sewer disposal (p < 0.003), the proportion of households using public toilets (p = 0.005). Socioeconomic conditions are therefore important drivers of change in environmental quality and urban environmental interventions aimed at infectious disease prevention and control if they should be effective could benefit from simultaneous implementation with other social interventions. PMID:20195437
Brown, Larry R.; May, Jason T.
2000-01-01
Data were collected in the San Joaquin and Sacramento river drainages to evaluate associations between macroinvertebrate assemblages and environmental variables as part of the National Water-Quality Assessment Program of the U.S. Geological Survey. Samples were collected at 53 sites from 1993 to 1995 in the San Joaquin River drainage and in 1996 and 1997 in the Sacramento River drainage. Macroinvertebrates were collected from riffles or from large woody debris (snags) when riffles were absent. Macroinvertebrate taxa were aggregated to the family (or higher) level of taxonomic organization, resulting in 81 taxa for analyses. Only the 50 most common taxa were used for two-way indicator species analysis (TWINSPAN) and canonical correspondence analysis. TWINSPAN analysis defined four groups of riffle samples and four groups of snag samples based on macroinvertebrate assemblages. Analysis of variance identified differences in environmental and biotic characteristics of the groups. These results combined with the results of canonical correspondence analysis indicated that patterns in riffle sample assemblage structure were highly correlated with a gradient in physical and chemical conditions associated with elevation. The results also suggested that flow regulation associated with large storage reservoirs has negative effects on the total number of taxa and density of macroinvertebrates below foothill dams. Analysis of the snag samples showed that, although elevation remained a significant variable, mean dominant substrate size, gradient, specific conductance, water temperature, percentage of the basin in agricultural land use, and percentage of the basin in combined agricultural and urban land uses were more important factors in explaining assemblage structure. Macroinvertebrate assemblages on snags may be useful in family level bioassessments of environmental conditions in valley floor habitats. In the Sierra Nevada and its foothills, the strong influence of elevation made it difficult to attribute differences in macroinvertebrate assemblage structure among sites to specific environmental conditions. Additional work is needed in the foothills and Sierra Nevada to better define macroinvertebrate assemblages and their relations to environmental variables.
Cauvy-Fraunié, Sophie; Espinosa, Rodrigo; Andino, Patricio; Jacobsen, Dean; Dangles, Olivier
2015-01-01
Under the ongoing climate change, understanding the mechanisms structuring the spatial distribution of aquatic species in glacial stream networks is of critical importance to predict the response of aquatic biodiversity in the face of glacier melting. In this study, we propose to use metacommunity theory as a conceptual framework to better understand how river network structure influences the spatial organization of aquatic communities in glacierized catchments. At 51 stream sites in an Andean glacierized catchment (Ecuador), we sampled benthic macroinvertebrates, measured physico-chemical and food resource conditions, and calculated geographical, altitudinal and glaciality distances among all sites. Using partial redundancy analysis, we partitioned community variation to evaluate the relative strength of environmental conditions (e.g., glaciality, food resource) vs. spatial processes (e.g., overland, watercourse, and downstream directional dispersal) in organizing the aquatic metacommunity. Results revealed that both environmental and spatial variables significantly explained community variation among sites. Among all environmental variables, the glacial influence component best explained community variation. Overland spatial variables based on geographical and altitudinal distances significantly affected community variation. Watercourse spatial variables based on glaciality distances had a unique significant effect on community variation. Within alpine catchment, glacial meltwater affects macroinvertebrate metacommunity structure in many ways. Indeed, the harsh environmental conditions characterizing glacial influence not only constitute the primary environmental filter but also, limit water-borne macroinvertebrate dispersal. Therefore, glacier runoff acts as an aquatic dispersal barrier, isolating species in headwater streams, and preventing non-adapted species to colonize throughout the entire stream network. Under a scenario of glacier runoff decrease, we expect a reduction in both environmental filtering and dispersal limitation, inducing a taxonomic homogenization of the aquatic fauna in glacierized catchments as well as the extinction of specialized species in headwater groundwater and glacier-fed streams, and consequently an irreversible reduction in regional diversity. PMID:26308853
Kodis, Mali'o; Galante, Peter; Sterling, Eleanor J; Blair, Mary E
2018-04-26
Under the threat of ongoing and projected climate change, communities in the Pacific Islands face challenges of adapting culture and lifestyle to accommodate a changing landscape. Few models can effectively predict how biocultural livelihoods might be impacted. Here, we examine how environmental and anthropogenic factors influence an ecological niche model (ENM) for the realized niche of cultivated taro (Colocasia esculenta) in Hawaii. We created and tuned two sets of ENMs: one using only environmental variables, and one using both environmental and cultural characteristics of Hawaii. These models were projected under two different Intergovernmental Panel on Climate Change (IPCC) Representative Concentration Pathways (RCPs) for 2070. Models were selected and evaluated using average omission rate and area under the receiver operating characteristic curve (AUC). We compared optimal model predictions by comparing the percentage of taro plots predicted present and measured ENM overlap using Schoener's D statistic. The model including only environmental variables consisted of 19 Worldclim bioclimatic variables, in addition to slope, altitude, distance to perennial streams, soil evaporation, and soil moisture. The optimal model with environmental variables plus anthropogenic features also included a road density variable (which we assumed as a proxy for urbanization) and a variable indicating agricultural lands of importance to the state of Hawaii. The model including anthropogenic features performed better than the environment-only model based on omission rate, AUC, and review of spatial projections. The two models also differed in spatial projections for taro under anticipated future climate change. Our results demonstrate how ENMs including anthropogenic features can predict which areas might be best suited to plant cultivated species in the future, and how these areas could change under various climate projections. These predictions might inform biocultural conservation priorities and initiatives. In addition, we discuss the incongruences that arise when traditional ENM theory is applied to species whose distribution has been significantly impacted by human intervention, particularly at a fine scale relevant to biocultural conservation initiatives. © 2018 by the Ecological Society of America.
Gene-environment interaction and suicidal behavior.
Roy, Alec; Sarchiopone, Marco; Carli, Vladimir
2009-07-01
Studies have increasingly shown that gene-environment interactions are important in psychiatry. Suicidal behavior is a major public health problem. Suicide is generally considered to be a multi-determined act involving various areas of proximal and distal risk. Genetic risk factors are estimated to account for approximately 30% to 40% of the variance in suicidal behavior. In this article, the authors review relevant studies concerning the interaction between the serotonin transporter gene and environmental variables as a model of gene-environment interactions that may have an impact on suicidal behavior. The findings reviewed here suggest that there may be meaningful interactions between distal and proximal suicide risk factors that may amplify the risk of suicidal behavior. Future studies of suicidal behavior should examine both genetic and environmental variables and examine for gene-environment interactions.
Cao, Peng; Wang, Jun-Tao; Hu, Hang-Wei; Zheng, Yuan-Ming; Ge, Yuan; Shen, Ju-Pei; He, Ji-Zheng
2016-07-01
Despite the utmost importance of microorganisms in maintaining ecosystem functioning and their ubiquitous distribution, our knowledge of the large-scale pattern of microbial diversity is limited, particularly in grassland soils. In this study, the microbial communities of 99 soil samples spanning over 3000 km across grassland ecosystems in northern China were investigated using high-throughput sequencing to analyze the beta diversity pattern and the underlying ecological processes. The microbial communities were dominated by Proteobacteria, Actinobacteria, Acidobacteria, Chloroflexi, and Planctomycetes across all the soil samples. Spearman's correlation analysis indicated that climatic factors and soil pH were significantly correlated with the dominant microbial taxa, while soil microbial richness was positively linked to annual precipitation. The environmental divergence-dissimilarity relationship was significantly positive, suggesting the importance of environmental filtering processes in shaping soil microbial communities. Structural equation modeling found that the deterministic process played a more important role than the stochastic process on the pattern of soil microbial beta diversity, which supported the predictions of niche theory. Partial mantel test analysis have showed that the contribution of independent environmental variables has a significant effect on beta diversity, while independent spatial distance has no such relationship, confirming that the deterministic process was dominant in structuring soil microbial communities. Overall, environmental filtering process has more important roles than dispersal limitation in shaping microbial beta diversity patterns in the grassland soils.
Prediction of Psilocybin Response in Healthy Volunteers
Studerus, Erich; Gamma, Alex; Kometer, Michael; Vollenweider, Franz X.
2012-01-01
Responses to hallucinogenic drugs, such as psilocybin, are believed to be critically dependent on the user's personality, current mood state, drug pre-experiences, expectancies, and social and environmental variables. However, little is known about the order of importance of these variables and their effect sizes in comparison to drug dose. Hence, this study investigated the effects of 24 predictor variables, including age, sex, education, personality traits, drug pre-experience, mental state before drug intake, experimental setting, and drug dose on the acute response to psilocybin. The analysis was based on the pooled data of 23 controlled experimental studies involving 409 psilocybin administrations to 261 healthy volunteers. Multiple linear mixed effects models were fitted for each of 15 response variables. Although drug dose was clearly the most important predictor for all measured response variables, several non-pharmacological variables significantly contributed to the effects of psilocybin. Specifically, having a high score in the personality trait of Absorption, being in an emotionally excitable and active state immediately before drug intake, and having experienced few psychological problems in past weeks were most strongly associated with pleasant and mystical-type experiences, whereas high Emotional Excitability, low age, and an experimental setting involving positron emission tomography most strongly predicted unpleasant and/or anxious reactions to psilocybin. The results confirm that non-pharmacological variables play an important role in the effects of psilocybin. PMID:22363492
Prediction of psilocybin response in healthy volunteers.
Studerus, Erich; Gamma, Alex; Kometer, Michael; Vollenweider, Franz X
2012-01-01
Responses to hallucinogenic drugs, such as psilocybin, are believed to be critically dependent on the user's personality, current mood state, drug pre-experiences, expectancies, and social and environmental variables. However, little is known about the order of importance of these variables and their effect sizes in comparison to drug dose. Hence, this study investigated the effects of 24 predictor variables, including age, sex, education, personality traits, drug pre-experience, mental state before drug intake, experimental setting, and drug dose on the acute response to psilocybin. The analysis was based on the pooled data of 23 controlled experimental studies involving 409 psilocybin administrations to 261 healthy volunteers. Multiple linear mixed effects models were fitted for each of 15 response variables. Although drug dose was clearly the most important predictor for all measured response variables, several non-pharmacological variables significantly contributed to the effects of psilocybin. Specifically, having a high score in the personality trait of Absorption, being in an emotionally excitable and active state immediately before drug intake, and having experienced few psychological problems in past weeks were most strongly associated with pleasant and mystical-type experiences, whereas high Emotional Excitability, low age, and an experimental setting involving positron emission tomography most strongly predicted unpleasant and/or anxious reactions to psilocybin. The results confirm that non-pharmacological variables play an important role in the effects of psilocybin.
Ensemble forecasting of potential habitat for three invasive fishes
Poulos, Helen M.; Chernoff, Barry; Fuller, Pam L.; Butman, David
2012-01-01
Aquatic invasive species pose major ecological and economic threats to aquatic ecosystems worldwide via displacement, predation, or hybridization with native species and the alteration of aquatic habitats and hydrologic cycles. Modeling the habitat suitability of alien aquatic species through spatially explicit mapping is an increasingly important risk assessment tool. Habitat modeling also facilitates identification of key environmental variables influencing invasive species distributions. We compared four modeling methods to predict the potential continental United States distributions of northern snakehead Channa argus (Cantor, 1842), round goby Neogobius melanostomus (Pallas, 1814), and silver carp Hypophthalmichthys molitrix (Valenciennes, 1844) using maximum entropy (Maxent), the genetic algorithm for rule set production (GARP), DOMAIN, and support vector machines (SVM). We used inventory records from the USGS Nonindigenous Aquatic Species Database and a geographic information system of 20 climatic and environmental variables to generate individual and ensemble distribution maps for each species. The ensemble maps from our study performed as well as or better than all of the individual models except Maxent. The ensemble and Maxent models produced significantly higher accuracy individual maps than GARP, one-class SVMs, or DOMAIN. The key environmental predictor variables in the individual models were consistent with the tolerances of each species. Results from this study provide insights into which locations and environmental conditions may promote the future spread of invasive fish in the US.
Liu, Hua; Weng, Qihao; Gaines, David
2008-12-18
This study developed a multi-temporal analysis on the relationship between West Nile Virus (WNV) dissemination and environmental variables by using an integrated approach of remote sensing, GIS, and statistical techniques. WNV mosquito cases in seven months (April-October) of the six years (2002-2007) were collected in Indianapolis, USA. Epidemic curves were plotted to identify the temporal outbreaks of WNV. Spatial-temporal analysis and k-mean cluster analysis were further applied to determine the high-risk areas. Finally, the relationship between environmental variables and WNV outbreaks were examined by using Discriminant Analysis. The results show that the WNV epidemic curve reached its peak in August for all years in the study area except in 2007, where the peak was reached in July. WNV dissemination started from the central longitudinal corridor of the city and spread out to the east and west. Different years and seasons had different high-risk areas, but the southwest and southeast corners show the highest risk for WNV infection due to their high percentages of agriculture and water sources. Major environmental factors contributing to the outbreak of WNV in Indianapolis were the percentages of agriculture and water, total length of streams, and total size of wetlands. This study provides important information for urban public health prevention and management. It also contributes to the optimization of mosquito control and arrangement of future sampling efforts.
Modelling climate change and malaria transmission.
Parham, Paul E; Michael, Edwin
2010-01-01
The impact of climate change on human health has received increasing attention in recent years, with potential impacts due to vector-borne diseases only now beginning to be understood. As the most severe vector-borne disease, with one million deaths globally in 2006, malaria is thought most likely to be affected by changes in climate variables due to the sensitivity of its transmission dynamics to environmental conditions. While considerable research has been carried out using statistical models to better assess the relationship between changes in environmental variables and malaria incidence, less progress has been made on developing process-based climate-driven mathematical models with greater explanatory power. Here, we develop a simple model of malaria transmission linked to climate which permits useful insights into the sensitivity of disease transmission to changes in rainfall and temperature variables. Both the impact of changes in the mean values of these key external variables and importantly temporal variation in these values are explored. We show that the development and analysis of such dynamic climate-driven transmission models will be crucial to understanding the rate at which P. falciparum and P. vivax may either infect, expand into or go extinct in populations as local environmental conditions change. Malaria becomes endemic in a population when the basic reproduction number R0 is greater than unity and we identify an optimum climate-driven transmission window for the disease, thus providing a useful indicator for determing how transmission risk may change as climate changes. Overall, our results indicate that considerable work is required to better understand ways in which global malaria incidence and distribution may alter with climate change. In particular, we show that the roles of seasonality, stochasticity and variability in environmental variables, as well as ultimately anthropogenic effects, require further study. The work presented here offers a theoretical framework upon which this future research may be developed.
Analysis of shifts in the spatial distribution of vegetation due to climate change
NASA Astrophysics Data System (ADS)
del Jesus, Manuel; Díez-Sierra, Javier; Rinaldo, Andrea; Rodríguez-Iturbe, Ignacio
2017-04-01
Climate change will modify the statistical regime of most climatological variables, inducing changes on average values and in the natural variability of environmental variables. These environmental variables may be used to explain the spatial distribution of functional types of vegetation in arid and semiarid watersheds through the use of plant optimization theories. Therefore, plant optimization theories may be used to approximate the response of the spatial distribution of vegetation to a changing climate. Predicting changes in these spatial distributions is important to understand how climate change may affect vegetated ecosystems, but it is also important for hydrological engineering applications where climate change effects on water availability are assessed. In this work, Maximum Entropy Production (MEP) is used as the plant optimization theory that describes the spatial distribution of functional types of vegetation. Current climatological conditions are obtained from direct observations from meteorological stations. Climate change effects are evaluated for different temporal horizons and different climate change scenarios using numerical model outputs from the CMIP5. Rainfall estimates are downscaled by means of a stochastic point process used to model rainfall. The study is carried out for the Rio Salado watershed, located within the Sevilleta LTER site, in New Mexico (USA). Results show the expected changes in the spatial distribution of vegetation and allow to evaluate the expected variability of the changes. The updated spatial distributions allow to evaluate the vegetated ecosystem health and its updated resilience. These results can then be used to inform the hydrological modeling part of climate change assessments analyzing water availability in arid and semiarid watersheds.
Gutierrez, Juan D; Martínez-Vega, Ruth; Ramoni-Perazzi, Josefa; Diaz-Quijano, Fredi A; Gutiérrez, Reinaldo; Ruiz, Freddy J; Botello, Hector A; Gil, María; González, Juan; Palencia, Mario
2017-12-01
Cutaneous leishmaniasis (CL) is a vector-borne disease that is widely distributed in most tropical regions. Colombia has experienced an important increase in its incidence during the last decade. There are CL transmission foci in the Colombian departments of Santander and Norte de Santander. To identify environmental and socio-economic variables associated with CL incidence in the municipalities of the northeast of Colombia between 2007 and 2016. This was an ecological study of CL cases aggregated by municipality. The cases reported during the study period were analyzed with a negative binomial regression to obtain the adjusted incident rate ratio for environmental and socio-economic variables. During the study period, 10 924 cases of CL were reported, and 110 (86.6%) municipalities reported at least one CL case. The coverages of forest (aIRR 1.05, 95% CI 1.03-1.07), heterogeneous agricultural zones (aIRR 1.04, 95% CI 1.02-1.06) and permanent crops (aIRR 1.07, 95% CI 1.02-1.12) were associated with a higher incidence of CL. Conversely, urban functionality (aIRR 0.95, 95% CI 0.92-0.96), minimal-altitude above sea level (aIRR 0.84, 95% CI 0.79-0.90) and shrub coverage (aIRR 0.98, 95% CI 0.95-1.0) were negatively associated with the incidence of CL in the municipality. Our results confirm the importance of environmental determinants, such as height above sea level, and coverage of forest, permanent crops and heterogeneous agricultural zones, for the occurrence of CL; these findings also suggest the importance of shrub coverage. Furthermore, urban functionality was a socio-economic determinant independently associated with CL incidence.
Lauria, V; Garofalo, G; Gristina, M; Fiorentino, F
2016-08-01
Conservation of fish habitat requires a deeper knowledge of how species distribution patterns are related to environmental factors. Habitat suitability modelling is an essential tool to quantify species' realised niches and understand species-environment relationships. Cephalopods are important players in the marine food web and a significant resource for fisheries; they are also very sensitive to environmental changes. Here a time series of fishery-independent data (1998-2011) was used to construct habitat suitability models and investigate the influence of environmental variables on four commercial cephalopods: Todaropsis eblanae, Illex coindetii, Eledone moschata and Eledone cirrhosa, in the central Mediterranean Sea. The main environmental predictors of cephalopod habitat suitability were depth, seafloor morphology, chlorophyll-a concentration, sea surface temperature and surface salinity. Predictive maps highlighted contrasting habitat selection amongst species. This study identifies areas where the important commercial species of cephalopods are concentrated and provides significant information for a future spatial based approach to fisheries management in the Mediterranean Sea. Copyright © 2016 Elsevier Ltd. All rights reserved.
Massicotte, Philippe; Proulx, Raphaël; Cabana, Gilbert; Rodríguez, Marco A
2015-01-01
Environmental homogenization in coastal ecosystems impacted by human activities may be an important factor explaining the observed decline in fish species richness. We used fish community data (>200 species) from extensive surveys conducted in two biogeographic provinces (extent >1,000 km) in North America to quantify the relationship between fish species richness and local (grain <10 km(2)) environmental heterogeneity. Our analyses are based on samples collected at nearly 800 stations over a period of five years. We demonstrate that fish species richness in coastal ecosystems is associated locally with the spatial heterogeneity of environmental variables but not with their magnitude. The observed effect of heterogeneity on species richness was substantially greater than that generated by simulations from a random placement model of community assembly, indicating that the observed relationship is unlikely to arise from veil or sampling effects. Our results suggest that restoring or actively protecting areas of high habitat heterogeneity may be of great importance for slowing current trends of decreasing biodiversity in coastal ecosystems.
Neighborhood socio-environmental vulnerability and infant mortality in Hermosillo, Sonora.
Lara-Valencia, Francisco; Álvarez-Hernández, Gerardo; Harlow, Siobán D; Denman, Catalina; García-Pérez, Hilda
2012-01-01
This paper explores the impact of contextual variables at the neighborhood level on a health marker in the city of Hermosillo, Mexico and discusses the importance of collaboration between planners and health professional to minimize the negative effect of contextual factors on urban health. Few studies in Mexico have assessed health outcomes at the intra-urban scale and their interaction with neighborhood-level contextual variables. Using spatial analysis and geographical information systems, the paper explores the association between infant mortality and an index of socio-environmental vulnerability used to measure urban contextual factors. Two high infant mortality clusters were detected within neighborhoods characterized by relatively good environmental conditions and one in a neighborhood with a poor environment. Our results show the clustering of high infant mortality areas and some association with built environment factors in Hermosillo. The results support the need to reconnect public health and urban planning as a way to create healthier environments in Mexican cities.
Chen, Chau-Kuang; Bruce, Michelle; Tyler, Lauren; Brown, Claudine; Garrett, Angelica; Goggins, Susan; Lewis-Polite, Brandy; Weriwoh, Mirabel L; Juarez, Paul D.; Hood, Darryl B.; Skelton, Tyler
2014-01-01
The goal of this study was to analyze a 54-item instrument for assessment of perception of exposure to environmental contaminants within the context of the built environment, or exposome. This exposome was defined in five domains to include 1) home and hobby, 2) school, 3) community, 4) occupation, and 5) exposure history. Interviews were conducted with child-bearing-age minority women at Metro Nashville General Hospital at Meharry Medical College. Data were analyzed utilizing DTReg software for Support Vector Machine (SVM) modeling followed by an SPSS package for a logistic regression model. The target (outcome) variable of interest was respondent's residence by ZIP code. The results demonstrate that the rank order of important variables with respect to SVM modeling versus traditional logistic regression models is almost identical. This is the first study documenting that SVM analysis has discriminate power for determination of higher-ordered spatial relationships on an environmental exposure history questionnaire. PMID:23395953
Rovai, André Scarlate; Barufi, José Bonomi; Pagliosa, Paulo Roberto; Scherner, Fernando; Torres, Moacir Aluísio; Horta, Paulo Antunes; Simonassi, José Carlos; Quadros, Daiane Paula Cunha; Borges, Daniel Lázaro Gallindo; Soriano-Sierra, Eduardo Juan
2013-10-01
We hypothesized that the photosynthetic performance of mangrove stands restored by the single planting of mangroves species would be lowered due to residual stressors. The photosynthetic parameters of the vegetation of three planted mangrove stands, each with a different disturbance history, were compared to reference sites and correlated with edaphic environmental variables. A permutational analysis of variance showed significant interaction when the factors were compared, indicating that the photosynthetic parameters of the restoration areas differed from the reference sites. A univariate analysis of variance showed that all the photosynthetic parameters differed between sites and treatments, except for photosynthetic efficiency (αETR). The combination of environmental variables that best explained the variations observed in the photosynthetic performance indicators were Cu, Pb and elevation disruptions. Fluorescence techniques proved efficient in revealing important physiological differences, representing a powerful tool for rapid analysis of the effectiveness of initiatives aimed at restoring coastal environments. Copyright © 2013 Elsevier Ltd. All rights reserved.
Biodiversity and ecosystem stability across scales in metacommunities.
Wang, Shaopeng; Loreau, Michel
2016-05-01
Although diversity-stability relationships have been extensively studied in local ecosystems, the global biodiversity crisis calls for an improved understanding of these relationships in a spatial context. Here, we use a dynamical model of competitive metacommunities to study the relationships between species diversity and ecosystem variability across scales. We derive analytic relationships under a limiting case; these results are extended to more general cases with numerical simulations. Our model shows that, while alpha diversity decreases local ecosystem variability, beta diversity generally contributes to increasing spatial asynchrony among local ecosystems. Consequently, both alpha and beta diversity provide stabilising effects for regional ecosystems, through local and spatial insurance effects respectively. We further show that at the regional scale, the stabilising effect of biodiversity increases as spatial environmental correlation increases. Our findings have important implications for understanding the interactive effects of global environmental changes (e.g. environmental homogenisation) and biodiversity loss on ecosystem sustainability at large scales. © 2016 John Wiley & Sons Ltd/CNRS.
Xu, Guangjian; Yang, Eun Jin; Xu, Henglong
2017-08-15
Trophic-functional groupings are an important biological trait to summarize community structure in functional space. The heterogeneity of the tropic-functional pattern of protozoan communities and its environmental drivers were studied in coastal waters of the Yellow Sea during a 1-year cycle. Samples were collected using the glass slide method at four stations within a water pollution gradient. A second-stage matrix-based analysis was used to summarize spatial variation in the annual pattern of the functional structure. A clustering analysis revealed significant variability in the trophic-functional pattern among the four stations during the 1-year cycle. The heterogeneity in the trophic-functional pattern of the communities was significantly related to changes in environmental variables, particularly ammonium-nitrogen and nitrates, alone or in combination with dissolved oxygen. These results suggest that the heterogeneity in annual patterns of protozoan trophic-functional structure may reflect water quality status in coastal ecosystems. Copyright © 2017. Published by Elsevier Ltd.
Chen, Chau-Kuang; Bruce, Michelle; Tyler, Lauren; Brown, Claudine; Garrett, Angelica; Goggins, Susan; Lewis-Polite, Brandy; Weriwoh, Mirabel L; Juarez, Paul D; Hood, Darryl B; Skelton, Tyler
2013-02-01
The goal of this study was to analyze a 54-item instrument for assessment of perception of exposure to environmental contaminants within the context of the built environment, or exposome. This exposome was defined in five domains to include 1) home and hobby, 2) school, 3) community, 4) occupation, and 5) exposure history. Interviews were conducted with child-bearing-age minority women at Metro Nashville General Hospital at Meharry Medical College. Data were analyzed utilizing DTReg software for Support Vector Machine (SVM) modeling followed by an SPSS package for a logistic regression model. The target (outcome) variable of interest was respondent's residence by ZIP code. The results demonstrate that the rank order of important variables with respect to SVM modeling versus traditional logistic regression models is almost identical. This is the first study documenting that SVM analysis has discriminate power for determination of higher-ordered spatial relationships on an environmental exposure history questionnaire.
Butcher, Jason T.; Stewart, Paul M.; Simon, Thomas P.
2003-01-01
Ninety-four sites were used to analyze the effects of two different classification strategies on the Benthic Community Index (BCI). The first, a priori classification, reflected the wetland status of the streams; the second, a posteriori classification, used a bio-environmental analysis to select classification variables. Both classifications were examined by measuring classification strength and testing differences in metric values with respect to group membership. The a priori (wetland) classification strength (83.3%) was greater than the a posteriori (bio-environmental) classification strength (76.8%). Both classifications found one metric that had significant differences between groups. The original index was modified to reflect the wetland classification by re-calibrating the scoring criteria for percent Crustacea and Mollusca. A proposed refinement to the original Benthic Community Index is suggested. This study shows the importance of using hypothesis-driven classifications, as well as exploratory statistical analysis, to evaluate alternative ways to reveal environmental variability in biological assessment tools.
Termites promote resistance of decomposition to spatiotemporal variability in rainfall.
Veldhuis, Michiel P; Laso, Francisco J; Olff, Han; Berg, Matty P
2017-02-01
The ecological impact of rapid environmental change will depend on the resistance of key ecosystems processes, which may be promoted by species that exert strong control over local environmental conditions. Recent theoretical work suggests that macrodetritivores increase the resistance of African savanna ecosystems to changing climatic conditions, but experimental evidence is lacking. We examined the effect of large fungus-growing termites and other non-fungus-growing macrodetritivores on decomposition rates empirically with strong spatiotemporal variability in rainfall and temperature. Non-fungus-growing larger macrodetritivores (earthworms, woodlice, millipedes) promoted decomposition rates relative to microbes and small soil fauna (+34%) but both groups reduced their activities with decreasing rainfall. However, fungus-growing termites increased decomposition rates strongest (+123%) under the most water-limited conditions, making overall decomposition rates mostly independent from rainfall. We conclude that fungus-growing termites are of special importance in decoupling decomposition rates from spatiotemporal variability in rainfall due to the buffered environment they create within their extended phenotype (mounds), that allows decomposition to continue when abiotic conditions outside are less favorable. This points at a wider class of possibly important ecological processes, where soil-plant-animal interactions decouple ecosystem processes from large-scale climatic gradients. This may strongly alter predictions from current climate change models. © 2016 by the Ecological Society of America.
Spatial variability in cost and success of revegetation in a Wyoming big sagebrush community.
Boyd, Chad S; Davies, Kirk W
2012-09-01
The ecological integrity of the Wyoming big sagebrush (Artemisia tridentata Nutt. ssp. wyomingensis Beetle and A. Young) alliance is being severely interrupted by post-fire invasion of non-native annual grasses. To curtail this invasion, successful post-fire revegetation of perennial grasses is required. Environmental factors impacting post-fire restoration success vary across space within the Wyoming big sagebrush alliance; however, most restorative management practices are applied uniformly. Our objectives were to define probability of revegetation success over space using relevant soil-related environmental factors, use this information to model cost of successful revegetation and compare the importance of vegetation competition and soil factors to revegetation success. We studied a burned Wyoming big sagebrush landscape in southeast Oregon that was reseeded with perennial grasses. We collected soil and vegetation data at plots spaced at 30 m intervals along a 1.5 km transect in the first two years post-burn. Plots were classified as successful (>5 seedlings/m(2)) or unsuccessful based on density of seeded species. Using logistic regression we found that abundance of competing vegetation correctly predicted revegetation success on 51 % of plots, and soil-related variables correctly predicted revegetation performance on 82.4 % of plots. Revegetation estimates varied from $167.06 to $43,033.94/ha across the 1.5 km transect based on probability of success, but were more homogenous at larger scales. Our experimental protocol provides managers with a technique to identify important environmental drivers of restoration success and this process will be of value for spatially allocating logistical and capital expenditures in a variable restoration environment.
Volf, Martin; Redmond, Conor; Albert, Ágnes J; Le Bagousse-Pinguet, Yoann; Biella, Paolo; Götzenberger, Lars; Hrázský, Záboj; Janeček, Štěpán; Klimešová, Jitka; Lepš, Jan; Šebelíková, Lenka; Vlasatá, Tereza; de Bello, Francesco
2016-04-01
The functional structures of communities respond to environmental changes by both species replacement (turnover) and within-species variation (intraspecific trait variability; ITV). Evidence is lacking on the relative importance of these two components, particularly in response to both short- and long-term environmental disturbance. We hypothesized that such short- and long-term perturbations would induce changes in community functional structure primarily via ITV and turnover, respectively. To test this we applied an experimental design across long-term mown and abandoned meadows, with each plot containing a further level of short-term management treatments: mowing, grazing and abandonment. Within each plot, species composition and trait values [height, shoot biomass, and specific leaf area (SLA)] were recorded on up to five individuals per species. Positive covariations between the contribution of species turnover and ITV occurred for height and shoot biomass in response to both short- and long-term management, indicating that species turnover and intraspecific adjustments selected for similar trait values. Positive covariations also occurred for SLA, but only in response to long-term management. The contributions of turnover and ITV changed depending on both the trait and management trajectory. As expected, communities responded to short-term disturbances mostly through changes in intraspecific trait variability, particularly for height and biomass. Interestingly, for SLA they responded to long-term disturbances by both species turnover and intraspecific adjustments. These findings highlight the importance of both ITV and species turnover in adjusting grassland functional trait response to environmental perturbation, and show that the response is trait specific and affected by disturbance regime history.
Azam, Muhammad; Khan, Abdul Qayyum
2017-07-01
This study examines the impact of economic growth, corruption, health, and poverty on environmental degradation for three countries from ASEAN, namely Indonesia, Malaysia, and Thailand using annual data over the period of 1994-2014. The relationship between environmental degradation (pollution) by carbon dioxide (CO 2 ) emissions and economic growth is examined along with some other variables, namely health expenditure, poverty, agriculture value added growth, industrial value added growth, and corruption. The ordinary least squares (OLS) method is applied as an analytical technique for parameter estimation. The empirical results reveal that almost all variables are statistically significant at the 5% level of significance, whereby test rejects the null hypotheses of non-cointegration, indicating that all variables play an important role in affecting the environment across countries. Empirical results also indicate that economic growth has significant positive impact, while health expenditures show significantly negative impact on the environment. Corruption has significant positive effect on environment in the case of Malaysia; while in the case of Indonesia and Thailand, it has insignificant results. However, for the individual analysis across countries, the regression estimate suggests that economic growth has a significant positive relationship with environment for Indonesia, while it is found insignificantly negative and positive in the case of Malaysia and Thailand, respectively, during the period under the study. Empirical findings of the study suggest that policy-makers require to make technological-friendly environment sequentially to surmount unregulated pollution, steady population transfers from rural areas to urban areas are also important, and poverty alleviation and better health provision can also help to improve the environment.
Akimova, Anna; Núñez-Riboni, Ismael; Kempf, Alexander; Taylor, Marc H.
2016-01-01
Understanding of the processes affecting recruitment of commercially important fish species is one of the major challenges in fisheries science. Towards this aim, we investigated the relation between North Sea hydrography (temperature and salinity) and fish stock variables (recruitment, spawning stock biomass and pre-recruitment survival index) for 9 commercially important fishes using spatially-resolved cross-correlation analysis. We used high-resolution (0.2° × 0.2°) hydrographic data fields matching the maximal temporal extent of the fish population assessments (1948–2013). Our approach allowed for the identification of regions in the North Sea where environmental variables seem to be more influential on the fish stocks, as well as the regions of a lesser or nil influence. Our results confirmed previously demonstrated negative correlations between temperature and recruitment of cod and plaice and identified regions of the strongest correlations (German Bight for plaice and north-western North Sea for cod). We also revealed a positive correlation between herring spawning stock biomass and temperature in the Orkney-Shetland area, as well as a negative correlation between sole pre-recruitment survival index and temperature in the German Bight. A strong positive correlation between sprat stock variables and salinity in the central North Sea was also found. To our knowledge the results concerning correlations between North Sea hydrography and stocks’ dynamics of herring, sole and sprat are novel. The new information about spatial distribution of the correlation provides an additional help to identify mechanisms underlying these correlations. As an illustration of the utility of these results for fishery management, an example is provided that incorporates the identified environmental covariates in stock-recruitment models. PMID:27584155
NASA Technical Reports Server (NTRS)
Fields, James M.
1992-01-01
Over 680 publications from 282 social surveys of residents' reactions to environmental noise have been examined to locate 495 published findings on 26 topics concerning non-noise explanations for residents' reactions to environmental noise. This report (1) tabulates the evidence on the 26 response topics, (2) identifies the 495 findings, and (3) discusses the implications for en route noise assessment. After controlling for noise level, over half of the social survey evidence indicates that noise annoyance is not strongly affected by any of the nine demographic variables examined (age, sex, social status, income, education, homeownership, type of dwelling, length of residence, or receipt of benefits from the noise source), but is positively associated with each of the five attitudinal variables examined (a fear of danger from the noise source, a sensitivity towards noise generally, the belief that the authorities can control the noise, the awareness of non-noise impacts of the source, and the belief that the noise source is not important).
Yang, Jian; Jiang, Hongchen; Liu, Wen; Wang, Beichen
2018-01-01
Uncovering the limiting factors for benthic algal distributions in lakes is of great importance to understanding of their role in global carbon cycling. However, limited is known about the benthic algal community distribution and how they are influenced by geographic distance and environmental variables in alpine lakes. Here, we investigated the benthic algal community compositions in the surface sediments of six lakes on the Qinghai-Tibetan Plateau (QTP), China (salinity ranging from 0.8 to 365.6 g/L; pairwise geographic distance among the studied lakes ranging 8–514 km) employing an integrated approach including Illumina-Miseq sequencing and environmental geochemistry. The results showed that the algal communities of the studied samples were mainly composed of orders of Bacillariales, Ceramiales, Naviculales, Oscillatoriales, Spirulinales, Synechococcales, and Vaucheriales. The benthic algal community compositions in these QTP lakes were significantly (p < 0.05) correlated with many environmental (e.g., dissolved inorganic and organic carbon, illumination intensity, total nitrogen and phosphorus, turbidity and water temperature) and spatial factors, and salinity did not show significant influence on the benthic algal community structures in the studied lakes. Furthermore, geographic distance showed strong, significant correlation (r = 0.578, p < 0.001) with the benthic algal community compositions among the studied lakes, suggesting that spatial factors may play important roles in influencing the benthic algal distribution. These results expand our current knowledge on the influencing factors for the distributions of benthic alga in alpine lakes. PMID:29636745
Epigenetic response to environmental change: DNA methylation varies with invasion status.
Schrey, Aaron W; Robbins, Travis R; Lee, Jacob; Dukes, David W; Ragsdale, Alexandria K; Thawley, Christopher J; Langkilde, Tracy
2016-04-01
Epigenetic mechanisms may be important for a native species' response to rapid environmental change. Red Imported Fire Ants ( Solenopsis invicta Santschi, 1916) were recently introduced to areas occupied by the Eastern Fence Lizard ( Sceloporus undulatus Bosc & Daudin, 1801). Behavioral, morphological and physiological phenotypes of the Eastern Fence Lizard have changed following invasion, creating a natural biological system to investigate environmentally induced epigenetic changes. We tested for variation in DNA methylation patterns in Eastern Fence Lizard populations associated with different histories of invasion by Red Imported Fire Ants. At methylation sensitive amplified fragment length polymorphism loci, we detected a higher diversity of methylation in Eastern Fence Lizard populations from Fire Ant uninvaded versus invaded sites, and uninvaded sites had higher methylation. Our results suggest that invasive species may alter methylation frequencies and the pattern of methylation among native individuals. While our data indicate a high level of intrinsic variability in DNA methylation, DNA methylation at some genomic loci may underlie observed phenotypic changes in Eastern Fence Lizard populations in response to invasion of Red Imported Fire Ants. This process may be important in facilitating adaptation of native species to novel pressures imposed by a rapidly changing environment.
Use of Wearable Sensors and Biometric Variables in an Artificial Pancreas System
Turksoy, Kamuran; Monforti, Colleen; Park, Minsun; Griffith, Garett; Quinn, Laurie; Cinar, Ali
2017-01-01
An artificial pancreas (AP) computes the optimal insulin dose to be infused through an insulin pump in people with Type 1 Diabetes (T1D) based on information received from a continuous glucose monitoring (CGM) sensor. It has been recognized that exercise is a major challenge in the development of an AP system. The use of biometric physiological variables in an AP system may be beneficial for prevention of exercise-induced challenges and better glucose regulation. The goal of the present study is to find a correlation between biometric variables such as heart rate (HR), heat flux (HF), skin temperature (ST), near-body temperature (NBT), galvanic skin response (GSR), and energy expenditure (EE), 2D acceleration-mean of absolute difference (MAD) and changes in glucose concentrations during exercise via partial least squares (PLS) regression and variable importance in projection (VIP) in order to determine which variables would be most useful to include in a future artificial pancreas. PLS and VIP analyses were performed on data sets that included seven different types of exercises. Data were collected from 26 clinical experiments. Clinical results indicate ST to be the most consistently important (important for six out of seven tested exercises) variable over all different exercises tested. EE and HR are also found to be important variables over several types of exercise. We also found that the importance of GSR and NBT observed in our experiments might be related to stress and the effect of changes in environmental temperature on glucose concentrations. The use of the biometric measurements in an AP system may provide better control of glucose concentration. PMID:28272368
SERAPHIM: studying environmental rasters and phylogenetically informed movements.
Dellicour, Simon; Rose, Rebecca; Faria, Nuno R; Lemey, Philippe; Pybus, Oliver G
2016-10-15
SERAPHIM ("Studying Environmental Rasters and PHylogenetically Informed Movements") is a suite of computational methods developed to study phylogenetic reconstructions of spatial movement in an environmental context. SERAPHIM extracts the spatio-temporal information contained in estimated phylogenetic trees and uses this information to calculate summary statistics of spatial spread and to visualize dispersal history. Most importantly, SERAPHIM enables users to study the impact of customized environmental variables on the spread of the study organism. Specifically, given an environmental raster, SERAPHIM computes environmental "weights" for each phylogeny branch, which represent the degree to which the environmental variable impedes (or facilitates) lineage movement. Correlations between movement duration and these environmental weights are then assessed, and the statistical significances of these correlations are evaluated using null distributions generated by a randomization procedure. SERAPHIM can be applied to any phylogeny whose nodes are annotated with spatial and temporal information. At present, such phylogenies are most often found in the field of emerging infectious diseases, but will become increasingly common in other biological disciplines as population genomic data grows. SERAPHIM 1.0 is freely available from http://evolve.zoo.ox.ac.uk/ R package, source code, example files, tutorials and a manual are also available from this website. simon.dellicour@kuleuven.be or oliver.pybus@zoo.ox.ac.ukSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Jensen, Trine S; Jensen, Jørgen D; Hasler, Berit; Illerup, Jytte B; Andersen, Frits M
2007-01-01
Integrated modelling of the interaction between environmental pressure and economic development is a useful tool to evaluate environmental consequences of policy initiatives. However, the usefulness of such models is often restricted by the fact that these models only include a limited set of environmental impacts, which are often energy-related emissions. In order to evaluate the development in the overall environmental pressure correctly, these model systems must be extended. In this article an integrated macroeconomic model system of the Danish economy with environmental modules of energy related emissions is extended to include the agricultural contribution to climate change and acidification. Next to the energy sector, the agricultural sector is the most important contributor to these environmental themes and subsequently the extended model complex calculates more than 99% of the contribution to both climate change and acidification. Environmental sub-models are developed for agriculture-related emissions of CH(4), N(2)O and NH(3). Agricultural emission sources related to the production specific activity variables are mapped and emission dependent parameters are identified in order to calculate emission coefficients. The emission coefficients are linked to the economic activity variables of the Danish agricultural production. The model system is demonstrated by projections of agriculture-related emissions in Denmark under two alternative sets of assumptions: a baseline projection of the general economic development and a policy scenario for changes in the husbandry sector within the agricultural sector.
Factors affecting plant species composition of hedgerows: relative importance and hierarchy
NASA Astrophysics Data System (ADS)
Deckers, Bart; Hermy, Martin; Muys, Bart
2004-07-01
Although there has been a clear quantitative and qualitative decline in traditional hedgerow network landscapes during last century, hedgerows are crucial for the conservation of rural biodiversity, functioning as an important habitat, refuge and corridor for numerous species. To safeguard this conservation function, insight in the basic organizing principles of hedgerow plant communities is needed. The vegetation composition of 511 individual hedgerows situated within an ancient hedgerow network landscape in Flanders, Belgium was recorded, in combination with a wide range of explanatory variables, including a selection of spatial variables. Non-parametric statistics in combination with multivariate data analysis techniques were used to study the effect of individual explanatory variables. Next, variables were grouped in five distinct subsets and the relative importance of these variable groups was assessed by two related variation partitioning techniques, partial regression and partial canonical correspondence analysis, taking into account explicitly the existence of intercorrelations between variables of different factor groups. Most explanatory variables affected significantly hedgerow species richness and composition. Multivariate analysis showed that, besides adjacent land use, hedgerow management, soil conditions, hedgerow type and origin, the role of other factors such as hedge dimensions, intactness, etc., could certainly not be neglected. Furthermore, both methods revealed the same overall ranking of the five distinct factor groups. Besides a predominant impact of abiotic environmental conditions, it was found that management variables and structural aspects have a relatively larger influence on the distribution of plant species in hedgerows than their historical background or spatial configuration.
Boussaa, Samia; Kahime, Kholoud; Samy, Abdallah M; Salem, Abdelkrim Ben; Boumezzough, Ali
2016-02-02
Cutaneous Leishmaniasis (CL) is one of the most neglected tropical diseases in Morocco. Leishmania major and L. tropica are the main culprits identified in all endemic foci across the country. These two etiological agents are transmitted by Phlebotomus papatasi and P. sergenti, the two most prevalent sand fly species in Morocco. Previous studies reflected gaps of knowledge regarding the environmental fingerprints that affect the distribution of these two potential vectors across Morocco. The sand flies were collected from 48 districts across Morocco using sticky paper traps. Collected specimens were preserved in 70% ethanol for further processing and identification. Male and female densities were calculated in each site to examine their relations to the environmental conditions across these sites. The study used 19 environmental variables including precipitation, aridity, elevation, soil variables and a composite representing maximum, minimum and mean of day- and night-time Land Surface Temperature (LST), and Normalized Difference Vegetation Index (NDVI). A total of 11,717 specimens were collected during this entomological survey. These specimens represented 11 species of two genera; Phlebotomus and Sergentomyia. Correlations of the sand fly densities with the environmental variables were estimated to identify the variables which influence the distribution of the two potential vectors, Phlebotomus papatasi and P. sergenti, associated with all CL endemic foci across the country. The density of P. papatasi was most affected by temperature changes. The study showed a significant positive correlation between the densities of both sexes of P. papatasi and night-time temperatures. Both P. papatasi and P. sergenti showed a negative correlation with aridity, but, such correlation was only significant in case of P. papatasi. NDVI showed a positive correlation only with densities of P. sergenti, while, soil PH and soil water stress were negatively correlated with the densities of both males and females of only P. papatasi. Our results identified the sand fly species across all CL endemic sites and underlined the influences of night-time temperature, soil water stress and NDVI as the most important variables affecting the sand fly distribution in all sampled sites. This preliminary study considered the importance of these covariates to anticipate the potential distribution of P. papatasi and P. sergenti in Morocco.
NASA Astrophysics Data System (ADS)
Martinez, German; Vicente-Retortillo, Álvaro; Kemppinen, Osku; Fischer, Erik; Fairen, Alberto G.; Guzewich, Scott David; Haberle, Robert; Lemmon, Mark T.; Newman, Claire E.; Renno, Nilton O.; Richardson, Mark I.; Smith, Michael D.; De la Torre, Manuel; Vasavada, Ashwin R.
2016-10-01
We analyze in-situ environmental data from the Viking landers to the Curiosity rover to estimate atmospheric pressure, near-surface air and ground temperature, relative humidity, wind speed and dust opacity with the highest confidence possible. We study the interannual, seasonal and diurnal variability of these quantities at the various landing sites over a span of more than twenty Martian years to characterize the climate on Mars and its variability. Additionally, we characterize the radiative environment at the various landing sites by estimating the daily UV irradiation (also called insolation and defined as the total amount of solar UV energy received on flat surface during one sol) and by analyzing its interannual and seasonal variability.In this study we use measurements conducted by the Viking Meteorology Instrument System (VMIS) and Viking lander camera onboard the Viking landers (VL); the Atmospheric Structure Instrument/Meteorology (ASIMET) package and the Imager for Mars Pathfinder (IMP) onboard the Mars Pathfinder (MPF) lander; the Miniature Thermal Emission Spectrometer (Mini-TES) and Pancam instruments onboard the Mars Exploration Rovers (MER); the Meteorological Station (MET), Thermal Electrical Conductivity Probe (TECP) and Phoenix Surface Stereo Imager (SSI) onboard the Phoenix (PHX) lander; and the Rover Environmental Monitoring Station (REMS) and Mastcam instrument onboard the Mars Science Laboratory (MSL) rover.A thorough analysis of in-situ environmental data from past and present missions is important to aid in the selection of the Mars 2020 landing site. We plan to extend our analysis of Mars surface environmental cycles by using upcoming data from the Temperature and Wind sensors (TWINS) instrument onboard the InSight mission and the Mars Environmental Dynamics Analyzer (MEDA) instrument onboard the Mars 2020 mission.
Gu, Yingxin; Wylie, Bruce K.; Howard, Daniel M.
2015-01-01
Switchgrass is being evaluated as a potential feedstock source for cellulosic biofuels and is being cultivated in several regions of the United States. The recent availability of switchgrass land cover maps derived from the National Agricultural Statistics Service cropland data layer for the conterminous United States provides an opportunity to assess the environmental conditions of switchgrass over large areas and across different geographic locations. The main goal of this study is to develop a data-driven multiple regression switchgrass productivity model and identify the optimal climate and environment conditions for the highly productive switchgrass in the Great Plains (GP). Environmental and climate variables used in the study include elevation, soil organic carbon, available water capacity, climate, and seasonal weather. Satellite-derived growing season averaged Normalized Difference Vegetation Index (GSN) was used as a proxy for switchgrass productivity. Multiple regression analyses indicate that there are strong correlations between site environmental variables and switchgrass productivity (r = 0.95). Sufficient precipitation and suitable temperature during the growing season (i.e., not too hot or too cold) are favorable for switchgrass growth. Elevation and soil characteristics (e.g., soil available water capacity) are also an important factor impacting switchgrass productivity. An anticipated switchgrass biomass productivity map for the entire GP based on site environmental and climate conditions and switchgrass productivity model was generated. Highly productive switchgrass areas are mainly located in the eastern part of the GP. Results from this study can help land managers and biofuel plant investors better understand the general environmental and climate conditions influencing switchgrass growth and make optimal land use decisions regarding switchgrass development in the GP.
Horswill, Catharine; Matthiopoulos, Jason; Green, Jonathan A; Meredith, Michael P; Forcada, Jaume; Peat, Helen; Preston, Mark; Trathan, Phil N; Ratcliffe, Norman
2014-01-01
Understanding the demographic response of free-living animal populations to different drivers is the first step towards reliable prediction of population trends. Penguins have exhibited dramatic declines in population size, and many studies have linked this to bottom-up processes altering the abundance of prey species. The effects of individual traits have been considered to a lesser extent, and top-down regulation through predation has been largely overlooked due to the difficulties in empirically measuring this at sea where it usually occurs. For 10 years (2003–2012), macaroni penguins (Eudyptes chrysolophus) were marked with subcutaneous electronic transponder tags and re-encountered using an automated gateway system fitted at the entrance to the colony. We used multistate mark–recapture modelling to identify the different drivers influencing survival rates and a sensitivity analysis to assess their relative importance across different life stages. Survival rates were low and variable during the fledging year (mean = 0·33), increasing to much higher levels from age 1 onwards (mean = 0·89). We show that survival of macaroni penguins is driven by a combination of individual quality, top-down predation pressure and bottom-up environmental forces. The relative importance of these covariates was age specific. During the fledging year, survival rates were most sensitive to top-down predation pressure, followed by individual fledging mass, and finally bottom-up environmental effects. In contrast, birds older than 1 year showed a similar response to bottom-up environmental effects and top-down predation pressure. We infer from our results that macaroni penguins will most likely be negatively impacted by an increase in the local population size of giant petrels. Furthermore, this population is, at least in the short term, likely to be positively influenced by local warming. More broadly, our results highlight the importance of considering multiple causal effects across different life stages when examining the survival rates of seabirds. PMID:24846695
ERIC Educational Resources Information Center
Alp, Elvan; Ertepinar, Hamide; Tekkaya, Ceren; Yilmaz, Ayhan
2008-01-01
This study investigated elementary school students' environmental knowledge and attitudes, the effects of sociodemographic variables on environmental knowledge and attitudes, and how self-reported environmentally friendly behaviour is related to environmental knowledge, behavioural intentions, environmental affects, and the students' locus of…
de Mendoza, Guillermo; Ventura, Marc; Catalan, Jordi
2015-07-01
Aiming to elucidate whether large-scale dispersal factors or environmental species sorting prevail in determining patterns of Trichoptera species composition in mountain lakes, we analyzed the distribution and assembly of the most common Trichoptera (Plectrocnemia laetabilis, Polycentropus flavomaculatus, Drusus rectus, Annitella pyrenaea, and Mystacides azurea) in the mountain lakes of the Pyrenees (Spain, France, Andorra) based on a survey of 82 lakes covering the geographical and environmental extremes of the lake district. Spatial autocorrelation in species composition was determined using Moran's eigenvector maps (MEM). Redundancy analysis (RDA) was applied to explore the influence of MEM variables and in-lake, and catchment environmental variables on Trichoptera assemblages. Variance partitioning analysis (partial RDA) revealed the fraction of species composition variation that could be attributed uniquely to either environmental variability or MEM variables. Finally, the distribution of individual species was analyzed in relation to specific environmental factors using binomial generalized linear models (GLM). Trichoptera assemblages showed spatial structure. However, the most relevant environmental variables in the RDA (i.e., temperature and woody vegetation in-lake catchments) were also related with spatial variables (i.e., altitude and longitude). Partial RDA revealed that the fraction of variation in species composition that was uniquely explained by environmental variability was larger than that uniquely explained by MEM variables. GLM results showed that the distribution of species with longitudinal bias is related to specific environmental factors with geographical trend. The environmental dependence found agrees with the particular traits of each species. We conclude that Trichoptera species distribution and composition in the lakes of the Pyrenees are governed predominantly by local environmental factors, rather than by dispersal constraints. For boreal lakes, with similar environmental conditions, a strong role of dispersal capacity has been suggested. Further investigation should address the role of spatial scaling, namely absolute geographical distances constraining dispersal and steepness of environmental gradients at short distances.
de Mendoza, Guillermo; Ventura, Marc; Catalan, Jordi
2015-01-01
Aiming to elucidate whether large-scale dispersal factors or environmental species sorting prevail in determining patterns of Trichoptera species composition in mountain lakes, we analyzed the distribution and assembly of the most common Trichoptera (Plectrocnemia laetabilis, Polycentropus flavomaculatus, Drusus rectus, Annitella pyrenaea, and Mystacides azurea) in the mountain lakes of the Pyrenees (Spain, France, Andorra) based on a survey of 82 lakes covering the geographical and environmental extremes of the lake district. Spatial autocorrelation in species composition was determined using Moran’s eigenvector maps (MEM). Redundancy analysis (RDA) was applied to explore the influence of MEM variables and in-lake, and catchment environmental variables on Trichoptera assemblages. Variance partitioning analysis (partial RDA) revealed the fraction of species composition variation that could be attributed uniquely to either environmental variability or MEM variables. Finally, the distribution of individual species was analyzed in relation to specific environmental factors using binomial generalized linear models (GLM). Trichoptera assemblages showed spatial structure. However, the most relevant environmental variables in the RDA (i.e., temperature and woody vegetation in-lake catchments) were also related with spatial variables (i.e., altitude and longitude). Partial RDA revealed that the fraction of variation in species composition that was uniquely explained by environmental variability was larger than that uniquely explained by MEM variables. GLM results showed that the distribution of species with longitudinal bias is related to specific environmental factors with geographical trend. The environmental dependence found agrees with the particular traits of each species. We conclude that Trichoptera species distribution and composition in the lakes of the Pyrenees are governed predominantly by local environmental factors, rather than by dispersal constraints. For boreal lakes, with similar environmental conditions, a strong role of dispersal capacity has been suggested. Further investigation should address the role of spatial scaling, namely absolute geographical distances constraining dispersal and steepness of environmental gradients at short distances. PMID:26257867
Using decision trees to understand structure in missing data
Tierney, Nicholas J; Harden, Fiona A; Harden, Maurice J; Mengersen, Kerrie L
2015-01-01
Objectives Demonstrate the application of decision trees—classification and regression trees (CARTs), and their cousins, boosted regression trees (BRTs)—to understand structure in missing data. Setting Data taken from employees at 3 different industrial sites in Australia. Participants 7915 observations were included. Materials and methods The approach was evaluated using an occupational health data set comprising results of questionnaires, medical tests and environmental monitoring. Statistical methods included standard statistical tests and the ‘rpart’ and ‘gbm’ packages for CART and BRT analyses, respectively, from the statistical software ‘R’. A simulation study was conducted to explore the capability of decision tree models in describing data with missingness artificially introduced. Results CART and BRT models were effective in highlighting a missingness structure in the data, related to the type of data (medical or environmental), the site in which it was collected, the number of visits, and the presence of extreme values. The simulation study revealed that CART models were able to identify variables and values responsible for inducing missingness. There was greater variation in variable importance for unstructured as compared to structured missingness. Discussion Both CART and BRT models were effective in describing structural missingness in data. CART models may be preferred over BRT models for exploratory analysis of missing data, and selecting variables important for predicting missingness. BRT models can show how values of other variables influence missingness, which may prove useful for researchers. Conclusions Researchers are encouraged to use CART and BRT models to explore and understand missing data. PMID:26124509
NASA Astrophysics Data System (ADS)
Gennaretti, Fabio; Gea-Izquierdo, Guillermo; Boucher, Etienne; Berninger, Frank; Arseneault, Dominique; Guiot, Joel
2017-11-01
A better understanding of the coupling between photosynthesis and carbon allocation in the boreal forest, together with its associated environmental factors and mechanistic rules, is crucial to accurately predict boreal forest carbon stocks and fluxes, which are significant components of the global carbon budget. Here, we adapted the MAIDEN ecophysiological forest model to consider important processes for boreal tree species, such as nonlinear acclimation of photosynthesis to temperature changes, canopy development as a function of previous-year climate variables influencing bud formation and the temperature dependence of carbon partition in summer. We tested these modifications in the eastern Canadian taiga using black spruce (Picea mariana (Mill.) B.S.P.) gross primary production and ring width data. MAIDEN explains 90 % of the observed daily gross primary production variability, 73 % of the annual ring width variability and 20-30 % of its high-frequency component (i.e., when decadal trends are removed). The positive effect on stem growth due to climate warming over the last several decades is well captured by the model. In addition, we illustrate how we improve the model with each introduced model adaptation and compare the model results with those of linear response functions. Our results demonstrate that MAIDEN simulates robust relationships with the most important climate variables (those detected by classical response-function analysis) and is a powerful tool for understanding how environmental factors interact with black spruce ecophysiology to influence present-day and future boreal forest carbon fluxes.
Bermejo, Ricardo; de la Fuente, Gina; Ramírez-Romero, Eduardo; Vergara, Juan J; Hernández, Ignacio
2016-04-15
The Cystoseira ericaefolia group is conformed by three species: C. tamariscifolia, C. mediterranea and C. amentacea. These species are among the most important habitat forming species of the upper sublittoral rocky shores of the Mediterranean Sea and adjacent Atlantic coast. This species group is sensitive to human pressures and therefore is currently suffering important losses. This study aimed to assess the influence of anthropogenic pressures, oceanographic conditions and local spatial variability in assemblages dominated by C. ericaefolia in the Alboran Sea. The results showed the absence of significant effects of anthropogenic pressures or its interactions with environmental conditions in the Cystoseira assemblages. This fact was attributed to the high spatial variability, which is most probably masking the impact of anthropogenic pressures. The results also showed that most of the variability occurred on at local levels. A relevant spatial variability was observed at regional level, suggesting a key role of oceanographic features in these assemblages. Copyright © 2016 Elsevier Ltd. All rights reserved.
Pöysä, Hannu; Rintala, Jukka; Johnson, Douglas H.; Kauppinen, Jukka; Lammi, Esa; Nudds, Thomas D.; Väänänen, Veli-Matti
2016-01-01
Density dependence, population regulation, and variability in population size are fundamental population processes, the manifestation and interrelationships of which are affected by environmental variability. However, there are surprisingly few empirical studies that distinguish the effect of environmental variability from the effects of population processes. We took advantage of a unique system, in which populations of the same duck species or close ecological counterparts live in highly variable (north American prairies) and in stable (north European lakes) environments, to distinguish the relative contributions of environmental variability (measured as between-year fluctuations in wetland numbers) and intraspecific interactions (density dependence) in driving population dynamics. We tested whether populations living in stable environments (in northern Europe) were more strongly governed by density dependence than populations living in variable environments (in North America). We also addressed whether relative population dynamical responses to environmental variability versus density corresponded to differences in life history strategies between dabbling (relatively “fast species” and governed by environmental variability) and diving (relatively “slow species” and governed by density) ducks. As expected, the variance component of population fluctuations caused by changes in breeding environments was greater in North America than in Europe. Contrary to expectations, however, populations in more stable environments were not less variable nor clearly more strongly density dependent than populations in highly variable environments. Also, contrary to expectations, populations of diving ducks were neither more stable nor stronger density dependent than populations of dabbling ducks, and the effect of environmental variability on population dynamics was greater in diving than in dabbling ducks. In general, irrespective of continent and species life history, environmental variability contributed more to variation in species abundances than did density. Our findings underscore the need for more studies on populations of the same species in different environments to verify the generality of current explanations about population dynamics and its association with species life history.
Pöysä, Hannu; Rintala, Jukka; Johnson, Douglas H; Kauppinen, Jukka; Lammi, Esa; Nudds, Thomas D; Väänänen, Veli-Matti
2016-10-01
Density dependence, population regulation, and variability in population size are fundamental population processes, the manifestation and interrelationships of which are affected by environmental variability. However, there are surprisingly few empirical studies that distinguish the effect of environmental variability from the effects of population processes. We took advantage of a unique system, in which populations of the same duck species or close ecological counterparts live in highly variable (north American prairies) and in stable (north European lakes) environments, to distinguish the relative contributions of environmental variability (measured as between-year fluctuations in wetland numbers) and intraspecific interactions (density dependence) in driving population dynamics. We tested whether populations living in stable environments (in northern Europe) were more strongly governed by density dependence than populations living in variable environments (in North America). We also addressed whether relative population dynamical responses to environmental variability versus density corresponded to differences in life history strategies between dabbling (relatively "fast species" and governed by environmental variability) and diving (relatively "slow species" and governed by density) ducks. As expected, the variance component of population fluctuations caused by changes in breeding environments was greater in North America than in Europe. Contrary to expectations, however, populations in more stable environments were not less variable nor clearly more strongly density dependent than populations in highly variable environments. Also, contrary to expectations, populations of diving ducks were neither more stable nor stronger density dependent than populations of dabbling ducks, and the effect of environmental variability on population dynamics was greater in diving than in dabbling ducks. In general, irrespective of continent and species life history, environmental variability contributed more to variation in species abundances than did density. Our findings underscore the need for more studies on populations of the same species in different environments to verify the generality of current explanations about population dynamics and its association with species life history.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Day, K.E.; Reynoldson, T.B.; Rosenberg, D.M.
1995-12-31
Many ecological risk assessments (ERAS) of lakes, rivers and streams compare measurements of benthic community structure in specific areas of contamination to similar measurements in reference or ``clean`` areas as a basis for determining impact. However, despite numerous studies documenting alterations of benthic communities as a result of stress, the success of correctly assessing the ``health`` or degradation of these communities depends on how well responses to contamination can be discriminated from responses to other environmental factors. It is important in the ERA process to adequately describe benthic communities and to determine how natural environmental factors (e.g., substrate particle sizemore » and texture, organic content, water quality, pH, seston, etc.) may be driving benthic community structure. This knowledge is particularly important when reference areas are distant from stressed areas. This presentation will provide an overview of the environmental factors that are important in structuring natural benthic communities in rivers and lakes and discuss approaches that may be useful in differentiating between natural variability and anthropogenic stress in ERA. Several case studies from the Laurentian Great Lakes and the Fraser River watershed in British Columbia will be discussed.« less
Jiménez, Juan J; Decaëns, Thibaud; Lavelle, Patrick; Rossi, Jean-Pierre
2014-12-05
Studying the drivers and determinants of species, population and community spatial patterns is central to ecology. The observed structure of community assemblages is the result of deterministic abiotic (environmental constraints) and biotic factors (positive and negative species interactions), as well as stochastic colonization events (historical contingency). We analyzed the role of multi-scale spatial component of soil environmental variability in structuring earthworm assemblages in a gallery forest from the Colombian "Llanos". We aimed to disentangle the spatial scales at which species assemblages are structured and determine whether these scales matched those expressed by soil environmental variables. We also tested the hypothesis of the "single tree effect" by exploring the spatial relationships between root-related variables and soil nutrient and physical variables in structuring earthworm assemblages. Multivariate ordination techniques and spatially explicit tools were used, namely cross-correlograms, Principal Coordinates of Neighbor Matrices (PCNM) and variation partitioning analyses. The relationship between the spatial organization of earthworm assemblages and soil environmental parameters revealed explicitly multi-scale responses. The soil environmental variables that explained nested population structures across the multi-spatial scale gradient differed for earthworms and assemblages at the very-fine- (<10 m) to medium-scale (10-20 m). The root traits were correlated with areas of high soil nutrient contents at a depth of 0-5 cm. Information on the scales of PCNM variables was obtained using variogram modeling. Based on the size of the plot, the PCNM variables were arbitrarily allocated to medium (>30 m), fine (10-20 m) and very fine scales (<10 m). Variation partitioning analysis revealed that the soil environmental variability explained from less than 1% to as much as 48% of the observed earthworm spatial variation. A large proportion of the spatial variation did not depend on the soil environmental variability for certain species. This finding could indicate the influence of contagious biotic interactions, stochastic factors, or unmeasured relevant soil environmental variables.
Ortega Cisneros, Kelly; Smit, Albertus J.; Laudien, Jürgen; Schoeman, David S.
2011-01-01
Sandy beach ecological theory states that physical features of the beach control macrobenthic community structure on all but the most dissipative beaches. However, few studies have simultaneously evaluated the relative importance of physical, chemical and biological factors as potential explanatory variables for meso-scale spatio-temporal patterns of intertidal community structure in these systems. Here, we investigate macroinfaunal community structure of a micro-tidal sandy beach that is located on an oligotrophic subtropical coast and is influenced by seasonal estuarine input. We repeatedly sampled biological and environmental variables at a series of beach transects arranged at increasing distances from the estuary mouth. Sampling took place over a period of five months, corresponding with the transition between the dry and wet season. This allowed assessment of biological-physical relationships across chemical and nutritional gradients associated with a range of estuarine inputs. Physical, chemical, and biological response variables, as well as measures of community structure, showed significant spatio-temporal patterns. In general, bivariate relationships between biological and environmental variables were rare and weak. However, multivariate correlation approaches identified a variety of environmental variables (i.e., sampling session, the C∶N ratio of particulate organic matter, dissolved inorganic nutrient concentrations, various size fractions of photopigment concentrations, salinity and, to a lesser extent, beach width and sediment kurtosis) that either alone or combined provided significant explanatory power for spatio-temporal patterns of macroinfaunal community structure. Overall, these results showed that the macrobenthic community on Mtunzini Beach was not structured primarily by physical factors, but instead by a complex and dynamic blend of nutritional, chemical and physical drivers. This emphasises the need to recognise ocean-exposed sandy beaches as functional ecosystems in their own right. PMID:21858213
Ortega Cisneros, Kelly; Smit, Albertus J; Laudien, Jürgen; Schoeman, David S
2011-01-01
Sandy beach ecological theory states that physical features of the beach control macrobenthic community structure on all but the most dissipative beaches. However, few studies have simultaneously evaluated the relative importance of physical, chemical and biological factors as potential explanatory variables for meso-scale spatio-temporal patterns of intertidal community structure in these systems. Here, we investigate macroinfaunal community structure of a micro-tidal sandy beach that is located on an oligotrophic subtropical coast and is influenced by seasonal estuarine input. We repeatedly sampled biological and environmental variables at a series of beach transects arranged at increasing distances from the estuary mouth. Sampling took place over a period of five months, corresponding with the transition between the dry and wet season. This allowed assessment of biological-physical relationships across chemical and nutritional gradients associated with a range of estuarine inputs. Physical, chemical, and biological response variables, as well as measures of community structure, showed significant spatio-temporal patterns. In general, bivariate relationships between biological and environmental variables were rare and weak. However, multivariate correlation approaches identified a variety of environmental variables (i.e., sampling session, the C∶N ratio of particulate organic matter, dissolved inorganic nutrient concentrations, various size fractions of photopigment concentrations, salinity and, to a lesser extent, beach width and sediment kurtosis) that either alone or combined provided significant explanatory power for spatio-temporal patterns of macroinfaunal community structure. Overall, these results showed that the macrobenthic community on Mtunzini Beach was not structured primarily by physical factors, but instead by a complex and dynamic blend of nutritional, chemical and physical drivers. This emphasises the need to recognise ocean-exposed sandy beaches as functional ecosystems in their own right.
Environmental factors affecting feed intake of steers in different housing systems in the summer
NASA Astrophysics Data System (ADS)
Koknaroglu, H.; Otles, Z.; Mader, T.; Hoffman, M. P.
2008-07-01
A total of 188 yearling steers of predominantly Angus and Hereford breeds, with mean body weight of 299 kg, were used in this study, which started on 8 April and finished on 3 October, to assess the effects of environmental factors on feed intake of steers in various housing systems. Housing consisted of outside lots with access to overhead shelter, outside lots with no overhead shelter and a cold confinement building. Ad libitum corn, 2.27 kg of 35% dry matter whole plant sorghum silage and 0.68 kg of a 61% protein-vitamin-mineral supplement was offered. Feed that was not consumed was measured to determine feed intake. The temperature data were recorded by hygro-thermographs. Hourly temperatures and humidity were used to develop weather variables. Regression analysis was used and weather variables were regressed on dry matter intake (DMI). When addition of a new variable did not improve R 2 more than one unit, then the number of variables in the model was truncated. Cattle in confinement had lower DMI than those in open lots and those in open lots with access to an overhead shelter ( P < 0.05). Cattle in outside lots with access to overhead shelter had similar DMI compared to those in open lots ( P = 0.065). Effect of heat was predominantly displayed in August in the three housing systems. In terms of explaining variation in DMI, in outside lots with access to overhead shelter, average and daytime temperatures were important factors, whereas in open lots, nocturnal, peak and average temperatures were important factors. In confinement buildings, the previous day’s temperature and humidity index were the most important factors explaining variation in DMI. Results show the effect of housing and weather variables on DMI in summer and when considering these results, cattle producers wishing to improve cattle feedlot performance should consider housing conditions providing less stress or more comfort.
Genecology of Holodiscus discolor (Rosaceae) in the Pacific Northwest, U.S.A.
Matthew E. Horning; Theresa R. McGovern; Dale C. Darris; Nancy L. Mandel
2008-01-01
An important goal for land managers is the incorporation of appropriate (e.g., locally adapted and genetically diverse) plant materials in restoration and revegetation activities. To identify these materials, researchers need to characterize the variability in essential traits in natural populations and determine how they are related to environmental conditions. This...
Seed availability constrains plant species sorting along a soil fertility gradient
Bryan L. Foster; Erin J. Questad; Cathy D. Collins; Cheryl A. Murphy; Timothy L. Dickson; Val H. Smith
2011-01-01
1. Spatial variation in species composition within and among communities may be caused by deterministic, niche-based species sorting in response to underlying environmental heterogeneity as well as by stochastic factors such as dispersal limitation and variable species pools. An important goal in ecology is to reconcile deterministic and stochastic perspectives of...
Gaia Theory in Brazilian High School Biology Textbooks
ERIC Educational Resources Information Center
Do Carmo, Ricardo Santos; Nunes-Neto, Nei Freitas; El-Hani, Charbel Nino
2009-01-01
Gaia theory proposes that a cybernetic system including the biota and the physicochemical environment regulates environmental variables at a global scale, keeping them within a range that makes Earth inhabitable by living beings. One can argue that this theory can play an important role in school science, since it bears upon current environmental…
Middle and High School Students' Conceptions of Climate Change Mitigation and Adaptation Strategies
ERIC Educational Resources Information Center
Bofferding, Laura; Kloser, Matthew
2015-01-01
Both scientists and policy-makers emphasize the importance of education for influencing pro-environmental behavior and minimizing the effects of climate change on biological and physical systems. Education has the potential to impact students' system knowledge--their understanding of the variables that affect the climate system--and action…
Variation in ultraviolet (UV) light exposure is one important environmental factor that influences the health of coral reefs. Here we present evidence that the reef tract in the Florida Keys experiences significantly higher variability in UV exposure than other surrounding coast...
Pearson, Paul N.; Dunkley Jones, Tom; Purvis, Andy
2016-01-01
Global diversity patterns are thought to result from a combination of environmental and historical factors. This study tests the set of ecological and evolutionary hypotheses proposed to explain the global variation in present-day coretop diversity in the macroperforate planktonic foraminifera, a clade with an exceptional fossil record. Within this group, marine surface sediment assemblages are thought to represent an accurate, although centennial to millennial time-averaged, representation of recent diversity patterns. Environmental variables chosen to capture ocean temperature, structure, productivity and seasonality were used to model a range of diversity measures across the world’s oceans. Spatial autoregressive models showed that the same broad suite of environmental variables were important in shaping each of the four largely independent diversity measures (rarefied species richness, Simpson’s evenness, functional richness and mean evolutionary age). Sea-surface temperature explains the largest portion of diversity in all four diversity measures, but not in the way predicted by the metabolic theory of ecology. Vertical structure could be linked to increased diversity through the strength of stratification, but not through the depth of the mixed layer. There is limited evidence that seasonal turnover explains diversity patterns. There is evidence for functional redundancy in the low-latitude sites. The evolutionary mechanism of deep-time stability finds mixed support whilst there is relatively little evidence for an out-of-the-tropics model. These results suggest the diversity patterns of planktonic foraminifera cannot be explained by any one environmental variable or proposed mechanism, but instead reflect multiple processes acting in concert. PMID:27851751
Fenton, Isabel S; Pearson, Paul N; Dunkley Jones, Tom; Purvis, Andy
2016-01-01
Global diversity patterns are thought to result from a combination of environmental and historical factors. This study tests the set of ecological and evolutionary hypotheses proposed to explain the global variation in present-day coretop diversity in the macroperforate planktonic foraminifera, a clade with an exceptional fossil record. Within this group, marine surface sediment assemblages are thought to represent an accurate, although centennial to millennial time-averaged, representation of recent diversity patterns. Environmental variables chosen to capture ocean temperature, structure, productivity and seasonality were used to model a range of diversity measures across the world's oceans. Spatial autoregressive models showed that the same broad suite of environmental variables were important in shaping each of the four largely independent diversity measures (rarefied species richness, Simpson's evenness, functional richness and mean evolutionary age). Sea-surface temperature explains the largest portion of diversity in all four diversity measures, but not in the way predicted by the metabolic theory of ecology. Vertical structure could be linked to increased diversity through the strength of stratification, but not through the depth of the mixed layer. There is limited evidence that seasonal turnover explains diversity patterns. There is evidence for functional redundancy in the low-latitude sites. The evolutionary mechanism of deep-time stability finds mixed support whilst there is relatively little evidence for an out-of-the-tropics model. These results suggest the diversity patterns of planktonic foraminifera cannot be explained by any one environmental variable or proposed mechanism, but instead reflect multiple processes acting in concert.
2014-01-01
Background Global environmental change is causing spatial and temporal shifts in the distribution of species and the associated diseases of humans, domesticated animals and wildlife. In the on-going debate on the influence of climate change on vectors and vector-borne diseases, there is a lack of a comprehensive interdisciplinary multi-factorial approach utilizing high quality spatial and temporal data. Methods We explored biotic and abiotic factors associated with the latitudinal and altitudinal shifts in the distribution of Ixodes ricinus observed during the last three decades in Norway using antibodies against Anaplasma phagocytophilum in sheep as indicators for tick presence. Samples obtained from 2963 sheep from 90 farms in 3 ecologically different districts during 1978 – 2008 were analysed. We modelled the presence of antibodies against A. phagocytophilum to climatic-, environmental and demographic variables, and abundance of wild cervids and domestic animals, using mixed effect logistic regressions. Results Significant predictors were large diurnal fluctuations in ground surface temperature, spring precipitation, duration of snow cover, abundance of red deer and farm animals and bush encroachment/ecotones. The length of the growth season, mean temperature and the abundance of roe deer were not significant in the model. Conclusions Our results highlight the need to consider climatic variables year-round to disentangle important seasonal variation, climatic threshold changes, climate variability and to consider the broader environmental change, including abiotic and biotic factors. The results offer novel insight in how tick and tick-borne disease distribution might be modified by future climate and environmental change. PMID:24401487
2009-01-01
Background The possibility to better understand the relationships within the men, the nature and their culture has extreme importance because allows the characterisation of social systems through their particular environmental perception, and provides useful tools for the development of conservation policies. Methods The present study was planned to disentangle environmental and cultural factors that are influencing the perception, knowledge and uses of edible and medicinal plants in rural communities of Cordoba (Argentina). Interviews an participant observation were conducted in nine rural communities located in three different biogeographical areas. Data about knowledge of medicinal and edible plants and sociocultural variables were obtained. Data were analysed by Principal Components Analysis (PCA). Results The analysis of data confirmed that medicinal species are widely used whereas the knowledge on edible plants is eroding. The PCA showed four groups of communities, defined by several particular combinations of sociocultural and/or natural variables. Conclusion This comprehensive approach suggests that in general terms the cultural environment has a stronger influence than the natural environment on the use of medicinal and edible plants in rural communities of Cordoba (Argentina). PMID:20003502
Multilevel corporate environmental responsibility.
Karassin, Orr; Bar-Haim, Aviad
2016-12-01
The multilevel empirical study of the antecedents of corporate social responsibility (CSR) has been identified as "the first knowledge gap" in CSR research. Based on an extensive literature review, the present study outlines a conceptual multilevel model of CSR, then designs and empirically validates an operational multilevel model of the principal driving factors affecting corporate environmental responsibility (CER), as a measure of CSR. Both conceptual and operational models incorporate three levels of analysis: institutional, organizational, and individual. The multilevel nature of the design allows for the assessment of the relative importance of the levels and of their components in the achievement of CER. Unweighted least squares (ULS) regression analysis reveals that the institutional-level variables have medium relationships with CER, some variables having a negative effect. The organizational level is revealed as having strong and positive significant relationships with CER, with organizational culture and managers' attitudes and behaviors as significant driving forces. The study demonstrates the importance of multilevel analysis in improving the understanding of CSR drivers, relative to single level models, even if the significance of specific drivers and levels may vary by context. Copyright © 2016 Elsevier Ltd. All rights reserved.
Assessing and monitoring urban resilience using COPD in Porto.
Monteiro, Ana; Carvalho, Vânia; Velho, Sara; Sousa, Carlos
2012-01-01
COPD morbidity is a good example of how the urban form may interfere with a disease's severity. Then, it may play an important role as a stimulus to increase the acceptability of several policy actions that aim to upgrade urban resilience. Despite the multiple dimensions of wellbeing, health is surely a key variable attracting everyone's attention, which is thus more likely to be able to persuade people that actions that may at first seem undesirable are fundamental in improving urban sustainability and well-being. After creating a short list of socio-economic and environmental factors relating to the onset and aggravation of COPD, daily admissions distributions were compared using both a non-weighted and a weighted multi-criteria hierarchical analysis procedure. Porto's COPD Social and Environmental Inequalities Index (SEII), calculated with a hierarchical analysis procedure, accurately illustrates a great relationship between COPD admissions and adverse urban form variables. COPD may be an important communication tool to stimulate the acceptability of some otherwise unpopular planning measures to improve urban resilience (sustainability and well-being). Copyright © 2011 Elsevier B.V. All rights reserved.
Duncan, Alison B.; Fellous, Simon; Kaltz, Oliver
2011-01-01
The environment is rarely constant and organisms are exposed to temporal and spatial variations that impact their life histories and inter-species interactions. It is important to understand how such variations affect epidemiological dynamics in host–parasite systems. We explored effects of temporal variation in temperature on experimental microcosm populations of the ciliate Paramecium caudatum and its bacterial parasite Holospora undulata. Infected and uninfected populations of two P. caudatum genotypes were created and four constant temperature treatments (26°C, 28°C, 30°C and 32°C) compared with four variable treatments with the same mean temperatures. Variable temperature treatments were achieved by alternating populations between permissive (23°C) and restrictive (35°C) conditions daily over 30 days. Variable conditions and high temperatures caused greater declines in Paramecium populations, greater fluctuations in population size and higher incidence of extinction. The additional effect of parasite infection was additive and enhanced the negative effects of the variable environment and higher temperatures by up to 50 per cent. The variable environment and high temperatures also caused a decrease in parasite prevalence (up to 40%) and an increase in extinction (absence of detection) (up to 30%). The host genotypes responded similarly to the different environmental stresses and their effect on parasite traits were generally in the same direction. This work provides, to our knowledge, the first experimental demonstration that epidemiological dynamics are influenced by environmental variation. We also emphasize the need to consider environmental variance, as well as means, when trying to understand, or predict population dynamics or range. PMID:21450730
Grégoire, Catherine-Alexandra; Bonenfant, David; Le Nguyen, Adalie; Aumont, Anne; Fernandes, Karl J. L.
2014-01-01
Environmental enrichment (EE) exerts powerful effects on brain physiology, and is widely used as an experimental and therapeutic tool. Typical EE paradigms are multifactorial, incorporating elements of physical exercise, environmental complexity, social interactions and stress, however the specific contributions of these variables have not been separable using conventional housing paradigms. Here, we evaluated the impacts of these individual variables on adult hippocampal neurogenesis by using a novel “Alternating EE” paradigm. For 4 weeks, adult male CD1 mice were alternated daily between two enriched environments; by comparing groups that differed in one of their two environments, the individual and combinatorial effects of EE variables could be resolved. The Alternating EE paradigm revealed that (1) voluntary running for 3 days/week was sufficient to increase both mitotic and post-mitotic stages of hippocampal neurogenesis, confirming the central importance of exercise; (2) a complex environment (comprised of both social interactions and rotated inanimate objects) had no effect on neurogenesis itself, but enhanced depolarization-induced c-Fos expression (attributable to social interactions) and buffered stress-induced plasma corticosterone levels (attributable to inanimate objects); and (3) neither social isolation, group housing, nor chronically increased levels of plasma corticosterone had a prolonged impact on neurogenesis. Mouse strain, handling and type of running apparatus were tested and excluded as potential confounding factors. These findings provide valuable insights into the relative effects of key EE variables on adult neurogenesis, and this “Alternating EE” paradigm represents a useful tool for exploring the contributions of individual EE variables to mechanisms of neural plasticity. PMID:24465980
Heidema, A Geert; Boer, Jolanda M A; Nagelkerke, Nico; Mariman, Edwin C M; van der A, Daphne L; Feskens, Edith J M
2006-04-21
Genetic epidemiologists have taken the challenge to identify genetic polymorphisms involved in the development of diseases. Many have collected data on large numbers of genetic markers but are not familiar with available methods to assess their association with complex diseases. Statistical methods have been developed for analyzing the relation between large numbers of genetic and environmental predictors to disease or disease-related variables in genetic association studies. In this commentary we discuss logistic regression analysis, neural networks, including the parameter decreasing method (PDM) and genetic programming optimized neural networks (GPNN) and several non-parametric methods, which include the set association approach, combinatorial partitioning method (CPM), restricted partitioning method (RPM), multifactor dimensionality reduction (MDR) method and the random forests approach. The relative strengths and weaknesses of these methods are highlighted. Logistic regression and neural networks can handle only a limited number of predictor variables, depending on the number of observations in the dataset. Therefore, they are less useful than the non-parametric methods to approach association studies with large numbers of predictor variables. GPNN on the other hand may be a useful approach to select and model important predictors, but its performance to select the important effects in the presence of large numbers of predictors needs to be examined. Both the set association approach and random forests approach are able to handle a large number of predictors and are useful in reducing these predictors to a subset of predictors with an important contribution to disease. The combinatorial methods give more insight in combination patterns for sets of genetic and/or environmental predictor variables that may be related to the outcome variable. As the non-parametric methods have different strengths and weaknesses we conclude that to approach genetic association studies using the case-control design, the application of a combination of several methods, including the set association approach, MDR and the random forests approach, will likely be a useful strategy to find the important genes and interaction patterns involved in complex diseases.
Trait and perceived environmental competitiveness in achievement situations.
Elliot, Andrew J; Jury, Mickaël; Murayama, Kou
2018-06-01
Trait and perceived environmental competitiveness are typically studied separately, but they undoubtedly have a joint influence on goal pursuit and behavior in achievement situations. The present research was designed to study them together. We tested the relation between trait and perceived environmental competitiveness, and we tested these variables as separate and sequential predictors of both performance-based goals and performance attainment. In Studies 1a (N = 387 U.S. undergraduates) and 1b (N = 322 U.S. undergraduates), we assessed participants' trait and perceived environmental competitiveness, as well as third variable candidates. In Study 2 (N = 434 MTurk workers), we sought to replicate and extend Study 1 by adding reports of performance-based goal pursuit. In Study 3 (N = 403 U.S. undergraduates), we sought to replicate and extend Study 2 by adding real-world performance attainment. The studies focused on both the classroom and the workplace. Trait and perceived environmental competitiveness were shown to be positively related and to positively predict separate variance in performance-approach and performance-avoidance goal pursuit. Perceived environmental competitiveness and performance-based goal pursuit were shown to be sequential mediators of the indirect relation between trait competitiveness and performance attainment. These studies highlight the importance of attending to the interplay of the person and the (perceived) situation in analyses of competitive striving. © 2017 Wiley Periodicals, Inc.
Zhuang, Xiaodong; Guo, Yue; Ni, Ao; Yang, Daya; Liao, Lizhen; Zhang, Shaozhao; Zhou, Huimin; Sun, Xiuting; Wang, Lichun; Wang, Xueqin; Liao, Xinxue
2018-06-04
An environment-wide association study (EWAS) may be useful to comprehensively test and validate associations between environmental factors and cardiovascular disease (CVD) in an unbiased manner. Data from National Health and Nutrition Examination Survey (1999-2014) were randomly 50:50 spilt into training set and testing set. CVD was ascertained by a self-reported diagnosis of myocardial infarction, coronary heart disease or stroke. We performed multiple linear regression analyses associating 203 environmental factors and 132 clinical phenotypes with CVD in training set (false discovery rate < 5%) and significant factors were validated in the testing set (P < 0.05). Random forest (RF) model was used for multicollinearity elimination and variable importance ranking. Discriminative power of factors for CVD was calculated by area under the receiver operating characteristic (AUROC). Overall, 43,568 participants with 4084 (9.4%) CVD were included. After adjusting for age, sex, race, body mass index, blood pressure and socio-economic level, we identified 5 environmental variables and 19 clinical phenotypes associated with CVD in training and testing dataset. Top five factors in RF importance ranking were: waist, glucose, uric acid, and red cell distribution width and glycated hemoglobin. AUROC of the RF model was 0.816 (top 5 factors) and 0.819 (full model). Sensitivity analyses reveal no specific moderators of the associations. Our systematic evaluation provides new knowledge on the complex array of environmental correlates of CVD. These identified correlates may serve as a complementary approach to CVD risk assessment. Our findings need to be probed in further observational and interventional studies. Copyright © 2018. Published by Elsevier Ltd.
2012-01-01
Background Knowledge of the factors that drive species distributions provides a fundamental baseline for several areas of research including biogeography, phylogeography and biodiversity conservation. Data from 148 minimally disturbed sites across a large drainage system in the Cape Floristic Region of South Africa were used to test the hypothesis that stream fishes have similar responses to environmental determinants of species distribution. Two complementary statistical approaches, boosted regression trees and hierarchical partitioning, were used to model the responses of four fish species to 11 environmental predictors, and to quantify the independent explanatory power of each predictor. Results Elevation, slope, stream size, depth and water temperature were identified by both approaches as the most important causal factors for the spatial distribution of the fishes. However, the species showed marked differences in their responses to these environmental variables. Elevation and slope were of primary importance for the laterally compressed Sandelia spp. which had an upstream boundary below 430 m above sea level. The fusiform shaped Pseudobarbus ‘Breede’ was strongly influenced by stream width and water temperature. The small anguilliform shaped Galaxias ‘nebula’ was more sensitive to stream size and depth, and also penetrated into reaches at higher elevation than Sandelia spp. and Pseudobarbus ‘Breede’. Conclusions The hypothesis that stream fishes have a common response to environmental descriptors is rejected. The contrasting habitat associations of stream fishes considered in this study could be a reflection of their morphological divergence which may allow them to exploit specific habitats that differ in their environmental stressors. Findings of this study encourage wider application of complementary methods in ecological studies, as they provide more confidence and deeper insights into the variables that should be managed to achieve desired conservation outcomes. PMID:23009367
The System Dynamics Model for Development of Organic Agriculture
NASA Astrophysics Data System (ADS)
Rozman, Črtomir; Škraba, Andrej; Kljajić, Miroljub; Pažek, Karmen; Bavec, Martina; Bavec, Franci
2008-10-01
Organic agriculture is the highest environmentally valuable agricultural system, and has strategic importance at national level that goes beyond the interests of agricultural sector. In this paper we address development of organic farming simulation model based on a system dynamics methodology (SD). The system incorporates relevant variables, which affect the development of the organic farming. The group decision support system (GDSS) was used in order to identify most relevant variables for construction of causal loop diagram and further model development. The model seeks answers to strategic questions related to the level of organically utilized area, levels of production and crop selection in a long term dynamic context and will be used for simulation of different policy scenarios for organic farming and their impact on economic and environmental parameters of organic production at an aggregate level.
Chemodetection in fluctuating environments: receptor coupling, buffering, and antagonism.
Lalanne, Jean-Benoît; François, Paul
2015-02-10
Variability in the chemical composition of the extracellular environment can significantly degrade the ability of cells to detect rare cognate ligands. Using concepts from statistical detection theory, we formalize the generic problem of detection of small concentrations of ligands in a fluctuating background of biochemically similar ligands binding to the same receptors. We discover that in contrast with expectations arising from considerations of signal amplification, inhibitory interactions between receptors can improve detection performance in the presence of substantial environmental variability, providing an adaptive interpretation to the phenomenon of ligand antagonism. Our results suggest that the structure of signaling pathways responsible for chemodetection in fluctuating and heterogeneous environments might be optimized with respect to the statistics and dynamics of environmental composition. The developed formalism stresses the importance of characterizing nonspecific interactions to understand function in signaling pathways.
Corte, Guilherme N; Gonçalves-Souza, Thiago; Checon, Helio H; Siegle, Eduardo; Coleman, Ross A; Amaral, A Cecília Z
2018-05-01
Community ecology has traditionally assumed that the distribution of species is mainly influenced by environmental processes. There is, however, growing evidence that environmental (habitat characteristics and biotic interactions) and spatial processes (factors that affect a local assemblage regardless of environmental conditions - typically related to dispersal and movement of species) interactively shape biological assemblages. A metacommunity, which is a set of local assemblages connected by dispersal of individuals, is spatial in nature and can be used as a straightforward approach for investigating the interactive and independent effects of both environmental and spatial processes. Here, we examined (i) how environmental and spatial processes affect the metacommunity organization of marine macroinvertebrates inhabiting the intertidal sediments of a biodiverse coastal ecosystem; (ii) whether the influence of these processes is constant through time or is affected by extreme weather events (storms); and (iii) whether the relative importance of these processes depends on the dispersal abilities of organisms. We found that macrobenthic assemblages are influenced by each of environmental and spatial variables; however, spatial processes exerted a stronger role. We also found that this influence changes through time and is modified by storms. Moreover, we observed that the influence of environmental and spatial processes varies according to the dispersal capabilities of organisms. More effective dispersers (i.e., species with planktonic larvae) are more affected by spatial processes whereas environmental variables had a stronger effect on weaker dispersers (i.e. species with low motility in larval and adult stages). These findings highlight that accounting for spatial processes and differences in species life histories is essential to improve our understanding of species distribution and coexistence patterns in intertidal soft-sediments. Furthermore, it shows that storms modify the structure of coastal assemblages. Given that the influence of spatial and environmental processes is not consistent through time, it is of utmost importance that future studies replicate sampling over different periods so the influence of temporal and stochastic factors on macrobenthic metacommunities can be better understood. Copyright © 2018 Elsevier Ltd. All rights reserved.
Determinants of Tree Assemblage Composition at the Mesoscale within a Subtropical Eucalypt Forest
Hero, Jean-Marc; Butler, Sarah A.; Lollback, Gregory W.; Castley, James G.
2014-01-01
A variety of environmental processes, including topography, edaphic and disturbance factors can influence vegetation composition. The relative influence of these patterns has been known to vary with scale, however, few studies have focused on environmental drivers of composition at the mesoscale. This study examined the relative importance of topography, catchment flow and soil in influencing tree assemblages in Karawatha Forest Park; a South-East Queensland subtropical eucalypt forest embedded in an urban matrix that is part of the Terrestrial Ecosystem Research Network South-East Queensland Peri-urban SuperSite. Thirty-three LTER plots were surveyed at the mesoscale (909 ha), where all woody stems ≥1.3 m high rooted within plots were sampled. Vegetation was divided into three cohorts: small (≥1–10 cm DBH), intermediate (≥10–30 cm DBH), and large (≥30 cm DBH). Plot slope, aspect, elevation, catchment area and location and soil chemistry and structure were also measured. Ordinations and smooth surface modelling were used to determine drivers of vegetation assemblage in each cohort. Vegetation composition was highly variable among plots at the mesoscale (plots systematically placed at 500 m intervals). Elevation was strongly related to woody vegetation composition across all cohorts (R2: 0.69–0.75). Other topographic variables that explained a substantial amount of variation in composition were catchment area (R2: 0.43–0.45) and slope (R2: 0.23–0.61). Soil chemistry (R2: 0.09–0.75) was also associated with woody vegetation composition. While species composition differed substantially between cohorts, the environmental variables explaining composition did not. These results demonstrate the overriding importance of elevation and other topographic features in discriminating tree assemblage patterns irrespective of tree size. The importance of soil characteristics to tree assemblages was also influenced by topography, where ridge top sites were typically drier and had lower soil nutrient levels than riparian areas. PMID:25501866
NASA Astrophysics Data System (ADS)
Shonnard, David R.; Klemetsrud, Bethany; Sacramento-Rivero, Julio; Navarro-Pineda, Freddy; Hilbert, Jorge; Handler, Robert; Suppen, Nydia; Donovan, Richard P.
2015-12-01
Life-cycle assessment (LCA) has been applied to many biofuel and bioenergy systems to determine potential environmental impacts, but the conclusions have varied. Different methodologies and processes for conducting LCA of biofuels make the results difficult to compare, in-turn making it difficult to make the best possible and informed decision. Of particular importance are the wide variability in country-specific conditions, modeling assumptions, data quality, chosen impact categories and indicators, scale of production, system boundaries, and co-product allocation. This study has a double purpose: conducting a critical evaluation comparing environmental LCA of biofuels from several conversion pathways and in several countries in the Pan American region using both qualitative and quantitative analyses, and making recommendations for harmonization with respect to biofuel LCA study features, such as study assumptions, inventory data, impact indicators, and reporting practices. The environmental management implications are discussed within the context of different national and international regulatory environments using a case study. The results from this study highlight LCA methodology choices that cause high variability in results and limit comparability among different studies, even among the same biofuel pathway, and recommendations are provided for improvement.
Thomas, Erica; Upton, Dominic
2014-07-01
Physical activity determinant studies now often include both environmental and sociocognitive factors but few of them acknowledge and explore the mechanisms underlying relevant environmental influences. This study explored environmental correlates of children's self-reported physical activity and potential mediation through the Theory of Planned Behavior (TPB) and habit strength. Six hundred and twenty-one pupils aged 9-11 years were recruited from 4 primary schools in the UK. TPB variables, habit strength and environmental variables were assessed at baseline. Self-reported physical activity was assessed 1 week later. Mediation tests revealed that 43% of the association between convenient facilities and intention was mediated through subjective norms (17%) and habit (26%), while 15% of the association between convenient facilities and physical activity was mediated through habit strength alone. A significant direct effect of convenient facilities and resources in the home environment on physical activity was also found. The school environment was not significantly related to children's physical activity intentions or behavior. The results suggest that the environment influences children's physical activity both directly and indirectly and that habit strength seems to be the most important mediator for this association.
Shonnard, David R; Klemetsrud, Bethany; Sacramento-Rivero, Julio; Navarro-Pineda, Freddy; Hilbert, Jorge; Handler, Robert; Suppen, Nydia; Donovan, Richard P
2015-12-01
Life-cycle assessment (LCA) has been applied to many biofuel and bioenergy systems to determine potential environmental impacts, but the conclusions have varied. Different methodologies and processes for conducting LCA of biofuels make the results difficult to compare, in-turn making it difficult to make the best possible and informed decision. Of particular importance are the wide variability in country-specific conditions, modeling assumptions, data quality, chosen impact categories and indicators, scale of production, system boundaries, and co-product allocation. This study has a double purpose: conducting a critical evaluation comparing environmental LCA of biofuels from several conversion pathways and in several countries in the Pan American region using both qualitative and quantitative analyses, and making recommendations for harmonization with respect to biofuel LCA study features, such as study assumptions, inventory data, impact indicators, and reporting practices. The environmental management implications are discussed within the context of different national and international regulatory environments using a case study. The results from this study highlight LCA methodology choices that cause high variability in results and limit comparability among different studies, even among the same biofuel pathway, and recommendations are provided for improvement.
Grace, J.B.; Guntenspergen, G.R.
1999-01-01
Here we propose that an important cause of variation in species density may be prior environmental conditions that continue to influence current patterns. In this paper we investigated the degree to which species density varies with location within the landscape, independent of contemporaneous environmental conditions. The area studied was a coastal marsh landscape subject to periodic storm events. To evaluate the impact of historical effects, it was assumed that the landscape position of a plot relative to the river's mouth ('distance from sea') and to the edge of a stream channel ('distance from shore') would correlate with the impact of prior storm events, an assumption supported by previous studies. To evaluate the importance of spatial location on species density, data were collected from five sites located at increasing distances from the river's mouth along the Middle Pearl River in Louisiana. At each site, plots were established systematically along transects perpendicular to the shoreline. For each of the 175 Plots, we measured elevation, soil salinity, percent of plot recently disturbed, percent of sunlight captured by the plant canopy (as a measure of plant abundance), and plant species density. Structural equation analysis ascertained the degree to which landscape position variables explained variation in species density that could not be explained by current environmental indicators. Without considering landscape variables, 54% of the variation in species density could be explained by the effects of salinity, flooding, and plant abundance. When landscape variables were included, distance from shore was unimportant but distance from sea explained an additional 12% of the variance in species density (R2 of final model = 66%). Based on these results it appears that at least some of the otherwise unexplained variation in species density can be attributed to landscape position, and presumably previous storm events. We suggest that future studies may gain additional insight into the factors controlling current patterns of species density by examining the effects of position within the landscape.
Improving the use of environmental diversity as a surrogate for species representation.
Albuquerque, Fabio; Beier, Paul
2018-01-01
The continuous p-median approach to environmental diversity (ED) is a reliable way to identify sites that efficiently represent species. A recently developed maximum dispersion (maxdisp) approach to ED is computationally simpler, does not require the user to reduce environmental space to two dimensions, and performed better than continuous p-median for datasets of South African animals. We tested whether maxdisp performs as well as continuous p-median for 12 datasets that included plants and other continents, and whether particular types of environmental variables produced consistently better models of ED. We selected 12 species inventories and atlases to span a broad range of taxa (plants, birds, mammals, reptiles, and amphibians), spatial extents, and resolutions. For each dataset, we used continuous p-median ED and maxdisp ED in combination with five sets of environmental variables (five combinations of temperature, precipitation, insolation, NDVI, and topographic variables) to select environmentally diverse sites. We used the species accumulation index (SAI) to evaluate the efficiency of ED in representing species for each approach and set of environmental variables. Maxdisp ED represented species better than continuous p-median ED in five of 12 biodiversity datasets, and about the same for the other seven biodiversity datasets. Efficiency of ED also varied with type of variables used to define environmental space, but no particular combination of variables consistently performed best. We conclude that maxdisp ED performs at least as well as continuous p-median ED, and has the advantage of faster and simpler computation. Surprisingly, using all 38 environmental variables was not consistently better than using subsets of variables, nor did any subset emerge as consistently best or worst; further work is needed to identify the best variables to define environmental space. Results can help ecologists and conservationists select sites for species representation and assist in conservation planning.
Veiga, Puri; Torres, Ana Catarina; Aneiros, Fernando; Sousa-Pinto, Isabel; Troncoso, Jesús S; Rubal, Marcos
2016-09-01
Spatial variability of environmental factors and macrobenthos, using species and functional groups, was examined over the same scales (100s of cm to >100 km) in intertidal sediments of two transitional water systems. The objectives were to test if functional groups were a good species surrogate and explore the relationship between environmental variables and macrobenthos. Environmental variables, diversity and the multivariate assemblage structure showed the highest variability at the scale of 10s of km. However, abundance was more variable at 10s of m. Consistent patterns were achieved using species and functional groups therefore, these may be a good species surrogate. Total carbon, salinity and silt/clay were the strongest correlated with macrobenthic assemblages. Results are valuable for design and interpretation of future monitoring programs including detection of anthropogenic disturbances in transitional systems and propose improvements in environmental variable sampling to refine the assessment of their relationship with biological data across spatial scales. Copyright © 2016 Elsevier Ltd. All rights reserved.
Disentangling environmental correlates of vascular plant biodiversity in a Mediterranean hotspot.
Molina-Venegas, Rafael; Aparicio, Abelardo; Pina, Francisco José; Valdés, Benito; Arroyo, Juan
2013-10-01
We determined the environmental correlates of vascular plant biodiversity in the Baetic-Rifan region, a plant biodiversity hotspot in the western Mediterranean. A catalog of the whole flora of Andalusia and northern Morocco, the region that includes most of the Baetic-Rifan complex, was compiled using recent comprehensive floristic catalogs. Hierarchical cluster analysis (HCA) and detrended correspondence analysis (DCA) of the different ecoregions of Andalusia and northern Morocco were conducted to determine their floristic affinities. Diversity patterns were studied further by focusing on regional endemic taxa. Endemic and nonendemic alpha diversities were regressed to several environmental variables. Finally, semi-partial regressions on distance matrices were conducted to extract the respective contributions of climatic, altitudinal, lithological, and geographical distance matrices to beta diversity in endemic and nonendemic taxa. We found that West Rifan plant assemblages had more similarities with Andalusian ecoregions than with other nearby northern Morocco ecoregions. The endemic alpha diversity was explained relatively well by the environmental variables related to summer drought and extreme temperature values. Of all the variables, geographical distance contributed by far the most to spatial turnover in species diversity in the Baetic-Rifan hotspot. In the Baetic range, elevation was the most significant driver of nonendemic species beta diversity, while lithology and elevation were the main drivers of endemic beta diversity. Despite the fact that Andalusia and northern Morocco are presently separated by the Atlantic Ocean and the Mediterranean Sea, the Baetic and Rifan mountain ranges have many floristic similarities - especially in their western ranges - due to past migration of species across the Strait of Gibraltar. Climatic variables could be shaping the spatial distribution of endemic species richness throughout the Baetic-Rifan hotspot. Determinants of spatial turnover in biodiversity in the Baetic-Rifan hotspot vary in importance between endemic and nonendemic species.
Sewe, Maquins Odhiambo; Ahlm, Clas; Rocklöv, Joacim
2016-01-01
Malaria is an important cause of morbidity and mortality in malaria endemic countries. The malaria mosquito vectors depend on environmental conditions, such as temperature and rainfall, for reproduction and survival. To investigate the potential for weather driven early warning systems to prevent disease occurrence, the disease relationship to weather conditions need to be carefully investigated. Where meteorological observations are scarce, satellite derived products provide new opportunities to study the disease patterns depending on remotely sensed variables. In this study, we explored the lagged association of Normalized Difference Vegetation Index (NVDI), day Land Surface Temperature (LST) and precipitation on malaria mortality in three areas in Western Kenya. The lagged effect of each environmental variable on weekly malaria mortality was modeled using a Distributed Lag Non Linear Modeling approach. For each variable we constructed a natural spline basis with 3 degrees of freedom for both the lag dimension and the variable. Lag periods up to 12 weeks were considered. The effect of day LST varied between the areas with longer lags. In all the three areas, malaria mortality was associated with precipitation. The risk increased with increasing weekly total precipitation above 20 mm and peaking at 80 mm. The NDVI threshold for increased mortality risk was between 0.3 and 0.4 at shorter lags. This study identified lag patterns and association of remote- sensing environmental factors and malaria mortality in three malaria endemic regions in Western Kenya. Our results show that rainfall has the most consistent predictive pattern to malaria transmission in the endemic study area. Results highlight a potential for development of locally based early warning forecasts that could potentially reduce the disease burden by enabling timely control actions.
Boieiro, Mário; Carvalho, José C.; Cardoso, Pedro; Aguiar, Carlos A. S.; Rego, Carla; de Faria e Silva, Israel; Amorim, Isabel R.; Pereira, Fernando; Azevedo, Eduardo B.; Borges, Paulo A. V.; Serrano, Artur R. M.
2013-01-01
The development in recent years of new beta diversity analytical approaches highlighted valuable information on the different processes structuring ecological communities. A crucial development for the understanding of beta diversity patterns was also its differentiation in two components: species turnover and richness differences. In this study, we evaluate beta diversity patterns of ground beetles from 26 sites in Madeira Island distributed throughout Laurisilva – a relict forest restricted to the Macaronesian archipelagos. We assess how the two components of ground beetle beta diversity (βrepl – species turnover and βrich - species richness differences) relate with differences in climate, geography, landscape composition matrix, woody plant species richness and soil characteristics and the relative importance of the effects of these variables at different spatial scales. We sampled 1025 specimens from 31 species, most of which are endemic to Madeira Island. A spatially explicit analysis was used to evaluate the contribution of pure environmental, pure spatial and environmental spatially structured effects on variation in ground beetle species richness and composition. Variation partitioning showed that 31.9% of species turnover (βrepl) and 40.7% of species richness variation (βrich) could be explained by the environmental and spatial variables. However, different environmental variables controlled the two types of beta diversity: βrepl was influenced by climate, disturbance and soil organic matter content whilst βrich was controlled by altitude and slope. Furthermore, spatial variables, represented through Moran’s eigenvector maps, played a significant role in explaining both βrepl and βrich, suggesting that both dispersal ability and Madeira Island complex orography are crucial for the understanding of beta diversity patterns in this group of beetles. PMID:23724065
Kraan, Casper; Aarts, Geert; Van der Meer, Jaap; Piersma, Theunis
2010-06-01
Ongoing statistical sophistication allows a shift from describing species' spatial distributions toward statistically disentangling the possible roles of environmental variables in shaping species distributions. Based on a landscape-scale benthic survey in the Dutch Wadden Sea, we show the merits of spatially explicit generalized estimating equations (GEE). The intertidal macrozoobenthic species, Macoma balthica, Cerastoderma edule, Marenzelleria viridis, Scoloplos armiger, Corophium volutator, and Urothoe poseidonis served as test cases, with median grain-size and inundation time as typical environmental explanatory variables. GEEs outperformed spatially naive generalized linear models (GLMs), and removed much residual spatial structure, indicating the importance of median grain-size and inundation time in shaping landscape-scale species distributions in the intertidal. GEE regression coefficients were smaller than those attained with GLM, and GEE standard errors were larger. The best fitting GEE for each species was used to predict species' density in relation to median grain-size and inundation time. Although no drastic changes were noted compared to previous work that described habitat suitability for benthic fauna in the Wadden Sea, our predictions provided more detailed and unbiased estimates of the determinants of species-environment relationships. We conclude that spatial GEEs offer the necessary methodological advances to further steps toward linking pattern to process.
McKenna, James E.
2005-01-01
Diversity and fish productivity are important measures of the health and status of aquatic systems. Being able to predict the values of these indices as a function of environmental variables would be valuable to management. Diversity and productivity have been related to environmental conditions by multiple linear regression and discriminant analysis, but such methods have several shortcomings. In an effort to predict fish species diversity and estimate salmonid production for streams in the eastern basin of Lake Ontario, I constructed neural networks and trained them on a data set containing abiotic information and either fish diversity or juvenile salmonid abundance. Twenty percent of the original data were retained as a test data set and used in the training. The ability to extend these neural networks to conditions throughout the streams was tested with data not involved in the network training. The resulting neural networks were able to predict the number of salmonids with more than 84% accuracy and diversity with more than 73% accuracy, which was far superior to the performance of multiple regression. The networks also identified the environmental variables with the greatest predictive power, namely, those describing water movement, stream size, and water chemistry. Thirteen input variables were used to predict diversity and 17 to predict salmonid abundance.
Guerrero, Jimena; Andrello, Marco; Burgarella, Concetta; Manel, Stephanie
2018-07-01
Spatial differences in environmental selective pressures interact with the genomes of organisms, ultimately leading to local adaptation. Landscape genomics is an emergent research area that uncovers genome-environment associations, thus allowing researchers to identify candidate loci for adaptation to specific environmental variables. In the present study, we used latent factor mixed models (LFMMs) and Moran spectral outlier detection/randomization (MSOD-MSR) to identify candidate loci for adaptation to 10 environmental variables (climatic, soil and atmospheric) among 43 515 single nucleotide polymorphisms (SNPs) from 202 accessions of the model legume Medicago truncatula. Soil variables were associated with a large number of candidate loci identified through both LFMMs and MSOD-MSR. Genes tagged by candidate loci associated with drought and salinity are involved in the response to biotic and abiotic stresses, while those tagged by candidates associated with soil nitrogen and atmospheric nitrogen, participate in the legume-rhizobia symbiosis. Candidate SNPs identified through both LFMMs and MSOD-MSR explained up to 56% of variance in flowering traits. Our findings highlight the importance of soil in driving adaptation in the system and elucidate the basis of evolutionary potential of M. truncatula to respond to global climate change and anthropogenic disruption of the nitrogen cycle. © 2018 The Authors New Phytologist © 2018 New Phytologist Trust.
Andersson, Asa Scott; Stjernström, Olof; Fängmark, Ingrid
2005-05-01
Assessing the environmental consequences of a chemical accident is a complex task. To date, the methods used to evaluate the environmental effects of an acute release of a chemical have often been based on measurements of chemical and physical variables deemed to be important, such as the concentration of the chemical. However, a broader strategy is needed to predict the environmental consequences of potential accidents during the planning process. An Environment-Accident Index (EAI), a simple tool based on such a strategy, has been developed to facilitate the consideration of a multitude of influential variables. The objectives of this study were to evaluate whether questionnaire-based expert panel's judgements could provide useful data on the environmental consequences of chemical spills, and an effective basis for further development of the EAI. As expected, the judgements did not agree perfectly, but they do give rough indications of the environmental effects, and highlight consistent trends that should be useful inputs for planning, prevention and decontamination processes. The different accidents were also judged to have caused everything from minor to very major effects in the environment, implying that a wide range of accident scenarios were represented in the material and covered by the EAI. Therefore, questionnaires and expert panel judgements can be used to collect useful data for estimating the likely environmental consequences of chemical accidents and for further development of the EAI.
Environmental Variables Explain Genetic Structure in a Beetle-Associated Nematode
McGaughran, Angela; Morgan, Katy; Sommer, Ralf J.
2014-01-01
The distribution of a species is a complex expression of its ecological and evolutionary history and integrating population genetic, environmental, and ecological data can provide new insights into the effects of the environment on the population structure of species. Previous work demonstrated strong patterns of genetic differentiation in natural populations of the hermaphroditic nematode Pristionchus pacificus in its La Réunion Island habitat, but gave no clear understanding of the role of the environment in structuring this variation. Here, we present what is to our knowledge the first study to statistically evaluate the role of the environment in shaping the structure and distribution of nematode populations. We test the hypothesis that genetic structure in P. pacificus is influenced by environmental variables, by combining population genetic analyses of microsatellite data from 18 populations and 370 strains, with multivariate statistics on environmental data, and species distribution modelling. We assess and quantify the relative importance of environmental factors (geographic distance, altitude, temperature, precipitation, and beetle host) on genetic variation among populations. Despite the fact that geographic populations of P. pacificus comprise vast genetic diversity sourced from multiple ancestral lineages, we find strong evidence for local associations between environment and genetic variation. Further, we show that significantly more genetic variation in P. pacificus populations is explained by environmental variation than by geographic distances. This supports a strong role for environmental heterogeneity vs. genetic drift in the divergence of populations, which we suggest may be influenced by adaptive forces. PMID:24498073
Kalle, Riddhika; Ramesh, Tharmalingam; Qureshi, Qamar; Sankar, Kalyanasundaram
2013-01-01
Due to their secretive habits, predicting the pattern of spatial distribution of small carnivores has been typically challenging, yet for conservation management it is essential to understand the association between this group of animals and environmental factors. We applied maximum entropy modeling (MaxEnt) to build distribution models and identify environmental predictors including bioclimatic variables, forest and land cover type, topography, vegetation index and anthropogenic variables for six small carnivore species in Mudumalai Tiger Reserve. Species occurrence records were collated from camera-traps and vehicle transects during the years 2010 and 2011. We used the average training gain from forty model runs for each species to select the best set of predictors. The area under the curve (AUC) of the receiver operating characteristic plot (ROC) ranged from 0.81 to 0.93 for the training data and 0.72 to 0.87 for the test data. In habitat models for F. chaus, P. hermaphroditus, and H. smithii "distance to village" and precipitation of the warmest quarter emerged as some of the most important variables. "Distance to village" and aspect were important for V. indica while "distance to village" and precipitation of the coldest quarter were significant for H. vitticollis. "Distance to village", precipitation of the warmest quarter and land cover were influential variables in the distribution of H. edwardsii. The map of predicted probabilities of occurrence showed potentially suitable habitats accounting for 46 km(2) of the reserve for F. chaus, 62 km(2) for V. indica, 30 km(2) for P. hermaphroditus, 63 km(2) for H. vitticollis, 45 km(2) for H. smithii and 28 km(2) for H. edwardsii. Habitat heterogeneity driven by the east-west climatic gradient was correlated with the spatial distribution of small carnivores. This study exemplifies the usefulness of modeling small carnivore distribution to prioritize and direct conservation planning for habitat specialists in southern India.
Kalle, Riddhika; Ramesh, Tharmalingam; Qureshi, Qamar; Sankar, Kalyanasundaram
2013-01-01
Due to their secretive habits, predicting the pattern of spatial distribution of small carnivores has been typically challenging, yet for conservation management it is essential to understand the association between this group of animals and environmental factors. We applied maximum entropy modeling (MaxEnt) to build distribution models and identify environmental predictors including bioclimatic variables, forest and land cover type, topography, vegetation index and anthropogenic variables for six small carnivore species in Mudumalai Tiger Reserve. Species occurrence records were collated from camera-traps and vehicle transects during the years 2010 and 2011. We used the average training gain from forty model runs for each species to select the best set of predictors. The area under the curve (AUC) of the receiver operating characteristic plot (ROC) ranged from 0.81 to 0.93 for the training data and 0.72 to 0.87 for the test data. In habitat models for F. chaus, P. hermaphroditus, and H. smithii “distance to village” and precipitation of the warmest quarter emerged as some of the most important variables. “Distance to village” and aspect were important for V. indica while “distance to village” and precipitation of the coldest quarter were significant for H. vitticollis. “Distance to village”, precipitation of the warmest quarter and land cover were influential variables in the distribution of H. edwardsii. The map of predicted probabilities of occurrence showed potentially suitable habitats accounting for 46 km2 of the reserve for F. chaus, 62 km2 for V. indica, 30 km2 for P. hermaphroditus, 63 km2 for H. vitticollis, 45 km2 for H. smithii and 28 km2 for H. edwardsii. Habitat heterogeneity driven by the east-west climatic gradient was correlated with the spatial distribution of small carnivores. This study exemplifies the usefulness of modeling small carnivore distribution to prioritize and direct conservation planning for habitat specialists in southern India. PMID:24244470
Sae-Lim, Panya; Komen, Hans; Kause, Antti; Mulder, Han A
2014-02-26
Identifying the relevant environmental variables that cause GxE interaction is often difficult when they cannot be experimentally manipulated. Two statistical approaches can be applied to address this question. When data on candidate environmental variables are available, GxE interaction can be quantified as a function of specific environmental variables using a reaction norm model. Alternatively, a factor analytic model can be used to identify the latent common factor that explains GxE interaction. This factor can be correlated with known environmental variables to identify those that are relevant. Previously, we reported a significant GxE interaction for body weight at harvest in rainbow trout reared on three continents. Here we explore their possible causes. Reaction norm and factor analytic models were used to identify which environmental variables (age at harvest, water temperature, oxygen, and photoperiod) may have caused the observed GxE interaction. Data on body weight at harvest was recorded on 8976 offspring reared in various locations: (1) a breeding environment in the USA (nucleus), (2) a recirculating aquaculture system in the Freshwater Institute in West Virginia, USA, (3) a high-altitude farm in Peru, and (4) a low-water temperature farm in Germany. Akaike and Bayesian information criteria were used to compare models. The combination of days to harvest multiplied with daily temperature (Day*Degree) and photoperiod were identified by the reaction norm model as the environmental variables responsible for the GxE interaction. The latent common factor that was identified by the factor analytic model showed the highest correlation with Day*Degree. Day*Degree and photoperiod were the environmental variables that differed most between Peru and other environments. Akaike and Bayesian information criteria indicated that the factor analytical model was more parsimonious than the reaction norm model. Day*Degree and photoperiod were identified as environmental variables responsible for the strong GxE interaction for body weight at harvest in rainbow trout across four environments. Both the reaction norm and the factor analytic models can help identify the environmental variables responsible for GxE interaction. A factor analytic model is preferred over a reaction norm model when limited information on differences in environmental variables between farms is available.
2014-01-01
Background Identifying the relevant environmental variables that cause GxE interaction is often difficult when they cannot be experimentally manipulated. Two statistical approaches can be applied to address this question. When data on candidate environmental variables are available, GxE interaction can be quantified as a function of specific environmental variables using a reaction norm model. Alternatively, a factor analytic model can be used to identify the latent common factor that explains GxE interaction. This factor can be correlated with known environmental variables to identify those that are relevant. Previously, we reported a significant GxE interaction for body weight at harvest in rainbow trout reared on three continents. Here we explore their possible causes. Methods Reaction norm and factor analytic models were used to identify which environmental variables (age at harvest, water temperature, oxygen, and photoperiod) may have caused the observed GxE interaction. Data on body weight at harvest was recorded on 8976 offspring reared in various locations: (1) a breeding environment in the USA (nucleus), (2) a recirculating aquaculture system in the Freshwater Institute in West Virginia, USA, (3) a high-altitude farm in Peru, and (4) a low-water temperature farm in Germany. Akaike and Bayesian information criteria were used to compare models. Results The combination of days to harvest multiplied with daily temperature (Day*Degree) and photoperiod were identified by the reaction norm model as the environmental variables responsible for the GxE interaction. The latent common factor that was identified by the factor analytic model showed the highest correlation with Day*Degree. Day*Degree and photoperiod were the environmental variables that differed most between Peru and other environments. Akaike and Bayesian information criteria indicated that the factor analytical model was more parsimonious than the reaction norm model. Conclusions Day*Degree and photoperiod were identified as environmental variables responsible for the strong GxE interaction for body weight at harvest in rainbow trout across four environments. Both the reaction norm and the factor analytic models can help identify the environmental variables responsible for GxE interaction. A factor analytic model is preferred over a reaction norm model when limited information on differences in environmental variables between farms is available. PMID:24571451
Sexual dimorphism in immune function changes during the annual cycle in house sparrows
NASA Astrophysics Data System (ADS)
Pap, Péter László; Czirják, Gábor Árpád; Vágási, Csongor István; Barta, Zoltán; Hasselquist, Dennis
2010-10-01
Difference between sexes in parasitism is a common phenomenon among birds, which may be related to differences between males and females in their investment into immune functions or as a consequence of differential exposure to parasites. Because life-history strategies change sex specifically during the annual cycle, immunological responses of the host aiming to reduce the impact of parasites may be sexually dimorphic. Despite the great complexity of the immune system, studies on immunoecology generally characterise the immune status through a few variables, often overlooking potentially important seasonal and gender effects. However, because of the differences in physiological and defence mechanisms among different arms of the immune system, we expect divergent responses of immune components to environmental seasonality. In male and female house sparrows ( Passer domesticus), we measured the major components of the immune system (innate, acquired, cellular and humoral) during four important life-history stages across the year: (1) mating, (2) breeding, (3) moulting and (4) during the winter capture and also following introduction to captivity in aviary. Different individuals were sampled from the same population during the four life cycle stages. We found that three out of eight immune variables showed a significant life cycle stage × sex interaction. The difference in immune response between the sexes was significant in five immune variables during the mating stage, when females had consistently stronger immune function than males, while variables varied generally non-significantly with sex during the remaining three life cycle stages. Our results show that the immune system is highly variable between life cycle stages and sexes, highlighting the potential fine tuning of the immune system to specific physiological states and environmental conditions.
Prey-mediated behavioral responses of feeding blue whales in controlled sound exposure experiments.
Friedlaender, A S; Hazen, E L; Goldbogen, J A; Stimpert, A K; Calambokidis, J; Southall, B L
2016-06-01
Behavioral response studies provide significant insights into the nature, magnitude, and consequences of changes in animal behavior in response to some external stimulus. Controlled exposure experiments (CEEs) to study behavioral response have faced challenges in quantifying the importance of and interaction among individual variability, exposure conditions, and environmental covariates. To investigate these complex parameters relative to blue whale behavior and how it may change as a function of certain sounds, we deployed multi-sensor acoustic tags and conducted CEEs using simulated mid-frequency active sonar (MFAS) and pseudo-random noise (PRN) stimuli, while collecting synoptic, quantitative prey measures. In contrast to previous approaches that lacked such prey data, our integrated approach explained substantially more variance in blue whale dive behavioral responses to mid-frequency sounds (r2 = 0.725 vs. 0.14 previously). Results demonstrate that deep-feeding whales respond more clearly and strongly to CEEs than those in other behavioral states, but this was only evident with the increased explanatory power provided by incorporating prey density and distribution as contextual covariates. Including contextual variables increases the ability to characterize behavioral variability and empirically strengthens previous findings that deep-feeding blue whales respond significantly to mid-frequency sound exposure. However, our results are only based on a single behavioral state with a limited sample size, and this analytical framework should be applied broadly across behavioral states. The increased capability to describe and account for individual response variability by including environmental variables, such as prey, that drive foraging behavior underscores the importance of integrating these and other relevant contextual parameters in experimental designs. Our results suggest the need to measure and account for the ecological dynamics of predator-prey interactions when studying the effects of anthropogenic disturbance in feeding animals.
Impacts of Climate Trends and Variability on Livestock Production in Brazil
NASA Astrophysics Data System (ADS)
Cohn, A.; Munger, J.; Gibbs, H.
2015-12-01
Cattle systems of Brazil are of major economic and environmental importance. They occupy ¼ of the land surface of the country, account for over 15 billion USD of annual revenue through the sale of beef, leather, and milk, are closely associated with deforestation, and have been projected to substantially grow in the coming decades. Sustainable intensification of production in the sector could help to limit environmental harm from increased production, but productivity growth could be inhibited by climate change. Gauging the potential future impacts of climate change on the Brazilian livestock sector can be aided by examining past evidence of the link between climate and cattle production and productivity. We use statistical techniques to investigate the contribution of climate variability and climate change to variability in cattle system output in Brazil's municipalities over the period 1974 to 2013. We find significant impacts of both temperature and precipitation variability and temperature trends on municipality-level exports and the production of both milk and beef. Pasture productivity, represented by a vegetation index, also varies significantly with climate shocks. In some regions, losses from exposure to climate trends were of comparable magnitude to technology and/or market-driven productivity gains over the study period.
The individualistic fallacy, ecological studies and instrumental variables: a causal interpretation.
Loney, Tom; Nagelkerke, Nico J
2014-01-01
The validity of ecological studies in epidemiology for inferring causal relationships has been widely challenged as observed associations could be biased by the Ecological Fallacy. We reconsider the important design components of ecological studies, and discuss the conditions that may lead to spurious associations. Ecological associations are useful and valid when the ecological exposures can be interpreted as Instrumental Variables. A suitable example may be a time series analysis of environmental pollution (e.g. particulate matter with an aerodynamic diameter of <10 micrometres; PM10) and health outcomes (e.g. hospital admissions for acute myocardial infarction) as environmental pollution levels are a cause of individual exposure levels and not just an aggregate measurement. Ecological exposures may also be employed in situations (perhaps rare) where individual exposures are known but their associations with health outcomes are confounded by unknown or unquantifiable factors. Ecological associations have a notorious reputation in epidemiology and individualistic associations are considered superior to ecological associations because of the "ecological fallacy". We have argued that this is incorrect in situations in which ecological or aggregate exposures can serve as an instrumental variable and associations between individual exposure and outcome are likely to be confounded by unmeasured variables.
Social determinants of childhood asthma symptoms: an ecological study in urban Latin America.
Fattore, Gisel L; Santos, Carlos A T; Barreto, Mauricio L
2014-04-01
Asthma is an important public health problem in urban Latin America. This study aimed to analyze the role of socioeconomic and environmental factors as potential determinants of asthma symptoms prevalence in children from Latin American (LA) urban centers. We selected 31 LA urban centers with complete data, and an ecological analysis was performed. According to our theoretical framework, the explanatory variables were classified in three levels: distal, intermediate, and proximate. The association between variables in the three levels and prevalence of asthma symptoms was examined by bivariate and multivariate linear regression analysis weighed by sample size. In a second stage, we fitted several linear regression models introducing sequentially the variables according to the predefined hierarchy. In the final hierarchical model Gini Index, crowding, sanitation, variation in infant mortality rates and homicide rates, explained great part of the variance in asthma prevalence between centers (R(2) = 75.0 %). We found a strong association between socioeconomic and environmental variables and prevalence of asthma symptoms in LA urban children, and according to our hierarchical framework and the results found we suggest that social inequalities (measured by the Gini Index) is a central determinant to explain high prevalence of asthma in LA.
Factors driving mortality and growth at treeline: a 30-year experiment of 92 000 conifers.
Barbeito, Ignacio; Dawes, Melissa A; Rixen, Christian; Senn, Josef; Bebi, Peter
2012-02-01
Understanding the interplay between environmental factors contributing to treeline formation and how these factors influence different life stages remains a major research challenge. We used an afforestation experiment including 92 000 trees to investigate the spatial and temporal dynamics of tree mortality and growth at treeline in the Swiss Alps. Seedlings of three high-elevation conifer species (Larix decidua, Pinus mugo ssp. uncinata, and Pinus cembra) were systematically planted along an altitudinal gradient at and above the current treeline (2075 to 2230 m above sea level [a.s.l.]) in 1975 and closely monitored during the following 30 years. We used decision-tree models and generalized additive models to identify patterns in mortality and growth along gradients in elevation, snow duration, wind speed, and solar radiation, and to quantify interactions between the different variables. For all three species, snowmelt date was always the most important environmental factor influencing mortality, and elevation was always the most important factor for growth over the entire period studied. Individuals of all species survived at the highest point of the afforestation for more than 30 years, although mortality was greater above 2160 m a.s.l., 50-100 m above the current treeline. Optimal conditions for height growth differed from those for survival in all three species: early snowmelt (ca. day of year 125-140 [where day 1 is 1 January]) yielded lowest mortality rates, but relatively later snowmelt (ca. day 145-150) yielded highest growth rates. Although snowmelt and elevation were important throughout all life stages of the trees, the importance of radiation decreased over time and that of wind speed increased. Our findings provide experimental evidence that tree survival and height growth require different environmental conditions and that even small changes in the duration of snow cover, in addition to changes in temperature, can strongly impact tree survival and growth patterns at treeline. Further, our results show that the relative importance of different environmental variables for tree seedlings changes during the juvenile phase as they grow taller.
Plant ecology. Anthropogenic environmental changes affect ecosystem stability via biodiversity.
Hautier, Yann; Tilman, David; Isbell, Forest; Seabloom, Eric W; Borer, Elizabeth T; Reich, Peter B
2015-04-17
Human-driven environmental changes may simultaneously affect the biodiversity, productivity, and stability of Earth's ecosystems, but there is no consensus on the causal relationships linking these variables. Data from 12 multiyear experiments that manipulate important anthropogenic drivers, including plant diversity, nitrogen, carbon dioxide, fire, herbivory, and water, show that each driver influences ecosystem productivity. However, the stability of ecosystem productivity is only changed by those drivers that alter biodiversity, with a given decrease in plant species numbers leading to a quantitatively similar decrease in ecosystem stability regardless of which driver caused the biodiversity loss. These results suggest that changes in biodiversity caused by drivers of environmental change may be a major factor determining how global environmental changes affect ecosystem stability. Copyright © 2015, American Association for the Advancement of Science.
Pescador, David S.; de Bello, Francesco; Valladares, Fernando; Escudero, Adrián
2015-01-01
Assessing changes in plant functional traits along gradients is useful for understanding the assembly of communities and their response to global and local environmental drivers. However, these changes may reflect the effects of species composition (i.e. composition turnover), species abundance (i.e. species interaction), and intra-specific trait variability (i.e. species plasticity). In order to determine the relevance of the latter, trait variation can be assessed under minimal effects of composition turnover. Nine sampling sites were established along an altitudinal gradient in a Mediterranean high mountain grassland community with low composition turnover (Madrid, Spain; 1940 m–2419 m). Nine functional traits were also measured for ten individuals of around ten plant species at each site, for a total of eleven species across all sites. The relative importance of different sources of variability (within/between site and intra-/inter-specific functional diversity) and trait variation at species and community level along the considered gradients were explored. We found a weak individual species response to altitude and other environmental variables although in some cases, individuals were smaller and leaves were thicker at higher elevations. This lack of species response was most likely due to greater within- than between-site species variation. At the community level, inter-specific functional diversity was generally greater than the intra-specific component except for traits linked to leaf element content (leaf carbon content, leaf nitrogen content, δ13C and δ15N). Inter-specific functional diversity decreased with lower altitude for four leaf traits (specific leaf area, leaf dry matter content, δ13C and δ15N), suggesting trait convergence between species at lower elevations, where water shortage may have a stronger environmental filtering effect than colder temperatures at higher altitudes. Our results suggest that, within a vegetation type encompassing various environmental gradients, both, changes in species abundance and intra-specific trait variability adjust for the community functional response to environmental changes. PMID:25774532
Pescador, David S; de Bello, Francesco; Valladares, Fernando; Escudero, Adrián
2015-01-01
Assessing changes in plant functional traits along gradients is useful for understanding the assembly of communities and their response to global and local environmental drivers. However, these changes may reflect the effects of species composition (i.e. composition turnover), species abundance (i.e. species interaction), and intra-specific trait variability (i.e. species plasticity). In order to determine the relevance of the latter, trait variation can be assessed under minimal effects of composition turnover. Nine sampling sites were established along an altitudinal gradient in a Mediterranean high mountain grassland community with low composition turnover (Madrid, Spain; 1940 m-2419 m). Nine functional traits were also measured for ten individuals of around ten plant species at each site, for a total of eleven species across all sites. The relative importance of different sources of variability (within/between site and intra-/inter-specific functional diversity) and trait variation at species and community level along the considered gradients were explored. We found a weak individual species response to altitude and other environmental variables although in some cases, individuals were smaller and leaves were thicker at higher elevations. This lack of species response was most likely due to greater within- than between-site species variation. At the community level, inter-specific functional diversity was generally greater than the intra-specific component except for traits linked to leaf element content (leaf carbon content, leaf nitrogen content, δ13C and δ15N). Inter-specific functional diversity decreased with lower altitude for four leaf traits (specific leaf area, leaf dry matter content, δ13C and δ15N), suggesting trait convergence between species at lower elevations, where water shortage may have a stronger environmental filtering effect than colder temperatures at higher altitudes. Our results suggest that, within a vegetation type encompassing various environmental gradients, both, changes in species abundance and intra-specific trait variability adjust for the community functional response to environmental changes.
Pupil-class determinants of aggressive and victim behaviour in pupils.
Mooij, T
1998-09-01
Aggressive behaviour in pupils is expressed in, e.g., bullying, sexual harassment, and violence. Different kinds of variables could be relevant in explaining a pupil's aggressive or victim behaviour. To develop a multilevel theoretical and empirical explanation for different kinds of aggressive and victim behaviour displayed by pupils in a classroom and school environment. A national survey was carried out to identify different kinds of aggressive and victim behaviour displayed by pupils and to assess other variables related to pupils, classes, and schools. A total of 1998 pupils from 100 third and fourth year classes attending 71 different secondary schools took part in the research. Data were analysed by a series of secondary multilevel analyses using the MLA-program. Being a boy, being more extravert, being more disagreeable, coming across fewer teachers with positive teaching behaviour, and attending a lower type of secondary school, help explain why someone is a perpetrator as such. Being a boy, being more disagreeable, being more emotionally unstable, being open to new ideas, and seeing more teachers as being strict, function as explanatory pupil variables for victim behaviour. Other pupil level variables determine more specific aggressive and victim behaviour aspects. Various other class level and school level variables are relevant, too. Personal and environmental pupil variables are more important than class variables but class variables are in turn more important than school variables in explaining a pupil's aggressive and victim behaviour.
Tamis, Jacqueline E; de Vries, Pepijn; Jongbloed, Ruud H; Lagerveld, Sander; Jak, Robbert G; Karman, Chris C; Van der Wal, Jan Tjalling; Slijkerman, Diana Me; Klok, Chris
2016-10-01
With a foreseen increase in maritime activities, and driven by new policies and conventions aiming at sustainable management of the marine ecosystem, spatial management at sea is of growing importance. Spatial management should ensure that the collective pressures caused by anthropogenic activities on the marine ecosystem are kept within acceptable levels. A multitude of approaches to environmental assessment are available to provide insight for sustainable management, and there is a need for a harmonized and integrated environmental assessment approach that can be used for different purposes and variable levels of detail. This article first provides an overview of the main types of environmental assessments: "environmental impact assessment" (EIA), "strategic environmental assessment" (SEA), "cumulative effect assessment" (CEA), and "environmental (or ecological) risk assessment" (ERA). Addressing the need for a conceptual "umbrella" for the fragmented approaches, a generic framework for environmental assessment is proposed: cumulative effects of offshore activities (CUMULEO). CUMULEO builds on the principle that activities cause pressures that may lead to adverse effects on the ecosystem. Basic elements and variables are defined that can be used consistently throughout sequential decision-making levels and diverse methodological implementations. This enables environmental assessment to start at a high strategic level (i.e., plan and/or program level), resulting in early environmental awareness and subsequently more informed, efficient, and focused project-level assessments, which has clear benefits for both industry and government. Its main strengths are simplicity, transparency, flexibility (allowing the use of both qualitative and quantitative data), and visualization, making it a powerful framework to support discussions with experts, stakeholders, and policymakers. Integr Environ Assess Manag 2016;12:632-642. © 2015 SETAC. © 2015 SETAC.
NASA Astrophysics Data System (ADS)
Nieto, Karen; Xu, Yi; Teo, Steven L. H.; McClatchie, Sam; Holmes, John
2017-01-01
We used satellite sea surface temperature (SST) data to characterize coastal fronts and then tested the effects of the fronts and other environmental variables on the distribution of the albacore tuna (Thunnus alalunga) catches in the coastal areas (from the coast to 200 nm offshore) of the Northeast Pacific Ocean. A boosted regression tree (BRT) model was used to explain the spatial and temporal patterns in albacore tuna catch per unit effort (CPUE) (1988-2011), using frontal features (distance to the front and temperature gradient), and other environmental variables like SST, surface chlorophyll concentration (chlorophyll), and geostrophic currents as explanatory variables. Based on over two decades of high-resolution data, the modeled results confirmed previous findings that albacore CPUE distribution is strongly influenced by SST and chlorophyll at fishing locations, and the distance of fronts from the coast (DFRONT-COAST), albeit with substantial seasonal and interannual variation. Albacore CPUEs were higher near warm, low chlorophyll oceanic waters, and near SST fronts. We performed sequential leave-one-year-out cross-validations for all years and found that the relationships in the BRT models were robust for the entire study period. Spatial distributions of model-predicted albacore CPUE were similar to observations, but the model was unable to predict very high CPUEs in some areas. These results help to explain previously observed variability in albacore CPUE and will likely help improve international fisheries management in the face of environmental changes.
Aristi, Ibon; Díez, Jose Ramon; Larrañaga, Aitor; Navarro-Ortega, Alícia; Barceló, Damià; Elosegi, Arturo
2012-12-01
Mediterranean rivers in the Iberian Peninsula are being increasingly affected by human activities, which threaten their ecological status. A clear picture of how do these multiple stressors affect river ecosystem functioning is still lacking. We addressed this question by measuring a key ecosystem process, namely breakdown of organic matter, at 66 sites distributed across Mediterranean Spain. We performed breakdown experiments by measuring the mass lost by wood sticks for 54 to 106 days. Additionally, we gathered data on physico-chemical, biological and geomorphological characteristics of study sites. Study sites spanned a broad range of environmental characteristics and breakdown rates varied fiftyfold across sites. No clear geographic patterns were found between or within basins. 90th quantile regressions performed to link breakdown rates with environmental characteristics included the following 7 variables in the model, in decreasing order of importance: altitude, water content in phosphorus, catchment area, toxicity, invertebrate-based biotic index, riparian buffer width, and diatom-based quality index. Breakdown rate was systematically low in high-altitude rivers with few human impacts, but showed a high variability in areas affected by human activity. This increase in variability is the result of the influence of multiple stressors acting simultaneously, as some of these can promote whereas others slow down the breakdown of organic matter. Therefore, stick breakdown gives information on the intensity of a key ecosystem process, which would otherwise be very difficult to predict based on environmental variables. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kumar, V.; Nayagum, D.; Thornton, S.; Banwart, S.; Schuhmacher2, M.; Lerner, D.
2006-12-01
Characterization of uncertainty associated with groundwater quality models is often of critical importance, as for example in cases where environmental models are employed in risk assessment. Insufficient data, inherent variability and estimation errors of environmental model parameters introduce uncertainty into model predictions. However, uncertainty analysis using conventional methods such as standard Monte Carlo sampling (MCS) may not be efficient, or even suitable, for complex, computationally demanding models and involving different nature of parametric variability and uncertainty. General MCS or variant of MCS such as Latin Hypercube Sampling (LHS) assumes variability and uncertainty as a single random entity and the generated samples are treated as crisp assuming vagueness as randomness. Also when the models are used as purely predictive tools, uncertainty and variability lead to the need for assessment of the plausible range of model outputs. An improved systematic variability and uncertainty analysis can provide insight into the level of confidence in model estimates, and can aid in assessing how various possible model estimates should be weighed. The present study aims to introduce, Fuzzy Latin Hypercube Sampling (FLHS), a hybrid approach of incorporating cognitive and noncognitive uncertainties. The noncognitive uncertainty such as physical randomness, statistical uncertainty due to limited information, etc can be described by its own probability density function (PDF); whereas the cognitive uncertainty such estimation error etc can be described by the membership function for its fuzziness and confidence interval by ?-cuts. An important property of this theory is its ability to merge inexact generated data of LHS approach to increase the quality of information. The FLHS technique ensures that the entire range of each variable is sampled with proper incorporation of uncertainty and variability. A fuzzified statistical summary of the model results will produce indices of sensitivity and uncertainty that relate the effects of heterogeneity and uncertainty of input variables to model predictions. The feasibility of the method is validated to assess uncertainty propagation of parameter values for estimation of the contamination level of a drinking water supply well due to transport of dissolved phenolics from a contaminated site in the UK.
Marston, Christopher G.; Danson, F. Mark; Armitage, Richard P.; Giraudoux, Patrick; Pleydell, David R.J.; Wang, Qian; Qui, Jiamin; Craig, Philip S.
2014-01-01
Understanding distribution patterns of hosts implicated in the transmission of zoonotic disease remains a key goal of parasitology. Here, random forests are employed to model spatial patterns of the presence of the plateau pika (Ochotona spp.) small mammal intermediate host for the parasitic tapeworm Echinococcus multilocularis which is responsible for a significant burden of human zoonoses in western China. Landsat ETM+ satellite imagery and digital elevation model data were utilized to generate quantified measures of environmental characteristics across a study area in Sichuan Province, China. Land cover maps were generated identifying the distribution of specific land cover types, with landscape metrics employed to describe the spatial organisation of land cover patches. Random forests were used to model spatial patterns of Ochotona spp. presence, enabling the relative importance of the environmental characteristics in relation to Ochotona spp. presence to be ranked. An index of habitat aggregation was identified as the most important variable in influencing Ochotona spp. presence, with area of degraded grassland the most important land cover class variable. 71% of the variance in Ochotona spp. presence was explained, with a 90.98% accuracy rate as determined by ‘out-of-bag’ error assessment. Identification of the environmental characteristics influencing Ochotona spp. presence enables us to better understand distribution patterns of hosts implicated in the transmission of Em. The predictive mapping of this Em host enables the identification of human populations at increased risk of infection, enabling preventative strategies to be adopted. PMID:25386042
Importance of spatial autocorrelation in modeling bird distributions at a continental scale
Bahn, V.; O'Connor, R.J.; Krohn, W.B.
2006-01-01
Spatial autocorrelation in species' distributions has been recognized as inflating the probability of a type I error in hypotheses tests, causing biases in variable selection, and violating the assumption of independence of error terms in models such as correlation or regression. However, it remains unclear whether these problems occur at all spatial resolutions and extents, and under which conditions spatially explicit modeling techniques are superior. Our goal was to determine whether spatial models were superior at large extents and across many different species. In addition, we investigated the importance of purely spatial effects in distribution patterns relative to the variation that could be explained through environmental conditions. We studied distribution patterns of 108 bird species in the conterminous United States using ten years of data from the Breeding Bird Survey. We compared the performance of spatially explicit regression models with non-spatial regression models using Akaike's information criterion. In addition, we partitioned the variance in species distributions into an environmental, a pure spatial and a shared component. The spatially-explicit conditional autoregressive regression models strongly outperformed the ordinary least squares regression models. In addition, partialling out the spatial component underlying the species' distributions showed that an average of 17% of the explained variation could be attributed to purely spatial effects independent of the spatial autocorrelation induced by the underlying environmental variables. We concluded that location in the range and neighborhood play an important role in the distribution of species. Spatially explicit models are expected to yield better predictions especially for mobile species such as birds, even in coarse-grained models with a large extent. ?? Ecography.
What are the most crucial soil factors for predicting the distribution of alpine plant species?
NASA Astrophysics Data System (ADS)
Buri, A.; Pinto-Figueroa, E.; Yashiro, E.; Guisan, A.
2017-12-01
Nowadays the use of species distribution models (SDM) is common to predict in space and time the distribution of organisms living in the critical zone. The realized environmental niche concept behind the development of SDM imply that many environmental factors must be accounted for simultaneously to predict species distributions. Climatic and topographic factors are often primary included, whereas soil factors are frequently neglected, mainly due to the paucity of soil information available spatially and temporally. Furthermore, among existing studies, most included soil pH only, or few other soil parameters. In this study we aimed at identifying what are the most crucial soil factors for explaining alpine plant distributions and, among those identified, which ones further improve the predictive power of plant SDMs. To test the relative importance of the soil factors, we performed plant SDMs using as predictors 52 measured soil properties of various types such as organic/inorganic compounds, chemical/physical properties, water related variables, mineral composition or grain size distribution. We added them separately to a standard set of topo-climatic predictors (temperature, slope, solar radiation and topographic position). We used ensemble forecasting techniques combining together several predictive algorithms to model the distribution of 116 plant species over 250 sites in the Swiss Alps. We recorded the variable importance for each model and compared the quality of the models including different soil proprieties (one at a time) as predictors to models having only topo-climatic variables as predictors. Results show that 46% of the soil proprieties tested become the second most important variable, after air temperature, to explain spatial distribution of alpine plants species. Moreover, we also assessed that addition of certain soil factors, such as bulk soil water density, could improve over 80% the quality of some plant species models. We confirm that soil pH remains one of the most important soil factor for predicting plant species distributions, closely followed by water, organic and inorganic carbon related properties. Finally, we were able to extract three main categories of important soil properties for plant species distributions: grain size distribution, acidity and water in the soil.
Kozak, Anna; Gołdyn, Ryszard; Dondajewska, Renata
2015-01-01
In this paper we present the effects of environmental factors and zooplankton food pressure on phytoplankton in the restored man-made Maltański Reservoir (MR). Two methods of restoration: biomanipulation and phosphorus inactivation have been applied in the reservoir. Nine taxonomical groups of phytoplankton represented in total by 183 taxa were stated there. The richest groups in respect of taxa number were green algae, cyanobacteria and diatoms. The diatoms, cryptophytes, chrysophytes, cyanobacteria, green algae and euglenophytes dominated in terms of abundance and/or biomass. There were significant changes among environmental parameters resulting from restoration measures which influenced the phytoplankton populations in the reservoir. These measures led to a decrease of phosphorus concentration due to its chemical inactivation and enhanced zooplankton grazing as a result of planktivorous fish stocking. The aim of the study is to analyse the reaction of phytoplankton to the restoration measures and, most importantly, to determine the extent to which the qualitative and quantitative composition of phytoplankton depends on variables changing under the influence of restoration in comparison with other environmental variables. We stated that application of restoration methods did cause significant changes in phytoplankton community structure. The abundance of most phytoplankton taxa was negatively correlated with large zooplankton filter feeders, and positively with zooplankton predators and concentrations of ammonium nitrogen and partly of phosphates. However, restoration was insufficient in the case of decreasing phytoplankton abundance. The effects of restoration treatments were of less importance for the abundance of phytoplankton than parameters that were independent of the restoration. This was due to the continuous inflow of large loads of nutrients from the area of the river catchment. PMID:25906352
Salinity Drives the Virioplankton Abundance but Not Production in Tropical Coastal Lagoons.
Junger, Pedro C; Amado, André M; Paranhos, Rodolfo; Cabral, Anderson S; Jacques, Saulo M S; Farjalla, Vinicius F
2018-01-01
Viruses are the most abundant components of microbial food webs and play important ecological and biogeochemical roles in aquatic ecosystems. Virioplankton is regulated by several environmental factors, such as salinity, turbidity, and humic substances. However, most of the studies aimed to investigate virioplankton regulation were conducted in temperate systems combining a limited range of environmental variables. In this study, virus abundance and production were determined and their relation to bacterial and limnological variables was assessed in 20 neighboring shallow tropical coastal lagoons that present wide environmental gradients of turbidity (2.32-571 NTU), water color (1.82-92.49 m -1 ), dissolved organic carbon (0.71-16.7 mM), salinity (0.13-332.1‰), and chlorophyll-a (0.28 to 134.5 μg L -1 ). Virus abundance varied from 0.37 × 10 8 to 117 × 10 8 virus-like-particle (VLP) mL -1 , with the highest values observed in highly salty aquatic systems. Salinity and heterotrophic bacterial abundance were the main variables positively driving viral abundances in these lagoons. We suggest that, with increased salinity, there is a decrease in the protozoan control on bacterial populations and lower bacterial diversity (higher encounter rates with virus specific hosts), both factors positively affecting virus abundance. Virus production varied from 0.68 × 10 7 to 56.5 × 10 7 VLP mL -1 h -1 and was regulated by bacterial production and total phosphorus, but it was not directly affected by salinity. The uncoupling between virus abundance and virus production supports that the hypothesis that the lack of grazing pressure on viral and bacterial populations is an important mechanism causing virus abundance to escalate with increasing salt concentrations.
Kozak, Anna; Gołdyn, Ryszard; Dondajewska, Renata
2015-01-01
In this paper we present the effects of environmental factors and zooplankton food pressure on phytoplankton in the restored man-made Maltański Reservoir (MR). Two methods of restoration: biomanipulation and phosphorus inactivation have been applied in the reservoir. Nine taxonomical groups of phytoplankton represented in total by 183 taxa were stated there. The richest groups in respect of taxa number were green algae, cyanobacteria and diatoms. The diatoms, cryptophytes, chrysophytes, cyanobacteria, green algae and euglenophytes dominated in terms of abundance and/or biomass. There were significant changes among environmental parameters resulting from restoration measures which influenced the phytoplankton populations in the reservoir. These measures led to a decrease of phosphorus concentration due to its chemical inactivation and enhanced zooplankton grazing as a result of planktivorous fish stocking. The aim of the study is to analyse the reaction of phytoplankton to the restoration measures and, most importantly, to determine the extent to which the qualitative and quantitative composition of phytoplankton depends on variables changing under the influence of restoration in comparison with other environmental variables. We stated that application of restoration methods did cause significant changes in phytoplankton community structure. The abundance of most phytoplankton taxa was negatively correlated with large zooplankton filter feeders, and positively with zooplankton predators and concentrations of ammonium nitrogen and partly of phosphates. However, restoration was insufficient in the case of decreasing phytoplankton abundance. The effects of restoration treatments were of less importance for the abundance of phytoplankton than parameters that were independent of the restoration. This was due to the continuous inflow of large loads of nutrients from the area of the river catchment.
Complex demographic heterogeneity from anthropogenic impacts in a coastal marine predator.
Oro, Daniel; Álvarez, David; Velando, Alberto
2018-04-01
Environmental drivers, including anthropogenic impacts, affect vital rates of organisms. Nevertheless, the influence of these drivers may depend on the physical features of the habitat and how they affect life history strategies depending on individual covariates such as age and sex. Here, the long-term monitoring (1994-2014) of marked European Shags in eight colonies in two regions with different ecological features, such as foraging habitat, allowed us to test several biological hypotheses about how survival changes by age and sex in each region by means of multi-event capture-recapture modeling. Impacts included fishing practices and bycatch, invasive introduced carnivores and the severe Prestige oil spill. Adult survival was constant but, unexpectedly, it was different between sexes. This difference was opposite in each region. The impact of the oil spill on survival was important only for adults (especially for females) in one region and lasted a single year. Juvenile survival was time dependent but this variability was not synchronized between regions, suggesting a strong signal of regional environmental variability. Mortality due to bycatch was also different between sex, age and region. Interestingly the results showed that the size of the fishing fleet is not necessarily a good proxy for assessing the impact of bycatch mortality, which may be more dependent on the fishing grounds and the fishing gears employed in each season of the year. Anthropogenic impacts affected survival differently by age and sex, which was expected for a long-lived organism with sexual size dimorphism. Strikingly, these differences varied depending on the region, indicating that habitat heterogeneity is demographically important to how environmental variability (including anthropogenic impacts) and resilience influence population dynamics. © 2018 by the Ecological Society of America.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Xiaoying; Mao, Jiafu; Thornton, P.
Spatiotemporal patterns of evapotranspiration (ET) over the period from 1982 to 2008 are investigated and attributed to multiple environmental factors using the Community Land Model version 4 (CLM4). Our results show that CLM4 captures the spatial distribution and interannual variability of ET well when compared to observation-based estimates. We find that climate dominates the predicted variability in ET. Elevated atmospheric CO2 concentration also plays an important role in modulating the trend of predicted ET over most land areas, and replaces climate to function as the dominant factor controlling ET changes over the North America, South America and Asia regions. Comparedmore » to the effect of climate and CO2 concentration, the roles of other factors such as nitrogen deposition, land use change and aerosol deposition are less pronounced and regionally dependent. The aerosol deposition contribution is the third most important factor for trends of ET over Europe, while it has the smallest impact over other regions. As ET is a dominant component of the terrestrial water cycle, our results suggest that environmental factors like elevated CO2, nitrogen and aerosol depositions, and land use change, in addition to climate, could have significant impact on future projections of water resources and water cycle dynamics at global and regional scales.« less
Application of a predictive Bayesian model to environmental accounting.
Anex, R P; Englehardt, J D
2001-03-30
Environmental accounting techniques are intended to capture important environmental costs and benefits that are often overlooked in standard accounting practices. Environmental accounting methods themselves often ignore or inadequately represent large but highly uncertain environmental costs and costs conditioned by specific prior events. Use of a predictive Bayesian model is demonstrated for the assessment of such highly uncertain environmental and contingent costs. The predictive Bayesian approach presented generates probability distributions for the quantity of interest (rather than parameters thereof). A spreadsheet implementation of a previously proposed predictive Bayesian model, extended to represent contingent costs, is described and used to evaluate whether a firm should undertake an accelerated phase-out of its PCB containing transformers. Variability and uncertainty (due to lack of information) in transformer accident frequency and severity are assessed simultaneously using a combination of historical accident data, engineering model-based cost estimates, and subjective judgement. Model results are compared using several different risk measures. Use of the model for incorporation of environmental risk management into a company's overall risk management strategy is discussed.
Modeling of marginal burning state of fire spread in live chaparral shrub fuel bed
X. Zhou; S. Mahalingam; D. Weise
2005-01-01
Prescribed burning in chaparral, currently used to manage wildland fuels and reduce wildfire hazard, is often conducted under marginal burning conditions. The relative importance of the fuel and environmental variables that determine fire spread success in chaparral fuels is not quantitatively understood. Based on extensive experimental study, a two-dimensional...
USDA-ARS?s Scientific Manuscript database
Southeastern Spain, particularly the coast of Granada and Málaga, is an important region for subtropical cultivation. Orchards have been established there on the slopes of the mountainous areas in constructed terraces. The climate is characterized by heavy periodic rainfall that is variable in space...
Maria Vergara; Samuel A. Cushman; Fermin Urra; Aritz Ruiz-Gonzalez
2016-01-01
Multispecies and multiscale habitat suitability models (HSM) are important to identify the environmental variables and scales influencing habitat selection and facilitate the comparison of closely related species with different ecological requirements. Objectives This study explores the multiscale relationships of habitat suitability for the pine (Martes...
Landscape structure affects distribution of potential disease vectors (Diptera: Culicidae).
Zittra, Carina; Vitecek, Simon; Obwaller, Adelheid G; Rossiter, Heidemarie; Eigner, Barbara; Zechmeister, Thomas; Waringer, Johann; Fuehrer, Hans-Peter
2017-04-26
Vector-pathogen dynamics are controlled by fluctuations of potential vector communities, such as the Culicidae. Assessment of mosquito community diversity and, in particular, identification of environmental parameters shaping these communities is therefore of key importance for the design of adequate surveillance approaches. In this study, we assess effects of climatic parameters and habitat structure on mosquito communities in eastern Austria to deliver these highly relevant baseline data. Female mosquitoes were sampled twice a month from April to October 2014 and 2015 at 35 permanent and 23 non-permanent trapping sites using carbon dioxide-baited traps. Differences in spatial and seasonal abundance patterns of Culicidae taxa were identified using likelihood ratio tests; possible effects of environmental parameters on seasonal and spatial mosquito distribution were analysed using multivariate statistical methods. We assessed community responses to environmental parameters based on 14-day-average values that affect ontogenesis. Altogether 29,734 female mosquitoes were collected, and 21 of 42 native as well as two of four non-native mosquito species were reconfirmed in eastern Austria. Statistical analyses revealed significant differences in mosquito abundance between sampling years and provinces. Incidence and abundance patterns were found to be linked to 14-day mean sunshine duration, humidity, water-level maxima and the amount of precipitation. However, land cover classes were found to be the most important factor, effectively assigning both indigenous and non-native mosquito species to various communities, which responded differentially to environmental variables. These findings thus underline the significance of non-climatic variables for future mosquito prediction models and the necessity to consider these in mosquito surveillance programmes.
da Silva, Wilma Emanuela; Leite, Jacinara Hody Gurgel Morais; de Sousa, José Ernandes Rufino; Costa, Wirton Peixoto; da Silva, Wallace Sostene Tavares; Guilhermino, Magda Maria; Asensio, Luis Alberto Bermejo; Façanha, Débora Andréa Evangelista
2017-07-01
The goal of this study was to evaluate the daily rhythmicity of the thermoregulatory responses of Morada Nova ewes that were raised in a semiarid environment. The experiment was conducted during the dry season. Data were collected from 5:00 a.m. to 4:00 a.m.. Samples were taken over the course of 8 days, with a 1-week interval between sampling periods. During each day that the data were collected, animals were measured once an hour for 24 h in an area directly exposed to solar radiation. The environment was characterized by measuring the following variables: air temperature (TA), relative humidity (RH), Black Globe Humidity Index (BGHI), radiant heat load (RHL), and wind speed (WS). Physiological variables that were measured included rectal temperature (RT, °C), respiratory rate (RR, breaths/min), surface temperature (ST, °C), and sweating rate (SR, g m 2 h -1 ). We observed that RT, RR, and ST increased as environmental conditions became more stressful. Specifically, environmental conditions became more stressful as RHL, air temperature, and BGHI increased, while RH decreased. All physiological variables of the animals were strongly affected by the time of the day: environmental variables changed drastically between nighttime and noon. Physiological parameters increased sharply from the morning (7:00 a.m.-10:00 a.m.) until noon (11:00 a.m.-2:00 p.m.), except for sweating rate. After noon, these variables began to drop until nighttime (11:00 p.m.-6:00 am), and values of the main physiological indexes were stable during this period. The Morada Nova breed exhibited daily cyclic variations in thermoregulatory responses. Evaporative heat loss mechanisms were triggered during the most stressful times of the day. The first mechanism that animals used was panting, which was an immediate response to environmental heat stress. Cutaneous evaporation had a slower response mechanism to environmental heat stress. Homeothermy conditions were restored to the animals at approximately 5:00 p.m.; however, these findings confirm the importance of providing environmental protection during critical periods of the day, even for locally adapted breeds. These responses suggest that the use of thermal storage allowed the animals to achieve equilibrium with the environment and maintain a stable body temperature.
NASA Astrophysics Data System (ADS)
da Silva, Wilma Emanuela; Leite, Jacinara Hody Gurgel Morais; de Sousa, José Ernandes Rufino; Costa, Wirton Peixoto; da Silva, Wallace Sostene Tavares; Guilhermino, Magda Maria; Asensio, Luis Alberto Bermejo; Façanha, Débora Andréa Evangelista
2017-07-01
The goal of this study was to evaluate the daily rhythmicity of the thermoregulatory responses of Morada Nova ewes that were raised in a semiarid environment. The experiment was conducted during the dry season. Data were collected from 5:00 a.m. to 4:00 a.m.. Samples were taken over the course of 8 days, with a 1-week interval between sampling periods. During each day that the data were collected, animals were measured once an hour for 24 h in an area directly exposed to solar radiation. The environment was characterized by measuring the following variables: air temperature (TA), relative humidity (RH), Black Globe Humidity Index (BGHI), radiant heat load (RHL), and wind speed (WS). Physiological variables that were measured included rectal temperature (RT, °C), respiratory rate (RR, breaths/min), surface temperature (ST, °C), and sweating rate (SR, g m2 h-1). We observed that RT, RR, and ST increased as environmental conditions became more stressful. Specifically, environmental conditions became more stressful as RHL, air temperature, and BGHI increased, while RH decreased. All physiological variables of the animals were strongly affected by the time of the day: environmental variables changed drastically between nighttime and noon. Physiological parameters increased sharply from the morning (7:00 a.m.-10:00 a.m.) until noon (11:00 a.m.-2:00 p.m.), except for sweating rate. After noon, these variables began to drop until nighttime (11:00 p.m.-6:00 am), and values of the main physiological indexes were stable during this period. The Morada Nova breed exhibited daily cyclic variations in thermoregulatory responses. Evaporative heat loss mechanisms were triggered during the most stressful times of the day. The first mechanism that animals used was panting, which was an immediate response to environmental heat stress. Cutaneous evaporation had a slower response mechanism to environmental heat stress. Homeothermy conditions were restored to the animals at approximately 5:00 p.m.; however, these findings confirm the importance of providing environmental protection during critical periods of the day, even for locally adapted breeds. These responses suggest that the use of thermal storage allowed the animals to achieve equilibrium with the environment and maintain a stable body temperature.
Coping strategies and quality of life in caregivers of dependent elderly relatives.
Rodríguez-Pérez, Margarita; Abreu-Sánchez, Ana; Rojas-Ocaña, María Jesús; Del-Pino-Casado, Rafael
2017-04-14
Despite the importance of coping in caregiving, there are few studies on the relationship between coping and quality of life in caregivers of the frail dependent elderly. Thus, this study aims to analyze the relationship between coping strategies and quality of life dimensions in primary caregivers of dependent elderly relatives. A cross-sectional study was conducted from 86 caregivers. Predictive variables were coping strategies (problem-focused, emotion-focused, socially-supported, and dysfunctional); dependent variables were quality of life dimensions (psychological, physical, relational, and environmental); and potential confounding variables were age, gender, perceived health and burden of caregiver, and functional capacity of care receiver. Correlation coefficients were calculated and multiple linear regression analysis was performed. After controlling for potential confounders, dysfunctional coping was related to worse quality of life in the psychological dimension, while emotion-focused and socially-supported coping were related to superior psychological and environmental dimensions of quality of life. The physical and relational dimensions of quality of life were not related to coping strategies. 1) it is important to consider coping strategies in the assessment of primary caregivers of dependent elderly relatives; 2) the quality of life of caregivers is related to their coping strategies, 3) their quality of life can be worsened by avoidance-type coping, and 4) their quality of life can be improved by active emotion-focused coping and socially-supported coping.
Adaptation to climate through flowering phenology: a case study in Medicago truncatula.
Burgarella, Concetta; Chantret, Nathalie; Gay, Laurène; Prosperi, Jean-Marie; Bonhomme, Maxime; Tiffin, Peter; Young, Nevin D; Ronfort, Joelle
2016-07-01
Local climatic conditions likely constitute an important selective pressure on genes underlying important fitness-related traits such as flowering time, and in many species, flowering phenology and climatic gradients strongly covary. To test whether climate shapes the genetic variation on flowering time genes and to identify candidate flowering genes involved in the adaptation to environmental heterogeneity, we used a large Medicago truncatula core collection to examine the association between nucleotide polymorphisms at 224 candidate genes and both climate variables and flowering phenotypes. Unlike genome-wide studies, candidate gene approaches are expected to enrich for the number of meaningful trait associations because they specifically target genes that are known to affect the trait of interest. We found that flowering time mediates adaptation to climatic conditions mainly by variation at genes located upstream in the flowering pathways, close to the environmental stimuli. Variables related to the annual precipitation regime reflected selective constraints on flowering time genes better than the other variables tested (temperature, altitude, latitude or longitude). By comparing phenotype and climate associations, we identified 12 flowering genes as the most promising candidates responsible for phenological adaptation to climate. Four of these genes were located in the known flowering time QTL region on chromosome 7. However, climate and flowering associations also highlighted largely distinct gene sets, suggesting different genetic architectures for adaptation to climate and flowering onset. © 2016 John Wiley & Sons Ltd.
Sullivan, Maura E; Booth, Robert K
2011-07-01
Testate amoebae are a group of moisture-sensitive, shell-producing protozoa that have been widely used as indicators of changes in mean water-table depth within oligotrophic peatlands. However, short-term environmental variability (i.e., sub-annual) also probably influences community composition. The objective of this study was to assess the potential influence of short-term environmental variability on the composition of testate amoeba communities in Sphagnum-dominated peatlands. Testate amoebae and environmental conditions, including hourly measurements of relative humidity within the upper centimeter of the peatland surface, were examined throughout the 2008 growing season at 72 microsites within 11 peatlands of Pennsylvania and Wisconsin, USA. Relationships among testate amoeba communities, vegetation, depth to water table, pH, and an index of short-term environmental variability (EVI), were examined using nonmetric multidimensional scaling and correlation analysis. Results suggest that EVI influences testate amoeba communities, with some taxa more abundant under highly variable conditions (e.g., Arcella discoides, Difflugia pulex, and Hyalosphenia subflava) and others more abundant when environmental conditions at the peatland surface were relatively stable (e.g., Archerella flavum and Bullinularia indica). The magnitude of environmental variability experienced at the peatland surface appears to be primarily controlled by vegetation composition and density. In particular, sites with dense Sphagnum cover had lower EVI values than sites with loose-growing Sphagnum or vegetation dominated by vascular plants and/or non-Sphagnum bryophytes. Our results suggest that more environmental information may be inferred from testate amoebae than previously recognized. Knowledge of relationships between testate amoebae and short-term environmental variability should lead to more detailed and refined environmental inferences.
Seasonal dynamics of biomarkers in infaunal clam Macoma balthica from the Gulf of Riga (Baltic Sea)
NASA Astrophysics Data System (ADS)
Barda, Ieva; Purina, Ingrida; Rimsa, Elina; Balode, Maija
2014-01-01
Biomarkers are often regarded as “early warning” signals of environmental pollution; however seasonal changes are mentioned as one of the most important factor that influences the activity of biomarkers. The aim of our study was to assess the importance of seasonal variation of selected contaminant biomarkers in Macoma balthica to provide background information for further environmental surveys in the Gulf of Riga. Seasonal variation of biomarkers (acetylcholinesterase (AChE), catalase (CAT), glutathione reductase (GR) and glutathione-S-transferase (GST)) was measured in infaunal clam M. balthica from the southern part of the Gulf of Riga. The majority of biomarkers (GST, CAT and GR) showed strong seasonal variability; however only CAT and GR were found to be significantly related to environmental factors (near-bottom oxygen, salinity and temperature). Integrated biomarker response (IBR) index indicated that the most stressed condition of M. balthica is during August and May. The highest values of IBR were found near the mouth of the River Daugava, suggesting the impact of environmental pollution on the benthic animals.
Toma, Luiza; Mathijs, Erik
2007-04-01
This paper aims to identify the factors underlying farmers' propensity to participate in organic farming programmes in a Romanian rural region that confronts non-point source pollution. For this, we employ structural equation modelling with latent variables using a specific data set collected through an agri-environmental farm survey in 2001. The model includes one 'behavioural intention' latent variable ('propensity to participate in organic farming programmes') and five 'attitude' and 'socio-economic' latent variables ('socio-demographic characteristics', 'economic characteristics', 'agri-environmental information access', 'environmental risk perception' and 'general environmental concern'). The results indicate that, overall, the model has an adequate fit to the data. All loadings are statistically significant, supporting the theoretical basis for assignment of indicators for each latent variable. The significance tests for the structural model parameters show 'environmental risk perception' as the strongest determinant of farmers' propensity to participate in organic farming programmes.
Identifying Environmental Risk Factors of Cholera in a Coastal Area with Geospatial Technologies
Xu, Min; Cao, Chunxiang; Wang, Duochun; Kan, Biao
2014-01-01
Satellites contribute significantly to environmental quality and public health. Environmental factors are important indicators for the prediction of disease outbreaks. This study reveals the environmental factors associated with cholera in Zhejiang, a coastal province of China, using both Remote Sensing (RS) and Geographic information System (GIS). The analysis validated the correlation between the indirect satellite measurements of sea surface temperature (SST), sea surface height (SSH) and ocean chlorophyll concentration (OCC) and the local cholera magnitude based on a ten-year monthly data from the year 1999 to 2008. Cholera magnitude has been strongly affected by the concurrent variables of SST and SSH, while OCC has a one-month time lag effect. A cholera prediction model has been established based on the sea environmental factors. The results of hot spot analysis showed the local cholera magnitude in counties significantly associated with the estuaries and rivers. PMID:25551518
Identifying environmental risk factors of cholera in a coastal area with geospatial technologies.
Xu, Min; Cao, Chunxiang; Wang, Duochun; Kan, Biao
2014-12-29
Satellites contribute significantly to environmental quality and public health. Environmental factors are important indicators for the prediction of disease outbreaks. This study reveals the environmental factors associated with cholera in Zhejiang, a coastal province of China, using both Remote Sensing (RS) and Geographic information System (GIS). The analysis validated the correlation between the indirect satellite measurements of sea surface temperature (SST), sea surface height (SSH) and ocean chlorophyll concentration (OCC) and the local cholera magnitude based on a ten-year monthly data from the year 1999 to 2008. Cholera magnitude has been strongly affected by the concurrent variables of SST and SSH, while OCC has a one-month time lag effect. A cholera prediction model has been established based on the sea environmental factors. The results of hot spot analysis showed the local cholera magnitude in counties significantly associated with the estuaries and rivers.
Environmental Issues in Thyroid Diseases.
Ferrari, Silvia Martina; Fallahi, Poupak; Antonelli, Alessandro; Benvenga, Salvatore
2017-01-01
Environmental factors are determinant for the appearance of autoimmune thyroid diseases (AITD) in susceptible subjects. Increased iodine intake, selenium, and vitamin D deficiency, exposure to radiation, from nuclear fallout or due to medical radiation, are environmental factors increasing AITD. Cigarette smoking is associated with Graves' disease and Graves' ophthalmopathy, while it decreases the risk of hypothyroidism and thyroid autoimmunity. Viral infections are important environmental factors in the pathogenesis of AITD, too, particularly human parvovirus B19 (EVB19) and hepatitis C virus. Among the many chemical contaminants, halogenated organochlorines and pesticides variably disrupt thyroid function. Polychlorinated biphenyls and their metabolites and polybrominated diethyl ethers bind to thyroid transport proteins, such as transthyretin, displace thyroxine, and disrupt thyroid function. Among drugs, interferon- and iodine-containing drugs have been associated with AITD. Moreover intestinal dysbiosis causes autoimmune thyroiditis. To reduce the risk to populations and also in each patient, it is necessary to comprehend the association between environmental agents and thyroid dysfunction.
Penaluna, Brooke E.; Railsback, Steve F.; Dunham, Jason B.; Johnson, S.; Bilby, Richard E.; Skaugset, Arne E.
2015-01-01
The importance of multiple processes and instream factors to aquatic biota has been explored extensively, but questions remain about how local spatiotemporal variability of aquatic biota is tied to environmental regimes and the geophysical template of streams. We used an individual-based trout model to explore the relative role of the geophysical template versus environmental regimes on biomass of trout (Oncorhynchus clarkii clarkii). We parameterized the model with observed data from each of the four headwater streams (their local geophysical template and environmental regime) and then ran 12 simulations where we replaced environmental regimes (stream temperature, flow, turbidity) of a given stream with values from each neighboring stream while keeping the geophysical template fixed. We also performed single-parameter sensitivity analyses on the model results from each of the four streams. Although our modeled findings show that trout biomass is most responsive to changes in the geophysical template of streams, they also reveal that biomass is restricted by available habitat during seasonal low flow, which is a product of both the stream’s geophysical template and flow regime. Our modeled results suggest that differences in the geophysical template among streams render trout more or less sensitive to environmental change, emphasizing the importance of local fish–habitat relationships in streams.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Qichun; Zhang, Xuesong; Xu, Xingya
2016-06-01
Carbon stocks and fluxes in inland waters have been identified as important, but poorly constrained components of the global carbon cycle. In this study, we compile and analyze particulate organic carbon (POC) concentration data from 1145 U.S. Geological Survey (USGS) hydrologic stations to investigate the spatial variability and environmental controls of POC concentration. We observe substantial spatial variability in POC concentration (1.43 ± 2.56 mg C/ L, Mean ± Standard Deviation), with the Upper Mississippi River basin and the Piedmont region in the eastern U.S. having the highest POC concentration. Further, we employ generalized linear regression models to analyze themore » impacts of sediment transport and algae growth as well as twenty-one other environmental factors on the POC variability. Suspended sediment and chlorophyll-a explain 26% and 17% of the variability in POC concentration, respectively. At the national level, the twenty-one selected environmental factors combined can explain ca. 40% of the spatial variance in POC concentration. Overall, urban area and soil clay content show significant negative correlation with POC concentration, while soil water content and soil bulk density correlate positively with POC. In addition, total phosphorus concentration and dam density covariate positively with POC concentration. Furthermore, regional scale analyses reveal substantial variation in environmental controls determining POC concentration across the 18 major water resource regions in the U.S. The POC concentration and associated environmental controls also vary non-monotonically with river order. These findings indicate complex interactions among multiple factors in regulating POC production over different spatial scales and across various sections of the river networks. This complexity together with the large unexplained uncertainty highlight the need for consideration of non-linear processes that control them and developing appropriate methodologies to track the transformation and transport of carbon in these terrestrial-aquatic systems. Such scientific advancements will also benefit greatly the Earth system models that are currently deficient in representing properly this component of global carbon cycle.« less
Environmental characteristics and benthic invertebrate assemblages in Colorado mountain lakes
LaFrancois, B.M.; Carlisle, D.M.; Nydick, K.R.; Johnson, B.M.; Baron, Jill S.
2003-01-01
Twenty-two high-elevation lakes (>3000 m) in Rocky Mountain National Park and Indian Peaks Wilderness Area, Colorado, were surveyed during summer 1998 to explore relationships among benthic invertebrates, water chemistry (particularly nitrate concentrations), and other environmental variables. Water samples were collected from the deepest portion of each lake and analyzed for ions and other water chemistry parameters. Benthic invertebrates were collected from the littoral zone using both a sweep net and Hess sampler. Physical and geographical measurements were derived from maps. Relationships among benthic invertebrate assemblages and environmental variables were examined using canonical correspondence analysis, and the importance of sampling methodology and taxonomie resolution on these relationships was evaluated. Choice of sampling methodology strongly influenced the outcome of statistical analyses, whereas taxonomie resolution did not. Presence/absence of benthic invertebrate taxa among the study lakes was best explained by elevation and presence of fish. Relative abundance and density of benthic invertebrate taxa were more strongly influenced by sampling date and water chemistry. Nitrate (NO₃⁻) concentration, potentially on the rise due to regional nitrogen deposition, was unrelated to benthic invertebrate distribution regardless of sampling method or taxonomie resolution.
Zhu, Yi-feng; Dai, Mei-xia; Zhou, Xiao-hong; Lin, Xia; Mao, Shuo-qian; Yan, Xiao-jun
2015-08-01
Zooplankton samples were seasonally collected at 10 stations in thermal discharge seawaters near Guohua Power Plant in Xiangshan Bay. The abundance data from these samples were pooled and further combined with field environmental factors, then generalised dissimilarity modelling (GDM) was used to explore the effects of environmental factors on β diversity of zooplankton community. The results showed that altogether 95 species of zooplankton belonging to 14 taxa were found. In these taxa, small zooplankton with 62.6% of abundance was the main taxa, while copepods dominated in adult groups, which abundance accounted for 35.3%. According to Whittaker's definition and additive partition, a diversity accounted for 36.3% and β diversity 63.7%. Environmental factors explained 43.8% of β diversity, and geographical distance between sampling sites had no effect on β diversity. However, there were still 19.9% of β diversity remained to be explained. After GDM fitting, there were nine environmental variables affecting zooplankton β diversity and explaining 68.8% of β diversity. The variables contributing to β diversity from high to low were seasonal water temperature, dissolved oxygen, seawater temperature increment, conductivity, suspended particulate matter, salinity, transparency, water depth and redox potential, respectively. Seasonal water temperature, dissolved oxygen and seawater temperature increment were the most important factors for driving β diversity changes, and accounted for 23.9%, 13.7% and 9.7% of absolute contribution to the interpretable portion of the β diversity, respectively. When seasonal water temperature, dissolved oxygen and seawater temperature increment were below 25 °C, greater than 5 mg · L(-1) and over 1 °C, respectively, β diversity rapidly increased with the increasing variable gradients. Furthermore, other predictors had little effect on β diversity.
Lira, G A S T; Moura, A N; Vilar, M C P; Cordeiro-Araújo, M K; Bittencourt-Oliveira, M C
2014-08-01
The goal of this study was to analyse the vertical structure of the phytoplankton community at the Mundaú reservoir, located in the semi-arid region of northeastern Brazil, and to correlate it to environmental conditions over two distinct seasons, dry and rainy. Samples were collected bimonthly at eight depths in the dry and rainy season for analyses of the physical and chemical variables of the water, as well as density, abundance, dominance, species diversity index and equitability of the community. Analysis of variance (ANOVA-two way) was used to analyse the vertical and seasonal differences, and Canonical Correspondence Analysis (CCA) was used to assess associations between phytoplankton and environmental variables Cylindrospermopsis raciborskii (Woloszynska) Seenaya and Subba Raju was the only dominant species and Geitlerinema amphibium (C. Agardh) Anagnostidis, Merismopedia punctata Meyen and Synedra rumpens Kützing. Others six taxa were abundant in at least one of the samples. Distinct vertical distribution patterns were observed for the abundant taxa between depths and seasons. The cyanobacteria, with the exception of C. raciborskii, showed similar seasonal patterns, with higher densities in the dry season. The CCA showed a strong correlation between the density of the phytoplanktonic species and abiotic variables. The vertical changes in abundant taxa revealed distinct patterns regulated by the variation in the environmental factors that were directly linked to seasonality, with the success of one or more species being dependent on their life strategies and ecological needs. The present study restates the importance of environmental and seasonal factors for phytoplankton composition and distribution in a freshwater tropical reservoir through a vertical gradient.
Parker, Jennifer K.; Havird, Justin C.
2012-01-01
Isolates of the plant pathogen Xylella fastidiosa are genetically very similar, but studies on their biological traits have indicated differences in virulence and infection symptomatology. Taxonomic analyses have identified several subspecies, and phylogenetic analyses of housekeeping genes have shown broad host-based genetic differences; however, results are still inconclusive for genetic differentiation of isolates within subspecies. This study employs multilocus sequence analysis of environmentally mediated genes (MLSA-E; genes influenced by environmental factors) to investigate X. fastidiosa relationships and differentiate isolates with low genetic variability. Potential environmentally mediated genes, including host colonization and survival genes related to infection establishment, were identified a priori. The ratio of the rate of nonsynonymous substitutions to the rate of synonymous substitutions (dN/dS) was calculated to select genes that may be under increased positive selection compared to previously studied housekeeping genes. Nine genes were sequenced from 54 X. fastidiosa isolates infecting different host plants across the United States. Results of maximum likelihood (ML) and Bayesian phylogenetic (BP) analyses are in agreement with known X. fastidiosa subspecies clades but show novel within-subspecies differentiation, including geographic differentiation, and provide additional information regarding host-based isolate variation and specificity. dN/dS ratios of environmentally mediated genes, though <1 due to high sequence similarity, are significantly greater than housekeeping gene dN/dS ratios and correlate with increased sequence variability. MLSA-E can more precisely resolve relationships between closely related bacterial strains with low genetic variability, such as X. fastidiosa isolates. Discovering the genetic relationships between X. fastidiosa isolates will provide new insights into the epidemiology of populations of X. fastidiosa, allowing improved disease management in economically important crops. PMID:22194287
Parker, Jennifer K; Havird, Justin C; De La Fuente, Leonardo
2012-03-01
Isolates of the plant pathogen Xylella fastidiosa are genetically very similar, but studies on their biological traits have indicated differences in virulence and infection symptomatology. Taxonomic analyses have identified several subspecies, and phylogenetic analyses of housekeeping genes have shown broad host-based genetic differences; however, results are still inconclusive for genetic differentiation of isolates within subspecies. This study employs multilocus sequence analysis of environmentally mediated genes (MLSA-E; genes influenced by environmental factors) to investigate X. fastidiosa relationships and differentiate isolates with low genetic variability. Potential environmentally mediated genes, including host colonization and survival genes related to infection establishment, were identified a priori. The ratio of the rate of nonsynonymous substitutions to the rate of synonymous substitutions (dN/dS) was calculated to select genes that may be under increased positive selection compared to previously studied housekeeping genes. Nine genes were sequenced from 54 X. fastidiosa isolates infecting different host plants across the United States. Results of maximum likelihood (ML) and Bayesian phylogenetic (BP) analyses are in agreement with known X. fastidiosa subspecies clades but show novel within-subspecies differentiation, including geographic differentiation, and provide additional information regarding host-based isolate variation and specificity. dN/dS ratios of environmentally mediated genes, though <1 due to high sequence similarity, are significantly greater than housekeeping gene dN/dS ratios and correlate with increased sequence variability. MLSA-E can more precisely resolve relationships between closely related bacterial strains with low genetic variability, such as X. fastidiosa isolates. Discovering the genetic relationships between X. fastidiosa isolates will provide new insights into the epidemiology of populations of X. fastidiosa, allowing improved disease management in economically important crops.
Soliveres, Santiago; Maestre, Fernando T; Bowker, Matthew A; Torices, Rubén; Quero, José L; García-Gómez, Miguel; Cabrera, Omar; Cea, Alex; Coaguila, Daniel; Eldridge, David J; Espinosa, Carlos I; Hemmings, Frank; Monerris, Jorge J; Tighe, Matthew; Delgado-Baquerizo, Manuel; Escolar, Cristina; García-Palacios, Pablo; Gozalo, Beatriz; Ochoa, Victoria; Blones, Julio; Derak, Mchich; Ghiloufi, Wahida; Gutiérrez, Julio R; Hernández, Rosa M; Noumi, Zouhaier
2014-08-20
Plant-plant interactions are driven by environmental conditions, evolutionary relationships (ER) and the functional traits of the plants involved. However, studies addressing the relative importance of these drivers are rare, but crucial to improve our predictions of the effects of plant-plant interactions on plant communities and of how they respond to differing environmental conditions. To analyze the relative importance of -and interrelationships among- these factors as drivers of plant-plant interactions, we analyzed perennial plant co-occurrence at 106 dryland plant communities established across rainfall gradients in nine countries. We used structural equation modeling to disentangle the relationships between environmental conditions (aridity and soil fertility), functional traits extracted from the literature, and ER, and to assess their relative importance as drivers of the 929 pairwise plant-plant co-occurrence levels measured. Functional traits, specifically facilitated plants' height and nurse growth form, were of primary importance, and modulated the effect of the environment and ER on plant-plant interactions. Environmental conditions and ER were important mainly for those interactions involving woody and graminoid nurses, respectively. The relative importance of different plant-plant interaction drivers (ER, functional traits, and the environment) varied depending on the region considered, illustrating the difficulty of predicting the outcome of plant-plant interactions at broader spatial scales. In our global-scale study on drylands, plant-plant interactions were more strongly related to functional traits of the species involved than to the environmental variables considered. Thus, moving to a trait-based facilitation/competition approach help to predict that: 1) positive plant-plant interactions are more likely to occur for taller facilitated species in drylands, and 2) plant-plant interactions within woody-dominated ecosystems might be more sensitive to changing environmental conditions than those within grasslands. By providing insights on which species are likely to better perform beneath a given neighbour, our results will also help to succeed in restoration practices involving the use of nurse plants.
Soliveres, Santiago; Maestre, Fernando T.; Bowker, Matthew A.; Torices, Rubén; Quero, José L.; García-Gómez, Miguel; Cabrera, Omar; Cea, Alex; Coaguila, Daniel; Eldridge, David J.; Espinosa, Carlos I.; Hemmings, Frank; Monerris, Jorge J.; Tighe, Matthew; Delgado-Baquerizo, Manuel; Escolar, Cristina; García-Palacios, Pablo; Gozalo, Beatriz; Ochoa, Victoria; Blones, Julio; Derak, Mchich; Ghiloufi, Wahida; Gutiérrez, Julio R.; Hernández, Rosa M.; Noumi, Zouhaier
2015-01-01
Plant-plant interactions are driven by environmental conditions, evolutionary relationships (ER) and the functional traits of the plants involved. However, studies addressing the relative importance of these drivers are rare, but crucial to improve our predictions of the effects of plant-plant interactions on plant communities and of how they respond to differing environmental conditions. To analyze the relative importance of –and interrelationships among– these factors as drivers of plant-plant interactions, we analyzed perennial plant co-occurrence at 106 dryland plant communities established across rainfall gradients in nine countries. We used structural equation modeling to disentangle the relationships between environmental conditions (aridity and soil fertility), functional traits extracted from the literature, and ER, and to assess their relative importance as drivers of the 929 pairwise plant-plant co-occurrence levels measured. Functional traits, specifically facilitated plants’ height and nurse growth form, were of primary importance, and modulated the effect of the environment and ER on plant-plant interactions. Environmental conditions and ER were important mainly for those interactions involving woody and graminoid nurses, respectively. The relative importance of different plant-plant interaction drivers (ER, functional traits, and the environment) varied depending on the region considered, illustrating the difficulty of predicting the outcome of plant-plant interactions at broader spatial scales. In our global-scale study on drylands, plant-plant interactions were more strongly related to functional traits of the species involved than to the environmental variables considered. Thus, moving to a trait-based facilitation/competition approach help to predict that: 1) positive plant-plant interactions are more likely to occur for taller facilitated species in drylands, and 2) plant-plant interactions within woody-dominated ecosystems might be more sensitive to changing environmental conditions than those within grasslands. By providing insights on which species are likely to better perform beneath a given neighbour, our results will also help to succeed in restoration practices involving the use of nurse plants. PMID:25914604
Santos, Xavier; Felicísimo, Ángel M.
2016-01-01
Ecological Niche Models (ENMs) are widely used to describe how environmental factors influence species distribution. Modelling at a local scale, compared to a large scale within a high environmental gradient, can improve our understanding of ecological species niches. The main goal of this study is to assess and compare the contribution of environmental variables to amphibian and reptile ENMs in two Spanish national parks located in contrasting biogeographic regions, i.e., the Mediterranean and the Atlantic area. The ENMs were built with maximum entropy modelling using 11 environmental variables in each territory. The contributions of these variables to the models were analysed and classified using various statistical procedures (Mann–Whitney U tests, Principal Components Analysis and General Linear Models). Distance to the hydrological network was consistently the most relevant variable for both parks and taxonomic classes. Topographic variables (i.e., slope and altitude) were the second most predictive variables, followed by climatic variables. Differences in variable contribution were observed between parks and taxonomic classes. Variables related to water availability had the larger contribution to the models in the Mediterranean park, while topography variables were decisive in the Atlantic park. Specific response curves to environmental variables were in accordance with the biogeographic affinity of species (Mediterranean and non-Mediterranean species) and taxonomy (amphibians and reptiles). Interestingly, these results were observed for species located in both parks, particularly those situated at their range limits. Our findings show that ecological niche models built at local scale reveal differences in habitat preferences within a wide environmental gradient. Therefore, modelling at local scales rather than assuming large-scale models could be preferable for the establishment of conservation strategies for herptile species in natural parks. PMID:27761304
Food concerns and support for environmental food policies and purchasing.
Worsley, Anthony; Wang, Wei C; Burton, Melissa
2015-08-01
Consumer support for pro environmental food policies and food purchasing are important for the adoption of successful environmental policies. This paper examines consumers' views of food policy options as their predisposition to purchase pro environmental foods along with their likely demographic, educational and cognitive antecedents including food and environmental concerns and universalism values (relating to care for others and the environment). An online survey to assess these constructs was conducted among 2204 Australian adults in November 2011. The findings showed strong levels of support for both environmental food policies (50%-78% support) and pro environmental food purchasing (51%-69% intending to purchase pro environmental foods). Confirmatory factor analysis and structural equation modelling showed that different cognitive mediators exist along pathways between demographics and the two outcome variables. Support for food policy was positively related to food and environment concerns (std. Beta = 0.25), universalism (0.41), perceived control (0.07), and regulatory issues (0.64 but negatively with food security issues (-0.37). Environment purchasing intentions were positively linked to food and nutrition concerns (0.13), food and environment concerns (0.24), food safety concerns (0.19), food and animal welfare concerns (0.16), universalism (0.25), female gender (0.05), education (0.04), and perceived influence over the food system (0.17). In addition, health study in years 11 and 12 was positively related to the beginning of both of these pathways (0.07 for each). The results are discussed in relation to the opportunities that communications based on the mediating variables offer for the promotion of environmental food policies and purchasing. Copyright © 2015 Elsevier Ltd. All rights reserved.
Spatial patterns of development drive water use
Sanchez, G.M.; Smith, J.W.; Terando, Adam J.; Sun, G.; Meentemeyer, R.K.
2018-01-01
Water availability is becoming more uncertain as human populations grow, cities expand into rural regions and the climate changes. In this study, we examine the functional relationship between water use and the spatial patterns of developed land across the rapidly growing region of the southeastern United States. We quantified the spatial pattern of developed land within census tract boundaries, including multiple metrics of density and configuration. Through non‐spatial and spatial regression approaches we examined relationships and spatial dependencies between the spatial pattern metrics, socio‐economic and environmental variables and two water use variables: a) domestic water use, and b) total development‐related water use (a combination of public supply, domestic self‐supply and industrial self‐supply). Metrics describing the spatial patterns of development had the highest measure of relative importance (accounting for 53% of model's explanatory power), explaining significantly more variance in water use compared to socio‐economic or environmental variables commonly used to estimate water use. Integrating metrics characterizing the spatial pattern of development into water use models is likely to increase their utility and could facilitate water‐efficient land use planning.
Spatial Patterns of Development Drive Water Use
NASA Astrophysics Data System (ADS)
Sanchez, G. M.; Smith, J. W.; Terando, A.; Sun, G.; Meentemeyer, R. K.
2018-03-01
Water availability is becoming more uncertain as human populations grow, cities expand into rural regions and the climate changes. In this study, we examine the functional relationship between water use and the spatial patterns of developed land across the rapidly growing region of the southeastern United States. We quantified the spatial pattern of developed land within census tract boundaries, including multiple metrics of density and configuration. Through non-spatial and spatial regression approaches we examined relationships and spatial dependencies between the spatial pattern metrics, socio-economic and environmental variables and two water use variables: a) domestic water use, and b) total development-related water use (a combination of public supply, domestic self-supply and industrial self-supply). Metrics describing the spatial patterns of development had the highest measure of relative importance (accounting for 53% of model's explanatory power), explaining significantly more variance in water use compared to socio-economic or environmental variables commonly used to estimate water use. Integrating metrics characterizing the spatial pattern of development into water use models is likely to increase their utility and could facilitate water-efficient land use planning.
Distance and environmental difference in alpine plant communities
Malanson, George P.; Zimmerman, Dale L.; Fagre, Daniel B.
2017-01-01
Differences in plant communities are a response to the abiotic environment, species interactions, and dispersal. The role of geographic distance relative to the abiotic environment is explored for alpine tundra vegetation from 319 plots of four regions along the Rocky Mountain cordillera in the USA. The site by species data were ordinated using nonmetric multidimensional scaling to produce dependent variables for use in best-subsets regression. For independent variables, observations of local topography and microtopography were used as environmental indicators. Two methods of including distance in studies of vegetation and environment are used and contrasted. The relative importance of geographic distance in accounting for the pattern of alpine tundra similarity indicates that location is a factor in plant community composition. Mantel tests provide direct correlations between difference and distance but have known weaknesses. Moran spatial eigenvectors used in regression based approaches have greater geographic specificity, but require another step, ordination, in creating a vegetation variable. While the spatial eigenvectors are generally preferable, where species–environment relations are weak, as seems to be the case for the alpine sites studied here, the fewer abstractions of the Mantel test may be useful.
Evaluation of Macroinvertebrate Data Based on Autoecological Information
NASA Astrophysics Data System (ADS)
Juhász, I.
2016-12-01
Various data (biological, chemical, hydrological and morphological) have been gathered within the frame of the monitoring of the Water Framework Directive from 2007 in Hungary. This data only used a status assessment of certain water bodies in Hungary. The macroinvertebrates indicate many environmental factors well; therefore, they are very useful in detecting changes in the status of an environment. The main aim in this research was to investigate changes in environmental variables and decide how these variables cause big changes in the macroinvertebrate fauna. The macroinvertebrate data was processed using the ASTERICS 4.0.4 program. The program calculated some important metrics (i.e., microhabitat distributions, longitudinal zonation, functional feeding guilds, etc.). These metrics were compared with the chemical and hydrological data. The main conclusion is that if we have enough of a frequency and quality of macroinvertebrate data, we can understand changes in the environment of an ecosystem.
Emergency strategy optimization for the environmental control system in manned spacecraft
NASA Astrophysics Data System (ADS)
Li, Guoxiang; Pang, Liping; Liu, Meng; Fang, Yufeng; Zhang, Helin
2018-02-01
It is very important for a manned environmental control system (ECS) to be able to reconfigure its operation strategy in emergency conditions. In this article, a multi-objective optimization is established to design the optimal emergency strategy for an ECS in an insufficient power supply condition. The maximum ECS lifetime and the minimum power consumption are chosen as the optimization objectives. Some adjustable key variables are chosen as the optimization variables, which finally represent the reconfigured emergency strategy. The non-dominated sorting genetic algorithm-II is adopted to solve this multi-objective optimization problem. Optimization processes are conducted at four different carbon dioxide partial pressure control levels. The study results show that the Pareto-optimal frontiers obtained from this multi-objective optimization can represent the relationship between the lifetime and the power consumption of the ECS. Hence, the preferred emergency operation strategy can be recommended for situations when there is suddenly insufficient power.
Dahlin, Kyla M; Asner, Gregory P; Field, Christopher B
2012-01-01
Aboveground biomass (AGB) reflects multiple and often undetermined ecological and land-use processes, yet detailed landscape-level studies of AGB are uncommon due to the difficulty in making consistent measurements at ecologically relevant scales. Working in a protected mediterranean-type landscape (Jasper Ridge Biological Preserve, California, USA), we combined field measurements with remotely sensed data from the Carnegie Airborne Observatory's light detection and ranging (lidar) system to create a detailed AGB map. We then developed a predictive model using a maximum of 56 explanatory variables derived from geologic and historic-ownership maps, a digital elevation model, and geographic coordinates to evaluate possible controls over currently observed AGB patterns. We tested both ordinary least-squares regression (OLS) and autoregressive approaches. OLS explained 44% of the variation in AGB, and simultaneous autoregression with a 100-m neighborhood improved the fit to an r2 = 0.72, while reducing the number of significant predictor variables from 27 variables in the OLS model to 11 variables in the autoregressive model. We also compared the results from these approaches to a more typical field-derived data set; we randomly sampled 5% of the data 1000 times and used the same OLS approach each time. Environmental filters including incident solar radiation, substrate type, and topographic position were significant predictors of AGB in all models. Past ownership was a minor but significant predictor, despite the long history of conservation at the site. The weak predictive power of these environmental variables, and the significant improvement when spatial autocorrelation was incorporated, highlight the importance of land-use history, disturbance regime, and population dynamics as controllers of AGB.
Fernández-Chacón, Albert; Genovart, Meritxell; Álvarez, David; Cano, José M; Ojanguren, Alfredo F; Rodriguez-Muñoz, Rolando; Nicieza, Alfredo G
2015-06-01
In organisms such as fish, where body size is considered an important state variable for the study of their population dynamics, size-specific growth and survival rates can be influenced by local variation in both biotic and abiotic factors, but few studies have evaluated the complex relationships between environmental variability and size-dependent processes. We analysed a 6-year capture-recapture dataset of brown trout (Salmo trutta) collected at 3 neighbouring but heterogeneous mountain streams in northern Spain with the aim of investigating the factors shaping the dynamics of local populations. The influence of body size and water temperature on survival and individual growth was assessed under a multi-state modelling framework, an extension of classical capture-recapture models that considers the state (i.e. body size) of the individual in each capture occasion and allows us to obtain state-specific demographic rates and link them to continuous environmental variables. Individual survival and growth patterns varied over space and time, and evidence of size-dependent survival was found in all but the smallest stream. At this stream, the probability of reaching larger sizes was lower compared to the other wider and deeper streams. Water temperature variables performed better in the modelling of the highest-altitude population, explaining over a 99 % of the variability in maturation transitions and survival of large fish. The relationships between body size, temperature and fitness components found in this study highlight the utility of multi-state approaches to investigate small-scale demographic processes in heterogeneous environments, and to provide reliable ecological knowledge for management purposes.
de la Paz Sanchez, Maria; Aceves-García, Pamela; Petrone, Emilio; Steckenborn, Stefan; Vega-León, Rosario; Álvarez-Buylla, Elena R; Garay-Arroyo, Adriana; García-Ponce, Berenice
2015-11-01
Current advances indicate that epigenetic mechanisms play important roles in the regulatory networks involved in plant developmental responses to environmental conditions. Hence, understanding the role of such components becomes crucial to understanding the mechanisms underlying the plasticity and variability of plant traits, and thus the ecology and evolution of plant development. We now know that important components of phenotypic variation may result from heritable and reversible epigenetic mechanisms without genetic alterations. The epigenetic factors Polycomb group (PcG) and Trithorax group (TrxG) are involved in developmental processes that respond to environmental signals, playing important roles in plant plasticity. In this review, we discuss current knowledge of TrxG and PcG functions in different developmental processes in response to internal and environmental cues and we also integrate the emerging evidence concerning their function in plant plasticity. Many such plastic responses rely on meristematic cell behavior, including stem cell niche maintenance, cellular reprogramming, flowering and dormancy as well as stress memory. This information will help to determine how to integrate the role of epigenetic regulation into models of gene regulatory networks, which have mostly included transcriptional interactions underlying various aspects of plant development and its plastic response to environmental conditions. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
ERIC Educational Resources Information Center
Sarikaya, Rabia; Saraç, Esra
2018-01-01
In this study, the attitudes of the pre-service teachers towards environmental issues are analysed by such variables as gender, the department of education, year, department, taking or not taking environmental education course, participating in any environmental activity, being a member of any environmental organization, and the longest duration…
Shiokawa, Yuka; Date, Yasuhiro; Kikuchi, Jun
2018-02-21
Computer-based technological innovation provides advancements in sophisticated and diverse analytical instruments, enabling massive amounts of data collection with relative ease. This is accompanied by a fast-growing demand for technological progress in data mining methods for analysis of big data derived from chemical and biological systems. From this perspective, use of a general "linear" multivariate analysis alone limits interpretations due to "non-linear" variations in metabolic data from living organisms. Here we describe a kernel principal component analysis (KPCA)-incorporated analytical approach for extracting useful information from metabolic profiling data. To overcome the limitation of important variable (metabolite) determinations, we incorporated a random forest conditional variable importance measure into our KPCA-based analytical approach to demonstrate the relative importance of metabolites. Using a market basket analysis, hippurate, the most important variable detected in the importance measure, was associated with high levels of some vitamins and minerals present in foods eaten the previous day, suggesting a relationship between increased hippurate and intake of a wide variety of vegetables and fruits. Therefore, the KPCA-incorporated analytical approach described herein enabled us to capture input-output responses, and should be useful not only for metabolic profiling but also for profiling in other areas of biological and environmental systems.
Climatic extremes improve predictions of spatial patterns of tree species
Zimmermann, N.E.; Yoccoz, N.G.; Edwards, T.C.; Meier, E.S.; Thuiller, W.; Guisan, Antoine; Schmatz, D.R.; Pearman, P.B.
2009-01-01
Understanding niche evolution, dynamics, and the response of species to climate change requires knowledge of the determinants of the environmental niche and species range limits. Mean values of climatic variables are often used in such analyses. In contrast, the increasing frequency of climate extremes suggests the importance of understanding their additional influence on range limits. Here, we assess how measures representing climate extremes (i.e., interannual variability in climate parameters) explain and predict spatial patterns of 11 tree species in Switzerland. We find clear, although comparably small, improvement (+20% in adjusted D2, +8% and +3% in cross-validated True Skill Statistic and area under the receiver operating characteristics curve values) in models that use measures of extremes in addition to means. The primary effect of including information on climate extremes is a correction of local overprediction and underprediction. Our results demonstrate that measures of climate extremes are important for understanding the climatic limits of tree species and assessing species niche characteristics. The inclusion of climate variability likely will improve models of species range limits under future conditions, where changes in mean climate and increased variability are expected.
Broad-scale adaptive genetic variation in alpine plants is driven by temperature and precipitation
MANEL, STÉPHANIE; GUGERLI, FELIX; THUILLER, WILFRIED; ALVAREZ, NADIR; LEGENDRE, PIERRE; HOLDEREGGER, ROLF; GIELLY, LUDOVIC; TABERLET, PIERRE
2014-01-01
Identifying adaptive genetic variation is a challenging task, in particular in non-model species for which genomic information is still limited or absent. Here, we studied distribution patterns of amplified fragment length polymorphisms (AFLPs) in response to environmental variation, in 13 alpine plant species consistently sampled across the entire European Alps. Multiple linear regressions were performed between AFLP allele frequencies per site as dependent variables and two categories of independent variables, namely Moran’s eigenvector map MEM variables (to account for spatial and unaccounted environmental variation, and historical demographic processes) and environmental variables. These associations allowed the identification of 153 loci of ecological relevance. Univariate regressions between allele frequency and each environmental factor further showed that loci of ecological relevance were mainly correlated with MEM variables. We found that precipitation and temperature were the best environmental predictors, whereas topographic factors were rarely involved in environmental associations. Climatic factors, subject to rapid variation as a result of the current global warming, are known to strongly influence the fate of alpine plants. Our study shows, for the first time for a large number of species, that the same environmental variables are drivers of plant adaptation at the scale of a whole biome, here the European Alps. PMID:22680783
Environmental Monitoring of Endemic Cholera
NASA Astrophysics Data System (ADS)
ElNemr, W.; Jutla, A. S.; Constantin de Magny, G.; Hasan, N. A.; Islam, M.; Sack, R.; Huq, A.; Hashem, F.; Colwell, R.
2012-12-01
Cholera remains a major public health threat. Since Vibrio cholerae, the causative agent of the disease, is autochthonous to riverine, estuarine, and coastal waters, it is unlikely the bacteria can be eradicated from its natural habitat. Prediction of disease, in conjunction with preventive vaccination can reduce the prevalence rate of a disease. Understanding the influence of environmental parameters on growth and proliferation of bacteria is an essential first step in developing prediction methods for outbreaks. Large scale geophysical variables, such as SST and coastal chlorophyll, are often associated with conditions favoring growth of V. cholerae. However, local environmental factors, meaning biological activity in ponds from where the bulk of populations in endemic regions derive water for daily usage, are either neglected or oversimplified. Using data collected from several sites in two geographically distinct locations in South Asia, we have identified critical local environmental factors associated with cholera outbreak. Of 18 environmental variables monitored for water sources in Mathbaria (a coastal site near the Bay of Bengal) and Bakergonj (an inland site) of Bangladesh, water depth and chlorophyll were found to be important factors associated with initiation of cholera outbreaks. Cholera in coastal regions appears to be related to intrusion. However, monsoonal flooding creates conditions for cholera epidemics in inland regions. This may be one of the first attempts to relate in-situ environmental observations with cholera. We anticipate that it will be useful for further development of prediction models in the resource constrained regions.
Hupp, Jerry; Brubaker, Michael; Wilkinson, Kira; Williamson, Jennifer
2015-01-01
Wild berries are a valued traditional food in Alaska. Phytochemicals in wild berries may contribute to the prevention of vascular disease, cancer and cognitive decline, making berry consumption important to community health in rural areas. Little was known regarding which species of berries were important to Alaskan communities, the number of species typically picked in communities and whether recent environmental change has affected berry abundance or quality. To identify species of wild berries that were consumed by people in different ecological regions of Alaska and to determine if perceived berry abundance was changing for some species or in some regions. We asked tribal environmental managers throughout Alaska for their views on which among 12 types of wild berries were important to their communities and whether berry harvests over the past decade were different than in previous years. We received responses from 96 individuals in 73 communities. Berries that were considered very important to communities differed among ecological regions of Alaska. Low-bush blueberry (Vaccinium uliginosum and V. caespitosum), cloudberry (Rubus chamaemorus) and salmonberry (Rubus spectabilis) were most frequently identified as very important berries for communities in the boreal, polar and maritime ecoregions, respectively. For 7 of the 12 berries on the survey, a majority of respondents indicated that in the past decade abundance had either declined or become more variable. Our study is an example of how environmental managers and participants in local observer networks can report on the status of wild resources in rural Alaska. Their observations suggest that there have been changes in the productivity of some wild berries in the past decade, resulting in greater uncertainty among communities regarding the security of berry harvests. Monitoring and experimental studies are needed to determine how environmental change may affect berry abundance.
Rapid effects of estrogens on behavior: environmental modulation and molecular mechanisms.
Laredo, Sarah A; Villalon Landeros, Rosalina; Trainor, Brian C
2014-10-01
Estradiol can modulate neural activity and behavior via both genomic and nongenomic mechanisms. Environmental cues have a major impact on the relative importance of these signaling pathways with significant consequences for behavior. First we consider how photoperiod modulates nongenomic estrogen signaling on behavior. Intriguingly, short days permit rapid effects of estrogens on aggression in both rodents and song sparrows. This highlights the importance of considering photoperiod as a variable in laboratory research. Next we review evidence for rapid effects of estradiol on ecologically-relevant behaviors including aggression, copulation, communication, and learning. We also address the impact of endocrine disruptors on estrogen signaling, such as those found in corncob bedding used in rodent research. Finally, we examine the biochemical mechanisms that may mediate rapid estrogen action on behavior in males and females. A common theme across these topics is that the effects of estrogens on social behaviors vary across different environmental conditions. Copyright © 2014 Elsevier Inc. All rights reserved.
Yang, Jing; Tan, Hua; Huang, Shanqian; Cui, Yujun; Dong, Lu; Ma, Chaofeng; Ma, Changan; Zhou, Sen; Wu, Xiaoxu; Zhang, Yanyun; Wang, Jingjun; Yang, Ruifu; Stenseth, Nils Chr.; Xu, Bing
2017-01-01
Zoonoses are increasingly recognized as an important burden on global public health in the 21st century. High-resolution, long-term field studies are critical for assessing both the baseline and future risk scenarios in a world of rapid changes. We have used a three-decade-long field study on hantavirus, a rodent-borne zoonotic pathogen distributed worldwide, coupled with epidemiological data from an endemic area of China, and show that the shift in the ecological dynamics of Hantaan virus was closely linked to environmental fluctuations at the human-wildlife interface. We reveal that environmental forcing, especially rainfall and resource availability, exert important cascading effects on intra-annual variability in the wildlife reservoir dynamics, leading to epidemics that shift between stable and chaotic regimes. Our models demonstrate that bimodal seasonal epidemics result from a powerful seasonality in transmission, generated from interlocking cycles of agricultural phenology and rodent behavior driven by the rainy seasons. PMID:28141833
Chávez-Galarza, Julio; Henriques, Dora; Johnston, J Spencer; Azevedo, João C; Patton, John C; Muñoz, Irene; De la Rúa, Pilar; Pinto, M Alice
2013-12-01
Understanding the genetic mechanisms of adaptive population divergence is one of the most fundamental endeavours in evolutionary biology and is becoming increasingly important as it will allow predictions about how organisms will respond to global environmental crisis. This is particularly important for the honey bee, a species of unquestionable ecological and economical importance that has been exposed to increasing human-mediated selection pressures. Here, we conducted a single nucleotide polymorphism (SNP)-based genome scan in honey bees collected across an environmental gradient in Iberia and used four FST -based outlier tests to identify genomic regions exhibiting signatures of selection. Additionally, we analysed associations between genetic and environmental data for the identification of factors that might be correlated or act as selective pressures. With these approaches, 4.4% (17 of 383) of outlier loci were cross-validated by four FST -based methods, and 8.9% (34 of 383) were cross-validated by at least three methods. Of the 34 outliers, 15 were found to be strongly associated with one or more environmental variables. Further support for selection, provided by functional genomic information, was particularly compelling for SNP outliers mapped to different genes putatively involved in the same function such as vision, xenobiotic detoxification and innate immune response. This study enabled a more rigorous consideration of selection as the underlying cause of diversity patterns in Iberian honey bees, representing an important first step towards the identification of polymorphisms implicated in local adaptation and possibly in response to recent human-mediated environmental changes. © 2013 John Wiley & Sons Ltd.
Maria C. Mateo Sanchez; Samuel A. Cushman; Santiago Saura
2013-01-01
Animals select habitat resources at multiple spatial scales. Thus, explicit attention to scale dependency in species-habitat relationships is critical to understand the habitat suitability patterns as perceived by organisms in complex landscapes. Identification of the scales at which particular environmental variables influence habitat selection may be as important as...
Analysis of soy flour/phenol-formaldehyde adhesives for bonding wood
Linda Lorenz; Charles R. Frihart; James M. Wescott
2005-01-01
The desire to make more environmentally friendly and lower-cost bonded wood products has led to an interest in replacing some phenol and formaldehyde in wood adhe- sives with soybean flour. It is important to develop tests that relate resin production variables to resin properties before and after wood bonding. The protein needs to be denatured, with minimal hydrolysis...
Adam Wolf; Kanat Akshalov; Nicanor Saliendra; Douglas A. Johnson; Emilio A. Laca
2006-01-01
Canopy fluxes of CO2 and energy can be modeled with high fidelity using a small number of environmental variables and ecosystem parameters. Although these ecosystem parameters are critically important for modeling canopy fluxes, they typically are not measured with the same intensity as ecosystem fluxes. We developed an algorithm to estimate leaf...
DeRuiter, Stacy L; Hansen, Michael; Koopman, Heather N; Westgate, Andrew J; Tyack, Peter L; Madsen, Peter T
2010-01-01
Estimating the range at which harbor porpoises can detect prey items and environmental objects is integral to understanding their biosonar. Understanding the ranges at which they can use echolocation to detect and avoid obstacles is particularly important for strategies to reduce bycatch. Transmission loss (TL) during acoustic propagation is an important determinant of those detection ranges, and it also influences animal detection functions used in passive acoustic monitoring. However, common assumptions regarding TL have rarely been tested. Here, TL of synthetic porpoise clicks was measured in porpoise habitats in Canada and Denmark, and field data were compared with spherical spreading law and ray-trace (Bellhop) model predictions. Both models matched mean observations quite well in most cases, indicating that a spherical spreading law can usually provide an accurate first-order estimate of TL for porpoise sounds in porpoise habitat. However, TL varied significantly (+/-10 dB) between sites and over time in response to variability in seafloor characteristics, sound-speed profiles, and other short-timescale environmental fluctuations. Such variability should be taken into account in estimates of the ranges at which porpoises can communicate acoustically, detect echolocation targets, and be detected via passive acoustic monitoring.
Identification of environmental covariates of West Nile virus vector mosquito population abundance.
Trawinski, Patricia R; Mackay, D Scott
2010-06-01
The rapid spread of West Nile virus (WNv) in North America is a major public health concern. Culex pipiens-restuans is the principle mosquito vector of WNv in the northeastern United States while Aedes vexans is an important bridge vector of the virus in this region. Vector mosquito abundance is directly dependent on physical environmental factors that provide mosquito habitats. The objective of this research is to determine landscape elements that explain the population abundance and distribution of WNv vector mosquitoes using stepwise linear regression. We developed a novel approach for examining a large set of landscape variables based on a land use and land cover classification by selecting variables in stages to minimize multicollinearity. We also investigated the distance at which landscape elements influence abundance of vector populations using buffer distances of 200, 400, and 1000 m. Results show landscape effects have a significant impact on Cx. pipiens-estuans population distribution while the effects of landscape features are less important for prediction of Ae. vexans population distributions. Cx. pipiens-restuans population abundance is positively correlated with human population density, housing unit density, and urban land use and land cover classes and negatively correlated with age of dwellings and amount of forested land.
Distribution, abundance, and diversity of stream fishes under variable environmental conditions
Christopher M. Taylor; Thomas L. Holder; Richard A. Fiorillo; Lance R. Williams; R. Brent Thomas; Melvin L. Warren
2006-01-01
The effects of stream size and flow regime on spatial and temporal variability of stream fish distribution, abundance, and diversity patterns were investigated. Assemblage variability and species richness were each significantly associated with a complex environmental gradient contrasting smaller, hydrologically variable stream localities with larger localities...
Liang, Shih-Hsiung; Walther, Bruno Andreas; Shieh, Bao-Sen
2017-01-01
Biological invasions have become a major threat to biodiversity, and identifying determinants underlying success at different stages of the invasion process is essential for both prevention management and testing ecological theories. To investigate variables associated with different stages of the invasion process in a local region such as Taiwan, potential problems using traditional parametric analyses include too many variables of different data types (nominal, ordinal, and interval) and a relatively small data set with too many missing values. We therefore used five decision tree models instead and compared their performance. Our dataset contains 283 exotic bird species which were transported to Taiwan; of these 283 species, 95 species escaped to the field successfully (introduction success); of these 95 introduced species, 36 species reproduced in the field of Taiwan successfully (establishment success). For each species, we collected 22 variables associated with human selectivity and species traits which may determine success during the introduction stage and establishment stage. For each decision tree model, we performed three variable treatments: (I) including all 22 variables, (II) excluding nominal variables, and (III) excluding nominal variables and replacing ordinal values with binary ones. Five performance measures were used to compare models, namely, area under the receiver operating characteristic curve (AUROC), specificity, precision, recall, and accuracy. The gradient boosting models performed best overall among the five decision tree models for both introduction and establishment success and across variable treatments. The most important variables for predicting introduction success were the bird family, the number of invaded countries, and variables associated with environmental adaptation, whereas the most important variables for predicting establishment success were the number of invaded countries and variables associated with reproduction. Our final optimal models achieved relatively high performance values, and we discuss differences in performance with regard to sample size and variable treatments. Our results showed that, for both the establishment model and introduction model, the number of invaded countries was the most important or second most important determinant, respectively. Therefore, we suggest that future success for introduction and establishment of exotic birds may be gauged by simply looking at previous success in invading other countries. Finally, we found that species traits related to reproduction were more important in establishment models than in introduction models; importantly, these determinants were not averaged but either minimum or maximum values of species traits. Therefore, we suggest that in addition to averaged values, reproductive potential represented by minimum and maximum values of species traits should be considered in invasion studies.
Liang, Shih-Hsiung; Walther, Bruno Andreas
2017-01-01
Background Biological invasions have become a major threat to biodiversity, and identifying determinants underlying success at different stages of the invasion process is essential for both prevention management and testing ecological theories. To investigate variables associated with different stages of the invasion process in a local region such as Taiwan, potential problems using traditional parametric analyses include too many variables of different data types (nominal, ordinal, and interval) and a relatively small data set with too many missing values. Methods We therefore used five decision tree models instead and compared their performance. Our dataset contains 283 exotic bird species which were transported to Taiwan; of these 283 species, 95 species escaped to the field successfully (introduction success); of these 95 introduced species, 36 species reproduced in the field of Taiwan successfully (establishment success). For each species, we collected 22 variables associated with human selectivity and species traits which may determine success during the introduction stage and establishment stage. For each decision tree model, we performed three variable treatments: (I) including all 22 variables, (II) excluding nominal variables, and (III) excluding nominal variables and replacing ordinal values with binary ones. Five performance measures were used to compare models, namely, area under the receiver operating characteristic curve (AUROC), specificity, precision, recall, and accuracy. Results The gradient boosting models performed best overall among the five decision tree models for both introduction and establishment success and across variable treatments. The most important variables for predicting introduction success were the bird family, the number of invaded countries, and variables associated with environmental adaptation, whereas the most important variables for predicting establishment success were the number of invaded countries and variables associated with reproduction. Discussion Our final optimal models achieved relatively high performance values, and we discuss differences in performance with regard to sample size and variable treatments. Our results showed that, for both the establishment model and introduction model, the number of invaded countries was the most important or second most important determinant, respectively. Therefore, we suggest that future success for introduction and establishment of exotic birds may be gauged by simply looking at previous success in invading other countries. Finally, we found that species traits related to reproduction were more important in establishment models than in introduction models; importantly, these determinants were not averaged but either minimum or maximum values of species traits. Therefore, we suggest that in addition to averaged values, reproductive potential represented by minimum and maximum values of species traits should be considered in invasion studies. PMID:28316893
NASA Astrophysics Data System (ADS)
Bacheler, Nathan M.; Ciannelli, Lorenzo; Bailey, Kevin M.; Bartolino, Valerio
2012-06-01
Environmental variability is increasingly recognized as a primary determinant of year-class strength of marine fishes by directly or indirectly influencing egg and larval development, growth, and survival. Here we examined the role of annual water temperature variability in determining when and where walleye pollock (Theragra chalcogramma) spawn in the eastern Bering Sea. Walleye pollock spawning was examined using both long-term ichthyoplankton data (N=19 years), as well as with historical spatially explicit, foreign-reported, commercial catch data occurring during the primary walleye pollock spawning season (February-May) each year (N=22 years in total). We constructed variable-coefficient generalized additive models (GAMs) to relate the spatially explicit egg or adult catch-per-unit-effort (CPUE) to predictor variables including spawning stock biomass, season, position, and water temperature. The adjusted R2 value was 63.1% for the egg CPUE model and 35.5% for the adult CPUE model. Both egg and adult GAMs suggest that spawning progresses seasonally from Bogoslof Island in February and March to Outer Domain waters between the Pribilof and Unimak Islands by May. Most importantly, walleye pollock egg and adult CPUE was predicted to generally increase throughout the study area as mean annual water temperature increased. These results suggest low interannual variability in the spatial and temporal dynamics of walleye pollock spawning regardless of changes in environmental conditions, at least at the spatial scale examined in this study and within the time frame of decades.
Belcher, C.N.; Jennings, Cecil A.
2010-01-01
We examined the affects of selected water quality variables on the presence of subadult sharks in six of nine Georgia estuaries. During 231 longline sets, we captured 415 individuals representing nine species. Atlantic sharpnose shark (Rhizoprionodon terranovae), bonnethead (Sphyrna tiburo), blacktip shark (Carcharhinus limbatus) and sandbar shark (C. plumbeus) comprised 96.1% of the catch. Canonical correlation analysis (CCA) was used to assess environmental influences on the assemblage of the four common species. Results of the CCA indicated Bonnethead Shark and Sandbar Shark were correlated with each other and with a subset of environmental variables. When the species occurred singly, depth was the defining environmental variable; whereas, when the two co-occurred, dissolved oxygen and salinity were the defining variables. Discriminant analyses (DA) were used to assess environmental influences on individual species. Results of the discriminant analyses supported the general CCA findings that the presence of bonnethead and sandbar shark were the only two species that correlated with environmental variables. In addition to depth and dissolved oxygen, turbidity influenced the presence of sandbar shark. The presence of bonnethead shark was influenced primarily by salinity and turbidity. Significant relationships existed for both the CCA and DA analyses; however, environmental variables accounted for <16% of the total variation in each. Compared to the environmental variables we measured, macrohabitat features (e.g., substrate type), prey availability, and susceptibility to predation may have stronger influences on the presence and distribution of subadult shark species among sites.
Aguilar, María; Lado, Carlos
2012-01-01
Habitat availability and environmental preferences of species are among the most important factors in determining the success of dispersal processes and therefore in shaping the distribution of protists. We explored the differences in fundamental niches and potential distributions of an ecological guild of slime moulds—protosteloid amoebae—in the Iberian Peninsula. A large set of samples collected in a north-east to south-west transect of approximately 1000 km along the peninsula was used to test the hypothesis that, together with the existence of suitable microhabitats, climate conditions may determine the probability of survival of species. Although protosteloid amoebae share similar morphologies and life history strategies, canonical correspondence analyses showed that they have varied ecological optima, and that climate conditions have an important effect in niche differentiation. Maxent environmental niche models provided consistent predictions of the probability of presence of the species based on climate data, and they were used to generate maps of potential distribution in an ‘everything is everywhere' scenario. The most important climatic factors were, in both analyses, variables that measure changes in conditions throughout the year, confirming that the alternation of fruiting bodies, cysts and amoeboid stages in the life cycles of protosteloid amoebae constitutes an advantage for surviving in a changing environment. Microhabitat affinity seems to be influenced by climatic conditions, which suggests that the micro-environment may vary at a local scale and change together with the external climate at a larger scale. PMID:22402402
Aguilar, María; Lado, Carlos
2012-08-01
Habitat availability and environmental preferences of species are among the most important factors in determining the success of dispersal processes and therefore in shaping the distribution of protists. We explored the differences in fundamental niches and potential distributions of an ecological guild of slime moulds-protosteloid amoebae-in the Iberian Peninsula. A large set of samples collected in a north-east to south-west transect of approximately 1000 km along the peninsula was used to test the hypothesis that, together with the existence of suitable microhabitats, climate conditions may determine the probability of survival of species. Although protosteloid amoebae share similar morphologies and life history strategies, canonical correspondence analyses showed that they have varied ecological optima, and that climate conditions have an important effect in niche differentiation. Maxent environmental niche models provided consistent predictions of the probability of presence of the species based on climate data, and they were used to generate maps of potential distribution in an 'everything is everywhere' scenario. The most important climatic factors were, in both analyses, variables that measure changes in conditions throughout the year, confirming that the alternation of fruiting bodies, cysts and amoeboid stages in the life cycles of protosteloid amoebae constitutes an advantage for surviving in a changing environment. Microhabitat affinity seems to be influenced by climatic conditions, which suggests that the micro-environment may vary at a local scale and change together with the external climate at a larger scale.
NASA Astrophysics Data System (ADS)
Pang, Aiping; Sun, Tao; Yang, Zhifeng
2013-03-01
SummaryAgriculture and ecosystems are increasingly competing for water. We propose an approach to assess the economic compensation standard required to release water from agricultural use to ecosystems while taking into account seasonal variability in river flow. First, we defined agricultural water shortage as the difference in water volume between agricultural demands and actual supply after maintaining environmental flows for ecosystems. Second, we developed a production loss model to establish the relationship between production losses and agricultural water shortages in view of seasonal variation in river discharge. Finally, we estimated the appropriate economic compensation for different irrigation stakeholders based on crop prices and production losses. A case study in the Yellow River Estuary, China, demonstrated that relatively stable economic compensation for irrigation processes can be defined based on the developed model, taking into account seasonal variations in river discharge and different levels of environmental flow. Annual economic compensation is not directly related to annual water shortage because of the temporal variability in river flow rate and environmental flow. Crops that have stable planting areas to guarantee food security should be selected as indicator crops in economic compensation assessments in the important grain production zone. Economic compensation may be implemented by creating funds to update water-saving measures in agricultural facilities.
Mapping grass communities based on multi-temporal Landsat TM imagery and environmental variables
NASA Astrophysics Data System (ADS)
Zeng, Yuandi; Liu, Yanfang; Liu, Yaolin; de Leeuw, Jan
2007-06-01
Information on the spatial distribution of grass communities in wetland is increasingly recognized as important for effective wetland management and biological conservation. Remote sensing techniques has been proved to be an effective alternative to intensive and costly ground surveys for mapping grass community. However, the mapping accuracy of grass communities in wetland is still not preferable. The aim of this paper is to develop an effective method to map grass communities in Poyang Lake Natural Reserve. Through statistic analysis, elevation is selected as an environmental variable for its high relationship with the distribution of grass communities; NDVI stacked from images of different months was used to generate Carex community map; the image in October was used to discriminate Miscanthus and Cynodon communities. Classifications were firstly performed with maximum likelihood classifier using single date satellite image with and without elevation; then layered classifications were performed using multi-temporal satellite imagery and elevation with maximum likelihood classifier, decision tree and artificial neural network separately. The results show that environmental variables can improve the mapping accuracy; and the classification with multitemporal imagery and elevation is significantly better than that with single date image and elevation (p=0.001). Besides, maximum likelihood (a=92.71%, k=0.90) and artificial neural network (a=94.79%, k=0.93) perform significantly better than decision tree (a=86.46%, k=0.83).
Morris, R C; Fraley, L
1989-04-01
We measured 222Rn fluence rate and several environmental variables on two plots with U mill tailings buried beneath 30 cm of overburden and 20 cm of topsoil. An additional 30 cm of clay covered the tailings on one plot and each plot was subdivided into bare soil and vegetated subplots. We used linear correlation, two-way ANOVA and stepwise multiple regression to analyze the effects of the plot characteristics and the environmental variables on 222Rn fluence rate. The most important effect on 222Rn fluence rates from these plots was the combination of a clay cap and a vegetated surface. The mean annual fluence rate from the plot having both of these characteristics (520 +/- 370 mBq m-2 s-1) was over three times that of the vegetated plot without a clay cap (170 +/- 130 mBq m-2 s-1) and 18 times that of the bare plot with a clay cap (29 +/- 13 mBq m-2 s-1). The interaction effect may have been due to the growth of roots in the moist clay and active transport of dissolved 222Rn to the surface in water. This speculation is supported by the observation that on vegetated plots with a clay cap, moisture in the clay enhanced the fluence rate.
Dehnhard, Nina; Ludynia, Katrin; Poisbleau, Maud; Demongin, Laurent; Quillfeldt, Petra
2013-01-01
Due to their restricted foraging range, flightless seabirds are ideal models to study the short-term variability in foraging success in response to environmentally driven food availability. Wind can be a driver of upwelling and food abundance in marine ecosystems such as the Southern Ocean, where wind regime changes due to global warming may have important ecological consequences. Southern rockhopper penguins (Eudyptes chrysocome) have undergone a dramatic population decline in the past decades, potentially due to changing environmental conditions. We used a weighbridge system to record daily foraging mass gain (the difference in mean mass of adults leaving the colony in the morning and returning to the colony in the evening) of adult penguins during the chick rearing in two breeding seasons. We related the day-to-day variability in foraging mass gain to ocean wind conditions (wind direction and wind speed) and tested for a relationship between wind speed and sea surface temperature anomaly (SSTA). Foraging mass gain was highly variable among days, but did not differ between breeding seasons, chick rearing stages (guard and crèche) and sexes. It was strongly correlated between males and females, indicating synchronous changes among days. There was a significant interaction of wind direction and wind speed on daily foraging mass gain. Foraging mass gain was highest under moderate to strong winds from westerly directions and under weak winds from easterly directions, while decreasing under stronger easterly winds and storm conditions. Ocean wind speed showed a negative correlation with daily SSTA, suggesting that winds particularly from westerly directions might enhance upwelling and consequently the prey availability in the penguins' foraging areas. Our data emphasize the importance of small-scale, wind-induced patterns in prey availability on foraging success, a widely neglected aspect in seabird foraging studies, which might become more important with increasing changes in climatic variability. PMID:24236139
Genotypic variability enhances the reproducibility of an ecological study.
Milcu, Alexandru; Puga-Freitas, Ruben; Ellison, Aaron M; Blouin, Manuel; Scheu, Stefan; Freschet, Grégoire T; Rose, Laura; Barot, Sebastien; Cesarz, Simone; Eisenhauer, Nico; Girin, Thomas; Assandri, Davide; Bonkowski, Michael; Buchmann, Nina; Butenschoen, Olaf; Devidal, Sebastien; Gleixner, Gerd; Gessler, Arthur; Gigon, Agnès; Greiner, Anna; Grignani, Carlo; Hansart, Amandine; Kayler, Zachary; Lange, Markus; Lata, Jean-Christophe; Le Galliard, Jean-François; Lukac, Martin; Mannerheim, Neringa; Müller, Marina E H; Pando, Anne; Rotter, Paula; Scherer-Lorenzen, Michael; Seyhun, Rahme; Urban-Mead, Katherine; Weigelt, Alexandra; Zavattaro, Laura; Roy, Jacques
2018-02-01
Many scientific disciplines are currently experiencing a 'reproducibility crisis' because numerous scientific findings cannot be repeated consistently. A novel but controversial hypothesis postulates that stringent levels of environmental and biotic standardization in experimental studies reduce reproducibility by amplifying the impacts of laboratory-specific environmental factors not accounted for in study designs. A corollary to this hypothesis is that a deliberate introduction of controlled systematic variability (CSV) in experimental designs may lead to increased reproducibility. To test this hypothesis, we had 14 European laboratories run a simple microcosm experiment using grass (Brachypodium distachyon L.) monocultures and grass and legume (Medicago truncatula Gaertn.) mixtures. Each laboratory introduced environmental and genotypic CSV within and among replicated microcosms established in either growth chambers (with stringent control of environmental conditions) or glasshouses (with more variable environmental conditions). The introduction of genotypic CSV led to 18% lower among-laboratory variability in growth chambers, indicating increased reproducibility, but had no significant effect in glasshouses where reproducibility was generally lower. Environmental CSV had little effect on reproducibility. Although there are multiple causes for the 'reproducibility crisis', deliberately including genetic variability may be a simple solution for increasing the reproducibility of ecological studies performed under stringently controlled environmental conditions.
García, Eliseba; Clemente, Sabrina; Hernández, José Carlos
2018-08-01
One of the most important environmental factors controlling the distribution, physiology, morphology and behaviour of marine invertebrates is ocean pH. In the last decade, the effects of decreasing ocean pH as a result of climate change processes (i.e. ocean acidification) on marine organisms have been target of much research. However, the effects of natural pH variability in the species' niche have been largely neglected. Marine coastal habitats are characterized by a high environmental variability and, in some cases, organisms are already coping with pH values predicted by the end of the century. It is thought that because of adaptation or acclimation to natural environmental variability, intertidal species may have some resilience to future changes. In this study, we explored the sensitivities of the sea urchin Paracentrotus lividus during its larvae development and settlement undergoing two different daily pH frequencies (12 h fluctuation from 7.7 to 8.1 units of pH, and constant pH treatment of 8.1 units of pH) that have been currently recorded in the sampling region (Canary Islands). Results showed that, despite larvae development was slightly enhanced by moderated fluctuating pH regimes, P. lividus larva was able to develop normally in both, fluctuating and constant, pH environments. Results of the settlement experiment showed very clear patterns since postlarvae settlement was only successful when a covering of algae was added, regardless of the pH fluctuation applied. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Y.; Wang, T.; El-Kassaby, Y. A.
2015-08-01
Environmental signals are important triggers in the life-cycle transitions and play a crucial role in the life-history evolution. Yet, very little is known about the leading ecological factors contributing to the variations of life-history traits in perennial plants. This paper explores both the causes and consequences for the evolution of life-history traits (i.e., seed dormancy and size) in lodgepole pine (Pinus contorta Dougl.) across British Columbia (B.C.), Canada. We selected 83 logepole pine populations covering 22 ecosystem zones of B.C. and through their geographic coordinate, 197 climatic variables were generated accordingly for the reference (1961-1990) and future (2041-2070) periods. We found that dynamic climatic variables rather than constant geographic variables are the true environmental driving forces in seed dormancy and size variations and thus provide reliable predictors in response to global climate change. Evapotranspiration and precipitation in the plant-to-seed chronology are the most critical climate variables for seed dormancy and size variations, respectively. Hence, we predicted that levels of seed dormancy in lodgepole pine would increase across large tracts of B.C. in 2050s. Winter-chilling is able to increase the magnitude of life-history plasticity and lower the bet-hedge strategy in the seed-to-plant transition; however, winter-chilling is likely to be insufficient in the north of 49° N in 2050s, which may delay germination while unfavourable conditions during dry summers may result in adverse consequences in the survival of seedlings owing to extended germination span.
NASA Astrophysics Data System (ADS)
Draisma, Stefano G. A.; Prud'homme van Reine, Willem F.; Herandarudewi, Sekar M. C.; Hoeksema, Bert W.
2018-01-01
The Jakarta Bay - Thousand Islands reef complex extends to more than 80 km in northwest direction from the major conurbation Jakarta (Indonesia) along a pronounced inshore to offshore environmental gradient. The present study aims to determine to what extent environmental factors can explain the composition of macroalgal communities on the reefs off Jakarta. Therefore, the presence-absence of 67 macroalgal taxa was recorded for 27 sampling sites along the inshore-offshore disturbance gradient and analysed with substrate variables and water quality variables. The macroalgal richness pattern matches the pattern of other reef taxa. The 27 sites could be assigned to one of four geographical zones with 85% certainty based on their macroalgal taxon assemblages. These four zones (i.e., Jakarta Bay and, respectively, South, Central, and North Thousand Islands) had significantly different macroalgal assemblages, except for the North and South zones. Along the nearshore gradient there was a greater shift in taxon composition than within the central Thousand Islands. The patterns of ten habitat and water quality variables resembled the macroalgal diversity patterns by 56%. All ten variables together explained 69% of the variation in macroalgal composition. Shelf depth, % sand cover, gelbstoff/detrital material, chlorophyll a concentration, seawater surface temperature, and % dead coral cover were the best predictors of seaweed flora composition. Furthermore, 44 macroalgal species represented new records for the area. The present study provides important baseline data of macroalgae in the area for comparison in future biodiversity assessments in the area and elsewhere in the region.
Identifying causal linkages between environmental variables and African conflicts
NASA Astrophysics Data System (ADS)
Nguy-Robertson, A. L.; Dartevelle, S.
2017-12-01
Environmental variables that contribute to droughts, flooding, and other natural hazards are often identified as factors contributing to conflict; however, few studies attempt to quantify these causal linkages. Recent research has demonstrated that the environment operates within a dynamical system framework and the influence of variables can be identified from convergent cross mapping (CCM) between shadow manifolds. We propose to use CCM to identify causal linkages between environmental variables and incidences of conflict. This study utilizes time series data from Climate Forecast System ver. 2 and MODIS satellite sensors processed using Google Earth Engine to aggregate country and regional trends. These variables are then compared to Armed Conflict Location & Event Data Project observations at similar scales. Results provide relative rankings of variables and their linkage to conflict. Being able to identify which factors contributed more strongly to a conflict can allow policy makers to prepare solutions to mitigate future crises. Knowledge of the primary environmental factors can lead to the identification of other variables to examine in the causal network influencing conflict.
W. Henry McNab; F. Thomas Lloyd
2001-01-01
The value of environmental variables as measures of site quality for individual tree growth models was determined for 12 common species of eastern hardwoods in the Southern Appalachian Mountains. Periodic diameter increment was modeled as a function of size, competition and environmental variables for 1,381 trees in even-aged stands of mixed-species. Resulting species...
Evaluating the relative environmental impact of countries.
Bradshaw, Corey J A; Giam, Xingli; Sodhi, Navjot S
2010-05-03
Environmental protection is critical to maintain ecosystem services essential for human well-being. It is important to be able to rank countries by their environmental impact so that poor performers as well as policy 'models' can be identified. We provide novel metrics of country-specific environmental impact ranks - one proportional to total resource availability per country and an absolute (total) measure of impact - that explicitly avoid incorporating confounding human health or economic indicators. Our rankings are based on natural forest loss, habitat conversion, marine captures, fertilizer use, water pollution, carbon emissions and species threat, although many other variables were excluded due to a lack of country-specific data. Of 228 countries considered, 179 (proportional) and 171 (absolute) had sufficient data for correlations. The proportional index ranked Singapore, Korea, Qatar, Kuwait, Japan, Thailand, Bahrain, Malaysia, Philippines and Netherlands as having the highest proportional environmental impact, whereas Brazil, USA, China, Indonesia, Japan, Mexico, India, Russia, Australia and Peru had the highest absolute impact (i.e., total resource use, emissions and species threatened). Proportional and absolute environmental impact ranks were correlated, with mainly Asian countries having both high proportional and absolute impact. Despite weak concordance among the drivers of environmental impact, countries often perform poorly for different reasons. We found no evidence to support the environmental Kuznets curve hypothesis of a non-linear relationship between impact and per capita wealth, although there was a weak reduction in environmental impact as per capita wealth increases. Using structural equation models to account for cross-correlation, we found that increasing wealth was the most important driver of environmental impact. Our results show that the global community not only has to encourage better environmental performance in less-developed countries, especially those in Asia, there is also a requirement to focus on the development of environmentally friendly practices in wealthier countries.
Cross-taxon congruence and environmental conditions.
Toranza, Carolina; Arim, Matías
2010-07-16
Diversity patterns of different taxa typically covary in space, a phenomenon called cross-taxon congruence. This pattern has been explained by the effect of one taxon diversity on taxon diversity, shared biogeographic histories of different taxa, and/or common responses to environmental conditions. A meta-analysis of the association between environment and diversity patterns found that in 83 out of 85 studies, more than 60% of the spatial variability in species richness was related to variables representing energy, water or their interaction. The role of the environment determining taxa diversity patterns leads us to hypothesize that this would explain the observed cross-taxon congruence. However, recent analyses reported the persistence of cross-taxon congruence when environmental effect was statistically removed. Here we evaluate this hypothesis, analyzing the cross-taxon congruence between birds and mammals in the Brazilian Cerrado, and assess the environmental role on the spatial covariation in diversity patterns. We found a positive association between avian and mammal richness and a positive latitudinal trend for both groups in the Brazilian Cerrado. Regression analyses indicated an effect of latitude, PET, and mean temperature over both biological groups. In addition, we show that NDVI was only associated with avian diversity; while the annual relative humidity, was only correlated with mammal diversity. We determined the environmental effects on diversity in a path analysis that accounted for 73% and 76% of the spatial variation in avian and mammal richness. However, an association between avian and mammal diversity remains significant. Indeed, the importance of this link between bird and mammal diversity was also supported by a significant association between birds and mammal spatial autoregressive model residuals. Our study corroborates the main role of environmental conditions on diversity patterns, but suggests that other important mechanisms, which have not been properly evaluated, are involved in the observed cross-taxon congruence. The approaches introduced here indicate that the prevalence of a significant association among taxa, after considering the environmental determinant, could indicate both the need to incorporate additional processes (e.g. biogeographic and evolutionary history or trophic interactions) and/or the existence of a shared trend in detection biases among taxa and regions.
Tate, C.M.; Cuffney, T.F.; McMahon, G.; Giddings, E.M.P.; Coles, J.F.; Zappia, H.
2005-01-01
To assess the effects of urbanization on assemblages (fish, invertebrate, and algal), physical habitat, and water chemistry, we investigated the relations among varying intensities of basin urbanization and stream ecology in three metropolitan areas: the humid northeastern United States around Boston, Massachusetts; the humid southeastern United States around Birmingham, Alabama; and the semiarid western United States around Salt Lake City, Utah. A consistent process was used to develop a multimetric urban intensity index (UII) based on locally important variables (land-use/land-cover, infrastructure, and socioeconomic variables) in each study area and a common urban intensity index (CUII) based on a subset of five variables common to all study areas. The UII was used to characterize 30 basins along an urban gradient in each metropolitan area. Study basins were located within a single ecoregion in each of the metropolitan areas. The UII, ecoregions, and site characteristics provided a method for limiting the variability of natural landscape characteristics while assessing the magnitude of urban effects. Conditions in Salt Lake City (semiarid climate and water diversions) and Birmingham (topography) required nesting sites within the same basin. The UII and CUII facilitated comparisons of aquatic assemblages response to urbanization across different environmental settings. ?? 2005 by the American Fisheries Society.
Environmental Influences on Mate Preferences as Assessed by a Scenario Manipulation Experiment
Marzoli, Daniele; Moretto, Francesco; Monti, Aura; Tocci, Ornella; Roberts, S. Craig; Tommasi, Luca
2013-01-01
Many evolutionary psychology studies have addressed the topic of mate preferences, focusing particularly on gender and cultural differences. However, the extent to which situational and environmental variables might affect mate preferences has been comparatively neglected. We tested 288 participants in order to investigate the perceived relative importance of six traits of an ideal partner (wealth, dominance, intelligence, height, kindness, attractiveness) under four different hypothetical scenarios (status quo/nowadays, violence/post-nuclear, poverty/resource exhaustion, prosperity/global well-being). An equal number of participants (36 women, 36 men) was allotted to each scenario; each was asked to allocate 120 points across the six traits according to their perceived value. Overall, intelligence was the trait to which participants assigned most importance, followed by kindness and attractiveness, and then by wealth, dominance and height. Men appraised attractiveness as more valuable than women. Scenario strongly influenced the relative importance attributed to traits, the main finding being that wealth and dominance were more valued in the poverty and post-nuclear scenarios, respectively, compared to the other scenarios. Scenario manipulation generally had similar effects in both sexes, but women appeared particularly prone to trade off other traits for dominance in the violence scenario, and men particularly prone to trade off other traits for wealth in the poverty scenario. Our results are in line with other correlational studies of situational variables and mate preferences, and represent strong evidence of a causal relationship of environmental factors on specific mate preferences, corroborating the notion of an evolved plasticity to current ecological conditions. A control experiment seems to suggest that our scenarios can be considered as realistic descriptions of the intended ecological conditions. PMID:24069291
Ghatee, Mohammad Amin; Sharifi, Iraj; Haghdoost, Ali Akbar; Kanannejad, Zahra; Taabody, Zahra; Hatam, Gholamreza; Abdollahipanah, Abbas
2013-09-01
Leishmaniasis as a dynamic disease may be markedly influenced by demographic and ecological factors. A geospatial information system study was developed to determine the distribution of visceral leishmaniasis (VL) cases in relation to population, climatic and environmental factors in Fars province, southwest of Iran. The dwelling addresses of 217 VL patients were obtained from hospital files. A hazard map produced by unifying buffers (5 km) around nomads travel routes (NTR) was developed to survey the effect of close proximity to NTR on the distribution of VL. Mean annual rainfall (MAR), mean annual temperature (MAT), four months temperature mean (T4), elevation, slope and landcover were climatic and environmental factors that have been analysed. Finally, data of dwelling foci were extracted from maps and analysed using logistic regression models. Close proximity to NTR was the most important factor influenced on the disease distribution. Climatic factors were in second rank. Among them, temperature especially T4 is the most effective variable and rainfall was also shown to be another effective climatic agent. Most cases of VL were reported from temperate and semiarid areas in western and central regions while arid condition was a confined factor. The environmental factor of landcovers including urban, dry farm and thin forest regions was revealed as the third rank effective factor. Altitude importance was only shown when its effect was studied independently from other factors. These findings present the distribution of VL in Fars province is influenced by combination of ecological and nomads demographical variables although closeness to NTR and nomads role in distribution and continuance of kala-azar are the most important factors.
THE ROLE OF INDIVIDUAL VARIABILITY IN POPULATION DYNAMICS UNDER CHANGING ENVIRONMENTAL CONDITIONS
Environmental variability can influence species distributions through changes in
survival, fecundity, behavior, and metabolic activities. As worldwide coastal populations rise, the associated deforestation and development can increase both quantities and variability in runoff...
NASA Astrophysics Data System (ADS)
Reglero, Patricia; Santos, Maria; Balbín, Rosa; Laíz-Carrión, Raul; Alvarez-Berastegui, Diego; Ciannelli, Lorenzo; Jiménez, Elisa; Alemany, Francisco
2017-06-01
Tuna spawning habitats are traditionally characterized using data sets of larvae or gonads from mature adults and concurrent environmental variables. Data on egg distributions have never previously been used since molecular analyses are mandatory to identify tuna eggs to species level. However, in this study we use molecularly derived egg distribution data, in addition to larval data, to characterize hydrographic and biological drivers of the spatial distribution of eggs and larvae of bluefin Thunnus thynnus and albacore tuna Thunnus alalunga in the Balearic Sea, a main spawning area of these species in the Mediterranean. The effects of the hydrography, characterized by salinity, temperature and geostrophic velocity, on the spatial distributions of the eggs and larvae are investigated. Three biological variables are used to describe the productivity in the area: chlorophyll a in the mixed layer, chlorophyll a in the deep chlorophyll maximum and mesozooplankton biomass in the mixed layer. Our results point to the importance of salinity fronts and temperatures above a minimum threshold in shaping the egg and larval distribution of both species. The spatial distribution of the biotic variables was very scattered, and they did not emerge as significant variables in the presence-absence models. However, they became significant when modeling egg and larval abundances. The lack of correlation between the three biotic variables challenges the use of chlorophyll a to describe trophic scenarios for the larvae and suggests that the spatial distribution of resources is not persistent in time. The different patterns in relation to biotic variables across species and stages found in this and other studies indicate a still elusive understanding of the link between trophic levels involving tuna early larval stages. Our ability to improve short-term forecasting and long-term predictions of climate effects on the egg and larval distributions is discussed based on the consistency of the environmentally driven spatial patterns for the two species.
Divergent environmental filters drive functional segregation of European peatlands
NASA Astrophysics Data System (ADS)
Robroek, B.; Jassey, V.; Bragazza, L.; Buttler, A.
2015-12-01
Plant communities are largely shaped by prevailing climatic conditions. As a result, environmental change is expected to alter the (functional) composition in plant communities. Because plants, and particularly the composition of plant species, play an important role in driving ecosystem processes, it is crucial that we improve our understanding on which environmental factors are most important in shaping plant communities. Here we presnt the results for a cross-Eurpean study, were we assessed the role of environmnetal conditions on plant community composition in 56 peatlands. We show that plant species richness and diversity are relatively stable across the main environmental gradients. Nevertheless, we observe large changes in the plant community structure. In other words, species turnover increased with increasing differences in environmental viariables. Such turnover in the community composition is largely associated to gradients temperature and precipitation, whilst nutrients -often reported as major driver for changes in peatland ecosystems- were only important at the end of the gradient of current deposition levels in Europe. Using a combination of species distribution modelling and species co-occurence patterns, we identified two spatially non-exclusive groups of plant species. Species within a distinct group responded similarly to bioclimatic variables and nutrient deposition levels, whilst between group response was mirrored. These results suggest that these two groups of plants are subjected to divergent environmental filters. Additionally, European peatlands aggregate into two distinct clusters based on plant functional trait composition. Each cluster was dominated by plant species from either one of the two co-response groups. Overall, our results demonstrate that environmental change results in a gradual replacement of plant species from two divergent groups, consequently affecting the functional trait composition in peatlands.
Yang, Yanjie; Chen, Lu; Qiu, Xiaohui; Qiao, Zhengxue; Zhou, Jiawei; Pan, Hui; Ban, Bo; Zhu, Xiongzhao; He, Jincai; Ding, Yongqing; Bai, Bing
2015-01-01
Objective To explore the relationship between family environment and depressive symptoms and to evaluate the influence of hard and soft family environmental factors on depression levels in a large sample of university students in China. Methods A multi-stage stratified sampling procedure was used to select 6,000 participants. The response rate was 88.8%, with 5,329 students completing the Beck Depression Inventory (BDI) and the Family Environment Scale Chinese Version (FES-CV), which was adapted for the Chinese population. Differences between the groups were tested for significance by the Student’s t-test; ANOVA was used to test continuous variables. The relationship between soft family environmental factors and BDI were tested by Pearson correlation analysis. Hierarchical linear regression analysis was conducted to model the effects of hard environmental factors and soft environmental factors on depression in university students. Results A total of 11.8% of students scored above the threshold of moderate depression(BDI≧14). Hard family environmental factors such as parent relationship, family economic status, level of parental literacy and non-intact family structure were associated with depressive symptoms. The soft family environmental factors—conflict and control—were positively associated with depression, while cohesion was negatively related to depressive symptom after controlling for other important associates of depression. Hierarchical regression analysis indicated that the soft family environment correlates more strongly with depression than the hard family environment. Conclusions Soft family environmental factors—especially cohesion, conflict and control—appeared to play an important role in the occurrence of depressive symptoms. These findings underline the significance of the family environment as a source of risk factors for depression among university students in China and suggest that family-based interventions and improvement are very important to reduce depression among university students. PMID:26629694
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernal, María Fernanda; Oyarzún, Jorge; Oyarzún, Ricardo, E-mail: royarzun@userena.cl
Environmental Impact Assessment (EIA) aims to determine if the environmental effect of an activity or project complies with standards and regulations. A primary component of the environment to evaluate is air and the effect that various activities can have on its quality. To this end, emission factors (EFs), which are empirical coefficients or mathematical relationships, are normally used. The present research critically analyzes the implications and consequences of using imported EFs in environmental impact studies (EISs), taking as case of study the situation in Chile. Among the main results, the widespread use of EFs in EISs in the country andmore » the lack of assessments of their actual applicability stand out. In addition, the official guidelines related to emissions estimation that are used for EIA in the country mostly include EFs derived elsewhere, without considering the recommendations or restrictions that the original sources indicate for their use. Finally, the broad use of default values defined for the Metropolitan Region in Central Chile, is highly questionable for a country that extends north-south along more than 35° of latitude, with wide variability in climate, traffic conditions, population, soil types, etc. Finally, it is very likely that situations similar to those observed in the present work occurs in other countries with young environmental impact assessment systems, and therefore, that the results herein presented should be of general interest and relevance. - Highlights: • Emission factors are widely used in environmental impact assessment in Chile. • There is a lack of a proper understanding of the limitations of EFs for EIA. • Imported emission factors use requires caution and full understanding. • Misuse of foreign EFs may have serious environmental and economic consequences.« less
Yu, Yunmiao; Yang, Xiuxian; Yang, Yanjie; Chen, Lu; Qiu, Xiaohui; Qiao, Zhengxue; Zhou, Jiawei; Pan, Hui; Ban, Bo; Zhu, Xiongzhao; He, Jincai; Ding, Yongqing; Bai, Bing
2015-01-01
To explore the relationship between family environment and depressive symptoms and to evaluate the influence of hard and soft family environmental factors on depression levels in a large sample of university students in China. A multi-stage stratified sampling procedure was used to select 6,000 participants. The response rate was 88.8%, with 5,329 students completing the Beck Depression Inventory (BDI) and the Family Environment Scale Chinese Version (FES-CV), which was adapted for the Chinese population. Differences between the groups were tested for significance by the Student's t-test; ANOVA was used to test continuous variables. The relationship between soft family environmental factors and BDI were tested by Pearson correlation analysis. Hierarchical linear regression analysis was conducted to model the effects of hard environmental factors and soft environmental factors on depression in university students. A total of 11.8% of students scored above the threshold of moderate depression (BDI≧14). Hard family environmental factors such as parent relationship, family economic status, level of parental literacy and non-intact family structure were associated with depressive symptoms. The soft family environmental factors--conflict and control--were positively associated with depression, while cohesion was negatively related to depressive symptom after controlling for other important associates of depression. Hierarchical regression analysis indicated that the soft family environment correlates more strongly with depression than the hard family environment. Soft family environmental factors--especially cohesion, conflict and control--appeared to play an important role in the occurrence of depressive symptoms. These findings underline the significance of the family environment as a source of risk factors for depression among university students in China and suggest that family-based interventions and improvement are very important to reduce depression among university students.
Combining multiple sources of data to inform conservation of Lesser Prairie-Chicken populations
Ross, Beth; Haukos, David A.; Hagen, Christian A.; Pitman, James
2018-01-01
Conservation of small populations is often based on limited data from spatially and temporally restricted studies, resulting in management actions based on an incomplete assessment of the population drivers. If fluctuations in abundance are related to changes in weather, proper management is especially important, because extreme weather events could disproportionately affect population abundance. Conservation assessments, especially for vulnerable populations, are aided by a knowledge of how extreme events influence population status and trends. Although important for conservation efforts, data may be limited for small or vulnerable populations. Integrated population models maximize information from various sources of data to yield population estimates that fully incorporate uncertainty from multiple data sources while allowing for the explicit incorporation of environmental covariates of interest. Our goal was to assess the relative influence of population drivers for the Lesser Prairie-Chicken (Tympanuchus pallidicinctus) in the core of its range, western and southern Kansas, USA. We used data from roadside lek count surveys, nest monitoring surveys, and survival data from telemetry monitoring combined with climate (Palmer drought severity index) data in an integrated population model. Our results indicate that variability in population growth rate was most influenced by variability in juvenile survival. The Palmer drought severity index had no measurable direct effects on adult survival or mean number of offspring per female; however, there were declines in population growth rate following severe drought. Because declines in population growth rate occurred at a broad spatial scale, declines in response to drought were likely due to decreases in chick and juvenile survival rather than emigration outside of the study area. Overall, our model highlights the importance of accounting for environmental and demographic sources of variability, and provides a thorough method for simultaneously evaluating population demography in response to long-term climate effects.
Fox, Eric W; Hill, Ryan A; Leibowitz, Scott G; Olsen, Anthony R; Thornbrugh, Darren J; Weber, Marc H
2017-07-01
Random forest (RF) modeling has emerged as an important statistical learning method in ecology due to its exceptional predictive performance. However, for large and complex ecological data sets, there is limited guidance on variable selection methods for RF modeling. Typically, either a preselected set of predictor variables are used or stepwise procedures are employed which iteratively remove variables according to their importance measures. This paper investigates the application of variable selection methods to RF models for predicting probable biological stream condition. Our motivating data set consists of the good/poor condition of n = 1365 stream survey sites from the 2008/2009 National Rivers and Stream Assessment, and a large set (p = 212) of landscape features from the StreamCat data set as potential predictors. We compare two types of RF models: a full variable set model with all 212 predictors and a reduced variable set model selected using a backward elimination approach. We assess model accuracy using RF's internal out-of-bag estimate, and a cross-validation procedure with validation folds external to the variable selection process. We also assess the stability of the spatial predictions generated by the RF models to changes in the number of predictors and argue that model selection needs to consider both accuracy and stability. The results suggest that RF modeling is robust to the inclusion of many variables of moderate to low importance. We found no substantial improvement in cross-validated accuracy as a result of variable reduction. Moreover, the backward elimination procedure tended to select too few variables and exhibited numerous issues such as upwardly biased out-of-bag accuracy estimates and instabilities in the spatial predictions. We use simulations to further support and generalize results from the analysis of real data. A main purpose of this work is to elucidate issues of model selection bias and instability to ecologists interested in using RF to develop predictive models with large environmental data sets.
Characterizing habitat suitability for a central-place forager in a dynamic marine environment.
Briscoe, Dana K; Fossette, Sabrina; Scales, Kylie L; Hazen, Elliott L; Bograd, Steven J; Maxwell, Sara M; McHuron, Elizabeth A; Robinson, Patrick W; Kuhn, Carey; Costa, Daniel P; Crowder, Larry B; Lewison, Rebecca L
2018-03-01
Characterizing habitat suitability for a marine predator requires an understanding of the environmental heterogeneity and variability over the range in which a population moves during a particular life cycle. Female California sea lions ( Zalophus californianus ) are central-place foragers and are particularly constrained while provisioning their young. During this time, habitat selection is a function of prey availability and proximity to the rookery, which has important implications for reproductive and population success. We explore how lactating females may select habitat and respond to environmental variability over broad spatial and temporal scales within the California Current System. We combine near-real-time remotely sensed satellite oceanography, animal tracking data ( n = 72) from November to February over multiple years (2003-2009) and Generalized Additive Mixed Models (GAMMs) to determine the probability of sea lion occurrence based on environmental covariates. Results indicate that sea lion presence is associated with cool ( <14°C ), productive waters, shallow depths, increased eddy activity, and positive sea-level anomalies. Predictive habitat maps generated from these biophysical associations suggest winter foraging areas are spatially consistent in the nearshore and offshore environments, except during the 2004-2005 winter, which coincided with an El Niño event. Here, we show how a species distribution model can provide broadscale information on the distribution of female California sea lions during an important life history stage and its implications for population dynamics and spatial management.
Quality of Streams in Johnson County, Kansas, and Relations to Environmental Variables, 2003-07
Rasmussen, Teresa J.; Poulton, Barry C.; Graham, Jennifer L.
2009-01-01
The quality of streams and relations to environmental variables in Johnson County, northeastern Kansas, were evaluated using water, streambed sediment, land use, streamflow, habitat, algal periphyton (benthic algae), and benthic macroinvertebrate data. Water, streambed sediment, and macroinvertebrate samples were collected in March 2007 during base flow at 20 stream sites that represent 11 different watersheds in the county. In addition, algal periphyton samples were collected twice (spring and summer 2007) at one-half of the sites. Environmental data including water and streambed-sediment chemistry data (primarily nutrients, fecal-indicator bacteria, and organic wastewater compounds), land use, streamflow, and habitat data were used in statistical analyses to evaluate relations between biological conditions and variables that may affect them. This report includes an evaluation of water and streambed-sediment chemistry, assessment of habitat conditions, comparison of biological community attributes (such as composition, diversity, and abundance) among sampling sites, placement of sampling sites into impairment categories, evaluation of biological data relative to environmental variables, and evaluation of changes in biological communities and effects of urbanization. This evaluation is useful for understanding factors that affect stream quality, for improving water-quality management programs, and for documenting changing conditions over time. The information will become increasingly important for protecting streams in the future as urbanization continues. Results of this study indicate that the biological quality at nearly all biological sampling sites in Johnson County has some level of impairment. Periphyton taxa generally were indicative of somewhat degraded conditions with small to moderate amounts of organic enrichment. Camp Branch in the Blue River watershed was the only site that met State criteria for full support of aquatic life in 2007. Since 2003, biological quality improved at one rural sampling site, possibly because of changes in wastewater affecting the site, and declined at three urban sites possibly because of the combined effects of ongoing development. Rural streams in the western and southern parts of the county, with land-use conditions similar to those found at the State reference site (Captain Creek), continue to support some organisms normally associated with healthy streams. Several environmental factors contribute to biological indicators of stream quality. The primary factor explaining biological quality at sites in Johnson County was the amount of urbanization upstream in the watershed. Specific conductance of stream water, which is a measure of dissolved solids in water and is determined primarily by the amount of groundwater contributing to streamflow, the amount of urbanization, and discharges from wastewater and industrial sites, was strongly negatively correlated with biological stream quality as indicated by macroinvertebrate metrics. Concentration of polycyclic aromatic hydrocarbons (PAHs) in streambed sediment also was negatively correlated with biological stream quality. Individual habitat variables that most commonly were positively correlated with biological indicators included stream sinuosity, buffer length, and substrate cover diversity. Riffle substrate embeddedness and sediment deposition commonly were negatively correlated with favorable metric scores. Statistical analysis indicated that specific conductance, impervious surface area (a measure of urbanization), and stream sinuosity explained 85 percent of the variance in macroinvertebrate communities. Management practices affecting environmental variables that appear to be most important for Johnson County streams include protection of stream corridors, measures that reduce the effects of impervious surfaces associated with urbanization, reduction of dissolved solids in stream water, reduction of PAHs entering streams and
LeBouf, Ryan; Yesse, Liesel; Rossner, Alan
2008-05-01
It is well known that characterization of airborne bioaerosols in indoor environments is a challenge because of inherent irregularity in concentrations, which are influenced by many environmental factors. The primary aim of this study was to quantify the day-to-day variability of airborne fungal levels in a single residential environment over multiple seasons. Indoor air quality practitioners must recognize the inherent variability in airborne bio-aerosol measurements during data analysis of mold investigations. Changes in airborne fungi due to varying season and day is important to recognize when considering health impacts of these contaminants and when establishing effective controls. Using an Andersen N6 impactor, indoor and outdoor bioaerosol samples were collected on malt extract agar plates for 18 weekdays and 19 weekdays in winter and summer, respectively. Interday and intraday variability for the bioaerosols were determined for each sampler. Average fungal concentrations were 26 times higher during the summer months. Day-to-day fungal samples showed a relatively high inconsistency suggesting airborne fungal levels are very episodic and are influenced by several environmental factors. Summer bio-aerosol variability ranged from 7 to 36% and winter variability from 24 to 212%; these should be incorporated into results of indoor mold investigations. The second objective was to observe the relationship between biological and nonbiological particulate matter (PM). No correlation was observed between biological and nonbiological PM. Six side-by-side particulate samplers collected coarse PM (PM10) and fine PM (PM2.5) levels in both seasons. PM2.5 particulate concentrations were found to be statistically higher during summer months. Interday variability observed during this study suggests that indoor air quality practitioners must adjust their exposure assessment strategies to reflect the temporal variability in bioaerosol concentrations.
Berrozpe, Pablo; Lamattina, Daniela; Santini, María Soledad; Araujo, Analía Vanesa; Utgés, María Eugenia; Salomón, Oscar Daniel
2017-10-01
Visceral leishmaniasis (VL) is an endemic disease in northeastern Argentina including the Corrientes province, where the presence of the vector and canine cases of VL were recently confirmed in December 2008. The objective of this study was to assess the modelling of micro- and macro-habitat variables to evaluate the urban environmental suitability for the spatial distribution of Lutzomyia longipalpis presence and abundance in an urban scenario. Sampling of 45 sites distributed throughout Corrientes city (Argentina) was carried out using REDILA-BL minilight traps in December 2013. The sampled specimens were identified according to methods described by Galati (2003). The analysis of variables derived from the processing of satellite images (macro-habitat variables) and from the entomological sampling and surveys (micro-habitat variables) was performed using the statistical software R. Three generalised linear models were constructed composed of micro- and macro-habitat variables to explain the spatial distribution of the abundance of Lu. longipalpis and one composed of micro-habitat variables to explain the occurrence of the vector. A total of 609 phlebotominae belonging to five species were collected, of which 56% were Lu. longipalpis. In addition, the presence of Nyssomyia neivai and Migonemya migonei, which are vectors of tegumentary leishmaniasis, were also documented and represented 34.81% and 6.74% of the collections, respectively. The explanatory variable normalised difference vegetation index (NDVI) described the abundance distribution, whereas the presence of farmyard animals was important for explaining both the abundance and the occurrence of the vector. The results contribute to the identification of variables that can be used to establish priority areas for entomological surveillance and provide an efficient transfer tool for the control and prevention of vector-borne diseases.
Berrozpe, Pablo; Lamattina, Daniela; Santini, María Soledad; Araujo, Analía Vanesa; Utgés, María Eugenia; Salomón, Oscar Daniel
2017-01-01
BACKGROUND Visceral leishmaniasis (VL) is an endemic disease in northeastern Argentina including the Corrientes province, where the presence of the vector and canine cases of VL were recently confirmed in December 2008. OBJECTIVES The objective of this study was to assess the modelling of micro- and macro-habitat variables to evaluate the urban environmental suitability for the spatial distribution of Lutzomyia longipalpis presence and abundance in an urban scenario. METHODS Sampling of 45 sites distributed throughout Corrientes city (Argentina) was carried out using REDILA-BL minilight traps in December 2013. The sampled specimens were identified according to methods described by Galati (2003). The analysis of variables derived from the processing of satellite images (macro-habitat variables) and from the entomological sampling and surveys (micro-habitat variables) was performed using the statistical software R. Three generalised linear models were constructed composed of micro- and macro-habitat variables to explain the spatial distribution of the abundance of Lu. longipalpis and one composed of micro-habitat variables to explain the occurrence of the vector. FINDINGS A total of 609 phlebotominae belonging to five species were collected, of which 56% were Lu. longipalpis. In addition, the presence of Nyssomyia neivai and Migonemya migonei, which are vectors of tegumentary leishmaniasis, were also documented and represented 34.81% and 6.74% of the collections, respectively. The explanatory variable normalised difference vegetation index (NDVI) described the abundance distribution, whereas the presence of farmyard animals was important for explaining both the abundance and the occurrence of the vector. MAIN CONCLUSIONS The results contribute to the identification of variables that can be used to establish priority areas for entomological surveillance and provide an efficient transfer tool for the control and prevention of vector-borne diseases. PMID:28953995
Evaluating and operationalizing an environmental auditing program: a pilot study.
Gordon, Laura; Bruce, Natalie; Suh, Kathryn N; Roth, Virginia
2014-07-01
Environmental auditing is an important tool to ensure consistent and effective cleaning. Our pilot study compared an alcohol-based fluorescent marking product and an adenosine-5'-triphosphate bioluminescence product for use in an environmental auditing program to determine which product was more practical and acceptable to users. Both products were tested on 15 preselected high touch objects in randomly selected patient rooms, following regular daily cleaning. A room was considered a "pass" if ≥80% of surfaces were adequately cleaned as defined by manufacturers' guidelines. A qualitative survey assessed user preference and operational considerations. Using fluorescent marking, 9 of 37 patient rooms evaluated (24%) were considered a "pass" after daily cleaning. Using adenosine-5'-triphosphate bioluminescence, 21 of 37 patient rooms passed (57%). There was great variability in results between different high touch objects. Eighty percent of users preferred the alcohol-based fluorescent marking product because it provided an effective visual aid to coach staff on proper cleaning techniques and allowed simple and consistent application. Environmental auditing using translucent, alcohol-based fluorescent marking best met the requirements of our organization. Our results reinforce the importance of involving a multidisciplinary team in evaluating and operationalizing an environmental auditing program. Copyright © 2014 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiong, Wei; Balkovic, Juraj; van der Velde, M.
Crop models are increasingly used to assess impacts of climate change/variability and management practices on productivity and environmental performance of alternative cropping systems. Calibration is an important procedure to improve reliability of model simulations, especially for large area applications. However, global-scale crop model calibration has rarely been exercised due to limited data availability and expensive computing cost. Here we present a simple approach to calibrate Environmental Policy Integrated Climate (EPIC) model for a global implementation of rice. We identify four parameters (potential heat unit – PHU, planting density – PD, harvest index – HI, and biomass energy ratio – BER)more » and calibrate them regionally to capture the spatial pattern of reported rice yield in 2000. Model performance is assessed by comparing simulated outputs with independent FAO national data. The comparison demonstrates that the global calibration scheme performs satisfactorily in reproducing the spatial pattern of rice yield, particularly in main rice production areas. Spatial agreement increases substantially when more parameters are selected and calibrated, but with varying efficiencies. Among the parameters, PHU and HI exhibit the highest efficiencies in increasing the spatial agreement. Simulations with different calibration strategies generate a pronounced discrepancy of 5–35% in mean yields across latitude bands, and a small to moderate difference in estimated yield variability and yield changing trend for the period of 1981–2000. Present calibration has little effects in improving simulated yield variability and trends at both regional and global levels, suggesting further works are needed to reproduce temporal variability of reported yields. This study highlights the importance of crop models’ calibration, and presents the possibility of a transparent and consistent up scaling approach for global crop simulations given current availability of global databases of weather, soil, crop calendar, fertilizer and irrigation management information, and reported yield.« less
NASA Astrophysics Data System (ADS)
Ochoa, C. G.; Tidwell, V. C.
2012-12-01
In the arid southwestern United States community water management systems have adapted to cope with climate variability and with socio-cultural and economic changes that have occurred since the establishment of these systems more than 300 years ago. In New Mexico, the community-based irrigation systems were established by Spanish settlers and have endured climate variability in the form of low levels of precipitation and have prevailed over important socio-political changes including the transfer of territory between Spain and Mexico, and between Mexico and the United States. Because of their inherent nature of integrating land and water use with society involvement these community-based systems have multiple and complex economic, ecological, and cultural interactions. Current urban population growth and more variable climate conditions are adding pressure to the survival of these systems. We are conducting a multi-disciplinary research project that focuses on characterizing these intrinsically complex human and natural interactions in three community-based irrigation systems in northern New Mexico. We are using a system dynamics approach to integrate different hydrological, ecological, socio-cultural and economic aspects of these three irrigation systems. Coupled with intensive field data collection, we are building a system dynamics model that will enable us to simulate important linkages and interactions between environmental and human elements occurring in each of these water management systems. We will test different climate variability and population growth scenarios and the expectation is that we will be able to identify critical tipping points of these systems. Results from this model can be used to inform policy recommendations relevant to the environment and to urban and agricultural land use planning in the arid southwestern United States.
Bian, Zhong Hua; Yang, Qi Chang; Liu, Wen Ke
2015-03-30
Phytochemicals in vegetables are important for human health, and their biosynthesis, metabolism and accumulation are affected by environmental factors. Light condition (light quality, light intensity and photoperiod) is one of the most important environmental variables in regulating vegetable growth, development and phytochemical accumulation, particularly for vegetables produced in controlled environments. With the development of light-emitting diode (LED) technology, the regulation of light environments has become increasingly feasible for the provision of ideal light quality, intensity and photoperiod for protected facilities. In this review, the effects of light quality regulation on phytochemical accumulation in vegetables produced in controlled environments are identified, highlighting the research progress and advantages of LED technology as a light environment regulation tool for modifying phytochemical accumulation in vegetables. © 2014 Society of Chemical Industry.
Li, Yangfan; Li, Yi; Wu, Wei
2016-01-01
The concept of thresholds shows important implications for environmental and resource management. Here we derived potential landscape thresholds which indicated abrupt changes in water quality or the dividing points between exceeding and failing to meet national surface water quality standards for a rapidly urbanizing city on the Eastern Coast in China. The analysis of landscape thresholds was based on regression models linking each of the seven water quality variables to each of the six landscape metrics for this coupled land-water system. We found substantial and accelerating urban sprawl at the suburban areas between 2000 and 2008, and detected significant nonlinear relations between water quality and landscape pattern. This research demonstrated that a simple modeling technique could provide insights on environmental thresholds to support more-informed decision making in land use, water environmental and resilience management. Copyright © 2015 Elsevier Ltd. All rights reserved.
Geoffrey H. Donovan; John Mills
2014-01-01
Many cities have policies encouraging homeowners to plant trees. For these policies to be effective, it is important to understand what motivates a homeownerâs tree-planting decision. Researchers address this question by identifying variables that influence participation in a tree-planting program in Portland, Oregon, U.S. According to the study, homeowners with street...
Robert J. Huggett
2000-01-01
Kepone, decachlorooctahydro-l, 3, 4-metheno-2H-cyclobuta (cd) pentalen-2-one, is a known mammalian carcinogen. From at least 1967 to 1975 when production stopped, it contaminated the Chesapeake Bay. Action levels for kepone in seafood were established by the U.S. Environmental Protection Agency, and various species of finfish, oysters, Crassostrea virginica...
I feel you-monitoring environmental variables related to asthma in an integrated real-time frame.
Berenguer, Anabela Gonçalves
2015-09-11
The study of asthma and other complex diseases has proven to be a "moving target" for researchers due to its complex aetiology, difficulty in definition, and immeasurable environmental effects. A large number of studies regarding the contribution of both genetic and environmental factors often result in contradictory results, in part due to the highly heterogeneous nature of asthma. Recent literature has focused on the epigenetic signatures of asthma caused by environmental factors, highlighting the importance of environment. However, unlike the genetic techniques, environmental assessment still lacks accuracy. A plausible solution for this problem would be an individual-based environmental exposure assessment, relying on new technologies such as personal real-time environmental sensors. This could prove to enable the assessment of the whole environmental exposure-or exposome-matching in terms of precision the genome that is emphasized in most studies so far. In addition, the measurement of the whole array of biological molecules, in response to the environment action, could help understand the context of the disease. The current perspective comprises a beyond-genetics integrated vision of omics technology coupled with real-time environmental measures targeting to enhance our comprehension of the disease genesis.
Mert, Mehmet; Bölük, Gülden
2016-11-01
This study examines the impact of foreign direct investment (FDI) and the potential of renewable energy consumption on carbon dioxide (CO 2 ) emissions in 21 Kyoto countries using an unbalanced panel data. For this purpose, Environmental Kuznets Curve (EKC) hypothesis was tested using panel cointegration analysis. Panel causality tests show that there are significant long-run causalities from the variables to carbon emissions, renewable energy consumption, fossil fuel energy consumption and inflow foreign direct investments. The results of our model support the pollution haloes hypothesis which states that FDI brings in clean technology and improves the environmental standards. However, an inverted U-shaped relationship (EKC) was not supported by the estimated model for the 21 Kyoto countries. This means that economic growth cannot ensure environmental protection itself or environmental goals cannot await economic growth. Another important finding is that renewable energy consumption decreases carbon emissions. Based on the empirical results, some important policy implications emerge. Kyoto countries should stimulate the FDI inflows and usage of renewable energy consumption to mitigate the air pollution and meet the emission targets. This paper provides new insights into environment and energy policies through FDI inclusion.
Ordonez, Alejandro; Svenning, Jens-Christian
2017-02-23
Current and historical environmental conditions are known to determine jointly contemporary species distributions and richness patterns. However, whether historical dynamics in species distributions and richness translate to functional diversity patterns remains, for the most part, unknown. The geographic patterns of plant functional space size (richness) and packing (dispersion) for six widely distributed orders of European angiosperms were estimated using atlas distribution data and trait information. Then the relative importance of late-Quaternary glacial-interglacial climate change and contemporary environmental factors (climate, productivity, and topography) as determinants of functional diversity of evaluated orders was assesed. Functional diversity patterns of all evaluated orders exhibited prominent glacial-interglacial climate change imprints, complementing the influence of contemporary environmental conditions. The importance of Quaternary glacial-interglacial climate change factors was comparable to that of contemporary environmental factors across evaluated orders. Therefore, high long-term paleoclimate variability has imposed consistent supplementary constraints on functional diversity of multiple plant groups, a legacy that may permeate to ecosystem functioning and resilience. These findings suggest that strong near-future anthropogenic climate change may elicit long-term functional disequilibria in plant functional diversity.
Intraspecific variability and reaction norms of forest understory plant species traits
Burton, Julia I.; Perakis, Steven; McKenzie, Sean C.; Lawrence, Caitlin E.; Puettmann, Klaus J.
2017-01-01
Trait-based models of ecological communities typically assume intraspecific variation in functional traits is not important, though such variation can change species trait rankings along gradients in resources and environmental conditions, and thus influence community structure and function.We examined the degree of intraspecific relative to interspecific variation, and reaction norms of 11 functional traits for 57 forest understory plant species, including: intrinsic water-use efficiency (iWUE), Δ15N, 5 leaf traits, 2 stem traits and 2 root traits along gradients in light, nitrogen, moisture and understory cover.Our results indicate that interspecific trait variation exceeded intraspecific variation by at least 50% for most, but not all traits. Intraspecific variation in Δ15N, iWUE, leaf nitrogen content and root traits was high (47-70%) compared with most leaf traits and stem traits (13-38%).Δ15N varied primarily along gradients in abiotic conditions, while light and understory cover were relatively less important. iWUE was related primarily to light transmission, reflecting increases in photosynthesis relative to stomatal conductance. Leaf traits varied mainly as a function of light availability, with some reaction norms depending on understory cover. Plant height increased with understory cover, while stem specific density was related primarily to light. Resources, environmental conditions and understory cover did not contribute strongly to the observed variation in root traits.Gradients in resources, environmental conditions and competition all appear to control intraspecific variability in most traits to some extent. However, our results suggest that species cross-over (i.e., trait rank reversals) along the gradients measured here are generally not a concern.Intraspecific variability in understory plant species traits can be considerable. However, trait data collected under a narrow range of environmental conditions appears sufficient to establish species rankings and scale between community and ecosystem levels using trait-based models. Investigators may therefore focus on obtaining a sufficient sample size within a single set of conditions rather than characterizing trait variation across entire gradients in order to optimize sampling efforts.
Sparse modeling of spatial environmental variables associated with asthma
Chang, Timothy S.; Gangnon, Ronald E.; Page, C. David; Buckingham, William R.; Tandias, Aman; Cowan, Kelly J.; Tomasallo, Carrie D.; Arndt, Brian G.; Hanrahan, Lawrence P.; Guilbert, Theresa W.
2014-01-01
Geographically distributed environmental factors influence the burden of diseases such as asthma. Our objective was to identify sparse environmental variables associated with asthma diagnosis gathered from a large electronic health record (EHR) dataset while controlling for spatial variation. An EHR dataset from the University of Wisconsin’s Family Medicine, Internal Medicine and Pediatrics Departments was obtained for 199,220 patients aged 5–50 years over a three-year period. Each patient’s home address was geocoded to one of 3,456 geographic census block groups. Over one thousand block group variables were obtained from a commercial database. We developed a Sparse Spatial Environmental Analysis (SASEA). Using this method, the environmental variables were first dimensionally reduced with sparse principal component analysis. Logistic thin plate regression spline modeling was then used to identify block group variables associated with asthma from sparse principal components. The addresses of patients from the EHR dataset were distributed throughout the majority of Wisconsin’s geography. Logistic thin plate regression spline modeling captured spatial variation of asthma. Four sparse principal components identified via model selection consisted of food at home, dog ownership, household size, and disposable income variables. In rural areas, dog ownership and renter occupied housing units from significant sparse principal components were associated with asthma. Our main contribution is the incorporation of sparsity in spatial modeling. SASEA sequentially added sparse principal components to Logistic thin plate regression spline modeling. This method allowed association of geographically distributed environmental factors with asthma using EHR and environmental datasets. SASEA can be applied to other diseases with environmental risk factors. PMID:25533437
Sparse modeling of spatial environmental variables associated with asthma.
Chang, Timothy S; Gangnon, Ronald E; David Page, C; Buckingham, William R; Tandias, Aman; Cowan, Kelly J; Tomasallo, Carrie D; Arndt, Brian G; Hanrahan, Lawrence P; Guilbert, Theresa W
2015-02-01
Geographically distributed environmental factors influence the burden of diseases such as asthma. Our objective was to identify sparse environmental variables associated with asthma diagnosis gathered from a large electronic health record (EHR) dataset while controlling for spatial variation. An EHR dataset from the University of Wisconsin's Family Medicine, Internal Medicine and Pediatrics Departments was obtained for 199,220 patients aged 5-50years over a three-year period. Each patient's home address was geocoded to one of 3456 geographic census block groups. Over one thousand block group variables were obtained from a commercial database. We developed a Sparse Spatial Environmental Analysis (SASEA). Using this method, the environmental variables were first dimensionally reduced with sparse principal component analysis. Logistic thin plate regression spline modeling was then used to identify block group variables associated with asthma from sparse principal components. The addresses of patients from the EHR dataset were distributed throughout the majority of Wisconsin's geography. Logistic thin plate regression spline modeling captured spatial variation of asthma. Four sparse principal components identified via model selection consisted of food at home, dog ownership, household size, and disposable income variables. In rural areas, dog ownership and renter occupied housing units from significant sparse principal components were associated with asthma. Our main contribution is the incorporation of sparsity in spatial modeling. SASEA sequentially added sparse principal components to Logistic thin plate regression spline modeling. This method allowed association of geographically distributed environmental factors with asthma using EHR and environmental datasets. SASEA can be applied to other diseases with environmental risk factors. Copyright © 2014 Elsevier Inc. All rights reserved.
Teo, Steven L. H.; Block, Barbara A.
2010-01-01
Directed fishing effort for Atlantic bluefin tuna in the Gulf of Mexico (GOM), their primary spawning grounds in the western Atlantic, has been prohibited since the 1980s due to a precipitous decline of the spawning stock biomass. However, pelagic longlines targeted at other species, primarily yellowfin tuna and swordfish, continue to catch Atlantic bluefin tuna in the GOM as bycatch. Spatial and temporal management measures minimizing bluefin tuna bycatch in the GOM will likely become important in rebuilding the western Atlantic bluefin stock. In order to help inform management policy and understand the relative distribution of target and bycatch species in the GOM, we compared the spatiotemporal variability and environmental influences on the catch per unit effort (CPUE) of yellowfin (target) and bluefin tuna (bycatch). Catch and effort data from pelagic longline fisheries observers (1993–2005) and scientific tagging cruises (1998–2002) were coupled with environmental and biological data. Negative binomial models were used to fit the data for both species and Akaike's Information Criterion (corrected for small sample size) was used to determine the best model. Our results indicate that bluefin CPUE had higher spatiotemporal variability as compared to yellowfin CPUE. Bluefin CPUE increased substantially during the breeding months (March-June) and peaked in April and May, while yellowfin CPUE remained relatively high throughout the year. In addition, bluefin CPUE was significantly higher in areas with negative sea surface height anomalies and cooler sea surface temperatures, which are characteristic of mesoscale cyclonic eddies. In contrast, yellowfin CPUE was less sensitive to environmental variability. These differences in seasonal variability and sensitivity to environmental influences suggest that bluefin tuna bycatch in the GOM can be reduced substantially by managing the spatial and temporal distribution of the pelagic longline effort without substantially impacting yellowfin tuna catches. PMID:20526356
Variation in response to drugs: Part II. Environmental and nutritional variables.
Fraser, H S; Tibbits, R C
1983-06-01
The importance of environmental factors for drug metabolism has recently been established. This paper reviews the major environmental and nutritional sources of variation in drug response. Environmental variables examined include drug interactions, alcohol, cigarette smoking, marijuana, other socially used drugs, steroid oral contraceptives (OCs), and agricultural industrial contaminants. Drug-drug interactions act chiefly by induction or inhibition of the microsomal metabolizing enzyme system. The effect of alcohol on the metabolism of other drugs depends on the drug, the dose of alcohol, the duration of exposure, and possibly diet and the presence of disease. Cigarette smoke affects the biotransformation of several drugs, and smokers often require higher doses of oxidized drugs. An additive effect of cigarette smoke and marijuana has been observed, resulting in the halving of the half-life of some drugs. Caffeine may serve as a competitive inhibitor of microsomal enzymes. Chemical pollutants such as chlorinated and polycyclic hydrocarbons can alter the hepatic drug metabolizing enzyme activity. The nutritional variables examined include malnutrition, anemia, vegetarian diets, dietary contaminants, and specific microconstituents of diet. Total dietary protein has a more critical effect on drug metabolism than fat or carbohydrate. These findings indicate that many factors in each patient are capable of altering drug response. Assessment of these variables permits more rational prescribing practices. For example, most patients over age 70 or vegetarian OC users require half the usual dosage of most drugs, whereas smokers and industrial workers require higher than recommended doses. Plasma measurements are of value in such assessments. Developing countries are advised to encourage rational use of a restricted number of drugs through an understanding of the sources of variation in drug response. This requires communication between clinical pharmacologists, other clinicians, pharmacists, government agencies, and patients. A prescriber's formulary tailored to local needs is an essential component of any plan to improve drug therapy.
A Theoretical Approach for Selecting Elementary School Environmental Variables.
ERIC Educational Resources Information Center
Sinclair, Robert L.
To determine specific environmental variables of the elementary school is the purpose of this study. Stable characteristics of intelligence and achievement were selected because they were considered useful for generating salient environmental counterparts likely to exist in elementary institutions. Achievement motivation, language development, and…