Science.gov

Sample records for important geologic process

  1. Impact process: an important geological phenomenon.

    PubMed

    Skala, R

    1996-01-01

    The impact process was for a long period of time, even after a wider acceptance among the geological community, considered to be a marginal phenomenon in the Earth sciences. The first decade or two have showed an importance of the process itself and consequent events only too clearly. The present paper is a review describing the history and development of the impact hypothesis, structure and origin of impact craters, influence of huge impacts on the living environment and other aspects of the impact process from the point of view of geology s.l.

  2. Geological processes and evolution

    USGS Publications Warehouse

    Head, J.W.; Greeley, R.; Golombek, M.P.; Hartmann, W.K.; Hauber, E.; Jaumann, R.; Masson, P.; Neukum, G.; Nyquist, L.E.; Carr, M.H.

    2001-01-01

    Geological mapping and establishment of stratigraphic relationships provides an overview of geological processes operating on Mars and how they have varied in time and space. Impact craters and basins shaped the crust in earliest history and as their importance declined, evidence of extensive regional volcanism emerged during the Late Noachian. Regional volcanism characterized the Early Hesperian and subsequent to that time, volcanism was largely centered at Tharsis and Elysium, continuing until the recent geological past. The Tharsis region appears to have been largely constructed by the Late Noachian, and represents a series of tectonic and volcanic centers. Globally distributed structural features representing contraction characterize the middle Hesperian. Water-related processes involve the formation of valley networks in the Late Noachian and into the Hesperian, an ice sheet at the south pole in the middle Hesperian, and outflow channels and possible standing bodies of water in the northern lowlands in the Late Hesperian and into the Amazonian. A significant part of the present water budget occurs in the present geologically young polar layered terrains. In order to establish more firmly rates of processes, we stress the need to improve the calibration of the absolute timescale, which today is based on crater count systems with substantial uncertainties, along with a sampling of rocks of unknown provenance. Sample return from carefully chosen stratigraphic units could calibrate the existing timescale and vastly improve our knowledge of Martian evolution.

  3. Geological Processes and Evolution

    NASA Astrophysics Data System (ADS)

    Head, J. W.; Greeley, R.; Golombek, M. P.; Hartmann, W. K.; Hauber, E.; Jaumann, R.; Masson, P.; Neukum, G.; Nyquist, L. E.; Carr, M. H.

    2001-04-01

    Geological mapping and establishment of stratigraphic relationships provides an overview of geological processes operating on Mars and how they have varied in time and space. Impact craters and basins shaped the crust in earliest history and as their importance declined, evidence of extensive regional volcanism emerged during the Late Noachian. Regional volcanism characterized the Early Hesperian and subsequent to that time, volcanism was largely centered at Tharsis and Elysium, continuing until the recent geological past. The Tharsis region appears to have been largely constructed by the Late Noachian, and represents a series of tectonic and volcanic centers. Globally distributed structural features representing contraction characterize the middle Hesperian. Water-related processes involve the formation of valley networks in the Late Noachian and into the Hesperian, an ice sheet at the south pole in the middle Hesperian, and outflow channels and possible standing bodies of water in the northern lowlands in the Late Hesperian and into the Amazonian. A significant part of the present water budget occurs in the present geologically young polar layered terrains. In order to establish more firmly rates of processes, we stress the need to improve the calibration of the absolute timescale, which today is based on crater count systems with substantial uncertainties, along with a sampling of rocks of unknown provenance. Sample return from carefully chosen stratigraphic units could calibrate the existing timescale and vastly improve our knowledge of Martian evolution.

  4. Field Geology/Processes

    NASA Technical Reports Server (NTRS)

    Allen, Carlton; Jakes, Petr; Jaumann, Ralf; Marshall, John; Moses, Stewart; Ryder, Graham; Saunders, Stephen; Singer, Robert

    1996-01-01

    The field geology/process group examined the basic operations of a terrestrial field geologist and the manner in which these operations could be transferred to a planetary lander. Four basic requirements for robotic field geology were determined: geologic content; surface vision; mobility; and manipulation. Geologic content requires a combination of orbital and descent imaging. Surface vision requirements include range, resolution, stereo, and multispectral imaging. The minimum mobility for useful field geology depends on the scale of orbital imagery. Manipulation requirements include exposing unweathered surfaces, screening samples, and bringing samples in contact with analytical instruments. To support these requirements, several advanced capabilities for future development are recommended. Capabilities include near-infrared reflectance spectroscopy, hyper-spectral imaging, multispectral microscopy, artificial intelligence in support of imaging, x ray diffraction, x ray fluorescence, and rock chipping.

  5. The importance of both geological and pedological processes in control of grain size and sedimentation rates in Peoria Loess

    USGS Publications Warehouse

    Wang, Hongfang; Mason, J.A.; Balsam, W.L.

    2006-01-01

    The loess-paleosol succession in the Peoria Loess in southern Illinois is characterized as alternating loess layers and weathering bands, known as paleosol A horizons. The fast loess accumulation during the late Wisconsin glaciation interacted with the incipient pedogenesis and caused unclear boundaries of loess-paleosol alternations in soil horizonation and mineralogy. Parameters of grain size distribution, sedimentation rate, matrix carbonate content and diffuse reflectance (i.e. soil colors and iron oxides) are used in this paper to discuss the geological and pedological influences for the Peoria Loess in Keller Farm section in southern Illinois. The multi-proxy analysis revealed that many paleosol A horizons, defined by the diffuse reflectance variability, contain finer-grained materials with a relatively higher sedimentation rate. It suggests that glaciofluvial sediments were available in the source areas for uploading eolian dust during the temporary ice sheet retreats. The denser vegetation and wetter surface soils on the loess deposit area could increase the dust trapping efficiency and caused a greater accumulation rate of loess deposits. The coarser-grained materials and slower sedimentation rate are often found in loess layers. It suggests that strong surface winds transported the coarser-grained materials from local dust sources and sparse vegetation and dry surface soils reduced the dust trapping efficiency during the ice sheet readvance. The strong interactions between the geological and pedological processes played an important role on the loess-paleosol alternations in southern Illinois during the late Wisconsin glaciation. ?? 2006 Elsevier B.V. All rights reserved.

  6. Planetary geological processes

    NASA Astrophysics Data System (ADS)

    Lopes, Rosaly M. C.; Solomonidou, Anezina

    2014-11-01

    In this introduction to planetary geology, we review the major geologic processes affecting the solid bodies of the solar system, namely volcanism, tectonism, impact cratering, and erosion. We illustrate the interplay of these processes in different worlds, briefly reviewing how they affect the surfaces of the Earth's Moon, Mercury, Venus and Mars, then focusing on two very different worlds: Jupiter's moon Io, the most volcanically active object in the solar system, and Saturn's moon Titan, where the interaction between a dense atmosphere and the surface make for remarkably earth-like landscapes despite the great differences in surface temperature and composition.

  7. Titan's global geologic processes

    NASA Astrophysics Data System (ADS)

    Malaska, Michael; Lopes, Rosaly M. C.; Schoenfeld, Ashley; Birch, Samuel; Hayes, Alexander; Williams, David A.; Solomonidou, Anezina; Janssen, Michael A.; Le Gall, Alice; Soderblom, Jason M.; Neish, Catherine; Turtle, Elizabeth P.; Cassini RADAR Team

    2016-10-01

    We have mapped the Cassini SAR imaged areas of Saturn's moon Titan in order to determine the geological properties that modify the surface [1]. We used the SAR dataset for mapping, but incorporated data from radiometry, VIMS, ISS, and SARTopo for terrain unit determination. This work extends our analyses of the mid-latitude/equatorial Afekan Crater region [2] and in the southern and northern polar regions [3]. We placed Titan terrains into six broad terrain classes: craters, mountain/hummocky, labyrinth, plains, dunes, and lakes. We also extended the fluvial mapping done by Burr et al. [4], and defined areas as potential cryovolcanic features [5]. We found that hummocky/mountainous and labyrinth areas are the oldest units on Titan, and that lakes and dunes are among the youngest. Plains units are the largest unit in terms of surface area, followed by the dunes unit. Radiometry data suggest that most of Titan's surface is covered in high-emissivity materials, consistent with organic materials, with only minor exposures of low-emissivity materials that are consistent with water ice, primarily in the mountain and hummocky areas and crater rims and ejecta [6, 7]. From examination of terrain orientation, we find that landscape evolution in the mid-latitude and equatorial regions is driven by aeolian processes, while polar landscapes are shaped by fluvial, lacrustine, and possibly dissolution or volatilization processes involving cycling organic materials [3, 8]. Although important in deciphering Titan's terrain evolution, impact processes play a very minor role in the modification of Titan's landscape [9]. We find no evidence for large-scale aqueous cryovolcanic deposits.References: [1] Lopes, R.M.C. et al. (2010) Icarus, 205, 540–558. [2] Malaska, M.J. et al. (2016) Icarus, 270, 130–161. [3] Birch et al., in revision. [4] Burr et al. (2013) GSA Bulletin 125, 299–321. [5] Lopes et al. JGR: Planets, 118, 1–20. [6] Janssen et al., (2009) Icarus, 200, 222–239. [7

  8. Important geological properties of unconventional resource shales

    NASA Astrophysics Data System (ADS)

    Slatt, Roger M.

    2011-12-01

    The revelation of vast global quantities of potentially productive gas and oil-prone shales has led to advancements in understanding important geological properties which impact reservoir performance. Based upon research on a variety of shales, several geological properties have been recognized as being common and important to hydrocarbon production. (1) transport/depositional processes include hemipelagic `rain', hyperpycnal flows, turbidity current flows, tempestites, wave-reworking, and contour currents in both shallow and deep water settings. (2) Common shale minerals include clays, quartz, calcite, dolomite, apatite, and pyrite; organic constituents include spores ( Tasmanites), plant remains, biogenic quartz and calcite, and arenaceous foraminifera. (3) Porosity and permeability are characteristically low with pore sizes ranging down to the nanoscale. Main pore types include intergranular (including pores within clay floccules), porous organic matter, porous fecal pellets, and microfractures. (4) Important geochemical characteristics include organic richness (>3%), maturity (>1.1%Ro for shale gas and 0.6-0.9% for shale oil) and type (I-IV), in addition to certain biomarkers which are indicators of bottom water oxicity during deposition. Remaining hydrocarbon potential [RHP = (S1 + S2)/TOC] also reflects temporal environmental changes. `Isotopic reversals' can be used to detect best producing areas in shale-gas plays. (5) Lithofacies stacking patterns and sequence stratigraphy are the result of eustatic depositional history. A general sequence stratigraphic model is presented here that highlights this commonality. (6) Geomechanical properties are key to drilling, fracturing and production of hydrocarbons. Brittle-ductile couplets at several scales occur in shale sequences. (7) Geophysical properties, when calibrated to rock properties, provide a means of regionally to locally mapping the aforementioned properties. (8) Economic and societal considerations in

  9. Important geological properties of unconventional resource shales

    NASA Astrophysics Data System (ADS)

    Slatt, Roger

    2011-12-01

    The revelation of vast global quantities of potentially productive gas and oil-prone shales has led to advancements in understanding important geological properties which impact reservoir performance. Based upon research on a variety of shales, several geological properties have been recognized as being common and important to hydrocarbon production. (1) transport/depositional processes include hemipelagic `rain', hyperpycnal flows, turbidity current flows, tempestites, wave-reworking, and contour currents in both shallow and deep water settings. (2) Common shale minerals include clays, quartz, calcite, dolomite, apatite, and pyrite; organic constituents include spores (Tasmanites), plant remains, biogenic quartz and calcite, and arenaceous foraminifera. (3) Porosity and permeability are characteristically low with pore sizes ranging down to the nanoscale. Main pore types include intergranular (including pores within clay floccules), porous organic matter, porous fecal pellets, and microfractures. (4) Important geochemical characteristics include organic richness (>3%), maturity (>1.1%Ro for shale gas and 0.6-0.9% for shale oil) and type (I-IV), in addition to certain biomarkers which are indicators of bottom water oxicity during deposition. Remaining hydrocarbon potential [RHP = (S1 + S2)/TOC] also reflects temporal environmental changes. `Isotopic reversals' can be used to detect best producing areas in shale-gas plays. (5) Lithofacies stacking patterns and sequence stratigraphy are the result of eustatic depositional history. A general sequence stratigraphic model is presented here that highlights this commonality. (6) Geomechanical properties are key to drilling, fracturing and production of hydrocarbons. Brittle-ductile couplets at several scales occur in shale sequences. (7) Geophysical properties, when calibrated to rock properties, provide a means of regionally to locally mapping the aforementioned properties. (8) Economic and societal considerations in the

  10. Processes of Geology

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Released 16 July 2003

    This THEMIS visible image captures a complex process of deposition, burial and exhumation. The crater ejecta in the top of the image is in the form of flow lobes, indicating that the crater was formed in volatile-rich terrain. While a radial pattern can be seen in the ejecta, the pattern is sharper in the lower half of the ejecta. This is because the top half of the ejecta is still buried by a thin layer of sediment. It is most likely that at one time the entire area was covered. Wind, and perhaps water erosion have started to remove this layer, once again exposing the what was present underneath.

    Image information: VIS instrument. Latitude -34.3, Longitude 181.2 East (178.8 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  11. Hydromechanical coupling in geologic processes

    USGS Publications Warehouse

    Neuzil, C.E.

    2003-01-01

    Earth's porous crust and the fluids within it are intimately linked through their mechanical effects on each other. This paper presents an overview of such "hydromechanical" coupling and examines current understanding of its role in geologic processes. An outline of the theory of hydromechanics and rheological models for geologic deformation is included to place various analytical approaches in proper context and to provide an introduction to this broad topic for nonspecialists. Effects of hydromechanical coupling are ubiquitous in geology, and can be local and short-lived or regional and very long-lived. Phenomena such as deposition and erosion, tectonism, seismicity, earth tides, and barometric loading produce strains that tend to alter fluid pressure. Resulting pressure perturbations can be dramatic, and many so-called "anomalous" pressures appear to have been created in this manner. The effects of fluid pressure on crustal mechanics are also profound. Geologic media deform and fail largely in response to effective stress, or total stress minus fluid pressure. As a result, fluid pressures control compaction, decompaction, and other types of deformation, as well as jointing, shear failure, and shear slippage, including events that generate earthquakes. By controlling deformation and failure, fluid pressures also regulate states of stress in the upper crust. Advances in the last 80 years, including theories of consolidation, transient groundwater flow, and poroelasticity, have been synthesized into a reasonably complete conceptual framework for understanding and describing hydromechanical coupling. Full coupling in two or three dimensions is described using force balance equations for deformation coupled with a mass conservation equation for fluid flow. Fully coupled analyses allow hypothesis testing and conceptual model development. However, rigorous application of full coupling is often difficult because (1) the rheological behavior of geologic media is complex

  12. Proglacial lakes: character, behaviour and geological importance

    NASA Astrophysics Data System (ADS)

    Carrivick, Jonathan L.; Tweed, Fiona S.

    2013-10-01

    Proglacial lakes are ubiquitous within the Quaternary record and can provide exceptional breadth and depth of palaeoenvironmental information. Present deglaciation is increasing the number and size of proglacial lakes around the world. This study provides a synthesis of knowledge on proglacial lake character and behaviour and critically evaluates the importance of proglacial lakes from a geological perspective. We show how ‘ice-marginal' or ‘ice-contact' lakes and other distal proglacial lakes can be distinguished from each other by geomorphological, sedimentological, chemical and biological characteristics. The key controls on proglacial lake geomorphology and sedimentology are outlined and discussed. Proglacial lakes can exacerbate mountain glacier and ice sheet margin ablation via mechanical and thermal stresses, but very large lakes can moderate summer air temperatures and relatively retard summer ice ablation. Proglacial lakes interrupt meltwater flux and are very efficient sediment traps. Hydrological routing and consequent geomorphological activity can be radically modified by sudden drainage of proglacial lakes and resultant glacial lake outburst floods; exceptionally large proglacial lake drainages affected global ocean circulation and global climate during the Quaternary. Overall, analyses of proglacial lakes can provide a valuable insight into (i) patterns, character and behaviour of mountain glaciers, ice sheets and glaciations, and (ii) the impacts of past, present and future deglaciation.

  13. Health benefits of geologic materials and geologic processes

    USGS Publications Warehouse

    Finkelman, R.B.

    2006-01-01

    The reemerging field of Medical Geology is concerned with the impacts of geologic materials and geologic processes on animal and human health. Most medical geology research has been focused on health problems caused by excess or deficiency of trace elements, exposure to ambient dust, and on other geologically related health problems or health problems for which geoscience tools, techniques, or databases could be applied. Little, if any, attention has been focused on the beneficial health effects of rocks, minerals, and geologic processes. These beneficial effects may have been recognized as long as two million years ago and include emotional, mental, and physical health benefits. Some of the earliest known medicines were derived from rocks and minerals. For thousands of years various clays have been used as an antidote for poisons. "Terra sigillata," still in use today, may have been the first patented medicine. Many trace elements, rocks, and minerals are used today in a wide variety of pharmaceuticals and health care products. There is also a segment of society that believes in the curative and preventative properties of crystals (talismans and amulets). Metals and trace elements are being used in some of today's most sophisticated medical applications. Other recent examples of beneficial effects of geologic materials and processes include epidemiological studies in Japan that have identified a wide range of health problems (such as muscle and joint pain, hemorrhoids, burns, gout, etc.) that may be treated by one or more of nine chemically distinct types of hot springs, and a study in China indicating that residential coal combustion may be mobilizing sufficient iodine to prevent iodine deficiency disease. ?? 2006 MDPI. All rights reserved.

  14. Health benefits of geologic materials and geologic processes.

    PubMed

    Finkelman, Robert B

    2006-12-01

    The reemerging field of Medical Geology is concerned with the impacts of geologic materials and geologic processes on animal and human health. Most medical geology research has been focused on health problems caused by excess or deficiency of trace elements, exposure to ambient dust, and on other geologically related health problems or health problems for which geoscience tools, techniques, or databases could be applied. Little, if any, attention has been focused on the beneficial health effects of rocks, minerals, and geologic processes. These beneficial effects may have been recognized as long as two million years ago and include emotional, mental, and physical health benefits. Some of the earliest known medicines were derived from rocks and minerals. For thousands of years various clays have been used as an antidote for poisons. "Terra sigillata," still in use today, may have been the first patented medicine. Many trace elements, rocks, and minerals are used today in a wide variety of pharmaceuticals and health care products. There is also a segment of society that believes in the curative and preventative properties of crystals (talismans and amulets). Metals and trace elements are being used in some of today's most sophisticated medical applications. Other recent examples of beneficial effects of geologic materials and processes include epidemiological studies in Japan that have identified a wide range of health problems (such as muscle and joint pain, hemorrhoids, burns, gout, etc.) that may be treated by one or more of nine chemically distinct types of hot springs, and a study in China indicating that residential coal combustion may be mobilizing sufficient iodine to prevent iodine deficiency disease. PMID:17159275

  15. Understanding Mars: The Geologic Importance of Returned Samples

    NASA Astrophysics Data System (ADS)

    Christensen, P. R.

    2011-12-01

    Our current scientific understanding of Mars has been established through a systematic sequence of missions, beginning 45 years ago with flybys, and followed by reconnaissance from orbiters and landers, detailed mapping from highly sophisticated orbiters, and, most recently, rovers that are capable of true geologic and geochemical exploration. The past fifteen years of intense exploration has revolutionized our knowledge and understanding of Mars, changing our view of Mars from a cold, dry planet in which the activity occurred billions of years ago, to one with an extensive inventory of near-surface snow and ice, recently-active aqueous processes, and a remarkable diversity of aqueous environments that show evidence for major differences in aqueous chemistry, conditions, and processes. The bulk of this knowledge has come from the analysis of global remote sensing data, which have provided elemental and mineralogic composition maps, morphology at sub-meter resolution, and information on the physical properties of the regolith. While these remote data sets provide a wealth of insight into past and present surface process, they are limited in the detection of potentially important minor phases, and cannot provide details at spatial scales that are often necessary to understand the details of formation mechanisms. The MER rovers demonstrated the tremendous utility of in situ investigations to ground truth the global remote sensing, and in many cases confirmed the discoveries from orbit. However, even in situ observations are limited, with severe restrictions on the set of experiments that can be performed because of the difficulty of miniaturizing state-of-the-art analytical tools within limited rover payload capacity. The recently published NRC Planetary Science Decadal Survey Report placed pursuing the questions of habitability and the potential origin and evolution of life on Mars as the highest priority Mars science goal. Among the key questions to be studied are

  16. Geologic Landforms and Processes on Icy Satellites

    NASA Technical Reports Server (NTRS)

    Schenk, Paul M.; Moore, Jeffrey M.

    1998-01-01

    During the first reconaissence of the satellites of the outer solar system conducted by the Voyager missions (1979-1989), a surprising diversity of unusual geologic landforms were observed, in some cases with bewildering complexity (e.g., Triton). Impact features were certainly expected but the variety of volcanic, diapiric, tectonic, impact, and erosional landforms was only remotely suggested by some early theoretical works. These diagnostic features are manifestations of the internal composition, thermal history, and dynamical evolution of these bodies. It is the job of the geologist to interpret the morphology, stratigraphy, and composition of these deposits and structures to ascertain what materials were mobilized in the interior, in what amount, and the mechanism and cause of their mobilization. In this chapter, we review what is know about these features and what constraints can be placed on composition and thermal history. Particular emphasis is placed on volcanic features, as these are most directly related to satellite composition and thermal history. The surface spectra, high albedos, and low bulk densities of the satellites of the outer solar system indicate that water and other ices are abundant on these bodies, particularly on their surfaces. Ices, particularly water ice, are less dense than silicates and will tend to float and form crusts during differentiation or partial melting of the interior. Ices therefore take the place of silicates as 'crust-forming' minerals and dominate geologic processes on icy satellites. Melted ices form magma bodies, and sometimes are extruded as lavas, an unusual but still valid perspective for terrestrial geologists. The unusual properties of some ices, including their low melting temperatures, and low strengths (as well as the decrease in density on the freezing of water ice), will ultimately be very important in interpreting this record.

  17. Geologic processes influence the effects of mining on aquatic ecosystems

    USGS Publications Warehouse

    Schmidt, Travis S.; Clements, William H.; Wanty, Richard B.; Verplanck, Philip L.; Church, Stanley E.; San Juan, Carma A.; Fey, David L.; Rockwell, Barnaby W.; DeWitt, Ed H.; Klein, Terry L.

    2012-01-01

    Geologic processes strongly influence water and sediment quality in aquatic ecosystems but rarely are geologic principles incorporated into routine biomonitoring studies. We test if elevated concentrations of metals in water and sediment are restricted to streams downstream of mines or areas that may discharge mine wastes. We surveyed 198 catchments classified as “historically mined” or “unmined,” and based on mineral-deposit criteria, to determine whether water and sediment quality were influenced by naturally occurring mineralized rock, by historical mining, or by a combination of both. By accounting for different geologic sources of metals to the environment, we were able to distinguish aquatic ecosystems limited by metals derived from natural processes from those due to mining. Elevated concentrations of metals in water and sediment were not restricted to mined catchments; depauperate aquatic communities were found in unmined catchments. The type and intensity of hydrothermal alteration and the mineral deposit type were important determinants of water and sediment quality as well as the aquatic community in both mined and unmined catchments. This study distinguished the effects of different rock types and geologic sources of metals on ecosystems by incorporating basic geologic processes into reference and baseline site selection, resulting in a refined assessment. Our results indicate that biomonitoring studies should account for natural sources of metals in some geologic environments as contributors to the effect of mines on aquatic ecosystems, recognizing that in mining-impacted drainages there may have been high pre-mining background metal concentrations.

  18. Geologic processes influence the effects of mining on aquatic ecosystems.

    PubMed

    Schmidt, Travis S; Clements, William H; Wanty, Richard B; Verplanck, Philip L; Church, Stanley E; San Juan, Carma A; Fey, David L; Rockwell, Barnaby W; DeWitt, Ed H; Klein, Terry L

    2012-04-01

    Geologic processes strongly influence water and sediment quality in aquatic ecosystems but rarely are geologic principles incorporated into routine biomonitoring studies. We test if elevated concentrations of metals in water and sediment are restricted to streams downstream of mines or areas that may discharge mine wastes. We surveyed 198 catchments classified as "historically mined" or "unmined," and based on mineral-deposit criteria, to determine whether water and sediment quality were influenced by naturally occurring mineralized rock, by historical mining, or by a combination of both. By accounting for different geologic sources of metals to the environment, we were able to distinguish aquatic ecosystems limited by metals derived from natural processes from those due to mining. Elevated concentrations of metals in water and sediment were not restricted to mined catchments; depauperate aquatic communities were found in unmined catchments. The type and intensity of hydrothermal alteration and the mineral deposit type were important determinants of water and sediment quality as well as the aquatic community in both mined and unmined catchments. This study distinguished the effects of different rock types and geologic sources of metals on ecosystems by incorporating basic geologic processes into reference and baseline site selection, resulting in a refined assessment. Our results indicate that biomonitoring studies should account for natural sources of metals in some geologic environments as contributors to the effect of mines on aquatic ecosystems, recognizing that in mining-impacted drainages there may have been high pre-mining background metal concentrations. PMID:22645817

  19. Planetary geology: Impact processes on asteroids

    NASA Technical Reports Server (NTRS)

    Chapman, C. R.; Davis, D. R.; Greenberg, R.; Weidenschilling, S. J.

    1982-01-01

    The fundamental geological and geophysical properties of asteroids were studied by theoretical and simulation studies of their collisional evolution. Numerical simulations incorporating realistic physical models were developed to study the collisional evolution of hypothetical asteroid populations over the age of the solar system. Ideas and models are constrained by the observed distributions of sizes, shapes, and spin rates in the asteroid belt, by properties of Hirayama families, and by experimental studies of cratering and collisional phenomena. It is suggested that many asteroids are gravitationally-bound "rubble piles.' Those that rotate rapidly may have nonspherical quasi-equilibrium shapes, such as ellipsoids or binaries. Through comparison of models with astronomical data, physical properties of these asteroids (including bulk density) are determined, and physical processes that have operated in the solar system in primordial and subsequent epochs are studied.

  20. The Antarctic Region: Geological Evolution and Processes

    NASA Astrophysics Data System (ADS)

    Quilty, Patrick G.

    The Scientific Committee on Antarctic Research (SCAR) supports discipline- and issue-based meetings in Antarctic research, and these are forums for announcing developments in Antarctic science. Refereed symposia proceedings normally follow and generate a number of volumes that almost constitute serial publication. Meetings in the Earth sciences occur at roughly 4-year intervals. The resulting volumes cover Antarctic Earth science generally and provide convenient access to periodic bibliographic updates.The Antarctic Region: Geological Evolution and Processes is a collection of the Proceedings of the VII International Symposium on Antarctic Earth Sciences, held in Siena, Italy, in 1995 and sponsored by SCAR. It was by far the largest such meeting held to date—the next will be in New Zealand in 1999—but the book, even as large as it is, contains only a portion of the papers presented.

  1. The importance of geobotany in geological remote sensing applications

    NASA Technical Reports Server (NTRS)

    Mouat, D. A.; Collins, W.; Elvidge, C.; Lyon, R. J. P.; Labovitz, M. L.; Milton, N. M.; Parrish, J.; Rock, B. N.; Wickland, D. E.; Arp, G. K.

    1983-01-01

    A description of the different effects of variations in ground cover vegetation on remote sensing data in geological and prospecting applications is presented. The different variations are divided into three categories: structural; taxonomic and spectral. Structural variations include changes in the physical appearance of ground cover which may be detectable by a remote sensing instrument. Taxonomic variations occur in those plant communities which are associated with specific geological regions. Spectral variations are due to specific geochemical stresses which may be useful in characterizing geological features at a site. The need for a general scheme for the interpretation of geobotanical remote sensing data is discussed: Geosat data for the field reflectance spectra of different tree species in West Virginia are presented as examples.

  2. Significant achievements in the Planetary Geology Program. [geologic processes, comparative planetology, and solar system evolution

    NASA Technical Reports Server (NTRS)

    Head, J. W. (Editor)

    1978-01-01

    Developments reported at a meeting of principal investigators for NASA's planetology geology program are summarized. Topics covered include: constraints on solar system formation; asteriods, comets, and satellites; constraints on planetary interiors; volatiles and regoliths; instrument development techniques; planetary cartography; geological and geochemical constraints on planetary evolution; fluvial processes and channel formation; volcanic processes; Eolian processes; radar studies of planetary surfaces; cratering as a process, landform, and dating method; and the Tharsis region of Mars. Activities at a planetary geology field conference on Eolian processes are reported and techniques recommended for the presentation and analysis of crater size-frequency data are included.

  3. Geologic processes on Venus: An update

    NASA Technical Reports Server (NTRS)

    Masursky, H.

    1985-01-01

    Studies of Venera 15 and 16 radar image and altimetry data and reevaluation of Pioneer Venus and earlier Venera data have greatly expanded the perception of the variety and complexity of geologic processes on Venus. PV data have discriminated four highland regions (each different in geomorphic appearance), a large upland rolling plains region, and smaller areas of lowland plains. Two highland volcanic centers were identified that may be presently active, as suggested by their geomorphologic appearance combined with positive gravity anomalies, lightning strike clusters, and a change in SO2 content in the upper atmosphere. Geochemical data obtained by the Venera landers have indicated that one upland area and nearby rolling plains are composed of volcanic rocks, probably basalts or syenites. New Venera radar images of the Ishtar Terra region show folded and/or faulted linear terrain and associated volcanic features that may have been deformed by both compressional and extensional forces. Lowland surfaces resemble the mare basaltic lava flows that fill basins on the Moon, Mars and Earth. Ubiquitous crater like forms may be of either volcanic or impact origin; the origin of similar lunar features was determined by the character of their ejecta deposits.

  4. Geology

    NASA Technical Reports Server (NTRS)

    Stewart, R. K.; Sabins, F. F., Jr.; Rowan, L. C.; Short, N. M.

    1975-01-01

    Papers from private industry reporting applications of remote sensing to oil and gas exploration were presented. Digitally processed LANDSAT images were successfully employed in several geologic interpretations. A growing interest in digital image processing among the geologic user community was shown. The papers covered a wide geographic range and a wide technical and application range. Topics included: (1) oil and gas exploration, by use of radar and multisensor studies as well as by use of LANDSAT imagery or LANDSAT digital data, (2) mineral exploration, by mapping from LANDSAT and Skylab imagery and by LANDSAT digital processing, (3) geothermal energy studies with Skylab imagery, (4) environmental and engineering geology, by use of radar or LANDSAT and Skylab imagery, (5) regional mapping and interpretation, and digital and spectral methods.

  5. Will Somebody do the Dishes? Weathering Analogies, Geologic Processes and Geologic Time

    NASA Astrophysics Data System (ADS)

    Stelling, P.; Wuotila, S.; Giuliani, M.

    2006-12-01

    A good analogy is one of the most powerful tools in any instructors' arsenal, and encouraging students to explore the links between an analogy and a scientific concept can cement both ideas in a student's mind. A common analogy for weathering and erosion processes is doing the dishes. Oxidation, hydration, and solution reactions can be intimidating on the chalkboard but easily understood in the context of cleaning up after dinner. Rather than present this analogy as a lecture demonstration, students are encouraged to experimentally determine which type of weathering works best on their dirty dishes. The experiment must use at least four identically dirty dishes: three experimental dishes and one control dish. The experimental dishes are subjected to simulated weathering and erosion processes of the student's design. Common techniques developed by students are cold or warm water baths, baths with and without acid (lemon juice or soda), and freeze-thaw cycles. Occasionally creative experiments result in unexpected discoveries, such the inefficiency of abrasion from wind-blown sand, especially when compared to soaking dishes in Canadian Whiskey. The effectiveness of each experimental run is determined by comparison to the control plate after loose debris is removed from each. The dish with the smallest aerial extent of remaining food is the declared the most effective. Discussion sections of the experimental write-up includes a description of which geologic processes were being simulated in each experiment, comparisons of the effectiveness of each techniques, and statements of how these experiments differ from reality. In order to advance this project, a second stage of the assignment, a direct comparison of weathering and erosion techniques on food and on geologic materials, will be added this fall. Ideally, students will empirically derive erosion rates and calculate the time required to remove the volume of material represented by a geologically important feature

  6. The geological thought process: A help in developing business instincts

    SciTech Connect

    Epstein, S.A.

    1995-09-01

    Since the beginning of modern-day geology it has been understood that the present is the key to the past. However, when attempting to apply current geological models one discovers that there are no exact look-alikes. Thus, the geological discipline inherently accepts modifications, omissions, and relatively large margins of error compared with engineering. Geologists are comfortable in a world of non-unique solutions. Thus the experience in working with numerous geological settings is extremely critical in selecting the most reasonable geological interpretations, often by using a composite of specific models. One can not simply replace a dynamic geologist`s life-time of experiences and geologic instinct with simply a book-smart young upstart. Petroleum corporations accept geologic risk and manage it by drilling numerous wells in various geological provenances. Oil corporations have attempted to quantify and manage risk by using Monte Carlo simulations, thus invoking a formal discipline of risk. The acceptance of risk, results in an asset allocation approach to investing. Asset allocators attempt to reduce volatility and risk, inherently understanding that in any specific time interval anything can happen. Dollar cost averaging significantly reduces market risk over time, however it requires discipline and commitment. The single most important ingredient to a successful investing plan is to assign a reasonable holding period. Historically, a majority of the investment community demands instant gratification causing unneeded anxiety and failure. As in geology nothing can replace experience.

  7. Geologic process studies using Synthetic Aperture Radar (SAR) data

    NASA Technical Reports Server (NTRS)

    Evans, Diane L.

    1992-01-01

    The use of SAR data to study geologic processes for better understanding of recent tectonic activity and climate change as well as the mitigation of geologic hazards and exploration for nonrenewable resources is discussed. The geologic processes that are particularly amenable to SAR-based data include volcanism; soil erosion, degradation, and redistribution; coastal erosion and inundation; glacier fluctuations; permafrost; and crustal motions. When SAR data are combined with data from other planned spaceborne sensors including ESA ERS, the Japanese Earth Resources Satellite, and the Canadian Radarsat, it will be possible to build a time-series view of temporal changes over many regions of earth.

  8. Abstracts for the Planetary Geology Field Conference on Aeolian Processes

    NASA Technical Reports Server (NTRS)

    Greeley, R. (Editor); Black, D. (Editor)

    1978-01-01

    The Planetary Geology Field Conference on Aeolian Processes was organized at the request of the Planetary Geology Program office of the National Aeronautics and Space Administration to bring together geologists working on aeolian problems on earth and planetologists concerned with similar problems on the planets. Abstracts of papers presented at the conference are arranged herein by alphabetical order of the senior author. Papers fall into three broad categories: (1) Viking Orbiter and Viking Lander results on aeolian processes and/or landforms on Mars, (2) laboratory results on studies of aeolian processes, and (3) photogeology and field studies of aeolian processes on Earth.

  9. Geology of the Icy Galilean Satellites: Understanding Crustal Processes and Geologic Histories Through the JIMO Mission

    NASA Technical Reports Server (NTRS)

    Figueredo, P. H.; Tanaka, K.; Senske, D.; Greeley, R.

    2003-01-01

    Knowledge of the geology, style and time history of crustal processes on the icy Galilean satellites is necessary to understanding how these bodies formed and evolved. Data from the Galileo mission have provided a basis for detailed geologic and geo- physical analysis. Due to constrained downlink, Galileo Solid State Imaging (SSI) data consisted of global coverage at a -1 km/pixel ground sampling and representative, widely spaced regional maps at -200 m/pixel. These two data sets provide a general means to extrapolate units identified at higher resolution to lower resolution data. A sampling of key sites at much higher resolution (10s of m/pixel) allows evaluation of processes on local scales. We are currently producing the first global geological map of Europa using Galileo global and regional-scale data. This work is demonstrating the necessity and utility of planet-wide contiguous image coverage at global, regional, and local scales.

  10. The Moon: Keystone to Understanding Planetary Geological Processes and History

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Extensive and intensive exploration of the Earth's Moon by astronauts and an international array of automated spacecraft has provided an unequaled data set that has provided deep insight into geology, geochemistry, mineralogy, petrology, chronology, geophysics and internal structure. This level of insight is unequaled except for Earth. Analysis of these data sets over the last 35 years has proven fundamental to understanding planetary surface processes and evolution, and is essential to linking surface processes with internal and thermal evolution. Much of the understanding that we presently have of other terrestrial planets and outer planet satellites derives from the foundation of these data. On the basis of these data, the Moon is a laboratory for understanding of planetary processes and a keystone for providing evolutionary perspective. Important comparative planetology issues being addressed by lunar studies include impact cratering, magmatic activity and tectonism. Future planetary exploration plans should keep in mind the importance of further lunar exploration in continuing to build solid underpinnings in this keystone to planetary evolution. Examples of these insights and applications to other planets are cited.

  11. Geology

    SciTech Connect

    Reidel, Stephen P.

    2008-01-17

    This chapter summarizes the geology of the single-shell tank (SST) farms in the context of the region’s geologic history. This chapter is based on the information in the geology data package for the SST waste management areas and SST RFI Appendix E, which builds upon previous reports on the tank farm geology and Integrated Disposal Facility geology with information available after those reports were published.

  12. Techniques for determining probabilities of geologic events and processes

    SciTech Connect

    Hunter, R.L. ); Mann, C.J. )

    1992-01-01

    The primary goal of this study has been to search out and evaluate existing quantitative methods for determining probabilities of events and processes in fields that seemed to be most closely related to the majority of the events considered important to long-term performance by earlier workers. These fields are thermomechanical behavior, mining engineering, hydrology, climatology, seismicity and tectonics, seismic hazard, volcanology, geochemistry, and resource exploration. Most of these events and processes can initiate, releases of the radioactive waste from a geologic repository, although geochemical processes primarily affect transport of wastes after release. The quantitative methods for determining probabilities identified here are those that have been reported in the literature, and some that could be used but have not been reported. Merits and limitations of each method have been described, and the current availability of databases adequate for determining accurate probabilities of events and processes has been appraised. A secondary goal has been to identify phenomena for which accurate probabilities cannot be determined now and areas of research that could materially improve our ability to make better probabilistic predictions in the immediate future.

  13. Techniques for determining probabilities of geologic events and processes

    SciTech Connect

    Hunter, R.L.; Mann, C.J.

    1992-10-01

    The primary goal of this study has been to search out and evaluate existing quantitative methods for determining probabilities of events and processes in fields that seemed to be most closely related to the majority of the events considered important to long-term performance by earlier workers. These fields are thermomechanical behavior, mining engineering, hydrology, climatology, seismicity and tectonics, seismic hazard, volcanology, geochemistry, and resource exploration. Most of these events and processes can initiate, releases of the radioactive waste from a geologic repository, although geochemical processes primarily affect transport of wastes after release. The quantitative methods for determining probabilities identified here are those that have been reported in the literature, and some that could be used but have not been reported. Merits and limitations of each method have been described, and the current availability of databases adequate for determining accurate probabilities of events and processes has been appraised. A secondary goal has been to identify phenomena for which accurate probabilities cannot be determined now and areas of research that could materially improve our ability to make better probabilistic predictions in the immediate future.

  14. Simulation and Processing Seismic Data in Complex Geological Models

    NASA Astrophysics Data System (ADS)

    Forestieri da Gama Rodrigues, S.; Moreira Lupinacci, W.; Martins de Assis, C. A.

    2014-12-01

    Seismic simulations in complex geological models are interesting to verify some limitations of seismic data. In this project, different geological models were designed to analyze some difficulties encountered in the interpretation of seismic data. Another idea is these data become available for LENEP/UENF students to test new tools to assist in seismic data processing. The geological models were created considering some characteristics found in oil exploration. We simulated geological medium with volcanic intrusions, salt domes, fault, pinch out and layers more distante from surface (Kanao, 2012). We used the software Tesseral Pro to simulate the seismic acquisitions. The acquisition geometries simulated were of the type common offset, end-on and split-spread. (Figure 1) Data acquired with constant offset require less processing routines. The processing flow used with tools available in Seismic Unix package (for more details, see Pennington et al., 2005) was geometric spreading correction, deconvolution, attenuation correction and post-stack depth migration. In processing of the data acquired with end-on and split-spread geometries, we included velocity analysis and NMO correction routines. Although we analyze synthetic data and carefully applied each processing routine, we can observe some limitations of the seismic reflection in imaging thin layers, great surface depth layers, layers with low impedance contrast and faults.

  15. Lowell crater: A region of prime geological importance on the Moon

    NASA Astrophysics Data System (ADS)

    Srivastava, Neeraj

    2016-04-01

    Detailed surface topography, morphology, morphometry, spectral reflectance studies, and crater chronology of the Lowell crater region have been carried out using data from Kaguya (JAXA), LRO (NASA) and Chandrayaan-1(ISRO) missions. The study has revealed that the Lowell crater is characterized with several peculiarities. Some of these include: a) conspicuous W-E asymmetries in the morphological make-up of the central peak, crater wall and floor constituents; b) low albedo proximal ejecta blanket mainly confined to the northern areas; c) distribution of exterior melt pools only on the northeastern side; d) possible exposures of olivine bearing undifferentiated mantle rocks; e) a Copernican age of formation, even though characteristic rays are absent; and, f) possibility of recent volcanism inside it. Most of these observed specialties in the case of the Lowell crater are related to variations in the pre-existing topography and target material properties, which are related to its broad geological context i.e. its location inside the Orientale basin and the nature of the Lowell forming impact event. It has been deciphered that the Lowell crater formed in the Montes Rook region of the Orientale basin during Younger Copernican period (374±28 Ma old) due to an oblique impact of a ~5.7 km diameter projectile from the S-SW direction, at an angle of ~30-45 degrees. Thus, the Moon was hit by at least four projectiles of ~6 km diameter during the Younger Copernican period, the others three being those responsible for the formation of craters Jackson, Ohm and Tycho. In addition to these, the morphology of the Lowell crater favors much debated extent of the Orientale transient cavity to lie between the ORR & the IRR. Thus, the study establishes the Lowell crater as a site of prime geological importance on the Moon that has the potential to address several important issues related to lunar geology such as basin and crater forming process, nature of the mantle, and relationship

  16. Venus and the Earth's Archean: Geological mapping and process comparisons

    NASA Astrophysics Data System (ADS)

    Head, J. W.; Hurwitz, D. M.; Ivanov, M. A.; Basilevsky, A. T.; Senthil Kumar, P.

    2008-09-01

    Introduction. The geological features, structures, thermal conditions, interpreted processes, and outstanding questions related to both the Earth's Archean and Venus share many similarities [1-3] and we are using a problem-oriented approach to Venus mapping, guided by insight from the Archean record of the Earth, to gain new perspectives on the evolution of Venus and Earth's Archean. The Earth's preserved and well-documented Archean record [4] provides important insight into high heat-flux tectonic and magmatic environments and structures [5] and the surface of Venus reveals the current configuration and recent geological record of analogous high-temperature environments unmodified by subsequent several billion years of segmentation and overprinting, as on Earth. Here we address the nature of the Earth's Archean, the similarities to and differences from Venus, and the specific Venus and Earth-Archean problems on which progress might be made through comparison. The Earth's Archean and its Relation to Venus. The Archean period of Earth's history extends from accretion/initial crust formation (sometimes called the Hadean) to 2.5 Ga and is thought of by most workers as being a transitional period between the earliest Earth and later periods largely dominated by plate tectonics (Proterozoic and Phanerozoic) [2, 4]. Thus the Archean is viewed as recording a critical period in Earth's history in which a transition took place from the types of primary and early secondary crusts seen on the Moon, Mars and Mercury [6] (and largely missing in the record of the Earth), to the style of crustal accretion and plate tectonics characterizing later Earth history. The Archean is also characterized by enhanced crustal and mantle temperatures leading to differences in deformation style and volcanism (e.g., komatiites) [2]. The preserved Archean crust is exposed in ~36 different cratons [4], forming the cores of most continental regions, and is composed of gneisses, plutons and

  17. Graphics processing, video digitizing, and presentation of geologic information

    SciTech Connect

    Sanchez, J.D. )

    1990-02-01

    Computer users have unparalleled opportunities to use powerful desktop computers to generate, manipulate, analyze and use graphic information for better communication. Processing graphic geologic information on a personal computer like the Amiga used for the projects discussed here enables geoscientists to create and manipulate ideas in ways once available only to those with access to large budgets and large mainframe computers. Desktop video applications such as video digitizing and powerful graphic processing application programs add a new dimension to the creation and manipulation of geologic information. Videotape slide shows and animated geology give geoscientists new tools to examine and present information. Telecommunication programs such as ATalk III, which can be used as an all-purpose telecommunications program or can emulate a Tektronix 4014 terminal, allow the user to access Sun and Prime minicomputers and manipulate graphic geologic information stored there. Graphics information displayed on the monitor screen can be captured and saved in the standard Amiga IFF graphic format. These IFF files can be processed using image processing programs such as Butcher. Butcher offers edge mapping, resolution conversion, color separation, false colors, toning, positive-negative reversals, etc. Multitasking and easy expansion that includes IBM-XT and AT co-processing offer unique capabilities for graphic processing and file transfer between Amiga-DOS and MS-DOS. Digital images produced by satellites and airborne scanners can be analyzed on the Amiga using the A-Image processing system developed by the CSIRO Division of Mathematics and Statistics and the School of Mathematics and Computing at Curtin University, Australia.

  18. The importance of subsurface geology for water source and vegetation communities in Cherokee Marsh, Wisconsin

    USGS Publications Warehouse

    Kurtz, A.M.; Bahr, J.M.; Carpenter, Q.J.; Hunt, R.J.

    2007-01-01

    Restoration of disturbed wetland systems is an important component of wetland mitigation, yet uncertainty remains about how hydrologic processes affect biologic processes and wetlands patterns. To design more effective restoration strategies and re-establish native plant communities in disturbed wetlands, it is imperative to understand undisturbed systems. A site within Cherokee Marsh located in Madison, Wisconsin, USA, contains a relatively undisturbed area of wetland consisting of plant communities common within the prairie landscape including a fen, sedge meadow, and shallow marsh. These distinct communities are found within an area of minimal topographic relief, yet transitions from one community to the next occur over short distances. This study sought to characterize the geologic, hydrologic, and chemical gradients associated with these shifts in vegetation to gain insight into the factors controlling the spatial differences in dominant plant species, which could be critical for restoration success. Vegetation analyses revealed a transition of dominant sedge species, which appeared to correspond to changes in hydrology from a ground-water dominated to a surface-water dominated system (as determined by water isotopes). Along the same vegetation transect, subsurface coring results show a heterogeneous composition of peat and till with lateral and vertical variations in stratigraphy, which relates to variability in ground-water discharge as evidenced by hydroperiods and stable isotope composition. Applications of this type of approach throughout the glaciated terrains of the midwestern and northeastern United States and Canada can improve future wetland restoration and management. ?? 2007, The Society of Wetland Scientists.

  19. A review on spectral processing methods for geological remote sensing

    NASA Astrophysics Data System (ADS)

    Asadzadeh, Saeid; de Souza Filho, Carlos Roberto

    2016-05-01

    In this work, many of the fundamental and advanced spectral processing methods available to geologic remote sensing are reviewed. A novel categorization scheme is proposed that groups the techniques into knowledge-based and data-driven approaches, according to the type and availability of reference data. The two categories are compared and their characteristics and geologic outcomes are contrasted. Using an oil-sand sample scanned through the sisuCHEMA hyperspectral imaging system as a case study, the effectiveness of selected processing techniques from each category is demonstrated. The techniques used to bridge between the spectral data and other geoscience products are then discussed. Subsequently, the hybridization of the two approaches is shown to yield some of the most robust processing techniques available to multi- and hyperspectral remote sensing. Ultimately, current and future challenges that spectral analysis are expected to overcome and some potential trends are highlighted.

  20. Genes, Diversity, and Geologic Process on the Pacific Coast

    NASA Astrophysics Data System (ADS)

    Jacobs, David K.

    2004-05-01

    We examine the genetics of marine diversification along the West Coast of North America in relation to the Late Neogene geology and climate of the region. Trophically important components of the diverse West Coast fauna, including kelp, alcid birds (e.g., auks, puffins), salmon, rockfish, abalone, and Cancer crabs, appear to have radiated during peaks of upwelling primarily in the Late Miocene and in some cases secondarily in the Pleistocene. Phylogeographic barriers associated with Mio-Pliocene estuaries of the mid-California coast, the Pliocene opening of the Gulf of California, tectonic and eustatic evolution of the California Bight, as well as the influence of Pleistocene and Holocene climate change on genetic structure are assessed in a geologic context. Comparisons to East Coast and western freshwater systems, as well as upwelling systems around the globe, provide perspective for the survey.

  1. Processing of multispectral thermal IR data for geologic applications

    NASA Technical Reports Server (NTRS)

    Kahle, A. B.; Madura, D. P.; Soha, J. M.

    1979-01-01

    Multispectral thermal IR data were acquired with a 24-channel scanner flown in an aircraft over the E. Tintic Utah mining district. These digital image data required extensive computer processing in order to put the information into a format useful for a geologic photointerpreter. Simple enhancement procedures were not sufficient to reveal the total information content because the data were highly correlated in all channels. The data were shown to be dominated by temperature variations across the scene, while the much more subtle spectral variations between the different rock types were of interest. The image processing techniques employed to analyze these data are described.

  2. Hydro-geological process chain for building a flood scenario

    NASA Astrophysics Data System (ADS)

    Longoni, Laura; Brambilla, Davide; Papini, Monica; Ivanov, Vladislav; Radice, Alessio

    2015-04-01

    point was used as an upstream boundary condition for the hydro-morphologic model, under a simplifying hypothesis of process separation that would be later discussed. Particular attention is indeed necessary when dealing with the interface between the geologic and hydraulic processes, where models lack consistency between their respective spatial and temporal scales. Uncertainty was dealt with by sensitivity analysis. Modelling results are discussed in terms of the validity of the separate models as well as of the approach for their integration. In general, the importance of antecedent conditions of the river reach is highlighted, which suggests to apply long-term analysis prior to short-term modelling of the event.

  3. The consideration of geological uncertainty in the siting process for a Geological Disposal Facility for radioactive waste

    NASA Astrophysics Data System (ADS)

    Mathers, Steve; McEvoy, Fiona; Shaw, Richard

    2015-04-01

    Any decision about the site of a Geological Disposal Facility at depth for medium to high level radioactive waste is based on a safety case which in turn is based on an understanding of the geological environment which enables, for example, understanding groundwater flows and groundwater chemical composition. Because the information on which geological understanding is based cannot be fully understood, it is important to ensure that: i. Inferences are made from data in a way that is consistent with the data. ii. The uncertainty in the inferred information is described, quantitatively where this is appropriate. Despite these uncertainties decisions can and must be made, and so the implications of the uncertainty need to be understood and quantified. To achieve this it is important to ensure that: i. An understanding of how error propagates in all models and decision tools. Information which is collected to support the decision-making process may be used as input into models of various kinds to generate further information. For example, a process model may be used to predict groundwater flows, so uncertainty in the properties which are input to the model (e.g. on rock porosity and structure) will give rise to uncertainty in the model predictions. Understanding how this happens is called the analysis of error propagation. It is important that there is an understanding of how error propagates in all models and decision tools, and therefore knowledge of how much uncertainty remains in the process at any stage. As successive phases of data collection take place the analysis of error propagation shows how the uncertainty in key model outputs is gradually reduced. ii. The implications of all uncertainties can be traced through the process. A clear analysis of the decision-making process is necessary so that the implications of all uncertainties can be traced through the process. This means that, when a final decision is made, one can state with a high level of confidence

  4. Ground-Breaking Geologic Processes in the Solar System

    NASA Astrophysics Data System (ADS)

    McEwen, A. S.

    2015-12-01

    NASA mission proposals of today must promise "ground-breaking" new results. "Ground-breaking" is a buzzword, but sounds good to a geologist who likes to study active processes. Great progress in understanding active processes on the Moon and Mars has resulted from very-high-resolution (sub-meter scale) repeat imaging (monitoring) by LROC and HiRISE. Such changes include new impact craters and mass wasting on both the Moon and Mars. One martian surprise was not just finding that the gullies or ravines are forming today, but that they are forming in times and places with CO2 frost on the ground. The geomorphology of these gullies is a perfect match for water-carved gullies on Earth, but the CO2 buffers the ground and air temperatures to near 150 K, far too cold for liquid water to play a role. Snapshot geomorphology, even at very high resolution, does not enable a unique interpretation of geologic processes. Repeat imaging led to discovery of the martian Recurring Slope Lineae (RSL), which form at the warmest times and places and may be seeps of salty water. A source of water in a non-polar location is needed to support a future human presence on Mars, but Planetary Protection will be a challenge (or impossible). Jupiter's moon Io is the ideal natural laboratory to understand groundbreaking volcanism and tectonism. Very large-scale energetic processes that have shaped the planets are active today on Jupiter's moon Io, so this is the best place to study these processes. Is there active venting on Europa? We don't know (yet) because we haven't looked with the proper combination of resolution (<20 km), phase angle, and coverage. Understanding active geologic and atmospheric processes and how they affect spectral signatures will determine the interpretability of exoplanet spectra and inform the search for ET life. However, the most amazing planetary habitability experiment in this arm of the galaxy is Earth.

  5. The Importance of Communicating Uncertainty to the 3D Geological Framework Model of Alberta

    NASA Astrophysics Data System (ADS)

    MacCormack, Kelsey

    2015-04-01

    The Alberta Geological Survey (AGS) has been tasked with developing a 3-dimensional (3D) geological framework for Alberta (660,000 km2). Our goal is to develop 'The Framework' as a sophisticated platform, capable of integrating a variety of data types from multiple sources enabling the development of multi-scale, interdisciplinary models with built-in feedback mechanisms, allowing the individual components of the model to adapt and evolve over time as our knowledge and understanding of the subsurface increases. The geoscience information within these models is often taken at face value and assumed that the attribute accuracy is equivalent to the digital accuracy recorded by the computer, which can lead to overconfidence in the model results. We need to make sure that decision makers understand that models are simply versions of reality and all contain a certain amount of error and uncertainty. More importantly, it is necessary to convey that error and uncertainty are not bad, and should be quantified and understood rather than ignored. This presentation will focus on how the AGS is quantifying and communicating uncertainty within the Geologic Framework to decision makers and the general public, as well as utilizing uncertainty results to strategically prioritize future work.

  6. Importance of geologic characterization of potential low-level radioactive waste disposal sites

    USGS Publications Warehouse

    Weibel, C.P.; Berg, R.C.

    1991-01-01

    Using the example of the Geff Alternative Site in Wayne County, Illinois, for the disposal of low-level radioactive waste, this paper demonstrates, from a policy and public opinion perspective, the importance of accurately determining site stratigraphy. Complete and accurate characterization of geologic materials and determination of site stratigraphy at potential low-level waste disposal sites provides the frame-work for subsequent hydrologic and geochemical investigations. Proper geologic characterization is critical to determine the long-term site stability and the extent of interactions of groundwater between the site and its surroundings. Failure to adequately characterize site stratigraphy can lead to the incorrect evaluation of the geology of a site, which in turn may result in a lack of public confidence. A potential problem of lack of public confidence was alleviated as a result of the resolution and proper definition of the Geff Alternative Site stratigraphy. The integrity of the investigation was not questioned and public perception was not compromised. ?? 1991 Springer-Verlag New York Inc.

  7. Importance and controls of anaerobic ammonium oxidation influenced by riverbed geology

    NASA Astrophysics Data System (ADS)

    Lansdown, K.; McKew, B. A.; Whitby, C.; Heppell, C. M.; Dumbrell, A. J.; Binley, A.; Olde, L.; Trimmer, M.

    2016-05-01

    Rivers are an important global sink for excess bioavailable nitrogen: they convert approximately 40% of terrestrial N runoff per year (~47 Tg) to biologically unavailable N2 gas and return it to the atmosphere. At present, riverine N2 production is conceptualized and modelled as denitrification. Anaerobic ammonium oxidation, known as anammox, is an alternative pathway of N2 production important in marine environments, but its contribution to riverine N2 production is not well understood. Here we use in situ and laboratory measurements of anammox activity using 15N tracers and molecular analyses of microbial communities to evaluate anammox in clay-, sand- and chalk-dominated river beds in the Hampshire Avon catchment, UK during summer 2013. Abundance of the hzo gene, which encodes an enzyme central to anammox metabolism, varied across the contrasting geologies. Anammox rates were similar across geologies but contributed different proportions of N2 production because of variation in denitrification rates. In spite of requiring anoxic conditions, anammox, most likely coupled to partial nitrification, contributed up to 58% of in situ N2 production in oxic, permeable riverbeds. In contrast, denitrification dominated in low-permeability clay-bed rivers, where anammox contributes roughly 7% to the production of N2 gas. We conclude that anammox can represent an important nitrogen loss pathway in permeable river sediments.

  8. Environmental quality and preservation; bedrock beneath reefs; the importance of geology in understanding biological decline in a modern reef ecosystem

    USGS Publications Warehouse

    Lidz, Barbara H.

    2000-01-01

    Environmental Quality and Preservation-Bedrock Beneath Reefs: the Importance of Geology in Understanding Biological Decline in a Modern Ecosystem' is a four-page and one-plate full-color discussion of the geologic framework and evolutionary history of the coral reef ecosystem that lines the outer shelf off the Florida Keys.

  9. Database for volcanic processes and geology of Augustine Volcano, Alaska

    USGS Publications Warehouse

    McIntire, Jacqueline; Ramsey, David W.; Thoms, Evan; Waitt, Richard B.; Beget, James E.

    2012-01-01

    This digital release contains information used to produce the geologic map published as Plate 1 in U.S. Geological Survey Professional Paper 1762 (Waitt and Begét, 2009). The main component of this digital release is a geologic map database prepared using geographic information systems (GIS) applications. This release also contains links to files to view or print the map plate, accompanying measured sections, and main report text from Professional Paper 1762. It should be noted that Augustine Volcano erupted in 2006, after the completion of the geologic mapping shown in Professional Paper 1762 and presented in this database. Information on the 2006 eruption can be found in U.S. Geological Survey Professional Paper 1769. For the most up to date information on the status of Alaska volcanoes, please refer to the U.S. Geological Survey Volcano Hazards Program website.

  10. Principles of computer processing of Landsat data for geologic applications

    USGS Publications Warehouse

    Taranik, James V.

    1978-01-01

    The main objectives of computer processing of Landsat data for geologic applications are to improve display of image data to the analyst or to facilitate evaluation of the multispectral characteristics of the data. Interpretations of the data are made from enhanced and classified data by an analyst trained in geology. Image enhancements involve adjustments of brightness values for individual picture elements. Image classification involves determination of the brightness values of picture elements for a particular cover type. Histograms are used to display the range and frequency of occurrence of brightness values. Landsat-1 and -2 data are preprocessed at Goddard Space Flight Center (GSFC) to adjust for the detector response of the multispectral scanner (MSS). Adjustments are applied to minimize the effects of striping, adjust for bad-data lines and line segments and lost individual pixel data. Because illumination conditions and landscape characteristics vary considerably and detector response changes with time, the radiometric adjustments applied at GSFC are seldom perfect and some detector striping remain in Landsat data. Rotation of the Earth under the satellite and movements of the satellite platform introduce geometric distortions in the data that must also be compensated for if image data are to be correctly displayed to the data analyst. Adjustments to Landsat data are made to compensate for variable solar illumination and for atmospheric effects. GeoMetric registration of Landsat data involves determination of the spatial location of a pixel in. the output image and the determination of a new value for the pixel. The general objective of image enhancement is to optimize display of the data to the analyst. Contrast enhancements are employed to expand the range of brightness values in Landsat data so that the data can be efficiently recorded in a manner desired by the analyst. Spatial frequency enhancements are designed to enhance boundaries between features

  11. Linking subsurface temperature and hillslope processes through geologic time

    NASA Astrophysics Data System (ADS)

    Barnhart, Katherine; Anderson, Robert

    2015-04-01

    Many periglacial hillslope processes - physical, chemical, and biological - depend on subsurface temperature and water availability. As the subsurface temperature field varies both in space and through time over many scales up to climate cycles, the dominant processes of mobile regolith production and transport and the rate at which they act will vary. These processes include the chemical weathering of minerals, cracking of rocks through frost action and tree roots, presence and impact of vegetation on soil cohesion, location and activity of burrowing and trampling animals, frost creep, and solifluction. In order to explore the interplay between these processes across a landscape over the geologic timescales on which such landscapes evolve, we explore the effects of slope, aspect, latitude, atmosphere, and time before present on the expected energy balance at the surface of the earth and the resulting subsurface temperature field. We begin by calculating top-of-atmosphere insolation at any time in the Quaternary, honoring the variations in orbit over Milankovitch timescales. We then incorporate spatial and temporal variations in incoming short-wave radiation on sub-daily timescales due to elevation, latitude, aspect, and shading. Outgoing long-wave radiation is taken to depend on the surface temperature and may be modified by allowing back-radiation from the atmosphere. We then solve for the subsurface temperature field using a numerical model that acknowledges depth-varying material properties, water content, and phase change. With these tools we target variations in regolith production and motion over the long timescales on which periglacial hillslopes evolve. We implement a basic parameterization of temperature-dependent chemical and physical weathering linked to mobile regolith generation. We incorporate multiple regolith transport processes including frost heave and creep. Our intention is not to parameterize all operative processes, but to include sufficient

  12. Geological Mapping of Fortuna Tessera (V-2): Venus and Earth's Archean Process Comparisons

    NASA Technical Reports Server (NTRS)

    Head, James W.; Hurwitz,D. M.; Ivanov, M. A.; Basilevsky, A. T.; Kumar, P. Senthil

    2008-01-01

    The geological features, structures, thermal conditions, interpreted processes, and outstanding questions related to both the Earth's Archean and Venus share many similarities and we are using a problem-oriented approach to Venus mapping, guided by insight from the Archean record of the Earth, to gain new insight into the evolution of Venus and Earth's Archean. The Earth's preserved and well-documented Archean record provides important insight into high heat-flux tectonic and magmatic environments and structures and the surface of Venus reveals the current configuration and recent geological record of analogous high-temperature environments unmodified by subsequent several billion years of segmentation and overprinting, as on Earth. Elsewhere we have addressed the nature of the Earth's Archean, the similarities to and differences from Venus, and the specific Venus and Earth-Archean problems on which progress might be made through comparison. Here we present the major goals of the Venus-Archean comparison and show how preliminary mapping of the geology of the V-2 Fortuna Tessera quadrangle is providing insight on these problems. We have identified five key themes and questions common to both the Archean and Venus, the assessment of which could provide important new insights into the history and processes of both planets.

  13. Beowulf Distributed Processing and the United States Geological Survey

    USGS Publications Warehouse

    Maddox, Brian G.

    2002-01-01

    Introduction In recent years, the United States Geological Survey's (USGS) National Mapping Discipline (NMD) has expanded its scientific and research activities. Work is being conducted in areas such as emergency response research, scientific visualization, urban prediction, and other simulation activities. Custom-produced digital data have become essential for these types of activities. High-resolution, remotely sensed datasets are also seeing increased use. Unfortunately, the NMD is also finding that it lacks the resources required to perform some of these activities. Many of these projects require large amounts of computer processing resources. Complex urban-prediction simulations, for example, involve large amounts of processor-intensive calculations on large amounts of input data. This project was undertaken to learn and understand the concepts of distributed processing. Experience was needed in developing these types of applications. The idea was that this type of technology could significantly aid the needs of the NMD scientific and research programs. Porting a numerically intensive application currently being used by an NMD science program to run in a distributed fashion would demonstrate the usefulness of this technology. There are several benefits that this type of technology can bring to the USGS's research programs. Projects can be performed that were previously impossible due to a lack of computing resources. Other projects can be performed on a larger scale than previously possible. For example, distributed processing can enable urban dynamics research to perform simulations on larger areas without making huge sacrifices in resolution. The processing can also be done in a more reasonable amount of time than with traditional single-threaded methods (a scaled version of Chester County, Pennsylvania, took about fifty days to finish its first calibration phase with a single-threaded program). This paper has several goals regarding distributed processing

  14. Process for structural geologic analysis of topography and point data

    DOEpatents

    Eliason, Jay R.; Eliason, Valerie L. C.

    1987-01-01

    A quantitative method of geologic structural analysis of digital terrain data is described for implementation on a computer. Assuming selected valley segments are controlled by the underlying geologic structure, topographic lows in the terrain data, defining valley bottoms, are detected, filtered and accumulated into a series line segments defining contiguous valleys. The line segments are then vectorized to produce vector segments, defining valley segments, which may be indicative of the underlying geologic structure. Coplanar analysis is performed on vector segment pairs to determine which vectors produce planes which represent underlying geologic structure. Point data such as fracture phenomena which can be related to fracture planes in 3-dimensional space can be analyzed to define common plane orientation and locations. The vectors, points, and planes are displayed in various formats for interpretation.

  15. Geology

    NASA Technical Reports Server (NTRS)

    Arvidson, R.

    1984-01-01

    Three objectives were outlined: (1) global distribution, geometry and composition of continental rock units; (2) morphology and structure of the continental crust; and (3) monitoring selected surface processes. Mapping soil, sediment and rock characteristics for land surfaces requires the use of visible, reflected, thermal and radio parts of the spectrum. Digital topographic data (elevation, slope angle, slope magnitude) are needed to correct reflectance, emission, and radar data. In addition, images of the topographic data provide fundamental information on the morphology and structure of the land.

  16. Importance of geology to fisheries management: Examples from the northeastern Gulf of Mexico

    USGS Publications Warehouse

    Scanlon, K.M.; Koenig, C.C.; Coleman, F.C.; Miller, M.

    2003-01-01

    Seafloor mapping of shelf-edge habitats in the northeastern Gulf of Mexico demonstrates how sidescan-sonar imagery, seismic-reflection profiling, video data, geologic mapping, sediment sampling, and understanding the regional geologic history can enhance, support, and guide traditional fisheries research and management. New data from the Madison Swanson and Steamboat Lumps Marine Reserves reveal complex benthic habitats consisting of high-relief calcareous pinnacles, low-relief karstic hardbottom, rocky outcrops several kilometers in length, and variable thickness of fine-grained and apparently mobile coarse-grained sediments. Our data also show that certain fish alter the landscape by clearing sediment from hardbottom areas (e.g., red grouper Epinephelus morio) and by burrowing extensively in fine-grained sediment (e.g., tilefish Lopholatilus chamaeleonticeps). The seafloor imagery and geologic maps show that (a) sea level fluctuations played a dominant role in the development of the present-day regional geology, and (b) habitats (and benthic communities) are tied closely to geologic character. Understanding the geologic setting allowed for efficient and representative sampling of the biology. The geologic data can be used to set meaningful boundaries for fishery reserves and to help predict habitats in areas that are not well mapped. This interdisciplinary work added value to traditional research disciplines by providing management with integrated tools to make better decisions. ?? Copyright by the American Fisheries Society 2003.

  17. The importance of precise U-Pb ages in geological correlation

    SciTech Connect

    Krogh, T. )

    1992-01-01

    A reduction of lead laboratory background contamination by six orders of magnitude over the past two decades provides a similar reduction in the sample size required for the analysis. Single grains and parts of grains from growth stages in complex populations with a diameter like that of a human hair can now be precisely dated ([+-] 2 m.y., 2 sigma) without a need to average many grains or many spots as with previous conventional or ion microprobe techniques. New methods to eliminate discordance add to the reliability of the method. Precise ages for igneous events, metamorphism, deformation and mineralization provide a means of correlating geological processes at different structural levels and on a scale far greater than normally possible by proximal relationships. Ages of granulite formation and ductile flow in the Superior Province show that these deep level processes occurred more than 50 m.y. after volcanism at the same time as gold deposits formed in active faults at high structural levels. Episodes of isotopic resetting and new zircon growth due to overthrusting in the Grenville Front tectonic zone allow the ages of deformation to be compared for the 1,500 km length of this structure. Dating single zircons in sedimentary packages like the Toridonian sandstone gives the age of a continental source now removed by continental drift. Single zircon cores indicate the protolith age for 372 Ma and 30 Ma granites in Nova Scotia and Chile, respectively. Diabase dykes of the McKenzie dyke swarm separated by up to 2,000 Km can be shown to be coeval at 1,267 [+-] 2 Ma and hence to have formed by a common process of these dimensions. Precise dating of single zircons (microgram size) from the K-T boundary layer that show varying degrees of shock metamorphism define a circa 550 Ma age for the target rock and 65.5 [+-] 3 Ma age for the impact event.

  18. Impact craters: their importance in geologic record and implications for natural resource development

    SciTech Connect

    Levie, D. Jr.

    1986-05-01

    Impacting bodies of sufficient size traveling at hypervelocities carry tremendous potential energy. This relatively infrequent process results in the instantaneous formation of unique structures that are characterized by extensive fracturing and brecciation of the target material. Impacts onto continental shield areas can create rich ore deposits, such as the Sudbury mining district in Canada. Impacts into the sedimentary column can instantaneously create hydrocarbon reservoirs out of initially nonporous rocks, such as at Red Wing Creek and Viewfield in the Williston basin. Associated reservoirs are usually limited to a highly deformed central uplift in larger craters, or to the fractured rim facies in smaller craters. The presence of reservoirs and trapping mechanisms is largely dependent, however, upon the preservation state of the crater in the subsurface. A catastrophic extraterrestrial event (a large asteroid impact) has also been suggested as the cause for the extinction of the dinosaurs, but the latest theory proposes a companion star with a 26 m.y. periodicity as the cause for numerous lifeform extinctions over a similar time interval. Regardless of their magnitude and distribution over the earth, it is clear that catastrophic extraterrestrial events have been responsible for altering the geologic column locally, regionally, and quite possibly on a global scale.

  19. The importance of geological data and derived information in seismic response assessment for urban sites. An example from the Island of Crete, Greece

    NASA Astrophysics Data System (ADS)

    Tsangaratos, Paraskevas; Loupasakis, Constantinos; Rozos, Dimitrios; Rondoyianni, Theodora; Vafidis, Antonios; Savvaidis, Alexandros; Soupios, Pantelis; Papadopoulos, Nikos; Sarris, Apostolos

    2015-04-01

    The magnitude, frequency content and duration of an earthquake ground motion depends mainly on the surrounding geological, tectonic and geomorphological conditions. Numerous reports have been contacted illustrating the necessity of providing accurate geological information in order to estimate the level of seismic hazard. In this context, geological information is the outcome of processing primary, raw field data and geotechnical investigation data that are non - organized and associated with the geological model of the study area. In most cases, the geological information is provided as an advance element, a key component of the "function" that solves any geo-environmental problem and is primarily reflected on analogue or digital maps. The main objective of the present study is to illustrate the importance of accurate geological information in the thirteen (13) selected sites of the Hellenic Accelerometric Network (HAN) in the area of Crete Island, in order to estimate the seismic action according to Eurocode (EC8). As an example the detailed geological-geotechnical map of the area around HAN site in Rethymno city, Crete is presented. The research area covers a 250m radius surrounding the RTHE HAN-station at a scale of 1: 2000 with detail description of the geological and geotechnical characteristics of the formations as well as the tectonic features (cracks, upthrust, thrust, etc) of the rock mass. The field survey showed that the RTHE station is founded over limestones and dolomites formations. The formations exhibit very good geomechanical behaviour; however they present extensive fragmentation and karstification. At this particular site the identification of a fault nearby the station proved to be significant information for the geophysical research as the location and orientation of the tectonic setting provided new perspective on the models of seismic wave prorogation. So, the geological data and the induced information along with the tectonic structure of

  20. Heterotachy, an important process of protein evolution.

    PubMed

    Lopez, P; Casane, D; Philippe, H

    2002-01-01

    Because of functional constraints, substitution rates vary among the positions of a protein but are usually assumed to be constant at a given site during evolution. The distribution of the rates across the sequence positions generally fits a Gamma distribution. Models of sequence evolution were accordingly designed and led to improved phylogenetic reconstruction. However, it has been convincingly demonstrated that the evolutionary rate of a given position is not always constant throughout time. We called such within-site rate variations heterotachy (for "different speed" in Greek). Yet, heterotachy was found among homologous sequences of distantly related organisms, often with different functions. In such cases, the functional constraints are likely different, which would explain the different distribution of variable sites. To evaluate the importance of heterotachy, we focused on amino acid sequences of mitochondrial cytochrome b, for which the function is likely the same in all vertebrates. Using 2,038 sequences, we demonstrate that 95% of the variable positions are heterotachous, i.e., underwent dramatic variations of substitution rate among vertebrate lineages. Heterotachy even occurs at small evolutionary scale, and in these cases it is very unlikely to be related to functional changes. Since a large number of sequences are required to efficiently detect heterotachy, the extent of this phenomenon could not be estimated for all proteins yet. It could be as large as for cytochrome b, since this protein is not a peculiar case. The observations made here open several new avenues of research, such as the understanding of the evolution of functional constraints or the improvement of phylogenetic reconstruction methods.

  1. Digitizing rocks standardizing the geological description process using workstations

    SciTech Connect

    Saunders, M.R. , Windsor, Berkshire ); Shields, J.A. ); Taylor, M.R. )

    1993-09-01

    The preservation of geological knowledge in a standardized digital form presents a challenge. Data sources, inherently fuzzy, range in scale from the macroscopic (e.g., outcrop) through the mesoscopic (e.g., hand-specimen) core and sidewall core, to the microscopic (e.g., drill cuttings, thin sections, and microfossils). Each scale change results in increased heterogeneity and potentially contradictory data and the providers of such data may vary in experience level. To address these issues with respect to cores and drill cuttings, a geological description workstation has been developed and is undergoing field trials. Over 1000 carefully defined geological attributes are currently available within a depth-indexed, relational database. Attributes are stored in digital form, allowing multiple users to select familiar usage (e.g., diabase vs. dolerite). Data can be entered in one language and retrieved in other languages. The database structure allow groupings of similar elements (e.g., rhyolites in acidic, igneous or volcanics subgroups or the igneous rock group) permitting different uses to analyze details appropriate to the scale of the usage. Data entry uses a graphical user interface, allowing the geologist to make quick, logical selections in a standardized or custom-built format with extensive menus, on-screen graphics and help screens available. Description ranges are permissible. Entries for lithology, petrology, structures (sedimentary, organic and deformational), reservoir characteristics (porosity and hydrocarbon shows), and macrofossils are available. Sampling points for thin sections, core analysis, geochemistry, or micropaleontology studies are also recorded. Using digital data storage, geological logs using graphical, alphanumeric and symbolic depictions are possible. Data can be integrated with drilling and mud gas data, MWD and wireline data and off well-site analyses to produced composite formation evaluation logs and interpretational crossplots.

  2. 76 FR 34656 - Taking and Importing Marine Mammals; Geological and Geophysical Exploration of Mineral and Energy...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-14

    ... oil and gas exploration activities in the GOM, on March 3, 2003 (68 FR 9991). NMFS published a notice...; Geological and Geophysical Exploration of Mineral and Energy Resources on the Outer Continental Shelf in the.... Department of the Interior (DOI), Bureau of Ocean Energy Management, Regulation, and Enforcement...

  3. Scaling filtering and multiplicative cascade information integration techniques for geological, geophysical and geochemical data processing and geological feature recognition

    NASA Astrophysics Data System (ADS)

    Cheng, Q.

    2013-12-01

    This paper introduces several techniques recently developed based on the concepts of multiplicative cascade processes and multifractals for processing exploration geochemical and geophysical data for recognition of geological features and delineation of target areas for undiscovered mineral deposits. From a nonlinear point of view extreme geo-processes such as cloud formation, rainfall, hurricanes, flooding, landslides, earthquakes, igneous activities, tectonics and mineralization often show singular property that they may result in anomalous amounts of energy release or mass accumulation that generally are confined to narrow intervals in space or time. The end products of these non-linear processes have in common that they can be modeled as fractals or multifractals. Here we show that the three fundamental concepts of scaling in the context of multifractals: singularity, self-similarity and fractal dimension spectrum, make multifractal theory and methods useful for geochemical and geophysical data processing for general purposes of geological features recognition. These methods include: a local singularity analysis based on a area-density (C-A) multifractal model used as a scaling high-pass filtering technique capable of extracting weak signals caused by buried geological features; a suite of multifractal filtering techniques based on spectrum density - area (S-A) multifractal models implemented in various domain including frequency domain can be used for unmixing geochemical or geophysical fields according to distinct generalized self-similarities characterized in certain domain; and multiplicative cascade processes for integration of diverse evidential layers of information for prediction of point events such as location of mineral deposits. It is demonstrated by several case studies involving Fe, Sn, Mo-Ag and Mo-W mineral deposits that singularity method can be utilized to process stream sediment/soil geochemical data and gravity/aeromagnetic data as high

  4. Volcanic Processes and Geology of Augustine Volcano, Alaska

    USGS Publications Warehouse

    Waitt, Richard B.; Beget, James E.

    2009-01-01

    Augustine Island (volcano) in lower Cook Inlet, Alaska, has erupted repeatedly in late-Holocene and historical times. Eruptions typically beget high-energy volcanic processes. Most notable are bouldery debris avalanches containing immense angular clasts shed from summit domes. Coarse deposits of these avalanches form much of Augustine's lower flanks. A new geologic map at 1:25,000 scale depicts these deposits, these processes. We correlate deposits by tephra layers calibrated by many radiocarbon dates. Augustine Volcano began erupting on the flank of a small island of Jurassic clastic-sedimentary rock before the late Wisconsin glaciation (late Pleistocene). The oldest known effusions ranged from olivine basalt explosively propelled by steam, to highly explosive magmatic eruptions of dacite or rhyodacite shed as pumice flows. Late Wisconsin piedmont glaciers issuing from the mountainous western mainland surrounded the island while dacitic eruptive debris swept down the south volcano flank. Evidence is scant for eruptions between the late Wisconsin and about 2,200 yr B.P. On a few south-flank inliers, thick stratigraphically low pumiceous pyroclastic-flow and fall deposits probably represent this period from which we have no radiocarbon dates on Augustine Island. Eruptions between about 5,350 and 2,200 yr B.P. we know with certainty by distal tephras. On Shuyak Island 100 km southeast of Augustine, two distal fall ashes of Augustinian chemical provenance (microprobe analysis of glass) date respectively between about 5,330 and 5,020 yr B.P. and between about 3,620 and 3,360 yr B.P. An Augustine ash along Kamishak Creek 70 km southwest of Augustine dates between about 3,850 and 3,660 yr B.P. A probably Augustinian ash lying within peat near Homer dates to about 2,275 yr B.P. From before 2,200 yr B.P. to the present, Augustine eruptive products abundantly mantle the island. During this period, numerous coarse debris avalanches swept beyond Augustine's coast, most

  5. Influences of geomorphology and geology on alpine treeline in the American West - More important than climatic influences?

    USGS Publications Warehouse

    Butler, D.R.; Malanson, G.P.; Walsh, S.J.; Fagre, D.B.

    2007-01-01

    The spatial distribution and pattern of alpine treeline in the American West reflect the overarching influences of geological history, lithology and structure, and geomorphic processes and landforms, and geologic and geomorphic factors—both forms and processes—can control the spatiotemporal response of the ecotone to climate change. These influences occur at spatial scales ranging from the continental scale to fine scale processes and landforms at the slope scale. Past geomorphic influences, particularly Pleistocene glaciation, have also left their impact on treeline, and treelines across the west are still adjusting to post-Pleistocene conditions within Pleistocene-created landforms. Current fine scale processes include solifluction and changes on relict solifluction and digging by animals. These processes should be examined in detail in future studies to facilitate a better understanding of where individual tree seedlings become established as a primary response of the ecotone to climate change.

  6. Active geologic processes in Barrow Canyon, northeast Chukchi Sea

    USGS Publications Warehouse

    Eittreim, S.; Grantz, A.; Greenberg, J.

    1982-01-01

    Circulation patterns on the shelf and at the shelf break appear to dominate the Barrow Canyon system. The canyon's shelf portion underlies and is maintained by the Alaska Coastal Current (A.C.C.), which flows northeastward along the coast toward the northeast corner of the broad Chukchi Sea. Offshelf and onshelf advective processes are indicated by oceanographic measurements of other workers. These advective processes may play an important role in the production of bedforms that are found near the canyon head as well as in processes of erosion or non-deposition in the deeper canyon itself. Coarse sediments recovered from the canyon axis at 400 to 570 m indicate that there is presently significant flow along the canyon. The canyon hooks left at a point north of Point Barrow where the A.C.C. loses its coastal constriction. The left hook, as well as preferential west-wall erosion, continues down to the abyssal plain of the Canada Basin at 3800 m. A possible explanation for the preferential west-wall erosion along the canyon, at least for the upper few hundred meters, is that the occasional upwelling events, which cause nutrient-rich water to flow along the west wall would in turn cause larger populations of burrowing organisms to live there than on the east wall, and that these organisms cause high rates of bioerosion. This hypothesis assumes that the dominant factor in the canyon's erosion is biological activity, not current velocity. Sedimentary bedforms consisting of waves and furrows are formed in soft mud in a region on the shelf west of the canyon head; their presence there perhaps reflects: (a) the supply of fine suspended sediments delivered by the A.C.C. from sources to the south, probably the Yukon and other rivers draining northwestern Alaska; and (b) the westward transport of these suspended sediments by the prevailing Beaufort Gyre which flows along the outer shelf. ?? 1982.

  7. Constraining geologic properties and processes through the use of impact craters

    NASA Astrophysics Data System (ADS)

    Barlow, Nadine G.

    2015-07-01

    Impact cratering is the one geologic process which is common to all solar system objects. Impact craters form by the resulting explosion between a solar system body and hypervelocity objects. Comparison with craters formed by chemical and nuclear explosions reveals that crater diameter is related to other morphometric characteristics of the crater, such as depth and rim height. These relationships allow scientists to use impact craters to probe the subsurface structure within the upper few kilometer of a planetary surface and to estimate the amounts and types of degradational processes which have affected the planet since crater formation. Crater size-frequency distribution analysis provides the primary mechanism for determining ages of planetary terrains and constraining the timing of resurfacing episodes. Thus, impact craters provide many important insights into the evolution of planetary surfaces.

  8. The Mars Express High Resolution Stereo Camera (HRSC): Mapping Mars and Implications for Geological Processes

    NASA Astrophysics Data System (ADS)

    Jaumann, Ralf; Tirsch, Daniela; Hauber, Ernst; Hoffmann, Harald; Neukum, Gerhard

    2015-04-01

    After 10 years of ESA's Mars Express orbiting the planet its High Resolution Stereo Camera (HRSC) covered about 90 % of the surface in stereo and color with resolutions up to 10 m/pixel. Digital elevation models of up to 50 m grid spacing [1], generated from all suitable datasets of the stereo coverage, currently cover about 40 % of the surface [2]. The geomorphological analysis of surface features, observed by the HRSC indicate major surface modifications by endogenic and exogenic processes on all scales. Endogenic landforms (e.g., tectonic rifts, small basaltic shield volcanoes) were found to be very similar to their equivalents on Earth, suggesting that no unique processes are required to explain their formation. Volcanism may have been active up to the very recent past or even to the present, putting important constraints on thermal evolution models [e.g., 3]. The analysis of diverse landforms produced by aqueous processes revealed that surface water activity was likely episodic, but ranged in age from very ancient to very recent [e.g., 3]. Particularly important is prominent glaciation and periglacial features at several latitudes, including mountain glaciers [e.g., 3]. The identification of aqueous alteration minerals and their geological context has enabled a better understanding of paleoenvironmental conditions and pedogenetic processes [e.g., 4]. Dark dunes contain volcanic material and are evidence for the significantly dynamic surface environment, characterized by widespread erosion, transport, and redeposition [e.g., 3, 5]. Since basically all geologic interpretations of extraterrestrial features require profound knowledge of the Earth as key reference, studies of terrestrial analogues are mandatory in planetary geology. Field work in Antarctica, Svalbard and Iceland [e.g., 6] provided a basis for the analysis of periglacial and volcanic processes, respectively. References: [1] Jaumann et al., 2007, PSS 55, 928-952; [2] Gwinner et al., 2010, EPSL 294

  9. Strategies for optimized geology-related seismic data processing in the geological interpretation of the Adriatic Sea

    SciTech Connect

    Agostinelli, E.; Boy, M.; Cardamone, M.; Carlini, A.

    1988-08-01

    New seismic surveys are usually preceded by methodical tests relative to specific exploration targets in the study area and provide results which are not widely applicable. If the main exploration targets of a basin are known, one can confidently choose a few representative sections and prepare a sequence of exhaustive processing tests concerning them. The relative data can be subsequently extrapolated to similar stratigraphic and structural situations in the basin. Such a knowledge base can be considerably enhanced by the use of the latest data processing techniques: 240-channel data treatment, multiple-events removal using advanced algorithms, pre- or post-stack time migrations, etc. This maximizes the efficiency of the seismic tool in terms of cost, time, and quality of results, making the derived geological interpretation more reliable. The central Adriatic Sea, due to the large amount of available data and experience acquired through years of exploration activity, represented a very good test area. In this basin a set of representative exploration targets on which to perform suitable processing tests was easily selected, and using the above-mentioned techniques they arrived at a better geological understanding of the area.

  10. Important geological and biological impacts of natural hydrocarbon seeps: Northern Gulf of Mexico continental slope

    SciTech Connect

    Roberts, H.H. )

    1993-11-01

    Large volumes of siliciclastic sediments, input especially during periods of lowered sea level, and compensating salt tectonics have produced a continental slope that is arguably the most complex in today's oceans. Faults associated with deformation of salt and shale provide the primary migration routes for hydrocarbon gases, crude oil, brines, and formation fluids to the modern sea floor. Since the mid 1980s, it has become increasingly clearer that this process has an extremely important impact on the geomorphology, sedimentology, and biology of the modern continental slope. Hydrocarbon source, flux rate, and water depth are important determinants of sea-floor response. Under rapid flux conditions mud volcanoes (to 1 km wide and 50 m high) result, and hydrate hills (rich with authigenic carbonates), carbonate lithoherms, and isolated communities of chemosymbiotic organisms with associated hardgrounds represent much slower flux responses. In numerous moderate- to low-flux cases, cold seep products function to support islands of productivity for communities of chemosymbiotic organisms that contribute both directly (shell material) and through chemical byproducts to the production of massive volumes of calcium-magnesium carbonate in the form of hardgrounds, stacked slabs, and discrete moundlike buildups (commonly >20m). Seep-related carbonates of the Gulf of Mexico continental slope, as well those formed through degassing of accretionary prisms along active margins, are now thought to create hardgrounds and discrete buildups that are excellent analogs for many problematic carbonate buildups in ancient deep-water siliciclastic rocks.

  11. Beyond data collection in digital mapping: interpretation, sketching and thought process elements in geological map making

    NASA Astrophysics Data System (ADS)

    Watkins, Hannah; Bond, Clare; Butler, Rob

    2016-04-01

    Geological mapping techniques have advanced significantly in recent years from paper fieldslips to Toughbook, smartphone and tablet mapping; but how do the methods used to create a geological map affect the thought processes that result in the final map interpretation? Geological maps have many key roles in the field of geosciences including understanding geological processes and geometries in 3D, interpreting geological histories and understanding stratigraphic relationships in 2D and 3D. Here we consider the impact of the methods used to create a map on the thought processes that result in the final geological map interpretation. As mapping technology has advanced in recent years, the way in which we produce geological maps has also changed. Traditional geological mapping is undertaken using paper fieldslips, pencils and compass clinometers. The map interpretation evolves through time as data is collected. This interpretive process that results in the final geological map is often supported by recording in a field notebook, observations, ideas and alternative geological models explored with the use of sketches and evolutionary diagrams. In combination the field map and notebook can be used to challenge the map interpretation and consider its uncertainties. These uncertainties and the balance of data to interpretation are often lost in the creation of published 'fair' copy geological maps. The advent of Toughbooks, smartphones and tablets in the production of geological maps has changed the process of map creation. Digital data collection, particularly through the use of inbuilt gyrometers in phones and tablets, has changed smartphones into geological mapping tools that can be used to collect lots of geological data quickly. With GPS functionality this data is also geospatially located, assuming good GPS connectivity, and can be linked to georeferenced infield photography. In contrast line drawing, for example for lithological boundary interpretation and sketching

  12. Radiogenic Strontium-87 as an Index of Geologic Processes.

    PubMed

    Hedge, C E; Walthall, F G

    1963-06-14

    The abundance of radiogenic Sr(87) relative to Sr(86) at the time of crystallization has been determined for 45 rocks. The total range in the ratio Sr(87)/Sr(86) is less than 2 percent. Ratios for recent lavas range from 0.702 to 0.711. Oceanic basalts are closely grouped at 0.703, whereas ratios for continental volcanic rocks spread from 0.702 to 0.711. Among the volcanic rocks, ranging from basalt to rhyolite, no correlation was found between original ratio and rock type. Older mafic and felsic rocks that include both plutonic and extrusive types also cover this same range in original Sr(87)/Sr(86) ratios; however, there is a definite trend with geologic time. Precambrian rocks give values as low as 0.700. The data indicate that Sr(87)/Sr(86) of the weathering crust has changed 1.1 percent in 3000 million years, while the ratio in the mantle has changed no more than 0.5 percent. PMID:17837503

  13. Refining Martian Ages and Understanding Geological Processes From Cratering Statistics

    NASA Technical Reports Server (NTRS)

    Hartmann, William K.

    2005-01-01

    Senior Scientist William K. Hartman presents his final report on Mars Data Analysis Program grant number NAG5-12217: The third year of the three-year program was recently completed in mid-2005. The program has been extremely productive in research and data analysis regarding Mars, especially using Mars Global Surveyor and Mars Odyssey imagery. In the 2005 alone, three papers have already been published, to which this work contributed.1) Hartmann, W. K. 200.5. Martian cratering 8. Isochron refinement and the history of Martian geologic activity Icarus 174, 294-320. This paper is a summary of my entire program of establishing Martian chronology through counts of Martian impact craters. 2) Arfstrom, John, and W. K. Hartmann 2005. Martian flow features, moraine-like rieges, and gullies: Terrestrial analogs and interrelationships. Icarus 174,32 1-335. This paper makes pioneering connections between Martian glacier-like features and terrestrial glacial features. 3) Hartmann, W.K., D. Winterhalter, and J. Geiss. 2005 Chronology and Physical Evolution of Planet Mars. In The Solar System and Beyond: Ten Years of ISSI (Bern: International Space Science Institute). This is a summary of work conducted at the International Space Science Institute with an international team, emphasizing our publication of a conference volume about Mars, edited by Hartmann and published in 2001.

  14. Radiogenic Strontium-87 as an Index of Geologic Processes.

    PubMed

    Hedge, C E; Walthall, F G

    1963-06-14

    The abundance of radiogenic Sr(87) relative to Sr(86) at the time of crystallization has been determined for 45 rocks. The total range in the ratio Sr(87)/Sr(86) is less than 2 percent. Ratios for recent lavas range from 0.702 to 0.711. Oceanic basalts are closely grouped at 0.703, whereas ratios for continental volcanic rocks spread from 0.702 to 0.711. Among the volcanic rocks, ranging from basalt to rhyolite, no correlation was found between original ratio and rock type. Older mafic and felsic rocks that include both plutonic and extrusive types also cover this same range in original Sr(87)/Sr(86) ratios; however, there is a definite trend with geologic time. Precambrian rocks give values as low as 0.700. The data indicate that Sr(87)/Sr(86) of the weathering crust has changed 1.1 percent in 3000 million years, while the ratio in the mantle has changed no more than 0.5 percent.

  15. Geologic processes and Cenozoic history related to salt dissolution in southeastern New Mexico

    USGS Publications Warehouse

    Bachman, George Odell

    1974-01-01

    Salt of Permian age in the subsurface of an area near The Divide, east of Carlsbad, N. Mex., is being considered for a nuclear waste repository. The geologic history of the region indicates that dissolution of salt has occurred in the past during at least three distinct epochs: (1) after Triassic but before middle Pleistocene time; (2) during middle Pleistocene; and (3) during late Pleistocene. Thus, destructive geologic processes have been intermittent through more than I00 million years. Nash Draw, near The Divide, formed during late Pleistocene time by the coalescing of collapse sinks. The rate of its subsidence is estimated to have been about 10 cm (0.33 foot) per thousand years. The immediate area of The Divide adjacent to Nash Draw has not undergone stress by geologic processes during Pleistocene time and there are no present indications that this geologic environment will change drastically within the period of concern for the repository.

  16. The investigation of dangerous geological processes resulting in land subsidence while designing the main gas pipeline in South Yakutia

    NASA Astrophysics Data System (ADS)

    Strokova, L. A.; Ermolaeva, A. V.; Golubeva, V. V.

    2016-09-01

    The number of gas main accidents has increased recently due to dangerous geological processes in underdeveloped areas located in difficult geological conditions. The paper analyses land subsidence caused by karst and thermokarst processes in the right of way, reveals the assessment criteria for geological hazards and creates zoning schemes considering the levels of karst and thermorkarst hazards.

  17. Martian surface microtexture from orbital CRISM multi-angular observations: A new perspective for the characterization of the geological processes

    NASA Astrophysics Data System (ADS)

    Fernando, J.; Schmidt, F.; Douté, S.

    2016-09-01

    The surface of Mars has a high morphological and mineralogical diversity due to the intricacy of external, internal processes, and exchanges with the atmosphere, the hydrosphere and the cryosphere. In particular, liquid water played an important role in surface evolution. However, the origin, duration and intensity of those wet events have been highly debated, especially in the clay-bearing geological units. Similarly, questions still remain about magma crystallization and volatile quantity of the dominant basaltic crust. In this work, six sites having hydrated minerals, salts and basaltic signatures (i.e., Mawrth Vallis, Holden crater, Eberswalde crater, Capri mensa, Eridania basin, Terra Sirenum) are investigated in order to better characterize the geological processes responsible for their formation and evolution (e.g., fluvial, lacustrine, in situ weathering, evaporitic, volcanic and aeolian processes). For that purpose, we use orbital multi-angular measurements from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) instrument on-board the Mars Reconnaissance Orbiter spacecraft to analyze the manner in which light is scattered by the surface materials (photometry) in the near-infrared range (at 750 nm). The surface bidirectional reflectance depends on the composition but also on the surface microtexture such as the grain size distribution, morphology, internal structure and surface roughness, tracers of the geological processes. The Hapke semi-analytical model of radiative transfer in granular medium is used to model the surface bidirectional reflectance estimated at 750 nm from the orbital measurements after an atmospheric correction. The model depends on different radiative properties (e.g., single scattering albedo, grain phase function and regolith roughness) related to the surface composition and microtexture. In particular previous laboratory works showed that the particle phase function parameters, which describe the characteristics of the

  18. Processes in karst systems, physics, chemistry, and geology

    SciTech Connect

    Dreybrodt, W.

    1988-01-01

    Dreybrodt deals quantitatively with many of the chemical and hydrological processes involved in the formation of karst systems. The book is divided into 3 major parts. The first part develops the basic chemical and fluid-flow principles needed in modeling karst systems. The second part investigates the experimental kinetics of calcite dissolution and precipitation and applies the resulting kinetic laws to the modeling of these processes in systems both open and closed to carbon dioxide. The last part of the book includes a qualitative examination of karst systems, quantitative modeling of the development of karst features, and an examination and modeling of the growth of spelotherms in caves.

  19. Igneous geology of the Carlin trend, Nevada: The importance of Eocene magmatism in gold mineralization

    NASA Astrophysics Data System (ADS)

    Ressel, Michael Walter, Jr.

    Igneous rocks of five ages are present in the Carlin trend, Nevada, and include: (1) Paleozoic basalt of the Roberts Mountains allochthon, (2) the Jurassic (˜158 Ma) Goldstrike intrusive complex, which includes the Goldstrike diorite laccolith and abundant dikes and sills, (3) a Cretaceous (112 Ma) granite stock, (4) lavas and intrusions of the Emigrant Pass volcanic field and widespread epizonal plugs and dikes of Eocene (˜40-36 Ma) age that range from rhyolite through basalt, and (5) Miocene (15 Ma) rhyolite lava and tuff. Jurassic and Eocene igneous rocks are by far the most important volumetrically and are spatially associated with nearly all ore deposits of the Carlin trend. This study focuses on the field relations, isotopic dating, and geochemistry of Eocene dikes that intrude sedimentary rocks in many deposits of the Carlin trend, because they are the youngest pre-mineral rocks and have simpler alteration histories than other host rocks. In the Beast, Genesis, Deep Star, Betze-Post, Rodeo-Goldbug, Meikle-Griffin, and Dee-Storm deposits, Eocene dikes are altered, commonly mineralized, and locally constitute ore. Gold-bearing dikes and sedimentary rocks have similar ore mineralogy, including arsenian pyrite, marcasite, and arsenopyrite, with late barite and stibnite. At Beast, as much as half the ore is hosted in a 37.3 Ma rhyolite dike. Post-gold alunite is ˜18.6 Ma. At Meikle and Griffin, porphyritic dacite dikes yield concordant U/Pb zircon and 40Ar/39Ar biotite emplacement ages of ˜39.2 Ma, and illite from the same QSP-altered dacite, with as much 9 ppm Au, yields similar, although imprecise 40Ar/39Ar ages. Thus, gold mineralization at these deposits closely followed emplacement of Eocene dikes. Carlin-type gold deposits in northeastern Nevada have been variously interpreted as partly syngenetic with Paleozoic carbonate rocks, products of Mesozoic contraction and metamorphism with or without significant magmatism, and of Tertiary age and related or

  20. Assessment of effectiveness of geologic isolation systems. Geologic factors in the isolation of nuclear waste: evaluation of long-term geomorphic processes and catastrophic events

    SciTech Connect

    Mara, S.J.

    1980-03-01

    SRI International has projected the rate, duration, and magnitude of geomorphic processes and events in the Southwest and Gulf Coast over the next million years. This information will be used by the Department of Energy`s Pacific Northwest Laboratory (PNL) as input to a computer model, which will be used to simulate possible release scenarios and the consequences of the release of nuclear waste from geologic containment. The estimates in this report, although based on best scientific judgment, are subject to considerable uncertainty. An evaluation of the Quaternary history of the two study areas revealed that each had undergone geomorphic change in the last one million years. Catastrophic events were evaluated in order to determine their significance to the simulation model. Given available data, catastrophic floods are not expected to occur in the two study areas. Catastrophic landslides may occur in the Southwest, but because the duration of the event is brief and the amount of material moved is small in comparison to regional denudation, such events need not be included in the simulation model. Ashfalls, however, could result in removal of vegetation from the landscape, thereby causing significant increases in erosion rates. Because the estimates developed during this study may not be applicable to specific sites, general equations were presented as a first step in refining the analysis. These equations identify the general relationships among the important variables and suggest those areas of concern for which further data are required. If the current model indicates that geomorphic processes (taken together with other geologic changes) may ultimately affect the geologic containment of nuclear waste, further research may be necessary to refine this analysis for application to specific sites.

  1. Geology Field Trips as Performance Evaluations

    ERIC Educational Resources Information Center

    Bentley, Callan

    2009-01-01

    One of the most important goals the author has for students in his introductory-level physical geology course is to give them the conceptual skills for solving geologic problems on their own. He wants students to leave his course as individuals who can use their knowledge of geologic processes and logic to figure out the extended geologic history…

  2. Processing of Neutron Diffraction Data for Strain Measurement in Geological Materials

    SciTech Connect

    Polsky, Yarom; An, Ke; Anovitz, Lawrence {Larry} M; Bingham, Philip R; Carmichael, Justin R; Dessieux Jr, Luc Lucius

    2014-01-01

    : Conventional rock mechanics testing techniques typically involve the loading of samples and measurement of displacements or strains on the outer boundary of the specimen surface. Neutron diffraction based strain measurement techniques represent a unique and powerful tool for measuring the strain within geological materials under load. The structural variability and non-uniform crystallinity of geological materials, however, create many complexities in the intensity patterns that must be analyzed to quantify strains within the material. The attenuating and scattering properties of the pressure cell housing the sample further add difficulties to the data analysis. This paper describes the methods and processes used to process neutron scattering data for strain measurement in geological materials. It is intended to provide a primer for those in the rock mechanics community that are interested in utilizing this technique along with additional discussion of neutron diffraction experimental factors that may affect data quality.

  3. Molecular Modeling of Environmentally Important Processes: Reduction Potentials

    ERIC Educational Resources Information Center

    Lewis, Anne; Bumpus, John A.; Truhlar, Donald G.; Cramer, Christopher J.

    2004-01-01

    The increasing use of computational quantum chemistry in the modeling of environmentally important processes is described. The employment of computational quantum mechanics for the prediction of oxidation-reduction potential for solutes in an aqueous medium is discussed.

  4. Rock fall susceptibility assessment using structural geological indicators for detaching processes such as sliding or toppling

    NASA Astrophysics Data System (ADS)

    Melzner, Sandra; Tilch, Nils; Lotter, Michael; Kociu, Arben

    2010-05-01

    A structural geological assessment of cliffs in terms of rock fall susceptibility is expensive and time-consuming particularly in remote areas (exposed cliffs) where it may even be impossible. Hence it is important to develop methods and strategies that can be used to extrapolate the acquired knowledge from representative sub-regions to the whole study area. Using a case study in Carinthia (Austria), a GIS method was developed which can be used for regional, qualitative determination of the susceptibility of cliffs in carbonatic sedimentary rock, regarding two potential initial detachment processes of rock fall: sliding and/or toppling. During the development of this GIS method, it was found that not all of the mapped structural geologic parameters are equally suitable for a comprehensive regionalisation. Subsequently, only those parameters were included in the assessment which experts deemed to be representative in terms of parameter homogeneity/heterogeneity and thus applicable to the entire survey region: bedding thickness, tectonic lineaments, orientation of discontinuities and type of rock mass structure. Regions of homogeneity/heterogeneity differ with regard to parameter values, as well as parameter uncertainties and scattering. At first, the cliffs were categorised in terms of potential form and size of rock blocks by overlaying various parameter maps. In the next step, the relative orientation of the rock mass structures and their variations towards slope aspect and slope inclination were considered within a region of homogeneity. This allowed an accurate estimate of the possible maximum dip angle (or apparent dip angle) of a joint set over a wide area. It also permitted those areas to be pointed out in which process-initialising sliding and/or toppling might be possible along one or several joint sets. Comparing this method to the acquired field data has proven the approach to be successful when it comes to assessing cliffs in carbonate rocks in terms of

  5. Time-lapse motion picture technique applied to the study of geological processes

    USGS Publications Warehouse

    Miller, R.D.; Crandell, D.R.

    1959-01-01

    Light-weight, battery-operated timers were built and coupled to 16-mm motion-picture cameras having apertures controlled by photoelectric cells. The cameras were placed adjacent to Emmons Glacier on Mount Rainier. The film obtained confirms the view that exterior time-lapse photography can be applied to the study of slow-acting geologic processes.

  6. The large impact process inferred from the geology of lunar multiring basins

    NASA Technical Reports Server (NTRS)

    Spudis, Paul D.

    1992-01-01

    The nature of the impact process has been inferred through the study of the geology of a wide variety of impact crater types and sizes. Some of the largest craters known are the multiring basins found in ancient terrains of the terrestrial planets. Of these features, those found on the Moon possess the most extensive and diverse data coverage, including morphological, geochemical, geophysical, and sample data. The study of the geology of lunar basins over the past 10 years has given us a rudimentary understanding of how these large structures have formed and evolved. The topics covered include basin morphology, basin ejecta, basin excavation, and basin ring formation.

  7. Distribution and interplay of geologic processes on Titan from Cassini radar data

    USGS Publications Warehouse

    Lopes, R.M.C.; Stofan, E.R.; Peckyno, R.; Radebaugh, J.; Mitchell, K.L.; Mitri, G.; Wood, C.A.; Kirk, R.L.; Wall, S.D.; Lunine, J.I.; Hayes, A.; Lorenz, R.; Farr, Tom; Wye, L.; Craig, J.; Ollerenshaw, R.J.; Janssen, M.; LeGall, A.; Paganelli, F.; West, R.; Stiles, B.; Callahan, P.; Anderson, Y.; Valora, P.; Soderblom, L.

    2010-01-01

    The Cassini Titan Radar Mapper is providing an unprecedented view of Titan's surface geology. Here we use Synthetic Aperture Radar (SAR) image swaths (Ta-T30) obtained from October 2004 to December 2007 to infer the geologic processes that have shaped Titan's surface. These SAR swaths cover about 20% of the surface, at a spatial resolution ranging from ???350 m to ???2 km. The SAR data are distributed over a wide latitudinal and longitudinal range, enabling some conclusions to be drawn about the global distribution of processes. They reveal a geologically complex surface that has been modified by all the major geologic processes seen on Earth - volcanism, tectonism, impact cratering, and erosion and deposition by fluvial and aeolian activity. In this paper, we map geomorphological units from SAR data and analyze their areal distribution and relative ages of modification in order to infer the geologic evolution of Titan's surface. We find that dunes and hummocky and mountainous terrains are more widespread than lakes, putative cryovolcanic features, mottled plains, and craters and crateriform structures that may be due to impact. Undifferentiated plains are the largest areal unit; their origin is uncertain. In terms of latitudinal distribution, dunes and hummocky and mountainous terrains are located mostly at low latitudes (less than 30??), with no dunes being present above 60??. Channels formed by fluvial activity are present at all latitudes, but lakes are at high latitudes only. Crateriform structures that may have been formed by impact appear to be uniformly distributed with latitude, but the well-preserved impact craters are all located at low latitudes, possibly indicating that more resurfacing has occurred at higher latitudes. Cryovolcanic features are not ubiquitous, and are mostly located between 30?? and 60?? north. We examine temporal relationships between units wherever possible, and conclude that aeolian and fluvial/pluvial/lacustrine processes are the

  8. Disribution and interplay of geologic processes on Titan from Cassini radar data

    USGS Publications Warehouse

    Lopes, R.M.C.; Stofan, E.R.; Peckyno, R.; Radebaugh, J.; Mitchell, K.L.; Mitri, G.; Wood, C.A.; Kirk, R.L.; Wall, S.D.; Lunine, J.I.; Hayes, A.; Lorenz, R.; Farr, Tom; Wye, L.; Craig, J.; Ollerenshaw, R.J.; Janssen, M.; LeGall, A.; Paganelli, F.; West, R.; Stiles, B.; Callahan, P.; Anderson, Y.; Valora, P.; Soderblom, L.

    2010-01-01

    The Cassini Titan Radar Mapper is providing an unprecedented view of Titan's surface geology. Here we use Synthetic Aperture Radar (SAR) image swaths (Ta-T30) obtained from October 2004 to December 2007 to infer the geologic processes that have shaped Titan's surface. These SAR swaths cover about 20% of the surface, at a spatial resolution ranging from ~350 m to ~2 km. The SAR data are distributed over a wide latitudinal and longitudinal range, enabling some conclusions to be drawn about the global distribution of processes. They reveal a geologically complex surface that has been modified by all the major geologic processes seen on Earth - volcanism, tectonism, impact cratering, and erosion and deposition by fluvial and aeolian activity. In this paper, we map geomorphological units from SAR data and analyze their areal distribution and relative ages of modification in order to infer the geologic evolution of Titan's surface. We find that dunes and hummocky and mountainous terrains are more widespread than lakes, putative cryovolcanic features, mottled plains, and craters and crateriform structures that may be due to impact. Undifferentiated plains are the largest areal unit; their origin is uncertain. In terms of latitudinal distribution, dunes and hummocky and mountainous terrains are located mostly at low latitudes (less than 30 degrees), with no dunes being present above 60 degrees. Channels formed by fluvial activity are present at all latitudes, but lakes are at high latitudes only. Crateriform structures that may have been formed by impact appear to be uniformly distributed with latitude, but the well-preserved impact craters are all located at low latitudes, possibly indicating that more resurfacing has occurred at higher latitudes. Cryovolcanic features are not ubiquitous, and are mostly located between 30 degrees and 60 degrees north. We examine temporal relationships between units wherever possible, and conclude that aeolian and fluvial

  9. Impact Craters on Earth: Lessons for Understanding Martian Geological Materials and Processes

    NASA Astrophysics Data System (ADS)

    Osinski, G. R.

    2015-12-01

    Impact cratering is one of the most ubiquitous geological processes in the Solar System and has had a significant influence on the geological evolution of Mars. Unlike the Moon and Mercury, the Martian impact cratering record is notably diverse, which is interpreted to reflect interactions during the impact process with target volatiles and/or the atmosphere. The Earth also possesses a volatile-rich crust and an atmosphere and so is one of the best analogues for understanding the effects of impact cratering on Mars. Furthermore, fieldwork at terrestrial craters and analysis of samples is critical to ground-truth observations made based on remote sensing data from Martian orbiters, landers, and rovers. In recent years, the effect of target lithology on various aspects of the impact cratering process has emerged as a major research topic. On Mars, volatiles have been invoked to be the primary factor influencing the morphology of ejecta deposits - e.g., the formation of single-, double- and multiple-layered ejecta deposits - and central uplifts - e.g., the formation of so-called "central pit" craters. Studies of craters on Earth have also shown that volatiles complicate the identification of impactites - i.e., rocks produced and/or affected by impact cratering. Identifying impactites on Earth is challenging, often requiring intensive and multi-technique laboratory analysis of hand specimens. As such, it is even more challenging to recognize such materials in remote datasets. Here, observations from the Haughton (d = 23 km; Canada), Ries (d = 24 km; Germany), Mistastin (d = 28 km; Canada), Tunnunik, (d = 28 km; Canada), and West Clearwater Lake (d = 36 km; Canada) impact structures are presented. First, it is shown that some impactites mimic intrusive, volcanic, volcanoclastic and in some cases sedimentary clastic rocks. Care should, therefore, be taken in the identification of seemingly unusual igneous rocks at rover landing sites as they may represent impact melt

  10. Volcanogenic Uranium Deposits: Geology, Geochemical Processes, and Criteria for Resource Assessment

    USGS Publications Warehouse

    Nash, J. Thomas

    2010-01-01

    Felsic volcanic rocks have long been considered a primary source of uranium for many kinds of uranium deposits, but volcanogenic uranium deposits themselves have generally not been important resources. Until the past few years, resource summaries for the United States or the world generally include volcanogenic in the broad category of 'other deposits' because they comprised less than 0.5 percent of past production or estimated resources. Exploration in the United States from the 1940s through 1982 discovered hundreds of prospects in volcanic rocks, of which fewer than 20 had some recorded production. Intensive exploration in the late 1970s found some large deposits, but low grades (less than about 0.10 percent U3O8) discouraged economic development. A few deposits in the world, drilled in the 1980s and 1990s, are now known to contain large resources (>20,000 tonnes U3O8). However, research on ore-forming processes and exploration for volcanogenic deposits has lagged behind other kinds of uranium deposits and has not utilized advances in understanding of geology, geochemistry, and paleohydrology of ore deposits in general and epithermal deposits in particular. This review outlines new ways to explore and assess for volcanogenic deposits, using new concepts of convection, fluid mixing, and high heat flow to mobilize uranium from volcanic source rocks and form deposits that are postulated to be large. Much can also be learned from studies of epithermal metal deposits, such as the important roles of extensional tectonics, bimodal volcanism, and fracture-flow systems related to resurgent calderas. Regional resource assessment is helped by genetic concepts, but hampered by limited information on frontier areas and undiscovered districts. Diagnostic data used to define ore deposit genesis, such as stable isotopic data, are rarely available for frontier areas. A volcanic environment classification, with three classes (proximal, distal, and pre-volcanic structures

  11. The MESSENGER mission to Mercury: new insights into geological processes and evolution

    NASA Astrophysics Data System (ADS)

    Head, James W., III; Solomon, Sean C.; McNutt, Ralph L., Jr.; Blewett, David T.; Chapman, Clark R.; Domingue, Deborah L.; Evans, Larry G.; Gillis-Davis, Jeffrey J.; Hawkins, S. Edward, III; Helbert, Jörn; Holsclaw, Gregory M.; Izenberg, Noam R.; McClintock, William E.; McCoy, Timothy J.; Merline, William J.; Murchie, Scott L.; Nittler, Larrz R.; Phillips, Roger J.; Prockter, Louise M.; Robinson, Mark S.; Sprague, Ann L.; Strom, Robert G.; Vilas, Faith; Watters, Thomas R.; Zuber, Maria T.

    2008-09-01

    The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission, a part of NASA's Discovery Program, was designed to answer six questions [1]: (1) What planetary formational processes led to Mercury's high ratio of metal to silicate? (2) What is the geological history of Mercury? (3) What are the nature and origin of Mercury's magnetic field? (4) What are the structure and state of Mercury's core? (5) What are the radar-reflective materials at Mercury's poles? (6) What are the important volatile species and their sources and sinks near Mercury? MESSENGER is currently midway through a complex interplanetary cruise phase that involves three flybys of Mercury. The first of these, on 14 January 2008, provided important new information relating to several of the questions above [2-13]. Here we summarize observations made during the flyby that are most relevant to new insights about geological processes that have operated on Mercury and implications for the planet's history [3, 8-13]. The instruments that provided the most direct information on the geological history of Mercury during this first encounter were the Mercury Dual Imaging System (MDIS) [14], the Mercury Atmospheric and Surface Composition Spectrometer (MASCS) [15], and the Mercury Laser Altimeter (MLA) [16]. Among the many specific questions remaining following the Mariner 10 mission to Mercury (1974- 1975) were (1) the level of mineralogical and compositional diversity of the crust, which appeared relatively bland in Mariner 10 data, (2) the nature of the rest of the huge Caloris impact basin seen only partially in Mariner 10 images, (3) the origin of the extensive plains observed on the surface (ponded impact ejecta or extrusive lava flows?), (4) the diversity and global distribution of tectonic features that have deformed the crust and their implications for strain as a function of time, and (5) the bombardment chronology and geological history of Mercury [1, 17-19]. The viewing

  12. Geology of icy satellites

    NASA Technical Reports Server (NTRS)

    Mckinnon, W. B.

    1985-01-01

    The geology of the major icy satellites of Jupiter, Saturn, Uranus, and Neptune is discussed in terms of the four major processes that shape icy satellite surfaces: impact cratering, volcanism, tectonism, and interactions with planetary magnetospheres and solar radiation. The role of these processes in creating the differences that exist among the satellites, in particular the orderly progression of geological properties in the Jovian satellites, is emphasized. Important questions left open after the Voyager missions are summarized.

  13. Import, targeting, and processing of a plant polyphenol oxidase.

    PubMed Central

    Sommer, A; Ne'eman, E; Steffens, J C; Mayer, A M; Harel, E

    1994-01-01

    A tomato (Lycopersicon esculentum L.) gene encoding a precursor of polyphenol oxidase (PPO) was transcribed and translated in vitro. The import, targeting, and processing of the [35S]methionine-labeled precursor protein (pPPO) were studied in isolated chloroplasts. The protein was routed to the thylakoid lumen in two steps. The 67-kD precursor was first imported into the stroma in an ATP-dependent step. It was processed to a 62-kD intermediate by a stromal peptidase. Translocation into the lumen was light dependent and involved processing of the 62-kD to the 59-kD mature form. The mature polypeptide was soluble in the lumen and not bound to thylakoids. This two-step targeting pattern was observed in plastids from a variety of plants including pea (Pisum sativum L.), tomato, and maize (Zea mays L.). The ratio between the intermediate and mature forms observed depended on the plant species, leaf age, growth conditions, and illumination regime to which the plants had been subjected. Cu2+ was not required for pPPO import or processing. Furthermore, low concentrations of Cu2+ (1-5 microM) markedly inhibited the first import step. Tentoxin specifically inhibited pPPO import, leaving the precursor bound to the envelope membrane. The two-step routing of pPPO into chloroplasts, typical of thylakoid lumen proteins, is consistent with the two-domain structure of the transit peptide and appears to be a feature of all plant PPO genes isolated so far. No evidence was found for unorthodox routing mechanisms, which have been suggested to be involved in the import of plant PPOs. The two-step routing may account for some of the multiplicity of PPO observed in vivo. PMID:7972497

  14. Import, targeting, and processing of a plant polyphenol oxidase.

    PubMed

    Sommer, A; Ne'eman, E; Steffens, J C; Mayer, A M; Harel, E

    1994-08-01

    A tomato (Lycopersicon esculentum L.) gene encoding a precursor of polyphenol oxidase (PPO) was transcribed and translated in vitro. The import, targeting, and processing of the [35S]methionine-labeled precursor protein (pPPO) were studied in isolated chloroplasts. The protein was routed to the thylakoid lumen in two steps. The 67-kD precursor was first imported into the stroma in an ATP-dependent step. It was processed to a 62-kD intermediate by a stromal peptidase. Translocation into the lumen was light dependent and involved processing of the 62-kD to the 59-kD mature form. The mature polypeptide was soluble in the lumen and not bound to thylakoids. This two-step targeting pattern was observed in plastids from a variety of plants including pea (Pisum sativum L.), tomato, and maize (Zea mays L.). The ratio between the intermediate and mature forms observed depended on the plant species, leaf age, growth conditions, and illumination regime to which the plants had been subjected. Cu2+ was not required for pPPO import or processing. Furthermore, low concentrations of Cu2+ (1-5 microM) markedly inhibited the first import step. Tentoxin specifically inhibited pPPO import, leaving the precursor bound to the envelope membrane. The two-step routing of pPPO into chloroplasts, typical of thylakoid lumen proteins, is consistent with the two-domain structure of the transit peptide and appears to be a feature of all plant PPO genes isolated so far. No evidence was found for unorthodox routing mechanisms, which have been suggested to be involved in the import of plant PPOs. The two-step routing may account for some of the multiplicity of PPO observed in vivo. PMID:7972497

  15. Geologic characterization of shelf areas using usSEABED for GIS mapping, modeling processes and assessing marine sand and gravel resources

    USGS Publications Warehouse

    Williams, S.J.; Bliss, J.D.; Arsenault, M.A.; Jenkins, C.J.; Goff, J.A.

    2007-01-01

    Geologic maps depicting offshore sedimentary features serve many scientific and applied purposes. Such maps have been lacking, but recent computer technology and software offer promise in the capture and display of diverse marine data. Continental margins contain landforms which provide a variety of important functions and contain important sedimentary records. Some shelf areas also contain deposits regarded as potential aggregate resources. Because proper management of coastal and offshore areas is increasingly important, knowledge of the framework geology and marine processes is critical. Especially valuable are comprehensive and integrated digital databases based on high-quality information from original sources. Products of interest are GIS maps containing thematic information, such as sediment character and texture. These products are useful to scientists modeling nearshore and shelf processes as well as planners and managers. The U.S. Geological Survey is leading a national program to gather a variety of extant marine geologic data into the usSEABED database system. This provides centralized, integrated marine geologic data collected over the past 50 years. To date, over 340,000 sediment data points from the U.S. reside in usSEABED, which combines an array of physical data and analytical and descriptive information about the sea floor and are available to the marine community through three USGS data reports for the Atlantic, Gulf of Mexico, and Pacific published in 2006, and the project web sites: (http://woodshole.er.usg s.gov/project-pages/aggregates/ and http://walrus.wr.usgs.gov/usseabed/)

  16. Understanding geological processes: Visualization of rigid and non-rigid transformations

    NASA Astrophysics Data System (ADS)

    Shipley, T. F.; Atit, K.; Manduca, C. A.; Ormand, C. J.; Resnick, I.; Tikoff, B.

    2012-12-01

    Visualizations are used in the geological sciences to support reasoning about structures and events. Research in cognitive sciences offers insights into the range of skills of different users, and ultimately how visualizations might support different users. To understand the range of skills needed to reason about earth processes we have developed a program of research that is grounded in the geosciences' careful description of the spatial and spatiotemporal patterns associated with earth processes. In particular, we are pursuing a research program that identifies specific spatial skills and investigates whether and how they are related to each other. For this study, we focus on a specific question: Is there an important distinction in the geosciences between rigid and non-rigid deformation? To study a general spatial thinking skill we employed displays with non-geological objects that had been altered by rigid change (rotation), and two types of non-rigid change ("brittle" (or discontinuous) and "ductile" (or continuous) deformation). Disciplinary scientists (geosciences and chemistry faculty), and novices (non-science faculty and undergraduate psychology students) answered questions that required them to visualize the appearance of the object before the change. In one study, geologists and chemists were found to be superior to non-science faculty in reasoning about rigid rotations (e.g., what an object would look like from a different perspective). Geologists were superior to chemists in reasoning about brittle deformations (e.g., what an object looked like before it was broken - here the object was a word cut into many fragments displaced in different directions). This finding is consistent with two hypotheses: 1) Experts are good at visualizing the types of changes required for their domain; and 2) Visualization of rigid and non-rigid changes are not the same skill. An additional important finding is that there was a broad range of skill in both rigid and non

  17. Differential preservation in the geologic record of intraoceanic arc sedimentary and tectonic processes

    USGS Publications Warehouse

    Draut, Amy; Clift, Peter D.

    2013-01-01

    Records of ancient intraoceanic arc activity, now preserved in continental suture zones, are commonly used to reconstruct paleogeography and plate motion, and to understand how continental crust is formed, recycled, and maintained through time. However, interpreting tectonic and sedimentary records from ancient terranes after arc–continent collision is complicated by preferential preservation of evidence for some arc processes and loss of evidence for others. In this synthesis we examine what is lost, and what is preserved, in the translation from modern processes to the ancient record of intraoceanic arcs. Composition of accreted arc terranes differs as a function of arc–continent collision geometry. ‘Forward-facing’ collision can accrete an oceanic arc on to either a passive or an active continental margin, with the arc facing the continent and colliding trench- and forearc-side first. In a ‘backward-facing’ collision, involving two subduction zones with similar polarity, the arc collides backarc-first with an active continental margin. The preservation of evidence for contemporary sedimentary and tectonic arc processes in the geologic record depends greatly on how well the various parts of the arc survive collision and orogeny in each case. Preservation of arc terranes likely is biased towards those that were in a state of tectonic accretion for tens of millions of years before collision, rather than tectonic erosion. The prevalence of tectonic erosion in modern intraoceanic arcs implies that valuable records of arc processes are commonly destroyed even before the arc collides with a continent. Arc systems are most likely to undergo tectonic accretion shortly before forward-facing collision with a continent, and thus most forearc and accretionary-prism material in ancient arc terranes likely is temporally biased toward the final stages of arc activity, when sediment flux to the trench was greatest and tectonic accretion prevailed. Collision geometry

  18. The Importance of Biophysicochemical Transport Processes in Hyporheic Exchange

    NASA Astrophysics Data System (ADS)

    Packman, A. I.

    2001-12-01

    Hyporheic exchange processes are generally analyzed in terms of hydrologic stream-subsurface interactions, biogeochemical reactions in the hyporheic zone, or nutrient and carbon uptake in the context of stream metabolism. Often, investigations are motivated primarily by applications in hydrology, contaminant transport, or stream ecology, and thus focus on only one of these aspects of hyporheic exchange. However, it is important to consider the interrelationships between biological, physical, and chemical processes, which are inevitably and inextricably linked because the hyporheic zone represents an extraordinary complex environmental system. The nature of biophysicochemical linkages in the hyporheic zone will be discussed in general terms and illustrated with two important examples. The transport of microorganisms such as the pathogen Cryptosporidium parvum in streams is dependent on both physical transport processes and physicochemical interactions in the hyporheic zone. The transport of labile particulate organic matter to the hyporheic zone is dependent on similar processes, but also induces biologically-mediated alteration of the subsurface environment. In these types of studies, insufficient characterization of either physical, chemical, or biological processes can lead to errors in interpretation of overall system behavior.

  19. Canada's Deep Geological Repository For Used Nuclear Fuel -The Geoscientific Site Evaluation Process

    NASA Astrophysics Data System (ADS)

    Hirschorn, S.; Ben Belfadhel, M.; Blyth, A.; DesRoches, A. J.; McKelvie, J. R. M.; Parmenter, A.; Sanchez-Rico Castejon, M.; Urrutia-Bustos, A.; Vorauer, A.

    2014-12-01

    The Nuclear Waste Management Organization (NWMO) is responsible for implementing Adaptive Phased Management, the approach selected by the Government of Canada for long-term management of used nuclear fuel generated by Canadian nuclear reactors. In May 2010, the NWMO published and initiated a nine-step site selection process to find an informed and willing community to host a deep geological repository for Canada's used nuclear fuel. The site selection process is designed to address a broad range of technical and social, economic and cultural factors. The suitability of candidate areas will be assessed in a stepwise manner over a period of many years and include three main steps: Initial Screenings; Preliminary Assessments; and Detailed Site Characterizations. The Preliminary Assessment is conducted in two phases. NWMO has completed Phase 1 preliminary assessments for the first eight communities that entered into this step. While the Phase 1 desktop geoscientific assessments showed that each of the eight communities contains general areas that have the potential to satisfy the geoscientific safety requirements for hosting a deep geological repository, the assessment identified varying degrees of geoscientific complexity and uncertainty between communities, reflecting their different geological settings and structural histories. Phase 2 activities will include a sequence of high-resolution airborne geophysical surveys and focused geological field mapping to ground-truth lithology and structural features, followed by limited deep borehole drilling and testing. These activities will further evaluate the site's ability to meet the safety functions that a site would need to ultimately satisfy in order to be considered suitable. This paper provides an update on the site evaluation process and describes the approach, methods and criteria that are being used to conduct the geoscientific Preliminary Assessments.

  20. Martian planetwide crater distributions - Implications for geologic history and surface processes

    NASA Technical Reports Server (NTRS)

    Soderblom, L. A.; Condit, C. D.; West, R. A.; Herman, B. M.; Kreidler, T. J.

    1974-01-01

    Three different diameter size ranges are considered in connection with the Martian crater distribution, taking into account small craters from 0.6 to 1.2 km, intermediate-sized craters from 4 to 10 km, and large craters with diameters exceeding 20 km. One of the objectives of the investigation reported is to establish the effects of eolian processes in the modification of craters in the different size ranges. Another objective is concerned with a description of the genetic relationships among the three size ranges of craters. Observables related to the relative age of geologic provinces are to be separated from observables related to geographic variations in eolian transport and deposition. Lunar and Martian cratering histories are compared as a basis for establishing relative and absolute time scales for the geological evolution of Mars.

  1. Monitoring CO2 invasion processes at the pore scale using geological labs on chip.

    PubMed

    Morais, S; Liu, N; Diouf, A; Bernard, D; Lecoutre, C; Garrabos, Y; Marre, S

    2016-09-21

    In order to investigate at the pore scale the mechanisms involved during CO2 injection in a water saturated pore network, a series of displacement experiments is reported using high pressure micromodels (geological labs on chip - GLoCs) working under real geological conditions (25 < T (°C) < 75 and 4.5 < p (MPa) < 8). The experiments were focused on the influence of three experimental parameters: (i) the p, T conditions, (ii) the injection flow rates and (iii) the pore network characteristics. By using on-chip optical characterization and imaging approaches, the CO2 saturation curves as a function of either time or the number of pore volume injected were determined. Three main mechanisms were observed during CO2 injection, namely, invasion, percolation and drying, which are discussed in this paper. Interestingly, besides conventional mechanisms, two counterintuitive situations were observed during the invasion and drying processes.

  2. Monitoring CO2 invasion processes at the pore scale using geological labs on chip.

    PubMed

    Morais, S; Liu, N; Diouf, A; Bernard, D; Lecoutre, C; Garrabos, Y; Marre, S

    2016-09-21

    In order to investigate at the pore scale the mechanisms involved during CO2 injection in a water saturated pore network, a series of displacement experiments is reported using high pressure micromodels (geological labs on chip - GLoCs) working under real geological conditions (25 < T (°C) < 75 and 4.5 < p (MPa) < 8). The experiments were focused on the influence of three experimental parameters: (i) the p, T conditions, (ii) the injection flow rates and (iii) the pore network characteristics. By using on-chip optical characterization and imaging approaches, the CO2 saturation curves as a function of either time or the number of pore volume injected were determined. Three main mechanisms were observed during CO2 injection, namely, invasion, percolation and drying, which are discussed in this paper. Interestingly, besides conventional mechanisms, two counterintuitive situations were observed during the invasion and drying processes. PMID:27494277

  3. Importance of field scientific learning at the time of elementary and junior high school. - Introduction of geological field learning in Shimane Prefecture, Japan

    NASA Astrophysics Data System (ADS)

    Matsumoto, I.

    2014-12-01

    Importance of the scientific field learning is increasing since the disaster by the Tohoku-Earthquake and Tsunami at the 11th March 2011, in Japan. Effective enforcement of the environmental education from a kindergarten to a University student is very important educational tool for protecting future earth's environment. Practice of the geological field study at the time of elementary and junior high school is very important. This study reports the present situation and the practice example of field scientific learning of Japan. Particularly, I report practice of the geological field education in a class of Shimane prefecture. I point out that "Consciousness (In)", "knowledge (About)", and "action (For)" are important three factors not only environmental education but also geological field education (e.g. Matsumoto, 2014). However, the practice rate of field geological learning at the elementary and junior high school is very low in Japan (Miyashita and Matsumoto, 2010). I introduce the effective method of increasing the practice rate of field geological study. I discuss about pedagogy which improves especially a student's scientific literacy.

  4. A flexible importance sampling method for integrating subgrid processes

    NASA Astrophysics Data System (ADS)

    Raut, E. K.; Larson, V. E.

    2016-01-01

    Numerical models of weather and climate need to compute grid-box-averaged rates of physical processes such as microphysics. These averages are computed by integrating subgrid variability over a grid box. For this reason, an important aspect of atmospheric modeling is spatial integration over subgrid scales. The needed integrals can be estimated by Monte Carlo integration. Monte Carlo integration is simple and general but requires many evaluations of the physical process rate. To reduce the number of function evaluations, this paper describes a new, flexible method of importance sampling. It divides the domain of integration into eight categories, such as the portion that contains both precipitation and cloud, or the portion that contains precipitation but no cloud. It then allows the modeler to prescribe the density of sample points within each of the eight categories. The new method is incorporated into the Subgrid Importance Latin Hypercube Sampler (SILHS). The resulting method is tested on drizzling cumulus and stratocumulus cases. In the cumulus case, the sampling error can be considerably reduced by drawing more sample points from the region of rain evaporation.

  5. A flexible importance sampling method for integrating subgrid processes

    DOE PAGESBeta

    Raut, E. K.; Larson, V. E.

    2016-01-29

    Numerical models of weather and climate need to compute grid-box-averaged rates of physical processes such as microphysics. These averages are computed by integrating subgrid variability over a grid box. For this reason, an important aspect of atmospheric modeling is spatial integration over subgrid scales. The needed integrals can be estimated by Monte Carlo integration. Monte Carlo integration is simple and general but requires many evaluations of the physical process rate. To reduce the number of function evaluations, this paper describes a new, flexible method of importance sampling. It divides the domain of integration into eight categories, such as the portion that containsmore » both precipitation and cloud, or the portion that contains precipitation but no cloud. It then allows the modeler to prescribe the density of sample points within each of the eight categories. The new method is incorporated into the Subgrid Importance Latin Hypercube Sampler (SILHS). The resulting method is tested on drizzling cumulus and stratocumulus cases. In the cumulus case, the sampling error can be considerably reduced by drawing more sample points from the region of rain evaporation.« less

  6. Silicate Carbonation Processes in Water-Bearing Supercritical CO2 Fluids: Implications for Geologic Carbon Sequestration

    NASA Astrophysics Data System (ADS)

    Miller, Q. R.; Schaef, T.; Thompson, C.; Loring, J. S.; Windisch, C. F.; Bowden, M. E.; Arey, B. W.; McGrail, P.

    2012-12-01

    Global climate change is viewed by many as an anthropogenic phenomenon that could be mitigated through a combination of conservation efforts, alternative energy sources, and the development of technologies capable of reducing carbon dioxide (CO2) emissions. Continued increases of atmospheric CO2 concentrations are projected over the next decade, due to developing nations and growing populations. One economically favorable option for managing CO2 involves subsurface storage in deep basalt formations. The silicate minerals and glassy mesostasis basalt components act as metal cation sources, reacting with the CO2 to form carbonate minerals. Most prior work on mineral reactivity in geologic carbon sequestration settings involves only aqueous dominated reactions. However, in most sequestration scenarios, injected CO2 will reside as a buoyant fluid in contact with the sealing formation (caprock) and slowly become water bearing. Comparatively little laboratory research has been conducted on reactions occurring between minerals in the host rock and the wet scCO2. In this work, we studied the carbonation of wollastonite [CaSiO3] exposed to variably wet supercritical CO2 (scCO2) at a range of temperatures (50, 55 and 70 °C) and pressures (90,120 and 160 bar) in order to gain insight into reaction processes. Mineral transformation reactions were followed by two novel in situ high pressure techniques, including x-ray diffraction that tracked the rate and extents of wollastonite conversion to calcite. Increased dissolved water concentrations in the scCO2 resulted in increased carbonation approaching ~50 wt. %. Development of thin water films on the mineral surface were directly observed with infrared (IR) spectroscopy and indirectly with 18O isotopic labeling techniques (Raman spectroscopy). The thin water films were determined to be critical for facilitating carbonation processes in wet scCO2. Even in extreme low water conditions, the IR technique detected the formation of

  7. Laboratory Studies of Heterogeneous Chemical Processes of Atmospheric Importance

    NASA Technical Reports Server (NTRS)

    Molina, Mario J.

    2004-01-01

    The objective of this study is to conduct measurements of chemical kinetics parameters for heterogeneous reactions of importance in the stratosphere and the troposphere. It involves the elucidation of the mechanism of the interaction of HCl vapor with ice surfaces, which is the first step in the heterogeneous chlorine activation processes, as well as the investigation of the atmospheric oxidation mechanism of soot particles emitted by biomass and fossil fuels. The techniques being employed include turbulent flow-chemical ionization mass spectrometry and optical ellipsometry, among others.

  8. Canada's Deep Geological Repository for Used Nuclear Fuel - Geo-scientific Site Evaluation Process - 13117

    SciTech Connect

    Blyth, Alec; Ben Belfadhel, Mahrez; Hirschorn, Sarah; Hamilton, Duncan; McKelvie, Jennifer

    2013-07-01

    The Nuclear Waste Management Organization (NWMO) is responsible for implementing Adaptive Phased Management (APM), the approach selected by the Government of Canada for long-term management of used nuclear fuel generated by Canadian nuclear reactors. The ultimate objective of APM is the centralized containment and isolation of Canada's used nuclear fuel in a Deep Geological Repository in a suitable rock formation at a depth of approximately 500 meters (m) (1,640 feet [ft]). In May 2010, the NWMO published a nine-step site selection process that serves as the road map to decision-making on the location for the deep geological repository. The safety and appropriateness of any potential site will be assessed against a number of factors, both technical and social in nature. The selected site will be one that can be demonstrated to be able to safely contain and isolate used nuclear fuel, protecting humans and the environment over the very long term. The geo-scientific suitability of potential candidate sites will be assessed in a stepwise manner following a progressive and thorough site evaluation process that addresses a series of geo-scientific factors revolving around five safety functions. The geo-scientific site evaluation process includes: Initial Screenings; Preliminary Assessments; and Detailed Site Evaluations. As of November 2012, 22 communities have entered the site selection process (three in northern Saskatchewan and 18 in northwestern and southwestern Ontario). (authors)

  9. Analysis of Geological Structures

    NASA Astrophysics Data System (ADS)

    Price, Neville J.; Cosgrove, John W.

    1990-08-01

    A knowledge of structural geology is fundamental to understanding the processes by which the earth's crust has evolved. It is a subject of fundamental importance to students of geology, experienced field geologists and academic researchers as well as to petroleum and mining engineers. In contrast to many structural textbooks which dwell upon geometrical descriptions of geological structures, this book emphasises mechanical principles and the way in which they can be used to understand how and why a wide range of geological structures develop. Structures on all scales are considered but the emphasis of the book is on those that can be seen on the scale of hand specimen or outcrop. Drawing on their considerable teaching experience the authors present a coherent and lucid analysis of geological structures which will be welcomed by a wide variety of earth scientists.

  10. Chemical Processes with Supercritical CO2 in Engineered Geologic Systems: Significance, Previous Study, and Path Forward (Invited)

    NASA Astrophysics Data System (ADS)

    Xu, T.; Pruess, K.

    2009-12-01

    Chemical reactions with dissolved CO2 in the aqueous phase have long been considered in fundamental geosciences and practical applications. Recently, studies on geologic carbon sequestration and enhanced geothermal systems using CO2 as heat transmission fluid have brought new interests in chemical reaction processes directly with supercritical CO2 (scCO2, or gas phase). In the vicinity of a CO2 injection well, the aqueous fluid initially present in a geological formation would be quickly removed by dissolution (evaporation) into the flowing gas stream and by immiscible displacement by the scCO2, creating a gas phase dominant zone. In this zone, the water evaporation could cause formation dry-out and precipitation of salt near the injection well, reducing formation porosity, permeability, and injectivity. The scCO2 may directly attack well construction materials such as cement. Over time, the gas phase will tend to migrate upwards towards the caprock because the density of the scCO2 is lower than that of the aqueous phase. In the upper portions of the reservoir, the scCO2 will directly react with caprock minerals and alter the hydrological properties and mechanical strength. On the other hand, the scCO2 phase will maintain the dissolution into the aqueous phase, lowering pH, inducing mineral dissolution, complexing with dissolved cations, increasing CO2 solubility, increasing the density of the aqueous phase, and promoting “convective mixing”. Chemical processes are quite different in the scCO2 dominant geologic systems. The absence of an aqueous phase poses unique questions, as little is presently known about the chemistry of non-aqueous systems. Additional issues arise from the reactivity of water that is dissolved in the ScCO2 phase. In this presentation, the author will discuss the importance, state of the studies performed, and future research directions.

  11. Practical aspects of geological prediction

    SciTech Connect

    Mallio, W.J.; Peck, J.H.

    1981-11-01

    Nuclear waste disposal requires that geology be a predictive science. The prediction of future events rests on (1) recognizing the periodicity of geologic events; (2) defining a critical dimension of effect, such as the area of a drainage basin, the length of a fault trace, etc; and (3) using our understanding of active processes the project the frequency and magnitude of future events in the light of geological principles. Of importance to nuclear waste disposal are longer term processes such as continental denudation and removal of materials by glacial erosion. Constant testing of projections will allow the practical limits of predicting geological events to be defined. 11 refs.

  12. The importance of sensory integration processes for action cascading

    PubMed Central

    Gohil, Krutika; Stock, Ann-Kathrin; Beste, Christian

    2015-01-01

    Dual tasking or action cascading is essential in everyday life and often investigated using tasks presenting stimuli in different sensory modalities. Findings obtained with multimodal tasks are often broadly generalized, but until today, it has remained unclear whether multimodal integration affects performance in action cascading or the underlying neurophysiology. To bridge this gap, we asked healthy young adults to complete a stop-change paradigm which presented different stimuli in either one or two modalities while recording behavioral and neurophysiological data. Bimodal stimulus presentation prolonged response times and affected bottom-up and top-down guided attentional processes as reflected by the P1 and N1, respectively. However, the most important effect was the modulation of response selection processes reflected by the P3 suggesting that a potentially different way of forming task goals operates during action cascading in bimodal vs. unimodal tasks. When two modalities are involved, separate task goals need to be formed while a conjoint task goal may be generated when all stimuli are presented in the same modality. On a systems level, these processes seem to be related to the modulation of activity in fronto-polar regions (BA10) as well as Broca's area (BA44). PMID:25820681

  13. Quantifying geological processes on Mars-Results of the high resolution stereo camera (HRSC) on Mars express

    NASA Astrophysics Data System (ADS)

    Jaumann, R.; Tirsch, D.; Hauber, E.; Ansan, V.; Di Achille, G.; Erkeling, G.; Fueten, F.; Head, J.; Kleinhans, M. G.; Mangold, N.; Michael, G. G.; Neukum, G.; Pacifici, A.; Platz, T.; Pondrelli, M.; Raack, J.; Reiss, D.; Williams, D. A.; Adeli, S.; Baratoux, D.; de Villiers, G.; Foing, B.; Gupta, S.; Gwinner, K.; Hiesinger, H.; Hoffmann, H.; Deit, L. Le; Marinangeli, L.; Matz, K.-D.; Mertens, V.; Muller, J. P.; Pasckert, J. H.; Roatsch, T.; Rossi, A. P.; Scholten, F.; Sowe, M.; Voigt, J.; Warner, N.

    2015-07-01

    This review summarizes the use of High Resolution Stereo Camera (HRSC) data as an instrumental tool and its application in the analysis of geological processes and landforms on Mars during the last 10 years of operation. High-resolution digital elevations models on a local to regional scale are the unique strength of the HRSC instrument. The analysis of these data products enabled quantifying geological processes such as effusion rates of lava flows, tectonic deformation, discharge of water in channels, formation timescales of deltas, geometry of sedimentary deposits as well as estimating the age of geological units by crater size-frequency distribution measurements. Both the quantification of geological processes and the age determination allow constraining the evolution of Martian geologic activity in space and time. A second major contribution of HRSC is the discovery of episodicity in the intensity of geological processes on Mars. This has been revealed by comparative age dating of volcanic, fluvial, glacial, and lacustrine deposits. Volcanic processes on Mars have been active over more than 4 Gyr, with peak phases in all three geologic epochs, generally ceasing towards the Amazonian. Fluvial and lacustrine activity phases spread a time span from Noachian until Amazonian times, but detailed studies show that they have been interrupted by multiple and long lasting phases of quiescence. Also glacial activity shows discrete phases of enhanced intensity that may correlate with periods of increased spin-axis obliquity. The episodicity of geological processes like volcanism, erosion, and glaciation on Mars reflects close correlation between surface processes and endogenic activity as well as orbit variations and changing climate condition.

  14. Processes that initiate turbidity currents and their influence on turbidites: A marine geology perspective

    USGS Publications Warehouse

    Piper, David J.W.; Normark, William R.

    2009-01-01

    How the processes that initiate turbidity currents influence turbidite deposition is poorly understood, and many discussions in the literature rely on concepts that are overly simplistic. Marine geological studies provide information on the initiation and flow path of turbidity currents, including their response to gradient. In case studies of late Quaternary turbidites on the eastern Canadian and western U.S. margins, initiation processes are inferred either from real-time data for historical flows or indirectly from the age and contemporary paleogeography, erosional features, and depositional record. Three major types of initiation process are recognized: transformation of failed sediment, hyperpycnal flow from rivers or ice margins, and resuspension of sediment near the shelf edge by oceanographic processes. Many high-concentration flows result from hyperpycnal supply of hyperconcentrated bedload, or liquefaction failure of coarse-grained sediment, and most tend to deposit in slope conduits and on gradients < 0.5?? at the base of slope and on the mid fan. Highly turbulent flows, from transformation of retrogressive failures and from ignitive flows that are triggered by oceanographic processes, tend to cannibalize these more proximal sediments and redeposit them on lower gradients on the basin plain. Such conduit flushing provides most of the sediment in large turbidites. Initiation mechanism exerts a strong control on the duration of turbidity flows. In most basins, there is a complex feedback between different types of turbidity-current initiation, the transformation of the flows, and the associated slope morphology. As a result, there is no simple relationship between initiating process and type of deposit. ?? 2009, SEPM (Society for Sedimentary Geology).

  15. Exhibit Development: The Importance of Process and Evaluation

    NASA Astrophysics Data System (ADS)

    Dusenbery, P.; McLain, B.

    2010-08-01

    The Space Science Institute (SSI) is a national leader in developing national traveling exhibitions on space science education (e.g. Electric Space, MarsQuest, Alien Earths, Giant Worlds, Asteroids, and Discover Space). It is also known for developing effective digital media programs (e.g. www.alienearths.org), education workshops for formal and informal educators, and educational films (e.g. Inspire Me: Weightless Flights of Discovery). This paper focuses on the exhibit development process, spanning conceptual planning, design development, fabrication and launch. SSI's exhibit programs also include education and outreach programming and the development of an online version of the exhibit. Examples from Giant Worlds and Asteroids will be used to illustrate these development phases especially the importance of evaluation/research in exhibit development using a logic model approach.

  16. Laboratory Studies of Heterogeneous Chemical Processes of Atmospheric Importance

    NASA Technical Reports Server (NTRS)

    Molina, Mario J.

    2003-01-01

    The objective of this study is to conduct measurements of chemical kinetics parameters for heterogeneous reactions of importance in the stratosphere and the troposphere. It involves the elucidation of the mechanism of the interaction of HC1 vapor with ice surfaces, which is the first step in the heterogeneous chlorine activation processes, as well as the investigation of the atmospheric oxidation mechanism of soot particles emitted by biomass and fossil fuels. The techniques being employed include turbulent flow- chemical ionization mass spectrometry and optical ellipsometry, among others. The next section summarizes our research activities during the first year of the project, and the section that follows consists of the statement of work for the second year.

  17. A very important process of nucleosynthesis in stars

    NASA Technical Reports Server (NTRS)

    Yu, C.; Zhou, R.; Zhan, S.

    1985-01-01

    When some nuclei are free from strong gravitational field, they are unstable and will become stable nuclei by competitions of following processes: (1) neutron-evaporation; (2) spontaneous fission; and (3) beta prime 3-decay. At the initial stage, (1) and (2) are important and (3) can be ignored. The qualitative results are as follows: (1) it seems that nuclei with A 100 come from the spontaneous fission and beta prime decay of neutron-evaporated nuclei with A similiar to 140-440, which can replace the r-process; (2) the super-heavy elements with Z=114--126 (A similiar to 330--360) can be formed. They can be observed in cosmic rage if they have the halftime T 10 to the 7th poweer years; (3) the peak in the rare-earth elements comes from the symmetric fission of super-heavy elements; (4) there are more neutron-rich nuclei in the fragments; and (5) the abundances of a 83 elements in cosmic rays are one order of magnitude higher than that in the solar system.

  18. Applying Seismic Methods to National Security Problems: Matched Field Processing With Geological Heterogeneity

    SciTech Connect

    Myers, S; Larsen, S; Wagoner, J; Henderer, B; McCallen, D; Trebes, J; Harben, P; Harris, D

    2003-10-29

    Seismic imaging and tracking methods have intelligence and monitoring applications. Current systems, however, do not adequately calibrate or model the unknown geological heterogeneity. Current systems are also not designed for rapid data acquisition and analysis in the field. This project seeks to build the core technological capabilities coupled with innovative deployment, processing, and analysis methodologies to allow seismic methods to be effectively utilized in the applications of seismic imaging and vehicle tracking where rapid (minutes to hours) and real-time analysis is required. The goal of this project is to build capabilities in acquisition system design, utilization of full three-dimensional (3D) finite difference modeling, as well as statistical characterization of geological heterogeneity. Such capabilities coupled with a rapid field analysis methodology based on matched field processing are applied to problems associated with surveillance, battlefield management, finding hard and deeply buried targets, and portal monitoring. This project, in support of LLNL's national-security mission, benefits the U.S. military and intelligence community. Fiscal year (FY) 2003 was the final year of this project. In the 2.5 years this project has been active, numerous and varied developments and milestones have been accomplished. A wireless communication module for seismic data was developed to facilitate rapid seismic data acquisition and analysis. The E3D code was enhanced to include topographic effects. Codes were developed to implement the Karhunen-Loeve (K-L) statistical methodology for generating geological heterogeneity that can be utilized in E3D modeling. The matched field processing methodology applied to vehicle tracking and based on a field calibration to characterize geological heterogeneity was tested and successfully demonstrated in a tank tracking experiment at the Nevada Test Site. A three-seismic-array vehicle tracking testbed was installed on site

  19. Physical geology

    SciTech Connect

    Skinner, B.; Porter, S.

    1987-01-01

    The book integrates current thinking on processes (plate techtonics, chemical cycles, changes throughout geologic time). It is an introduction to investigations into the way the earth works, how mountains are formed, how the atmosphere, hydrosphere, crust and mantle interact with each other. Treatments on climate, paleoclimatology and landscape evolution are included, as is a discussion on how human activity affects geological interactions.

  20. Laser ablation ICP-MS applications using the timescales of geologic and biologic processes

    NASA Astrophysics Data System (ADS)

    Ridley, W. I.

    2003-04-01

    Geochemists commonly examine geologic processes on timescales of 10^4--10^9 years, and accept that often age relations, e.g., chemical zoning in minerals, can only be measured in a relative sense. The progression of a geologic process that involves geochemical changes may be assessed using trace element microbeam techniques, because the textural, and therefore spatial context, of the analytical scheme can be preserved. However, quantification requires appropriate calibration standards. Laser ablation ICP-MS (LA-ICP-MS) is proving particularly useful now that appropriate standards are becoming available. For instance, trace element zoning patterns in primary sulfides (e.g., pyrite, sphalerite, chalcopyrite, galena) and secondary phases can be inverted to examine relative changes in fluid composition during cycles of hydrothermal mineralization. In turn such information provides insights into fluid sources, migration pathways and depositional processes. These studies have only become possible with the development of appropriate sulfide calibration standards. Another example, made possible with the development of appropriate silicate calibration standards, is the quantitative spatial mapping of REE variations in amphibolite-grade garnets. The recognition that the trace and major elements are decoupled provides a better understanding of the various sources of elements during metamorphic re-equilibration. There is also a growing realization that LA-ICP-MS has potential in biochemical studies, and geochemists have begun to turn their attention in this direction, working closely with biologists. Unlike many geologic processes, the timescales of biologic processes are measured in years to centuries and are frequently amenable to absolute dating. Examples that can be cited where LA-ICP-MS has been applied include annual trace metal variations in tree rings, corals, teeth, bones, bird feathers and various animal vibrissae (sea lion, walrus, wolf). The aim of such studies is

  1. Geoelectrical signals of geologic and hydrologic processes in a fringing reef lagoon setting

    NASA Astrophysics Data System (ADS)

    Befus, Kevin M.; Cardenas, M. Bayani; Tait, Douglas R.; Erler, Dirk V.

    2014-09-01

    hydrogeologic control in a reef lagoon setting, but is likely to occur in many similar coastal settings. Ignoring geologic complexity can result in mischaracterization of SGD and other coastal groundwater processes at many spatial scales.

  2. US GEOLOGICAL SURVEY'S NATIONAL SYSTEM FOR PROCESSING AND DISTRIBUTION OF NEAR REAL-TIME HYDROLOGICAL DATA.

    USGS Publications Warehouse

    Shope, William G.; ,

    1987-01-01

    The US Geological Survey is utilizing a national network of more than 1000 satellite data-collection stations, four satellite-relay direct-readout ground stations, and more than 50 computers linked together in a private telecommunications network to acquire, process, and distribute hydrological data in near real-time. The four Survey offices operating a satellite direct-readout ground station provide near real-time hydrological data to computers located in other Survey offices through the Survey's Distributed Information System. The computerized distribution system permits automated data processing and distribution to be carried out in a timely manner under the control and operation of the Survey office responsible for the data-collection stations and for the dissemination of hydrological information to the water-data users.

  3. An important erosion process on steep burnt hillslopes

    NASA Astrophysics Data System (ADS)

    Langhans, Christoph; Nyman, Petter; Noske, Philip; Lane, Patrick; Sheridan, Gary

    2016-04-01

    Steep forested hillslopes often display a high degree of armouring where diffusive erosion processes preferentially remove the fine fraction of the surface soil. High infiltration capacities, hydraulic resistance to overland flow and physical anchoring by cover plants and litter mean that even the most extreme rainfall events usually do not erode the armouring substantially. We argue that fire (wild or planned) is essential to the mobilization and transport of the armouring by increasing the rates of overland flow and decreasing trapping opportunities. We present evidence of the types of erosion that lead to the stripping of the surface armouring using post-event surveys and high-rate overland flow experiments. The type of erosion depends on the relative abundance of non-cohesive surface material to overland flow, but we found that a particular type of transport dominates that has no representation in current erosion models: On steep slopes overland flow can lead to incipient motion of individual stones that transfer their momentum to other stones leading to a rapid mobilization of the whole non-cohesive, armoured surface layer. Once in motion, the layer quickly separates out into a granular flow front and liquefied body, akin to debris flows in channels. Depending on the size of the event, these hillslope debris flows (HDF) either get trapped or enter into the channel, stripping the hillslope of most armouring on their way. They provide channels with the material and shear stress needed to erode into the channel bed, increasing the risk of channel debris flows. We present a simple physical model of HDF initiation, movement, and possible re-mobilization on hillslopes that was derived from debris flow theory. Understanding this process, its frequency, and magnitude are important for assessing the role of fire in landscape evolution and risk to humans through debris flow impacts.

  4. The importance of the melting process for quantifying mantle heterogeneity

    NASA Astrophysics Data System (ADS)

    Lambart, S.

    2015-12-01

    A variety of data requires that the mantle source for basaltic magmatism is heterogeneous. Thanks to numerous experimental studies, parameterizations are available to model the melting behavior of peridotite and pyroxenite compositions that are thought to be present in the mantle (e.g., 1, 2). Based on these parameterizations, numerous studies have attempted to estimate the proportion of pyroxenites in magmatic sources. However, while almost all melting experiments correspond to a batch melting process, it is likely that oceanic basalts are formed by near fractional melting rather than batch melting (e.g., 3). Due to the limited extent of melting of peridotites under upper mantle conditions, their magmatic productivity and melt compositions are similar for batch and fractional melting (e.g., 4). In contrast, pyroxenites undergo much higher meting degrees during decompression of a heterogeneous, peridotite-rich mantle source. Using pMELTS, I investigated the effect of near-fractional melting of pyroxenite. Results suggest that the nature of the melting process for pyroxenites can significantly affect (1) the melt productivity of pyroxenites and thus their potential contribution in basalt genesis, (2) the major element composition of melts and thus their interaction with the surrounding peridodite, and (3) the concentration of minor elements such as Ni and consequently the estimation of pyroxenite proportion in magma-source (e.g., 5). In particular, calculations imply that the proportion of solid pyroxenite in the magma source is likely to be underestimated using "batch melting" rather than "fractional melting" parameterization. An increase in the pyroxenite proportion may affect the buoyancy of the mixture in the upper mantle and have important geodynamical implications. 1-Katz et al., 2003, GGG 4; 2-Lambart et al., 2013, Lithos 160-161; 3- Hirose & Kawamura, 1994, Geophy. Res. Let 21; 4-Johnson et al., 1990, J. Geophy. Res. 95; 5-Sobolev et al., 2007, Science 316

  5. The importance of new processing techniques in tissue engineering

    NASA Technical Reports Server (NTRS)

    Lu, L.; Mikos, A. G.; McIntire, L. V. (Principal Investigator)

    1996-01-01

    The use of polymer scaffolds in tissue engineering is reviewed and processing techniques are examined. The discussion of polymer-scaffold processing explains fiber bonding, solvent casting and particulate leaching, membrane lamination, melt molding, polymer/ceramic fiber composite-foam processing, phase separation, and high-pressure processing.

  6. Titan's topography as a clue to geologic processes and landscape evolution

    NASA Astrophysics Data System (ADS)

    Kirk, R. L.

    2012-12-01

    Cassini has revealed a diversity of surface features on Titan rivaled by few bodies in the Solar System. Some of these features are readily identified: dunes, channels, lakes, seas, fresh impact craters, and mountains. Others are enigmatic and in some cases have sparked debate about their mode of origin. Given the limited resolution of the Cassini images, at best 300 m for synthetic aperture RADAR (SAR) images, it can be difficult to identify details that might confirm a particular mode of origin. Supplementing the images with topographic information provides an important and sometimes crucial clue to the origin and evolution of landforms. Topographic profiles from altimetry and SARTopo analysis of the images can shed light on simpler features (e.g., dunes) and led to the surprising conclusion that Titan's largest feature, Xanadu, is not elevated as had been supposed. For more complex structures, digital topographic models (DTMs) provide a full three-dimensional view. About 10% of Titan's surface has been imaged in stereo by RADAR, and we have produced DTMs of about 2% by analyzing these stereopairs. Analysis of the results within the Cassini RADAR team has shed light on a number of geologic problems: * Some putative volcanic features (e.g., the supposed dome Ganesa Macula and various diffuse surface flows) have been shown to lack the expected relief, greatly weakening the case for their volcanic origin. * Conversely, flows in Hotei Regio have been shown to tower over nearby fluvial channels, and those near Sotra Facula are associated with multiple edifices and caldera-like pits, strengthening the case for a volcanic origin. * Depths of the handful of definite impact craters measured so far range from Ganymede-like to nearly zero, and are statistically consistent with a process such as eolian deposition that would steadily reduce the crater depth rather than a process such as surface erosion that would tend to leave craters only partially filled. * Clustering of

  7. A Temperature-Profile Method for Estimating Flow Processes inGeologic Heat Pipes

    SciTech Connect

    Birkholzer, Jens T.

    2004-12-06

    Above-boiling temperature conditions, as encountered, forexample, in geothermal reservoirs and in geologic repositories for thestorage of heat-producing nuclear wastes, may give rise to stronglyaltered liquid and gas flow processes in porous subsurface environments.The magnitude of such flow perturbation is extremely hard to measure inthe field. We therefore propose a simple temperature-profile method thatuses high-resolution temperature data for deriving such information. Theenergy that is transmitted with the vapor and water flow creates a nearlyisothermal zone maintained at about the boiling temperature, referred toas a heat pipe. Characteristic features of measured temperature profiles,such as the differences in the gradients inside and outside of the heatpipe regions, are used to derive the approximate magnitude of the liquidand gas fluxes in the subsurface, for both steady-state and transientconditions.

  8. Separating Macroecological Pattern and Process: Comparing Ecological, Economic, and Geological Systems

    PubMed Central

    Blonder, Benjamin; Sloat, Lindsey; Enquist, Brian J.; McGill, Brian

    2014-01-01

    Theories of biodiversity rest on several macroecological patterns describing the relationship between species abundance and diversity. A central problem is that all theories make similar predictions for these patterns despite disparate assumptions. A troubling implication is that these patterns may not reflect anything unique about organizational principles of biology or the functioning of ecological systems. To test this, we analyze five datasets from ecological, economic, and geological systems that describe the distribution of objects across categories in the United States. At the level of functional form (‘first-order effects’), these patterns are not unique to ecological systems, indicating they may reveal little about biological process. However, we show that mechanism can be better revealed in the scale-dependency of first-order patterns (‘second-order effects’). These results provide a roadmap for biodiversity theory to move beyond traditional patterns, and also suggest ways in which macroecological theory can constrain the dynamics of economic systems. PMID:25383874

  9. Improved understanding of geologic CO{sub 2} storage processes requires risk-driven field experiments

    SciTech Connect

    Oldenburg, C.M.

    2011-06-01

    The need for risk-driven field experiments for CO{sub 2} geologic storage processes to complement ongoing pilot-scale demonstrations is discussed. These risk-driven field experiments would be aimed at understanding the circumstances under which things can go wrong with a CO{sub 2} capture and storage (CCS) project and cause it to fail, as distinguished from accomplishing this end using demonstration and industrial scale sites. Such risk-driven tests would complement risk-assessment efforts that have already been carried out by providing opportunities to validate risk models. In addition to experimenting with high-risk scenarios, these controlled field experiments could help validate monitoring approaches to improve performance assessment and guide development of mitigation strategies.

  10. A Temperature-Profile Method for Estimating Flow Processes in Geologic Heat Pipes

    SciTech Connect

    J.T. Birkholzer

    2005-01-21

    Above-boiling temperature conditions, as encountered, for example, in geothermal reservoirs and in geologic repositories for the storage of heat-producing nuclear wastes, may give rise to strongly altered liquid and gas flow processes in porous subsurface environments. The magnitude of such flow perturbation is extremely hard to measure in the field. We therefore propose a simple temperature-profile method that uses high-resolution temperature data for deriving such information. The energy that is transmitted with the vapor and water flow creates a nearly isothermal zone maintained at about the boiling temperature, referred to as a heat pipe. Characteristic features of measured temperature profiles, such as the differences in the gradients inside and outside of the heat pipe regions, are used to derive the approximate magnitude of the liquid and gas fluxes in the subsurface, for both steady-state and transient conditions.

  11. Separating macroecological pattern and process: comparing ecological, economic, and geological systems.

    PubMed

    Blonder, Benjamin; Sloat, Lindsey; Enquist, Brian J; McGill, Brian

    2014-01-01

    Theories of biodiversity rest on several macroecological patterns describing the relationship between species abundance and diversity. A central problem is that all theories make similar predictions for these patterns despite disparate assumptions. A troubling implication is that these patterns may not reflect anything unique about organizational principles of biology or the functioning of ecological systems. To test this, we analyze five datasets from ecological, economic, and geological systems that describe the distribution of objects across categories in the United States. At the level of functional form ('first-order effects'), these patterns are not unique to ecological systems, indicating they may reveal little about biological process. However, we show that mechanism can be better revealed in the scale-dependency of first-order patterns ('second-order effects'). These results provide a roadmap for biodiversity theory to move beyond traditional patterns, and also suggest ways in which macroecological theory can constrain the dynamics of economic systems.

  12. Geologic nozzles

    USGS Publications Warehouse

    Werner, Kieffer S.

    1989-01-01

    The importance of the low characteristic velocities of geologic fluids has not been widely recognized, and as a result, the importance of supercritical and supersonic flow in geological processes has generally been underestimated. The lateral blast at Mount St. Helens, Washington, propelled a gas heavily laden with dust into the atmosphere. Because of the low sound speed in this gas (about 100 m/s), the flow was internally supersonic. Old Faithful Geyser, Wyoming, is a converging-diverging nozzle in which liquid water refilling the conduit during the recharge cycle changes during eruption into a two-phase liquid-vapor mixture with a very low sound velocity. The high sound speed of liquid water determines the characteristics of harmonic tremor observed at the geyser during the recharge interval, whereas the low sound speed of the liquid-vapor mixture influences the fluid flow characteristics of the eruption. At the rapids of the Colorado River in the Grand Canyon, Arizona, the channel is constricted into the shape of a converging-diverging nozzle by the debris flows that enter from tributary canyons. Both subcritical and supercritical flow occur within the rapids. -from Author

  13. Development of a requirements management system for technical decision - making processes in the geological disposal project

    SciTech Connect

    Hiroyoshi Ueda; Katsuhiko Ishiguro; Kazumi Kitayama; Kiyoshi Oyamada; Shoko Sato

    2007-07-01

    NUMO (Nuclear Waste Management Organization of Japan) has a responsibility for implementing geological disposal of vitrified HLW (High-Level radioactive Waste) in the Japanese nuclear waste management programme. Its staged siting procedure was initiated in 2002 by an open call for volunteer sites. Careful management strategy and methodology for the technical decision-making at every milestone are required to prepare for the volunteer site application and the site investigation stages after that. The formal Requirement Management System (RMS) is planned to support the computerized implementation of the specific management methodology, termed the NUMO Structured Approach (NSA). This planned RMS will help for comprehensive management of the decision-making processes in the geological disposal project, change management towards the anticipated project deviations, efficient project driving such as well programmed R and D etc. and structured record-keeping regarding the past decisions, which leads to soundness of the project in terms of the long-term continuity. The system should have handling/management functions for the database including the decisions/requirements in the project in consideration, their associated information and the structures composed of them in every decision-making process. The information relating to the premises, boundary conditions and time plan of the project should also be prepared in the system. Effective user interface and efficient operation on the in-house network are necessary. As a living system for the long-term formal use, flexibility to updating is indispensable. In advance of the formal system development, two-year activity to develop the preliminary RMS was already started. The purpose of this preliminary system is to template the decision/requirement structure, prototype the decision making management and thus show the feasibility of the innovative RMS. The paper describes the current status of the development, focusing on the

  14. The importance of lead-free electronics processes

    SciTech Connect

    Meltzer, M

    1999-10-21

    The Environmental Protection Agency (EPA) is placing increased importance on reducing lead-bearing wastes. Toward this end, the EPA has proposed that reporting thresholds for the Toxic Release Inventory (TRI) be lowered to ten pounds of lead content per year. The US electronics industry is also placing a high priority on lead reduction or elimination. The Association of Connecting Electronics Industries, which is the major trade association for electronics packaging, including printed circuit (PC) board manufacturers, has launched a lead-free initiative that seeks to eliminate lead in solder, in PC board etch resists and finish coats, and as tinning for component leads. Europe and Japan are also considering various regulations that will phase out lead in the next few years. In response to EPA and electronics industry priorities, the DOE complex will soon need to address lead phase-out issues. LLNL is now developing approaches for eliminating lead from PC board etch-resist operations. LLNL is seeking funding to continue this work and to eliminate other major uses of lead in electronics operations, particularly in hot-air solder leveling as a PC board finish, and tin-lead solder for component assembly operations. LLNL seeks to take a proactive leadership role in the DOE complex with respect to the elimination of lead. The envisioned lead-elimination project will be approximately two years in length. During the first year, lead-free etch resists and finish coats will be analyzed, and the best ones identified for electronics assembly and PC board fabrication. During the second year, lead-free solders will be examined and tested for compatibility with alternative PC board finish coats. Cost avoidance opportunities resulting from lead elimination include avoided TRI reporting expenses and reduction in PC board fabrication-related wastes through implementation of more efficient fabrication processes. Integrated Safety Management considerations are also relevant. Handling

  15. The Importance of Group Process in Gestalt Therapy.

    ERIC Educational Resources Information Center

    Korb, Margaret Patton; Themis, Sharon

    1980-01-01

    Discusses the Gestalt therapy group process and its roots in theory and therapeutic orientation. Indicates that the process itself, particularly the role of the therapist, is a key factor in the intensity and power of the group experience for the participants. (Author)

  16. New processing of Cassini/VIMS data on potentially geologically varying regions

    NASA Astrophysics Data System (ADS)

    Solomonidou, A.; Hirtzig, M.; Bratsolis, E.; Bampasidis, G.; Coustenis, A.; Kyriakopoulos, K.; Le Mouélic, S.; Rodriguez, S.; Jaumann, R.; Stephan, K.; Drossart, P.; Sotin, C.; Brown, R. H.; Seymour, K.; Moussas, X.

    2012-09-01

    We present a study of Titan's geology with a view to enhance our current understanding of the satellite's potentially geologically varying regions. We apply here a statistical method, the Principal Component Analysis (PCA) [1, 2] and a radiative transfer method [3, 1] on three potentially "active" regions on Titan, i.e. regions possibly subject to change over time (in brightness and/or in color etc) [4] namely Tui Regio, Hotei Regio, and Sotra Facula. With our method of PCA we have managed to isolate specific regions of distinct and diverse chemical composition. Then, with our follow-up RT method, we retrieved the surface albedo of the three isolated regions and of the surrounding terrains with different spectral response. These methods enabled us to evaluate the atmospheric contribution and allowed us to better constrain the real surface alterations, by comparing the spectra of these regions. Finally, the temporal surface variation of Hotei Regio as suggested by Nelson et al. 2009 [5], has been tested through the use of the RT method while we have superimposed this area's Cassini Visual and Infrared Mapping Spectrometer (VIMS) and RADAR data in order to 'view' the morphological potential. Even though we have used exactly the same dataset as Nelson and coauthors in 2009, we did not detect any significant surface albedo variations over time; this led us to revise the definition of "active" regions: even if these regions have not visually changed over the course of the Cassini mission, the determination of the chemical composition and the correlation with the morphological structures [6] observed in these areas do not rule out that past and/or ongoing cryovolcanic processes are still a possible interpretation.

  17. Physical and Chemical Processes Affecting Permeability during Geologic Carbon Sequestration in Arkose and Dolostone: Experimental Observations

    NASA Astrophysics Data System (ADS)

    Luhmann, A. J.; Kong, X.; Tutolo, B. M.; Saar, M. O.; Seyfried, W. E.

    2012-12-01

    Geologic carbon sequestration in saline sedimentary basins provides a promising option to reduce anthropogenic CO2 emissions. We are conducting experiments using a novel flow system at elevated temperatures and pressures to better understand the physical and chemical processes that result from CO2 injection into these basins and the effects of these processes on system permeability. Here we present experimental results on arkose (primarily K-feldspar and quartz) and dolostone, focusing on CO2 exsolution and fluid-mineral reactions. Following heating-induced CO2 exsolution in an arkose sediment (90-125 μm) core, XRCT scans revealed abundant pores several times larger than the average grain size. The pores likely grew as exsolved CO2 accumulated in the pores and exerted outspread forces on the surrounding grains. These trapped CO2 accumulations blocked flow pathways, reducing measured permeability by 10,000 times. Another reported experiment on a solid arkose core and water with aqueous CO2 concentrations at 80% saturation dissolved K-feldspar, as evidenced by 3 to 1 ratios of Si to K in sampled fluids, and precipitated an Al-rich mineral, likely gibbsite. SEM images revealed extensive clay precipitation on K-feldspar mineral surfaces. Alteration reduced permeability from 5 × 10-14 m2 to 3 × 10-14 m2 during this 52-day experiment. The third reported experiment on a dolostone core and 1 molal NaCl brine with an aqueous CO2 concentration at 75% saturation caused extensive dissolution and a large increase in permeability. This three-day experiment produced a wormhole of 2 mm in diameter that penetrated the entire 2.6 cm long core with a diameter of 1.3 cm. High, initial Ca and Mg fluid concentrations that quickly receded imply early formation of the wormhole that grew in diameter with time. Our experimental results show that formation permeability can change dramatically from both physical and chemical processes, and these changes should be accounted for during

  18. Application of ERTS images and image processing to regional geologic problems and geologic mapping in northern Arizona

    NASA Technical Reports Server (NTRS)

    Goetz, A. F. H. (Principal Investigator); Billingsley, F. C.; Gillespie, A. R.; Abrams, M. J.; Squires, R. L.; Shoemaker, E. M.; Lucchitta, I.; Elston, D. P.

    1975-01-01

    The author has identified the following significant results. Computer image processing was shown to be both valuable and necessary in the extraction of the proper subset of the 200 million bits of information in an ERTS image to be applied to a specific problem. Spectral reflectivity information obtained from the four MSS bands can be correlated with in situ spectral reflectance measurements after path radiance effects have been removed and a proper normalization has been made. A detailed map of the major fault systems in a 90,000 sq km area in northern Arizona was compiled from high altitude photographs and pre-existing published and unpublished map data. With the use of ERTS images, three major fault systems, the Sinyala, Bright Angel, and Mesa Butte, were identified and their full extent measured. A byproduct of the regional studies was the identification of possible sources of shallow ground water, a scarce commodity in these regions.

  19. Collection & Processing of Medically Important Arthropods for Arbovirus Isolation.

    ERIC Educational Resources Information Center

    Sudia, W. Daniel; Chamberlain, Roy W.

    The methods given for collecting, preserving, and processing mosquitoes and other archropods for isolation of arboviruses are those used by the National Communicable Disease Center. Techniques of collecting mosquitoes as they bite, using light or bait traps, and from their daytime resting sites are described and illustrated. Details of subsequent…

  20. The Importance of Spatial Reasoning Skills in Undergraduate Geology Students and the Effect of Weekly Spatial Skill Trainings

    NASA Astrophysics Data System (ADS)

    Gold, Anne; Pendergast, Philip; Stempien, Jennifer; Ormand, Carol

    2016-04-01

    Spatial reasoning is a key skill for student success in STEM disciplines in general and for students in geosciences in particular. However, spatial reasoning is neither explicitly trained, nor evenly distributed, among students and by gender. This uneven playing field allows some students to perform geoscience tasks easily while others struggle. A lack of spatial reasoning skills has been shown to be a barrier to success in the geosciences, and for STEM disciplines in general. Addressing spatial abilities early in the college experience might therefore be effective in retaining students, especially females, in STEM disciplines. We have developed and implemented a toolkit for testing and training undergraduate student spatial reasoning skills in the classroom. In the academic year 2014/15, we studied the distribution of spatial abilities in more than 700 undergraduate Geology students from 4 introductory and 2 upper level courses. Following random assignment, four treatment groups received weekly online training and intermittent hands-on trainings in spatial thinking while four control groups only participated in a pre- and a posttest of spatial thinking skills. In this presentation we summarize our results and describe the distribution of spatial skills in undergraduate students enrolled in geology courses. We first discuss the factors that best account for differences in baseline spatial ability levels, including general intelligence (using standardized test scores as a proxy), major, video gaming, and other childhood play experiences, which help to explain the gender gap observed in most research. We found a statistically significant improvement of spatial thinking still with large effect sizes for the students who received the weekly trainings. Self-report data further shows that students improve their spatial thinking skills and report that their improved spatial thinking skills increase their performance in geoscience courses. We conclude by discussing the

  1. The importance of green chemistry in process research and development.

    PubMed

    Dunn, Peter J

    2012-02-21

    Green Chemistry or Sustainable Chemistry is defined by the Environmental Protection Agency as "the design of chemical products that reduce or eliminate the use of hazardous substances" In recent years there is a greater societal expectation that chemists and chemical engineers should produce greener and more sustainable chemical processes and it is likely that this trend will continue to grow over the next few decades. This tutorial review gives information on solvents and solvent selection, basic environmental metrics collection and three industrial case histories. All three case histories involve enzymatic chemistry. Pregabalin (Lyrica®) is produced using a lipase based resolution and is extremely unusual in that all four manufacturing steps to make pregabalin are performed in water. Sitagliptin (Januvia®) uses a transaminase in the final chemical step. Finally a rosuvastatin (Crestor®) intermediate is produced using a deoxy ribose aldolase (DERA) enzyme in which two carbon-carbon bonds and two chiral centres are formed in the same process step. PMID:21562677

  2. The importance of green chemistry in process research and development.

    PubMed

    Dunn, Peter J

    2012-02-21

    Green Chemistry or Sustainable Chemistry is defined by the Environmental Protection Agency as "the design of chemical products that reduce or eliminate the use of hazardous substances" In recent years there is a greater societal expectation that chemists and chemical engineers should produce greener and more sustainable chemical processes and it is likely that this trend will continue to grow over the next few decades. This tutorial review gives information on solvents and solvent selection, basic environmental metrics collection and three industrial case histories. All three case histories involve enzymatic chemistry. Pregabalin (Lyrica®) is produced using a lipase based resolution and is extremely unusual in that all four manufacturing steps to make pregabalin are performed in water. Sitagliptin (Januvia®) uses a transaminase in the final chemical step. Finally a rosuvastatin (Crestor®) intermediate is produced using a deoxy ribose aldolase (DERA) enzyme in which two carbon-carbon bonds and two chiral centres are formed in the same process step.

  3. Modeling the Population-Level Processes of Biodiversity Gain and Loss at Geological Timescales.

    PubMed

    Fortelius, Mikael; Geritz, Stefan; Gyllenberg, Mats; Raia, Pasquale; Toivonen, Jaakko

    2015-12-01

    The path of species diversification is commonly observed by inspecting the fossil record. Yet, how species diversity changes at geological timescales relate to lower-level processes remains poorly understood. Here we use mathematical models of spatially structured populations to show that natural selection and gradual environmental change give rise to discontinuous phenotype changes that can be connected to speciation and extinction at the macroevolutionary level. In our model, new phenotypes arise in the middle of the environmental gradient, while newly appearing environments are filled by existing phenotypes shifting their adaptive optima. Slow environmental change leads to loss of phenotypes in the middle of the extant environmental range, whereas fast change causes extinction at one extreme of the environmental range. We compared our model predictions against a well-known yet partially unexplained pattern of intense hoofed mammal diversification associated with grassland expansion during the Late Miocene. We additionally used the model outcomes to cast new insight into Cope's law of the unspecialized. Our general finding is that the rate of environmental change determines where generation and loss of diversity occur in the phenotypic and physical spaces. PMID:26655981

  4. Rheology of petrolatum - paraffin oil mixtures: applications to analogue modelling of geological processes

    NASA Astrophysics Data System (ADS)

    Duarte, Joao; Schellart, Wouter; Cruden, Alexander

    2014-05-01

    Paraffins have been widely used in analogue modelling of geological processes. Petrolatum and paraffin oil are commonly used to lubricate model boundaries and to simulate weak layers. We present rheological tests of petrolatum, paraffin oil and several homogeneous mixtures of the two. The results show that petrolatum and all petrolatum-paraffin oil mixtures are strain, strain rate and temperature dependent under typical experimental strain rates (10-3 - 10-1 s-1). For the same conditions, pure paraffin oil is a slightly temperature-dependent, linear, Newtonian fluid. All mixtures have yield stress and flow stress (strain softening) values that decrease with decreasing shear rate, and with increasing relative amounts of paraffin oil. The degree of strain rate dependence (shear thinning) also decreases with increasing paraffin oil content. Because these materials have rheologies that can be characterized and controlled, they are suitable for use in a large number of analogue model settings, either as a lubricant or to simulate weak layers. When used as a lubricant, mixtures with higher paraffin oil content should perform better than pure petrolatum. In addition, we present results of 3D dynamical models of subduction in which these materials were used to lubricate the plate's interface and test different degrees of mechanical coupling.

  5. Rheology of petrolatum-paraffin oil mixtures: Applications to analogue modelling of geological processes

    NASA Astrophysics Data System (ADS)

    Duarte, João C.; Schellart, Wouter P.; Cruden, Alexander R.

    2014-06-01

    Paraffins have been widely used in analogue modelling of geological processes. Petrolatum and paraffin oil are commonly used to lubricate model boundaries and to simulate weak layers. In this paper, we present rheological tests of petrolatum, paraffin oil and several homogeneous mixtures of the two. The results show that petrolatum and all petrolatum-paraffin oil mixtures are strain, strain rate and temperature dependent under typical experimental strain rates (10-3-10-1 s-1). For the same conditions, pure paraffin oil is a slightly temperature-dependent, linear, Newtonian fluid. All mixtures have yield stress and flow stress (strain softening) values that decrease with decreasing shear rate, and with increasing relative amounts of paraffin oil. The degree of strain rate dependence (shear thinning) also decreases with increasing paraffin oil content. Because these materials have rheologies that can be characterized and controlled, they are suitable for use in a large number of analogue model settings, either as a lubricant or to simulate weak layers. When used as a lubricant, mixtures with higher paraffin oil content should perform better than pure petrolatum.

  6. The importance of cost considerations in the systems engineering process

    NASA Technical Reports Server (NTRS)

    Hodge, John D.

    1993-01-01

    This paper examines the question of cost, from the birth of a program to its conclusion, particularly from the point of view of large multi-center programs, and suggests how to avoid some of the traps and pitfalls. Emphasis is given to cost in the systems engineering process, but there is an inevitable overlap with program management. (These terms, systems engineering and program management, have never been clearly defined.) In these days of vast Federal budget deficits and increasing overseas competition, it is imperative that we get more for each research and development dollar. This is the only way we will retain our leadership in high technology and, in the long run, our way of life.

  7. Practical petroleum geology

    SciTech Connect

    Not Available

    1985-01-01

    This book presents the scope and content of the field of petroleum geology from the standpoint of the practicing petroleum geologist. Includes chapters on basic geological concepts, the sedimentation process, accumulation of hydrocarbons, exploration, economic examination, drilling of exploratory wells, recovering oil and gas (reservoir geology), and the relationship of geology to the petroleum industry as a whole.

  8. Urban soil geochemistry in Athens, Greece: The importance of local geology in controlling the distribution of potentially harmful trace elements.

    PubMed

    Argyraki, Ariadne; Kelepertzis, Efstratios

    2014-06-01

    Understanding urban soil geochemistry is a challenging task because of the complicated layering of the urban landscape and the profound impact of large cities on the chemical dispersion of harmful trace elements. A systematic geochemical soil survey was performed across Greater Athens and Piraeus, Greece. Surface soil samples (0-10cm) were collected from 238 sampling sites on a regular 1×1km grid and were digested by a HNO3-HCl-HClO4-HF mixture. A combination of multivariate statistics and Geographical Information System approaches was applied for discriminating natural from anthropogenic sources using 4 major elements, 9 trace metals, and 2 metalloids. Based on these analyses the lack of heavy industry in Athens was demonstrated by the influence of geology on the local soil chemistry with this accounting for 49% of the variability in the major elements, as well as Cr, Ni, Co, and possibly As (median values of 102, 141, 16 and 24mg kg(-1) respectively). The contribution to soil chemistry of classical urban contaminants including Pb, Cu, Zn, Sn, Sb, and Cd (medians of 45, 39, 98, 3.6, 1.7 and 0.3mg kg(-1) respectively) was also observed; significant correlations were identified between concentrations and urbanization indicators, including vehicular traffic, urban land use, population density, and timing of urbanization. Analysis of soil heterogeneity and spatial variability of soil composition in the Greater Athens and Piraeus area provided a representation of the extent of anthropogenic modifications on natural element loadings. The concentrations of Ni, Cr, and As were relatively high compared to those in other cities around the world, and further investigation should characterize and evaluate their geochemical reactivity.

  9. Computational and Spectroscopic Investigations of the Molecular Scale Structure and Dynamics of Geologically Important Fluids and Mineral-Fluid Interfaces

    SciTech Connect

    R. James Kirkpatrick; Andrey G. Kalinichev

    2008-11-25

    Research supported by this grant focuses on molecular scale understanding of central issues related to the structure and dynamics of geochemically important fluids, fluid-mineral interfaces, and confined fluids using computational modeling and experimental methods. Molecular scale knowledge about fluid structure and dynamics, how these are affected by mineral surfaces and molecular-scale (nano-) confinement, and how water molecules and dissolved species interact with surfaces is essential to understanding the fundamental chemistry of a wide range of low-temperature geochemical processes, including sorption and geochemical transport. Our principal efforts are devoted to continued development of relevant computational approaches, application of these approaches to important geochemical questions, relevant NMR and other experimental studies, and application of computational modeling methods to understanding the experimental results. The combination of computational modeling and experimental approaches is proving highly effective in addressing otherwise intractable problems. In 2006-2007 we have significantly advanced in new, highly promising research directions along with completion of on-going projects and final publication of work completed in previous years. New computational directions are focusing on modeling proton exchange reactions in aqueous solutions using ab initio molecular dynamics (AIMD), metadynamics (MTD), and empirical valence bond (EVB) approaches. Proton exchange is critical to understanding the structure, dynamics, and reactivity at mineral-water interfaces and for oxy-ions in solution, but has traditionally been difficult to model with molecular dynamics (MD). Our ultimate objective is to develop this capability, because MD is much less computationally demanding than quantum-chemical approaches. We have also extended our previous MD simulations of metal binding to natural organic matter (NOM) to a much longer time scale (up to 10 ns) for

  10. The Martian geomorphology as mapped by the Mars Express High Resolution Stereo Camera (HRSC): Implications for Geological Processes and Climate Conditions.

    NASA Astrophysics Data System (ADS)

    Roatsch, T.; Jaumann, R.; Neukum, G.; Tirsch, D.; Hauber, E.; Hoffmann, H.; Gwinner, K.; Scholten, F.; Di Achille, G.; Duxbury, T. C.; Erkeling, G.; vanGasselt, S.; Gupta, S.; Head, J. W., III; Hiesinger, H.; Ip, W. H.; Keller, H. U.; Kleinhans, M. G.; Kneissl, T.; McCord, T. B.; Muller, P.; Murray, J.; Pondrelli, M.; Platz, T.; Pinet, P. C.; Reiss, D.; Rossi, A. P.; Wendt, L.; Williams, D. A.; Mangold, N.; Spohn, T.

    2014-12-01

    After 10 years of ESA's Mars Express orbiting the planet its High Resolution Stereo Camera (HRSC) covered about 90 % of the surface in stereo and color with resolutions up to 10 m/pixel. Digital elevation models of up to 50 m grid spacing [1], generated from all suitable datasets of the stereo coverage, currently cover about 40 % of the surface [2]. The geomorphological analysis of surface features, observed by the HRSC indicate major surface modifications by endogenic and exogenic processes on all scales. Endogenic landforms (e.g., tectonic rifts, small basaltic shield volcanoes) were found to be very similar to their equivalents on Earth, suggesting that no unique processes are required to explain their formation. Volcanism may have been active up to the very recent past or even to the present, putting important constraints on thermal evolution models [e.g. 3]. The analysis of diverse landforms produced by aqueous processes revealed that surface water activity was likely episodic, but ranged in age from very ancient to very recent [e.g. 3]. Particularly important is prominent glaciation and periglacial features at several latitudes, including mountain glaciers [e.g. 3]. The identification of aqueous alteration minerals and their geological context has enabled a better understanding of paleoenvironmental conditions and pedogenetic processes [e.g. 4]. Dark dunes contain volcanic material and are evidence for the significantly dynamic surface environment, characterized by widespread erosion, transport, and redeposition [e.g. 3]. Since basically all geologic interpretations of extraterrestrial features require profound knowledge of the Earth as key reference, studies of terrestrial analogues are mandatory in planetary geology. Field work in Antarctica, Svalbard and Iceland [e.g. 5] provided a basis for the analysis of periglacial and volcanic processes, respectively. References: [1] Jaumann et al., 2007, PSS 55; [2] Gwinner et al., 2010, EPSL 294; [3] Jaumann et al

  11. Geochemical Processes During Geological Carbon Storage: Lessons from Natural Analogues and Field Experiments (Invited)

    NASA Astrophysics Data System (ADS)

    Bickle, M. J.; Kampman, N.; Wigley, M.; Dubacq, B.

    2013-12-01

    The nature, rates and consequences of reactions between CO2-charged brines and reservoir and caprock minerals for the long-term fate of geological carbon stores are uncertain. At worst it has been suggested that acid carbonated brines might corrode migration pathways through caprocks and fault zones allowing CO2 to escape and transporting metal contaminants. However there is a growing body of data from short term injection experiments, and sites where natural CO2 has been stored or actively leaking for 100,000's of years or more, which shows that the acid fluids are rapidly neutralised by reaction with carbonate and Fe-oxyhydroxide minerals, that the fluids precipitate carbonate minerals in caprocks and along migration pathways, and that caprocks have remained impermeable over millions of years. Limited observations from small scale injection experiments suggest that the natural heterogeneities in rock formations cause extensive fingering of the injected CO2, markedly increasing the rates of CO2 dissolution into formation brines. The resultant acidity drives the dissolution of carbonates and Fe-oxyhydroxide minerals which buffers pH, but the more sluggish dissolution of silicate minerals over time scales of months or more drives subsequent re-precipitation of carbonate minerals. Dissolution of Fe-oxide grain coatings is important in stabilizing Fe-Mg-Ca carbonate minerals. Reaction rates slow over 2 to 5 orders-of-magnitude as equilibrium is approached and in the longer term are controlled by the kinetic balance between the thermodynamic understep of the dissolution reactions of primary Si-Al phases (e.g. feldspars and micas in sandstone reservoirs) and the overstep driving the precipitation of clay minerals. Reservoir mineralogy imposes a key control on the fluid-mineral reactions where immature continental sandstones contain much higher fractions of reactive feldspars and micas than mature marine quartz sands. The major conclusion from observations to date is

  12. Relating Gestures and Speech: An analysis of students' conceptions about geological sedimentary processes

    NASA Astrophysics Data System (ADS)

    Herrera, Juan Sebastian; Riggs, Eric M.

    2013-08-01

    Advances in cognitive science and educational research indicate that a significant part of spatial cognition is facilitated by gesture (e.g. giving directions, or describing objects or landscape features). We aligned the analysis of gestures with conceptual metaphor theory to probe the use of mental image schemas as a source of concept representations for students' learning of sedimentary processes. A hermeneutical approach enabled us to access student meaning-making from students' verbal reports and gestures about four core geological ideas that involve sea-level change and sediment deposition. The study included 25 students from three US universities. Participants were enrolled in upper-level undergraduate courses on sedimentology and stratigraphy. We used semi-structured interviews for data collection. Our gesture coding focused on three types of gestures: deictic, iconic, and metaphoric. From analysis of video recorded interviews, we interpreted image schemas in gestures and verbal reports. Results suggested that students attempted to make more iconic and metaphoric gestures when dealing with abstract concepts, such as relative sea level, base level, and unconformities. Based on the analysis of gestures that recreated certain patterns including time, strata, and sea-level fluctuations, we reasoned that proper representational gestures may indicate completeness in conceptual understanding. We concluded that students rely on image schemas to develop ideas about complex sedimentary systems. Our research also supports the hypothesis that gestures provide an independent and non-linguistic indicator of image schemas that shape conceptual development, and also play a role in the construction and communication of complex spatial and temporal concepts in the geosciences.

  13. Processing and geologic analysis of conventional cores from well ER-20-6 No. 1, Nevada Test Site

    SciTech Connect

    Prothro, L.B., Townsend, M.J.; Drellack, S.L. Jr.

    1997-09-01

    In 1996, Well Cluster ER-20-6 was drilled on Pahute Mesa in Area 20, in the northwestern corner of the Nevada Test Site (NTS). The three wells of the cluster are located from 166 to 296 meters (m) (544 to 971 feet [ft]) southwest of the site of the underground nuclear test code-named BULLION, conducted in 1990 in Emplacement Hole U-20bd. The well cluster was planned to be the site of a forced-gradient experiment designed to investigate radionuclide transport in groundwater. To obtain additional information on the occurrence of radionuclides, nature of fractures, and lithology, a portion of Well ER-20-6 No. 1, the hole closest to the explosion cavity, was cored for later analysis. Bechtel Nevada (BN) geologists originally prepared the geologic interpretation of the Well Cluster ER-20-6 site and documented the geology of each well in the cluster. However, the cores from Well ER-20-6 No. 1 were not accessible at the time of that work. As the forced-gradient experiment and other radio nuclide migration studies associated with the well cluster progressed, it was deemed appropriate to open the cores, describe the geology, and re-package the core for long-term air-tight storage. This report documents and describes the processing, geologic analysis, and preservation of the conventional cores from Well ER20-6 No. 1.

  14. High precision analysis of an embryonic extensional fault-related fold using 3D orthorectified virtual outcrops: The viewpoint importance in structural geology

    NASA Astrophysics Data System (ADS)

    Tavani, Stefano; Corradetti, Amerigo; Billi, Andrea

    2016-05-01

    Image-based 3D modeling has recently opened the way to the use of virtual outcrop models in geology. An intriguing application of this method involves the production of orthorectified images of outcrops using almost any user-defined point of view, so that photorealistic cross-sections suitable for numerous geological purposes and measurements can be easily generated. These purposes include the accurate quantitative analysis of fault-fold relationships starting from imperfectly oriented and partly inaccessible real outcrops. We applied the method of image-based 3D modeling and orthorectification to a case study from the northern Apennines, Italy, where an incipient extensional fault affecting well-layered limestones is exposed on a 10-m-high barely accessible cliff. Through a few simple steps, we constructed a high-quality image-based 3D model of the outcrop. In the model, we made a series of measurements including fault and bedding attitudes, which allowed us to derive the bedding-fault intersection direction. We then used this direction as viewpoint to obtain a distortion-free photorealistic cross-section, on which we measured bed dips and thicknesses as well as fault stratigraphic separations. These measurements allowed us to identify a slight difference (i.e. only 0.5°) between the hangingwall and footwall cutoff angles. We show that the hangingwall strain required to compensate the upward-decreasing displacement of the fault was accommodated by this 0.5° rotation (i.e. folding) and coeval 0.8% thickening of strata in the hangingwall relatively to footwall strata. This evidence is consistent with trishear fault-propagation folding. Our results emphasize the viewpoint importance in structural geology and therefore the potential of using orthorectified virtual outcrops.

  15. Significant achievements in the planetary geology program

    NASA Technical Reports Server (NTRS)

    Head, J. W. (Editor)

    1984-01-01

    Recent developments in planetology research are summarized. Important developments are summarized in topics ranging from solar system evolution, comparative planetology, and geologic processes active on other planetary bodies, to techniques and instrument development for exploration.

  16. Influence in the Policy Making Process: the Rise of Economics at the Expense of Geology

    NASA Astrophysics Data System (ADS)

    McCurdy, K. M.

    2007-12-01

    Scientific influence in resource policy making reached a zenith in the early 1970s during the legislative monopoly in the United States Congress that produced command and control regulatory protection policies. This congressional consensus began in 1879 with legislation producing the U.S. Geological Survey. Other scientific agencies followed. The Congresses of the first half of the 20th century merely strengthened the influence of science in policy outcomes that was present in the earliest congressional debates. What then happened at the turn of the 21st century when representatives in the administration frequently dismissed sound science in their policy deliberations? Policy monopolies arise from agreement in principle, and alternately decline as rival ideas gain hold in policy space. The science policy monopoly began to face competition from economics when cost benefit analysis was introduced into political parlance in 1936, again in the 1950s as a successful blocking tactic by the minority in opposition to western dams, and in 1961 when systems analysis was introduced to the Department of Defense under Robert McNamara. As businessmen replaced farmers as the modal profession of legislators, the language of politics increasingly contained economic terms and concepts. A ternary diagram and a budget simplex have the same shape, but have different theoretical meanings and imply different processes. Policy consensus is not dissimilar to a mineral phase diagram, with boundary conditions marked by election magnitudes and majority parties. The 1980 elections brought economic principles into all aspects of government decision-making, with a particular long-term interest in reducing the size and scope of government. Since then the shift in policy jargon from science to economics has been incremental. With the 1994 Republican legislative majority, scientists, their programs, and the funds required to maintain data collection projects became targets. The Conservative

  17. User's manual for the National Water Information System of the U.S. Geological Survey: Automated Data Processing System (ADAPS)

    USGS Publications Warehouse

    ,

    2003-01-01

    The Automated Data Processing System (ADAPS) was developed for the processing, storage, and retrieval of water data, and is part of the National Water Information System (NWIS) developed by the U.S. Geological Survey. NWIS is a distributed water database in which data can be processed over a network of computers at U.S. Geological Survey offices throughout the United States. NWIS comprises four subsystems: ADAPS, the Ground-Water Site Inventory System (GWSI), the Water-Quality System (QWDATA), and the Site-Specific Water-Use Data System (SWUDS). This section of the NWIS User's Manual describes the automated data processing of continuously recorded water data, which primarily are surface-water data; however, the system also allows for the processing of water-quality and ground-water data. This manual describes various components and features of the ADAPS, and provides an overview of the data processing system and a description of the system framework. The components and features included are: (1) data collection and processing, (2) ADAPS menus and programs, (3) command line functions, (4) steps for processing station records, (5) postprocessor programs control files, (6) the standard format for transferring and entering unit and daily values, and (7) relational database (RDB) formats.

  18. Destination: Geology?

    NASA Astrophysics Data System (ADS)

    Price, Louise

    2016-04-01

    "While we teach, we learn" (Roman philosopher Seneca) One of the most beneficial ways to remember a theory or concept is to explain it to someone else. The offer of fieldwork and visits to exciting destinations is arguably the easiest way to spark a students' interest in any subject. Geology at A-Level (age 16-18) in the United Kingdom incorporates significant elements of field studies into the curriculum with many students choosing the subject on this basis and it being a key factor in consolidating student knowledge and understanding. Geology maintains a healthy annual enrollment with interest in the subject increasing in recent years. However, it is important for educators not to loose sight of the importance of recruitment and retention of students. Recent flexibility in the subject content of the UK curriculum in secondary schools has provided an opportunity to teach the basic principles of the subject to our younger students and fieldwork provides a valuable opportunity to engage with these students in the promotion of the subject. Promotion of the subject is typically devolved to senior students at Hessle High School and Sixth Form College, drawing on their personal experiences to engage younger students. Prospective students are excited to learn from a guest speaker, so why not use our most senior students to engage and promote the subject rather than their normal subject teacher? A-Level geology students embarking on fieldwork abroad, understand their additional responsibility to promote the subject and share their understanding of the field visit. They will typically produce a series of lessons and activities for younger students using their newly acquired knowledge. Senior students also present to whole year groups in seminars, sharing knowledge of the location's geology and raising awareness of the exciting destinations offered by geology. Geology fieldwork is always planned, organised and led by the member of staff to keep costs low, with recent visits

  19. The geological processes time scale of the Ingozersky block TTG complex (Kola Peninsula)

    NASA Astrophysics Data System (ADS)

    Nitkina, Elena

    2013-04-01

    Ingozersky block located in the Tersky Terrane of the Kola Peninsula is composed of Archean gneisses and granitoids [1; 5; 8]. The Archaean basement complexes on the regional geological maps have called tonalite-trondemit-gneisses (TTG) complexes [6]. In the previous studies [1; 3; 4; 5; 7] within Ingozersky block the following types of rocks were established: biotite, biotite-amphibole, amphibole-biotite gneisses, granites, granodiorites and pegmatites [2]. In the rocks of the complex following corresponding sequence of endogenous processes observed (based on [5]): stage 1 - the biotitic gneisses formation; 2 - the introduction of dikes of basic rocks; 3 phase - deformation and foliation; 4 stage - implementation bodies of granite and migmatization; 5 stage - implementation of large pegmatite bodies; stage 6 - the formation of differently pegmatite and granite veins of low power, with and without garnet; stage 7 - quartz veins. Previous U-Pb isotopic dating of the samples was done for biotite gneisses, amphibole-biotite gneisses and biotite-amphibole gneisses. Thus, some Sm-Nd TDM ages are 3613 Ma - biotite gnesses, 2596 Ma - amphibole-biotite gnesses and 3493 Ma biotite-amphibole gneisses.. U-Pb ages of the metamorphism processes in the TTG complex are obtained: 2697±9 Ma - for the biotite gneiss, 2725±2 and 2667±7 Ma - for the amphibole-biotite gneisses, and 2727±5 Ma for the biotite-amphibole gneisses. The age defined for the biotite gneisses by using single zircon dating to be about 3149±46 Ma corresponds to the time of the gneisses protolith formation. The purpose of these studies is the age establishing of granite and pegmatite bodies emplacement and finding a geological processes time scale of the Ingozerskom block. Preliminary U-Pb isotopic dating of zircon and other accessory minerals were held for granites - 2615±8 Ma, migmatites - 2549±30 Ma and veined granites - 1644±7 Ma. As a result of the isotope U-Pb dating of the different Ingozerskogo TTG

  20. 19 CFR 134.36 - Inapplicability of marking exception for articles processed by importer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... processed by importer. 134.36 Section 134.36 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT... Requirements § 134.36 Inapplicability of marking exception for articles processed by importer. An article which is to be processed in the United States by the importer or for his account shall not be considered...

  1. Quaternary geology and geomorphology of the Sacramento-San Joaquin Delta, California: evolution and processes

    NASA Astrophysics Data System (ADS)

    Gatti, E.; Maier, K. L.; Holzer, T. L.; Knudsen, K. L.; Olson, H.; Pagenknopp, M.; Ponti, D. J.; Rosa, C.; Tinsley, J. C.; Wan, E.

    2013-12-01

    The Sacramento-San Joaquin Delta (~1,400 km2) is a combination of tidal marsh, islands and agricultural lands at the confluence of the Sacramento and the San Joaquin Rivers, in northern California. Most of the Delta islands are now 3 to 8 m below sea-level and must be protected by levees from inundation. Because of the Delta's crucial role in conveying fresh water to the State, levee failures can cause substantial economic loss by disrupting this supply. Understanding the evolution of the Delta is fundamental to assess the vulnerability of the Delta islands to seismically-induced levee failure. The modern Delta is a young geological feature that began forming during the middle Holocene. Preceding versions of the Delta hosted a variety of depositional environments as sea level fluctuated, responding to climatically-controlled changes. The rising sea reached the Delta about 8,000 years ago, and modern deltaic evolution continued into Holocene time until present. More accurate stratigraphic studies incorporating depositional ages are required to i) better understand the late Quaternary evolution of the Delta, ii) trace the base of Holocene deposits, iii) identify potentially active faults, and iv) evaluate liquefaction hazard for the Delta . This study uses the large amount of data available on the Delta (collected by the California Department of Water Resources and others during the past 30 years) and merges them into a unified dataset. We have produced a database that includes historic and surficial maps, aerial photographs, boreholes, and CPT data, for the purpose of clarifying the nature of the Quaternary deposits and the evolution of the Late Quaternary Delta. Additionally, we have identified recently discovered Pleistocene tephra as the Rockland ash, ~0.575 Ma, and the Loleta ash, ~0.40-0.37 Ma, which have improved stratigraphic correlations and assessment of subsidence rates. Delta sediments include sequences of glacial and interglacial deposits. Borehole logs

  2. Martian planetwide crater distributions: Implications for geologic history and surface processes

    USGS Publications Warehouse

    Soderblom, L.A.; Condit, C.D.; West, R.A.; Herman, B.M.; Kreidler, T.J.

    1974-01-01

    Population-density maps of craters in three size ranges (0.6 to 1.2 km, 4 to 10 km, and >20 km in diameter) were compiled for most of Mars from Mariner 9 imagery. These data provide: historical records of the eolian processes (0.6 to 1.2 km craters); stratigraphic, relative, and absolute timescales (4 to 10 km craters); and a history of the early postaccretional evolution of the uplands (> 20 km craters). Based on the distribution of large craters (>20 km diameters), Mars is divisible into two general classes of terrain, densely cratered and very lightly cratered-a division remarkably like the uplands-maria dichotomy of the moon. It is probable that this bimodal character in the density distribution of large craters arose from an abrupt transition in the impact flux rate from an early intense period associated with the tailing off of accretion to an extended quiescent epoch, not from a void in geological activity during much of Mars' history. Radio-isotope studies of Apollo lunar samples show that this transition occurred on the moon in a short time. The intermediate-sized craters (4 to 10 km diameter) and the small-sized craters (0.6 to 1.2 km diameter) appear to be genetically related. The smaller ones are apparently secondary impact craters generated by the former. Most of the craters in the larger of these two size classes appear fresh and uneroded, although many are partly buried by dust mantles. Poleward of the 40?? parallels the small fresh craters are notably absent owing to these mantles. The density of small craters is highest in an irregular band centered at 20??S. This band coincides closely with (1) the zone of permanent low-albedo markings; (2) the "wind equator" (the latitude of zero net north or south transport at the surface); and (3) a band that includes a majority of the small dendritic channels. Situated in the southermost part of the equatorial unmantled terrain which extends from about 40??N to 40??S, this band is apparently devoid of even a

  3. IGIS (Interactive Geologic Interpretation System) computer-aided photogeologic mapping with image processing, graphics and CAD/CAM capabilities

    SciTech Connect

    McGuffie, B.A.; Johnson, L.F.; Alley, R.E.; Lang, H.R. )

    1989-10-01

    Advances in computer technology are changing the way geologists integrate and use data. Although many geoscience disciplines are absolutely dependent upon computer processing, photogeological and map interpretation computer procedures are just now being developed. Historically, geologists collected data in the field and mapped manually on a topographic map or aerial photographic base. New software called the interactive Geologic Interpretation System (IGIS) is being developed at the Jet Propulsion Laboratory (JPL) within the National Aeronautics and Space Administration (NASA)-funded Multispectral Analysis of Sedimentary Basins Project. To complement conventional geological mapping techniques, Landsat Thematic Mapper (TM) or other digital remote sensing image data and co-registered digital elevation data are combined using computer imaging, graphics, and CAD/CAM techniques to provide tools for photogeologic interpretation, strike/dip determination, cross section construction, stratigraphic section measurement, topographic slope measurement, terrain profile generation, rotatable 3-D block diagram generation, and seismic analysis.

  4. Recent geological-geomorphological processes on the east Arctic shelf: Results of the expedition of the icebreaker Oden in 2014

    NASA Astrophysics Data System (ADS)

    Lobkovsky, L. I.; Nikiforov, S. L.; Ananiev, R. A.; Khortov, A. V.; Semiletov, I. P.; Jakobsson, M.; Dmitrievskiy, N. N.

    2015-11-01

    Results obtained by the International Arctic marine expedition (SWERUS-C3) in June to October of 2014, using advanced seismoacoustic equipment, confirmed the wide distribution of potentially hazardous exogenic geological-geomorphological natural processes on the eastern Arctic shelf of Russia. In Arctic seas, serious hazards are represented by ice exaration and its consequences must be taken into consideration when developing oil and gas fields on the shelf. Many areas with anomalous gas saturation of sediments and gas seeps established in the region under consideration may represent global hazard: further increases in methane emissions may represent global risks. The minimization of these and other geological risks in constructing different technogenic objects on the shelf should be a first-priority task in the economic development of the Arctic region.

  5. The lively Aysén fjord, Chile: Records of multiple geological processes

    NASA Astrophysics Data System (ADS)

    Lastras, Galderic; Amblas, David; Calafat, Antoni; Canals, Miquel; Frigola, Jaime; Hermanns, Reginald L.; Lafuerza, Sara; Longva, Oddvar; Micallef, Aaron; Sepúlveda, Sergio A.; Vargas, Gabriel; Azpiroz, María; Bascuñán, Ignacio; Duhart, Paul; Iglesias, Olaia; Kempf, Philipp; Rayo, Xavier

    2014-05-01

    the past, as suggested by the presence of melt-water channels lateral to the ridge. Beyond the ridge, the fjord smoothens and deepens to more than 330 m forming an enclosed basin before turning SW. There, it shallows back across a field of streamlined submerged hills of glacial origin. The external Aysén fjord, before joining to Canal Costa and Canal Moraleda, is characterized by three volcanic cones, one of them forming Isla Colorada - which also acted as a glacial limit - and the other two totally submerged and previously unknown. The largest one is 160 m high, 1.3 km in diameter and tops at 67 m water depth. This data set illustrates the complex interaction between fluvial, glacial, tectonic, volcanic and gravity processes and evidences the recent lively geological history of Aysén fjord.

  6. Digital processing of orbital radar data to enhance geologic structure - Examples from the Canadian Shield

    NASA Technical Reports Server (NTRS)

    Masuoka, Penny M.; Harris, Jeff; Lowman, Paul D., Jr.; Blodget, Herbert W.

    1988-01-01

    Various digital enhancement techniques for SAR are compared using SIR-B and Seasat images of the Canadian Shield. The three best methods for enhancing geological structure were found to be: (1) a simple linear contrast stretch; (2) a mean or median low-pass filter to reduce speckle prior to edge enhancement or a K nearest-neighbor average to cosmetically reduce speckle; and (3) a modification of the Moore-Waltz (1983) technique. Three look directions were coregistered and several means of data display were investigated as means of compensating for radar azimuth biasing.

  7. Genesis of karren in Kentucky Lake, Tennessee: Interaction of geologic structure, weathering processes, and bioerosion

    SciTech Connect

    Gibson, M.A.; Smith, W.L. )

    1993-03-01

    While karst features formed along marine coastlines are commonly reported, shoreline karst features produced within lacustrine systems have received little attention. The shoreline of Bond Island'' in Kentucky Lake has evolved a distinctive karren geomorphology not recognized elsewhere in the lake. The karren consist of well-developed clint and grike topography, trench formation, solution pits, flutes, and runnels, and pit and tunnel development. Two processes are responsible for the karren. First, freshwater dissolution and wave action on structurally fractured Decatur Limestone (Silurian) mechanically and chemically weaken the entire exposed surface. Second, a seasonal cycle of winter freeze-thaw and frost wedging followed by spring bioerosion overprints the first set of processes. Bioerosion by chemical dissolution involving a complex association of predominantly chironomids, algae, fungi, and bryozoa results in preferential dissolution along joints, stylolites, and bedding planes to form shallow spindle-shaped solution pits over the entire surface and sides of the karren. The solution pits average 1 cm length by 0.4 cm depth densely covering rock surfaces. This study suggests that seasonal bioerosion may constitute a more important geomorphic factor in lacustrine systems than previously recognized.

  8. Quaternary geology and sedimentary processes in the vicinity of Six Mile Reef, eastern Long Island Sound

    USGS Publications Warehouse

    Poppe, L.J.; Williams, S.J.; Moser, M.S.; Forfinski, N.A.; Stewart, H.F.; Doran, E.F.

    2008-01-01

    Six Mile Reef, a sandy, 22-m-high shoal trending east-west and located about 7.8 km off the Connecticut coast, has a core of postglacial marine deltaic deposits mantled by tidally reworked modern sediments. Sedimentary environments off the eastern end of the shoal are characterized by processes associated with long-term erosion or nondeposition, a mobile-sediment-limited seafloor armored by gravelly sand, and scattered elongate fields of barchanoid sand waves. The barchanoid waves reach amplitudes of 20 m, are concave westward, and occur in individual and coalesced forms that become progressively more complex westward. The seafloor on and adjacent to the shoal is characterized by processes associated with coarse bedload transport and covered primarily with asymmetrical transverse sand waves. The transverse waves exceed 8 m in amplitude, have slip faces predominantly oriented to the west and southwest, and have straight, slightly sinuous, and curved crests. Megaripples, which mimic the asymmetry of the sand waves, are commonly present on stoss slopes and in troughs; current ripples are ubiquitous. The amplitude and abundance of large bedforms decrease markedly westward of Six Mile Reef. The seabed there is covered with small, degraded ripples, reflecting lower-energy environments and processes associated with sorting and reworking of seafloor sediments. Megaripples and current ripples on the sand waves suggest that transport is active and that the bedforms are propagating under the present hydraulic regime. Net bedload sediment transport is primarily to the west, as evidenced by textural trends of surficial sediments, orientation of the barchanoid waves, and asymmetry of the transverse waves and of the scour marks around bedrock outcrops, boulders, and shipwrecks. One exception occurs at the western tip of the shoal, where sand-wave morphology indicates long-term eastward transport, suggesting that countercurrents in this area shape the shoal and are important to

  9. Sand resources, regional geology, and coastal processes for shoreline restoration: case study of Barataria shoreline, Louisiana

    USGS Publications Warehouse

    Kindinger, Jack G.; Flocks, James G.; Kulp, Mark; Penland, Shea; Britsch, Louis D.

    2002-01-01

    The Louisiana barrier shoreline of Barataria Basin, which lies within the western Mississippi River delta, has undergone significant retreat during the past 100 years. The most practical restoration method to rebuild these shorelines is sand nourishment. Seismic and sonar interpretations verified with geologic samples (vibracores and borings) indicate that there are nine sand targets within the Barataria study area that meet or exceed the minimum criteria for potential resource sites. However, the near surface lithology in the basin is typically silts and clays. Locating suitable sand resources for shoreline restoration is challenging. The sand units are associated with geologic depositional systems such as ebb-tidal deltas, distributary mouth bars, and channel fill (undifferentiated fluvial or tidal inlet channels). The nine potential sand targets consist primarily of fine sand and can be delineated into three surficial and six buried features. The surficial features contain approximately 10% of the total sand resources identified. At least 90% of the sand resources need overburden sediment removed prior to use; almost 570 million yd3 (438.5 mil m3) of overburden will need to be removed if the entire resource is mined. In this study, we identified 396 to 532 mil yd3 (305.8 to 410.8 mil m3) of potential sand deposits for shoreline restoration. Previous studies using less dense survey methods greatly over-estimated sand resources available in this area. Many fluvial channels reported previously as sand-filled are mud-filled. Contrary to these previous studies, few fluvial subsystems in this region have abundant sand resources.

  10. 24 CFR 3282.53 - Service of process on foreign manufacturers and importers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Service of process on foreign manufacturers and importers. 3282.53 Section 3282.53 Housing and Urban Development Regulations Relating to... REGULATIONS Formal Procedures § 3282.53 Service of process on foreign manufacturers and importers....

  11. Preliminary paper - Integrated control process for the development of the mined geologic disposal system

    SciTech Connect

    Daniel, Russell B.; Harbert, Kevin R.; Calloway, David E.

    1997-11-26

    The US Department of Energy (DOE) Order 430.1, Life Cycle Asset Management, begins to focus DOE Programs and Projects on the total system life cycle instead of looking at project execution or operation as individual components. As DOE begins to implement this order, the DOE Management and Operating contractors must develop a process to control not only the contract baseline but also the overall life cycle baseline. This paper presents an integrated process that is currently being developed on the Yucca Mountain Project for DOE. The process integrates the current contract/project baseline management process with the management control process for design and the configuration management change control process.

  12. A Retrospective: Active Volatile-Driven Geologic Processes Across the Solar System—Lessons for Planetary Explorers

    NASA Astrophysics Data System (ADS)

    Soderblom, L. A.

    2014-12-01

    When Voyagers 1 and 2 left Earth in 1977, we had little clue as to the rich variety of activity we'd find on the outer Solar System moons. The moons of Jupiter, Saturn, Uranus, and Neptune would likely exhibit little geologic evolution¾much less even than our Moon. We expected battered, cratered, dead worlds. Like the Moon, Mars had showed volcanic activity in the geologic past, but ancient, heavily crater highlands dominated both surfaces. It seemed unlikely that we'd find even extinct volcanism in the cold, dead reaches of the outer Solar System. Voyager 1 shocked us by revealing Io's prolific ongoing volcanism. (Not all were surprised: just days earlier, Peale, Cassen, and Reynolds published a prediction that Io could be volcanically active). Europa, too, was a Voyager surprise; only a small handful of impact craters pocked its surface. It too had to be a geologically young body—likely still actively evolving. We have even found very recent geological activity on tiny cometary nuclei, where young flows have oozed forth across their surfaces. At Neptune, incredibly, Voyager 2 found eruptions on Triton's 37K polar cap—plumes driven by solar-heated nitrogen gas blasting dark dust and bright ice in 8-km-high columns. On Mars, "dark spiders" near the pole signaled similar active eruptions, in this case driven by pressurized carbon dioxide. Cassini witnessed a myriad of jets near tiny Enceladus' south pole, arising from an internal ocean evidently driven by active chemical processes and modulated by Saturn's proximity. Cassini revealed Titan to be Earth's alien twin, with a host of processes borrowed from textbooks on terrestrial geomorphology and meteorology. Akin to Earth's global hydrological cycle, Titan's runs on methane—methane rivers, seas, and rain abound. What lessons can we take from these active places into the next phase of exploration? When the Voyagers were launched, our naiveté allowed that only planet Earth was dynamically active. But exploring

  13. Benthic Communities as Indicators of Geological and Biogeochemical Processes in the Gulf of Papua

    NASA Astrophysics Data System (ADS)

    Aller, J. Y.; Dhir, S.; Chummar, J.; Dantzler, M. M.; Aller, R. C.

    2003-12-01

    Benthic communities inhabiting Gulf of Papua deposits play important roles in determining remineralization and material cycling processes at the seafloor. Faunal abundances, size-frequency distributions, functional groups, and vertical distributions reflect a spectrum of diagenetic depositional environments produced by variations in local sediment transport dynamics and coastal morphology. Thus faunal properties provide a basis for comparison of factors influencing sediment - overlying water interactions, elemental cycling, and material storage. During mid NW monsoon periods (Jan-Feb), macrofaunal densities at Gulf stations are generally low (260 to 1270 m{-2 }), large macroinfauna are absent in the upper ˜25 cm, and small (< 0.5 mm) surface deposit-feeding polychaetes and tubiculous amphipods dominate, reflecting a frequently destabilized seabed and high sedimentation / erosion rates. Although significant numbers of macrofauna have generally been found to be absent over large areas due to frequent physical disturbance, sedimentary structures demonstrate that many regions of the GoP deltaic complex are periodically extensively bioturbated by relatively large and deep-burrowing infauna. Additionally, faunal samples from February 2003 have significantly increased numbers of opportunistic polychaete and crustacean species relative to 1999 and 2000, indicating that there are periods of faunal colonization and community expansion. These changes may correlate with decreased riverine sediment input associated with El Niño conditions. While the macrofaunal community is relatively depauperate and apparently subject to inhibition by inhospitable physical conditions, the microbial community is highly active, diverse, and abundant throughout the upper ˜1m. The dominance of bacteria and microfauna rather than macrofauna in wet tropical environments like the GoP, contrasts with many reactive continental shelf mud deposits in temperate regions.

  14. Importing and Exporting radioactive materials and waste for treatment, processing and recycling

    SciTech Connect

    Greeves, J.T.; Lieberman, J.

    2007-07-01

    The paper will address an overview of the licensing process, requirements and experience for importing radioactive waste and metals from international sources and processing and return or recycling. Items to be discussed would center on obtaining regulatory approval for importing radioactive materials for example metals into the U.S. for recycling. The paper will discus the differentiation between 'recycling' options versus 'waste' processing options. International standards and agreements that address such transfer of radioactive materials and waste will be described. (authors)

  15. The Cerro Negro accumulation of Venezuela's Orinoco Belt - the favorable convergence of several geological processes

    SciTech Connect

    Swanson, D.C. ); Tarache, C. )

    1993-02-01

    The Cerro Negro Area is a major part of eastern Venezuela's Orinoco Belt. Here upper Eocene fluvial-deltaic deposits of the Oficina Fm. reservoir billions of barrels of heavy oil, much of which is in valley-fill deposits. Maturation, migration and accumulation of these hydrocarbons in thick, porous and permeable sandstones were the logical conclusion to several major geological events in eastern Venezuela during the Tertiary. In the Cerro Negro Area, Cretaceous clastics were deposited on an igneous and metamorphic basement after which the sea withdrew northward toward the axial part of the Eastern Venezuelan Basin. The basement and Cretaceous deposits were weathered and eroded during the Eocene, Oligocene, and early Miocene, forming the unconformity on which the Oficina Fm. is deposited. Historic reconstruction begins with this unconformity, a paleotopographic surface strongly influencing the character and distribution of the overlying Oficina Fm. As relative sea level fell and gradients increased, streams incised into the shelf while transporting great amounts of coarse clastic load northward. At Cerro Negro, a mature topography of low ridges and hills were developed with differential elevations of several hundred feet. During the Miocene, a sea transgressed across the stream-etched unconformity. Streams carrying large amounts of clastic load encountered an elevating sea level. They consequently dropped their coarse load, forming long, linear, transgressive, valley-fill deposits. By Late Miocene, hydrocarbons generated in the deeper basin began to migrate southward through the long linear fluvial-deltaic clastic conduits that were separated laterally and vertically into complex [open quotes]plumbing systems.[close quotes] As the hydrocarbons moved shelfward, normal faults cut the conduits into numerous reservoir segments. The timing between migration and faulting is critical to present-day hydrocarbon distribution in these segments.

  16. Introductory Geology From the Liberal Arts Approach: A Geology-Sociology Linked Course

    NASA Astrophysics Data System (ADS)

    Walsh, E. O.; Davis, E.

    2008-12-01

    Geology can be a hard sell to college students, especially to college students attending small, liberal arts institutions in localities that lack exaggerated topography. At these schools, Geology departments that wish to grow must work diligently to attract students to the major; professors must be able to convince a wider audience of students that geology is relevant to their everyday lives. Toward this end, a Physical Geology course was linked with an introductory Sociology course through the common theme of Consumption. The same students took the two courses in sequence, beginning with the Sociology course and ending with Physical Geology; thus, students began by discussing the role of consumption in society and ended by learning about the geological processes and implications of consumption. Students were able to ascertain the importance of geology in their daily lives by connecting Earth processes to specific products they consume, such as cell phones and bottled water. Students were also able to see the connection between seemingly disparate fields of study, which is a major goal of the liberal arts. As a theme, Consumption worked well to grab the attention of students interested in diverse issues, such as environmental science or social justice. A one-hour lecture illustrating the link between sociology and geology was developed for presentation to incoming freshmen and their parents to advertise the course. Initial response has been positive, showing an increase in awareness of geological processes among students with a wide range of interests.

  17. Using Snow to Teach Geology.

    ERIC Educational Resources Information Center

    Roth, Charles

    1991-01-01

    A lesson plan, directed at middle school students and older, describes using snow to study the geological processes of solidification of molten material, sedimentation, and metamorphosis. Provides background information on these geological processes. (MCO)

  18. Sea Level Change, A Fundamental Process When Interpreting Coastal Geology and Geography.

    ERIC Educational Resources Information Center

    Zeigler, John M.

    1985-01-01

    Discusses the meaning of sea level change and identifies the major factors responsible for this occurrence. Elaborates on the theory and processes involved in indirect measurement of changes in sea volume. Also explains how crustal movement affects sea level. (ML)

  19. 40 CFR 761.193 - Maintenance of monitoring records by persons who import, manufacture, process, distribute in...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... persons who import, manufacture, process, distribute in commerce, or use chemicals containing... records by persons who import, manufacture, process, distribute in commerce, or use chemicals containing inadvertently generated PCBs. (a) Persons who import, manufacture, process, distribute in commerce, or...

  20. 40 CFR 761.193 - Maintenance of monitoring records by persons who import, manufacture, process, distribute in...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... persons who import, manufacture, process, distribute in commerce, or use chemicals containing... records by persons who import, manufacture, process, distribute in commerce, or use chemicals containing inadvertently generated PCBs. (a) Persons who import, manufacture, process, distribute in commerce, or...

  1. 40 CFR 761.193 - Maintenance of monitoring records by persons who import, manufacture, process, distribute in...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... persons who import, manufacture, process, distribute in commerce, or use chemicals containing... records by persons who import, manufacture, process, distribute in commerce, or use chemicals containing inadvertently generated PCBs. (a) Persons who import, manufacture, process, distribute in commerce, or...

  2. The interaction of human activities and geological processes: a geo-environmental study in Southeastern Nigeria (Owerri urban area)

    NASA Astrophysics Data System (ADS)

    Sowa, A. H. O.; Ibe, K. M.

    1992-05-01

    The aim of this study is to analyze the mechanisms of interaction between the factors human activity, water, vegetation and related geological processes, like gully erosion or filling up of river beds. A surface water and land pollution survey of Owerri urban area, Nigeria, has been carried out in order to establish the current levels of pollution. An attempt has been made to show the relationships between population density, industrial and agricultural activities, environmental contamination, and soil erodibility. The spatial distribution of pollutants due to poor land use system and human activities were investigated, thus emphasizing the need for integrated planning development as a preventive measure for reducing environmental impacts in fast-growing urban centres of developing countries.

  3. The Large Impact Process Inferred from the Geology of Lunar Multiring Basins

    NASA Technical Reports Server (NTRS)

    Spudis, Paul D.

    1994-01-01

    The study of the geology of multiring impact basins on the Moon over the past ten years has given us a rudimentary understanding of how these large structures have formed and evolved on the Moon and other bodies. Two-ring basins on the Moon begin to form at diameters of about 300 km; the transition diameter at which more than two rings appear is uncertain, but it appears to be between 400 and 500 km in diameter. Inner rings tend to be made up of clusters or aligned segments of massifs and are arranged into a crudely concentric pattern; scarp-like elements may or may not be present. Outer rings are much more scarp-like and massifs are rare to absent. Basins display textured deposits, interpreted as ejecta, extending roughly an apparent basin radius exterior to the main topographic rim. Ejecta may have various morphologies, ranging from wormy and hummocky deposits to knobby surfaces; the causes of these variations are not known, but may be related to the energy regime in which the ejecta are deposited. Outside the limits of the textured ejecta are found both fields of satellitic craters (secondaries) and light plains deposits. Impact melt sheets are observed on the floors of relatively unflooded basins. Samples of impact melts from lunar basins have basaltic major-element chemistry, characterized by K, rare-earth elements (REE), P, and other trace elements of varying concentration (KREEP); ages are between 3.8 and 3.9 Ga. These lithologies cannot be produced through the fusion of known pristine (plutonic) rock types, suggesting the occurrence of unknown lithologies within the Moon. These melts were probably generated at middle to lower crustal levels. Ejecta compositions, preservation of pre-basin topography, and deposit morphologies all indicate that the excavation cavity of multiring basins is between about 0.4 and 0.6 times the diameter of the apparent crater diameter. Basin depths of excavation can be inferred from the composition of basin ejecta. A variety of

  4. 77 FR 38033 - Notice of Establishment of a Commodity Import Approval Process Web Site

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-26

    ... Import Approval Process Web Site AGENCY: Animal and Plant Health Inspection Service, USDA. ACTION: Notice. SUMMARY: We are announcing the creation of a new Plant Protection and Quarantine Web site that will... approval process and the opportunity to comment on draft risk assessments. This Web site will make...

  5. 78 FR 38646 - Importer Permit Requirements for Tobacco Products and Processed Tobacco, and Other Requirements...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-27

    ... Alcohol and Tobacco Tax and Trade Bureau 27 CFR Parts 40, 41, and 44 [Docket No. TTB-2013-0006; Notice No... Importer Permit Requirements for Tobacco Products and Processed Tobacco, and Other Requirements for Tobacco Products, Processed Tobacco and Cigarette Papers and Tubes AGENCY: Alcohol and Tobacco Tax and Trade...

  6. Frost weathering versus glacial grinding in the micromorphology of quartz sand grains: Processes and geological implications

    NASA Astrophysics Data System (ADS)

    Woronko, Barbara

    2016-04-01

    Micromorphology of quartz sand grains is used to reconstruct processes occurring in the glacial environment and to distinguish the latter from other environments. Two processes dominate in the glacial environment, i.e., crushing and abrasion, or a combination thereof. Their effect is a wide range of microstructures on the surface of quartz grains, e.g., chattermarks, conchoidal fractures and multiple grooves. However, the periglacial environment also effectively modifies the surface of quartz grains. The active layer of permafrost is considered to have a significantly higher contribution to the formation of crushed grains and the number of microstructures resulting from mechanical destruction (e.g., breakage blocks or conchoidal fractures), as compared to deposits which are not affected by freeze-thaw cycles. However, only a few microstructures are found in both environments. At the same time, there are several processes in subglacial environments related to freeze-thaw cycles, e.g., regelation, congelation, basal adfreezing, and glaciohydraulic supercooling. Most likely, therefore, the role of the glacial environment in the destruction of quartz grains has been misinterpreted, and consequently the conclusions regarding environmental processes drawn on the basis of the number of crushed grains and edge-to-edge contacts are erroneous.

  7. Vesta: A Geological Overview

    NASA Astrophysics Data System (ADS)

    Jaumann, R.

    2012-04-01

    gravitational forces and seismic activity - an important geologic process on Vesta that significantly alters the morphology of geologic features and adds to the complexity of its geologic history. In general, Vesta's geology is more like the Moon and rocky planets than other asteroids.

  8. Planetary Geologic Mapping Handbook - 2009

    NASA Technical Reports Server (NTRS)

    Tanaka, K. L.; Skinner, J. A.; Hare, T. M.

    2009-01-01

    Geologic maps present, in an historical context, fundamental syntheses of interpretations of the materials, landforms, structures, and processes that characterize planetary surfaces and shallow subsurfaces (e.g., Varnes, 1974). Such maps also provide a contextual framework for summarizing and evaluating thematic research for a given region or body. In planetary exploration, for example, geologic maps are used for specialized investigations such as targeting regions of interest for data collection and for characterizing sites for landed missions. Whereas most modern terrestrial geologic maps are constructed from regional views provided by remote sensing data and supplemented in detail by field-based observations and measurements, planetary maps have been largely based on analyses of orbital photography. For planetary bodies in particular, geologic maps commonly represent a snapshot of a surface, because they are based on available information at a time when new data are still being acquired. Thus the field of planetary geologic mapping has been evolving rapidly to embrace the use of new data and modern technology and to accommodate the growing needs of planetary exploration. Planetary geologic maps have been published by the U.S. Geological Survey (USGS) since 1962 (Hackman, 1962). Over this time, numerous maps of several planetary bodies have been prepared at a variety of scales and projections using the best available image and topographic bases. Early geologic map bases commonly consisted of hand-mosaicked photographs or airbrushed shaded-relief views and geologic linework was manually drafted using mylar bases and ink drafting pens. Map publishing required a tedious process of scribing, color peel-coat preparation, typesetting, and photo-laboratory work. Beginning in the 1990s, inexpensive computing, display capability and user-friendly illustration software allowed maps to be drawn using digital tools rather than pen and ink, and mylar bases became obsolete

  9. Conduct of Geologic Field Work During Planetary Exploration: Why Geology Matters

    NASA Technical Reports Server (NTRS)

    Eppler, Dean B.

    2010-01-01

    The science of field geology is the investigative process of determining the distribution of rock units and structures on a planet s surface, and it is the first order data set that informs all subsequent studies of a planet, such as geochemistry, geochronology, geophysics or remote sensing. These allied sciences, as important as they are, derive the basis of their understanding from the knowledge of the geology of a given location. When we go back to the Moon, and on to Mars, the surface systems we deploy will need to support the conduct of field geology if these endeavors are to be scientifically useful. This lecture will consider what field geology is about - why it s important, how we do it, how the conduct of field geology informs many other sciences, and how it will affect the design of surface systems and implementation of operations in the future.

  10. Results From an International Simulation Study on Couples Thermal, Hydrological, and Mechanical (THM) Processes Near Geological Nuclear Waste Repositories

    SciTech Connect

    J. Rutqvist; D. Barr; J.T. Birkholzer; M. Chijimatsu; O. Kolditz; Q. Liu; Y. Oda; W. Wang; C. Zhang

    2006-08-02

    As part of the ongoing international DECOVALEX project, four research teams used five different models to simulate coupled thermal, hydrological, and mechanical (THM) processes near waste emplacement drifts of geological nuclear waste repositories. The simulations were conducted for two generic repository types, one with open and the other with back-filled repository drifts, under higher and lower postclosure temperatures, respectively. In the completed first model inception phase of the project, a good agreement was achieved between the research teams in calculating THM responses for both repository types, although some disagreement in hydrological responses is currently being resolved. In particular, good agreement in the basic thermal-mechanical responses was achieved for both repository types, even though some teams used relatively simplified thermal-elastic heat-conduction models that neglected complex near-field thermal-hydrological processes. The good agreement between the complex and simplified process models indicates that the basic thermal-mechanical responses can be predicted with a relatively high confidence level.

  11. Collaborative web-based annotation of video footage of deep-sea life, ecosystems and geological processes

    NASA Astrophysics Data System (ADS)

    Kottmann, R.; Ratmeyer, V.; Pop Ristov, A.; Boetius, A.

    2012-04-01

    More and more seagoing scientific expeditions use video-controlled research platforms such as Remote Operating Vehicles (ROV), Autonomous Underwater Vehicles (AUV), and towed camera systems. These produce many hours of video material which contains detailed and scientifically highly valuable footage of the biological, chemical, geological, and physical aspects of the oceans. Many of the videos contain unique observations of unknown life-forms which are rare, and which cannot be sampled and studied otherwise. To make such video material online accessible and to create a collaborative annotation environment the "Video Annotation and processing platform" (V-App) was developed. A first solely web-based installation for ROV videos is setup at the German Center for Marine Environmental Sciences (available at http://videolib.marum.de). It allows users to search and watch videos with a standard web browser based on the HTML5 standard. Moreover, V-App implements social web technologies allowing a distributed world-wide scientific community to collaboratively annotate videos anywhere at any time. It has several features fully implemented among which are: • User login system for fine grained permission and access control • Video watching • Video search using keywords, geographic position, depth and time range and any combination thereof • Video annotation organised in themes (tracks) such as biology and geology among others in standard or full screen mode • Annotation keyword management: Administrative users can add, delete, and update single keywords for annotation or upload sets of keywords from Excel-sheets • Download of products for scientific use This unique web application system helps making costly ROV videos online available (estimated cost range between 5.000 - 10.000 Euros per hour depending on the combination of ship and ROV). Moreover, with this system each expert annotation adds instantaneous available and valuable knowledge to otherwise uncharted

  12. Disentangling the importance of ecological niches from stochastic processes across scales.

    PubMed

    Chase, Jonathan M; Myers, Jonathan A

    2011-08-27

    Deterministic theories in community ecology suggest that local, niche-based processes, such as environmental filtering, biotic interactions and interspecific trade-offs largely determine patterns of species diversity and composition. In contrast, more stochastic theories emphasize the importance of chance colonization, random extinction and ecological drift. The schisms between deterministic and stochastic perspectives, which date back to the earliest days of ecology, continue to fuel contemporary debates (e.g. niches versus neutrality). As illustrated by the pioneering studies of Robert H. MacArthur and co-workers, resolution to these debates requires consideration of how the importance of local processes changes across scales. Here, we develop a framework for disentangling the relative importance of deterministic and stochastic processes in generating site-to-site variation in species composition (β-diversity) along ecological gradients (disturbance, productivity and biotic interactions) and among biogeographic regions that differ in the size of the regional species pool. We illustrate how to discern the importance of deterministic processes using null-model approaches that explicitly account for local and regional factors that inherently create stochastic turnover. By embracing processes across scales, we can build a more synthetic framework for understanding how niches structure patterns of biodiversity in the face of stochastic processes that emerge from local and biogeographic factors.

  13. TOUGH2Biot - A simulator for coupled thermal-hydrodynamic-mechanical processes in subsurface flow systems: Application to CO2 geological storage and geothermal development

    NASA Astrophysics Data System (ADS)

    Lei, Hongwu; Xu, Tianfu; Jin, Guangrong

    2015-04-01

    Coupled thermal-hydrodynamic-mechanical processes have become increasingly important in studying the issues affecting subsurface flow systems, such as CO2 sequestration in deep saline aquifers and geothermal development. In this study, a mechanical module based on the extended Biot consolidation model was developed and incorporated into the well-established thermal-hydrodynamic simulator TOUGH2, resulting in an integrated numerical THM simulation program TOUGH2Biot. A finite element method was employed to discretize space for rock mechanical calculation and the Mohr-Coulomb failure criterion was used to determine if the rock undergoes shear-slip failure. Mechanics is partly coupled with the thermal-hydrodynamic processes and gives feedback to flow through stress-dependent porosity and permeability. TOUGH2Biot was verified against analytical solutions for the 1D Terzaghi consolidation and cooling-induced subsidence. TOUGH2Biot was applied to evaluate the thermal, hydrodynamic, and mechanical responses of CO2 geological sequestration at the Ordos CCS Demonstration Project, China and geothermal exploitation at the Geysers geothermal field, California. The results demonstrate that TOUGH2Biot is capable of analyzing change in pressure and temperature, displacement, stress, and potential shear-slip failure caused by large scale underground man-made activity in subsurface flow systems. TOUGH2Biot can also be easily extended for complex coupled process problems in fractured media and be conveniently updated to parallel versions on different platforms to take advantage of high-performance computing.

  14. The Martian geomorphology as mapped by the Mars Express High Resolution Stereo Camera (HRSC): Implications for Geological Processes and Climate Conditions

    NASA Astrophysics Data System (ADS)

    Jaumann, R.; Neukum, G.; Hauber, E.; Hoffmann, H.; Roatsch, T.; Gwinner, K.; Scholten, F.; Di Achille, G.; Duxbury, T.; Erkeling, G.; van Gasselt, S.; Gupta, S.; Head, J. W.; Hiesinger, H.; Ip, W.; Keller, H.; Kleinhans, M. G.; Kneissl, T.; Le Deit, L.; McCord, T. B.; Muller, J.; Murray, J. J.; Pacifici, A.; Platz, T.; Pinet, P. C.; Reiss, D.; Rossi, A.; Spohn, T.; Tirsch, D.; Williams, D. A.

    2013-12-01

    Due to the strong evidence for aqueous processes at or near the surface, Mars is the most Earth-like body in the Solar System. After 10 years of ESA's Mars Express orbiting the planet its High Resolution Stereo Camera (HRSC) covered about 90 % of the surface in stereo and color with resolutions up to 10 m/pixel [1]. Digital elevation models of up to 50 m grid spacing, generated from all suitable datasets of the stereo coverage, currently cover about 40 % of the surface [2]. The geomorphological analysis of surface features, observed by the HRSC indicate major surface modifications by endogenic and exogenic processes on all scales. Endogenic landforms (e.g., tectonic rifts, small basaltic shield volcanoes) were found to be very similar to their equivalents on Earth [1,3,4,5,6,7], suggesting that no unique processes are required to explain their formation. Volcanism may have been active up to the very recent past or even to the present, putting important constraints on thermal evolution models [6,7]. The analysis of diverse landforms produced by aqueous processes revealed that surface water activity was likely episodic, but ranged in age from very ancient to very recent [1,8-16]. Particularly important is prominent glaciation and periglacial features at several latitudes, including mountain glaciers [17-21]. The identification of aqueous alteration minerals and their geological context has enabled a better understanding of paleoenvironmental conditions and pedogenetic processes [23-25]. Dark dunes contain volcanic material and are evidence for the significantly dynamic surface environment, characterized by widespread erosion, transport, and redeposition [26]. Since basically all geologic interpretations of extraterrestrial features require profound knowledge of the Earth as key reference, studies of terrestrial analogues are mandatory in planetary geology. Field work in Antarctica, Svalbard and Iceland [5,6,21,22,27] provided a basis for the analysis of periglacial

  15. The geomorphology of Rhea - Implications for geologic history and surface processes

    NASA Technical Reports Server (NTRS)

    Moore, J. M.; Horner, V. M.; Greeley, R.

    1985-01-01

    Morphological analyses of landforms on Rhea are used to define three physiographic provinces: cratered terrain 1 undifferentiated; cratered terrain 1 lineated; and cratered terrain 2. The important statigraphic relationships between the different provinces are examined with respect to major impact basins and tectonic features. It is shown that the formation of multiringed basins may have caused, or at least controlled the locations of major resurfacing and mantling events. The diameters of the central peaks relative to the impact crater diameters are found to be significantly larger than those within the craters of the moon or Mercury. Both cratered and noncrater lineaments have regional orientations which do not fit current global or regional stress models. On the basis of the morphological analysis, a chronological order is established for the origin of the three provinces: the cratered terrain 1 province was formed first; and cratered terrain 1 lineated and cratered terrain 2 were formed second, and last, respectively. It is shown that the chronological order is generally consistent with current theoretical models of the evolution of Rhea.

  16. Influence of fluvial processes on the quaternary geologic framework of the continental shelf, North Carolina, USA

    USGS Publications Warehouse

    Boss, S.K.; Hoffman, C.W.; Cooper, B.

    2002-01-01

    Digital, single-channel, high-resolution seismic reflection profiles were acquired from the insular continental shelf of North Carolina, USA along a data grid extending from Oregon Inlet northward 48 km to Duck, North Carolina and from the nearshore zone seaward approximately 28 km (total surveyed area= 1334 km2). These data were processed and interpreted to delineate principal reflecting horizons and develop a three-dimensional seismic stratigraphic framework for the continental shelf that was compared to stratigraphic data from the shoreward back-barrier (estuarine) and barrier island system. Six principal reflecting horizons (designated R0 through R5) were present within the upper 60 m of the shelf stratigraphic succession. Three-dimensional mapping of reflector R1 demonstrated its origin from fluvial incision of the continental shelf during an episode (or episodes) of lowered sea-level. Fluvial processes during development of reflector R1 were responsible for extensive reworking and re-deposition of sediment throughout most of the northern half of the study area. Five seismic stratigraphic units (designated S1 through S5) were tentatively correlated with depositional sequences previously identified from the North Carolina back-barrier (estuarine) and barrier island system. These five stratigraphic units span the Quaternary Period (S1 = early Holocene; S2 = 51-78 ka; S3 = 330-530 ka; S4 = 1.1-1.8 Ma; S5 = earliest Pleistocene). Unit S1 is composed of fine-grained fluvial/estuarine sediment that back-filled incised streams during early Holocene sea-level rise. The four other stratigraphic units (S2-S5) display tabular depositional geometries, low total relief, and thicken toward the east-southeast as their basal reflectors dip gently between 0.41 m km-1 (0.02??) and 0.54 m km-1 (0.03??). Knowledge of the three-dimensional subsurface stratigraphic architecture of the continental shelf enhances understanding of the development of shelf depositional successions and

  17. Quantification of geologic lineaments by manual and machine processing techniques. [in Oklahoma and the Colorado Plateau

    NASA Technical Reports Server (NTRS)

    Podwysocki, M. H.; Moik, J. G.; Shoup, W. C.

    1975-01-01

    A study was conducted to investigate the effect of operator variability and subjectivity in lineament mapping and to examine methods to minimize or eliminate these problems by use of several machine preprocessing methods. LANDSAT scenes from the Anadarko Basin of Oklahoma and the Colorado Plateau were analyzed as test cases. Four geologists mapped lineaments on an Anadarko Basin scene, using transparencies of MSS bands 4-7, and their results are compared statistically. The total number of fractures mapped by the operators and their average lengths varied considerably, although comparison of lineament directions revealed some consensus. A summary map (785 linears) produced by overlaying the maps generated by the four operators showed that only 0.4% were recognized by all four operators, 4.7% by three, 17.8% by two and 77% by one operator. Two methods of machine aided mapping were tested, both simulating directional filters. One consists of computer (digital) processing of CCTs using edge enhancement algorithms, the other employs a television (analog) scanning of an image transparency which superimposes the original image and one offset in the direction of the scan line.

  18. International Geology

    ERIC Educational Resources Information Center

    Hoover, Linn

    1977-01-01

    Briefly discusses recent international programs in various areas of geology, including land-use problems, coping with geological hazards, and conserving the environment while searching for energy and mineral resources. (MLH)

  19. Mathematical Geology.

    ERIC Educational Resources Information Center

    Jones, Thomas A.

    1983-01-01

    Mathematical techniques used to solve geological problems are briefly discussed (including comments on use of geostatistics). Highlights of conferences/meetings and conference papers in mathematical geology are also provided. (JN)

  20. Sycamore amyloplasts can import and process precursors of nuclear encoded chloroplast proteins.

    PubMed

    Strzalka, K; Ngernprasirtsiri, J; Watanabe, A; Akazawa, T

    1987-12-16

    Amyloplasts isolated from white-wild suspension-cultured cells of sycamore (Acer pseudoplatanus L.) are found to import and process the precursor of the small subunit (pS) of ribulose-1,5-bisphosphate carboxylase/oxygenase of spinach, but they lack the ability to form its holoenzyme due to the absence of both the large subunit and its binding-protein. They also import the precursor of the 33-kDa extrinsic protein (p33-kDa) of the O2-evolving complex of Photosystem II from spinach, but process is only to an intermediate form (i33-kDa). Chloroplasts from green-mutant cells of sycamore process p33-kDa to its mature form in this heterologous system. These results suggest that the thylakoid-associated protease responsible for the second processing step of p33-kDa is missing in amyloplasts, possibly due to the absence of thylakoid-membranes. In contrast, the apparent import of the precursor of the light-harvesting chlorophyll a/b-binding apoprotein (pLHCP) from spinach was not detected. Sycamore amyloplasts may lack the ability to import this particular thylakoid-protein, or rapidly degrade the imported molecules in the absence of thylakoid-membranes for their proper insertion.

  1. Geology of the region of Guadalajara, Mexico, and its relationships with processes of subsidence

    NASA Astrophysics Data System (ADS)

    Suarez-Plascencia, C.; Delgado-Argote, L. A.; Nuñez-Cornu, F. J.; Sanchez, J. J.

    2008-12-01

    The city of Guadalajara, Mexico, began an accelerated urban growth in early 1950. During a span of 25 years a large number of gullies were artificially filled, with the aim of incorporating new areas for urbanization, particularly in the areas north and west of the city. These gullies originally formed a complex dendritic-type system, whose evolution may be associated with faults or fracture zones whose current identification are only possible based on escarpments along the Canyon of the Rio Grande de Santiago (CRGS), north of Guadalajara. Reports of affectations documented in the 80's described subsidence in buildings and infrastructure, a process that has been continued during 2008. We present the results of work done in the CRGS, which is a tectonic erosive-depression with an average depth of 500 m and exhibits a sequence of volcanic and sedimentary deposits with rapid lateral facies changes. The stratigraphic column spans a 15 km-long section along the Matatlán-Arcediano road, and, from top to bottom contains: 1) Unconsolidated pumice and tuffs with an average thickness of 12 m; 2) basaltic lavas with average thickness of 60 m; 3) the San Gaspar ignimbrite; 4) fluvial- sedimentary deposits with a thickness of approximately 20 meters that include both sub-rounded and angular volcanic clasts, with sizes up to 0.15 m; 5) a thick sequence of ignimbrites and dacitic lavas. At a depth of 1200 m.a.s.l. in the town of Arcediano, the basal sequence is composed of dacites and andesites with interbedded pumice-rich ignimbrites with 10-20 m thickness. The Rio Grande de Santiago talweg to 1018 m.a.s.l. (apparently the base of the sequence) is formed by andesite lava. In the area of San Gaspar we identified oblique-normal left-lateral faults in lavas, with a strike 191° and a dip 89°. In the Colimilla dam, 1297 m.a.s.l., we observed normal faulting (strike 267° and dip 81°), with 20-30 m jumps with reference to a unit of tephra of 3-10 m thickness. The lavas in this

  2. Discrete fracture modeling of hydro-mechanical damage processes in geological systems

    NASA Astrophysics Data System (ADS)

    Kim, K.; Rutqvist, J.; Houseworth, J. E.; Birkholzer, J. T.

    2014-12-01

    This study presents a modeling approach for investigating coupled thermal-hydrological-mechanical (THM) behavior, including fracture development, within geomaterials and structures. In the model, the coupling procedure consists of an effective linkage between two codes: TOUGH2, a simulator of subsurface multiphase flow and mass transport based on the finite volume approach; and an implementation of the rigid-body-spring network (RBSN) method, a discrete (lattice) modeling approach to represent geomechanical behavior. One main advantage of linking these two codes is that they share the same geometrical mesh structure based on the Voronoi discretization, so that a straightforward representation of discrete fracture networks (DFN) is available for fluid flow processes. The capabilities of the TOUGH-RBSN model are demonstrated through simulations of hydraulic fracturing, where fluid pressure-induced fracturing and damage-assisted flow are well represented. The TOUGH-RBSN modeling methodology has been extended to enable treatment of geomaterials exhibiting anisotropic characteristics. In the RBSN approach, elastic spring coefficients and strength parameters are systematically formulated based on the principal bedding direction, which facilitate a straightforward representation of anisotropy. Uniaxial compression tests are simulated for a transversely isotropic material to validate the new modeling scheme. The model is also used to simulate excavation fracture damage for the HG-A microtunnel in the Opalinus Clay rock, located at the Mont Terri underground research laboratory (URL) near Saint-Ursanne, Switzerland. The Opalinus Clay has transversely isotropic material properties caused by natural features such as bedding, foliation, and flow structures. Preferential fracturing and tunnel breakouts were observed following excavation, which are believed to be strongly influenced by the mechanical anisotropy of the rock material. The simulation results are qualitatively

  3. Significant achievements in the planetary geology program, 1980

    NASA Technical Reports Server (NTRS)

    Holt, H. E. (Editor)

    1980-01-01

    Recent developments in planetology research as reported at the 1980 NASA Planetology Program Principal Investigators meeting are summarized. Important developments are summarized in topics ranging from solar system evolution and comparative planetology to geologic processes active on other planetary bodies.

  4. Significant achievements in the planetary geology program, 1981

    NASA Technical Reports Server (NTRS)

    Mouginis-Mark, P. J.

    1982-01-01

    Recent developments in planetology research are summarized. Important developments are summarized in topics ranging from solar system evolution, comparative planetology, and geologic processes, to techniques and instrument development for future exploration.

  5. Geological Processes Affecting the Thermal Structures of Shallow Seafloor: An Example from offshore SW Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, Liwen; Chi, Wu-Cheng; Wu, Shao-Kai; Liu, Char-Shine; Lu, Chia-Yu

    2014-05-01

    Fluid migration pattern is important for understanding the structural features of a mountain belt and for hydrocarbon exploration. However, these patterns are difficult to measure on the seafloor. Using phase properties of the gas hydrates, we studied the fluid flow patterns offshore southwestern Taiwan. Seismic explorations in this region show wide spreading bottom-simulating-reflectors (BSR), which is interpreted as the bottom of the gas hydrate stability zone. It provides us an opportunity to study possible fluid flow patterns at several hundred meters sub-bottom depths of the marine sediments. First, we used BSR-based geothermal gradient patterns to derive 1D vertical fluid flow models by analyzing the Péclet numbers. We found the regional fluid flow rates ranges from 6 cm/yr to 43 cm/yr, then we also discovered several prospect sites to examine the fluid migration pattern in the environs of active, passive and deformation front. Next, we forward 2D steady-state temperature fields of these sites to account for the topographic effects to compare with the BSR-based temperature. The discrepancy between the 2D conductive thermal model and the BSR-based temperature was interpreted as a result of fluid migration. And furthermore, we built 3D steady-state temperature fields, for comparing with BSR-based temperatures, to detail describe the regional temperature discrepancy with the structure evolution in 3D seismic data. We discovered our interpreted fluid migration patterns are consistent with the regional structure. The BSR-based temperatures in Yung-An Ridge, which is in active margin, are higher than the conduction model near faults and chimney zones, we interpret that it is possible active dewatering inside the accretionary prism to allow fluid to migrate upward here. For the upper reach of Peng-Hu Canyon, which is across deformation front, we found the disequilibrium temperature field probably induced by the recently landslide. For the Formosa Ridge in passive

  6. Radiometric Dating in Geology.

    ERIC Educational Resources Information Center

    Pankhurst, R. J.

    1980-01-01

    Described are several aspects and methods of quantitatively measuring geologic time using a constant-rate natural process of radioactive decay. Topics include half lives and decay constants, radiogenic growth, potassium-argon dating, rubidium-strontium dating, and the role of geochronology in support of geological exploration. (DS)

  7. Isotope Tracer Studies of Diffusion in Sillicates and of Geological Transport Processes Using Actinide Elements

    SciTech Connect

    Wasserburg, Gerald J

    2008-07-31

    The objectives were directed toward understanding the transport of chemical species in nature, with particular emphasis on aqueous transport in solution, in colloids, and on particles. Major improvements in measuring ultra-low concentrations of rare elements were achieved. We focused on two areas of studies: (1) Field, laboratory, and theoretical studies of the transport and deposition of U, Th isotopes and their daughter products in natural systems; and (2) Study of calcium isotope fractionation effects in marine carbonates and in carbonates precipitated in the laboratory, under controlled temperature, pH, and rates of precipitation. A major study of isotopic fractionation of Ca during calcite growth from solution has been completed and published. It was found that the isotopic shifts widely reported in the literature and attributed to biological processes are in fact due to a small equilibrium fractionation factor that is suppressed by supersaturation of the solution. These effects were demonstrated in the laboratory and with consideration of the solution conditions in natural systems, where [Ca{sup 2+}] >> [CO{sub 3}{sup 2-}] + [HCO{sub 3}{sup -}]. The controlling rate is not the diffusion of Ca, as was earlier proposed, but rather the rate of supply of [CO{sub 3}{sup 2-}] ions to the interface. This now opens the issues of isotopic fractionation of many elements to a more physical-chemical approach. The isotopic composition of Ca {Delta}({sup 44}Ca/{sup 40}Ca) in calcite crystals has been determined relative to that in the parent solutions by TIMS using a double spike. Solutions were exposed to an atmosphere of NH{sub 3} and CO{sub 2}, provided by the decomposition of (NH4)2CO3. Alkalinity, pH, and concentrations of CO{sub 3}{sup 2-}, HCO{sub 3}{sup -}, and CO{sub 2} in solution were determined. The procedures permitted us to determine {Delta}({sup 44}Ca/{sup 40}Ca) over a range of pH conditions, with the associated ranges of alkalinity. Two solutions with

  8. 24 CFR 3282.53 - Service of process on foreign manufacturers and importers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... COMMISSIONER, DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT MANUFACTURED HOME PROCEDURAL AND ENFORCEMENT... 24 Housing and Urban Development 5 2014-04-01 2014-04-01 false Service of process on foreign manufacturers and importers. 3282.53 Section 3282.53 Housing and Urban Development Regulations Relating...

  9. 27 CFR 41.1 - Importation of tobacco products, cigarette papers and tubes, and processed tobacco.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 2 2011-04-01 2011-04-01 false Importation of tobacco products, cigarette papers and tubes, and processed tobacco. 41.1 Section 41.1 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY (CONTINUED)...

  10. 27 CFR 41.1 - Importation of tobacco products, cigarette papers and tubes, and processed tobacco.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 2 2013-04-01 2013-04-01 false Importation of tobacco products, cigarette papers and tubes, and processed tobacco. 41.1 Section 41.1 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY (CONTINUED)...

  11. 27 CFR 41.1 - Importation of tobacco products, cigarette papers and tubes, and processed tobacco.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 2 2010-04-01 2010-04-01 false Importation of tobacco products, cigarette papers and tubes, and processed tobacco. 41.1 Section 41.1 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY (CONTINUED)...

  12. 27 CFR 41.1 - Importation of tobacco products, cigarette papers and tubes, and processed tobacco.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 2 2012-04-01 2011-04-01 true Importation of tobacco products, cigarette papers and tubes, and processed tobacco. 41.1 Section 41.1 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY (CONTINUED)...

  13. 27 CFR 41.1 - Importation of tobacco products, cigarette papers and tubes, and processed tobacco.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 2 2014-04-01 2014-04-01 false Importation of tobacco products, cigarette papers and tubes, and processed tobacco. 41.1 Section 41.1 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY (CONTINUED)...

  14. Self-Assessment Processes: The Importance of Follow-up for Success

    ERIC Educational Resources Information Center

    Tari, Juan Jose

    2010-01-01

    Purpose: The purpose of this paper is to review the literature on self-assessment processes and to identify the difficulties, benefits and success factors of the European Foundation for Quality Management self-assessment model, analysing the importance of follow-up. Design/methodology/approach: First, the paper carries out a literature review on…

  15. Flow Tube Studies of Gas Phase Chemical Processes of Atmospheric Importance

    NASA Technical Reports Server (NTRS)

    Molina, Mario J.

    1997-01-01

    The objective of this project is to conduct measurements of elementary reaction rate constants and photochemistry parameters for processes of importance in the atmosphere. These measurements are being carried out under temperature and pressure conditions covering those applicable to the stratosphere and upper troposphere, using the chemical ionization mass spectrometry turbulent flow technique developed in our laboratory.

  16. Few crop traits accurately predict variables important to productivity of processing sweet corn

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recovery, case production, and gross profit margin, hereafter called ‘processor variables’, are as important metrics to processing sweet corn as grain yield is to field corn production. However, crop traits such as ear number or ear mass alone are reported in sweet corn production research rather t...

  17. Metamorphic geology: Why should we care?

    NASA Astrophysics Data System (ADS)

    Tajcmanova, Lucie; Moulas, Evangelos; Vrijmoed, Johannes

    2016-04-01

    Estimation of pressure-temperature (P-T) from petrographic observations in metamorphic rocks has become a common practice in petrology studies during the last 50 years. This data then often serves as a key input in geodynamic reconstructions and thus directly influences our understanding of lithospheric processes. Such an approach might have led the metamorphic geology field to a certain level of quiescence. Obtaining high-quality analytical data from metamorphic rocks has become a standard part of geology studies. The numerical tools for geodynamic reconstructions have evolved to a great extend as well. Furthermore, the increasing demand on using the Earth's interior for sustainable energy or nuclear waste disposal requires a better understanding of the physical processes involved in fluid-rock interaction. However, nowadays, metamorphic data have apparently lost their importance in the "bigger picture" of the Earth sciences. Interestingly, the suppression of the metamorphic geology discipline limits the potential for understanding the aforementioned physical processes that could have been exploited. In fact, those phenomena must be considered in the development of new generations of fully coupled numerical codes that involve reacting materials with changing porosity while obeying conservation of mass, momentum and energy. In our contribution, we would like to discuss the current role of metamorphic geology. We will bring food for thoughts and specifically touch upon the following questions: How can we revitalize metamorphic geology? How can we increase the importance of it? How can metamorphic geology contribute to societal issues?

  18. Symbolic Numerical Magnitude Processing Is as Important to Arithmetic as Phonological Awareness Is to Reading.

    PubMed

    Vanbinst, Kiran; Ansari, Daniel; Ghesquière, Pol; De Smedt, Bert

    2016-01-01

    In this article, we tested, using a 1-year longitudinal design, whether symbolic numerical magnitude processing or children's numerical representation of Arabic digits, is as important to arithmetic as phonological awareness is to reading. Children completed measures of symbolic comparison, phonological awareness, arithmetic, reading at the start of third grade and the latter two were retested at the start of fourth grade. Cross-sectional and longitudinal correlations indicated that symbolic comparison was a powerful domain-specific predictor of arithmetic and that phonological awareness was a unique predictor of reading. Crucially, the strength of these independent associations was not significantly different. This indicates that symbolic numerical magnitude processing is as important to arithmetic development as phonological awareness is to reading and suggests that symbolic numerical magnitude processing is a good candidate for screening children at risk for developing mathematical difficulties. PMID:26942935

  19. Symbolic Numerical Magnitude Processing Is as Important to Arithmetic as Phonological Awareness Is to Reading

    PubMed Central

    Vanbinst, Kiran; Ansari, Daniel; Ghesquière, Pol; De Smedt, Bert

    2016-01-01

    In this article, we tested, using a 1-year longitudinal design, whether symbolic numerical magnitude processing or children’s numerical representation of Arabic digits, is as important to arithmetic as phonological awareness is to reading. Children completed measures of symbolic comparison, phonological awareness, arithmetic, reading at the start of third grade and the latter two were retested at the start of fourth grade. Cross-sectional and longitudinal correlations indicated that symbolic comparison was a powerful domain-specific predictor of arithmetic and that phonological awareness was a unique predictor of reading. Crucially, the strength of these independent associations was not significantly different. This indicates that symbolic numerical magnitude processing is as important to arithmetic development as phonological awareness is to reading and suggests that symbolic numerical magnitude processing is a good candidate for screening children at risk for developing mathematical difficulties. PMID:26942935

  20. A Domain Decomposition Approach for Large-Scale Simulations of Flow Processes in Hydrate-Bearing Geologic Media

    SciTech Connect

    Zhang, Keni; Moridis, G.J.; Wu, Y.-S.; Pruess, K.

    2008-07-01

    Simulation of the system behavior of hydrate-bearing geologic media involves solving fully coupled mass- and heat-balance equations. In this study, we develop a domain decomposition approach for large-scale gas hydrate simulations with coarse-granularity parallel computation. This approach partitions a simulation domain into small subdomains. The full model domain, consisting of discrete subdomains, is still simulated simultaneously by using multiple processes/processors. Each processor is dedicated to following tasks of the partitioned subdomain: updating thermophysical properties, assembling mass- and energy-balance equations, solving linear equation systems, and performing various other local computations. The linearized equation systems are solved in parallel with a parallel linear solver, using an efficient interprocess communication scheme. This new domain decomposition approach has been implemented into the TOUGH+HYDRATE code and has demonstrated excellent speedup and good scalability. In this paper, we will demonstrate applications for the new approach in simulating field-scale models for gas production from gas-hydrate deposits.

  1. Role of geology in diamond project development

    NASA Astrophysics Data System (ADS)

    Jakubec, Jaroslav

    2004-09-01

    For a mining operation to be successful, it is important to bring fundamental and applied science together. The mining engineer needs to understand the importance of geology, mineralogy and petrography, and how projects can benefit from the data collected during the exploration and pre-exploration stage. Geological scientists also need to understand the process of project development from the exploration stage through mine design and operation to mine closure. Kimberlite pipe or dyke emplacement, geology and petrology/mineralogy are three areas that illustrate how information obtained from the geological studies could directly influence the mining method selection and the project strategy and design. Kimberlite emplacement is one of the fundamental processes that rely on knowledge of the kimberlite body geology. Although the importance of the emplacement model is commonly recognized in the resource geology, mining engineers do not always appreciate its importance to the mine design. The knowledge of the orebody geometry, character of the contact zones, internal structures and distribution of inclusions could directly influence pit wall stability (thus strip ratio), underground mining method selection, dilution, treatability, and the dewatering strategy. Understanding the internal kimberlite geology mainly includes the geometry and character of individual phases, and the orientation and character of internal structures that transect the rock mass. For any mining method it is important to know "where the less and where the more competent rocks are located" to achieve stability. On the other hand, the detailed facies studies may not be important for the resource and mine design if the rock types have similar physical properties and diamond content. A good understanding of the kimberlite petrology and mineralogy could be crucial not only to the treatability (namely diamond damage and liberation), but also to the pit wall and underground excavation stability, support

  2. On the potential vegetation feedbacks that enhance phosphorus availability - insights from a process-based model linking geological and ecological time scales

    NASA Astrophysics Data System (ADS)

    Buendíia, C.; Arens, S.; Hickler, T.; Higgins, S. I.; Porada, P.; Kleidon, A.

    2013-12-01

    In old and heavily weathered soils, the availability of P might be so small that the primary production of plants is limited. However, plants have evolved several mechanisms to actively take up P from the soil or mine it to overcome this limitation. These mechanisms involve the active uptake of P mediated by mycorrhiza, biotic de-occlusion through root clusters, and the biotic enhancement of weathering through root exudation. The objective of this paper is to investigate how and where these processes contribute to alleviate P limitation on primary productivity. To do so, we propose a process-based model accounting for the major processes of the carbon, water, and P cycle including chemical weathering at the global scale. We use simulation experiments to assess the relative importance of the different uptake mechanisms to alleviate P limitation on biomass production. Implementing P limitation on biomass synthesis allows the assessment of the efficiencies of biomass production across different ecosystems. We find that active P-uptake is an essential mechanism for sustaining P availability on long time scales, whereas biotic de-occlusion might serve as a buffer on time scales shorter than 10 000 yr. Although active P uptake is essential for reducing P losses by leaching, humid lowland soils reach P limitation after around 100 000 yr of soil evolution. Given the generalized modeling framework, our model results compare reasonably with observed or independently estimated patterns and ranges of P concentrations in soils and vegetation. Furthermore, our simulations suggest that P limitation might be an important driver of biomass production efficiency (the fraction of the gross primary productivity used for biomass growth), and that vegetation on older soils becomes P-limited leading to a smaller biomass production efficiency. With this study, we provide a theoretical basis for investigating the responses of terrestrial ecosystems to P availability linking geological and

  3. On the potential vegetation feedbacks that enhance phosphorus availability - insights from a process-based model linking geological and ecological timescales

    NASA Astrophysics Data System (ADS)

    Buendía, C.; Arens, S.; Hickler, T.; Higgins, S. I.; Porada, P.; Kleidon, A.

    2014-07-01

    In old and heavily weathered soils, the availability of P might be so small that the primary production of plants is limited. However, plants have evolved several mechanisms to actively take up P from the soil or mine it to overcome this limitation. These mechanisms involve the active uptake of P mediated by mycorrhiza, biotic de-occlusion through root clusters, and the biotic enhancement of weathering through root exudation. The objective of this paper is to investigate how and where these processes contribute to alleviate P limitation on primary productivity. To do so, we propose a process-based model accounting for the major processes of the carbon, water, and P cycles including chemical weathering at the global scale. Implementing P limitation on biomass synthesis allows the assessment of the efficiencies of biomass production across different ecosystems. We use simulation experiments to assess the relative importance of the different uptake mechanisms to alleviate P limitation on biomass production. We find that active P uptake is an essential mechanism for sustaining P availability on long timescales, whereas biotic de-occlusion might serve as a buffer on timescales shorter than 10 000 yr. Although active P uptake is essential for reducing P losses by leaching, humid lowland soils reach P limitation after around 100 000 yr of soil evolution. Given the generalized modelling framework, our model results compare reasonably with observed or independently estimated patterns and ranges of P concentrations in soils and vegetation. Furthermore, our simulations suggest that P limitation might be an important driver of biomass production efficiency (the fraction of the gross primary productivity used for biomass growth), and that vegetation on old soils has a smaller biomass production rate when P becomes limiting. With this study, we provide a theoretical basis for investigating the responses of terrestrial ecosystems to P availability linking geological and

  4. The importance of plant genotype and contemporary evolution for terrestrial ecosystem processes.

    PubMed

    Fitzpatrick, Connor R; Agrawal, Anurag A; Basiliko, Nathan; Hastings, Amy P; Isaac, Marney E; Preston, Michael; Johnson, Marc T J

    2015-10-01

    Plant genetic variation and evolutionary dynamics are predicted to impact ecosystem processes but these effects are poorly understood. Here we test the hypothesis that plant genotype and contemporary evolution influence the flux of energy and nutrients through soil, which then feedback to affect seedling performance in subsequent generations. We conducted a multiyear field evolution experiment using the native biennial plant Oenothera biennis. This experiment was coupled with experimental assays to address our hypothesis and quantify the relative importance of evolutionary and ecological factors on multiple ecosystem processes. Plant genotype, contemporary evolution, spatial variation, and herbivory affected ecosystem processes (e.g., leaf decay, soil respiration, seedling performance, N cycling), but their relative importance varied between specific ecosystem variables. Insect herbivory and evolution also contributed to a feedback that affected seedling biomass of O. biennis in the next generation. Our results show that heritable variation among plant genotypes can be an important factor affecting local ecosystem processes, and while effects of contemporary evolution were detectable and sometimes strong, they were often contingent on other ecological, factors. PMID:26649385

  5. Ground Penetrating Radar Field Studies of Lunar-Analog Geologic Settings and Processes: Barringer Meteor Crater and Northern Arizona Volcanics

    NASA Astrophysics Data System (ADS)

    Russell, P. S.; Grant, J. A.; Williams, K. K.; Bussey, B.

    2010-12-01

    Ground-Penetrating Radar (GPR) data from terrestrial analog environments can help constrain models for evolution of the lunar surface, aid in interpretation of orbital SAR data, and help predict what might be encountered in the subsurface during future, landed, scientific or engineering operations on the Moon. GPR can yield insight into the physical properties, clast-size distribution, and layering of the subsurface, granting a unique view of the processes affecting an area over geologic time. The purpose of our work is to demonstrate these capabilities at sites at which geologic processes, settings, and/or materials are similar to those that may be encountered on the moon, especially lava flows, impact-crater ejecta, and layered materials with varying properties. We present results from transects obtained at Barringer Meteor Crater, SP Volcano cinder cone, and Sunset Crater Volcano National Monument, all in northern Arizona. Transects were taken at several sites on the ejecta of Meteor Crater, all within a crater radius (~400 m) of the crater rim. Those taken across ejecta lobes or mounds reveal the subsurface contact of the ejecta upper surface and overlying, embaying sediments deposited by later alluvial, colluvial, and/or aeolian processes. Existing mine shafts and pits on the south side of the crater provide cross sections of the subsurface against which we compare adjacent GPR transects. The ‘actual’ number, size, and depth of clasts in the top 1-2 m of the subsurface are estimated from photos of the exposed cross sections. In GPR radargrams, reflections attributed to blocks in the top 2-5 m of the subsurface are counted, and their depth distribution noted. Taking GPR measurements along a transect at two frequencies (200 and 400 MHz) and to various depths, we obtain the ratio of the actual number of blocks in the subsurface to the number detectable with GPR, as well as an assessment of how GPR detections in ejecta decline with depth and depend on antenna

  6. A Geospatial Information Grid Framework for Geological Survey

    PubMed Central

    Wu, Liang; Xue, Lei; Li, Chaoling; Lv, Xia; Chen, Zhanlong; Guo, Mingqiang; Xie, Zhong

    2015-01-01

    The use of digital information in geological fields is becoming very important. Thus, informatization in geological surveys should not stagnate as a result of the level of data accumulation. The integration and sharing of distributed, multi-source, heterogeneous geological information is an open problem in geological domains. Applications and services use geological spatial data with many features, including being cross-region and cross-domain and requiring real-time updating. As a result of these features, desktop and web-based geographic information systems (GISs) experience difficulties in meeting the demand for geological spatial information. To facilitate the real-time sharing of data and services in distributed environments, a GIS platform that is open, integrative, reconfigurable, reusable and elastic would represent an indispensable tool. The purpose of this paper is to develop a geological cloud-computing platform for integrating and sharing geological information based on a cloud architecture. Thus, the geological cloud-computing platform defines geological ontology semantics; designs a standard geological information framework and a standard resource integration model; builds a peer-to-peer node management mechanism; achieves the description, organization, discovery, computing and integration of the distributed resources; and provides the distributed spatial meta service, the spatial information catalog service, the multi-mode geological data service and the spatial data interoperation service. The geological survey information cloud-computing platform has been implemented, and based on the platform, some geological data services and geological processing services were developed. Furthermore, an iron mine resource forecast and an evaluation service is introduced in this paper. PMID:26710255

  7. A Geospatial Information Grid Framework for Geological Survey.

    PubMed

    Wu, Liang; Xue, Lei; Li, Chaoling; Lv, Xia; Chen, Zhanlong; Guo, Mingqiang; Xie, Zhong

    2015-01-01

    The use of digital information in geological fields is becoming very important. Thus, informatization in geological surveys should not stagnate as a result of the level of data accumulation. The integration and sharing of distributed, multi-source, heterogeneous geological information is an open problem in geological domains. Applications and services use geological spatial data with many features, including being cross-region and cross-domain and requiring real-time updating. As a result of these features, desktop and web-based geographic information systems (GISs) experience difficulties in meeting the demand for geological spatial information. To facilitate the real-time sharing of data and services in distributed environments, a GIS platform that is open, integrative, reconfigurable, reusable and elastic would represent an indispensable tool. The purpose of this paper is to develop a geological cloud-computing platform for integrating and sharing geological information based on a cloud architecture. Thus, the geological cloud-computing platform defines geological ontology semantics; designs a standard geological information framework and a standard resource integration model; builds a peer-to-peer node management mechanism; achieves the description, organization, discovery, computing and integration of the distributed resources; and provides the distributed spatial meta service, the spatial information catalog service, the multi-mode geological data service and the spatial data interoperation service. The geological survey information cloud-computing platform has been implemented, and based on the platform, some geological data services and geological processing services were developed. Furthermore, an iron mine resource forecast and an evaluation service is introduced in this paper.

  8. A Geospatial Information Grid Framework for Geological Survey.

    PubMed

    Wu, Liang; Xue, Lei; Li, Chaoling; Lv, Xia; Chen, Zhanlong; Guo, Mingqiang; Xie, Zhong

    2015-01-01

    The use of digital information in geological fields is becoming very important. Thus, informatization in geological surveys should not stagnate as a result of the level of data accumulation. The integration and sharing of distributed, multi-source, heterogeneous geological information is an open problem in geological domains. Applications and services use geological spatial data with many features, including being cross-region and cross-domain and requiring real-time updating. As a result of these features, desktop and web-based geographic information systems (GISs) experience difficulties in meeting the demand for geological spatial information. To facilitate the real-time sharing of data and services in distributed environments, a GIS platform that is open, integrative, reconfigurable, reusable and elastic would represent an indispensable tool. The purpose of this paper is to develop a geological cloud-computing platform for integrating and sharing geological information based on a cloud architecture. Thus, the geological cloud-computing platform defines geological ontology semantics; designs a standard geological information framework and a standard resource integration model; builds a peer-to-peer node management mechanism; achieves the description, organization, discovery, computing and integration of the distributed resources; and provides the distributed spatial meta service, the spatial information catalog service, the multi-mode geological data service and the spatial data interoperation service. The geological survey information cloud-computing platform has been implemented, and based on the platform, some geological data services and geological processing services were developed. Furthermore, an iron mine resource forecast and an evaluation service is introduced in this paper. PMID:26710255

  9. Geology Before Pluto: Pre-encounter Considerations

    NASA Astrophysics Data System (ADS)

    Moore, J. M.

    2014-12-01

    Pluto, its large satellite Charon, and its four small known satellites represent the first trans-Neptunian Kuiper Belt objects populating the outer-most solar system beyond the gas giant planets to be studied in detail from a spacecraft (New Horizons). A complete picture of the solar nebula and solar system formation cannot be confidently formulated until representatives of this group of bodies at the edge of solar space have been examined. The Pluto system is composed of unique, lunar- and intermediate-sized objects that can tell us much about how objects with volatile icy compositions evolve. Modeling of the interior suggests that geologic activity may have been significant to some degree, and observations of frost on the surface could imply the need for a geologic reservoir for the replenishment of these phases. However, these putative indicators of Pluto's geologic history are inconclusive and unspecific. Detailed examination of Pluto's geologic record is the only plausible means of bridging the gap between theory and observation. In this talk I will examine the potential importance of these tentative indications of geologic activity and how specific spacecraft observations have been designed and used to constrain the Pluto system's geologic history. The cameras of New Horizons will provide robust data sets that should be immanently amenable to geological analysis of the Pluto system's landscapes. In this talk, we begin with a brief discussion of the planned observations by the New Horizons cameras that will bear most directly on geological interpretability. Then I will broadly review major geological processes that could potentially operate on the surfaces of Pluto and its moons. I will first survey exogenic processes (i.e., those for which energy for surface modification is supplied externally to the planetary surface): impact cratering, sedimentary processes (including volatile migration), and the work of wind. I will conclude with an assessment of the

  10. Geology Before Pluto: Pre-Encounter Considerations

    NASA Technical Reports Server (NTRS)

    Moore, Jeffrey M.

    2014-01-01

    Pluto, its large satellite Charon, and its four known satellites represent the first trans-Neptunian Kuiper Belt objects populating the outer-most solar system beyond the gas giant planets to be studied in detail from a spacecraft (New Horizons). A complete picture of the solar nebula, and solar system formation cannot be confidently formulated until representatives of this group of bodies at the edge of solar space have been examined. The Pluto system is composed of unique lunar- and intermediate-sized objects that can tell us much about how objects with volatile icy compositions evolve. Modeling of the interior suggests that geologic activity may have been to some degree, and observations of frost on the surface could imply the need for a geologic reservoir for the replenishment of these phases. However, the putative indicators of Pluto's geologic history are inconclusive and unspecific. Detailed examination of Pluto's geologic record is the only plausible means of bridging the gap between theory and observations. In this talk I will examine the potential importance of these tentative indications of geologic activity and how specific spacecraft observations have been designed and used to constrain the Pluto system's geologic history. The cameras of New Horizons will provide robust data sets that should be immanently amenable to geological analysis of the Pluto System's landscapes. In this talk, we begin with a brief discussion of the planned observations by New Horizons' cameras that will bear most directly on geological interpretability. Then I will broadly review major geological processes that could potentially operate of the surfaces of Pluto and its moons. I will first survey exogenic processes (i.e., those for which energy for surface modification is supplied externally to the planetary surface): impact cratering, sedimentary processes (including volatile migration) and the work of wind. I will conclude with an assessment of prospects for endogenic activity

  11. Importance of good manufacturing practices in microbiological monitoring in processing human tissues for transplant.

    PubMed

    Pianigiani, Elisa; Ierardi, Francesca; Fimiani, Michele

    2013-12-01

    Skin allografts represent an important therapeutic resource in the treatment of severe skin loss. The risk associated with application of processed tissues in humans is very low, however, human material always carries the risk of disease transmission. To minimise the risk of contamination of grafts, processing is carried out in clean rooms where air quality is monitored. Procedures and quality control tests are performed to standardise the production process and to guarantee the final product for human use. Since we only validate and distribute aseptic tissues, we conducted a study to determine what type of quality controls for skin processing are the most suitable for detecting processing errors and intercurrent contamination, and for faithfully mapping the process without unduly increasing production costs. Two different methods for quality control were statistically compared using the Fisher exact test. On the basis of the current study we selected our quality control procedure based on pre- and post-processing tissue controls, operator and environmental controls. Evaluation of the predictability of our control methods showed that tissue control was the most reliable method of revealing microbial contamination of grafts. We obtained 100 % sensitivity by doubling tissue controls, while maintaining high specificity (77 %). PMID:23271587

  12. Testing the Late Noachian Icy Highlands Model: Geological Observations, Processes and Origin of Fluvial and Lacustrine Features.

    NASA Astrophysics Data System (ADS)

    Head, James; Wordsworth, Robin; Forget, Francis; Madeleine, Jean-Baptiste; Halvey, Italy

    2014-05-01

    A new reconstruction of the Late Noachian Mars atmosphere and climate shows atmosphere-surface thermal coupling and an adiabatic cooling effect producing preferential distribution of snow and ice in the highlands. In this Late Noachian Icy Highlands (LNIH) scenario, snow and ice accumulate in the south circumpolar region and in the higher altitudes of the southern uplands, but the mean annual temperature is everywhere below freezing. How can the abundant evidence for water-related fluvial and lacustrine activity (valley networks, VN; open-basin lakes, OBL; closed-basin lakes; CBL) be reconciled with the icy highlands model? We investigate the nature of geologic processes operating in the icy highlands and use the Antarctic McMurdo Dry Valleys (MDV) as guidance in understanding and assessing how melting might be taking place. In the MDV, mean annual temperatures (MAT) are well below freezing. This results in a thick regional permafrost layer, the presence of an ice-table at shallow depths, and an overlying dry active layer. This configuration produces a perched aquifer and a horizontally stratified hydrologic system, where any melting results in local saturation of the dry active layer and channelized flow on top of the ice table. Top-down melting results in the dominance of lateral water transport, in contrast to temperate climates with vertical infiltration and transport to the groundwater table. Despite subzero MAT, MDV peak seasonal and peak daytime temperatures can exceed 273K and have a strong influence on the melting of available water ice. We present maps of the predicted distribution of LNIH snow and ice, compare these to the distribution of VN, OBL and CBL, and assess how top-down and bottom-up melting processes might explain the formation of these features in an otherwise cold and icy LN Mars. We assess the global near-surface water budget, analyze thickness estimates to distinguish areas of cold-based and wet-based glaciation, analyze the state of the

  13. Importance of “Process Evaluation” in Audiological Rehabilitation: Examples from Studies on Hearing Impairment

    PubMed Central

    Manchaiah, Vinaya; Danermark, Berth; Rönnberg, Jerker; Lunner, Thomas

    2014-01-01

    The main focus of this paper is to discuss the importance of “evaluating the process of change” (i.e., process evaluation) in people with disability by studying their lived experiences. Detailed discussion is made about “why and how to investigate the process of change in people with disability?” and some specific examples are provided from studies on patient journey of persons with hearing impairment (PHI) and their communication partners (CPs). In addition, methodological aspects in process evaluation are discussed in relation to various metatheoretical perspectives. The discussion has been supplemented with relevant literature. The healthcare practice and disability research in general are dominated by the use of outcome measures. Even though the values of outcome measures are not questioned, there seems to be a little focus on understanding the process of change over time in relation to health and disability. We suggest that the process evaluation has an additional temporal dimension and has applications in both clinical practice and research in relation to health and disability. PMID:25276135

  14. Importance of joint efforts for balanced process of designing and education

    NASA Astrophysics Data System (ADS)

    Mayorova, V. I.; Bannova, O. K.; Kristiansen, T.-H.; Igritsky, V. A.

    2015-06-01

    This paper discusses importance of a strategic planning and design process when developing long-term space exploration missions both robotic and manned. The discussion begins with reviewing current and/or traditional international perspectives on space development at the American, Russian and European space agencies. Some analogies and comparisons will be drawn upon analysis of several international student collaborative programs: Summer International workshops at the Bauman Moscow State Technical University, International European Summer Space School "Future Space Technologies and Experiments in Space", Summer school at Stuttgart University in Germany. The paper will focus on discussion about optimization of design and planning processes for successful space exploration missions and will highlight importance of the following: understanding connectivity between different levels of human being and machinery; simultaneous mission planning approach; reflections and correlations between disciplines involved in planning and executing space exploration missions; knowledge gained from different disciplines and through cross-applying and re-applying design approaches between variable space related fields of study and research. The conclusions will summarize benefits and complications of applying balanced design approach at all levels of the design process. Analysis of successes and failures of organizational efforts in space endeavors is used as a methodological approach to identify key questions to be researched as they often cause many planning and design processing problems.

  15. How important is vehicle safety in the new vehicle purchase process?

    PubMed

    Koppel, Sjaanie; Charlton, Judith; Fildes, Brian; Fitzharris, Michael

    2008-05-01

    Whilst there has been a significant increase in the amount of consumer interest in the safety performance of privately owned vehicles, the role that it plays in consumers' purchase decisions is poorly understood. The aims of the current study were to determine: how important vehicle safety is in the new vehicle purchase process; what importance consumers place on safety options/features relative to other convenience and comfort features, and how consumers conceptualise vehicle safety. In addition, the study aimed to investigate the key parameters associated with ranking 'vehicle safety' as the most important consideration in the new vehicle purchase. Participants recruited in Sweden and Spain completed a questionnaire about their new vehicle purchase. The findings from the questionnaire indicated that participants ranked safety-related factors (e.g., EuroNCAP (or other) safety ratings) as more important in the new vehicle purchase process than other vehicle factors (e.g., price, reliability etc.). Similarly, participants ranked safety-related features (e.g., advanced braking systems, front passenger airbags etc.) as more important than non-safety-related features (e.g., route navigation systems, air-conditioning etc.). Consistent with previous research, most participants equated vehicle safety with the presence of specific vehicle safety features or technologies rather than vehicle crash safety/test results or crashworthiness. The key parameters associated with ranking 'vehicle safety' as the most important consideration in the new vehicle purchase were: use of EuroNCAP, gender and education level, age, drivers' concern about crash involvement, first vehicle purchase, annual driving distance, person for whom the vehicle was purchased, and traffic infringement history. The findings from this study are important for policy makers, manufacturers and other stakeholders to assist in setting priorities with regard to the promotion and publicity of vehicle safety features

  16. Geologic processes in the RWMC area, Idaho National Engineering Laboratory: Implications for long term stability and soil erosion at the radioactive waste management complex

    SciTech Connect

    Hackett, W.R.; Tullis, J.A.; Smith, R.P.

    1995-09-01

    The Radioactive Waste Management Complex (RWMC) is the disposal and storage facility for low-level radioactive waste at the Idaho National Engineering Laboratory (INEL). Transuranic waste and mixed wastes were also disposed at the RWMC until 1970. It is located in the southwestern part of the INEL about 80 km west of Idaho Falls, Idaho. The INEL occupies a portion of the Eastern Snake River Plain (ESRP), a low-relief, basalt, and sediment-floored basin within the northern Rocky Mountains and northeastern Basin and Range Province. It is a cool and semiarid, sagebrush steppe desert characterized by irregular, rolling terrain. The RWMC began disposal of INEL-generated wastes in 1952, and since 1954, wastes have been accepted from other Federal facilities. Much of the waste is buried in shallow trenches, pits, and soil vaults. Until about 1970, trenches and pits were excavated to the basalt surface, leaving no sediments between the waste and the top of the basalt. Since 1970, a layer of sediment (about 1 m) has been left between the waste and the basalt. The United States Department of Energy (DOE) has developed regulations specific to radioactive-waste disposal, including environmental standards and performance objectives. The regulation applicable to all DOE facilities is DOE Order 5820.2A (Radioactive Waste Management). An important consideration for the performance assessment of the RWMC is the long-term geomorphic stability of the site. Several investigators have identified geologic processes and events that could disrupt a radioactive waste disposal facility. Examples of these {open_quotes}geomorphic hazards{close_quotes} include changes in stream discharge, sediment load, and base level, which may result from climate change, tectonic processes, or magmatic processes. In the performance assessment, these hazards are incorporated into scenarios that may affect the future performance of the RWMC.

  17. The Martian Geomorphology as mapped by the Mars Express High Resolution Stereo Camera (HRSC): Implications for Geological Processes and Climate Conditions.

    NASA Astrophysics Data System (ADS)

    Jaumann, Ralf

    2014-05-01

    One major reason for exploring Mars is the similarity of surface features to those present on Earth. Among the most important are morphological and mineralogical indicators that liquid water has existed on Mars at various locations over the entire history of the planet, albeit in decreasing abundance with time. Due to the strong evidence for aqueous processes at or near the surface, Mars is the most Earth-like body in the Solar System. The HRSC instrument is designed to simultaneously map the morphology, topography, structure and geologic context of the surface as well as atmospheric phenomena [1]. After 10 years of ESA's Mars Express orbiting the planet its High Resolution Stereo Camera (HRSC) has covered about 90 % of the surface in stereo and color with resolutions up to 10 m/pixel. Digital elevation models of up to 30-50 m grid spacing [1], generated from all suitable datasets of the stereo coverage, currently cover about 40% of the surface [1,2]. The geomorphological analyses of surface features, observed by the HRSC indicate major surface modifications by endogenic and exogenic processes at all scales. Endogenic landforms (e.g., tectonic rifts, small basaltic shield volcanoes) were found to be very similar to their equivalents on Earth [1,3,4,5,6,7]. Volcanism may have been active up to the very recent past or even to the present, putting important constraints on thermal evolution models [6,7]. The analysis of diverse landforms produced by aqueous processes revealed that surface water activity was likely episodic, but ranged in age from very ancient to very recent [1,8-16]. Particularly important are prominent glacial and periglacial features at several latitudes, including mountain glaciers and a frozen sea [17-21]. The identification of aqueous alteration minerals and their geological context has enabled a better understanding of paleoenvironmental conditions and pedogenetic processes [23-25]. Dark dunes contain volcanic material and are evidence for the

  18. Geologic Mapping of Vesta

    NASA Technical Reports Server (NTRS)

    Yingst, R. A.; Mest, S. C.; Berman, D. C.; Garry, W. B.; Williams, D. A.; Buczkowski, D.; Jaumann, R.; Pieters, C. M.; De Sanctis, M. C.; Frigeri, A.; Le Corre, L.; Preusker, F.; Raymond, C. A.; Reddy, V.; Russell, C. T.; Roatsch, T.; Schenk, P. M.

    2014-01-01

    emplaced; these lie stratigraphically above the equatorial ridges that likely were formed by Rheasilvia. The last features to be formed were craters with bright rays and other surface mantling deposits. Executed progressively throughout data acquisition, the iterative mapping process provided the team with geologic proto-units in a timely manner. However, interpretation of the resulting map was hampered by the necessity to provide the team with a standard nomenclature and symbology early in the process. With regard to mapping and interpreting units, the mapping process was hindered by the lack of calibrated mineralogic information. Topography and shadow played an important role in discriminating features and terrains, especially in the early stages of data acquisition.

  19. Sketch-based geologic modeling

    NASA Astrophysics Data System (ADS)

    Rood, M. P.; Jackson, M.; Hampson, G.; Brazil, E. V.; de Carvalho, F.; Coda, C.; Sousa, M. C.; Zhang, Z.; Geiger, S.

    2015-12-01

    Two-dimensional (2D) maps and cross-sections, and 3D conceptual models, are fundamental tools for understanding, communicating and modeling geology. Yet geologists lack dedicated and intuitive tools that allow rapid creation of such figures and models. Standard drawing packages produce only 2D figures that are not suitable for quantitative analysis. Geologic modeling packages can produce 3D models and are widely used in the groundwater and petroleum communities, but are often slow and non-intuitive to use, requiring the creation of a grid early in the modeling workflow and the use of geostatistical methods to populate the grid blocks with geologic information. We present an alternative approach to rapidly create figures and models using sketch-based interface and modelling (SBIM). We leverage methods widely adopted in other industries to prototype complex geometries and designs. The SBIM tool contains built-in geologic rules that constrain how sketched lines and surfaces interact. These rules are based on the logic of superposition and cross-cutting relationships that follow from rock-forming processes, including deposition, deformation, intrusion and modification by diagenesis or metamorphism. The approach allows rapid creation of multiple, geologically realistic, figures and models in 2D and 3D using a simple, intuitive interface. The user can sketch in plan- or cross-section view. Geologic rules are used to extrapolate sketched lines in real time to create 3D surfaces. Quantitative analysis can be carried our directly on the models. Alternatively, they can be output as simple figures or imported directly into other modeling tools. The software runs on a tablet PC and can be used in a variety of settings including the office, classroom and field. The speed and ease of use of SBIM enables multiple interpretations to be developed from limited data, uncertainty to be readily appraised, and figures and models to be rapidly updated to incorporate new data or concepts.

  20. Fungal production of citric and oxalic acid: importance in metal speciation, physiology and biogeochemical processes.

    PubMed

    Gadd, G M

    1999-01-01

    The production of organic acids by fungi has profound implications for metal speciation, physiology and biogeochemical cycles. Biosynthesis of oxalic acid from glucose occurs by hydrolysis of oxaloacetate to oxalate and acetate catalysed by cytosolic oxaloacetase, whereas on citric acid, oxalate production occurs by means of glyoxylate oxidation. Citric acid is an intermediate in the tricarboxylic acid cycle, with metals greatly influencing biosynthesis: growth limiting concentrations of Mn, Fe and Zn are important for high yields. The metal-complexing properties of these organic acids assist both essential metal and anionic (e.g. phosphate) nutrition of fungi, other microbes and plants, and determine metal speciation and mobility in the environment, including transfer between terrestrial and aquatic habitats, biocorrosion and weathering. Metal solubilization processes are also of potential for metal recovery and reclamation from contaminated solid wastes, soils and low-grade ores. Such 'heterotrophic leaching' can occur by several mechanisms but organic acids occupy a central position in the overall process, supplying both protons and a metal-complexing organic acid anion. Most simple metal oxalates [except those of alkali metals, Fe(III) and Al] are sparingly soluble and precipitate as crystalline or amorphous solids. Calcium oxalate is the most important manifestation of this in the environment and, in a variety of crystalline structures, is ubiquitously associated with free-living, plant symbiotic and pathogenic fungi. The main forms are the monohydrate (whewellite) and the dihydrate (weddelite) and their formation is of significance in biomineralization, since they affect nutritional heterogeneity in soil, especially Ca, P, K and Al cycling. The formation of insoluble toxic metal oxalates, e.g. of Cu, may confer tolerance and ensure survival in contaminated environments. In semi-arid environments, calcium oxalate formation is important in the formation and

  1. Mapping urban geology of the city of Girona, Catalonia

    NASA Astrophysics Data System (ADS)

    Vilà, Miquel; Torrades, Pau; Pi, Roser; Monleon, Ona

    2016-04-01

    A detailed and systematic geological characterization of the urban area of Girona has been conducted under the project '1:5000 scale Urban geological map of Catalonia' of the Catalan Geological Survey (Institut Cartogràfic i Geològic de Catalunya). The results of this characterization are organized into: i) a geological information system that includes all the information acquired; ii) a stratigraphic model focused on identification, characterization and correlation of the geological materials and structures present in the area and; iii) a detailed geological map that represents a synthesis of all the collected information. The mapping project integrates in a GIS environment pre-existing cartographic documentation (geological and topographical), core data from compiled boreholes, descriptions of geological outcrops within the urban network and neighbouring areas, physico-chemical characterisation of representative samples of geological materials, detailed geological mapping of Quaternary sediments, subsurface bedrock and artificial deposits and, 3D modelling of the main geological surfaces. The stratigraphic model is structured in a system of geological units that from a chronostratigrafic point of view are structured in Palaeozoic, Paleogene, Neogene, Quaternary and Anthropocene. The description of the geological units is guided by a systematic procedure. It includes the main lithological and structural features of the units that constitute the geological substratum and represents the conceptual base of the 1:5000 urban geological map of the Girona metropolitan area, which is organized into 6 map sheets. These map sheets are composed by a principal map, geological cross sections and, several complementary maps, charts and tables. Regardless of the geological map units, the principal map also represents the main artificial deposits, features related to geohistorical processes, contours of outcrop areas, information obtained in stations, borehole data, and contour

  2. Geologic Time.

    ERIC Educational Resources Information Center

    Newman, William L.

    One of a series of general interest publications on science topics, the booklet provides those interested in geologic time with an introduction to the subject. Separate sections discuss the relative time scale, major divisions in geologic time, index fossils used as guides for telling the age of rocks, the atomic scale, and the age of the earth.…

  3. Engineering Geology

    ERIC Educational Resources Information Center

    Hatheway, Allen W.

    1978-01-01

    Engineering geology remains a potpourri of applied classical geology, and 1977 witnessed an upswing in demand for these services. Traditional foundation-related work was slight, but construction related to national needs increased briskly. Major cities turned to concerns of transit waste-water treatment and solid-waste disposal. (Author/MA)

  4. Species sorting and neutral processes are both important during the initial assembly of bacterial communities

    PubMed Central

    Langenheder, Silke; Székely, Anna J

    2011-01-01

    Many studies have shown that species sorting, that is, the selection by local environmental conditions is important for the composition and assembly of bacterial communities. On the other hand, there are other studies that could show that bacterial communities are neutrally assembled. In this study, we implemented a microcosm experiment with the aim to determine, at the same time, the importance of species sorting and neutral processes for bacterial community assembly during the colonisation of new, that is, sterile, habitats, by atmospheric bacteria. For this we used outdoor microcosms, which contained sterile medium from three different rock pools representing different environmental conditions, which were seeded by rainwater bacteria. We found some evidence for neutral assembly processes, as almost every 4th taxon growing in the microcosms was also detectable in the rainwater sample irrespective of the medium. Most of these taxa belonged to widespread families with opportunistic growth strategies, such as the Pseudomonadaceae and Comamonadaceae, indicating that neutrally assembled taxa may primarily be generalists. On the other hand, we also found evidence for species sorting, as one out of three media selected a differently composed bacterial community. Species sorting effects were relatively weak and established themselves via differences in relative abundance of generalists among the different media, as well as media-specific occurrences of a few specific taxa. In summary, our results suggest that neutral and species sorting processes interact during the assembly of bacterial communities and that their importance may differ depending on how many generalists and specialists are present in a community. PMID:21270841

  5. Is photon angular momentum important in molecular collision processes occurring in a laser field

    NASA Technical Reports Server (NTRS)

    Devries, P. L.; George, T. F.

    1978-01-01

    The importance of the rigorous treatment of photon angular momentum in molecular-collision processes occurring in the presence of intense radiation is investigated. An alternate approximate treatment, which essentially neglects the angular momentum coupling between the photon and the molecular degrees of freedom by averaging over the angular dependence of the interaction matrix elements, is presented and applied to a model calculation. The degeneracy-averaged results of this calculation compare remarkably well with the results of a rigorous calculation, from which we conclude (with reservation) that the explicit consideration of photoangular momentum coupling in molecular-collision problems is unnecessary.

  6. Laboratory Studies of Homogeneous and Heterogeneous Chemical Processes of Importance in the Upper Atmosphere

    NASA Technical Reports Server (NTRS)

    Molina, Mario J.

    2003-01-01

    The objective of this study was to conduct measurements of chemical kinetics parameters for reactions of importance in the stratosphere and upper troposphere, and to study the interaction of trace gases with ice surfaces in order to elucidate the mechanism of heterogeneous chlorine activation processes, using both a theoretical and an experimental approach. The measurements were carried out under temperature and pressure conditions covering those applicable to the stratosphere and upper troposphere. The main experimental technique employed was turbulent flow-chemical ionization mass spectrometry, which is particularly well suited for investigations of radical-radical reactions.

  7. Flow Tube Studies of Gas Phase Chemical Processes of Atmospheric Importance

    NASA Technical Reports Server (NTRS)

    Molina, Mario J.

    1998-01-01

    The objective of this project is to conduct measurements of elementary reaction rate constants and photochemical parameters for processes of importance in the atmosphere. These measurements are being carried out under temperature and pressure conditions covering those applicable to the stratosphere and upper troposphere, using the chemical ionization mass spectrometry turbulent flow technique developed in our laboratory. The next section summarizes our research activities during the first year of the project, and the section that follows consists of the statement of work for the third year. Additional details concerning the projects listed in the statement of work were described in our original proposal.

  8. The act or process of dying out: the importance of Darwinian extinction in Argentine culture.

    PubMed

    Novoa, Adriana

    2009-06-01

    The spread of Darwinian ideas by the late nineteenth century in Argentina transformed the intellectual elites' notion of progress and civilization. While before Darwin, union, harmony, and assimilation were the ideas most commonly associated with the civilizatory process; variation, struggle, and divergence dominated the post-Darwin discussion. More importantly, unlike in Europe, in Argentina the theory not only triggered interest in the process of speciation, but also its relationship with extinction. Extinction became the benchmark of progress, and the sign of success for the nation. If the country was civilizing itself, the "natural" elimination of inferior individuals, unfit for the struggle for existence, had to be proved and displayed. The origin of modernity was here associated with the existence of evolutionary waste that revealed the work of natural selection on behalf of national improvement.

  9. The importance of process in building an executive leadership team: a case study.

    PubMed

    Zakariasen, Kenneth L

    2006-01-01

    In today's competitive, fast-changing world of healthcare, organizations cannot tolerate ineffective leadership over the long term if they are to remain successful. It is very common for leadership teams to come together and immediately begin to do business...at least to attempt to do what each team member believes the group's business should be. Unfortunately, each person probably has a different idea of what the team's business should be, and how they should go about conducting it. This is a certain recipe for ineffectiveness. The following case study examines how the executive team in a health sciences college approached the development of an effective leadership team, and discusses the importance of process to achieving the desired outcomes. The process so described can be used with any leadership team, but it should always be customized to suit the unique needs and desires of each team.

  10. Is collisional breakup an important process within mixed-phase deep convective clouds?

    NASA Astrophysics Data System (ADS)

    Seifert, A.; Khain, A.; Mayer, F.

    2003-04-01

    The microphysics of deep convective clouds determines their precipitation efficiency as well as the dynamical evolution of cloud systems and is therefore of great importance for numerical weather prediction, flood forecasting and regional climate modeling. Of all cloud systems mixed-phase deep convection is maybe the most complex and least understood. One reason is that the numerous microphysical processes taking place are highly nonlinear and strongly coupled with each other as well as with the hydrodynamics of the cloud. Collisional breakup of raindrops is one of these cloud microphysical processes, but is often neglected or not well represented in state-of-the-art cloud resolving models. The importance of collisional breakup is well known for tropical cloud systems, which are dominated by warm phase processes. In addition various studies using so-called rainshaft models showed that collisional breakup can alter the raindrop size distribution below cloud base. But what happens within the clouds and especially within strong convective updrafts? Can collisional breakup lead to a different cloud evolution by changing the drop size distribution? Using the Hebrew University Cloud Model (HUCM), which includes the most detailed spectral microphysics model available today, we performed a sensitivity study to answer these questions. Collisional breakup was therefore recently included in HUCM using Bleck's numerical method, which is standard for simulation of the breakup process. Our breakup scheme itself is mainly based on the parameterization of Low and List (1982, JAS), but includes also additional data for small raindrops by Beard and Ochs (1995, JAS). As a test case a deep convective mixed-phase cloud is simulated with initial conditions based on a sounding from 13 August 1999, Midland/Texas. We present a detailed analysis of the simulated cloud evolution with and without collisional breakup taken into account. The conclusion from our sensitivity study is that

  11. Process-orientated psychoanalytic work in initial interviews and the importance of the opening scene.

    PubMed

    Wegner, Peter

    2014-06-01

    From the very first moment of the initial interview to the end of a long course of psychoanalysis, the unconscious exchange between analysand and analyst, and the analysis of the relationship between transference and countertransference, are at the heart of psychoanalytic work. Drawing on initial interviews with a psychosomatically and depressively ill student, a psychoanalytic understanding of initial encounters is worked out. The opening scene of the first interview already condenses the central psychopathology - a clinging to the primary object because it was never securely experienced as present by the patient. The author outlines the development of some psychoanalytic theories concerning the initial interview and demonstrates their specific importance as background knowledge for the clinical situation in the following domains: the 'diagnostic position', the 'therapeutic position', the 'opening scene', the 'countertransference' and the 'analyst's free-floating introspectiveness'. More recent investigations refer to 'process qualities' of the analytic relationship, such as 'synchronization' and 'self-efficacy'. The latter seeks to describe after how much time between the interview sessions constructive or destructive inner processes gain ground in the patient and what significance this may have for the decision about the treatment that follows. All these factors combined can lead to establishing a differential process-orientated indication that also takes account of the fact that being confronted with the fear of unconscious processes of exchange is specific to the psychoanalytic profession.

  12. Geology of California. Second Edition

    SciTech Connect

    Norris, R.M.; Webb, R.W.

    1990-01-01

    Two introductory chapters familiarize readers with basic geologic concepts. The following chapters describe the geology of each of California's 11 geomorphic provinces; the San Andreas fault and offshore geology are discussed in two separate chapters. Four appendices acquaint readers with technical words and terms, common minerals and rocks in California, geologic time, and geologic theories that pertain to California. During the 1960s evidence collected from the east Pacific sea floor off the western coast of North America gave scientists supporting data for Alfred Wegener's 1910 theory of continental drift. In addition to the confirmation of continental drift, since the 1960s scientists have discovered paleomagnetism, sea-floor spreading, exotic and suspect terranes, and polar wandering. These important concepts have had far reaching effects about how we understand the geology of California and how this region has evolved through geologic time. Improved investigative procedures enable earth scientists to comprehend previously puzzling aspects of California's geology.

  13. Pilot Study Using the Augmented Reality Sandbox to Teach Topographic Maps and Surficial Processes in Introductory Geology Labs

    ERIC Educational Resources Information Center

    Woods, Terri L.; Reed, Sarah; Hsi, Sherry; Woods, John A.; Woods, Michael R.

    2016-01-01

    Spatial thinking is often challenging for introductory geology students. A pilot study using the Augmented Reality sandbox (AR sandbox) suggests it can be a powerful tool for bridging the gap between two-dimensional (2D) representations and real landscapes, as well as enhancing the spatial thinking and modeling abilities of students. The AR…

  14. Pristine Noachian crust and key geologic transitions in the lower walls of Valles Marineris: Insights into early igneous processes on Mars

    NASA Astrophysics Data System (ADS)

    Flahaut, Jessica; Quantin, Cathy; Clenet, Harold; Allemand, Pascal; Mustard, John F.; Thomas, Pierre

    2012-09-01

    Valles Marineris is a unique vertical section through the uppermost kilometers of the martian crust. Its location, east of the Tharsis bulge, and its water-related history, fuel a great diversity of rock types in this area (Carr, M.H., Head, J.W. [2010]. Earth Planet. Sci. Lett. 294, 185-203). HiRISE and CRISM data available over the walls of the canyon were analyzed to infer the importance of magmatic and sedimentary processes through time. This contribution provides a complete morphologic and mineralogic characterization of the cross-section of rocks exposed in the canyon walls. Low-calcium pyroxene and olivine are detected in the lower portion of the walls, in association with morphologically distinct outcrops, leading to the idea that pristine Noachian crust might be exposed. Phyllosilicates are also present within the walls, but they appear to correspond to an alteration product. No proper sedimentary layers were observed within the walls of Valles Marineris at the resolution available today. All these detections are limited to the eastern portion of Valles Marineris, especially Juventae, Coprates, Capri, and Ganges chasmata. Preserved Noachian crustal material is rare on the martian surface and is rarely exposed in its pristine geologic context. Such detections lend precious information about early igneous processes. This survey also supports observations from the nearby impact crater central peaks (Quantin, C., Flahaut, J., Allemand, P. [2009]. Lunar Planet. Sci. 10; Quantin, C., Flahaut, J., Clenet, H., Allemand, P., Thomas, P. [2011]. Icarus, submitted for publication) and suggests that the western part of Valles Marineris may be cut into another material, consistent with lavas or volcanic sediments.

  15. The oligomeric architecture of the archaeal exosome is important for processive and efficient RNA degradation.

    PubMed

    Audin, Maxime J C; Wurm, Jan Philip; Cvetkovic, Milos A; Sprangers, Remco

    2016-04-01

    The exosome plays an important role in RNA degradation and processing. In archaea, three Rrp41:Rrp42 heterodimers assemble into a barrel like structure that contains a narrow RNA entrance pore and a lumen that contains three active sites. Here, we demonstrate that this quaternary structure of the exosome is important for efficient RNA degradation. We find that the entrance pore of the barrel is required for nM substrate affinity. This strong interaction is crucial for processive substrate degradation and prevents premature release of the RNA from the enzyme. Using methyl TROSY NMR techniques, we establish that the 3' end of the substrate remains highly flexible inside the lumen. As a result, the RNA jumps between the three active sites that all equally participate in substrate degradation. The RNA jumping rate is, however, much faster than the cleavage rate, indicating that not all active site:substrate encounters result in catalysis. Enzymatic turnover therefore benefits from the confinement of the active sites and substrate in the lumen, which ensures that the RNA is at all times bound to one of the active sites. The evolution of the exosome into a hexameric complex and the optimization of its catalytic efficiency were thus likely co-occurring events. PMID:26837575

  16. The oligomeric architecture of the archaeal exosome is important for processive and efficient RNA degradation

    PubMed Central

    Audin, Maxime J. C.; Wurm, Jan Philip; Cvetkovic, Milos A.; Sprangers, Remco

    2016-01-01

    The exosome plays an important role in RNA degradation and processing. In archaea, three Rrp41:Rrp42 heterodimers assemble into a barrel like structure that contains a narrow RNA entrance pore and a lumen that contains three active sites. Here, we demonstrate that this quaternary structure of the exosome is important for efficient RNA degradation. We find that the entrance pore of the barrel is required for nM substrate affinity. This strong interaction is crucial for processive substrate degradation and prevents premature release of the RNA from the enzyme. Using methyl TROSY NMR techniques, we establish that the 3′ end of the substrate remains highly flexible inside the lumen. As a result, the RNA jumps between the three active sites that all equally participate in substrate degradation. The RNA jumping rate is, however, much faster than the cleavage rate, indicating that not all active site:substrate encounters result in catalysis. Enzymatic turnover therefore benefits from the confinement of the active sites and substrate in the lumen, which ensures that the RNA is at all times bound to one of the active sites. The evolution of the exosome into a hexameric complex and the optimization of its catalytic efficiency were thus likely co-occurring events. PMID:26837575

  17. Geology of caves

    USGS Publications Warehouse

    Morgan, I.M.

    1991-01-01

    A cave is a natural opening in the ground extending beyond the zone of light and large enough to permit the entry of man. Occurring in a wide variety of rock types and caused by widely differing geological processes, caves range in size from single small rooms to intercorinecting passages many miles long. The scientific study of caves is called speleology (from the Greek words spelaion for cave and logos for study). It is a composite science based on geology, hydrology, biology, and archaeology, and thus holds special interest for earth scientists of the U.S. Geological Survey.

  18. Earthquake processes and geologic structure of the San Andreas Fault at Parkfield through the SAFOD seismic array

    NASA Astrophysics Data System (ADS)

    Chavarria, Juan Andres

    The San Andreas Fault Observatory at Depth (SAFOD) has the goal of understanding earthquake processes at hypocentral depths. In July 2002 Duke University installed a vertical array of seismometers in the SAFOD Pilot Hole (PH). Seismograms recorded by the array give insights into the structure of the SAFOD site. The ratios of P- and S-wave velocities (Vp/Vs) along the array suggest the presence of two faults intersecting the PH. The Vp/Vs ratios also depend on source location, with high values for sources to the northwest along the San Andreas, and lower ones to the southeast. This distribution correlates with high and low creep rates along the SAF. Since higher Vp/Vs ratios can be produced by increasing fluid saturation, this effect could be the one guiding the frequent seismicity and creep along this segment of the fault. The SAFOD PH Vertical Seismic Profiling-seismograms from nearby microearthquake and explosion sources also contain secondary signals between the P- and S-waves. These signals are shown to be P and S waves scattered by the local structure. Kirchhoff migration was applied to define the origin points of these scattered signals. Both 2D and 3D analysis of microearthquake and explosion seismograms showed that the collected scattering points form planar surfaces, interpreted as a vertical San Andreas Fault and four other secondary faults forming a flower structure. These structures along with seismicity located in secondary fault strands suggest that stresses along the San Andreas at Parkfield could be distributed in more complex ways, modifying the local earthquake cycle. Modeling of scattered phases indicates strong geologic contrasts that have recently been drilled by SAFOD. A granite-sediment interface may constitute the boundary of a hanging block with sedimentary materials with low electrical resistivities. Shallow earthquakes at Parkfield take place at the interface of the northeastern boundary of this block, adjacent to the San Andreas Fault

  19. From seed production to seedling establishment: Important steps in an invasive process

    NASA Astrophysics Data System (ADS)

    Ferreras, Ana Elisa; Galetto, Leonardo

    2010-03-01

    It is widely accepted that exotic invasive species are one of the most important ecological and economic problems. Reproductive and establishment traits are considered key features of a population expansion process, but few works have studied many of these simultaneously. This work examines how large the differences are in reproductive and establishment traits between two Fabaceae, the exotic invasive, Gleditsia triacanthos and the native, Acacia aroma. Gleditsia is a serious leguminous woody invader in various parts of the world and Acacia is a common native tree of Argentina. Both species have similar dispersal mechanisms and their reproductive phenology overlaps. We chose 17 plants of each species in a continuous forest of the Chaco Serrano Forest of Córdoba, Argentina. In each plant we measured fruit production, fruit removal (exclusion experiments), seed predation (pre- and post-dispersal), seed germination, seed bank (on each focal tree, three sampling periods during the year), and density of seedlings (around focal individuals and randomly in the study site). Gleditsia presented some traits that could favour the invasion process, such as a higher number of seeds per plant, percentage of scarified seed germination and density of seedlings around the focal individuals, than Acacia. On the other hand, Gleditsia presented a higher percentage of seed predation. The seed bank was persistent in both species and no differences were observed in fruit removal. This work highlights the importance of simultaneously studying reproductive and establishment variables involved in the spreading of an exotic invasive species. It also gives important insight into the variables to be considered when planning management strategies. The results are discussed from the perspective of some remarkable hypotheses on invasive species and may contribute to rethinking some aspects of the theory on invasive species.

  20. Product or waste? Importation and end-of-life processing of computers in Peru.

    PubMed

    Kahhat, Ramzy; Williams, Eric

    2009-08-01

    This paper considers the importation of used personal computers (PCs) in Peru and domestic practices in their production, reuse, and end-of-life processing. The empirical pillars of this study are analysis of government data describing trade in used and new computers and surveys and interviews of computer sellers, refurbishers, and recyclers. The United States is the primary source of used PCs imported to Peru. Analysis of shipment value (as measured by trade statistics) shows that 87-88% of imported used computers had a price higher than the ideal recycle value of constituent materials. The official trade in end-of-life computers is thus driven by reuse as opposed to recycling. The domestic reverse supply chain of PCs is well developed with extensive collection, reuse, and recycling. Environmental problems identified include open burning of copper-bearing wires to remove insulation and landfilling of CRT glass. Distinct from informal recycling in China and India, printed circuit boards are usually not recycled domestically but exported to Europe for advanced recycling or to China for (presumably) informal recycling. It is notable that purely economic considerations lead to circuit boards being exported to Europe where environmental standards are stringent, presumably due to higher recovery of precious metals.

  1. Some Opinions on Remote Sensing and Geologic Studies

    NASA Technical Reports Server (NTRS)

    Bailey, G. B.

    1985-01-01

    The principal role of remote sensing data in geologic studies is as a source of geologic information from which meaningful geologic interpretations can be made. Remote sensing data are important in sedimentary basin analysis and other geologic studies as independent and sometimes unique sources of important lithologic and structural information; however, their greatest benefit to exploration-oriented investigations may come when these data are used with other relevant data in a digital database approach to exploration. Modern computer technology facilitates the rapid integration and synthesis of satellite, topographic, gravity, aeromagnetic, geochemical, and other data collected from a given region. Once such data are geometrically registered, they can be digitally processed, within the constraints of defined geologic models, to rapidly identify, and focus further exploration efforts on, target areas that have the greatest potential for success.

  2. Music Undergraduates' Usefulness and Importance Expectations: The Bologna Process from an Australian University Perspective.

    PubMed

    Harvey, Dominic G; Davidson, Jane W; Nair, Chenicheri S

    2016-01-01

    The Bologna Process model of higher education has been introduced into some Australian universities since 2008. This model promoted university study through a liberal arts philosophy that advanced a worldview approach at the undergraduate level. The model generalized the student experience and eliminated undergraduate specialization. An interesting situation for music undergraduate study thus arose. Expertise and expert performance research has argued an opposing educational approach, namely: Extensive long-term commitment through focused practical engagement and specialized tuition as prerequisites to achieving musical mastery, especially in performance. Motivation research has shown that the majority of this specialized development in pre-university years would be accessed and reinforced predominantly through private music tuition. Drawing on this contextual literature, commencing university music undergraduates would have expectations of their prospective study founded from two historical influences. The first: How undergraduates had accessed pre-university music tuition. The second: How and in what ways undergraduates' pre-university musical activities were experienced and reinforced. Using usefulness and importance measures, the study observed the expectations of students about to commence music undergraduate studies at three representative Australian university music schools. One of these universities operated the Bologna styled model. No other known Australian study has investigated this implementation for any effects upon music undergraduate expectations. How much commencing music undergraduates would draw on their pre-university music instruction and experiences to predict their usefulness and importance expectations formed the basis for this investigation. Strong relationships between usefulness and importance were found across all units of study. Despite strong correlations across all units of study between usefulness and importance, there was a

  3. Music Undergraduates' Usefulness and Importance Expectations: The Bologna Process from an Australian University Perspective

    PubMed Central

    Harvey, Dominic G.; Davidson, Jane W.; Nair, Chenicheri S.

    2016-01-01

    The Bologna Process model of higher education has been introduced into some Australian universities since 2008. This model promoted university study through a liberal arts philosophy that advanced a worldview approach at the undergraduate level. The model generalized the student experience and eliminated undergraduate specialization. An interesting situation for music undergraduate study thus arose. Expertise and expert performance research has argued an opposing educational approach, namely: Extensive long-term commitment through focused practical engagement and specialized tuition as prerequisites to achieving musical mastery, especially in performance. Motivation research has shown that the majority of this specialized development in pre-university years would be accessed and reinforced predominantly through private music tuition. Drawing on this contextual literature, commencing university music undergraduates would have expectations of their prospective study founded from two historical influences. The first: How undergraduates had accessed pre-university music tuition. The second: How and in what ways undergraduates' pre-university musical activities were experienced and reinforced. Using usefulness and importance measures, the study observed the expectations of students about to commence music undergraduate studies at three representative Australian university music schools. One of these universities operated the Bologna styled model. No other known Australian study has investigated this implementation for any effects upon music undergraduate expectations. How much commencing music undergraduates would draw on their pre-university music instruction and experiences to predict their usefulness and importance expectations formed the basis for this investigation. Strong relationships between usefulness and importance were found across all units of study. Despite strong correlations across all units of study between usefulness and importance, there was a

  4. Music Undergraduates' Usefulness and Importance Expectations: The Bologna Process from an Australian University Perspective.

    PubMed

    Harvey, Dominic G; Davidson, Jane W; Nair, Chenicheri S

    2016-01-01

    The Bologna Process model of higher education has been introduced into some Australian universities since 2008. This model promoted university study through a liberal arts philosophy that advanced a worldview approach at the undergraduate level. The model generalized the student experience and eliminated undergraduate specialization. An interesting situation for music undergraduate study thus arose. Expertise and expert performance research has argued an opposing educational approach, namely: Extensive long-term commitment through focused practical engagement and specialized tuition as prerequisites to achieving musical mastery, especially in performance. Motivation research has shown that the majority of this specialized development in pre-university years would be accessed and reinforced predominantly through private music tuition. Drawing on this contextual literature, commencing university music undergraduates would have expectations of their prospective study founded from two historical influences. The first: How undergraduates had accessed pre-university music tuition. The second: How and in what ways undergraduates' pre-university musical activities were experienced and reinforced. Using usefulness and importance measures, the study observed the expectations of students about to commence music undergraduate studies at three representative Australian university music schools. One of these universities operated the Bologna styled model. No other known Australian study has investigated this implementation for any effects upon music undergraduate expectations. How much commencing music undergraduates would draw on their pre-university music instruction and experiences to predict their usefulness and importance expectations formed the basis for this investigation. Strong relationships between usefulness and importance were found across all units of study. Despite strong correlations across all units of study between usefulness and importance, there was a

  5. Advances in Planetary Geology

    NASA Technical Reports Server (NTRS)

    Grant, John A., III; Nedell, Susan S.

    1987-01-01

    The surface of Mars displays a broad range of channel and valley features. There is as great a range in morphology as in scale. Some of the features of Martian geography are examined. Geomorphic mapping, crater counts on selected surfaces, and a detailed study of drainage basins are used to trace the geologic evolution of the Margaritifer Sinus Quandrangle. The layered deposits in the Valles Marineris are described in detail and the geologic processes that could have led to their formation are analyzed.

  6. 7 CFR 361.8 - Cleaning of imported seed and processing of certain Canadian-origin screenings.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 5 2013-01-01 2013-01-01 false Cleaning of imported seed and processing of certain... (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE IMPORTATION OF SEED AND SCREENINGS UNDER THE FEDERAL SEED ACT § 361.8 Cleaning of imported seed and processing of certain...

  7. The CB1 receptor as an important mediator of hedonic reward processing.

    PubMed

    Friemel, Chris M; Zimmer, Andreas; Schneider, Miriam

    2014-09-01

    The endocannabinoid (ECB) system has emerged recently as a key mediator for reward processing. It is well known that cannabinoids affect appetitive learning processes and can induce reinforcing and rewarding effects. However, the involvement of the ECB system in hedonic aspects of reward-related behavior is not completely understood. With the present study, we investigated the modulatory role of the ECB system on hedonic perception, measured by the pleasure attenuated startle (PAS) paradigm for a palatable food reward. Here, a conditioned odor is thought to induce a pleasant affective state that attenuates an aversive reflex-the acoustic startle response. Modulatory effects of the CB1 receptor antagonist/inverse agonist SR1411716 and the cannabinoid agonist WIN 55 212-2 on PAS were examined in rats. PAS was also measured in CB1 receptor knockout (KO) and wild-type (WT) mice. Pharmacological inhibition as well as the absence of CB1 receptors was found to reduce PAS, whereas WIN 55 212-2 administration increased PAS. Finally, presentation of a conditioned reward cue was found to induce striatal FosB/ΔFosB expression in WT mice, but not in KO mice, indicating a reduced stimulation of reward-related brain regions in conditioned KO mice by odor presentation. We here show that in addition to our previous studies in rats, PAS may also serve as a valuable and suitable measure to assess hedonic processing in mice. Our data further indicate that the ECB system, and in particular CB1 receptor signaling, appears to be highly important for the mediation of hedonic aspects of reward processing.

  8. The CB1 receptor as an important mediator of hedonic reward processing.

    PubMed

    Friemel, Chris M; Zimmer, Andreas; Schneider, Miriam

    2014-09-01

    The endocannabinoid (ECB) system has emerged recently as a key mediator for reward processing. It is well known that cannabinoids affect appetitive learning processes and can induce reinforcing and rewarding effects. However, the involvement of the ECB system in hedonic aspects of reward-related behavior is not completely understood. With the present study, we investigated the modulatory role of the ECB system on hedonic perception, measured by the pleasure attenuated startle (PAS) paradigm for a palatable food reward. Here, a conditioned odor is thought to induce a pleasant affective state that attenuates an aversive reflex-the acoustic startle response. Modulatory effects of the CB1 receptor antagonist/inverse agonist SR1411716 and the cannabinoid agonist WIN 55 212-2 on PAS were examined in rats. PAS was also measured in CB1 receptor knockout (KO) and wild-type (WT) mice. Pharmacological inhibition as well as the absence of CB1 receptors was found to reduce PAS, whereas WIN 55 212-2 administration increased PAS. Finally, presentation of a conditioned reward cue was found to induce striatal FosB/ΔFosB expression in WT mice, but not in KO mice, indicating a reduced stimulation of reward-related brain regions in conditioned KO mice by odor presentation. We here show that in addition to our previous studies in rats, PAS may also serve as a valuable and suitable measure to assess hedonic processing in mice. Our data further indicate that the ECB system, and in particular CB1 receptor signaling, appears to be highly important for the mediation of hedonic aspects of reward processing. PMID:24718372

  9. Mathematical Geology.

    ERIC Educational Resources Information Center

    McCammon, Richard B.

    1979-01-01

    The year 1978 marked a continued trend toward practical applications in mathematical geology. Developments included work in interactive computer graphics, factor analysis, the vanishing tons problem, universal kriging, and resource estimating. (BB)

  10. Practical Geology

    ERIC Educational Resources Information Center

    Sutton, Ian

    1975-01-01

    Geology is an ideal subject in which to introduce the "discovery" method of learning. Available from: National Institute of Adult Education (England and Wales), 35 Queen Anne St., London W1M OBL England. (BP)

  11. Engineering Geology

    ERIC Educational Resources Information Center

    Lee, Fitzhugh T.

    1974-01-01

    Briefly reviews the increasing application of geologic principles, techniques and data to engineering practices in the areas of land use and zoning controls, resource management energy programs and other fields. (BR)

  12. Integrated remote sensing, geological and geophysical data processing and analysis for hydrocarbon prospection in the Parana Basin, Brazil

    SciTech Connect

    Amaral, G.; Filho, A.P.; Crosta, A.P.

    1982-06-01

    The extensive basaltic lava flows of the Serra Geral Formation (Lower Cretaceous), in the upper portions of the Parana sedimentary basin, are a severe obstacle for hydrocarbon prospecting. Its thickness and physical characteristics make difficult the general application of conventional geophysical methods. In order to overcome this problem a research program was developed for PETROBRAS in order to obtain the maximum geological information from remote sensing data and integrate it with field and geophysical data. Automated analysis of LANDSAT data with visual inspection of LANDSAT and SLAR imagery resulted in a large amount of lithological and structural information, which were integrated with geological and geophysical data for the selection of target areas for future investigation.

  13. Laboratory Studies of Homogeneous and Heterogeneous Chemical Processes of Importance in the Upper Atmosphere

    NASA Technical Reports Server (NTRS)

    Molina, Mario J.

    2001-01-01

    The objective of this study is to conduct measurements of chemical kinetics parameters for reactions of importance in the stratosphere and upper troposphere, and to study the interaction of trace gases such as HCl with ice surfaces in order to elucidate the mechanism of heterogeneous chlorine activation processes, using both a theoretical and an experimental approach. The measurements will be carried out under temperature and pressure conditions covering those applicable to the stratosphere and upper troposphere. The techniques to be employed include turbulent flow - chemical ionization mass spectrometry, and optical ellipsometry. The next section summarizes our research activities during the second year of the project, and the section that follows consists of the statement of work for the third year.

  14. Co2 geological sequestration

    SciTech Connect

    Xu, Tianfu

    2004-11-18

    Human activities are increasingly altering the Earth's climate. A particular concern is that atmospheric concentrations of carbon dioxide (CO{sub 2}) may be rising fast because of increased industrialization. CO{sub 2} is a so-called ''greenhouse gas'' that traps infrared radiation and may contribute to global warming. Scientists project that greenhouse gases such as CO{sub 2} will make the arctic warmer, which would melt glaciers and raise sea levels. Evidence suggests that climate change may already have begun to affect ecosystems and wildlife around the world. Some animal species are moving from one habitat to another to adapt to warmer temperatures. Future warming is likely to exceed the ability of many species to migrate or adjust. Human production of CO{sub 2} from fossil fuels (such as at coal-fired power plants) is not likely to slow down soon. It is urgent to find somewhere besides the atmosphere to put these increased levels of CO{sub 2}. Sequestration in the ocean and in soils and forests are possibilities, but another option, sequestration in geological formations, may also be an important solution. Such formations could include depleted oil and gas reservoirs, unmineable coal seams, and deep saline aquifers. In many cases, injection of CO2 into a geological formation can enhance the recovery of hydrocarbons, providing value-added byproducts that can offset the cost of CO{sub 2} capture and sequestration. Before CO{sub 2} gas can be sequestered from power plants and other point sources, it must be captured. CO{sub 2} is also routinely separated and captured as a by-product from industrial processes such as synthetic ammonia production, H{sub 2} production, and limestone calcination. Then CO{sub 2} must be compressed into liquid form and transported to the geological sequestration site. Many power plants and other large emitters of CO{sub 2} are located near geological formations that are amenable to CO{sub 2} sequestration.

  15. Effects of climatic and geological processes during the pleistocene on the evolutionary history of the northern cavefish, Amblyopsis spelaea (teleostei: amblyopsidae).

    PubMed

    Niemiller, Matthew L; McCandless, James R; Reynolds, R Graham; Caddle, James; Near, Thomas J; Tillquist, Christopher R; Pearson, William D; Fitzpatrick, Benjamin M

    2013-04-01

    Climatic and geological processes associated with glaciation cycles during the Pleistocene have been implicated in influencing patterns of genetic variation and promoting speciation of temperate flora and fauna. However, determining the factors promoting divergence and speciation is often difficult in many groups because of our limited understanding of potential vicariant barriers and connectivity between populations. Pleistocene glacial cycles are thought to have significantly influenced the distribution and diversity of subterranean invertebrates; however, impacts on subterranean aquatic vertebrates are less clear. We employed several hypothesis-driven approaches to assess the impacts of Pleistocene climatic and geological changes on the Northern Cavefish, Amblyopsis spelaea, whose current distribution occurs near the southern extent of glacial advances in North America. Our results show that the modern Ohio River has been a significant barrier to dispersal and is correlated with patterns of genetic divergence. We infer that populations were isolated in two refugia located north and south of the Ohio River during the most recent two glacial cycles with evidence of demographic expansion in the northern isolate. Finally, we conclude that climatic and geological processes have resulted in the formation of cryptic forms and advocate recognition of two distinct phylogenetic lineages currently recognized as A. spelaea. PMID:23550752

  16. Plant processes important for the transformation and degradation of explosives contaminants.

    PubMed

    Best, Elly P H; Kvesitadze, G K; Khatisahvili, G; Sadunishvili, T

    2005-01-01

    Environmental contamination by explosives is a worldwide problem. Of the 20 energetic compounds, 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) are the most powerful and commonly used. Nitroamines are toxic and considered as possible carcinogens. The toxicity and persistence of nitroamines requires that their fate in the environment be understood and that contaminated soil and groundwater be remediated. This study, written as a minireview, provides further insights for plant processes important for the transformation and degradation of explosives. Plants metabolize TNT and the distribution of the transformation products, conjugates, and bound residues appears to be consistent with the green liver model concept. Metabolism of TNT in plants occurs by reduction as well as by oxidation. Reduction probably plays an important role in the tolerance of plants towards TNT, and, therefore a high nitroreductase capacity may serve as a biochemical criterion for the selection of plant species to remediate TNT. Because the activities and the inducibilities of the oxidative enzymes are far lower than of nitroreductase, reducing processes may predominate. However, oxidation may initiate the route to conjugation and sequestration leading ultimately to detoxification of TNT, and, therefore, particularly the oxidative pathway deserves more study. It is possible that plants metabolize RDX also according to the green liver concept. In the case of plant metabolism of HMX, a conclusion regarding compliance with the green liver concept was not reached due to the limited number of available data.

  17. Relative importance of breakage and decay as processes depleting large wood from streams

    NASA Astrophysics Data System (ADS)

    Merten, Eric C.; Vaz, Pedro G.; Decker-Fritz, Jo A.; Finlay, Jacques C.; Stefan, Heinz G.

    2013-05-01

    Large wood pieces affect virtually every physical, chemical, and biological process in fluvial systems, including hydraulics, transport of materials, algal biomass accrual, nutrient uptake, and trophic interactions. The processes that deplete wood are thus of broad importance to stream ecosystems. We assessed the relative contributions for breakage-induced mobilization (where pieces are more prone to transport as a result of breakage into shorter parts) and gradual biochemical decay to wood depletion rates in a field study on 12 northern Minnesota, USA, streams. Wood pieces > 0.05 m in diameter for a portion > 1 m in length were individually tagged (n = 651), measured, and remeasured a year later. Pieces showed significant reductions in density and branching complexity (i.e., branches and twigs) and 22% of pieces broke (i.e., lost 10% or more of length). Processes related to breakage and decay were examined using Bayesian structural equation modeling and multiple regression. Breakage was more likely for pieces that were thin in diameter, long, deeply submerged, braced, buried, and traveled long distances. Pieces lost more density if they were initially dense, traveled a long distance, were not deeply submerged, lacked bark, were thin in diameter, were steeply pitched, were long, and were not buried. Pieces lost more branching complexity if they were complex with little gap between them and the streambed. Actual mass losses related to breakage and decay were 7.3% and 1.9% (respectively), both less than the 36% observed for total fluvial export. In contrast to the associations of breakage and decay with structural properties of the wood pieces and their position, hydraulic and geomorphic variables (stream power, slope, velocity, width) had little effect.

  18. Geologic guide to the island of Hawaii: A field guide for comparative planetary geology

    NASA Technical Reports Server (NTRS)

    Greeley, R. (Editor)

    1974-01-01

    With geological data available for all inner planets except Venus, we are entering an era of true comparative planetary geology, when knowledge of the differences and similarities for classes of structures (e.g., shield volcanoes) will lead to a better understanding of general geological processes, regardless of planet. Thus, it is imperative that planetologists, particularly those involved in geological mapping and surface feature analysis for terrestrial planets, be familiar with volcanic terrain in terms of its origin, structure, and morphology. One means of gaining this experience is through field trips in volcanic terrains - hence, the Planetology Conference in Hawaii. In addition, discussions with volcanologists at the conference provide an important basis for establishing communications between the two fields that will facilitate comparative studies as more data become available.

  19. Conduct of Geologic Field Work During Planetary Exploration: Why Geology Matters

    NASA Technical Reports Server (NTRS)

    Eppler, Dean B.

    2010-01-01

    The science of field geology is the investigative process of determining the distribution of rock units and structures on a planet fs surface, and it is the first-order data set that informs all subsequent studies of a planet, such as geochemistry, geochronology, geophysics, or remote sensing. For future missions to the Moon and Mars, the surface systems deployed must support the conduct of field geology if these endeavors are to be scientifically useful. This lecture discussed what field geology is all about.why it is important, how it is done, how conducting field geology informs many other sciences, and how it affects the design of surface systems and the implementation of operations in the future.

  20. State-of-the-Art Article: The Role and Importance of Lower-Level Processes in Second Language Reading

    ERIC Educational Resources Information Center

    Nassaji, Hossein

    2014-01-01

    This article examines current research on the role and importance of lower-level processes in second language (L2) reading. The focus is on word recognition and its subcomponent processes, including various phonological and orthographic processes. Issues related to syntactic and semantic processes and their relationship with word recognition are…

  1. Geologic Resource Evaluation of Kaloko-Honokohau National Historical Park, Hawai'i: Geology and Coastal Landforms

    USGS Publications Warehouse

    Richmond, Bruce M.; Gibbs, Ann E.; Cochran, Susan A.

    2008-01-01

    Geologic resource inventories of lands managed by the National Park Service (NPS) are important products for the parks and are designed to provide scientific information to better manage park resources. Park-specific geologic reports are used to identify geologic features and processes that are relevant to park ecosystems, evaluate the impact of human activities on geologic features and processes, identify geologic research and monitoring needs, and enhance opportunities for education and interpretation. These geologic reports are planned to provide a brief geologic history of the park and address specific geologic issues that link the park geology and the resource manager. The Kona coast National Parks of the Island of Hawai'i are intended to preserve the natural beauty of the Kona coast and protect significant ancient structures and artifacts of the native Hawaiians. Pu'ukohola Heiau National Historic Site (PUHE), Kaloko-Honokohau National Historical Park (KAHO), and Pu'uhonua O Honaunau National Historical Park (PUHO) are three Kona parks studied by the U.S. Geological Survey (USGS) Coastal and Marine Geology Team in cooperation with the National Park Service. This report is one of six related reports designed to provide geologic and benthic-habitat information for the three Kona parks. Each geology and coastal-landform report describes the regional geologic setting of the Hawaiian Islands, gives a general description of the geology of the Kona coast, and presents the geologic setting and issues for one of the parks. The related benthic-habitat mapping reports discuss the marine data and habitat classification scheme, and present results of the mapping program. Kaloko-Honokohau National Historical Park (KAHO) was established in 1978 in order to preserve and protect traditional native Hawaiian culture and cultural sites. The park is the site of an ancient Hawaiian settlement, occupies 469 ha and is considered a locale of considerable cultural and historical

  2. Tectonomagmatic evolution of the terrestrial planets: importance for understanding of processes of their formation and subsequent development

    NASA Astrophysics Data System (ADS)

    Sharkov, E.; Bogatikov, O.

    2009-04-01

    Our knowledge about formation and evolution of the terrestrial planets (the Earth, Venus, Mars, Mercury and, possibly, the Moon) based on different physical and geochemical speculations and models. The main disadvantage of such hypotheses is their abstract character and ignoring any data on tectonomagmatic evolution of those planets. At the same time, just this type of data provide an important information, which is necessary for elaborating of a present-day theory of their formation and evolution. The Earth has been much better studied compared to the other planets, therefore we will discuss the main questions of planetary tectonomagmatic evolution using the Earth as example plus involve other data on the Moon and the terrestrial planets. Two dominating hypotheses about composition of the primordial Earth's crust exist now: (1) traditional implies that the primordial crust had basic composition, whereas the sialic crust resulted from a geosyncline process or, in modern terms, from processes at convergent plate margins, and (2) primordial crust was sialic; the plate tectonic mechanisms started in the Middle Paleoproterozoic and resulted in oceanic spreading and formation of the secondary oceanic crust. Both models require a global melting of a primary chondritic material to form the primordial crust. The final result depends on the degree of melt differentiation during solidification of a magmatic ocean. Such a solidification, due to differences between adiabatic and melting-points gradients had to proceed in bottom-top direction (Jeffries, 1929) and resulted in accumulation of low-temperature derivates in the primordial crust. Geological data, namely granite-dominated Archean crust, and results of studying of detrital zircon from Australia supports the primordial-sialic crust hypothesis. The Moon which is four times smaller than Earth has a basic primordial crust. Such a difference can be explained by different depths of their magmatic oceans. The Early

  3. Fatigue and fatigue crack growth processes in hard tissues: The importance of age and surface integrity

    NASA Astrophysics Data System (ADS)

    Majd, Hessam

    . Using the experimental findings, a Damage Effect Model (DEM) was also developed to describe the influence of flaws introduced by bur treatment on fatigue of dentin. The DEM showed that the damage caused by bur treatment is uniform and independent of tubule orientation. Using the developed DEM for dentin with 0° tubule orientation, material constants of bur treated dentin with 90° orientation were estimated and used in predicting fatigue for controlled experimental conditions involving a notched fatigue approach. Overall, the results of this study provide fundamental knowledge concerning the influence of aging and cutting processes on the fatigue properties of dentin. These findings are of substantial importance to the field of restorative dentistry, and potentially establish the need for treating senior patients with an approach that is unique from that of younger patients. The damage models developed in this investigation are the first that have been developed for hard tissues, and provide a foundation for future research aimed at modeling fatigue processes in hard tissues including bone and dentin.

  4. Importance of 3D Processes Near the Ocean's Surface for Material Transport

    NASA Astrophysics Data System (ADS)

    Ozgokmen, T. M.

    2014-12-01

    There are a number of practical problems that demand an accurate knowledge of ocean currents near the surface of the ocean. It is known that oceanic coherent features transport heat and carry out vertical exchange of biogeochemical tracers. Ocean currents can affect biological primary production, air-sea gas exchanges and global tracer budgets. Ocean currents are also important for the dispersion of substances that pose a danger to society, economy and human health. Examples of such events include algal blooms, the Fukushima nuclear plant incident in the Pacific Ocean in 2011, and repeated large oil spills in the Gulf of Mexico, namely the IXTOC in 1978 and the Deepwater Horizon event in 2010. Such incidents demand accurate answers to questions such as ``where will the pollutant go?", ``how fast will it get there?" and ``how much pollutant will arrive there?", and in some instances ``where did the pollutant come from?". The answers to these questions are critical to the allocation of limited response resources, and in determining the overall impact of the events. We will summarize the efforts by the Consortium for Advanced Research on Transport of Hydrocarbon in the Environment (CARTHE). One of the primary objectives of CARTHE is to improve predictive modeling capability for flows near the air-sea interface. In particular, two large experiments, Grand Lagrangian Deployment (GLAD) and Surf-zone and Coastal Oil Pathways Experiment (SCOPE), coordinated with real-time modeling were instructive on processes influencing near-surface material transport. Findings on submesoscale flows as well as model deficiencies to capture processes relevant to transport will be discussed. Insight into future modeling and observational plans will be provided.

  5. The encyclopedia of applied geology

    SciTech Connect

    Finkl, C.W.

    1984-01-01

    This compendium of engineering geology data includes contributions by experts from many countries. Topics center around the field of engineering geology, with special focus on landscapes, earth materials, and the ''management'' of geological processes. How to use geology to serve man is given particular attention. More than 80 entries deal with hydrology, rock structure monitoring, soil mechanics, and engineering geology. Facts are provided on earth science information and sources, electrokinetics, forensic geology, geogryology, nuclear plant siting, photogrammetry, tunnels and tunneling, urban geomorphology, and well data systems. This guide explains the geology of alluvial plains, arid lands, beaches and coasts, delataic plains, cold regions, glacial landscapes, and urban environments. Detailed analyses are given of the geotechnical properties of caliche, clay, duricrust, soil, laterite, marine sediments, and rocks.

  6. The preparation of illustrations for reports of the United States Geological survey : with brief descriptions of processes of reproduction

    USGS Publications Warehouse

    Ridgway, John L.

    1920-01-01

    There has been an obvious need in the Geological Survey o£ a paper devoted wholly to illustrations. No complete paper on the character, use, and mode of preparation of illustration has been published by the Survey, though brief suggestions concerning certain features of their use have been printed in connection wit other suggestions pertaining to publications. The present paper includes matter which it is hoped will be of service to authors in their work of making up original drafts of illustrations and to drafsmen who are using these originals in preparing more finished drawing but it is not a technical treatise on drafting.

  7. Atmospheric Chemistry of Polybrominated Diphenyl Ethers: The Importance of Photolysis as a Fate Process

    NASA Astrophysics Data System (ADS)

    Raff, J. D.; Hites, R. A.

    2006-12-01

    Polybrominated diphenyl ethers (PBDEs) are heavily used as flame-retardants in polyurethane foam and synthetic commercial fibers. These semivolatile compounds have between 2 and 10 bromines and have been found to undergo long-range atmospheric transport to remote regions such as the Arctic Circle, where they enter food chains and biomagnify in top predators. Unfortunately, existing environmental fate models are unable to accurately describe the long-range transport potential of these compounds due to a lack of comprehensive data on the physical and chemical properties of PBDEs, especially those that describe photolysis in the vapor and particle phases. We have used a small-volume reaction chamber coupled to a mass spectrometer to measure the gas-phase quantum yields of select PBDEs relative to well-characterized actinometers. Our results are used to derive photolysis lifetimes of PBDEs and enable us, in conjunction with our measured OH rate constants and estimates of deposition velocities, to understand and quantify the most important loss processes for PBDEs in the atmosphere.

  8. Importance of microbial soil organic matter processing in dissolved organic carbon production.

    PubMed

    Malik, Ashish; Gleixner, Gerd

    2013-10-01

    Soil dissolved organic carbon (DOC) sources and its seasonal dynamics are poorly known. We aimed to determine the contribution of plant and soil organic matter (SOM) to size classes of DOC in a field experiment with C3 to C4 vegetation change on two soil types through different seasons. Stable isotope ratios of DOC size classes were measured using size exclusion chromatography (SEC) coupled online to liquid chromatography-isotope ratio mass spectrometry (LC-IRMS). SEC resolved DOC into three size classes: very high molecular weight/vHMW (> 10 kDa), high molecular weight/HMW (0.4-10 kDa), and low molecular weight/LMW (< 0.4 kDa). HMW DOC was most abundant in all seasons, soil types, and depths. In contrast, vHMW DOC was only seen postsnowmelt in upper 20 cm and was mainly (87 ± 9%) plant-derived. Through all seasons, HMW and LMW DOC had less than 30% recent plant contribution. Similar size range and source of DOC size classes and soil chloroform fumigation extracts suggest microbial origin of DOC. Thus, microbial SOM recycling is an important process in DOC production. We suggest that DOC molecules get partitioned manifold between soil solution and the mineral matrix (chromatography), thereby getting constantly decomposed, altered, or produced anew by soil microorganisms (reactive transport).

  9. Processing of the glycosomal matrix-protein import receptor PEX5 of Trypanosoma brucei.

    PubMed

    Gualdrón-López, Melisa; Michels, Paul A M

    2013-02-01

    Glycolysis in kinetoplastid protists such as Trypanosoma brucei is compartmentalized in peroxisome-like organelles called glycosomes. Glycosomal matrix-protein import involves a cytosolic receptor, PEX5, which recognizes the peroxisomal-targeting signal type 1 (PTS1) present at the C-terminus of the majority of matrix proteins. PEX5 appears generally susceptible to in vitro proteolytic processing. On western blots of T. brucei, two PEX5 forms are detected with apparent M(r) of 100kDa and 72kDa. 5'-RACE-PCR showed that TbPEX5 is encoded by a unique transcript that can be translated into a protein of maximally 72kDa. However, recombinant PEX5 migrates aberrantly in SDS-PAGE with an apparent M(r) of 100kDa, similarly as observed for the native peroxin. In vitro protease susceptibility analysis of native and (35)S-labelled PEX5 showed truncation of the 100kDa form at the N-terminal side by unknown parasite proteases, giving rise to the 72kDa form which remains functional for PTS1 binding. The relevance of these observations is discussed.

  10. Importance of chip selection and elaboration process on the aromatic composition of finished wines.

    PubMed

    Rodríguez-Bencomo, Juan J; Ortega-Heras, Miriam; Pérez-Magariño, Silvia; González-Huerta, Carlos; González-San José, M Luisa

    2008-07-01

    The evolution of volatile compounds extracted from wood while being macerated for 1 month with four different commercial chips (different geographical origins and toasting degrees) was studied. Furthermore, the effect of the microoxygenation process between alcoholic and malolactic fermentation also was studied. The wood volatile compounds in wines macerated with the four types of chips evolved in the same way. However, the amounts of compounds extracted depended on the type of chip used. There were differences in the levels of vanillin, cis-whiskey lactone, furfural, trans-isoeugenol, and cis-isoeugenol in wines in accordance with the type of wood chips (French or American), and the last two compounds along with 5-methyl furfural presented differences that were directly related to the toast level. However, no effects of microoxygenation treatment on the extraction of volatile compounds extracted from chips were observed. Therefore, the results obtained in this study highlight the importance of chip selection on the aromatic characteristics of finished wines. PMID:18553914

  11. Application of HydroGeoSphere to model the response to anthropogenic climate change of three-dimensional hydrological processes in the geologically, geothermally, and topographically complex Valles Caldera super volcano, New Mexico: Preliminary results

    NASA Astrophysics Data System (ADS)

    Wine, M.; Cadol, D. D.

    2014-12-01

    Anthropogenic climate change is expected to reduce streamflow in the southwestern USA due to reduction in precipitation and increases in evaporative demand. Understanding the effects of climate change in this region is particularly important for mountainous areas since these are primary sources of recharge in arid and semi-arid environments. Therefore we undertook to model effects of climate change on the hydrological processes in Valles Caldera (448 km2), located in the Jemez Mountains of northern New Mexico. In Valles Caldera modeling the surficial, hydrogeological, and geothermal processes that influence hydrologic fluxes each present challenges. The surficial dynamics of evaporative demand and snowmelt both serve to control recharge dynamics, but are complicated by the complex topography and spatiotemporal vegetation dynamics. Complex factors affecting evaporative demand include leaf area index, temperature, albedo, and radiation affected by topographic shading; all of these factors vary in space and time. Snowmelt processes interact with evaporative demand and geology to serve as an important control on streamflow generation, but modeling the effects of spatiotemporal snow distributions on streamflow generation remains a challenge. The complexity of Valles Caldera's geology—and its associated hydraulic properties—rivals that of its surficial hydrologic forcings. Hydrologically important geologic features that have formed in the Valles Caldera are three-dimensionally intricate and include a dense system of faults, alluvium, landslides, lake deposits, and features associated with the eruption and collapse of this super volcano. Coupling geothermally-driven convection to the hydrologic cycle in this still-active geothermal system presents yet an additional challenge in modeling Valles Caldera. Preliminary results from applying the three-dimensional distributed hydrologic finite element model HydroGeoSphere to a sub-catchment of Valles Caldera will be

  12. Theoretical geology

    NASA Astrophysics Data System (ADS)

    Mikeš, Daniel

    2010-05-01

    Theoretical geology Present day geology is mostly empirical of nature. I claim that geology is by nature complex and that the empirical approach is bound to fail. Let's consider the input to be the set of ambient conditions and the output to be the sedimentary rock record. I claim that the output can only be deduced from the input if the relation from input to output be known. The fundamental question is therefore the following: Can one predict the output from the input or can one predict the behaviour of a sedimentary system? If one can, than the empirical/deductive method has changes, if one can't than that method is bound to fail. The fundamental problem to solve is therefore the following: How to predict the behaviour of a sedimentary system? It is interesting to observe that this question is never asked and many a study is conducted by the empirical/deductive method; it seems that the empirical method has been accepted as being appropriate without question. It is, however, easy to argument that a sedimentary system is by nature complex and that several input parameters vary at the same time and that they can create similar output in the rock record. It follows trivially from these first principles that in such a case the deductive solution cannot be unique. At the same time several geological methods depart precisely from the assumption, that one particular variable is the dictator/driver and that the others are constant, even though the data do not support such an assumption. The method of "sequence stratigraphy" is a typical example of such a dogma. It can be easily argued that all the interpretation resulting from a method that is built on uncertain or wrong assumptions is erroneous. Still, this method has survived for many years, nonwithstanding all the critics it has received. This is just one example of the present day geological world and is not unique. Even the alternative methods criticising sequence stratigraphy actually depart from the same

  13. Experimentation in planetary geology

    NASA Technical Reports Server (NTRS)

    Cintala, Mark J.

    1987-01-01

    Laboratory simulations of geological processes on the terrestrial planets are described, summarizing results published during the period 1983-1986. Included are studies of wind-driven processes on Mars and Venus (using the special wind-tunnel facilities at NASA Ames); simulations of shock-induced loss of volatiles from solids; equation-of-state determinations; impact experiments simulating cratering, spallation, regolith formation, and disruption; fluid-flow simulations of channel formation on Mars; and dust studies. The use of the microgravity environment of the Space Station for planetary-geology experiments is briefly considered.

  14. Co-denitrification an important process in urine amended grassland soil

    NASA Astrophysics Data System (ADS)

    Selbie, Diana R.; Lanigan, Gary J.; Laughlin, Ronald J.; Di, Hong J.; Moir, James L.; Cameron, Keith C.; Clough, Tim J.; Watson, Catherine J.; Grant, James; Somers, Cathal; Richards, Karl G.

    2016-04-01

    Grazed grassland livestock systems are often associated with considerable losses of reactive forms of nitrogen (N) to the environment such as nitrate leaching, ammonia and nitrous oxide (N2O) emissions. Previous research has focused on losses to air and water due to the health, economic and environmental impacts of reactive N. Di-nitrogen (N2) emissions from soils are still poorly characterized, both in terms of the processes involved and their magnitude, due to methodological constraints. There have been relatively few studies on N2 losses in vivo and even fewer have examined the relative contribution of the different N2 emission pathways. Cow urine was amended with 98 atom% 15N-labelled urea resulting in a urine N concentration of 10 g N L-1 and a 15N enrichment of 45 atom% excess. Two litres of urine was applied to replicated monolith lysimeters at a rate of 100 g N m-2 and N2 and N2O emissions were measured over 123 days using the static chamber technique. Headspace N2 and N2O samples were analyzed for 15N by isotope ratio mass spectrometry in the UC Davis Stable Isotope Facility. Contributions of true denitrification and co-denitrification to N2 emissions were calculated using the 15N flux method. The study found that N2 emissions accounted for 95% of gaseous N loss, with 55.8 g N m-2 emitted as N2 by the process of co-denitrification, compared to only 1.1 g N m-2 from conventional denitrification. This study highlights the large N2 fluxes and the importance of co-denitrification in contributing to N dynamics in urine amended grassland soil. Reference Selbie D.R., Lanigan G.J., Laughlin R.J., Di H.J., Moir J.L., Cameron K.C., Clough T.J., Watson C.J., Grant J., Sommers C. & Richards K.G. (2015) Confirmation of co-denitrification in grazed grassland, Scientific Reports 5:17361 1-5

  15. Global geological map of Venus

    NASA Astrophysics Data System (ADS)

    Ivanov, Mikhail A.; Head, James W.

    2011-10-01

    The surface area of Venus (∼460×106 km2) is ∼90% of that of the Earth. Using Magellan radar image and altimetry data, supplemented by Venera-15/16 radar images, we compiled a global geologic map of Venus at a scale of 1:10 M. We outline the history of geological mapping of the Earth and planets to illustrate the importance of utilizing the dual stratigraphic classification approach to geological mapping. Using this established approach, we identify 13 distinctive units on the surface of Venus and a series of structures and related features. We present the history and evolution of the definition and characterization of these units, explore and assess alternate methods and approaches that have been suggested, and trace the sequence of mapping from small areas to regional and global scales. We outline the specific defining nature and characteristics of these units, map their distribution, and assess their stratigraphic relationships. On the basis of these data, we then compare local and regional stratigraphic columns and compile a global stratigraphic column, defining rock-stratigraphic units, time-stratigraphic units, and geological time units. We use superposed craters, stratigraphic relationships and impact crater parabola degradation to assess the geologic time represented by the global stratigraphic column. Using the characteristics of these units, we interpret the geological processes that were responsible for their formation. On the basis of unit superposition and stratigraphic relationships, we interpret the sequence of events and processes recorded in the global stratigraphic column. The earliest part of the history of Venus (Pre-Fortunian) predates the observed surface geological features and units, although remnants may exist in the form of deformed rocks and minerals. We find that the observable geological history of Venus can be subdivided into three distinctive phases. The earlier phase (Fortunian Period, its lower stratigraphic boundary cannot be

  16. Planetary Geologic Mapping Handbook - 2010. Appendix

    NASA Technical Reports Server (NTRS)

    Tanaka, K. L.; Skinner, J. A., Jr.; Hare, T. M.

    2010-01-01

    Geologic maps present, in an historical context, fundamental syntheses of interpretations of the materials, landforms, structures, and processes that characterize planetary surfaces and shallow subsurfaces. Such maps also provide a contextual framework for summarizing and evaluating thematic research for a given region or body. In planetary exploration, for example, geologic maps are used for specialized investigations such as targeting regions of interest for data collection and for characterizing sites for landed missions. Whereas most modern terrestrial geologic maps are constructed from regional views provided by remote sensing data and supplemented in detail by field-based observations and measurements, planetary maps have been largely based on analyses of orbital photography. For planetary bodies in particular, geologic maps commonly represent a snapshot of a surface, because they are based on available information at a time when new data are still being acquired. Thus the field of planetary geologic mapping has been evolving rapidly to embrace the use of new data and modern technology and to accommodate the growing needs of planetary exploration. Planetary geologic maps have been published by the U.S. Geological Survey (USGS) since 1962. Over this time, numerous maps of several planetary bodies have been prepared at a variety of scales and projections using the best available image and topographic bases. Early geologic map bases commonly consisted of hand-mosaicked photographs or airbrushed shaded-relief views and geologic linework was manually drafted using mylar bases and ink drafting pens. Map publishing required a tedious process of scribing, color peel-coat preparation, typesetting, and photo-laboratory work. Beginning in the 1990s, inexpensive computing, display capability and user-friendly illustration software allowed maps to be drawn using digital tools rather than pen and ink, and mylar bases became obsolete. Terrestrial geologic maps published by

  17. Geologic Time.

    ERIC Educational Resources Information Center

    Albritton, Claude C., Jr.

    1984-01-01

    Discusses the historical development of the concept of geologic time. Develops the topic by using the major discoveries of geologists, beginning with Steno and following through to the discovery and use of radiometric dating. An extensive reference list is provided. (JM)

  18. City Geology.

    ERIC Educational Resources Information Center

    Markle, Sandra

    1989-01-01

    This article provides information on the evolution of the building material, concrete, and suggests hands-on activities that allow students to experience concrete's qualities, test the heat absorbency of various ground surface materials, discover how an area's geology changes, and search for city fossils. A reproducible activity sheet is included.…

  19. Venus geology and tectonics - Hotspot and crustal spreading models and questions for the Magellan mission

    NASA Technical Reports Server (NTRS)

    Head, James W.; Crumpler, L. S.

    1990-01-01

    Spacecraft and ground-based observations of Venus have revealed a geologically young and active surface - with volcanoes, rift zones, orogenic belts and evidence for hotspots and crustal spreading - yet the processes responsible for these features cannot be identified from the available data. The Magellan spacecraft will acquire an unprecedented global data set which will provide a comprehensive and well resolved view of the planet. This will permit global geological mapping, an assessment of the style and relative importance of geological processes, and will help in the understanding of links between the surface geology and mantle dynamics of this earth-like planet.

  20. Processing of the glycosomal matrix-protein import receptor PEX5 of Trypanosoma brucei

    SciTech Connect

    Gualdrón-López, Melisa; Michels, Paul A.M.

    2013-02-01

    Highlights: ► Most eukaryotic cells have a single gene for the peroxin PEX5. ► PEX5 is sensitive to in vitro proteolysis in distantly related organisms. ► TbPEX5 undergoes N-terminal truncation in vitro and possibly in vivo. ► Truncated TbPEX5 is still capable of binding PTS1-containing proteins. ► PEX5 truncation is physiologically relevant or an evolutionary conserved artifact. -- Abstract: Glycolysis in kinetoplastid protists such as Trypanosoma brucei is compartmentalized in peroxisome-like organelles called glycosomes. Glycosomal matrix-protein import involves a cytosolic receptor, PEX5, which recognizes the peroxisomal-targeting signal type 1 (PTS1) present at the C-terminus of the majority of matrix proteins. PEX5 appears generally susceptible to in vitro proteolytic processing. On western blots of T. brucei, two PEX5 forms are detected with apparent M{sub r} of 100 kDa and 72 kDa. 5′-RACE-PCR showed that TbPEX5 is encoded by a unique transcript that can be translated into a protein of maximally 72 kDa. However, recombinant PEX5 migrates aberrantly in SDS–PAGE with an apparent M{sub r} of 100 kDa, similarly as observed for the native peroxin. In vitro protease susceptibility analysis of native and {sup 35}S-labelled PEX5 showed truncation of the 100 kDa form at the N-terminal side by unknown parasite proteases, giving rise to the 72 kDa form which remains functional for PTS1 binding. The relevance of these observations is discussed.

  1. Voyager 2 Signatures of Important Processes/Dynamics in the Outer Heliosphere

    NASA Astrophysics Data System (ADS)

    Intriligator, D. S.; Intriligator, J.; Miller, W. D.; Webber, W. R.; Decker, R. B.; Sittler, E. C.

    2011-12-01

    We continue investigating the Voyager 2 (V2) Plasma Subsystem (PLS) elevated readings in L-mode on energy/unit charge (E/Q) step 12 on the B-Cup we first reported (Intriligator et al., JGR, 2010) near the termination shock at 84 AU. These elevated B12 readings, which we previously referred to as "high energy ions (HEIs)", are found in the V2 PLS data on the sunward facing B-Cup at E/Q step 12 corresponding to 1610 volts and a proton speed of ~ 600 km/s. In the present paper we update our findings and present V2 data from three years earlier when V2 was in the solar wind in the outer heliosphere (OH) at 73 AU measuring the interplanetary (IP) effects from the October-November (Halloween) 2003 solar events. We also examine other V2 OH time intervals. We show links between solar activity and the elevated B12 readings in the V2 data. We present evidence that these elevated B12 readings appear to be accompanied by significant simultaneous changes in other V2 measurements, including: low energy ions, low energy cosmic rays, anomalous cosmic rays, cosmic ray electrons, interplanetary magnetic field (IMF), and convective solar wind plasma. Our results suggest that the V2 elevated B12 readings may be signatures, tracers, by-products, or indicators of important IP processes such as those associated with intervals of particle acceleration, changes in IMF turbulence, and perhaps local reconnection. This work was funded by NASA Grant NNX08AE40G and by Carmel Research Center, Inc.

  2. Sea-floor geology and sedimentary processes in the vicinity of Cross Rip Channel, Nantucket Sound, offshore southeastern Massachusetts

    USGS Publications Warehouse

    Poppe, L.J.; McMullen, K.Y.; Ackerman, S.D.; Schaer, J.D.; Wright, D.B.

    2012-01-01

    Gridded multibeam bathymetry covers approximately 10.4 square kilometers of sea floor in the vicinity of Cross Rip Channel in Nantucket Sound, offshore southeastern Massachusetts. Although originally collected for charting purposes during National Oceanic and Atmospheric Administration hydrographic survey H12007, these acoustic data, and the sea-floor sediment sampling and bottom photography stations subsequently occupied to verify them, show the composition and terrain of the seabed and provide information on sediment transport and benthic habitat. This report is part of an expanding series of cooperative studies by the U.S. Geological Survey, National Oceanic and Atmospheric Administration, and Massachusetts Office of Coastal Zone Management that provide a fundamental framework for research and resource-management activities (for example, windfarms, pipelines, and dredging) along the inner continental shelf offshore of Massachusetts.

  3. Equal Learning Does Not Result in Equal Remembering: The Importance of Post-Encoding Processes

    ERIC Educational Resources Information Center

    Bauer, Patricia J.; Guler, O. Evren; Starr, Rebecca M.; Pathman, Thanujeni

    2011-01-01

    Explanations of variability in long-term recall typically appeal to encoding and/or retrieval processes. However, for well over a century, it has been apparent that for memory traces to be stored successfully, they must undergo a post-encoding process of stabilization and integration. Variability in post-encoding processes is thus a potential…

  4. Exploring the Williams Syndrome Face-Processing Debate: The Importance of Building Developmental Trajectories

    ERIC Educational Resources Information Center

    Karmiloff-Smith, Annette; Thomas, Michael; Annaz, Dagmara; Humphreys, Kate; Ewing, Sandra; Brace, Nicola; Van Duuren, Mike; Pike, Graham; Grice, Sarah; Campbell, Ruth

    2004-01-01

    Background: Face processing in Williams syndrome (WS) has been a topic of heated debate over the past decade. Initial claims about a normally developing ("intact") face-processing module were challenged by data suggesting that individuals with WS used a different balance of cognitive processes from controls, even when their behavioural scores fell…

  5. Geologic evolution of the eastern Eridania basin: Implications for aqueous processes in the southern highlands of Mars

    NASA Astrophysics Data System (ADS)

    Adeli, Solmaz; Hauber, Ernst; Le Deit, Laetitia; Jaumann, Ralf

    2015-11-01

    The Terra Sirenum region of Mars is thought to have hosted the Eridania paleolake during the Late Noachian/Early Hesperian, and it offers an insight into the regional aqueous history of Mars. We focus on four basins, including Atlantis, Simois, Caralis, and an unnamed basin. They are hypothesized to have hosted isolated lakes after the drainage of the Eridania Lake. We produced a geologic map and derived model absolute ages of our main mapped units. The map and model ages enable us to interpret the geologic history of the region. The basin floors are covered by light-toned materials containing Fe/Mg-phyllosilicates. Across most of the region, the Electris unit covers the highlands and is eroded into mesas. The deposition of this unit corresponds to air fall and/or fluvial mechanisms that transported the material into the basins and accumulated it on the plateaus and basin floors and rims. The deposits on the basin floors were later degraded into light-toned knobs that are rich in Fe/Mg-phyllosilicates. On the rim of the Simois and the unnamed basins, a sequence of Al-phyllosilicates on top of Fe/Mg-phyllosilicates has been observed. These Al-phyllosilicate-rich materials may have been formed by pedogenic leaching. The presence of chloride in the area suggests that a playa environment prevailed during the last stage of water presence or after desiccation of the lakes. In the Early Amazonian, the last aqueous activity cemented the postlacustrine air fall deposits in the basins and shows that liquid water was present in Terra Sirenum long after the Noachian.

  6. The geologic history of Margaritifer basin, Mars

    USGS Publications Warehouse

    Salvatore, M. R.; Kraft, M. D.; Edwards, Christopher; Christensen, P.R.

    2016-01-01

    In this study, we investigate the fluvial, sedimentary, and volcanic history of Margaritifer basin and the Uzboi-Ladon-Morava (ULM) outflow channel system. This network of valleys and basins spans more than 8000 km in length, linking the fluvially dissected southern highlands and Argyre Basin with the northern lowlands via Ares Vallis. Compositionally, thermophysically, and morphologically distinct geologic units are identified and are used to place critical relative stratigraphic constraints on the timing of geologic processes in Margaritifer basin. Our analyses show that fluvial activity was separated in time by significant episodes of geologic activity, including the widespread volcanic resurfacing of Margaritifer basin and the formation of chaos terrain. The most recent fluvial activity within Margaritifer basin appears to terminate at a region of chaos terrain, suggesting possible communication between surface and subsurface water reservoirs. We conclude with a discussion of the implications of these observations on our current knowledge of Martian hydrologic evolution in this important region.

  7. The geologic history of Margaritifer basin, Mars

    NASA Astrophysics Data System (ADS)

    Salvatore, M. R.; Kraft, M. D.; Edwards, C. S.; Christensen, P. R.

    2016-03-01

    In this study, we investigate the fluvial, sedimentary, and volcanic history of Margaritifer basin and the Uzboi-Ladon-Morava outflow channel system. This network of valleys and basins spans more than 8000 km in length, linking the fluvially dissected southern highlands and Argyre basin with the northern lowlands via Ares Vallis. Compositionally, thermophysically, and morphologically distinct geologic units are identified and are used to place critical relative stratigraphic constraints on the timing of geologic processes in Margaritifer basin. Our analyses show that fluvial activity was separated in time by significant episodes of geologic activity, including the widespread volcanic resurfacing of Margaritifer basin and the formation of chaos terrain. The most recent fluvial activity within Margaritifer basin appears to terminate at a region of chaos terrain, suggesting possible communication between surface and subsurface water reservoirs. We conclude with a discussion of the implications of these observations on our current knowledge of Martian hydrologic evolution in this important region.

  8. Laboratory studies of potentially important atmospheric processes involving oxides of nitrogen

    NASA Astrophysics Data System (ADS)

    Estupinan, Edgar Garcia

    2001-12-01

    The work presented in this dissertation comprises two major objectives. The first objective has been to carry out an investigation of the production of N2O from reactions of electronically and vibrationally excited atmospheric trace species with N2 (using tunable diode laser absorption spectroscopy as the N2O detection method). The second objective of this study has been to accurately investigate the kinetics of the important stratospheric reaction O(3P) + NO2 --> O2 + NO (k1) (using the technique of laser flash photolysis-resonance fluorescence). Investigation of N2O production from the collisional deactivation of electronically excited NO 2 and OH by N2 and from the interaction of nascent O 3 with N2 have resulted in upper limit quantum yields which render all three processes as insignificant sources of atmospheric N 2O. The following expression adequately describes the observed temperature dependence of the rate coefficient for the reaction O(1D) + N2 + M --> N2O + M (k2) in its third order low-pressure limit over the temperature range 220-324 K: k2,0(T) = (2.72 +/- 0.08) × 10-36 (T/300)-(0.92 +/- 0.37) cm6 molecule-2 s-1, where the uncertainties represent precision at the 2σ level. The accuracy of the reported rate coefficients is estimated to range from 30 to 40%. Preliminary calculations indicate that reaction 2 represents a source of about 0.2 Tg N2O per year to the atmosphere (i.e., about 1% of the currently estimated global source budget of N 2O). This is the first suggested mechanism that generates N2O photochemically in the atmosphere that is capable of explaining the altitude dependence of the N2O isotopic signature. The following Arrhenius expression adequately describes the observed temperature dependence of the rate coefficient for reaction 1: k1(T ) = (4.21 +/- 0.25) × 10-12 exp[(273 +/- 18)/T] cm3 molecule-1 s-1, where the uncertainties represent precision at the 2σ level. The accuracy of the reported values for k 1(T) is estimated to be +/-6

  9. The relative importance of hydrophobicity in determining runoff-infiltration processes in burned forest soils

    NASA Astrophysics Data System (ADS)

    Wittenberg, Lea; Malkinson, Dan; Voogt, Annelies; Leska, Danny; Argaman, Eli; Keesstra, Saskia

    2010-05-01

    Wildfires induce fundamental changes to vegetation and soil structure/texture which conseqeuntly have major impacts on infiltration capacity, overland flow generation, runoff and sediment yields. The relative importance, however, of fire-induced soil water repellency (WR) on hydrological and erosional processes is somewhat controversial, partially, as the direct effects of soil WR in-situ field conditions have been difficult to isolate. It is generally accepted that hydrophobicity is caused by the formation of organic substances in forest soils, while burning is considered to enhance this process. Given the complex response of the soil-vegetation system to burning, soil WR is only one of several affecting soil hydrology. Other factors include the physical sealing of soils triggered by rain drops energy, the increase in soil erodibility due to changes in soil aggregates, and the role of the ash in sealing the burned surface. The degree and spatial distribution of WR burned varies considerably with fire severity, soil and vegetation type, soil moisture content and time since burning. Nevertheless, given the inverse relationship between soil moisture and hydrophobicity, the role of the latter in determining overland flow during wet winters when the soil is mostly inundated, is marginal. Following a 60 ha wildfire, which took place at the Pe'eram catchment during July 2009, we assessed the spatio-temporal distribution of WR in a burned Pinus halepensis forest. The site, located in the Upper Galille, Israel, was severely burned; the combustion removed all understory vegetation and burned down some of the trunks, leaving a thick layer of ash. The soils composed of reddish-brown clay loam forest soil and terra rossa on limestone bedrock, greyish light rendzina characterises the marl and chalk exposures. To consider the effect of distance from trees, in-situ hydrophobicity was assessed within a week, month and five months after the fire, using the WDPT test. Measurements

  10. The Importance of Process-Oriented Accessibility Guidelines for Web Developers.

    PubMed

    Steen-Hansen, Linn; Fagernes, Siri

    2016-01-01

    Current accessibility research shows that in the web development, the process itself may lead to inaccessible web sites and applications. Common practices typically do not allow sufficient testing. The focus is mainly on complying with minimum standards, and treating accessibility compliance as a sort of bug-fixing process, missing the user perspective. In addition, there is an alarming lack of knowledge and experience with accessibility issues. It has also been argued that bringing accessibility into the development process at all stages is the only way to achieve the highest possible level of accessibility. The work presented in this paper is based on a previous project focusing on guidelines for developing accessible rich Internet applications. The guidelines were classified as either process-oriented or technology-oriented. In this paper, we examine the process-oriented guidelines and give a practical perspective on how these guidelines will make the development process more accessibility-friendly. PMID:27534339

  11. The U.S. Geological Survey Geo Data Portal: A web service architecture and implementation for geo-climate data access and processing

    NASA Astrophysics Data System (ADS)

    Kunicki, T.; Blodgett, D. L.; Booth, N. L.; Suftin, I.; Walker, J. I.

    2011-12-01

    Environmental modelers from fields of study including climatology, hydrology, geology, and ecology need common, cross-discipline data sources and processing methods to enable working with large remote datasets. Watershed modelers, for example, need downscaled climate model data and land-cover data summaries to predict streamflow for various future climate scenarios. In turn, ecological modelers need the predicted streamflow conditions to understand how habitat of biotic communities might be affected. The U.S. Geological Survey Geo Data Portal project addresses these needs by providing a flexible application built on open-standard Web services that integrates and streamlines data retrieval and analysis. Open Geospatial Consortium Web Processing Services (WPS) were developed to allow interoperable access to data from servers delivering both defacto standard Climate and Forecast (CF) convention datasets and OGC standard Web Coverage Services (WCS). The Geo Data Portal can create commonly needed derivatives of data in numerous formats. As an example use case, a user can upload a shapefile specifying a region of interest (e.g. a watershed), pick a climate simulation, and retrieve a spreadsheet of predicted daily maximum temperature in that region up to 2100. Outcomes of the Geo Data Portal project support the rapid development of user interfaces for accessing and manipulating environmental data. The Geo Data Portal resulting from this project will be demonstrated accessing a range of climate and landscape data.

  12. Structural and stratigraphic evolution of the central Mississippi Canyon area: Interaction of salt tectonics and slope processes in the formation of engineering and geologic hazards

    NASA Astrophysics Data System (ADS)

    Brand, John Richard

    Approximately 720 square miles of digital 3-dimensional seismic data covering the eastern Mississippi Canyon area, Gulf of Mexico, continental shelf was used to examine the structural and stratigraphic evolution of the geology in the study area. The analysis focused on salt tectonics and sequence stratigraphy to develop a geologic model for the study area and its potential impact on engineering and geologic hazards. Salt in the study area was found to be established structural end-members derived from shallow-emplaced salt sheets. The transition from regional to local salt tectonics was identified through structural deformation of the stratigraphic section on the seismic data and occurred no later than ˜450,000 years ago. From ˜450,000 years to present, slope depositional processes have become the dominant geologic process in the study area. Six stratigraphic sequences (I-VI) were identified in the study area and found to correlate with sequences previously defined for the Eastern Mississippi Fan. Condensed sections were the key to the correlation. The sequence stratigraphy for the Eastern Mississippi Fan can be extended ˜28 miles west, adding another ˜720 square miles to the interpreted Fan. A previously defined channel within the Eastern Fan was identified in the study area and extended the channel ˜28 miles west. Previous work on the Eastern Fan identified the source of the Fan to be the Mobile River; however, extending the channel west suggests the sediment source to be from the Mississippi River, not the Mobile River. Further evidence for this was found in ponded turbidites whose source has been previously established as the Mississippi River. Ages of the stratigraphic sequences were compared to changes in eustatic sea level. The formation stratigraphic sequences appear decoupled from sea level change with "pseudo-highstands" forming condensed sections during pronounced Pleistocene sea level lowstands. Miocene and Pleistocene depositional analogues

  13. Many important language universals are not reducible to processing or cognition.

    PubMed

    Medeiros, David P; Piattelli-Palmarini, Massimo; Bever, Thomas G

    2016-01-01

    Christiansen & Chater (C&C) ignore the many linguistic universals that cannot be reduced to processing or cognitive constraints, some of which we present. Their claim that grammar is merely acquired language processing skill cannot account for such universals. Their claim that all other universal properties are historically and culturally based is a nonsequitur about language evolution, lacking data. PMID:27562411

  14. Oxidative folding in the mitochondrial intermembrane space: A regulated process important for cell physiology and disease.

    PubMed

    Chatzi, Afroditi; Manganas, Phanee; Tokatlidis, Kostas

    2016-06-01

    Mitochondria are fundamental organelles with a complex internal architecture that fulfill important diverse functions including iron-sulfur cluster assembly and cell respiration. Intense work for more than 30 years has identified the key protein import components and the pathways involved in protein targeting and assembly. More recently, oxidative folding has been discovered as one important mechanism for mitochondrial proteostasis whilst several human disorders have been linked to this pathway. We describe the molecular components of this pathway in view of their putative redox regulation and we summarize available evidence on the connections of these pathways to human disorders. PMID:27033519

  15. Geology Before Pluto: Pre-encounter Considerations

    NASA Astrophysics Data System (ADS)

    Moore, Jeffrey

    2014-05-01

    Jeffrey M. Moore (NASA Ames) and the New Horizons Science Team Pluto, its large satellite Charon, and its four small known satellites represent the first trans-Neptunian Kuiper Belt objects populating the outer-most solar system beyond the gas giant planets to be studied in detail from a spacecraft (New Horizons). A complete picture of the solar nebula and solar system formation cannot be confidently formulated until representatives of this group of bodies at the edge of solar space have been examined. The Pluto system is composed of unique, lunar- and intermediate-sized objects that can tell us much about how objects with volatile icy compositions evolve. Modeling of the interior suggests that geologic activity may have been significant to some degree, and observations of frost on the surface could imply the need for a geologic reservoir for the replenishment of these phases. However, these putative indicators of Pluto's geologic history are inconclusive and unspecific. Detailed examination of Pluto's geologic record is the only plausible means of bridging the gap between theory and observation. In this talk I will examine the potential importance of these tentative indications of geologic activity and how specific spacecraft observations have been designed and used to constrain the Pluto system's geologic history. The cameras of New Horizons will provide robust data sets that should be immanently amenable to geological analysis of the Pluto System's landscapes. In this talk, we begin with a brief discussion of the planned observations by the New Horizons cameras that will bear most directly on geological interpretability. Then I will broadly review major geological processes that could potentially operate on the surfaces of Pluto and its moons. I will first survey exogenic processes (i.e. those for which energy for surface modification is supplied externally to the planetary surface): impact cratering, sedimentary processes (including volatile migration), and the

  16. Geology 12. Curriculum Guide.

    ERIC Educational Resources Information Center

    British Columbia Dept. of Education, Victoria.

    This publication, developed by the Ministry of Education, Province of British Columbia, Canada, is a teaching guide for the Geology 12 course. The course is intended to provide secondary school students with the background and desire to investigate their earth, its materials and its processes. The guide consists of the following four sections: (1)…

  17. Never underestimate the importance of networking: an imperative process for career success!

    PubMed

    Parsons, Lynn C

    2003-01-01

    The importance of establishing connections to other powerful, intelligent people is extremely important to having a successful nursing career. Nurses can and will continue to learn the important aspects of career networking for themselves, other nurses, and their patients. Sharing information, whether it is clinical, administrative, educational, or research-based, is extremely important to maintain the current knowledge that is necessary to be successful in the profession. According to Christy (1987), sharing information and opportunities with colleagues has a synergistic effect. In short, we can increase our supply of information and be influential and powerful leaders by sharing that information. Nurses need to become better networkers to build successful careers. This will require breaking out of our zones of comfort and becoming players on the health care stage. Nurses, patients, and the public will all be beneficiaries of their greater involvement in all health care networks in our country!

  18. Influence of Introgression and Geological Processes on Phylogenetic Relationships of Western North American Mountain Suckers (Pantosteus, Catostomidae)

    PubMed Central

    Unmack, Peter J.; Dowling, Thomas E.; Laitinen, Nina J.; Secor, Carol L.; Mayden, Richard L.; Shiozawa, Dennis K.; Smith, Gerald R.

    2014-01-01

    Intense geological activity caused major topographic changes in Western North America over the past 15 million years. Major rivers here are composites of different ancient rivers, resulting in isolation and mixing episodes between river basins over time. This history influenced the diversification of most of the aquatic fauna. The genus Pantosteus is one of several clades centered in this tectonically active region. The eight recognized Pantosteus species are widespread and common across southwestern Canada, western USA and into northern Mexico. They are typically found in medium gradient, middle-elevation reaches of rivers over rocky substrates. This study (1) compares molecular data with morphological and paleontological data for proposed species of Pantosteus, (2) tests hypotheses of their monophyly, (3) uses these data for phylogenetic inferences of sister-group relationships, and (4) estimates timing of divergence events of identified lineages. Using 8055 base pairs from mitochondrial DNA protein coding genes, Pantosteus and Catostomus are reciprocally monophyletic, in contrast with morphological data. The only exception to a monophyletic Pantosteus is P. columbianus whose mtDNA is closely aligned with C. tahoensis because of introgression. Within Pantosteus, several species have deep genetic divergences among allopatric sister lineages, several of which are diagnosed and elevated to species, bringing the total diversity in the group to 11 species. Conflicting molecular and morphological data may be resolved when patterns of divergence are shown to be correlated with sympatry and evidence of introgression. PMID:24619087

  19. A Comparison of Multivariate and Pre-Processing Methods for Quantitative Laser-Induced Breakdown Spectroscopy of Geologic Samples

    NASA Technical Reports Server (NTRS)

    Anderson, R. B.; Morris, R. V.; Clegg, S. M.; Bell, J. F., III; Humphries, S. D.; Wiens, R. C.

    2011-01-01

    The ChemCam instrument selected for the Curiosity rover is capable of remote laser-induced breakdown spectroscopy (LIBS).[1] We used a remote LIBS instrument similar to ChemCam to analyze 197 geologic slab samples and 32 pressed-powder geostandards. The slab samples are well-characterized and have been used to validate the calibration of previous instruments on Mars missions, including CRISM [2], OMEGA [3], the MER Pancam [4], Mini-TES [5], and Moessbauer [6] instruments and the Phoenix SSI [7]. The resulting dataset was used to compare multivariate methods for quantitative LIBS and to determine the effect of grain size on calculations. Three multivariate methods - partial least squares (PLS), multilayer perceptron artificial neural networks (MLP ANNs) and cascade correlation (CC) ANNs - were used to generate models and extract the quantitative composition of unknown samples. PLS can be used to predict one element (PLS1) or multiple elements (PLS2) at a time, as can the neural network methods. Although MLP and CC ANNs were successful in some cases, PLS generally produced the most accurate and precise results.

  20. Chip-off-the-old-rock: the study of reservoir-relevant geological processes with real-rock micromodels.

    PubMed

    Song, Wen; de Haas, Thomas W; Fadaei, Hossein; Sinton, David

    2014-11-21

    We present a real-rock micromodel approach whereby microfluidic channels are fabricated in a naturally occurring mineral substrate. The method is applied to quantify calcite dissolution which is relevant to oil/gas recovery, CO2 sequestration, and wastewater disposal in carbonate formations - ubiquitous worldwide. The key advantage of this method is the inclusion of both the relevant substrate chemistry (not possible with conventional microfluidics) and real-time pore-scale resolution (not possible with core samples). Here, microchannels are etched into a natural calcite crystal and sealed with a glass slide. The approach is applied to study acidified brine flow through a single channel and a two-dimensional micromodel. The single-channel case conforms roughly to a 1-D analytical description, with crystal orientation influencing the local dissolution rate an additional 25%. The two-dimensional experiments show highly flow-directed dissolution and associated positive feedback wherein acid preferentially invades high conductivity flow paths, resulting in higher dissolution rates ('wormholing'). These experiments demonstrate and validate the approach of microfabricating fluid structures within natural minerals for transport and geochemical studies. More broadly, real-rock microfluidics open the door to a vast array of lab-on-a-chip opportunities in geology, reservoir engineering, and earth sciences.

  1. Influence of introgression and geological processes on phylogenetic relationships of Western North American mountain suckers (Pantosteus, Catostomidae).

    PubMed

    Unmack, Peter J; Dowling, Thomas E; Laitinen, Nina J; Secor, Carol L; Mayden, Richard L; Shiozawa, Dennis K; Smith, Gerald R

    2014-01-01

    Intense geological activity caused major topographic changes in Western North America over the past 15 million years. Major rivers here are composites of different ancient rivers, resulting in isolation and mixing episodes between river basins over time. This history influenced the diversification of most of the aquatic fauna. The genus Pantosteus is one of several clades centered in this tectonically active region. The eight recognized Pantosteus species are widespread and common across southwestern Canada, western USA and into northern Mexico. They are typically found in medium gradient, middle-elevation reaches of rivers over rocky substrates. This study (1) compares molecular data with morphological and paleontological data for proposed species of Pantosteus, (2) tests hypotheses of their monophyly, (3) uses these data for phylogenetic inferences of sister-group relationships, and (4) estimates timing of divergence events of identified lineages. Using 8055 base pairs from mitochondrial DNA protein coding genes, Pantosteus and Catostomus are reciprocally monophyletic, in contrast with morphological data. The only exception to a monophyletic Pantosteus is P. columbianus whose mtDNA is closely aligned with C. tahoensis because of introgression. Within Pantosteus, several species have deep genetic divergences among allopatric sister lineages, several of which are diagnosed and elevated to species, bringing the total diversity in the group to 11 species. Conflicting molecular and morphological data may be resolved when patterns of divergence are shown to be correlated with sympatry and evidence of introgression.

  2. Relating Major Surface Processes to the Deep Earth — The Importance of the Miocene

    NASA Astrophysics Data System (ADS)

    Potter, P. E.; Szatmari, P.

    2012-12-01

    Many global scale tectonic, oceanic and climate changes began in the Tertiary with global tectonics as the underlying driving force and changed the world. In full flower by the beginning of the Middle Miocene around 16 Ma, these changes continued through the Late Miocene into the present so we can firmly say that most of our modern world, continental glaciations excepted, began in the Middle and Late Miocene. We summarize in a flow diagram how the major earth surface processes active in the Miocene are related to the Deep Earth as understood by recent advances in seismic tomography. This 11 Ma interval had two global orogenic zones, the Alpine-Tethyan orogen from Gibraltar across southern Asia into Vietnam and around the Pacific Rim, both crustal expressions of downwellings taking place, especially in the upper mantle. These downwellings are balanced by upwellings in the lower mantle in and on the rim of the African and Pacific superplumes, which are large, low-shear velocity provinces; part of the rising plumes originated from the most extensively melted regions of the core-mantle boundary layer, D", where heat flow from the outer core is highest. Together these up-and downwellings indicate that mantle convection extended, at least periodically, through the whole mantle and reflected lateral variations in convection and heat flow in the cooling and slowly crystallizing outer core. Correlation of mantle convection with surface features is most evident in the uppermost mantle whose dynamic topography is readily reflected by the subsidence and tilting of continents moving toward the downwelling zones. Because they are closely synchronous, these two orogenic belts had enormous consequences for the earth's surface, and because they are close to us in time, they are easy to study and sample. Thus the Miocene is ideal to study for both its many global intra connections and for their link to the Deep Earth. As these two orogenies developed, they changed a global warm

  3. Flash photoelectrochemical studies of transient electrode processes important in solar-energy conversion

    NASA Astrophysics Data System (ADS)

    Perone, S. P.

    1982-10-01

    Electroanalytical and spectroscopic measurement techniques were applied to the study of transient photolytic, photoemissive, and photoelectrolytic processes associated with UV-visible irradiation of an electrode/solution interface. Both semiconductor and metallic electrodes were employed. For the characterization of transient phenomena, the general methodology of flash photolysis was employed (including both xenon flash lamp and tunable pulsed dye laser sources). The perspective afforded by transient electroanalytical/spectroscopic measurements of photoinitiated electrode processes provided more definitive mechanistic insight to solar conversion phenomena in photogalvanic or photoelectrolysis processes.

  4. The Challenges of Standardized Planetary Geologic Mapping

    NASA Astrophysics Data System (ADS)

    Skinner, J. A.

    2015-06-01

    The process and product of creating standardized geologic maps of planetary bodies has been met with particular challenges. Addressing these challenges helps ensure that benchmark contextual geologic map products remain a reliable community resource.

  5. Use of Library Readings to Augment Conventional Geology Instruction.

    ERIC Educational Resources Information Center

    Nold, John Lloyd

    1989-01-01

    Examples of sets of questions on library readings designed to lead students into articles and emphasize important information and associated literature are presented for introductory geology courses, historical geology, structural geology, mineralogy, and petrology. (Author/CW)

  6. The Importance of Research and Practice of Historical Photographic Processes in Photograph Conservation

    NASA Astrophysics Data System (ADS)

    Osterman, Mark

    It is essential in photograph conservation to have an understanding of the processes used to make photographic materials for the proper identification, treatment, preservation and display of photographic images.

  7. [Coping with crisis as an important factor in the rehabilitation process].

    PubMed

    Clemens, K; Hack, E; Sülzer, A; Schottmann, J

    2008-03-01

    Accidents and serious illnesses are inevitably associated with an emotional crisis, based on the fact that they are followed by significant consequences. Coping with this crisis requires enormous mental adaptation. This active coping process is typically characterised by three phases: the shock phase, the coping phase in the narrow sense and the phase of successful coping versus chronification. In order to ensure a positive rehabilitation process, successful coping with the illness is necessary. It is therefore absolutely crucial to analyse individual coping styles and possible obstacles thoroughly from a psychological point of view. In order to prevent a process of chronification, relevant psychosocial factors should be considered along with the medical and occupational aspects early in the rehabilitation process. Ultimately, psychological stability is the prerequisite for successful rehabilitation.

  8. Terrestrial analogs, planetary geology, and the nature of geological reasoning

    NASA Astrophysics Data System (ADS)

    Baker, Victor R.

    2014-05-01

    Analogical reasoning is critical to planetary geology, but its role can be misconstrued by those unfamiliar with the practice of that science. The methodological importance of analogy to geology lies in the formulation of genetic hypotheses, an absolutely essential component of geological reasoning that was either ignored or denigrated by most 20th century philosophers of science, who took the theoretical/ experimental methodology of physics to be the sole model for all of scientific inquiry. Following the seminal 19th century work of Grove Karl Gilbert, an early pioneer of planetary geology, it has long been recognized that broad experience with and understanding of terrestrial geological phenomena provide geologists with their most effective resource for the invention of potentially fruitful, working hypotheses. The actions of (1) forming such hypotheses, (2) following their consequences, and (3) testing those consequences comprise integral parts of effective geological practice in regard to the understanding of planetary surfaces. Nevertheless, the logical terminology and philosophical bases for such practice will be unfamiliar to most planetary scientists, both geologists and nongeologists. The invention of geological hypotheses involves both inductive inferences of the type Gilbert termed “empiric classification” and abductive inferences of a logical form made famous by the 19th century American logician Charles Sanders Peirce. The testing and corroboration of geological hypotheses relies less on the correspondence logic of theoretical/ experimental sciences, like physics, and more on the logic of consistency, coherence, and consilience that characterizes the investigative and historical sciences of interpretation exemplified by geology.

  9. Integration of the first and second generation bioethanol processes and the importance of by-products.

    PubMed

    Lennartsson, Patrik R; Erlandsson, Per; Taherzadeh, Mohammad J

    2014-08-01

    Lignocellulosic ethanol has obstacles in the investment costs and uncertainties in the process. One solution is to integrate it with the running dry mills of ethanol from grains. However, the economy of these mills, which dominate the world market, are dependent on their by-products DDGS (Distiller's Dried Grains and Solubles), sold as animal feed. The quality of DDGS therefore must not be negatively influenced by the integration. This puts restraints on the choice of pretreatment of lignocelluloses and utilizing the pentose sugars by food-grade microorganisms. The proposed solution is to use food related filamentous Zygomycetes and Ascomycetes fungi, and to produce fungal biomass as a high-grade animal feed from the residues after the distillation (stillage). This also has the potential to improve the first generation process by increasing the amount of the thin stillage directly sent back into the process, and by decreasing the evaporator based problems.

  10. Chlorination processing of local planetary ores for oxygen and metallurgically important metals

    NASA Technical Reports Server (NTRS)

    Lynch, D. C.

    1989-01-01

    The use of chlorine to extract, reclaim, and purify metals has attractive possibilities for extraterrestrial processing of local planetary resources. While a complete cyclic process has been proposed for the recovery of metallurgically significant metals and oxygen, herein the chlorination step of the cycle is examined. An experimental apparatus for reacting refractory materials, such as ilmenite, in a microwave induced plasma is being built. Complex equilibria calculations reveal that stable refractory materials can, under the influence of a plasma, undergo chlorination and yield oxygen as a by-product. These issues and the potential advantages for plasma processing in space are reviewed. Also presented is a discussion of the complex equilibria program used in the analysis.

  11. Importance of oxide capping on the suppression of dopant outdiffusion for salicide block process

    NASA Astrophysics Data System (ADS)

    Liao, Hong; Siah, Soh Yun; Vigar, David

    2000-10-01

    In this paper, the effect of dopant out diffusion on unsalicided polysilicon resistance has been intensively investigated. It has been found that excessive dopant out diffusion as a result of non-optimized oxide capping could cause a large variation in sheet resistance of the unsalicided polysilicon resistor. For this salicide block process, great attention needs to be paid for the suppression of dopant out diffusion. Based on understanding of the cause of the inconsistent, unsalicided polysilicon resistance, we demonstrate an implementation of salicide blocking for 0.25 micrometers CMOS technology with a well controlled unsalicided polysilicon resistance by exploring the various process trade-offs in the choice of oxide for the salicide blocking and optimizing the subsequent thermal annealing process.

  12. 78 FR 18234 - Service of Process on Manufacturers; Manufacturers Importing Electronic Products Into the United...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-26

    ... Administration (FDA) is amending a final rule that appeared in the Federal Register of April 9, 2007 (72 FR 17397... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND...; Manufacturers Importing Electronic Products Into the United States; Agent Designation; Change of Address...

  13. Five Important Lessons I Learned during the Process of Creating New Child Care Centers

    ERIC Educational Resources Information Center

    Whitehead, R. Ann

    2005-01-01

    In this article, the author describes her experiences of developing new child care sites and offers five important lessons that she learned through her experiences which helped her to create successful child care centers. These lessons include: (1) Finding an appropriate area and location; (2) Creating realistic financial projections based on real…

  14. Status report on the geology of the Oak Ridge Reservation

    SciTech Connect

    Hatcher, R.D. Jr.; Lemiszki, P.J.; Foreman, J.L. . Dept. of Geological Sciences); Dreier, R.B.; Ketelle, R.H.; Lee, R.R.; Lee, Suk Young ); Lietzke, D.A. , Rutledge, TN ); McMaster, W.M. , Heiskell, TN )

    1992-10-01

    This report provides an introduction to the present state of knowledge of the geology of the Oak Ridge Reservation (ORR) and a cursory introduction to the hydrogeology. An important element of this work is the construction of a modern detailed geologic map of the ORR (Plate 1), which remains in progress. An understanding of the geologic framework of the ORR is essential to many current and proposed activities related to land-use planning, waste management, environmental restoration, and waste remediation. Therefore, this report is also intended to convey the present state of knowledge of the geologic and geohydrologic framework of the ORR and vicinity and to present some of the available data that provide the basic framework for additional geologic mapping, subsurface geologic, and geohydrologic studies. In addition, some recently completed, detailed work on soils and other surficial materials is included because of the close relationships to bedrock geology and the need to recognize the weathered products of bedrock units. Weathering processes also have some influence on hydrologic systems and processes at depth.

  15. Equal Learning Does Not Result in Equal Remembering: The Importance of Post-Encoding Processes

    PubMed Central

    Bauer, Patricia J.; Güler, O. Evren; Starr, Rebecca M.; Pathman, Thanujeni

    2015-01-01

    Explanations of variability in long-term recall typically appeal to encoding and/or retrieval processes. However, for well over a century, it has been apparent that for memory traces to be stored successfully, they must undergo a post-encoding process of stabilization and integration. Variability in post-encoding processes is thus a potential source of age-related and individual variance in long-term recall. We examined post-encoding variability in each of two experiments. In each experiment, 20-month-old infants were exposed to novel three-step sequences in each of three encoding conditions: watch only, imitate, and learn to criterion. They were tested for recall after 15 min (as a measure of the success of encoding) and either weeks (1, 2, or 3: Experiment 1) or days (1, 2, or 4: Experiment 2) later. In each experiment, differential relative levels of performance among the conditions were observed at the two tests. The results implicate post-encoding processes are a source of variance in long-term recall. PMID:26207100

  16. Photon Production through Multi-step Processes Important in Nuclear Fluorescence Experiments

    SciTech Connect

    Hagmann, C; Pruet, J

    2006-10-26

    The authors present calculations describing the production of photons through multi-step processes occurring when a beam of gamma rays interacts with a macroscopic material. These processes involve the creation of energetic electrons through Compton scattering, photo-absorption and pair production, the subsequent scattering of these electrons, and the creation of energetic photons occurring as these electrons are slowed through Bremsstrahlung emission. Unlike single Compton collisions, during which an energetic photon that is scattered through a large angle loses most of its energy, these multi-step processes result in a sizable flux of energetic photons traveling at large angles relative to an incident photon beam. These multi-step processes are also a key background in experiments that measure nuclear resonance fluorescence by shining photons on a thin foil and observing the spectrum of back-scattered photons. Effective cross sections describing the production of backscattered photons are presented in a tabular form that allows simple estimates of backgrounds expected in a variety of experiments. Incident photons with energies between 0.5 MeV and 8 MeV are considered. These calculations of effective cross sections may be useful for those designing NRF experiments or systems that detect specific isotopes in well-shielded environments through observation of resonance fluorescence.

  17. The importance of establishing an international network of tissue banks and regional tissue processing centers.

    PubMed

    Morales Pedraza, Jorge

    2014-03-01

    During the past four decades, many tissue banks have been established across the world with the aim of supplying sterilized tissues for clinical use and research purposes. Between 1972 and 2005, the International Atomic Energy Agency supported the establishment of more than sixty of these tissue banks in Latin America and the Caribbean, Asia and the Pacific, Africa and Eastern Europe; promoted the use of the ionizing radiation technique for the sterilization of the processed tissues; and encouraged cooperation between the established tissue banks during the implementation of its program on radiation and tissue banking at national, regional and international levels. Taking into account that several of the established tissue banks have gained a rich experience in the procurement, processing, sterilization, storage, and medical use of sterilized tissues, it is time now to strengthen further international and regional cooperation among interested tissue banks located in different countries. The purpose of this cooperation is to share the experience gained by these banks in the procurement, processing, sterilization, storage, and used of different types of tissues in certain medical treatments and research activities. This could be done through the establishment of a network of tissue banks and a limited number of regional tissue processing centers in different regions of the world. PMID:23765095

  18. Tenure: An Important Due Process Right or a Hindrance to Change in the Schools?

    ERIC Educational Resources Information Center

    Coleman, Julianne; Schroth, Stephen T.; Molinaro, Lisa; Green, Mark

    2005-01-01

    Teacher tenure is a hotly contested concept in today's' school reform battles. Many discussions of tenure, however, use the term in incorrect ways that add little to the concepts that should be debated. Historically, tenure represents due process rights teachers acquire after several years of successful service. Other procedures, such as teacher…

  19. The Importance of Language in Students' Reasoning about Heat in Thermodynamic Processes

    ERIC Educational Resources Information Center

    Brookes, David T.; Etkina, Eugenia

    2015-01-01

    Researchers believe that the way that students talk, specifically the language that they use, can offer a window into their reasoning processes. Yet the connection between what students are saying and what they are actually thinking can be ambiguous. We present the results of an exploratory interview study with 10 participants, designed to…

  20. Leaching the Poison--The Importance of Process and Partnership in Working with Yolngu

    ERIC Educational Resources Information Center

    Marika, Rarriwuy; Yunupingu, Yalmay; Marika-Mununggiritj, Raymattja; Muller, Samantha

    2009-01-01

    The popular construction of rural places as "white" spaces has significant repercussions for ethnic, Indigenous and "other" groups who do not always fit within prescribed dominant processes. This paper provides new insights for rural scholarship through an engagement with Indigenous specific experiences of governance and decision making in rural…

  1. Developing an Assessment of Learning Process: The Importance of Pre-Testing

    ERIC Educational Resources Information Center

    Sheran, Michelle; Sarbaum, Jeffrey

    2012-01-01

    Colleges and universities are increasingly being held accountable for assessing and reporting student learning. Recently there has been increased focus on using assessment to improve learning over time. In this paper we present a simple, step-by-step assessment process that will deliver meaningful results to achieve these ends. We emphasize the…

  2. Importing Education: Europeanisation and the Bologna Process in Europe's Backyard--The Case of Kazakhstan

    ERIC Educational Resources Information Center

    Tampayeva, Gulnara Y.

    2015-01-01

    This article studies the problem of the implementation of European educational standards in Kazakhstan higher education. This is considered in the frame of post-socialist education, when reforms in several post-Soviet states were undertaken under the Bologna Process. Kazakhstan, as this article argues, is justified for consideration in the frame…

  3. A signal sequence domain essential for processing, but not import, of mitochondrial pre-ornithine carbamyl transferase

    PubMed Central

    1987-01-01

    Studies using deletion mutagenesis indicate that a processing recognition site lies proximal to the normal cleavage position between gln32 and ser33 of pre-ornithine carbamyl transferase (pOCT). pOCT cDNA was manipulated to delete codons specifying amino acids 22-30 of the signal sequence. The mutant precursor, designated pOCT delta 22-30, was imported to the matrix compartment by purified mitochondria, but remained largely unprocessed; the low level of processing that was observed did not involve the normal cleavage site. Several manipulations performed downstream of the normal pOCT processing site (deletion, substitution, and hybrid protein constructions) affected neither import nor correct processing. Our data suggest that domains specifying import and processing site recognition may be functionally segregated within the signal peptide; that processing is not requisite for import of pOCT; and that a proximal region, not involving the normal signal peptide cleavage site, is required for processing site recognition. PMID:3571328

  4. Shell biofilm-associated nitrous oxide production in marine molluscs: processes, precursors and relative importance.

    PubMed

    Heisterkamp, Ines M; Schramm, Andreas; Larsen, Lone H; Svenningsen, Nanna B; Lavik, Gaute; de Beer, Dirk; Stief, Peter

    2013-07-01

    Emission of the greenhouse gas nitrous oxide (N2 O) from freshwater and terrestrial invertebrates has exclusively been ascribed to N2 O production by ingested denitrifying bacteria in the anoxic gut of the animals. Our study of marine molluscs now shows that also microbial biofilms on shell surfaces are important sites of N2 O production. The shell biofilms of Mytilus edulis, Littorina littorea and Hinia reticulata contributed 18-94% to the total animal-associated N2 O emission. Nitrification and denitrification were equally important sources of N2 O in shell biofilms as revealed by (15) N-stable isotope experiments with dissected shells. Microsensor measurements confirmed that both nitrification and denitrification can occur in shell biofilms due to a heterogeneous oxygen distribution. Accordingly, ammonium, nitrite and nitrate were important drivers of N2 O production in the shell biofilm of the three mollusc species. Ammonium excretion by the animals was found to be sufficient to sustain N2 O production in the shell biofilm. Apparently, the animals provide a nutrient-enriched microenvironment that stimulates growth and N2 O production of the shell biofilm. This animal-induced stimulation was demonstrated in a long-term microcosm experiment with the snail H. reticulata, where shell biofilms exhibited the highest N2 O emission rates when the animal was still living inside the shell.

  5. Shell biofilm-associated nitrous oxide production in marine molluscs: processes, precursors and relative importance.

    PubMed

    Heisterkamp, Ines M; Schramm, Andreas; Larsen, Lone H; Svenningsen, Nanna B; Lavik, Gaute; de Beer, Dirk; Stief, Peter

    2013-07-01

    Emission of the greenhouse gas nitrous oxide (N2 O) from freshwater and terrestrial invertebrates has exclusively been ascribed to N2 O production by ingested denitrifying bacteria in the anoxic gut of the animals. Our study of marine molluscs now shows that also microbial biofilms on shell surfaces are important sites of N2 O production. The shell biofilms of Mytilus edulis, Littorina littorea and Hinia reticulata contributed 18-94% to the total animal-associated N2 O emission. Nitrification and denitrification were equally important sources of N2 O in shell biofilms as revealed by (15) N-stable isotope experiments with dissected shells. Microsensor measurements confirmed that both nitrification and denitrification can occur in shell biofilms due to a heterogeneous oxygen distribution. Accordingly, ammonium, nitrite and nitrate were important drivers of N2 O production in the shell biofilm of the three mollusc species. Ammonium excretion by the animals was found to be sufficient to sustain N2 O production in the shell biofilm. Apparently, the animals provide a nutrient-enriched microenvironment that stimulates growth and N2 O production of the shell biofilm. This animal-induced stimulation was demonstrated in a long-term microcosm experiment with the snail H. reticulata, where shell biofilms exhibited the highest N2 O emission rates when the animal was still living inside the shell. PMID:22830624

  6. Importance of heterogeneous processes to tropospheric chemistry - Studies with a one-dimensional model

    NASA Technical Reports Server (NTRS)

    Turco, R. P.; Toon, O. B.; Whitten, R. C.; Keesee, R. G.; Hamill, P.

    1982-01-01

    A one-dimensional, time-dependent model of tropospheric air composition is developed which incorporates several heterogeneous physical and chemical processes. The model includes the interaction of gases, aerosols, and hydrometeors through the physical mechanisms of nucleation, condensation, evaporation, coagulation, coalescence, and deliquescence. Precipitation, sedimentation, and dry deposition act to remove material from the atmosphere, while chemical transformations occur both in the vapor and the condensed phases. The model also incorporates the sources and vertical diffusion of gases and particles, as well as changes in the solar intensity caused by light-scattering from aerosols and clouds. Preliminary simulations made using this model indicate that rainout and washout processes strongly influence the distributions of tropospheric gases and aerosols under certain conditions.

  7. The Importance of Sample Processing in Analysis of Asbestos Content in Rocks and Soils

    NASA Astrophysics Data System (ADS)

    Neumann, R. D.; Wright, J.

    2012-12-01

    Analysis of asbestos content in rocks and soils using Air Resources Board (ARB) Test Method 435 (M435) involves the processing of samples for subsequent analysis by polarized light microscopy (PLM). The use of different equipment and procedures by commercial laboratories to pulverize rock and soil samples could result in different particle size distributions. It has long been theorized that asbestos-containing samples can be over-pulverized to the point where the particle dimensions of the asbestos no longer meet the required 3:1 length-to-width aspect ratio or the particles become so small that they no longer can be tested for optical characteristics using PLM where maximum PLM magnification is typically 400X. Recent work has shed some light on this issue. ARB staff conducted an interlaboratory study to investigate variability in preparation and analytical procedures used by laboratories performing M435 analysis. With regard to sample processing, ARB staff found that different pulverization equipment and processing procedures produced powders that have varying particle size distributions. PLM analysis of the finest powders produced by one laboratory showed all but one of the 12 samples were non-detect or below the PLM reporting limit; in contrast to the other 36 coarser samples from the same field sample and processed by three other laboratories where 21 samples were above the reporting limit. The set of 12, exceptionally fine powder samples produced by the same laboratory was re-analyzed by transmission electron microscopy (TEM) and results showed that these samples contained asbestos above the TEM reporting limit. However, the use of TEM as a stand-alone analytical procedure, usually performed at magnifications between 3,000 to 20,000X, also has its drawbacks because of the miniscule mass of sample that this method examines. The small amount of powder analyzed by TEM may not be representative of the field sample. The actual mass of the sample powder analyzed by

  8. Measuring Edge Importance: A Quantitative Analysis of the Stochastic Shielding Approximation for Random Processes on Graphs

    PubMed Central

    2014-01-01

    Mathematical models of cellular physiological mechanisms often involve random walks on graphs representing transitions within networks of functional states. Schmandt and Galán recently introduced a novel stochastic shielding approximation as a fast, accurate method for generating approximate sample paths from a finite state Markov process in which only a subset of states are observable. For example, in ion-channel models, such as the Hodgkin–Huxley or other conductance-based neural models, a nerve cell has a population of ion channels whose states comprise the nodes of a graph, only some of which allow a transmembrane current to pass. The stochastic shielding approximation consists of neglecting fluctuations in the dynamics associated with edges in the graph not directly affecting the observable states. We consider the problem of finding the optimal complexity reducing mapping from a stochastic process on a graph to an approximate process on a smaller sample space, as determined by the choice of a particular linear measurement functional on the graph. The partitioning of ion-channel states into conducting versus nonconducting states provides a case in point. In addition to establishing that Schmandt and Galán’s approximation is in fact optimal in a specific sense, we use recent results from random matrix theory to provide heuristic error estimates for the accuracy of the stochastic shielding approximation for an ensemble of random graphs. Moreover, we provide a novel quantitative measure of the contribution of individual transitions within the reaction graph to the accuracy of the approximate process. PMID:24742077

  9. Jupiter's Zonal Jets and Turbulent Eddies: the Importance of Moist Convective Processes on a Global Scale

    NASA Astrophysics Data System (ADS)

    Young, R. M. B.; Read, P. L.

    2015-12-01

    We present the first results from a general circulation model of Jupiter's weather layer that includes latent heat and moist convective processes on a global scale. This model uses the MITgcm as the dynamical core with additions relevant to Jupiter such as a 2-stream radiation scheme, vertical diffusion, internal heat flux, dry convective adjustment, MHD drag, a simple parametrization of NH3, NH4SH, and H2O cloud formation and subsidence, and, most recently latent heat and moist convective processes. The model has been developed primarily to examine the physical phenomena underlying the formation and maintenance of zonal jets on Jupiter, and the interactions between these and small-scale turbulent eddies, in particular how these depend on moist convective processes. Initial work without moist convection found a strong dependence of the strength and direction of the equatorial jet on the internal heat flux, including a prograde equatorial jet, but not at the speeds observed on the planet. We will also compare our model results against recent analyses of Jupiter's turbulence using kinetic energy spectra and structure functions, which show a clear upscale transfer of energy in the 3rd order structure function on scales larger than a few times the deformation radius.

  10. Neuroimaging of developmental psychopathologies: the importance of self-regulatory and neuroplastic processes in adolescence.

    PubMed

    Spessot, Alexandra L; Plessen, Kerstin J; Peterson, Bradley S

    2004-06-01

    Normal brain maturational and developmental processes, together with plastic reorganization of the brain in response to experiential demands, contribute to the acquisition of improved capacities for self-regulation and impulse control during adolescence. The frontal lobe is a main focus for these developmental and plastic processes during the transition from adolescence into adulthood. Tourette syndrome (TS), defined as the chronic presence of motor and vocal tics, has been increasingly conceptualized as a disorder of impaired self-regulatory control. This disordered control is thought to give rise to semicompulsory urges to perform the movements that constitute simple tics, complex tics, or compulsions. Neuroimaging studies suggest that the expression of the genetic diathesis to TS is influenced by genetic and nongenetic factors affecting activity-dependent reorganization of neuroregulatory systems, thereby influencing the phenotype, illness severity, and adult outcome of tic disorders. Similar developmental processes during adolescence likely determine the phenotype and natural history of a broad range of other complex neuropsychiatric disorders of childhood onset, and they likely contribute to the acquisition of improved self-regulatory capacities that characterize normal adolescent development.

  11. Reports of Planetary Geology Program, 1982

    NASA Technical Reports Server (NTRS)

    Holt, H. E. (Compiler)

    1982-01-01

    Work conducted in the Planetary Geology program is summarized. The following categories are presented: outer solar system satellites; asteroids and comets; Venus; cratering processes and landform development; volcanic processes and landforms; aolian processes and landforms; fluvial processes and landform development; periglacial and permafrost processes; structure, tectonics and stratigraphy; remote sensing and regolith studies; geologic mapping, cartography and geodesy.

  12. Reports of planetary geology program, 1983

    NASA Technical Reports Server (NTRS)

    Holt, H. E. (Compiler)

    1984-01-01

    Several areas of the Planetary Geology Program were addressed including outer solar system satellites, asteroids, comets, Venus, cratering processes and landform development, volcanic processes, aeolian processes, fluvial processes, periglacial and permafrost processes, geomorphology, remote sensing, tectonics and stratigraphy, and mapping.

  13. Laboratory studies of atomic collision processes of importance in planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Stebbings, R. F.; Smith, K.

    1985-01-01

    A series of differential cross sections for angular scattering and charge transfer was measured. These studies employ position-sensitive detectors (PSD's) to collect collision products scattered over a wide range of angles; and the research program includes investigation of differential cross sections for total angular scattering, charge transfer, stripping, and other collisions. All of these processes can be studied with the same basic apparatus, but minor modifications in the equipment details and in the data acquisition programs and techniques are required for each individual experiment.

  14. On the Importance of an Automated and Modular Solar Image Processing Tool

    NASA Astrophysics Data System (ADS)

    Shahamatnia, E.; Dorotovič, I.; Fonseca, J.; Ribeiro, R.

    2014-04-01

    Developing sophisticated software tools is essential to support studies of solar activity evolution, climate change understanding and space weather prediction. With new space missions such as SDO, solar images are being produced in unprecedented volumes. To capitalize on that huge data availability, the scientific community needs a new generation of software tools, which enable automatic and efficient data processing and manipulation. In this work, we argue that a modular system design is required to achieve a stable, extendable and comprehensive solar feature tracking tool.

  15. The Importance of Language in Students' Reasoning About Heat in Thermodynamic Processes

    NASA Astrophysics Data System (ADS)

    Brookes, David T.; Etkina, Eugenia

    2015-04-01

    Researchers believe that the way that students talk, specifically the language that they use, can offer a window into their reasoning processes. Yet the connection between what students are saying and what they are actually thinking can be ambiguous. We present the results of an exploratory interview study with 10 participants, designed to investigate the role of language in university physics students' reasoning about heat in thermodynamic processes. The study revealed two key findings: (1) students' approaches to solving certain heat-related problems are related to the way in which they explicitly define the word 'heat' and (2) students' tendency to reason with heat as a state function in inappropriate contexts appears to be connected to a model of heat implicitly encoded in language. This model represents heat or heat energy/thermal energy as a substance that moves from one location to another. In this model, students talk about thermodynamic systems as 'containers' of heat, and temperature is a measure of the amount of heat 'in' an object.

  16. Measuring Student Understanding of Geological Time

    ERIC Educational Resources Information Center

    Dodick, Jeff; Orion, Nir

    2003-01-01

    There have been few discoveries in geology more important than "deep time"--the understanding that the universe has existed for countless millennia, such that man's existence is confined to the last milliseconds of the metaphorical geological clock. The influence of deep time is felt in a variety of sciences including geology, cosmology, and…

  17. Strategies for coexistence of GM and non-GM soy from import to feed processing.

    PubMed

    Gryson, Nicolas; Eeckhout, Mia; Trouillier, Aurélie; Le Bail, Marianne; Soler, Louis-Georges

    2009-01-01

    Regulations 1829/2003/CE and 1830/2003/CE have allowed the placing on the European market of GM products in food and feed chains, and have defined their rules of traceability and labeling. For some supply chains, like for soy and its derived products that are used in the production of feed, manufacturers have to face both non-GM and GM production, although there are no labeling requirements for animal products derived from animals fed with GMOs. This study presents the strategies of stakeholders involved in the feed production chain to maintain concurrent production of compound feed with GM and non-GM soy products, by dealing with the coexistence between those two crops. The stakeholders include importers, traders, soy processors, feed processors and retailers. The study shows that many tools are in place to ensure and maintain the current coexistence. However, a profound harmonization of procedures and methods at a European level should be encouraged. PMID:20028618

  18. Sea-ice processes in the Laptev Sea and their importance for sediment export

    USGS Publications Warehouse

    Eicken, H.; Reimnitz, E.; Alexandrov, V.; Martin, T.; Kassens, H.; Viehoff, T.

    1997-01-01

    Based on remote-sensing data and an expedition during August-September 1993, the importance of the Laptev Sea as a source area for sediment-laden sea ice was studied. Ice-core analysis demonstrated the importance of dynamic ice-growth mechanisms as compared to the multi-year cover of the Arctic Basin. Ice-rafted sediment (IRS) was mostly associated with congealed frazil ice, although evidence for other entrainment mechanisms (anchor ice, entrainment into freshwater ice) was also found. Concentrations of suspended particulate matter (SPM) in patches of dirty ice averaged at 156 g m-3 (standard deviation ?? = 140 g m-3), with a background concentration of 5 g m-3. The potential for sediment entrainment over the broad, shallow Laptev Sea shelf during fall freeze-up was studied through analysis of remote-sensing data and weather-station records for the period 1979-1994. Freeze-up commences on 26 September (?? = 7 d) and is completed after 19 days (?? = 6 d). Meteorological conditions as well as ice extent prior to and during freeze-up vary considerably, the open-water area ranging between 107 x 103 and 447 x 103 km2. Ice motion and transport of IRS were derived from satellite imagery and drifting buoys for the period during and after the expedition (mean ice velocities of 0.04 and 0.05 m s-1, respectively). With a best-estimate sediment load of 16 t km-2 (ranging between 9 and 46 t km-2), sediment export from the eastern Laptev Sea amounts to 4 x 10-6 t yr-1, with extremes of 2 x 10-6 and 11 x 106 t yr-1. Implications for the sediment budget of the Laptev shelf, in particular with respect to riverine input of SPM, which may be of the same order of magnitude, are discussed.

  19. Extracting important information from Chinese Operation Notes with natural language processing methods.

    PubMed

    Wang, Hui; Zhang, Weide; Zeng, Qiang; Li, Zuofeng; Feng, Kaiyan; Liu, Lei

    2014-04-01

    Extracting information from unstructured clinical narratives is valuable for many clinical applications. Although natural Language Processing (NLP) methods have been profoundly studied in electronic medical records (EMR), few studies have explored NLP in extracting information from Chinese clinical narratives. In this study, we report the development and evaluation of extracting tumor-related information from operation notes of hepatic carcinomas which were written in Chinese. Using 86 operation notes manually annotated by physicians as the training set, we explored both rule-based and supervised machine-learning approaches. Evaluating on unseen 29 operation notes, our best approach yielded 69.6% in precision, 58.3% in recall and 63.5% F-score.

  20. Communication: Importance of rotationally inelastic processes in low-energy Penning ionization of CHF3.

    PubMed

    Jankunas, Justin; Jachymski, Krzysztof; Hapka, Michał; Osterwalder, Andreas

    2016-06-14

    Low energy reaction dynamics can strongly depend on the internal structure of the reactants. The role of rotationally inelastic processes in cold collisions involving polyatomic molecules has not been explored so far. Here we address this problem by performing a merged-beam study of the He((3)S1)+CHF3 Penning ionization reaction in a range of collision energies E/kB = 0.5-120 K. The experimental cross sections are compared with total reaction cross sections calculated within the framework of quantum defect theory. We find that the broad range of collision energies combined with the relatively small rotational constants of CHF3 makes rotationally inelastic collisions a crucial player in the total reaction dynamics. Quantitative agreement between theory and experiment is only obtained if the energy-dependent probability for rotational excitation is included in the calculations, in stark contrast to previous experiments where classical scaling laws were able to describe the results. PMID:27305989

  1. Communication: Importance of rotationally inelastic processes in low-energy Penning ionization of CHF3

    NASA Astrophysics Data System (ADS)

    Jankunas, Justin; Jachymski, Krzysztof; Hapka, Michał; Osterwalder, Andreas

    2016-06-01

    Low energy reaction dynamics can strongly depend on the internal structure of the reactants. The role of rotationally inelastic processes in cold collisions involving polyatomic molecules has not been explored so far. Here we address this problem by performing a merged-beam study of the He(3S1)+CHF3 Penning ionization reaction in a range of collision energies E/kB = 0.5-120 K. The experimental cross sections are compared with total reaction cross sections calculated within the framework of quantum defect theory. We find that the broad range of collision energies combined with the relatively small rotational constants of CHF3 makes rotationally inelastic collisions a crucial player in the total reaction dynamics. Quantitative agreement between theory and experiment is only obtained if the energy-dependent probability for rotational excitation is included in the calculations, in stark contrast to previous experiments where classical scaling laws were able to describe the results.

  2. Communication: Importance of rotationally inelastic processes in low-energy Penning ionization of CHF3.

    PubMed

    Jankunas, Justin; Jachymski, Krzysztof; Hapka, Michał; Osterwalder, Andreas

    2016-06-14

    Low energy reaction dynamics can strongly depend on the internal structure of the reactants. The role of rotationally inelastic processes in cold collisions involving polyatomic molecules has not been explored so far. Here we address this problem by performing a merged-beam study of the He((3)S1)+CHF3 Penning ionization reaction in a range of collision energies E/kB = 0.5-120 K. The experimental cross sections are compared with total reaction cross sections calculated within the framework of quantum defect theory. We find that the broad range of collision energies combined with the relatively small rotational constants of CHF3 makes rotationally inelastic collisions a crucial player in the total reaction dynamics. Quantitative agreement between theory and experiment is only obtained if the energy-dependent probability for rotational excitation is included in the calculations, in stark contrast to previous experiments where classical scaling laws were able to describe the results.

  3. [Nature and hygienic importance of industrial dust from the high-temperature processing of quartz].

    PubMed

    Lukanova, R; Duneva, G; Tsvetanova, T

    1987-01-01

    The study aims at assessing, according to the physiochemical indices for silicosogenicity of the dusts, the risk of industrial aerosols of condensed SiO2, entailing the production of quartz glass in plant "Lenin" - Sliven and of ferrosilicon in plant "Kremikovci". The evaluation is done according to the present norms for quartz in this country (State Gazette No. 61/1977), accepted temporary on the basis of foreign experiment and as norms for condensed SiO2. The quantitative determination of free SiO2 in dusts is performed after infrared spectrophotometric method. In most of the studied processes on both working places pollution above the norm is registered with total and fine dust and condensed SiO2. In order to specify the silicogenicity of the respective dusts a study is to be carried out according to biological indices. PMID:2831533

  4. Cold plasma processing of local planetary ores for oxygen and metallurgically important metals

    NASA Technical Reports Server (NTRS)

    Lynch, D. C.; Bullard, D.; Ortega, R.

    1991-01-01

    The utilization of a cold or nonequilibrium plasma in chlorination processing is discussed. Titanium dioxide (TiO2) was successfully chlorinated at temperatures between 700 and 900 C without the aid of carbon. In addition to these initial experiments, a technique was developed for determining the temperature of a specimen in a plasma. Development of that technique has required evaluating the emissivity of TiO2, ZrO2, and FeOTiO2 and analyzing the specimen temperature in a plasma as a function of both power absorbed by the plasma and the pressure of the plasma. The mass spectrometer was also calibrated with TiCl4 and CCl4 vapor.

  5. Chapter 4: Geological Carbon Sequestration

    SciTech Connect

    Friedmann, J; Herzog, H

    2006-06-14

    Carbon sequestration is the long term isolation of carbon dioxide from the atmosphere through physical, chemical, biological, or engineered processes. The largest potential reservoirs for storing carbon are the deep oceans and geological reservoirs in the earth's upper crust. This chapter focuses on geological sequestration because it appears to be the most promising large-scale approach for the 2050 timeframe. It does not discuss ocean or terrestrial sequestration. In order to achieve substantial GHG reductions, geological storage needs to be deployed at a large scale. For example, 1 Gt C/yr (3.6 Gt CO{sub 2}/yr) abatement, requires carbon capture and storage (CCS) from 600 large pulverized coal plants ({approx}1000 MW each) or 3600 injection projects at the scale of Statoil's Sleipner project. At present, global carbon emissions from coal approximate 2.5 Gt C. However, given reasonable economic and demand growth projections in a business-as-usual context, global coal emissions could account for 9 Gt C. These volumes highlight the need to develop rapidly an understanding of typical crustal response to such large projects, and the magnitude of the effort prompts certain concerns regarding implementation, efficiency, and risk of the enterprise. The key questions of subsurface engineering and surface safety associated with carbon sequestration are: (1) Subsurface issues: (a) Is there enough capacity to store CO{sub 2} where needed? (b) Do we understand storage mechanisms well enough? (c) Could we establish a process to certify injection sites with our current level of understanding? (d) Once injected, can we monitor and verify the movement of subsurface CO{sub 2}? (2) Near surface issues: (a) How might the siting of new coal plants be influenced by the distribution of storage sites? (b) What is the probability of CO{sub 2} escaping from injection sites? What are the attendant risks? Can we detect leakage if it occurs? (3) Will surface leakage negate or reduce the

  6. Spray granulation: importance of process parameters on in vitro and in vivo behavior of dried nanosuspensions.

    PubMed

    Figueroa, Carlos E; Bose, Sonali

    2013-11-01

    The use of fluid bed granulation for drying of pharmaceutical nanoparticulates on micron-sized granule substrates is a relatively new technique, with limited understanding in the current literature of the effects of process parameters on the physical properties of the dried nanoparticle powders. This work evaluated the effects of spray mode, spray rate and atomizing pressure for spray granulation of drug nanosuspensions through a systematic study. Naproxen and a proprietary Novartis compound were converted into nanosuspensions through wet media milling and dried onto a mannitol based substrate using spray granulation. For naproxen, various physical properties of the granules, as well as the in vitro re-dispersion and dissolution characteristics of the nano-crystals, were measured. It was found that the spray mode had the most drastic effect, where top spray yielded smaller re-dispersed particle sizes and faster release rates of drug from granules than bottom spray. This was attributed to the co-current spraying in bottom spray resulting in denser, homogenous films on the substrate. Similar in vitro results were obtained for the proprietary molecule, Compound A. In vivo studies in beagle dogs with Compound A showed no significant difference between the liquid and the dried forms of the nanosuspension in terms of overall AUC, differences were observed in the tmax which correlated with the rank ordering observed from the in vitro dissolution profiles. These findings make spray granulation amenable to the production of powders with desired processing and handling properties, without compromising the overall exposure of the compound under investigation.

  7. The Importance of Water for High Fidelity Information Processing and for Life

    NASA Technical Reports Server (NTRS)

    Hoehler, Tori M.; Pohorille, Andrew

    2011-01-01

    Is water an absolute prerequisite for life? Life depends on a variety of non-covalent interactions among molecules, the nature of which is determined as much by the solvent in which they occur as by the molecules themselves. Catalysis and information processing, two essential functions of life, require non-covalent molecular recognition with very high specificity. For example, to correctly reproduce a string consisting of 600,000 units of information (e.g ., 600 kilobases, equivalent to the genome of the smallest free living terrestrial organisms) with a 90% success rate requires specificity > 107 : 1 for the target molecule vs. incorrect alternatives. Such specificity requires (i) that the correct molecular association is energetically stabilized by at least 40 kJ/mol relative to alternatives, and (ii) that the system is able to sample among possible states (alternative molecular associations) rapidly enough to allow the system to fall under thermodynamic control and express the energetic stabilization. We argue that electrostatic interactions are required to confer the necessary energetic stabilization vs. a large library of molecular alternatives, and that a solvent with polarity and dielectric properties comparable to water is required for the system to sample among possible states and express thermodynamic control. Electrostatic associations can be made in non-polar solvents, but the resulting complexes are too stable to be "unmade" with sufficient frequency to confer thermodynamic control on the system. An electrostatic molecular complex representing 3 units of information (e.g., 3 base pairs) with specificity > 107 per unit has a stability in non-polar solvent comparable to that of a carbon-carbon bond at room temperature. These considerations suggest that water, or a solvent with properties very like water, is necessary to support high-fidelity information processing, and can therefore be considered a critical prerequisite for life.

  8. Marine Geology

    NASA Astrophysics Data System (ADS)

    van Andel, Tjeerd H.

    Marine geology was blessed early, about 30 years ago, with two great textbooks, one by P.H. Kuenen, the other by Francis P. Shepard, but in more recent years, no one has dared synthesize a field that has become so diverse and is growing so rapidly. There are many texts written for the beginning undergraduate student, mostly by marine geologists, but none can be handed conveniently to a serious advanced student or given to a colleague interested in what the field has wrought. The reason for this regrettable state is obvious; only an active, major scholar could hope to write such a book well, but the years would pass, his students dwindle, his grants vanish. He himself might be out of date before his book was. Kennett has earned a large measure of gratitude for his attempt to undertake this task. His personal price must have been high but so are our rewards.

  9. Important Metabolic Pathways and Biological Processes Expressed by Chicken Cecal Microbiota

    PubMed Central

    Polansky, Ondrej; Sekelova, Zuzana; Faldynova, Marcela; Sebkova, Alena; Sisak, Frantisek

    2015-01-01

    The gut microbiota plays important roles in its host. However, how each microbiota member contributes to the behavior of the whole population is not known. In this study, we therefore determined protein expression in the cecal microbiota in chickens of selected ages and in 7-day-old chickens inoculated with different cecal extracts on the day of hatching. Campylobacter, Helicobacter, Mucispirillum, and Megamonas overgrew in the ceca of 7-day-old chickens inoculated with cecal extracts from donor hens. Firmicutes were characterized by ABC and phosphotransferase system (PTS) transporters, extensive acyl coenzyme A (acyl-CoA) metabolism, and expression of l-fucose isomerase. Anaerostipes, Anaerotruncus, Pseudoflavonifractor, Dorea, Blautia, and Subdoligranulum expressed spore proteins. Firmicutes (Faecalibacterium, Butyrivibrio, Megasphaera, Subdoligranulum, Oscillibacter, Anaerostipes, and Anaerotruncus) expressed enzymes required for butyrate production. Megamonas, Phascolarctobacterium, and Blautia (exceptions from the phylum Firmicutes) and all Bacteroidetes expressed enzymes for propionate production pathways. Representatives of Bacteroidetes also expressed xylose isomerase, enzymes required for polysaccharide degradation, and ExbBD, TonB, and outer membrane receptors likely to be involved in oligosaccharide transport. Based on our data, Anaerostipes, Anaerotruncus, and Subdoligranulum might be optimal probiotic strains, since these represent spore-forming butyrate producers. However, certain care should be taken during microbiota transplantation because the microbiota may behave differently in the intestinal tract of a recipient depending on how well the existing communities are established. PMID:26712550

  10. Clinically important immunological processes in acute and fulminant hepatitis, mainly due to hepatitis B virus.

    PubMed Central

    Mackenjee, M K; Kiepiela, P; Cooper, R; Coovadia, H M

    1982-01-01

    Clinically useful criteria were found by studying immunological functions on admission in 15 African children with acute hepatitis (AH) (11 of whom were HBsAg positive) and in 11 children with fulminant hepatic failure (FHF) (8 of whom were HBsAg positive), and by comparing these results with normal controls. Nine of the FHF patients died. All the AH patients survived despite the development of transient liver failure in seven. There was significant diminution of components of the classical and alternative pathways of complement and total haemolytic complement in FHF compared with AH, and in both groups in comparison with controls. Cellular immunity tested by phytohaemagglutinin and HBsAg transformation of lymphocytes and leucocyte migration inhibition with HBsAg, were more impaired in FHF than AH. These indices were reduced in both groups of patients compared with controls. The most important index correlating with severity of clinical disease was C3. It was lowest in FHF, but within this group was highest in 2 patients who survived, and in AH the C3 on admission was significantly lower in patients who subsequently showed signs of transient liver failure than in those who did not. The prothrombin index was less sensitive in differentiating serious from mild illness. It is suggested that C3 levels can be helpful in monitoring patients with acute liver disease. PMID:7082040

  11. Microbial concentrations on fresh produce are affected by postharvest processing, importation, and season.

    PubMed

    Ailes, Elizabeth C; Leon, Juan S; Jaykus, Lee-Ann; Johnston, Lynette M; Clayton, Haley A; Blanding, Sarah; Kleinbaum, David G; Backer, Lorraine C; Moe, Christine L

    2008-12-01

    In the United States, the proportion of foodborne illness outbreaks associated with consumption of contaminated domestic and imported fresh fruits and vegetables (produce) has increased over the past several decades. To address this public health concern, the goal of this work was to identify and quantify factors associated with microbial contamination of produce in pre- and postharvest phases of the farm-to-fork continuum. From 2000 to 2003, we collected 923 samples of 14 types of produce (grown in the southern United States or in the northern border states of Mexico) from 15 farms and eight packing sheds located in the southern United States. To assess microbial quality, samples were enumerated for Escherichia coli, total aerobic bacteria, total coliforms, and total Enterococcus. Most produce types had significantly higher microbial concentrations when sampled at the packing shed than when sampled at the farm. In addition, we observed seasonal differences in the microbial concentrations on samples grown in the United States, with higher mean indicator concentrations detected in the fall (September, October, and November). We developed a predictive, multivariate logistic regression model to identify and quantify factors that were associated with detectable concentrations of E. coli contamination on produce. These factors included produce type (specifically, cabbage or cantaloupe), season of collection (harvested in the fall), and packing step (bin, box, conveyor belt, or turntable). These results can be used to identify specific mechanisms of produce contamination and propose interventions that may decrease the likelihood of produce-associated illness.

  12. Introduction to ore geology

    SciTech Connect

    Evans, A.M.

    1987-01-01

    This textbook on ore geology is for second and third year undergraduates and closely parallels the undergraduate course given in this subject at England's University of Leicester. The volume covers three major areas: (1) principles of ore geology, (2) examples of the most important types of ore deposits, and (3) mineralization in space and time. Many chapters have been thoroughly revised for this edition and a chapter on diamonds has been added. Chapters on greisen and pegmatite have also been added, the former in response to the changing situation in tin mining following the recent tin crisis, and the latter in response to suggestions from geologists in a number of overseas countries. Some chapters have been considerably expanded and new sections added, including disseminated gold deposits and unconformity-associated uranium deposits. The author also expands on the importance of viewing mineral deposits from an economic standpoint.

  13. On the importance of being bilingual: word stress processing in a context of segmental variability.

    PubMed

    Abboub, Nawal; Bijeljac-Babic, Ranka; Serres, Josette; Nazzi, Thierry

    2015-04-01

    French-learning infants have language-specific difficulties in processing lexical stress due to the lack of lexical stress in French. These difficulties in discriminating between words with stress-initial (trochaic) and stress-final (iambic) patterns emerge by 10months of age in the easier context of low variability (using a single item pronounced with a trochaic pattern vs. an iambic pattern) as well as in the more challenging context of high segmental variability (using lists of segmentally different trochaic and iambic items). These findings raise the question of stress pattern perception in simultaneous bilinguals learning French and a second language using stress at the lexical level. Bijeljac-Babic, Serres, Höhle, and Nazzi (2012) established that at 10 months of age, in the simpler context of low variability, such bilinguals have better stress discrimination abilities than French-learning monolinguals. The current study explored whether this advantage extends to the more challenging context of high segmental variability. Results first establish stress pattern discrimination in a group of bilingual 10-month-olds learning French and one language with (variable) lexical stress, but not in French-learning 10-month-old monolinguals. Second, discrimination in bilinguals appeared not to be affected by the language balance of the infants, suggesting that sensitivity to stress patterns might be maintained in these bilingual infants provided that they hear at least 30% of a language with lexical stress.

  14. Active processes on a mixed clastic carbonate Brazilian shelf margin: Importance for hydrocarbon exploration in turbidites

    SciTech Connect

    Cainelli, C. )

    1991-03-01

    The search for subtle hydrocarbon accumulations in turbidite systems requires additional approaches for more successful exploration, particularly when direct recognition on seismic lines is difficult. This includes the determination and understanding of processes controlling sand distribution on the shelf and the mapping of sand pathways from the shelf to the slop/basin that can guide efforts to look for more favorable sites for turbidite sandstone deposition. The approach can be exemplified in the Sergipe-Alagoas basin, on the Brazillian Atlantic passive margin. The section analyzed is the Piacabucu Formation, a thick seaward prograding wedge composed of coastal sandstones and shelf edge carbonates on a narrow shelf and slope-basin shales with turbidite lenses. Waves and currents control the redistribution of sediments transported to the shelf by rivers. More wave energy is expended in ten hours in the San Francisco delta than in an entire year in the Mississippi delta. Such environment precludes deposition of mud on the shelf, but it stimulates the development of shelf edge carbonates. Rimed carbonates along the shelf break serve as a barrier for downslope movements of coarse-grained sediment, where turbidites are oil targets. The search for gaps in the carbonate barrier which can tap the behind-barrier sands is critical for sand-rich turbidite development. It is believed that canyons create these gaps and act as active turbidity current routes.

  15. The Geological information and modelling Thematic Core Service of EPOS

    NASA Astrophysics Data System (ADS)

    Robida, François; Wächter, Joachim; Tulstrup, Jørgen; Lorenz, Henning; Carter, Mary; Cipolloni, Carlo

    2015-04-01

    Geological data and models are important assets for the EPOS community. The Geological information and modelling Thematic Core Service of EPOS will be designed and implemented in an efficient and sustainable access system for geological multi-scale data assets for EPOS through the integration of distributed infrastructure components (nodes) of geological surveys, research institutes and the international drilling community (ICDP) . The TCS will develop and take benefit of the synergy between the existing data infrastructures of the Geological Surveys of Europe (EuroGeoSurveys / OneGeology-Europe / EGDI) and on the large amount of information produced by the research organisations. These nodes will offer a broad range of resources including: digitised geological maps, borehole data, geophysical data (seismic data, borehole log data), archived information on physical material (samples, cores), geochemical and other analyses of rocks, soils and minerals, and Geological models (3D, 4D). The services will be implemented on international standards (such as INSPIRE, IUGS/CGI, OGC, W3C, ISO) in order to guarantee their interoperability with other EPOS TCS as well as their compliance with INSPIRE European Directive or international initiatives (such as OneGeology). This will provide future virtual research environments with means to facilitate the use of existing information for future applications. In addition, workflows will be established that allow the integration of other existing and new data and applications. Processing and the use of simulation and visualization tools will subsequently support the integrated analysis and characterization of complex subsurface structures and their inherent dynamic processes. This will in turn aid in the overall understanding of complex multi-scale geo-scientific questions. This TCS will work alongside other EPOS TCSs to create an efficient and comprehensive multidisciplinary research platform for the Earth Sciences in Europe.

  16. The Geological information and modelling Thematic Core Service of EPOS

    NASA Astrophysics Data System (ADS)

    Robida, François; Wächter, Joachim; Tulstrup, Jørgen; Lorenz, Henning; Carter, Mary; Cipolloni, Carlo; Morel, Olivier

    2016-04-01

    Geological data and models are important assets for the EPOS community. The Geological information and modelling Thematic Core Service of EPOS is being designed and will be implemented in an efficient and sustainable access system for geological multi-scale data assets for EPOS through the integration of distributed infrastructure components (nodes) of geological surveys, research institutes and the international drilling community (ICDP/IODP). The TCS will develop and take benefit of the synergy between the existing data infrastructures of the Geological Surveys of Europe (EuroGeoSurveys / OneGeology-Europe / EGDI) and of the large amount of information produced by the research organisations. These nodes will offer a broad range of resources including: geological maps, borehole data, geophysical data (seismic data, borehole log data), archived information on physical material (samples, cores), geochemical and other analyses of rocks, soils and minerals, and Geological models (3D, 4D). The services will be implemented on international standards (such as INSPIRE, IUGS/CGI, OGC, W3C, ISO) in order to guarantee their interoperability with other EPOS TCS as well as their compliance with INSPIRE European Directive or international initiatives (such as OneGeology). This will provide future virtual research environments with means to facilitate the use of existing information for future applications. In addition, workflows will be established that allow the integration of other existing and new data and applications. Processing and the use of simulation and visualization tools will subsequently support the integrated analysis and characterization of complex subsurface structures and their inherent dynamic processes. This will in turn aid in the overall understanding of complex multi-scale geo-scientific questions. This TCS will work alongside other EPOS TCSs to create an efficient and comprehensive multidisciplinary research platform for the Earth Sciences in Europe.

  17. CHEMICAL PROCESSES IN PROTOPLANETARY DISKS. II. ON THE IMPORTANCE OF PHOTOCHEMISTRY AND X-RAY IONIZATION

    SciTech Connect

    Walsh, Catherine; Millar, T. J.; Nomura, Hideko; Aikawa, Yuri

    2012-03-10

    We investigate the impact of photochemistry and X-ray ionization on the molecular composition of, and ionization fraction in, a protoplanetary disk surrounding a typical T Tauri star. We use a sophisticated physical model, which includes a robust treatment of the radiative transfer of UV and X-ray radiation, and calculate the time-dependent chemical structure using a comprehensive chemical network. In previous work, we approximated the photochemistry and X-ray ionization; here, we recalculate the photoreaction rates using the explicit UV wavelength spectrum and wavelength-dependent reaction cross sections. We recalculate the X-ray ionization rate using our explicit elemental composition and X-ray energy spectrum. We find that photochemistry has a larger influence on the molecular composition than X-ray ionization. Observable molecules sensitive to the photorates include OH, HCO{sup +}, N{sub 2}H{sup +}, H{sub 2}O, CO{sub 2}, and CH{sub 3}OH. The only molecule significantly affected by the X-ray ionization is N{sub 2}H{sup +}, indicating that it is safe to adopt existing approximations of the X-ray ionization rate in typical T Tauri star-disk systems. The recalculation of the photorates increases the abundances of neutral molecules in the outer disk, highlighting the importance of taking into account the shape of the UV spectrum in protoplanetary disks. A recalculation of the photoreaction rates also affects the gas-phase chemistry due to the adjustment of the H/H{sub 2} and C{sup +}/C ratios. The disk ionization fraction is not significantly affected by the methods adopted to calculate the photochemistry and X-ray ionization. We determine that there is a probable 'dead zone' where accretion is suppressed, present in a layer, Z/R {approx}< 0.1-0.2, in the disk midplane, within R Almost-Equal-To 200 AU.

  18. Results from an International Simulation Study on Couples Thermal, Hydrological, and Mechanical (THM) Processes Near Geological Nuclear Waste Repositories

    SciTech Connect

    J. Rutqvist; J.T> Birkholzer; M. Chijimatsu; O. Kolditz; Q.S. Liu; Y. Oda; W. Wang; C.Y. Zhang

    2006-02-01

    As part of the ongoing international code comparison project DECOVALEX, four research teams used five different models to simulate coupled thermal, hydrological, and mechanical (THM) processes near underground waste emplacement drifts. The simulations were conducted for two generic repository types with open or back-filled repository drifts under higher and lower post-closure temperature, respectively. In the completed first model inception phase of the project, a good agreement was achieved between the research teams in calculating THM responses for both repository types, although some disagreement in hydrological responses are currently being resolved. Good agreement in the basic thermal-mechanical responses was achieved for both repository types, even with some teams using relatively simplified thermal-elastic heat-conduction models that neglect complex near-field thermal-hydrological processes. The good agreement between the complex and simplified (and well-known) process models indicates that the basic thermal-mechanical responses can be predicted with a relatively high confidence level. The research teams have now moved on to the second phase of the project, the analysis of THM-induced permanent (irreversible) changes and the impact of those changes on the fluid flow field near an emplacement drift.

  19. Novice to Expert Cognition During Geologic Bedrock Mapping

    NASA Astrophysics Data System (ADS)

    Petcovic, H. L.; Libarkin, J.; Hambrick, D. Z.; Baker, K. M.; Elkins, J. T.; Callahan, C. N.; Turner, S.; Rench, T. A.; LaDue, N.

    2011-12-01

    Bedrock geologic mapping is a complex and cognitively demanding task. Successful mapping requires domain-specific content knowledge, visuospatial ability, navigation through the field area, creating a mental model of the geology that is consistent with field data, and metacognition. Most post-secondary geology students in the United States receive training in geologic mapping, however, not much is known about the cognitive processes that underlie successful bedrock mapping, or about how these processes change with education and experience. To better understand cognition during geologic mapping, we conducted a 2-year research study in which 67 volunteers representing a range from undergraduate sophomore to 20+ years professional experience completed a suite of cognitive measures plus a 1-day bedrock mapping task in the Rocky Mountains, Montana, USA. In addition to participants' geologic maps and field notes, the cognitive suite included tests and questionnaires designed to measure: (1) prior geologic experience, via a self-report survey; (2) geologic content knowledge, via a modified version of the Geoscience Concept Inventory; (3) visuospatial ability, working memory capacity, and perceptual speed, via paper-and-pencil and computerized tests; (4) use of space and time during mapping via GPS tracking; and (5) problem-solving in the field via think-aloud audio logs during mapping and post-mapping semi-structured interviews. Data were examined for correlations between performance on the mapping task and other measures. We found that both geological knowledge and spatial visualization ability correlated positively with accuracy in the field mapping task. More importantly, we found a Visuospatial Ability × Geological Knowledge interaction, such that visuospatial ability positively predicted mapping performance at low, but not high, levels of geological knowledge. In other words, we found evidence to suggest that visuospatial ability mattered for bedrock mapping for the

  20. Results from an International Simulation Study on Coupled Thermal,Hydrological, and Mechanical (THM) Processes near Geological NuclearWaste Repositories

    SciTech Connect

    Rutqvist, Jonny; Rutqvist, J.; Barr, D.; Birkholzer, J.T.; Chijimatsu, M.; Kolditz, O.; Liu, Q.-S; Oda, Y.; Wang, W.; Zhang, C.-Y.

    2007-10-23

    As part of the ongoing international DECOVALEX project, four research teams used five different models to simulate coupled thermal, hydrological, and mechanical (THM) processes near waste emplacement drifts of geological nuclear waste repositories. The simulations were conducted for two generic repository types, one with open and the other with back-filled repository drifts, under higher and lower postclosure temperatures, respectively. In the completed first model inception phase of the project, a good agreement was achieved between the research teams in calculating THM responses for both repository types, although some disagreement in hydrological responses is currently being resolved. In particular, good agreement in the basic thermal-mechanical responses was achieved for both repository types, even though some teams used relatively simplified thermal-elastic heat-conduction models that neglected complex near-field thermal-hydrological processes. The good agreement between the complex and simplified process models indicates that the basic thermal-mechanical responses can be predicted with a relatively high confidence level.

  1. Import of rat ornithine transcarbamylase precursor into mitochondria: two-step processing of the leader peptide

    PubMed Central

    1987-01-01

    The mitochondrial matrix enzyme ornithine transcarbamylase (OTC) is synthesized on cytoplasmic polyribosomes as a precursor (pOTC) with an NH2-terminal extension of 32 amino acids. We report here that rat pOTC synthesized in vitro is internalized and cleaved by isolated rat liver mitochondria in two, temporally separate steps. In the first step, which is dependent upon an intact mitochondrial membrane potential, pOTC is translocated into mitochondria and cleaved by a matrix protease to a product designated iOTC, intermediate in size between pOTC and mature OTC. This product is in a trypsin-protected mitochondrial location. The same intermediate-sized OTC is produced in vivo in frog oocytes injected with in vitro-synthesized pOTC. The proteolytic processing of pOTC to iOTC involves the removal of 24 amino acids from the NH2 terminus of the precursor and utilizes a cleavage site two residues away from a critical arginine residue at position 23. In a second cleavage step, also catalyzed by a matrix protease, iOTC is converted to mature OTC by removal of the remaining eight residues of leader sequence. To define the critical regions in the OTC leader peptide required for these events, we have synthesized OTC precursors with alterations in the leader. Substitution of either an acidic (aspartate) or a "helix-breaking" (glycine) amino acid residue for arginine 23 of the leader inhibits formation of both iOTC and OTC, without affecting translocation. These mutant precursors are cleaved at an otherwise cryptic cleavage site between residues 16 and 17 of the leader. Interestingly, this cleavage occurs at a site two residues away from an arginine at position 15. The data indicate that conversion of pOTC to mature OTC proceeds via the formation of a third discrete species: an intermediate-sized OTC. The data suggest further that, in the rat pOTC leader, the essential elements required for translocation differ from those necessary for correct cleavage to either iOTC or mature

  2. Brines in Crustal Processes: Important Roles Inferred From Experimental Studies (Invited)

    NASA Astrophysics Data System (ADS)

    Newton, R. C.; Manning, C. E.

    2009-12-01

    Concentrated salt solutions are increasingly implicated as active agents in many fluid-mediated deep- and mid-crust processes, including rock-melting, charnockitic alteration, trace-element depletion and enrichment, regional metasomatism including dehydration and rehydration, albitization, deep-crustal oxidation, and formation of economic mineral deposits. Unique properties of saline aqueous fluids at high P and T, recently revealed by experimental work, provide new explanations for these metasomatic features and encourage further search for a brine connection in other outstanding problems of metamorphism. Specific properties of high P-T NaCl solutions favorable for deep-crustal metasomatism are high solubility for some rock-forming components, especially CaO and FeO, even at high salt concentration, very low H2O activity as a consequence of pressure-induced dissociation, allowing compatibility with anhydrous (granulite facies) mineral assemblages, and high ability to infiltrate mineral grain boundaries. The high affinity of alkali chloride brines for CaO can explain trace element mobility in high grade metamorphism, by virtue of the high solubility of apatite, and the puzzling phenomenon of subsolidus charnockitic alteration, as in South India, in which orthopyroxene is formed from the incongruent dissolution of calcic amphibole. The great pressure effect on lowering H2O activity in concentrated pore-fluid brines causes fluid-present melting points of crustal rocks to swerve sharply to higher temperatures with increasing depth, in contrast to the behavior in the presence of pure H2O. This fact could account for the formation of swarms of granite intrusions in shear-zone-related settings, such as the Caledonide granites of Scotland and northern Ireland. It is postulated that salty solutions of deep-seated origin inhibit melting as they rise through the lower crust, but induce large-scale melting at mid-crust levels because of increase of H2O activity by release of

  3. Hydraulic-gas transient processes within the overall phenomenological evolution of the French HLW deep geological disposal: current knowledge in PA perspective

    NASA Astrophysics Data System (ADS)

    Wendling, J.; Plas, F.

    2009-04-01

    Because of the creation of the disposal underground facilities, then of the ventilation of whole or part of these facilities during operating period, and finally of hydrogen production, mainly by anoxic corrosion of metallic components, in post-closure period, the phenomenological evolution of a radwaste deep geological repository and its surrounding host rock will be characterized by an hydraulic and gas transient phase until the overall system reach an equilibrium state. This paper presents the analysis of this transient phase carried out in France within the framework of the feasibility study of a HLW and ILLW deep geological disposal in the Callovo-Oxfordian clay layer (Meuse/Haute Marne site) (Dossier 2005 Argile) according to the current state of knowledge: the broad outlines of the expected evolution are described in time and space from operating period to post closure period, taking into consideration the studied design concept (overall architecture, disposal zones, disposal modules, disposal cells, various types of waste, operating conditions…). More particularly for hydrogen, emphasis is focused on space and time organization of production and migration, in particular the various sources of production, the various pathways of migrations and interactions with hydraulics. Although the description is supported by a sound data base on hydraulic and gas production and migration (clay media, engineered materials, corrosion, radiolysis…) and numerical calculations at different scales of time and space, uncertainties exist both in phenomenology (Hydrogen production mechanisms, Hydrogen migration mechanisms in clay media, modeling of mechanisms, values of parameters…) and in simulation (in particular limitations to achieve the various time and space scales and some couplings). So deviations of the expected evolution are discussed. Results of this analysis show that the hydraulic and gas transient phase may present a complex organization in time and space

  4. pH influences the importance of niche-related and neutral processes in lacustrine bacterioplankton assembly.

    PubMed

    Ren, Lijuan; Jeppesen, Erik; He, Dan; Wang, Jianjun; Liboriussen, Lone; Xing, Peng; Wu, Qinglong L

    2015-05-01

    pH is an important factor that shapes the structure of bacterial communities. However, we have very limited information about the patterns and processes by which overall bacterioplankton communities assemble across wide pH gradients in natural freshwater lakes. Here, we used pyrosequencing to analyze the bacterioplankton communities in 25 discrete freshwater lakes in Denmark with pH levels ranging from 3.8 to 8.8. We found that pH was the key factor impacting lacustrine bacterioplankton community assembly. More acidic lakes imposed stronger environmental filtering, which decreased the richness and evenness of bacterioplankton operational taxonomic units (OTUs) and largely shifted community composition. Although environmental filtering was determined to be the most important determinant of bacterioplankton community assembly, the importance of neutral assembly processes must also be considered, notably in acidic lakes, where the species (OTU) diversity was low. We observed that the strong effect of environmental filtering in more acidic lakes was weakened by the enhanced relative importance of neutral community assembly, and bacterioplankton communities tended to be less phylogenetically clustered in more acidic lakes. In summary, we propose that pH is a major environmental determinant in freshwater lakes, regulating the relative importance and interplay between niche-related and neutral processes and shaping the patterns of freshwater lake bacterioplankton biodiversity. PMID:25724952

  5. pH influences the importance of niche-related and neutral processes in lacustrine bacterioplankton assembly.

    PubMed

    Ren, Lijuan; Jeppesen, Erik; He, Dan; Wang, Jianjun; Liboriussen, Lone; Xing, Peng; Wu, Qinglong L

    2015-05-01

    pH is an important factor that shapes the structure of bacterial communities. However, we have very limited information about the patterns and processes by which overall bacterioplankton communities assemble across wide pH gradients in natural freshwater lakes. Here, we used pyrosequencing to analyze the bacterioplankton communities in 25 discrete freshwater lakes in Denmark with pH levels ranging from 3.8 to 8.8. We found that pH was the key factor impacting lacustrine bacterioplankton community assembly. More acidic lakes imposed stronger environmental filtering, which decreased the richness and evenness of bacterioplankton operational taxonomic units (OTUs) and largely shifted community composition. Although environmental filtering was determined to be the most important determinant of bacterioplankton community assembly, the importance of neutral assembly processes must also be considered, notably in acidic lakes, where the species (OTU) diversity was low. We observed that the strong effect of environmental filtering in more acidic lakes was weakened by the enhanced relative importance of neutral community assembly, and bacterioplankton communities tended to be less phylogenetically clustered in more acidic lakes. In summary, we propose that pH is a major environmental determinant in freshwater lakes, regulating the relative importance and interplay between niche-related and neutral processes and shaping the patterns of freshwater lake bacterioplankton biodiversity.

  6. Chloroplast Hsp93 Directly Binds to Transit Peptides at an Early Stage of the Preprotein Import Process.

    PubMed

    Huang, Po-Kai; Chan, Po-Ting; Su, Pai-Hsiang; Chen, Lih-Jen; Li, Hsou-min

    2016-02-01

    Three stromal chaperone ATPases, cpHsc70, Hsp90C, and Hsp93, are present in the chloroplast translocon, but none has been shown to directly bind preproteins in vivo during import, so it remains unclear whether any function as a preprotein-translocating motor and whether they have different functions during the import process. Here, using protein crosslinking followed by ionic detergent solubilization, we show that Hsp93 directly binds to the transit peptides of various preproteins undergoing active import into chloroplasts. Hsp93 also binds to the mature region of a preprotein. A time course study of import, followed by coimmunoprecipitation experiments, confirmed that Hsp93 is present in the same complexes as preproteins at an early stage when preproteins are being processed to the mature size. In contrast, cpHsc70 is present in the same complexes as preproteins at both the early stage and a later stage after the transit peptide has been removed, suggesting that cpHsc70, but not Hsp93, is important in translocating processed mature proteins across the envelope. PMID:26676256

  7. Principles of nuclear geology

    SciTech Connect

    Aswathanarayana, U.

    1985-01-01

    This book treats the basic principles of nuclear physics and the mineralogy, geochemistry, distribution and ore deposits of uranium and thorium. The application of nuclear methodology in radiogenic heat and thermal regime of the earth, radiometric prospecting, isotopic age dating, stable isotopes and cosmic-ray produced isotopes is covered. Geological processes, such as metamorphic chronology, petrogenesis, groundwater movement, and sedimentation rate are focussed on.

  8. Hydrothermal ore-forming processes in the light of studies in rock- buffered systems: II. Some general geologic applications

    USGS Publications Warehouse

    Hemley, J.J.; Hunt, J.P.

    1992-01-01

    The experimental metal solubilities for rock-buffered hydrothermal systems provide important insights into the acquisition, transport, and deposition of metals in real hydrothermal systems that produced base metal ore deposits. Water-rock reactions that determine pH, together with total chloride and changes in temperature and fluid pressure, play significant roles in controlling the solubility of metals and determining where metals are fixed to form ore deposits. Deposition of metals in hydrothermal systems occurs where changes such as cooling, pH increase due to rock alteration, boiling, or fluid mixing cause the aqueous metal concentration to exceed saturation. Metal zoning results from deposition occurring at successive saturation surfaces. Zoning is not a reflection simply of relative solubility but of the manner of intersection of transport concentration paths with those surfaces. Saturation surfaces will tend to migrate outward and inward in prograde and retrograde time, respectively, controlled by either temperature or chemical variables. -from Authors

  9. Simultaneous geologic scenario identification and flow model calibration with group-sparsity formulations

    NASA Astrophysics Data System (ADS)

    Golmohammadi, Azarang; Jafarpour, Behnam

    2016-06-01

    Adopting representative geologic connectivity scenarios is critical for reliable modeling and prediction of flow and transport processes in subsurface environments. Geologic scenarios are often developed by integrating several sources of information, including knowledge of the depositional environment, qualitative and quantitative data such as outcrop and well logs, and process-based geologic modeling. In general, flow and transport response data are usually not included in constructing geologic scenarios for a basin. Instead, these data are typically matched using a given prior geologic scenario as constraint. Since data limitations, modeling assumptions and subjective interpretations can lead to significant uncertainty in the adopted geologic scenarios, flow and transport data may also be useful for constraining the uncertainty in proposed geologic scenarios. Constraining geologic scenarios with flow-related data opens an interesting and challenging research area, which goes beyond the traditional model calibration formulations where the geologic scenario is assumed given. In this paper, a novel concept, known as group-sparsity regularization, is proposed as an effective formulation to constrain the uncertainty in the prior geologic scenario during subsurface flow model calibration. Given a collection of model realizations from several plausible geologic scenarios, the proposed method first applies the truncated singular value decomposition (TSVD) to compactly represent the models from each geologic scenario. The TSVD basis for representing each scenario forms a distinct group. The proposed approach searches over these groups (i.e., geologic scenarios) to eliminate inconsistent groups that are not supported by the observed flow/pressure data. The group-sparsity regularization minimizes a l1/l2mixed norm, where the l2-norm quantifies the contribution of each group and operates on the coefficients within the groups while the l1-norm, having a selection property, is

  10. Directions of the US Geological Survey Landslide Hazards Reduction Program

    USGS Publications Warehouse

    Wieczorek, G.F.

    1993-01-01

    The US Geological Survey (USGS) Landslide Hazards Reduction Program includes studies of landslide process and prediction, landslide susceptibility and risk mapping, landslide recurrence and slope evolution, and research application and technology transfer. Studies of landslide processes have been recently conducted in Virginia, Utah, California, Alaska, and Hawaii, Landslide susceptibility maps provide a very important tool for landslide hazard reduction. The effects of engineering-geologic characteristics of rocks, seismic activity, short and long-term climatic change on landslide recurrence are under study. Detailed measurement of movement and deformation has begun on some active landslides. -from Author

  11. Old Geology and New Geology

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Released 28 May 2003

    Mangala Vallis one of the large outflow channels that channeled large quantities of water into the northern lowlands, long ago on geological timescales. This valley is one of the few in the southern hemisphere, as well as one of the few west of the Tharsis bulge. A closer look at the channel shows more recent weathering of the old water channel: the walls of the channel show small, dark slope streaks that form in dusty areas; and much of the surrounding terrain has subtle linear markings trending from the upper left to the lower right, which are probably features sculpted and streamlined by the wind. Geology still shapes the surface of Mars today, but its methods over the eons have changed.

    Image information: VIS instrument. Latitude -6, Longitude 209.6 East (150.4 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in

  12. Some important imaging goals for asteroid missions

    NASA Technical Reports Server (NTRS)

    Veverka, J.

    1978-01-01

    Very high resolution imaging provides the best means of examining geological processes acting on asteroid surfaces. Imaging also may be important for revealing how asteroids accreted and for obtaining some data on their differentiation history. Imaging from rendezvous together with Doppler tracking is the only way to determine accurate densities and hence place limits on bulk composition.

  13. Chemical Engineering Division fuel cycle programs. Quarterly progress report, April-June 1979. [Pyrochemical/dry processing; waste encapsulation in metal; transport in geologic media

    SciTech Connect

    Steindler, M.J.; Ader, M.; Barletta, R.E.

    1980-09-01

    For pyrochemical and dry processing materials development included exposure to molten metal and salt of Mo-0.5% Ti-0.07% Ti-0.01% C, Mo-30% W, SiC, Si/sub 2/ON/sub 2/, ZrB/sub 2/-SiC, MgAl/sub 2/O/sub 4/, Al/sub 2/O/sub 3/, AlN, HfB/sub 2/, Y/sub 2/O/sub 3/, BeO, Si/sub 3/N/sub 4/, nickel nitrate-infiltrated W, W-coated Mo, and W-metallized alumina-yttria. Work on Th-U salt transport processing included solubility of Th in liquid Cd, defining the Cd-Th and Cd-Mg-Th phase diagrams, ThO/sub 2/ reduction experiments, and electrolysis of CaO in molten salt. Work on pyrochemical processes and associated hardware for coprocessing U and Pu in spent FBR fuels included a second-generation computer model of the transport process, turntable transport process design, work on the U-Cu-Mg system, and U and Pu distribution coefficients between molten salt and metal. Refractory metal vessels are being service-life tested. The chloride volatility processing of Th-based fuel was evaluated for its proliferation resistance, and a preliminary ternary phase diagram for the Zn-U-Pu system was computed. Material characterization and process analysis were conducted on the Exportable Pyrochemical process (Pyro-Civex process). Literature data on oxidation of fissile metals to oxides were reviewed. Work was done on chemical bases for the reprocessing of actinide oxides in molten salts. Flowsheets are being developed for the processing of fuel in molten tin. Work on encapsulation of solidified radioactive waste in metal matrix included studies of leach rate of crystalline waste materials and of the impact resistance of metal-matrix waste forms. In work on the transport properties of nuclear waste in geologic media, adsorption of Sr on oolitic limestone was studied, as well as the migration of Cs in basalt. Fitting of data on the adsorption of iodate by hematite to a mathematical model was attempted.

  14. Synthetic geology - Exploring the "what if?" in geology

    NASA Astrophysics Data System (ADS)

    Klump, J. F.; Robertson, J.

    2015-12-01

    The spatial and temporal extent of geological phenomena makes experiments in geology difficult to conduct, if not entirely impossible and collection of data is laborious and expensive - so expensive that most of the time we cannot test a hypothesis. The aim, in many cases, is to gather enough data to build a predictive geological model. Even in a mine, where data are abundant, a model remains incomplete because the information at the level of a blasting block is two orders of magnitude larger than the sample from a drill core, and we have to take measurement errors into account. So, what confidence can we have in a model based on sparse data, uncertainties and measurement error? Synthetic geology does not attempt to model the real world in terms of geological processes with all their uncertainties, rather it offers an artificial geological data source with fully known properties. On the basis of this artificial geology, we can simulate geological sampling by established or future technologies to study the resulting dataset. Conducting these experiments in silico removes the constraints of testing in the field or in production, and provides us with a known ground-truth against which the steps in a data analysis and integration workflow can be validated.Real-time simulation of data sources can be used to investigate crucial questions such as the potential information gain from future sensing capabilities, or from new sampling strategies, or the combination of both, and it enables us to test many "what if?" questions, both in geology and in data engineering. What would we be able to see if we could obtain data at higher resolution? How would real-time data analysis change sampling strategies? Does our data infrastructure handle many new real-time data streams? What feature engineering can be deducted for machine learning approaches? By providing a 'data sandbox' able to scale to realistic geological scenarios we hope to start answering some of these questions.

  15. Processing of Reelin by embryonic neurons is important for function in tissue but not in dissociated cultured neurons.

    PubMed

    Jossin, Yves; Gui, Lanrun; Goffinet, André M

    2007-04-18

    Reelin, the protein defective in reeler mutant mice, plays a key role during brain development. Reelin is processed proteolytically at two sites, and the central fragment mimics function in vitro. Here, we show that processing is functionally important in vivo, a question that could not be addressed in our previous study. New monoclonal antibodies directed against central Reelin block its binding to lipoprotein receptors and perturb cortical development in vitro, confirming the importance of the central fragment that is detected in tissue and body fluids. Processing occurs when Reelin is incubated with embryonic neurons in culture or with their supernatant, but inhibition of processing by a metalloproteinase blocker does not prevent Reelin signaling in neurons. Furthermore, neurons internalize similarly full-length or central Reelin. In contrast, inhibition of processing prevents signaling and perturbs cortical development in cultured embryonic brain slices. Moreover, in vivo, the concentration of central Reelin is dramatically and selectively increased in receptor-deficient tissue, suggesting its specific downregulation after binding to receptors and internalization. We propose that processing by end-migration neurons is required in tissue (where Reelin is likely anchored to the extracellular matrix) to release the central fragment that diffuses locally and signals to target cells, whereas, in vitro, all Reelin forms have indiscriminate access to cells, so that cleavage is not necessary for signaling.

  16. The emerging Medical and Geological Association.

    USGS Publications Warehouse

    Finkelman, R.B.; Centeno, J.A.; Selinus, O.

    2005-01-01

    The impact on human health by natural materials such as water, rocks, and minerals has been known for thousands of years but there have been few systematic, multidisciplinary studies on the relationship between geologic materials and processes and human health (the field of study commonly referred to as medical geology). In the past few years, however, there has been a resurgence of interest in medical geology. Geoscientists working with medical researchers and public health scientists have made important contributions to understanding novel exposure pathways and causes of a wide range of environmental health problems such as: exposure to toxic levels of trace essential and non-essential elements such as arsenic and mercury; trace element deficiencies; exposure to natural dusts and to radioactivity; naturally occurring organic compounds in drinking water; volcanic emissions, etc. By linking with biomedical/public health researchers geoscientists are finally taking advantage of this age-old opportunity to help mitigate environmental health problems. The International Medical Geology Association has recently been formed to support this effort.

  17. The Emerging Medical and Geological Association

    PubMed Central

    Finkelman, Robert B; Centeno, Jose A; Selinus, Olle

    2005-01-01

    The impact on human health by natural materials such as water, rocks, and minerals has been known for thousands of years but there have been few systematic, multidisciplinary studies on the relationship between geologic materials and processes and human health (the field of study commonly referred to as medical geology). In the past few years, however, there has been a resurgence of interest in medical geology. Geoscientists working with medical researchers and public health scientists have made important contributions to understanding novel exposure pathways and causes of a wide range of environmental health problems such as: exposure to toxic levels of trace essential and non-essential elements such as arsenic and mercury; trace element deficiencies; exposure to natural dusts and to radioactivity; naturally occurring organic compounds in drinking water; volcanic emissions, etc. By linking with biomedical/public health researchers geoscientists are finally taking advantage of this age-old opportunity to help mitigate environmental health problems. The International Medical Geology Association has recently been formed to support this effort. PMID:16555612

  18. The importance of neutral and niche processes for bacterial community assembly differs between habitat generalists and specialists.

    PubMed

    Liao, Jingqiu; Cao, Xiaofeng; Zhao, Lei; Wang, Jie; Gao, Zhe; Wang, Michael Cai; Huang, Yi

    2016-11-01

    The mechanisms of community assembly are a central focus in the field of microbial ecology. However, to what extent these mechanisms differ in importance by traits of groups is poorly understood. Here we quantified the importance of neutral and niche processes in community assembly for bacteria, habitat specialists and generalists in 21 plateau lakes of China. Results showed that both neutral and niche processes played a critical role in the assembly of entire bacterial communities, shaping a unique biogeographical pattern. A few habitat generalists and many specialists were identified. Interestingly, habitat specialists were only governed by niche process, with seven significant environmental variables-salinity, dissolved oxygen, water transparency, total phosphorus, ammonium-nitrogen, temperature and total nitrogen-independently explaining 40.3% of the biological variation. By contrast, habitat generalists were strongly driven by neutral process, with 50.9% of the variation of detection frequency explained in neutral community model. Only three environmental variables-salinity, total nitrogen and dissolved oxygen-significantly affected the distribution of habitat generalists, independently explaining 13.6% of the variation. Governed by different assembly mechanisms, habitat specialists and generalists presented disparate biogeographical patterns. Our result emphasizes the importance of investigating the bacterial community assembly at more refined levels than entire communities. PMID:27543321

  19. The importance of neutral and niche processes for bacterial community assembly differs between habitat generalists and specialists.

    PubMed

    Liao, Jingqiu; Cao, Xiaofeng; Zhao, Lei; Wang, Jie; Gao, Zhe; Wang, Michael Cai; Huang, Yi

    2016-11-01

    The mechanisms of community assembly are a central focus in the field of microbial ecology. However, to what extent these mechanisms differ in importance by traits of groups is poorly understood. Here we quantified the importance of neutral and niche processes in community assembly for bacteria, habitat specialists and generalists in 21 plateau lakes of China. Results showed that both neutral and niche processes played a critical role in the assembly of entire bacterial communities, shaping a unique biogeographical pattern. A few habitat generalists and many specialists were identified. Interestingly, habitat specialists were only governed by niche process, with seven significant environmental variables-salinity, dissolved oxygen, water transparency, total phosphorus, ammonium-nitrogen, temperature and total nitrogen-independently explaining 40.3% of the biological variation. By contrast, habitat generalists were strongly driven by neutral process, with 50.9% of the variation of detection frequency explained in neutral community model. Only three environmental variables-salinity, total nitrogen and dissolved oxygen-significantly affected the distribution of habitat generalists, independently explaining 13.6% of the variation. Governed by different assembly mechanisms, habitat specialists and generalists presented disparate biogeographical patterns. Our result emphasizes the importance of investigating the bacterial community assembly at more refined levels than entire communities.

  20. The importance of local and landscape-scale processes to the occupancy of wetlands by pond-breeding amphibians

    USGS Publications Warehouse

    Scherer, Rick D.; Muths, Erin; Noon, Barry R.

    2012-01-01

    Variation in the distribution and abundance of species across landscapes has traditionally been attributed to processes operating at fine spatial scales (i.e., environmental conditions at the scale of the sampling unit), but processes that operate across larger spatial scales such as seasonal migration or dispersal are also important. To determine the relative importance of these processes, we evaluated hypothesized relationships between the probability of occupancy in wetlands by two amphibians [wood frogs (Lithobates sylvaticus) and boreal chorus frogs (Pseudacris maculata)] and attributes of the landscape measured at three spatial scales in Rocky Mountain National Park, Colorado. We used cost-based buffers and least-cost distances to derive estimates of landscape attributes that may affect occupancy patterns from the broader spatial scales. The most highly ranked models provide strong support for a positive relationship between occupancy by breeding wood frogs and the amount of streamside habitat adjacent to a wetland. The model selection results for boreal chorus frogs are highly uncertain, though several of the most highly ranked models indicate a positive association between occupancy and the number of neighboring, occupied wetlands. We found little evidence that occupancy of either species was correlated with local-scale attributes measured at the scale of individual wetlands, suggesting that processes operating at broader scales may be more important in influencing occupancy patterns in amphibian populations.

  1. Geologic Technician New Curriculum

    ERIC Educational Resources Information Center

    Karp, Stanley E.

    1970-01-01

    Describes a developing two-year geologic technician program at Bakersfield College in which a student may major in five areas - geologic drafting, land and legal, geologic assistant, engineering or paleontology. (RR)

  2. Spatial Visualization in Introductory Geology Courses

    NASA Astrophysics Data System (ADS)

    Reynolds, S. J.

    2004-12-01

    Visualization is critical to solving most geologic problems, which involve events and processes across a broad range of space and time. Accordingly, spatial visualization is an essential part of undergraduate geology courses. In such courses, students learn to visualize three-dimensional topography from two-dimensional contour maps, to observe landscapes and extract clues about how that landscape formed, and to imagine the three-dimensional geometries of geologic structures and how these are expressed on the Earth's surface or on geologic maps. From such data, students reconstruct the geologic history of areas, trying to visualize the sequence of ancient events that formed a landscape. To understand the role of visualization in student learning, we developed numerous interactive QuickTime Virtual Reality animations to teach students the most important visualization skills and approaches. For topography, students can spin and tilt contour-draped, shaded-relief terrains, flood virtual landscapes with water, and slice into terrains to understand profiles. To explore 3D geometries of geologic structures, they interact with virtual blocks that can be spun, sliced into, faulted, and made partially transparent to reveal internal structures. They can tilt planes to see how they interact with topography, and spin and tilt geologic maps draped over digital topography. The GeoWall system allows students to see some of these materials in true stereo. We used various assessments to research the effectiveness of these materials and to document visualization strategies students use. Our research indicates that, compared to control groups, students using such materials improve more in their geologic visualization abilities and in their general visualization abilities as measured by a standard spatial visualization test. Also, females achieve greater gains, improving their general visualization abilities to the same level as males. Misconceptions that students carry obstruct

  3. Geology of the Caribbean

    USGS Publications Warehouse

    Dillon, William P.; Edgar, N.T.; Scanlon, K.M.; Klitgord, Kim D.

    1987-01-01

    The Venezuelan and Colombian basins are located on the Caribbean Plate whilst the Yucatan basin is on the North American Plate. The processes occurring at the boundaries between the Caribbean Plate and the adjacent North American, South American and Cocos Plates, and the resulting surface features and patterns of volcanic and earthquake activity are described. Most of the Caribbean area is floored by atypical oceanic crust and its most valuable main geologic resources identified so far are petroleum, together with sand and gravel. Geological research is being carried out with techniques for broad-range swath imaging of the seafloor, such as GLORIA, and for directly measuring the movement between plates. -J.G.Harvey

  4. Evaluation of three electronic report processing systems for preparing hydrologic reports of the U.S Geological Survey, Water Resources Division

    USGS Publications Warehouse

    Stiltner, G.J.

    1990-01-01

    In 1987, the Water Resources Division of the U.S. Geological Survey undertook three pilot projects to evaluate electronic report processing systems as a means to improve the quality and timeliness of reports pertaining to water resources investigations. The three projects selected for study included the use of the following configuration of software and hardware: Ventura Publisher software on an IBM model AT personal computer, PageMaker software on a Macintosh computer, and FrameMaker software on a Sun Microsystems workstation. The following assessment criteria were to be addressed in the pilot studies: The combined use of text, tables, and graphics; analysis of time; ease of learning; compatibility with the existing minicomputer system; and technical limitations. It was considered essential that the camera-ready copy produced be in a format suitable for publication. Visual improvement alone was not a consideration. This report consolidates and summarizes the findings of the electronic report processing pilot projects. Text and table files originating on the existing minicomputer system were successfully transformed to the electronic report processing systems in American Standard Code for Information Interchange (ASCII) format. Graphics prepared using a proprietary graphics software package were transferred to all the electronic report processing software through the use of Computer Graphic Metafiles. Graphics from other sources were entered into the systems by scanning paper images. Comparative analysis of time needed to process text and tables by the electronic report processing systems and by conventional methods indicated that, although more time is invested in creating the original page composition for an electronically processed report , substantial time is saved in producing subsequent reports because the format can be stored and re-used by electronic means as a template. Because of the more compact page layouts, costs of printing the reports were 15% to 25

  5. Visible Geology - Interactive online geologic block modelling

    NASA Astrophysics Data System (ADS)

    Cockett, R.

    2012-12-01

    Geology is a highly visual science, and many disciplines require spatial awareness and manipulation. For example, interpreting cross-sections, geologic maps, or plotting data on a stereonet all require various levels of spatial abilities. These skills are often not focused on in undergraduate geoscience curricula and many students struggle with spatial relations, manipulations, and penetrative abilities (e.g. Titus & Horsman, 2009). A newly developed program, Visible Geology, allows for students to be introduced to many geologic concepts and spatial skills in a virtual environment. Visible Geology is a web-based, three-dimensional environment where students can create and interrogate their own geologic block models. The program begins with a blank model, users then add geologic beds (with custom thickness and color) and can add geologic deformation events like tilting, folding, and faulting. Additionally, simple intrusive dikes can be modelled, as well as unconformities. Students can also explore the interaction of geology with topography by drawing elevation contours to produce their own topographic models. Students can not only spatially manipulate their model, but can create cross-sections and boreholes to practice their visual penetrative abilities. Visible Geology is easy to access and use, with no downloads required, so it can be incorporated into current, paper-based, lab activities. Sample learning activities are being developed that target introductory and structural geology curricula with learning objectives such as relative geologic history, fault characterization, apparent dip and thickness, interference folding, and stereonet interpretation. Visible Geology provides a richly interactive, and immersive environment for students to explore geologic concepts and practice their spatial skills.; Screenshot of Visible Geology showing folding and faulting interactions on a ridge topography.

  6. Mass independent oxygen and sulfur isotopic compositions of environmental sulfate and nitrate. A new probe of atmospheric, hydrospheric and geological processes

    NASA Astrophysics Data System (ADS)

    Thiemens, M.; Michalski, G.; Romero, A.; McCabe, J.

    2003-04-01

    Aerosol sulfate is well known to exert a significant influence on the Earth’s atmosphere and surface. They mediate climate in its capacity as a cloud condensation nuclei (CCN) and as a visible light scattering agent. These particles are respirable, with severe cardiovascular disease consequences. Removal by wet and dry depositions is well known to cause surficial damage to biota, biodiversity, and structures. Despite decades of high precision global concentration measurements, single isotope ratio measurements (d18O, d34S) and high quality modeling efforts, there remain unresolved issues with respect to resolution of relative oxidative processes (homogenous vs. heterogeneous), transformation mechanisms, and identification of sources, proximal and distal. Mass independent oxygen isotopic compositions have added new insights un attainable by other techniques. These observations ideally complement other measurements in an effort to improve parameters used in modeling aerosols and climate. Recent sulfur mass independent compositions have potentially added a new means to recognize upper atmospheric photolytic processes. Aerosol nitrate is estimated to nearly double in the next half century, with potentially severe consequences which include soil acidification, loss of biodiversity, eutrophication of coastal and freshwaters, and, human cardiovascular disease. Loss of fresh water lake clarity, e.g. Lake Tahoe is also believed to occur due to increased nitrogen levels. As in the case of atmospheric sulfate, mass independent oxygen isotopic signatures have been observed in nitrate. The D17O is one of the largest mass independent isotopic signatures observed in any environmental species with the exception of ozone. These measurements have demonstrated the ability to provide new insight into the nitrogen cycle, including atmospheric, hydrospheric and geologic processes.

  7. Mass Wasting and Ground Collapse in Terrains of Volatile-Rich Deposits as a Solar System-Wide Geological Process: The Pre-Galileo View

    NASA Technical Reports Server (NTRS)

    Moore, Jeffrey M.; Mellon, Michael T.; Zent, Aaron P.

    1996-01-01

    The polar terrains of Mars are covered in many places with irregular pits and retreating scarps, as are some of the surfaces of the outer-planet satellites. These features are interpreted by us as diagnostic of exogenic degradation due to the loss of a volatile rock-forming matrix or cement. In this study we propose that sublimation degradation is a plausible Solar Systemwide geological process. Candidate examples have been identified on Mars, Io, and Triton, and possibly Europa and Ganymede. We envision this process as having two end-member expressions (pits and scarps), for which we hypothesize two end-member mechanisms (massive localized lenses and areally extensive basal layers). In this study we focus on the role this process may play on the surfaces of the galilean satellites. Our principle modeling results are that for these satellites, H2S, CO2, and NH3 are the only viable candidate volatiles for sublimation degradation of landforms, in light of galilean satellite cosmochemistry. For Io's polar regions only H2S, and then only from slopes that face the Sun and have thin lags, is volatile enough to cause the observed sublimation-induced erosion at those latitudes. SO2 is not a viable candidate as an agent of erosion, especially for these polar landforms. In the case of Europa, only CO2 and H2S are viable candidates (given surface age constraints). Both species could be efficient eroders in nonpolar regions. H2S could generate erosion within the polar regions if the deposition and erosion conditions were essentially identical as those we invoked for Io's polar regions. For Ganymede (and Callisto) NH3 might be an agent of erosion in equatorial terrains of great age. The sublimation of CO2 and H2S is much more robust than NH3. The much slower rate of sublimation degradation from NH3 might be detectable by Galileo and used as a compositional indicator.

  8. Processes entangling interactions in communities: forbidden links are more important than abundance in a hummingbird–plant network

    PubMed Central

    Vizentin-Bugoni, Jeferson; Maruyama, Pietro Kiyoshi; Sazima, Marlies

    2014-01-01

    Understanding the relative importance of multiple processes on structuring species interactions within communities is one of the major challenges in ecology. Here, we evaluated the relative importance of species abundance and forbidden links in structuring a hummingbird–plant interaction network from the Atlantic rainforest in Brazil. Our results show that models incorporating phenological overlapping and morphological matches were more accurate in predicting the observed interactions than models considering species abundance. This means that forbidden links, by imposing constraints on species interactions, play a greater role than species abundance in structuring the ecological network. We also show that using the frequency of interaction as a proxy for species abundance and network metrics to describe the detailed network structure might lead to biased conclusions regarding mechanisms generating network structure. Together, our findings suggest that species abundance can be a less important driver of species interactions in communities than previously thought. PMID:24552835

  9. Processes entangling interactions in communities: forbidden links are more important than abundance in a hummingbird-plant network.

    PubMed

    Vizentin-Bugoni, Jeferson; Maruyama, Pietro Kiyoshi; Sazima, Marlies

    2014-04-01

    Understanding the relative importance of multiple processes on structuring species interactions within communities is one of the major challenges in ecology. Here, we evaluated the relative importance of species abundance and forbidden links in structuring a hummingbird-plant interaction network from the Atlantic rainforest in Brazil. Our results show that models incorporating phenological overlapping and morphological matches were more accurate in predicting the observed interactions than models considering species abundance. This means that forbidden links, by imposing constraints on species interactions, play a greater role than species abundance in structuring the ecological network. We also show that using the frequency of interaction as a proxy for species abundance and network metrics to describe the detailed network structure might lead to biased conclusions regarding mechanisms generating network structure. Together, our findings suggest that species abundance can be a less important driver of species interactions in communities than previously thought.

  10. Relative importance of deterministic and stochastic processes in driving arbuscular mycorrhizal fungal assemblage during the spreading of a toxic plant.

    PubMed

    Shi, Guoxi; Liu, Yongjun; Mao, Lin; Jiang, Shengjing; Zhang, Qi; Cheng, Gang; An, Lizhe; Du, Guozhen; Feng, Huyuan

    2014-01-01

    Both deterministic and stochastic processes are expected to drive the assemblages of arbuscular mycorrhizal (AM) fungi, but little is known about the relative importance of these processes during the spreading of toxic plants. Here, the species composition and phylogenetic structure of AM fungal communities colonizing the roots of a toxic plant, Ligularia virgaurea, and its neighborhood plants, were analyzed in patches with different individual densities of L. virgaurea (represents the spreading degree). Community compositions of AM fungi in both root systems were changed significantly by the L. virgaurea spreading, and also these communities fitted the neutral model very well. AM fungal communities in patches with absence and presence of L. virgaurea were phylogenetically random and clustered, respectively, suggesting that the principal ecological process determining AM fungal assemblage shifted from stochastic process to environmental filtering when this toxic plant was present. Our results indicate that deterministic and stochastic processes together determine the assemblage of AM fungi, but the dominant process would be changed by the spreading of toxic plants, and suggest that the spreading of toxic plants in alpine meadow ecosystems might be involving the mycorrhizal symbionts.

  11. Atmospheric peroxides in a polluted subtropical environment: seasonal variation, sources and sinks, and importance of heterogeneous processes.

    PubMed

    Guo, Jia; Tilgner, Andreas; Yeung, Chungpong; Wang, Zhe; Louie, Peter K K; Luk, Connie W Y; Xu, Zheng; Yuan, Chao; Gao, Yuan; Poon, Steven; Herrmann, Hartmut; Lee, Shuncheng; Lam, Ka Se; Wang, Tao

    2014-01-01

    Hydrogen peroxide (H2O2) and organic peroxides play an important role in atmospheric chemistry, but knowledge of their abundances, sources, and sinks from heterogeneous processes remains incomplete. Here we report the measurement results obtained in four seasons during 2011-2012 at a suburban site and a background site in Hong Kong. Organic peroxides were found to be more abundant than H2O2, which is in contrast to most previous observations. Model calculations with a multiphase chemical mechanism suggest important contributions from heterogeneous processes (primarily transition metal ion [TMI]-HOx reactions) to the H2O2 budget, accounting for about one-third and more than half of total production rate and loss rate, respectively. In comparison, they contribute much less to organic peroxides. The fast removal of H2O2 by these heterogeneous reactions explains the observed high organic peroxide fractions. Sensitivity analysis reveals that the role of heterogeneous processes depends on the abundance of soluble metals in aerosol, serving as a net H2O2 source at low metal concentrations, but as a net sink with high metal loading. The findings of this study suggest the need to consider the chemical processes in the aerosol aqueous phase when examining the chemical budget of gas-phase H2O2.

  12. Quality assurance plan for the collection and processing of sediment data by the U.S. Geological Survey, Water Resources Division

    USGS Publications Warehouse

    Knott, J.M.; Glysson, G.D.; Malo, B.A.; Schroeder, L.J.

    1993-01-01

    The U.S. Geological Survey sediment data quality assurance plan identifies and explains required quality assurance and suggested quality control practices. The approach is to subdivide the process for obtaining sediment data into 3 parts: (1) field, (2) office, and (3) laboratory operations. The report also summarizes recommended goals for each subcategory. The quality assurance and quality control practices are described by stating the minimum acceptable activities that a district should conduct. For example, the plan describes field calibration of thermometers and standards used to calibrate a thermometer. The plan also proposes corrective actions if the quality control procedures identify a problem. The plan describes the formal reports prepared by a district that describe the completeness of sediment data and presents an evaluation of data obtained by the quality assurance program. Also described in the plan are the external (non-district) reviews that are needed to examine district sediment operations for conformity with district quality assurance plans and national quality assurance programs.

  13. GeoTemp™ 1.0: A MATLAB-based program for the processing, interpretation and modelling of geological formation temperature measurements

    NASA Astrophysics Data System (ADS)

    Ricard, Ludovic P.; Chanu, Jean-Baptiste

    2013-08-01

    The evaluation of potential and resources during geothermal exploration requires accurate and consistent temperature characterization and modelling of the sub-surface. Existing interpretation and modelling approaches of 1D temperature measurements are mainly focusing on vertical heat conduction with only few approaches that deals with advective heat transport. Thermal regimes are strongly correlated to rock and fluid properties. Currently, no consensus exists for the identification of the thermal regime and the analysis of such dataset. We developed a new framework allowing the identification of thermal regimes by rock formations, the analysis and modelling of wireline logging and discrete temperature measurements by taking into account the geological, geophysical and petrophysics data. This framework has been implemented in the GeoTemp software package that allows the complete thermal characterization and modelling at the formation scale and that provides a set of standard tools for the processing wireline and discrete temperature data. GeoTempTM operates via a user friendly graphical interface written in Matlab that allows semi-automatic calculation, display and export of the results. Output results can be exported as Microsoft Excel spreadsheets or vector graphics of publication quality. GeoTemp™ is illustrated here with an example geothermal application from Western Australia and can be used for academic, teaching and professional purposes.

  14. Experimental determination of the solubility constant for magnesium chloride hydroxide hydrate (Mg 3Cl(OH) 5·4H 2O, phase 5) at room temperature, and its importance to nuclear waste isolation in geological repositories in salt formations

    NASA Astrophysics Data System (ADS)

    Xiong, Yongliang; Deng, Haoran; Nemer, Martin; Johnsen, Shelly

    2010-08-01

    In this study, the solubility constant of magnesium chloride hydroxide hydrate, Mg 3Cl(OH) 5·4H 2O, termed as phase 5, is determined from a series of solubility experiments in MgCl 2-NaCl solutions. The solubility constant in logarithmic units at 25 °C for the following reaction, MgCl(OH)·4HO+5H=3Mg+9HO(l)+Cl is calculated as 43.21 ± 0.33 (2 σ) based on the specific interaction theory (SIT) model for extrapolation to infinite dilution. The Gibbs free energy and enthalpy of formation for phase 5 at 25 °C are derived as -3384 ± 2 (2 σ) kJ mol -1 and -3896 ± 6 (2 σ) kJ mol -1, respectively. MgO (bulk, pure MgO corresponding to the mineral periclase) is the only engineered barrier certified by the Environmental Protection Agency (EPA) for emplacement in the Waste Isolation Pilot Plant (WIPP) in the US, and an Mg(OH) 2-based engineered barrier (bulk, pure Mg(OH) 2 corresponding to brucite) is to be employed in the Asse repository in Germany. Phase 5, and its similar phase, phase 3 (Mg 2Cl(OH) 3·4H 2O), could have a significant role in influencing the geochemical conditions in geological repositories for nuclear waste in salt formations where MgO or brucite is employed as engineered barriers. Based on our solubility constant for phase 5 in combination with the literature value for phase 3, we predict that the composition for the invariant point of phase 5 and phase 3 would be mMg = 1.70 and pmH = 8.94 in the Mg-Cl binary system. The recent WIPP Compliance Recertification Application Performance Assessment Baseline Calculations indicate that phase 5, instead of phase 3, is indeed a stable phase when the WIPP Generic Weep Brine (GWB), a Na-Mg-Cl-dominated brine associated with the Salado Formation, equilibrates with actinide-source-term phases, brucite, magnesium carbonates, halite and anhydrite. Therefore, phase 5 is important to the WIPP, and potentially important to other repositories in salt formations.

  15. Thermodynamic Properties of Magnesium Chloride Hydroxide Hydrate (Mg3Cl(OH)5:4H2O, Phase 5), and Its importance to Nuclear Waste Isolation in Geological Repositories in Salt Formations

    NASA Astrophysics Data System (ADS)

    Xiong, Y.; Deng, H.; Nemer, M. B.; Johnsen, S.

    2009-12-01

    MgO (bulk, pure MgO corresponding to the mineral periclase) is the only engineered barrier certified by the Environmental Protection Agency for emplacement in the Waste Isolation Pilot Plant (WIPP) in the US, and an Mg(OH)2-based engineered barrier (bulk, pure Mg(OH)2 corresponding to brucite) is to be employed in the Asse repository in Germany. Both the WIPP and the Asse are located in salt formations. The WIPP is a U.S. Department of Energy geological repository being used for the permanent disposal of defense-related transuranic waste (TRU waste). The repository is 655 m below the surface, and is situated in the Salado Formation, a Permian salt bed mainly composed of halite, and of lesser amounts of polyhalite, anhydrite, gypsum, magnesite, clays and quartz. The WIPP Generic Weep Brine (GWB), a Na-Mg-Cl dominated brine, is associated with the Salado Formation. The previous vendor for MgO for the WIPP was Premier Chemicals and the current vendor is Martin Marietta Materials. Experimental studies of both Premier MgO and Martin Marietta MgO with the GWB at SNL indicate the formation of magnesium chloride hydroxide hydrate, Mg3Cl(OH)5:4H2O, termed as phase 5. However, this important phase is lacking in the existing thermodynamic database. In this study, the solubility constant of phase 5 is determined from a series of solubility experiments in MgCl2-NaCl solutions. The solubility constant at 25 oC for the following reaction, Mg3Cl(OH)5:4H2O + 5H+ = 3Mg2+ + 9H2O(l) + Cl- is recommended as 43.21±0.33 (2σ) based on the Specific Interaction Theory (SIT) model for extrapolation to infinite dilution. The log K obtained via the Pitzer equations is identical to the above value within the quoted uncertainty. The Gibbs free energy and enthalpy of formation for phase 5 at 25 oC are derived as -3384±2 (2σ) kJ mol-1 and -3896±6 (2σ) kJ mol-1, respectively. The standard entropy and heat capacity of phase 5 at 25 oC are estimated as 393±20 J mol-1 K-1 and 374±19 J mol-1 K

  16. Constraints from Field Geology for Numerical Modeling of the Crustal Overturn Processes During the Cretaceous High-Magma-Flux Episode in the Central and Southern Sierra Nevada, USA

    NASA Astrophysics Data System (ADS)

    Cao, W.; Paterson, S. R.; Kaus, B. J.; Anderson, J. L.; Memeti, V.

    2010-12-01

    and southern Sierra Nevada allow us to apply the MILAMIN_VEP, a thermo-mechanical marker-in-cell visco-elasto-plastic finite element code, to simulate more realistic scenarios of arc-scale material exchange processes. The code deals with continuous changes of density, water content, and partial melting conditions of lithosphere rocks based on calculated thermodynamic phase diagrams of differential rock types (using Perple_X). The model also takes the central Andes as a possible modern analogy for the Cretaceous Sierra Nevada. Seismic lithospherical structures, geothermal gradient, and other geological constraints are considered in the model. Aiming to yield geologically and geophysically testable results, the simulations test the hypothesis of host rock downward flow or crustal overturn processes during the HMFE, transpressional tectonics and exhumation, and to shed light on the mechanisms and controlling factors of the downward flow processes.

  17. Interactive geologic modeling

    SciTech Connect

    Glaeser, J.D.; Krajewski, S.A.

    1984-04-01

    Improved success in finding hydrocarbons and minerals depends on developing geologic models from seismic, gravity, and magnetic data that most closely approximate real-world settings. Although data processing remains the chore of mainframe and minicomputers, interpretations and modeling of geologic and geophysical information now are best accomplished on personal computers because these computers afford the explorationist maximum freedom to shape and fine tune geophysical evaluations. Three case histories use the GEOSIM geophysical modeling systems to delineate exploration targets. The first example is Silurian Niagaran reef trends in the Michigan basin. Here, differences in seismic reef anomalies result from variations in carbonate-evaporite stratigraphy encasing the reefs, reef geometry, and reef reservoir parameters. These variations which influence real seismic-response differences can be successfully matched using appropriate geologic models in generating synthetic seismic reef anomalies. The second example applies gravity and magnetic data to seismic modeling of a Wyoming coal field. Detailed seismic stratigraphy helps locate those portions of the field having multiple seams, although it does not resolve individual economic zones. Gravity data do identify pinchout margins of multiseam zones and pinchouts between principal coals. Magnetic data are then used to delineate the burn (clinker) margin. Seismic modeling of subtle stratigraphic traps is the broader area of exploration interest contained in the first 2 examples. In the third, successfully modeled and tested examples of lateral changes in deltaic facies and of faulted, unconformity-bounded continent-margin sequences are shown to be successful guides to reinterpretation of seismic data.

  18. The Geologic History of the Carbon Cycle

    NASA Astrophysics Data System (ADS)

    Sundquist, E. T.; Visser, K.

    2003-12-01

    Geologists, like other scientists, tend to view the global carbon cycle through the lens of their particular training and experience. The study of Earth's history requires a view both humbled by the knowledge of past global transformations and emboldened by the imagination of details not seen in the fragments of the rock record. In studying the past behavior of the carbon cycle, geologists are both amazed by unexpected discoveries and reassured by the extent to which "the present is the key to the past." Understanding the present-day carbon cycle has become a matter of societal urgency because of concerns about the effects of human activities on atmospheric chemistry and global climate. This public limelight has had far-reaching consequences for research on the geologic history of the carbon cycle as well as for studies of its present and future. The burgeoning new "interdiscipline" of biogeochemistry claims among its adherents many geologists as well as biologists, chemists, and other scientists. The pace of discovery demands that studies of the geologic history of the carbon cycle cannot be isolated from the context of present and future events.This chapter describes the behavior of the carbon cycle prior to human influence. It describes events and processes that extend back through geologic time and include the exchange of carbon between the Earth's surface and the long-term reservoirs in the lithosphere. Chapter 8.10 emphasizes carbon exchanges that are important over years to decades, with a focus on relatively recent human influences and prospects for change during the coming century. Chapter 4.03 presents an overview of the biogeochemistry of methane, again with emphasis on relatively recent events. In these chapters as well as in the present chapter, relationships between the carbon cycle and global climate are a central concern. Together, these chapters provide an overview of how our knowledge of the present-day carbon cycle can be applied both to

  19. Tsunami geology in paleoseismology

    USGS Publications Warehouse

    Yuichi Nishimura,; Jaffe, Bruce E.

    2015-01-01

    The 2004 Indian Ocean and 2011 Tohoku-oki disasters dramatically demonstrated the destructiveness and deadliness of tsunamis. For the assessment of future risk posed by tsunamis it is necessary to understand past tsunami events. Recent work on tsunami deposits has provided new information on paleotsunami events, including their recurrence interval and the size of the tsunamis (e.g. [187–189]). Tsunamis are observed not only on the margin of oceans but also in lakes. The majority of tsunamis are generated by earthquakes, but other events that displace water such as landslides and volcanic eruptions can also generate tsunamis. These non-earthquake tsunamis occur less frequently than earthquake tsunamis; it is, therefore, very important to find and study geologic evidence for past eruption and submarine landslide triggered tsunami events, as their rare occurrence may lead to risks being underestimated. Geologic investigations of tsunamis have historically relied on earthquake geology. Geophysicists estimate the parameters of vertical coseismic displacement that tsunami modelers use as a tsunami's initial condition. The modelers then let the simulated tsunami run ashore. This approach suffers from the relationship between the earthquake and seafloor displacement, the pertinent parameter in tsunami generation, being equivocal. In recent years, geologic investigations of tsunamis have added sedimentology and micropaleontology, which focus on identifying and interpreting depositional and erosional features of tsunamis. For example, coastal sediment may contain deposits that provide important information on past tsunami events [190, 191]. In some cases, a tsunami is recorded by a single sand layer. Elsewhere, tsunami deposits can consist of complex layers of mud, sand, and boulders, containing abundant stratigraphic evidence for sediment reworking and redeposition. These onshore sediments are geologic evidence for tsunamis and are called ‘tsunami deposits’ (Figs. 26

  20. Genome-Wide Functional Profiling Identifies Genes and Processes Important for Zinc-Limited Growth of Saccharomyces cerevisiae

    PubMed Central

    Loguinov, Alex V.; Zimmerman, Ginelle R.; Vulpe, Chris D.; Eide, David J.

    2012-01-01

    Zinc is an essential nutrient because it is a required cofactor for many enzymes and transcription factors. To discover genes and processes in yeast that are required for growth when zinc is limiting, we used genome-wide functional profiling. Mixed pools of ∼4,600 deletion mutants were inoculated into zinc-replete and zinc-limiting media. These cells were grown for several generations, and the prevalence of each mutant in the pool was then determined by microarray analysis. As a result, we identified more than 400 different genes required for optimal growth under zinc-limiting conditions. Among these were several targets of the Zap1 zinc-responsive transcription factor. Their importance is consistent with their up-regulation by Zap1 in low zinc. We also identified genes that implicate Zap1-independent processes as important. These include endoplasmic reticulum function, oxidative stress resistance, vesicular trafficking, peroxisome biogenesis, and chromatin modification. Our studies also indicated the critical role of macroautophagy in low zinc growth. Finally, as a result of our analysis, we discovered a previously unknown role for the ICE2 gene in maintaining ER zinc homeostasis. Thus, functional profiling has provided many new insights into genes and processes that are needed for cells to thrive under the stress of zinc deficiency. PMID:22685415

  1. Importance of brain‑type fatty acid binding protein for cell-biological processes in human renal carcinoma cells.

    PubMed

    Tölle, Angelika; Krause, Hans; Miller, Kurt; Jung, Klaus; Stephan, Carsten

    2011-05-01

    The molecular mechanisms underlying renal cell carcinoma (RCC) development and progression are still not completely understood. The importance of fatty acid binding proteins (FABP) for the progression of carcinomas has been shown for several tumors. However, the importance of brain-type FABP (B‑FABP) in cell-biological processes in renal carcinoma cells is unknown. Therefore, it was the aim of this study to evaluate the role of B‑FABP in processes such as proliferation, migration and invasion. By using the approach of down- and up-regulation of B‑FABP in human kidney carcinoma cells Caki‑2 and Caki‑1, the potential participation of B‑FABP in proliferation, migration and invasion was demonstrated. B‑FABP was down-regulated at both mRNA and protein levels following treatment of Caki‑2 cells with B‑FABP siRNA. Down-regulation of B‑FABP decreased cell proliferation and migration but did not affect invasion. The transfection of Caki‑1 cells with human B‑FABP cDNA generated an increment of B‑FABP mRNA but the protein was not detectable. Transfected Caki‑1 cells developed a faster proliferation compared to untreated cells. An effect on the process of invasion was not observed. Our data suggest that B‑FABP is involved in cell proliferation and migration of human renal carcinoma cells. The detailed molecular mechanisms remain to be elucidated.

  2. History of Geology.

    ERIC Educational Resources Information Center

    Greene, Mott T.

    1985-01-01

    Discusses: (1) geologists and the history of geology; (2) American historians and the history of geology; (3) history of geology in the 1980s; (4) sources for the history of geology (bibliographies, dictionaries, encyclopedias, handbooks, periodicals, public/official histories, compilations, and books); (5) research opportunities; and (6) other…

  3. Magellan stereo images and Venusian geology

    NASA Technical Reports Server (NTRS)

    Moore, H. J.; Saunders, R. S.; Plaut, Jeffrey J.; Parker, T. J.

    1992-01-01

    Areas of Venus imaged by Magellan radar with multiple viewing conditions provide unique data that will contribute to the solution of venusian geologic problems and provide a basis for quantitative comparison of venusian landforms with those on other planetary bodies. Three sets of images with different viewing conditions have been acquired: (1) left-looking with variable incidence angles (cycle 1 profile), (2) right-looking with nearly constant incidence angles (cycle 2 profile), and (3) left-looking with variable incidence angles that are almost always smaller than those in (1) (cycle 3 profiles). The unique data provided by paired images of the same scene with different incidence angles arises from image displacements caused by the relief of individual landforms at scales comparable to the ground-range and azimuth resolutions of the images. There are two aspects of the data: (1) Stereopsis achieved by simultaneous viewing of paired left-looking images of the same scene permits three-dimensional perception and interpretation of the morphologies of landforms at resolutions much finer than the altimetry footprints. (2) Measurements of differences of image displacements (parallax) on paired images with known imaging geometries provide quantitative estimates of the relief and shapes of landforms. The potential scientific contributions of the data can be grouped into two interrelated classes: (A) geologic mapping, analysis, and interpretation and (B) topical studies that involve topographic measurements. Stereopsis, without quantitative measurements, enhances geologic mapping, analysis, and interpretation of the rock units of Venus to a degree that cannot be overestimated. In geologic mapping, assemblages of landforms, assessments of backscatter and variations in backscatter, and fine-scale topography are used to define and characterize geologic map units that represent laterally continuous deposits or rock units. Stereopsis adds the important dimension of local relief

  4. Geologic Resource Evaluation of Pu'ukohola Heiau National Historic Site, Hawai'i: Part I, Geology and Coastal Landforms

    USGS Publications Warehouse

    Richmond, Bruce M.; Cochran, Susan A.; Gibbs, Ann E.

    2008-01-01

    Geologic resource inventories of lands managed by the National Park Service (NPS) are important products for the parks and are designed to provide scientific information to better manage park resources. Park-specific geologic reports are used to identify geologic features and processes that are relevant to park ecosystems, evaluate the impact of human activities on geologic features and processes, identify geologic research and monitoring needs, and enhance opportunities for education and interpretation. These geologic reports are planned to provide a brief geologic history of the park and address specific geologic issues forming a link between the park geology and the resource manager. The Kona coast National Parks of the Island of Hawai'i are intended to preserve the natural beauty of the Kona coast and protect significant ancient structures and artifacts of the native Hawaiians. Pu'ukohola Heiau National Historic Site (PUHE), Kaloko-Honokohau National Historical Park (KAHO), and Pu'uhonua O Honaunau National Historical Park (PUHO) are three Kona parks studied by the U.S. Geological Survey (USGS) Coastal and Marine Geology Team in cooperation with the National Park Service. This report is one of six related reports designed to provide geologic and benthic-habitat information for the three Kona parks. Each geology and coastal-landform report describes the regional geologic setting of the Hawaiian Islands, gives a general description of the geology of the Kona coast, and presents the geologic setting and issues for one of the parks. The related benthic-habitat mapping reports discuss the marine data and habitat classification scheme, and present results of the mapping program. Pu'ukohola Heiau National Historic Site (PUHE) is the smallest (~86 acres) of three National Parks located on the leeward Kona coast of the Island of Hawai'i. The main structure at PUHE, Pu'ukohola Heiau, is an important historical temple that was built during 1790-91 by King Kamehameha I

  5. GWM-a ground-water management process for the U.S. Geological Survey modular ground-water model (MODFLOW-2000)

    USGS Publications Warehouse

    Ahlfeld, David P.; Barlow, Paul M.; Mulligan, Anne E.

    2005-01-01

    GWM is a Ground?Water Management Process for the U.S. Geological Survey modular three?dimensional ground?water model, MODFLOW?2000. GWM uses a response?matrix approach to solve several types of linear, nonlinear, and mixed?binary linear ground?water management formulations. Each management formulation consists of a set of decision variables, an objective function, and a set of constraints. Three types of decision variables are supported by GWM: flow?rate decision variables, which are withdrawal or injection rates at well sites; external decision variables, which are sources or sinks of water that are external to the flow model and do not directly affect the state variables of the simulated ground?water system (heads, streamflows, and so forth); and binary variables, which have values of 0 or 1 and are used to define the status of flow?rate or external decision variables. Flow?rate decision variables can represent wells that extend over one or more model cells and be active during one or more model stress periods; external variables also can be active during one or more stress periods. A single objective function is supported by GWM, which can be specified to either minimize or maximize the weighted sum of the three types of decision variables. Four types of constraints can be specified in a GWM formulation: upper and lower bounds on the flow?rate and external decision variables; linear summations of the three types of decision variables; hydraulic?head based constraints, including drawdowns, head differences, and head gradients; and streamflow and streamflow?depletion constraints. The Response Matrix Solution (RMS) Package of GWM uses the Ground?Water Flow Process of MODFLOW to calculate the change in head at each constraint location that results from a perturbation of a flow?rate variable; these changes are used to calculate the response coefficients. For linear management formulations, the resulting matrix of response coefficients is then combined with other

  6. Geologic Mapping of Mars

    NASA Astrophysics Data System (ADS)

    Price, Katherine H.

    1998-05-01

    Planetary geologic mapping involves integrating a terrestrial-based understanding of surface and subsurface processes and mapping principles to investigate scientific questions. Mars mappers must keep in mind that physical processes, such as wind and flowing water on Mars, are or were different from terrestrial processes because the planetary atmospheres have changed differently over time. Geologic mapping of Mars has traditionally been done by hand using overlays on photomosaics of Viking Orbiter and Mariner images. Photoclinometry and shadow measurements have been used to determine elevations, and the distribution and size of craters have been used to determine the relative ages of surfaces- more densely cratered surfaces are older. Some mappers are now using computer software (ranging from Photoshop to ArcInfo) to facilitate mapping, though their applications must be carefully executed so that registration of the images remains true. Images and some mapping results are now available on the internet, and new data from recent missions to Mars (Pathfinder and Surveyor) will offer clarifying information to mapping efforts. This paper consists chiefly of pictures and diagrams.

  7. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory; processing, taxonomy, and quality control of benthic macroinvertebrate samples

    USGS Publications Warehouse

    Moulton, Stephen R.; Carter, James L.; Grotheer, Scott A.; Cuffney, Thomas F.; Short, Terry M.

    2000-01-01

    Qualitative and quantitative methods to process benthic macroinvertebrate (BMI) samples have been developed and tested by the U.S. Geological Survey?s National Water Quality Laboratory Biological Group. The qualitative processing method is based on visually sorting a sample for up to 2 hours. Sorting focuses on attaining organisms that are likely to result in taxonomic identifications to lower taxonomic levels (for example, Genus or Species). Immature and damaged organisms are also sorted when they are likely to result in unique determinations. The sorted sample remnant is scanned briefly by a second person to determine if obvious taxa were missed. The quantitative processing method is based on a fixed-count approach that targets some minimum count, such as 100 or 300 organisms. Organisms are sorted from randomly selected 5.1- by 5.1-centimeter parts of a gridded subsampling frame. The sorted remnant from each sample is resorted by a second individual for at least 10 percent of the original sort time. A large-rare organism search is performed on the unsorted remnant to sort BMI taxa that were not likely represented in the sorted grids. After either qualitatively or quantitatively sorting the sample, BMIs are identified by using one of three different types of taxonomic assessment. The Standard Taxonomic Assessment is comparable to the U.S. Environmental Protection Agency Rapid Bioassessment Protocol III and typically provides Genus- or Species-level taxonomic resolution. The Rapid Taxonomic Assessment is comparable to the U.S. Environmental Protection Agency Rapid Bioassessment Protocol II and provides Familylevel and higher taxonomic resolution. The Custom Taxonomic Assessment provides Species-level resolution whenever possible for groups identified to higher taxonomic levels by using the Standard Taxonomic Assessment. The consistent use of standardized designations and notes facilitates the interpretation of BMI data within and among water-quality studies

  8. Planetary geology

    NASA Technical Reports Server (NTRS)

    Short, N. M.

    1975-01-01

    The solar system is considered along with the significance of meteorites as samples of the universe, the origin of planets, and earth's-eye view of the moon, previews of the lunar surface, aspects of impact cratering, lunar igneous processes, the mapping of the moon, the exploration of the moon in connection with the Apollo lunar landings, and the scientific payoff from the lunar samples. Studies of Mars, Venus, and the planets beyond are discussed, taking into account the Mariner Mars program, the Mariner orbiting mission, missions to Venus, the Mariner flight to Mercury, and the Pioneer missions. Attention is also given to the origin of the moon, implications of the moon's thermal history, similarities and differences in planetary evolution, and the role of internal energy in planetary development.

  9. Venus geology

    NASA Astrophysics Data System (ADS)

    McLaughlin, W. I.

    1991-05-01

    The Magellan mission to Venus is reviewed. The scientific investigations conducted by 243-day cycles encompass mapping with a constant incidence angle for the radar, observing surface changes from one cycle to the next, and targeting young-looking volcanos. The topography of Venus is defined by the upper boundary of the crust and upwelling from lower domains. Tectonic features such as rift zones, linear mountain belts, ridge belts, and tesserae are described. The zones of tesserae are unique to the planet. Volcanism accounts for about 80 percent of the observed surface, the remainder being volcanic deposits which have been reworked by tectonism or impacts. Magellan data reveal about 900 impact craters with flow-like ejecta resulting from the fall of meteoroids. It is concluded that the age of the Venusian surface varies between 0 and 800 million years. Tectonic and volcanic activities dominate the formation of the Venus topography; such processes as weathering and erosion are relatively unimportant on Venus.

  10. Verification of imported food upon import for radiation processing: Dried herbs, including herbs used in food supplements, and spices by PSL and TL

    NASA Astrophysics Data System (ADS)

    Boniglia, C.; Aureli, P.; Bortolin, E.; Onori, S.

    2009-07-01

    The Italian National Institute of Health in 2005-2006 performed an analytical survey of import on dried spices and herbs, including herbs used in food supplements, to investigate the entry in Italy of irradiated, and not correctly labelled, raw materials. In this survey, 52 samples, including nine herbal extracts, were collected. The method of photo-stimulated luminescence (PSL) was applied to all samples and only samples screened positive or intermediate with PSL were analysed by using the thermo-luminescence (TL) method. Out of the 12 samples screened positive or intermediate with PSL, the TL method confirmed irradiation of five samples (10% of the total assayed samples). One out of these five samples was a herbal supplement whereas three were herbal extracts that are known to be used as ingredients of herbal supplements, and another one was a spice.

  11. On The (Un)importance of Working Memory in Speech-in-Noise Processing for Listeners with Normal Hearing Thresholds

    PubMed Central

    Füllgrabe, Christian; Rosen, Stuart

    2016-01-01

    With the advent of cognitive hearing science, increased attention has been given to individual differences in cognitive functioning and their explanatory power in accounting for inter-listener variability in the processing of speech in noise (SiN). The psychological construct that has received much interest in recent years is working memory. Empirical evidence indeed confirms the association between WM capacity (WMC) and SiN identification in older hearing-impaired listeners. However, some theoretical models propose that variations in WMC are an important predictor for variations in speech processing abilities in adverse perceptual conditions for all listeners, and this notion has become widely accepted within the field. To assess whether WMC also plays a role when listeners without hearing loss process speech in adverse listening conditions, we surveyed published and unpublished studies in which the Reading-Span test (a widely used measure of WMC) was administered in conjunction with a measure of SiN identification, using sentence material routinely used in audiological and hearing research. A meta-analysis revealed that, for young listeners with audiometrically normal hearing, individual variations in WMC are estimated to account for, on average, less than 2% of the variance in SiN identification scores. This result cautions against the (intuitively appealing) assumption that individual variations in WMC are predictive of SiN identification independently of the age and hearing status of the listener. PMID:27625615

  12. On The (Un)importance of Working Memory in Speech-in-Noise Processing for Listeners with Normal Hearing Thresholds.

    PubMed

    Füllgrabe, Christian; Rosen, Stuart

    2016-01-01

    With the advent of cognitive hearing science, increased attention has been given to individual differences in cognitive functioning and their explanatory power in accounting for inter-listener variability in the processing of speech in noise (SiN). The psychological construct that has received much interest in recent years is working memory. Empirical evidence indeed confirms the association between WM capacity (WMC) and SiN identification in older hearing-impaired listeners. However, some theoretical models propose that variations in WMC are an important predictor for variations in speech processing abilities in adverse perceptual conditions for all listeners, and this notion has become widely accepted within the field. To assess whether WMC also plays a role when listeners without hearing loss process speech in adverse listening conditions, we surveyed published and unpublished studies in which the Reading-Span test (a widely used measure of WMC) was administered in conjunction with a measure of SiN identification, using sentence material routinely used in audiological and hearing research. A meta-analysis revealed that, for young listeners with audiometrically normal hearing, individual variations in WMC are estimated to account for, on average, less than 2% of the variance in SiN identification scores. This result cautions against the (intuitively appealing) assumption that individual variations in WMC are predictive of SiN identification independently of the age and hearing status of the listener. PMID:27625615

  13. On The (Un)importance of Working Memory in Speech-in-Noise Processing for Listeners with Normal Hearing Thresholds

    PubMed Central

    Füllgrabe, Christian; Rosen, Stuart

    2016-01-01

    With the advent of cognitive hearing science, increased attention has been given to individual differences in cognitive functioning and their explanatory power in accounting for inter-listener variability in the processing of speech in noise (SiN). The psychological construct that has received much interest in recent years is working memory. Empirical evidence indeed confirms the association between WM capacity (WMC) and SiN identification in older hearing-impaired listeners. However, some theoretical models propose that variations in WMC are an important predictor for variations in speech processing abilities in adverse perceptual conditions for all listeners, and this notion has become widely accepted within the field. To assess whether WMC also plays a role when listeners without hearing loss process speech in adverse listening conditions, we surveyed published and unpublished studies in which the Reading-Span test (a widely used measure of WMC) was administered in conjunction with a measure of SiN identification, using sentence material routinely used in audiological and hearing research. A meta-analysis revealed that, for young listeners with audiometrically normal hearing, individual variations in WMC are estimated to account for, on average, less than 2% of the variance in SiN identification scores. This result cautions against the (intuitively appealing) assumption that individual variations in WMC are predictive of SiN identification independently of the age and hearing status of the listener.

  14. Geological pattern formation by growth and dissolution in aqueous systems

    SciTech Connect

    Paul Meakin

    2010-03-01

    Although many geological processes take place on time scales that are very long compared with the human experience, essentially all geological processes, fast or slow, are far from equilibrium processes. Surprisingly often, geological processes lead to the formation of quite simple and distinctive patterns, which hint at an underlying simplicity in many complex geological systems.. The ability to predict the seasons was critically important to early human society, and Halley’s prediction of the return of the comet that bears his name is still considered to be a scientific milestone. Spatial patterns have also attracted attention because of their aesthetic appeal, which depends in subtle ways on a combination of regularity and irregularity. In recent decades, rapid growth in the capabilities of digital computers has facilitated the simulation of pattern formation processes, and computer simulations have become an important tool for evaluating theoretical concepts and for scientific discovery. Computer technology in combination with other technologies such as high resolution digital cameras, scanning microprobes (atomic force microscopy AFM), confocal microscopy, and scanning tunneling microscopy (STM), for example) has facilitated the quantitative characterization of patterns over a wide range of scales and has enabled rapid advances in our ability to understand the links between large scale pattern formation and microscopic processes. The ability to quantitatively characterize patterns is important because it enables a more rigorous comparison between the predictions of computer models and real world patterns and their formation.In some cases, the idea that patterns with a high degree of regularity have simple origins appears to be justified, but in other cases, such as the formation of almost perfectly circular stone rings due to freeze-thaw cycles simple patterns appear to be the consequence of quite complex processes. In other cases, it has been shown that

  15. Geodiversity: Exploration of 3D geological model space

    NASA Astrophysics Data System (ADS)

    Lindsay, M. D.; Jessell, M. W.; Ailleres, L.; Perrouty, S.; de Kemp, E.; Betts, P. G.

    2013-05-01

    The process of building a 3D model necessitates the reconciliation of field observations, geophysical interpretation, geological data uncertainty and the prevailing tectonic evolution hypotheses and interpretations. Uncertainty is compounded when clustered data points collected at local scales are statistically upscaled to one or two points for use in regional models. Interpretation is required to interpolate between sparse field data points using ambiguous geophysical data in covered terranes. It becomes clear that multiple interpretations are possible during model construction. The various interpretations are considered as potential natural representatives, but pragmatism typically dictates that just a single interpretation is offered by the modelling process. Uncertainties are introduced into the 3D model during construction from a variety of sources and through data set optimisation that produces a single model. Practices such as these are likely to result in a model that does not adequately represent the target geology. A set of geometrical ‘geodiversity’ metrics are used to analyse a 3D model of the Gippsland Basin, southeastern Australia after perturbing geological input data via uncertainty simulation. The resulting sets of perturbed geological observations are used to calculate a suite of geological 3D models that display a range of geological architectures. The concept of biodiversity has been adapted for the geosciences to quantify geometric variability, or geodiversity, between models in order to understand the effect uncertainty has models geometry. Various geometrical relationships (depth, volume, contact surface area, curvature and geological complexity) are used to describe the range of possibilities exhibited throughout the model suite. End-member models geodiversity metrics are classified in a similar manner to taxonomic descriptions. Further analysis of the model suite is performed using principal component analysis (PCA) to determine

  16. Maps out, models in at the British Geological Survey!

    NASA Astrophysics Data System (ADS)

    Mathers, Steve; Kessler, Holger

    2013-04-01

    BGS has stopped its' systematic onshore geological surveying programme and the litho-printing of geological maps will cease after a final batch of completed maps are published. In future BGS will undertake integrated mapping and 3D modelling in user defined target areas considering all our available geospatial data (map, boreholes, geophysics etc) assessed in a single 3D workspace. The output will be 3D geological framework models that capture the understanding and interpretation of the survey geologist and honour all available data at the time. As well as building new models in these strategic areas, BGS is collating all existing models assembled over the last 25 years into a common framework to produce a multi-scaled National Geological Model of Britain. comprising crustal, bedrock and quaternary and anthropocene themes (http://www.bgs.ac.uk/research/UKGeology/nationalgeologicalmodel/home.html). Different to the traditional geological map, the national model will not be completed at any specific scale, but at every point in the model there may be a different geological resolution available, depending on the purpose mof the original model or the strategic national need for subsurface information. The need for a complete and robust nested stratigraphic framework (BGS Lexicon) is becoming more important as we advance this model. Archive copies of all legacy models will be approved and stored in their native formats. In addition a newly designed Geological Object Store will hold geological objects such as coverages, surfaces and cross-sections from these models inside a relational database to ensure versioning and long-term security of the National Geological Model. In the mid-term these models will be attributed with physical properties such as porosity and density and form inputs to process models such as groundwater and landslide models to help predict and simulate environmental change. A key challenge for geologists and their systems building the geological

  17. Drought and Recovery: Independently Regulated Processes Highlighting the Importance of Protein Turnover Dynamics and Translational Regulation in Medicago truncatula.

    PubMed

    Lyon, David; Castillejo, Maria Angeles; Mehmeti-Tershani, Vlora; Staudinger, Christiana; Kleemaier, Christoph; Wienkoop, Stefanie

    2016-06-01

    Climate change in conjunction with population growth necessitates a systems biology approach to characterize plant drought acclimation as well as a more thorough understanding of the molecular mechanisms of stress recovery. Plants are exposed to a continuously changing environment. Extremes such as several weeks of drought are followed by rain. This requires a molecular plasticity of the plant enabling drought acclimation and the necessity of deacclimation processes for recovery and continuous growth.During drought stress and subsequent recovery, the metabolome and proteome are regulated through a sequence of molecular processes including synthesis and degradation and molecular interaction networks are part of this regulatory process. In order to study this complex regulatory network, a comprehensive analysis is presented for the first time, investigating protein turnover and regulatory classes of proteins and metabolites during a stress recovery scenario in the model legume Medicago truncatula The data give novel insights into the molecular capacity and differential processes required for acclimation and deacclimation of severe drought stressed plants.Functional cluster and network analyses unraveled independent regulatory mechanisms for stress and recovery with different dynamic phases that during the course of recovery define the plants deacclimation from stress. The combination of relative abundance levels and turnover analysis revealed an early transition phase that seems key for recovery initiation through water resupply and is independent from renutrition. Thus, a first indication for a metabolite and protein-based load capacity was observed necessary for the recovery from drought, an important but thus far ignored possible feature toward tolerance. The data indicate that apart from the plants molecular stress response mechanisms, plasticity may be related to the nutritional status of the plant prior to stress initiation. A new perspective and possible new

  18. Drought and Recovery: Independently Regulated Processes Highlighting the Importance of Protein Turnover Dynamics and Translational Regulation in Medicago truncatula*

    PubMed Central

    Lyon, David; Castillejo, Maria Angeles; Mehmeti-Tershani, Vlora; Staudinger, Christiana; Kleemaier, Christoph; Wienkoop, Stefanie

    2016-01-01

    Climate change in conjunction with population growth necessitates a systems biology approach to characterize plant drought acclimation as well as a more thorough understanding of the molecular mechanisms of stress recovery. Plants are exposed to a continuously changing environment. Extremes such as several weeks of drought are followed by rain. This requires a molecular plasticity of the plant enabling drought acclimation and the necessity of deacclimation processes for recovery and continuous growth. During drought stress and subsequent recovery, the metabolome and proteome are regulated through a sequence of molecular processes including synthesis and degradation and molecular interaction networks are part of this regulatory process. In order to study this complex regulatory network, a comprehensive analysis is presented for the first time, investigating protein turnover and regulatory classes of proteins and metabolites during a stress recovery scenario in the model legume Medicago truncatula. The data give novel insights into the molecular capacity and differential processes required for acclimation and deacclimation of severe drought stressed plants. Functional cluster and network analyses unraveled independent regulatory mechanisms for stress and recovery with different dynamic phases that during the course of recovery define the plants deacclimation from stress. The combination of relative abundance levels and turnover analysis revealed an early transition phase that seems key for recovery initiation through water resupply and is independent from renutrition. Thus, a first indication for a metabolite and protein-based load capacity was observed necessary for the recovery from drought, an important but thus far ignored possible feature toward tolerance. The data indicate that apart from the plants molecular stress response mechanisms, plasticity may be related to the nutritional status of the plant prior to stress initiation. A new perspective and possible

  19. Measuring student understanding of geological time

    NASA Astrophysics Data System (ADS)

    Dodick, Jeff; Orion, Nir

    2003-09-01

    There have been few discoveries in geology more important than deep time - the understanding that the universe has existed for countless millennia, such that man's existence is confined to the last milliseconds of the metaphorical geological clock. The influence of deep time is felt in a variety of sciences including geology, cosmology, and evolutionary biology. Thus, any student that wants to master these subjects must have a good understanding of geological time. Despite its critical importance, there has been very little attention given to geological time by science education researchers. Of the work that has been done, much of it ignores the cognitive basis for students' understanding of geological time. This work addresses this gap by presenting a validation study for a new instrument - the GeoTAT (Geological Time Aptitude Test). Consisting of a series of open puzzles, the GeoTAT tested the subjects' ability to reconstruct and represent the transformation in time of a series of geological structures. Montagnero (1992, 1996) terms this ability diachronic thinking. This instrument was distributed to a population of 285 junior and senior high school students with no background in geology, as well as 58 high school students majoring in geology. A comparison of the high school (grades 11-12) geology and non-geology majors indicated that the former group held a significant advantage over the latter in solving problems involving diachronic thinking. This relationship was especially strengthened by the second year of geological study (grade 12), with the key factor in this improvement being exposure to fieldwork. Fieldwork both improved the subjects' ability in understanding the 3-D factors influencing temporal organization, as well as providing them with experience in learning about the types of evidence that are critical in reconstructing a transformational sequence.

  20. USGS Western Coastal and Marine Geology Team

    USGS Publications Warehouse

    Johnson, Sam; Gibbons, Helen

    2007-01-01

    The Western Coastal and Marine Geology Team of the U.S. Geological Survey (USGS) studies the coasts of the western United States, including Alaska and Hawai‘i. Team scientists conduct research, monitor processes, and develop information about coastal and marine geologic hazards, environmental conditions, habitats, and energy and mineral resources. This information helps managers at all levels of government and in the private sector make informed decisions about the use and protection of national coastal and marine resources.

  1. Physiography, geology, and land cover of four watersheds in eastern Puerto Rico: Chapter A in Water quality and landscape processes of four watersheds in eastern Puerto Rico

    USGS Publications Warehouse

    Murphy, Sheila F.; Stallard, Robert F.; Larsen, Matthew C.; Gould, William A.; Murphy, Sheila F.

    2012-01-01

    Four watersheds with differing geology and land cover in eastern Puerto Rico have been studied on a long-term basis by the U.S. Geological Survey to evaluate water, energy, and biogeochemical budgets. These watersheds are typical of tropical, island-arc settings found in many parts of the world. Two watersheds are located on coarse-grained granitic rocks that weather to quartz- and clay-rich, sandy soils, and two are located on fine-grained volcanic rocks and volcaniclastic sedimentary rocks that weather to quartz-poor, fine-grained soils. For each bedrock type, one watershed is covered with mature forest, and the other watershed, like most of Puerto Rico, has transformed from relatively undisturbed pre-European forest to intensive agriculture in the 19th and early 20th centuries, and further to ongoing reforestation that began in the middle of the 20th century. The comparison of water chemistry and hydrology in these watersheds allows an evaluation of the effects of land-use history and geology on hydrologic regimes and erosion rates. This chapter describes the physiography, geology, and land cover of the four watersheds and provides background information for the remaining chapters in this volume.

  2. Inferring the demographic history from DNA sequences: An importance sampling approach based on non-homogeneous processes.

    PubMed

    Ait Kaci Azzou, S; Larribe, F; Froda, S

    2016-10-01

    In Ait Kaci Azzou et al. (2015) we introduced an Importance Sampling (IS) approach for estimating the demographic history of a sample of DNA sequences, the skywis plot. More precisely, we proposed a new nonparametric estimate of a population size that changes over time. We showed on simulated data that the skywis plot can work well in typical situations where the effective population size does not undergo very steep changes. In this paper, we introduce an iterative procedure which extends the previous method and gives good estimates under such rapid variations. In the iterative calibrated skywis plot we approximate the effective population size by a piecewise constant function, whose values are re-estimated at each step. These piecewise constant functions are used to generate the waiting times of non homogeneous Poisson processes related to a coalescent process with mutation under a variable population size model. Moreover, the present IS procedure is based on a modified version of the Stephens and Donnelly (2000) proposal distribution. Finally, we apply the iterative calibrated skywis plot method to a simulated data set from a rapidly expanding exponential model, and we show that the method based on this new IS strategy correctly reconstructs the demographic history.

  3. Geophysics & Geology Inspected.

    ERIC Educational Resources Information Center

    Neale, E. R. W.

    1981-01-01

    Summarizes findings of a recently published report of the Canadian Geoscience Council, which includes the following topics regarding college geology: facilities; teaching; undergraduate enrollments; postgraduate enrollments; geologic research; and integration of Canadian geoscience with other countries. (CS)

  4. Geologic spatial analysis

    SciTech Connect

    Thiessen, R.L.; Eliason, J.R.

    1989-01-01

    This report describes the development of geologic spatial analysis research which focuses on conducting comprehensive three-dimensional analysis of regions using geologic data sets that can be referenced by latitude, longitude, and elevation/depth. (CBS)

  5. Rheology and density of glucose syrup and honey: Determining their suitability for usage in analogue and fluid dynamic models of geological processes

    NASA Astrophysics Data System (ADS)

    Schellart, W. P.

    2011-06-01

    glucose syrup and honey, respectively. The new results demonstrate that glucose syrups and (to a lesser degree) honeys are well suited for usage in analogue and fluid dynamic experiments to represent linear-viscous strain independent and shear rate independent rheologies to model geological processes. Glucose syrups have the added advantage of being more transparent than honeys, allowing for accurately resolving and quantifying flow patterns in the fluid during a model run.

  6. (abstract) Topographic Signatures in Geology

    NASA Technical Reports Server (NTRS)

    Farr, Tom G.; Evans, Diane L.

    1996-01-01

    Topographic information is required for many Earth Science investigations. For example, topography is an important element in regional and global geomorphic studies because it reflects the interplay between the climate-driven processes of erosion and the tectonic processes of uplift. A number of techniques have been developed to analyze digital topographic data, including Fourier texture analysis. A Fourier transform of the topography of an area allows the spatial frequency content of the topography to be analyzed. Band-pass filtering of the transform produces images representing the amplitude of different spatial wavelengths. These are then used in a multi-band classification to map units based on their spatial frequency content. The results using a radar image instead of digital topography showed good correspondence to a geologic map, however brightness variations in the image unrelated to topography caused errors. An additional benefit to the use of Fourier band-pass images for the classification is that the textural signatures of the units are quantative measures of the spatial characteristics of the units that may be used to map similar units in similar environments.

  7. History of Geology.

    ERIC Educational Resources Information Center

    Bork, Kennard B.

    1983-01-01

    Highlights geological history activities during 1982. These include formation of The History of Earth Sciences Societies, publication of a new journal ("Earth Sciences History: The Journal of the History of Earth Sciences Societies"), and presentation of the first history of geology award. Comments on geological history publications are also…

  8. Morphometry of Concepcion Bank: Evidence of Geological and Biological Processes on a Large Volcanic Seamount of the Canary Islands Seamount Province

    PubMed Central

    Canals, Miquel; Lastras, Galderic; Hermida, Nuria; Amblas, David; Arrese, Beatriz; Martín-Sosa, Pablo; Acosta, Juan

    2016-01-01

    waves and cold-water coral (CWC) mounds on the bank summit plateau are the youngest features contributing to its final shaping, and may be indicative of internal wave effects. Numerous submarine canyons generally less than 10 km in length are incised on the bank’s flanks. The most developed, hierarchized canyon system runs southwest of the bank, where it merges with other canyons coming from the southern bulges attached to some sections of the seamount flanks. These bulges are postulated as having an intrusive origin, as no major headwall landslide scars have been detected and their role as deposition areas for the submarine canyons seems to be minor. The results presented document how geological processes in the past and recent to subrecent oceanographic conditions and associated active processes determined the current physiography, morphology and sedimentary patterns of Concepcion Bank, including the development and decline of CWC mounds The setting of the seamount in the regional crustal structure is also discussed. PMID:27243626

  9. Morphometry of Concepcion Bank: Evidence of Geological and Biological Processes on a Large Volcanic Seamount of the Canary Islands Seamount Province.

    PubMed

    Rivera, Jesus; Canals, Miquel; Lastras, Galderic; Hermida, Nuria; Amblas, David; Arrese, Beatriz; Martín-Sosa, Pablo; Acosta, Juan

    2016-01-01

    and cold-water coral (CWC) mounds on the bank summit plateau are the youngest features contributing to its final shaping, and may be indicative of internal wave effects. Numerous submarine canyons generally less than 10 km in length are incised on the bank's flanks. The most developed, hierarchized canyon system runs southwest of the bank, where it merges with other canyons coming from the southern bulges attached to some sections of the seamount flanks. These bulges are postulated as having an intrusive origin, as no major headwall landslide scars have been detected and their role as deposition areas for the submarine canyons seems to be minor. The results presented document how geological processes in the past and recent to subrecent oceanographic conditions and associated active processes determined the current physiography, morphology and sedimentary patterns of Concepcion Bank, including the development and decline of CWC mounds The setting of the seamount in the regional crustal structure is also discussed. PMID:27243626

  10. Morphometry of Concepcion Bank: Evidence of Geological and Biological Processes on a Large Volcanic Seamount of the Canary Islands Seamount Province.

    PubMed

    Rivera, Jesus; Canals, Miquel; Lastras, Galderic; Hermida, Nuria; Amblas, David; Arrese, Beatriz; Martín-Sosa, Pablo; Acosta, Juan

    2016-01-01

    and cold-water coral (CWC) mounds on the bank summit plateau are the youngest features contributing to its final shaping, and may be indicative of internal wave effects. Numerous submarine canyons generally less than 10 km in length are incised on the bank's flanks. The most developed, hierarchized canyon system runs southwest of the bank, where it merges with other canyons coming from the southern bulges attached to some sections of the seamount flanks. These bulges are postulated as having an intrusive origin, as no major headwall landslide scars have been detected and their role as deposition areas for the submarine canyons seems to be minor. The results presented document how geological processes in the past and recent to subrecent oceanographic conditions and associated active processes determined the current physiography, morphology and sedimentary patterns of Concepcion Bank, including the development and decline of CWC mounds The setting of the seamount in the regional crustal structure is also discussed.

  11. Geology of Kilauea volcano

    SciTech Connect

    Moore, R.B. . Federal Center); Trusdell, F.A. . Hawaiian Volcano Observatory)

    1993-08-01

    This paper summarizes studies of the structure, stratigraphy, petrology, drill holes, eruption frequency, and volcanic and seismic hazards of Kilauea volcano. All the volcano is discussed, but the focus is on its lower east rift zone (LERZ) because active exploration for geothermal energy is concentrated in that area. Kilauea probably has several separate hydrothermal-convection systems that develop in response to the dynamic behavior of the volcano and the influx of abundant meteoric water. Important features of some of these hydrothermal-convection systems are known through studies of surface geology and drill holes. Observations of eruptions during the past two centuries, detailed geologic mapping, radiocarbon dating, and paleomagnetic secular-variation studies indicate that Kilauea has erupted frequently from its summit and two radial rift zones during Quaternary time. Petrologic studies have established that Kilauea erupts only tholeiitic basalt. Extensive ash deposits at Kilauea's summit and on its LERZ record locally violent, but temporary, disruptions of local hydrothermal-convection systems during the interaction of water or steam with magma. Recent drill holes on the LERZ provide data on the temperatures of the hydrothermal-convection systems, intensity of dike intrusion, porosity and permeability, and an increasing amount of hydrothermal alteration with depth. The prehistoric and historic record of volcanic and seismic activity indicates that magma will continue to be supplied to deep and shallow reservoirs beneath Kilauea's summit and rift zones and that the volcano will be affected by eruptions and earthquakes for many thousands of years. 71 refs., 2 figs.

  12. Geology of kilauea volcano

    USGS Publications Warehouse

    Moore, R.B.; Trusdell, F.A.

    1993-01-01

    This paper summarizes studies of the structure, stratigraphy, petrology, drill holes, eruption frequency, and volcanic and seismic hazards of Kilauea volcano. All the volcano is discussed, but the focus is on its lower cast rift zone (LERZ) because active exploration for geothermal energy is concentrated in that area. Kilauea probably has several separate hydrothermal-convection systems that develop in response to the dynamic behavior of the volcano and the influx of abundant meteoric water. Important features of some of these hydrothermal-convection systems are known through studies of surface geology and drill holes. Observations of eruptions during the past two centuries, detailed geologic mapping, radiocarbon dating, and paleomagnetic secular-variation studies indicate that Kilauea has erupted frequently from its summit and two radial rift zones during Quaternary time. Petrologic studies have established that Kilauea erupts only tholeiitic basalt. Extensive ash deposits at Kilauea's summit and on its LERZ record locally violent, but temporary, disruptions of local hydrothermal-convection systems during the interaction of water or steam with magma. Recent drill holes on the LERZ provide data on the temperatures of the hydrothermal-convection systems, intensity of dike intrusion, porosity and permeability, and an increasing amount of hydrothermal alteration with depth. The prehistoric and historic record of volcanic and seismic activity indicates that magma will continue to be supplied to deep and shallow reservoirs beneath Kilauea's summit and rift zones and that the volcano will be affected by eruptions and earthquakes for many thousands of years. ?? 1993.

  13. Geological rhythms and cometary impacts

    NASA Technical Reports Server (NTRS)

    Rampino, M. R.; Strothers, R. B.

    1984-01-01

    Time series analysis reveals two dominant, long-term periodicities approximately equal to 32 and 260 million years in the known series of geological and biological upheavals during the Phanerozoic Eon. The cycles of these episodes agree in period and phase with the cycles of impact cratering on Earth, suggesting that periodic comet impacts strongly influence Earth processes.

  14. Classroom Strategies for Introductory Geology.

    ERIC Educational Resources Information Center

    Clemons, Joan

    1991-01-01

    The author describes her use of writing assignments, small-group discussions, note-taking strategies (learning logs), and professional simulations in an introductory geology course. The learning log process consists of note taking on one side of a divided page. After taking notes, students review the notes and record their questions, reactions,…

  15. Phylogeographic patterns of genetic diversity in eastern Mediterranean water frogs have been determined by geological processes and climate change in the Late Cenozoic

    PubMed Central

    Akın, Çiğdem; Bilgin, C. Can; Beerli, Peter; Westaway, Rob; Ohst, Torsten; Litvinchuk, Spartak N.; Uzzell, Thomas; Bilgin, Metin; Hotz, Hansjürg; Guex, Gaston-Denis; Plötner, Jörg

    2010-01-01

    Aim Our aims were to assess the phylogeographic patterns of genetic diversity in eastern Mediterranean water frogs and to estimate divergence times using different geological scenarios. We related divergence times to past geological events and discuss the relevance of our data for the systematics of eastern Mediterranean water frogs. Location The eastern Mediterranean region. Methods Genetic diversity and divergence were calculated using sequences of two protein-coding mitochondrial (mt) genes: ND2 (1038 bp, 119 sequences) and ND3 (340 bp, 612 sequences). Divergence times were estimated in a Bayesian framework under four geological scenarios representing alternative possible geological histories for the eastern Mediterranean. We then compared the different scenarios using Bayes factors and additional geological data. Results Extensive genetic diversity in mtDNA divides eastern Mediterranean water frogs into six main haplogroups (MHG). Three MHGs were identified on the Anatolian mainland; the most widespread MHG with the highest diversity is distributed from western Anatolia to the northern shore of the Caspian Sea, including the type locality of Pelophylax ridibundus. The other two Anatolian MHGs are restricted to south-eastern Turkey, occupying localities west and east of the Amanos mountain range. One of the remaining three MHGs is restricted to Cyprus; a second to the Levant; the third was found in the distribution area of European lake frogs (P. ridibundus group), including the Balkans. Main conclusions Based on geological evidence and estimates of genetic divergence we hypothesize that the water frogs of Cyprus have been isolated from the Anatolian mainland populations since the end of the Messinian salinity crisis (MSC), i.e. since c. 5.5-5.3 Ma, while our divergence time estimates indicate that the isolation of Crete from the mainland populations (Peloponnese, Anatolia) most likely pre-dates the MSC. The observed rates of divergence imply a time window of c

  16. Phylogeographic patterns of genetic diversity in eastern Mediterranean water frogs have been determined by geological processes and climate change in the Late Cenozoic.

    PubMed

    Akın, Ciğdem; Bilgin, C Can; Beerli, Peter; Westaway, Rob; Ohst, Torsten; Litvinchuk, Spartak N; Uzzell, Thomas; Bilgin, Metin; Hotz, Hansjürg; Guex, Gaston-Denis; Plötner, Jörg

    2010-11-01

    AIM: Our aims were to assess the phylogeographic patterns of genetic diversity in eastern Mediterranean water frogs and to estimate divergence times using different geological scenarios. We related divergence times to past geological events and discuss the relevance of our data for the systematics of eastern Mediterranean water frogs. LOCATION: The eastern Mediterranean region. METHODS: Genetic diversity and divergence were calculated using sequences of two protein-coding mitochondrial (mt) genes: ND2 (1038 bp, 119 sequences) and ND3 (340 bp, 612 sequences). Divergence times were estimated in a Bayesian framework under four geological scenarios representing alternative possible geological histories for the eastern Mediterranean. We then compared the different scenarios using Bayes factors and additional geological data. RESULTS: Extensive genetic diversity in mtDNA divides eastern Mediterranean water frogs into six main haplogroups (MHG). Three MHGs were identified on the Anatolian mainland; the most widespread MHG with the highest diversity is distributed from western Anatolia to the northern shore of the Caspian Sea, including the type locality of Pelophylax ridibundus. The other two Anatolian MHGs are restricted to south-eastern Turkey, occupying localities west and east of the Amanos mountain range. One of the remaining three MHGs is restricted to Cyprus; a second to the Levant; the third was found in the distribution area of European lake frogs (P. ridibundus group), including the Balkans. MAIN CONCLUSIONS: Based on geological evidence and estimates of genetic divergence we hypothesize that the water frogs of Cyprus have been isolated from the Anatolian mainland populations since the end of the Messinian salinity crisis (MSC), i.e. since c. 5.5-5.3 Ma, while our divergence time estimates indicate that the isolation of Crete from the mainland populations (Peloponnese, Anatolia) most likely pre-dates the MSC. The observed rates of divergence imply a time window

  17. Geological assessing of urban environments with a systematic mapping survey: The 1:5000 urban geological map of Catalonia

    NASA Astrophysics Data System (ADS)

    Vilà, Miquel; Pi, Roser; Cirés, Jordi; de Paz, Ana; Berástegui, Xavier

    2010-05-01

    The ground features of urban areas and the geologic processes that operate on them are, in general, strongly altered from their natural original condition as a result of anthropogenic activities. Assessing the stability of the ground, the flooding areas, and, the health risk as a consequence of soil pollution, are, among others, fundamental topics of urban areas that require a better understanding. The development of systematic urban geological mapping projects provides valuable resources to address these issues. Since 2007, the Institut Geologic de Catalunya (IGC) runs an urban geological mapping project, to provide accurate geologic information of county capitals and towns of more than 10000 inhabitants of Catalonia. The urban zones of 131 towns will be surveyed for this project, totalizing an area of about 2200 km2 to be mapped in 15 years. According to the 2008 census, the 82 % of the population of Catalonia (7.242.458 inhabitants) lives in the areas to be mapped in this project. The mapping project integrates in a GIS environment the following subjects: - Data from pre-existing geotechnical reports, historical geological and topographical maps and, from historical aerial photographs. - Data from available borehole databases. - Geological characterization of outcrops inside the urban network and neighbouring areas. - Geological, chemical and physical characterisation of representative rocks, sediments and soils. - Ortophotographs (0.5 m pixel size) and digital elevation models (5 meter grid size) made from historical aerial photographs, to depict land use changes, artificial deposits and geomorphological elements that are either hidden or destroyed by urban sprawl. - Detailed geological mapping of quaternary sediments, subsurface bedrock and artificial deposits. - Data from subsurface prospection in areas with insufficient or confuse data. - 3D modelling of the main geological surfaces such as the top of the pre-quaternary basement. All the gathered data is

  18. Morphometric evaluation of the uncinate process and its importance in surgical approaches to the cervical spine: a cadaveric study

    PubMed Central

    Güvençer, Mustafa; Naderi, Sait; Men, Süleyman; Sayhan, Salih; Tetik, Süleyman

    2016-01-01

    INTRODUCTION The uncinate process (UP) has an important role because of its relationship with the vertebral artery and spinal roots. Degenerative diseases cause osteophyte formation on the UP, leading to radiculopathy, myelopathy and vertebral vascular insufficiency, which may require surgical management. This study aimed to evaluate the morphometry of this region to shed light on the anatomy of the UP. METHODS Morphometric data was obtained from 13 male formaldehyde-fixed cadavers. Direct measurements were obtained using a metal caliper. Computed tomography (CT) morphometry was performed with the cadavers in the supine position. RESULTS Direct cadaveric measurements showed that the height of the UP increased from C3 (5.8 ± 1.0 mm) to C7 (6.6 ± 0.5 mm). On CT, the corresponding measurements were 5.9 ± 1.2 mm at C3 and 6.9 ± 0.6 mm at C7. The distance between the left and right apex of the UP from C3 to C7 also increased on both direct cadaveric and CT measurements (C3: 20.8 ± 1.0 mm and C7: 28.1 ± 2.4 mm vs. C3: 23.7 ± 3.4 mm and C7: 29.0 ± 3.0 mm, respectively). On CT, the distance between the UP and superior articular process at the C3 to C7 levels were 9.8 ± 1.7 mm, 7.9 ± 1.8 mm, 7.9 ± 1.6 mm, 7.8 ± 1.3 mm and 8.2 ± 1.7 mm, respectively. CONCLUSION Direct cadaveric and CT measurements of the UP are useful for preoperative evaluation of the cervical spine and may lead to better surgical outcomes. PMID:26778467

  19. Geomorphological features in the southern Canary Island Volcanic Province: The importance of volcanic processes and massive slope instabilities associated with seamounts

    NASA Astrophysics Data System (ADS)

    Palomino, Desirée; Vázquez, Juan-Tomás; Somoza, Luis; León, Ricardo; López-González, Nieves; Medialdea, Teresa; Fernández-Salas, Luis-Miguel; González, Francisco-Javier; Rengel, Juan Antonio

    2016-02-01

    The margin of the continental slope of the Volcanic Province of Canary Islands is characterised by seamounts, submarine hills and large landslides. The seabed morphology including detailed morphology of the seamounts and hills was analysed using multibeam bathymetry and backscatter data, and very high resolution seismic profiles. Some of the elevation data are reported here for the first time. The shape and distribution of characteristics features such as volcanic cones, ridges, slides scars, gullies and channels indicate evolutionary differences. Special attention was paid to recent geological processes that influenced the seamounts. We defined various morpho-sedimentary units, which are mainly due to massive slope instability that disrupt the pelagic sedimentary cover. We also studied other processes such as the role of deep bottom currents in determining sediment distribution. The sediments are interpreted as the result of a complex mixture of material derived from a) slope failures on seamounts and submarine hills; and b) slides and slumps on the continental slope.

  20. Streamflow and water-quality conditions including geologic sources and processes affecting selenium loading in the Toll Gate Creek watershed, Aurora, Arapahoe County, Colorado, 2007

    USGS Publications Warehouse

    Paschke, Suzanne S.; Runkel, Robert L.; Walton-Day, Katherine; Kimball, Briant A.; Schaffrath, Keelin R.

    2013-01-01

    Toll Gate Creek is a perennial stream draining a suburban area in Aurora, Colorado, where selenium concentrations have consistently exceeded the State of Colorado aquatic-life standard for selenium of 4.6 micrograms per liter since the early 2000s. In cooperation with the City of Aurora, Colorado, Utilities Department, a synoptic water-quality study was performed along an 18-kilometer reach of Toll Gate Creek extending from downstream from Quincy Reservoir to the confluence with Sand Creek to develop a detailed understanding of streamflow and concentrations and loads of selenium in Toll Gate Creek. Streamflow and surface-water quality were characterized for summer low-flow conditions (July–August 2007) using four spatially overlapping synoptic-sampling subreaches. Mass-balance methods were applied to the synoptic-sampling and tracer-injection results to estimate streamflow and develop spatial profiles of concentration and load for selenium and other chemical constituents in Toll Gate Creek surface water. Concurrent groundwater sampling determined concentrations of selenium and other chemical constituents in groundwater in areas surrounding the Toll Gate Creek study reaches. Multivariate principal-component analysis was used to group samples and to suggest common sources for dissolved selenium and major ions. Hydrogen and oxygen stable-isotope ratios, groundwater-age interpretations, and chemical analysis of water-soluble paste extractions from core samples are presented, and interpretation of the hydrologic and geochemical data support conclusions regarding geologic sources of selenium and the processes affecting selenium loading in the Toll Gate Creek watershed. Streamflow conditions observed and measured during the synoptic water-quality study represent summer base-flow conditions and rainfall conditions for July 2007. The lack of large tributary inflows and the spatial distribution of small tributary inflows, seeps, and springs indicate that diffuse and

  1. Evolution of U fractionation processes through geologic time : consequences for the variation of U deposit types from Early Earth to Present

    NASA Astrophysics Data System (ADS)

    Cuney, M.

    2009-12-01

    U deposits are known at nearly all stages of the geological cycle, but are not known prior to 2.95 Ga. Also, U deposit types vary greatly from Mesoarchean to Present. Most of these changes through time can be attributed to major modifications in the geodynamic evolution of the Earth, in magmatic fractionation processes, in the composition of the Atmosphere and in the nature of life. The first U-rich granites able to crystallize uraninite, appeared at about 3.1 Ga. They correspond to the most fractionated terms of high-K calcalkaline suites, resulting from crystal fractionation of magmas possibly derived from melting of mantle wedges enriched in K, U, Th. Highly fractionated peraluminous leucogranites, able to crystallize uraninite, appeared at about 2.6 Ga. Erosion of these two granite types led to the detrital accumulation of uraninite that formed the first U deposits on Earth: the Quartz Pebble Conglomerates from 2.95 to 2.4 Ga. From 2.3 Ga onwards, uprise of oxygen level in the atmosphere led to the oxidation of U(IV) to U(VI), U transport in solution, and exuberant development of marine algae in epicontinental platform sediments. From 2.3 to 1.8 Ga large amounts of U, previously accumulated as U(IV) minerals, were dissolved and trapped preferentially in passive margin settings, in organic-rich sediments, and which led to the formation of the world’s largest Paleoproterozoic U provinces, e.g. : the Wollaston belt, Canada and the Cahill Formation, Australia. During and after the worldwide 2.1-1.75 Ga orogenic events, responsible for the formation of the Nuna supercontinent, U trapped in these formations was the source for several types of mineralization: (i) metamorphosed U-mineralized graphitic schists, calcsilicates and meta-arkoses, (ii) diagenetic-hydrothermal remobilization with the formation of the first deposits related to redox processes at 2.0 Ga (Oklo, Gabon), (iii) partial melting of U-rich metasediments forming the uraninite disseminations in

  2. Airborne electromagnetic data and processing within Leach Lake Basin, Fort Irwin, California: Chapter G in Geology and geophysics applied to groundwater hydrology at Fort Irwin, California

    USGS Publications Warehouse

    Bedrosian, Paul A.; Ball, Lyndsay B.; Bloss, Benjamin R.

    2014-01-01

    From December 2010 to January 2011, the U.S. Geological Survey conducted airborne electromagnetic and magnetic surveys of Leach Lake Basin within the National Training Center, Fort Irwin, California. These data were collected to characterize the subsurface and provide information needed to understand and manage groundwater resources within Fort Irwin. A resistivity stratigraphy was developed using ground-based time-domain electromagnetic soundings together with laboratory resistivity measurements on hand samples and borehole geophysical logs from nearby basins. This report releases data associated with the airborne surveys, as well as resistivity cross-sections and depth slices derived from inversion of the airborne electromagnetic data. The resulting resistivity models confirm and add to the geologic framework, constrain the hydrostratigraphy and the depth to basement, and reveal the distribution of faults and folds within the basin.

  3. Geologic Sequestration of Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Benson, S. M.

    2003-04-01

    Geologic sequestration of carbon dioxide has emerged as one of the most promising options for making deep cuts in carbon dioxide emissions. Geologic sequestration involves the two-step process of first capturing carbon dioxide by separating it from stack emissions, followed by injection and long term storage in deep geologic formations. Sedimentary basins, including depleted oil and gas reservoirs, deep unminable coal seams, and brine-filled formations, provide the most attractive storage reservoirs. Over the past few years significant advances have been made in this technology, including development of simulation models and monitoring systems, implementation of commercial scale demonstration projects, and investigation of natural and industrial analogues for geologic storage of carbon dioxide. While much has been accomplished in a short time, there are many questions that must be answered before this technology can be employed on the scale needed to make significant reductions in carbon dioxide emissions. Questions such as how long must the carbon dioxide remain underground, to what extent will geochemical reactions completely immobilize the carbon dioxide, what can be done in the event that a storage site begins to leak at an unacceptable rate, what is the appropriate risk assessment, regulatory and legal framework, and will the public view this option favorably? This paper will present recent advances in the scientific and technological underpinnings of geologic sequestration and identify areas where additional information is needed.

  4. Process and device for injecting a liquid agent used for treating a geological formation in the vicinity of a well bore traversing this formation

    SciTech Connect

    Colonna, J.; Fitremann, Jm.; Genin, R.; Sarda, Jp.

    1984-02-14

    A technique is disclosed for liquid treating a geological formation. It comprises spraying the liquid with a pressurized carrier gas, using a spraying pipe whose length and diameter are adjusted as a function of the pressure prevailing at the level of the formation and of the characteristics of the injected liquid and the pressurized carrier gas, so that the size of the liquid droplets at the outlet of the spraying pipe has a narrow range of distribution about a single preselected value.

  5. Towards Pro-active Embodied Agents: On the Importance of Neural Mechanisms Suitable to Process Time Information

    NASA Astrophysics Data System (ADS)

    de Croon, G.; Nolfi, S.; Postma, E. O.

    In Embodied Cognitive Science, many studies have focused on reactive agents, i.e. agents that have no internal state and always respond in the same way to the same stimulus. However, this particular focus is not due to a rejection of the importance of internal states. Rather, it is due to the difficulty of developing pro-active embodied and situated agents, that is agents able to: (a) extract internal states by integrating sensorymotor information through time and, (b) later use these internal states to modulate their motor behaviour according to the current environmental circumstances. In this chapter we will focus on how pro-active agents can be developed and, more specifically, on which are the neural mechanisms that might favour the development of pro-active agents. By comparing the results of five sets of evolutionary experiments in which simulated robots are provided with different types of recurrent neural networks, we gain insight into the relation between the robots` capabilities and the characteristics of their neural controllers. We show how special mechanisms for processing information in time facilitate the exploitation of internal states.

  6. Importance of a stable topoisomerase IB clamping for an efficient DNA processing: Effect of the Lys(369)Glu mutation.

    PubMed

    Vieira, Sara; Castelli, Silvia; Desideri, Alessandro

    2015-11-01

    The role of lysine 369 of human topoisomerase IB in recognizing, clamping and processing its DNA substrate was experimentally investigated. Lys(369) is located in one of the two lips that interact to each other allowing the protein to embrace and firmly bind the DNA substrate. The lysine was mutated to a glutamate residue and the catalytic activity of the mutant enzyme was assayed. The mutant shows a distributive behavior, has a reduced binding to the substrate and a lower cleavage extent when compared to the wild type enzyme. The mutant displays reduced sensitivity to CPT both "in vitro" and in an "in vivo" yeast model, likely because of the low amount of cleaved DNA, however it displays cleavage and religation rates comparable to the wild type. These results demonstrate that the mutation causes a destabilization of the lips clamping around the DNA, impairing the protein-DNA interaction, emphasizing the importance of the ionic pair in tuning the stability of the protein-DNA complex.

  7. On the Importance of Processing Conditions for the Nutritional Characteristics of Homogenized Composite Meals Intended for Infants

    PubMed Central

    Östman, Elin; Forslund, Anna; Tareke, Eden; Björck, Inger

    2016-01-01

    The nutritional quality of infant food is an important consideration in the effort to prevent a further increase in the rate of childhood obesity. We hypothesized that the canning of composite infant meals would lead to elevated contents of carboxymethyl-lysine (CML) and favor high glycemic and insulinemic responses compared with milder heat treatment conditions. We have compared composite infant pasta Bolognese meals that were either conventionally canned (CANPBol), or prepared by microwave cooking (MWPBol). A meal where the pasta and Bolognese sauce were separate during microwave cooking (MWP_CANBol) was also included. The infant meals were tested at breakfast in healthy adults using white wheat bread (WWB) as reference. A standardized lunch meal was served at 240 min and blood was collected from fasting to 360 min after breakfast. The 2-h glucose response (iAUC) was lower following the test meals than with WWB. The insulin response was lower after the MWP_CANBol (−47%, p = 0.0000) but markedly higher after CANPBol (+40%, p = 0.0019), compared with WWB. A combined measure of the glucose and insulin responses (ISIcomposite) revealed that MWP_CANBol resulted in 94% better insulin sensitivity than CANPBol. Additionally, the separate processing of the meal components in MWP_CANBol resulted in 39% lower CML levels than the CANPBol. It was therefore concluded that intake of commercially canned composite infant meals leads to reduced postprandial insulin sensitivity and increased exposure to oxidative stress promoting agents. PMID:27271662

  8. On the Importance of Processing Conditions for the Nutritional Characteristics of Homogenized Composite Meals Intended for Infants.

    PubMed

    Östman, Elin; Forslund, Anna; Tareke, Eden; Björck, Inger

    2016-01-01

    The nutritional quality of infant food is an important consideration in the effort to prevent a further increase in the rate of childhood obesity. We hypothesized that the canning of composite infant meals would lead to elevated contents of carboxymethyl-lysine (CML) and favor high glycemic and insulinemic responses compared with milder heat treatment conditions. We have compared composite infant pasta Bolognese meals that were either conventionally canned (CANPBol), or prepared by microwave cooking (MWPBol). A meal where the pasta and Bolognese sauce were separate during microwave cooking (MWP_CANBol) was also included. The infant meals were tested at breakfast in healthy adults using white wheat bread (WWB) as reference. A standardized lunch meal was served at 240 min and blood was collected from fasting to 360 min after breakfast. The 2-h glucose response (iAUC) was lower following the test meals than with WWB. The insulin response was lower after the MWP_CANBol (-47%, p = 0.0000) but markedly higher after CANPBol (+40%, p = 0.0019), compared with WWB. A combined measure of the glucose and insulin responses (ISIcomposite) revealed that MWP_CANBol resulted in 94% better insulin sensitivity than CANPBol. Additionally, the separate processing of the meal components in MWP_CANBol resulted in 39% lower CML levels than the CANPBol. It was therefore concluded that intake of commercially canned composite infant meals leads to reduced postprandial insulin sensitivity and increased exposure to oxidative stress promoting agents. PMID:27271662

  9. Probing astrophysically important states in the 26Mg nucleus to study neutron sources for the s process

    NASA Astrophysics Data System (ADS)

    Talwar, R.; Adachi, T.; Berg, G. P. A.; Bin, L.; Bisterzo, S.; Couder, M.; deBoer, R. J.; Fang, X.; Fujita, H.; Fujita, Y.; Görres, J.; Hatanaka, K.; Itoh, T.; Kadoya, T.; Long, A.; Miki, K.; Patel, D.; Pignatari, M.; Shimbara, Y.; Tamii, A.; Wiescher, M.; Yamamoto, T.; Yosoi, M.

    2016-05-01

    states from the experimental data. The results were used to determine the α -capture induced reaction rates. Conclusion: The energy range above the α threshold in 26Mg was investigated using a high resolution spectrometer. A number of states were observed for the first time in α -scattering and α -transfer reactions. The excitation energies and spin-parities were determined. Good agreement is observed for previously known levels in 26Mg. From the observed resonance levels the Ex = 10717 keV state has a negligible contribution to the α -induced reaction rates. The rates are dominated in both reaction channels by the resonance contributions of the states at Ex = 10951, 11167, and 11317 keV. The Ex = 11167 keV state has the most appreciable impact on the (α ,γ ) rate and therefore plays an important role in the prediction of the neutron production in s -process environments.

  10. Opening the mind to close it: considering a message in light of important values increases message processing and later resistance to change.

    PubMed

    Blankenship, Kevin L; Wegener, Duane T

    2008-02-01

    Past research showed that considering a persuasive message in light of important rather than unimportant values creates attitudes that resist later attack. The traditional explanation is that the attitudes come to express the value or that a cognitive link between the value and attitude enhances resistance. However, the current research showed that another explanation is plausible. Similar to other sources of involvement, considering important rather than unimportant values increases processing of the message considered in light of those values. This occurs when the values are identified as normatively high or low in importance and when the perceived importance differs across participants for the same values. The increase in processing creates resistance to later attacks, and unlike past research, individual-level measures of initial amount of processing mediate value importance effects on later resistance to change. Important values motivate processing because they increase personal involvement with the issue, rather than creating attitudes that represent or express core values.

  11. Geological consequences of superplumes

    SciTech Connect

    Larson, R.L. )

    1991-10-01

    Superplumes are suggested to have caused the period of constant normal magnetic polarity in mid-Cretaceous time (124-83 Ma) and, possibly, the period of constant reversed polarity in Pennsylvania-Permian time (323-248 Ma). These times coincide with increases in world temperature, deposition of black shales, oil generation, and eustatic sea level in the mid-Cretaceous, and increased coal generation and gas accumulation in the Pennsylvanian-Permian, accompanied by an intracratonic Pennsylvanian transgression of epicontinental seas. These geologic anomalies are associated with episodes of increased world-wide ocean-crust production and mantle outgassing, especially of carbon and nutrients. These superplumes originated just above the core-mantle boundary, significantly increased convection in the outer core, and stopped the magnetic field reversal process for 41 m.y. in the Cretaceous and 75 m.y. in Pennsylvanian-Permian time.

  12. Geology of National Parks

    USGS Publications Warehouse

    Stoffer, Philip W.

    2008-01-01

    This is a set of two sheets of 3D images showing geologic features of many National Parks. Red-and-cyan viewing glasses are need to see the three-dimensional effect. A search on the World Wide Web will yield many sites about anaglyphs and where to get 3D glasses. Red-blue glasses will do but red-cyan glasses are a little better. This publication features a photo quiz game: Name that park! where you can explore, interpret, and identify selected park landscapes. Can you identify landscape features in the images? Can you explain processes that may have helped form the landscape features? You can get the answers online.

  13. Sand Resources, Regional Geology, and Coastal Processes of the Chandeleur Islands Coastal System: an Evaluation of the Breton National Wildlife Refuge

    USGS Publications Warehouse

    Lavoie, Dawn

    2009-01-01

    Breton National Wildlife Refuge, the Chandeleur Islands chain in Louisiana, provides habitat and nesting areas for wildlife and is an initial barrier protecting New Orleans from storms. The U.S. Geological Survey (USGS) in partnership with the University of New Orleans Pontchartrain Institute for Environmental Sciences undertook an intensive study that included (1) an analysis of island change based on historical maps and remotely sensed shoreline and topographic data; (2) a series of lidar surveys at 3- to 4-month intervals after Hurricane Katrina to determine barrier island recovery potential; (3) a discussion of sea level rise and effects on the islands; (4) an analysis of sea floor evolution and sediment dynamics in the refuge over the past 150 years; (5) an assessment of the local sediment transport and sediment resource availability based on the bathymetric and subbottom data; (6) a carefully selected core collection effort to groundtruth the geophysical data and more fully characterize the sediments composing the islands and surrounds; (7) an additional survey of the St. Bernard Shoals to assess their potential as a sand resource; and (8) a modeling study to numerically simulate the potential response of the islands to the low-intensity, intermediate, and extreme events likely to affect the refuge over the next 50 years. Results indicate that the islands have become fragmented and greatly diminished in subaerial extent over time: the southern islands retreating landward as they reorganize into subaerial features, the northern islands remaining in place. Breton Island, because maintenance of the Mississippi River-Gulf Outlet (MRGO) outer bar channel requires dredging, is deprived of sand sufficient to sustain itself. Regional sediment transport trends indicate that large storms are extremely effective in transporting sand and controlling the shoreline development and barrier island geometry. Sand is transported north and south from a divergent zone near

  14. Geology for a changing world 2010-2020-Implementing the U.S. Geological Survey science strategy

    USGS Publications Warehouse

    Gundersen, Linda C.S.; Belnap, Jayne; Goldhaber, Martin; Goldstein, Arthur; Haeussler, Peter J.; Ingebritsen, S.E.; Jones, John W.; Plumlee, Geoffrey S.; Thieler, E. Robert; Thompson, Robert S.; Back, Judith M.

    2011-01-01

    This report describes a science strategy for the geologic activities of the U.S. Geological Survey (USGS) for the years 2010-2020. It presents six goals with accompanying strategic actions and products that implement the science directions of USGS Circular 1309, 'Facing Tomorrow's Challenges-U.S. Geological Survey Science in the Decade 2007-2017.' These six goals focus on providing the geologic underpinning needed to wisely use our natural resources, understand and mitigate hazards and environmental change, and understand the relationship between humans and the environment. The goals emphasize the critical role of the USGS in providing long-term research, monitoring, and assessments for the Nation and the world. Further, they describe measures that must be undertaken to ensure geologic expertise and knowledge for the future. The natural science issues facing today's world are complex and cut across many scientific disciplines. The Earth is a system in which atmosphere, oceans, land, and life are all connected. Rocks and soils contain the answers to important questions about the origin of energy and mineral resources, the evolution of life, climate change, natural hazards, ecosystem structures and functions, and the movements of nutrients and toxicants. The science of geology has the power to help us understand the processes that link the physical and biological world so that we can model and forecast changes in the system. Ensuring the success of this strategy will require integration of geological knowledge with the other natural sciences and extensive collaboration across USGS science centers and with partners in Federal, State, and local agencies, academia, industry, nongovernmental organizations and, most importantly, the American public. The first four goals of this report describe the scientific issues facing society in the next 10 years and the actions and products needed to respond to these issues. The final two goals focus on the expertise and

  15. Successful Drug Development Despite Adverse Preclinical Findings Part 1: Processes to Address Issues and Most Important Findings

    PubMed Central

    Kuroda, Junji; Plassmann, Stephanie; Prentice, David E.

    2010-01-01

    Unexpected adverse preclinical findings (APFs) are not infrequently encountered during drug development. Such APFs can be functional disturbances such as QT prolongation, morphological toxicity or carcinogenicity. The latter is of particular concern in conjunction with equivocal genotoxicity results. The toxicologic pathologist plays an important role in recognizing these effects, in helping to characterize them, to evaluate their risk for man, and in proposing measures to mitigate the risk particularly in early clinical trials. A careful scientific evaluation is crucial while termination of the development of a potentially useful drug must be avoided. This first part of the review discusses processes to address unexpected APFs and provides an overview over typical APFs in particular classes of drugs. If the mode of action (MoA) by which a drug candidate produces an APF is known, this supports evaluation of its relevance for humans. Tailor-made mechanistic studies, when needed, must be planned carefully to test one or several hypotheses regarding the potential MoA and to provide further data for risk evaluation. Safety considerations are based on exposure at no-observed-adverse-effect levels (NOAEL) of the most sensitive and relevant animal species and guide dose escalation in clinical trials. The availability of early markers of toxicity for monitoring of humans adds further safety to clinical studies. Risk evaluation is concluded by a weight of evidence analysis (WoE) with an array of parameters including drug use, medical need and alternatives on the market. In the second part of this review relevant examples of APFs will be discussed in more detail. PMID:22272031

  16. What is the importance of climate model bias when projecting the impacts of climate change on land surface processes?

    NASA Astrophysics Data System (ADS)

    Liu, M.; Rajagopalan, K.; Chung, S. H.; Jiang, X.; Harrison, J.; Nergui, T.; Guenther, A.; Miller, C.; Reyes, J.; Tague, C.; Choate, J.; Salathé, E. P.; Stöckle, C. O.; Adam, J. C.

    2014-05-01

    from dry lands, and HJ-Andrews's ET between BC and NBC data. Even though BC post-processing has no significant impacts on most of the studied variables when taking PNW as a whole, their effects have large spatial variations and some local areas are substantially influenced. In addition, there are months during which BC and NBC post-processing produces significant differences in projected changes, such as summer runoff. Factor-controlled simulations indicate that BC post-processing of precipitation and temperature both substantially contribute to these differences at regional scales. We conclude that there are trade-offs between using BC climate data for offline CCI studies versus directly modeled climate data. These trade-offs should be considered when designing integrated modeling frameworks for specific applications; for example, BC may be more important when considering impacts on reservoir operations in mountainous watersheds than when investigating impacts on biogenic emissions and air quality, for which VOCs are a primary indicator.

  17. What is the importance of climate model bias when projecting the impacts of climate change on land surface processes?

    NASA Astrophysics Data System (ADS)

    Liu, M.; Rajagopalan, K.; Chung, S. H.; Jiang, X.; Harrison, J.; Nergui, T.; Guenther, A.; Miller, C.; Reyes, J.; Tague, C.; Choate, J.; Salathé, E. P.; Stöckle, C. O.; Adam, J. C.

    2013-11-01

    differences rise from projected SWE, crop yield from dry lands, and HJ Andrews's ET between BC and NBC data. Even though BC post-processing has no significant impacts on most of the studied variables when taking PNW as a whole, their effects have large spatial variations and some local areas are substantially influenced. In addition, there are months during which BC and NBC post-processing produces significant differences in projected changes, such as summer runoff. Factor-controlled simulations indicate that BC post-processing of precipitation and temperature both substantially contribute to these differences at region scales. We conclude that there are trade-offs between using BC climate data for offline CCI studies vs. direct modeled climate data. These trade-offs should be considered when designing integrated modeling frameworks for specific applications; e.g., BC may be more important when considering impacts on reservoir operations in mountainous watersheds than when investigating impacts on biogenic emissions and air quality (where VOCs are a primary indicator).

  18. What is the importance of climate model bias when projecting the impacts of climate change on land surface processes?

    SciTech Connect

    Liu, M. L.; Rajagopalan, K.; Chung, S. H.; Jiang, X.; Harrison, J. H.; Nergui, T.; Guenther, Alex B.; Miller, C.; Reyes, J.; Tague, C. L.; Choate, J. S.; Salathe, E.; Stockle, Claudio O.; Adam, J. C.

    2014-05-16

    , significant differences rise from projected SWE, crop yield from dry lands, and HJ Andrews’s ET between BC and NBC data. Even though BC post-processing has no significant impacts on most of the studied variables when taking PNW as a whole, their effects have large spatial variations and some local areas are substantially influenced. In addition, there are months during which BC and NBC post-processing produces significant differences in projected changes, such as summer runoff. Factor-controlled simulations indicate that BC post-processing of precipitation and temperature both substantially contribute to these differences at region scales. We conclude that there are trade-offs between using BC climate data for offline CCI studies vs. direct modeled climate data. These trade-offs should be considered when designing integrated modeling frameworks for specific applications; e.g., BC may be more important when considering impacts on reservoir operations in mountainous watersheds than when investigating impacts on biogenic emissions and air quality (where VOCs are a primary indicator).

  19. CO{sub 2} Geologic Storage: Coupled Hydro-Chemo-Thermo-Mechanical Phenomena - From Pore-scale Processes to Macroscale Implications -

    SciTech Connect

    Santamarina, J. Carlos

    2013-05-31

    Global energy consumption will increase in the next decades and it is expected to largely rely on fossil fuels. The use of fossil fuels is intimately related to CO{sub 2} emissions and the potential for global warming. Geological CO{sub 2} storage aims to mitigate the global warming problem by sequestering CO{sub 2} underground. Coupled hydro-chemo-mechanical phenomena determine the successful operation and long term stability of CO{sub 2} geological storage. This research explores coupled phenomena, identifies different zones in the storage reservoir, and investigates their implications in CO{sub 2} geological storage. In particular, the research: Explores spatial patterns in mineral dissolution and precipitation (comprehensive mass balance formulation); experimentally determines the interfacial properties of water, mineral, and CO{sub 2} systems (including CO{sub 2}-water-surfactant mixtures to reduce the CO{sub 2}- water interfacial tension in view of enhanced sweep efficiency); analyzes the interaction between clay particles and CO{sub 2}, and the response of sediment layers to the presence of CO{sub 2} using specially designed experimental setups and complementary analyses; couples advective and diffusive mass transport of species, together with mineral dissolution to explore pore changes during advection of CO{sub 2}-dissolved water along a rock fracture; upscales results to a porous medium using pore network simulations; measures CO{sub 2} breakthrough in highly compacted fine-grained sediments, shale and cement specimens; explores sealing strategies; and experimentally measures CO{sub 2}-CH{sub 4} replacement in hydrate-bearing sediments during. Analytical, experimental and numerical results obtained in this study can be used to identify optimal CO{sub 2} injection and reservoir-healing strategies to maximize the efficiency of CO{sub 2} injection and to attain long-term storage.

  20. Streamflow and water-quality conditions including geologic sources and processes affecting selenium loading in the Toll Gate Creek watershed, Aurora, Arapahoe County, Colorado, 2007

    USGS Publications Warehouse

    Paschke, Suzanne S.; Runkel, Robert L.; Walton-Day, Katherine; Kimball, Briant A.; Schaffrath, Keelin R.

    2013-01-01

    Toll Gate Creek is a perennial stream draining a suburban area in Aurora, Colorado, where selenium concentrations have consistently exceeded the State of Colorado aquatic-life standard for selenium of 4.6 micrograms per liter since the early 2000s. In cooperation with the City of Aurora, Colorado, Utilities Department, a synoptic water-quality study was performed along an 18-kilometer reach of Toll Gate Creek extending from downstream from Quincy Reservoir to the confluence with Sand Creek to develop a detailed understanding of streamflow and concentrations and loads of selenium in Toll Gate Creek. Streamflow and surface-water quality were characterized for summer low-flow conditions (July–August 2007) using four spatially overlapping synoptic-sampling subreaches. Mass-balance methods were applied to the synoptic-sampling and tracer-injection results to estimate streamflow and develop spatial profiles of concentration and load for selenium and other chemical constituents in Toll Gate Creek surface water. Concurrent groundwater sampling determined concentrations of selenium and other chemical constituents in groundwater in areas surrounding the Toll Gate Creek study reaches. Multivariate principal-component analysis was used to group samples and to suggest common sources for dissolved selenium and major ions. Hydrogen and oxygen stable-isotope ratios, groundwater-age interpretations, and chemical analysis of water-soluble paste extractions from core samples are presented, and interpretation of the hydrologic and geochemical data support conclusions regarding geologic sources of selenium and the processes affecting selenium loading in the Toll Gate Creek watershed. Streamflow conditions observed and measured during the synoptic water-quality study represent summer base-flow conditions and rainfall conditions for July 2007. The lack of large tributary inflows and the spatial distribution of small tributary inflows, seeps, and springs indicate that diffuse and

  1. A program for mass spectrometer control and data processing analyses in isotope geology; written in BASIC for an 8K Nova 1120 computer

    USGS Publications Warehouse

    Stacey, J.S.; Hope, J.

    1975-01-01

    A system is described which uses a minicomputer to control a surface ionization mass spectrometer in the peak switching mode, with the object of computing isotopic abundance ratios of elements of geologic interest. The program uses the BASIC language and is sufficiently flexible to be used for multiblock analyses of any spectrum containing from two to five peaks. In the case of strontium analyses, ratios are corrected for rubidium content and normalized for mass spectrometer fractionation. Although almost any minicomputer would be suitable, the model used was the Data General Nova 1210 with 8K memory. Assembly language driver program and interface hardware-descriptions for the Nova 1210 are included.

  2. 7 CFR 319.56-11 - Importation of dried, cured, or processed fruits, vegetables, nuts, and legumes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Agriculture (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE FOREIGN... vegetables), including cured figs and dates, raisins, nuts, and dried beans and peas, may be imported...

  3. 7 CFR 319.56-11 - Importation of dried, cured, or processed fruits, vegetables, nuts, and legumes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Agriculture (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE FOREIGN... vegetables), including cured figs and dates, raisins, nuts, and dried beans and peas, may be imported...

  4. 7 CFR 319.56-11 - Importation of dried, cured, or processed fruits, vegetables, nuts, and legumes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Agriculture (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE FOREIGN... vegetables), including cured figs and dates, raisins, nuts, and dried beans and peas, may be imported...

  5. 7 CFR 319.56-11 - Importation of dried, cured, or processed fruits, vegetables, nuts, and legumes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Agriculture (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE FOREIGN... vegetables), including cured figs and dates, raisins, nuts, and dried beans and peas, may be imported...

  6. 7 CFR 319.56-11 - Importation of dried, cured, or processed fruits, vegetables, nuts, and legumes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Agriculture (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE FOREIGN... vegetables), including cured figs and dates, raisins, nuts, and dried beans and peas, may be imported...

  7. Global Geologic Mapping of Io: Preliminary Results

    NASA Technical Reports Server (NTRS)

    Williams, David A.; Keszthelyi, L. P.; Crown, D. A.; Geissler, P. E.; Schenk, P. M.; Yff, Jessica; Jaeger, W. L.; Rathbun, J. A.

    2008-01-01

    A new global geologic map of Jupiter's volcanic moon, Io is being prepared, with the focus being on completion of a draft map by July 2008. Here initial results of the mapping are reported: a preliminary distribution of material units in terms of areas and a visual representation. Additionally, the mapping hopes to address some of the problems in Io geology. Thus far it has been discovered that Io's surface is dominated by plains material, thought to consist of Io's silicate crust covered by pyroclastic deposits and lava flows of silicate and sulfur-bearing composition. Many plains areas contain flow fields that cannot be mapped separately due to a lack of resolution or modification by alteration processes. Discrete lava flows and flow fields are the next most abundant unit, with bright (sulfur?) flows in greater abundance than dark (silicate?) flows. The source of most of Io's heat flow, the paterae, are the least abundant unit in terms of areal extent.Upon completion of the draft map for peer review, it will be used to investigate several specific questions about the geological evolution of Io that previously could not be well addressed, including: comparison of the areas versus the heights of Ionian mountains to assess their stability and evolution; correlation and comparison of Galileo Near-Infrared Mapping Spectrometer and Photopolarimeter-Radiometer hot spot locations with the mapped location of dark versus bright lava flows and patera floors to assess any variations in the types of sources for Io's active volcanism; and the creation of a global inventory of the areal coverage of dark and bright laval flows to assess the relative importance of sulfur versus silicate volcanism in resurfacing Io, and to assess whether there are regional concentrations of either style of volcanism that may have implications on interior processes.

  8. Sedimentology and petroleum geology

    SciTech Connect

    Bjorlykke, K.O. )

    1989-01-01

    This book presents an introduction to sedimentology as well as petroleum geology. It integrates both subjects, which are closely related but mostly treated separately. The author covers the basic aspects of sedimentology, sedimentary geochemistry and diagenesis. Principles of stratigraphy, seismic stratigraphy and basin modelling forms the base for the part on petroleum geology. Subjects discussed include the composition of kerogen and hydrocarbons, theories of migration and trapping of hydrocarbons and properties of reservoir rocks. Introductions to well logging and production geology are given.

  9. Geologic mapping of Europa

    USGS Publications Warehouse

    Greeley, R.; Figueredo, P.H.; Williams, D.A.; Chuang, F.C.; Klemaszewski, J.E.; Kadel, S.D.; Prockter, L.M.; Pappalardo, R.T.; Head, J. W.; Collins, G.C.; Spaun, N.A.; Sullivan, R.J.; Moore, Johnnie N.; Senske, D.A.; Tufts, B.R.; Johnson, T.V.; Belton, M.J.S.; Tanaka, K.L.

    2000-01-01

    Galileo data enable the major geological units, structures, and surface features to be identified on Europa. These include five primary units (plains, chaos, band, ridge, and crater materials) and their subunits, along with various tectonic structures such as faults. Plains units are the most widespread. Ridged plains material spans a wide range of geological ages, including the oldest recognizable features on Europa, and appears to represent a style of tectonic resurfacing, rather than cryovolcanism. Smooth plains material typically embays other terrains and units, possibly as a type of fluid emplacement, and is among the youngest material units observed. At global scales, plains are typically mapped as undifferentiated plains material, although in some areas differences can be discerned in the near infrared which might be related to differences in ice grain size. Chaos material is composed of plains and other preexisting materials that have been severely disrupted by inferred internal activity; chaos is characterized by blocks of icy material set in a hummocky matrix. Band material is arrayed in linear, curvilinear, wedge-shaped, or cuspate zones with contrasting albedo and surface textures with respect to the surrounding terrain. Bilateral symmetry observed in some bands and the relationships with the surrounding units suggest that band material forms by the lithosphere fracturing, spreading apart, and infilling with material derived from the subsurface. Ridge material is mapped as a unit on local and some regional maps but shown with symbols at global scales. Ridge material includes single ridges, doublet ridges, and ridge complexes. Ridge materials are considered to represent tectonic processes, possibly accompanied by the extrusion or intrusion of subsurface materials, such as diapirs. The tectonic processes might be related to tidal flexing of the icy lithosphere on diurnal or longer timescales. Crater materials include various interior (smooth central

  10. Multivariate Models of Parent-Late Adolescent Gender Dyads: The Importance of Parenting Processes in Predicting Adjustment

    ERIC Educational Resources Information Center

    McKinney, Cliff; Renk, Kimberly

    2008-01-01

    Although parent-adolescent interactions have been examined, relevant variables have not been integrated into a multivariate model. As a result, this study examined a multivariate model of parent-late adolescent gender dyads in an attempt to capture important predictors in late adolescents' important and unique transition to adulthood. The sample…

  11. Geology. Grade 6. Anchorage School District Elementary Science Program.

    ERIC Educational Resources Information Center

    Anchorage School District, AK.

    This resource book introduces sixth-grade children to the environment by studying rocks and other geological features. Nine lessons are provided on a variety of topics including: (1) geologic processes; (2) mountain building; (3) weathering; (4) geologic history and time; (5) plate tectonics; (6) rocks and minerals; (7) mineral properties; (8)…

  12. Indicators of early and late processing reveal the importance of within-trial-time for theories of associative learning.

    PubMed

    Lachnit, Harald; Thorwart, Anna; Schultheis, Holger; Lotz, Anja; Koenig, Stephan; Uengoer, Metin

    2013-01-01

    In four human learning experiments (Pavlovian skin conductance, causal learning, speeded classification task), we evaluated several associative learning theories that assume either an elemental (modified unique cue model and Harris' model) or a configural (Pearce's configural theory and an extension of it) form of stimulus processing. The experiments used two modified patterning problems (A/B/C+, AB/BC/AC+ vs. ABC-; A+, BC+ vs. ABC-). Pearce's configural theory successfully predicted all of our data reflecting early stimulus processing, while the predictions of the elemental theories were in accord with all of our data reflecting later stages of stimulus processing. Our results suggest that the form of stimulus representation depends on the amount of time available for stimulus processing. Our findings highlight the necessity to investigate stimulus processing during conditioning on a finer time scale than usually done in contemporary research.

  13. The importance of basic factors in innovation processes and their effects on innovation capability of Malaysian-owned manufacturing companies

    NASA Astrophysics Data System (ADS)

    Suradi, Nur Riza Mohd; Omar, Aminuddin; Shahabuddin, Faridatulazna Ahmad

    2015-02-01

    Innovation is the core ingredient in the competitiveness of today's businesses. Any company that cannot innovate will be losing its competitiveness. While the study on innovation at conceptual level is widely available, there is still lack of deep understanding of how innovation factors impact each stage of the processes of innovation that happen in Malaysian companies. This process-factor approach and understanding may help the government focuses its assistance on relevant factors at relevant process according to the size of the company. This study examines how companies are affected by fundamental factors needed in innovation. Based on results of MYTIC Study 2012 on the level of Technological Innovation Capability (TIC) of Malaysian companies using the RDCB framework, the significance of each innovation factor in each innovation process is determined. This study shows that human resource factor gives more impact than other factors in most processes. Also, financial and human resource factors are likely dictated by the size of the company.

  14. Indicators of Early and Late Processing Reveal the Importance of Within-Trial-Time for Theories of Associative Learning

    PubMed Central

    Lachnit, Harald; Thorwart, Anna; Schultheis, Holger; Lotz, Anja; Koenig, Stephan; Uengoer, Metin

    2013-01-01

    In four human learning experiments (Pavlovian skin conductance, causal learning, speeded classification task), we evaluated several associative learning theories that assume either an elemental (modified unique cue model and Harris’ model) or a configural (Pearce’s configural theory and an extension of it) form of stimulus processing. The experiments used two modified patterning problems (A/B/C+, AB/BC/AC+ vs. ABC-; A+, BC+ vs. ABC-). Pearce’s configural theory successfully predicted all of our data reflecting early stimulus processing, while the predictions of the elemental theories were in accord with all of our data reflecting later stages of stimulus processing. Our results suggest that the form of stimulus representation depends on the amount of time available for stimulus processing. Our findings highlight the necessity to investigate stimulus processing during conditioning on a finer time scale than usually done in contemporary research. PMID:23826092

  15. 7 CFR 361.8 - Cleaning of imported seed and processing of certain Canadian-origin screenings.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...-origin screenings. (a) Imported seed that is found to contain noxious weed seeds at a level higher than... technologist, an official seed laboratory, or by APHIS; if the seed is found to be within the noxious...

  16. 7 CFR 361.8 - Cleaning of imported seed and processing of certain Canadian-origin screenings.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...-origin screenings. (a) Imported seed that is found to contain noxious weed seeds at a level higher than... technologist, an official seed laboratory, or by APHIS; if the seed is found to be within the noxious...

  17. 7 CFR 361.8 - Cleaning of imported seed and processing of certain Canadian-origin screenings.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...-origin screenings. (a) Imported seed that is found to contain noxious weed seeds at a level higher than... technologist, an official seed laboratory, or by APHIS; if the seed is found to be within the noxious...

  18. 7 CFR 361.8 - Cleaning of imported seed and processing of certain Canadian-origin screenings.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...-origin screenings. (a) Imported seed that is found to contain noxious weed seeds at a level higher than... technologist, an official seed laboratory, or by APHIS; if the seed is found to be within the noxious...

  19. Reactive Transport Modeling of Effects of Different (Physical, Chemical and Computational) Factors on the Convection Process during CO2 Geological Sequestration in Deep Saline Aquifers

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Wang, S.

    2014-12-01

    Density-driven convective activity can significantly accelerate the transformation of the injected CO2 from supercritical or gas phase into liquid phase, thus improving the long-term storage security. It is well known that the convective instability is only caused by the heterogeneity of porous medium. However, we found that numerical perturbation resulted from the spatial and temporal discretization and the convergence criteria will affect the modeling results. Partial simulation results as follows: (1) the increase in vertical permeability (kv) has a strong effect on the convection process compared to the increasing horizontal permeability. The higher kv also can accelerate the downward migration of fingers and the CO2 dissolution; (2) increase in magnitude of medium (porosity and permeability) perturbation promotes the onset of convective activity, but does not affect the evolution of convection. However, for same magnitudes of the medium perturbation, the modification in permeability can lead to a more rapid onset of convective activity than that in porosity; and (3) the geochemical reactions and mineral compositions are important not only to the CO2 dissolution, but also to the dissolution of other species from mineral dissolution, which both can increase the water density. In additional, 3D and 2D modeling results indicated that their effect on the convection onset is similar. The CO2 dissolution rate for the higher-resolution 3D model is greatly slower than that for the higher-resolution 2D model, due to the increase in dimension for 3D model enhances the interaction of fingers. However, we found that once the bottom boundary becomes important, the decrease in CO2 dissolution rate for the 2D model is more significant than that for the 3D model. This is because the more significant interaction of fingers in the 3D model than that in the 2D model delays the downward propagation of fingers and then the impact of the bottom boundary.

  20. Geologic Measurements using Rover Images: Lessons from Pathfinder with Application to Mars 2001

    NASA Technical Reports Server (NTRS)

    Bridges, N. T.; Haldemann, A. F. C.; Herkenhoff, K. E.

    1999-01-01

    The Pathfinder Sojourner rover successfully acquired im