Sample records for important nutrient source

  1. Research to Inform Nutrient Thresholds and Prioritization of ...

    EPA Pesticide Factsheets

    The information in this presentation focuses on SSWR's 4.02 project, which will advance the science needed to inform decisions to prioritize watersheds and nutrient sources for nutrient management and define appropriate nutrient levels for the nation’s waters, two important elements of EPA’s framework for managing nutrient pollution. The information in this presentation focuses on SSWR's 4.02 project, which will advance the science needed to inform decisions to prioritize watersheds and nutrient sources for nutrient management and define appropriate nutrient levels for the nation’s waters, two important elements of EPA’s framework for managing nutrient pollution.

  2. Submarine groundwater discharge as an important nutrient source influencing nutrient structure in coastal water of Daya Bay, China

    NASA Astrophysics Data System (ADS)

    Wang, Xuejing; Li, Hailong; Zheng, Chunmiao; Yang, Jinzhong; Zhang, Yan; Zhang, Meng; Qi, Zhanhui; Xiao, Kai; Zhang, Xiaolang

    2018-03-01

    As an important nutrient source for coastal waters, submarine groundwater discharge (SGD) has long been largely ignored in Daya Bay, China. In this study, we estimate the fluxes of SGD and associated nutrients into this region using a 224Ra mass balance model and assess the contribution/importance of nutrients by SGD, benthic sediments, local rivers, and atmospheric deposition. The results of 224Ra mass balance show that the estimated SGD ranges from (2.76 ± 1.43) × 106 m3/d to (1.03 ± 0.53) × 107 m3/d with an average of (6.32 ± 2.42) × 106 m3/d, about 16 times the total discharge rate of local rivers. The nutrient loading from SGD is estimated to be (1.05-1.99) × 105 mol/d for NO3-N, (4.04-12.16) × 103 mol/d for DIP, and (3.54-11.35) × 105 mol/d for Si. Among these considered nutrient sources, we find that SGD is the primary source for Si and NO3-N, contributing 68% and 42% of all considered sources, respectively. The atmospheric NO3-N flux is comparable to that from SGD. The local rivers are the most important source for DIP, contributing 75% of all considered sources. SGD with high N:P ratio (NO3-N/DIP) of 37.0 delivers not only a large quantity of nutrients, but also changes nutrient structure in coastal water. Based on a DIP budget, primary productivity is evaluated to be 54-73 mg C/m2 d, in which SGD accounts for approximately 30% of total production. This study indicates that SGD is a key source of nutrients to coastal waters and may cause an obvious change of primary production and nutrient structure in Daya Bay.

  3. Modeling the contribution of point sources and non-point sources to Thachin River water pollution.

    PubMed

    Schaffner, Monika; Bader, Hans-Peter; Scheidegger, Ruth

    2009-08-15

    Major rivers in developing and emerging countries suffer increasingly of severe degradation of water quality. The current study uses a mathematical Material Flow Analysis (MMFA) as a complementary approach to address the degradation of river water quality due to nutrient pollution in the Thachin River Basin in Central Thailand. This paper gives an overview of the origins and flow paths of the various point- and non-point pollution sources in the Thachin River Basin (in terms of nitrogen and phosphorus) and quantifies their relative importance within the system. The key parameters influencing the main nutrient flows are determined and possible mitigation measures discussed. The results show that aquaculture (as a point source) and rice farming (as a non-point source) are the key nutrient sources in the Thachin River Basin. Other point sources such as pig farms, households and industries, which were previously cited as the most relevant pollution sources in terms of organic pollution, play less significant roles in comparison. This order of importance shifts when considering the model results for the provincial level. Crosschecks with secondary data and field studies confirm the plausibility of our simulations. Specific nutrient loads for the pollution sources are derived; these can be used for a first broad quantification of nutrient pollution in comparable river basins. Based on an identification of the sensitive model parameters, possible mitigation scenarios are determined and their potential to reduce the nutrient load evaluated. A comparison of simulated nutrient loads with measured nutrient concentrations shows that nutrient retention in the river system may be significant. Sedimentation in the slow flowing surface water network as well as nitrogen emission to the air from the warm oxygen deficient waters are certainly partly responsible, but also wetlands along the river banks could play an important role as nutrient sinks.

  4. Modeling Nutrient Loading to Watersheds in the Great Lakes Basin: A Detailed Source Model at the Regional Scale

    NASA Astrophysics Data System (ADS)

    Luscz, E.; Kendall, A. D.; Martin, S. L.; Hyndman, D. W.

    2011-12-01

    Watershed nutrient loading models are important tools used to address issues including eutrophication, harmful algal blooms, and decreases in aquatic species diversity. Such approaches have been developed to assess the level and source of nutrient loading across a wide range of scales, yet there is typically a tradeoff between the scale of the model and the level of detail regarding the individual sources of nutrients. To avoid this tradeoff, we developed a detailed source nutrient loading model for every watershed in Michigan's lower peninsula. Sources considered include atmospheric deposition, septic tanks, waste water treatment plants, combined sewer overflows, animal waste from confined animal feeding operations and pastured animals, as well as fertilizer from agricultural, residential, and commercial sources and industrial effluents . Each source is related to readily-available GIS inputs that may vary through time. This loading model was used to assess the importance of sources and landscape factors in nutrient loading rates to watersheds, and how these have changed in recent decades. The results showed the value of detailed source inputs, revealing regional trends while still providing insight to the existence of variability at smaller scales.

  5. Surface-water nutrient conditions and sources in the United States Pacific Northwest

    USGS Publications Warehouse

    Wise, D.R.; Johnson, H.M.

    2011-01-01

    The SPAtially Referenced Regressions On Watershed attributes (SPARROW) model was used to perform an assessment of surface-water nutrient conditions and to identify important nutrient sources in watersheds of the Pacific Northwest region of the United States (U.S.) for the year 2002. Our models included variables representing nutrient sources as well as landscape characteristics that affect nutrient delivery to streams. Annual nutrient yields were higher in watersheds on the wetter, west side of the Cascade Range compared to watersheds on the drier, east side. High nutrient enrichment (relative to the U.S. Environmental Protection Agency's recommended nutrient criteria) was estimated in watersheds throughout the region. Forest land was generally the largest source of total nitrogen stream load and geologic material was generally the largest source of total phosphorus stream load generated within the 12,039 modeled watersheds. These results reflected the prevalence of these two natural sources and the low input from other nutrient sources across the region. However, the combined input from agriculture, point sources, and developed land, rather than natural nutrient sources, was responsible for most of the nutrient load discharged from many of the largest watersheds. Our results provided an understanding of the regional patterns in surface-water nutrient conditions and should be useful to environmental managers in future water-quality planning efforts.

  6. Food sources of energy and nutrients in Finnish girls and boys 6-8 years of age - the PANIC study.

    PubMed

    Eloranta, Aino-Maija; Venäläinen, Taisa; Soininen, Sonja; Jalkanen, Henna; Kiiskinen, Sanna; Schwab, Ursula; Lakka, Timo A; Lindi, Virpi

    2016-01-01

    Data on food sources of nutrients are needed to improve strategies to enhance nutrient intake among girls and boys in Western countries. To identify major food sources of energy, energy nutrients, dietary fibre, and micronutrients, and to study gender differences in these food sources among children. We assessed food consumption and nutrient intake using 4-day food records in a population sample of Finnish girls ( n =213) and boys ( n =217) aged 6-8 years from the Physical Activity and Nutrition in Children Study. We calculated the percentual contribution of 55 food groups for energy and nutrient intake using the population proportion method. Low-fibre grain products, skimmed milk, and high-fibre bread provided almost 23% of total energy intake. Skimmed milk was the top source of protein (18% of total intake), vitamin D (32%), potassium (20%), calcium (39%), magnesium (17%), and zinc (16%). Vegetable oils (15%) and high-fat vegetable oil-based spreads (14%) were the top sources of polyunsaturated fat. High-fibre bread was the top source of fibre (27%) and iron (12%). Non-root vegetables were the top source of folate (14%) and vitamin C (22%). Sugar-sweetened beverages provided 21% of sucrose intake. Pork was a more important source of protein and sausage was a more important source of total fat and monounsaturated fat in boys than in girls. Vegetable oils provided a higher proportion of unsaturated fat and vitamin E among boys, whereas high-fat vegetable oil-based spreads provided a higher proportion of these nutrients among girls. Commonly recommended foods, such as skimmed milk, high-fibre grain products, vegetables, vegetable oil, and vegetable oil-based spreads, were important sources of several nutrients, whereas sugar-sweetened beverages provided the majority of sucrose intake among children. This knowledge can be used in improving health among children by dietary interventions, nutrition education, and health policy decision making.

  7. Food sources of energy and nutrients in Finnish girls and boys 6–8 years of age – the PANIC study

    PubMed Central

    Eloranta, Aino-Maija; Venäläinen, Taisa; Soininen, Sonja; Jalkanen, Henna; Kiiskinen, Sanna; Schwab, Ursula; Lakka, Timo A.; Lindi, Virpi

    2016-01-01

    Background Data on food sources of nutrients are needed to improve strategies to enhance nutrient intake among girls and boys in Western countries. Objective To identify major food sources of energy, energy nutrients, dietary fibre, and micronutrients, and to study gender differences in these food sources among children. Design We assessed food consumption and nutrient intake using 4-day food records in a population sample of Finnish girls (n=213) and boys (n=217) aged 6–8 years from the Physical Activity and Nutrition in Children Study. We calculated the percentual contribution of 55 food groups for energy and nutrient intake using the population proportion method. Results Low-fibre grain products, skimmed milk, and high-fibre bread provided almost 23% of total energy intake. Skimmed milk was the top source of protein (18% of total intake), vitamin D (32%), potassium (20%), calcium (39%), magnesium (17%), and zinc (16%). Vegetable oils (15%) and high-fat vegetable oil–based spreads (14%) were the top sources of polyunsaturated fat. High-fibre bread was the top source of fibre (27%) and iron (12%). Non-root vegetables were the top source of folate (14%) and vitamin C (22%). Sugar-sweetened beverages provided 21% of sucrose intake. Pork was a more important source of protein and sausage was a more important source of total fat and monounsaturated fat in boys than in girls. Vegetable oils provided a higher proportion of unsaturated fat and vitamin E among boys, whereas high-fat vegetable oil–based spreads provided a higher proportion of these nutrients among girls. Conclusion Commonly recommended foods, such as skimmed milk, high-fibre grain products, vegetables, vegetable oil, and vegetable oil–based spreads, were important sources of several nutrients, whereas sugar-sweetened beverages provided the majority of sucrose intake among children. This knowledge can be used in improving health among children by dietary interventions, nutrition education, and health policy decision making. PMID:27702428

  8. Surface-Water Nutrient Conditions and Sources in the United States Pacific Northwest1

    PubMed Central

    Wise, Daniel R; Johnson, Henry M

    2011-01-01

    Abstract The SPAtially Referenced Regressions On Watershed attributes (SPARROW) model was used to perform an assessment of surface-water nutrient conditions and to identify important nutrient sources in watersheds of the Pacific Northwest region of the United States (U.S.) for the year 2002. Our models included variables representing nutrient sources as well as landscape characteristics that affect nutrient delivery to streams. Annual nutrient yields were higher in watersheds on the wetter, west side of the Cascade Range compared to watersheds on the drier, east side. High nutrient enrichment (relative to the U.S. Environmental Protection Agency's recommended nutrient criteria) was estimated in watersheds throughout the region. Forest land was generally the largest source of total nitrogen stream load and geologic material was generally the largest source of total phosphorus stream load generated within the 12,039 modeled watersheds. These results reflected the prevalence of these two natural sources and the low input from other nutrient sources across the region. However, the combined input from agriculture, point sources, and developed land, rather than natural nutrient sources, was responsible for most of the nutrient load discharged from many of the largest watersheds. Our results provided an understanding of the regional patterns in surface-water nutrient conditions and should be useful to environmental managers in future water-quality planning efforts. PMID:22457584

  9. Estimation of nutrient discharge from the Yangtze River to the East China Sea and the identification of nutrient sources.

    PubMed

    Tong, Yindong; Bu, Xiaoge; Chen, Junyue; Zhou, Feng; Chen, Long; Liu, Maodian; Tan, Xin; Yu, Tao; Zhang, Wei; Mi, Zhaorong; Ma, Lekuan; Wang, Xuejun; Ni, Jing

    2017-01-05

    Based on a time-series dataset and the mass balance method, the contributions of various sources to the nutrient discharges from the Yangtze River to the East China Sea are identified. The results indicate that the nutrient concentrations vary considerably among different sections of the Yangtze River. Non-point sources are an important source of nutrients to the Yangtze River, contributing about 36% and 63% of the nitrogen and phosphorus discharged into the East China Sea, respectively. Nutrient inputs from non-point sources vary among the sections of the Yangtze River, and the contributions of non-point sources increase from upstream to downstream. Considering the rice growing patterns in the Yangtze River Basin, the synchrony of rice tillering and the wet seasons might be an important cause of the high nutrient discharge from the non-point sources. Based on our calculations, a reduction of 0.99Tg per year in total nitrogen discharges from the Yangtze River would be needed to limit the occurrences of harmful algal blooms in the East China Sea to 15 times per year. The extensive construction of sewage treatment plants in urban areas may have only a limited effect on reducing the occurrences of harmful algal blooms in the future. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. COUPLING BETWEEN THE COASTAL OCEAN AND YAQUINA BAY, OREGON: THE IMPORTANCE OF OCEANIC INPUTS RELATIVE TO OTHER NITROGEN SOURCES

    EPA Science Inventory

    Understanding of the role of oceanic input in nutrient loadings is important for understanding nutrient and phytoplankton dynamics in estuaries adjacent to coastal upwelling regions as well as determining the natural background conditions. We examined the nitrogen sources to Yaqu...

  11. Nutrients in waters on the inner shelf between Cape Charles and Cape Hatteras

    NASA Technical Reports Server (NTRS)

    Wong, G. T. F.; Todd, J. F.

    1981-01-01

    The distribution of nutrients in the shelf waters of the southern tip of the Middle Atlantic Bight was investigated. It is concluded that the outflow of freshwater from the Chesapeake Bay is a potential source of nutrients to the adjacent shelf waters. However, a quantitative estimation of its importance cannot yet be made because (1) there are other sources of nutrients to the study area and these sources cannot yet be quantified and (2) the concentrations of nutrients in the outflow from Chesapeake Bay exhibit significant short-term and long-term temporal variabilities.

  12. Strontium source and depth of uptake shifts with substrate age in semiarid ecosystems

    NASA Astrophysics Data System (ADS)

    Coble, Ashley A.; Hart, Stephen C.; Ketterer, Michael E.; Newman, Gregory S.; Kowler, Andrew L.

    2015-06-01

    Without exogenous rock-derived nutrient sources, terrestrial ecosystems may eventually regress or reach a terminal steady state, but the degree to which exogenous nutrient sources buffer or slow to a theoretical terminal steady state remains unclear. We used strontium isotope ratios (87Sr/86Sr) as a tracer and measured 87Sr/86Sr values in aeolian dust, soils, and vegetation across a well-constrained 3 Myr semiarid substrate age gradient to determine (1) whether the contribution of atmospheric sources of rock-derived nutrients to soil and vegetation pools varied with substrate age and (2) to determine if the depth of uptake varied with substrate age. We found that aeolian-derived nutrients became increasingly important, contributing as much as 71% to plant-available soil pools and tree (Pinus edulis) growth during the latter stages of ecosystem development in a semiarid climate. The depth of nutrient uptake increased on older substrates, demonstrating that trees in arid regions can acquire nutrients from greater depths as ecosystem development progresses presumably in response to nutrient depletion in the more weathered surface soils. Our results demonstrate that global and regional aeolian transport of nutrients to local ecosystems is a vital process for ecosystem development in arid regions. Furthermore, these aeolian nutrient inputs contribute to deep soil nutrient pools, which become increasingly important for maintaining plant productivity over long time scales.

  13. Contamination of organic nutrient sources with potentially toxic elements, antibiotics and pathogen microorganisms in relation to P fertilizer potential and treatment options for the production of sustainable fertilizers: A review.

    PubMed

    Bloem, E; Albihn, A; Elving, J; Hermann, L; Lehmann, L; Sarvi, M; Schaaf, T; Schick, J; Turtola, E; Ylivainio, K

    2017-12-31

    Organic nutrient sources such as farmyard manure, sewage sludge, their biogas digestates or other animal by-products can be valuable fertilizers delivering organic matter to the soil. Currently, especially phosphorus (P) is in the focus of research since it is an essential plant nutrient with finite resources, estimated to last only for some more decades. Efficient utilization of organic P sources in agriculture will help to preserve P resources and thereby has the potential to close nutrient cycles and prevent unwanted P-losses to the environment, one of the major causes for eutrophication of water bodies. Unfortunately, organic P sources usually contain also various detrimental substances, such as potentially toxic elements or organic contaminants like pharmaceuticals as well as pathogenic microorganisms. Additionally, the utilization of some of these substrates such as sewage sludge or animal by-products is legally limited in agriculture because of the potential risk to contaminate sites with potentially toxic elements and organic contaminants. Thus, to close nutrient cycles it is important to develop solutions for the responsible use of organic nutrient sources. The aim of this review is to give an overview of the contamination of the most important organic nutrient sources with potentially toxic elements, antibiotics (as one important organic contaminant) and pathogenic microorganisms. Changes in manure and sewage sludge management as well as the increasing trend to use such substrates in biogas plants will be discussed with respect to potential risks posed to soils and water bodies. Some examples for abatement options by which contamination can be reduced to produce P fertilizers with high amounts of plant available P forms are presented. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Habitat-specific nutrient removal and release in Oregon salt marshes

    EPA Science Inventory

    Wetlands can be sources, sinks and transformers of nutrients, although it is their role in nutrient removal that is valued as a water purification ecosystem service. In order to quantify that service for any wetland, it is important to understand the drivers of nutrient removal w...

  15. Interacting Physical and Biological Processes Affecting Nutrient Transport Through Human Dominated Landscapes

    NASA Astrophysics Data System (ADS)

    Finlay, J. C.

    2015-12-01

    Human activities increasingly dominate biogeochemical cycles of limiting nutrients on Earth. Urban and agricultural landscapes represent the largest sources of excess nutrients that drive water quality degradation. The physical structure of both urban and agricultural watersheds has been extensively modified, and these changes have large impacts on water and nutrient transport. Despite strong physical controls over nutrient transport in human dominated landscapes, biological processes play important roles in determining the fates of both nitrogen and phosphorus. This talk uses examples from research in urban and agricultural watersheds in the Midwestern USA to illustrate interactions of physical and biological controls over nutrient cycles that have shifted nitrogen (N) and phosphorus (P) sources and cycling in unexpected ways in response to management changes. In urban watersheds, efforts to improve water quality have been hindered by legacy sources of phosphorus added to storm water through transport to drainage systems by vegetation. Similarly, reductions in field erosion in agricultural watersheds have not led to major reductions in phosphorus transport, because of continued release of biological sources of P. Where management of phosphorus has been most effective in reducing eutrophication of lakes, decreases in N removal processes have led to long term increases in N concentration and transport. Together, these examples show important roles for biological processes affecting nutrient movement in highly modified landscapes. Consideration of the downstream physical and biological responses of management changes are thus critical toward identification of actions that will most effectively reduce excess nutrients watersheds and coastal zones.

  16. Comparison of Habitat-Specific Nutrient Removal and Release in Pacific NW Salt Marshes at Multiple Spatial Scales

    EPA Science Inventory

    Wetlands can be sources, sinks and transformers of nutrients, although it is their role in nutrient removal that is valued as a water purification ecosystem service. In order to quantify that service for any wetland, it is important to understand the drivers of nutrient removal w...

  17. Food Sources of Total Energy and Nutrients among U.S. Infants and Toddlers: National Health and Nutrition Examination Survey 2005-2012.

    PubMed

    Grimes, Carley A; Szymlek-Gay, Ewa A; Campbell, Karen J; Nicklas, Theresa A

    2015-08-14

    Understanding the dietary intakes of infants and toddlers is important because early life nutrition influences future health outcomes. The aim of this study was to determine the dietary sources of total energy and 16 nutrients in a nationally representative sample of U.S. infants and toddlers aged 0-24 months. Data from the 2005-2012 National Health and Nutrition Examination Survey were analyzed. Dietary intake was assessed in 2740 subjects using one 24-h dietary recall. The population proportion was used to determine the contribution of foods and beverages to nutrient intakes. Overall infant formulas and baby foods were the leading sources of total energy and nutrients in infants aged 0-11.9 months. In toddlers, the diversity of food groups contributing to nutrient intakes was much greater. Important sources of total energy included milk, 100% juice and grain based mixed dishes. A number of foods of low nutritional quality also contributed to energy intakes including sweet bakery products, sugar-sweetened beverages and savory snacks. Overall non-flavored milks and ready-to-eat cereals were the most important contributors to micronutrient intakes. In conclusion this information can be used to guide parents regarding appropriate food selection as well as inform targeted dietary strategies within public health initiatives to improve the diets of infants and toddlers.

  18. Application of the SPARROW model to assess surface-water nutrient conditions and sources in the United States Pacific Northwest

    USGS Publications Warehouse

    Wise, Daniel R.; Johnson, Henry M.

    2013-01-01

    The watershed model SPARROW (Spatially Referenced Regressions on Watershed attributes) was used to estimate mean annual surface-water nutrient conditions (total nitrogen and total phosphorus) and to identify important nutrient sources in catchments of the Pacific Northwest region of the United States for 2002. Model-estimated nutrient yields were generally higher in catchments on the wetter, western side of the Cascade Range than in catchments on the drier, eastern side. The largest source of locally generated total nitrogen stream load in most catchments was runoff from forestland, whereas the largest source of locally generated total phosphorus stream load in most catchments was either geologic material or livestock manure (primarily from grazing livestock). However, the highest total nitrogen and total phosphorus yields were predicted in the relatively small number of catchments where urban sources were the largest contributor to local stream load. Two examples are presented that show how SPARROW results can be applied to large rivers—the relative contribution of different nutrient sources to the total nitrogen load in the Willamette River and the total phosphorus load in the Snake River. The results from this study provided an understanding of the regional patterns in surface-water nutrient conditions and should be useful to researchers and water-quality managers performing local nutrient assessments.

  19. Comparison of Habitat-Specific Nutrient Removal and Release in Pacific NW Salt Marshes at Multiple Spatial Scales - CERF

    EPA Science Inventory

    Wetlands can be sources, sinks and transformers of nutrients, although it is their role in nutrient removal that is valued as a water purification ecosystem service. In order to quantify that service for any wetland, it is important to understand the drivers of nutrient removal w...

  20. Using Stable Isotopes to Assess Connectivity: the Importance of Oceanic and Watershed Nitrogen Sources for Estuarine Primary Producers

    EPA Science Inventory

    Estuaries located at the interface of terrestrial and oceanic ecosystems receive nutrients from both ecosystems. Stable isotopes of primary producers and consumers are often used as an indicator of nutrient sources. We assembled natural abundance nitrogen stable isotope (δ15N) d...

  1. County-level estimates of nutrient inputs to the landsurface of the conterminous United States, 1982-2001

    USGS Publications Warehouse

    Ruddy, Barbara C.; Lorenz, David L.; Mueller, David K.

    2006-01-01

    Nutrient input data for fertilizer use, livestock manure, and atmospheric deposition from various sources were estimated and allocated to counties in the conterminous United States for the years 1982 through 2001. These nationally consistent nutrient input data are needed by the National Water-Quality Assessment Program for investigations of stream- and ground-water quality. For nitrogen, the largest source was farm fertilizer; for phosphorus, the largest sources were farm fertilizer and livestock manure. Nutrient inputs from fertilizer use in nonfarm areas, while locally important, were an order of magnitude smaller than inputs from other sources. Nutrient inputs from all sources increased between 1987 and 1997, but the relative proportions of nutrients from each source were constant. Farm-fertilizer inputs were highest in the upper Midwest, along eastern coastal areas, and in irrigated areas of the West. Nonfarm-fertilizer use was similar in major metropolitan areas throughout the Nation, but was more extensive in the more populated Eastern and Central States and in California. Areas of greater manure inputs were located throughout the South-central and Southeastern States and in scattered areas of the West. Nitrogen deposition from the atmosphere generally increased from west to east and is related to the location of major sources and the effects of precipitation and prevailing winds. These nutrient-loading data at the county level are expected to be the fundamental basis for national and regional assessments of water quality for the National Water-Quality Assessment Program and other large-scale programs.

  2. Impact of irrigation scheduling on pore water nitrate and phosphate in coastal plains soils with corn production

    USDA-ARS?s Scientific Manuscript database

    Agriculture is one of the most important sources of nutrient contamination, mainly inorganic nitrogen (N) fertilization of intensive crops, such as corn (Zea mays L). Proper irrigation and nutrient management can reduce nutrient leaching while maintaining crop yield, which is critical in enhancing t...

  3. Crop nutrient recovery from applied fish coproducts

    USDA-ARS?s Scientific Manuscript database

    The Alaska fishing industry produces over 1,000,000 metric tons of fish byproducts annually, and most of them are not used. Most food in Alaska is imported. Fish byproducts are rich in plant essential nutrients and can be used as nutrient sources for crop production. The objective of the study was t...

  4. Iron deficiency-induced changes in growth reveal differences in nutrient partitioning between two ecotypes of Medicago truncatula

    USDA-ARS?s Scientific Manuscript database

    Enhancing the nutritional quality of crops is of international importance, and multiple methods have been utilized to increase the nutrient content of legume seeds. Because nutrients mobilized from source leaves to growing reproductive sink tissues greatly contribute to the final composition of the ...

  5. Antioxidant Activities, Metabolic Profiling, Proximate Analysis, Mineral Nutrient Composition of Salvadora persica Fruit Unravel a Potential Functional Food and a Natural Source of Pharmaceuticals.

    PubMed

    Kumari, Asha; Parida, Asish K; Rangani, Jaykumar; Panda, Ashok

    2017-01-01

    Salvadora persica is a medicinally important plant mainly used in oral hygiene. However, little attention has been given towards the nutritional prominence of this plant. This study encloses the proximate and mineral nutrient contents, amino acid composition, metabolite profiling and antioxidant potential of S. persica fruit. The ripen fruit contained substantial amount of sugars, mineral nutrients, carotenoids, polyphenols and flavonoids. The metabolic profiling of the fruit extract by GC-MS revealed a total of 22 metabolites comprising of sugars, sugar alcohols, organic acids, organic base, and aromatic silica compound. The identified metabolites have been previously reported to have potential antioxidant, antimicrobial, anti-hyperglycemic, and antitumor properties. The GC-MS analysis indicated high glucose and glucopyranose (247.62 and 42.90 mg g -1 FW respectively) contents in fruit of S. persica . The fruit extract demonstrated a significantly higher antioxidant and ROS scavenging properties along with high contents of mineral nutrients and essential amino acids. HPLC analysis revealed presence of essential and non-essential amino acid required for healthy body metabolism. The cysteine was found to be in highest amount (733.69 mg 100 g -1 DW) among all amino acids quantified. Specifically, compared to similar medicinal plants, previously reported as a source of non-conventional food and with some of the commercially important fruits, S. persica fruit appears to be a potential source of essential mineral nutrients, amino acids, vitamins (ascorbic acid and carotenoid) and pharmaceutically important metabolites contributing towards fulfilling the recommended daily requirement of these for a healthy human being. This is the first report establishing importance of S. persica fruit as nutraceuticals. The data presented here proposed that fruit of S. persica may be used as functional food or reinvigorating ingredient for processed food to reduce deficiency of nutrients among the vulnerable population group. The phytochemicals identified from S. persica fruit may be used as natural source for pharmaceutical preparations.

  6. Antioxidant Activities, Metabolic Profiling, Proximate Analysis, Mineral Nutrient Composition of Salvadora persica Fruit Unravel a Potential Functional Food and a Natural Source of Pharmaceuticals

    PubMed Central

    Kumari, Asha; Parida, Asish K.; Rangani, Jaykumar; Panda, Ashok

    2017-01-01

    Salvadora persica is a medicinally important plant mainly used in oral hygiene. However, little attention has been given towards the nutritional prominence of this plant. This study encloses the proximate and mineral nutrient contents, amino acid composition, metabolite profiling and antioxidant potential of S. persica fruit. The ripen fruit contained substantial amount of sugars, mineral nutrients, carotenoids, polyphenols and flavonoids. The metabolic profiling of the fruit extract by GC-MS revealed a total of 22 metabolites comprising of sugars, sugar alcohols, organic acids, organic base, and aromatic silica compound. The identified metabolites have been previously reported to have potential antioxidant, antimicrobial, anti-hyperglycemic, and antitumor properties. The GC-MS analysis indicated high glucose and glucopyranose (247.62 and 42.90 mg g-1 FW respectively) contents in fruit of S. persica. The fruit extract demonstrated a significantly higher antioxidant and ROS scavenging properties along with high contents of mineral nutrients and essential amino acids. HPLC analysis revealed presence of essential and non-essential amino acid required for healthy body metabolism. The cysteine was found to be in highest amount (733.69 mg 100 g-1 DW) among all amino acids quantified. Specifically, compared to similar medicinal plants, previously reported as a source of non-conventional food and with some of the commercially important fruits, S. persica fruit appears to be a potential source of essential mineral nutrients, amino acids, vitamins (ascorbic acid and carotenoid) and pharmaceutically important metabolites contributing towards fulfilling the recommended daily requirement of these for a healthy human being. This is the first report establishing importance of S. persica fruit as nutraceuticals. The data presented here proposed that fruit of S. persica may be used as functional food or reinvigorating ingredient for processed food to reduce deficiency of nutrients among the vulnerable population group. The phytochemicals identified from S. persica fruit may be used as natural source for pharmaceutical preparations. PMID:28261096

  7. Nutrient acquisition strategies of mammalian cells.

    PubMed

    Palm, Wilhelm; Thompson, Craig B

    2017-06-07

    Mammalian cells are surrounded by diverse nutrients, such as glucose, amino acids, various macromolecules and micronutrients, which they can import through transmembrane transporters and endolysosomal pathways. By using different nutrient sources, cells gain metabolic flexibility to survive periods of starvation. Quiescent cells take up sufficient nutrients to sustain homeostasis. However, proliferating cells depend on growth-factor-induced increases in nutrient uptake to support biomass formation. Here, we review cellular nutrient acquisition strategies and their regulation by growth factors and cell-intrinsic nutrient sensors. We also discuss how oncogenes and tumour suppressors promote nutrient uptake and thereby support the survival and growth of cancer cells.

  8. Aeolian dust nutrient contributions increase with substrate age in semi-arid ecosystems

    NASA Astrophysics Data System (ADS)

    Coble, A. A.; Hart, S. C.; Ketterer, M. E.; Newman, G. S.

    2013-12-01

    Rock-derived nutrients supplied by mineral weathering become depleted over time, and without an additional nutrient source the ecosystem may eventually regress or reach a terminal steady state. Previous studies have demonstrated that aeolian dust act as parent materials of soils and important nutrients to plants in arid regions, but the relative importance of these exogenous nutrients to the function of dry ecosystems during soil development is uncertain. Here, using strontium isotopes as a tracer and a well-constrained, three million year old substrate age gradient, we show that aeolian-derived nutrients become increasingly important to plant-available soil pools and tree (Pinus edulis) growth during the latter stages of soil development in a semi-arid climate. Furthermore, the depth of nutrient uptake increased on older substrates, suggesting that trees in arid regions acquire nutrients from greater depths as ecosystem development progresses presumably in response to nutrient depletion in the more weathered surface soils. Our results contribute to the unification of biogeochemical theory by demonstrating the similarity in roles of atmospheric nutrient inputs during ecosystem development across contrasting climates.

  9. Nutrient transitions are a source of persisters in Escherichia coli biofilms.

    PubMed

    Amato, Stephanie M; Brynildsen, Mark P

    2014-01-01

    Chronic and recurrent infections have been attributed to persisters in biofilms, and despite this importance, the mechanisms of persister formation in biofilms remain unclear. The plethora of biofilm characteristics that could give rise to persisters, including slower growth, quorum signaling, oxidative stress, and nutrient heterogeneity, have complicated efforts to delineate formation pathways that generate persisters during biofilm development. Here we sought to specifically determine whether nutrient transitions, which are a common metabolic stress encountered within surface-attached communities, stimulate persister formation in biofilms and if so, to then identify the pathway. To accomplish this, we established an experimental methodology where nutrient availability to biofilm cells could be controlled exogenously, and then used that method to discover that diauxic carbon source transitions stimulated persister formation in Escherichia coli biofilms. Previously, we found that carbon source transitions stimulate persister formation in planktonic E. coli cultures, through a pathway that involved ppGpp and nucleoid-associated proteins, and therefore, tested the functionality of that pathway in biofilms. Biofilm persister formation was also found to be dependent on ppGpp and nucleoid-associated proteins, but the importance of specific proteins and enzymes between biofilm and planktonic lifestyles was significantly different. Data presented here support the increasingly appreciated role of ppGpp as a central mediator of bacterial persistence and demonstrate that nutrient transitions can be a source of persisters in biofilms.

  10. Interannual variability in dissolved inorganic nutrients in northern San Francisco Bay estuary

    USGS Publications Warehouse

    Peterson, D.H.; Smith, R.E.; Hager, S.W.; Harmon, D.D.; Herndon, R.E.; Schemel, L.E.

    1985-01-01

    Nearly two decades of seasonal dissolved inorganic nutrient-salinity distributions in northern San Francisco Bay estuary (1960-1980) illustrate interannual variations in effects of river flow (a nutrient source) and phytoplankton productivity (a nutrient sink). During winter, nutrient sources dominate the nutrient-salinity distribution patterns (nutrients are at or exceed conservative mixing concentrations). During summer, however, the sources and sinks are in close competition. In summers of wet years, the effects of increased river flow often dominate the nutrient distributions (nutrients are at or less than conservative mixing concentrations), whereas in summers of dry years, phytoplankton productivity dominates (the very dry years 1976-1977 were an exception for reasons not yet clearly known). Such source/sink effects also vary with chemical species. During summer the control of phytoplankton on nutrient distributions is apparently strongest for ammonium, less so for nitrate and silica, and is the least for phosphate. Furthermore, the strength of the silica sink (diatom productivity) is at a maximum at intermediate river flows. This relation, which is in agreement with other studies based on phytoplankton abundance and enumeration, is significant to the extent that diatoms are an important food source for herbivores. The balance or lack of balance between nutrient sources and sinks varies from one estuary to another just as it can from one year to another within the same estuary. At one extreme, in some estuaries river flow dominates the estuarine dissolved inorganic nutrient distributions throughout most of the year. At the other extreme, phytoplankton productivity dominates. In northern San Francisco Bay, for example, the phytoplankton nutrient sink is not as strong as in less turbid estuaries. In this estuary, however, river effects, which produce or are associated with near-conservative nutrient distributions, are strong even at flows less than mean-annual flow. Thus, northern San Francisco Bay appears to be an estuary in between the two extremes and is shifted closer to one extreme or the other depending on interannual variations in river flow. ?? 1985 Dr W. Junk Publishers.

  11. Nutrient sources and transport in the Missouri River Basin, with emphasis on the effects of irrigation and reservoirs

    USGS Publications Warehouse

    Brown, J.B.; Sprague, L.A.; Dupree, J.A.

    2011-01-01

    SPAtially Referenced Regressions On Watershed attributes (SPARROW) models were used to relate instream nutrient loads to sources and factors influencing the transport of nutrients in the Missouri River Basin. Agricultural inputs from fertilizer and manure were the largest nutrient sources throughout a large part of the basin, although atmospheric and urban inputs were important sources in some areas. Sediment mobilized from stream channels was a source of phosphorus in medium and larger streams. Irrigation on agricultural land was estimated to decrease the nitrogen load reaching the Mississippi River by as much as 17%, likely as a result of increased anoxia and denitrification in the soil zone. Approximately 16% of the nitrogen load and 33% of the phosphorus load that would have otherwise reached the Mississippi River was retained in reservoirs and lakes throughout the basin. Nearly half of the total attenuation occurred in the eight largest water bodies. Unlike the other major tributary basins, nearly the entire instream nutrient load leaving the outlet of the Platte and Kansas River subbasins reached the Mississippi River. Most of the larger reservoirs and lakes in the Platte River subbasin are upstream of the major sources, whereas in the Kansas River subbasin, most of the source inputs are in the southeast part of the subbasin where characteristics of the area and proximity to the Missouri River facilitate delivery of nutrients to the Mississippi River.

  12. Nutrient Sources and Transport in the Missouri River Basin, with Emphasis on the Effects of Irrigation and Reservoirs1

    PubMed Central

    Brown, Juliane B; Sprague, Lori A; Dupree, Jean A

    2011-01-01

    Abstract SPAtially Referenced Regressions On Watershed attributes (SPARROW) models were used to relate instream nutrient loads to sources and factors influencing the transport of nutrients in the Missouri River Basin. Agricultural inputs from fertilizer and manure were the largest nutrient sources throughout a large part of the basin, although atmospheric and urban inputs were important sources in some areas. Sediment mobilized from stream channels was a source of phosphorus in medium and larger streams. Irrigation on agricultural land was estimated to decrease the nitrogen load reaching the Mississippi River by as much as 17%, likely as a result of increased anoxia and denitrification in the soil zone. Approximately 16% of the nitrogen load and 33% of the phosphorus load that would have otherwise reached the Mississippi River was retained in reservoirs and lakes throughout the basin. Nearly half of the total attenuation occurred in the eight largest water bodies. Unlike the other major tributary basins, nearly the entire instream nutrient load leaving the outlet of the Platte and Kansas River subbasins reached the Mississippi River. Most of the larger reservoirs and lakes in the Platte River subbasin are upstream of the major sources, whereas in the Kansas River subbasin, most of the source inputs are in the southeast part of the subbasin where characteristics of the area and proximity to the Missouri River facilitate delivery of nutrients to the Mississippi River. PMID:22457581

  13. Groundwater-driven nutrient inputs to coastal lagoons: The relevance of lagoon water recirculation as a conveyor of dissolved nutrients.

    PubMed

    Rodellas, Valentí; Stieglitz, Thomas C; Andrisoa, Aladin; Cook, Peter G; Raimbault, Patrick; Tamborski, Joseph J; van Beek, Pieter; Radakovitch, Olivier

    2018-06-16

    Evaluating the sources of nutrient inputs to coastal lagoons is required to understand the functioning of these ecosystems and their vulnerability to eutrophication. Whereas terrestrial groundwater processes are increasingly recognized as relevant sources of nutrients to coastal lagoons, there are still limited studies evaluating separately nutrient fluxes driven by terrestrial groundwater discharge and lagoon water recirculation through sediments. In this study, we assess the relative significance of these sources in conveying dissolved inorganic nutrients (NO 3 - , NH 4 + and PO 4 3- ) to a coastal lagoon (La Palme lagoon; France, Mediterranean Sea) using concurrent water and radon mass balances. The recirculation of lagoon water through sediments represents a source of NH 4 + (1900-5500 mol d -1 ) and PO 4 3- (22-71 mol d -1 ), but acts as a sink of NO 3 - . Estimated karstic groundwater-driven inputs of NO 3 - , NH 4 + and PO 4 3- to the lagoon are on the order of 200-1200, 1-12 and 1.5-8.7 mol d -1 , respectively. A comparison between the main nutrient sources to the lagoon (karstic groundwater, recirculation, diffusion from sediments, inputs from a sewage treatment plant and atmospheric deposition) reveals that the recirculation of lagoon water through sediments is the main source of both dissolved inorganic nitrogen (DIN) and phosphorous (DIP) to La Palme lagoon. These results are in contrast with several studies conducted in systems influenced by terrestrial groundwater inputs, where groundwater is often assumed to be the main pathway for dissolved inorganic nutrient loads. This work highlights the important role of lagoon water recirculation through permeable sediments as a major conveyor of dissolved nutrients to coastal lagoons and, thus, the need for a sound understanding of the recirculation-driven nutrient fluxes and their ecological implications to sustainably manage lagoonal ecosystems. Copyright © 2018. Published by Elsevier B.V.

  14. Integrating Spatial Land Use Analysis and Mathematical Material Flow Analysis for Nutrient Management: A Case Study of the Bang Pakong River Basin in Thailand

    NASA Astrophysics Data System (ADS)

    Kupkanchanakul, Wallapa; Kwonpongsagoon, Suphaphat; Bader, Hans-Peter; Scheidegger, Ruth

    2015-05-01

    Rivers in developing and emerging countries often lack good water quality. Tools to assess the water quality in rivers, including identification of possible sources of pollution, are therefore of increasing importance. The aim of this study is to apply mathematical material flow and spatial land use analyses to identify and geographically locate the main nitrogen and phosphorus sources and processes in Bang Pakong Basin (BPB). Potential measures to mitigate the nitrogen and phosphorus loads to the water system can then be efficiently evaluated. The combination of these two methods reveals the overall nutrient load as well as local "hot spots." This allows possible mitigation measures to be discussed with regard to their spatial location. This approach goes beyond previous work in which mathematical material flow analysis was shown to be a useful tool to investigate sources of nutrients regardless of their location. The results show that the main sources contributing nutrients to waterways are aquaculture, such as shrimp, tilapia, catfish, and sea bass farming, as well as rice paddies along the main river. Additional sources contributing nutrients to this basin are field crops, livestock, aquaculture, households, and industry. High levels of nutrient inflows come from feeds and fertilizers through aquaculture and rice cultivation. The excess nutrients run into the waterways by direct discharge from aquaculture and runoff processes from rice paddies. Scenario analysis shows that management practices for aquaculture, rice, pig, and poultry farming are key drivers for reducing nutrients in the BPB.

  15. Integrating spatial land use analysis and mathematical material flow analysis for nutrient management: a case study of the Bang Pakong River Basin in Thailand.

    PubMed

    Kupkanchanakul, Wallapa; Kwonpongsagoon, Suphaphat; Bader, Hans-Peter; Scheidegger, Ruth

    2015-05-01

    Rivers in developing and emerging countries often lack good water quality. Tools to assess the water quality in rivers, including identification of possible sources of pollution, are therefore of increasing importance. The aim of this study is to apply mathematical material flow and spatial land use analyses to identify and geographically locate the main nitrogen and phosphorus sources and processes in Bang Pakong Basin (BPB). Potential measures to mitigate the nitrogen and phosphorus loads to the water system can then be efficiently evaluated. The combination of these two methods reveals the overall nutrient load as well as local "hot spots." This allows possible mitigation measures to be discussed with regard to their spatial location. This approach goes beyond previous work in which mathematical material flow analysis was shown to be a useful tool to investigate sources of nutrients regardless of their location. The results show that the main sources contributing nutrients to waterways are aquaculture, such as shrimp, tilapia, catfish, and sea bass farming, as well as rice paddies along the main river. Additional sources contributing nutrients to this basin are field crops, livestock, aquaculture, households, and industry. High levels of nutrient inflows come from feeds and fertilizers through aquaculture and rice cultivation. The excess nutrients run into the waterways by direct discharge from aquaculture and runoff processes from rice paddies. Scenario analysis shows that management practices for aquaculture, rice, pig, and poultry farming are key drivers for reducing nutrients in the BPB.

  16. Factors affecting stream nutrient loads: A synthesis of regional SPARROW model results for the continental United States

    USGS Publications Warehouse

    Preston, Stephen D.; Alexander, Richard B.; Schwarz, Gregory E.; Crawford, Charles G.

    2011-01-01

    We compared the results of 12 recently calibrated regional SPARROW (SPAtially Referenced Regressions On Watershed attributes) models covering most of the continental United States to evaluate the consistency and regional differences in factors affecting stream nutrient loads. The models - 6 for total nitrogen and 6 for total phosphorus - all provide similar levels of prediction accuracy, but those for major river basins in the eastern half of the country were somewhat more accurate. The models simulate long-term mean annual stream nutrient loads as a function of a wide range of known sources and climatic (precipitation, temperature), landscape (e.g., soils, geology), and aquatic factors affecting nutrient fate and transport. The results confirm the dominant effects of urban and agricultural sources on stream nutrient loads nationally and regionally, but reveal considerable spatial variability in the specific types of sources that control water quality. These include regional differences in the relative importance of different types of urban (municipal and industrial point vs. diffuse urban runoff) and agriculture (crop cultivation vs. animal waste) sources, as well as the effects of atmospheric deposition, mining, and background (e.g., soil phosphorus) sources on stream nutrients. Overall, we found that the SPARROW model results provide a consistent set of information for identifying the major sources and environmental factors affecting nutrient fate and transport in United States watersheds at regional and subregional scales. ?? 2011 American Water Resources Association. This article is a U.S. Government work and is in the public domain in the USA.

  17. Nutrient delivery to Lake Winnipeg from the Red-Assiniboine River Basin – A binational application of the SPARROW model

    USGS Publications Warehouse

    Benoy, Glenn A.; Jenkinson, R. Wayne; Robertson, Dale M.; Saad, David A.

    2016-01-01

    Excessive phosphorus (TP) and nitrogen (TN) inputs from the Red–Assiniboine River Basin (RARB) have been linked to eutrophication of Lake Winnipeg; therefore, it is important for the management of water resources to understand where and from what sources these nutrients originate. The RARB straddles the Canada–United States border and includes portions of two provinces and three states. This study represents the first binationally focused application of SPAtially Referenced Regressions on Watershed attributes (SPARROW) models to estimate loads and sources of TP and TN by jurisdiction and basin at multiple spatial scales. Major hurdles overcome to develop these models included: (1) harmonization of geospatial data sets, particularly construction of a contiguous stream network; and (2) use of novel calibration steps to accommodate limitations in spatial variability across the model extent and in the number of calibration sites. Using nutrient inputs for a 2002 base year, a RARB TP SPARROW model was calibrated that included inputs from agriculture, forests and wetlands, wastewater treatment plants (WWTPs) and stream channels, and a TN model was calibrated that included inputs from agriculture, WWTPs and atmospheric deposition. At the RARB outlet, downstream from Winnipeg, Manitoba, the majority of the delivered TP and TN came from the Red River Basin (90%), followed by the Upper Assiniboine River and Souris River basins. Agriculture was the single most important TP and TN source for each major basin, province and state. In general, stream channels (historically deposited nutrients and from bank erosion) were the second most important source of TP. Performance metrics for the RARB SPARROW model are similarly robust compared to other, larger US SPARROW models making it a potentially useful tool to address questions of where nutrients originate and their relative contributions to loads delivered to Lake Winnipeg.

  18. Mortality hotspots: nitrogen cycling in forest soils during vertebrate decomposition

    USDA-ARS?s Scientific Manuscript database

    Decomposing plants and animals fundamentally transform their surrounding environments, and serve as a critical source of limiting nutrients for macro- and micro-fauna. Animal mortality hotspots alter soil biogeochemical cycles, and these natural ephemeral nutrient patches are important for maintaini...

  19. Identifying sources of nitrogen to Hanalei Bay, Kauai, utilizing the nitrogen isotope signature of macroalgae

    USGS Publications Warehouse

    Derse, E.; Knee, K.L.; Wankel, Scott D.; Kendall, C.; Berg, C.J.; Paytan, A.

    2007-01-01

    Sewage effluent, storm runoff, discharge from polluted rivers, and inputs of groundwater have all been suggested as potential sources of land derived nutrients into Hanalei Bay, Kauai. We determined the nitrogen isotopic signatures (??15N) of different nitrate sources to Hanalei Bay along with the isotopic signature recorded by 11 species of macroalgal collected in the Bay. The macroalgae integrate the isotopic signatures of the nitrate sources over time, thus these data along with the nitrate to dissolved inorganic phosphate molar ratios (N:P) of the macroalgae were used to determine the major nitrate source to the bay ecosystem and which of the macro-nutrients is limiting algae growth, respectively. Relatively low ??15N values (average -0.5???) were observed in all algae collected throughout the Bay; implicating fertilizer, rather than domestic sewage, as an important external source of nitrogen to the coastal water around Hanalei. The N:P ratio in the algae compared to the ratio in the Bay waters imply that the Hanalei Bay coastal ecosystem is nitrogen limited and thus, increased nitrogen input may potentially impactthis coastal ecosystem and specifically the coral reefs in the Bay. Identifying the major source of nutrient loading to the Bay is important for risk assessment and potential remediation plans. ?? 2007 American Chemical Society.

  20. Effects of canopy opening and debris deposition on fungal connectivity, phosphorus movement between litter cohorts and mass loss

    Treesearch

    D. Jean Lodge; Sharon A. Cantrell; Grizelle Gonzalez

    2014-01-01

    Fungi are important for maintaining fast rates of decomposition in low quality tropical leaf litter via immobilization and translocation of limiting nutrients from sources to sinks and conserving nutrients after disturbance. Tropical trees often have low nutrient to carbon ratios. Disturbances such as hurricanes and logging transfer a large mass of green leaves with...

  1. Study of nonpoint source nutrient loading in the Patuxent River basin, Maryland

    USGS Publications Warehouse

    Preston, S.D.

    1997-01-01

    Study of nonpoint-source (NPS) nutrient loading in Maryland has focused on the Patuxent watershed because of its importance and representativeness of conditions in the State. Evaluation of NPS nutrient loading has been comprehensive and has included long-term monitoring, detailed watershed modeling, and synoptic sampling studies. A large amount of information has been compiled for the watershed and that information is being used to identify primary controls and efficient management strategies for NPS nutrient loading. Results of the Patuxent NPS study have identified spatial trends in water quality that appear to be related to basin charcteristics such as land use, physiography, andgeology. Evaluation of the data compiled by the study components is continuing and is expected to provide more detailed assessments of the reasons for spatial trends. In particular, ongoing evaluation of the watershed model output is expected to provide detailed information on the relative importance of nutrient sources and transport pathways across the entire watershed. Planned future directions of NPS evaluation in the State of Maryland include continued study of water quality in the Patuxent watershed and a shift in emphasis to a statewide approach. Eventually, the statewide approach will become the primary approach usedby the State to evaluate NPS loading. The information gained in the Patuxent study and the tools developed will represent valuable assets indeveloping the statewide NPS assessment program.

  2. Genome sequence of the hot pepper provides insights into the evolution of pungency in Capscicum species

    USDA-ARS?s Scientific Manuscript database

    Hot pepper is an important spice crop the world-over and is closely related to sweet peppers that represent an important vegetable crop in many cultures. Both hot and mild peppers are important sources of dietary nutrients and hot pepper is a source of the medicinal compound capsaicin, which is wide...

  3. Source and Cycling of Trace Metals and Nutrients in a Microbial Coalbed Methane System

    NASA Astrophysics Data System (ADS)

    Earll, M. M.; Barnhart, E. P.; Ritter, D.; Vinson, D. S.; Orem, W. H.; Vengosh, A.; McIntosh, J. C.

    2015-12-01

    The source and cycling of trace metals and nutrients in coalbed methane (CBM) systems are controlled by both geochemical processes, such as dissolution or precipitation, and biological mediation by microbial communities. CBM production by the microbes is influenced by trace metals and macronutrients such as nitrogen (N) and phosphate (P). Previous studies have shown the importance of these nutrients to both enhance and inhibit methane production; however, it's not clear whether they are sourced from coal via in-situ biodegradation of organic matter or transported into the seams with groundwater recharge. To address this knowledge gap, trace metal and nutrient geochemistry and the organic content of solid coal and associated groundwater will be investigated across a hydrologic gradient in CBM wells in the Powder River Basin, MT. Sequential dissolution experiments (chemical extraction of organic and inorganic constituents) using 8 core samples of coal and sandstone will provide insight into the presence of trace metals and nutrients in coalbeds, the associated minerals present, and their mobilization. If significant concentrations of N, P, and trace metals are present in core samples, in-situ sourcing of nutrients by microbes is highly probable. The biogeochemical evolution of groundwater, as it relates to trace metal and nutrient cycling by microbial consortia, will be investigated by targeting core-associated coal seams from shallow wells in recharge areas to depths of at least 165 m and across a 28 m vertical profile that include overburden, coal, and underburden. If microbial-limiting trace metals and nutrients are transported into coal seams with groundwater recharge, we would expect to see higher concentrations of trace metals and nutrients in recharge areas compared to deeper coalbeds. The results of this study will provide novel understanding of where trace metals and nutrients are sourced and how they are cycled in CBM systems.

  4. Gustatory and metabolic perception of nutrient stress in Drosophila.

    PubMed

    Linford, Nancy J; Ro, Jennifer; Chung, Brian Y; Pletcher, Scott D

    2015-02-24

    Sleep loss is an adaptive response to nutrient deprivation that alters behavior to maximize the chances of feeding before imminent death. Organisms must maintain systems for detecting the quality of the food source to resume healthy levels of sleep when the stress is alleviated. We determined that gustatory perception of sweetness is both necessary and sufficient to suppress starvation-induced sleep loss when animals encounter nutrient-poor food sources. We further find that blocking specific dopaminergic neurons phenocopies the absence of gustatory stimulation, suggesting a specific role for these neurons in transducing taste information to sleep centers in the brain. Finally, we show that gustatory perception is required for survival, specifically in a low nutrient environment. Overall, these results demonstrate an important role for gustatory perception when environmental food availability approaches zero and illustrate the interplay between sensory and metabolic perception of nutrient availability in regulating behavioral state.

  5. The relative importance of oceanic nutrient inputs for Bass Harbor Marsh Estuary at Acadia National Park, Maine

    USGS Publications Warehouse

    Huntington, Thomas G.; Culbertson, Charles W.; Fuller, Christopher; Glibert, Patricia; Sturtevant, Luke

    2014-01-01

    The U.S. Geological Survey and Acadia National Park (ANP) collaborated on a study of nutrient inputs into Bass Harbor Marsh Estuary on Mount Desert Island, Maine, to better understand ongoing eutrophication, oceanic nutrient inputs, and potential management solutions. This report includes the estimation of loads of nitrate, ammonia, total dissolved nitrogen, and total dissolved phosphorus to the estuary derived from runoff within the watershed and oceanic inputs during summers 2011 and 2012. Nutrient outputs from the estuary were also monitored, and nutrient inputs in direct precipitation to the estuary were calculated. Specific conductance, water temperature, and turbidity were monitored at the estuary outlet. This report presents a first-order analysis of the potential effects of projected sea-level rise on the inundated area and estuary volume. Historical aerial photographs were used to investigate the possibility of widening of the estuary channel over time. The scope of this report also includes analysis of sediment cores collected from the estuary and fringing marsh surfaces to assess the sediment mass accumulation rate. Median concentrations of nitrate, ammonium, and total dissolved phosphorus on the flood tide were approximately 25 percent higher than on the ebb tide during the 2011 and 2012 summer seasons. Higher concentrations on the flood tide suggest net assimilation of these nutrients in biota within the estuary. The dissolved organic nitrogen fraction dominated the dissolved nitrogen fraction in all tributaries. The median concentration of dissolved organic nitrogen was about twice as high on the on the ebb tide than the flood tide, indicating net export of dissolved organic nitrogen from the estuary. The weekly total oceanic inputs of nitrate, ammonium, and total dissolved phosphorus to the estuary were usually much larger than inputs from runoff or direct precipitation. The estuary was a net sink for nitrate and ammonium in most weeks during both years. Oceanic inputs of nitrate and ammonium were an important source of inorganic nitrogen to the estuary in both years. In both years, the total seasonal inputs of ammonium to the estuary in flood tides were much larger than the inputs from watershed runoff or direct precipitation. In 2011, the total seasonal input of nitrate from flood tides to the estuary was more than twice as large the inputs from watershed runoff and precipitation, but in 2012, the inputs from flood tides were only marginally larger than the inputs from watershed runoff and precipitation. Turbidity was measured intermittently in 2012, and the pattern that emerged from the measurements indicated that the estuary was a source of particulate matter to the ocean rather than the ocean being a source to the estuary. From the nutrient budgets determined for the estuary it is evident that oceanic sources of nitrate and ammonium are an important part of the supply of nutrients that are contributing to the growth of macroalgae in the estuary. The relative importance of these oceanic nutrients compared with sources within the watershed typically increases as the summer progresses and runoff decreases. It is likely that rising sea levels, estimated by the National Oceanic and Atmospheric Administration to be 11 centimeters from 1950 through 2006 in nearby Bar Harbor, have resulted in an increase in oceanic inputs (tidal volume and nutrients derived from oceanic sources).

  6. Phosphorus and nitrogen losses from poultry litter stacks and leaching through soils

    USDA-ARS?s Scientific Manuscript database

    The practice of stacking poultry litter in fields prior to spreading provides important logistical benefits to farmers but is controversial due to its potential to serve as a source of nutrients to leachate and runoff. We evaluated nutrient fate under stacked poultry litter to assess differences in ...

  7. Nitrogen source and application method impact on corn yield and nutrient uptake

    USDA-ARS?s Scientific Manuscript database

    Farmers are looking for better management practices to enhance production and reduce negative environmental impact from nitrogen (N) fertilizer application since N is one of the most important and costly nutrient inputs for crop production. In this field experiment pre-plant swine effluent applicati...

  8. Daily consumption of foods and nutrients from institutional and home sources among young children attending two contrasting day-care centers in Guatemala City.

    PubMed

    Vossenaar, M; Jaramillo, P M; Soto-Méndez, M-J; Panday, B; Hamelinck, V; Bermúdez, O I; Doak, C M; Mathias, P; Solomons, N W

    2012-12-01

    Adequate nutrition is critical to child development and institutions such as day-care centers could potentially complement children's diets to achieve optimal daily intakes. The aim of the study was to describe the full-day diet of children, examining and contrasting the relative contribution of home-derived versus institutional energy and nutrient sources. The present comparison should be considered in the domain of a case-study format. The diets of 33, 3-6 y old children attending low-income day-care centers serving either 3 or a single meal were examined. The home-diet was assessed by means of 3 non-consecutive 24-hr recalls. Estimated energy and nutrient intakes at the centers and at home were assessed and related to Recommended Nutrient Intakes (RNI). Nutrient densities, critical densities and main sources of nutrients were computed. We observed that in children attending the day-care center serving three meals, home-foods contributed less than half the daily energy (47.7%) and between 29.9% and 53.5% of daily nutrients. In children receiving only lunch outside the home, energy contribution from the home was 83.9% and 304 kcal lower than for children receiving 3 meals. Furthermore, between 59.0% and 94.8% of daily nutrients were provided at home. Daily energy, nutrient intakes and nutrient densities were well above the nutrient requirements for this age group, and particularly high for vitamin A. The overall dietary variety was superior in the situation of greater contribution of home fare, but overall the nutrient density and adequacy of the aggregate intakes did not differ in any important manner.

  9. Spatial distribution and assessment of nutrient pollution in Lake Toba using 2D-multi layers hydrodynamic model and DPSIR framework

    NASA Astrophysics Data System (ADS)

    Sunaryani, A.; Harsono, E.; Rustini, H. A.; Nomosatryo, S.

    2018-02-01

    Lake Toba is the largest lake in Indonesia utilized as a source of life-support for drinking and clean water, energy sources, aquaculture and tourism. Nowadays the water quality in Lake Toba has decreased due to the presence of excessive nutrient (nitrogen: N and phosphorus: P). This study aims to describe the spatial distribution of nutrient pollution and to develop a decision support tool for the identification and evaluation of nutrient pollution control in Lake Toba. Spatial distribution method was conducted by 2D-multi layers hydrodynamic model, while DPSIR Framework is used as a tool for the assessment. The results showed that the concentration of nutrient was low and tended to increase along the water depth, but nutrient concentration in aquaculture zones was very high and the trophic state index has reached eutrophic state. The principal anthropogenic driving forces were population growth and the development of aquaculture, livestock, agriculture, and tourism. The main environmental pressures showed that aquaculture and livestock waste are the most important nutrient sources (93% of N and 87% of P loads). State analysis showed that high nutrient concentration and increased algal growth lead to oxygen depletion. The impacts of these conditions were massive fish kills, loss of amenities and tourism value, also decreased usability of clean water supply. This study can be a useful information for decision-makers to evaluate nutrient pollution control. Nutrient pollution issue in Lake Toba requires the attention of local government and public society to maintain its sustainability.

  10. Nutrient concentrations in coarse and fine woody debris of Populus tremuloides Michx.-dominated forests, northern Minnesota, USA

    USGS Publications Warehouse

    Klockow, Paul A.; D'Amato, Anthony W.; Bradford, John B.; Fraver, Shawn

    2014-01-01

    Contemporary forest harvesting practices, specifically harvesting woody biomass as a source of bioenergy feedstock, may remove more woody debris from a site than conventional harvesting. Woody debris, particularly smaller diameter woody debris, plays a key role in maintaining ecosystem nutrient stores following disturbance. Understanding nutrient concentrations within woody debris is necessary for assessing the long-term nutrient balance consequences of altered woody debris retention, particularly in forests slated for use as bioenergy feedstocks. Nutrient concentrations in downed woody debris of various sizes, decay classes, and species were characterized within one such forest type, Populus tremuloides Michx.-dominated forests of northern Minnesota, USA. Nutrient concentrations differed significantly between size and decay classes and generally increased as decay progressed. Fine woody debris (≤ 7.5 cm diameter) had higher nutrient concentrations than coarse woody debris (> 7.5 cm diameter) for all nutrients examined except Na and Mn, and nutrient concentrations varied among species. Concentrations of N, Mn, Al, Fe, and Zn in coarse woody debris increased between one and three orders of magnitude, while K decreased by an order of magnitude with progressing decay. The variations in nutrient concentrations observed here underscore the complexity of woody debris nutrient stores in forested ecosystems and suggest that retaining fine woody debris at harvest may provide a potentially important source of nutrients following intensive removals of bioenergy feedstocks.

  11. Mechanisms of Nutrient Acquisition by Rock Eating Microbes Revealed by Proteomics

    NASA Astrophysics Data System (ADS)

    Bryce, C. C.; Martin, S.; LeBihan, T.; Cockell, C.

    2013-12-01

    In nutrient poor terrestrial environments such as fresh lava flows, bioessential elements contained within surrounding rocks can be an important source of nutrients for the microbial community. The role of microbes in the alteration of rock surfaces, driven by this nutrient requirement, is widely accepted and is known to play an important role in CO2 drawdown as well as influencing nutrient flux to the biosphere. There is, however, limited knowledge of the biological processes which facilitate the uptake of bioessential elements from rocks. Using a technique known as 'shotgun' proteomics we have investigated the cellular processes involved in the uptake of iron, calcium and magnesium from fresh basalt in the heavy metal resistant bacterium Cupriavidus metallidurans CH34. Quantitative proteomics allows us to obtain a detailed snapshot of the protein complement of cells. By comparing cultures grown under normal growth conditions to cultures grown with basalt as an alternative iron, calcium or magnesium source, we can highlight proteins which are differentially expressed and therefore important for life in a rocky environment. We observe that the use of rock-bound nutrients induces a complex metabolic response in C.metallidurans which is distinct from the effects observed in the presence of rocks in normal growth medium. This is evidenced, for example, by the upregulation of a number of proteins involved in alternative energy-producing processes such as chemolithotrophy, sulphur oxidation and hydrogen oxidation compared to control cultures. This work has implications for the understanding of how microbes forge a life for themselves from the Earth's crust and highlights the importance of the field of proteomics for the study of life in terrestrial environments.

  12. Nutrients for the aging eye

    PubMed Central

    Rasmussen, Helen M; Johnson, Elizabeth J

    2013-01-01

    The incidence of age-related eye diseases is expected to rise with the aging of the population. Oxidation and inflammation are implicated in the etiology of these diseases. There is evidence that dietary antioxidants and anti-inflammatories may provide benefit in decreasing the risk of age-related eye disease. Nutrients of interest are vitamins C and E, β-carotene, zinc, lutein, zeaxanthin, and the omega-3 fatty acids eicosapentaenoic acid and docosahexaenoic acid. While a recent survey finds that among the baby boomers (45–65 years old), vision is the most important of the five senses, well over half of those surveyed were not aware of the important nutrients that play a key role in eye health. This is evident from a national survey that finds that intake of these key nutrients from dietary sources is below the recommendations or guidelines. Therefore, it is important to educate this population and to create an awareness of the nutrients and foods of particular interest in the prevention of age-related eye disease. PMID:23818772

  13. The combination of energy-dependent internal adaptation mechanisms and external factors enables Listeria monocytogenes to express a strong starvation survival response during multiple-nutrient starvation.

    PubMed

    Lungu, Bwalya; Saldivar, Joshua C; Story, Robert; Ricke, Steven C; Johnson, Michael G

    2010-05-01

    The goal of this study was to characterize the starvation survival response (SSR) of a wild-type Listeria monocytogenes 10403S and an isogenic DeltasigB mutant strain during multiple-nutrient starvation conditions over 28 days. This study examined the effects of inhibitors of protein synthesis, the proton motive force, substrate level phosphorylation, and oxidative phosphorylation on the SSR of L. monocytogenes 10403S and a DeltasigB mutant during multiple-nutrient starvation. The effects of starvation buffer changes on viability were also examined. During multiple-nutrient starvation, both strains expressed a strong SSR, suggesting that L. monocytogenes possesses SigB-independent mechanism(s) for survival during multiple-nutrient starvation. Neither strain was able to express an SSR following starvation buffer changes, indicating that the nutrients/factors present in the starvation buffer could be a source of energy for cell maintenance and survival. Neither the wild-type nor the DeltasigB mutant strain was able to elicit an SSR when exposed to the protein synthesis inhibitor chloramphenicol within the first 4 h of starvation. However, both strains expressed an SSR when exposed to chloramphenicol after 6 h or more of starvation, suggesting that the majority of proteins required to elicit an effective SSR in L. monocytogenes are likely produced somewhere between 4 and 6 h of starvation. The varying SSRs of both strains to the different metabolic inhibitors under aerobic or anaerobic conditions suggested that (1) energy derived from the proton motive force is important for an effective SSR, (2) L. monocytogenes utilizes an anaerobic electron transport during multiple-nutrient starvation conditions, and (3) the glycolytic pathway is an important energy source during multiple-nutrient starvation when oxygen is available, and less important under anaerobic conditions. Collectively, the data suggest that the combination of energy-dependent internal adaptation mechanisms of cells and external nutrients/factors enables L. monocytogenes to express a strong SSR.

  14. RARE Grant- Atmospheric Dry Deposition: Quantification of Mercury and Nutrients using Novel Surrogate Surface Collector Techniques

    EPA Science Inventory

    This study will quantify the daily surrogate surface dry deposition of mercury and nutrient species, and evaluate its relative importance to wet deposition at two sites in Florida over a two-year period. It will identify the major sources contributing to the observed mercury and...

  15. Evaluation of anthropogenic influences on the Luhuitou fringing reef via spatial and temporal analyses (from isotopic values)

    NASA Astrophysics Data System (ADS)

    Cao, D.; Cao, W.; Yu, K.; Wu, G.; Yang, J.; Su, X.; Wang, F.

    2017-05-01

    Coral reefs have suffered remarkable declines worldwide. Nutrient overenrichment is considered to be one of the primary local causes. The Luhuitou fringing reef in southern China is a well-known tourist destination that is subject to enormous coastal renovation. The mean δ13C, δ15N value, and carbon over nitrogen ratio (C/N) of particulate organic matter were -21.56 ± 1.94‰, 7.04 ± 3.81‰, and 5.81 ± 1.86, respectively, suggesting mixed sources of carbon and nitrogen. The IsoError calculations suggested that marine phytoplankton and marine benthic algae dominated the majority of carbon sources, while anthropogenic and terrestrial organic nitrogen dominated the nitrogen sources. A tendency toward greater terrestrial detritus and anthropogenic-derived discharges was found during dry seasons and greater marine-derived organic matter during wet seasons. These results demonstrated the existence of anthropogenic influences and high dissolved inorganic nitrogen concentrations and C/N ratios. Anthropogenic nutrient discharge moderated nitrogen limitation, whereas phosphorus became more important to the reef ecosystem. Despite the marine carbon sources dominated, freshwater and terrestrial-derived organic carbon sources were also very important. Meanwhile, anthropogenic and terrestrial organic nitrogen sources were dominant. Therefore, pollution from more extensive region and anthropogenic activities from riverine sewage discharges adjacent to reefs should be focused to effectively reduce human-derived nutrients on reefs.

  16. Nutrient and phytoplankton analysis of a Mediterranean coastal area.

    PubMed

    Sebastiá, M T; Rodilla, M

    2013-01-01

    Identifying and quantifying the key anthropogenic nutrient input sources are essential to adopting management measures that can target input for maximum effect in controlling the phytoplankton biomass. In this study, three systems characterized by distinctive main nutrient sources were sampled along a Mediterranean coast transect. These sources were groundwater discharge in the Ahuir area, the Serpis river discharge in the Venecia area, and a submarine wastewater outfall 1,900 m from the coast. The study area includes factors considered important in determining a coastal area as a sensitive area: it has significant nutrient sources, tourism is a major source of income in the region, and it includes an area of high water residence time (Venecia area) which is affected by the harbor facilities and by wastewater discharges. We found that in the Ahuir and the submarine wastewater outfall areas, the effects of freshwater inputs were reduced because of a greater water exchange with the oligotrophic Mediterranean waters. On the other hand, in the Venecia area, the highest levels of nutrient concentration and phytoplankton biomass were attributed to the greatest water residence time. In this enclosed area, harmful dinoflagellates were detected (Alexandrium sp. and Dinophysis caudata). If the planned enlargement of the Gandia Harbor proceeds, it may increase the vulnerability of this system and provide the proper conditions of confinement for the dinoflagellate blooms' development. Management measures should first target phosphorus inputs as this is the most potential-limiting nutrient in the Venecia area and comes from a point source that is easier to control. Finally, we recommend that harbor environmental management plans include regular monitoring of water quality in adjacent waters to identify adverse phytoplankton community changes.

  17. Nutrient Mass Balance for the Mobile River Basin in Alabama, Georgia, and Mississippi

    NASA Astrophysics Data System (ADS)

    Harned, D. A.; Harvill, J. S.; McMahon, G.

    2001-12-01

    The source and fate of nutrients in the Mobile River drainage basin are important water-quality concerns in Alabama, Georgia, and Mississippi. Land cover in the basin is 74 percent forested, 16 percent agricultural, 2.5 percent developed, and 4 percent wetland. A nutrient mass balance calculated for 18 watersheds in the Mobile River Basin indicates that agricultural non-point nitrogen and phosphorus sources and urban non-point nitrogen sources are the most important factors associated with nutrients in the streams. Nitrogen and phosphorus inputs from atmospheric deposition, crop fertilizer, biological nitrogen fixation, animal waste, and point sources were estimated for each of the 18 drainage basins. Total basin nitrogen inputs ranged from 27 to 93 percent from atmospheric deposition (56 percent mean), 4 to 45 percent from crop fertilizer (25 percent mean), <0.01 to 31 percent from biological nitrogen fixation (8 percent mean), 2 to 14 percent from animal waste (8 percent mean), and 0.2 to 11 percent from point sources (3 percent mean). Total basin phosphorus inputs ranged from 10 to 39 percent from atmospheric deposition (26 percent mean), 7 to 51 percent from crop fertilizer (28 percent mean), 20 to 64 percent from animal waste (41 percent mean), and 0.2 to 11 percent from point sources (3 percent mean). Nutrient outputs for the watersheds were estimated by calculating instream loads and estimating nutrient uptake, or withdrawal, by crops. The difference between the total basin inputs and outputs represents nutrients that are retained or processed within the basin while moving from the point of use to the stream, or in the stream. Nitrogen output, as a percentage of the total basin nitrogen inputs, ranged from 19 to 79 percent for instream loads (35 percent mean) and from 0.01 to 32 percent for crop harvest (10 percent mean). From 53 to 87 percent (75 percent mean) of nitrogen inputs were retained within the 18 basins. Phosphorus output ranged from 9 to 29 percent for instream loads (18 percent mean) and from 0.01 to 23 percent for crop harvest (7 percent mean). The basins retained from 60 to 87 percent (74 percent mean) of phosphorous inputs. Correlation of basin nutrient output loads and concentrations with the basin inputs and correlation of output loads and concentrations with basin land use were tested using the Spearman rank test. The correlation analysis indicated that higher nitrogen concentrations in the streams are associated with urban areas and higher loads are associated with agriculture; high phosphorus output loads and concentrations are associated with agriculture. Higher nutrient loads in agricultural basins are partly an effect of basin size-- larger basins generate larger nutrient loads. Nutrient loads and concentrations showed no significant correlation to point-source inputs. Nitrogen loads were significantly (p<0.05, correlation coefficient >0.5) higher in basins with greater cropland areas. Nitrogen concentrations also increased as residential, commercial, and total urban areas increased. Phosphorus loads were positively correlated with animal-waste inputs, pasture, and total agricultural land. Phosphorus concentrations were highest in basins with the greatest amounts of row-crop agriculture.

  18. Renal Diet for Vegetarians: Which Protein Sources Are Best?

    MedlinePlus

    ... for calories and other important nutrients. Type of vegetarian diet Protein sources Vegan — allows only plant-based foods ... vegan_renal_patients.php. Accessed April 6, 2016. Vegetarian diets in chronic kidney disease. Vegetarian Nutrition, Academy of ...

  19. Nutrients and water masses in the Gulf of Maine - Georges Bank region: Variability and importance to blooms of the toxic dinoflagellate Alexandrium fundyense.

    PubMed

    Townsend, D W; McGillicuddy, D J; Thomas, M A; Rebuck, N R

    2014-05-01

    We report here the results of ten oceanographic survey cruises carried out in the Gulf of Maine - Georges Bank region of the Northwest Atlantic during the late spring to summer period in 2007, 2008 and 2010, for which we examine and characterize relationships among dissolved inorganic nutrient fields, water mass dynamics and cell densities of the toxic dinoflagellate Alexandrium fundyense . Nutrients are supplied to continental shelf waters of the Gulf of Maine - Georges Bank region by inflows of deep offshore water masses; once in the Gulf they are transported with the residual circulation and mix with surface waters, both in the Gulf and on the Bank. Those fluxes of offshore water masses and their nutrient loads are the major source of nutrients for phytoplankton production in the region, including annual blooms of A. fundyense in the Gulf and on Georges Bank. This much is already known. We suggest here that the locations and magnitude of A. fundyense blooms are controlled in part by variable nutrient fluxes to the interior Gulf of Maine from offshore, and, those interior Gulf of Maine waters are, in turn, the main nutrient source to Georges Bank, which are brought onto the Bank by tidal pumping on the Northern Flank. We present evidence that nitrate is the initial form of nitrogenous nutrient for A. fundyense blooms, but it is quickly depleted to limiting concentrations of less than 0.5 μM, at which time continued growth and maintenance of the population is likely fueled by recycled ammonium. We also show that phosphate may be the limiting nutrient over much of Georges Bank in summer, allowing recycled ammonium concentrations to increase. Our temperature-salinity analyses reveal spatial and temporal (seasonal and interannual) variability in the relative proportions of two deep source waters that enter the Gulf of Maine at depth through the Northeast Channel: Warm Slope Water (WSW) and Labrador Slope Water (LSW). Those two source waters are known to vary in their nutrient loads, with nitrate concentrations about 50% higher in WSW than LSW, for example, and as such the proportions of these two water masses to one another are important determinants of the overall nutrient loads in the interior Gulf. In addition to these deep slope water fluxes, we show evidence here of episodic fluxes of relatively fresh and low-nutrient shelf waters from the Nova Scotian Shelf, which enter the Gulf in pulses at depths between the surface and approximately 150 m, displacing deep slope waters, and consequently they significantly dilute the Gulf's interior waters, reducing nutrient concentrations and, in turn, affect the magnitude of A. fundyense blooms.

  20. Nutrients and water masses in the Gulf of Maine - Georges Bank region: Variability and importance to blooms of the toxic dinoflagellate Alexandrium fundyense

    PubMed Central

    Townsend, D.W.; McGillicuddy, D.J.; Thomas, M.A.; Rebuck, N.R.

    2015-01-01

    We report here the results of ten oceanographic survey cruises carried out in the Gulf of Maine - Georges Bank region of the Northwest Atlantic during the late spring to summer period in 2007, 2008 and 2010, for which we examine and characterize relationships among dissolved inorganic nutrient fields, water mass dynamics and cell densities of the toxic dinoflagellate Alexandrium fundyense. Nutrients are supplied to continental shelf waters of the Gulf of Maine - Georges Bank region by inflows of deep offshore water masses; once in the Gulf they are transported with the residual circulation and mix with surface waters, both in the Gulf and on the Bank. Those fluxes of offshore water masses and their nutrient loads are the major source of nutrients for phytoplankton production in the region, including annual blooms of A. fundyense in the Gulf and on Georges Bank. This much is already known. We suggest here that the locations and magnitude of A. fundyense blooms are controlled in part by variable nutrient fluxes to the interior Gulf of Maine from offshore, and, those interior Gulf of Maine waters are, in turn, the main nutrient source to Georges Bank, which are brought onto the Bank by tidal pumping on the Northern Flank. We present evidence that nitrate is the initial form of nitrogenous nutrient for A. fundyense blooms, but it is quickly depleted to limiting concentrations of less than 0.5 μM, at which time continued growth and maintenance of the population is likely fueled by recycled ammonium. We also show that phosphate may be the limiting nutrient over much of Georges Bank in summer, allowing recycled ammonium concentrations to increase. Our temperature-salinity analyses reveal spatial and temporal (seasonal and interannual) variability in the relative proportions of two deep source waters that enter the Gulf of Maine at depth through the Northeast Channel: Warm Slope Water (WSW) and Labrador Slope Water (LSW). Those two source waters are known to vary in their nutrient loads, with nitrate concentrations about 50% higher in WSW than LSW, for example, and as such the proportions of these two water masses to one another are important determinants of the overall nutrient loads in the interior Gulf. In addition to these deep slope water fluxes, we show evidence here of episodic fluxes of relatively fresh and low-nutrient shelf waters from the Nova Scotian Shelf, which enter the Gulf in pulses at depths between the surface and approximately 150 m, displacing deep slope waters, and consequently they significantly dilute the Gulf's interior waters, reducing nutrient concentrations and, in turn, affect the magnitude of A. fundyense blooms. PMID:26028824

  1. Certain Grain Foods Can Be Meaningful Contributors to Nutrient Density in the Diets of U.S. Children and Adolescents: Data from the National Health and Nutrition Examination Survey, 2009-2012.

    PubMed

    Papanikolaou, Yanni; Fulgoni, Victor L

    2017-02-20

    Grain foods may play an important role in delivering nutrients to the diet of children and adolescents. The present study determined grain food sources of energy/nutrients in U.S. children and adolescents using data from the National Health and Nutrition Examination Survey, 2009-2012. Analyses of grain food sources were conducted using a 24-h recall in participants 2-18 years old ( N = 6109). Sources of nutrients contained in grain foods were determined using U.S. Department of Agriculture nutrient composition databases and excluded mixed dishes. Mean energy and nutrient intakes from the total diet and from various grain foods were adjusted for the sample design using appropriate weights. All grains provided 14% ± 0.2% kcal/day (263 ± 5 kcal/day), 22.5% ± 0.3% (3 ± 0.1 g/day) dietary fiber, 39.3% ± 0.5% (238 ± 7 dietary folate equivalents (DFE)/day) folate and 34.9% ± 0.5% (5.6 ± 0.1 mg/day) iron in the total diet in children and adolescents. The current analyses showed that certain grain foods, in particular breads, rolls and tortillas, ready-to-eat cereals and quick breads and bread products, are meaningful contributors of folate, iron, thiamin, niacin and dietary fiber, a nutrient of public health concern as outlined by the 2015-2020 Dietary Guidelines for Americans. Thus, specific grain foods contribute to nutrient density and have the potential to increase the consumption of several under-consumed nutrients in children and adolescents.

  2. Whole grains, refined grains and fortified refined grains: What's the difference?

    PubMed

    Slavin, J L

    2000-09-01

    Dietary guidance universally supports the importance of grains in the diet. The United States Department of Agriculture pyramid suggests that Americans consume from six to 11 servings of grains per day, with three of these servings being whole grain products. Whole grain contains the bran, germ and endosperm, while refined grain includes only endosperm. Both refined and whole grains can be fortified with nutrients to improve the nutrient profile of the product. Most grains consumed in developed countries are subjected to some type of processing to optimize flavor and provide shelf-stable products. Grains provide important sources of dietary fibre, plant protein, phytochemicals and needed vitamins and minerals. Additionally, in the United States grains have been chosen as the best vehicle to fortify our diets with vitamins and minerals that are typically in short supply. These nutrients include iron, thiamin, niacin, riboflavin and, more recently, folic acid and calcium. Grains contain antioxidants, including vitamins, trace minerals and non-nutrients such as phenolic acids, lignans and phytic acid, which are thought to protect against cardiovascular disease and cancer. Additionally, grains are our most dependable source of phytoestrogens, plant compounds known to protect against cancers such as breast and prostate. Grains are rich sources of oligosaccharides and resistant starch, carbohydrates that function like dietary fibre and enhance the intestinal environment and help improve immune function. Epidemiological studies find that whole grains are more protective than refined grains in the prevention of chronic disease, although instruments to define intake of refined, whole and fortified grains are limited. Nutritional guidance should support whole grain products over refined, with fortification of nutrients improving the nutrient profile of both refined and whole grain products.

  3. Sources of nitrogen and phosphorus emissions to Irish rivers and coastal waters: Estimates from a nutrient load apportionment framework.

    PubMed

    Mockler, Eva M; Deakin, Jenny; Archbold, Marie; Gill, Laurence; Daly, Donal; Bruen, Michael

    2017-12-01

    More than half of surface water bodies in Europe are at less than good ecological status according to Water Framework Directive assessments, and diffuse pollution from agriculture remains a major, but not the only, cause of this poor performance. Agri-environmental policy and land management practices have, in many areas, reduced nutrient emissions to water. However, additional measures may be required in Ireland to further decouple the relationship between agricultural productivity and emissions to water, which is of vital importance given on-going agricultural intensification. The Source Load Apportionment Model (SLAM) framework characterises sources of phosphorus (P) and nitrogen (N) emissions to water at a range of scales from sub-catchment to national. The SLAM synthesises land use and physical characteristics to predict emissions from point (wastewater, industry discharges and septic tank systems) and diffuse sources (agriculture, forestry, etc.). The predicted annual nutrient emissions were assessed against monitoring data for 16 major river catchments covering 50% of the area of Ireland. At national scale, results indicate that total average annual emissions to surface water in Ireland are over 2700tyr -1 of P and 82,000tyr -1 of N. The proportional contributions from individual sources show that the main sources of P are from municipal wastewater treatment plants and agriculture, with wide variations across the country related to local anthropogenic pressures and the hydrogeological setting. Agriculture is the main source of N emissions to water across all regions of Ireland. These policy-relevant results synthesised large amounts of information in order to identify the dominant sources of nutrients at regional and local scales, contributing to the national nutrient risk assessment of Irish water bodies. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Association of arsenic with nutrient elements in rice plants.

    PubMed

    Duan, Guilan; Liu, Wenju; Chen, Xueping; Hu, Ying; Zhu, Yongguan

    2013-06-01

    Rice is the main cereal crop that feeds half of the world's population, and two thirds of the Chinese population. Arsenic (As) contamination in paddy soil and irrigation water elevates As concentration in rice grains, thus rice consumption is an important As intake route for populations in south and south-east Asia, where rice is the staple food. In addition to direct toxicity of As to human, As may limit the accumulation of micro-nutrients in rice grains, such as selenium (Se) and zinc (Zn). These micro-nutrients are essential for humans, while mineral deficiencies, especially iron (Fe) and Zn, are prevalent in China. Therefore, it is important to understand the interactions between As and micro-nutrients in rice plants, which is the principal source of these nutrients for people on rice diets. In addition, during the processes of As uptake, translocation and transformation, the status of macro-nutrients (e.g. silicon (Si), phosphors (P), sulfur (S)) are important factors affecting As dynamics in soil-plant systems and As accumulation in rice grains. Recently, synchrotron-based spectroscopic techniques have been applied to map the distribution of As and nutrient elements in rice plants, which will aid to understand how As are accumulated, complexed and transported within plants. This paper reviews the interactions between As and macro-nutrients, as well as micro-nutrients in rice plants.

  5. Nutrient mass balance and trends, Mobile River Basin, Alabama, Georgia, and Mississippi

    USGS Publications Warehouse

    Harned, D.A.; Atkins, J.B.; Harvill, J.S.

    2004-01-01

    A nutrient mass balance - accounting for nutrient inputs from atmospheric deposition, fertilizer, crop nitrogen fixation, and point source effluents; and nutrient outputs, including crop harvest and storage - was calculated for 18 subbasins in the Mobile River Basin, and trends (1970 to 1997) were evaluated as part of the U.S. Geological Survey National Water Quality Assessment (NAWQA) Program. Agricultural nonpoint nitrogen and phosphorus sources and urban nonpoint nitrogen sources are the most important factors associated with nutrients in this system. More than 30 percent of nitrogen yield in two basins and phosphorus yield in eight basins can be attributed to urban point source nutrient inputs. The total nitrogen yield (1.3 tons per square mile per year) for the Tombigbee River, which drains a greater percentage of agricultural (row crop) land use, was larger than the total nitrogen yield (0.99 tons per square mile per year) for the Alabama River. Decreasing trends of total nitrogen concentrations in the Tombigbee and Alabama Rivers indicate that a reduction occurred from 1975 to 1997 in the nitrogen contributions to Mobile Bay from the Mobile River. Nitrogen concentrations also decreased (1980 to 1995) in the Black Warrior River, one of the major tributaries to the Tombigbee River. Total phosphorus concentrations increased from 1970 to 1996 at three urban influenced sites on the Etowah River in Georgia. Multiple regression analysis indicates a distinct association between water quality in the streams of the Mobile River drainage basin and agricultural activities in the basin.

  6. Nutrients and clam contamination by Escherichia coli in a meso-tidal coastal lagoon: Seasonal variation in counter cycle to external sources.

    PubMed

    Botelho, Maria João; Soares, Florbela; Matias, Domitília; Vale, Carlos

    2015-07-15

    The clam Ruditapes decussatus was transplanted from a natural recruitment area of Ria Formosa to three sites, surveyed for nutrients in water and sediments. Specimens were sampled monthly for determination of Escherichia coli, condition index and gonadal index. Higher nutrient values in low tide reflect drainage, anthropogenic sources or sediment regeneration, emphasising the importance of water mixing in the entire lagoon driven by the tide. Despite the increase of effluent discharges in summer due to tourism, nutrient concentrations and E. coli in clams were lower in warmer periods. The bactericide effect of temperature and solar radiation was better defined in clams from the inlet channel site than from sites closer to urban effluents. High temperature in summer and torrential freshwater inputs to Ria Formosa may anticipate climate change scenarios for south Europe. Seasonal variation of nutrients and clam contamination may thus point to possible alterations in coastal lagoons and their ecosystem services. Copyright © 2015. Published by Elsevier Ltd.

  7. Temporal and spatial distributions of nutrients under the influence of human activities in Sishili Bay, northern Yellow Sea of China.

    PubMed

    Wang, Yujue; Liu, Dongyan; Dong, Zhijun; Di, Baoping; Shen, Xuhong

    2012-12-01

    The temporal and spatial distributions of dissolved inorganic nitrogen (DIN), dissolved organic nitrogen (DON), soluble reactive phosphorus (SRP) and dissolved reactive silica (DRSi) together with chlorophyll-a, temperature and salinity were analyzed monthly from December 2008 to March 2010 at four zones in Sishili Bay located in the northern Yellow Sea. The nutrient distribution was impacted by seasonal factors (biotic factors, temperature and wet deposition), physical factors (water exchange) and anthropogenic loadings. The seasonal variations of nutrients were mainly determined by the seasonal factors and the spatial distribution of nutrients was mainly related to water exchange. Anthropogenic loadings for DIN, SRP and DRSi were mainly from point sources, but for DON, non-point sources were also important. Nutrient limitation has changed from DIN in 1997 to SRP and DRSi in 2010, and this has resulted in changes in the dominant red tide species from diatom to dinoflagellates. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. The importance of submarine groundwater discharge to the nearshore nutrient supply in the Gulf of Aqaba (Israel)

    USGS Publications Warehouse

    Shellenbarger, G.G.; Monismith, Stephen G.; Genin, A.; Paytan, A.

    2006-01-01

    We used two short-lived radium isotopes (223Ra, 224Ra) and a mass balance approach applied to the radium activities to determine the nutrient contribution of saline submarine groundwater discharge to the coastal waters of the northern Gulf of Aqaba (Israel). Radium isotope activities were measured along transects during two seasons at a site that lacked any obvious surficial water input. An onshore well and an offshore end member were also sampled. For all samples, nutrients and salinity data were collected. Radium isotope activities generally decreased with distance offshore and exhibited significant tidal variability, which is consistent with a shore-derived tidally influenced source. Submarine groundwater contributes only 1-2% of the water along this coast, but this groundwater provides 8-46% of the nutrients. This saline groundwater is derived predominately from tidally pumped seawater percolating through the unconfined coastal aquifer and leaching radium and nutrients. This process represents a significant source of nutrients to the oligotrophic nearshore reef. ?? 2006, by the American Society of Limnology and Oceanography, Inc.

  9. Acidic precipitation and forest vegetation

    Treesearch

    Carl Olof Tamm; Ellis B. Cowling

    1976-01-01

    Most plants can take up nutrients from the atmosphere as well as from the soil solution. This capacity is especially important in natural ecosystems such as forests and bogs where nutrients from other sources are scarce and where fertilization is not a normal management procedure. Trees develop very large canopies of leaves and branches that extend high into the air....

  10. Escherichia coli Competence Gene Homologs Are Essential for Competitive Fitness and the Use of DNA as a Nutrient

    PubMed Central

    Palchevskiy, Vyacheslav; Finkel, Steven E.

    2006-01-01

    Natural genetic competence is the ability of cells to take up extracellular DNA and is an important mechanism for horizontal gene transfer. Another potential benefit of natural competence is that exogenous DNA can serve as a nutrient source for starving bacteria because the ability to “eat” DNA is necessary for competitive survival in environments containing limited nutrients. We show here that eight Escherichia coli genes, identified as homologs of com genes in Haemophilus influenzae and Neisseria gonorrhoeae, are necessary for the use of extracellular DNA as the sole source of carbon and energy. These genes also confer a competitive advantage to E. coli during long-term stationary-phase incubation. We also show that homologs of these genes are found throughout the proteobacteria, suggesting that the use of DNA as a nutrient may be a widespread phenomenon. PMID:16707682

  11. Groundwater impacts on surface water quality and nutrient loads in lowland polder catchments: monitoring the greater Amsterdam area

    NASA Astrophysics Data System (ADS)

    Yu, Liang; Rozemeijer, Joachim; van Breukelen, Boris M.; Ouboter, Maarten; van der Vlugt, Corné; Broers, Hans Peter

    2018-01-01

    The Amsterdam area, a highly manipulated delta area formed by polders and reclaimed lakes, struggles with high nutrient levels in its surface water system. The polders receive spatially and temporally variable amounts of water and nutrients via surface runoff, groundwater seepage, sewer leakage, and via water inlets from upstream polders. Diffuse anthropogenic sources, such as manure and fertiliser use and atmospheric deposition, add to the water quality problems in the polders. The major nutrient sources and pathways have not yet been clarified due to the complex hydrological system in lowland catchments with both urban and agricultural areas. In this study, the spatial variability of the groundwater seepage impact was identified by exploiting the dense groundwater and surface water monitoring networks in Amsterdam and its surrounding polders. A total of 25 variables (concentrations of total nitrogen (TN), total phosphorus (TP), NH4, NO3, HCO3, SO4, Ca, and Cl in surface water and groundwater, N and P agricultural inputs, seepage rate, elevation, land-use, and soil type) for 144 polders were analysed statistically and interpreted in relation to sources, transport mechanisms, and pathways. The results imply that groundwater is a large source of nutrients in the greater Amsterdam mixed urban-agricultural catchments. The groundwater nutrient concentrations exceeded the surface water environmental quality standards (EQSs) in 93 % of the polders for TP and in 91 % for TN. Groundwater outflow into the polders thus adds to nutrient levels in the surface water. High correlations (R2 up to 0.88) between solutes in groundwater and surface water, together with the close similarities in their spatial patterns, confirmed the large impact of groundwater on surface water chemistry, especially in the polders that have high seepage rates. Our analysis indicates that the elevated nutrient and bicarbonate concentrations in the groundwater seepage originate from the decomposition of organic matter in subsurface sediments coupled to sulfate reduction and possibly methanogenesis. The large loads of nutrient-rich groundwater seepage into the deepest polders indirectly affect surface water quality in the surrounding area, because excess water from the deep polders is pumped out and used to supply water to the surrounding infiltrating polders in dry periods. The study shows the importance of the connection between groundwater and surface water nutrient chemistry in the greater Amsterdam area. We expect that taking account of groundwater-surface water interaction is also important in other subsiding and urbanising deltas around the world, where water is managed intensively in order to enable agricultural productivity and achieve water-sustainable cities.

  12. Dietary patterns in UK adolescents obtained from a dual-source FFQ and their associations with socio-economic position, nutrient intake and modes of eating.

    PubMed

    Northstone, Kate; Smith, Andrew D A C; Cribb, Victoria L; Emmett, Pauline M

    2014-07-01

    To derive dietary patterns using principal components analysis from separate FFQ completed by mothers and their teenagers and to assess associations with nutrient intakes and sociodemographic variables. Two distinct FFQ were completed by 13-year-olds and their mothers, with some overlap in the foods covered. A combined data set was obtained. Avon Longitudinal Study of Parents and Children (ALSPAC), Bristol, UK. Teenagers (n 5334) with adequate dietary data. Four patterns were obtained using principal components analysis: a 'Traditional/health-conscious' pattern, a 'Processed' pattern, a 'Snacks/sugared drinks' pattern and a 'Vegetarian' pattern. The 'Traditional/health-conscious' pattern was the most nutrient-rich, having high positive correlations with many nutrients. The 'Processed' and 'Snacks/sugared drinks' patterns showed little association with important nutrients but were positively associated with energy, fats and sugars. There were clear gender and sociodemographic differences across the patterns. Lower scores were seen on the 'Traditional/health conscious' and 'Vegetarian' patterns in males and in those with younger and less educated mothers. Higher scores were seen on the 'Traditional/health-conscious' and 'Vegetarian' patterns in girls and in those whose mothers had higher levels of education. It is important to establish healthy eating patterns by the teenage years. However, this is a time when it is difficult to accurately establish dietary intake from a single source, since teenagers consume increasing amounts of foods outside the home. Further dietary pattern studies should focus on teenagers and the source of dietary data collection merits consideration.

  13. An investigation of submarine groundwater-borne nutrient fluxes to the west Florida shelf and recurrent harmful algal blooms

    USGS Publications Warehouse

    Smith, Christopher G.; Swarzenski, Peter W.

    2012-01-01

    A cross-shelf, water-column mass balance of radon-222 (222Rn) provided estimates of submarine groundwater discharge (SGD), which were then used to quantify benthic nutrient fluxes. Surface water and groundwater were collected along a shore-normal transect that extended from Tampa Bay, Florida, across the Pinellas County peninsula, to the 10-m isobath in the Gulf of Mexico. Samples were analyzed for 222Rn and radium-223,224,226 (223,224,226Ra) activities as well as inorganic and organic nutrients. Cross-shore gradients of 222Rn and 223,224,226Ra activities indicate a nearshore source for these isotopes, which mixes with water characterized by low activities offshore. Radon-based SGD rates vary between 2.5 and 15 cm d-1 proximal to the shoreline and decrease offshore. The source of SGD is largely shallow exchange between surface and pore waters, although deeper groundwater cycling may also be important. Enrichment of total dissolved nitrogen and soluble reactive phosphorus in pore water combined with SGD rates results in specific nutrient fluxes comparable to or greater than estuarine fluxes from Tampa Bay. The significance of these fluxes to nearshore blooms of Karenia brevis is highlighted by comparison with prescribed nutrient demands for bloom maintenance and growth. Whereas our flux estimates do not indicate SGD and benthic fluxes as the dominant nutrient source to the harmful algal blooms, SGD-derived loads do narrow the deficit between documented nutrient supplies and bloom demands.

  14. Dynamics of microorganism populations in recirculating nutrient solutions

    NASA Technical Reports Server (NTRS)

    Strayer, R. F.

    1994-01-01

    This overview covers the basic microbial ecology of recirculating hydroponic solutions. Examples from NASA and Soviet CELSS tests and the commercial hydroponic industry will be used. The sources of microorganisms in nutrient solutions include air, water, seeds, plant containers and plumbing, biological vectors, and personnel. Microbial fates include growth, death, and emigration. Important microbial habitats within nutrient delivery systems are root surfaces, hardware surfaces (biofilms), and solution suspension. Numbers of bacteria on root surfaces usually exceed those from the other habitats by several orders of magnitude. Gram negative bacteria dominate the microflora with fungal counts usually much lower. Trends typically show a decrease in counts with increasing time unless stressed plants increase root exudates. Important microbial activities include carbon mineralization and nitrogen transformations. Important detrimental interactions include competition with plants, and human and plant pathogenesis.

  15. A heavy metal P-type ATPase OsHMA4 prevents copper accumulation in rice grain

    USDA-ARS?s Scientific Manuscript database

    As one of the most important staple crops, rice not only provides more than one fifth of daily calories for half of the world’s human population but is also a major source of mineral nutrients. However, little is known about the genetic basis of mineral nutrient accumulation in rice grain such as co...

  16. Certain Grain Foods Can Be Meaningful Contributors to Nutrient Density in the Diets of U.S. Children and Adolescents: Data from the National Health and Nutrition Examination Survey, 2009–2012

    PubMed Central

    Papanikolaou, Yanni; Fulgoni, Victor L.

    2017-01-01

    Grain foods may play an important role in delivering nutrients to the diet of children and adolescents. The present study determined grain food sources of energy/nutrients in U.S. children and adolescents using data from the National Health and Nutrition Examination Survey, 2009–2012. Analyses of grain food sources were conducted using a 24-h recall in participants 2–18 years old (N = 6109). Sources of nutrients contained in grain foods were determined using U.S. Department of Agriculture nutrient composition databases and excluded mixed dishes. Mean energy and nutrient intakes from the total diet and from various grain foods were adjusted for the sample design using appropriate weights. All grains provided 14% ± 0.2% kcal/day (263 ± 5 kcal/day), 22.5% ± 0.3% (3 ± 0.1 g/day) dietary fiber, 39.3% ± 0.5% (238 ± 7 dietary folate equivalents (DFE)/day) folate and 34.9% ± 0.5% (5.6 ± 0.1 mg/day) iron in the total diet in children and adolescents. The current analyses showed that certain grain foods, in particular breads, rolls and tortillas, ready-to-eat cereals and quick breads and bread products, are meaningful contributors of folate, iron, thiamin, niacin and dietary fiber, a nutrient of public health concern as outlined by the 2015–2020 Dietary Guidelines for Americans. Thus, specific grain foods contribute to nutrient density and have the potential to increase the consumption of several under-consumed nutrients in children and adolescents. PMID:28230731

  17. The distribution of nutrients, dissolved oxygen and chlorophyll a in the upper Gulf of Nicoya, Costa Rica, a tropical estuary.

    PubMed

    Palter, Jaime; Coto, Sandra León; Ballestero, Daniel

    2007-06-01

    In the Gulf of Nicoya on the Pacific Coast of Costa Rica, nutrient rich equatorial subsurface water (ESW) is upwelled in much of the lower gulf. These offshore waters are often regarded as the major source of nutrients to the gulf. However, for most of the year, the ESW has little influence on the nutrient content of the upper gulf, which has a distinct character from the lower gulf. The upper gulf, extending 40 km north of the restriction between Puntarenas Peninsula and San Lucas Island, is bordered primarily by mangrove swamps, is less than 20 m deep, and is less saline than the lower gulf. We surveyed the upper gulf for dissolved inorganic nitrogen, phosphate, silicate, dissolved oxygen, and chlorophyll in November 2000, January and July 2001. All nutrients are more concentrated in the upper gulf during the rainy and transitional seasons than the dry season, significantly so for phosphate and silicate. Throughout the year, nutrients tend to be much more concentrated in the less saline water of the upper gulf. This trend indicates that discharge from the Tempisque River predominantly controls spatial and temporal nutrient variability in the upper gulf. However, nutrient rich ESW, upwelled offshore and mixed to form a mid-temperature intermediate water, may enter the inner gulf to provide an important secondary source of nutrients during the dry season.

  18. Dynamics of microorganism populations in recirculating nutrient solutions

    NASA Technical Reports Server (NTRS)

    Strayer, R. F.

    1994-01-01

    This overview covers the basic microbial ecology of recirculating hydroponic solutions. Examples from NASA and Soviet Controlled Ecological Life Support Systems (CELSS) tests and the commercial hydroponic industry will be used. The sources of microorganisms in nutrient solutions include air, water, seeds, plant containers and plumbing, biological vectors, and personnel. Microbial fates include growth, death, and emigration. Important microbial habitats within nutrient delivery systems are root surfaces, hardware surfaces (biofilms), and solution suspension. Numbers of bacteria on root surfaces usually exceed those from the other habitats by several orders of magnitude. Gram negative bacteria dominate the microflora with fungal counts usually much lower. Trends typically show a decrease in counts with increasing time unless stressed plants increase root exudates. Important microbial activities include carbon mineralization and nitrogen transformations. Important detrimental interactions include competition with plants, and human and plant pathogenesis.

  19. Modelling the temporal and spatial distribution of ecological variables in Beibu Gulf

    NASA Astrophysics Data System (ADS)

    Pan, H.; Huang, L.; Yang, S.; Shi, D.; Pan, W.

    2017-12-01

    Beibu Gulf is an important semi-enclosed gulf located in northern South China Sea. It is rich in natural resources and its coastal rim is undergoing a rapid economic growth in recent years. Study on the spatial and temporal distribution of ecological variables by the influence of physical and biological processes in Beibu Gulf can provide the theoretical basis for the utilization of resources and environmental protection. Based on the MEC three-dimensional hydrodynamic model, a nutrient-phytoplankton-zooplankton-detritus (NPZD) model was applied to simulate the distribution of ecological variables in Beibu Gulf. The result shows that the ecosystem in Beibu Gulf is significantly influenced by dynamic conditions. In autumn and winter, great amount of nutrient-rich water from western Guangdong coastal area passes through Qiongzhou Strait and flows into Beibu Gulf, with about 108.3×103 t of inorganic nitrogen and 3.7×103 t of phosphate annually, leading to phytoplankton bloom. In summer, most of the nutrients come from rivers so high concentrations of nutrients and chlorophyll-a appear on estuaries. The annual net nutrient inputs from South China Sea into Beibu Gulf are 66.6×103 t for inorganic nitrogen and 4.6×103 t for phosphate. Phytoplankton plays an important role in nutrients' refreshment: a) Absorption by the process of photosynthesis is the biggest nutrient sink. b) Cellular release from dead phytoplankton is the biggest source in inorganic budget, making up for 33.4% of nitrogen consumed by photosynthesis while the process of respiration is the biggest source in phosphate budget, making up for 32.4% of phosphorus consumed by photosynthesis. c) Mineralization from detritus is also a considerable supplement of inorganic nutrients. Overall, biological process has more influence than physical process on the nutrient cycle budget in Beibu Gulf. The comparison of the result with remote sensing and in-situ data indicates that the model is able to simulate the biogeochemical characteristics in Beibu Gulf.

  20. Eutrophication of Buttermilk Bay, a cape cod coastal embayment: Concentrations of nutrients and watershed nutrient budgets

    NASA Astrophysics Data System (ADS)

    Valiela, Ivan; Costa, Joseph E.

    1988-07-01

    Nutrient concentrations in Buttermilk Bay, a coastal embayment on the northern end of Buzzards Bay, MA, are higher in the nearshore where salinities are lower. This pattern suggests that freshwater sources may contribute significantly to nutrient inputs into Buttermilk Bay. To evaluate the relative importance of the various sources we estimated inputs of nutrients by each major source into the watershed and into the bay itself. Septic systems contributed about 40% of the nitrogen and phosphorus entering the watershed, with precipitation and fertilizer use adding the remainder. Groundwater transported over 85% of the nitrogen and 75% of the phosphorus entering the bay. Most nutrients entering the watershed failed to reach the bay; uptake by forests, soils, denitrification, and adsorption intercepted two-thirds of the nitrogen and nine-tenths of the phosphorus that entered the watershed. The nutrients that did reach the bay most likely originated from subsoil injections into groundwater by septic tanks, plus some leaching of fertilizers. Buttermilk Bay water has relatively low nutrient concentrations, probably because of uptake of nutrients by macrophytes and because of relatively rapid tidal flushing. Annual budgets of nutrients entering the watershed showed a low nitrogen-to-phosphorus ratio of 6, but passage of nutrients through the watershed raised N/P to 23, probably because of adsorption of PO4 during transit. The N/P ratio of water that leaves the watershed and presumably enters the bay is probably high enough to maintain active growth of nitrogenlimited coastal producers. There is a seasonal shift in N/P in the water column of Buttermilk Bay. N/P exceeded the 16∶1 Redfield ratio during midwinter; the remainder of the year N/P fell below 16∶1. This suggests that annual budgets do not provide sufficiently detailed data with which to interpret nutrient-limitation of producers. Further, some idea of water turnover is also needed to evaluate impact of loading rates. Urbanization of watersheds seems to increase loadings to nearshore environments, and to shift the nutrient loadings delivered to coastal waters to relatively high N-to-P ratios, potentially stimulating growth of nitrogen-limited primary producers.

  1. Submarine groundwater discharge into typical tropical lagoons: A case study in eastern Hainan Island, China

    NASA Astrophysics Data System (ADS)

    Wang, Xilong; Du, Jinzhou

    2016-11-01

    Assessing submarine groundwater discharge (SGD) into lagoons and bays can be helpful to understand biogeochemical processes, especially nutrient dynamics. In the present paper, radium (Ra) isotopes were used to quantify SGD in two typical tropical lagoons (Laoye Lagoon (LY Lagoon) and Xiaohai Lagoon (XH Lagoon)) of eastern Hainan Island, China. The Ra mass balance model provided evidence that SGD plays an important role in the hydrology of the LY Lagoon and the XH Lagoon, delivering average SGD fluxes of 1.7 × 106 (94 L m-2 d-1) and 1.8 × 106 (41 L m-2 d-1) m3 d-1, respectively. Tidal pumping was one of the important driving forces for SGD fluxes in the LY and the XH Lagoons. Tidal-driven SGD into the tidal channels of both lagoons can account for approximately 10% of the total SGD flux into the lagoons. In addition, the dissolved inorganic nutrient budgets were reassessed in the LY Lagoon and the XH Lagoon, which showed that SGD was the major source of nutrients entering the LY Lagoon and that the LY Lagoon behaved as a source for dissolved inorganic nitrogen (DIN) and dissolved inorganic phosphorus (DIP) and as a sink for dissolved silicate (DSi). Nutrient loads in the XH Lagoon were mainly derived from riverine inputs and SGD, and the XH Lagoon behaved as a source for DIP, but a sink for DIN and DSi.

  2. Latitudinal gradients in oceanic and watershed nitrogen sources to Pacific coast estuaries of North America

    EPA Science Inventory

    To assess the relative importance of terrestrial versus oceanic nutrient sources, we assembled natural abundance nitrogen stable isotope (δ15N) data for nitrate, green macroalgae, seagrass (Zostera marina) and mussels in the nearshore and in estuaries along the west coast o...

  3. Analyzing Variability in Landscape Nutrient Loading Using Spatially-Explicit Maps in the Great Lakes Basin

    NASA Astrophysics Data System (ADS)

    Hamlin, Q. F.; Kendall, A. D.; Martin, S. L.; Whitenack, H. D.; Roush, J. A.; Hannah, B. A.; Hyndman, D. W.

    2017-12-01

    Excessive loading of nitrogen and phosphorous to the landscape has caused biologically and economically damaging eutrophication and harmful algal blooms in the Great Lakes Basin (GLB) and across the world. We mapped source-specific loads of nitrogen and phosphorous to the landscape using broadly available data across the GLB. SENSMap (Spatially Explicit Nutrient Source Map) is a 30m resolution snapshot of nutrient loads ca. 2010. We use these maps to study variable nutrient loading and provide this information to watershed managers through NOAA's GLB Tipping Points Planner. SENSMap individually maps nutrient point sources and six non-point sources: 1) atmospheric deposition, 2) septic tanks, 3) non-agricultural chemical fertilizer, 4) agricultural chemical fertilizer, 5) manure, and 6) nitrogen fixation from legumes. To model source-specific loads at high resolution, SENSMap synthesizes a wide range of remotely sensed, surveyed, and tabular data. Using these spatially explicit nutrient loading maps, we can better calibrate local land use-based water quality models and provide insight to watershed managers on how to focus nutrient reduction strategies. Here we examine differences in dominant nutrient sources across the GLB, and how those sources vary by land use. SENSMap's high resolution, source-specific approach offers a different lens to understand nutrient loading than traditional semi-distributed or land use based models.

  4. Nutrient Dynamics of Estuarine Invertebrates Are Shaped by Feeding Guild Rather than Seasonal River Flow

    PubMed Central

    Ortega-Cisneros, Kelly; Scharler, Ursula M.

    2015-01-01

    This study aimed to determine the variability of carbon and nitrogen elemental content, stoichiometry and diet proportions of invertebrates in two sub-tropical estuaries in South Africa experiencing seasonal changes in rainfall and river inflow. The elemental ratios and stable isotopes of abiotic sources, zooplankton and macrozoobenthos taxa were analyzed over a dry/wet seasonal cycle. Nutrient content (C, N) and stoichiometry of suspended particulate matter exhibited significant spatio-temporal variations in both estuaries, which were explained by the variability in river inflow. Sediment particulate matter (%C, %N and C:N) was also influenced by the variability in river flow but to a lesser extent. The nutrient content and ratios of the analyzed invertebrates did not significantly vary among seasons with the exception of the copepod Pseudodiaptomus spp. (C:N) and the tanaid Apseudes digitalis (%N, C:N). These changes did not track the seasonal variations of the suspended or sediment particulate matter. Our results suggest that invertebrates managed to maintain their stoichiometry independent of the seasonality in river flow. A significant variability in nitrogen content among estuarine invertebrates was recorded, with highest % N recorded from predators and lowest %N from detritivores. Due to the otherwise general lack of seasonal differences in elemental content and stoichiometry, feeding guild was a major factor shaping the nutrient dynamics of the estuarine invertebrates. The nutrient richer suspended particulate matter was the preferred food source over sediment particulate matter for most invertebrate consumers in many, but not all seasons. The most distinct preference for suspended POM as a food source was apparent from the temporarily open/closed system after the estuary had breached, highlighting the importance of river flow as a driver of invertebrate nutrient dynamics under extreme events conditions. Moreover, our data showed that estuarine invertebrates concentrated C and N between 10–100 fold from trophic level I (POM) to trophic level II (detritivores/deposit feeders) and thus highlighted their importance not only as links to higher trophic level organisms in the food web, but also as providers of a stoichiometrically homeostatic food source for such consumers. As climate change scenarios for the east coast of South Africa predict increased rainfall as a higher number of rainy days and days with higher rainfall, our results suggest that future changes in rainfall and river inflow will have measurable effects on the nutrient content and stoichiometry of food sources and possibly also in estuarine consumers. PMID:26352433

  5. Nutrient Dynamics of Estuarine Invertebrates Are Shaped by Feeding Guild Rather than Seasonal River Flow.

    PubMed

    Ortega-Cisneros, Kelly; Scharler, Ursula M

    2015-01-01

    This study aimed to determine the variability of carbon and nitrogen elemental content, stoichiometry and diet proportions of invertebrates in two sub-tropical estuaries in South Africa experiencing seasonal changes in rainfall and river inflow. The elemental ratios and stable isotopes of abiotic sources, zooplankton and macrozoobenthos taxa were analyzed over a dry/wet seasonal cycle. Nutrient content (C, N) and stoichiometry of suspended particulate matter exhibited significant spatio-temporal variations in both estuaries, which were explained by the variability in river inflow. Sediment particulate matter (%C, %N and C:N) was also influenced by the variability in river flow but to a lesser extent. The nutrient content and ratios of the analyzed invertebrates did not significantly vary among seasons with the exception of the copepod Pseudodiaptomus spp. (C:N) and the tanaid Apseudes digitalis (%N, C:N). These changes did not track the seasonal variations of the suspended or sediment particulate matter. Our results suggest that invertebrates managed to maintain their stoichiometry independent of the seasonality in river flow. A significant variability in nitrogen content among estuarine invertebrates was recorded, with highest % N recorded from predators and lowest %N from detritivores. Due to the otherwise general lack of seasonal differences in elemental content and stoichiometry, feeding guild was a major factor shaping the nutrient dynamics of the estuarine invertebrates. The nutrient richer suspended particulate matter was the preferred food source over sediment particulate matter for most invertebrate consumers in many, but not all seasons. The most distinct preference for suspended POM as a food source was apparent from the temporarily open/closed system after the estuary had breached, highlighting the importance of river flow as a driver of invertebrate nutrient dynamics under extreme events conditions. Moreover, our data showed that estuarine invertebrates concentrated C and N between 10-100 fold from trophic level I (POM) to trophic level II (detritivores/deposit feeders) and thus highlighted their importance not only as links to higher trophic level organisms in the food web, but also as providers of a stoichiometrically homeostatic food source for such consumers. As climate change scenarios for the east coast of South Africa predict increased rainfall as a higher number of rainy days and days with higher rainfall, our results suggest that future changes in rainfall and river inflow will have measurable effects on the nutrient content and stoichiometry of food sources and possibly also in estuarine consumers.

  6. A smart market for nutrient credit trading to incentivize wetland construction

    NASA Astrophysics Data System (ADS)

    Raffensperger, John F.; Prabodanie, R. A. Ranga; Kostel, Jill A.

    2017-03-01

    Nutrient trading and constructed wetlands are widely discussed solutions to reduce nutrient pollution. Nutrient markets usually include agricultural nonpoint sources and municipal and industrial point sources, but these markets rarely include investors who construct wetlands to sell nutrient reduction credits. We propose a new market design for trading nutrient credits, with both point source and non-point source traders, explicitly incorporating the option of landowners to build nutrient removal wetlands. The proposed trading program is designed as a smart market with centralized clearing, done with an optimization. The market design addresses the varying impacts of runoff over space and time, and the lumpiness of wetland investments. We simulated the market for the Big Bureau Creek watershed in north-central Illinois. We found that the proposed smart market would incentivize wetland construction by assuring reasonable payments for the ecosystem services provided. The proposed market mechanism selects wetland locations strategically taking into account both the cost and nutrient removal efficiencies. The centralized market produces locational prices that would incentivize farmers to reduce nutrients, which is voluntary. As we illustrate, wetland builders' participation in nutrient trading would enable the point sources and environmental organizations to buy low cost nutrient credits.

  7. From salmon to shad: Shifting sources of marine-derived nutrients in the Columbia River Basin

    USGS Publications Warehouse

    Haskell, Craig A.

    2018-01-01

    Like Pacific salmon (Oncorhynchus spp.), nonnative American shad (Alosa sapidissima) have the potential to convey large quantities of nutrients between the Pacific Ocean and freshwater spawning areas in the Columbia River Basin (CRB). American shad are now the most numerous anadromous fish in the CRB, yet the magnitude of the resulting nutrient flux owing to the shift from salmon to shad is unknown. Nutrient flux models revealed that American shad conveyed over 15,000 kg of nitrogen (N) and 3,000 kg of phosphorus (P) annually to John Day Reservoir, the largest mainstem reservoir in the lower Columbia River. Shad were net importers of N, with juveniles and postspawners exporting just 31% of the N imported by adults. Shad were usually net importers of P, with juveniles and postspawners exporting 46% of the P imported by adults on average. American shad contributed <0.2% of the total annual P load into John Day Reservoir, but during June when most adult shad are migrating into John Day Reservoir, they contributed as much as 2.0% of the P load. Nutrient inputs by American shad were similar to current but far less than historical inputs of Pacific salmon owing to their smaller size. Given the relatively high background P levels and low retention times in lower Columbia River reservoirs, it is unlikely that shad marine-derived nutrients affect nutrient balances or food web productivity through autotrophic pathways. However, a better understanding of shad spawning aggregations in the CRB is needed.

  8. Simulation of dissolved nutrient export from the Dongjiang river basin with a grid-based NEWS model

    NASA Astrophysics Data System (ADS)

    Rong, Qiangqiang; Su, Meirong; Yang, Zhifeng; Cai, Yanpeng; Yue, Wencong; Dang, Zhi

    2018-06-01

    In this research, a grid-based NEWS model was proposed through coupling the geographic information system (GIS) with the Global NEWS model framework. The model was then applied to the Dongjiang River basin to simulate the dissolved nutrient export from this area. The model results showed that the total amounts of the dissolved nitrogen and phosphorus exported from the Dongjiang River basin were approximately 27154.87 and 1389.33 t, respectively. 90 % of the two loads were inorganic forms (i.e. dissolved inorganic nitrogen and phosphorus, DIN and DIP). Also, the nutrient export loads did not evenly distributed in the basin. The main stream watershed of the Dongjiang River basin has the largest DIN and DIP export loads, while the largest dissolved organic nitrogen and phosphorus (DON and DOP) loads were observed in the middle and upper stream watersheds of the basin, respectively. As for the nutrient exported from each subbasin, different sources had different influences on the output of each nutrient form. For the DIN load in each subbasin, fertilization application, atmospheric deposition and biological fixation were the three main contributors, while eluviation was the most important source for DON. In terms of DIP load, fertilizer application and breeding wastewater were the main contributors, while eluviation and fertilizer application were the two main sources for DOP.

  9. Ultrasonic waste activated sludge disintegration for recovering multiple nutrients for biofuel production.

    PubMed

    Xie, Guo-Jun; Liu, Bing-Feng; Wang, Qilin; Ding, Jie; Ren, Nan-Qi

    2016-04-15

    Waste activated sludge is a valuable resource containing multiple nutrients, but is currently treated and disposed of as an important source of pollution. In this work, waste activated sludge after ultrasound pretreatment was reused as multiple nutrients for biofuel production. The nutrients trapped in sludge floc were transferred into liquid medium by ultrasonic disintegration during first 30 min, while further increase of pretreatment time only resulted in slight increase of nutrients release. Hydrogen production by Ethanoligenens harbinense B49 from glucose significantly increased with the concentration of ultrasonic sludge, and reached maximum yield of 1.97 mol H2/mol glucose at sludge concentration of 7.75 g volatile suspended solids/l. Without addition of any other chemicals, waste molasses rich in carbohydrate was efficiently turned into hydrogen with yield of 189.34 ml H2/g total sugar by E. harbinense B49 using ultrasonic sludge as nutrients. The results also showed that hydrogen production using pretreated sludge as multiple nutrients was higher than those using standard nutrients. Acetic acid produced by E. harbinense B49 together with the residual nutrients in the liquid medium were further converted into hydrogen (271.36 ml H2/g total sugar) by Rhodopseudomonas faecalis RLD-53 through photo fermentation, while ethanol was the sole end product with yield of 220.26 mg/g total sugar. Thus, pretreated sludge was an efficient nutrients source for biofuel production, which could replace the standard nutrients. This research provided a novel strategy to achieve environmental friendly sludge disposal and simultaneous efficient biofuel recovery from organic waste. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Impacts of urban wastewater discharge on seagrass meadows ( Zostera noltii)

    NASA Astrophysics Data System (ADS)

    Cabaço, Susana; Machás, Raquel; Vieira, Vasco; Santos, Rui

    2008-06-01

    The abiotic disturbance of urban wastewater discharge and its effects in the population structure, plant morphology, leaf nutrient content, epiphyte load and macroalgae abundance of Zostera noltii meadows were investigated in Ria Formosa coastal lagoon, southern Portugal using both univariate and multivariate analysis. Four sites were assessed, on a seasonal basis, along a gradient from a major Waste Water Treatment Works (WWTW) discharge to a main navigation channel. The wastewater discharge caused an evident environmental disturbance through the nutrient enrichment of the water and sediment, particularly of ammonium. Zostera noltii of the sites closest to the nutrient source showed higher leaf N content, clearly reflecting the nitrogen load. The anthropogenic nutrient enrichment resulted in higher biomass, and higher leaf and internode length, except for the meadow closest to the wastewater discharge (270 m). The high ammonium concentration (158-663 μM) in the water at this site resulted in the decrease of biomass, and both the leaf and internode length, suggesting a toxic effect on Z. noltii. The higher abundance of macroalgae and epiphytes found in the meadow closest to the nutrient source may also affect the species negatively. Shoot density was higher at the nutrient-undisturbed site. Two of the three abiotic processes revealed by Principal Component Analysis were clearly related to the WWTW discharge, a contrast between water column salinity and nutrient concentration and a sediment contrast between both porewater nutrients and temperature and redox potential. A multiple regression analysis showed that these abiotic processes had a significant effect on the biomass-density dynamics of meadows and on the overall size of Z. noltii plants, respectively. Results show that the wastewater discharge is an important source of environmental disturbance and nutrients availability in Ria Formosa lagoon affecting the population structure, morphology and N content of Z. noltii. This impact is spatially restricted to areas up to 600 m distant from the WWTW discharge, probably due to the high water renewal of the lagoon.

  11. Conventional foods, followed by dietary supplements and fortified foods, are the key sources of vitamin D, vitamin B6, and selenium intake in Dutch participants of the NU-AGE study.

    PubMed

    Berendsen, Agnes A M; van Lieshout, Lilou E L M; van den Heuvel, Ellen G H M; Matthys, Christophe; Péter, Szabolcs; de Groot, Lisette C P G M

    2016-10-01

    With aging, energy needs decrease, necessitating a more nutrient-dense diet to meet nutritional needs. To bridge this gap, the use of nutrient-dense foods, fortified foods, and dietary supplements can be important. This observational study aims to describe current micronutrient intakes of Dutch elderly and to identify the contribution of nutrient-dense foods, fortified foods, and dietary supplements to the intake of micronutrients that are often inadequately consumed in Dutch elderly. Data of 245 Dutch volunteers from the NU-AGE study aged 65 to 80 years were used. Dietary intake was assessed by means of 7-day food records, and dietary supplement use was recorded with an additional questionnaire. Information on fortified foods was obtained from the Dutch Food Composition Table 2011. Nutrient density of foods was evaluated using the Nutrient Rich Food 9.3 score. The percentages of participants not meeting their average requirement were high for vitamin D (99%), selenium (41%), and vitamin B6 (54%) based on conventional foods and also when taking into account fortified foods (98%, 41%, and 27%, respectively) and vitamin and mineral supplements (87%, 36%, and 20%, respectively). Conventional foods were the main source of vitamin D, vitamin B6, and selenium intake (42%, 45%, and 82%, respectively), followed by vitamin and mineral supplements (41%, 44%, and 18%) and fortified foods (17%, 11%, and 1%). Foods with the highest nutrient density contributed most to total vitamin B6 intake only. To optimize nutrient intakes of elderly, combinations of natural food sources, fortified foods, and dietary supplements should be considered. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Beaver-mediated lateral hydrologic connectivity, fluvial carbon and nutrient flux, and aquatic ecosystem metabolism

    NASA Astrophysics Data System (ADS)

    Wegener, Pam; Covino, Tim; Wohl, Ellen

    2017-06-01

    River networks that drain mountain landscapes alternate between narrow and wide valley segments. Within the wide segments, beaver activity can facilitate the development and maintenance of complex, multithread planform. Because the narrow segments have limited ability to retain water, carbon, and nutrients, the wide, multithread segments are likely important locations of retention. We evaluated hydrologic dynamics, nutrient flux, and aquatic ecosystem metabolism along two adjacent segments of a river network in the Rocky Mountains, Colorado: (1) a wide, multithread segment with beaver activity; and, (2) an adjacent (directly upstream) narrow, single-thread segment without beaver activity. We used a mass balance approach to determine the water, carbon, and nutrient source-sink behavior of each river segment across a range of flows. While the single-thread segment was consistently a source of water, carbon, and nitrogen, the beaver impacted multithread segment exhibited variable source-sink dynamics as a function of flow. Specifically, the multithread segment was a sink for water, carbon, and nutrients during high flows, and subsequently became a source as flows decreased. Shifts in river-floodplain hydrologic connectivity across flows related to higher and more variable aquatic ecosystem metabolism rates along the multithread relative to the single-thread segment. Our data suggest that beaver activity in wide valleys can create a physically complex hydrologic environment that can enhance hydrologic and biogeochemical buffering, and promote high rates of aquatic ecosystem metabolism. Given the widespread removal of beaver, determining the cumulative effects of these changes is a critical next step in restoring function in altered river networks.

  13. Vulnerability Assessment of Groundwater Resources by Nutrient Source Apportionment to Individual Groundwater Wells: A Case Study in North Carolina

    NASA Astrophysics Data System (ADS)

    Ayub, R.; Obenour, D. R.; Keyworth, A. J.; Genereux, D. P.; Mahinthakumar, K.

    2016-12-01

    Groundwater contamination by nutrients (nitrogen and phosphorus) is a major concern in water table aquifers that underlie agricultural areas in the mid-Atlantic Coastal Plain of the United States. High nutrient concentrations leaching into shallow groundwater can lead to human health problems and eutrophication of receiving surface waters. Liquid manure from concentrated animal feeding operations (CAFOs) stored in open-air lagoons and applied to spray fields can be a significant source of nutrients to groundwater, along with septic waste. In this study, we developed a model-based methodology for source apportionment and vulnerability assessment using sparse groundwater quality sampling measurements for Duplin County, North Carolina (NC), obtained by the NC Department of Environmental Quality (NC DEQ). This model provides information relevant to management by estimating the nutrient transport through the aquifer from different sources and addressing the uncertainty of nutrient contaminant propagation. First, the zones of influence (dependent on nutrient pathways) for individual groundwater monitoring wells were identified using a two-dimensional vertically averaged groundwater flow and transport model incorporating geologic uncertainty for the surficial aquifer system. A multiple linear regression approach is then applied to estimate the contribution weights for different nutrient source types using the nutrient measurements from monitoring wells and the potential sources within each zone of influence. Using the source contribution weights and their uncertainty, a probabilistic vulnerability assessment of the study area due to nutrient contamination is performed. Knowledge of the contribution of different nutrient sources to contamination at receptor locations (e.g., private wells, municipal wells, stream beds etc.) will be helpful in planning and implementation of appropriate mitigation measures.

  14. Bioavailability of Dissolved Organic Carbon and Nitrogen From Tropical Montane Rainforest Streams Across a Geologic age Gradient

    NASA Astrophysics Data System (ADS)

    Wiegner, T. N.

    2005-05-01

    Dissolved organic matter (DOM) is metabolically important in streams. Its bioavailability is influenced by organic matter sources to streams and inorganic nutrient availability. As forest canopies and soils develop over time, organic matter inputs to streams should switch from algal to watershed sources. Across this succession gradient, nutrient limitation should also change. This study examines how chemical composition and bioavailability of DOM from tropical montane rainforest streams on Hawaii change across a geologic age gradient from 4 ky to 150 ky. Dissolved organic C (DOC) and N (DON) concentrations, chemical characteristics, and bioavailability varied with site age. With increasing stream age, DOC and DON concentrations, DOM aromaticity, and the C:N of the stream DOM increased. Changes in stream DOM chemistry and inorganic nutrient availability affected DOM bioavailability. Fifty percent of the DOC from the 4 ky site was bioavailable, where little to none was bioavailable from the older streams. Inorganic nutrient availability did not affect DOC bioavailability. In contrast, DON bioavailability was similar (12%) across sites and was affected by inorganic nutrient availability. This study demonstrates that the chemistry and metabolism of streams draining forests change with ecosystem age and development.

  15. DHA and EPA Content and Fatty Acid Profile of 39 Food Fishes from India

    PubMed Central

    Mahanty, Arabinda; Sankar, T. V.; Anandan, R.; Paul, B. N.; Sarma, Debajit; Syama Dayal, J.; Venkateshwarlu, G.; Mathew, Suseela; Karunakaran, D.; Chanda, Soumen; Shahi, Neetu; Das, Puspita; Das, Partha; Akhtar, Md Shahbaz; Vijayagopal, P.; Sridhar, N.

    2016-01-01

    Docosahexaenoic acid (DHA) is the principal constituent of a variety of cells especially the brain neurons and retinal cells and plays important role in fetal brain development, development of motor skills, and visual acuity in infants, lipid metabolism, and cognitive support and along with eicosapentaenoic acid (EPA) it plays important role in preventing atherosclerosis, dementia, rheumatoid arthritis, Alzheimer's disease, and so forth. Being an essential nutrient, it is to be obtained through diet and therefore searching for affordable sources of these ω-3 polyunsaturated fatty acids (PUFA) is important for consumer guidance and dietary counseling. Fish is an important source of PUFA and has unique advantage that there are many food fish species available and consumers have a wide choice owing to availability and affordability. The Indian subcontinent harbors a rich fish biodiversity which markedly varies in their nutrient composition. Here we report the DHA and EPA content and fatty acid profile of 39 important food fishes (including finfishes, shellfishes, and edible molluscs from both marine water and freshwater) from India. The study showed that fishes Tenualosa ilisha, Sardinella longiceps, Nemipterus japonicus, and Anabas testudineus are rich sources of DHA and EPA. Promotion of these species as DHA rich species would enhance their utility in public health nutrition. PMID:27579313

  16. DHA and EPA Content and Fatty Acid Profile of 39 Food Fishes from India.

    PubMed

    Mohanty, Bimal Prasanna; Ganguly, Satabdi; Mahanty, Arabinda; Sankar, T V; Anandan, R; Chakraborty, Kajal; Paul, B N; Sarma, Debajit; Syama Dayal, J; Venkateshwarlu, G; Mathew, Suseela; Asha, K K; Karunakaran, D; Mitra, Tandrima; Chanda, Soumen; Shahi, Neetu; Das, Puspita; Das, Partha; Akhtar, Md Shahbaz; Vijayagopal, P; Sridhar, N

    2016-01-01

    Docosahexaenoic acid (DHA) is the principal constituent of a variety of cells especially the brain neurons and retinal cells and plays important role in fetal brain development, development of motor skills, and visual acuity in infants, lipid metabolism, and cognitive support and along with eicosapentaenoic acid (EPA) it plays important role in preventing atherosclerosis, dementia, rheumatoid arthritis, Alzheimer's disease, and so forth. Being an essential nutrient, it is to be obtained through diet and therefore searching for affordable sources of these ω-3 polyunsaturated fatty acids (PUFA) is important for consumer guidance and dietary counseling. Fish is an important source of PUFA and has unique advantage that there are many food fish species available and consumers have a wide choice owing to availability and affordability. The Indian subcontinent harbors a rich fish biodiversity which markedly varies in their nutrient composition. Here we report the DHA and EPA content and fatty acid profile of 39 important food fishes (including finfishes, shellfishes, and edible molluscs from both marine water and freshwater) from India. The study showed that fishes Tenualosa ilisha, Sardinella longiceps, Nemipterus japonicus, and Anabas testudineus are rich sources of DHA and EPA. Promotion of these species as DHA rich species would enhance their utility in public health nutrition.

  17. Contributions to the Nutrient Toolbox: Identifying Drivers, Nutrient Sources, and Attribution of Exceedances

    EPA Science Inventory

    Nutrients are a leading cause of impairments in the United States, and as a result tools are needed to identify drivers of nutrients and response variables (such as chlorophyll a), nutrient sources, and identify causes of exceedances of water quality thresholds. This presentatio...

  18. Innovations in Food Chemistry and Processing to Enhance the Nutrient Profile of the White Potato in All Forms12

    PubMed Central

    Decker, Eric A.; Ferruzzi, Mario G.

    2013-01-01

    Potatoes can be an important part of a balanced diet because they are an excellent source of many nutrients, including nutrients that are commonly underconsumed (dietary fiber and potassium). Despite the existence of many positive nutrients in potatoes, the popular press has recently aligned potatoes, and particularly fried potatoes, with an unhealthy diet. This article examines the nutritional content of potatoes and how these nutrients are affected by cooking and other food-processing operations. In addition, it examines how the nutritional content of potatoes is altered by cooking methods and how fried potatoes can have wide variations in fat content depending on the cooking method. Finally, the potential of new food-processing technologies to improve the nutritional content of cooked potatoes is evaluated. PMID:23674803

  19. Submarine Groundwater-Borne Nutrients in a Tropical Bay (Maowei Sea, China) and Their Impacts on the Oyster Aquaculture

    NASA Astrophysics Data System (ADS)

    Chen, Xiaogang; Lao, Yanling; Wang, Jinlong; Du, Jinzhou; Liang, Mingzhong; Yang, Bin

    2018-03-01

    Submarine groundwater discharge (SGD) has been recognized as an important pathway for nutrients into estuaries, coasts, and the adjacent seas. In this study, 222Rn was used to estimate the SGD-associated nutrient fluxes into an aquaculture area in a typical tropical bay (Maowei Sea, China). The SGD into the Maowei Sea during June 2016 was estimated to be 0.36 ± 0.33 m d-1 and was associated with SGD-derived dissolved inorganic nitrogen (DIN), dissolved inorganic phosphorus (DIP), and dissolved silicon (DSi) fluxes (mol d-1) of (4.5 ± 5.5) × 106, (5.3 ± 9.1) × 104, and (9.4 ± 9.3) × 106, respectively. The SGD-derived nutrients (i.e., DIN, DIP, and DSi) were more than 1.9, 0.9, and 3.6 times the amounts in the local river input and served as dominant sources in the nutrient budgets in the Maowei Sea. Moreover, the N/P ratios in the SGD around the Maowei Sea were high (mean: 64), and these ratios likely exceeded the environmental self-purification capacity, thereby enhancing the biomass and changing the phytoplankton community structure. Therefore, SGD processes with derived nutrients may affect the biogeochemical cycles and marine ecological environment in the Maowei Sea. Furthermore, the N/P ratios (˜67) in oysters are very close to those in the SGD in the Maowei Sea; this coincidence suggests that the high N/P ratios in the SGD are likely to be one of the most important sources that support oyster aquaculture, which might weaken the burden of water eutrophication in the Maowei Sea.

  20. Effects of land use changes on eutrophication indicators in five coastal lagoons of the Southwestern Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Rodríguez-Gallego, Lorena; Achkar, Marcel; Defeo, Omar; Vidal, Leticia; Meerhoff, Erika; Conde, Daniel

    2017-03-01

    Five catchment areas in Uruguay were selected to conduct a nutrient exportation analysis and to evaluate the effects of current land use on the eutrophication of coastal lagoons. Satellite images and national agriculture censuses were used for a quantitative analysis of land use changes from 1974 to 2005, and a nutrient export coefficient approximation was used to determine long-term changes in annual loads. Several eutrophication indicators (water, sediment and autotrophic communities) were assessed seasonally in the lagoon basins during 2005 and 2006. The areal annual load of nutrients exported to the lagoons increased over time. Population and extensive livestock ranching were the most important nutrient sources, while agriculture is increasing in importance. Buffer effects of riparian forests on eutrophication indicators were observed in contrast to the wetlands surrounding the lagoons, which seem to be acting as a source of nutrients. Catchment size was inversely related to most eutrophication indicators. Afforestation and agriculture were found not to directly impact eutrophication indicators, however, catchments with larger agricultural areas showed higher concentrations of suspended solids, which may indicate the export of particulate nutrients. Salinity was inversely related to most eutrophication indicators, suggesting that the manipulation of the sand bar of the lagoons is a critical management issue. Sediment-related eutrophication indicators were more sensitive to changes in land uses and covers, in contrast with the more variable water column indicators, suggesting their potential use as enduring indicators. This research provides a rapid and integral assessment for qualitatively linking catchment changes with eutrophication indicators in coastal environments, which can easily be replicated to track pollutants in locations that lack standardized monitoring programs needed for more complex catchment modeling approaches.

  1. A spatial and seasonal assessment of river water chemistry across North West England.

    PubMed

    Rothwell, J J; Dise, N B; Taylor, K G; Allott, T E H; Scholefield, P; Davies, H; Neal, C

    2010-01-15

    This paper presents information on the spatial and seasonal patterns of river water chemistry at approximately 800 sites in North West England based on data from the Environment Agency regional monitoring programme. Within a GIS framework, the linkages between average water chemistry (pH, sulphate, base cations, nutrients and metals) catchment characteristics (topography, land cover, soil hydrology, base flow index and geology), rainfall, deposition chemistry and geo-spatial information on discharge consents (point sources) are examined. Water quality maps reveal that there is a clear distinction between the uplands and lowlands. Upland waters are acidic and have low concentrations of base cations, explained by background geological sources and land cover. Localised high concentrations of metals occur in areas of the Cumbrian Fells which are subjected to mining effluent inputs. Nutrient concentrations are low in the uplands with the exception sites receiving effluent inputs from rural point sources. In the lowlands, both past and present human activities have a major impact on river water chemistry, especially in the urban and industrial heartlands of Greater Manchester, south Lancashire and Merseyside. Over 40% of the sites have average orthophosphate concentrations >0.1mg-Pl(-1). Results suggest that the dominant control on orthophosphate concentrations is point source contributions from sewage effluent inputs. Diffuse agricultural sources are also important, although this influence is masked by the impact of point sources. Average nitrate concentrations are linked to the coverage of arable land, although sewage effluent inputs have a significant effect on nitrate concentrations. Metal concentrations in the lowlands are linked to diffuse and point sources. The study demonstrates that point sources, as well as diffuse sources, need to be considered when targeting measures for the effective reduction in river nutrient concentrations. This issue is clearly important with regards to the European Union Water Framework Directive, eutrophication and river water quality. Copyright 2009 Elsevier B.V. All rights reserved.

  2. Nutrient dynamics in tropical rivers, lagoons, and coastal ecosystems of eastern Hainan Island, South China Sea

    NASA Astrophysics Data System (ADS)

    Li, R. H.; Liu, S. M.; Li, Y. W.; Zhang, G. L.; Ren, J. L.; Zhang, J.

    2014-01-01

    Nutrient dynamics based on field observations made along the eastern Hainan Island during the period 2006-2009 were investigated to understand nutrient biogeochemical processes, and to provide an overview of human perturbations of coastal ecosystems in this tropical region. The rivers showed seasonal variations in nutrient concentrations, with enrichment of dissolved inorganic nitrogen and dissolved silicate, and depletion of PO43-. High riverine concentrations of nitrate mainly originated from agricultural fertilizer inputs. The DIN : PO43- ratios ranged from 37 to 1063, suggesting preferential depletion of PO43- relative to nitrogen in rivers. Chemical weathering in the drainage area might explain the high levels of dissolved silicate. Aquaculture ponds contained high concentrations of NH4+ and dissolved organic nitrogen. The particulate phosphorus concentrations in the study area were lower than those reported for estuaries worldwide. The particulate silicate levels in rivers and lagoons were lower than the global average level. Nutrient biogeochemistry in coastal areas was affected by human activities (e.g., aquaculture, agriculture), and by natural phenomena including typhoons. The nutrient concentrations in coastal waters were low because of dispersion of land-derived nutrients in the sea. Nutrient budgets were built based on a steady-state box model, which showed that riverine fluxes are magnified by estuarine processes (e.g., regeneration, desorption) in estuaries and Laoyehai Lagoon, but not in Xiaohai Lagoon. Riverine and groundwater inputs were the major sources of nutrients to Xiaohai and Laoyehai lagoons, respectively, and riverine inputs and aquaculture effluents were the major sources for the eastern coast of Hainan Island. Nutrient inputs to the coastal ecosystem increased with typhoon-induced runoff of rainwater, elucidating the important influence of typhoons on small tropical rivers.

  3. Decline in Chinese lake phosphorus concentration accompanied by shift in sources since 2006

    NASA Astrophysics Data System (ADS)

    Tong, Yindong; Zhang, Wei; Wang, Xuejun; Couture, Raoul-Marie; Larssen, Thorjørn; Zhao, Yue; Li, Jing; Liang, Huijiao; Liu, Xueyan; Bu, Xiaoge; He, Wei; Zhang, Qianggong; Lin, Yan

    2017-07-01

    Domestic wastewater and agricultural activities are important sources of nutrient pollutants such as phosphorus and nitrogen. Upon reaching freshwater, these nutrients can lead to extensive growth of harmful algae, which results in eutrophication. Many Chinese lakes are subject to such eutrophication, especially in highly polluted areas, and as such, understanding nutrient fluxes to these lakes offers insights into the varying processes governing pollutant fluxes as well as lake water quality. Here we analyse water quality data, recorded between 2006 and 2014 in 862 freshwater lakes in four geographical regions of China, to assess the input of phosphorus from human activity. We find that improvements in sanitation of both rural and urban domestic wastewater have resulted in large-scale declines in lake phosphorus concentrations in the most populated parts of China. In more sparsely populated regions, diffuse sources such as aquaculture and livestock farming offset this decline. Anthropogenic deforestation and soil erosion may also offset decreases in point sources of pollution. In the light of these regional differences, we suggest that a spatially flexible set of policies for water quality control would be beneficial for the future health of Chinese lakes.

  4. Macroalgal-sediment nutrient interactions and their importance to macroalgal nutrition in a eutrophic estuary

    NASA Astrophysics Data System (ADS)

    Lavery, Paul S.; McComb, A. J.

    1991-03-01

    The potential for algal banks to influence water quality and sediment nutrient flux was examined through laboratory experiments and in situ monitoring of algal banks. Loose macroalgal banks displayed seasonal changes in tissue nutrient concentrations suggesting a strong dependence on water column nutrients. These banks fail to generate conditions suitable to sediment nutrient release. Dense banks generated low oxygen conditions in the inter-algal water (0-1 mg l -1), corresponding to zones of high, and relatively stable, phosphate and ammonium concentrations (up to 96 μg l -1 PO 4P and 166 μg l -1 NH 4N). Laboratory experiments confirmed that macroalgal banks can generate reducing conditions at the sediment surface, regardless of the aeration regime, through the decomposition of macroalgal tissue. Platinum electrode potentials as low as -200 mV were recorded in the inter-algal water. In such banks, redox-dependent sediment nutrient release and anaerobic accumulation of nitrogen accounted for inter-algal nutrient concentrations of over 60 μg l -1 phosphate and 800 μg l -1 ammonium. The generation of reducing conditions in inter-algal water required 7 days of still conditions and so this mechanism of nutrient generation is unlikely to be important in winter, when strong winds frequently shift the algal banks. It is suggested that in summer this mechanism may provide a source of nutrients to dense algal banks, supplementing reserves stored in winter.

  5. Future nutrient load scenarios for the Baltic Sea due to climate and lifestyle changes.

    PubMed

    Hägg, Hanna Eriksson; Lyon, Steve W; Wällstedt, Teresia; Mörth, Carl-Magnus; Claremar, Björn; Humborg, Christoph

    2014-04-01

    Dynamic model simulations of the future climate and projections of future lifestyles within the Baltic Sea Drainage Basin (BSDB) were considered in this study to estimate potential trends in future nutrient loads to the Baltic Sea. Total nitrogen and total phosphorus loads were estimated using a simple proxy based only on human population (to account for nutrient sources) and stream discharges (to account for nutrient transport). This population-discharge proxy provided a good estimate for nutrient loads across the seven sub-basins of the BSDB considered. All climate scenarios considered here produced increased nutrient loads to the Baltic Sea over the next 100 years. There was variation between the climate scenarios such that sub-basin and regional differences were seen in future nutrient runoff depending on the climate model and scenario considered. Regardless, the results of this study indicate that changes in lifestyle brought about through shifts in consumption and population potentially overshadow the climate effects on future nutrient runoff for the entire BSDB. Regionally, however, lifestyle changes appear relatively more important in the southern regions of the BSDB while climatic changes appear more important in the northern regions with regards to future increases in nutrient loads. From a whole-ecosystem management perspective of the BSDB, this implies that implementation of improved and targeted management practices can still bring about improved conditions in the Baltic Sea in the face of a warmer and wetter future climate.

  6. Coupling of the spatial-temporal distributions of nutrients and physical conditions in the southern Yellow Sea

    NASA Astrophysics Data System (ADS)

    Wei, Qin-Sheng; Yu, Zhi-Gang; Wang, Bao-Dong; Fu, Ming-Zhu; Xia, Chang-Shui; Liu, Lu; Ge, Ren-Feng; Wang, Hui-Wu; Zhan, Run

    2016-04-01

    This study investigated the coupling of the spatial-temporal variations in nutrient distributions and physical conditions in the southern Yellow Sea (SYS) using data compiled from annual-cycle surveys conducted in 2006-2007 as well as satellite-derived sea-surface temperature (SST) images. The influence of physical dynamics on the distribution and transport of nutrients varied spatially and seasonally in the SYS. The Changjiang Diluted Water (CDW) plume (in summertime), the Subei Coastal Water (SCW) (year-round), and the Lubei Coastal Current (LCC) (in wintertime) served as important sources of nutrients in the inshore area in a dynamic environment. The saline Taiwan Warm Current (TWC) might transport nutrients to the northeast region of the Changjiang Estuary in the summer, and this nutrient source began to increase from spring to summer and decrease when autumn arrived. Three types of nutrient fronts, i.e., estuarine, offshore, and coastal, were identified. A circular nutrient front caused by cross-shelf transport of SCW in the southeast shelf bank area in the winter and spring was observed. The southeastward flow of western coastal cold water in the SYS might be an important conduit for cross-shelf nutrient exchange between the SYS and the East China Sea (ECS). The tongue-shaped low-nutrient region in the western study area in the wintertime was driven by the interaction of the southward Yellow Sea Western Coastal Current (YSWCC) and the biological activity. The vertically variable SCM (subsurface Chl-a maximum) in the central SYS was controlled by coupled physical-chemical processes that involved stratification and associated nutricline. The average nutrient fluxes into the euphotic zone due to upwelling near the frontal zone of the Yellow Sea Cold Water Mass (YSCWM) in the summer are estimated here for the first time: 1.4 ± 0.9 × 103 μmol/m2/d, 0.1 ± 0.1 × 103 μmol/m2/d, and 2.0 ± 1.3 × 103 μmol/m2/d for DIN, PO4-P, and SiO3-Si, respectively. The depletion of nutrients in the central SYS and the upwelled transport in the boundary of the YSCWM resulted in a spatial transfer of the high Chl-a zone, varying generally from the central SYS to the boundary of the YSCWM from spring to summer, and the nutrient flux associated with this upwelling could contribute significantly to local primary production. This study deepens our understanding of the mechanisms influencing the distribution and transport of nutrients in the SYS.

  7. Seasonal variation in nutrient retention during inundation of a short-hydroperiod floodplain

    USGS Publications Warehouse

    Noe, G.B.; Hupp, C.R.

    2007-01-01

    Floodplains are generally considered to be important locations for nutrient retention or inorganic-to-organic nutrient conversions in riverine ecosystems. However, little is known about nutrient processing in short-hydroperiod floodplains or seasonal variation in floodplain nutrient retention. Therefore, we quantified the net uptake, release or transformation of nitrogen (N), phosphorus (P) and suspended sediment species during brief periods (1-2 days) of overbank flooding through a 250-m floodplain flowpath on the fourth-order Mattawoman Creek, Maryland U.S.A. Sampling occurred during a winter, two spring and a summer flood in this largely forested watershed with low nutrient and sediment loading. Concentrations of NO3- increased significantly in surface water flowing over the floodplain in three of the four floods, suggesting the floodplain was a source of NO3-. The upper portion of the floodplain flowpath consistently exported NH4+, most likely due to the hyporheic: flushing of floodplain soil NH4+, which was then likely nitrified to NO3- in floodwaters. The floodplain was a sink for particulate organic P (POP) during two floods and particulate organic N and inorganic suspended sediment (ISS) during one flood. Large releases of all dissolved inorganic N and P species occurred following a snowmelt and subsequent cold winter flood. Although there was little consistency in most patterns of nutrient processing among the different floods, this floodplain, characterized by brief inundation, low residence time and low nutrient loading, behaved oppositely from the conceptual model for most floodplains in that it generally exported inorganic nutrients and imported organic nutrients.

  8. Investigation of Carbon, Nutrients, and Groundwater Inputs in Coastal Florida Using Colored Dissolved Organic Matter

    NASA Astrophysics Data System (ADS)

    Arellano, A. R.; Coble, P. G.; Conmy, R. N.; Marine Spectrochemistry Group

    2010-12-01

    Very few studies of the exchange of water between aquifers and the ocean have been conducted along the Florida coast. Progression of residential and agricultural development in coastal areas is leading to increased nutrients from fertilizers and wastewaters to groundwater. A portion of these nutrients ultimately is released to coastal surface waters. Groundwater mining has increased salt water intrusions in coastal aquifers which may further enhance nutrient fluxes to coastal surface waters. Nutrient concentration in coastal groundwater is sometimes higher than those in river water, counterbalancing for the lower mass flux of groundwater relative to surface waters. Nutrient and carbon inputs through groundwater in certain areas may play an important role in cycling and primary productivity in the coastal ocean. King’s Bay is a spring-fed watershed and manatee sanctuary located on the West Florida Shelf. Over the past 25 years, springs supplying groundwater to King’s Bay have shown a three-fold increase in nitrate concentration and increased invasion of nuisance algae. It has been challenging to track sources of both nutrients and other water quality parameters because there are multiple water supplies to King’s Bay. The goal of this project is to improve the estimate of water, nutrients, and carbon from groundwater discharge into the coastal zone. This paper will present preliminary results of high resolution fluorescence spectroscopy analyses of the various source water types in the King's Bay watershed, including deep and shallow aquifers, wells, springs, and surface water sources. Samples were obtained from various sites--5 springs, 27 wells, 12 surface, and 9 lakes and rivers-- within the King’s Bay area during one dry season. Lakes and rivers had the highest fluorescence intensities and showed similar composition, with the most red-shifted emission maxima. Second highest concentration was seen in some of the wells which had wide range in both composition and intensities. King’s Bay surface sites appear to be a mixture of surface water and spring water based on both composition and concentration. Springs samples were all similar in composition, with concentrations in middle range found in well samples. These results will be discussed in reference to determination of source of water, carbon, and nutrients to the springs.

  9. Trends in energy intake among Korean adults, 1998-2015: Results from the Korea National Health and Nutrition Examination Survey.

    PubMed

    Yun, Sungha; Kim, Hyun Ja; Oh, Kyungwon

    2017-04-01

    Assessing changes in energy intake and dietary sources is important to understand trends in the prevalence of obesity. Thus, we examined trends in energy intake and its nutrient and food sources in Korean adults from 1998 through 2015. This study included 70,769 subjects aged ≥ 19 years who completed a nutrition survey. Subject data were obtained from the 1998, 2001, 2005, 2007-2009, 2010-2012, and 2013-2015 Korea National Health and Nutrition Examination Surveys. Dietary intake was assessed by a 1-day 24-hour recall method. In men, the daily energy intake significantly increased from 2,196 kcal in 1998 to 2,489 kcal in 2013-2015 ( P for trend < 0.0001). However, the daily energy intake among women did not change significantly over the same period ( P for trend = 0.5772). The percentages of energy intake from animal foods (e.g., meat and milk) and beverages increased during the study period in both men and women. However, the percentage of energy intake from plant foods decreased due to a marked decrease in the intake of white rice. Changes in food sources of energy intake led to changes in the nutrient sources of energy intake; for example, the increase of energy intake from fat and decrease of energy intake from carbohydrate. This study suggests that since 1998, energy intake has increased among Korean adult men, but not among women. However, the composition of food and nutrient sources of energy intake has changed in both men and women. Energy intake and its nutrient and food sources should continue to be monitored regularly in the Korean adult population.

  10. Impact of Submarine Groundwater Discharge on Marine Water Quality and Reef Biota of Maui

    PubMed Central

    Bishop, James M.

    2016-01-01

    Generally unseen and infrequently measured, submarine groundwater discharge (SGD) can transport potentially large loads of nutrients and other land-based contaminants to coastal ecosystems. To examine this linkage we employed algal bioassays, benthic community analysis, and geochemical methods to examine water quality and community parameters of nearshore reefs adjacent to a variety of potential, land-based nutrient sources on Maui. Three common reef algae, Acanthophora spicifera, Hypnea musciformis, and Ulva spp. were collected and/or deployed at six locations with SGD. Algal tissue nitrogen (N) parameters (δ15N, N %, and C:N) were compared with nutrient and δ15N-nitrate values of coastal groundwater and nearshore surface water at all locations. Benthic community composition was estimated for ten 10-m transects per location. Reefs adjacent to sugarcane farms had the greatest abundance of macroalgae, low species diversity, and the highest concentrations of N in algal tissues, coastal groundwater, and marine surface waters compared to locations with low anthropogenic impact. Based on δ15N values of algal tissues, we estimate ca. 0.31 km2 of Kahului Bay is impacted by effluent injected underground at the Kahului Wastewater Reclamation Facility (WRF); this region is barren of corals and almost entirely dominated by colonial zoanthids. Significant correlations among parameters of algal tissue N with adjacent surface and coastal groundwater N indicate that these bioassays provided a useful measure of nutrient source and loading. A conceptual model that uses Ulva spp. tissue δ15N and N % to identify potential N source(s) and relative N loading is proposed for Hawaiʻi. These results indicate that SGD can be a significant transport pathway for land-based nutrients with important biogeochemical and ecological implications in tropical, oceanic islands. PMID:27812171

  11. Impact of Submarine Groundwater Discharge on Marine Water Quality and Reef Biota of Maui.

    PubMed

    Amato, Daniel W; Bishop, James M; Glenn, Craig R; Dulai, Henrietta; Smith, Celia M

    2016-01-01

    Generally unseen and infrequently measured, submarine groundwater discharge (SGD) can transport potentially large loads of nutrients and other land-based contaminants to coastal ecosystems. To examine this linkage we employed algal bioassays, benthic community analysis, and geochemical methods to examine water quality and community parameters of nearshore reefs adjacent to a variety of potential, land-based nutrient sources on Maui. Three common reef algae, Acanthophora spicifera, Hypnea musciformis, and Ulva spp. were collected and/or deployed at six locations with SGD. Algal tissue nitrogen (N) parameters (δ15N, N %, and C:N) were compared with nutrient and δ15N-nitrate values of coastal groundwater and nearshore surface water at all locations. Benthic community composition was estimated for ten 10-m transects per location. Reefs adjacent to sugarcane farms had the greatest abundance of macroalgae, low species diversity, and the highest concentrations of N in algal tissues, coastal groundwater, and marine surface waters compared to locations with low anthropogenic impact. Based on δ15N values of algal tissues, we estimate ca. 0.31 km2 of Kahului Bay is impacted by effluent injected underground at the Kahului Wastewater Reclamation Facility (WRF); this region is barren of corals and almost entirely dominated by colonial zoanthids. Significant correlations among parameters of algal tissue N with adjacent surface and coastal groundwater N indicate that these bioassays provided a useful measure of nutrient source and loading. A conceptual model that uses Ulva spp. tissue δ15N and N % to identify potential N source(s) and relative N loading is proposed for Hawai'i. These results indicate that SGD can be a significant transport pathway for land-based nutrients with important biogeochemical and ecological implications in tropical, oceanic islands.

  12. Plant Biomass Leaching for Nutrient Recovery in Closed Loop Systems Project

    NASA Technical Reports Server (NTRS)

    Zeitlin, Nancy P.; Wheeler, Raymond (Compiler); Lunn, Griffin

    2015-01-01

    Plants will be important for food and O2 production during long term human habitation in space. Recycling of nutrients (e.g., from waste materials) could reduce the resupply costs of fertilizers for growing these plants. Work at NASA's Kennedy Space Center has shown that ion exchange resins can extract fertilizer (plant essential nutrients) from human waste water, after which the residual brine could be treated with electrodialysis to recover more water and produce high value chemicals (e.g., acids and bases). In habitats with significant plant production, inedible biomass becomes a major source of solid waste. To "close the loop" we also need to recover useful nutrients and fertilizer from inedible biomass. We are investigating different approaches to retrieve nutrients from inedible plant biomass, including physical leaching with water, processing the biomass in bioreactors, changing the pH of leaching processing, and/or conducting multiple leaches of biomass residues.

  13. Bacillus anthracis Overcomes an Amino Acid Auxotrophy by Cleaving Host Serum Proteins

    PubMed Central

    Terwilliger, Austen; Swick, Michelle C.; Pflughoeft, Kathryn J.; Pomerantsev, Andrei; Lyons, C. Rick; Koehler, Theresa M.

    2015-01-01

    ABSTRACT Bacteria sustain an infection by acquiring nutrients from the host to support replication. The host sequesters these nutrients as a growth-restricting strategy, a concept termed “nutritional immunity.” Historically, the study of nutritional immunity has centered on iron uptake because many bacteria target hemoglobin, an abundant circulating protein, as an iron source. Left unresolved are the mechanisms that bacteria use to attain other nutrients from host sources, including amino acids. We employed a novel medium designed to mimic the chemical composition of human serum, and we show here that Bacillus anthracis, the causative agent of anthrax disease, proteolyzes human hemoglobin to liberate essential amino acids which enhance its growth. This property can be traced to the actions of InhA1, a secreted metalloprotease, and extends to at least three other serum proteins, including serum albumin. The results suggest that we must also consider proteolysis of key host proteins to be a way for bacterial pathogens to attain essential nutrients, and we provide an experimental framework to determine the host and bacterial factors involved in this process. IMPORTANCE The mechanisms by which bacterial pathogens acquire nutrients during infection are poorly understood. Here we used a novel defined medium that approximates the chemical composition of human blood serum, blood serum mimic (BSM), to better model the nutritional environment that pathogens encounter during bacteremia. Removing essential amino acids from BSM revealed that two of the most abundant proteins in blood—hemoglobin and serum albumin—can satiate the amino acid requirement for Bacillus anthracis, the causative agent of anthrax. We further demonstrate that hemoglobin is proteolyzed by the secreted protease InhA1. These studies highlight that common blood proteins can be a nutrient source for bacteria. They also challenge the historical view that hemoglobin is solely an iron source for bacterial pathogens. PMID:25962917

  14. Ethnic disparities among food sources of energy and nutrients of public health concern and nutrients to limit in adults in the United States: NHANES 2003-2006.

    PubMed

    O'Neil, Carol E; Nicklas, Theresa A; Keast, Debra R; Fulgoni, Victor L

    2014-01-01

    Identification of current food sources of energy and nutrients among US non-Hispanic whites (NHW), non-Hispanic blacks (NHB), and Mexican American (MA) adults is needed to help with public health efforts in implementing culturally sensitive and feasible dietary recommendations. The objective of this study was to determine the food sources of energy and nutrients to limit [saturated fatty acids (SFA), added sugars, and sodium] and nutrients of public health concern (dietary fiber, vitamin D, calcium, and potassium) by NHW, NHB, and MA adults. This was a cross-sectional analysis of a nationally representative sample of NWH (n=4,811), NHB (2,062), and MA (n=1,950) adults 19+ years. The 2003-2006 NHANES 24-h recall (Day 1) dietary intake data were analyzed. An updated USDA Dietary Source Nutrient Database was developed using current food composition databases. Food grouping included ingredients from disaggregated mixtures. Mean energy and nutrient intakes from food sources were sample-weighted. Percentages of total dietary intake contributed from food sources were ranked. Multiple differences in intake among ethnic groups were seen for energy and all nutrients examined. For example, energy intake was higher in MA as compared to NHB; SFA, added sugars, and sodium intakes were higher in NHW than NHB; dietary fiber was highest in MA and lowest in NHB; vitamin D was highest in NHW; calcium was lowest in NHB; and potassium was higher in NHW as compared to NHB. Food sources of these nutrients also varied. Identification of intake of nutrients to limit and of public health concern can help health professionals implement appropriate dietary recommendations and plan interventions that are ethnically appropriate.

  15. Accounting for heterogeneity of nutrient dynamics in riverscapes through spatially distributed models

    NASA Astrophysics Data System (ADS)

    Wollheim, W. M.; Stewart, R. J.

    2011-12-01

    Numerous types of heterogeneity exist within river systems, leading to hotspots of nutrient sources, sinks, and impacts embedded within an underlying gradient defined by river size. This heterogeneity influences the downstream propagation of anthropogenic impacts across flow conditions. We applied a river network model to explore how nitrogen saturation at river network scales is influenced by the abundance and distribution of potential nutrient processing hotspots (lakes, beaver ponds, tributary junctions, hyporheic zones) under different flow conditions. We determined that under low flow conditions, whole network nutrient removal is relatively insensitive to the number of hotspots because the underlying river network structure has sufficient nutrient processing capacity. However, hotspots become more important at higher flows and greatly influence the spatial distribution of removal within the network at all flows, suggesting that identification of heterogeneity is critical to develop predictive understanding of nutrient removal processes under changing loading and climate conditions. New temporally intensive data from in situ sensors can potentially help to better understand and constrain these dynamics.

  16. ULK1, mammalian target of rapamycin, and mitochondria: linking nutrient availability and autophagy.

    PubMed

    Kundu, Mondira

    2011-05-15

    A fundamental function of autophagy conserved from yeast to mammals is mobilization of macromolecules during times of limited nutrient availability, permitting organisms to survive under starvation conditions. In yeast, autophagy is initiated following nitrogen or carbon deprivation, and autophagy mutants die rapidly under these conditions. Similarly, in mammals, autophagy is upregulated in most organs following initiation of starvation, and is critical for survival in the perinatal period following abrupt termination of the placental nutrient supply. The nutrient-sensing kinase, mammalian target of rapamycin, coordinates cellular proliferation and growth with nutrient availability, at least in part by regulating protein synthesis and autophagy-mediated degradation. This review focusses on the regulation of autophagy by Tor, a mammalian target of rapamycin, and Ulk1, a mammalian homolog of Atg1, in response to changes in nutrient availability. Given the importance of mitochondria in maintaining bioenergetic homestasis, and potentially as a source of membrane for autophagosomes during starvation, possible roles for mitochondria in this process are also discussed.

  17. Energy trade-offs between intensive biomass utilization, site productivity loss, and ameliorative treatments in loblolly pine plantations

    Treesearch

    D. Andrew Scott; Thomas J. Dean

    2006-01-01

    Loblolly pine plantations are the most important source of forest products in the US and the slash remaining after conventional harvest represents a significant potential source of bioenergy. However, slash removal in intensive harvests might, under some circumstances, reduce site productivity by reducing soil organic matter and associated nutrients. Two complimentary...

  18. Watershed level examination of urea fate and transport and the production of the biotoxin domoic acid

    USDA-ARS?s Scientific Manuscript database

    The Chesapeake Bay, the largest estuary in the world, is an important source of many fish and shellfish. The safety of these species as a food source is currently at risk due to nutrient pollution. Urea, a form of organic nitrogen found in manure and fertilizer, is increasing in usage within the Ba...

  19. Processed foods available in the Pacific Islands

    PubMed Central

    2013-01-01

    Background There is an increasing reliance on processed foods globally, yet food composition tables include minimal information on their nutrient content. The Pacific Islands share common trade links and are heavily reliant on imported foods. The objective was to develop a dataset for the Pacific Islands on nutrient composition of processed foods sold and their sources. Methods Information on the food labels, including country of origin, nutrient content and promotional claims were recorded into a standardised dataset. Data were cleaned, converted to per 100 g data as needed and then checked for anomalies and recording errors. Setting: Five representative countries were selected for data collection, based on their trading patterns: Fiji, Guam, Nauru, New Caledonia, and Samoa. Data were collected in the capitals, in larger stores which import their own foods. Subjects: Processed foods in stores. Results The data from 6041 foods and drinks were recorded. Fifty four countries of origin were identified, with the main provider of food for each Pacific Island country being that with which it was most strongly linked politically. Nutrient data were not provided for 6% of the foods, imported from various countries. Inaccurate labels were found on 132 products. Over one-quarter of the foods included some nutrient or health-related claims. Conclusions The globalisation of the food supply is having considerable impacts on diets in the Pacific Islands. While nutrient labels can be informative for consumers looking for healthier options, difficulties still exist with poor labelling and interpretation can be challenging. PMID:24160249

  20. C-N-P interactions control climate driven changes in regional patterns of C storage on the North Slope of Alaska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Yueyang; Rocha, Adrian; Rastetter, Edward

    2016-01-01

    As climate warms, changes in the carbon (C) balance of arctic tundra will play an important role in the global C balance. The C balance of tundra is tightly coupled to the nitrogen (N) and phosphorus (P) cycles because soil organic matter is the principal source of plant-available nutrients and determines the spatial variation of vegetation biomass across the North Slope of Alaska. Warming will accelerate these nutrient cycles, which should stimulate plant growth.

  1. Sources, transformations, and hydrological processes that control stream nitrate and dissolved organic matter concentrations during snowmelt in an upland forest

    USGS Publications Warehouse

    Sebestyen, Stephen D.; Boyer, Elizabeth W.; Shanley, James B.; Kendall, Carol; Doctor, Daniel H.; Aiken, George R.; Ohte, Nobuhito

    2008-01-01

    We explored catchment processes that control stream nutrient concentrations at an upland forest in northeastern Vermont, USA, where inputs of nitrogen via atmospheric deposition are among the highest in the nation and affect ecosystem functioning. We traced sources of water, nitrate, and dissolved organic matter (DOM) using stream water samples collected at high frequency during spring snowmelt. Hydrochemistry, isotopic tracers, and end‐member mixing analyses suggested the timing, sources, and source areas from which water and nutrients entered the stream. Although stream‐dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) both originated from leaching of soluble organic matter, flushing responses between these two DOM components varied because of dynamic shifts of hydrological flow paths and sources that supply the highest concentrations of DOC and DON. High concentrations of stream water nitrate originated from atmospheric sources as well as nitrified sources from catchment soils. We detected nitrification in surficial soils during late snowmelt which affected the nitrate supply that was available to be transported to streams. However, isotopic tracers showed that the majority of nitrate in upslope surficial soil waters after the onset of snowmelt originated from atmospheric sources. A fraction of the atmospheric nitrogen was directly delivered to the stream, and this finding highlights the importance of quick flow pathways during snowmelt events. These findings indicate that interactions among sources, transformations, and hydrologic transport processes must be deciphered to understand why concentrations vary over time and over space as well as to elucidate the direct effects of human activities on nutrient dynamics in upland forest streams.

  2. Combined use of stable isotopes and hydrologic modeling to better understand nutrient sources and cycling in highly altered systems (Invited)

    NASA Astrophysics Data System (ADS)

    Young, M. B.; Kendall, C.; Guerin, M.; Stringfellow, W. T.; Silva, S. R.; Harter, T.; Parker, A.

    2013-12-01

    The Sacramento and San Joaquin Rivers provide the majority of freshwater for the San Francisco Bay Delta. Both rivers are important sources of drinking and irrigation water for California, and play critical roles in the health of California fisheries. Understanding the factors controlling water quality and primary productivity in these rivers and the Delta is essential for making sound economic and environmental water management decisions. However, these highly altered surface water systems present many challenges for water quality monitoring studies due to factors such as multiple potential nutrient and contaminant inputs, dynamic source water inputs, and changing flow regimes controlled by both natural and engineered conditions. The watersheds for both rivers contain areas of intensive agriculture along with many other land uses, and the Sacramento River receives significant amounts of treated wastewater from the large population around the City of Sacramento. We have used a multi-isotope approach combined with mass balance and hydrodynamic modeling in order to better understand the dominant nutrient sources for each of these rivers, and to track nutrient sources and cycling within the complex Delta region around the confluence of the rivers. High nitrate concentrations within the San Joaquin River fuel summer algal blooms, contributing to low dissolved oxygen conditions. High δ15N-NO3 values combined with the high nitrate concentrations suggest that animal manure is a significant source of nitrate to the San Joaquin River. In contrast, the Sacramento River has lower nitrate concentrations but elevated ammonium concentrations from wastewater discharge. Downstream nitrification of the ammonium can be clearly traced using δ15N-NH4. Flow conditions for these rivers and the Delta have strong seasonal and inter-annual variations, resulting in significant changes in nutrient delivery and cycling. Isotopic measurements and estimates of source water contributions derived from the DSM2-HYDRO hydrologic model demonstrate that mixing between San Joaquin and Sacramento River water can occur as far as 30 miles upstream of the confluence within the San Joaquin channel, and that San Joaquin-derived nitrate only reaches the western Delta during periods of high flow.

  3. Long term continuous field survey to assess nutrient emission impact from irrigated paddy field into river catchment

    NASA Astrophysics Data System (ADS)

    Kogure, Kanami; Aichi, Masaatsu; Zessner, Matthias

    2017-04-01

    In order to achieve good river environment, it is very important to understand and to control nutrient behavior such as Nitrogen and Phosphorus. As we could reduce impact from urban and industrial activities by wastewater treatment, pollution from point sources are likely to be controlled. Besides them, nutrient emission from agricultural activity is dominant pollution source into the river system. In many countries in Asia and Africa, rice is widely cultivated and paddy field covers large areas. In Japan 54% of its arable land is occupied with irrigated paddy field. While paddy field can deteriorate river water quality due to fertilization, it is also suggested that paddy field can purify water. We carried out field survey in middle reach of the Tone River Basin with focus on a paddy field IM. The objectives of the research are 1) understanding of water and nutrient balance in paddy field, 2) data collection for assessing nutrient emission. Field survey was conducted from June 2015 to October 2016 covering two flooding seasons in summer. In our measurement, all input and output were measured regarding water, N and P to quantify water and nutrient balance in the paddy field. By measuring water quality and flow rate of inflow, outflow, infiltrating water, ground water and flooding water, we tried to quantitatively understand water, N and P cycle in a paddy field including seasonal trends, and changes accompanied with rainy events and agricultural activities like fertilization. Concerning water balance, infiltration rate was estimated by following equation. Infiltration=Irrigation water + Precipitation - Evapotranspiration -Outflow We estimated mean daily water balance during flooding season. Infiltration is 11.9mm/day in our estimation for summer in 2015. Daily water reduction depth (WRD) is sum of Evapotranspiration and Infiltration. WRD is 21.5mm/day in IM and agrees with average value in previous research. Regarding nutrient balance, we estimated an annual N and P balance. N and P surplus are calculated by difference between input and output in a paddy field. As to nutrient balance in 2015 surplus shows minus value between input as fertilizer and output as rice product. However, by taking account of input via irrigation water as nutrient source, N and P input and output balance with errors by 9% and 14%. Results of long term continuous survey suggest that irrigation water is one of nutrient sources in rice cultivation.

  4. The Effects of Groundwater-associated Nutrients on Benthic Community Composition in Maunalua Bay, Hawaíi

    NASA Astrophysics Data System (ADS)

    La Valle, F. F.; Thomas, F. I. M.

    2016-02-01

    As populations grow and development efforts continue in coastal regions throughout the world, eutrophication is one of the leading issues surrounding coastal ecosystems. Currently, studies on subterranean groundwater discharge (SGD) are confirming that SGD can contain substantial nutrient concentrations due to agricultural activities, urbanization, leaky septic and sewer systems, and use of fertilizers. Thus, it is important for SGD with high nutrient concentrations to be monitored for its impact on coastal dynamics. Coral reef systems are especially sensitive to changes in nutrient concentrations which can change community composition by creating advantageous biochemical environments for specific algal species. Excess nutrients along with decreased herbivory have been attributed to phase shifts from coral dominated to algal dominated reefs. In this study we mapped algal cover and nutrient load with respect to the groundwater in two fringing reefs (Black Point and Wailupe) in Maunalua Bay, Oahu, Hawaíi. We established relationships between salinity and nutrient concentrations for the two sites by sampling synoptically on an onshore to offshore transect from the SGD seeps (n = 48 Black Point, n = 40 Wailupe, R2 > 0.965). The groundwater end members at the two sites have different nutrient signatures: concentrations at Black Point averaged 167.3 uM N+N (NO3- + NO2-) and 3.57 uM PO43-, while at Wailupe nutrient concentrations averaged 68.7 uM N+N and 1.96 uM PO43-. We used these relationships to calculate nutrient time series after deploying 23 autonomous salinity sensors for one month across the benthos at each site respectively. Benthic surveys taken over 2 seasons indicate that the algal composition and distribution relative to the groundwater sources differ at the two sites. Growth rates of some major macroalgal species also differ with distance from SGD source. Further studies on the biological effects of high SGD-associated nutrients on coastal systems are warranted.

  5. Couplings of watersheds and coastal waters: Sources and consequences of nutrient enrichment in Waquoit Bay, Massachusetts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valiela, I.; Foreman, K.; LaMontagne, M.

    1992-12-01

    Human activities on coastal watersheds provide the major sources of nutrients entering shallow coastal ecosystems. Nutrient loadings from watersheds alter structure and function of receiving aquatic ecosystems. To investigate this coupling of land to marine systems, a series of subwatersheds of Waquoit Bay differing in degree of urbanization and with widely different nutrient loading rates was studied. The subwatersheds differ in septic tanks numbers and forest acreage. Ground water is the major mechanism that transports nutrients to coastal waters. Some attenuation of nutrient concentrations within the aquifer or at the sediment-water interface, but significant increases in the nutrient content ofmore » groundwater arriving at the shore's edge are in urbanized areas. The groundwater flows through the sediment-water boundary, and sufficient groundwater-borne nutrients (nitrogen in particular) traverse the sediment-water boundary to cause significant changes in the aquatic ecosystem. These loading-dependent alterations include increased nutrients in water, greater primary production by phytoplankton, and increased macroalgal biomass and growth. The increased macroalgal biomass dominates the bay ecosystem through second- or third-order effects such as alterations of nutrient status of water columns and increasing frequency of anoxic events. The increases in seaweeds have decreased the areas covered by eelgrass habitats. The change in habitat type, plus the increased frequency of anoxic events, change the composition of the benthic fauna. The importance of bottom-up control in shallow coastal food webs is evident. The coupling of land to sea by groundwater-borne nutrient transport is mediated by a complex series of steps, making it unlikely to find a one-to-one relation between land use and conditions in the aquatic ecosystem. Appropriate models may provide a way to deal with the complexities of the coupling. 22 refs., 14 figs., 5 tabs.« less

  6. Nutrient concentrations and fluxes in tributaries to the Swan-Canning estuary, Western Australia

    USGS Publications Warehouse

    Peters, N.E.; Donohue, R.

    1999-01-01

    In Western Australia, catchment nutrient availability on an areal basis is primarily controlled by the disposal of animal waste and the type and rate of fertilizer application, particularly in coastal areas. The coastal areas receive notably higher rainfall and have more intense horticulture and animal production than inland areas, and are undergoing rapid urbanization, particularly adjacent to the estuary. Also, the surficial aquifers on the coastal plain are generally sandy having a low nutrient retention capacity and rapidly transmit soluble and colloidal material through the subsurface. In the Swan-Canning basin, high air and soil temperatures and seasonally arid conditions cause rapid mineralization of nitrogen and phosphorus. The nutrients are subsequently available for transport during the onset of seasonal wet weather, which typically begins during the period from late April to June. In addition to the rapid mobility of nutrients in streamwater from agricultural areas during the wet season, drains in urban areas, which typically have high nutrient concentrations, also are an important source of nutrients as the drains flow directly to the estuary throughout the year.

  7. New frontiers in gut nutrient sensor research: nutrient sensors in the gastrointestinal tract: modulation of sweet taste sensitivity by leptin.

    PubMed

    Horio, Nao; Jyotaki, Masafumi; Yoshida, Ryusuke; Sanematsu, Keisuke; Shigemura, Noriatsu; Ninomiya, Yuzo

    2010-01-01

    The ability to perceive sweet compounds is important for animals to detect an external carbohydrate source of calories and has a critical role in the nutritional status of animals. In mice, a subset of sweet-sensitive taste cells possesses leptin receptors. Increase of plasma leptin with increasing internal energy storage in the adipose tissue suppresses sweet taste responses via this receptor. The data from recent studies indicate that leptin may also act as a modulator of sweet taste sensation in humans with a diurnal variation in sweet sensitivity. The plasma leptin level and sweet taste sensitivity are proposed to link with post-ingestive plasma glucose level. This leptin modulation of sweet taste sensitivity may influence an individual's preference, ingestive behavior, and absorption of nutrients, thereby playing important roles in regulation of energy homeostasis.

  8. 21 CFR 101.54 - Nutrient content claims for “good source,” “high,” “more,” and “high potency.”

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Nutrient content claims for âgood source,â âhigh,â âmore,â and âhigh potency.â 101.54 Section 101.54 Food and Drugs FOOD AND DRUG ADMINISTRATION... Requirements for Nutrient Content Claims § 101.54 Nutrient content claims for “good source,” “high,” “more...

  9. 21 CFR 101.54 - Nutrient content claims for “good source,” “high,” “more,” and “high potency.”

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Nutrient content claims for âgood source,â âhigh,â âmore,â and âhigh potency.â 101.54 Section 101.54 Food and Drugs FOOD AND DRUG ADMINISTRATION... Requirements for Nutrient Content Claims § 101.54 Nutrient content claims for “good source,” “high,” “more...

  10. 21 CFR 101.54 - Nutrient content claims for “good source,” “high,” “more,” and “high potency.”

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Nutrient content claims for âgood source,â âhigh,â âmore,â and âhigh potency.â 101.54 Section 101.54 Food and Drugs FOOD AND DRUG ADMINISTRATION... Requirements for Nutrient Content Claims § 101.54 Nutrient content claims for “good source,” “high,” “more...

  11. Food Sources of Important Nutrients (for Vegetarians)

    MedlinePlus

    ... are a Key Part of Nutrition for Men's Health Nutrition for the Child with Sickle Cell Anemia Nutrition ... Prevention Explore... Eating as a Family 5 Family Nutrition Tips for Dads Heart and Cardiovascular Health Family Dinners for a Healthy Heart Smart Shopping ...

  12. Predicting submerged aquatic vegetation occurence (SAV) in a Great Lakes estuary

    EPA Science Inventory

    SAV provides the biophysical basis for several ecosystem services in Great Lakes estuaries including rearing and adult habitat for commercially and recreationally important fishes, foraging habit for waterfowl, and nutrient retention. Understanding sources of variation in SAV in ...

  13. Submarine groundwater discharge as a major source of nutrients to the Mediterranean Sea

    PubMed Central

    Garcia-Orellana, Jordi; Masqué, Pere; Feldman, Mor; Weinstein, Yishai

    2015-01-01

    The Mediterranean Sea (MS) is a semienclosed basin that is considered one of the most oligotrophic seas in the world. In such an environment, inputs of allochthonous nutrients and micronutrients play an important role in sustaining primary productivity. Atmospheric deposition and riverine runoff have been traditionally considered the main external sources of nutrients to the MS, whereas the role of submarine groundwater discharge (SGD) has been largely ignored. However, given the large Mediterranean shore length relative to its surface area, SGD may be a major conveyor of dissolved compounds to the MS. Here, we used a 228Ra mass balance to demonstrate that the total SGD contributes up to (0.3–4.8)⋅1012 m3⋅y−1 to the MS, which appears to be equal or larger by a factor of 16 to the riverine discharge. SGD is also a major source of dissolved inorganic nutrients to the MS, with median annual fluxes of 190⋅109, 0.7⋅109, and 110⋅109 mol for nitrogen, phosphorous, and silica, respectively, which are comparable to riverine and atmospheric inputs. This corroborates the profound implications that SGD may have for the biogeochemical cycles of the MS. Inputs of other dissolved compounds (e.g., iron, carbon) via SGD could also be significant and should be investigated. PMID:25775554

  14. Submarine groundwater discharge as a major source of nutrients to the Mediterranean Sea.

    PubMed

    Rodellas, Valentí; Garcia-Orellana, Jordi; Masqué, Pere; Feldman, Mor; Weinstein, Yishai

    2015-03-31

    The Mediterranean Sea (MS) is a semienclosed basin that is considered one of the most oligotrophic seas in the world. In such an environment, inputs of allochthonous nutrients and micronutrients play an important role in sustaining primary productivity. Atmospheric deposition and riverine runoff have been traditionally considered the main external sources of nutrients to the MS, whereas the role of submarine groundwater discharge (SGD) has been largely ignored. However, given the large Mediterranean shore length relative to its surface area, SGD may be a major conveyor of dissolved compounds to the MS. Here, we used a (228)Ra mass balance to demonstrate that the total SGD contributes up to (0.3-4.8)⋅10(12) m(3) ⋅ y(-1) to the MS, which appears to be equal or larger by a factor of 16 to the riverine discharge. SGD is also a major source of dissolved inorganic nutrients to the MS, with median annual fluxes of 190⋅10(9), 0.7⋅10(9), and 110⋅10(9) mol for nitrogen, phosphorous, and silica, respectively, which are comparable to riverine and atmospheric inputs. This corroborates the profound implications that SGD may have for the biogeochemical cycles of the MS. Inputs of other dissolved compounds (e.g., iron, carbon) via SGD could also be significant and should be investigated.

  15. Nitrogen Flux in Watersheds: The Role of Soil Distributions and Climate in Nitrogen Flux to the Coastal Ecosystems

    NASA Astrophysics Data System (ADS)

    Showers, W. J.; Reyes, M. M.; Genna, B. J.

    2009-12-01

    Quantifying the flux of nitrate from different landscape sources in watersheds is important to understand the increased flux of nitrogen to coastal ecosystems. Recent technological advances in chemical sensor networks has demonstrated that chemical variability in aquatic environments are chronically under-sampled, and that many nutrient monitoring programs with monthly or daily sampling rates are inadequate to characterize the dominate seasonal, daily or semi-diurnal fluxes in watersheds. The RiverNet program has measured the nitrate flux in the Neuse River Basin, NC on a 15 minute interval over the past eight years. Significant diurnal variation has been observed in nitrate concentrations during high and low flow periods associated with waste water treatment plants in urban watersheds that are not present in agricultural watersheds. Discharge and N flux in the basin also has significant inter-annual variations associated with El Nino oscillations modified by the North Atlantic oscillation. Positive JMA and NAO indexes are associated with increased groundwater levels, nutrient fluxes, and estuary fish kills. To understand how climate oscillation affect discharge and nutrient fluxes, we have monitored runoff/drainages and groundwater inputs adjacent to a large waste application field over the past 4 years, and used the nitrate inputs as a tracer. Surface water run off is well correlated to precipitation patterns and is the largest nutrient flux into the river. Groundwater inputs are variable spatially and temporally, and are controlled by geology and groundwater levels. Hydric soil spatial distributions are an excellent predictor of nutrient transport across landscapes, and is related to the distribution of biogeochemical “hotspots” The isotopic composition of oxygen and nitrogen in dissolved nitrate indicate that sources change with discharge state, and that atmospherically deposited nitrogen is only important to river fluxes in forested and urban watersheds. These results also indicate that the contribution of wastewater treatment plants from urban watersheds has been greatly under-estimated in current models. Prediction of future changes in discharge and nutrient flux by the modeling of climate oscillations has important implications for water resources policy and drought management for public policy and utility managers.

  16. Iron and nutrient content of wind-erodible sediment in the ephemeral river valleys of Namibia

    NASA Astrophysics Data System (ADS)

    Dansie, A. P.; Wiggs, G. F. S.; Thomas, D. S. G.

    2017-08-01

    Research concerning the global distribution of aeolian dust sources has principally focussed on salt/clay pan and desiccated lacustrine emission areas. In southern Africa such sources are identified as Etosha Pan in northern Namibia and Makgadikgadi Pans in northern Botswana. Dust emitting from ephemeral river valleys, however, has been largely overlooked. Rivers are known nutrient transport pathways and the flooding regimes of ephemeral river valleys frequently replenish stores of fine sediment which, on drying, can become susceptible to aeolian erosion. Such airborne sediment may be nutrient rich and thus be significant for the fertilisation of marine waters once deposited. This study investigates the dust source sediments from three ephemeral river valleys in Namibia in terms of their particle size distribution and their concentrations of bioavailable N, P and Fe. We compare the nutrient content of these sediments from the ephemeral river valleys to those collected from Etosha and Makgadikgadi Pans and consider their relative ocean fertilising potential. Our results show that the ephemeral river valleys contain fine grained sediment similar in physical character to Etosha and Makgadikgadi Pans yet they have up to 43 times greater concentrations of bioavailable iron and enriched N and P macronutrients that are each important for ocean fertilisation. The known dust-emitting river valleys of Namibia may therefore be contributing a greater fertilisation role in the adjacent marine system than previously considered, and not-yet investigated. Given this finding a re-assessment of the potential role of ephemeral river valleys in providing nutrient-rich sediment into the aeolian and marine systems in other dryland areas is necessary.

  17. Contribution of Wastewater Treatment Plant Effluents to Nutrient Dynamics in Aquatic Systems: A Review

    NASA Astrophysics Data System (ADS)

    Carey, Richard O.; Migliaccio, Kati W.

    2009-08-01

    Excessive nutrient loading (considering nitrogen and phosphorus) is a major ongoing threat to water quality and here we review the impact of nutrient discharges from wastewater treatment plants (WWTPs) to United States (U.S.) freshwater systems. While urban and agricultural land uses are significant nonpoint nutrient contributors, effluent from point sources such as WWTPs can overwhelm receiving waters, effectively dominating hydrological characteristics and regulating instream nutrient processes. Population growth, increased wastewater volumes, and sustainability of critical water resources have all been key factors influencing the extent of wastewater treatment. Reducing nutrient concentrations in wastewater is an important aspect of water quality management because excessive nutrient concentrations often prevent water bodies from meeting designated uses. WWTPs employ numerous physical, chemical, and biological methods to improve effluent water quality but nutrient removal requires advanced treatment and infrastructure that may be economically prohibitive. Therefore, effluent nutrient concentrations vary depending on the particular processes used to treat influent wastewater. Increasingly stringent regulations regarding nutrient concentrations in discharged effluent, along with greater freshwater demand in populous areas, have led to the development of extensive water recycling programs within many U.S. regions. Reuse programs provide an opportunity to reduce or eliminate direct nutrient discharges to receiving waters while allowing for the beneficial use of reclaimed water. However, nutrients in reclaimed water can still be a concern for reuse applications, such as agricultural and landscape irrigation.

  18. Using high-frequency sensors to identify hydroclimatological controls on storm-event variability in catchment nutrient fluxes and source zone activation

    NASA Astrophysics Data System (ADS)

    Blaen, Phillip; Khamis, Kieran; Lloyd, Charlotte; Krause, Stefan

    2017-04-01

    At the river catchment scale, storm events can drive highly variable behaviour in nutrient and water fluxes, yet short-term dynamics are frequently missed by low resolution sampling regimes. In addition, nutrient source contributions can vary significantly within and between storm events. Our inability to identify and characterise time dynamic source zone contributions severely hampers the adequate design of land use management practices in order to control nutrient exports from agricultural landscapes. Here, we utilise an 8-month high-frequency (hourly) time series of streamflow, nitrate concentration (NO3) and fluorescent dissolved organic matter concentration (FDOM) derived from optical in-situ sensors located in a headwater agricultural catchment. We characterised variability in flow and nutrient dynamics across 29 storm events. Storm events represented 31% of the time series and contributed disproportionately to nutrient loads (43% of NO3 and 36% of CDOM) relative to their duration. Principal components analysis of potential hydroclimatological controls on nutrient fluxes demonstrated that a small number of components, representing >90% of variance in the dataset, were highly significant model predictors of inter-event variability in catchment nutrient export. Hysteresis analysis of nutrient concentration-discharge relationships suggested spatially discrete source zones existed for NO3 and FDOM, and that activation of these zones varied on an event-specific basis. Our results highlight the benefits of high-frequency in-situ monitoring for characterising complex short-term nutrient dynamics and unravelling connections between hydroclimatological variability and river nutrient export and source zone activation under extreme flow conditions. These new process-based insights are fundamental to underpinning the development of targeted management measures to reduce nutrient loading of surface waters.

  19. The role of red meat in the diet: nutrition and health benefits.

    PubMed

    Wyness, Laura

    2016-08-01

    Red meat has been an important part of the human diet throughout human evolution. When included as part of a healthy, varied diet, red meat provides a rich source of high biological value protein and essential nutrients, some of which are more bioavailable than in alternative food sources. Particular nutrients in red meat have been identified as being in short supply in the diets of some groups of the population. The present paper discusses the role of red meat in the diets of young infants, adolescents, women of childbearing age and older adults and highlights key nutrients red meat can provide for these groups. The role of red meat in relation to satiety and weight control is discussed as the inclusion of lean red meat in a healthy, varied diet may help weight loss as part of an energy-reduced diet. A summary of the UK advice on the amount of red meat that can be consumed as part of a healthy, varied diet is also provided.

  20. CADDIS Volume 2. Sources, Stressors and Responses: Nutrients

    EPA Pesticide Factsheets

    Introduction to the nutrients module, when to list nutrients as a candidate cause, ways to measure nutrients, simple and detailed conceptual diagrams for nutrients, nutrients module references and literature reviews.

  1. Potential impacts of climate change on biogeochemical functioning of Cerrado ecosystems.

    PubMed

    Bustamante, M M C; Nardoto, G B; Pinto, A S; Resende, J C F; Takahashi, F S C; Vieira, L C G

    2012-08-01

    The Cerrado Domain comprises one of the most diverse savannas in the world and is undergoing a rapid loss of habitats due to changes in fire regimes and intense conversion of native areas to agriculture. We reviewed data on the biogeochemical functioning of Cerrado ecosystems and evaluated the potential impacts of regional climate changes. Variation in temperature extremes and in total amount of rainfall and altitude throughout the Cerrado determines marked differences in the composition of species. Cerrado ecosystems are controlled by interactions between water and nutrient availability. In general, nutrient cycles (N, P and base cations) are very conservative, while litter, microbial and plant biomass are important stocks. In terms of C cycling, root systems and especially the soil organic matter are the most important stocks. Typical cerrado ecosystems function as C sinks on an annual basis, although they work as source of C to the atmosphere close to the end of the dry season. Fire is an important factor altering stocks and fluxes of C and nutrients. Predicted changes in temperature, amount and distribution of precipitation vary according to Cerrado sub-regions with more marked changes in the northeastern part of the domain. Higher temperatures, decreases in rainfall with increase in length of the dry season could shift net ecosystem exchanges from C sink to source of C and might intensify burning, reducing nutrient stocks. Interactions between the heterogeneity in the composition and abundance of biological communities throughout the Cerrado Domain and current and future changes in land use make it difficult to project the impacts of future climate scenarios at different temporal and spatial scales and new modeling approaches are needed.

  2. Hydrology and water quality of forested lands in eastern North Carolina

    Treesearch

    G.M. Chescheir; M.E. Lebo; D.M. Amatya; J. Hughes; J.W. Gilliam; R.W. Skaggs; R.B. Herrmann

    2003-01-01

    Nonpoint sources of nutrients (NPS) are a widespread source of surface water pollution throu&out the United States. Characterizing the sources of this NPS nutrient loading is challenging due to variation in land management practices, physioyaphic setting, site conditions such as soil type, and climatic variation. For nutrients, there is the added challenge of...

  3. Nutrient load summaries for major lakes and estuaries of the Eastern United States, 2002

    USGS Publications Warehouse

    Moorman, Michelle C.; Hoos, Anne B.; Bricker, Suzanne B.; Moore, Richard B.; García, Ana María; Ator, Scott W.

    2014-01-01

    Nutrient enrichment of lakes and estuaries across the Nation is widespread. Nutrient enrichment can stimulate excessive plant and algal growth and cause a number of undesirable effects that impair aquatic life and recreational activities and can also result in economic effects. Understanding the amount of nutrients entering lakes and estuaries, the physical characteristics affecting the nutrient processing within these receiving waterbodies, and the natural and manmade sources of nutrients is fundamental to the development of effective nutrient reduction strategies. To improve this understanding, sources and stream transport of nutrients to 255 major lakes and 64 estuaries in the Eastern United States were estimated using Spatially Referenced Regression on Watershed attributes (SPARROW) nutrient models.

  4. Nutrient patterns and their food sources in an International Study Setting: report from the EPIC study.

    PubMed

    Moskal, Aurelie; Pisa, Pedro T; Ferrari, Pietro; Byrnes, Graham; Freisling, Heinz; Boutron-Ruault, Marie-Christine; Cadeau, Claire; Nailler, Laura; Wendt, Andrea; Kühn, Tilman; Boeing, Heiner; Buijsse, Brian; Tjønneland, Anne; Halkjær, Jytte; Dahm, Christina C; Chiuve, Stephanie E; Quirós, Jose R; Buckland, Genevieve; Molina-Montes, Esther; Amiano, Pilar; Huerta Castaño, José M; Gurrea, Aurelio Barricarte; Khaw, Kay-Tee; Lentjes, Marleen A; Key, Timothy J; Romaguera, Dora; Vergnaud, Anne-Claire; Trichopoulou, Antonia; Bamia, Christina; Orfanos, Philippos; Palli, Domenico; Pala, Valeria; Tumino, Rosario; Sacerdote, Carlotta; de Magistris, Maria Santucci; Bueno-de-Mesquita, H Bas; Ocké, Marga C; Beulens, Joline W J; Ericson, Ulrika; Drake, Isabel; Nilsson, Lena M; Winkvist, Anna; Weiderpass, Elisabete; Hjartåker, Anette; Riboli, Elio; Slimani, Nadia

    2014-01-01

    Compared to food patterns, nutrient patterns have been rarely used particularly at international level. We studied, in the context of a multi-center study with heterogeneous data, the methodological challenges regarding pattern analyses. We identified nutrient patterns from food frequency questionnaires (FFQ) in the European Prospective Investigation into Cancer and Nutrition (EPIC) Study and used 24-hour dietary recall (24-HDR) data to validate and describe the nutrient patterns and their related food sources. Associations between lifestyle factors and the nutrient patterns were also examined. Principal component analysis (PCA) was applied on 23 nutrients derived from country-specific FFQ combining data from all EPIC centers (N = 477,312). Harmonized 24-HDRs available for a representative sample of the EPIC populations (N = 34,436) provided accurate mean group estimates of nutrients and foods by quintiles of pattern scores, presented graphically. An overall PCA combining all data captured a good proportion of the variance explained in each EPIC center. Four nutrient patterns were identified explaining 67% of the total variance: Principle component (PC) 1 was characterized by a high contribution of nutrients from plant food sources and a low contribution of nutrients from animal food sources; PC2 by a high contribution of micro-nutrients and proteins; PC3 was characterized by polyunsaturated fatty acids and vitamin D; PC4 was characterized by calcium, proteins, riboflavin, and phosphorus. The nutrients with high loadings on a particular pattern as derived from country-specific FFQ also showed high deviations in their mean EPIC intakes by quintiles of pattern scores when estimated from 24-HDR. Center and energy intake explained most of the variability in pattern scores. The use of 24-HDR enabled internal validation and facilitated the interpretation of the nutrient patterns derived from FFQs in term of food sources. These outcomes open research opportunities and perspectives of using nutrient patterns in future studies particularly at international level.

  5. Life cycle comparison of centralized wastewater treatment and urine source separation with struvite precipitation: Focus on urine nutrient management.

    PubMed

    Ishii, Stephanie K L; Boyer, Treavor H

    2015-08-01

    Alternative approaches to wastewater management including urine source separation have the potential to simultaneously improve multiple aspects of wastewater treatment, including reduced use of potable water for waste conveyance and improved contaminant removal, especially nutrients. In order to pursue such radical changes, system-level evaluations of urine source separation in community contexts are required. The focus of this life cycle assessment (LCA) is managing nutrients from urine produced in a residential setting with urine source separation and struvite precipitation, as compared with a centralized wastewater treatment approach. The life cycle impacts evaluated in this study pertain to construction of the urine source separation system and operation of drinking water treatment, decentralized urine treatment, and centralized wastewater treatment. System boundaries include fertilizer offsets resulting from the production of urine based struvite fertilizer. As calculated by the Tool for the Reduction and Assessment of Chemical and Other Environmental Impacts (TRACI), urine source separation with MgO addition for subsequent struvite precipitation with high P recovery (Scenario B) has the smallest environmental cost relative to existing centralized wastewater treatment (Scenario A) and urine source separation with MgO and Na3PO4 addition for subsequent struvite precipitation with concurrent high P and N recovery (Scenario C). Preliminary economic evaluations show that the three urine management scenarios are relatively equal on a monetary basis (<13% difference). The impacts of each urine management scenario are most sensitive to the assumed urine composition, the selected urine storage time, and the assumed electricity required to treat influent urine and toilet water used to convey urine at the centralized wastewater treatment plant. The importance of full nutrient recovery from urine in combination with the substantial chemical inputs required for N recovery via struvite precipitation indicate the need for alternative methods of N recovery. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Vegetable cost metrics show that potatoes and beans provide most nutrients per penny.

    PubMed

    Drewnowski, Adam; Rehm, Colin D

    2013-01-01

    Vegetables are important sources of dietary fiber, vitamins and minerals in the diets of children. The United States Department of Agriculture (USDA) National School Lunch Program has new requirements for weekly servings of vegetable subgroups as well as beans and peas. This study estimated the cost impact of meeting the USDA requirements using 2008 national prices for 98 vegetables, fresh, frozen, and canned. Food costs were calculated per 100 grams, per 100 calories, and per edible cup. Rank 6 score, a nutrient density measure was based on six nutrients: dietary fiber; potassium; magnesium; and vitamins A, C, and K. Individual nutrient costs were measured as the monetary cost of 10% daily value of each nutrient per cup equivalent. ANOVAs with post hoc tests showed that beans and starchy vegetables, including white potatoes, were cheaper per 100 calories than were dark-green and deep-yellow vegetables. Fresh, frozen, and canned vegetables had similar nutrient profiles and provided comparable nutritional value. However, less than half (n = 46) of the 98 vegetables listed by the USDA were were consumed >5 times by children and adolescents in the 2003-4 National Health and Nutrition Examination Survey database. For the more frequently consumed vegetables, potatoes and beans were the lowest-cost sources of potassium and fiber. These new metrics of affordable nutrition can help food service and health professionals identify those vegetable subgroups in the school lunch that provide the best nutritional value per penny.

  7. Food sources of energy and nutrients among adults in the US: NHANES 2003–2006.

    PubMed

    O'Neil, Carol E; Keast, Debra R; Fulgoni, Victor L; Nicklas, Theresa A

    2012-12-19

    Identification of current food sources of energy and nutrients among US adults is needed to help with public health efforts to implement feasible and appropriate dietary recommendations. To determine the food sources of energy and 26 nutrients consumed by US adults the 2003-2006 National Health and Nutrition Examination Survey (NHANES) 24-h recall (Day 1) dietary intake data from a nationally representative sample of adults 19+ years of age (y) (n = 9490) were analyzed. An updated USDA Dietary Source Nutrient Database was developed for NHANES 2003-2006 using current food composition databases. Food grouping included ingredients from disaggregated mixtures. Mean energy and nutrient intakes from food sources were sample-weighted. Percentages of total dietary intake contributed from food sources were ranked. The highest ranked sources of energy and nutrients among adults more than 19 years old were: energy - yeast bread/rolls (7.2%) and cake/cookies/quick bread/pastry/pie (7.2%); protein-poultry (14.4%) and beef (14.0%); total fat - other fats and oils (9.8%); saturated fatty acids - cheese (16.5%) and beef (9.1%); carbohydrate - soft drinks/soda (11.4%) and yeast breads/rolls (10.9%); dietary fiber - yeast breads/rolls (10.9%) and fruit (10.2%); calcium - milk (22.5%) and cheese (21.6%); vitamin D - milk (45.1%) and fish/shellfish (14.4%); and potassium - milk (9.6%) and coffee/tea/other non-alcoholic beverages (8.4%). Knowledge of primary food sources of energy and nutrients can help health professionals design effective strategies to reduce excess energy consumed by US adults and increase the nutrient adequacy of their diets.

  8. Food Sources of Energy and Nutrients among Adults in the US: NHANES 2003–2006

    PubMed Central

    O’Neil, Carol E.; Keast, Debra R.; Fulgoni, Victor L.; Nicklas, Theresa A.

    2012-01-01

    Identification of current food sources of energy and nutrients among US adults is needed to help with public health efforts to implement feasible and appropriate dietary recommendations. To determine the food sources of energy and 26 nutrients consumed by US adults the 2003–2006 National Health and Nutrition Examination Survey (NHANES) 24-h recall (Day 1) dietary intake data from a nationally representative sample of adults 19+ years of age (y) (n = 9490) were analyzed. An updated USDA Dietary Source Nutrient Database was developed for NHANES 2003–2006 using current food composition databases. Food grouping included ingredients from disaggregated mixtures. Mean energy and nutrient intakes from food sources were sample-weighted. Percentages of total dietary intake contributed from food sources were ranked. The highest ranked sources of energy and nutrients among adults more than 19 years old were: energy—yeast bread/rolls (7.2%) and cake/cookies/quick bread/pastry/pie (7.2%); protein—poultry (14.4%) and beef (14.0%); total fat—other fats and oils (9.8%); saturated fatty acids—cheese (16.5%) and beef (9.1%); carbohydrate—soft drinks/soda (11.4%) and yeast breads/rolls (10.9%); dietary fiber—yeast breads/rolls (10.9%) and fruit (10.2%); calcium—milk (22.5%) and cheese (21.6%); vitamin D—milk (45.1%) and fish/shellfish (14.4%); and potassium—milk (9.6%) and coffee/tea/other non-alcoholic beverages (8.4%). Knowledge of primary food sources of energy and nutrients can help health professionals design effective strategies to reduce excess energy consumed by US adults and increase the nutrient adequacy of their diets. PMID:23363999

  9. Using Stable Isotopes to Assess Connectivity: the Importance ...

    EPA Pesticide Factsheets

    Estuaries located at the interface of terrestrial and oceanic ecosystems receive nutrients from both ecosystems. Stable isotopes of primary producers and consumers are often used as an indicator of nutrient sources. We assembled natural abundance nitrogen stable isotope (δ15N) data for dissolved inorganic nitrate, green macroalgae, seagrass (Zostera marina) and mussels in the nearshore and in estuaries along the west coast of North America to assess the relative importance of terrestrial and oceanic nutrient sources in these systems. We found a latitudinal gradient in nearshore δ15N of nitrate of -0.2 ‰ per degree latitude from Mexico to British Columbia with more depleted isotope ratio to the north. Primary producers (green macroalgae and Zostera marina) located in the nearshore and the marine dominated portion of Pacific Coast estuaries exhibited a similar latitudinal gradient in δ15N of -0.3 ‰ per degree latitude. This latitudinal gradient is similar to δ15N observed for intertidal mussels (Mytilus californianus), which are known to reflect the isotope ratio of the phytoplankton they feed on. The consistent latitudinal gradient for multiple primary producers and a consumer, and the agreement with the gradient in nearshore δ15N of nitrate, suggests that it is a result of oceanic source waters. On the watershed side, there is a gradient in the δ15N of nitrate with southern California systems receiving nitrate with a δ15N-NO3 of about +12 ‰,

  10. CADDIS Volume 2. Sources, Stressors and Responses: Nutrients - Simple Conceptual Diagram

    EPA Pesticide Factsheets

    Introduction to the nutrients module, when to list nutrients as a candidate cause, ways to measure nutrients, simple and detailed conceptual diagrams for nutrients, nutrients module references and literature reviews.

  11. Food and nutrient availability in New Zealand: an analysis of supermarket sales data.

    PubMed

    Hamilton, Sally; Mhurchu, Cliona Ni; Priest, Patricia

    2007-12-01

    To examine food and nutrient availability in New Zealand using supermarket sales data in conjunction with a brand-specific supermarket food composition database (SFD). The SFD was developed by selecting the top-selling supermarket food products and linking them to food composition data from a variety of sources, before merging with individualised sales data. Supermarket food and nutrient data were then compared with data from national nutrition and household budget/economic surveys. A supermarket in Wellington, New Zealand. Eight hundred and eighty-two customers (73% female; mean age 38 years) who shopped regularly at the participating supermarket store and for whom electronic sales data were available for the period February 2004-January 2005. Top-selling supermarket food products included full-fat milk, white bread, sugary soft drinks and butter. Key food sources of macronutrients were similar between the supermarket sales database and national nutrition surveys. For example, bread was the major source of energy and contributed 12-13% of energy in all three data sources. Proportional expenditure on fruit, vegetables, meat, poultry, fish, farm products and oils, and cereal products recorded in the Household Economic Survey and supermarket sales data were within 2% of each other. Electronic supermarket sales data can be used to evaluate a number of important aspects of food and nutrient availability. Many of our findings were broadly comparable with national nutrition and food expenditure survey data, and supermarket sales have the advantage of being an objective, convenient, up-to-date and cost-effective measure of household food purchases.

  12. Modeling pathways of riverine nitrogen and phosphorus in the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Radtke, H.; Neumann, T.; Voss, M.; Fennel, W.

    2012-09-01

    A better understanding of the fate of nutrients entering the Baltic Sea ecosystem is an important issue with implications for environmental management. There are two sources of nitrogen and phosphorus: riverine input and atmospheric deposition. In the case of nitrogen, the fixation of dinitrogen by diazotrophic bacteria represents a third source. From an analysis of stable nitrogen isotope ratios it was suggested that most of the riverine nitrogen is sequestered in the coastal rim, specifically along the southern Baltic Sea coast with its coarse sediments, whereas nitrogen from fixation dominates the central basins. However, pathways of nutrients and timescales between the input of the nutrients and their arrival in different basins are difficult to obtain from direct measurements. To elucidate this problem, we use a source attribution technique in a three-dimensional ecosystem model, ERGOM, to track nutrients originating from various rivers. An “age” variable is attributed to the marked elements to indicate their propagation speeds and residence times. In this paper, we specifically investigate the spreading of nitrogen and phosphorus from the riverine discharges of the Oder, Vistula, Neman and Daugava. We demonstrate which regions they are transported to and for how long they remain in the ecosystem. The model results show good agreement with source estimations from observed δ15N values in sediments. The model results suggest that 95% of nitrogen is lost by denitrification in sediments, after an average time of 1.4 years for riverine nitrogen. The residence time of riverine phosphorus is much longer and exceeds our simulated period of 35 years.

  13. Using Nd and Sr isotopes to trace dust and volcanic inputs to soils on French Guadeloupe Island

    NASA Astrophysics Data System (ADS)

    Guo, J.; Pereyra, Y.; Ma, L.; Gaillardet, J.; Sak, P. B.; Bouchez, J.

    2017-12-01

    Soil is at the central part of the Critical Zone for its important roles in sustaining ecosystems and agriculture. At French Guadeloupe, a tropical humid volcanic island, previous studies have shown that the mineral nutrient elements such as K, Na, Ca, and Mg are highly depleted in the surface soil. And mineral nutrients introduced by dusts are an important mineral nutrient source for vegetation growth in this area. It is important to understand and quantify the sources of the mineral dust added to surface soils. Nd isotope ratios, due to their distinct signatures between two unique end-members in soils for this area: the young volcanic areas like Guadeloupe and the dust source region from the old continental shields like Sahara Desert, can be a robust tracer to understand this critical process. Nevertheless, Sr isotope ratios can trace the inputs of marine aerosols. Here we present a new Nd isotope study on Guadeloupe soil depth profiles, combined with previous Sr isotope data, to fingerprint the sources of dust and volcanic inputs into soils. Soil samples from three surface profiles (0 - 1000cm deep) at different locations of the Guadeloupe Island were systematically analyzed. The results show distinct depth variations for Nd isotope signature along profiles. For all profiles, deep soils are relatively consisted with bedrock value (ɛNd: 5.05). But in surface soils (0-600cm), unlike Sr isotope ratios that are significantly modified by marine aerosol input, Nd isotope ratios show similar decrease (to ɛNd:-10) and frequent fluctuations toward the surface, suggesting dust is the dominant source of Nd in these soils. This conclusion is further supported by REE and other trace element data. Thus, with a simplified two end-member model, Sahara dust contributes the Nd percentages in soils varying from 10.7% at the deepest profiles to 69.5% on surface, showing a significant amount of Nd on the surface soil came from dust source. The deep soil profiles are also characterized by the presence of Nd isotope spikes with negative values, suggesting dust signatures at depth. Such a feature could be related to the presence of a paleo-soil surface at the spike depth that was buried by later volcanic eruption. Both Nd and Sr isotopes hence show dust and volcanic inputs are important factors for soil developments on French Guadeloupe Island.

  14. Major food sources of calories, added sugars, and saturated fat and their contribution to essential nutrient intakes in the U.S. diet: data from the National Health and Nutrition Examination Survey (2003-2006).

    PubMed

    Huth, Peter J; Fulgoni, Victor L; Keast, Debra R; Park, Keigan; Auestad, Nancy

    2013-08-08

    The risk of chronic disease cannot be predicted simply by the content of a single nutrient in a food or food group in the diet. The contribution of food sources of calories, added sugars and saturated fat (SFA) to intakes of dietary fiber and micronutrients of public health importance is also relevant to understanding the overall dietary impact of these foods. Identify the top food sources of calories, added sugars and SFA in the U.S. diet and quantify their contribution to fiber and micronutrient intakes. Single 24-hour dietary recalls (Day 1) collected from participants ≥2 years (n = 16,822) of the What We Eat in America, National Health and Nutrition Examination Survey (WWEIA/NHANES 2003-2006) were analyzed. All analyses included sample weights to account for the survey design. Calorie and nutrient intakes from foods included contributions from disaggregated food mixtures and tabulated by rank order. No one food category contributes more than 7.2% of calories to the overall U.S. diet, but half of the top 10 contribute 10% or more of total dietary fiber and micronutrients. Three of the top 10 sources of calories and SFA (beef, milk and cheese) contribute 46.3% of the calcium, 49.5% of the vitamin D, 42.3% of the vitamin B12 as well as other essential nutrients to the American diet. On the other hand, foods categorized as desserts, snacks, or beverages, contribute 13.6% of total calories, 83% of added sugar intake, and provide little or no nutritional value. Including food components of disaggregated recipes more accurately estimated the contribution of foods like beef, milk or cheese to overall nutrient intake compared to "as consumed" food categorizations. Some food sources of calories, added sugars and SFA make major contributions to American dietary fiber and micronutrient intakes. Dietary modifications targeting reductions in calories, added sugar, or SFA need to take these key micronutrient sources into account so as not to have the unintended consequence of lowering overall dietary quality.

  15. Mineral stimulation of subsurface microorganisms: release of limiting nutrients from silicates

    USGS Publications Warehouse

    Roger, Jennifer Roberts; Bennett, Philip C.

    2004-01-01

    Microorganisms play an important role in the weathering of silicate minerals in many subsurface environments, but an unanswered question is whether the mineral plays an important role in the microbial ecology. Silicate minerals often contain nutrients necessary for microbial growth, but whether the microbial community benefits from their release during weathering is unclear. In this study, we used field and laboratory approaches to investigate microbial interactions with minerals and glasses containing beneficial nutrients and metals. Field experiments from a petroleum-contaminated aquifer, where silicate weathering is substantially accelerated in the contaminated zone, revealed that phosphorus (P) and iron (Fe)-bearing silicate glasses were preferentially colonized and weathered, while glasses without these elements were typically barren of colonizing microorganisms, corroborating previous studies using feldspars. In laboratory studies, we investigated microbial weathering of silicates and the release of nutrients using a model ligand-promoted pathway. A metal-chelating organic ligand 3,4 dihydroxybenzoic acid (3,4 DHBA) was used as a source of chelated ferric iron, and a carbon source, to investigate mineral weathering rate and microbial metabolism.In the investigated aquifer, we hypothesize that microbes produce organic ligands to chelate metals, particularly Fe, for metabolic processes and also form stable complexes with Al and occasionally with Si. Further, the concentration of these ligands is apparently sufficient near an attached microorganism to destroy the silicate framework while releasing the nutrient of interest. In microcosms containing silicates and glasses with trace phosphate mineral inclusions, microbial biomass increased, indicating that the microbial community can use silicate-bound phosphate inclusions. The addition of a native microbial consortium to microcosms containing silicates or glasses with iron oxide inclusions correlated to accelerated weathering and release of Si into solution as well as the accelerated degradation of the model substrate 3,4 DHBA. We propose that silicate-bound P and Fe inclusions are bioavailable, and microorganisms may use organic ligands to dissolve the silicate matrix and access these otherwise limiting nutrients.

  16. Micro and Macroscale Drivers of Nutrient Concentrations in Urban Streams in South, Central and North America.

    PubMed

    Loiselle, Steven A; Gasparini Fernandes Cunha, Davi; Shupe, Scott; Valiente, Elsa; Rocha, Luciana; Heasley, Eleanore; Belmont, Patricia Pérez; Baruch, Avinoam

    Global metrics of land cover and land use provide a fundamental basis to examine the spatial variability of human-induced impacts on freshwater ecosystems. However, microscale processes and site specific conditions related to bank vegetation, pollution sources, adjacent land use and water uses can have important influences on ecosystem conditions, in particular in smaller tributary rivers. Compared to larger order rivers, these low-order streams and rivers are more numerous, yet often under-monitored. The present study explored the relationship of nutrient concentrations in 150 streams in 57 hydrological basins in South, Central and North America (Buenos Aires, Curitiba, São Paulo, Rio de Janeiro, Mexico City and Vancouver) with macroscale information available from global datasets and microscale data acquired by trained citizen scientists. Average sub-basin phosphate (P-PO4) concentrations were found to be well correlated with sub-basin attributes on both macro and microscales, while the relationships between sub-basin attributes and nitrate (N-NO3) concentrations were limited. A phosphate threshold for eutrophic conditions (>0.1 mg L-1 P-PO4) was exceeded in basins where microscale point source discharge points (eg. residential, industrial, urban/road) were identified in more than 86% of stream reaches monitored by citizen scientists. The presence of bankside vegetation covaried (rho = -0.53) with lower phosphate concentrations in the ecosystems studied. Macroscale information on nutrient loading allowed for a strong separation between basins with and without eutrophic conditions. Most importantly, the combination of macroscale and microscale information acquired increased our ability to explain sub-basin variability of P-PO4 concentrations. The identification of microscale point sources and bank vegetation conditions by citizen scientists provided important information that local authorities could use to improve their management of lower order river ecosystems.

  17. Micro and Macroscale Drivers of Nutrient Concentrations in Urban Streams in South, Central and North America

    PubMed Central

    Loiselle, Steven A.; Gasparini Fernandes Cunha, Davi; Shupe, Scott; Valiente, Elsa; Rocha, Luciana; Heasley, Eleanore; Belmont, Patricia Pérez; Baruch, Avinoam

    2016-01-01

    Global metrics of land cover and land use provide a fundamental basis to examine the spatial variability of human-induced impacts on freshwater ecosystems. However, microscale processes and site specific conditions related to bank vegetation, pollution sources, adjacent land use and water uses can have important influences on ecosystem conditions, in particular in smaller tributary rivers. Compared to larger order rivers, these low-order streams and rivers are more numerous, yet often under-monitored. The present study explored the relationship of nutrient concentrations in 150 streams in 57 hydrological basins in South, Central and North America (Buenos Aires, Curitiba, São Paulo, Rio de Janeiro, Mexico City and Vancouver) with macroscale information available from global datasets and microscale data acquired by trained citizen scientists. Average sub-basin phosphate (P-PO4) concentrations were found to be well correlated with sub-basin attributes on both macro and microscales, while the relationships between sub-basin attributes and nitrate (N-NO3) concentrations were limited. A phosphate threshold for eutrophic conditions (>0.1 mg L-1 P-PO4) was exceeded in basins where microscale point source discharge points (eg. residential, industrial, urban/road) were identified in more than 86% of stream reaches monitored by citizen scientists. The presence of bankside vegetation covaried (rho = –0.53) with lower phosphate concentrations in the ecosystems studied. Macroscale information on nutrient loading allowed for a strong separation between basins with and without eutrophic conditions. Most importantly, the combination of macroscale and microscale information acquired increased our ability to explain sub-basin variability of P-PO4 concentrations. The identification of microscale point sources and bank vegetation conditions by citizen scientists provided important information that local authorities could use to improve their management of lower order river ecosystems. PMID:27662192

  18. Defense Coastal/Estuarine Research Program (DCERP) Strategic Plan

    DTIC Science & Technology

    2007-09-01

    atmospheric deposition. The source apportionment of nutrients from atmospheric deposition (especially nitrogen) to estuarine waters derived from direct...migrating wildlife, and nutrient release from soil weathering, atmospheric deposition represents the only source of new nutrients into the... apportionment to properly assess the contributions of off-site and on-site emission sources to regional levels of PM2.5. In preparing this DCERP Strategic

  19. CADDIS Volume 2. Sources, Stressors and Responses: Nutrients - Detailed Conceptual Diagram (N)

    EPA Pesticide Factsheets

    Introduction to the nutrients module, when to list nutrients as a candidate cause, ways to measure nutrients, simple and detailed conceptual diagrams for nutrients, nutrients module references and literature reviews.

  20. CADDIS Volume 2. Sources, Stressors and Responses: Nutrients - Detailed Conceptual Diagram (P)

    EPA Pesticide Factsheets

    Introduction to the nutrients module, when to list nutrients as a candidate cause, ways to measure nutrients, simple and detailed conceptual diagrams for nutrients, nutrients module references and literature reviews.

  1. Partial validation of the Dutch model for emission and transport of nutrients (STONE).

    PubMed

    Overbeek, G B; Tiktak, A; Beusen, A H; van Puijenbroek, P J

    2001-11-17

    The Netherlands has to cope with large losses of N and P to groundwater and surface water. Agriculture is the dominant source of these nutrients, particularly with reference to nutrient excretion due to intensive animal husbandry in combination with fertilizer use. The Dutch government has recently launched a stricter eutrophication abatement policy to comply with the EC nitrate directive. The Dutch consensus model for N and P emission to groundwater and surface water (STONE) has been developed to evaluate the environmental benefits of abatement plans. Due to the possibly severe socioeconomic consequences of eutrophication abatement plans, it is of utmost importance that the model is thoroughly validated. Because STONE is applied on a nationwide scale, the model validation has also been carried out on this scale. For this purpose the model outputs were compared with lumped results from monitoring networks in the upper groundwater and in surface waters. About 13,000 recent point source observations of nitrate in the upper groundwater were available, along with several hundreds of observations showing N and P in local surface water systems. Comparison of observations from the different spatial scales available showed the issue of scale to be important. Scale issues will be addressed in the next stages of the validation study.

  2. Food sources of energy and nutrients among children in the United States: National Health and Nutrition Examination Survey 2003–2006.

    PubMed

    Keast, Debra R; Fulgoni, Victor L; Nicklas, Theresa A; O'Neil, Carol E

    2013-01-22

    Recent detailed analyses of data on dietary sources of energy and nutrients in US children are lacking. The objective of this study was to identify food sources of energy and 28 nutrients for children in the United States. Analyses of food sources were conducted using a single 24-h recall collected from children 2 to 18 years old (n = 7332) in the 2003-2006 National Health and Nutrition Examination Survey. Sources of nutrients contained in foods were determined using nutrient composition databases. Food grouping included ingredients from disaggregated mixtures. Mean energy and nutrient intakes from the total diet and from each food group were adjusted for the sample design using appropriate weights. Percentages of the total dietary intake that food sources contributed were tabulated by rank order. The two top ranked food/food group sources of energy and nutrients were: energy - milk (7% of energy) and cake/cookies/quick bread/pastry/pie (7%); protein - milk (13.2%) and poultry (12.8%); total carbohydrate - soft drinks/soda (10.5%) and yeast bread/rolls (9.1%); total sugars - soft drinks/soda (19.2%) and yeast breads and rolls (12.7%); added sugars - soft drinks/soda (29.7%) and candy/sugar/sugary foods (18.6%); dietary fiber - fruit (10.4%) and yeast bread/rolls (10.3%); total fat - cheese (9.3%) and crackers/popcorn/pretzels/chips (8.4%); saturated fatty acids - cheese (16.3%) and milk (13.3%); cholesterol - eggs (24.2%) and poultry (13.2%); vitamin D - milk (60.4%) and milk drinks (8.3%); calcium - milk (33.2%) and cheese (19.4%); potassium - milk (18.8%) and fruit juice (8.0%); and sodium - salt (18.5%) and yeast bread and rolls (8.4%). Results suggest that many foods/food groupings consumed by children were energy dense, nutrient poor. Awareness of dietary sources of energy and nutrients can help health professionals design effective strategies to reduce energy consumption and increase the nutrient density of children's diets.

  3. Food Sources of Energy and Nutrients among Children in the United States: National Health and Nutrition Examination Survey 2003–2006

    PubMed Central

    Keast, Debra R.; Fulgoni III, Victor L.; Nicklas, Theresa A.; O’Neil, Carol E.

    2013-01-01

    Background: Recent detailed analyses of data on dietary sources of energy and nutrients in US children are lacking. The objective of this study was to identify food sources of energy and 28 nutrients for children in the United States. Methods: Analyses of food sources were conducted using a single 24-h recall collected from children 2 to 18 years old (n = 7332) in the 2003–2006 National Health and Nutrition Examination Survey. Sources of nutrients contained in foods were determined using nutrient composition databases. Food grouping included ingredients from disaggregated mixtures. Mean energy and nutrient intakes from the total diet and from each food group were adjusted for the sample design using appropriate weights. Percentages of the total dietary intake that food sources contributed were tabulated by rank order. Results: The two top ranked food/food group sources of energy and nutrients were: energy—milk (7% of energy) and cake/cookies/quick bread/pastry/pie (7%); protein—milk (13.2%) and poultry (12.8%); total carbohydrate—soft drinks/soda (10.5%) and yeast bread/rolls (9.1%); total sugars—soft drinks/soda (19.2%) and yeast breads and rolls (12.7%); added sugars—soft drinks/soda (29.7%) and candy/sugar/sugary foods (18.6%); dietary fiber—fruit (10.4%) and yeast bread/rolls (10.3%); total fat—cheese (9.3%) and crackers/popcorn/pretzels/chips (8.4%); saturated fatty acids—cheese (16.3%) and milk (13.3%); cholesterol—eggs (24.2%) and poultry (13.2%); vitamin D—milk (60.4%) and milk drinks (8.3%); calcium—milk (33.2%) and cheese (19.4%); potassium—milk (18.8%) and fruit juice (8.0%); and sodium—salt (18.5%) and yeast bread and rolls (8.4%). Conclusions: Results suggest that many foods/food groupings consumed by children were energy dense, nutrient poor. Awareness of dietary sources of energy and nutrients can help health professionals design effective strategies to reduce energy consumption and increase the nutrient density of children’s diets. PMID:23340318

  4. Host-derived viral transporter protein for nitrogen uptake in infected marine phytoplankton

    PubMed Central

    Chambouvet, Aurélie; Milner, David S.; Attah, Victoria; Terrado, Ramón; Lovejoy, Connie; Moreau, Hervé; Derelle, Évelyne; Richards, Thomas A.

    2017-01-01

    Phytoplankton community structure is shaped by both bottom–up factors, such as nutrient availability, and top–down processes, such as predation. Here we show that marine viruses can blur these distinctions, being able to amend how host cells acquire nutrients from their environment while also predating and lysing their algal hosts. Viral genomes often encode genes derived from their host. These genes may allow the virus to manipulate host metabolism to improve viral fitness. We identify in the genome of a phytoplankton virus, which infects the small green alga Ostreococcus tauri, a host-derived ammonium transporter. This gene is transcribed during infection and when expressed in yeast mutants the viral protein is located to the plasma membrane and rescues growth when cultured with ammonium as the sole nitrogen source. We also show that viral infection alters the nature of nitrogen compound uptake of host cells, by both increasing substrate affinity and allowing the host to access diverse nitrogen sources. This is important because the availability of nitrogen often limits phytoplankton growth. Collectively, these data show that a virus can acquire genes encoding nutrient transporters from a host genome and that expression of the viral gene can alter the nutrient uptake behavior of host cells. These results have implications for understanding how viruses manipulate the physiology and ecology of phytoplankton, influence marine nutrient cycles, and act as vectors for horizontal gene transfer. PMID:28827361

  5. Forage dynamics in mixed tall fescue-bermudagras pastures of the Southern Piedmont USA

    USDA-ARS?s Scientific Manuscript database

    Botanical composition and forage productivity of mixed cool- and warm-season perennial pastures are important determinants of agricultural sustainability that can be influenced by management. We evaluated the factorial combination of three sources of nutrient application (inorganic only, organic + ...

  6. Mississippi and Atchafalaya River Influence on Sediment Porewater Chemistry

    EPA Science Inventory

    The Louisiana continental shelf (LCS) receives 380 km3 of freshwater per year from the Mississippi and Atchafalaya Rivers. Sources and transport of nutrients and organic matter (OM) delivered to the LCS may result in spatial variation in sediment biogeochemistry important for un...

  7. Evaluating health benefits of various fruits

    USDA-ARS?s Scientific Manuscript database

    Fruits are an essential part of our daily diets. Most fruits are naturally low in fat, sodium and calories. Fruits are important sources of many nutrients, including potassium, dietary fiber, vitamin C, folic acid and they do not contain cholesterol. Some fruits have laxative effects, prevent uri...

  8. Distribution of submerged aquatic vegetation in the St. Louis River estuary: Maps and models (Presentation)

    EPA Science Inventory

    SAV provides the biophysical basis for several ecosystem services in Great Lakes estuaries including rearing and adult habitat for commercially and recreationally important fishes, foraging habit for waterfowl, and nutrient retention. Understanding sources of variation in SAV in ...

  9. Production of microbial secondary metabolites: regulation by the carbon source.

    PubMed

    Ruiz, Beatriz; Chávez, Adán; Forero, Angela; García-Huante, Yolanda; Romero, Alba; Sánchez, Mauricio; Rocha, Diana; Sánchez, Brenda; Rodríguez-Sanoja, Romina; Sánchez, Sergio; Langley, Elizabeth

    2010-05-01

    Microbial secondary metabolites are low molecular mass products, not essential for growth of the producing cultures, but very important for human health. They include antibiotics, antitumor agents, cholesterol-lowering drugs, and others. They have unusual structures and are usually formed during the late growth phase of the producing microorganisms. Its synthesis can be influenced greatly by manipulating the type and concentration of the nutrients formulating the culture media. Among these nutrients, the effect of the carbon sources has been the subject of continuous studies for both, industry and research groups. Different mechanisms have been described in bacteria and fungi to explain the negative carbon catabolite effects on secondary metabolite production. Their knowledge and manipulation have been useful either for setting fermentation conditions or for strain improvement. During the last years, important advances have been reported on these mechanisms at the biochemical and molecular levels. The aim of the present review is to describe these advances, giving special emphasis to those reported for the genus Streptomyces.

  10. Understanding shallow groundwater contamination in Bwaise slum, Kampala, Uganda

    NASA Astrophysics Data System (ADS)

    Nyenje, P. M.; Havik, J.; Foppen, J. W.; Uhlenbrook, S.

    2012-04-01

    Groundwater in unsewered urban areas is heavily contaminated by onsite sanitation activities and is believed to be an important source of nutrients ex-filtrating into streams and thus contributing to eutrophication of Lakes in urban areas. Currently the fate of nutrients and especially phosphorus leached into groundwater in such areas is not well known. In this study, we undertook an extensive investigation of groundwater in Bwaise slum, Kampala Uganda to understand the distribution and fate of sanitation-related nutrients N and P that are leached into groundwater. Transects of monitoring wells were installed in Bwaise slum and downstream of the slum. From these wells, water levels were measured and water quality analyses done to understand the distribution and composition of the nutrients, how they evolve downstream and the possible subsurface processes affecting their fate during transport. These findings are necessary to evaluate the risk of eutrophication posed by unsewered areas in urban cities and to design/implement sanitation systems that will effectively reduce the enrichment of these nutrients in groundwater. Key words: fate, groundwater, nutrients, processes, slums

  11. ULK1, Mammalian Target of Rapamycin, and Mitochondria: Linking Nutrient Availability and Autophagy

    PubMed Central

    2011-01-01

    Abstract A fundamental function of autophagy conserved from yeast to mammals is mobilization of macromolecules during times of limited nutrient availability, permitting organisms to survive under starvation conditions. In yeast, autophagy is initiated following nitrogen or carbon deprivation, and autophagy mutants die rapidly under these conditions. Similarly, in mammals, autophagy is upregulated in most organs following initiation of starvation, and is critical for survival in the perinatal period following abrupt termination of the placental nutrient supply. The nutrient-sensing kinase, mammalian target of rapamycin, coordinates cellular proliferation and growth with nutrient availability, at least in part by regulating protein synthesis and autophagy-mediated degradation. This review focusses on the regulation of autophagy by Tor, a mammalian target of rapamycin, and Ulk1, a mammalian homolog of Atg1, in response to changes in nutrient availability. Given the importance of mitochondria in maintaining bioenergetic homestasis, and potentially as a source of membrane for autophagosomes during starvation, possible roles for mitochondria in this process are also discussed. Antioxid. Redox Signal. 14, 1953–1958. PMID:21235397

  12. Atmospheric redistribution of reactive nitrogen and phosphorus by wildfires and implications for global carbon cycling

    NASA Astrophysics Data System (ADS)

    Randerson, J. T.; Xu, L.; Wiggins, E. B.; Chen, Y.; Riley, W. J.; Mekonnen, Z. A.; Pellegrini, A.; Mahowald, N. M.

    2017-12-01

    Fires are an important process regulating the redistribution of nutrients within terrestrial ecosystems. Frequently burning ecosystems such as savannas are a net source of N and P to the atmosphere each year, with atmospheric transport and dry and wet deposition increasing nutrient availability in downwind ecosystems and over the open ocean. Transport of N and P aerosols from savanna fires within the Hadley circulation contributes to nutrient deposition over tropical forests, yielding an important cross-biome nutrient transfer. Pyrodenitrification of reactive N increases with fire temperature and modified combustion efficiency, generating a global net biospheric loss of approximately 14 Tg N per year. Here we analyze atmospheric N and P redistribution using the Global Fire Emissions Database version 4s and the Accelerated Climate Modeling for Energy earth system model. We synthesize literature estimates of N and P concentrations in fire-emitted aerosols and ecosystem mass balance measurements to help constrain model estimates of these biosphere-atmosphere fluxes. In our analysis, we estimate the fraction of terrestrial net primary production (NPP) that is sustained by fire-emitted P and reactive N from upwind ecosystems. We then evaluate how recent global declines in burned area in savanna and grassland ecosystems may be changing nutrient availability in downwind ecosystems.

  13. Reducing fertilizer-nitrogen losses from rowcrop landscapes: Insights and implications from a spatially explicit watershed model

    USGS Publications Warehouse

    McLellan, Eileen; Schilling, Keith; Robertson, Dale M.

    2015-01-01

    We present conceptual and quantitative models that predict changes in fertilizer-derived nitrogen delivery from rowcrop landscapes caused by agricultural conservation efforts implemented to reduce nutrient inputs and transport and increase nutrient retention in the landscape. To evaluate the relative importance of changes in the sources, transport, and sinks of fertilizer-derived nitrogen across a region, we use the spatially explicit SPAtially Referenced Regression On Watershed attributes watershed model to map the distribution, at the small watershed scale within the Upper Mississippi-Ohio River Basin (UMORB), of: (1) fertilizer inputs; (2) nutrient attenuation during delivery of those inputs to the UMORB outlet; and (3) nitrogen export from the UMORB outlet. Comparing these spatial distributions suggests that the amount of fertilizer input and degree of nutrient attenuation are both important in determining the extent of nitrogen export. From a management perspective, this means that agricultural conservation efforts to reduce nitrogen export would benefit by: (1) expanding their focus to include activities that restore and enhance nutrient processing in these highly altered landscapes; and (2) targeting specific types of best management practices to watersheds where they will be most valuable. Doing so successfully may result in a shift in current approaches to conservation planning, outreach, and funding.

  14. Analysis of field-scale spatial correlations and variations of soil nutrients using geostatistics.

    PubMed

    Liu, Ruimin; Xu, Fei; Yu, Wenwen; Shi, Jianhan; Zhang, Peipei; Shen, Zhenyao

    2016-02-01

    Spatial correlations and soil nutrient variations are important for soil nutrient management. They help to reduce the negative impacts of agricultural nonpoint source pollution. Based on the sampled available nitrogen (AN), available phosphorus (AP), and available potassium (AK), soil nutrient data from 2010, the spatial correlation, was analyzed, and the probabilities of the nutrient's abundance or deficiency were discussed. This paper presents a statistical approach to spatial analysis, the spatial correlation analysis (SCA), which was originally developed for describing heterogeneity in the presence of correlated variation and based on ordinary kriging (OK) results. Indicator kriging (IK) was used to assess the susceptibility of excess of soil nutrients based on crop needs. The kriged results showed there was a distinct spatial variability in the concentration of all three soil nutrients. High concentrations of these three soil nutrients were found near Anzhou. As the distance from the center of town increased, the concentration of the soil nutrients gradually decreased. Spatially, the relationship between AN and AP was negative, and the relationship between AP and AK was not clear. The IK results showed that there were few areas with a risk of AN and AP overabundance. However, almost the entire study region was at risk of AK overabundance. Based on the soil nutrient distribution results, it is clear that the spatial variability of the soil nutrients differed throughout the study region. This spatial soil nutrient variability might be caused by different fertilizer types and different fertilizing practices.

  15. Biogeochemistry of natural ponds in agricultural landscape: Lessons learned from modeling a kettle hole in Northeast Germany.

    PubMed

    Onandia, Gabriela; Lischeid, Gunnar; Kalettka, Thomas; Kleeberg, Andreas; Omari, Mohamed; Premke, Katrin; Arhonditsis, George B

    2018-09-01

    Kettle holes, small shallow ponds of glacial origin, represent hotspots for biodiversity and biogeochemical cycling. They abound in the young moraine landscape of Northeast Germany, potentially modulating element fluxes in a region where intensive agriculture prevails. The Rittgarten kettle hole, with semi-permanent hydroperiod and a surrounding reed belt, can be considered as a representative case study for such systems. Aiming to provide insights into the biogeochemical processes driving nutrient and primary producer dynamics in the Rittgarten kettle hole, we developed a mechanistic model that simulates the carbon, nitrogen, phosphorus and oxygen, phytoplankton, and free-floating macrophyte biomass dynamics. After model calibration and sensitivity analysis, our modeling exercise quantified the simulated nutrient fluxes associated with all the major biogeochemical processes considered by the model. Seasonality of nutrient concentrations, magnitude of primary productivity rates, and biogeochemical process characterization in the pond were reasonably reproduced by the model from July 2013 to July 2014. Our results suggest that the establishment of a phytoplankton community well-adapted to low light availability, together with the differential use of N and P from free-floating macrophytes and phytoplankton can explain their coexistence in kettle holes. Sediment nutrient release along with decomposition of decaying submerged macrophyte are essential drivers of internal nutrient cycling in kettle holes. Our results also suggest that the Rittgarten kettle hole act as a net source of CO 2 to the atmosphere on an annual scale, which offers a testable hypothesis for kettle holes with structural and functional similarities. We conclude by discussing the need to shed light on the effects of water level fluctuations on nutrient dynamics and biological succession patterns, as well as the relative importance of external sources and internal nutrient recycling mechanisms. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Nutrient Patterns and Their Food Sources in Older Persons from France and Quebec: Dietary and Lifestyle Characteristics.

    PubMed

    Allès, Benjamin; Samieri, Cécilia; Lorrain, Simon; Jutand, Marthe-Aline; Carmichael, Pierre-Hugues; Shatenstein, Bryna; Gaudreau, Pierrette; Payette, Hélène; Laurin, Danielle; Barberger-Gateau, Pascale

    2016-04-19

    Dietary and nutrient patterns have been linked to health outcomes related to aging. Food intake is influenced by environmental and genetic factors. The aim of the present study was to compare nutrient patterns across two elderly populations sharing a common ancestral cultural background, but living in different environments. The diet quality, lifestyle and socioeconomic characteristics of participants from the Three-City Study (3C, France, n = 1712) and the Québec Longitudinal Study on Nutrition and Successful Aging (NuAge, Quebec, Canada, n = 1596) were analyzed. Nutrient patterns and their food sources were identified in the two samples using principal component analysis. Diet quality was compared across sample-specific patterns by describing weekly food intake and associations with the Canadian Healthy Eating Index (C-HEI). Three nutrient patterns were retained in each study: a healthy, a Western and a more traditional pattern. These patterns accounted for 50.1% and 53.5% of the total variance in 3C and NuAge, respectively. Higher education and non-physical occupations over lifetime were associated with healthy patterns in both studies. Other characteristics such as living alone, having a body mass index lower than 25 and being an ex-smoker were associated with the healthy pattern in NuAge. No association between these characteristics and the nutrient patterns was noted in 3C. The healthy and Western patterns from each sample also showed an inverse association with C-HEI. The two healthy patterns showed important similarities: adequate food variety, consumption of healthy foods and associations with common sociodemographic factors. This work highlights that nutrient patterns derived using a posteriori methods may be useful to compare the nutritional quality of the diet of distinct populations.

  17. Parasite infection alters nitrogen cycling at the ecosystem scale.

    PubMed

    Mischler, John; Johnson, Pieter T J; McKenzie, Valerie J; Townsend, Alan R

    2016-05-01

    Despite growing evidence that parasites often alter nutrient flows through their hosts and can comprise a substantial amount of biomass in many systems, whether endemic parasites influence ecosystem nutrient cycling, and which nutrient pathways may be important, remains conjectural. A framework to evaluate how endemic parasites alter nutrient cycling across varied ecosystems requires an understanding of the following: (i) parasite effects on host nutrient excretion; (ii) ecosystem nutrient limitation; (iii) effects of parasite abundance, host density, host functional role and host excretion rate on nutrient flows; and (iv) how this infection-induced nutrient flux compares to other pools and fluxes. Pathogens that significantly increase the availability of a limiting nutrient within an ecosystem should produce a measurable ecosystem-scale response. Here, we combined field-derived estimates of trematode parasite infections in aquatic snails with measurements of snail excretion and tissue stoichiometry to show that parasites are capable of altering nutrient excretion in their intermediate host snails (dominant grazers). We integrated laboratory measurements of host nitrogen excretion with field-based estimates of infection in an ecosystem model and compared these fluxes to other pools and fluxes of nitrogen as measured in the field. Eighteen nitrogen-limited ponds were examined to determine whether infection had a measurable effect on ecosystem-scale nitrogen cycling. Because of their low nitrogen content and high demand for host carbon, parasites accelerated the rate at which infected hosts excreted nitrogen to the water column in a dose-response manner, thereby shifting nutrient stoichiometry and availability at the ecosystem scale. Infection-enhanced fluxes of dissolved inorganic nitrogen were similar to other commonly important environmental sources of bioavailable nitrogen to the system. Additional field measurements within nitrogen-limited ponds indicated that nitrogen flux rates from the periphyton to the water column in high-snail density/high-infection ponds were up to 50% higher than low-infection ponds. By altering host nutrient assimilation/excretion flexibility, parasites could play a widespread, but currently unrecognized, role in ecosystem nutrient cycling, especially when parasite and host abundances are high and hosts play a central role in ecosystem nutrient cycling. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.

  18. Digital data used to relate nutrient inputs to water quality in the Chesapeake Bay watershed, version 3.0

    USGS Publications Warehouse

    Brakebill, John W.; Preston, Stephen D.

    2004-01-01

    Chesapeake Bay restoration efforts are focused on improving water quality, living resources, and ecological habitats by 2010. One aspect of the water-quality restoration is the refinement of strategies designed to implement nutrient-reduction practices within the Bay watershed. These strategies are being refined and implemented by resource managers of the Chesapeake Bay Program (CBP), a partnership comprised of various Federal, State, and local agencies that includes jurisdictions within Delaware, Maryland, New York, Pennsylvania, Virginia, West Virginia, and the District of Columbia. The U.S. Geological Survey (USGS), an active member of the CBP, provides necessary water-quality information for these Chesapeake Bay nutrient-reduction strategy revisions and evaluations. The formulation and revision of effective nutrient-reduction strategies requires detailed scientific information and an analytical understanding of the sources, transport, and delivery of nutrients to the Chesapeake Bay. The USGS is supporting these strategies by providing scientific information to resource managers that can help them evaluate and understand these processes. One statistical model available to resource managers is a collection of SPAtially Referenced Regressions On Watershed (SPARROW) attributes, which uses a nonlinear regression approach to spatially relate nutrient sources and watershed characteristics to nutrient loads of streams throughout the Chesapeake Bay watershed. Developed by the USGS, information generated by SPARROW can help resource managers determine the geographical distribution and relative contribution of nutrient sources and the factors that affect their transport to the Bay. Nutrient source information representing the late 1990s time period was obtained from several agencies and used to create and compile digital spatial datasets of total nitrogen and total phosphorus contributions that served as input sources to the SPARROW models. These data represent atmospheric deposition, point-source locations, land-use, land-cover, and agricultural sources such as commercial fertilizer and manure applications. Watershed-characteristics datasets representing factors that affect the transport of nutrients also were compiled from previous applications of the SPARROW models in the Chesapeake Bay watershed. Datasets include average-annual precipitation and temperature, slope, soil permeability, and hydrogeomorphic regions. Nutrient-input and watershed-characteristics datasets representing conditions during the late 1990s were merged with a connected network of stream reaches and watersheds to provide the spatial detail required by SPARROW. Stream-nutrient load estimates for 125 sampling sites (87 for total nitrogen and 103 for total phosphorus) served as the dependent variables for the regressions, and were used to calibrate models of total nitrogen and total phosphorus depicting late 1990s conditions in the Chesapeake Bay watershed. Spatial data generated for the models can be used to identify the location of nutrient sources, while the models' nutrient estimates can be used to evaluate stream-nutrient load contributed locally by each source evaluated, the amount of local load generated that is transported to the Bay, and the factors that affect the nutrient transport. Applying the SPARROW methodology to late 1990s information completes three time periods (late 1980s, early 1990s, and late 1990s) of viable data that resource managers can use to evaluate the water-quality conditions within the Bay watershed in order to refine restoration goals and nutrient-reduction strategies.

  19. Stocker performance and production in mixed tall fescue-bermudagrass pastures of the Southern Piedmont USA

    USDA-ARS?s Scientific Manuscript database

    Stocker performance and production from mixed cool- and warm-season perennial pastures are important determinants of agricultural sustainability that can be influenced by management. We evaluated the factorial combination of three sources of nutrient application (inorganic only, organic + inorganic...

  20. College Students' Nutrition Information Networks.

    ERIC Educational Resources Information Center

    Hertzler, Ann A.; Frary, Robert B.

    1995-01-01

    Use of nutrition information networks (consumer market, media, authority, family, and high school classes), food choices, fat practices, and nutrient intake were rated by 179 male and 300 female undergraduates. Family was an important influence; media and consumer market influenced fat practices, especially for women. No source was used very…

  1. Gourds: Bitter, Bottle, Wax, Snake, Sponge and Ridge

    USDA-ARS?s Scientific Manuscript database

    Minor cucurbits include bitter gourd, bottle gourd, wax gourd, snake gourd, and sponge and ridge gourd, which are significant dietary sources of nutrients such as vitamin A and C, iron and calcium. These cucurbits are cultivated and marketed by smallholder farmers and remain important components of ...

  2. Optimization of Xylanase Production from Penicillium sp.WX-Z1 by a Two-Step Statistical Strategy: Plackett-Burman and Box-Behnken Experimental Design

    PubMed Central

    Cui, Fengjie; Zhao, Liming

    2012-01-01

    The objective of the study was to optimize the nutrition sources in a culture medium for the production of xylanase from Penicillium sp.WX-Z1 using Plackett-Burman design and Box-Behnken design. The Plackett-Burman multifactorial design was first employed to screen the important nutrient sources in the medium for xylanase production by Penicillium sp.WX-Z1 and subsequent use of the response surface methodology (RSM) was further optimized for xylanase production by Box-Behnken design. The important nutrient sources in the culture medium, identified by the initial screening method of Placket-Burman, were wheat bran, yeast extract, NaNO3, MgSO4, and CaCl2. The optimal amounts (in g/L) for maximum production of xylanase were: wheat bran, 32.8; yeast extract, 1.02; NaNO3, 12.71; MgSO4, 0.96; and CaCl2, 1.04. Using this statistical experimental design, the xylanase production under optimal condition reached 46.50 U/mL and an increase in xylanase activity of 1.34-fold was obtained compared with the original medium for fermentation carried out in a 30-L bioreactor. PMID:22949884

  3. Optimization of Xylanase production from Penicillium sp.WX-Z1 by a two-step statistical strategy: Plackett-Burman and Box-Behnken experimental design.

    PubMed

    Cui, Fengjie; Zhao, Liming

    2012-01-01

    The objective of the study was to optimize the nutrition sources in a culture medium for the production of xylanase from Penicillium sp.WX-Z1 using Plackett-Burman design and Box-Behnken design. The Plackett-Burman multifactorial design was first employed to screen the important nutrient sources in the medium for xylanase production by Penicillium sp.WX-Z1 and subsequent use of the response surface methodology (RSM) was further optimized for xylanase production by Box-Behnken design. The important nutrient sources in the culture medium, identified by the initial screening method of Placket-Burman, were wheat bran, yeast extract, NaNO(3), MgSO(4), and CaCl(2). The optimal amounts (in g/L) for maximum production of xylanase were: wheat bran, 32.8; yeast extract, 1.02; NaNO(3), 12.71; MgSO(4), 0.96; and CaCl(2), 1.04. Using this statistical experimental design, the xylanase production under optimal condition reached 46.50 U/mL and an increase in xylanase activity of 1.34-fold was obtained compared with the original medium for fermentation carried out in a 30-L bioreactor.

  4. Coastal nutrification and coral health at Porto Seguro reefs, Brazil

    NASA Astrophysics Data System (ADS)

    Costa, O.; Attrill, M.; Nimmo, M.

    2003-04-01

    Human activities have substantially increased the natural flux of nutrients to coastal systems worldwide. In Brazilian reefs, all major stresses (sedimentation, overfishing, tourism-related activities and nutrification) are human induced. To assess nutrification levels in Brazilian coastal reefs, measurements of the distribution patterns of nutrients and chlorophyll concentrations were conducted in three nearshore and offshore reefs with distinct nutrient inputs along the south coast of Bahia State. Seawater and porewater samples were analysed for soluble reactive phosphorus, total oxidised nitrogen and reactive silica. Benthic surveys were performed at all sites to investigate the relationships between benthic community composition and nutrient and chlorophyll concentrations. Sampling was undertaken in dry and rainy seasons. Results of both seawater and porewater nutrient measurements revealed the occurrence of consistent spatial and temporal patterns. An inshore-offshore gradient reflects the occurrence of land-based point sources, with significant amount of nutrients being delivered by human activities on the coast (untreated sewage and groundwater seepage). Another spatial gradient is related to distance from a localized source of pollution (an urban settlement without sewerage treatment) with two nearshore reefs presenting distinct nutrient and chlorophyll concentrations. Seasonal variations suggest that submarine groundwater discharge (SGD) is the primary source of nutrients for the coastal reefs during rainy season. The data also suggests that the SGD effect is not restricted to nearshore reefs, and may be an important factor controlling the differences between landward and seaward sides on the offshore reef. Benthic community assessment revealed that turf alga is the dominant group in all studied reefs and that zoanthids are the organisms most adapted to take advantage of nutrient increase in coastal areas. At nearshore reefs, there was a negative correlation between zoanthids and algal abundance and a positive correlation with the amount of available space for settlement. On the offshore reef, correlation of algal cover with both zoanthids and available space were negative, suggesting that hard substrate may be the primary limiting factor for algal settlement and growth in the nearshore reefs. Highly variable physical disturbances (like wave energy and low tide exposure) between landward and seaward reef sides appear to be the factors controlling algal distribution in the offshore reef. Highly spatial variability in coral cover ultimately reflects the patchy distribution of stony corals over the reefs.

  5. ENERGY AND NUTRIENT EXTRACTION FROM ONSITE WASTEWATER - PHASE I

    EPA Science Inventory

    Onsite wastewater systems are a significant source of nutrient loading to the environment and there is a demand for technologies that remove nutrients at the source. Most desired are passive, low-...

  6. ROLE OF OCEANIC AND RIVERINE SOURCES IN NUTRIENT AND PHYTOPLANKTON DYNAMICS IN YAQUINA BAY, OREGON

    EPA Science Inventory

    There is evidence that coastal ecosystems are experiencing environmental problems due to excess nutrients. The numerous sources, forms, and pathways of nutrients make it difficult to determine the effect of increases in anthropogenic loading. This is particularly evident in Pac...

  7. Estimations of daily energy and nutrient availability based on nationally representative household budget survey data. The Data Food Networking (DAFNE) project.

    PubMed

    Naska, A; Oikonomou, E; Trichopoulou, A; Wagner, K; Gedrich, K

    2007-12-01

    To describe a cost-efficient method for estimating energy and nutrient availability using household budget survey (HBS) data. Four different approaches were tested and the results were compared with published nutrient intake data. The selected method was exemplarily applied in German and Greek data. Germany, 1998; Greece, 1998/99. Nationally representative HBSs. Comparisons showed that HBS-based estimates were generally close to intake data when results were presented as contributions to daily energy intake. Daily energy and protein availabilities were similar in Germany and Greece. Differences were observed in the availability of carbohydrates (German households reported a 5 percentage points higher contribution to daily energy availability) and lipids (Greek households recorded higher values for total fat, but lower values for saturated fat). Meat, added lipids and potatoes were important energy suppliers in Germany, whereas in Greece the first three energy suppliers were added lipids, cereals and meat. In both countries, meat, cereals, milk and cheese were important protein sources and cereals, potatoes, fruits and nuts contributed more than 60% of the daily carbohydrate availability. Added lipids were the major source of fat in the daily diet of both countries, but their contribution amounted to less than one-third in Germany and two-thirds in Greece. National HBS data can be used for monitoring and comparing nutrient availability among representative population samples of different countries. The ground is set for the development of a harmonised food composition table to be applied to HBS food data at international level.

  8. Instream Attenuation of Nitrogen and Phosphorus in Non-Point Source Dominated Streams: Hydrologic and Biogeochemical Controls

    NASA Astrophysics Data System (ADS)

    Bray, E. N.; Chen, X.; Keller, A. A.

    2010-12-01

    Non-point source inputs of total nitrogen (TN) and total phosphorus (TP) in rivers are the leading causes of water quality degradation in the United States (Turner and Rabalais, 2003; Broussard and Turner, 2009). Yet it remains a challenge to adequately quantify the relative role and influence of physical hydrological processes versus biogeochemical processes on the attenuation of TN and TP for individual river reaches. A watershed-scale study of instream dynamics and attenuation of TN and TP in northeastern U.S. headwater streams demonstrates that physical and hydrological processes exert greater control over nutrient removal than biogeochemical processes. To explore these interactions under various attenuation scenarios, we developed the watershed-scale model (WARMF) for 97 catchments to simulate watershed processes, hydrology, and diffuse source loads of nutrients. We simulated a hypothetical nutrient release at a rate of 1 kg/d of TN (50% as ammonium and 50% as nitrate) and TP (100% as phosphate) to predict response lengths of downstream catchments. Resulting attenuation factors are presented as the change in mean load at a given location, normalized to the change in the catchment in which the load is applied. Results indicate that for most catchments, the TN and TP load increase is attenuated from the stream within a few tens of kilometers. Fifty percent attenuation occurs across length scales ranging from a few hundreds of meters to kilometers if the load is introduced in the headwaters, indicating the most rapid nutrient removal occurs in the smallest headwater streams but generally decreases with distance downstream. There are some differences in the attenuation factors for TN and TP, although the pattern of attenuation is the same. Sensitivity analyses highlight five hydrological parameters of paramount importance to concentrations of N and P, namely precipitation, evaporation coefficients (magnitude and skewness), soil layer thickness, soil saturated moisture and soil hydraulic conductivity. These model parameters have a significant effect on the concentrations of nutrients, with TN exhibiting greater sensitivity. Further, attenuation results suggest that stream depth, flow regime, and density of agriculture in small headwater streams are potentially important controls to nutrient uptake and removal; i.e. during periods of low flow, dilution is reduced, attenuation length increases, and removal processes may be dominated by settling as opposed to biogeochemistry. Instream attenuation and model results can be used to assess 1) the scale and nature of best management practices which must be adopted to result in nutrient reductions, 2) the downstream distance at which load reductions will be effective, and 3) the hydrological characteristics of the river network which exert considerable influence on attenuation lengths and nutrient removal.

  9. Sources of nitrogen and phosphorus emissions to Irish rivers: estimates from the Source Load Apportionment Model (SLAM)

    NASA Astrophysics Data System (ADS)

    Mockler, Eva; Deakin, Jenny; Archbold, Marie; Daly, Donal; Bruen, Michael

    2017-04-01

    More than half of the river and lake water bodies in Europe are at less than good ecological status or potential, and diffuse pollution from agriculture remains a major, but not the only, cause of this poor performance. In Ireland, it is evident that agri-environmental policy and land management practices have, in many areas, reduced nutrient emissions to water, mitigating the potential impact on water quality. However, additional measures may be required in order to further decouple the relationship between agricultural productivity and emissions to water, which is of vital importance given the on-going agricultural intensification in Ireland. Catchment management can be greatly supported by modelling, which can reduce the resources required to analyse large amounts of information and can enable investigations and measures to be targeted. The Source Load Apportionment Model (SLAM) framework was developed to support catchment management in Ireland by characterising the contributions from various sources of phosphorus (P) and nitrogen (N) emissions to water. The SLAM integrates multiple national spatial datasets relating to nutrient emissions to surface water, including land use and physical characteristics of the sub-catchments to predict emissions from point (wastewater, industry discharges and septic tank systems) and diffuse sources (agriculture, forestry, peatlands, etc.). The annual nutrient emissions predicted by the SLAM were assessed against nutrient monitoring data for 16 major river catchments covering 50% of the area of Ireland. At national scale, results indicate that the total average annual emissions to surface water in Ireland are over 2,700 t yr-1 of P and 80,000 t yr-1 of N. The SLAM results include the proportional contributions from individual sources at a range of scales from sub-catchment to national, and show that the main sources of P are from wastewater and agriculture, with wide variations across the country related to local anthropogenic pressures and the hydrogeological setting. Agriculture is the main source of N emissions to water across all regions of Ireland. The SLAM results have been incorporated into an Integrated Catchment Management process and used in conjunction with monitoring data and local knowledge during the characterisation of all Irish water bodies by the Environmental Protection Agency. This demonstrates the successful integration of research into catchment management to inform the identification of (i) the sources of nutrients at regional and local scales and (ii) the potential significant pressures and appropriate mitigation measures.

  10. Factors affecting nutrient trends in major rivers of the Chesapeake Bay Watershed

    USGS Publications Warehouse

    Sprague, Lori A.; Langland, M.J.; Yochum, S.E.; Edwards, R.E.; Blomquist, J.D.; Phillips, S.W.; Shenk, G.W.; Preston, S.D.

    2000-01-01

    Trends in nutrient loads and flow-adjusted concentrations in the major rivers entering Chesapeake Bay were computed on the basis of water-quality data collected between 1985 and 1998 at 29 monitoring stations in the Susquehanna, Potomac, James, Rappahannock, York, Patuxent, and Choptank River Basins. Two computer models?the Chesapeake Bay Watershed Model (WSM) and the U.S. Geological Survey?s 'Spatially Referenced Regressions on Watershed attributes' (SPARROW) Model?were used to help explain the major factors affecting the trends. Results from WSM simulations provided information on temporal changes in contributions from major nutrient sources, and results from SPARROW model simulations provided spatial detail on the distribution of nutrient yields in these basins. Additional data on nutrient sources, basin characteristics, implementation of management practices, and ground-water inputs to surface water were analyzed to help explain the trends. The major factors affecting the trends were changes in nutrient sources and natural variations in streamflow. The dominant source of nitrogen and phosphorus from 1985 to 1998 in six of the seven tributary basins to Chesapeake Bay was determined to be agriculture. Because of the predominance of agricultural inputs, changes in agricultural nutrient sources such as manure and fertilizer, combined with decreases in agricultural acreage and implementation of best management practices (BMPs), had the greatest impact on the trends in flow-adjusted nutrient concentrations. Urban acreage and population, however, were noted to be increasing throughout the Chesapeake Bay Watershed, and as a result, delivered loads of nutrients from urban areas increased during the study period. Overall, agricultural nutrient management, in combination with load decreases from point sources due to facility upgrades and the phosphate detergent ban, led to downward trends in flow-adjusted nutrient concentrations atmany of the monitoring stations in the watershed. The loads of nutrients, however, were not reduced significantly at most of the monitoring stations. This is due primarily to higher streamflow in the latter years of the monitoring period, which led to higher loading in those years.Results of this study indicate a need for more detailed information on BMP effectiveness under a full range of hydrologic conditions and in different areas of the watershed; an internally consistent fertilizer data set; greater consideration of the effects of watershed processes on nutrient transport; a refinement of current modeling efforts; and an expansion of the non-tidal monitoring network in the Chesapeake Bay Watershed.

  11. Carbon footprint of urban source separation for nutrient recovery.

    PubMed

    Kjerstadius, H; Bernstad Saraiva, A; Spångberg, J; Davidsson, Å

    2017-07-15

    Source separation systems for the management of domestic wastewater and food waste has been suggested as more sustainable sanitation systems for urban areas. The present study used an attributional life cycle assessment to investigate the carbon footprint and potential for nutrient recovery of two sanitation systems for a hypothetical urban area in Southern Sweden. The systems represented a typical Swedish conventional system and a possible source separation system with increased nutrient recovery. The assessment included the management chain from household collection, transport, treatment and final return of nutrients to agriculture or disposal of the residuals. The results for carbon footprint and nutrient recovery (phosphorus and nitrogen) concluded that the source separation system could increase nutrient recovery (0.30-0.38 kg P capita -1 year -1 and 3.10-3.28 kg N capita -1 year -1 ), while decreasing the carbon footprint (-24 to -58 kg CO 2 -eq. capita -1 year -1 ), compared to the conventional system. The nutrient recovery was increased by the use of struvite precipitation and ammonium stripping at the wastewater treatment plant. The carbon footprint decreased, mainly due to the increased biogas production, increased replacement of mineral fertilizer in agriculture and less emissions of nitrous oxide from wastewater treatment. In conclusion, the study showed that source separation systems could potentially be used to increase nutrient recovery from urban areas, while decreasing the climate impact. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Sources of Nutrients to Nearshore Areas of a Eutrophic Estuary: Implications for Nutrient-Enhanced Acidification in Puget Sound

    NASA Astrophysics Data System (ADS)

    Pacella, S. R.

    2016-02-01

    Ocean acidification has recently been highlighted as a major stressor for coastal organisms. Further work is needed to assess the role of anthropogenic nutrient additions in eutrophied systems on local biological processes, and how this interacts with CO2 emission-driven acidification. This study sought to distinguish changes in pH caused by natural versus anthropogenically affected processes. We quantified the variability in water column pH attributable to primary production and respiration fueled by anthropogenically derived nitrogen in a shallow nearshore area. Two study sites were located in shallow subtidal areas of the Snohomish River estuary, a eutrophic system located in central Puget Sound, Washington. These sites were chosen due to the presence of heavy agricultural activity, urbanized areas with associated waste water treatment, as well as influence from deep, high CO2 marine waters transported through the Strait of Juan de Fuca and upwelled into the area during spring and summer. Data was collected from July-December 2015 utilizing continuous moorings and discrete water column sampling. Analysis of stable isotopes, δ15N, δ18O-NO3, δ15N-NH4, was used to estimate the relative contributions of anthropogenic versus upwelled marine nitrogen sources. Continuous monitoring of pH, dissolved oxygen, temperature, and salinity was conducted at both study sites to link changes in nutrient source and availability with changes in pH. We predicted that isotope data would indicate greater contributions of nitrogen from agriculture and wastewater rather than upwelling in the shallow, nearshore study sites. This study seeks to distinguish the relative magnitude of pH change stimulated by anthropogenic versus natural sources of nitrogen to inform public policy decisions in critically important nearshore ecosystems.

  13. Chemical fractionation of lake sediments to determine the effects of land-use change on nutrient loading

    NASA Astrophysics Data System (ADS)

    Heathwaite, A. L.

    1994-07-01

    Lake studies allow contemporary sediment and nutrient dynamics to be placed in a historical context in order that trends and rates of change in catchment inputs may be calculated. Here, a synthesis of the temporal information contained in catchment and lake sediment records is attempted. A chemical fractionation technique is used to isolate the different sediment sources contained in the lake core, and 210Pb dates provide an accurate record of changes in lake sediment sources over the past 100 years. The extent to which land-use records, collated from agricultural census returns, and process-based studies of sediment and nutrient export from different catchment land uses can be used to explain the trends observed in the lake sediments is examined. Sediment influx to the study lake has increased from less than 2 mm year -1 prior to the Second World War to over 10 mm year -1 at present. The source of the sediment is largely unaltered and unweathered allochthonous material eroded from the catchment. Land-use records suggest that the intensification of agriculture, characterized by a shift towards arable land immediately postwar, followed by an increase in the area of temporary grass in the 1960s, may be the cause of accelerated catchment erosion; both land-use changes would have increased the area of ploughed land in the catchment. An increase in the number of cattle and sheep in the catchment from around 2000 and 6000, respectively, in the 1940s, to a peak of nearly 7000 cattle and over 15 000 sheep in the 1980s, provides a further source of sediment and nutrients. Livestock are grazed on permanent grassland which is commonly located on steep hillslopes and in riparian zones where saturation-excess surface runoff may be an important hydrological pathway. Rainfall simulation experiments show that surface runoff from heavily grazed grassland has a high suspended sediment, ammonium-nitrogen and particulate phosphorus load. The combined effect of the long-term increase in the organic loading from livestock and the inorganic N and P load from fertilizers, may be the source of nutrient enrichment in the lake.

  14. Deciphering the Principles of Bacterial Nitrogen Dietary Preferences: a Strategy for Nutrient Containment.

    PubMed

    Wang, Jilong; Yan, Dalai; Dixon, Ray; Wang, Yi-Ping

    2016-07-19

    A fundamental question in microbial physiology concerns why organisms prefer certain nutrients to others. For example, among different nitrogen sources, ammonium is the preferred nitrogen source, supporting fast growth, whereas alternative nitrogen sources, such as certain amino acids, are considered to be poor nitrogen sources, supporting much slower exponential growth. However, the physiological/regulatory logic behind such nitrogen dietary choices remains elusive. In this study, by engineering Escherichia coli, we switched the dietary preferences toward amino acids, with growth rates equivalent to that of the wild-type strain grown on ammonia. However, when the engineered strain was cultured together with wild-type E. coli, this growth advantage was diminished as a consequence of ammonium leakage from the transport-and-catabolism (TC)-enhanced (TCE) cells, which are preferentially utilized by wild-type bacteria. Our results reveal that the nitrogen regulatory (Ntr) system fine tunes the expression of amino acid transport and catabolism components to match the flux through the ammonia assimilation pathway such that essential nutrients are retained, but, as a consequence, the fast growth rate on amino acids is sacrificed. Bacteria exhibit different growth rates under various nutrient conditions. These environmentally related behaviors reflect the coordination between metabolism and the underlying regulatory networks. In the present study, we investigated the intertwined nitrogen metabolic and nitrogen regulatory systems to understand the growth differences between rich and poor nitrogen sources. Although maximal growth rate is considered to be evolutionarily advantageous for bacteria (as remarked by François Jacob, who said that the "dream" of every cell is to become two cells), we showed that negative-feedback loops in the regulatory system inhibit growth rates on amino acids. We demonstrated that in the absence of regulatory feedback, amino acids are capable of supporting fast growth rates, but this results in ammonia leaking out from cells as "waste," benefiting the growth of competitors. These findings provide important insights into the regulatory logic that controls metabolic flux and ensures nutrient containment but consequently sacrifices growth rate. Copyright © 2016 Wang et al.

  15. Cell wall chemical characteristics of whole-crop cereal silages harvested at three maturity stages

    USDA-ARS?s Scientific Manuscript database

    Ensiling is a convenient method of preserving nutritional quality of harvested forage materials. Whole-crop cereal silages (WCCS) are an important nutrient source for ruminant animals, especially in cooler climates such as those found in Scandinavian countries. Animal performance varies with the typ...

  16. The Utilization of Edge-of-Field Monitoring of Agricultural Runoff in Addressing Nonpoint Source Pollution

    USDA-ARS?s Scientific Manuscript database

    While basin-scale studies and modeling are important tools in relating land uses to water quality concerns, edge-of-field monitoring (EOFM) provides the necessary resolution to spatially target, design, and evaluate in-field conservation practices for reducing nutrient and sediment loading from agri...

  17. Fish and fish oil in health and disease prevention

    USDA-ARS?s Scientific Manuscript database

    Fish is an important dietary component due to its contribution of valuable nutrients. In addition to the high quality protein and micronutrients provided, fish is the primary source of long-chain omega-3 fatty acids which are found in oils of ‘fatty’ cold water fish. Biomedical evidence supports th...

  18. Dietary Nutrients, Additives, and Fish Health

    USDA-ARS?s Scientific Manuscript database

    Aquaculture will play a major role in global food security by 2050. Production of fish will need to double by 2050 to meet global demand for this important source of protein. Proper fish nutrition is essential for the overall health and well-being of fish. Sustainable and profitable production is...

  19. A free new dietary supplement label database for dietitians

    USDA-ARS?s Scientific Manuscript database

    Over half of US adults consume dietary supplements (DS). Some of the approximately 50,000 products on the market provide significant sources of nutrients or other bioactive constituents. It is important for dietitians to have information about them. In keeping with their missions, the Office of Di...

  20. Effects of nutrient load on microbial activities within a seagrass-dominated ecosystem: Implications of changes in seagrass blue carbon.

    PubMed

    Liu, Songlin; Jiang, Zhijian; Wu, Yunchao; Zhang, Jingping; Arbi, Iman; Ye, Feng; Huang, Xiaoping; Macreadie, Peter Ian

    2017-04-15

    Nutrient loading is a leading cause of global seagrass decline, triggering shifts from seagrass- to macroalgal-dominance. Within seagrass meadows of Xincun Bay (South China Sea), we found that nutrient loading (due to fish farming) increased sediment microbial biomass and extracellular enzyme activity associated with carbon cycling (polyphenol oxidase, invertase and cellulase), with a corresponding decrease in percent sediment organic carbon (SOC), suggesting that nutrients primed microorganism and stimulated SOC remineralization. Surpisingly, however, the relative contribution of seagrass-derived carbon to bacteria (δ 13 C bacteria ) increased with nutrient loading, despite popular theory being that microbes switch to consuming macroalgae which are assumed to provide a more labile carbon source. Organic carbon sources of fungi were unaffected by nutrient loading. Overall, this study suggests that nutrient loading changes the relative contribution of seagrass and algal sources to SOC pools, boosting sediment microbial biomass and extracellular enzyme activity, thereby possibly changing seagrass blue carbon. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. SPARROW models used to understand nutrient sources in the Mississippi/Atchafalaya River Basin

    USGS Publications Warehouse

    Robertson, Dale M.; Saad, David A.

    2013-01-01

    Nitrogen (N) and phosphorus (P) loading from the Mississippi/Atchafalaya River Basin (MARB) has been linked to hypoxia in the Gulf of Mexico. To describe where and from what sources those loads originate, SPAtially Referenced Regression On Watershed attributes (SPARROW) models were constructed for the MARB using geospatial datasets for 2002, including inputs from wastewater treatment plants (WWTPs), and calibration sites throughout the MARB. Previous studies found that highest N and P yields were from the north-central part of the MARB (Corn Belt). Based on the MARB SPARROW models, highest N yields were still from the Corn Belt but centered over Iowa and Indiana, and highest P yields were widely distributed throughout the center of the MARB. Similar to that found in other studies, agricultural inputs were found to be the largest N and P sources throughout most of the MARB: farm fertilizers were the largest N source, whereas farm fertilizers, manure, and urban inputs were dominant P sources. The MARB models enable individual N and P sources to be defined at scales ranging from SPARROW catchments (∼50 km2) to the entire area of the MARB. Inputs of P from WWTPs and urban areas were more important than found in most other studies. Information from this study will help to reduce nutrient loading from the MARB by providing managers with a description of where each of the sources of N and P are most important, thus providing a basis for prioritizing management actions and ultimately reducing the extent of Gulf hypoxia.

  2. 9 CFR 317.354 - Nutrient content claims for “good source,” “high,” and “more.”

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Nutrient content claims for âgood... Nutrition Labeling § 317.354 Nutrient content claims for “good source,” “high,” and “more.” (a) General... nutrient content claims in § 317.313; and (3) The product for which the claim is made is labeled in...

  3. 9 CFR 381.454 - Nutrient content claims for “good source,” “high,” and “more.”

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Nutrient content claims for âgood... Nutrition Labeling § 381.454 Nutrient content claims for “good source,” “high,” and “more.” (a) General... nutrient content claims in § 381.413; and (3) The product for which the claim is made is labeled in...

  4. Two tales of legacy effects on stream nutrient behaviour

    NASA Astrophysics Data System (ADS)

    Bieroza, M.; Heathwaite, A. L.

    2017-12-01

    Intensive agriculture has led to large-scale land use conversion, shortening of flow pathways and increased loads of nutrients in streams. This legacy results in gradual build-up of nutrients in agricultural catchments: in soil for phosphorus (biogeochemical legacy) and in the unsaturated zone for nitrate (hydrologic legacy), controlling the water quality in the long-term. Here we investigate these effects on phosphorus and nitrate stream concentrations using high-frequency (10-5 - 100 Hz) sampling with in situ wet-chemistry analysers and optical sensors. Based on our 5 year study, we observe that storm flow responses differ for both nutrients: phosphorus shows rapid increases (up to 3 orders of magnitude) in concentrations with stream flow, whereas nitrate shows both dilution and concentration effects with increasing flow. However, the range of nitrate concentrations change is narrow (up to 2 times the mean) and reflects chemostatic behaviour. We link these nutrient responses with their dominant sources and flow pathways in the catchment. Nitrate from agriculture (with the peak loading in 1983) is stored in the unsaturated zone of the Penrith Sandstone, which can reach up to 70 m depth. Thus nitrate legacy is related to a hydrologic time lag with long travel times in the unsaturated zone. Phosphorus is mainly sorbed to soil particles, therefore it is mobilised rapidly during rainfall events (biogeochemical legacy). The phosphorus stream response will however depend on how well connected is the stream to the catchment sources (driven by soil moisture distribution) and biogeochemical activity (driven by temperature), leading to both chemostatic and non-chemostatic responses, alternating on a storm-to-storm and seasonal basis. Our results also show that transient within-channel storage is playing an important role in delivery of phosphorus, providing an additional time lag component. These results show, that consistent agricultural legacy in the catchment (high historical loads of nutrients) has different effects on nutrients stream responses, depending on their dominant sources and pathways. Both types of time lags, biogeochemical for phosphorus and hydrologic for nitrate, need to be taken into account when designing and evaluating the effectiveness of the agri-environmental mitigation measures.

  5. Modeling of land use and reservoir effects on nonpoint source pollution in a highly agricultural basin

    USGS Publications Warehouse

    Wu, Yiping; Liu, Shu-Guang

    2012-01-01

    Nonpoint source (NPS) pollution is tightly linked to land use activities that determine the sources and magnitudes of pollutant loadings to stream water. The pollutant loads may also be alleviated within reservoirs because of the physical interception resulting from changed hydrological regimes and other biochemical processes. It is important but challenging to assess the NPS pollution processes with human effects due to the measurement limitations. The objective of this study is to evaluate the effects of human activities such as land uses and reservoir operation on the hydrological and NPS pollution processes in a highly agricultural area-the Iowa River Basin-using the Soil and Water Assessment Tool (SWAT). The evaluation of model performance at multiple sites reveals that SWAT can consistently simulate the daily streamflow, and monthly/annual sediment and nutrient loads (nitrate nitrogen and mineral phosphorus) in the basin. We also used the calibrated model to estimate the trap efficiencies of sediment (~78%) and nutrients (~30%) in the Coralville Reservoir within the basin. These non-negligible effects emphasize the significance of incorporating the sediment and nutrient removal mechanisms into watershed system studies. The spatial quantification of the critical NPS pollution loads can help identify hot-spot areas that are likely locations for the best management practices.

  6. Modeling of land use and reservoir effects on nonpoint source pollution in a highly agricultural basin.

    PubMed

    Wu, Yiping; Liu, Shuguang

    2012-09-01

    Nonpoint source (NPS) pollution is tightly linked to land use activities that determine the sources and magnitudes of pollutant loadings to stream water. The pollutant loads may also be alleviated within reservoirs because of the physical interception resulting from changed hydrological regimes and other biochemical processes. It is important but challenging to assess the NPS pollution processes with human effects due to the measurement limitations. The objective of this study is to evaluate the effects of human activities such as land uses and reservoir operation on the hydrological and NPS pollution processes in a highly agricultural area-the Iowa River Basin-using the Soil and Water Assessment Tool (SWAT). The evaluation of model performance at multiple sites reveals that SWAT can consistently simulate the daily streamflow, and monthly/annual sediment and nutrient loads (nitrate nitrogen and mineral phosphorus) in the basin. We also used the calibrated model to estimate the trap efficiencies of sediment (∼78%) and nutrients (∼30%) in the Coralville Reservoir within the basin. These non-negligible effects emphasize the significance of incorporating the sediment and nutrient removal mechanisms into watershed system studies. The spatial quantification of the critical NPS pollution loads can help identify hot-spot areas that are likely locations for the best management practices.

  7. Inverse-model estimates of the ocean's coupled phosphorus, silicon, and iron cycles

    NASA Astrophysics Data System (ADS)

    Pasquier, Benoît; Holzer, Mark

    2017-09-01

    The ocean's nutrient cycles are important for the carbon balance of the climate system and for shaping the ocean's distribution of dissolved elements. Dissolved iron (dFe) is a key limiting micronutrient, but iron scavenging is observationally poorly constrained, leading to large uncertainties in the external sources of iron and hence in the state of the marine iron cycle. Here we build a steady-state model of the ocean's coupled phosphorus, silicon, and iron cycles embedded in a data-assimilated steady-state global ocean circulation. The model includes the redissolution of scavenged iron, parameterization of subgrid topography, and small, large, and diatom phytoplankton functional classes. Phytoplankton concentrations are implicitly represented in the parameterization of biological nutrient utilization through an equilibrium logistic model. Our formulation thus has only three coupled nutrient tracers, the three-dimensional distributions of which are found using a Newton solver. The very efficient numerics allow us to use the model in inverse mode to objectively constrain many biogeochemical parameters by minimizing the mismatch between modeled and observed nutrient and phytoplankton concentrations. Iron source and sink parameters cannot jointly be optimized because of local compensation between regeneration, recycling, and scavenging. We therefore consider a family of possible state estimates corresponding to a wide range of external iron source strengths. All state estimates have a similar mismatch with the observed nutrient concentrations and very similar large-scale dFe distributions. However, the relative contributions of aeolian, sedimentary, and hydrothermal iron to the total dFe concentration differ widely depending on the sources. Both the magnitude and pattern of the phosphorus and opal exports are well constrained, with global values of 8. 1 ± 0. 3 Tmol P yr-1 (or, in carbon units, 10. 3 ± 0. 4 Pg C yr-1) and 171. ± 3. Tmol Si yr-1. We diagnose the phosphorus and opal exports supported by aeolian, sedimentary, and hydrothermal iron. The geographic patterns of the export supported by each iron type are well constrained across the family of state estimates. Sedimentary-iron-supported export is important in shelf and large-scale upwelling regions, while hydrothermal iron contributes to export mostly in the Southern Ocean. The fraction of the global export supported by a given iron type varies systematically with its fractional contribution to the total iron source. Aeolian iron is most efficient in supporting export in the sense that its fractional contribution to export exceeds its fractional contribution to the total source. Per source-injected molecule, aeolian iron supports 3. 1 ± 0. 8 times more phosphorus export and 2. 0 ± 0. 5 times more opal export than the other iron types. Conversely, per injected molecule, sedimentary and hydrothermal iron support 2. 3 ± 0. 6 and 4. ± 2. times less phosphorus export, and 1. 9 ± 0. 5 and 2. ± 1. times less opal export than the other iron types.

  8. Nitrogen regulation of transpiration controls mass-flow acquisition of nutrients.

    PubMed

    Matimati, Ignatious; Verboom, G Anthony; Cramer, Michael D

    2014-01-01

    Transpiration may enhance mass-flow of nutrients to roots, especially in low-nutrient soils or where the root system is not extensively developed. Previous work suggested that nitrogen (N) may regulate mass-flow of nutrients. Experiments were conducted to determine whether N regulates water fluxes, and whether this regulation has a functional role in controlling the mass-flow of nutrients to roots. Phaseolus vulgaris were grown in troughs designed to create an N availability gradient by restricting roots from intercepting a slow-release N source, which was placed at one of six distances behind a 25 μm mesh from which nutrients could move by diffusion or mass-flow (termed 'mass-flow' treatment). Control plants had the N source supplied directly to their root zone so that N was available through interception, mass-flow, and diffusion (termed 'interception' treatment). 'Mass-flow' plants closest to the N source exhibited 2.9-fold higher transpiration (E), 2.6-fold higher stomatal conductance (gs), 1.2-fold higher intercellular [CO2] (Ci), and 3.4-fold lower water use efficiency than 'interception' plants, despite comparable values of photosynthetic rate (A). E, gs, and Ci first increased and then decreased with increasing distance from the N source to values even lower than those of 'interception' plants. 'Mass-flow' plants accumulated phosphorus and potassium, and had maximum concentrations at 10mm from the N source. Overall, N availability regulated transpiration-driven mass-flow of nutrients from substrate zones that were inaccessible to roots. Thus when water is available, mass-flow may partially substitute for root density in providing access to nutrients without incurring the costs of root extension, although the efficacy of mass-flow also depends on soil nutrient retention and hydraulic properties.

  9. Nitrogen regulation of transpiration controls mass-flow acquisition of nutrients

    PubMed Central

    Matimati, Ignatious

    2014-01-01

    Transpiration may enhance mass-flow of nutrients to roots, especially in low-nutrient soils or where the root system is not extensively developed. Previous work suggested that nitrogen (N) may regulate mass-flow of nutrients. Experiments were conducted to determine whether N regulates water fluxes, and whether this regulation has a functional role in controlling the mass-flow of nutrients to roots. Phaseolus vulgaris were grown in troughs designed to create an N availability gradient by restricting roots from intercepting a slow-release N source, which was placed at one of six distances behind a 25 μm mesh from which nutrients could move by diffusion or mass-flow (termed ‘mass-flow’ treatment). Control plants had the N source supplied directly to their root zone so that N was available through interception, mass-flow, and diffusion (termed ‘interception’ treatment). ‘Mass-flow’ plants closest to the N source exhibited 2.9-fold higher transpiration (E), 2.6-fold higher stomatal conductance (g s), 1.2-fold higher intercellular [CO2] (C i), and 3.4-fold lower water use efficiency than ‘interception’ plants, despite comparable values of photosynthetic rate (A). E, g s, and C i first increased and then decreased with increasing distance from the N source to values even lower than those of ‘interception’ plants. ‘Mass-flow’ plants accumulated phosphorus and potassium, and had maximum concentrations at 10mm from the N source. Overall, N availability regulated transpiration-driven mass-flow of nutrients from substrate zones that were inaccessible to roots. Thus when water is available, mass-flow may partially substitute for root density in providing access to nutrients without incurring the costs of root extension, although the efficacy of mass-flow also depends on soil nutrient retention and hydraulic properties. PMID:24231035

  10. Lake Diefenbaker: Water Quality Assessment and Modeling for Management under Environmental Change

    NASA Astrophysics Data System (ADS)

    Sereda, J.; Wheater, H. S.; Hudson, J.; Doig, L.; Liber, K.; Jones, P.; Giesy, J.; Bharadwaj, L.

    2011-12-01

    Preliminary results are presented for a comprehensive inter-disciplinary study on Lake Diefenbaker initiated by the Global Institute for Water Security to understand the physical and biogeochemical processes affecting water quality under climate change and their policy implications. Lake Diefenbaker is a large reservoir (surface area ~500km2 and Zmean ~33m) located in Southern Saskatchewan, Canada and is a critically-important water resource for Saskatchewan. It receives nearly all of its flow from the South Saskatchewan River, which flows through some of the most urbanized and intense agricultural lands of southern Alberta. As a result these waters contain high levels of nutrients [nitrogen (N) and phosphorus (P)] along with a variety of chemical contaminants characteristic of anthropogenic activity. In addition, riparian and in-lake activities provide local sources of nutrients, from domestic sewage, agriculture and fish farming. The South Saskatchewan River has been identified by the World Wildlife Fund (2009) as Canada's most threatened river in terms of environmental flow. Lake Diefenbaker has numerous large deep embayments (depth >20m) and an annual water level fluctuation of ~6m. A deep thermocline (~25m) forms infrequently. Stratification does not occur throughout the lake. Anecdotal information suggests that the frequency and severity of algal blooms are increasing; although blooms have been sporadic and localized. This localized eutrophication may be related to local stratification patterns, point source nutrient loading, and/or internal lake processes (i.e., internal nutrient loading). A paleolimnological reconstruction has begun to assess historical nutrient and contaminant loading to Lake Diefenbaker and hence the trajectory of water quality in the lake. Major point sources and diffuse sources of N and P are also under investigation. In addition, the type (N versus P) and degree of nutrient limitation of bacteria and algae are being assessed (spatially and temporally). Concentrations of nutrients are heterogeneous throughout the lake. Preliminary results indicate that the degree and type of nutrient limitation, along with the cycling of phosphorus (uptake and regeneration) by plankton assemblages varies spatially and temporally. This information will be coupled with an understanding of the physical characteristics of the lake (i.e., mixing patterns) to explain the timing and distribution of algal blooms. A model will be developed to provide a platform for water and nutrient simulations to explore lake response to scenarios of climate and land use change, and the potential effects of local and regional management interventions. The research includes a community based participatory research program, which has involved key stakeholders in research definition and experimental design and ongoing discussion of research progress, and will include participation in management recommendations.

  11. Mapping of chlorophyll a distributions in coastal zones

    NASA Technical Reports Server (NTRS)

    Johnson, R. W.

    1978-01-01

    It is pointed out that chlorophyll a is an important environmental parameter for monitoring water quality, nutrient loads, and pollution effects in coastal zones. High chlorophyll a concentrations occur in areas which have high nutrient inflows from sources such as sewage treatment plants and industrial wastes. Low chlorophyll a concentrations may be due to the addition of toxic substances from industrial wastes or other sources. Remote sensing provides an opportunity to assess distributions of water quality parameters, such as chlorophyll a. A description is presented of the chlorophyll a analysis and a quantitative mapping of the James River, Virginia. An approach considered by Johnson (1977) was used in the analysis. An application of the multiple regression analysis technique to a data set collected over the New York Bight, an environmentally different area of the coastal zone, is also discussed.

  12. Major food sources of calories, added sugars, and saturated fat and their contribution to essential nutrient intakes in the U.S. diet: data from the national health and nutrition examination survey (2003–2006)

    PubMed Central

    2013-01-01

    Background The risk of chronic disease cannot be predicted simply by the content of a single nutrient in a food or food group in the diet. The contribution of food sources of calories, added sugars and saturated fat (SFA) to intakes of dietary fiber and micronutrients of public health importance is also relevant to understanding the overall dietary impact of these foods. Objective Identify the top food sources of calories, added sugars and SFA in the U.S. diet and quantify their contribution to fiber and micronutrient intakes. Methods Single 24-hour dietary recalls (Day 1) collected from participants ≥2 years (n = 16,822) of the What We Eat in America, National Health and Nutrition Examination Survey (WWEIA/NHANES 2003–2006) were analyzed. All analyses included sample weights to account for the survey design. Calorie and nutrient intakes from foods included contributions from disaggregated food mixtures and tabulated by rank order. Results No one food category contributes more than 7.2% of calories to the overall U.S. diet, but half of the top 10 contribute 10% or more of total dietary fiber and micronutrients. Three of the top 10 sources of calories and SFA (beef, milk and cheese) contribute 46.3% of the calcium, 49.5% of the vitamin D, 42.3% of the vitamin B12 as well as other essential nutrients to the American diet. On the other hand, foods categorized as desserts, snacks, or beverages, contribute 13.6% of total calories, 83% of added sugar intake, and provide little or no nutritional value. Including food components of disaggregated recipes more accurately estimated the contribution of foods like beef, milk or cheese to overall nutrient intake compared to “as consumed” food categorizations. Conclusions Some food sources of calories, added sugars and SFA make major contributions to American dietary fiber and micronutrient intakes. Dietary modifications targeting reductions in calories, added sugar, or SFA need to take these key micronutrient sources into account so as not to have the unintended consequence of lowering overall dietary quality. PMID:23927718

  13. NONPOINT SOURCES AND WATER QUALITY TRADING

    EPA Science Inventory

    Management of nonpoint sources (NPS) of nutrients may reduce discharge levels more cost effectively than can additional controls on point sources (PS); water quality trading (WQT), where a PS buys nutrient or sediment reductions from an NPS, may be an alternative means for the PS...

  14. Influence of Acacia trees on soil nutrient levels in arid lands

    NASA Astrophysics Data System (ADS)

    De Boever, Maarten; Gabriels, Donald; Ouessar, Mohamed; Cornelis, Wim

    2014-05-01

    The potential of scattered trees as keystone structures in restoring degraded environments is gaining importance. Scattered trees have strong influence on their abiotic environment, mainly causing changes in microclimate, water budget and soil properties. They often function as 'nursing trees', facilitating the recruitment of other plants. Acacia raddiana is such a keystone species which persists on the edge of the Sahara desert. The study was conducted in a forest-steppe ecosystem in central Tunisia where several reforestation campaigns with Acacia took place. To indentify the impact of those trees on soil nutrients, changes in nutrient levels under scattered trees of three age stages were examined for the upper soil layer (0-10 cm) at five microsites with increasing distance from the trunk. In addition, changes in soil nutrient levels with depth underneath and outside the canopy were determined for the 0-30 cm soil layer. Higher concentrations of organic matter (OM) were found along the gradient from underneath to outside the canopy for large trees compared to medium and small trees, especially at microsites close to the trunk. Levels of soluble K, electrical conductivity (EC), available P, OM, total C and N decreased whereas pH and levels of soluble Mg increased with increasing distance from tree. Levels of soluble Ca and Na remained unchanged along the gradient. At the microsite closest to the trunk a significant decrease in levels of soluble K, EC, OM, available P, total C and N, while a significant increase in pH was found with increasing depth. The concentration of other nutrients remained unchanged or declined not differently underneath compared to outside the canopy with increasing depth. Differences in nutrient levels were largely driven by greater inputs of organic matter under trees. Hence, Acacia trees can affect the productivity and reproduction of understory species with the latter in term an important source of organic matter. This positive feedback mechanism is of crucial importance for soil nutrient conservation and the restoration of degraded arid environments.

  15. The nutrient value of Imbrasia belina Lepidoptera: Saturnidae (madora).

    PubMed

    Onigbinde, A O; Adamolekun, B

    1998-05-01

    To determine the pattern of consumption of Imbrasia belina (madora) and other edible insects and also compare the nutrient values of madora larvae and two of its variants (Anaphe venata and Cirina forda) to those of some conventional sources of protein. University of Zimbabwe. 100 workers who admitted to a history of entomophagy. Popularity score of madora compared with those of other edible insects and approximate compositions of nutrients in the larvae compared with standard proteins. Most respondents (65%) were introduced to entomophagy by their parents. Termites were the most frequently consumed, followed by madora. More respondents ate insects because of their perceived nutritional value than because of their relative availability. There was no association of entomophagy with significant side effects. The protein, fat and mineral contents of the larvae were superior to those of beef and chicken. There were no major differences in the nutrient composition of the three Lepidoptera variants. The high nutrient value and low cost of these larvae make them an important protein supplement, especially for people in the low income group.

  16. Developing unique tracers to distinguish nutrient contributions from agriculture and wastewater sources in the Choptank River and Anacostia River watersheds

    USDA-ARS?s Scientific Manuscript database

    Eutrophication is a major problem for the Chesapeake Bay ecosystem. The efficacy of the restoration efforts implemented is restricted by the inability to differentiate nutrient sources. This study assessed the use of stable tracers in order to discriminate between urban and agricultural nutrient sou...

  17. Assessment of macrophyte, heavy metal, and nutrient concentrations in the water of the Nairobi River, Kenya.

    PubMed

    Njuguna, Samwel Maina; Yan, Xue; Gituru, Robert Wahiti; Wang, Qingfeng; Wang, Jun

    2017-08-16

    Nairobi River tributaries are the main source of the Athi River. The Athi River basin is the fourth largest and important drainage system in Kenya covering 650 km and with a drainage area of 70,000 km 2 . Its water is used downstream by about four million people not only for irrigation but also for domestic purposes. However, its industrial, raw sewer, and agricultural pollution is alarming. In order to understand distribution and concentration of heavy metals and nutrients in the water of Nairobi River, 28 water samples were collected in the rainy season (October) of 2015 and dry season (June) of 2016. Cd, Cu, Cr, Zn, As, Pb, Fe, Ni, Mn, NO 3 - , and TP were analyzed. Only Cr, Pb, Fe, and Mn had concentrations exceeding the WHO permissible limit for drinking water. Out of the 28 sites examined in the study, one site had Pb exceeding the WHO recommended level. Similarly, three sites exceeded the same level for Cr. Only three sites were within the WHO permissible limits for drinking water for Mn while just four sites were within USEPA limit for Fe. Industrial effluent, domestic sewerage, agricultural activities, and solid waste were the main sources of pollution. Significant spatial variation of both heavy metals and nutrients concentration was observed and emanated from point source pollution. Eleven out of 31 macrophytes species that were identified along the river and its tributaries are effective heavy metal and nutrient bioaccumulators and may be used in phytoremediation.

  18. Starved Escherichia coli preserve reducing power under nitric oxide stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gowers, Glen-Oliver F.; Robinson, Jonathan L.; Brynildsen, Mark P., E-mail: mbrynild@princeton.edu

    Nitric oxide (NO) detoxification enzymes, such as NO dioxygenase (NOD) and NO reductase (NOR), are important to the virulence of numerous bacteria. Pathogens use these defense systems to ward off immune-generated NO, and they do so in environments that contain additional stressors, such as reactive oxygen species, nutrient deprivation, and acid stress. NOD and NOR both use reducing equivalents to metabolically deactivate NO, which suggests that nutrient deprivation could negatively impact their functionality. To explore the relationship between NO detoxification and nutrient deprivation, we examined the ability of Escherichia coli to detoxify NO under different levels of carbon source availabilitymore » in aerobic cultures. We observed failure of NO detoxification under both carbon source limitation and starvation, and those failures could have arisen from inabilities to synthesize Hmp (NOD of E. coli) and/or supply it with sufficient NADH (preferred electron donor). We found that when limited quantities of carbon source were provided, NO detoxification failed due to insufficient NADH, whereas starvation prevented Hmp synthesis, which enabled cells to maintain their NADH levels. This maintenance of NADH levels under starvation was confirmed to be dependent on the absence of Hmp. Intriguingly, these data show that under NO stress, carbon-starved E. coli are better positioned with regard to reducing power to cope with other stresses than cells that had consumed an exhaustible amount of carbon. -- Highlights: •Carbon source availability is critical to aerobic E. coli NO detoxification. •Carbon source starvation, under NO stress, preserves intracellular NADH levels. •Preservation of NADH depends on starvation-dependent inhibition of Hmp induction.« less

  19. Research to Inform Nutrient Thresholds and Prioritization of Watersheds for Nutrient Management

    EPA Science Inventory

    The information in this presentation focuses on SSWR's 4.02 project, which will advance the science needed to inform decisions to prioritize watersheds and nutrient sources for nutrient management and define appropriate nutrient levels for the nation’s waters, two importan...

  20. Seasonal variations of nitrogen and phosphorus retention in an agricultural drainage river in East China.

    PubMed

    Chen, Dingjiang; Lu, Jun; Wang, Hailong; Shen, Yena; Kimberley, Mark O

    2010-02-01

    Riverine retention decreases loads of nitrogen (N) and phosphorus (P) in running water. It is an important process in nutrient cycling in watersheds. However, temporal riverine nutrient retention capacity varies due to changes in hydrological, ecological, and nutrient inputs into the watershed. Quantitative information of seasonal riverine N and P retention is critical for developing strategies to combat diffuse source pollution and eutrophication in riverine and coastal systems. This study examined seasonal variation of riverine total N (TN) and total P (TP) retention in the ChangLe River, an agricultural drainage river in east China. Water quality, hydrological parameters, and hydrophyte coverage were monitored along the ChangLe River monthly during 2004-2006. Nutrient export loads (including chemical fertilizer, livestock, and domestic sources) entering the river from the catchment area were computed using an export coefficient model based on estimated nutrient sources. Riverine TN and TP retention loads (RNRL and RPRL) were estimated using mass balance calculations. Temporal variations in riverine nutrient retention were analyzed statistically. Estimated annual riverine retention loads ranged from 1,538 to 2,127 t year(-1) for RNRL and from 79.4 to 90.4 t year(-1) for RPRL. Monthly retention loads varied from 6.4 to 300.8 t month(-1) for RNRL and from 1.4 to 15.3 t month(-1) for RPRL. Both RNRL and RPRL increased with river flow, water temperature, hydrophyte coverage, monthly sunshine hours, and total TN and TP inputs. Dissolved oxygen concentration and the pH level of the river water decreased with RNRL and RPRL. Riverine nutrient retention ratios (retention as a percentage of total input) were only related to hydrophyte coverage and monthly sunshine hours. Monthly variations in RNRL and RPRL were functions of TN and TP loads. Riverine nutrient retention capacity varied with environmental conditions. Annual RNRL and RPRL accounted for 30.3-48.3% and 52.5-71.2%, respectively, of total input TN and TP loads in the ChangLe River. Monthly riverine retention ratios were 3.5-88.7% for TN and 20.5-92.6% for TP. Hydrophyte growth and coverage on the river bed is the main cause for seasonal variation in riverine nutrient retention capacity. The total input TN and TP loads were the best indicators of RNRL and RPRL, respectively. High riverine nutrient retention capacity during summer due to hydrophytic growth is favorable to the avoidance of algal bloom in both river systems and coastal water in southeast China. Policies should be developed to strictly control nutrient applications on agricultural lands. Strategies for promoting hydrophyte growth in rivers are desirable for water quality management.

  1. Dynamics of Inorganic Nutrients in Intertidal Sediments: Porewater, Exchangeable, and Intracellular Pools

    PubMed Central

    Garcia-Robledo, Emilio; Bohorquez, Julio; Corzo, Alfonso; Jimenez-Arias, Juan L.; Papaspyrou, Sokratis

    2016-01-01

    The study of inorganic nutrients dynamics in shallow sediments usually focuses on two main pools: porewater (PW) nutrients and exchangeable (EX) ammonium and phosphate. Recently, it has been found that microphytobenthos (MPB) and other microorganisms can accumulate large amounts of nutrients intracellularly (IC), highlighting the biogeochemical importance of this nutrient pool. Storing nutrients could support the growth of autotrophs when nutrients are not available, and could also provide alternative electron acceptors for dissimilatory processes such as nitrate reduction. Here, we studied the magnitude and relative importance of these three nutrient pools (PW, IC, and EX) and their relation to chlorophylls (used as a proxy for MPB abundance) and organic matter (OM) contents in an intertidal mudflat of Cadiz Bay (Spain). MPB was localized in the first 4 mm of the sediment and showed a clear seasonal pattern; highest chlorophylls content was found during autumn and lowest during spring-summer. The temporal and spatial distribution of nutrients pools and MPB were largely correlated. Ammonium was higher in the IC and EX fractions, representing on average 59 and 37% of the total ammonium pool, respectively. Similarly, phosphate in the IC and EX fractions accounted on average for 40 and 31% of the total phosphate pool, respectively. Nitrate in the PW was low, suggesting low nitrification activity and rapid consumption. Nitrate accumulated in the IC pool during periods of moderate MPB abundance, being up to 66% of the total nitrate pool, whereas it decreased when chlorophyll concentration peaked likely due to a high nitrogen demand. EX-Nitrate accounted for the largest fraction of total sediment nitrate, 66% on average. The distribution of EX-Nitrate was significantly correlated with chlorophyll and OM, which probably indicates a relation of this pool to an increased availability of sites for ionic adsorption. This EX-Nitrate pool could represent an alternative nitrate source with significant concentrations available to the microbial community, deeper in the sediment below the oxic layer. PMID:27303370

  2. Dynamics of Inorganic Nutrients in Intertidal Sediments: Porewater, Exchangeable, and Intracellular Pools.

    PubMed

    Garcia-Robledo, Emilio; Bohorquez, Julio; Corzo, Alfonso; Jimenez-Arias, Juan L; Papaspyrou, Sokratis

    2016-01-01

    The study of inorganic nutrients dynamics in shallow sediments usually focuses on two main pools: porewater (PW) nutrients and exchangeable (EX) ammonium and phosphate. Recently, it has been found that microphytobenthos (MPB) and other microorganisms can accumulate large amounts of nutrients intracellularly (IC), highlighting the biogeochemical importance of this nutrient pool. Storing nutrients could support the growth of autotrophs when nutrients are not available, and could also provide alternative electron acceptors for dissimilatory processes such as nitrate reduction. Here, we studied the magnitude and relative importance of these three nutrient pools (PW, IC, and EX) and their relation to chlorophylls (used as a proxy for MPB abundance) and organic matter (OM) contents in an intertidal mudflat of Cadiz Bay (Spain). MPB was localized in the first 4 mm of the sediment and showed a clear seasonal pattern; highest chlorophylls content was found during autumn and lowest during spring-summer. The temporal and spatial distribution of nutrients pools and MPB were largely correlated. Ammonium was higher in the IC and EX fractions, representing on average 59 and 37% of the total ammonium pool, respectively. Similarly, phosphate in the IC and EX fractions accounted on average for 40 and 31% of the total phosphate pool, respectively. Nitrate in the PW was low, suggesting low nitrification activity and rapid consumption. Nitrate accumulated in the IC pool during periods of moderate MPB abundance, being up to 66% of the total nitrate pool, whereas it decreased when chlorophyll concentration peaked likely due to a high nitrogen demand. EX-Nitrate accounted for the largest fraction of total sediment nitrate, 66% on average. The distribution of EX-Nitrate was significantly correlated with chlorophyll and OM, which probably indicates a relation of this pool to an increased availability of sites for ionic adsorption. This EX-Nitrate pool could represent an alternative nitrate source with significant concentrations available to the microbial community, deeper in the sediment below the oxic layer.

  3. Science Study Aids 3: Carbohydrates - Nature's Energy Source.

    ERIC Educational Resources Information Center

    McConnell, Bill

    This publication is the third of a series of seven supplementary investigative materials for use in secondary science classes providing up-to-date research-related investigations. This unit is structured for grade levels 7 through 12. It is concerned with the role of carbohydrates as important nutrients for consumers. This guide will enable…

  4. Bioenergy from coastal bermudagrass receiving subsurface drip irrigation with advance-treated swine wastewater

    USDA-ARS?s Scientific Manuscript database

    Coastal bermudagrass (Cynodon dactylon L.) may be a potentially important source of bio-based energy in the southern United States due to its vast acreage. It is often produced as part of a waste management plan with varying nutrient composition and energy characteristics on fields irrigated with li...

  5. Genome-wide association study for intramuscular fat deposition and composition in Nellore cattle

    USDA-ARS?s Scientific Manuscript database

    Red meat from Bos taurus and Bos indicus breeds are an important source of nutrients for humans and intramuscular fat (IMF) influences its flavor, nutritional value and impacts human health. Human consumption of fat that contains high levels of monounsaturated fatty acids (MUFA) can reduce the conce...

  6. Woody debris

    Treesearch

    Donna B. Scheungrab; Carl C. Trettin; Russ Lea; Martin F. Jurgensen

    2000-01-01

    Woody debris can be defined as any dead, woody plant material, including logs, branches, standing dead trees, and root wads. Woody debris is an important part of forest and stream ecosystems because it has a role in carbon budgets and nutrient cycling, is a source of energy for aquatic ecosystems, provides habitat for terrestrial and aquatic organisms, and contributes...

  7. Digital data used to relate nutrient inputs to water quality in the Chesapeake Bay watershed

    USGS Publications Warehouse

    Brakebill, John W.; Preston, Stephen D.

    1999-01-01

    Digital data sets were compiled by the U. S. Geological Survey (USGS) and used as input for a collection of Spatially Referenced Regressions On Watershed attributes for the Chesapeake Bay region. These regressions relate streamwater loads to nutrient sources and the factors that affect the transport of these nutrients throughout the watershed. A digital segmented network based on watershed boundaries serves as the primary foundation for spatially referencing total nitrogen and total phosphorus source and land-surface characteristic data sets within a Geographic Information System. Digital data sets of atmospheric wet deposition of nitrate, point-source discharge locations, land cover, and agricultural sources such as fertilizer and manure were created and compiled from numerous sources and represent nitrogen and phosphorus inputs. Some land-surface characteristics representing factors that affect the transport of nutrients include land use, land cover, average annual precipitation and temperature, slope, and soil permeability. Nutrient input and land-surface characteristic data sets merged with the segmented watershed network provide the spatial detail by watershed segment required by the models. Nutrient stream loads were estimated for total nitrogen, total phosphorus, nitrate/nitrite, amonium, phosphate, and total suspended soilds at as many as 109 sites within the Chesapeake Bay watershed. The total nitrogen and total phosphorus load estimates are the dependent variables for the regressions and were used for model calibration. Other nutrient-load estimates may be used for calibration in future applications of the models.

  8. Soil nutrient availability and reproductive effort drive patterns in nutrient resorption in Pentachlethra macroloba

    Treesearch

    K. L. Tully; Tana Wood; A. M. Schwantes; D. Lawrence

    2013-01-01

    The removal of nutrients from senescing tissues, nutrient resorption, is a key strategy for conserving nutrients in plants. However, our understanding of what drives patterns of nutrient resorption in tropical trees is limited. We examined the effects of nutrient sources (stand-level and tree-level soil fertility) and sinks (reproductive effort) on nitrogen (N) and...

  9. What's Upstream? GIS's critical role in developing nutrient ...

    EPA Pesticide Factsheets

    Eutrophication due to excess levels of nitrogen and phosphorus can seriously impair ecological function in estuaries. Protective criteria for nutrients are difficult to establish because the source can vary spatially and seasonally, originate either from the watershed or the ocean, and be natural or anthropogenic. GIS tools and processes can help in developing nutrient criteria by establishing reference conditions representative of natural background nutrient levels. Along the Oregon Coast in the Pacific Northwest, the primary source of nutrients in the wet season (November-April) is generally riverine. We delineated and extracted explicit spatial data from watersheds upstream of riverine water quality monitoring stations for parametric comparison to recorded nutrient levels. The SPARROW model (Wise and Johnson, 2011) was used to estimate relative contributions of nutrient sources at each station. Both raster and vector spatial data were used and include land use / land cover, demography, geology, terrain, precipitation and forest type. The relationships of nutrients to spatial data were then explored as an approach to establishing the reference expectation. The abstract introduces Geographic Information Systems (GIS) tools and processes employed for research conducted under the Safe and Sustainable Water Resources (SSWR) Task 2.3A, entitled “Nutrient Management for Sustainability of Aquatic Ecosystems.” One of the goals of the EPA Office of Water is to

  10. Increasing floodplain connectivity through urban stream restoration increases nutrient and sediment retention

    USGS Publications Warehouse

    McMillan, Sara K.; Noe, Gregory

    2017-01-01

    Stream restoration practices frequently aim to increase connectivity between the stream channel and its floodplain to improve channel stability and enhance water quality through sediment trapping and nutrient retention. To measure the effectiveness of restoration and to understand the drivers of these functional responses, we monitored five restored urban streams that represent a range of channel morphology and restoration ages. High and low elevation floodplain plots were established in triplicate in each stream to capture variation in floodplain connectivity. We measured ecosystem geomorphic and soil attributes, sediment and nutrient loading, and rates of soil nutrient biogeochemistry processes (denitrification; N and P mineralization) then used boosted regression trees (BRT) to identify controls on sedimentation and nutrient processing. Local channel and floodplain morphology and position within the river network controlled connectivity with increased sedimentation at sites downstream of impaired reaches and at floodplain plots near the stream channel and at low elevations. We observed that nitrogen loading (both dissolved and particulate) was positively correlated with denitrification and N mineralization and dissolved phosphate loading positively influenced P mineralization; however, none of these input rates or transformations differed between floodplain elevation categories. Instead, continuous gradients of connectivity were observed rather than categorical shifts between inset and high floodplains. Organic matter and nutrient content in floodplain soils increased with the time since restoration, which highlights the importance of recovery time after construction that is needed for restored systems to increase ecosystem functions. Our results highlight the importance of restoring floodplains downstream of sources of impairment and building them at lower elevations so they flood frequently, not just during bankfull events. This integrated approach has the greatest potential for increasing trapping of sediment, nutrients, and associated pollutants in restored streams and thereby improving water quality in urban watersheds.

  11. A modeling study examining the impact of nutrient boundaries ...

    EPA Pesticide Factsheets

    A mass balance eutrophication model, Gulf of Mexico Dissolved Oxygen Model (GoMDOM), has been developed and applied to describe nitrogen, phosphorus and primary production in the Louisiana shelf of the Gulf of Mexico. Features of this model include bi-directional boundary exchanges, an empirical site-specific light attenuation equation, estimates of 56 river loads and atmospheric loads. The model was calibrated for 2006 by comparing model output to observations in zones that represent different locations in the Gulf. The model exhibited reasonable skill in simulating the phosphorus and nitrogen field data and primary production observations. The model was applied to generate a nitrogen mass balance estimate, to perform sensitivity analysis to compare the importance of the nutrient boundary concentrations versus the river loads on nutrient concentrations and primary production within the shelf, and to provide insight into the relative importance of different limitation factors on primary production. The mass budget showed the importance of the rivers as the major external nitrogen source while the atmospheric load contributed approximately 2% of the total external load. Sensitivity analysis showed the importance of accurate estimates of boundary nitrogen concentrations on the nitrogen levels on the shelf, especially at regions further away from the river influences. The boundary nitrogen concentrations impacted primary production less than nitrogen concent

  12. Regional assessments of the Nation's water quality—Improved understanding of stream nutrient sources through enhanced modeling capabilities

    USGS Publications Warehouse

    Preston, Stephen D.; Alexander, Richard B.; Woodside, Michael D.

    2011-01-01

    The U.S. Geological Survey (USGS) recently completed assessments of stream nutrients in six major regions extending over much of the conterminous United States. SPARROW (SPAtially Referenced Regressions On Watershed attributes) models were developed for each region to explain spatial patterns in monitored stream nutrient loads in relation to human activities and natural resources and processes. The model information, reported by stream reach and catchment, provides contrasting views of the spatial patterns of nutrient source contributions, including those from urban (wastewater effluent and diffuse runoff from developed land), agricultural (farm fertilizers and animal manure), and specific background sources (atmospheric nitrogen deposition, soil phosphorus, forest nitrogen fixation, and channel erosion).

  13. Ultra-processed foods and the limits of product reformulation.

    PubMed

    Scrinis, Gyorgy; Monteiro, Carlos Augusto

    2018-01-01

    The nutritional reformulation of processed food and beverage products has been promoted as an important means of addressing the nutritional imbalances in contemporary dietary patterns. The focus of most reformulation policies is the reduction in quantities of nutrients-to-limit - Na, free sugars, SFA, trans-fatty acids and total energy. The present commentary examines the limitations of what we refer to as 'nutrients-to-limit reformulation' policies and practices, particularly when applied to ultra-processed foods and drink products. Beyond these nutrients-to-limit, there are a range of other potentially harmful processed and industrially produced ingredients used in the production of ultra-processed products that are not usually removed during reformulation. The sources of nutrients-to-limit in these products may be replaced with other highly processed ingredients and additives, rather than with whole or minimally processed foods. Reformulation policies may also legitimise current levels of consumption of ultra-processed products in high-income countries and increased levels of consumption in emerging markets in the global South.

  14. Biocorrosion and biofilm formation in a nutrient limited heating system subjected to alternating microaerophilic conditions.

    PubMed

    Kjellerup, B V; Kjeldsen, K U; Lopes, F; Abildgaard, L; Ingvorsen, K; Frølund, B; Sowers, K R; Nielsen, P H

    2009-11-01

    Severe biofilm formation and biocorrosion have been observed in heating systems even when the water quality complied with existing standards. The coupling between water chemistry, biofilm formation, species composition, and biocorrosion in a heating system was investigated by adding low concentrations of nutrients and oxygen under continuous and alternating dosing regimes. Molecular analysis of 16S rRNA gene fragments demonstrated that the amendments did not cause changes in the overall bacterial community composition. The combined alternating dosing of nutrients and oxygen caused increased rates of pitting (bio-) corrosion. Detection of bacteria involved in sulfide production and oxidation by retrieval of the functional dsrAB and apsA genes revealed the presence of Gram-positive sulfate- and sulfite-reducers and an unknown sulfur-oxidizer. Therefore, to control biocorrosion, sources of oxygen and nutrients must be limited, since the effect of the alternating operational conditions apparently is more important than the presence of potentially corrosive biofilm bacteria.

  15. Economic development influences on sediment-bound nitrogen and phosphorus accumulation of lakes in China.

    PubMed

    Ni, Zhaokui; Wang, Shengrui

    2015-12-01

    China has been confronted with serious water quality deterioration concurrent with rapid socioeconomic progress during the past 40 years. Consequently, knowledge about economic growth and lake water quality dynamics is important to understand eutrophication processes. Objectives were to (i) reconstruct historical nutrient accumulation and the basin economic progress on burial flux (BF); (ii) determine forms and structures of nitrogen (N) and phosphorus (P) in sediment and water using six cores in three of the most severely eutrophic lake areas in China (i.e., Eastern Plain, Yunnan-Guizhou Plain, and Inner Mongolia-Xinjiang regions). Results suggest that BFs of total nitrogen (TN) continued to increase in sediment, whereas total phosphorus (TP) levels were consistent or only slightly increased, except in highly polluted lakes during the past decades. Similar results were observed for concentrations of nutrients in water (i.e., increased N/P). This historical distribution pattern was correlated to long-term fertilization practices of farmers in the watershed (N fertilization exceeds that of P) and was contingent upon pollution control policies (e.g., emphasized P whereas N was ignored). Vertical profiles of BFs indicated that lake nutrient accumulation included three stages in China. Nutrient accumulation started in the 1980s, accelerated from the 1990s, and then declined after 2000. Before the 1980s, nutrients were relatively low and stable, with nutrient inputs being controlled by natural processes. Thereafter, N- and P-bound sediments dramatically increased due to the increasing influence of anthropogenic processes. Nutrients were primarily derived from industries and domestic sewage. After 2000, BFs of nutrients were steady and even decreased, owing to implementation of watershed load reduction policies. The decreasing NaOH-extracted P (Fe/Al-P) and increasing organic phosphorus (OP) indicated that the source of exogenous pollution underwent a shift. Inputs of nutrients were predominantly from agricultural and domestic sewage, whereas industrial pollution has been gradually controlled in most of the watersheds. Historical nutrient dynamics suggest that the economy of China is growing at the expense of its aquatic ecological environments. Therefore, more attention to nutrient export to groundwater resulting from economic development is important for further aquatic ecosystem deterioration and eutrophication in China.

  16. NutrientNet: An Internet-Based Approach to Teaching Market-Based Policy for Environmental Management

    ERIC Educational Resources Information Center

    Nguyen, To N.; Woodward, Richard T.

    2009-01-01

    NutrientNet is an Internet-based environment in which a class can simulate a market-based approach for improving water quality. In NutrientNet, each student receives a role as either a point source or a nonpoint source polluter, and then the participants are allowed to trade water quality credits to cost-effectively reduce pollution in a…

  17. Nutrient and Suspended-Sediment Transport and Trends in the Columbia River and Puget Sound Basins, 1993-2003

    USGS Publications Warehouse

    Wise, Daniel R.; Rinella, Frank A.; Rinella, Joseph F.; Fuhrer, Greg J.; Embrey, Sandra S.; Clark, Gregory M.; Schwarz, Gregory E.; Sobieszczyk, Steven

    2007-01-01

    This study focused on three areas that might be of interest to water-quality managers in the Pacific Northwest: (1) annual loads of total nitrogen (TN), total phosphorus (TP) and suspended sediment (SS) transported through the Columbia River and Puget Sound Basins, (2) annual yields of TN, TP, and SS relative to differences in landscape and climatic conditions between subbasin catchments (drainage basins), and (3) trends in TN, TP, and SS concentrations and loads in comparison to changes in landscape and climatic conditions in the catchments. During water year 2000, an average streamflow year in the Pacific Northwest, the Columbia River discharged about 570,000 pounds per day of TN, about 55,000 pounds per day of TP, and about 14,000 tons per day of SS to the Pacific Ocean. The Snake, Yakima, Deschutes, and Willamette Rivers contributed most of the load discharged to the Columbia River. Point-source nutrient loads to the catchments (almost exclusively from municipal wastewater treatment plants) generally were a small percentage of the total in-stream nutrient loads; however, in some reaches of the Spokane, Boise, Walla Walla, and Willamette River Basins, point sources were responsible for much of the annual in-stream nutrient load. Point-source nutrient loads generally were a small percentage of the total catchment nutrient loads compared to nonpoint sources, except for a few catchments where point-source loads comprised as much as 30 percent of the TN load and as much as 80 percent of the TP load. The annual TN and TP loads from point sources discharging directly to the Puget Sound were about equal to the annual loads from eight major tributaries. Yields of TN, TP, and SS generally were greater in catchments west of the Cascade Range. A multiple linear regression analysis showed that TN yields were significantly (p < 0.05) and positively related to precipitation, atmospheric nitrogen load, fertilizer and manure load, and point-source load, and were negatively related to average slope. TP yields were significantly related positively to precipitation, and point-source load and SS yields were significantly related positively to precipitation. Forty-eight percent of the available monitoring sites for TN had significant trends in concentration (2 increasing, 19 decreasing), 32 percent of the available sites for TP had significant trends in concentration (7 increasing, 9 decreasing), and 40 percent of the available sites for SS had significant trends in concentration (4 increasing, 15 decreasing). The trends in load followed a similar pattern, but with fewer sites showing significant trends. The results from this study indicate that inputs from nonpoint sources of nutrients probably have decreased over time in many of the catchments. Despite the generally small contribution of point-source nutrient loads, they still may have been partially responsible for the significant decreasing trends for nutrients at sites where the total point-source nutrient loads to the catchments equaled a substantial proportion of the in-stream load.

  18. Seasonal and event-scale controls on dissolved organic carbon and nitrate flushing from catchments

    NASA Astrophysics Data System (ADS)

    Sebestyen, S. D.; Boyer, E. W.; Shanley, J. B.; Doctor, D. H.

    2005-05-01

    To explore terrestrial and aquatic linkages controlling nutrient dynamics in forested catchments, we collected high-frequency samples from 2002 to 2004 at the Sleepers River Research Watershed in northeastern Vermont USA. We measured DOC (dissolved organic carbon), SUVA (specific UV absorbance), nitrate, and major ion concentrations over a wide range of flow conditions. In addition, weekly samples since 1991 provide a longer term record of stream nutrient fluxes. During events, DOC concentrations increased with flow consistent with the flushing of a large reservoir of mobile organic carbon from forest soils. Higher concentrations of DOC and SUVA in the growing versus dormant season illustrated seasonal variation in sources, characteristics (i.e. reactivity), availability, and controls on the flushing response of organic matter from the landscape to streams. In contrast, stream nitrate concentrations increased with flow but only when catchments "wetted-up" after baseflow periods. Growing season stream nitrate responses were dependent on short-term antecedent moisture conditions indicating rapid depletion of the soil nitrate reservoir when source areas became hydrologically connected to streams. While the different response patterns emphasized variable source and biogeochemical controls in relation to flow patterns, coupled carbon and nitrogen biogeochemical processes were also important controls on stream nutrient fluxes. In particular, leaf fall was a critical time when reactive DOC from freshly decomposing litter fueled in-stream consumption of nitrate leading to sharp declines of stream nitrate concentrations. Our measurements highlight the importance of "hot spots" and "hot moments" of biogeochemical and hydrological processes that control stream responses. Furthermore, our work illustrates how carbon, nitrogen, and water cycles are coupled in catchments, and provides a conceptual model for future work aimed at modeling forest stream hydrochemistry at the catchment scale.

  19. Improving soil nutrient availability increases carbon rhizodeposition under maize and soybean in Mollisols.

    PubMed

    Qiao, Yunfa; Miao, Shujie; Han, Xiaozeng; Yue, Shuping; Tang, Caixian

    2017-12-15

    Rhizodeposited carbon (C) is an important source of soil organic C, and plays an important role in the C cycle in the soil-plant-atmosphere continuum. However, interactive effects of plant species and soil nutrient availability on C rhizodeposition remain unclear. This experiment examined the effect of soil nutrient availability on C rhizodeposition of C4 maize and C3 soybean with contrasting photosynthetic capacity. The soils (Mollisols) were collected from three treatments of no fertilizer (Control), inorganic fertilizer only (NPK), and NPK plus organic manure (NPKM) in a 24-year fertilization field trial. The plants were labelled with 13 C at the vegetative and reproductive stages. The 13 C abundance of shoots, roots and soil were quantified at 0, 7days after 13 C labelling, and at maturity. Increasing soil nutrient availability enhanced the C rhizodeposition due to the greater C fixation in shoots and distribution to roots and soil. The higher amount of averaged below-ground C allocated to soil resulted in greater specific rhizodeposited C from soybean than maize. Additional organic amendment further enhanced them. As a result, higher soil nutrient availability increased total soil organic C under both maize and soybean systems though there was no significant difference between the two crop systems. All these suggested that higher soil nutrient availability favors C rhizodeposition. Mean 80, 260 and 300kgfixedCha -1 were estimated to transfer into soil in the Control, NPK and NPKM treatments, respectively, during one growing season. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Stream restoration and sewers impact sources and fluxes of water,carbon, and nutrients in urban watersheds

    EPA Science Inventory

    An improved understanding of sources and timing of water and nutrient fluxes associated with urban stream restoration is critical for guiding effective watershed management. We investigated how sources, fluxes, and flowpaths of water, carbon (C), nitrogen (N), and phosphorus (P)...

  1. Polycyclic aromatic hydrocarbons in Cambodian smoked fish.

    PubMed

    Slámová, Tereza; Fraňková, Adéla; Hubáčková, Anna; Banout, Jan

    2017-12-01

    More than 85% of the population in Cambodia is strongly dependent on agriculture, of which freshwater aquaculture is one of the most important sources of food production. The smoked fish represents an important source of nutrients for Cambodian population; however, it can also lead to excessive intake of polycyclic aromatic hydrocarbons (PAHs). A field survey was conducted among selected smoked fish producers near to Tonle Sap river in Kampong Chhnang province, Cambodia. The study revealed that maximal limits for benzo[a]pyrene and the sum of four PAHs given by EC 1881/2006 were exceeded 2-50 times. Such burden can lead to increased risk of development of carcinogenic diseases.

  2. Scale and legacy controls on catchment nutrient export regimes

    NASA Astrophysics Data System (ADS)

    Howden, N. J. K.; Burt, T.; Worrall, F.

    2017-12-01

    Nutrient dynamics in river catchments are complex: water and chemical fluxes are highly variable in low-order streams, but this variability declines as fluxes move through higher-order reaches. This poses a major challenge for process understanding as much effort is focussed on long-term monitoring of the main river channel (a high-order reach), and therefore the data available to support process understanding are predominantly derived from sites where much of the transient response of nutrient export is masked by the effect of averaging over both space and time. This may be further exacerbated at all scales by the accumulation of legacy nutrient sources in soils, aquifers and pore waters, where historical activities have led to nutrient accumulation where the catchment system is transport limited. Therefore it is of particular interest to investigate how the variability of nutrient export changes both with catchment scale (from low to high-order catchment streams) and with the presence of legacy sources, such that the context of infrequent monitoring on high-order streams can be better understood. This is not only a question of characterising nutrient export regimes per se, but also developing a more thorough understanding of how the concepts of scale and legacy may modify the statistical characteristics of observed responses across scales in both space and time. In this paper, we use synthetic data series and develop a model approach to consider how space and timescales combine with impacts of legacy sources to influence observed variability in catchment export. We find that: increasing space and timescales tend to reduce the observed variance in nutrient exports, due to an increase in travel times and greater mixing, and therefore averaging, of sources; increasing the influence of legacy sources inflates the variance, with the level of inflation dictated by the residence time of the respective sources.

  3. Aluminum and Manganese Distributions in the Solomon Sea: Results from the 2012 PANDORA Cruise

    NASA Astrophysics Data System (ADS)

    Michael, S. M.; Resing, J. A.; Jeandel, C.; Lacan, F.

    2016-02-01

    Much is still unknown about the sources of trace nutrients to the Equatorial Undercurrent (EUC), which ultimately contribute to high-nutrient regions in the Eastern Tropical Pacific. One region that is possibly a source of trace nutrients to the EUC is the Solomon Sea, located east of Papua New Guinea. A study during the summer of 2012, PANDORA, was conducted on board the R/V l'Atalante to determine currents and the geochemical makeup within the basin. Water samples were analyzed for aluminum and manganese using Flow Injection Analysis (FIA). At many stations, aluminum distributions exhibit a sub-surface minimum, located at approximately the same depth as a salinity maximum. Additionally, aluminum is enriched along coastal areas, particularly in the outflow of the Vitiaz Strait, which is concurrent with the findings of Slemons et al. 2010. These regions of high aluminum are also likely regions of iron enrichment. Manganese distributions in the Solomon Sea are similar to data collected north of the region by Slemons et al. 2010, and show a scavenged distribution with local inputs in the surface and concentrations decreasing at depth. This region has strong western boundary currents, and input from coastal margins, two large rivers, island mining sites, and hydrothermal activity, making it an important study-site to determine how trace nutrients are transported to the open ocean.

  4. Nitrogen and phosphorus losses from agricultural systems in China: a meta-analysis.

    PubMed

    Cao, Di; Cao, Wenzhi; Fang, Jing; Cai, Longyan

    2014-08-30

    Studies worldwide have indicated that agricultural pollution is the main source of nitrogen and phosphorus (N and P) in surface waters. A systematic understanding of N and P sources and sinks in agricultural systems is important for selecting the appropriate remedial strategies to control nutrient losses and water pollution. Based on nationwide data and a long-term monitoring program in Southeast China, the nationwide spatial and temporal patterns of N and P losses and the relationships between such losses and N and P inputs and rainfall were analyzed. The results showed that the annual nutrient losses from agricultural systems in China strongly varied, and the N/P values ranged from 0.01 to 51.0, with a majority at approximately 0-20, and an arithmetic mean of 9.73; these values mostly overlap the suitable range of N/P (6-15) for red bloom algae. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Factors controlling the solubility of trace metals in atmospheric aerosols over the Eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Nikolaou, Panagiota; Mihalopoulos, Nikolaos; Kanakidou, Maria

    2015-04-01

    Atmospheric input of aerosols is recognized, as an important source of nutrients, for the oceans. The chemical interactions between aerosols and varying composition of air masses lead to different coating of their surfaces with sulfate, nitrate and organic compounds, increasing their solubility and their role as a carrier of nutrients and pollutants in ecosystems. Recent works have highlighted that atmospheric inputs of nutrients and trace metals can considerably influence the marine ecosystem functioning at semi-enclosed or enclosed water bodies such as the eastern Mediterranean. The current work aims to determine the sources and the factors controlling the variability of nutrients in the eastern Mediterranean. Special focus has been given on trace elements solubility, considered either as key nutrients for phytoplankton growth such as iron (Fe), phosphorus (P) or inhibitors such as copper (Cu). This has been accomplished by analyzing size segregated aerosol samples collected at the background site of Finokalia in Crete for an entire year. Phosphorus concentrations indicate important increases in air masses influenced both by anthropogenic activities in the northeast European countries and by dust outbreaks. The last is confirmed by the correlation observed between total P and dust concentrations and by the air mass backward trajectories computed by running the NOAA Hysplit Model (Hybrid Single - Particle Langrangian Integrated Trajectory (http://www.arl.noaa.gov/ready/hysplit4.html). Overall 73% of total P has been found to be associated with anthropogenic sources. The solubility of P and Fe has been found to be closely related to the acidity (pH) and dust amount in aerosols. The aerosol pH was predicted using thermodynamic modeling (ISORROPIA-II), meteorological observations (RH, T), and gas/particle observations. More specifically P and Fe solubility appears to be inversely related to the crustal elements levels, while it increases in acidic environment. The significance of our findings for the eastern Mediterranean Sea is thoroughly discussed. This research has been co-financed by the European Union (European Social Fund - ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: ARISTEIA - PANOPLY (Pollution Alters Natural Aerosol Composition: implications for Ocean Productivity, cLimate and air qualitY) grant.

  6. Water Source Utilization of Hammock and Pine Rockland Plant Communities in the Everglades, USA.

    NASA Astrophysics Data System (ADS)

    Saha, A. K.; Sternberg, L.; Miralles-Wilhelm, F.

    2007-12-01

    South Florida has a mosaic of plant communities resulting from topographical differences, spatially varying hydroperiods and fire. The only plant communities not flooded in the wet season are hardwood hammocks and often pine rocklands. Natural fires burn off litter accumulated in pine rocklands, with the exception of organic matter in sinkholes in the limestone bedrock. This relative lack of soil is thought to constrain pineland plants in the Everglades to depend upon groundwater that is typically low in nutrients. In contrast, adjoining hardwood hammocks have accumulated an organic soil layer that traps rainwater and nutrients. Plants in hammocks may be able to utilize this water and thereby access nutrients present in the litter. Hammocks are thus viewed as localized areas of high nutrients and instances of vegetation feedback upon the oligotrophic everglades landscape enabling establishment and survival of flood-intolerant tropical hardwood species. This study examines water source use and couples it to foliar nutrient concentrations of plants found in hammocks and pinelands. We examined the δ2H and δ18O of stem waters in plants in Everglades National Park and compared those with the δ2H and δ18O of potential water sources. In the wet season hammock plants accessed both groundwater and water in the surface organic soil layer while in the dry season they relied more on groundwater. A similar seasonal shift was observed in pineland plants; however groundwater constituted a much higher proportion of total water uptake throughout the year under observation. Concomitant with differential water utilization by hammock and pineland plant communities, we observed hammock plants having a significantly higher annual mean foliar N and P concentration than pineland plants. Most hammock species are intolerant of flooded soils and are thus constrained by the high water table in the wet season, yet access the lowered groundwater table in the dry season due to drying up of surface soilwater. This dependence on a relatively narrow seasonal range of water table depth has important implications for South Florida water resource management that can affect these ecologically important upland communities in the Everglades. Being the only emergent areas in the wet season, hammocks provide habitat for a wide range of flora and fauna.

  7. Food Sources of Energy and Nutrients in Infants, Toddlers, and Young Children from the Mexican National Health and Nutrition Survey 2012

    PubMed Central

    Denney, Liya; Afeiche, Myriam C.; Eldridge, Alison L.; Villalpando-Carrión, Salvador

    2017-01-01

    Food sources of nutrients in Mexican children are not well known. To fill the knowledge gap, dietary intake was assessed in 2057 children using a 24-h dietary recall. All reported foods and beverages were assigned to one of 76 food groups. Percent contribution of each food group to nutrient intake was estimated for four age groups: 0–5.9, 6–11.9, 12–23.9, and 24–47.9 months. Breast milk, infant formula, and cow’s milk were the top sources of energy and nutrients, especially in younger groups. Among infants aged 6–11.9 months, the top food sources of energy included soups and stews, cookies, fruit, tortillas, eggs and egg dishes, and traditional beverages. The same foods plus sweetened breads, dried beans, and sandwiches and tortas were consumed as the top sources of energy among toddlers and young children. Milk, soups, and stews were the top contributors for all nutrients and tortillas, eggs, and egg dishes were among the top contributors for iron and zinc. This study showed that low nutrient-dense cookies, sweetened breads, and traditional beverages were among the core foods consumed early in life in Mexico. This compromises the intake of more nutritious foods such as vegetables and fortified cereals and increases the risk of obesity. PMID:28505084

  8. Food Sources of Energy and Nutrients in Infants, Toddlers, and Young Children from the Mexican National Health and Nutrition Survey 2012.

    PubMed

    Denney, Liya; Afeiche, Myriam C; Eldridge, Alison L; Villalpando-Carrión, Salvador

    2017-05-13

    Food sources of nutrients in Mexican children are not well known. To fill the knowledge gap, dietary intake was assessed in 2057 children using a 24-hour dietary recall. All reported foods and beverages were assigned to one of 76 food groups. Percent contribution of each food group to nutrient intake was estimated for four age groups: 0-5.9, 6-11.9, 12-23.9, and 24-47.9 months. Breast milk, infant formula, and cow's milk were the top sources of energy and nutrients, especially in younger groups. Among infants aged 6-11.9 months, the top food sources of energy included soups and stews, cookies, fruit, tortillas, eggs and egg dishes, and traditional beverages. The same foods plus sweetened breads, dried beans, and sandwiches and tortas were consumed as the top sources of energy among toddlers and young children. Milk, soups, and stews were the top contributors for all nutrients and tortillas, eggs, and egg dishes were among the top contributors for iron and zinc. This study showed that low nutrient-dense cookies, sweetened breads, and traditional beverages were among the core foods consumed early in life in Mexico. This compromises the intake of more nutritious foods such as vegetables and fortified cereals and increases the risk of obesity.

  9. Identification of watershed priority management areas under water quality constraints: A simulation-optimization approach with ideal load reduction

    NASA Astrophysics Data System (ADS)

    Dong, Feifei; Liu, Yong; Wu, Zhen; Chen, Yihui; Guo, Huaicheng

    2018-07-01

    Targeting nonpoint source (NPS) pollution hot spots is of vital importance for placement of best management practices (BMPs). Although physically-based watershed models have been widely used to estimate nutrient emissions, connections between nutrient abatement and compliance of water quality standards have been rarely considered in NPS hotspot ranking, which may lead to ineffective decision-making. It's critical to develop a strategy to identify priority management areas (PMAs) based on water quality response to nutrient load mitigation. A water quality constrained PMA identification framework was thereby proposed in this study, based on the simulation-optimization approach with ideal load reduction (ILR-SO). It integrates the physically-based Soil and Water Assessment Tool (SWAT) model and an optimization model under constraints of site-specific water quality standards. To our knowledge, it was the first effort to identify PMAs with simulation-based optimization. The SWAT model was established to simulate temporal and spatial nutrient loading and evaluate effectiveness of pollution mitigation. A metamodel was trained to establish a quantitative relationship between sources and water quality. Ranking of priority areas is based on required nutrient load reduction in each sub-watershed targeting to satisfy water quality standards in waterbodies, which was calculated with genetic algorithm (GA). The proposed approach was used for identification of PMAs on the basis of diffuse total phosphorus (TP) in Lake Dianchi Watershed, one of the three most eutrophic large lakes in China. The modeling results demonstrated that 85% of diffuse TP came from 30% of the watershed area. Compared with the two conventional targeting strategies based on overland nutrient loss and instream nutrient loading, the ILR-SO model identified distinct PMAs and narrowed down the coverage of management areas. This study addressed the urgent need to incorporate water quality response into PMA identification and showed that the ILR-SO approach is effective to guide watershed management for aquatic ecosystem restoration.

  10. King eider use an income strategy for egg production: a case study for incorporating individual dietary variation into nutrient allocation research

    USGS Publications Warehouse

    Oppel, Steffen; Powell, Abby N.; O'Brien, Diane M.

    2010-01-01

    The use of stored nutrients for reproduction represents an important component of life-history variation. Recent studies from several species have used stable isotopes to estimate the reliance on stored body reserves in reproduction. Such approaches rely on population-level dietary endpoints to characterize stored reserves (“capital”) and current diet (“income”). Individual variation in diet choice has so far not been incorporated in such approaches, but is crucial for assessing variation in nutrient allocation strategies. We investigated nutrient allocation to egg production in a large-bodied sea duck in northern Alaska, the king eider (Somateria spectabilis). We first used Bayesian isotopic mixing models to quantify at the population level the amount of endogenous carbon and nitrogen invested into egg proteins based on carbon and nitrogen isotope ratios. We then defined the isotopic signature of the current diet of every nesting female based on isotope ratios of eggshell membranes, because diets varied isotopically among individual king eiders on breeding grounds. We used these individual-based dietary isotope signals to characterize nutrient allocation for each female in the study population. At the population level, the Bayesian and the individual-based approaches yielded identical results, and showed that king eiders used an income strategy for the synthesis of egg proteins. The majority of the carbon and nitrogen in albumen (C: 86 ± 18%, N: 99 ± 1%) and the nitrogen in lipid-free yolk (90 ± 15%) were derived from food consumed on breeding grounds. Carbon in lipid-free yolk derived evenly from endogenous sources and current diet (exogenous C: 54 ± 24%), but source contribution was highly variable among individual females. These results suggest that even large-bodied birds traditionally viewed as capital breeders use exogenous nutrients for reproduction. We recommend that investigations of nutrient allocation should incorporate individual variation into mixing models to reveal intraspecific variation in reproductive strategies.

  11. Starch and fiber properties affect their kinetics of digestion and thereby digestive physiology in pigs.

    PubMed

    Zijlstra, R T; Jha, R; Woodward, A D; Fouhse, J; van Kempen, T A T G

    2012-12-01

    Traditionally in swine nutrition, analyses of starch and fiber have focused on assessing quantity; however, both have a wide range of functional properties making them underappreciated nutrients. Starch ranging from low to high amylose changes from rapidly digestible in the upper gut to poorly digestible but fermentable in the lower gut thereby changing from a source of glucose to VFA source. Likewise, fibers ranging from low to high viscosity affect digesta flow and from slowly to rapidly fermentable alter production of VFA serving as energy for the gut or whole body. Our hypothesis is that total extent, kinetics, and site of digestion or fermentation of starch and fiber are important for whole body nutrient use and intestinal health. To elucidate their effects, we developed in vitro, lab-based methodologies to describe kinetics of digestion and fermentation and linked these with in vivo models including i) ileum cannulation to collect digesta, ii) portal-vein catheterization to sequentially sample blood, iii) slaughter method to collect site-specific intestinal tissue and digesta, and iv) indirect calorimetry. Using these methods, kinetics of nutrient absorption was associated with pancreatic and intestinal hormones released into the portal vein, intestinal microbiota, and gene expression in intestinal tissue and microbiota. These studies confirmed that slowly digestible starch is partially degraded in the distal small and large intestine and fermented into VFA including butyrate (10-fold increase in net portal appearance), which reduces insulin responses by 60% and whole body energy use. Starch entering the distal intestine altered mRNA abundance of nutrient transporters and was bifidogenic. Extremely viscous purified fiber dampened glycemic responses and reduced digesta passage rate by 50% thereby increasing ileal digestion of dietary nutrients whereas increased fiber in feed grains reduced nutrient digestibility. Fermentable fiber increased butyrate and insulin production. These methods will therefore support elucidation of mechanisms that link starch and fiber properties to whole body nutrient use and intestinal health.

  12. Effects of Land Use Land Cover (LULC) and Climate on Simulation of Phosphorus loading in the Southeast United States Region

    NASA Astrophysics Data System (ADS)

    Jima, T. G.; Roberts, A.

    2013-12-01

    Quality of coastal and freshwater resources in the Southeastern United States is threatened due to Eutrophication as a result of excessive nutrients, and phosphorus is acknowledged as one of the major limiting nutrients. In areas with much non-point source (NPS) pollution, land use land cover and climate have been found to have significant impact on water quality. Landscape metrics applied in catchment and riparian stream based nutrient export models are known to significantly improve nutrient prediction. The regional SPARROW (Spatially Referenced Regression On Watershed attributes), which predicts Total Phosphorus has been developed by the Southeastern United States regions USGS, as part of the National Water Quality Assessment (NAWQA) program and the model accuracy was found to be 67%. However, landscape composition and configuration metrics which play a significant role in the source, transport and delivery of the nutrient have not been incorporated in the model. Including these matrices in the models parameterization will improve the models accuracy and improve decision making process for mitigating and managing NPS phosphorus in the region. The National Land Cover Data 2001 raster data will be used (since the base line is 2002) for the region (with 8321 watersheds ) with fragstats 4.1 and ArcGIS Desktop 10.1 for the analysis of landscape matrices, buffers and creating map layers. The result will be imported to the Southeast SPARROW model and will be analyzed. Resulting statistical significance and model accuracy will be assessed and predictions for those areas with no water quality monitoring station will be made.

  13. New England SPARROW Water-Quality Modeling to Assist with the Development of Total Maximum Daily Loads in the Connecticut River Basin

    NASA Astrophysics Data System (ADS)

    Moore, R. B.; Robinson, K. W.; Simcox, A. C.; Johnston, C. M.

    2002-05-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Environmental Protection Agency (USEPA) and the New England Interstate Water Pollution Control Commission (NEWIPCC), is currently preparing a water-quality model, called SPARROW, to assist in the regional total maximum daily load (TMDL) studies in New England. A model is required to provide estimates of nutrient loads and confidence intervals at unmonitored stream reaches. SPARROW (Spatially Referenced Regressions on Watershed Attributes) is a spatially detailed, statistical model that uses regression equations to relate total phosphorus and nitrogen (nutrient) stream loads to pollution sources and watershed characteristics. These statistical relations are then used to predict nutrient loads in unmonitored streams. The New England SPARROW model is based on a hydrologic network of 42,000 stream reaches and associated watersheds. Point source data are derived from USEPA's Permit Compliance System (PCS). Information about nonpoint sources is derived from data such as fertilizer use, livestock wastes, and atmospheric deposition. Watershed characteristics include land use, streamflow, time-of-travel, stream density, percent wetlands, slope of the land surface, and soil permeability. Preliminary SPARROW results are expected in Spring 2002. The New England SPARROW model is proposed for use in the TMDL determination for nutrients in the Connecticut River Basin, upstream of Connecticut. The model will be used to estimate nitrogen loads from each of the upstream states to Long Island Sound. It will provide estimates and confidence intervals of phosphorus and nitrogen loads, area-weighted yields of nutrients by watershed, sources of nutrients, and the downstream movement of nutrients. This information will be used to (1) understand ranges in nutrient levels in surface waters, (2) identify the environmental factors that affect nutrient levels in streams, (3) evaluate monitoring efforts for better determination of nutrient loads, and (4) evaluate management options for reducing nutrient loads to achieve water-quality goals.

  14. Identification of Geologic and Anthropogenic Sources of Phosphorus to Streams in California and Portions of Adjacent States, U.S.A., Using SPARROW Modeling

    NASA Astrophysics Data System (ADS)

    Domagalski, J. L.

    2013-12-01

    The SPARROW (Spatially Referenced Regressions On Watershed Attributes) model allows for the simulation of nutrient transport at un-gauged catchments on a regional scale. The model was used to understand natural and anthropogenic factors affecting phosphorus transport in developed, undeveloped, and mixed watersheds. The SPARROW model is a statistical tool that allows for mass balance calculation of constituent sources, transport, and aquatic decay based upon a calibration of a subset of stream networks, where concentrations and discharge have been measured. Calibration is accomplished using potential sources for a given year and may include fertilizer, geological background (based on bed-sediment samples and aggregated with geochemical map units), point source discharge, and land use categories. NHD Plus version 2 was used to model the hydrologic system. Land to water transport variables tested were precipitation, permeability, soil type, tile drains, and irrigation. For this study area, point sources, cultivated land, and geological background are significant phosphorus sources to streams. Precipitation and clay content of soil are significant land to water transport variables and various stream sizes show significance with respect to aquatic decay. Specific rock types result in different levels of phosphorus loading and watershed yield. Some important geological sources are volcanic rocks (andesite and basalt), granodiorite, glacial deposits, and Mesozoic to Cenozoic marine deposits. Marine sediments vary in their phosphorus content, but are responsible for some of the highest natural phosphorus yields, especially along the Central and Southern California coast. The Miocene Monterey Formation was found to be an especially important local source in southern California. In contrast, mixed metamorphic and igneous assemblages such as argillites, peridotite, and shales of the Trinity Mountains of northern California result in some of the lowest phosphorus yields. The agriculturally productive Central Valley of California has a low amount of background phosphorus in spite of inputs from streams draining upland areas. Many years of intensive agriculture may be responsible for the decrease of soil phosphorus in that area. Watersheds with significant background sources of phosphorus and large amounts of cultivated land had some of the highest per hectare yields. Seven different stream systems important for water management, or to describe transport processes, were investigated in detail for downstream changes in sources and loads. For example, the Klamath River (Oregon and California) has intensive agriculture and andesite-derived phosphorus in the upper reach. The proportion of agricultural-derived phosphorus decreases as the river flows into California before discharge to the ocean. The river flows through at least three different types of geological background sources from high to intermediate to very low. Knowledge of the role of natural sources in developed watersheds is critical for developing nutrient management strategies and these model results will have applicability for the establishment of realistic nutrient criteria.

  15. The Onset of a Novel Environmental Offset: A case study for diverse pollutant scheme in Australia.

    NASA Astrophysics Data System (ADS)

    Sengupta, A.; Arora, M.; Delbridge, N.; Pettigrove, V.; Feldman, D.

    2014-12-01

    Environmental offset schemes employ a crediting system to mitigate the impacts of pollutants. In this talk, we present a novel trade-off concept comparing diverse groups of pollutants: environmental flows, micropollutants (heavy metals, pesticides, estrogen compounds) and nutrients in a test watershed (Jacksons Creek), in the vicinity of Melbourne. A reservoir in the upper watershed, and a wastewater treatment plant (WTP) are the main sources of flow into Jacksons Creek. The current land use is a mix of agriculture, and rural, though rapid urbanization is anticipated with a 40% increase in the population by 2040. The creek is impacted by: 1) low flow, especially during dry periods (contribution from the reservoir drops dramatically), 2) nutrient enrichment (WTP and agricultural runoff), and 3) micropollutants-heavy metals (urban runoff), estrogenic compounds (WTP), and pesticides (agricultural runoff). In this offset framework, we evaluated current and future scenarios to identify the main stressor in Jacksons Creek. We collected monitoring data at 15 sites for separate 3 events. Then we developed a watershed model to assess sources of pollutant loads to the creek, using two different tools, Model for Urban Stormwater Improvement Conceptualisation (MUSIC) for the preliminary flow and water quality modeling, and eWater Source for integrated water resource management (IWRM), and a decision support system for stakeholders. Scenario analysis includes urbanization and population growth, and anticipated discharges from WTP and the reservoir. Measured nutrient concentrations were high for all sampling events. Micropollutants were detected at a concentration higher than the trigger value at several locations. Preliminary analysis shows that low flow is one of the major stressors in the creek causing elevated micropollutant and nutrient concentrations (non-point), and that discharge from the WTP is essential to maintain the minimum environmental flows, though nutrient enrichment downstream could occur. This study demonstrates an innovative case for evaluating net environmental benefits, and might hold important lessons for the design of offset schemes in comparable environments elsewhere.

  16. Comparison of seawater CO2 system in summer between the East China Sea shelf and the Peter the Great Bay of the Japan (East) Sea

    NASA Astrophysics Data System (ADS)

    Chuang, K. Y.; Tishchenko, P. Y.; Gong, G. C.; Chou, W. C.; Tishchenko, P. P.; Shkirnikova, E. M.

    2016-02-01

    Continental shelves are active sites of air-sea CO2 exchange and represent an important component of the global carbon budget. In this study, we investigated the CO2 system and pertinent hydrographic parameters in two distinct continental shelf systems in the Northwest Pacific in summer 2014: the East China Sea shelf (ECSS) and the Peter the Great Bay (PGB) of the Japan/East Sea. The results show that the average temperature, pH, chlorophyll a and nutrients in the ECSS are higher, but salinity, dissolved inorganic carbon, and fugacity of CO2 are lower than those in the PGB. Meanwhile, the ECSS acted as a sink of atmospheric CO2, but the PGB was a source. We suggest that the observed divergent behaviors in terms of CO2 absorption between the ECSS and the PGB may be associated with their difference in riverine runoff. Under the influence of the Yangtze River, the nutrient discharge into the ECSS is much higher than that into the PGB, where only a few small rivers empty into. The high nutrient discharge into the ECSS may stimulate high biological production, which may drawdown CO2 and thereby driving the ECSS to act as a CO2 sink despite high temperature in summer. On the contrary, the warming effect may dominate over the effect of biological production in the PGB due to the limited nutrient discharge, and thus turn the PGB to be a source of atmospheric CO2. The results of this study imply that riverine nutrient discharge may exert a large control on net ecosystem productivity in shelf areas, which may subsequently play a critical role on determining whether a shelf system acts as a source or a sink of atmospheric CO2.

  17. Light Is More Important Than Nutrient Ratios of Fertilization for Cymodocea nodosa Seedling Development.

    PubMed

    Alexandre, Ana; Silva, João; Santos, Rui

    2018-01-01

    Restoration of seagrass beds through seedlings is an alternative to the transplantation of adult plants that reduces the impact over donor areas and increases the genetic variability of restored meadows. To improve the use of Cymodocea nodosa seedlings, obtained from seeds germinated in vitro , in restoration programs, we investigated the ammonium and phosphate uptake rates of seedlings, and the synergistic effects of light levels (20 and 200 μmol quanta m -2 s -1 ) and different nitrogen to phosphorus molar ratios (40 μM N:10 μM P, 25 μM N:25 μM P, and 10 μM N:40 μM P) on the photosynthetic activity and growth of seedlings. The nutrient content of seedlings was also compared to the seed nutrient reserves to assess the relative importance of external nutrient uptake for seedling development. Eighty two percent of the seeds germinated after 48 days at a mean rate of 1.5 seeds per day. All seedlings under all treatments survived and grew during the 4 weeks of the experiment. Seedlings of C. nodosa acquired ammonium and phosphate from the incubation media while still attached to the seed, at rates of about twice of adult plants. The relevance of external nutrient uptake was further highlighted by the observation that seedlings' tissues were richer in nitrogen and phosphorus than non-germinated seeds. The uptake of ammonium followed saturation kinetics with a half saturation constant of 32 μM whereas the uptake of phosphate increased linearly with nutrient concentration within the range tested (5 - 100 μM). Light was more important than the nutrient ratio of fertilization for the successful development of the young seedlings. The seedlings' photosynthetic and growth rates were about 20% higher in the high light treatment, whereas different nitrogen to phosphorus ratios did not significantly affect growth. The photosynthetic responses of the seedlings to changes in the light level and their capacity to use external nutrient sources showed that seedlings of C. nodosa have the ability to rapidly acclimate to the surrounding light and nutrient environment while still attached to the seeds. C. nodosa seedlings experiencing fertilization under low light levels showed slightly enhanced growth if nourished with a balanced formulation, whereas a slight increase in growth was also observed with unbalanced formulations under a higher light level. Our results highlight the importance of high light availability at the seedling restoration sites.

  18. Medical Hydrogeology of Asian Deltas: Status of Groundwater Toxicants and Nutrients, and Implications for Human Health

    PubMed Central

    Hoque, Mohammad A.; Butler, Adrian P.

    2015-01-01

    Drinking water, a fluid primarily for human hydration, is also a source of mineral nutrients. Groundwater, a drinking water source for more than 70% of inhabitants living in Asian deltas, has received much attention because of its naturally occurring arsenic, but the linkage of arsenic toxicity with other water constituents has not been studied. In addition, although nutrients are generally provided by food, in under developed rural settings, where people subsist on low nutrient diets, drinking-water-nutrients may supply quantities vital to human health thereby preventing diseases. Here, we show, using augmented datasets from three Asian deltas (Bengal, Mekong, and Red River), that the chemical content of groundwater is such that in some areas individuals obtain up to 50% or more of the recommended daily intake (RDI) of some nutrients (e.g., calcium, magnesium, iron) from just two litres of drinking water. We also show some indications of a spatial association of groundwater nutrients and health outcome using demographic health data from Bangladesh. We therefore suggest that an understanding of the association of non-communicable disease and poor nutrition cannot be developed, particularly in areas with high levels of dissolved solids in water sources, without considering the contribution of drinking water to nutrient and mineral supply. PMID:26712780

  19. Uptake of Sulfate but Not Phosphate by Mycobacterium tuberculosis Is Slower than That for Mycobacterium smegmatis

    PubMed Central

    Song, Houhui

    2012-01-01

    Knowledge of the metabolic pathways used by Mycobacterium tuberculosis during infection is important for understanding its nutrient requirements and host adaptation. However, uptake, the first step in the utilization of nutrients, is poorly understood for many essential nutrients, such as inorganic anions. Here, we show that M. tuberculosis utilizes nitrate as the sole nitrogen source, albeit at lower efficiency than asparagine, glutamate, and arginine. The growth of the porin triple mutant M. smegmatis ML16 in media with limiting amounts of nitrate and sulfate as sole nitrogen and sulfur sources, respectively, was delayed compared to that of the wild-type strain. The uptake of sulfate was 40-fold slower than that of the wild-type strain, indicating that the efficient uptake of these anions is dependent on porins. The uptake by M. tuberculosis of sulfate and phosphate was approximately 40- and 10-fold slower than that of M. smegmatis, respectively, which is consistent with the slower growth of M. tuberculosis. However, the uptake of these anions by M. tuberculosis is orders of magnitude faster than diffusion through lipid membranes, indicating that unknown outer membrane proteins are required to facilitate this process. PMID:22194452

  20. Diet-related gut bacterial dysbiosis correlates with impaired development and increased mortality in the honey bee (Apis mellifera)

    USDA-ARS?s Scientific Manuscript database

    The importance of gut microbial communities for animal health has become increasingly clear. Early gut succession and diet-related shifts in bacterial community composition can be associated with a variety of acute and chronic diseases. Here we determined the effect of host niche and nutrient source...

  1. Nitrogen alters carbon dynamics during early succession in boreal forest

    Treesearch

    Steven D. Allison; Tracy B. Gartner; Michelle C. Mack; Krista McGuire; Kathleen Treseder

    2010-01-01

    Boreal forests are an important source of wood products, and fertilizers could be used to improve forest yields, especially in nutrient poor regions of the boreal zone. With climate change, fire frequencies may increase, resulting in a larger fraction of the boreal landscape present in early successional stages. Since most fertilization studies have focused on mature...

  2. Influence of elevated Fe, Zn, and Cd on uptake and translocation of mineral elements in common bean

    USDA-ARS?s Scientific Manuscript database

    Common bean is an important crop plant and source of human health related macro- and micronutrients. Common bean uptake these nutrients from the soil environment and transport them to various storage tissues using proteins and genes located in different tissues (Phan-Thein et al. 2010). However, alo...

  3. Nutrient budgets of two watersheds on the Fernow Experimental Forest

    Treesearch

    M. B. Adams; J. N. Kochenderfer; T. R. Angradi; P. J. Edwards

    1995-01-01

    Acidic deposition is an important non-point source pollutant in the Central Appalachian region that is responsible for elevated nitrogen (N) and sulfur (S) inputs to forest ecosystems. Nitrogen and calcium (Ca) budgets and plant tissue concentrations were compared for two watersheds, one that received three years of an artificial acidification treatment and an adjacent...

  4. Physicochemical and morphological analysis of ten tomato varieties identifies quality traits more readily manipulated through breeding and traditional selection methods

    USDA-ARS?s Scientific Manuscript database

    Tomatoes (Solanum lycopersicum L.) are an important source of nutrients in contemporary diets due to readily available fresh fruit and processed products, their popularity, and the sheer volume consumed. This study is part of a larger project undertaken by the Agricultural Research Service (ARS) to...

  5. A 3D parameterization of nutrients atmospheric deposition to the global ocean

    NASA Astrophysics Data System (ADS)

    Myriokefalitakis, S.; Nenes, A.; Baker, A. R.; Mihalopoulos, N.; Kanakidou, M.

    2016-12-01

    Atmospheric deposition of trace constituents, both of natural and anthropogenic origin, can act as a nutrient source into the open ocean and affect marine ecosystem functioning and subsequently the exchange of CO2 between the atmosphere and the global ocean. Dust is known as a major source of nutrients (such as iron and phosphorus) to the global ocean, but only a fraction of these nutrients is released in soluble form that can be assimilated by the ecosystems. The global atmospheric iron (Fe) and phosphorus (P) cycles are here parameterized in a global 3-D chemical transport model. Both primary emissions of total and soluble Fe and P associated with dust and combustion processes are taken into account. The impact of atmospheric acidity on nutrient solubility is parameterised based on experimental findings and model results are evaluated by comparison with available observations. The effect of air-quality changes on soluble nutrient deposition is studied by performing sensitivity simulations using preindustrial, present and future emission scenarios. The link between the soluble Fe and P atmospheric deposition and anthropogenic sources is also investigated. Overall, the response of the chemical composition of nutrient-containing aerosols to environmental changes is demonstrated and quantified.

  6. Chemical characterization of biochar and assessment of the nutrient dynamics by means of preliminary plant growth tests.

    PubMed

    Prasad, Munoo; Tzortzakis, Nikos; McDaniel, Nicola

    2018-06-15

    Biochar can be produced from several organic sources with varying nutrients and metal concentrations. Four commercial grade biochars were evaluated as peat substitute. Biochars were characterised for plant nutrients and for biological stability. The results showed that there were negligible quantities of N and P and generally high levels of K and high biological stability. When these materials were mixed with peat at 10, 25 and 50% and nutrients were added to bring them to the same level of nutrients as in fertilized peat, it was found that biochar mixtures considerably reduced the levels of calcium chloride/DTPA (CAT) extractable N (including nitrate), P, and electrical conductivity- greater extent with higher rates of biochar addition except for K. The pH and K levels were increased with biochar addition. The drop in EC has important implications regarding the use of other materials used to dilute peat, for example, composted green waste, the rate of dilution is limited due to high EC and biochar addition gives the potential for higher peat dilution of these materials. Nitrate and phosphorus are very vulnerable to leaching of these nutrients in the environment in peat substrates and the binding of these by biochar has implication for leaching and nutrient application strategy. Root development using Cress test and tomato plant height and biomass using containers, were in some cases better than peat indicating that biochar could be used to dilute peat e.g. for seedling production where root development and rapid growth are very important. Application of biochars resulted in a marked reduction of N (and P) in the plant. There were significant correlation between CAT extractable N and P and corresponding plant concentration, indicating the standard growing media test, CAT, would be suitable for assessing the nutrient status of peat biochar mixes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Nutrient production from dairy cattle manure and loading on arable land.

    PubMed

    Won, Seunggun; Shim, Soo-Min; You, Byung-Gu; Choi, Yoon-Seok; Ra, Changsix

    2017-01-01

    Along with increasing livestock products via intensive rearing, the accumulation of livestock manure has become a serious issue due to the fact that there is finite land for livestock manure recycling via composting. The nutrients from livestock manure accumulate on agricultural land and the excess disembogues into streams causing eutrophication. In order to systematically manage nutrient loading on agricultural land, quantifying the amount of nutrients according to their respective sources is very important. However, there is a lack of research concerning nutrient loss from livestock manure during composting or storage on farms. Therefore, in the present study we quantified the nutrients from dairy cattle manure that were imparted onto agricultural land. Through investigation of 41 dairy farms, weight reduction and volatile solids (VS), total nitrogen (TN), and total phosphorus (TP) changes of dairy cattle manure during the storage and composting periods were analyzed. In order to support the direct investigation and survey on site, the three cases of weight reduction during the storing and composting periods were developed according to i) experiment, ii) reference, and iii) theoretical changes in phosphorus content (ΔP = 0). The data revealed the nutrient loading coefficients (NLCs) of VS, TN, and TP on agricultural land were 1.48, 0.60, and 0.66, respectively. These values indicated that the loss of nitrogen and phosphorus was 40% and 34%, respectively, and that there was an increase of VS since bedding materials were mixed with excretion in the barn. As result of nutrient-footprint analyses, the amounts of TN and TP particularly entered on arable land have been overestimated if applying the nutrient amount in fresh manure. The NLCs obtained in this study may assist in the development of a database to assess the accurate level of manure nutrient loading on soil and facilitate systematic nutrient management.

  8. Recovery of essential nutrients from municipal solid waste – Impact of waste management infrastructure and governance aspects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zabaleta, Imanol, E-mail: imanol.zabaleta@eawag.ch; Rodic, Ljiljana, E-mail: ljiljana.rodic@gmail.com

    Every year 120–140 million tonnes of bio-waste are generated in Europe, most of which is landfilled, incinerated or stabilized and used as covering material in landfill operation. None of these practices enables the recovery of essential nutrients such as phosphorus (P) and nitrogen (N), which are in great demand for agricultural production. Recovery of these nutrients is a matter of international concern considering the non-renewable nature of P sources and the energy intensive production process required for the synthesis of N fertilizers. The objective of this research is to understand the relation between the municipal solid waste management (MSWM) system,more » both its the physical components and governance aspects, and the recovery of nutrients in Vitoria-Gasteiz (Basque Country) as a benchmark for European medium-size cities. The analysis shows that the existing physical infrastructure and facilities for bio-waste have high potential for nutrient recovery, 49% for N and 83% for P contained in bio-waste. However, governance aspects of the MSWM system such as legislation and user inclusivity play an important role and decrease the actual nutrient recovery to 3.4% and 7.4% for N and P respectively.« less

  9. Recovery of essential nutrients from municipal solid waste--Impact of waste management infrastructure and governance aspects.

    PubMed

    Zabaleta, Imanol; Rodic, Ljiljana

    2015-10-01

    Every year 120-140 million tonnes of bio-waste are generated in Europe, most of which is landfilled, incinerated or stabilized and used as covering material in landfill operation. None of these practices enables the recovery of essential nutrients such as phosphorus (P) and nitrogen (N), which are in great demand for agricultural production. Recovery of these nutrients is a matter of international concern considering the non-renewable nature of P sources and the energy intensive production process required for the synthesis of N fertilizers. The objective of this research is to understand the relation between the municipal solid waste management (MSWM) system, both its the physical components and governance aspects, and the recovery of nutrients in Vitoria-Gasteiz (Basque Country) as a benchmark for European medium-size cities. The analysis shows that the existing physical infrastructure and facilities for bio-waste have high potential for nutrient recovery, 49% for N and 83% for P contained in bio-waste. However, governance aspects of the MSWM system such as legislation and user inclusivity play an important role and decrease the actual nutrient recovery to 3.4% and 7.4% for N and P respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Fluvial sediment fingerprinting: literature review and annotated bibliography

    USGS Publications Warehouse

    Williamson, Joyce E.; Haj, Adel E.; Stamm, John F.; Valder, Joshua F.; Prautzch, Vicki L.

    2014-01-01

    The U.S. Geological Survey has evaluated and adopted various field methods for collecting real-time sediment and nutrient data. These methods have proven to be valuable representations of sediment and nutrient concentrations and loads but are not able to accurately identify specific source areas. Recently, more advanced data collection and analysis techniques have been evaluated that show promise in identifying specific source areas. Application of field methods could include studies of sources of fluvial sediment, otherwise referred to as sediment “fingerprinting.” The identification of sediment is important, in part, because knowing the primary sediment source areas in watersheds ensures that best management practices are incorporated in areas that maximize reductions in sediment loadings. This report provides a literature review and annotated bibliography of existing methodologies applied in the field of fluvial sediment fingerprinting. This literature review provides a bibliography of publications where sediment fingerprinting methods have been used; however, this report is not assumed to provide an exhaustive listing. Selected publications were categorized by methodology with some additional summary information. The information contained in the summary may help researchers select methods better suited to their particular study or study area, and identify methods in need of more testing and application.

  11. Solving Nutrient Loading in the Great Lakes: An Integrative, Interdisciplinary and Ambidextrous Approach

    NASA Astrophysics Data System (ADS)

    Borrello, M. C.; Keeton, T.; Foley, T.; Frost, A.; Green, N.; Isler, J.

    2014-12-01

    Environmental impacts from industrialized agriculture have been studied extensively over the past two decades. Degradation of surface water occurs, primarily as a result of nutrient loading, causing algal blooms in streams and lakes. Discovery of the toxin microcystin in Lake Erie, a drinking water source for some municipalities, has been associated with agricultural runoff and created a new awareness in the general public. This study used data gathered over ten years by local residents, high school students and undergraduates on surface water around the Lower Peninsula of Michigan to test a simple correlation of nutrients (soluble reactive phosphorus and nitrogen ammonia) along with the presence of specific antibiotics and antibiotic resistance to identify dominant sources of nutrient loading in the Lake Huron Watershed. Data gathering came from multiple sources and were processed by faculty and students at an undergraduate, liberal arts institution. College students from various disciplines worked with community members and municipalities in an effort to describe the problem. Students proposed solutions which by-passed relatively inactive regulatory agencies to create an integrative, interactive resolution that involved a surprisingly wide extent of the community. Addressing cultural norms beginning with those most affected by a degraded environment has reaped some success in changing behavior and moving towards a sustainable solution. The research conducted and supervised by undergraduate students has significance in the broader, professional area of geochemistry, environmental health and sustainable agriculture. That fact plays an important role in how the students see themselves in the process and what motivated them to: 1. Choose to participate in the research in the first place, 2. Reach out to the broader community (scientific and regional) to carry out their research and 3. Pursue solutions beyond the classroom and summer research experience.

  12. Woodchip bioreactors effectively treat aquaculture effluent

    USDA-ARS?s Scientific Manuscript database

    Nutrients, in particular nitrogen and phosphorus, can create eutrophication problems in any watershed. Preventing water quality impairment requires controlling nutrients from both point-source and non-point source discharges. Woodchip bioreactors are one relatively new approach that can be utilized ...

  13. Evaluation of soil and leaves nutrient on the growth of cultivated tabatbarito (Ficusdeltoidea jack.) in Makroman Village, Sambutan District of East Kalimantan, Indonesia

    NASA Astrophysics Data System (ADS)

    Manurung, H.; Kustiawan, W.; Kusuma, IW; Marjenah

    2018-04-01

    This study aimed to evaluate the soil and leaves nutrient status on the growth of cultivated tabatbarito (Ficusdeltoidea Jack) in various level ages. The field experiment was conducted during December 2015 to November 2016 at Makroman Village, Samarinda-East Kalimantan. On 6, 9, and 12 months old after planting (MAP) the data was collected to evaluate the plant height, leaf number, branch number, biomass, soil and leaves nutrient concentrations. The results showed that the average pH of soil was 3.92±0.06, categorized as a very acid. The concentration of soil nutrients were: nitrogen (1.13±0.31 %), phosphorus (0.01±0.01 ppm), potassium (297.60±50.11 ppm), calcium (2.97±1.79 cmol(+)Kg-1), and magnesium (3.69±2.30 cmol(+)Kg-1). The leaf nutrient concentration was 1.74±1.42 % (N), 0.25±0.19 % (P), 1.86±0.15 % (Ca), 1.88±0.29 % (Mg). The soil nutrients concentration (N, P, Mg) and the leaf nutrient (N, P, K, Ca, Mg) has a correlates with plant height increment, branch number increment, and biomass increment. The results indicated that the N, P, K, Ca, Mg played an important role in the growth of F. deltoidea and this nutrient should be considered well when this plant will be cultivated as a source of the medicinal plant on a large scale.

  14. Groundwater nutrient concentrations near an incised midwestern stream: Effects of floodplain lithology and land management

    USGS Publications Warehouse

    Schilling, K.E.; Jacobson, P.

    2008-01-01

    It has been recognized that subsurface lithology plays an important role in controlling nutrient cycling and transport in riparian zones. In Iowa and adjacent states, the majority of alluvium preserved in small and moderate sized valleys consists of Holocene-age organic-rich, and fine-grained loam. In this paper, we describe and evaluate spatial and temporal patterns of lithology and groundwater nutrient concentrations at a riparian well transect across Walnut Creek at the Neal Smith National Wildlife Refuge in Jasper County, Iowa. Land treatment on one side of the stream reduced the grass cover to bare ground and allowed assessment of the effects of land management on nutrient concentrations. Results indicated that groundwater in Holocene alluvium is very nutrient rich with background concentrations of nitrogen, phosphorus and dissolved organic carbon that exceed many environmentally sensitive criteria. Average concentrations of ammonium exceeded 1 mg/l in several wells under grass cover whereas nitrate concentrations exceeded 20 mg/l in wells under bare ground. Phosphate concentrations ranged from 0.1 to 1.3 mg/l and DOC concentrations exceeded 5 mg/l in many wells. Denitrification, channel incision, land management and geologic age of alluvium were found to contribute to variable nutrient loading patterns at the site. Study results indicated that riparian zones of incised streams downcutting through nutrient-rich Holocene alluvium can potentially be a significant source of nutrient loadings to streams. ?? 2008 Springer Science+Business Media B.V.

  15. What does atmospheric nitrogen contribute to the Gulf of Mexico area of oxygen depletion?

    NASA Astrophysics Data System (ADS)

    Rabalais, N. N.

    2017-12-01

    The northern Gulf of Mexico influenced by the freshwater discharge and nutrient loads of the Mississippi River watershed is the location of the world's second largest human-caused area of coastal hypoxia. Over 500 more anthropogenic `dead zones' exist in coastal waters. The point source inputs within the Mississippi River watershed account for about ten per cent of the total nitrogen inputs to the Mississippi River, with the remaining being nonpoint source. Atmospheric nitrogen makes up about sixteen per cent of the nonpoint source input of nitrogen. Most of the NOx is generated within the Ohio River watershed from the burning of fossil fuels. Some remains to be deposited into the same watershed, but the airshed deposits much of the NOx along the U.S. eastern seaboard, including Chesapeake Bay, which also has a hypoxia problem. Most of the volatilized ammonia is produced from fertilizers or manure within the upper Mississippi River watershed, is deposited within a localized airshed, and is not airborne long distances like the NOx. The atmospheric nitrogen input to the coastal waters affected by hypoxia is considered to be minimal. In the last half century, the nitrogen load from the Mississippi River to the Gulf of Mexico has increased 300 percent. During this period, low oxygen bottom-waters have developed in the coastal waters and worsened coincident with the increase in the nitrogen load. The 31-yr average size of the bottom-water hypoxia area in the Gulf of Mexico is 13,800 square kilometers, well over the 5,000 square kilometers goal of the Mississippi River Nutrient/Gulf of Mexico Hypoxia Task Force. Knowing the amounts and sources of excess nutrients to watersheds with adjacent coastal waters experiencing eutrophication and hypoxia is important in the management strategies to reduce those nutrients and improve water quality.

  16. Present and Past Impact of Glacially Sourced Dust on Iron Fertilization of the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Shoenfelt, E. M.; Winckler, G.; Kaplan, M. R.; Sambrotto, R.; Bostick, B. C.

    2016-12-01

    An increase in iron-containing dust flux and a more efficient biological pump in the Southern Ocean have been associated with the CO2 drawdown and global cooling of the Last Glacial Maximum (LGM). While iron (Fe) mineralogy is known to affect Fe bioavailability through its impact on Fe solubility, there are limited studies investigating the importance of Fe mineralogy in dust fluxes to the Southern Ocean, and no previous studies investigating interactions between eukaryotic phytoplankton and particulate-phase Fe in natural dusts applicable to Southern Ocean environments. Since physically weathered bedrock becomes less soluble as it becomes weathered and oxidized, we hypothesized that glacially sourced dusts would contain more Fe(II)-rich primary minerals and would be more bioavailable than dusts from areas not impacted by glaciers. We used a series of natural dusts from Patagonia as the sole Fe source in incubation experiments with the model diatom Phaeodactylum tricornutum, and evaluated Fe bioavailability using culture growth rates, cell density, and variable fluorescence. Monod curves were also used to evaluate the efficiency of the different particulates as sources of nutrient Fe. Using these Monod curves fit to growth rates plotted against particulate Fe concentrations, we observed that 1) Fe(II)-rich primary silicates were significantly more effective as an Fe source to diatoms than Fe(III)-rich oxides, that 2) Fe(II) content itself was responsible for the difference in Fe bioavailability/efficiency of the Fe nutrient source, and that 3) surface interactions with the particulates were important. In an effort to explore the possibility that Fe mineralogy impacted Fe bioavailability in past oceans, we will present our hypotheses regarding productivity and Fe mineralogy/bioavailability through the last glacial cycle.

  17. Impact of biomass burning on nutrient deposition to the global ocean

    NASA Astrophysics Data System (ADS)

    Kanakidou, Maria; Myriokefalitakis, Stelios; Daskalakis, Nikos; Mihalopoulos, Nikolaos; Nenes, Athanasios

    2017-04-01

    Atmospheric deposition of trace constituents, both of natural and anthropogenic origin, can act as a nutrient source into the open ocean and affect marine ecosystem functioning and subsequently the exchange of CO2 between the atmosphere and the global ocean. Dust is known as a major source of nutrients (Fe and P) into the atmosphere, but only a fraction of these nutrients is released in soluble form that can be assimilated by the ecosystems. Dust is also known to enhance N deposition by interacting with anthropogenic pollutants and neutralisation of part of the acidity of the atmosphere by crustal alkaline species. These nutrients have also primary anthropogenic sources including combustion emissions. The global atmospheric N [1], Fe [2] and P [3] cycles have been parameterized in the global 3-D chemical transport model TM4-ECPL, accounting for inorganic and organic forms of these nutrients, for all natural and anthropogenic sources of these nutrients including biomass burning, as well as for the link between the soluble forms of Fe and P atmospheric deposition and atmospheric acidity. The impact of atmospheric acidity on nutrient solubility has been parameterised based on experimental findings and the model results have been evaluated by extensive comparison with available observations. In the present study we isolate the significant impact of biomass burning emissions on these nutrients deposition by comparing global simulations that consider or neglect biomass burning emissions. The investigated impact integrates changes in the emissions of the nutrients as well as in atmospheric oxidants and acidity and thus in atmospheric processing and secondary sources of these nutrients. The results are presented and thoroughly discussed. References [1] Kanakidou M, S. Myriokefalitakis, N. Daskalakis, G. Fanourgakis, A. Nenes, A. Baker, K. Tsigaridis, N. Mihalopoulos, Past, Present and Future Atmospheric Nitrogen Deposition, Journal of the Atmospheric Sciences (JAS-D-15-0278) Vol 73, 2039-2047, 2016. [2] Myriokefalitakis,S., Daskalakis,N., Mihalopoulos,N., Baker, A.R., Nenes, A., and Kanakidou,M.: Changes in dissolved iron deposition to the oceans driven by human activity: a 3-D global modelling study, Biogeosciences, 12, 3973-3992, 2015. [3] Myriokefalitakis S., Nenes A., Baker A.R., Mihalopoulos N., Kanakidou M.: Bioavailable atmospheric phosphorous supply to the global ocean: a 3-D global modelling study, Biogeosciences, 13, 6519-6543, 2016.

  18. Water Masses and Nutrient Sources to the Gulf of Maine

    PubMed Central

    Townsend, David W.; Pettigrew, Neal R.; Thomas, Maura A.; Neary, Mark G.; McGillicuddy, Dennis J.; O’Donnell, James

    2016-01-01

    The Gulf of Maine, a semi-enclosed basin on the continental shelf of the northwest Atlantic Ocean, is fed by surface and deep water flows from outside the Gulf: Scotian Shelf Water from the Nova Scotian shelf that enters the Gulf at the surface, and Slope Water that enters at depth and along the bottom through the Northeast Channel. There are two types of Slope Water, Labrador Slope Water (LSW) and Warm Slope Water (WSW); it is these deep water masses that are the major source of dissolved inorganic nutrients to the Gulf. It has been known for some time that the volume inflow of Slope Waters of either type that enters the Gulf of Maine is variable, that it co-varies with the magnitude of inflowing Scotian Shelf Water, and that periods of greater inflows of Scotian Shelf Water have become more frequent in recent years, accompanied by reduced Slope Water inflows. We present here analyses of a ten-year record of data collected by moored sensors in Jordan Basin, in the interior Gulf of Maine, and in the Northeast Channel, along with recent and historical hydrographic and nutrient data, that help reveal the nature of Scotian Shelf Water and Slope Water inflows. Proportional inflows of nutrient-rich Slope Waters and nutrient-poor Scotian Shelf Waters alternate episodically with one another on time scales of months to several years, creating a variable nutrient field upon which the biological productivities of the Gulf of Maine and Georges Bank depend. Unlike decades past, the inflows of Slope Waters of either type do not appear to be correlated with the North Atlantic Oscillation, which had been shown earlier to influence the relative proportions of the two Slope Waters, WSW and LSW, that enter the Gulf. We suggest that of greater importance in recent years are more frequent, episodic influxes of colder, fresher, less dense, and low-nutrient Scotian Shelf Water into the Gulf of Maine, and concomitant reductions in the inflow of deep, nutrient-rich Slope Waters. We also discuss evidence of modified Gulf Stream ring water that penetrated to Jordan Basin in summer of 2013. PMID:27721519

  19. Water Masses and Nutrient Sources to the Gulf of Maine.

    PubMed

    Townsend, David W; Pettigrew, Neal R; Thomas, Maura A; Neary, Mark G; McGillicuddy, Dennis J; O'Donnell, James

    2015-01-01

    The Gulf of Maine, a semi-enclosed basin on the continental shelf of the northwest Atlantic Ocean, is fed by surface and deep water flows from outside the Gulf: Scotian Shelf Water from the Nova Scotian shelf that enters the Gulf at the surface, and Slope Water that enters at depth and along the bottom through the Northeast Channel. There are two types of Slope Water, Labrador Slope Water (LSW) and Warm Slope Water (WSW); it is these deep water masses that are the major source of dissolved inorganic nutrients to the Gulf. It has been known for some time that the volume inflow of Slope Waters of either type that enters the Gulf of Maine is variable, that it co-varies with the magnitude of inflowing Scotian Shelf Water, and that periods of greater inflows of Scotian Shelf Water have become more frequent in recent years, accompanied by reduced Slope Water inflows. We present here analyses of a ten-year record of data collected by moored sensors in Jordan Basin, in the interior Gulf of Maine, and in the Northeast Channel, along with recent and historical hydrographic and nutrient data, that help reveal the nature of Scotian Shelf Water and Slope Water inflows. Proportional inflows of nutrient-rich Slope Waters and nutrient-poor Scotian Shelf Waters alternate episodically with one another on time scales of months to several years, creating a variable nutrient field upon which the biological productivities of the Gulf of Maine and Georges Bank depend. Unlike decades past, the inflows of Slope Waters of either type do not appear to be correlated with the North Atlantic Oscillation, which had been shown earlier to influence the relative proportions of the two Slope Waters, WSW and LSW, that enter the Gulf. We suggest that of greater importance in recent years are more frequent, episodic influxes of colder, fresher, less dense, and low-nutrient Scotian Shelf Water into the Gulf of Maine, and concomitant reductions in the inflow of deep, nutrient-rich Slope Waters. We also discuss evidence of modified Gulf Stream ring water that penetrated to Jordan Basin in summer of 2013.

  20. Maternal nutrition and birth outcomes.

    PubMed

    Abu-Saad, Kathleen; Fraser, Drora

    2010-01-01

    In this review, the authors summarize current knowledge on maternal nutritional requirements during pregnancy, with a focus on the nutrients that have been most commonly investigated in association with birth outcomes. Data sourcing and extraction included searches of the primary resources establishing maternal nutrient requirements during pregnancy (e.g., Dietary Reference Intakes), and searches of Medline for "maternal nutrition"/[specific nutrient of interest] and "birth/pregnancy outcomes," focusing mainly on the less extensively reviewed evidence from observational studies of maternal dietary intake and birth outcomes. The authors used a conceptual framework which took both primary and secondary factors (e.g., baseline maternal nutritional status, socioeconomic status of the study populations, timing and methods of assessing maternal nutritional variables) into account when interpreting study findings. The authors conclude that maternal nutrition is a modifiable risk factor of public health importance that can be integrated into efforts to prevent adverse birth outcomes, particularly among economically developing/low-income populations.

  1. Pancreatic Cancer Metabolism: Breaking It Down to Build It Back Up.

    PubMed

    Perera, Rushika M; Bardeesy, Nabeel

    2015-12-01

    How do cancer cells escape tightly controlled regulatory circuits that link their proliferation to extracellular nutrient cues? An emerging theme in cancer biology is the hijacking of normal stress response mechanisms to enable growth even when nutrients are limiting. Pancreatic ductal adenocarcinoma (PDA) is the quintessential aggressive malignancy that thrives in nutrient-poor, hypoxic environments. PDAs overcome these limitations through appropriation of unorthodox strategies for fuel source acquisition and utilization. In addition, the interplay between evolving PDA and whole-body metabolism contributes to disease pathogenesis. Deciphering how these pathways function and integrate with one another can reveal novel angles of therapeutic attack. Alterations in tumor cell and systemic metabolism are central to the biology of pancreatic cancer. Further investigation of these processes will provide important insights into how these tumors develop and grow, and suggest new approaches for its detection, prevention, and treatment. ©2015 American Association for Cancer Research.

  2. Nutrient signaling and developmental timing of maturation.

    PubMed

    Danielsen, E Thomas; Moeller, Morten E; Rewitz, Kim F

    2013-01-01

    In animals, developmental timing of sexual maturation is tightly linked to nutrition and growth. Maturation only occurs once the juvenile has acquired sufficient nutrients and completed enough growth to produce a reproductively mature adult with a genetically predefined body size. Animals therefore adjust the duration of juvenile development to the dietary conditions. When nutrients are scarce the juvenile growth phase is extended to compensate for slow growth. Conversely, development is accelerated in nutrient rich environments where animals rapidly reach their genetic target size. To achieve such flexibility, nutrient-dependent growth regulators must feed into the endocrine system that controls the timing of maturation. Work on the fruit fly Drosophila has revealed a central role of secreted signal molecules with similarity to the conserved insulin-like growth factors (IGFs) in the decision making process. These molecules are involved in checkpoints that allow the endocrine system to decide whether to release the steroid hormone, ecdysone, that triggers maturation or extent development, depending on nutrient levels and growth status. Importantly, different dietary components influence timing of maturation in Drosophila, with proteins having the greatest impact; fat and sugar play a minor role, at least within the limits of what can be considered a balanced diet. Remarkably, excess dietary sugar concentrations that mimic physiological conditions associated with diabetes, negatively affect growth and delays maturation. Altogether, this shows that the source of energy in the diet is important for timing and may provide a paradigm for understanding the emerging links between diet, obesity and diabetes, and the onset of puberty. Here, we provide an overview of the system underlying developmental timing of maturation in Drosophila and review recent success in understanding its coupling to nutrition and growth. © 2013 Elsevier Inc. All rights reserved.

  3. BILL E. KUNKLE INTERDISCIPLINARY BEEF SYMPOSIUM: Impact of mineral and vitamin status on beef cattle immune function and health.

    PubMed

    Kegley, E B; Ball, J J; Beck, P A

    2016-12-01

    The importance of optimal mineral and vitamin nutrition on improving immune function and health has been recognized in the preceding decades. In the southeast, beef cattle are raised predominantly on forages that may be limiting in nutrients for optimal health, especially trace minerals such as Cu, Zn, and Se. Clinical deficiencies of these nutrients produce classic symptoms that are common to several nutrient deficiencies (e.g., slow growth and unthrifty appearance); however, subclinical deficiencies are more widespread and more difficult to detect, yet may result in broader economic losses. Dietary mineral concentrations often considered adequate for maximum growth, reproductive performance, or optimal immune function have been found to be insufficient at times of physiological stress (weaning, transport, comingling, etc.), when feed intake is reduced. The impacts of these deficiencies on beef cattle health are not apparent until calves have been subjected to these stressors. Health problems that are exacerbated by mineral or vitamin deficiencies include bovine respiratory disease, footrot, retained placenta, metritis, and mastitis. Many micronutrients have antioxidant properties through being components of enzymes and proteins that benefit animal health. In dairy cattle, high levels of supplemental Zn are generally associated with reduced somatic cell counts and improved foot health, possibly reflecting the importance of Zn in maintaining effective epithelial barriers. Neutrophils isolated from ruminants deficient in Cu or Se have reduced ability to kill ingested bacteria in vitro. Supplemental vitamin E, in its role as an intracellular antioxidant has been shown to decrease morbidity in stressed calves. There is more understanding of the important biological role that these nutrients play in the functioning of the complex and multifaceted immune system. However, there is still much to be learned about determining the micronutrient status of herds (and hence when supplementation will be beneficial), requirements for different genetic and environmental conditions, understanding the bioavailability of these nutrients from feedstuffs and forages, quantifying the bioavailability of different supplemental sources of these nutrients, and identifying the impact of dietary antagonists on these nutrients.

  4. Nutrient sequestration in Aquitaine lakes (SW France) limits nutrient flux to the coastal zone

    NASA Astrophysics Data System (ADS)

    Buquet, Damien; Anschutz, Pierre; Charbonnier, Céline; Rapin, Anne; Sinays, Rémy; Canredon, Axel; Bujan, Stéphane; Poirier, Dominique

    2017-12-01

    Oligotrophic coastal zones are disappearing from increased nutrient loading. The quantity of nutrients reaching the coast is determined not only by their original source (e.g. fertilizers used in agriculture, waste water discharges) and the land use, but also by the pathways through which nutrients are cycled from the source to the river mouth. In particular, lakes sequester nutrients and, hence, reduce downstream transfer of nutrients to coastal environments. Here, we quantify the impact of Aquitaine great lakes on the fluxes of dissolved macro-nutrients (N, P, Si) to the Bay of Biscay. For that, we have measured nutrient concentrations and fluxes in 2014 upstream and downstream lakes of Lacanau and Carcans-Hourtin, which belongs to the catchment of the Arcachon Bay, which is the largest coastal lagoon of the Bay of Biscay French coast. Data were compared to values obtained from the Leyre river, the main freshwater and nutrient source for the lagoon. Results show that processes in lakes greatly limit nutrient flux to the lagoon compared to fluxes from Leyre river, although the watershed is similar in terms of land cover. In lakes, phosphorus and silicon are trapped for long term in the sediment, silicon as amorphous biogenic silica and phosphorus as organic P and P associated with Fe-oxides. Nitrogen that enters lakes mostly as nitrate is used for primary production. N is mineralized in the sediment; a fraction diffuses as ammonium. N2 production through benthic denitrification extracts only 10% of dissolved inorganic nitrogen from the aquatic system. The main part is sequestered in organic-rich sediment that accumulates below 5 m depth in both lakes.

  5. THE ASSOCIATION OF LAND USE/LAND COVER AND NUTRIENT LEVELS IN MARYLAND STREAMS

    EPA Science Inventory

    Anthropogenic nonpoint sources of nutrients are known to cause accelerated eutrophication of estuaries. The Chesapeake Bay is one of the world's largest estuaries exhibiting the eutrophication problem caused by pollution from various land use activities. The sources contributing ...

  6. 21 CFR 101.54 - Nutrient content claims for “good source,” “high,” “more,” and “high potency.”

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... antioxidant activity; that is, when there exists scientific evidence that, following absorption from the... of the nutrients with recognized antioxidant activity. The list of nutrients shall appear in letters... the term “antioxidant.” A nutrient content claim that characterizes the level of antioxidant nutrients...

  7. 21 CFR 101.54 - Nutrient content claims for “good source,” “high,” “more,” and “high potency.”

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... antioxidant activity; that is, when there exists scientific evidence that, following absorption from the... of the nutrients with recognized antioxidant activity. The list of nutrients shall appear in letters... the term “antioxidant.” A nutrient content claim that characterizes the level of antioxidant nutrients...

  8. Leaf litter decomposition and elemental change in three Appalachian mountain streams of different pH

    Treesearch

    Steven W. Solada; Sue A. Perry; William B. Perry

    1996-01-01

    The decomposition of leaf litter provides the primary nutrient source for many of the headwater mountain streams in forested catchments. An investigation of factors affected by global change that influence organic matter decomposition, such as temperature and pH, is important in understanding the dynamics of these systems. We conducted a study of leaf litter elemental...

  9. An Archeological Overview and Management Plan for the Mississippi Army Ammunition Plant, Hancock County, Mississippi

    DTIC Science & Technology

    1984-06-18

    high rainfall of the area are specifically noted by Smith et al. (1981:59) as causing severe leaching of nutrients from the soils of the area. The...Pleistocene megafauna such as mastodon, which were virtually gone by this time. The increased importance of plant re- sources at this time is suggested in many

  10. Enhancement of lipid production in two marine microalgae under different levels of nitrogen and phosphorus deficiency.

    PubMed

    Adenan, Nurul Salma; Yusoff, Fatimah Md; Medipally, Srikanth Reddy; Shariff, M

    2016-07-01

    Microalgae are important food sources for aquaculture animals. Among the different factors which influence the biochemical composition of microalgae, nitrogen and phosphorus are two of the most important nutrient sources for growth and development. The present study aimed to assess the effects of nitrogen and phosphorus deficiency on lipid production of Chlorella sp. and Chaetoceros calcitrans. Early stationary phase culture of these species were exposed to different stress levels of nitrogen and phosphorus (25%, 50% and 75% of the full NO(3)-N and PO(4)-P concentration in the Conway media), and solvent extraction and gas-liquid chromatography methods were performed for analysis of lipid and fatty acid composition. The results revealed that lipid production in these two species significantly increased (P<0.05) as nitrogen and phosphorus decreased. The fatty acid proportion remained unaffected under nitrogen deficiency, while phosphorus limitation resulted in a decrease of saturated fatty acids and promoted a higher content of omega-3 fatty acids in these species. The protein and carbohydrate levels were also altered under limited nutrients. Therefore, these conditions could be used for enhanced lipid production in microalgae for aquaculture and other industrial applications.

  11. Chlorella vulgaris: A Multifunctional Dietary Supplement with Diverse Medicinal Properties.

    PubMed

    Panahi, Yunes; Darvishi, Behrad; Jowzi, Narges; Beiraghdar, Fatemeh; Sahebkar, Amirhossein

    2016-01-01

    Chlorella vulgaris is a green unicellular microalgae with biological and pharmacological properties important for human health. C. vulgaris has a long history of use as a food source and contains a unique and diverse composition of functional macro- and micro-nutrients including proteinsChlorella vulgaris is a green unicellular microalgae with biological and pharmacological properties important for human health. C. vulgaris has a long history of use as a food source and contains a unique and diverse composition of functional macro- and micro-nutrients including proteins, omega-3 polyunsaturated fatty acids, polysaccharides, vitamins and minerals. Clinical trials have suggested that supplementation with C. vulgaris can ameliorate amelioration hyperlipidemia and hyperglycemia, and protect against oxidative stress, cancer and chronic obstructive pulmonary disease. In this review, we summarize the findings on the health benefits of Chlorella supplementation and the molecular mechanisms underlying these effects., omega-3 polyunsaturated fatty acids, polysaccharides, vitamins and minerals. Clinical trials have suggested that supplementation with C. vulgaris can ameliorate amelioration hyperlipidemia and hyperglycemia, and protect against oxidative stress, cancer and chronic obstructive pulmonary disease. In this review, we summarize the findings on the health benefits of Chlorella supplementation and the molecular mechanisms underlying these effects.

  12. Nutrients in the Nation?s streams and groundwater: National Findings and Implications

    USGS Publications Warehouse

    Dubrovsky, Neil M.; Hamilton, Pixie A.

    2010-01-01

    A comprehensive national analysis of the distribution and trends of nutrient concentrations in streams and groundwater from 1992 through 2004 is provided by the National Water-Quality Assessment (NAWQA) Program of the United States Geological Survey (USGS). Findings describe the distribution and causes of varying nutrient concentrations in streams and groundwater throughout the Nation and examine the primary sources that contribute to elevated concentrations. Results show that excessive nutrient enrichment is a widespread cause of ecological degradation in streams and that nitrate contamination of groundwater used for drinking water, particularly shallow domestic wells in agricultural areas, is a continuing human-health concern. Finally, despite major Federal, State and local nonpoint-source nutrient control efforts for streams and watersheds across the Nation, USGS trend analyses for 1993?2003 suggest limited national progress to reduce the impacts of nonpoint sources of nutrients during this period. Instead, concentrations have remained the same or increased in many streams and aquifers across the Nation, and continue to pose risks to aquatic life and human health. This Fact Sheet highlights selected national findings and their implications, and serves as a companion product to the complete analysis reported in the USGS Circular titled ?The Quality of Our Nation?s Waters?Nutrients in the Nation?s Streams and Groundwater, 1992?2004.?

  13. Potential for nutrient recovery and biogas production from blackwater, food waste and greywater in urban source control systems.

    PubMed

    Kjerstadius, H; Haghighatafshar, S; Davidsson, Å

    2015-01-01

    In the last decades, the focus on waste and wastewater treatment systems has shifted towards increased recovery of energy and nutrients. Separation of urban food waste (FW) and domestic wastewaters using source control systems could aid this increase; however, their effect on overall sustainability is unknown. To obtain indicators for sustainability assessments, five urban systems for collection, transport, treatment and nutrient recovery from blackwater, greywater and FW were investigated using data from implementations in Sweden or northern Europe. The systems were evaluated against their potential for biogas production and nutrient recovery by the use of mass balances for organic material, nutrients and metals over the system components. The resulting indicators are presented in units suitable for use in future sustainability studies or life-cycle assessment of urban waste and wastewater systems. The indicators show that source control systems have the potential to increase biogas production by more than 70% compared with a conventional system and give a high recovery of phosphorus and nitrogen as biofertilizer. The total potential increase in gross energy equivalence for source control systems was 20-100%; the greatest increase shown is for vacuum-based systems.

  14. Nutrition Session Summary

    NASA Technical Reports Server (NTRS)

    Lane, Helen; Stein, T. P.

    1999-01-01

    Nutrition deficiencies affect multiple systems including muscle, bone, cardiovascular, renal, and gastrointestinal. Humans require many nutrients, ranging from the macronutrients (water, protein, energy sources) to micronutrients (minerals, vitamins). The ability to withstand shortfalls in intake of individual nutrients ranges from one or two days (e.g., water) to weeks (energy, protein, potassium) and months (some vitamins, minerals). In addition to putting humans at risk for nutrition deficiencies, space flight may also change the absorption, hence the pharmacodynamics, of several important medications. Papers given in this session dealt with all of these nutritional and pharmacological factors related to space flight: (1) Protein metabolism and muscle formation. (2) Pharmacodynamics. (3) Calcium metabolism and bone formation/resorption. and (4) Fluid and electrolytes.

  15. Nutrient starvation leading to triglyceride accumulation activates the Entner Doudoroff pathway in Rhodococcus jostii RHA1.

    PubMed

    Juarez, Antonio; Villa, Juan A; Lanza, Val F; Lázaro, Beatriz; de la Cruz, Fernando; Alvarez, Héctor M; Moncalián, Gabriel

    2017-02-27

    Rhodococcus jostii RHA1 and other actinobacteria accumulate triglycerides (TAG) under nutrient starvation. This property has an important biotechnological potential in the production of sustainable oils. To gain insight into the metabolic pathways involved in TAG accumulation, we analysed the transcriptome of R jostii RHA1 under nutrient-limiting conditions. We correlate these physiological conditions with significant changes in cell physiology. The main consequence was a global switch from catabolic to anabolic pathways. Interestingly, the Entner-Doudoroff (ED) pathway was upregulated in detriment of the glycolysis or pentose phosphate pathways. ED induction was independent of the carbon source (either gluconate or glucose). Some of the diacylglycerol acyltransferase genes involved in the last step of the Kennedy pathway were also upregulated. A common feature of the promoter region of most upregulated genes was the presence of a consensus binding sequence for the cAMP-dependent CRP regulator. This is the first experimental observation of an ED shift under nutrient starvation conditions. Knowledge of this switch could help in the design of metabolomic approaches to optimize carbon derivation for single cell oil production.

  16. Effects of common seagrass restoration methods on ecosystem structure in subtropical seagrass meadows.

    PubMed

    Bourque, Amanda S; Fourqurean, James W

    2014-06-01

    Seagrass meadows near population centers are subject to frequent disturbance from vessel groundings. Common seagrass restoration methods include filling excavations and applying fertilizer to encourage seagrass recruitment. We sampled macrophytes, soil structure, and macroinvertebrate infauna at unrestored and recently restored vessel grounding disturbances to evaluate the effects of these restoration methods on seagrass ecosystem structure. After a year of observations comparing filled sites to both undisturbed reference and unrestored disturbed sites, filled sites had low organic matter content, nutrient pools, and primary producer abundance. Adding a nutrient source increased porewater nutrient pools at disturbed sites and in undisturbed meadows, but not at filled sites. Environmental predictors of infaunal community structure across treatments included soil texture and nutrient pools. At the one year time scale, the restoration methods studied did not result in convergence between restored and unrestored sites. Particularly in filled sites, soil conditions may combine to constrain rapid development of the seagrass community and associated infauna. Our study is important for understanding early recovery trajectories following restoration using these methods. Published by Elsevier Ltd.

  17. Benthic Food Webs of the Chukchi and Beaufort Seas: Relative Importance of Ultimate Carbon Sources in a Changing Climate

    NASA Astrophysics Data System (ADS)

    Dunton, K. H.; Schonberg, S. V.; Mctigue, N.; Bucolo, P. A.; Connelly, T. L.; McClelland, J. W.

    2014-12-01

    Changes in sea-ice cover, coastal erosion, and freshwater run-off have the potential to greatly influence carbon assimilation pathways and affect trophic structure in benthic communities across the western Arctic. In the Chukchi Sea, variations in the duration and timing of ice cover affect the delivery of ice algae to a relatively shallow (40-50 m) shelf benthos. Although ice algae are known as an important spring carbon subsidy for marine benthic fauna, ice algal contributions may also help initiate productivity of an active microphytobenthos. Recent studies provide clear evidence that the microphytobenthos are photosynthetically active, and have sufficient light and nutrients for in situ growth. The assimilation of benthic diatoms from both sources may explain the 13C enrichment observed in benthic primary consumers throughout the northern Chukchi. On the eastern Beaufort Sea coast, shallow (2-4 m) estuarine lagoon systems receive massive subsidies of terrestrial carbon that is assimilated by a benthic fauna of significant importance to upper trophic level species, but again, distinct 13C enrichment in benthic primary consumers suggests the existence of an uncharacterized food source. Since ice algae are absent, we believe the 13C enrichment in benthic fauna is caused by the assimilation of benthic microalgae, as reflected in seasonally high benthic chlorophyll in spring under replete light and nutrient conditions. Our observations suggest that changes in ice cover, on both temporal and spatial scales, are likely to have significant effects on the magnitude and timing of organic matter delivery to both shelf and nearshore systems, and that locally produced organic matter may become an increasingly important carbon subsidy that affects trophic assimilation and secondary ecosystem productivity.

  18. Opening the black box: evaluation of nutrient nonpoint source management for estuarine watersheds

    EPA Science Inventory

    Over the last 40 years, there have been significant improvements in water quality and ecosystem condition in estuaries stressed by nutrient enrichment. However, documented improvements have been largely attributed to reductions in point sources. In contrast, improvement of coasta...

  19. Toxic Cyanobacterial Bloom Triggers in Missisquoi Bay, Lake Champlain, as Determined by Next-Generation Sequencing and Quantitative PCR

    PubMed Central

    Fortin, Nathalie; Munoz-Ramos, Valentina; Bird, David; Lévesque, Benoît; Whyte, Lyle G.; Greer, Charles W.

    2015-01-01

    Missisquoi Bay (MB) is a temperate eutrophic freshwater lake that frequently experiences toxic Microcystis-dominated cyanobacterial blooms. Non-point sources are responsible for the high concentrations of phosphorus and nitrogen in the bay. This study combined data from environmental parameters, E. coli counts, high-throughput sequencing of 16S rRNA gene amplicons, quantitative PCR (16S rRNA and mcyD genes) and toxin analyses to identify the main bloom-promoting factors. In 2009, nutrient concentrations correlated with E. coli counts, abundance of total cyanobacterial cells, Microcystis 16S rRNA and mcyD genes and intracellular microcystin. Total and dissolved phosphorus also correlated significantly with rainfall. The major cyanobacterial taxa were members of the orders Chroococcales and Nostocales. The genus Microcystis was the main mcyD-carrier and main microcystin producer. Our results suggested that increasing nutrient concentrations and total nitrogen:total phosphorus (TN:TP) ratios approaching 11:1, coupled with an increase in temperature, promoted Microcystis-dominated toxic blooms. Although the importance of nutrient ratios and absolute concentrations on cyanobacterial and Microcystis dynamics have been documented in other laboratories, an optimum TN:TP ratio for Microcystis dominance has not been previously observed in situ. This observation provides further support that nutrient ratios are an important determinant of species composition in natural phytoplankton assemblages. PMID:25984732

  20. The fungus gardens of leaf-cutter ants undergo a distinct physiological transition during biomass degradation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Eric L.; Aylward, Frank O.; Kim, Young-Mo

    Leaf-cutter ants are dominant herbivores in ecosystems throughout the Neotropics. Rather than directly consuming the fresh foliar biomass they harvest, these ants use it to cultivate specialized fungus gardens. Although recent investigations have shed light on how plant biomass is degraded in fungus gardens, the cycling of nutrients that takes place in these specialized microbial ecosystems is still not well understood. Here, using metametabolomics and metaproteomics techniques, we examine the dynamics of nutrient turnover and biosynthesis in these gardens. Our results reveal that numerous free amino acids and sugars are depleted throughout the process of biomass degradation, indicating that easilymore » accessible nutrients from plant material are readily consumed by microbes in these ecosystems. Accumulation of cellobiose and lignin derivatives near the end of the degradation process is consistent with previous findings of cellulases and laccases produced by Leucoagaricus gongylophorus, the fungus cultivated by leaf-cutter ants. Our results also suggest that ureides may be an important source of nitrogen in fungus gardens, especially during nitrogen-limiting conditions. No free arginine was detected in our metametabolomics experiments despite evidence that the host ants cannot produce this amino acid, suggesting that biosynthesis of this metabolite may be tightly regulated in the fungus garden. These results provide new insights into the dynamics of nutrient cycling that underlie this important ant-fungus symbiosis.« less

  1. Nutritional controls of food reward.

    PubMed

    Fernandes, Maria F; Sharma, Sandeep; Hryhorczuk, Cecile; Auguste, Stephanie; Fulton, Stephanie

    2013-08-01

    The propensity to select and consume palatable nutrients is strongly influenced by the rewarding effects of food. Neural processes integrating reward, emotional states and decision-making can supersede satiety signals to promote excessive caloric intake and weight gain. While nutritional habits are influenced by reward-based neural mechanisms, nutrition and its impact on energy metabolism, in turn, plays an important role in the control of food reward. Feeding modulates the release of metabolic hormones that have an important influence on central controls of appetite. Nutrients themselves are also an essential source of energy fuel, while serving as key metabolites and acting as signalling molecules in the neural pathways that control feeding and food reward. Along these lines, this review discusses the impact of nutritionally regulated hormones and select macronutrients on the behavioural and neural processes underlying the rewarding effects of food. Copyright © 2013 Canadian Diabetes Association. Published by Elsevier Inc. All rights reserved.

  2. Food waste as nutrient source in heterotrophic microalgae cultivation.

    PubMed

    Pleissner, Daniel; Lam, Wan Chi; Sun, Zheng; Lin, Carol Sze Ki

    2013-06-01

    Glucose, free amino nitrogen (FAN), and phosphate were recovered from food waste by fungal hydrolysis using Aspergillus awamori and Aspergillus oryzae. Using 100g food waste (dry weight), 31.9 g glucose, 0.28 g FAN, and 0.38 g phosphate were recovered after 24h of hydrolysis. The pure hydrolysate has then been used as culture medium and nutrient source for the two heterotrophic microalgae Schizochytrium mangrovei and Chlorella pyrenoidosa, S. mangrovei and C. pyrenoidosa grew well on the complex food waste hydrolysate by utilizing the nutrients recovered. At the end of fermentation 10-20 g biomass were produced rich in carbohydrates, lipids, proteins, and saturated and polyunsaturated fatty acids. Results of this study revealed the potential of food waste hydrolysate as culture medium and nutrient source in microalgae cultivation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Human waste: An underestimated source of nutrient pollution in coastal seas of Bangladesh, India and Pakistan.

    PubMed

    Amin, Md Nurul; Kroeze, Carolien; Strokal, Maryna

    2017-05-15

    Many people practice open defecation in south Asia. As a result, lot of human waste containing nutrients such as nitrogen (N) and phosphorus (P) enter rivers. Rivers transport these nutrients to coastal waters, resulting in marine pollution. This source of nutrient pollution is, however, ignored in many nutrient models. We quantify nutrient export by large rivers to coastal seas of Bangladesh, India and Pakistan, and the associated eutrophication potential in 2000 and 2050. Our new estimates for N and P inputs from human waste are one to two orders of magnitude higher than earlier model calculations. This leads to higher river export of nutrients to coastal seas, increasing the risk of coastal eutrophication potential (ICEP). The newly calculated future ICEP, for instance, Godavori river is 3 times higher than according to earlier studies. Our modeling approach is simple and transparent and can easily be applied to other data-poor basins. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Potential Health Benefits of Combining Yogurt and Fruits Based on Their Probiotic and Prebiotic Properties.

    PubMed

    Fernandez, Melissa Anne; Marette, André

    2017-01-01

    Fruit and yogurt have been identified individually as indicators of healthy dietary patterns. Fruits are relatively low in energy density and are an excellent source of antioxidants and prebiotic fibers and polyphenols, which can promote digestive health. Yogurt, on the other hand, is a nutrient-dense food that is a good source of dairy protein, calcium, magnesium, vitamin B-12, conjugated linoleic acid, and other key fatty acids. In addition, it contains beneficial bacterial cultures, making it a potential source of probiotics. Yogurt's unique fermented food matrix provides added health benefits by enhancing nutrient absorption and digestion. Combining the intake of yogurt and fruit could provide probiotics, prebiotics, high-quality protein, important fatty acids, and a mixture of vitamins and minerals that have the potential to exert synergistic effects on health. Yogurt consumption has been associated with reduced weight gain and a lower incidence of type 2 diabetes, whereas fruits have established effects on reducing the risk of cardiovascular disease. Yogurt and fruits can be eaten together and may exert combined health benefits through potential prebiotic and probiotic effects. Furthermore, substituting high-energy, nutrient-deficient snacks with fruit and yogurt could reduce the intake of high-calorie obesogenic foods. In light of the positive cardiometabolic impacts of fruit and yogurt and their association with healthy dietary patterns, there is sufficient evidence to warrant further exploration into the potential synergistic health benefits of a combined intake of fruit and yogurt. © 2017 American Society for Nutrition.

  5. Web-based decision support and visualization tools for water quality management in the Chesapeake Bay watershed

    USGS Publications Warehouse

    Mullinix, C.; Hearn, P.; Zhang, H.; Aguinaldo, J.

    2009-01-01

    Federal, State, and local water quality managers charged with restoring the Chesapeake Bay ecosystem require tools to maximize the impact of their limited resources. To address this need, the U.S. Geological Survey (USGS) and the Environmental Protection Agency's Chesapeake Bay Program (CBP) are developing a suite of Web-based tools called the Chesapeake Online Assessment Support Toolkit (COAST). The goal of COAST is to help CBP partners identify geographic areas where restoration activities would have the greatest effect, select the appropriate management strategies, and improve coordination and prioritization among partners. As part of the COAST suite of tools focused on environmental restoration, a water quality management visualization component called the Nutrient Yields Mapper (NYM) tool is being developed by USGS. The NYM tool is a web application that uses watershed yield estimates from USGS SPAtially Referenced Regressions On Watershed (SPARROW) attributes model (Schwarz et al., 2006) [6] to allow water quality managers to identify important sources of nitrogen and phosphorous within the Chesapeake Bay watershed. The NYM tool utilizes new open source technologies that have become popular in geospatial web development, including components such as OpenLayers and GeoServer. This paper presents examples of water quality data analysis based on nutrient type, source, yield, and area of interest using the NYM tool for the Chesapeake Bay watershed. In addition, we describe examples of map-based techniques for identifying high and low nutrient yield areas; web map engines; and data visualization and data management techniques.

  6. The Importance of Animal Source Foods for Nutrient Sufficiency in the Developing World: The Zambia Scenario.

    PubMed

    Zhang, Zhiying; Goldsmith, Peter D; Winter-Nelson, Alex

    2016-05-05

    There have been successful interventions fortifying staple foods to mobilize micronutrients as well as agricultural efforts to raise yields of staple foods to increase food availability. Zambia serves as an interesting case study because since 1961 there has been a notable decline in the availability of animal source foods (ASFs) and pulses and a significant increase in the supply of cassava and vegetable oils. The shift in food availability was partly attributed to the agricultural success in high-yielding and drought-resistant varieties that made cassava and oil crops more affordable and readily available. In this research, we explore another policy strategy that involves ASF as a mechanism to help remedy micronutrient inadequacies in a population. A scenario modeling analysis compares the changes in the nutrient profile of the Zambian diet through adding either staple plant source foods (PSFs) or ASFs. The scenarios under study involve the addition of (1) 18 fl oz of whole cow's milk; (2) 60 g of beef, 30 g of chicken, and 5 g of beef liver; (3) milk plus meat; or (4) 83 g of maize flour, 123 g of cassava, and other staple PSF, that is, isocaloric to the "milk + meat" group. The findings alert program planners and policy makers to the value of increasing the availability, accessibility, and utilization of ASF to simultaneously address multiple nutrient deficiencies, as well as the nutrition challenges that remain when expanding the availability of plant-based staples. © The Author(s) 2016.

  7. Potential Health Benefits of Combining Yogurt and Fruits Based on Their Probiotic and Prebiotic Properties123

    PubMed Central

    2017-01-01

    Fruit and yogurt have been identified individually as indicators of healthy dietary patterns. Fruits are relatively low in energy density and are an excellent source of antioxidants and prebiotic fibers and polyphenols, which can promote digestive health. Yogurt, on the other hand, is a nutrient-dense food that is a good source of dairy protein, calcium, magnesium, vitamin B-12, conjugated linoleic acid, and other key fatty acids. In addition, it contains beneficial bacterial cultures, making it a potential source of probiotics. Yogurt’s unique fermented food matrix provides added health benefits by enhancing nutrient absorption and digestion. Combining the intake of yogurt and fruit could provide probiotics, prebiotics, high-quality protein, important fatty acids, and a mixture of vitamins and minerals that have the potential to exert synergistic effects on health. Yogurt consumption has been associated with reduced weight gain and a lower incidence of type 2 diabetes, whereas fruits have established effects on reducing the risk of cardiovascular disease. Yogurt and fruits can be eaten together and may exert combined health benefits through potential prebiotic and probiotic effects. Furthermore, substituting high-energy, nutrient-deficient snacks with fruit and yogurt could reduce the intake of high-calorie obesogenic foods. In light of the positive cardiometabolic impacts of fruit and yogurt and their association with healthy dietary patterns, there is sufficient evidence to warrant further exploration into the potential synergistic health benefits of a combined intake of fruit and yogurt. PMID:28096139

  8. The water quality of the River Enborne, UK: insights from high-frequency monitoring

    NASA Astrophysics Data System (ADS)

    Halliday, Sarah; Skeffington, Richard; Wade, Andrew; Bowes, Mike; Gozzard, Emma; Palmer-Felgate, Elizabeth; Newman, Johnathan; Jarvie, Helen; Loewenthal, Matt

    2014-05-01

    The River Enborne is a rural lowland catchment, impacted by agricultural runoff, and septic tank and sewage treatment works (STWs) discharges. Between November 2009 and February 2012, the river was instrumented with in situ analytical equipment to take hourly measurements of total reactive phosphorus (TRP), using a Systea Micromac C; nitrate, using a Hach Lange Nitratax; and pH, chlorophyll, dissolved oxygen, conductivity, turbidity and water temperature, using a YSI 6600 Multi-parameter sonde. In addition, weekly 'grab samples' were also collected and analysed for a wide range of chemical determinands including major ions, nutrients, and trace elements. The catchment land use is largely agricultural, with wheat the dominant crop, and the average population density is 123 persons per sq. km. The river water is largely derived from calcareous groundwater, with a mean calcium concentration of 68.5 mg/l, and high nitrogen and phosphorus concentrations, with mean nitrate and TRP concentrations of 3.96 mg/l-N and 0.17 mg/l-P respectively. A mass-balance for the catchment demonstrated that agricultural fertiliser is the dominant source of annual loads of both nitrogen and phosphorus, accounting for 77 % and 84 % respectively. However, the concentration data show that sewage effluent discharges have a disproportionate effect on the river nitrogen and phosphorus dynamics, with the diurnal STW discharge signal discernable in the high-frequency nutrient dynamics. The nutrient dynamics and correlation structure of the data indicate a substantial contribution of groundwater and agricultural runoff to stream nitrate concentrations, whereas discharges from septic tank systems and sewage treatment works are a more important source of phosphorus. The high-frequency turbidity and conductivity dynamics reveal key information about the seasonal changes controlling the system dynamics, with marked differences in diurnal conductivity dynamics at the onset of riparian shading linked to the decreased importance of the photosynthetically-driven cycle of bicarbonate concentration. Only 4 % of the phosphorus input and 9 % of the nitrogen input is exported from the catchment by the river, highlighting the importance of catchment process understanding in predicting nutrient concentrations. High-frequency monitoring will be a key to developing this vital process understanding.

  9. Salmon-mediated nutrient flux in selected streams of the Columbia River basin, USA

    USGS Publications Warehouse

    Kohler, Andre E.; Kusnierz, Paul C.; Copeland, Timothy; Venditti, David A.; Denny, Lytle; Gable, Josh; Lewis, Bert; Kinzer, Ryan; Barnett, Bruce; Wipfli, Mark S.

    2013-01-01

    Salmon provide an important resource subsidy and linkage between marine and land-based ecosystems. This flow of energy and nutrients is not uni-directional (i.e., upstream only); in addition to passive nutrient export via stream flow, juvenile emigrants actively export nutrients from freshwater environments. In some cases, nutrient export can exceed import. We evaluated nutrient fluxes in streams across central Idaho, USA using Chinook salmon (Oncorhynchus tshawytscha) adult escapement and juvenile production data from 1998 to 2008. We found in the majority of stream-years evaluated, adults imported more nutrients than progeny exported; however, in 3% of the years, juveniles exported more nutrients than their parents imported. On average, juvenile emigrants exported 22 ± 3% of the nitrogen and 30 ± 4% of the phosphorus their parents imported. This relationship was density dependent and nonlinear; during periods of low adult abundance juveniles were larger and exported up to 194% and 268% of parental nitrogen and phosphorus inputs, respectively. We highlight minimum escapement thresholds that appear to 1) maintain consistently positive net nutrient flux and 2) reduce the average proportional rate of export across study streams. Our results suggest a state-shift occurs when adult spawner abundance falls below a threshold to a point where the probability of juvenile nutrient exports exceeding adult imports becomes increasingly likely.

  10. Stanley Corrsin Award Talk: Fluid Mechanics of Fungi and Slime

    NASA Astrophysics Data System (ADS)

    Brenner, Michael

    2013-11-01

    There are interesting fluid mechanics problems everywhere, even in the most lowly and hidden corners of forest floors. Here I discuss some questions we have been working on in recent years involving fungi and slime. A critical issue for the ecology of fungi and slime is nutrient availability: nutrient sources are highly heterogeneous, and strategies are necessary to find food when it runs out. In the fungal phylum Ascomycota, spore dispersal is the primary mechanism for finding new food sources. The defining feature of this phylum is the ascus, a fluid filled sac from which spores are ejected, through a build up in osmotic pressure. We outline the (largely fluid mechanical) design constraints on this ejection strategy, and demonstrate how it provides strong constraints for the diverse morphologies of spores and asci found in nature. The core of the argument revisits a classical problem in elastohydrodynamic lubrication from a different perspective. A completely different strategy for finding new nutrient is found by slime molds and fungi that stretch out - as a single organism- over enormous areas (up to hectares) over forest floors. As a model problem we study the slime mold Physarum polycephalum, which forages with a large network of connected tubes on the forest floors. Localized regions in the network find nutrient sources and then pump the nutrients throughout the entire organism. We discuss fluid mechanical mechanisms for coordinating this transport, which generalize peristalsis to pumping in a heterogeneous network. We give a preliminary discussion to how physarum can detect a nutrient source and pump the nutrient throughout the organism.

  11. Delivery and Establishing Slow Release Carbon Source to the Hanford Vadose Zone Using Colloidal Silica Suspension Injection and Subsequent Gelation - Laboratory Study

    NASA Astrophysics Data System (ADS)

    Zhong, L.; Lee, M. H.; Lee, B.; Yang, S.

    2016-12-01

    Delivery of nutrient to and establish a slow release carbon source in the vadose zone and capillary fringe zone is essential for setting up of a long-lasting bioremediation of contaminations in those zones. Conventional solution-based injection and infiltration approaches are facing challenges to achieve the delivery and remedial goals. Aqueous silica suspensions undergo a delayed gelation process under favorite geochemical conditions. The delay in gelation provides a time window for the injection of the suspension into the subsurface; and the gelation of the amendment-silica suspension enables the amendment-laden gel to stay in the target zone and slowly release the constituents for contaminant remediation. This approach can potentially be applied to deliver bio-nutrients to the vadose zone and capillary fringe zone for enhanced bioremediation and achieve remedial goals. This research was conducted to demonstrate delayed gelation of colloidal silica suspensions when carbon sources were added and to prove the gelation occurs in sediments under vadose conditions. Sodium lactate, vegetable oil, ethanol, and molasses were tested as the examples of carbon source (or nutrient) amendments. The rheological properties of the silica suspensions during the gelation were characterized. The influence of silica, salinity, nutrient concentrations, and the type of nutrients was studied. The kinetics of nutrient release from silica-nutrient gel was quantified using molasses as the example, and the influence of suspension gelation time was evaluated. The injection behavior of the suspensions was investigated by monitoring their viscosity changes and the injection pressures when the suspensions were delivered into sediment columns.

  12. Soluble dust as source of nutrients to the oceans and the role of humans

    NASA Astrophysics Data System (ADS)

    Tsigaridis, K.; Kanakidou, M.; Myriokefalitakis, S.; Nikolaou, P.; Daskalakis, N.; Theodosi, C.; Nenes, A.; Mihalopoulos, N.

    2014-12-01

    Atmospheric deposition of trace constituents, both of natural and anthropogenic origin, can act as a nutrient source into the open ocean and affect marine ecosystem functioning and subsequently the exchange of CO2 between the atmosphere and the global ocean. Dust is known as a major source of nutrients (Fe and P) into the atmosphere, but only a fraction of these nutrients is released in soluble form that can be assimilated by the ecosystems. Dust is also known to enhance N deposition by interacting with anthropogenic pollutants and neutralisation of part of the acidity of the atmosphere by crustal alkaline species. The link between the soluble iron (Fe) and phosphorus (P) atmospheric deposition and atmospheric acidity, as well as anthropogenic sources, is investigated. The global atmospheric Fe, P and N cycle are parameterized in the global 3-D chemical transport model TM4-ECPL. Both primary emissions of total and soluble Fe and P associated with dust and combustion processes are taken into account, as well as inorganic and organic N emissions. The impact of atmospheric acidity on nutrient solubility is parameterised based on experimental findings. The model results are evaluated by comparison with available observations. The impact of air-quality changes on soluble nutrient deposition is studied by performing sensitivity simulations using preindustrial, present and future emission scenarios. The response of the chemical composition of nutrient-containing aerosols to environmental changes is demonstrated and quantified. This work has been supported by ARISTEIA - PANOPLY grant co-financed by European Union (ESF) and Greek national funds NSRF.

  13. New insights into impacts of anthropogenic nutrients on urban ecosystem processes on the Southern California coastal shelf: Introduction and synthesis

    NASA Astrophysics Data System (ADS)

    Howard, Meredith D. A.; Kudela, Raphael M.; McLaughlin, Karen

    2017-02-01

    Anthropogenic nutrient inputs are one of the most important factors contributing to eutrophication of coastal waters. Coastal upwelling regions are naturally highly variable, exhibiting faster flushing and lower retention times than estuarine systems. As such, these regions are considered more resilient to anthropogenic influences than other coastal waters. Recent studies have shown our perception of the sustainability of these systems may be flawed and that anthropogenic nutrients can have an impact at local and regional spatial scales within these larger upwelling ecosystems. Maintenance of an outfall pipe discharging wastewater effluent to the Southern California Bight (SCB) provided an opportunity to study effects of anthropogenic nutrient inputs on a near-shore coastal ecosystem. The diversion of wastewater effluent from a primary, offshore outfall to a secondary, near-shore outfall set up a large-scale, in situ experiment allowing researchers to track the fate of wastewater plumes as they were "turned off" in one area and "turned on" in another. In this introduction to a special issue, we synthesize results of one such wastewater diversion conducted by the Orange County Sanitation District (OCSD) during fall 2012. Anthropogenic nitrogen (N) from point-source discharges altered biogeochemical cycling and the community composition of bacteria and phytoplankton. Nitrification of ammonium to nitrate in wastewater effluent close to outfalls constituted a significant source of N utilized by the biological community that should be considered in quantifying "new" production. The microbial-loop component of the plankton community played a significant role, exemplified by a large response of heterotrophic bacteria to wastewater effluent that resulted in nutrient immobilization within the bacterial food web. This response, combined with the photosynthetic inhibition of phytoplankton due to disinfection byproducts, suppressed phytoplankton responses. Our findings have ramifications for future studies and regulatory monitoring, emphasizing the need to consider chemical and biological responses to wastewater effluent in assessing effects of anthropogenic nutrient inputs on urbanized coastal ecosystems.

  14. Deoiledjatropha seed cake is a useful nutrient for pullulan production.

    PubMed

    Choudhury, Anirban Roy; Sharma, Nishat; Prasad, G S

    2012-03-30

    Ever increasing demand for fossil fuels is a major factor for rapid depletion of these non-renewable energy resources, which has enhanced the interest of finding out alternative sources of energy. In recent years jatropha seed oil has been used extensively for production of bio-diesel and has shown significant potential to replace petroleum fuels at least partially. De-oiled jatropha seed cake (DOJSC) which comprises of approximately 55 to 65% of the biomass is a byproduct of bio-diesel industry. DOJSC contains toxic components like phorbol esters which restricts its utilization as animal feed. Thus along with the enhancement of biodiesel production from jatropha, there is an associated problem of handling this toxic byproduct. Utilization of DOJSC as a feed stock for production of biochemicals may be an attractive solution to the problem.Pullulan is an industrially important polysaccharide with several potential applications in food, pharmaceuticals and cosmetic industries. However, the major bottleneck for commercial utilization of pullulan is its high cost. A cost effective process for pullulan production may be developed using DOJSC as sole nutrient source which will in turn also help in utilization of the byproduct of bio-diesel industry. In the present study, DOJSC has been used as a nutrient for production of pullulan, in place of conventional nutrients like yeast extract and peptone. Process optimization was done in shake flasks, and under optimized conditions (8% DOJSC, 15% dextrose, 28°C temperature, 200 rpm, 5% inoculum, 6.0 pH) 83.98 g/L pullulan was obtained. The process was further validated in a 5 L laboratory scale fermenter. This is the first report of using DOJSC as nutrient for production of an exopolysaccharide. Successful use of DOJSC as nutrient will help in finding significant application of this toxic byproduct of biodiesel industry. This in turn also have a significant impact on cost reduction and may lead to development of a cost effective green technology for pullulan production.

  15. Deoiledjatropha seed cake is a useful nutrient for pullulan production

    PubMed Central

    2012-01-01

    Background Ever increasing demand for fossil fuels is a major factor for rapid depletion of these non-renewable energy resources, which has enhanced the interest of finding out alternative sources of energy. In recent years jatropha seed oil has been used extensively for production of bio-diesel and has shown significant potential to replace petroleum fuels at least partially. De-oiled jatropha seed cake (DOJSC) which comprises of approximately 55 to 65% of the biomass is a byproduct of bio-diesel industry. DOJSC contains toxic components like phorbol esters which restricts its utilization as animal feed. Thus along with the enhancement of biodiesel production from jatropha, there is an associated problem of handling this toxic byproduct. Utilization of DOJSC as a feed stock for production of biochemicals may be an attractive solution to the problem. Pullulan is an industrially important polysaccharide with several potential applications in food, pharmaceuticals and cosmetic industries. However, the major bottleneck for commercial utilization of pullulan is its high cost. A cost effective process for pullulan production may be developed using DOJSC as sole nutrient source which will in turn also help in utilization of the byproduct of bio-diesel industry. Results In the present study, DOJSC has been used as a nutrient for production of pullulan, in place of conventional nutrients like yeast extract and peptone. Process optimization was done in shake flasks, and under optimized conditions (8% DOJSC, 15% dextrose, 28°C temperature, 200 rpm, 5% inoculum, 6.0 pH) 83.98 g/L pullulan was obtained. The process was further validated in a 5 L laboratory scale fermenter. Conclusion This is the first report of using DOJSC as nutrient for production of an exopolysaccharide. Successful use of DOJSC as nutrient will help in finding significant application of this toxic byproduct of biodiesel industry. This in turn also have a significant impact on cost reduction and may lead to development of a cost effective green technology for pullulan production. PMID:22462652

  16. Policy Guidance From a Multi-scale Suite of Natural Field and Digital Laboratories of Change: Hydrological Catchment Studies of Nutrient and Pollutant Source Releases, Waterborne Transport-Transformations and Mass Flows in Water Ecosystems

    NASA Astrophysics Data System (ADS)

    Destouni, G.

    2008-12-01

    Continental fresh water transports and loads excess nutrients and pollutants from various land surface sources, through the landscape, into downstream inland and coastal water environments. Our ability to understand, predict and control the eutrophication and the pollution pressures on inland, coastal and marine water ecosystems relies on our ability to quantify these mass flows. This paper synthesizes a series of hydro- biogeochemical studies of nutrient and pollutant sources, transport-transformations and mass flows in catchment areas across a range of scales, from continental, through regional and national, to individual drainage basin scales. Main findings on continental scales include correlations between country/catchment area, population and GDP and associated pollutant and nutrient loading, which differ significantly between world regions with different development levels. On regional scales, essential systematic near-coastal gaps are identified in the national monitoring of nutrient and pollutant loads from land to the sea. Combination of the unmonitored near-coastal area characteristics with the relevant regional nutrient and pollutant load correlations with these characteristics shows that the unmonitored nutrient and pollutant mass loads to the sea may often be as large as, or greater than the monitored river loads. Process studies on individual basin- scales show long-term nutrient and pollutant memories in the soil-groundwater systems of the basins, which may continue to uphold large mass loading to inland and coastal waters long time after mitigation of the sources. Linked hydro-biogeochemical-economic model studies finally demonstrate significant comparative advantages of policies that demand explicit quantitative account of the uncertainties implied by these monitoring gaps and long-term nutrient-pollution memories and time lags, and other knowledge, data and model limitations, instead of the now common neglect or subjective implicit handling of such uncertainties in strategies and practices for combating water pollution and eutrophication.

  17. Phosphorus Availability, Phytoplankton Community Dynamics, and Taxon-Specific Phosphorus Status in the Gulf of Aqaba, Red Sea

    NASA Astrophysics Data System (ADS)

    Mackey, K. R.; Labiosa, R. G.; Calhoun, M.; Street, J. H.; Post, A. F.; Paytan, A.

    2006-12-01

    The relationships among phytoplankton taxon-specific phosphorus-status, phytoplankton community composition, and nutrient levels were assessed over three seasons in the Gulf of Aqaba, Red Sea. During summer and fall, stratified surface waters were depleted of nutrients and picophytoplankton populations comprised the majority of cells (80% and 88% respectively). In winter, surface nutrient concentrations were higher and larger phytoplankton were more abundant (63%). Cell specific alkaline phosphatase activity (APA) derived from enzyme labeled fluorescence was consistently low (less than 5%) in the picophytoplankton throughout the year, whereas larger cells expressed elevated APA during the summer and fall but less in the winter. A nutrient addition bioassay during the fall showed that, relative to control, APA was reduced by half in larger cells following addition of orthophosphate, whereas the APA of picophytoplankton remained low (less than 1%) across all treatments and the control. These results indicate that the most abundant phytoplankton are not limited by orthophosphate and only some subpopulations (particularly of larger cells) exhibit orthophosphate-limitation throughout the year. Our results indicate that orthophosphate availability influences phytoplankton ecology, correlating with shifts in phytoplankton community structure and the nutrient status of individual cells. The role of dissolved organic phosphorus as an important phosphorus source for marine phytoplankton in oligotrophic settings and the need for evaluating nutrient limitation at the taxa and/or single cell level (rather than inferring it from nutrient concentrations and ratios or bulk enzyme activity measurements) are highlighted.

  18. BEST MANAGEMENT PRACTICES FOR THE CONTROL OF NUTRIENTS FROM URBAN NONPOINT SOURCES

    EPA Science Inventory

    While the costs and benefits associated with the point source control of nutrients are relatively well defined, considerable uncertainties remain in the efficiency and long-term costs associated with the best management practices (BMPs) used to redcuce loads from nonpoint and dif...

  19. The Ins and Outs of USDA Nutrient Composition

    USDA-ARS?s Scientific Manuscript database

    The USDA National Nutrient Database for Standard Reference (SR) is the major source of food composition data in the United States, providing the foundation for most food composition databases in the public and private sectors. Sources of data used in SR include analytical studies, food manufacturer...

  20. The impact of submarine ground water discharge on a coastal ecosystem of the southern Baltic Sea: Results from the BONUS+ project AMBER

    NASA Astrophysics Data System (ADS)

    Vogler, Susann; Szymczycha, Beata; Gentz, Thorben; Dellwig, Olaf; Kotwiki, Lech; Endler, Rudolf; Pempkowiak, Janusz; Marcin Weslawski, Jan; Schlüter, Michael; Böttcher, Michael E.

    2010-05-01

    Besides direct surface water input of dissolved and particulate compounds (eg nutrients, metals) via rivers into coastal seas, submarine ground water discharge (SGD) is increasingly recognized to be an important factor. In spite of the recognition that many land-sea interfaces of the world are characterised by SGD, it is still unclear how important SGD via springs, seeps, or diffusive outflows is in terms of biogeochemical budgets for the Baltic Sea coastal regions. The main reason that this has not been caught up so far to a precision that is typical for other freshwater inputs is that direct discharge of groundwater into the coastal zone is often difficult to quantify. The influence of SGD is expected to be of particular socio-economic relevance as it influences eutrophication in near-coastal ecosystems and to be under pressure by anthropogenic activity and climate change. Therefore, the impact of near-shore submarine ground water discharge (SGD) on coastal ecosystems of the southern Baltic Sea is investigated as part of the AMBER project within the BONUS+ initiative. In AMBER, the quantitative importance of SGD on nutrient, metabolite, and trace metal budgets is investigated for parts of the Baltic Sea. Results will have implications to understand the role of SGD as a nutrient source and will provide data for further implementation into model environments for the prediction of scenarios of future environmental changes. Besides trace metals, nutrients, methane, DIC and metabolites species, a further focus forms the impact of SGD on biota. Stable isotopes (C-13, S-34, O-18) are planed to be used to identify sources, sinks, and abiotic and microbial conversions of dissolved and particulate compounds. Salinity and temperature profiles as well as Ra and Rn isotopes will help to identify and quantify SGD. Sediment structures potentially acting as aquifers are characterized by geochemical, sedimentological, and geophysical methods. During several sampling campaigns in 2009, seep-type SGD was investigated in the Puck Bay off the Polish coast. It is found that, as one of the potentially different ground water-derived sources, fresh ground waters escape from permeable sediments in form of localized seeps near the shore-line. The geochemical composition and vertical efflux rates of these ground waters are determined by usingpore water lances and seepage meters. Analyses revealed that the ground waters were sulfidic and the source for a number of elements in the water column including DIC and phosphate. Results will be discussed in terms of biogeochemical element transformations and consequences for the element fluxes into the water column.

  1. Contribution of Nutrient Diversity and Food Perceptions to Food and Nutrition Security Among Smallholder Farming Households in Western Kenya: A Case Study.

    PubMed

    Ng'endo, Mary; Bhagwat, Shonil; Keding, Gudrun B

    2018-03-01

    Sub-Saharan Africa is the only region in the world where hunger is prevalent in over one-third of the population, with smallholder farming households, producers of over 80% of Africa's food, facing both calorie and micronutrient deficiencies. With agricultural systems serving as the main source of all nutrients, little is known about the extent to which agricultural diversity in different seasons can meet macro- and micronutrient needs in rural Africa. Linkages between nutrient diversity and food species were investigated. A case study was conducted in Western Kenya to assess the seasonal nutrient diversity, seasonal nutrient accessibility levels, and food perceptions in 30 smallholder farms, 7 markets, and among 97 focus group discussion participants, respectively. All present food plant and animal species were inventoried and assigned to 1 of the 7 major Food and Agriculture Organization-defined food groups. Based on 2 macronutrients and 5 micronutrients, dendrogram-based nutrient functional diversity metrics were calculated. On-farm and market food species offered all 7 macro- and micronutrients under investigation, regardless of seasonal variation in species numbers. Although there were varying seasonal nutrient accessibility levels in markets, farms were especially effective in readily availing 4 of the 7 nutrients. However, the main food shortage months coincided only with maize shortage, but a diversity of local foods, deemed to be of low cultural and culinary preferences, were available. Nutrition education on the importance of a diversity of local foods in meeting dietary needs, thus stimulating the demand side, can contribute to achieving year-round household food security.

  2. Nutrient use by three geographic sources of eastern cottonwood

    Treesearch

    B. G. Blackmon; James B. Baker; D. T. Cooper

    1979-01-01

    Three geographic sources (Louisiana, Mississippi, and southern Illinois) of 11-year-old eastern cottonwood (Populus deltoides Bartr.) growing in Mississippi, U.S.A., were studied for differences in biomass and nutrient accumulation. The three sources produced about the same biomass (70-80 t/ha (1 short ton = 2000 lb. = 0.907 t; 1 long ton = 2240 lb. = 1.016 t», but the...

  3. Changes in nutrient stoichiometry, elemental homeostasis and growth rate of aquatic litter-associated fungi in response to inorganic nutrient supply.

    PubMed

    Gulis, Vladislav; Kuehn, Kevin A; Schoettle, Louie N; Leach, Desiree; Benstead, Jonathan P; Rosemond, Amy D

    2017-12-01

    Aquatic fungi mediate important energy and nutrient transfers in freshwater ecosystems, a role potentially altered by widespread eutrophication. We studied the effects of dissolved nitrogen (N) and phosphorus (P) concentrations and ratios on fungal stoichiometry, elemental homeostasis, nutrient uptake and growth rate in two experiments that used (1) liquid media and a relatively recalcitrant carbon (C) source and (2) fungi grown on leaf litter in microcosms. Two monospecific fungal cultures and a multi-species assemblage were assessed in each experiment. Combining a radioactive tracer to estimate fungal production (C accrual) with N and P uptake measurements provided an ecologically relevant estimate of mean fungal C:N:P of 107:9:1 in litter-associated fungi, similar to the 92:9:1 obtained from liquid cultures. Aquatic fungi were found to be relatively homeostatic with respect to their C:N ratio (~11:1), but non-homeostatic with respect to C:P and N:P. Dissolved N greatly affected fungal growth rate and production, with little effect on C:nutrient stoichiometry. Conversely, dissolved P did not affect fungal growth and production but controlled biomass C:P and N:P, probably via luxury P uptake and storage. The ability of fungi to immobilize and store excess P may alter nutrient flow through aquatic food webs and affect ecosystem functioning.

  4. What is the role of fresh groundwater and recirculated seawater in conveying nutrients to the coastal ocean?

    USGS Publications Warehouse

    Weinstein, Y.; Yechieli, Y.; Shalem, Y.; Burnett, W.C.; Swarzenski, P.W.; Herut, B.

    2011-01-01

    Submarine groundwater discharge (SGD) is a major process operating at the land-sea interface. Quantifying the SGD nutrient loads and the marine/terrestrial controls of this transport is of high importance, especially in oligotrophic seas such as the eastern Mediterranean. The fluxes of nutrients in groundwater discharging from the seafloor at Dor Bay (southeastern Mediterranean) were studied in detail using seepage meters. Our main finding is that the terrestrial, fresh groundwater is the main conveyor of DIN and silica to the coastal water, with loads of 500 and 560 mol/yr, respectively, per 1 m shoreline. Conversely, recirculated seawater is nutrient-poor, and its role is mainly as a dilution agent. The nutrient loads regenerated in the subterranean estuary (sub-bay sediment) are relatively small, consisting mostly of ammonium (24 mol/yr). On the other hand, the subterranean estuary at Dor Bay sequesters as much as 100 mol N/yr per 1 m shoreline, mainly via denitrification processes. These, and observations from other SGD sites, imply that the subterranean estuary at some coastal systems may function more as a sink for nitrogen than a source. This further questions the extent of nutrient contributions to the coastal water by some subterranean estuaries and warrants systematic evaluation of this process in various hydrological and marine trophic conditions. ?? 2011 American Chemical Society.

  5. Growth of the Bacteriocin-Producing Lactobacillus sakei Strain CTC 494 in MRS Broth Is Strongly Reduced Due to Nutrient Exhaustion: a Nutrient Depletion Model for the Growth of Lactic Acid Bacteria

    PubMed Central

    Leroy, Frédéric; De Vuyst, Luc

    2001-01-01

    Although commercial MRS broth has been designed to allow excellent growth of lactobacilli, most of these bacteria are still subjected to a self-inhibiting process. The most likely explanation is the accumulation of lactic acid or other toxic end products and the depletion of nutrients. In this study, the self-inhibition of Lactobacillus sakei CTC 494 was analyzed in a kinetic way, and a nutrient depletion model was set up to describe the growth inhibition process. This simple model has considerable advantages compared to commonly used descriptive models such as the logistic growth equation. It offers a better fit and a more realistic description of the growth data by taking into account both growth inhibition due to lactic acid production and changes in growth rates due to nutrient depletion. Depending on the fermentation conditions, in MRS broth there appears to be a strong decrease of the specific growth rate over time. Some undefined compounds present in the complex nitrogen source of MRS broth appear to be of crucial importance because of their limited availability. Moreover, nutrient availability affects bacteriocin production through its effect on cell growth as well as on the bacteriocin production per cell. A plateau value for the bacteriocin production by L. sakei CTC 494 was observed. PMID:11571136

  6. Water Quality Protection from Nutrient Pollution: Case ...

    EPA Pesticide Factsheets

    Water bodies and coastal areas around the world are threatened by increases in upstream sediment and nutrient loads, which influence drinking water sources, aquatic species, and other ecologic functions and services of streams, lakes, and coastal water bodies. For example, increased nutrient fluxes from the Mississippi River Basin have been linked to increased occurrences of seasonal hypoxia in northern Gulf of Mexico. Lake Erie is another example where in the summer of 2014 nutrients, nutrients, particularly phosphorus, washed from fertilized farms, cattle feedlots, and leaky septic systems; caused a severe algae bloom, much of it poisonous; and resulted in the loss of drinking water for a half-million residents. Our current management strategies for point and non-point source nutrient loadings need to be improved to protect and meet the expected increased future demands of water for consumption, recreation, and ecological integrity. This presentation introduces management practices being implemented and their effectiveness in reducing nutrient loss from agricultural fields, a case analysis of nutrient pollution of the Grand Lake St. Marys and possible remedies, and ongoing work on watershed modeling to improve our understanding on nutrient loss and water quality. Presented at the 3rd International Conference on Water Resource and Environment.

  7. Greenhouse Gas Emissions from Reservoir Water Surfaces: A ...

    EPA Pesticide Factsheets

    Collectively, reservoirs are an important anthropogenic source of greenhouse gases (GHGs) to the atmosphere. Attempts to model reservoir GHG fluxes, however, have been limited by inconsistencies in methodological approaches and data availability. An increase in the number of published reservoir GHG flux estimates during the last 15 years warrants a comprehensive analysis of the magnitude and potential controls on these fluxes. Here we synthesize worldwide reservoir CH4, CO2, and N2O emission data and estimate that GHG emissions from reservoirs account for 80.2 Tmol CO2 equivalents yr-1, thus constituting approximately 5% of anthropogenic radiative forcing. The majority (93%) of these emissions are from CH4, and mainly in the form of bubbles. While age and latitude have historically been linked to reservoir GHG emissions, we found that factors related to reservoir nutrient status and rainfall were better predictors. In particular, nutrient-rich eutrophic reservoirs were found to have an order of magnitude higher per-area CH4 fluxes, on average, than their nutrient-poor oligotrophic counterparts. Therefore, management measures to reduce reservoir eutrophication may result in an important co-benefit, the reduction of GHG emissions to the atmosphere. Greenhouse gas emissions (GHG)

  8. Phospholipase D and the Maintenance of Phosphatidic Acid Levels for Regulation of Mammalian Target of Rapamycin (mTOR)*

    PubMed Central

    Foster, David A.; Salloum, Darin; Menon, Deepak; Frias, Maria A.

    2014-01-01

    Phosphatidic acid (PA) is a critical metabolite at the heart of membrane phospholipid biosynthesis. However, PA also serves as a critical lipid second messenger that regulates several proteins implicated in the control of cell cycle progression and cell growth. Three major metabolic pathways generate PA: phospholipase D (PLD), diacylglycerol kinase (DGK), and lysophosphatidic acid acyltransferase (LPAAT). The LPAAT pathway is integral to de novo membrane phospholipid biosynthesis, whereas the PLD and DGK pathways are activated in response to growth factors and stress. The PLD pathway is also responsive to nutrients. A key target for the lipid second messenger function of PA is mTOR, the mammalian/mechanistic target of rapamycin, which integrates both nutrient and growth factor signals to control cell growth and proliferation. Although PLD has been widely implicated in the generation of PA needed for mTOR activation, it is becoming clear that PA generated via the LPAAT and DGK pathways is also involved in the regulation of mTOR. In this minireview, we highlight the coordinated maintenance of intracellular PA levels that regulate mTOR signals stimulated by growth factors and nutrients, including amino acids, lipids, glucose, and Gln. Emerging evidence indicates compensatory increases in one source of PA when another source is compromised, highlighting the importance of being able to adapt to stressful conditions that interfere with PA production. The regulation of PA levels has important implications for cancer cells that depend on PA and mTOR activity for survival. PMID:24990952

  9. Phospholipase D and the maintenance of phosphatidic acid levels for regulation of mammalian target of rapamycin (mTOR).

    PubMed

    Foster, David A; Salloum, Darin; Menon, Deepak; Frias, Maria A

    2014-08-15

    Phosphatidic acid (PA) is a critical metabolite at the heart of membrane phospholipid biosynthesis. However, PA also serves as a critical lipid second messenger that regulates several proteins implicated in the control of cell cycle progression and cell growth. Three major metabolic pathways generate PA: phospholipase D (PLD), diacylglycerol kinase (DGK), and lysophosphatidic acid acyltransferase (LPAAT). The LPAAT pathway is integral to de novo membrane phospholipid biosynthesis, whereas the PLD and DGK pathways are activated in response to growth factors and stress. The PLD pathway is also responsive to nutrients. A key target for the lipid second messenger function of PA is mTOR, the mammalian/mechanistic target of rapamycin, which integrates both nutrient and growth factor signals to control cell growth and proliferation. Although PLD has been widely implicated in the generation of PA needed for mTOR activation, it is becoming clear that PA generated via the LPAAT and DGK pathways is also involved in the regulation of mTOR. In this minireview, we highlight the coordinated maintenance of intracellular PA levels that regulate mTOR signals stimulated by growth factors and nutrients, including amino acids, lipids, glucose, and Gln. Emerging evidence indicates compensatory increases in one source of PA when another source is compromised, highlighting the importance of being able to adapt to stressful conditions that interfere with PA production. The regulation of PA levels has important implications for cancer cells that depend on PA and mTOR activity for survival. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Water-quality assessment of the Kentucky River basin, Kentucky; nutrients, sediments, and pesticides in streams, 1987-90

    USGS Publications Warehouse

    Haag, K.H.; Porter, S.D.

    1995-01-01

    The U.S. Geological Survey investigated the water quality of the Kentucky River Basin in Kentucky as part of the National Water Quality Assessment program. Data collected during 1987-90 were used to describe the spatial and temporal variability of nutrients, suspended sediment, and pesticides in streams. Concentrations of phosphorus were signifi- cantly correlated with urban and agricultural land use. The high phosphorus content of Bluegrass Region soils was an important source of phosphorus in streams. At many sites in urban areas, all of the stream nitrogen load was attributable to wastewater- treatment-plant effluent. Tributary streams affected by agricultural sources of nutrients contained higher densities of phytoplankton than streams that drained forested areas. Data indicate that a consid- erable percentage of total nitrogen was transported as algal biomass during periods of low discharge. Average suspended-sediment concentrations for the study period were positively correlated with dis- charge. There was a downward trend in suspended- sediment concentrations downstream in the Kentucky River main stem during the study. Although a large amount of suspended sediment originates in the Eastern Coal Field Region, contributions of suspended sediment from the Red River and other tributary streams of the Knobs Region also are important. The most frequently detected herbicides in water samples were atrazine, 2,4-D, alachlor, metolachlor, and dicamba. Diazinon, malathion, and parathion were the most frequently detected organo- phosphate insecticides in water samples. Detectable concentrations of aldrin, chlordane, DDT, DDE, dieldrin, endrin, endosulfan, heptachlor, heptachlor epoxide, and lindane were found in streambed- sediment samples.

  11. Evidence and Role for Bacterial Mucin Degradation in Cystic Fibrosis Airway Disease

    PubMed Central

    Flynn, Jeffrey M.; Niccum, David; Dunitz, Jordan M.

    2016-01-01

    Chronic lung infections in cystic fibrosis (CF) patients are composed of complex microbial communities that incite persistent inflammation and airway damage. Despite the high density of bacteria that colonize the lower airways, nutrient sources that sustain bacterial growth in vivo, and how those nutrients are derived, are not well characterized. In this study, we examined the possibility that mucins serve as an important carbon reservoir for the CF lung microbiota. While Pseudomonas aeruginosa was unable to efficiently utilize mucins in isolation, we found that anaerobic, mucin-fermenting bacteria could stimulate the robust growth of CF pathogens when provided intact mucins as a sole carbon source. 16S rRNA sequencing and enrichment culturing of sputum also identified that mucin-degrading anaerobes are ubiquitous in the airways of CF patients. The collective fermentative metabolism of these mucin-degrading communities in vitro generated amino acids and short chain fatty acids (propionate and acetate) during growth on mucin, and the same metabolites were also found in abundance within expectorated sputum. The significance of these findings was supported by in vivo P. aeruginosa gene expression, which revealed a heightened expression of genes required for the catabolism of propionate. Given that propionate is exclusively derived from bacterial fermentation, these data provide evidence for an important role of mucin fermenting bacteria in the carbon flux of the lower airways. More specifically, microorganisms typically defined as commensals may contribute to airway disease by degrading mucins, in turn providing nutrients for pathogens otherwise unable to efficiently obtain carbon in the lung. PMID:27548479

  12. Geographical Distribution and Sources of Nutrients in Atmospheric Aerosol Over the Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Uematsu, M.

    2016-12-01

    The Pacific Ocean, the world's largest (occupying about 30% of the Earth's total surface area) has several distinguishing biogeochemical features. In the western Pacific, dust particles originating from arid and semi-arid regions in Asia and Australia are transported to the north and south, respectively. Biomass burning emissions from Southeast Asia are exported to the tropical Pacific, and anthropogenic substances flowing out of Asia and Eurasia spread both regionally and globally. Over high primary productive areas such as the subarctic North Pacific, the equatorial Pacific and the Southern Ocean, biogenic gasses are released to the atmosphere and transported to other areas. These processes may affect cloud and rainfall patterns, air quality, and the radiative balance of downwind regions. The deposition of atmospheric aerosols containing iron and other essential nutrients is important for biogeochemical cycles in the oceans because this source of nutrients helps sustain primary production and affects food-web structure; these effects in turn influence the chemical properties of marine atmosphere. From an atmospheric chemistry standpoint, sea-salt aerosols produced by strong winds and marine biogenic gases emitted from highly productive waters affect the physicochemical characteristics of marine aerosols. As phytoplankton populations are patchy and atmospheric processes sporadic, the interactions between atmospheric chemical constituents and marine biota vary for different regions as well as seasonally and over longer timescales. To address these and other emerging issues, and more generally to better understand the important biogeochemical processes and interactions occurring over the open oceans, more long-term recurrent research cruises with standardized atmospheric shipboard measurements will be needed in the future.

  13. The phosphorus problem

    USDA-ARS?s Scientific Manuscript database

    Knowing your nutrients is the key to sustainable farming. Organic sources of crop nutrients or biofertilizers are essential for farming but excess nutrients are damaging for many natural ecosystems and, as such, knowledge and strategies to ensure their judicious use are crucial. Current analytical...

  14. Boosted Regression Tree Models to Explain Watershed ...

    EPA Pesticide Factsheets

    Boosted regression tree (BRT) models were developed to quantify the nonlinear relationships between landscape variables and nutrient concentrations in a mesoscale mixed land cover watershed during base-flow conditions. Factors that affect instream biological components, based on the Index of Biotic Integrity (IBI), were also analyzed. Seasonal BRT models at two spatial scales (watershed and riparian buffered area [RBA]) for nitrite-nitrate (NO2-NO3), total Kjeldahl nitrogen, and total phosphorus (TP) and annual models for the IBI score were developed. Two primary factors — location within the watershed (i.e., geographic position, stream order, and distance to a downstream confluence) and percentage of urban land cover (both scales) — emerged as important predictor variables. Latitude and longitude interacted with other factors to explain the variability in summer NO2-NO3 concentrations and IBI scores. BRT results also suggested that location might be associated with indicators of sources (e.g., land cover), runoff potential (e.g., soil and topographic factors), and processes not easily represented by spatial data indicators. Runoff indicators (e.g., Hydrological Soil Group D and Topographic Wetness Indices) explained a substantial portion of the variability in nutrient concentrations as did point sources for TP in the summer months. The results from our BRT approach can help prioritize areas for nutrient management in mixed-use and heavily impacted watershed

  15. Chemical evolution of the Salton Sea, California: Nutrient and selenium dynamics

    USGS Publications Warehouse

    Schroeder, R.A.; Orem, W.H.; Kharaka, Y.K.

    2002-01-01

    The Salton Sea is a 1000-km2 terminal lake located in the desert area of southeastern California. This saline (???44 000 mg l-1 dissolved solids) lake started as fresh water in 1905-07 by accidental flooding of the Colorado River, and it is maintained by agricultural runoff of irrigation water diverted from the Colorado River. The Salton Sea and surrounding wetlands have recently acquired substantial ecological importance because of the death of large numbers of birds and fish, and the establishment of a program to restore the health of the Sea. In this report, we present new data on the salinity and concentration of selected chemicals in the Salton Sea water, porewater and sediments, emphasizing the constituents of concern: nutrients (N and P), Se and salinity. Chemical profiles from a Salton Sea core estimated to have a sedimentation rate of 2.3 mm yr-1 show increasing concentrations of OC, N, and P in younger sediment that are believed to reflect increasing eutrophication of the lake. Porewater profiles from two locations in the Sea show that diffusion from bottom sediment is only a minor source of nutrients to the overlying water as compared to irrigation water inputs. Although loss of N and Se by microbial-mediated volatilization is possible, comparison of selected element concentrations in river inputs and water and sediments from the Salton Sea indicates that most of the N (from fertilizer) and virtually all of the Se (delivered in irrigation water from the Colorado River) discharged to the Sea still reside within its bottom sediment. Laboratory simulation on mixtures of sediment and water from the Salton Sea suggest that sediment is a potential source of N and Se to the water column under aerobic conditions. Hence, it is important that any engineered changes made to the Salton Sea for remediation or for transfer of water out of the basin do not result in remobilization of nutrients and Se from the bottom sediment into the overlying water.

  16. Farmed Fish: A source of lipid soluble nutrients

    USDA-ARS?s Scientific Manuscript database

    The consumption of seafood (fish, molluscs, crustaceans) is associated with a number of positive health outcomes as a result of nutrient content (e,g, protein, n3 fatty acids, vitamin D). Aquacultural “farmed” sources of marine and freshwater seafood total nearly 50% of total seafood production. Gi...

  17. Effects Of Nutrient Source And Supply On Crude Oil Biodegradation In Continuous-Flow Beach Microcosms

    EPA Science Inventory

    Ammonium and nitrate were used as nitrogen sources to support microbial biodegradation of crude oil in continuous-flow beach microcosms to determine whether either nutrient was more effective in open systems, such as intertidal shorelines. No differences in the rate or the exten...

  18. Current perspective on assessing site of digestion in ruminants.

    PubMed

    Merchen, N R; Elizalde, J C; Drackley, J K

    1997-08-01

    The site of nutrient digestion in the gastrointestinal tract of ruminants affects nutrient availability and the nature of digestive end-products supplied to the host animal. Methods to study site of digestion in vivo provide a tool to obtain data that enhance the ability to interpret or predict animal responses to some feeding practices. Examples are discussed for which site of digestion data provided insights that might not have been evident from other approaches. The use of site of digestion techniques may provide interpretation regarding digestion of N by ruminants different from those derived from measurement of total tract N digestion. Site of digestion measurements have been particularly important in studying effects of heat processing of protein sources and in understanding the nature of digestion of N in high-quality, fresh forages. Moreover, site of digestion techniques have been instrumental in interpreting the influences of supplemental fat sources on ruminal digestion and ruminal biohydrogenation and small intestinal digestion of long-chain fatty acids.

  19. Cation Uptake and Allocation by Red Pine Seedlings under Cation-Nutrient Stress in a Column Growth Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Zhenqing; Balogh-Brunstad, Zsuzsanna; Grant, Michael R.

    Background and Aims Plant nutrient uptake is affected by environmental stress, but how plants respond to cation-nutrient stress is poorly understood. We assessed the impact of varying degrees of cation-nutrient limitation on cation uptake in an experimental plant-mineral system. Methods Column experiments, with red pine (Pinus resinosa Ait.) seedlings growing in sand/mineral mixtures, were conducted for up to nine months under a range of Ca- and K-limited conditions. The Ca and K were supplied from both minerals and nutrient solutions with varying Ca and K concentrations. Results Cation nutrient stress had little impact on carbon allocation after nine months ofmore » plant growth and K was the limiting nutrient for biomass production. The Ca/Sr and K/Rb ratio results allowed independent estimation of dissolution incongruency and discrimination against Sr and Rb during cation uptake processes. The fraction of K in biomass from biotite increased with decreasing K supply from nutrient solutions. The mineral anorthite was consistently the major source of Ca, regardless of nutrient treatment. Conclusions Red pine seedlings exploited more mineral K in response to more severe K deficiency. This did not occur for Ca. Plant discrimination factors must be carefully considered to accurately identify nutrient sources using cation tracers.« less

  20. Nitrogen isotope and mass balance approach in the Elbe Estuary

    NASA Astrophysics Data System (ADS)

    Sanders, Tina; Wankel, Scott D.; Dähnke, Kirstin

    2017-04-01

    The supply of bioavailable nitrogen is crucial to primary production in the world's oceans. Especially in estuaries, which act as a nutrient filter for coastal waters, microbial nitrogen turnover and removal has a particular significance. Nitrification as well as other nitrogen-based processes changes the natural abundance of the stable isotope, which can be used as proxies for sources and sinks as well as for process identification. The eutrophic Elbe estuary in northern Germany is loaded with fertilizer-derived nitrogen, but management efforts have started to reduce this load effectively. However, an internal nitrate source in turn gained in importance and the estuary changed from a sink to a source of dissolved inorganic nitrogen: Nitrification is responsible for significant estuarine nutrient regeneration, especially in the Hamburg Port. In our study, we aimed to quantify sources and sinks of nitrogen based on a mass and stable isotope budget in the Elbe estuary. A model was developed reproduce internal N-cycling and associated isotope changes. For that approach we measured dissolved inorganic nitrogen (DIN), particulate nitrogen and their stable isotopes in a case study in July 2013. We found an almost closed mass balance of nitrogen, with only low lost or gains which we attribute to sediment resuspension. The isotope values of different DIN components and the model approach both support a high fractionation of up to -25‰ during nitrification. However, the nitrogen balance and nitrogen stable isotopes suggest that most important processes are remineralization of organic matter to ammonium and further on the oxidation to nitrate. Denitrification and nitrate assimilation play a subordinate role in the Elbe Estuary.

  1. Biomass partitioning in red pine (Pinus resinosa) along a chronosequence in the Upper Peninsula of Michigan

    Treesearch

    J.S. King; C.P. Giardina; K.S. Pregitzer; A.L. Friend

    2007-01-01

    Carbon (C) allocation to the perennial coarse-root system of trees contributes to ecosystem C sequestration through formation of long-lived live wood biomass and, following senescence, by providing a large source of nutrient-poor detrital C. Our understanding of the controls on C allocation to coarse-root growth is rudimentary, but it has important implications for...

  2. Soil organic matter dynamics under decaying wood in a subtropical wet forest: effect of tree species and decay stage.

    Treesearch

    Marcela Zalamea; Grizelle Gonzalez; Chien-Lu Ping; Gary Michaelson

    2007-01-01

    Decaying wood is an important structural and functional component of forests: it contributes to generate habitat diversity, acts as either sink or source of nutrients, and plays a preponderant role in soil formation. Thus, decaying wood might likely have measurable effects on chemical properties of the underlying soil.We hypothesized that decaying wood would have a...

  3. Trends in nutrient concentrations, loads, and yields in streams in the Sacramento, San Joaquin, and Santa Ana Basins, California, 1975-2004

    USGS Publications Warehouse

    Kratzer, Charles R.; Kent, Robert; Seleh, Dina K.; Knifong, Donna L.; Dileanis, Peter D.; Orlando, James L.

    2011-01-01

    A comprehensive database was assembled for the Sacramento, San Joaquin, and Santa Ana Basins in California on nutrient concentrations, flows, and point and nonpoint sources of nutrients for 1975-2004. Most of the data on nutrient concentrations (nitrate, ammonia, total nitrogen, orthophosphate, and total phosphorus) were from the U.S. Geological Survey's National Water Information System database (35.2 percent), the California Department of Water Resources (21.9 percent), the University of California at Davis (21.6 percent), and the U.S. Environmental Protection Agency's STOrage and RETrieval database (20.0 percent). Point-source discharges accounted for less than 1 percent of river flows in the Sacramento and San Joaquin Rivers, but accounted for close to 80 percent of the nonstorm flow in the Santa Ana River. Point sources accounted for 4 and 7 percent of the total nitrogen and total phosphorus loads, respectively, in the Sacramento River at Freeport for 1985-2004. Point sources accounted for 8 and 17 percent of the total nitrogen and total phosphorus loads, respectively, in the San Joaquin River near Vernalis for 1985-2004. The volume of wastewater discharged into the Santa Ana River increased almost three-fold over the study period. However, due to improvements in wastewater treatment, the total nitrogen load to the Santa Ana River from point sources in 2004 was approximately the same as in 1975 and the total phosphorus load in 2004 was less than in 1975. Nonpoint sources of nutrients estimated in this study included atmospheric deposition, fertilizer application, manure production, and tile drainage. The estimated dry deposition of nitrogen exceeded wet deposition in the Sacramento and San Joaquin Valleys and in the basin area of the Santa Ana Basin, with ratios of dry to wet deposition of 1.7, 2.8, and 9.8, respectively. Fertilizer application increased appreciably from 1987 to 2004 in all three California basins, although manure production increased in the San Joaquin Basin but decreased in the Sacramento and Santa Ana Basins from 1982 to 2002. Tile drainage accounted for 22 percent of the total nitrogen load in the San Joaquin River near Vernalis for 1985-2004. Nutrient loads and trends were calculated by using the log-linear multiple-regression model, LOADEST. Loads were calculated for water years 1975-2004 for 22 sites in the Sacramento Basin, 15 sites in the San Joaquin Basin, and 6 sites in the Santa Ana Basin. The average annual load of total nitrogen and total phosphorus for 1985-2004 in subbasins in the Sacramento and San Joaquin Basins were divided by their drainage areas to calculate average annual yield. Total nitrogen yields were greater than 2.45 tons per square mile per year [(tons/mi2)/yr] in about 61 percent of the valley floor in the San Joaquin Basin compared with only about 12 percent of the valley floor in the Sacramento Basin. Total phosphorus yields were greater than 0.34 (tons/mi2)/yr in about 43 percent of the valley floor in the San Joaquin Basin compared with only about 5 percent in the valley floor of the Sacramento Basin. In a stepwise multiple linear-regression analysis of 30 subbasins in the Sacramento and San Joaquin Basins, the most important explanatory variables (out of 11 variables) for the response variable (total nitrogen yield) were the percentage of land use in (1) orchards and vineyards, (2) row crops, and (3) urban categories. For total phosphorus yield, the most important explanatory variable was the amount of fertilizer application plus manure production. Trends were evaluated for three time periods: 1975-2004, 1985-2004, and 1993-2004. Most trends in flow-adjusted concentrations of nutrients in the Sacramento Basin were downward for all three time periods. The decreasing nutrient trends in the American River at Sacramento and the Sacramento River at Freeport for 1975-2004 were attributed to the consolidation of wastewater in the Sacramento metropolitan area in December 1982 to

  4. Dairy foods are an important source of calcium and vitamin D among Canadian-born and Asian-born Chinese in Edmonton, Alberta.

    PubMed

    Yu, Yan Han; Farmer, Anna; Mager, Diana R; Willows, Noreen D

    2012-03-01

    Low intakes of calcium and vitamin D increase the risk for osteoporosis, bone fracture, and other health problems. This study aimed to examine the calcium and vitamin D intakes of Canadian-born Chinese (CBC) and Asian-born Chinese (ABC) in Edmonton, Canada, and to identify usual food sources of these nutrients. We hypothesized that CBC would have higher intakes of calcium and vitamin D than ABC and that the food sources of these nutrients would differ by region of birth (Canada vs Asia). Two in-person multipass 24-hour dietary recalls were administered for 1 weekday and weekend day for 81 healthy ethnically Chinese aged 18 to 58 years. The risks for calcium and vitamin D inadequacy were calculated as were the contributions of specific foods to calcium and vitamin D intakes. Calcium intake was 781 ± 337 mg/d for CBC and 809 ± 369 mg/d for ABC (P = .737). Vitamin D intake was 3.8 ± 3.4 μg/d for CBC and 5.0 ± 3.9 μg/d for ABC (P = .158). Respective risks for calcium and vitamin D inadequacy were 36% and 98% for men and 78% and 100% for women. Dairy contributed most to the calcium (43%) and vitamin D (52%) intake of participants. For ABC, soybean products contributed to 8.1% of calcium, whereas fatty fish contributed to 16.7% of vitamin D. For CBC, red meats contributed to 11.1% of vitamin D. Dietary intakes of calcium and vitamin D need to be increased in Chinese Canadians through the promotion of dairy and culturally relevant sources of these nutrients. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Comparison of Nutrient Drivers and Response Metrics in Oregon Estuaries

    EPA Science Inventory

    With the goal of assessing sensitivity to nutrient enrichment, we present a cross-estuary comparison of nutrient sources, levels, and biological responses (phytoplankton and macroalgae) for thirteen Oregon estuaries. Nitrogen levels in the upstream portions of the estuaries are ...

  6. Nutrients and Narragansett Bay

    EPA Science Inventory

    Narragansett Bay has been heavily fertilized by anthropogenic nutrients for almost 120 years. This presentation discusses the first introductions of human sources of nutrients to the Bay, via sewage and urban runoff, in the late 1890s through to the recent reductions in sewage ef...

  7. Simultaneous remediation of nutrients from liquid anaerobic digestate and municipal wastewater by the microalga Scenedesmus sp. AMDD grown in continuous chemostats.

    PubMed

    Dickinson, K E; Bjornsson, W J; Garrison, L L; Whitney, C G; Park, K C; Banskota, A H; McGinn, P J

    2015-01-01

    The primary aim of this study was to investigate the capacity of a microalga, Scenedesmus sp. AMDD, to remediate nutrients from municipal wastewater, either as the sole nutrient source or after blending with wastewater obtained from the anaerobic digestion of swine manure. A complimentary aim was to study and define the effects of these wastewaters on microalgal growth, biomass productivity and composition which have important implications for a commercial biofuels production system. A microalga, Scenedesmus sp. AMDD, was grown in continuous chemostats in municipal wastewater or wastewater supplemented with 1·6× or 2·4× higher levels of nitrogen (N) obtained through supplementation with anaerobic digestates. Biomass productivity increased with increasing nutrient supplementation, but was limited by light at high cell densities. Cellular quotas of carbon (C), nitrogen and phosphorus (P) all increased in direct proportion to their concentrations in the combined wastewaters. At higher cell densities, total carbohydrate decreased while protein increased. Fatty acid content remained relatively constant. Under high nutrient levels, the fatty acid profiles contained a higher concentration of polyunsaturated fatty acids at the expense of monounsaturated fatty acids. Chlorophyll a was 2·5 times greater in the treatment of greatest nutrient supplementation compared to the treatment with the least. Ammonium (NH4(+)) and phosphate (PO4(3-)) were completely removed by algal growth in all treatments and with maximal removal rates of 41·2 mg N l(-1) d(-1) and 6·7 mg P l(-1) d(-1) observed in wastewater amended with 2·4× higher N level. The study is the first to report stable, long-term continuous algal growth and productivity obtained by combining wastewaters of different sources. The study is supported by detailed analyses of the composition of the cultivated biomass and links composition to the nutrient and light availabilities in the cultures. Simultaneous remediation of these wastes by algal growth is discussed as a strategy for the valorization of the biomass. © 2014 Her Majesty the Queen in Right of Canada © 2014 The Society for Applied Microbiology. Reproduced with the permission of the Minister of Industry.

  8. Testing of The Harp Guidelines On A Small Watershed In Finland

    NASA Astrophysics Data System (ADS)

    Granlund, K.; Rekolainen, S.

    TESTING of THE HARP GUIDELINES ON A SMALL WATERSHED IN FIN- LAND K. Granlund, S. Rekolainen Finnish Environment Institute, Research Department kirsti.granlund@vyh.fi Watersheds have emerged as environmental units for assessing, controlling and reduc- ing non-point-source pollution. Within the framework of the international conventions, such as OSPARCOM, HELCOM, and in the implementation of the EU Water Frame- work Directive, the criteria for model selection is of key importance. Harmonized Quantification and Reporting Procedures for Nutrients (HARP) aims at helping the implementation of OSPAR's (Convention for the Protection of the Marine Environ- ment of the North-East Atlantic) strategy in controlling eutrophication and reducing nutrient input to marine ecosystems by 50nitrogen and phosphorus losses from both point and nonpoint sources and help assess the effectiveness of the pollution reduction strategy. The HARP guidelines related respectively to the "Quantification of Nitrogen and Phosphorus Losses from Diffuse Anthropogenic Sources and Natural Background Losses" and to the "Quantification and Reporting of the Retention of Nitrogen and Phosphorus in River Catchments" were tested on a small, well instrumented agricul- tural watershed in Finland. The project was coordinated by the Environment Institute of the Joint Research Centre. Three types of methodologies for estimating nutrient losses to watercourses were eval- uated during the project. Simple methods based on regression equations or loading functions provide a quick method for estimating nutrient losses. Through these meth- ods the pollutant load can be related to parameters such as slope, soil type, land-use, management practices etc. Relevant nutrient loading functions for the study catch- ment were collected during the project. One mid-range model was applied to simulate the nitrogen cycle in a simplified manner in relation to climate, soil properties, land- use and management practices. Physically based models describe in detail the water and nutrient cycle within the watershed. ICECREAM and SWAT models were applied on the study watershed. ICECREAM is a management model based on CREAMS model for predicting field-scale runoff and erosion. The nitrogen and phosphorus sub- models are based on GLEAMS model. SWAT is a continuous time and spatially dis- tributed model, which includes hydrological, sediment and chemical processes in river 1 basins.The simple methods and the mid-range model for nitrogen proved to be fast and easy to apply, but due limited information on crop-specific loading functions and ni- trogen process rates (e.g. mineralisation in soil), only order-of-magnitude estimates for nutrient loads could be calculated. The ICECREAM model was used to estimate crop-specific nutrient losses from the agricultural area. The potential annual nutrient loads for the whole catchment were then calculated by including estimates for nutri- ent loads from other land-use classes (forested area and scattered settlement). Finally, calibration of the SWAT model was started to study in detail the effects of catchment characteristics on nutrient losses. The preliminary results of model testing are pre- sented and the suitability of different methodologies for estimating nutrient losses in Finnish catchments is discussed. 2

  9. Future changes in coastal upwelling ecosystems with global warming: The case of the California Current System.

    PubMed

    Xiu, Peng; Chai, Fei; Curchitser, Enrique N; Castruccio, Frederic S

    2018-02-12

    Coastal upwelling ecosystems are among the most productive ecosystems in the world, meaning that their response to climate change is of critical importance. Our understanding of climate change impacts on marine ecosystems is largely limited to the open ocean, mainly because coastal upwelling is poorly reproduced by current earth system models. Here, a high-resolution model is used to examine the response of nutrients and plankton dynamics to future climate change in the California Current System (CCS). The results show increased upwelling intensity associated with stronger alongshore winds in the coastal region, and enhanced upper-ocean stratification in both the CCS and open ocean. Warming of the open ocean forces isotherms downwards, where they make contact with water masses with higher nutrient concentrations, thereby enhancing the nutrient flux to the deep source waters of the CCS. Increased winds and eddy activity further facilitate upward nutrient transport to the euphotic zone. However, the plankton community exhibits a complex and nonlinear response to increased nutrient input, as the food web dynamics tend to interact differently. This analysis highlights the difficulty in understanding how the marine ecosystem responds to a future warming climate, given to range of relevant processes operating at different scales.

  10. Seawater-groundwater exchange and nutrients carried by submarine groundwater discharge in different types of wetlands at Jiaozhou Bay, China

    NASA Astrophysics Data System (ADS)

    Qu, Wenjing; Li, Hailong; Huang, Hao; Zheng, Chunmiao; Wang, Chaoyue; Wang, Xuejing; Zhang, Yan

    2017-12-01

    In Jiaozhou Bay, there are four wetland types, including sandy beaches, mud flats, tidal marshes, and estuarine intertidal zones. Four typical transects representing each of the wetland types were selected to investigate the flow dynamics, seawater-groundwater exchange and nutrients carried by submarine groundwater discharge (SGD). Based on field measurements of groundwater heads and salinity along each transect, the SGD averaged over the observation period was estimated using generalized Darcy's law. The SGD along the four transects ranges from 3.6 × 10-3 to 7.6 cm/d with the maximum occurring at the sandy beach. The SGD rate has a good correlation with the hydraulic conductivities of the wetland sediments. There is a positive correlation between the ratio of NO3-N/DIN and SGD rates. The SGD-associated nutrient output rate ranges from 3.3 × 10-2 to 9.5 mmol/m2/d for DIN (dissolved inorganic nitrogen), and from 6.2 × 10-5 to 1.8 × 10-2 mmol/m2/d for DIP (dissolved inorganic phosphorus). Compared to the nutrients delivered by the river, nutrients carried by SGD provide a more important source for the phosphate-limited environment to plankton in Jiaozhou Bay.

  11. Potash—A vital agricultural nutrient sourced from geologic deposits

    USGS Publications Warehouse

    Yager, Douglas B.

    2016-11-15

    This report summarizes the primary sources of potash in the United States. Potash is an essential nutrient that, along with phosphorus and nitrogen, is used as fertilizer for growing crops. Plants require sufficient potash to activate enzymes, which in turn catalyze chemical reactions important for water uptake and photosynthesis. When potassium is available in quantities necessary for healthy plant growth, disease resistance and physical quality are improved and crop yield and shelf life are increased. Potash is a water-soluble compound of potassium formed by geologic and hydrologic processes. The principal potash sources discussed are the large, stratiform deposits that formed during retreat and evaporation of intracontinental seas. The Paradox, Delaware, Holbrook, Michigan, and Williston sedimentary basins in the United States are examples where extensive potash beds were deposited. Ancient marine-type potash deposits that are close to the surface can be mined using conventional underground mining methods. In situ solution mining can be used where beds are too deep, making underground mining cost-prohibitive, or where underground mines are converted to in situ solution mines. Quaternary brine is another source of potash that is recovered by solar evaporation in manmade ponds. Groundwater from Pleistocene Lake Bonneville (Wendover, Utah) and the present-day Great Salt Lake in Utah are sources of potashbearing brine. Brine from these sources pumped to solar ponds is evaporated and potash concentrated for harvesting, processing, and refinement. Although there is sufficient potash to meet near-term demand, the large marine-type deposits are either geographically restricted to a few areas or are too deep to easily mine. Other regions lack sources of potash brine from groundwater or surface water. Thus, some areas of the world rely heavily on potash imports. Political, economic, and global population pressures may limit the ability of some countries from securing potash resources in the future. In this context, a historical perspective on U.S. potash production in a global framework is discussed.

  12. Yeast derived from lignocellulosic biomass as a sustainable feed resource for use in aquaculture.

    PubMed

    Øverland, Margareth; Skrede, Anders

    2017-02-01

    The global expansion in aquaculture production implies an emerging need of suitable and sustainable protein sources. Currently, the fish feed industry is dependent on high-quality protein sources of marine and plant origin. Yeast derived from processing of low-value and non-food lignocellulosic biomass is a potential sustainable source of protein in fish diets. Following enzymatic hydrolysis, the hexose and pentose sugars of lignocellulosic substrates and supplementary nutrients can be converted into protein-rich yeast biomass by fermentation. Studies have shown that yeasts such as Saccharomyces cerevisiae, Candida utilis and Kluyveromyces marxianus have favourable amino acid composition and excellent properties as protein sources in diets for fish, including carnivorous species such as Atlantic salmon and rainbow trout. Suitable downstream processing of the biomass to disrupt cell walls is required to secure high nutrient digestibility. A number of studies have shown various immunological and health benefits from feeding fish low levels of yeast and yeast-derived cell wall fractions. This review summarises current literature on the potential of yeast from lignocellulosic biomass as an alternative protein source for the aquaculture industry. It is concluded that further research and development within yeast production can be important to secure the future sustainability and economic viability of intensive aquaculture. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  13. Quantifying uncertainty in carbon and nutrient pools of coarse woody debris

    NASA Astrophysics Data System (ADS)

    See, C. R.; Campbell, J. L.; Fraver, S.; Domke, G. M.; Harmon, M. E.; Knoepp, J. D.; Woodall, C. W.

    2016-12-01

    Woody detritus constitutes a major pool of both carbon and nutrients in forested ecosystems. Estimating coarse wood stocks relies on many assumptions, even when full surveys are conducted. Researchers rarely report error in coarse wood pool estimates, despite the importance to ecosystem budgets and modelling efforts. To date, no study has attempted a comprehensive assessment of error rates and uncertainty inherent in the estimation of this pool. Here, we use Monte Carlo analysis to propagate the error associated with the major sources of uncertainty present in the calculation of coarse wood carbon and nutrient (i.e., N, P, K, Ca, Mg, Na) pools. We also evaluate individual sources of error to identify the importance of each source of uncertainty in our estimates. We quantify sampling error by comparing the three most common field methods used to survey coarse wood (two transect methods and a whole-plot survey). We quantify the measurement error associated with length and diameter measurement, and technician error in species identification and decay class using plots surveyed by multiple technicians. We use previously published values of model error for the four most common methods of volume estimation: Smalian's, conical frustum, conic paraboloid, and average-of-ends. We also use previously published values for error in the collapse ratio (cross-sectional height/width) of decayed logs that serves as a surrogate for the volume remaining. We consider sampling error in chemical concentration and density for all decay classes, using distributions from both published and unpublished studies. Analytical uncertainty is calculated using standard reference plant material from the National Institute of Standards. Our results suggest that technician error in decay classification can have a large effect on uncertainty, since many of the error distributions included in the calculation (e.g. density, chemical concentration, volume-model selection, collapse ratio) are decay-class specific.

  14. Nutrient production from dairy cattle manure and loading on arable land

    PubMed Central

    You, Byung-Gu; Choi, Yoon-Seok; Ra, Changsix

    2017-01-01

    Objective Along with increasing livestock products via intensive rearing, the accumulation of livestock manure has become a serious issue due to the fact that there is finite land for livestock manure recycling via composting. The nutrients from livestock manure accumulate on agricultural land and the excess disembogues into streams causing eutrophication. In order to systematically manage nutrient loading on agricultural land, quantifying the amount of nutrients according to their respective sources is very important. However, there is a lack of research concerning nutrient loss from livestock manure during composting or storage on farms. Therefore, in the present study we quantified the nutrients from dairy cattle manure that were imparted onto agricultural land. Methods Through investigation of 41 dairy farms, weight reduction and volatile solids (VS), total nitrogen (TN), and total phosphorus (TP) changes of dairy cattle manure during the storage and composting periods were analyzed. In order to support the direct investigation and survey on site, the three cases of weight reduction during the storing and composting periods were developed according to i) experiment, ii) reference, and iii) theoretical changes in phosphorus content (ΔP = 0). Results The data revealed the nutrient loading coefficients (NLCs) of VS, TN, and TP on agricultural land were 1.48, 0.60, and 0.66, respectively. These values indicated that the loss of nitrogen and phosphorus was 40% and 34%, respectively, and that there was an increase of VS since bedding materials were mixed with excretion in the barn. Conclusion As result of nutrient-footprint analyses, the amounts of TN and TP particularly entered on arable land have been overestimated if applying the nutrient amount in fresh manure. The NLCs obtained in this study may assist in the development of a database to assess the accurate level of manure nutrient loading on soil and facilitate systematic nutrient management. PMID:27492346

  15. The importance of leaf- and litter-feeding invertebrates as sources of animal protein for the Amazonian Amerindians.

    PubMed

    Paoletti, M G; Dufour, D L; Cerda, H; Torres, F; Pizzoferrato, L; Pimentel, D

    2000-11-22

    At least 32 Amerindian groups in the Amazon basin use terrestrial invertebrates as food. Leaf- and litter-consuming invertebrates provide the more important, underestimated food sources for many Amerindian groups. Further, litter-consuming earthworms are also an important food resource for the Ye'Kuana (also known as Makiritare) in the Alto Orinoco (Amazonas, Venezuela). By selecting these small invertebrates the Amerindians are choosing their animal food from those food webs in the rainforest which have the highest energy flow and which constitute the greatest renewable stock of readily available nutrients. Here we show that the consumption of leaf- and litter-feeding invertebrates as a means of recovering protein, fat and vitamins by the forest-living peoples offers a new perspective for the development of sustainable animal food production within the paradigm of biodiversity maintenance.

  16. Examining diapirs as a nutrient source for plants in a High Arctic polar desert.

    NASA Astrophysics Data System (ADS)

    Hardy, Sarah; Siciliano, Steven

    2014-05-01

    Polar deserts cover a quarter of ice-free land in the Canadian Arctic, yet little is known about the key ecological processes that take place. This understudied ecosystem is becoming increasingly vulnerable to climate change and growth of the natural resource industry. In polar deserts, below ground soil masses called diapirs occur in some patterned ground features such as frost boils. Diapirs are formed above permafrost soil where increases in moisture and temperature stimulate biological activity when thawing occurs to create an organic rich, Bhy horizon. Vascular plants are scarce (< 5% cover) and nutrients for survival are likely supplied by diapirs but this interaction is poorly understood. To determine if diapirs are an important nutrient source, nitrogen and phosphorous were traced from the diapir Bhy to vascular plants using δ15N and δ18O stable isotope signatures. Recent developments have shown that the oxygen isotopes of orthophosphate (18OP) can be used to trace plant-available phosphorous. At a polar desert site at Alexandra Fjord, Canada, diapir (n=12) and non-diapir (n=12) frost boils were identified in 12 blocks with a field-portable vis-NIR (visible and near infrared spectrometer) device. Soil cores and Salix arctica plant tissue were collected from each frost boil for stable isotope analysis. The δ15N of Salix arctica plant tissue (n=144) shows a significant relationship between block location and diapir presence (p=0.003). There was a consistent pattern in average δ15N in plant tissue parts with increasing concentration from leaf, stem to root in all frost boils. There was no significant difference in total plant δ15N between diapir and non-diapir frost boils but δ15N in soil cores will be measured to determine if these signatures are attributed to the Bhy horizon or biological nitrogen fixation. These results highlight the potential for stable isotopes to be used as a nutrient tracer in polar desert ecosystems and further analysis of phosphorous stable isotopes will provide a clearer picture of the role of diapirs as a nutrient source.

  17. Subterranean Groundwater Nutrient Input to Coastal Oceans and Coral Reef Sustainability

    NASA Astrophysics Data System (ADS)

    Paytan, A.; Street, J. H.

    2003-12-01

    Coral reefs are often referred to as the tropical rain forests of the oceans because of their high productivity and biodiversity. Recent observations in coral reefs worldwide have shown clear degradation in water quality and coral reef health and diversity. The implications of this are severe, including tremendous economic losses mostly though fishing and tourism. Nutrient loading has been implicated as one possible cause for the ecosystem decline. A previously unappreciated potential source of nutrient loading is submarine ground water discharge (SGW). Ground water in many cases has high nutrient content from sewage pollution and fertilizer application for agriculture and landscaping. To better understand the effect of this potential source of nutrient input and degrading water quality, we are exploring the contribution of SGW to the nutrient levels in coral reefs. A key to this approach is determining the amount and source of SGW that flows into the coast as well as its nutrient concentrations. The SGW flux and associated input of chemical dissolved load (nutrient, DOC, trace elements and other contaminants) is quantified using naturally occurring Ra isotopes. Radium isotopes have been shown to be excellent tracers for SGW inputs into estuaries and coastal areas (Moore, 1996; Hussain et al., 1999; Kerst et al., 2000). Measurements of Ra activity within the coral reef, the lagoons and the open waters adjacent to the reef provide valuable information regarding the input of Ra as well as nutrients and possibly pollutant from groundwater discharge. Through this analysis the effect of SGD on the delicate carbon and nutrient balance of the fragile coral reef ecosystem could be evaluated. In addition to quantifying the contribution of freshwater to the nutrient mass balance in the reef, information regarding the length of time a water parcel has remained in the near-shore region over the reef can be estimated using the Ra isotope quartet.

  18. NUTRIENT CONTAMINATION AS A RESULT OF POINT SOURCE DISCHARGES: A SURVEY

    EPA Science Inventory

    Nutrients are common contaminants in Gulf of Mexico estuaries and when present in high concentrations, they can cause excessive algal growths and hypoxic conditions. The magnitude and biological significance of nutrient loading to estuarine waters receiving treated wastewaters is...

  19. A hydrologic network supporting spatially referenced regression modeling in the Chesapeake Bay watershed

    USGS Publications Warehouse

    Brakebill, J.W.; Preston, S.D.

    2003-01-01

    The U.S. Geological Survey has developed a methodology for statistically relating nutrient sources and land-surface characteristics to nutrient loads of streams. The methodology is referred to as SPAtially Referenced Regressions On Watershed attributes (SPARROW), and relates measured stream nutrient loads to nutrient sources using nonlinear statistical regression models. A spatially detailed digital hydrologic network of stream reaches, stream-reach characteristics such as mean streamflow, water velocity, reach length, and travel time, and their associated watersheds supports the regression models. This network serves as the primary framework for spatially referencing potential nutrient source information such as atmospheric deposition, septic systems, point-sources, land use, land cover, and agricultural sources and land-surface characteristics such as land use, land cover, average-annual precipitation and temperature, slope, and soil permeability. In the Chesapeake Bay watershed that covers parts of Delaware, Maryland, Pennsylvania, New York, Virginia, West Virginia, and Washington D.C., SPARROW was used to generate models estimating loads of total nitrogen and total phosphorus representing 1987 and 1992 land-surface conditions. The 1987 models used a hydrologic network derived from an enhanced version of the U.S. Environmental Protection Agency's digital River Reach File, and course resolution Digital Elevation Models (DEMs). A new hydrologic network was created to support the 1992 models by generating stream reaches representing surface-water pathways defined by flow direction and flow accumulation algorithms from higher resolution DEMs. On a reach-by-reach basis, stream reach characteristics essential to the modeling were transferred to the newly generated pathways or reaches from the enhanced River Reach File used to support the 1987 models. To complete the new network, watersheds for each reach were generated using the direction of surface-water flow derived from the DEMs. This network improves upon existing digital stream data by increasing the level of spatial detail and providing consistency between the reach locations and topography. The hydrologic network also aids in illustrating the spatial patterns of predicted nutrient loads and sources contributed locally to each stream, and the percentages of nutrient load that reach Chesapeake Bay.

  20. The Nutrient Pool of Five Important Bottomland Hardwood Soils

    Treesearch

    John K. Francis

    1988-01-01

    Heretofore, with the exception of N, the concentration of total nutrients and the amount of variation in nutrient concentrations among and within soil series and depths within the rooting zone of forested alluvial soils of the South was unknown. Information about total nutrient concentrations is important in studying the danger of nutrient depletion posed by total tree...

  1. EFFECTS OF AMMONIUM AND NITRATE ON NUTRIENT UPTAKE AND ACTIVITY OF NITROGEN ASSIMILATING ENZYMES IN WESTERN HEMLOCK

    EPA Science Inventory

    Western hemlock seedlings were grown in nutrient solutions with ammonium, nitrate or ammonium plus nitrate as nitrogen sources. he objectives were to examine (1) possible selectivity for ammonium or nitrate as an N source, (2) the maintenance of charge balance during ammonium and...

  2. Water infiltration and surface soil structural properties as influenced by animal traffic in the Southern Piedmont USA

    USDA-ARS?s Scientific Manuscript database

    Surface-soil structural condition in long-term perennial pastures is expected to be modified by how forage is (a) harvested through haying or grazing and (b) stimulated through source of nutrient application. We determined the effects of harvest management and nutrient source on macropore filling, ...

  3. Food crop production, nutrient availability, and nutrient intakes in Bangladesh: exploring the agriculture-nutrition nexus with the 2010 Household Income and Expenditure Survey.

    PubMed

    Fiedler, John L

    2014-12-01

    Systematic collection of national agricultural data has been neglected in many low- and middle-income countries for the past 20 years. Commonly conducted nationally representative household surveys collect substantial quantities of highly underutilized food crop production data. To demonstrate the potential usefulness of commonly available household survey databases for analyzing the agriculture-nutrition nexus. Using household data from the 2010 Bangladesh Household Income and Expenditure Survey, the role and significance of crop selection, area planted, yield, nutrient production, and the disposition of 34 food crops in affecting the adequacy of farming households' nutrient availability and nutrient intake status are explored. The adequacy of each farming household's available energy, vitamin A, calcium, iron, and zinc and households' apparent intakes and intake adequacies are estimated. Each household's total apparent nutrient intake adequacies are estimated, taking into account the amount of each crop that households consume from their own production, together with food purchased or obtained from other sources. Even though rice contains relatively small amounts of micronutrients, has relatively low nutrient density, and is a relatively poor source of nutrients compared with what other crops can produce on a given tract of land, because so much rice is produced in Bangladesh, it is the source of 90% of the total available energy, 85% of the zinc, 67% of the calcium, and 55% of the iron produced by the agricultural sector. The domination of agriculture and diet by rice is a major constraint to improving nutrition in Bangladesh. Simple examples of how minor changes in the five most common cropping patterns could improve farming households' nutritional status are provided. Household surveys' agricultural modules can provide a useful tool for better understanding national nutrient production realities and possibilities.

  4. Clinical assessment of nutritional status and feeding programs in horses.

    PubMed

    Becvarova, Iveta; Pleasant, R Scott; Thatcher, Craig D

    2009-04-01

    Veterinarians are a primary source of nutritional information and advice for horse owners. This article reviews methods for clinical assessment of nutritional status and feeding programs that can be applied to an individual horse or group of horses. Physical examination, including measurement of body weight and evaluation of body condition score, estimation of nutrient requirements and the nutrient content of the horse's diet, and evaluation of the feeding method are important components of the assessment. Ongoing clinical assessment of health and body condition will gauge the need for reassessment of the feeding plan. Obvious indications for prompt reevaluation of diet and feeding include changes in health status (eg, body condition), life stage or physiologic state (eg, pregnancy), or performance status.

  5. Azolla pinnata growth performance in different water sources.

    PubMed

    Nordiah, B; Harah, Z Muta; Sidik, B Japar; Hazma, W N Wan

    2012-07-01

    Azolla pinnata R.Br. growth performance experiments in different water sources were conducted from May until July 2011 at Aquaculture Research Station, Puchong, Malaysia. Four types of water sources (waste water, drain water, paddy field water and distilled water) each with different nutrient contents were used to grow and evaluate the growth performance of A. pinnata. Four water sources with different nutrient contents; waste, drain, paddy and distilled water as control were used to evaluate the growth performance of A. pinnata. Generally, irrespective of the types of water sources there were increased in plant biomass from the initial biomass (e.g., after the first week; lowest 25.2% in distilled water to highest 133.3% in drain water) and the corresponding daily growth rate (3.61% in distilled water to 19.04% in drain water). The increased in biomass although fluctuated with time was consistently higher in drain water compared to increased in biomass for other water sources. Of the four water sources, drain water with relatively higher nitrate concentration (0.035 +/- 0.003 mg L(-l)) and nitrite (0.044 +/- 0.005 mg L(-1)) and with the available phosphate (0.032 +/- 0.006 mg L(-1)) initially provided the most favourable conditions for Azolla growth and propagation. Based on BVSTEP analysis (PRIMER v5), the results indicated that a combination of more than one nutrient or multiple nutrient contents explained the observed increased in biomass of A. pinnata grown in the different water sources.

  6. Sources and cycling of major ions and nutrients in Devils Lake, North Dakota

    USGS Publications Warehouse

    Lent, R.M.

    1994-01-01

    Devils Lake is a saline lake in a large, closed drainage basin in northeastern North Dakota. Previous studies determined that major-ion and nutrient concentrations in Devils Lake are strongly affected by microbially mediated sulfate reduction and dissolution of sulfate and carbonate minerals in the bottom sediments. These studies documented substantial spatial variability in the magnitude of calculated benthic fluxes coincident with the horizontal salinity gradient in Devils Lake. The purpose of the present study is to evaluate seasonal variability in benthic-flux rates, and to understand the effect of these fluxes on the major-ion and nutrient chemistries in Devils Lake between May and October 1991. During the study period, the water column was well mixed, and specific conductance, pH, and temperature did not vary with depth. Dissolved oxygen was enriched near the lake surface due to photosynthesis. Major-ion concentrations and nutrient concentrations did not vary with depth. Because the water-quality data were obtained during open-water periods, the vertical profiles reflect well-mixed conditions. However, the first and last profiles for the study period did document near-bottom maxima of major cations. Secchi-disk depth varied from 0.82 meter on May 7,1991, to 2.13 meters on June 5, 1991. The mean Secchi-disk depth during the study period was 1.24 meters. Seasonal variations in Secchi-disk depths were attributed to variations in primary productivity and phytoplankton communities. Nutrient cycles in Devils Lake were evaluated using gross primary productivity rate data, sediment trap data, and major-ion and nutrient benthic-flux rate data. Gross primary productivity rate was smallest in May (0.076 gram of carbon per square meter per day) and largest in September (1.8 grams of carbon per square meter per day). Average gross primary productivity for the study period was 0.87 gram of carbon per square meter per day. Average gross primary productivity is consistent with historic data from Devils Lake and with data from other eutrophic lakes.The average flux of organic carbon for the study period was 12 grams per square meter per day. The calculated carbon to nitrogen to phosphorus ratio (317:25:1) is similar to the Redfield ratio (106:16:1); therefore, most organic matter probably is derived from lacustrine phytoplankton.Calculated benthic-flux rates indicated that bottom sediments are important sources of majorions and nutrients to Devils Lake. Only one of the cores collected during this study indicated a net sulfate flux from the lake into the sediments. Seasonal variations in major-ion and nutrient benthic fluxes generally were small. However, there were important differences between the calculated benthic fluxes for this study and the calculated benthic fluxes for 1990. Calculated benthic fluxes of bicarbonate, ammonia, and phosphorus for this study were smaller than calculated benthic fluxes for 1990. The large differences between fluxes for 1990 and 1991 were attributed to calm, stratified water-column conditions in 1990 and well-mixed water-column conditions in 1991.The role of benthic fluxes in the chemical mass balances in Devils Lake was evaluated by calculating response times for major ions and nutrients in Devils Lake. The calculated response times for major ions in Devils Lake ranged from 6.7 years for bicarbonate to 34 years for sulfur (as 804). The response times for major ions are significantly shorter than previous estimates that did not include benthic fluxes. In addition, the relatively short response times for nitrogen (4.2 years) and phosphorus (0.95 year) indicate that nutrients are recycled rapidly between bottom sediments and the lake. During the study period, benthic fluxes were the dominant source of major ions and nutrients to Devils Lake and greatly reduced the response times of all major ions and nutrients for Devils Lake. As a result, bottom-sediment processes appear to buffer major-ion and nutrient concentrations in the lake. Any future attempt to evaluate water quality in Devils Lake should include the effects of bottom-sediment processes.

  7. Nitrogen Source-Dependent Capsule Induction in Human-Pathogenic Cryptococcus Species

    PubMed Central

    Frazzitta, Aubrey E.; Vora, Haily; Price, Michael S.; Tenor, Jennifer L.; Betancourt-Quiroz, Marisol; Toffaletti, Dena L.; Cheng, Nan

    2013-01-01

    Cryptococcus neoformans and C. gattii cause meningoencephalitis and are an increasing human health threat. These pathogenic Cryptococcus species are neurotropic and persist in the cerebrospinal fluid (CSF) of the mammalian host during infection. In order to survive in the host, pathogenic fungi must procure nutrients, such as carbon and nitrogen, from the CSF. To enhance our understanding of nutrient acquisition during central nervous system infection by Cryptococcus species, we examined the utilization of nitrogen sources available in CSF. We screened for the growth and capsule production of 817 global environmental and clinical isolates on various sources of nitrogen. Both environmental and clinical strains grew robustly on uric acid, Casamino Acids, creatinine, and asparagine as sole nitrogen sources. Urea induced the greatest magnitude of capsule induction. This induction was greater in Cryptococcus gattii than in C. neoformans. We confirmed the ability of nonpreferred nitrogen sources to increase capsule production in pathogenic species of Cryptococcus. Since urea is metabolized to ammonia and CO2 (a known signal for capsule induction), we examined urea metabolism mutants for their transcriptional response to urea regarding capsule production. The transcriptional profile of C. neoformans under urea-supplemented conditions revealed both similar and unique responses to other capsule-inducing conditions, including both intra- and extracellular urea utilization. As one of the most abundant nitrogen sources in the CSF, the ability of Cryptococcus to import urea and induce capsule production may substantially aid this yeast's survival and propagation in the host. PMID:23975889

  8. Nitrogen source-dependent capsule induction in human-pathogenic cryptococcus species.

    PubMed

    Frazzitta, Aubrey E; Vora, Haily; Price, Michael S; Tenor, Jennifer L; Betancourt-Quiroz, Marisol; Toffaletti, Dena L; Cheng, Nan; Perfect, John R

    2013-11-01

    Cryptococcus neoformans and C. gattii cause meningoencephalitis and are an increasing human health threat. These pathogenic Cryptococcus species are neurotropic and persist in the cerebrospinal fluid (CSF) of the mammalian host during infection. In order to survive in the host, pathogenic fungi must procure nutrients, such as carbon and nitrogen, from the CSF. To enhance our understanding of nutrient acquisition during central nervous system infection by Cryptococcus species, we examined the utilization of nitrogen sources available in CSF. We screened for the growth and capsule production of 817 global environmental and clinical isolates on various sources of nitrogen. Both environmental and clinical strains grew robustly on uric acid, Casamino Acids, creatinine, and asparagine as sole nitrogen sources. Urea induced the greatest magnitude of capsule induction. This induction was greater in Cryptococcus gattii than in C. neoformans. We confirmed the ability of nonpreferred nitrogen sources to increase capsule production in pathogenic species of Cryptococcus. Since urea is metabolized to ammonia and CO(2) (a known signal for capsule induction), we examined urea metabolism mutants for their transcriptional response to urea regarding capsule production. The transcriptional profile of C. neoformans under urea-supplemented conditions revealed both similar and unique responses to other capsule-inducing conditions, including both intra- and extracellular urea utilization. As one of the most abundant nitrogen sources in the CSF, the ability of Cryptococcus to import urea and induce capsule production may substantially aid this yeast's survival and propagation in the host.

  9. Light as an Energy Source in Continuous Cultures of Bacteriorhodopsin-Containing Halobacteria

    PubMed Central

    Rodriguez-Valera, F.; Nieto, J. J.; Ruiz-Berraquero, F.

    1983-01-01

    The role of light as an energy source for slightly aereated cultures of halobacteria was studied, using continuous cultures with low nutrient concentrations and a low oxygen supply. A series of experiments were carried out with non-illuminated and differently illuminated cultures and with different oxygen transfer rates. Under low oxygen availability, light proved to be a decisively important energy source that allowed the populations to reach higher growth rates and much higher population densities. Oxygen influenced the growth over only a minimal level, below which neither the illuminated nor the dark cultures were affected by the oxygen transfer rate. From these results, it appears that the bacteriorhodopsin-mediated energy supply could have a very important role for the ecology of halobacteria in their microaerophilic habitats. In the illuminated cultures, cells that originated purple colonies on plates appeared. These cells, which could be bacteriorhodopsin-constitutive mutants, are now being studied. PMID:16346250

  10. Sequential batch culture studies for the decolorisation of reactive dye by Coriolus versicolor.

    PubMed

    Sanghi, Rashmi; Dixit, Awantika; Guha, Sauymen

    2006-02-01

    The white rot fungus Coriolus versicolor could decolorise reactive dye Remazol Brilliant Violet to almost 90%. The fungal mycelia removed color as well as COD up to 95% and 75%, respectively, in a batch reactor. Decolorising activity was observed during the repeated reuse of the fungus. It was possible to substantially increase the dye decolorising activity of the fungus by carefully selecting the operational conditions such as media composition, age of fungus and nitrogen source. The fungal pellets could be used for eight cycles during the long term operation, where medium and dye was replenished at the end of each cycle and the fungus was recycled. Presence of a nitrogen source and nutrient content of media played an important role in sustaining the decolorisation activity of the fungus. The form of nitrogen source (e.g. peptone vs. urea) was also important to maintain the decolorising activity with peptone showing better decolorisation.

  11. Balancing glycolysis and mitochondrial OXPHOS: lessons from the hematopoietic system and exercising muscles.

    PubMed

    Haran, Michal; Gross, Atan

    2014-11-01

    Living organisms require a constant supply of safe and efficient energy to maintain homeostasis and to allow locomotion of single cells, tissues and the entire organism. The source of energy can be glycolysis, a simple series of enzymatic reactions in the cytosol, or a much more complex process in the mitochondria, oxidative phosphorylation (OXPHOS). In this review we will examine how does the organism balance its source of energy in two seemingly distinct and unrelated processes: hematopoiesis and exercise. In both processes we will show the importance of the metabolic program and its regulation. We will also discuss the importance of oxygen availability not as a sole determinant, but in the context of the nutrient and cellular state, and address the emerging role of lactate as an energy source and signaling molecule in health and disease. Copyright © 2014 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

  12. Nutrition Source Book.

    ERIC Educational Resources Information Center

    National Dairy Council, Rosemont, IL.

    This booklet presents a nutrient approach to teaching nutrition. It contains basic nutrition information along with suggestions for translating this information to fulfill the needs of families and individuals. Topics discussed are: (1) a nutrient approach to teaching nutrition; (2) functions of nutrients; (3) how food handling affects nutrient…

  13. Seasonal sediment and nutrients transport patterns

    USDA-ARS?s Scientific Manuscript database

    It is essential to understand sediment and nutrient sources and their spatial and temporal patterns in order to design effective mitigation strategies. However, long-term data sets to determine sediment and nutrient loadings are scarce and expensive to collect. The goal of this study was to determin...

  14. Nutrient bioassimilation capacity of aquacultured oysters: quantification of an ecosystem service.

    PubMed

    Higgins, Colleen B; Stephenson, Kurt; Brown, Bonnie L

    2011-01-01

    Like many coastal zones and estuaries, the Chesapeake Bay has been severely degraded by cultural eutrophication. Rising implementation costs and difficulty achieving nutrient reduction goals associated with point and nonpoint sources suggests that approaches supplemental to source reductions may prove useful in the future. Enhanced oyster aquaculture has been suggested as one potential policy initiative to help rid the Bay waters of excess nutrients via harvest of bioassimilated nutrients. To assess this potential, total nitrogen (TN), total phosphorous (TP), and total carbon (TC) content were measured in oyster tissue and shell at two floating-raft cultivation sites in the Chesapeake Bay. Models were developed based on the common market measurement of total length (TL) for aquacultured oysters, which was strongly correlated to the TN (R2 = 0.76), TP (R2 = 0.78), and TC (R2 = 0.76) content per oyster tissue and shell. These models provide resource managers with a tool to quantify net nutrient removal. Based on model estimates, 10(6) harvest-sized oysters (76 mm TL) remove 132 kg TN, 19 kg TP, and 3823 kg TC. In terms of nutrients removed per unit area, oyster harvest is an effective means of nutrient removal compared with other nonpoint source reduction strategies. At a density of 286 oysters m(-2), assuming no mortality, harvest size nutrient removal rates can be as high as 378 kg TN ha(-1), 54 kg TP ha(-1), and 10,934 kg TC ha(-1) for 76-mm oysters. Removing 1 t N from the Bay would require harvesting 7.7 million 76-mm TL cultivated oysters.

  15. Persistence of rock-derived nutrients in the wet tropical forests of La Selva, Costa Rica.

    PubMed

    Porder, Stephen; Clark, Deborah A; Vitousek, Peter M

    2006-03-01

    We used strontium isotopes and analysis of foliar and soil nutrients to test whether erosion can rejuvenate the supply of rock-derived nutrients in the lowland tropical rain forest of La Selva, Costa Rica. We expected that these nutrients would be depleted from soils on stable surfaces, a result of over one million years of weathering in situ. In fact, trees and palms in all landscape positions derive a relatively high percentage (> or =40%) of their strontium from bedrock, rather than atmospheric, sources. The fraction that is rock-derived increases on slopes, but with no detectable effect on plant macronutrient concentrations. These results differ from those in a similar ecosystem on Kauai, Hawaii, where plants on uneroded surfaces derive almost all of their foliar Sr from atmospheric, rather than bedrock, sources. The results from La Selva challenge the assumption that tropical Oxisols in general have low nutrient inputs from bedrock, and support the hypothesis that erosion can increase the supply of these nutrients in lower landscape positions.

  16. Feasibility of Estimating Relative Nutrient Contributions of Agriculture and Forests Using MODIS Time Series

    NASA Technical Reports Server (NTRS)

    Ross, Kenton W.; Gasser, Gerald; Spiering, Bruce

    2010-01-01

    Around the Gulf of Mexico, high-input crops in several regions make a significant contribution to nutrient loading of small to medium estuaries and to the near-shore Gulf. Some crops cultivated near the coast include sorghum in Texas, rice in Texas and Louisiana, sugarcane in Florida and Louisiana, citrus orchards in Florida, pecan orchards in Mississippi and Alabama, and heavy sod and ornamental production around Mobile and Tampa Bay. In addition to crops, management of timberlands in proximity to the coasts also plays a role in nutrient loading. In the summer of 2008, a feasibility project is planned to explore the use of NASA data to enhance the spatial and temporal resolution of near-coast nutrient source information available to the coastal community. The purpose of this project is to demonstrate the viability of nutrient source information products applicable to small to medium watersheds surrounding the Gulf of Mexico. Conceptually, these products are intended to complement estuarine nutrient monitoring.

  17. Feasibility of Estimating Relative Nutrient Contributions of Agriculture using MODIS Time Series

    NASA Technical Reports Server (NTRS)

    Ross, Kenton W.; Gasser, Gerald; Spiering, Bruce

    2008-01-01

    Around the Gulf of Mexico, high-input crops in several regions make a significant contribution to nutrient loading of small to medium estuaries and to the near-shore Gulf. Some crops cultivated near the coast include sorghum in Texas, rice in Texas and Louisiana, sugarcane in Florida and Louisiana, citrus orchards in Florida, pecan orchards in Mississippi and Alabama, and heavy sod and ornamental production around Mobile and Tampa Bay. In addition to crops, management of timberlands in proximity to the coasts also plays a role in nutrient loading. In the summer of 2008, a feasibility project is planned to explore the use of NASA data to enhance the spatial and temporal resolution of near-coast nutrient source information available to the coastal community. The purpose of this project is to demonstrate the viability of nutrient source information products applicable to small to medium watersheds surrounding the Gulf of Mexico. Conceptually, these products are intended to complement estuarine nutrient monitoring.

  18. Relative contribution of lipid sources to eggs of lesser scaup

    USGS Publications Warehouse

    Cutting, Kyle A.; Hobson, Keith A.; Rotella, Jay J.; Warren, Jeffrey M.; Takekawa, John Y.; De La Cruz, Susan E. W.; Parker, Michael

    2014-01-01

    Studies of how birds mobilize nutrients to eggs have traditionally considered a continuum of possible allocation strategies ranging from income breeding (rely on food sources found on the breeding grounds) to capital breeding (rely on body reserves stored prior to the breeding season). For capital breeding, stored body reserves can be acquired either on or away from the breeding grounds, but it has been difficult to quantify the relative contribution of each, precluding identification of key habitats for acquiring nutrients for clutch formation. During 2006–2009, we explored the importance of spring-staging habitats versus breeding-area habitats for egg-lipid formation in female lesser scaup Aythya affinis using stable carbon (δ13C) isotope analyses. Although δ13C values for abdominal lipid reserves brought to the breeding grounds overlapped those of local amphipods, we were able to quantify the importance of local plant carbohydrates (seeds of emergent wetland plants) to the production of eggs. We compared the importance of local wetland seeds (overall δ13C: −29.1 ± 0.9‰ SD) to combined lipid stores and lipids from local amphipods (overall δ13C: −23.8 ± 2.2‰). Local seeds and stored body lipids contributed equally to egg lipid formation across years but we found evidence of annual variation in their relative importance. Wetland seeds contributed 39% (SE = 10%) to egg lipid production, and the importance of this source varied by year (90% CI = 47–75% in 2006, 13–42% in 2007, 29–65% in 2008, and 7–30% in 2009). In contrast to earlier studies that suggest lesser scaup predominantly employ a capital breeding strategy, our results suggest that in some years females may attain half of their energy for clutch formation from foods on the breeding grounds.

  19. The linkage between nutrient supply, intracellular enzyme abundances and bacterial growth: New evidences from the central carbon metabolism of Corynebacterium glutamicum.

    PubMed

    Noack, Stephan; Voges, Raphael; Gätgens, Jochem; Wiechert, Wolfgang

    2017-09-20

    Corynebacterium glutamicum serves as important production host for small molecular compounds that are derived from precursor molecules of the central carbon metabolism. It is therefore a well-studied model organism of industrial biotechnology. However, a deeper understanding of the regulatory principles underlying the synthesis of central metabolic enzymes under different environmental conditions as well as its impact on cell growth is still missing. We studied enzyme abundances in C. glutamicum in response to growth on: (i) one limiting carbon source by sampling chemostat and fed-batch cultivations and (ii) changing carbon sources provided in excess by sampling batch cultivations. The targeted quantification of 20 central metabolic enzymes by isotope dilution mass spectrometry revealed that cells maintain stable enzyme concentrations when grown on d-glucose as single carbon and energy source and, most importantly, independent of its availability. By contrast, switching from d-glucose to d-fructose, d-mannose, d-arabitol, acetate, l-lactate or l-glutamate results in highly specific enzyme regulation patterns that can partly be explained by the activity of known transcriptional regulators. Based on these experimental results we propose a simple framework for modeling cell population growth as a nested function of nutrient supply and intracellular enzyme abundances. In summary, our study extends the basis for the formulation of predictive mechanistic models of bacterial growth, applicable in industrial bioprocess development. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Fog and Phosphorous:Mist Connections?

    NASA Astrophysics Data System (ADS)

    Weathers, K. C.; Caraco, N. F.; Ewing, H. A.

    2005-12-01

    Fog (or cloud) is an important vector for delivering water, nutrients and pollutants to many coastal and montane ecosystems worldwide. Previous research has demonstrated that elements and ions whose sources are thought to be atmospheric, such as nitrogen and sulfur, can be deposited in substantial quantities via fog water deposition. However, the ecologically-important nutrient, phosphorous (P), is thought to derive primarily from guano or terrestrial sources; it has not been demonstrated to be deposited in significant quantities via rain water, for example. Here we suggest that phosphorous may be quite prevalent in fog water and that the atmospheric deposition of phosphorous to the forest floor is significant. Phosphate appears to be either immobilized or utilized in the forest floor. We examine the concentrations of phosphorous in fog water from several ecosystems in the Americas and the spatial patterns of P movement in a fog-dominated, redwood forest in Sonoma County, CA. Phosphate concentrations were surprisingly high, ranging from 0.002 to 2.9 mg/L, in fog samples from near-coast and montane ecosystems. Phosphate in fog water appears to be derived from a crustal source as demonstrated by the strong relationship between phosphorous concentrations in fog and K:Na ratios. Fog water phosphorous inputs to the forest floor were observed to decline exponentially and vary significantly from edge to interior in a redwood forest. Phosphate via fog deposition can be detected in shallow soil zones but not at greater depths, and only at the forest edge, during the summer fog season.

  1. Docosahexaenoic acid (DHA): an ancient nutrient for the modern human brain.

    PubMed

    Bradbury, Joanne

    2011-05-01

    Modern humans have evolved with a staple source of preformed docosahexaenoic acid (DHA) in the diet. An important turning point in human evolution was the discovery of high-quality, easily digested nutrients from coastal seafood and inland freshwater sources. Multi-generational exploitation of seafood by shore-based dwellers coincided with the rapid expansion of grey matter in the cerebral cortex, which characterizes the modern human brain. The DHA molecule has unique structural properties that appear to provide optimal conditions for a wide range of cell membrane functions. This has particular implications for grey matter, which is membrane-rich tissue. An important metabolic role for DHA has recently been identified as the precursor for resolvins and protectins. The rudimentary source of DHA is marine algae; therefore it is found concentrated in fish and marine oils. Unlike the photosynthetic cells in algae and higher plants, mammalian cells lack the specific enzymes required for the de novo synthesis of alpha-linolenic acid (ALA), the precursor for all omega-3 fatty acid syntheses. Endogenous synthesis of DHA from ALA in humans is much lower and more limited than previously assumed. The excessive consumption of omega-6 fatty acids in the modern Western diet further displaces DHA from membrane phospholipids. An emerging body of research is exploring a unique role for DHA in neurodevelopment and the prevention of neuropsychiatric and neurodegenerative disorders. DHA is increasingly being added back into the food supply as fish oil or algal oil supplementation.

  2. Docosahexaenoic Acid (DHA): An Ancient Nutrient for the Modern Human Brain

    PubMed Central

    Bradbury, Joanne

    2011-01-01

    Modern humans have evolved with a staple source of preformed docosahexaenoic acid (DHA) in the diet. An important turning point in human evolution was the discovery of high-quality, easily digested nutrients from coastal seafood and inland freshwater sources. Multi-generational exploitation of seafood by shore-based dwellers coincided with the rapid expansion of grey matter in the cerebral cortex, which characterizes the modern human brain. The DHA molecule has unique structural properties that appear to provide optimal conditions for a wide range of cell membrane functions. This has particular implications for grey matter, which is membrane-rich tissue. An important metabolic role for DHA has recently been identified as the precursor for resolvins and protectins. The rudimentary source of DHA is marine algae; therefore it is found concentrated in fish and marine oils. Unlike the photosynthetic cells in algae and higher plants, mammalian cells lack the specific enzymes required for the de novo synthesis of alpha-linolenic acid (ALA), the precursor for all omega-3 fatty acid syntheses. Endogenous synthesis of DHA from ALA in humans is much lower and more limited than previously assumed. The excessive consumption of omega-6 fatty acids in the modern Western diet further displaces DHA from membrane phospholipids. An emerging body of research is exploring a unique role for DHA in neurodevelopment and the prevention of neuropsychiatric and neurodegenerative disorders. DHA is increasingly being added back into the food supply as fish oil or algal oil supplementation. PMID:22254110

  3. Comparative analysis of phytochemicals and nutrient availability in two contrasting cultivars of sweet potato (Ipomoea batatas L.).

    PubMed

    Shekhar, Shubhendu; Mishra, Divya; Buragohain, Alak Kumar; Chakraborty, Subhra; Chakraborty, Niranjan

    2015-04-15

    Sweet potato ranks as the world's seventh most important food crop, and has major contribution to energy and phytochemical source of nutrition. To unravel the molecular basis for differential nutrient availability, and to exploit the natural genetic variation(s) of sweet potato, a series of physiochemical and proteomics experiment was conducted using two contrasting cultivars, an orange-fleshed sweet potato (OFSP) and a white-fleshed sweet potato (WFSP). Phytochemical screening revealed high percentage of carbohydrate, reducing sugar and phenolics in WFSP, whereas OFSP showed increased levels of total protein, flavonoids, anthocyanins, and carotenoids. The rate of starch and cellulose degradation was found to be less in OFSP during storage, indicating tight regulation of gene(s) responsible for starch-degradation. Comparative proteomics displayed a cultivar-dependent expression of proteins along with evolutionarily conserved proteins. These results suggest that cultivar-specific expression of proteins and/or their interacting partners might play a crucial role for nutrient acquisition in sweet potato. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Leguminose green juice as an efficient nutrient for l(+)-lactic acid production.

    PubMed

    Dietz, Donna; Schneider, Roland; Papendiek, Franka; Venus, Joachim

    2016-10-20

    Lactic acid is one of the most important building blocks for the production of bioplastic. Many investigations have been conducted to reduce the lactic acid production costs. In this work, the focus was put on the application of legume pressed juice or green juice as nutrient source. The pressed juice was utilized directly without prior pre-treatment and sterilization. Using two different alfalfa green juices and a clover green juice from two different harvest years as sole nutrients, non-sterile fermentations were performed at 52°C and pH 6.0 with a thermotolerant strain Bacillus coagulans AT107. The results showed that alfalfa green juices generally were more suitable for high lactic acid production than clover green juices, presumably due to the higher nitrogen content. A final titer of 98.8g/L after 30h with l(+)-lactic acid purity of >99% was obtained. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. An Overview of Soils and Human Health

    NASA Astrophysics Data System (ADS)

    Brevik, Eric C.

    2013-04-01

    Few people recognize the connection between soils and human health, even though soils are actually very important to health. Soils influence health through the nutrients taken up by plants and the animals that eat those plants, nutrients that are needed for adequate nutrition for growth and development. Soils can also act to harm human health in three major ways: i) toxic levels of substances or disease-causing organisms may enter the human food chain from the soil ii) humans can encounter pathogenic organisms through direct contact with the soil or inhaling dust from the soil, and iii) degraded soils produce nutrient-deficient foods leading to malnutrition. Soils have also been a major source of medicines. Therefore, soils form an integral link in the holistic view of human health. In this presentation, soils and their influence on human health are discussed from a broad perspective, including both direct influences of soils on health and indirect influences through things such as climate change, occupational exposure to soil amendments, and the role of soils in providing food security.

  6. Effects of pulsed nutrient inputs on phytoplankton assemblage structure and blooms in an enclosed coastal area

    NASA Astrophysics Data System (ADS)

    Spatharis, Sofie; Tsirtsis, George; Danielidis, Daniel B.; Chi, Thang Do; Mouillot, David

    2007-07-01

    The response of phytoplankton assemblage structure to terrestrial nutrient inputs was examined for the Gulf of Kalloni in the Northern Aegean Sea, a productive semi-enclosed coastal marine ecosystem. The study was focused on a typical annual cycle, and emphasis was placed on the comparative analysis between blooms developing after significant nutrient inputs from the watershed, and naturally occurring blooms. Baseline information was collected on a monthly basis from a network of stations located in the oligotrophic open sea and the interior and more productive part of the embayment. Intensive sampling was also carried out along a gradient in the vicinity of a river which was the most important source of freshwater and nutrient input for the Gulf. Phytoplankton assemblage structure was analyzed from 188 samples using diversity indices (Shannon and Average Taxonomic Distinctness), multivariate plotting methods (NMDS), multivariate statistics (PERMANOVA), and canonical correspondence analysis (CCA). Three characteristic assemblages were recognized: (1) an autumn assemblage developed under nutrient depleted conditions, having low diversity due to the dominance of two small diatoms, (2) a winter bloom of the potentially toxic species Pseudo-nitzschia calliantha occurring immediately after a nutrient peak and characterized by very low diversity, and (3) a naturally occurring early summer bloom of centric diatoms with relatively high diversity. The results of the study support the view that moderate nutrient inputs may have a beneficial effect on the functioning of coastal ecosystems, stimulating the taxonomic diversity through the growth of different taxonomic groups and taxa. On the other hand, a sudden pulse of high nutrient concentrations may greatly affect the natural succession of organisms, have a negative effect on the diversity through the dominance of a single species, and can increase the possibility of a harmful algal bloom development.

  7. Pollination and Plant Resources Change the Nutritional Quality of Almonds for Human Health

    PubMed Central

    Brittain, Claire; Kremen, Claire; Garber, Andrea; Klein, Alexandra-Maria

    2014-01-01

    Insect-pollinated crops provide important nutrients for human health. Pollination, water and nutrients available to crops can influence yield, but it is not known if the nutritional value of the crop is also influenced. Almonds are an important source of critical nutrients for human health such as unsaturated fat and vitamin E. We manipulated the pollination of almond trees and the resources available to the trees, to investigate the impact on the nutritional composition of the crop. The pollination treatments were: (a) exclusion of pollinators to initiate self-pollination and (b) hand cross-pollination; the plant resource treatments were: (c) reduced water and (d) no fertilizer. In an orchard in northern California, trees were exposed to a single treatment or a combination of two (one pollination and one resource). Both the fat and vitamin E composition of the nuts were highly influenced by pollination. Lower proportions of oleic to linoleic acid, which are less desirable from both a health and commercial perspective, were produced by the self-pollinated trees. However, higher levels of vitamin E were found in the self-pollinated nuts. In some cases, combined changes in pollination and plant resources sharpened the pollination effects, even when plant resources were not influencing the nutrients as an individual treatment. This study highlights the importance of insects as providers of cross-pollination for fruit quality that can affect human health, and, for the first time, shows that other environmental factors can sharpen the effect of pollination. This contributes to an emerging field of research investigating the complexity of interactions of ecosystem services affecting the nutritional value and commercial quality of crops. PMID:24587215

  8. Some Dust/Ocean Connections - Past, Present, and Future

    NASA Astrophysics Data System (ADS)

    Duce, R. A.

    2015-12-01

    Atmospheric dust has been the subject of communications for more than 3000 years, since the ancient Chinese book Chronicles Reported on Bamboo Shoots in 1150 BC. Similar reports of hwangsa and woo-tou in ancient Korean and kosa in ancient Japanese literature also indicated major Asian dust events in those areas. Western observers noted dust storms in India and Afghanistan in the early 1800s, while in the 1840s Darwin surmised that Sahara dust could be an important component of marine sedimentation in the North Atlantic. More recent interest has focused on the importance of dust as a source of the nutrients iron and phosphorus in the global ocean and the role of iron as a limiting nutrient in many areas of the surface ocean. While significant progress has been made in the past 25 years in identifying important dust/ocean connections, many issues remain. Included are the relative dearth of long-term measurements of atmospheric dust (and iron and phosphorus) over and deposition to the ocean, especially in the southern hemisphere; comparisons between modeled and measured deposition of dust to the ocean; and the solubility of iron and phosphorus (and thus their availability as nutrients) after the mineral matter enters the ocean. Addressing these problems will certainly help to provide more accurate estimates of the input of dust to the ocean and its impacts. However, future changes in dust emissions in a warmer world as well as changes in the acid/base environment that mineral dust experiences during its transport and deposition as a result of emission controls on atmospheric NOx and SO2 are two facors that may change the input of these nutrients to the ocean and their impacts in the coming years. These and other issues will be reviewed in this paper.

  9. Human Geophagia, Calabash Chalk and Undongo: Mineral Element Nutritional Implications

    PubMed Central

    Abrahams, Peter W.; Davies, Theo C.; Solomon, Abiye O.; Trow, Amanda J.; Wragg, Joanna

    2013-01-01

    The prime aim of our work is to report and comment on the bioaccessible concentrations – i.e., the soluble content of chemical elements in the gastrointestinal environment that is available for absorption – of a number of essential mineral nutrients and potentially harmful elements (PHEs) associated with the deliberate ingestion of African geophagical materials, namely Calabash chalk and Undongo. The pseudo-total concentrations of 13 mineral nutrients/PHEs were quantified following a nitric-perchloric acid digestion of nine different Calabash chalk samples, and bioaccessible contents of eight of these chemical elements were determined in simulated saliva/gastric and intestinal solutions obtained via use of the Fed ORganic Estimation human Simulation Test (FOREhST) in vitro procedure. The Calabash chalk pseudo-total content of the chemical elements is often below what may be regarded as average for soils/shales, and no concentration is excessively high. The in vitro leachate solutions had concentrations that were often lower than those of the blanks used in our experimental procedure, indicative of effective adsorption: lead, a PHE about which concern has been previously raised in connection with the consumption of Calabash chalk, was one such chemical element where this was evident. However, some concentrations in the leachate solutions are suggestive that Calabash chalk can be a source of chemical elements to humans in bioaccessible form, although generally the materials appear to be only a modest supplier: this applies even to iron, a mineral nutrient that has often been linked to the benefits of geophagia in previous academic literature. Our investigations indicate that at the reported rates of ingestion, Calabash chalk on the whole is not an important source of mineral nutrients or PHEs to humans. Similarly, although Undongo contains elevated pseudo-total concentrations of chromium and nickel, this soil is not a significant source to humans for any of the bioaccessible elements investigated. PMID:23308189

  10. Human geophagia, calabash chalk and undongo: mineral element nutritional implications.

    PubMed

    Abrahams, Peter W; Davies, Theo C; Solomon, Abiye O; Trow, Amanda J; Wragg, Joanna

    2013-01-01

    The prime aim of our work is to report and comment on the bioaccessible concentrations - i.e., the soluble content of chemical elements in the gastrointestinal environment that is available for absorption - of a number of essential mineral nutrients and potentially harmful elements (PHEs) associated with the deliberate ingestion of African geophagical materials, namely Calabash chalk and Undongo. The pseudo-total concentrations of 13 mineral nutrients/PHEs were quantified following a nitric-perchloric acid digestion of nine different Calabash chalk samples, and bioaccessible contents of eight of these chemical elements were determined in simulated saliva/gastric and intestinal solutions obtained via use of the Fed ORganic Estimation human Simulation Test (FOREhST) in vitro procedure. The Calabash chalk pseudo-total content of the chemical elements is often below what may be regarded as average for soils/shales, and no concentration is excessively high. The in vitro leachate solutions had concentrations that were often lower than those of the blanks used in our experimental procedure, indicative of effective adsorption: lead, a PHE about which concern has been previously raised in connection with the consumption of Calabash chalk, was one such chemical element where this was evident. However, some concentrations in the leachate solutions are suggestive that Calabash chalk can be a source of chemical elements to humans in bioaccessible form, although generally the materials appear to be only a modest supplier: this applies even to iron, a mineral nutrient that has often been linked to the benefits of geophagia in previous academic literature. Our investigations indicate that at the reported rates of ingestion, Calabash chalk on the whole is not an important source of mineral nutrients or PHEs to humans. Similarly, although Undongo contains elevated pseudo-total concentrations of chromium and nickel, this soil is not a significant source to humans for any of the bioaccessible elements investigated.

  11. EFFECT OF NITROGEN SOURCE ON THE GROWTH AND TOXICITY OF THREE POTENTIALLY HARMFUL DINOFLAGELLATES

    EPA Science Inventory

    Increases in population and agriculture in coastal areas can result in increased nutrient inputs and alterations in the ratios of organic to inorganic nutrients in coastal waters. Such changes in coastal nutrient regimes can affect phytoplankton community structure by creating c...

  12. The third National Food Consumption Survey, INRAN-SCAI 2005-06: major dietary sources of nutrients in Italy.

    PubMed

    Sette, Stefania; Le Donne, Cinzia; Piccinelli, Raffaela; Mistura, Lorenza; Ferrari, Marika; Leclercq, Catherine

    2013-12-01

    To promote healthy food consumption patterns, information is required on the contribution of food groups to total nutrient intake. The objective of this paper is to identify the main dietary sources of nutrients in the diet of the population in Italy. Data collected through individual food records within the INRAN-SCAI 2005-06 survey were required. The final sample included 3323 subjects aged 0.1-97.7 years. The percentage contributed by each food category to the intake of energy, dietary fibre and of 26 nutrients was calculated. Above 3 years of age, the main contributors to macro- and micro-nutrient intakes were similar among the various age-sex groupings with few exceptions. These data might be used to develop specific strategies for Italy in order to increase the intake of dietary fibre and to decrease that of total fats and of sugars in the population.

  13. Estimates of long-term mean-annual nutrient loads considered for use in SPARROW models of the Midcontinental region of Canada and the United States, 2002 base year

    USGS Publications Warehouse

    Saad, David A.; Benoy, Glenn A.; Robertson, Dale M.

    2018-05-11

    Streamflow and nutrient concentration data needed to compute nitrogen and phosphorus loads were compiled from Federal, State, Provincial, and local agency databases and also from selected university databases. The nitrogen and phosphorus loads are necessary inputs to Spatially Referenced Regressions on Watershed Attributes (SPARROW) models. SPARROW models are a way to estimate the distribution, sources, and transport of nutrients in streams throughout the Midcontinental region of Canada and the United States. After screening the data, approximately 1,500 sites sampled by 34 agencies were identified as having suitable data for calculating the long-term mean-annual nutrient loads required for SPARROW model calibration. These final sites represent a wide range in watershed sizes, types of nutrient sources, and land-use and watershed characteristics in the Midcontinental region of Canada and the United States.

  14. Spatiotemporal patterns of livestock manure nutrient production in the conterminous United States from 1930 to 2012.

    PubMed

    Yang, Qichun; Tian, Hanqin; Li, Xia; Ren, Wei; Zhang, Bowen; Zhang, Xuesong; Wolf, Julie

    2016-01-15

    Manure nitrogen (N) and phosphorus (P) from livestock husbandry are important components of terrestrial biogeochemical cycling. Assessment of the impacts of livestock manure on terrestrial biogeochemistry requires a compilation and analysis of spatial and temporal patterns of manure nutrients. In this study, we reconstructed county-level manure nutrient data of the conterminous United States (U.S.) in 4- to 5-year increments from 1930 to 2012. Manure N and P were 5.8 9 ± 0.64 Tg N yr.(-1) (Mean ± Standard Deviation) and 1.73 ± 0.29 Tg Pyr.(-1) (1 Tg = 10(12)g), and increased by 46% and 92% from 1930 to 2012, respectively. Prior to 1970, manure provided more N to the U.S. lands than chemical fertilizer use. Since 1970, however, increasing chemical N fertilizer use has exceeded manure N production. Manure was the primary P source in the U.S. during 1930-1969 and 1987-2012, but was lower than P fertilizer use in 1974, 1978, and 1982. High-nutrient-production regions shifted towards eastern and western areas of the U.S. Decreasing small farms and increasing Concentrated Animal Feeding Operations (CAFOs) induced concentrated spatial patterns in manure nutrient loads. Counties with cattle or poultry as the primary manure nutrient contributors expanded significantly from 1930 to 2012, whereas regions with sheep and hog as the primary contributors decreased. We identified regions facing environmental threats associated with livestock farming. Effective management of manure should consider the impacts of CAFOs in manure production, and changes in livestock population structure. The long-term county-level manure nutrient dataset provides improved spatial and temporal information on manure nutrients in the U.S. This dataset is expected to help advance research on nutrient cycling, ammonia volatilization, greenhouse gas (GHG) emissions from livestock husbandry, recovery and reuse of manure nutrients, and impacts of livestock feeding on human health in the context of global change. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Spatiotemporal patterns of livestock manure nutrient production in the conterminous United States from 1930 to 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Qichun; Tian, Hanqin; Li, Xia

    Manure nitrogen (N) and phosphorus (P) from livestock husbandry are important components of terrestrial biogeochemical cycling. Assessment of the impacts of livestock manure on terrestrial biogeochemistry requires a compilation and analysis of spatial and temporal patterns of manure nutrients. In this study, we reconstructed county-level manure nutrient data of the conterminous United States (U.S.) in 4- to 5-year increments from 1930 to 2012. Manure N and P were 5.89 +/- 0.64 Tg N yr.(-1) (Mean +/- Standard Deviation) and 1.73 +/- 0.29 Tg P yr.(-1) (1 Tg=10(12) g), and increased by 46% and 92% from 1930 to 2012, respectively. Priormore » to 1970, manure provided more N to the U.S. lands than chemical fertilizer use. Since 1970, however, increasing chemical N fertilizer use has exceeded manure N production. Manure was the primary P source in the U.S. during 1930-1969 and 1987-2012, but was lower than P fertilizer use in 1974, 1978, and 1982. High-nutrient-production regions shifted towards eastern and western areas of the U.S. Decreasing small farms and increasing Concentrated Animal Feeding Operations (CAFOs) induced concentrated spatial patterns in manure nutrient loads. Counties with cattle or poultry as the primary manure nutrient contributors expanded significantly from 1930 to 2012, whereas regions with sheep and hog as the primary contributors decreased. We identified regions facing environmental threats associated with livestock farming. Effective management of manure should consider the impacts of CAFOs inmanure production, and changes in livestock population structure. The long-term county-level manure nutrient dataset provides improved spatial and temporal information on manure nutrients in the U.S. This dataset is expected to help advance research on nutrient cycling, ammonia volatilization, greenhouse gas (GHG) emissions from livestock husbandry, recovery and reuse of manure nutrients, and impacts of livestock feeding on human health in the context of global change.« less

  16. Quantification of Shallow Groundwater Nutrient Dynamics in Septic Areas

    Treesearch

    Ying Ouyang; Jia-En Zhang

    2012-01-01

    Of all groundwater pollution sources, septic systems are the second largest source of groundwater nitrate contamination in USA. This study investigated shallow groundwater (SGW) nutrient dynamics in septic areas at the northern part of the Lower St. Johns River Basin, Florida, USA. Thirty-five SGW-monitoring wells, located at nine different urban areas served by septic...

  17. Water and nutrient budgets for Vancouver Lake, Vancouver, Washington, October 2010-October 2012

    USGS Publications Warehouse

    Sheibley, Rich W.; Foreman, James R.; Marshall, Cameron A.; Welch, Wendy B.

    2014-01-01

    Vancouver Lake, a large shallow lake in Clark County, near Vancouver, Washington, has been undergoing water-quality problems for decades. Recently, the biggest concern for the lake are the almost annual harmful cyanobacteria blooms that cause the lake to close for recreation for several weeks each summer. Despite decades of interest in improving the water quality of the lake, fundamental information on the timing and amount of water and nutrients entering and exiting the lake is lacking. In 2010, the U.S. Geological Survey conducted a 2-year field study to quantify water flows and nutrient loads in order to develop water and nutrient budgets for the lake. This report presents monthly and annual water and nutrient budgets from October 2010–October 2012 to identify major sources and sinks of nutrients. Lake River, a tidally influenced tributary to the lake, flows into and out of the lake almost daily and composed the greatest proportion of both the water and nutrient budgets for the lake, often at orders of magnitude greater than any other source. From the water budget, we identified precipitation, evaporation and groundwater inflow as minor components of the lake hydrologic cycle, each contributing 1 percent or less to the total water budget. Nutrient budgets were compiled monthly and annually for total nitrogen, total phosphorus, and orthophosphate; and, nitrogen loads were generally an order of magnitude greater than phosphorus loads across all sources. For total nitrogen, flow from Lake River at Felida, Washington, made up 88 percent of all inputs into the lake. For total phosphorus and orthophosphate, Lake River at Felida flowing into the lake was 91 and 76 percent of total inputs, respectively. Nutrient loads from precipitation and groundwater inflow were 1 percent or less of the total budgets. Nutrient inputs from Burnt Bridge Creek and Flushing Channel composed 12 percent of the total nitrogen budget, 8 percent of the total phosphorus budget, and 21 percent of the orthophosphate budget. We identified several data gaps and areas for future research, which include the need for better understanding nutrient inputs to the lake from sediment resuspension and better quantification of indirect nutrient inputs to the lake from Salmon Creek.

  18. Greenland's glacial fjords and their role in regional biogeochemical dynamics.

    NASA Astrophysics Data System (ADS)

    Crosby, J.; Arndt, S.

    2017-12-01

    Greenland's coastal fjords serve as important pathways that connect the Greenland Ice Sheet (GrIS) and the surrounding oceans. They export seasonal glacial meltwater whilst being significant sites of primary production. These fjords are home to some of the most productive ecosystems in the world and possess high socio-economic value via fisheries. A growing number of studies have proposed the GrIS as an underappreciated yet significant source of nutrients to surrounding oceans. Acting as both transfer routes and sinks for glacial nutrient export, fjords have the potential to act as significant biogeochemical processors, yet remain underexplored. Critically, an understanding of the quantitative contribution of fjords to carbon and nutrient budgets is lacking, with large uncertainties associated with limited availability of field data and the lack of robust upscaling approaches. To close this knowledge gap we developed a coupled 2D physical-biogeochemical model of the Godthåbsfjord system, a sub-Arctic sill fjord in southwest Greenland, to quantitatively assess the impact of nutrients exported from the GrIS on fjord primary productivity and biogeochemical dynamics. Glacial meltwater is found to be a key driver of fjord-scale circulation patterns, whilst tracer simulations reveal the relative nutrient contributions from meltwater-driven upwelling and meltwater export from the GrIS. Hydrodynamic circulation patterns and freshwater transit times are explored to provide a first understanding of the glacier-fjord-ocean continuum, demonstrating the complex pattern of carbon and nutrient cycling at this critical land-ocean interface.

  19. Dissolved Organic Carbon Degradation in Response to Nutrient Amendments in Southwest Greenland Lakes

    NASA Astrophysics Data System (ADS)

    Burpee, B. T.; Northington, R.; Simon, K. S.; Saros, J. E.

    2014-12-01

    Aquatic ecosystems across the Arctic are currently experiencing rapid shifts in biotic, chemical, and physical factors in response to climate change. Preliminary data from multiple lakes in southwestern Greenland indicate decreasing dissolved organic carbon (DOC) concentrations over the past decade. Though several factors may be contributing to this phenomenon, this study attempts to elucidate the potential of heterotrophic bacteria to degrade DOC in the presence of increasing nutrient concentrations. In certain Arctic regions, nutrient subsidies have been released into lakes due to permafrost thaw. If this is occurring in southwestern Greenland, we hypothesized that increased nutrient concentrations will relieve nutrient limitation, thereby allowing heterotrophic bacteria to utilize DOC as an energy source. This prediction was tested using experimental DOC degradation assays from four sample lakes. Four nutrient amendment treatments (control, N, P, and N + P) were used to simulate in situ subsidies. Five time points were sampled during the incubation: days 0, 3, 6, 14, and 60. Total organic carbon (TOC) and parallel factor (PARAFAC) analysis were used to monitor the relative concentrations of different DOC fractions over time. In addition, samples for extracellular enzyme activity (EEA) analysis were collected at every time point. Early analysis of fulvic and humic pools of DOC do not indicate any significant change from days 0 to 14. This could be due to the fact that these DOC fractions are relatively recalcitrant. This study will be important in determining whether bacterial degradation could be a contributing factor to DOC decline in arctic lakes.

  20. Variation in nutrient-acquisition patterns by mycorrhizal fungi of rare and common orchids explains diversification in a global biodiversity hotspot.

    PubMed

    Nurfadilah, Siti; Swarts, Nigel D; Dixon, Kingsley W; Lambers, Hans; Merritt, David J

    2013-06-01

    Many terrestrial orchids have an obligate requirement for mycorrhizal associations to provide nutritional support from germination to establishment. This study will investigate the ability of orchid mycorrhizal fungi (OMF) to utilize a variety of nutrient sources in the nutrient-impoverished (low organic) soils of the Southwest Australian Floristic Region (SWAFR) in order to effectively compete, survive and sustain the orchid host. Mycorrhizal fungi representing key OMF genera were isolated from three common and widespread species: Pterostylis recurva, Caladenia flava and Diuris corymbosa, and one rare and restricted species: Drakaea elastica. The accessibility of specific nutrients was assessed by comparing growth including dry biomass of OMF in vitro on basal CN MMN liquid media. Each of the OMF accessed and effectively utilized a wide variety of nutrient compounds, including carbon (C) sources, inorganic and organic nitrogen (N) and inorganic and organic phosphorus (P). The nutrient compounds utilized varied between the genera of OMF, most notably sources of N. These results suggest that OMF can differentiate between niches (micro-niche specialization) in a constrained, highly resource-limited environment such as the SWAFR. Phosphorus is the most limited macronutrient in SWAFR soils and the ability to access phytate by OMF indicates a characterizing functional capacity of OMF from the SWAFR. Furthermore, compared with OMF isolated from the rare D. elastica, OMF associating with the common P. recurva produced far greater biomass over a wider variety of nutritional sources. This suggests a broader tolerance for habitat variation providing more opportunities for the common orchid for recruitment and establishment at a site.

  1. Sources and Delivery of Nutrients to the Northwestern Gulf of Mexico from Streams in the South-Central United States1

    PubMed Central

    Rebich, Richard A; Houston, Natalie A; Mize, Scott V; Pearson, Daniel K; Ging, Patricia B; Evan Hornig, C

    2011-01-01

    Abstract SPAtially Referenced Regressions On Watershed attributes (SPARROW) models were developed to estimate nutrient inputs [total nitrogen (TN) and total phosphorus (TP)] to the northwestern part of the Gulf of Mexico from streams in the South-Central United States (U.S.). This area included drainages of the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf hydrologic regions. The models were standardized to reflect nutrient sources and stream conditions during 2002. Model predictions of nutrient loads (mass per time) and yields (mass per area per time) generally were greatest in streams in the eastern part of the region and along reaches near the Texas and Louisiana shoreline. The Mississippi River and Atchafalaya River watersheds, which drain nearly two-thirds of the conterminous U.S., delivered the largest nutrient loads to the Gulf of Mexico, as expected. However, the three largest delivered TN yields were from the Trinity River/Galveston Bay, Calcasieu River, and Aransas River watersheds, while the three largest delivered TP yields were from the Calcasieu River, Mermentau River, and Trinity River/Galveston Bay watersheds. Model output indicated that the three largest sources of nitrogen from the region were atmospheric deposition (42%), commercial fertilizer (20%), and livestock manure (unconfined, 17%). The three largest sources of phosphorus were commercial fertilizer (28%), urban runoff (23%), and livestock manure (confined and unconfined, 23%). PMID:22457582

  2. Evaluating nitrogen removal by vegetation uptake using satellite image time series in riparian catchments.

    PubMed

    Wang, Xuelei; Wang, Qiao; Yang, Shengtian; Zheng, Donghai; Wu, Chuanqing; Mannaerts, C M

    2011-06-01

    Nitrogen (N) removal by vegetation uptake is one of the most important functions of riparian buffer zones in preventing non-point source pollution (NSP), and many studies about N uptake at the river reach scale have proven the effectiveness of plants in controlling nutrient pollution. However, at the watershed level, the riparian zones form dendritic networks and, as such, may be the predominant spatially structured feature in catchments and landscapes. Thus, assessing the functions of riparian system at the basin scale is important. In this study, a new method coupling remote sensing and ecological models was used to assess the N removal by riparian vegetation on a large spatial scale. The study site is located around the Guanting reservoir in Beijing, China, which was abandoned as the source water system for Beijing due to serious NSP in 1997. SPOT 5 data was used to map the land cover, and Landsat-5 TM time series images were used to retrieve land surface parameters. A modified forest nutrient cycling and biomass model (ForNBM) was used to simulate N removal, and the modified net primary productivity (NPP) module was driven by remote sensing image time series. Besides the remote sensing data, the necessary database included meteorological data, soil chemical and physical data and plant nutrient data. Pot and plot experiments were used to calibrate and validate the simulations. Our study has proven that, by coupling remote sensing data and parameters retrieval techniques to plant growth process models, catchment scale estimations of nitrogen uptake rates can be improved by spatial pixel-based modelling. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Identifying pathways and processes affecting nitrate and orthophosphate inputs to streams in agricultural watersheds

    USGS Publications Warehouse

    Tesoriero, A.J.; Duff, J.H.; Wolock, D.M.; Spahr, N.E.; Almendinger, J.E.

    2009-01-01

    Understanding nutrient pathways to streams will improve nutrient management strategies and estimates of the time lag between when changes in land use practices occur and when water quality effects that result from these changes are observed. Nitrate and orthophosphate (OP) concentrations in several environmental compartments were examined in watersheds having a range of base flow index (BFI) values across the continental United States to determine the dominant pathways for water and nutrient inputs to streams. Estimates of the proportion of stream nitrate that was derived from groundwater increased as BFI increased. Nitrate concentration gradients between groundwater and surface water further supported the groundwater source of nitrate in these high BFI streams. However, nitrate concentrations in stream-bed pore water in all settings were typically lower than stream or upland groundwater concentrations, suggesting that nitrate discharge to streams was not uniform through the bed. Rather, preferential pathways (e.g., springs, seeps) may allow high nitrate groundwater to bypass sites of high biogeochemical transformation. Rapid pathway compartments (e.g., overland flow, tile drains) had OP concentrations that were typically higher than in streams and were important OP conveyers in most of these watersheds. In contrast to nitrate, the proportion of stream OP that is derived from ground water did not systematically increase as BFI increased. While typically not the dominant source of OP, groundwater discharge was an important pathway of OP transport to streams when BFI values were very high and when geochemical conditions favored OP mobility in groundwater. Copyright ?? 2009 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  4. Microbial phosphorous mobilization strategies across a natural nutrient limitation gradient

    NASA Astrophysics Data System (ADS)

    Walker, R.; Wang, S.; Nico, P. S.; Fox, P. M.; Hao, Z.; Karaoz, U.; Torok, T.; Brodie, E.; Chakraborty, R.; Hao, Z.

    2016-12-01

    Phosphorus (P) is a critical nutrient and frequently limits primary productivity in terrestrial ecosystems. Microorganisms have evolved an array of strategies to mobilize occluded and insoluble P and may be important regulators of P availability to vegetation. Understanding the mechanisms of P mobilization, the breadth of microorganisms responsible, and the impact of these organisms on vegetation growth remains an important knowledge gap for both predicting ecosystem productivity and harnessing microbial functions to improve vegetation growth. To determine the relationship between soil development, phosphorus availability and P mobilizing microorganisms and their strategies we are studying a marine terrace chronosequence (Ecological Staircase, Mendocino County, CA) representing a fertility gradient culminating in P-limited pygmy forests that provide an ideal natural observatory to investigate how plant-microbe interactions co-evolve in response to P stress. Soil mineralogical analysis identified acidic soils bearing iron and aluminum phosphates and phytate as the dominant forms of occluded inorganic and organic P, respectively. Several diverse bacterial and fungal strains were isolated on media with AlPO4, FePO4, or phytate as the sole P source. Most microorganisms were able to utilize AlPO4 as a sole P source, with fewer subsisting on FePO4 or phytate. Terraces with a higher fraction of occluded and organic P harbored the greatest abundance of P-mobilizing microorganisms, with a significant proportion coming from the Burkholderia. Isolates that exhibited significant excess P mobilization were inoculated with Arabidopsis and Switchgrass plants grown with insoluble P forms had a positive impact on growth. These results indicate that rhizosphere microorganisms that have evolved under extreme nutrient limitation have an extended capacity for P solubilization, and could potentially be harnessed to alleviate P stress for plants. The detailed mechanisms for P mobilization by these isolates is under investigation.

  5. Energetic and nutritional constraints on infant brain development: implications for brain expansion during human evolution.

    PubMed

    Cunnane, Stephen C; Crawford, Michael A

    2014-12-01

    The human brain confronts two major challenges during its development: (i) meeting a very high energy requirement, and (ii) reliably accessing an adequate dietary source of specific brain selective nutrients needed for its structure and function. Implicitly, these energetic and nutritional constraints to normal brain development today would also have been constraints on human brain evolution. The energetic constraint was solved in large measure by the evolution in hominins of a unique and significant layer of body fat on the fetus starting during the third trimester of gestation. By providing fatty acids for ketone production that are needed as brain fuel, this fat layer supports the brain's high energy needs well into childhood. This fat layer also contains an important reserve of the brain selective omega-3 fatty acid, docosahexaenoic acid (DHA), not available in other primates. Foremost amongst the brain selective minerals are iodine and iron, with zinc, copper and selenium also being important. A shore-based diet, i.e., fish, molluscs, crustaceans, frogs, bird's eggs and aquatic plants, provides the richest known dietary sources of brain selective nutrients. Regular access to these foods by the early hominin lineage that evolved into humans would therefore have helped free the nutritional constraint on primate brain development and function. Inadequate dietary supply of brain selective nutrients still has a deleterious impact on human brain development on a global scale today, demonstrating the brain's ongoing vulnerability. The core of the shore-based paradigm of human brain evolution proposes that sustained access by certain groups of early Homo to freshwater and marine food resources would have helped surmount both the nutritional as well as the energetic constraints on mammalian brain development. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Distinctive effects of allochthonous and autochthonous organic matter on CDOM spectra in a tropical lake

    NASA Astrophysics Data System (ADS)

    Pena Mello Brandão, Luciana; Silva Brighenti, Ludmila; Staehr, Peter Anton; Asmala, Eero; Massicotte, Philippe; Tonetta, Denise; Antônio Rodrigues Barbosa, Francisco; Pujoni, Diego; Fernandes Bezerra-Neto, José

    2018-05-01

    Despite the increasing understanding about differences in carbon cycling between temperate and tropical freshwater systems, our knowledge on the importance of organic matter (OM) pools on light absorption properties in tropical lakes is very scarce. We performed a factorial mesocosm experiment in a tropical lake (Minas Gerais, Brazil) to evaluate the effects of increased concentrations of allochthonous and autochthonous OM, and differences in light availability on the light absorption characteristics of chromophoric dissolved organic matter (CDOM). Autochthonous OM deriving from phytoplankton ( ˜ Chl a) was stimulated by addition of nutrients, while OM from degradation of terrestrial leaves increased allochthonous OM, and neutral shading was used to manipulate light availability. Effects of the additions and shading on DOC, Chl a, nutrients, total suspended solid concentrations (TSM) and spectral CDOM absorption were monitored every 3 days. CDOM quality was characterized by spectral indices (S250-450, S275-295, S350-450, SR and SUVA254). Effects of carbon sources and shading on the spectral CDOM absorption was investigated through principal component (PCA) and redundancy (RDA) analyses. The two different OM sources affected CDOM quality very differently and shading had minor effects on OM levels, but significant effects on OM quality, especially in combination with nutrient additions. Spectral indices (S250-450 and SR) were mostly affected by allochthonous OM addition. The PCA showed that enrichment by allochthonous carbon had a strong effect on the CDOM spectra in the range between 300 and 400 nm, while the increase in autochthonous carbon increased absorption at wavelengths below 350 nm. Our study shows that small inputs of allochthonous OM can have large effects on the spectral light absorption compared to large production of autochthonous OM, with important implications for carbon cycling in tropical lakes.

  7. Controls of event-based nutrient transport within nested headwater agricultural watersheds of the western Lake Erie basin

    NASA Astrophysics Data System (ADS)

    Williams, Mark R.; Livingston, Stanley J.; Penn, Chad J.; Smith, Douglas R.; King, Kevin W.; Huang, Chi-hua

    2018-04-01

    Understanding the processes controlling nutrient delivery in headwater agricultural watersheds is essential for predicting and mitigating eutrophication and harmful algal blooms in receiving surface waters. The objective of this study was to elucidate nutrient transport pathways and examine key components driving nutrient delivery processes during storm events in four nested agricultural watersheds (298-19,341 ha) in the western Lake Erie basin with poorly drained soils and an extensive artificial drainage network typical of the Midwestern U.S. Concentration-discharge hysteresis patterns of nitrate-nitrogen (NO3-N), dissolved reactive phosphorus (DRP), and particulate phosphorus (PP) occurring during 47 storm events over a 6 year period (2004-2009) were evaluated. An assessment of the factors producing nutrient hysteresis was completed following a factor analysis on a suite of measured environmental variables representing the fluvial and wider watershed conditions prior to, and during the monitored storm events. Results showed the artificial drainage network (i.e., surface tile inlets and subsurface tile drains) in these watersheds was the primary flow pathway for nutrient delivery to streams, but nutrient behavior and export during storm events was regulated by the flow paths to and the intensity of the drainage network, the availability of nutrients, and the relative contributions of upland and in-stream nutrient sources. Potential sources and flow pathways for transport varied among NO3-N, PP, and DRP with results underscoring the challenge of mitigating nutrient loss in these watersheds. Conservation practices addressing both nutrient management and hydrologic connectivity will likely be required to decrease nutrient loss in artificially drained landscapes.

  8. MODEL SIMULATION STUDIES OF SCALE-DEPENDENT GAIN IN STREAM NUTRIENT ASSIMILATIVE CAPACITY RESULTING FROM IMPROVING NUTRIENT RETENTION METRICS

    EPA Science Inventory

    Considering the difficulty in measuring restoration success for nonpoint source pollutants, nutrient assimilative capacity (NAS) offers an attractive systems-based metric. Here NAS was defined using an impulse-response model of nitrate fate and transport. Eleven parameters were e...

  9. ESTUARINE-OCEAN EXCHANGE IN A NORTH PACIFIC ESTUARY: COMPARISON OF STEADY STATE AND DYNAMIC MODELS

    EPA Science Inventory

    Nutrient levels in coastal waters must be accurately assessed to determine the nutrient effects of increasing populations on coastal ecosystems. To accomplish this goal, in-field data with sufficient temporal resolution are required to define nutrient sources and sinks, and to ul...

  10. Predicting Nitrogen in Streams : A Comparison of Two Estimates of Fertilizer Application

    EPA Science Inventory

    Decision makers frequently rely on water and air quality models to develop nutrient management strategies. Obviously, the results of these models (e.g., SWAT, SPARROW, CMAQ) are only as good as the nutrient source input data and recently the Nutrient Innovations Task Group has ca...

  11. ESTIMATING NITROGEN AND TIDAL EXCHANGE IN A NORTH PACIFIC ESTUARY WITH EPA'S VISUAL PLUMES PDSW MODEL

    EPA Science Inventory

    Accurate assessments of nutrient levels in coastal waters are required to determine the nutrient effects of increasing population pressure on coastal ecosystems. To accomplish this goal, in-field data with sufficient temporal resolution are required to define nutrient sources an...

  12. ESTIMATING NITROGEN AND TIDAL EXCHANGE IN A NORTH PACIFIC ESTUARY WITH EPA'S VISUAL PLUMES PDSW MODEL

    EPA Science Inventory

    Accurate assessments of nutrient levels in coastal waters are required to determine the nutrient effects of increasing population pressure on coastal ecosystems. To accomplish this goal, in-field data with sufficient temporal resolution are required to define nutrient sources and...

  13. Assessing edge-of-field nutrient runoff from agricultural lands in the United States: How clean is clean enough?

    USDA-ARS?s Scientific Manuscript database

    Excess nutrients from numerous sources (e.g., agricultural and urban runoff, treatment plant discharge, streambank erosion) continue to adversely impact water resources in spite of improved treatment technologies and management practices. In fact, determination of cause(s) of accelerated nutrient e...

  14. Nutrient Removal in Wastewater Treatment

    ERIC Educational Resources Information Center

    Shah, Kanti L.

    1973-01-01

    Discusses the sources and effects of nutrients in wastewater, and the methods of their removal in wastewater treatment. In order to conserve water resources and eliminate the cost of nutrient removal, treated effluent should be used wherever possible for irrigation, since it contains all the ingredients for proper plant growth. (JR)

  15. The importance of terrestrial carbon in supporting molluscs in the wetlands of Poyang Lake

    NASA Astrophysics Data System (ADS)

    Zhang, Huan; Yu, Xiubo; Wang, Yuyu; Xu, Jun

    2017-07-01

    Allochthonous organic matter plays an important role in nutrient cycling and energy mobilization in freshwater ecosystems. However, the subsidies of this carbon source in floodplain ecosystems have not yet well understood. We used a Bayesian mixing model and stable isotopes (δ13C and δ15N) of primary food resources and dominant molluscs species, to estimate the relative importance of allochthonous carbon sources for consumers in a representative sub-lake of Poyang Lake during a prolonged dry season. Our study inferred that terrestrial-derived carbon from Carex spp. could be the primary contributor to snails and mussels in Dahuchi Lake. The mean percentage of allochthonous food resources accounted for 35%-50% of the C incorporated by these consumers. Seston was another important energy sources for benthic consumers. However, during the winter and low water-level period, benthic algae and submerged vegetation contributed less carbon to benthic consumers. Our data highlighted the importance of terrestrial organic carbon to benthic consumers in the wetlands of Poyang Lake during the prolonged dry period. Further, our results provided a perspective that linkages between terrestrial and aquatic ecosystems might be facilitated by wintering geese via their droppings.

  16. Benthic macroinvertebrate and fish communities in Lake Huron are linked to submerged groundwater vents

    USGS Publications Warehouse

    Garrison, Sanders T.; Biddanda, B.A.; Stricker, C.A.; Nold, S.C.

    2011-01-01

    Groundwater can be an important source of nutrients and energy to aquatic ecosystems, but quantifying the inputs and biogeochemical importance remains challenging. A series of submerged groundwater vents in northern Lake Huron were examined to determine the linkage between groundwater nutrients and aquatic food webs. We collected samples of key food-web components from groundwater vent and reference habitats and analyzed them for 13C, 15N, and 34S isotopes. Dissolved inorganic carbon (DIC) in the groundwater was depleted in 13C, while aqueous sulfate was enriched in 34S (mean differences between groundwater and reference sites were -3.9% and +12.0%, respectively). Benthic primary producers, macroinvertebrates, and benthivorous fish had significantly lower ??13C values in groundwater environments, and benthivorous fish were somewhat depleted (-2.5%) in ??34S at groundwater sites compared to reference sites. However, ??15N values were not different between groundwater and reference sites, and pelagic components of the ecosystems (plankton and planktivorous and piscivorous fish) were similar in both ??13C and ??15N. These data suggest benthic metazoan communities surrounding groundwater vents are partially linked to groundwater-derived benthic primary production, while planktivorous and piscivorous communities not directly associated with the benthos do not rely on groundwater nutrients. ?? Inter-Research 2011.

  17. Effects of Peptone Supplementation in Different Culture Media on Growth, Metabolic Pathway and Productivity of CHO DG44 Cells; a New Insight into Amino Acid Profiles.

    PubMed

    Davami, Fatemeh; Eghbalpour, Farnaz; Nematollahi, Leila; Barkhordari, Farzaneh; Mahboudi, Fereidoun

    2015-01-01

    The optimization of bioprocess conditions towards improved growth profile and productivity yield is considered of great importance in biopharmaceutical manufacturing. Peptones as efficient sources of nutrients have been studied for their effect on media development; however, their role on metabolic pathway is not well understood. In the present study, the effect of different concentration of peptones on a recombinant Chinese hamster ovary (CHO) cell line grown in three serum-free suspension cultures was determined. Six peptones of different origins and available amino acid profiles were investigated regarding their impact on cell growth, productivity, and metabolic pathways changes. In optimized feeding strategies, increases of 136% and 159% in volumetric productivity (for a low-nutrient culture media) and 55% (for a high-nutrient culture media) were achieved. Furthermore, particular sources of peptones with specific amino acid profile developed preferential results for each different culture medium. Two peptones, SoyA2SC and SoyE-110, were the only hydrolysates that showed production improvement in all three media. Casein Peptone plus Tryptone N1 and SoyA3SC showed different improved results based on their implemented concentration for each individual basal medium. The amino acid profile of peptones may provide clues to identify the most effective feeding strategies for recombinant CHO cells.

  18. Effects of Peptone Supplementation in Different Culture Media on Growth, Metabolic Pathway and Productivity of CHO DG44 Cells; a New Insight into Amino Acid Profiles

    PubMed Central

    Davami, Fatemeh; Eghbalpour, Farnaz; Nematollahi, Leila; Barkhordari, Farzaneh; Mahboudi, Fereidoun

    2015-01-01

    Background: The optimization of bioprocess conditions towards improved growth profile and productivity yield is considered of great importance in biopharmaceutical manufacturing. Peptones as efficient sources of nutrients have been studied for their effect on media development; however, their role on metabolic pathway is not well understood. Methods: In the present study, the effect of different concentration of peptones on a recombinant Chinese hamster ovary (CHO) cell line grown in three serum-free suspension cultures was determined. Six peptones of different origins and available amino acid profiles were investigated regarding their impact on cell growth, productivity, and metabolic pathways changes. Results: In optimized feeding strategies, increases of 136% and 159% in volumetric productivity (for a low-nutrient culture media) and 55% (for a high-nutrient culture media) were achieved. Furthermore, particular sources of peptones with specific amino acid profile developed preferential results for each different culture medium. Two peptones, SoyA2SC and SoyE-110, were the only hydrolysates that showed production improvement in all three media. Casein Peptone plus Tryptone N1 and SoyA3SC showed different improved results based on their implemented concentration for each individual basal medium. Conclusion: The amino acid profile of peptones may provide clues to identify the most effective feeding strategies for recombinant CHO cells. PMID:26232332

  19. Sources and transport of algae and nutrients in a Californian river in a semi-arid climate

    USGS Publications Warehouse

    Ohte, N.; Dahlgren, R.A.; Silva, S.R.; Kendall, C.; Kratzer, C.R.; Doctor, D.H.

    2007-01-01

    1. To elucidate factors contributing to dissolved oxygen (DO) depletion in the Stockton Deep Water Ship Channel in the lower San Joaquin River, spatial and temporal changes in algae and nutrient concentrations were investigated in relation to flow regime under the semiarid climate conditions. 2. Chlorophyll-a (chl-a) concentration and loads indicated that most algal biomass was generated by in-stream growth in the main stem of the river. The addition of algae from tributaries and drains was small (c.15% of total chl-a load), even though high concentrations of chl-a were measured in some source waters. 3. Nitrate and soluble-reactive phosphorus (SRP) were available in excess as a nutrient source for algae. Although nitrate and SRP from upstream tributaries contributed (16.9% of total nitrate load and 10.8% of total SRP load), nutrients derived from agriculture and other sources in the middle and lower river reaches were mostly responsible (20.2% for nitrate and 48.0% for SRP) for maintaining high nitrate and SRP concentrations in the main stem. 4. A reduction in nutrient discharge would attenuate the algal blooms that accelerate DO depletion in the Stockton Deep Water Ship Channel. The N : P ratio, in the main stem suggests that SRP reduction would be a more viable option for algae reduction than nitrogen reduction. 5. Very high algal growth rates in the main stem suggest that reducing the algal seed source in upstream areas would also be an effective strategy. ?? 2007 Blackwell Publishing Ltd.

  20. Stakeholder co-development of farm level nutrient management software

    NASA Astrophysics Data System (ADS)

    Buckley, Cathal; Mechan, Sarah; Macken-Walsh, Aine; Heanue, Kevin

    2013-04-01

    Over the last number of decades intensification in the use nitrogen (N) and phosphorus (P) in agricultural production has lead to excessive accumulations of these nutrients in soils, groundwaters and surface water bodies (Sutton et al., 2011). According to the European Environment Agency (2012) despite some progress diffuse pollution from agriculture is still significant in more than 40% of Europe's water bodies in rivers and coastal waters, and in one third of the water bodies in lakes and transitional waters. Recently it was estimated that approximately 29% of monitored river channel length is polluted to some degree across the Republic of Ireland. Agricultural sources were suspected in 47 per cent of cases (EPA, 2012). Farm level management practices to reduce nutrient transfers from agricultural land to watercourses can be divided into source reduction and source interception approaches (Ribaudo et al., 2001). Source interception approaches involve capturing nutrients post mobilisation through policy instruments such as riparian buffer zones or wetlands. Conversely, the source reduction approach is preventative in nature and promotes strict management of nutrient at farm and field level to reduce risk of mobilisation in the first instance. This has the potential to deliver a double dividend of reduced nutrient loss to the wider ecosystem while maximising economic return to agricultural production at the field and farm levels. Adoption and use of nutrient management plans among farmers is far from the norm. This research engages key farmer and extension stakeholders to explore how current nutrient management planning software and outputs should be developed to make it more user friendly and usable in a practical way. An open innovation technology co-development approach was adopted to investigate what is demanded by the end users - farm advisors and farmers. Open innovation is a knowledge management strategy that uses the input of stakeholders to improve internal innovation processes. Open innovation incorporates processes such as 'user-led' (farmer and advisor) innovation and the 'co-development' (by technologists and users) of a technology. This strategy is increasingly used by a variety of organisations across sectors to try to ensure that the use of their outputs (products/services/technologies) is optimised by their target customers/clients, by incorporating user insights into the development of outputs. This research use the open innovation co-development framework through farmer and farm advisor focus group sessions to inform the development of a desirable software package for nutrient management planners (farm advisors) and desirable output formats for the end user (farmers). References Sutton, M., Oenema, O., Erisman, J. W., Leip, A., Grinsven, H. & Winiwarter, W. 2011. Too much of a good thing. Nature, 472, 159.161. European Environment Agency, 2012. European waters — assessment of status and pressures. Environmental Protection Agency, 2012. Ireland's Environment: An assessment 2012. Ribaudo, M.O., Heimlich, R., Claassen, R., Peters, M., 2001. Least-cost management of nonpoint source pollution: source reduction versus interception strategies for controlling nitrogen loss in the Mississippi Basin. Ecological Economics, 37, 183-197.

  1. Modelling of point and diffuse pollution: application of the Moneris model in the Ipojuca river basin, Pernambuco State, Brazil.

    PubMed

    de Lima Barros, Alessandra Maciel; do Carmo Sobral, Maria; Gunkel, Günter

    2013-01-01

    Emissions of pollutants and nutrients are causing several problems in aquatic ecosystems, and in general an excess of nutrients, specifically nitrogen and phosphorus, is responsible for the eutrophication process in water bodies. In most developed countries, more attention is given to diffuse pollution because problems with point pollution have already been solved. In many non-developed countries basic data for point and diffuse pollution are not available. The focus of the presented studies is to quantify nutrient emissions from point and diffuse sources in the Ipojuca river basin, Pernambuco State, Brazil, using the Moneris model (Modelling Nutrient Emissions in River Systems). This model has been developed in Germany and has already been implemented in more than 600 river basins. The model is mainly based on river flow, water quality and geographical information system data. According to the Moneris model results, untreated domestic sewage is the major source of nutrients in the Ipojuca river basin. The Moneris model has shown itself to be a useful tool that allows the identification and quantification of point and diffuse nutrient sources, thus enabling the adoption of measures to reduce them. The Moneris model, conducted for the first time in a tropical river basin with intermittent flow, can be used as a reference for implementation in other watersheds.

  2. Factors affecting surf zone phytoplankton production in Southeastern North Carolina, USA

    NASA Astrophysics Data System (ADS)

    Cahoon, Lawrence B.; Bugica, Kalman; Wooster, Michael K.; Dickens, Amanda Kahn

    2017-09-01

    The biomass and productivity of primary producers in the surf zone of the ocean beach at Wrightsville Beach, North Carolina, USA, were measured during all seasons, along with environmental parameters and nutrient levels. Variation in biomass (chlorophyll a) was associated with temperature. Primary production (PP), measured by in situ 14-C incubations, was a function of chlorophyll a, tide height at the start of incubations, and rainfall in the preceding 24-hr period. Biomass-normalized production (PB) was also a function of tide height and rainfall in the preceding 24-hr period. We interpreted these results as evidence of surf production 1) as combined contributions of phytoplankton and suspended benthic microalgae, which may confound application of simple P-E models to surf zone production, and 2) being regulated by nutrient source/supply fluctuations independently from other factors. Surf zone biomass and production levels are intermediate between relatively high estuarine values and much lower coastal ocean values. Surf zone production may represent an important trophic connection between these two important ecosystems.

  3. Decoupling of nitrogen and phosphorus in terrestrial plants associated with global changes

    NASA Astrophysics Data System (ADS)

    Yuan, Z. Y.; Chen, Han Y. H.

    2015-05-01

    Living organisms maintain a balance of chemical elements for optimal growth and reproduction, which plays an important role in global biogeochemical cycles. Human domination of Earth's ecosystems has led to drastic global changes, but it is unclear how these affect the stoichiometric coupling of nutrients in terrestrial plants, the most important food source on Earth. Here we use meta-analyses of 1,418 published studies to show that the ratio of terrestrial plant nitrogen (N) to phosphorus (P) decreases with elevated concentrations of CO2, increasing rainfall, and P fertilization, but increases with warming, drought, and N fertilization. Our analyses also reveal that multiple global change treatments generally result in overall additive effects of single-factor treatments and that the responses of plant nutrients and their stoichiometry are similar in direction, but often greater in controlled than in natural environments. Our results suggest a decoupling of the P biogeochemical cycle from N in terrestrial plants under global changes, which in turn may diminish the provision of ecosystem services.

  4. Synthesis of data from high-frequency nutrient and associated biogeochemical monitoring for the Sacramento–San Joaquin Delta, northern California

    USGS Publications Warehouse

    Downing, Bryan D.; Bergamaschi, Brian A.; Kraus, Tamara E.C.

    2017-07-11

    Executive SummaryThis report is the second in a series of three reports that provide information about high-frequency (HF) nutrient and biogeochemical monitoring in the Sacramento–San Joaquin Delta of northern California (Delta). The purpose of this report is to synthesize the data available from a nutrient and water-quality HF (about every 15 minutes) monitoring network operated by the U.S. Geological Survey in the northern Delta. In this report, we describe the network and focus on the purpose of each station. We then present and discuss the available data, at various timescales—first at the monthly, seasonal, and inter-annual timescales, and second, for comparison, at the tidal and event timescales. As expected, we determined that there is substantial variability in nitrate-N concentrations at short timescales within hours, but also significant variability at longer timescales such as months or years. Resolving this variability is made possible by the HF data, with the largest variability caused by storms, tides, and diel biological processes. Given this large temporal variability, calculations of cumulative nutrient fluxes (for example, daily, monthly, or annual loads) is difficult without HF data. For example, in the Cache Slough, calculation of the annual load without the tidal variability resulted in a 30 percent underestimation of the true annual load value. We conclude that HF measurements are important for accurate determination of fluxes and loads in tidal environments, but, more importantly, provide important insights into processes and rates of nutrient cycling.This report, along with the other two reports of this series (Bergamaschi and others, 2017; Kraus, Bergamaschi, and others, 2017), was drafted in cooperation with the Delta Regional Monitoring Program to help scientists, managers, and planners understand how HF data improve our understanding of nutrient sources and sinks, drivers, and effects in the Delta. The first report in the series (Kraus, Bergamaschi, and others, 2017) provides an introduction to the reasons for and fundamental concepts behind using HF monitoring measurements, including a brief summary of nutrient status and trends in the Delta and an extensive literature review showing how and where other research and monitoring programs have used HF monitoring to improve our understanding of nutrient cycling. The report covers the various technologies available for HF nutrient monitoring and presents the different ways HF monitoring instrumentation may be used for fixed station and spatial assessments. Finally, it presents numerous examples of how HF measurements are currently (2017) being used in the Delta to examine how nutrients and nutrient cycling are related to aquatic habitat conditions.The third report in the series (Bergamaschi and others, 2017) provides the background, principles, and considerations for designing an HF nutrient-monitoring network for the Delta to address high-priority, nutrient-management questions. The report starts with discussion of the high‑priority management questions to be addressed, continues through discussion of the questions and considerations that place demands and constraints on network design, discusses the principles applicable to network design, and concludes with the presentation of three example nutrient-monitoring network designs for the Delta, proposed to address high-priority questions identified by the Delta Regional Monitoring Program (Delta Regional Monitoring Program Technical Advisory Committee, 2015).

  5. Assessment of marine-derived nutrients in the Copper River Delta, Alaska, using natural abundance of the stable isotopes of nitrogen, sulfur, and carbon

    USGS Publications Warehouse

    Kline, Thomas C.; Woody, Carol Ann; Bishop, Mary Anne; Powers, Sean P.; Knudsen, E. Eric

    2007-01-01

    We performed nitrogen, sulfur, and carbon stable isotope analysis (SIA) on maturing and juvenile anadromous sockeye and coho salmon, and periphyton in two Copper River delta watersheds of Alaska to trace salmonderived nutrients during 2003–2004. Maturing salmon were isotopically enriched relative to alternate freshwater N, S, and C sources as expected, with differences consistent with species trophic level differences, and minor system, sex, and year-to-year differences, enabling use of SIA to trace these salmon-derived nutrients. Periphyton naturally colonized, incubated, and collected using Wildco Periphtyon Samplers in and near spawning sites was 34S- and 15N-enriched, as expected, and at all freshwater sites was 13C-depleted. At nonspawning and coho-only sites, periphyton 34S and 15N was generally low. However, 34S was low enough at some sites to be suggestive of sulfate reduction, complicating the use of S isotopes. Juvenile salmon SIA ranged in values consistent with using production derived from re-mineralization as well as direct utilization, but only by a minority fraction of coho salmon. Dependency on salmon-derived nutrients ranged from relatively high to relatively low, suggesting a space-limited system. No one particular isotope was found to be superior for determining the relative importance of salmon-derived nutrients.

  6. Meeting Expanding Needs to Collect Food Intake Specificity: The Nutrition Data System for Research (NDS-R)

    NASA Technical Reports Server (NTRS)

    VanHeel, Nancy; Pettit, Janet; Rice, Barbara; Smith, Scott M.

    2003-01-01

    Food and nutrient databases are populated with data obtained from a variety of sources including USDA Reference Tables, scientific journals, food manufacturers and foreign food tables. The food and nutrient database maintained by the Nutrition Coordinating Center (NCC) at the University of Minnesota is continually updated with current nutrient data and continues to be expanded with additional nutrient fields to meet diverse research endeavors. Data are strictly evaluated for reliability and relevance before incorporation into the database; however, the values are obtained from various sources and food samples rather than from direct chemical analysis of specific foods. Precise nutrient values for specific foods are essential to the nutrition program at the National Aeronautics and Space Administration (NASA). Specific foods to be included in the menus of astronauts are chemically analyzed at the Johnson Space Center for selected nutrients. A request from NASA for a method to enter the chemically analyzed nutrient values for these space flight food items into the Nutrition Data System for Research (NDS-R) software resulted in modification of the database and interview system for use by NASA, with further modification to extend the method for related uses by more typical research studies.

  7. Developement of watershed and reference loads for a TMDL in Charleston Harbor System, SC.

    Treesearch

    Silong Lu; Devenra Amatya; Jamie Miller

    2005-01-01

    It is essential to determine point and non-point source loads and their distribution for development of a dissolved oxygen (DO) Total Maximum Daily Load (TMDL). A series of models were developed to assess sources of oxygen-demand loadings in Charleston Harbor, South Carolina. These oxygen-demand loadings included nutrients and BOD. Stream flow and nutrient...

  8. Improving crop nutrient efficiency through root architecture modifications.

    PubMed

    Li, Xinxin; Zeng, Rensen; Liao, Hong

    2016-03-01

    Improving crop nutrient efficiency becomes an essential consideration for environmentally friendly and sustainable agriculture. Plant growth and development is dependent on 17 essential nutrient elements, among them, nitrogen (N) and phosphorus (P) are the two most important mineral nutrients. Hence it is not surprising that low N and/or low P availability in soils severely constrains crop growth and productivity, and thereby have become high priority targets for improving nutrient efficiency in crops. Root exploration largely determines the ability of plants to acquire mineral nutrients from soils. Therefore, root architecture, the 3-dimensional configuration of the plant's root system in the soil, is of great importance for improving crop nutrient efficiency. Furthermore, the symbiotic associations between host plants and arbuscular mycorrhiza fungi/rhizobial bacteria, are additional important strategies to enhance nutrient acquisition. In this review, we summarize the recent advances in the current understanding of crop species control of root architecture alterations in response to nutrient availability and root/microbe symbioses, through gene or QTL regulation, which results in enhanced nutrient acquisition. © 2015 Institute of Botany, Chinese Academy of Sciences.

  9. Natural selection for costly nutrient recycling in simulated microbial metacommunities.

    PubMed

    Boyle, Richard A; Williams, Hywel T P; Lenton, Timothy M

    2012-11-07

    Recycling of essential nutrients occurs at scales from microbial communities to global biogeochemical cycles, often in association with ecological interactions in which two or more species utilise each others' metabolic by-products. However, recycling loops may be unstable; sequences of reactions leading to net recycling may be parasitised by side-reactions causing nutrient loss, while some reactions in any closed recycling loop are likely to be costly to participants. Here we examine the stability of nutrient recycling loops in an individual-based ecosystem model based on microbial functional types that differ in their metabolism. A supplied nutrient is utilised by a "source" functional type, generating a secondary nutrient that is subsequently used by two other types-a "mutualist" that regenerates the initial nutrient at a growth rate cost, and a "parasite" that produces a refractory waste product but does not incur any additional cost. The three functional types are distributed across a metacommunity in which separate patches are linked by a stochastic diffusive migration process. Regions of high mutualist abundance feature high levels of nutrient recycling and increased local population density leading to greater export of individuals, allowing the source-mutualist recycling loop to spread across the system. Individual-level selection favouring parasites is balanced by patch-level selection for high productivity, indirectly favouring mutualists due to the synergistic productivity benefits of the recycling loop they support. This suggests that multi-level selection may promote nutrient cycling and thereby help to explain the apparent ubiquity and stability of nutrient recycling in nature.

  10. Fine root respiration in the mangrove Rhizophora mangle over variation in forest stature and nutrient availability.

    PubMed

    Lovelock, Catherine E; Ruess, Roger W; Feller, Ilka C

    2006-12-01

    Root respiration uses a significant proportion of photosynthetically fixed carbon (C) and is a globally important source of C liberated from soils. Mangroves, which are an important and productive forest resource in many tropical and subtropical countries, sustain a high ratio of root to shoot biomass which may indicate that root respiration is a particularly important component in mangrove forest carbon budgets. Mangroves are often exposed to nutrient pollution from coastal waters. Here we assessed the magnitude of fine root respiration in mangrove forests in Belize and investigated how root respiration is influenced by nutrient additions. Respiration rates of excised fine roots of the mangrove, Rhizophora mangle L., were low (4.01 +/- 0.16 nmol CO(2) g(-1) s(-1)) compared to those measured in temperate tree species at similar temperatures. In an experiment where trees where fertilized with nitrogen (N) or phosphorus (P) in low productivity dwarf forests (1-2 m height) and more productive, taller (4- 7 m height) seaward fringing forests, respiration of fine roots did not vary consistently with fertilization treatments or with forest stature. Fine roots of taller fringe trees had higher concentrations of both N and P compared to dwarf trees. Fertilization with P enhanced fine root P concentrations in both dwarf and fringe trees, but reduced root N concentrations compared to controls. Fertilization with N had no effect on root N or P concentrations. Unlike photosynthetic C gain and growth, which is strongly limited by P availability in dwarf forests at this site, fine root respiration (expressed on a mass basis) was variable, but showed no significant enhancements with nutrient additions. Variation in fine root production and standing biomass are, therefore, likely to be more important factors determining C efflux from mangrove sediments than variations in fine root respiration per unit mass.

  11. Shrimp burrow in tropical seagrass meadows: An important sink for litter

    NASA Astrophysics Data System (ADS)

    Vonk, Jan Arie; Kneer, Dominik; Stapel, Johan; Asmus, Harald

    2008-08-01

    The abundance, burrow characteristics, and in situ behaviour of the burrowing shrimps Neaxius acanthus (Decapoda: Strahlaxiidae) and Alpheus macellarius (Decapoda: Alpheidae) were studied to quantify the collection of seagrass material, to identify the fate of this collected material, and to determine the importance of these burrowing crustaceans in the nutrient (nitrogen and phosphorus) cycling of two tropical seagrass meadows on Bone Batang, South Sulawesi, Indonesia. Alpheus macellarius harvested 0.70 g dry weight (DW) burrow -1 d -1 seagrass material, dominantly by active cutting of fresh seagrass leaves. Neaxius acanthus collected 1.66 g DW burrow -1 d -1, mainly detached leaves which floated past the burrow opening. The A. macellarius and N. acanthus communities together collected in their burrows an amount of seagrass leaf material corresponding to more than 50% of the leaf production in the meadows studied. The crustacean species studied might therefore fulfil an important function in the nutrient cycling of tropical meadows. In the burrow most of the collected material is shredded into pieces. The burrows of both species had special chambers which serve as a storage for seagrass leaf material. Neaxius acanthus incorporated most of the material into the burrow wall lining, which is made of small sediment particles and macerated seagrass leaves. Phosphate concentrations measured in N. acanthus burrows compared with pore-water and water-column concentrations suggests that a substantial amount of the seagrass material undergoes decomposition in the burrows. Oxygen levels measured in these water bodies are indicative for a possible exchange of water between the burrow and its surroundings, most likely supported by the shrimps irrigating their burrows. By collecting leaf material in their burrows, nutrients that are otherwise lost from the seagrass meadow associated with detached leaves and leaf fragments carried away in the water column, are maintained in the meadow and may form an important source of recycled nutrients.

  12. Impact of seed predators on the herb Baptista lanceolata (Fabales: Fabacae).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott Horn; James L. Hanula.

    2004-09-01

    Leguminous seeds are a concentrated source of nutrition (Brashier 2000). In a nutrient-poor habitat, these seeds are important resources for many of the animal species residing there. Several insect predators are known to feed on Baptisia seeds. One such insect is Apion rostrum Say (Coleoptera: Curculionidae), a weevil that feeds on seeds of several wild indigo species. Females lay eggs in developing seed pods where the larvae eat the seeds.

  13. Relationships between land cover and dissolved organic matter change along the river to lake transition

    USGS Publications Warehouse

    Larson, James H.; Frost, Paul C.; Xenopoulos, Marguerite A.; Williams, Clayton J.; Morales-Williams, Ana M.; Vallazza, Jonathan M.; Nelson, J. C.; Richardson, William B.

    2014-01-01

    Dissolved organic matter (DOM) influences the physical, chemical, and biological properties of aquatic ecosystems. We hypothesized that controls over spatial variation in DOM quantity and composition (measured with DOM optical properties) differ based on the source of DOM to aquatic ecosystems. DOM quantity and composition should be better predicted by land cover in aquatic habitats with allochthonous DOM and related more strongly to nutrients in aquatic habitats with autochthonous DOM. Three habitat types [rivers (R), rivermouths (RM), and the nearshore zone (L)] associated with 23 tributaries of the Laurentian Great Lakes were sampled to test this prediction. Evidence from optical indices suggests that DOM in these habitats generally ranged from allochthonous (R sites) to a mix of allochthonous-like and autochthonous-like (L sites). Contrary to expectations, DOM properties such as the fluorescence index, humification index, and spectral slope ratio were only weakly related to land cover or nutrient data (Bayesian R 2 values were indistinguishable from zero). Strongly supported models in all habitat types linked DOM quantity (that is, dissolved organic carbon concentration [DOC]) to both land cover and nutrients (Bayesian R2 values ranging from 0.55 to 0.72). Strongly supported models predicting DOC changed with habitat type: The most important predictor in R sites was wetlands whereas the most important predictor at L sites was croplands. These results suggest that as the DOM pool becomes more autochthonous-like, croplands become a more important driver of spatial variation in DOC and wetlands become less important.

  14. Character and Trends of Water Quality in the Blue River Basin, Kansas City Metropolitan Area, Missouri and Kansas, 1998 through 2007

    USGS Publications Warehouse

    Wilkison, Donald H.; Armstrong, Daniel J.; Hampton, Sarah A.

    2009-01-01

    Water-quality and ecological character and trends in the metropolitan Blue River Basin were evaluated from 1998 through 2007 to provide spatial and temporal resolution to factors that affect the quality of water and biota in the basin and provide a basis for assessing the efficacy of long-term combined sewer control and basin management plans. Assessments included measurements of stream discharge, pH, dissolved oxygen, specific conductance, turbidity, nutrients (dissolved and total nitrogen and phosphorus species), fecal-indicator bacteria (Escherichia coli and fecal coliform), suspended sediment, organic wastewater and pharmaceutical compounds, and sources of these compounds as well as the quality of stream biota in the basin. Because of the nature and myriad of factors that affect basin water quality, multiple strategies are needed to decrease constituent loads in streams. Strategies designed to decrease or eliminate combined sewer overflows (CSOs) would substantially reduce the annual loads of nutrients and fecal-indicator bacteria in Brush Creek, but have little effect on Blue River loadings. Nonpoint source reductions to Brush Creek could potentially have an equivalent, if not greater, effect on water quality than would CSO reductions. Nonpoint source reductions could also substantially decrease annual nutrient and bacteria loadings to the Blue River and Indian Creek. Methods designed to decrease nutrient loads originating from Blue River and Indian Creek wastewater treatment plants (WWTPs) could substantially reduce the overall nutrient load in these streams. For the main stem of the Blue River and Indian Creek, primary sources of nutrients were nonpoint source runoff and WWTPs discharges; however, the relative contribution of each source varied depending on how wet or dry the year was and the number of upstream WWTPs. On Brush Creek, approximately two-thirds of the nutrients originated from nonpoint sources and the remainder from CSOs. Nutrient assimilation processes, which reduced total nitrogen loads by approximately 13 percent and total phosphorus loads by double that amount in a 20-kilometer reach of the Blue River during three synoptic base-flow sampling events between August through September 2004 and September 2005, likely are limited to selected periods during any given year and may not substantially reduce annual nutrient loads. Bacteria densities typically increased with increasing urbanization, and bacteria loadings to the Blue River and Indian Creek were almost entirely the result of nonpoint source runoff. WWTPs contributed, on average, less than 1 percent of the bacteria to these reaches, and in areas of the Blue River that had combined sewers, CSOs contributed only minor amounts (less than 2 percent) of the total annual load in 2005. The bulk of the fecal-indicator bacteria load in Brush Creek also originated from nonpoint sources with the remainder from CSOs. From October 2002 through September 2007, estimated daily mean Escherichia coli bacteria density in upper reaches of the Blue River met the State of Missouri secondary contact criterion standard approximately 85 percent of the time. However, in lower Blue River reaches, the same threshold was exceeded approximately 45 percent of the time. The tributary with the greatest number of CSO discharge points, Brush Creek, contributed approximately 10 percent of the bacteria loads to downstream reaches. The tributary Town Fork Creek had median base-flow Escherichia coli densities that were double that of other basin sites and stormflow densities 10 times greater than those in other parts of the basin largely because approximately one-fourth of the runoff in the Town Fork Creek Basin is believed to originate in combined sewers. Genotypic source typing of bacteria indicated that more than half of the bacteria in this tributary originated from human sources with two storms contributing the bulk of all bacteria sourced as human. However, areas outsid

  15. Nutrient cycling in an agroforestry alley cropping system receiving poultry litter or nitrogen fertilizer

    USDA-ARS?s Scientific Manuscript database

    Optimal utilization of animal manures as a plant nutrient source should also prevent adverse impacts on water quality. The objective of this study was to evaluate long-term poultry litter and N fertilizer application on nutrient cycling following establishment of an alley cropping system with easter...

  16. LONG-TERM CHANGES IN WATERSHED NUTRIENT INPUTS AND RIVERINE EXPORTS IN THE NEUSE RIVER, NORTH CAROLINA. (U915590)

    EPA Science Inventory

    We compared patterns of historical watershed nutrient inputs with in-river nutrient loads for the Neuse River, NC. Basin-wide sources of both nitrogen and phosphorus have increased substantially during the past century, marked by a sharp increase in the last 10 years resulting...

  17. Sources of nutrients to nearshore areas of a eutrophic estuary: Implications for nutrient-enhanced acidification in Puget Sound

    EPA Science Inventory

    Ocean acidification has recently been highlighted as a major stressor for coastal organisms. Further work is needed to assess the role of anthropogenic nutrient additions in eutrophied systems on local biological processes, and how this interacts with CO2emission-driven acidific...

  18. DEVELOPING NUTRIENT CRIETERIA FOR ESTUARIES WITH VARIABLE OCEAN INPUTS: AN EXAMPLE FROM THE PACIFIC NORTHWEST

    EPA Science Inventory

    Estuaries in the Pacific Northwest have major intraannual and within estuary variation in sources and magnitudes of nutrient inputs. To develop an approach for setting nutrient criteria for these systems, we conducted a case study for Yaquina Bay, OR based on a synthesis of resea...

  19. Nutrient Loss in Runoff from Turf: Effect on Surface Water Quality

    USDA-ARS?s Scientific Manuscript database

    Excess nutrients in surface waters may result in enhanced algal blooms and plant growth that can lead to eutrophication and a decline in water quality. The applicatin of fertilizer to golf courses may be a source of nutrients to surface waters. Runoff studies were conducted to measure applied nitrog...

  20. Biomass burning drives atmospheric nutrient redistribution within forested peatlands in Borneo

    NASA Astrophysics Data System (ADS)

    Ponette-González, Alexandra G.; Curran, Lisa M.; Pittman, Alice M.; Carlson, Kimberly M.; Steele, Bethel G.; Ratnasari, Dessy; Mujiman; Weathers, Kathleen C.

    2016-08-01

    Biomass burning plays a critical role not only in atmospheric emissions, but also in the deposition and redistribution of biologically important nutrients within tropical landscapes. We quantified the influence of fire on biogeochemical fluxes of nitrogen (N), phosphorus (P), and sulfur (S) in a 12 ha forested peatland in West Kalimantan, Indonesia. Total (inorganic + organic) N, {{{{NO}}}3}- -N, {{{{NH}}}4}+ -N, total P, {{{{PO}}}4}3- -P, and {{{{SO}}}4}2- -S fluxes were measured in throughfall and bulk rainfall weekly from July 2013 to September 2014. To identify fire events, we used concentrations of particulate matter (PM10) and MODIS Active Fire Product counts within 20 and 100 km radius buffers surrounding the site. Dominant sources of throughfall nutrient deposition were explored using cluster and back-trajectory analysis. Our findings show that this Bornean peatland receives some of the highest P (7.9 kg {{{{PO}}}4}3- -P ha-1yr-1) and S (42 kg {{{{SO}}}4}2- -S ha-1yr-1) deposition reported globally, and that N deposition (8.7 kg inorganic N ha-1yr-1) exceeds critical load limits suggested for tropical forests. Six major dry periods and associated fire events occurred during the study. Seventy-eight percent of fires within 20 km and 40% within 100 km of the site were detected within oil palm plantation leases (industrial agriculture) on peatlands. These fires had a disproportionate impact on below-canopy nutrient fluxes. Post-fire throughfall events contributed >30% of the total inorganic N ({{{{NO}}}3}- -N + {{{{NH}}}4}+ -N) and {{{{PO}}}4}3- -P flux to peatland soils during the study period. Our results indicate that biomass burning associated with agricultural peat fires is a major source of N, P, and S in throughfall and could rival industrial pollution as an input to these systems during major fire years. Given the sheer magnitude of fluxes reported here, fire-related redistribution of nutrients may have significant fertilizing or acidifying effects on a diversity of nutrient-limited ecosystems.

  1. Evaluating changes in water quality with respect to nonpoint source nutrient management strategies in the Chesapeake Bay Watershed

    NASA Astrophysics Data System (ADS)

    Keisman, J.; Sekellick, A.; Blomquist, J.; Devereux, O. H.; Hively, W. D.; Johnston, M.; Moyer, D.; Sweeney, J.

    2014-12-01

    Chesapeake Bay is a eutrophic ecosystem with periodic hypoxia and anoxia, algal blooms, diminished submerged aquatic vegetation, and degraded stocks of marine life. Knowledge of the effectiveness of actions taken across the watershed to reduce nitrogen (N) and phosphorus (P) loads to the bay (i.e. "best management practices" or BMPs) is essential to its restoration. While nutrient inputs from point sources (e.g. wastewater treatment plants and other industrial and municipal operations) are tracked, inputs from nonpoint sources, including atmospheric deposition, farms, lawns, septic systems, and stormwater, are difficult to measure. Estimating reductions in nonpoint source inputs attributable to BMPs requires compilation and comparison of data on water quality, climate, land use, point source discharges, and BMP implementation. To explore the relation of changes in nonpoint source inputs and BMP implementation to changes in water quality, a subset of small watersheds (those containing at least 10 years of water quality monitoring data) within the Chesapeake Watershed were selected for study. For these watersheds, data were compiled on geomorphology, demographics, land use, point source discharges, atmospheric deposition, and agricultural practices such as livestock populations, crop acres, and manure and fertilizer application. In addition, data on BMP implementation for 1985-2012 were provided by the Environmental Protection Agency Chesapeake Bay Program Office (CBPO) and the U.S. Department of Agriculture. A spatially referenced nonlinear regression model (SPARROW) provided estimates attributing N and P loads associated with receiving waters to different nutrient sources. A recently developed multiple regression technique ("Weighted Regressions on Time, Discharge and Season" or WRTDS) provided an enhanced understanding of long-term trends in N and P loads and concentrations. A suite of deterministic models developed by the CBPO was used to estimate expected nutrient load reductions attributable to BMPs. Further quantification of the relation of land-based nutrient sources and BMPs to water quality in the bay and its tributaries must account for inconsistency in BMP data over time and uncertainty regarding BMP locations and effectiveness.

  2. A specific multi-nutrient formulation enhances M1 muscarinic acetylcholine receptor responses in vitro.

    PubMed

    Savelkoul, Paul J M; Janickova, Helena; Kuipers, Almar A M; Hageman, Robert J J; Kamphuis, Patrick J; Dolezal, Vladimir; Broersen, Laus M

    2012-02-01

    Recent evidence indicates that supplementation with a specific combination of nutrients may affect cell membrane synthesis and composition. To investigate whether such nutrients may also modify the physical properties of membranes, and affect membrane-bound processes involved in signal transduction pathways, we studied the effects of nutrient supplementation on G protein-coupled receptor activation in vitro. In particular, we investigated muscarinic receptors, which are important for the progression of memory deterioration and pathology of Alzheimer's disease. Nerve growth factor differentiated pheochromocytoma cells that were supplemented with specific combinations of nutrients showed enhanced responses to muscarinic receptor agonists in a membrane potential assay. The largest effects were obtained with a combination of nutrients known as Fortasyn™ Connect, comprising docosahexaenoic acid, eicosapentaenoic acid, uridine monophosphate as a uridine source, choline, vitamin B6, vitamin B12, folic acid, phospholipids, vitamin C, vitamin E, and selenium. In subsequent experiments, it was shown that the effects of supplementation could not be attributed to single nutrients. In addition, it was shown that the agonist-induced response and the supplement-induced enhancement of the response were blocked with the muscarinic receptor antagonists atropine, telenzepine, and AF-DX 384. In order to determine whether the effects of Fortasyn™ Connect supplementation were receptor subtype specific, we investigated binding properties and activation of human muscarinic M1, M2 and M4 receptors in stably transfected Chinese hamster ovary cells after supplementation. Multi-nutrient supplementation did not change M1 receptor density in plasma membranes. However, M1 receptor-mediated G protein activation was significantly enhanced. In contrast, supplementation of M2- or M4-expressing cells did not affect receptor signaling. Taken together, these results indicate that a specific combination of nutrients acts synergistically in enhancing muscarinic M1 receptor responses, probably by facilitating receptor-mediated G protein activation. © 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.

  3. [The impact of human activities on the dynamics of phosphorus in the environment and its effect on public health].

    PubMed

    de Quevedo, Claudia Maria Gomes; Paganini, Wanderley da Silva

    2011-08-01

    Phosphorus is a nutrient with finite and non-renewable sources, the speed of exploitation of which is currently far higher than the rates of return to its natural cycle. It is already being predicted that available and known sources will soon be exhausted, with serious and irreversible economic, social and environmental impacts. In this context, this study sets out to present information about the dynamics of phosphorus in the environment, assessing the impacts caused by human activities and establishing what actions might contribute to preservation of the nutrient cycle. To contribute to enhanced understanding of the topic, the evolution of data on population density, the number of industries and the extension of cultivated areas in a river basin, was studied over 22 years in relation to concentrations of phosphorus in water and sediment. The Tietê River was used for the case study. The results revealed that the control of domestic effluent, especially the amount of sodium tripolyphosphate (STPP) used in detergents and soap products, is of major importance for improving water quality, ensuring environmental protection and safeguarding public health.

  4. Improved artificial saliva for studying the cariogenic effect of carbohydrates.

    PubMed

    Björklund, Marika; Ouwehand, Arthur C; Forssten, Sofia D

    2011-07-01

    Saliva is a complex fluid that possesses many important functions regarding oral health. Many in vitro studies require relatively large quantities of saliva. While natural saliva would be the material of choice, it is difficult to obtain in sufficient quantities and varies in composition. Substitutes mimicking the physicochemical properties of saliva have been developed, but these are not appropriate to study the growth of mutans streptococci. Brain Heart Infusion (BHI) has been commonly used for this, but this medium is richer in nutrients than saliva. We therefore developed artificial saliva (AS) with nutrient levels resembling those in natural saliva as a substitute for natural human saliva (HS) to study the influence of different carbon sources on mutans streptococci growth. Growth of a wild-type Streptococcus mutans strain and S. mutans ATCC 15175 in BHI, HS, and AS was monitored anaerobically. Growth of S. mutans in the modified AS was very similar to the growth in HS, both in the absence and presence of different carbon sources. We therefore conclude that the developed AS is suitable for in vitro tests on S. mutans growth.

  5. Sources and loads of nutrients in the South Platte River, Colorado and Nebraska, 1994-95

    USGS Publications Warehouse

    Litke, D.W.

    1996-01-01

    The South Platte River Basin was one of 20 river basins selected in 1991 for investigation as part of the U.S. Geological Survey's National Water- Quality Assessment (NAWQA) Program. Nationwide, nutrients have been identified as one of the primary nationwide water-quality concerns and are of particular interest in the South Platte River Basin where nutrient concentrations are large compared to concentrations in other NAWQA river basins. This report presents estimates of the magnitude of nutrient-source inputs to the South Platte River Basin, describes nutrient concen- trations and loads in the South Platte River during different seasons, and presents comparisons of nutrient inputs to instream nutrient loads. Annual nutrient inputs to the basin were estimated to be 306,000 tons of nitrogen and 41,000 tons of phosphorus. The principal nutrient sources were wastewater-treatment plants, fertilizer and manure applications, and atmospheric deposition. To characterize nutrient concentrations and loads in the South Platte River during different seasons, five nutrient synoptic samplings were conducted during 1994 and 1995. Upstream from Denver, Colorado, during April 1994 and January 1995, total nitrogen concentrations were less than 2 milligrams per liter (mg/L), and total phosphorus concentrations were less than 0.2 mg/L. The water in the river at this point was derived mostly from forested land in the mountains west of Denver. Total nutrient concentrations increased through the Denver metropolitan area, and concentration peaks occurred just downstream from each of Denver's largest wastewater-treatment plants with maximum concentrations of 13.6 mg/L total nitrogen and 2.4 mg/L total phosphorus. Nutrient concen- concentrations generally decreased downstream from Denver. Upstream from Denver during April 1994 and January 1995, total nitrogen loads were less than 1,000 pounds per day (lb/d), and total phosphorus loads were less than 125 lb/d. Total nutrient loads increased through the Denver metropolitan area, and load peaks occurred just downstream from each of Denver's largest wastewater-treatment plants, with a maximum load of 14,000 lb/d total nitrogen and 2,300 lb/d total phosphorus. In April 1994, nutrient loads generally decreased from Henderson, Colorado, to North Platte, Nebraska. In January 1995, however, nutrient loads increased from Henderson to Kersey, Colorado (maximum loads of 31,000 lb/d total nitrogen and 3,000 lb/d total phosphorus), and then decreased from Kersey to North Platte. Seasonal nutrient loads primarily were dependent on streamflow. Total nitrogen loads were largest in June 1994 and January 1995 when streamflows also were largest. During June, streamflow was large, but nitrogen concentrations were small, which indicated that snowmelt runoff diluted the available supply of nitrogen. Total phosphorus loads were largest in June, when streamflow and phosphorus concentrations were large, which indicated an additional source of phosphorus during snowmelt runoff. Streamflow along the South Platte River was smallest in April and August 1994, and nutrient loads also were smallest during these months. The downstream pattern for nutrient loads did not vary much by season. Loads were large at Henderson, decreased between Henderson and Kersey, and usually were largest at Kersey. The magnitude of the decrease in loads between Henderson and Kersey varied between synoptics and was dependent on the amount of water removed by irrigation ditches. Nutrient loads leaving the basin were very small compared to the estimated total nutrient inputs to the basin. Streamflow balances indicated that the South Platte River is a gaining river throughout much of its length; streamflow-balance residuals were as large as 15 cubic feet per second per mile. Nutrient-load balances indicated that increases in river nitrate loads were, in some places, due to nitrification and, elsewhere, were due to the influx of nitrate-enriched ground water to

  6. Complete nutrient content of four species of commercially available feeder insects fed enhanced diets during growth.

    PubMed

    Finke, Mark D

    2015-11-01

    Commercially raised feeder insects used to feed captive insectivores are a good source of many nutrients but are deficient in several key nutrients. Current methods used to supplement insects include dusting and gut-loading. Here, we report on the nutrient composition of four species of commercially raised feeder insects fed a special diet to enhance their nutrient content. Crickets, mealworms, superworms, and waxworms were analyzed for moisture, crude protein, fat, ash, acid detergent fiber, total dietary fiber, minerals, amino acids, fatty acids, vitamins, taurine, carotenoids, inositol, and cholesterol. All four species contained enhanced levels of vitamin E and omega 3 fatty acids when compared to previously published data for these species. Crickets, superworms, and mealworms contained β-carotene although using standard conversion factors only crickets and superworms would likely contain sufficient vitamin A activity for most species of insectivores. Waxworms did not contain any detectable β-carotene but did contain zeaxanthin which they likely converted from dietary β-carotene. All four species contained significant amounts of both inositol and cholesterol. Like previous reports all insects were a poor source of calcium and only superworms contained vitamin D above the limit of detection. When compared to the nutrient requirements as established by the NRC for growing rats or poultry, these species were good sources of most other nutrients although the high fat and low moisture content of both waxworms and superworms means when corrected for energy density these two species were deficient in more nutrients than crickets or mealworms. These data show the value of modifying the diet of commercially available insects as they are growing to enhance their nutrient content. They also suggest that for most insectivores properly supplemented lower fat insects such as crickets, or smaller mealworms should form the bulk of the diet. © 2015 The Authors. Zoo Biology published by Wiley Periodicals, Inc.

  7. Impacts of Dust on Tropical Volcanic Soil Formation: Insights from Strontium and Uranium-Series Isotopes in Soils from Basse-Terre Island, French Guadeloupe

    NASA Astrophysics Data System (ADS)

    Pereyra, Y.; Ma, L.; Sak, P. B.; Gaillardet, J.; Buss, H. L.; Brantley, S. L.

    2015-12-01

    Dust inputs play an important role in soil formation, especially for thick soils developed on tropical volcanic islands. In these regions, soils are highly depleted due to intensive chemical weathering, and mineral nutrients from dusts have been known to be important in sustaining soil fertility and productivity. Tropical volcanic soils are an ideal system to study the impacts of dust inputs on the ecosystem. Sr and U-series isotopes are excellent tracers to identify sources of materials in an open system if the end-members have distinctive isotope signatures. These two isotope systems are particularly useful to trace the origin of atmospheric inputs into soils and to determine rates and timescales of soil formation. This study analyzes major elemental concentrations, Sr and U-series isotope ratios in highly depleted soils in the tropical volcanic island of Basse-Terre in French Guadeloupe to determine atmospheric input sources and identify key soil formation processes. We focus on three soil profiles (8 to 12 m thick) from the Bras-David, Moustique Petit-Bourg, and Deshaies watersheds; and on the adjacent rivers to these sites. Results have shown a significant depletion of U, Sr, and major elements in the deep profile (12 to 4 m) attributed to rapid chemical weathering. The top soil profiles (4 m to the surface) all show addition of elements such as Ca, Mg, U, and Sr due to atmospheric dust. More importantly, the topsoil profiles have distinct Sr and U-series isotope compositions from the deep soils. Sr and U-series isotope ratios of the top soils and sequential extraction fractions confirm that the sources of the dust are from the Saharan dessert, through long distance transport from Africa to the Caribbean region across the Atlantic Ocean. During the transport, some dust isotope signatures may also have been modified by local volcanic ashes and marine aerosols. Our study highlights that dusts and marine aerosols play important roles in element cycles and nutrient sources in the highly depleted surface soils of tropical oceanic islands.

  8. Hygienisation and Nutrient Conservation of Sewage Sludge or Cattle Manure by Lactic Acid Fermentation

    PubMed Central

    Scheinemann, Hendrik A.; Dittmar, Katja; Stöckel, Frank S.; Müller, Hermann; Krüger, Monika E.

    2015-01-01

    Manure from animal farms and sewage sludge contain pathogens and opportunistic organisms in various concentrations depending on the health of the herds and human sources. Other than for the presence of pathogens, these waste substances are excellent nutrient sources and constitute a preferred organic fertilizer. However, because of the pathogens, the risks of infection of animals or humans increase with the indiscriminate use of manure, especially liquid manure or sludge, for agriculture. This potential problem can increase with the global connectedness of animal herds fed imported feed grown on fields fertilized with local manures. This paper describes a simple, easy-to-use, low-tech hygienization method which conserves nutrients and does not require large investments in infrastructure. The proposed method uses the microbiotic shift during mesophilic fermentation of cow manure or sewage sludge during which gram-negative bacteria, enterococci and yeasts were inactivated below the detection limit of 3 log10 cfu/g while lactobacilli increased up to a thousand fold. Pathogens like Salmonella, Listeria monocytogenes, Staphylococcus aureus, E. coli EHEC O:157 and vegetative Clostridium perfringens were inactivated within 3 days of fermentation. In addition, ECBO-viruses and eggs of Ascaris suum were inactivated within 7 and 56 days, respectively. Compared to the mass lost through composting (15–57%), the loss of mass during fermentation (< 2.45%) is very low and provides strong economic and ecological benefits for this process. This method might be an acceptable hygienization method for developed as well as undeveloped countries, and could play a key role in public and animal health while safely closing the nutrient cycle by reducing the necessity of using energy-inefficient inorganic fertilizer for crop production. PMID:25786255

  9. Internal nutrient sources and nutrient distributions in Alviso Pond A3W, California

    USGS Publications Warehouse

    Topping, Brent R.; Kuwabara, James S.; Garrett, Krista K.; Takekawa, John Y.; Parcheso, Francis; Piotter, Sara; Clearwater, Iris; Shellenbarger, Gregory

    2013-01-01

    Within the Alviso Salt Pond complex, California, currently undergoing avian-habitat restoration, pore-water profilers (U.S. Patent 8,051,727 B1) were deployed in triplicate at two contrasting sites in Pond A3W (“Inlet”, near the inflow, and “Deep”, near the middle of the pond; figs. 1 and 2; table 1, note that tables in this report are provided online only as a .xlsx workbook at http://pubs.usgs.gov/of/2013/1128/). Deployments were conducted in 2010 and 2012 during the summer algal-growth season. Specifically, three deployments, each about 7 weeks apart, were undertaken each summer. This study provides the first measurements of the diffusive flux of nutrients across the interface between the pond bed and water column (that is, benthic nutrient flux). These nutrient fluxes are crucial to pond restoration efforts because they typically represent a major (if not the greatest) source of nutrients to the water column in both ponds and other lentic systems. For soluble reactive phosphorus (SRP, the most biologically available form in solution), benthic flux was positive both years (that is, out of the sediment into the water column; table 2), with the exception of the August 2010 deployment, which exhibited nearly negligible but negative flux. Overall, the average SRP flux was significantly greater at Deep (23.9 ± 8.6 micromoles per square meter per hour (µmol-m-2-h-1); all errors shown reflect the 95-percent confidence interval) than Inlet (12.6 ± 4.9 µmol-m-2-h-1). There was much greater temporal variability in SRP flux in the pond than reported for the lower estuary (Topping and others, 2001). For dissolved ammonia, benthic flux was consistently positive on all six sampling trips, and similar to SRP, the fluxes at Deep (258 ± 49 µmol-m-2-h-1) were consistently greater than those at Inlet (28 ± 11 µmol-m-2-h-1). Dissolved ammonia fluxes reported for South San Francisco Bay by Topping and others (2001) fall in between these values. Once again, greater variability for benthic fluxes determined in the pond was observed relative to adjacent South San Francisco Bay. With the near absence of any measurable concentration gradient, dissolved-nitrate fluxes were consistently negligible in the pond. Silica fluxes are often used to represent sediment diagenetic processes that biogeochemically cycle silica (an important algal macronutrient) between biogenic and inorganic phases (Fanning and Pilson, 1974; Emerson and others, 1984). For South San Francisco Bay, those values are consistently positive from core-incubation experiments. In Pond A3W, dissolved-silica fluxes averaged 49 ± 25 µmol-m-2-h-1 at Inlet and were much higher at Deep (482 ± 370 µmol-m-2-h-1), similar to the spatially variability observed for SRP and dissolved ammonia. An elevated silica flux can stimulate diatom production and subsequent eutrophication effects. Variability in these silica fluxes is consistent with season patterns in pond primary productivity. On the basis of comparisons of dissolved-oxygen flux measurements by profilers and core incubations, it appears that diffusive flux estimates for the sediment in this pond, as one might expected in such benthically productive environments, result in a significant underestimation of true sediment oxygen demand. Therefore, a core incubation experiment was conducted to better quantify the demand. To complement these benthic-flux studies, a diurnal study of nutrient advective flux into and out of the pond was measured during neap and spring tides to provide comparative estimates for allochthonous solute transport (Garret, 2012). Using the two different tides as the probable upper and lower boundaries, we can estimate a range of probable values throughout the year. After converting this advective flux into kg/yr, we can compare it directly to benthic flux estimates for the pond extrapolated over the 2.27 square kilometer (km2) pond surface. Benthic flux of nitrogen species, averaged over all sites and dates, was about 80,000 kilograms per year (kg/yr), well above the adjective flux range of -50 to 1,500 kg/yr. By contrast, the average benthic flux of orthophosphate was about 12,000 kg/yr, well below the advective flux range of 21,500 to 30,000 kg/yr. Initial benthic flux estimates were also made for trace metals, including copper, nickel, iron, and manganese. These analyses indicated that the two sites, Inlet and Deep, have different pore-water profiles, with Inlet exhibiting much higher benthic flux estimates for nickel, iron, and manganese. These initial benthic-flux values reported for macronutrients are particularly impressive in magnitude when one considers that diffusive flux of dissolved solutes based on pore-water profiles provides a conservative determination that may be enhanced by other biogeochemical processes. These enhancement processes (Boudreau and Jorgensen, 2001) include bioturbation, bioirrigation, wind resuspension, and potential groundwater inflows, some of which are captured in core-incubation experiments (Kuwabara and others, 2009). Hence, the values reported herein represent lower bounds to indicate the potential importance of such internal solute sources. The elevated diffusive fluxes for nutrients in the pond relative to the adjacent estuary indicate that vertical nutrient transport between the pond bed and water column is consistently an important (and at times the most important) source of nutrients that stimulate phytoplankton growth in the water column. One might therefore reasonably hypothesize that this benthic transport of biologically reactive solutes (both nutrients and toxicants) represents the most important step at the base of the food web for trophic transfer.

  10. Cross-shelf transport of sub-thermocline nitrate by the internal tide and rapid (3-6 h) incorporation by an inshore macroalga

    NASA Astrophysics Data System (ADS)

    Ladah, Lydia B.; Filonov, Anatoliy; Lavín, Miguel F.; Leichter, James J.; Zertuche-González, José A.; Pérez-Mayorga, Diana M.

    2012-07-01

    During summer in shallow waters off Baja California, Mexico, the internal tide is a dominant thermal feature of the water column. However, its importance for sub-thermocline nutrient provision to benthic macroalgae is unknown. In order to determine if internal motions provide nutrients to macroalgae in summer, Ulva lactuca was outplanted at inshore stations for short (3 and 6 h) intervals, at the surface, 5 and 10 m depth, and tissue nitrogen content was measured before and after each deployment. Concurrently temperature, currents, and nutrients were measured using moored thermistors, current profilers, CTDs, Niskin bottles, and an in-situ UV absorbance nitrate sensor (ISUS). Discrete pulses of cool, nutrient-rich water were horizontally displaced at least 4 km on the shelf and shoaled more than 20 m depth at the semidiurnal frequency, resulting in more than a 10-fold change in the concentration of nitrate. Inshore, tissue nitrogen of Ulva outplants increased significantly during longer exposures to this cool water. At this site, the semidiurnal signal dominates water column temperature fluctuations from April to November, with summer showing the greatest cooling (up to 5 °C) in a one-hour period. We estimated that 11% of the days of a year show internal waves that would cause a significant change in nutrient availability to macroalgae at 5 m depth. This study supports the hypothesis that nitrate can reach and be rapidly incorporated by inshore macroalgae such as Ulva through transport forced by the internal tide, and that even very short (<1 h) nutrient pulses in nature are reflected in macroalgal tissue. We propose that at this site, the internal tide provides a significant, yet understudied, high frequency nutrient source to inshore primary producers, particularly in summer.

  11. Macronutrient supply, uptake and recycling in the coastal ocean of the west Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Henley, Sian F.; Tuerena, Robyn E.; Annett, Amber L.; Fallick, Anthony E.; Meredith, Michael P.; Venables, Hugh J.; Clarke, Andrew; Ganeshram, Raja S.

    2017-05-01

    Nutrient supply, uptake and cycling underpin high primary productivity over the continental shelf of the west Antarctic Peninsula (WAP). Here we use a suite of biogeochemical and isotopic data collected over five years in northern Marguerite Bay to examine these macronutrient dynamics and their controlling biological and physical processes in the WAP coastal ocean. We show pronounced nutrient drawdown over the summer months by primary production which drives a net seasonal nitrate uptake of 1.83 mol N m-2 yr-1, equivalent to net carbon uptake of 146 g C m-2 yr-1. High primary production fuelled primarily by deep-sourced macronutrients is diatom-dominated, but non-siliceous phytoplankton also play a role. Strong nutrient drawdown in the uppermost surface ocean has the potential to cause transient nitrogen limitation before nutrient resupply and/or regeneration. Interannual variability in nutrient utilisation corresponds to winter sea ice duration and the degree of upper ocean mixing, implying susceptibility to physical climate change. The nitrogen isotope composition of nitrate (δ15NNO3) shows a utilisation signal during the growing seasons with a community-level net isotope effect of 4.19 ± 0.29‰. We also observe significant deviation of our data from modelled and observed utilisation trends, and argue that this is driven primarily by water column nitrification and meltwater dilution of surface nitrate. This study is important because it provides a detailed description of the nutrient biogeochemistry underlying high primary productivity at the WAP, and shows that surface ocean nutrient inventories in the Antarctic sea ice zone can be affected by intense recycling in the water column, meltwater dilution and sea ice processes, in addition to utilisation in the upper ocean.

  12. Benthic nitrogen turnover processes in coastal sediments at the Danube Delta

    NASA Astrophysics Data System (ADS)

    Bratek, Alexander; Dähnke, Kirstin; Neumann, Andreas; Möbius, Jürgen; Graff, Florian

    2017-04-01

    The Black Sea Shelf has been exposed to strong anthropogenic pressures from intense fisheries and high nutrient inputs and eutrophication over the past decades. In the light of decreasing riverine nutrient loads and improving nutrient status in the water column, nutrient regeneration in sediments and biological N-turnover in the Danube Delta Front have an important effect on nutrient loads in the shelf region. In May 2016 we determined pore water nutrient profiles in the Danube River Delta-Black Sea transition zone, aiming to assess N-regeneration and elimination based on nutrient profiles and stable N- isotope changes (nitrate and ammonium) in surface water masses and in pore water. We aimed to investigate the magnitude and isotope values of sedimentary NH4+ and NO3- and their impact on the current N-budget in Black Sea Shelf water. Based on changes in the stable isotope ratios of NO3- and NH4+, we aimed to differentiate diffusion and active processing of ammonium as well as nitrate sources and sinks in bottom water. First results show that the concentration of NH4+ in pore water increases with depth, reaching up to 1500 µM in deeper sediment layers. We find indications for high fluxes of ammonium to the overlying water, while stable isotope profiles of ammonium suggest that further processing, apart from mere diffusion, acts on the pore water ammonium pool. Nitrate concentration and stable isotope profiles show rapid consumption in deeper anoxic sediment layers, but also suggest that nitrate regeneration in bottom water increases the dissolved nitrate pool. Overall, the isotope and concentration data of pore water ammonium clearly mirror a combination of turnover processes and diffusion.

  13. Nitrogen Eutrophication on the Colorado Plateau: Using Biological Indicators to Detect Nutrient Enrichment in the Grand Canyon Region

    NASA Astrophysics Data System (ADS)

    Kenkel, J. A.; Johnson, N.; Hultine, K. R.; Sesnie, S.; Sisk, T.

    2012-12-01

    Human activities have more than doubled the availability of biologically reactive forms of nitrogen (N) since the industrial and agricultural revolutions. Though N is an important plant nutrient, increased deposition initiates a cascade of deleterious effects including ecosystem acidification, biodiversity loss, and increased smog and haze. Atmospheric pollution continues to threaten the air quality of the 16 Class 1 Wilderness areas on the Colorado Plateau, including Grand Canyon National Park (GCNP). However, the ecological impacts of N deposition in these historically N-limited, nutrient sensitive arid regions, are little- known. Here, we report baseline atmospheric and terrestrial responses to anthropogenic N deposition derived from vehicular exhaust in GCNP and long-range deposition from a local coal-fired power plant, the Navajo Generating Station (NGS). We used passive air samplers, natural abundance δ15N stable isotope analysis, and nutrient analysis to observe N patterns in air, soils, and pinyon pine (Pinus edulis) foliage. In GCNP, samples were collected from ten sites over an eight-month period in areas of projected low to high vehicular N deposition (i.e. distance from primary roadways). On the Paria Plateau, northeast of GCNP and in close proximity to the NGS, samples were collected along a distance gradient from the NGS, across the Plateau. In both study areas, atmospheric deposition, as well as soil and pine- needle nutrient concentrations show significant negative relationships with increased distance from N-source (p<0.05). In heavily trafficked sites of GCNP, atmospheric nitrogen oxides (NOx) were 65% lower at 30m compared to the roadside. Likewise, on the Paria, NOx were 54% lower at 50km compared to 25km from NGS (p<0.01; R2 =0.87, for GCNP and the Paria, respectively). In GCNP, soil δ15N, and pinyon needle δ15N decrease significantly 30m from the roadside (18%, F= 4.07, p<0.05; 40%, F=4.34, p<0.05). On the Paria Plateau, soil δ15N, C:N ratios, and pinyon specific needle area (cm2/g) correlate with decreasing N deposition with distance from NGS (R2 = 0.15; 0.33; 0.17, respectively). Nutrient metrics from selected bioindicators suggest that studied ecosystems closer to N-source display early signs of N saturation. These results will inform programs to develop regulations that target specific sources and depositional loads of N deposition, and support efforts to protect biodiversity and air quality standards for the southwestern U.S.

  14. Folate

    MedlinePlus

    ... Guidelines for Americans and the U.S. Department of Agriculture's MyPlate . Where can I find out more about ... on food sources of folate: U.S. Department of Agriculture's (USDA) National Nutrient Database Nutrient List for folate ( ...

  15. Selenium

    MedlinePlus

    ... Guidelines for Americans and the U.S. Department of Agriculture's MyPlate . Where can I find out more about ... on food sources of selenium: U.S. Department of Agriculture's (USDA) National Nutrient Database Nutrient List for selenium ( ...

  16. Calcium

    MedlinePlus

    ... Guidelines for Americans and the U.S. Department of Agriculture's MyPlate . Where can I find out more about ... on food sources of calcium: U.S. Department of Agriculture's (USDA) National Nutrient Database Nutrient List for calcium ( ...

  17. Iron

    MedlinePlus

    ... Guidelines for Americans and the U.S. Department of Agriculture's MyPlate . Where can I find out more about ... on food sources of iron: U.S. Department of Agriculture's (USDA) National Nutrient Database Nutrient List for Iron ( ...

  18. Magnesium

    MedlinePlus

    ... Guidelines for Americans and the U.S. Department of Agriculture's MyPlate . Where can I find out more about ... on food sources of magnesium: U.S. Department of Agriculture's (USDA) National Nutrient Database Nutrient List for magnesium ( ...

  19. Ca, Sr and Ba stable isotopes reveal the fate of soil nutrients along a tropical climosequence

    USGS Publications Warehouse

    Bullen, Thomas D.; Chadwick, Oliver A.

    2016-01-01

    Nutrient biolifting is an important pedogenic process in which plant roots obtain inorganic nutrients such as phosphorus (P) and calcium (Ca) from minerals at depth and concentrate those nutrients at the surface. Here we use soil chemistry and stable isotopes of the alkaline earth elements Ca, strontium (Sr) and barium (Ba) to test the hypothesis that biolifting of P has been an important pedogenic process across a soil climosequence developed on volcanic deposits at Kohala Mountain, Hawaii. The geochemical linkage between these elements is revealed as generally positive site-specific relationships in soil mass gains and losses, particularly for P, Ba and Ca, using the ratio of immobile elements titanium and niobium (Ti/Nb) to link individual soil samples to a restricted compositional range of the chemically and isotopically diverse volcanic parent materials. At sites where P is enriched in surface soils relative to abundances in deeper soils, the isotope compositions of exchangeable Ca, Sr and Ba in the shallowest soil horizons (< 10 cm depth) are lighter than those of the volcanic parent materials and trend toward those of plants growing on fresh volcanic deposits. In contrast the isotope composition of exchangeable Ba in deeper soil horizons (> 10 cm depth) at those sites is consistently heavier than the volcanic parent materials. The isotope compositions of exchangeable Ca and Sr trend toward heavier compositions with depth more gradually, reflecting increasing leakiness from these soils in the order Ba < Sr < Ca and downward transfer of light biocycled Ca and Sr to deeper exchange sites. Given the long-term stability of ecosystem properties at the sites where P is enriched in surface soils, a simple box model demonstrates that persistence of isotopically light exchangeable Ca, Sr and Ba in the shallowest soil horizons requires that the uptake flux to plants from those near-surface layers is less than the recycling flux returned to the surface as litterfall. This observation implicates an uptake flux from an additional source which we attribute to biolifting. We view the heavy exchangeable Ba relative to soil parent values in deeper soils at sites where P is enriched in surface soils, and indeed at all but the wettest site across the climosequence, to represent the complement of an isotopically light Ba fraction removed from these soils by plant roots consistent with the biolifting hypothesis. We further suggest that decreasing heaviness of depth-integrated exchangeable Ba in deeper soils with increasing median annual precipitation across the climosequence reflects greater reliance on shallow nutrient sources as site water balance increases. While the Ca, Sr and Ba isotopes considered together were useful in confirming an important role for nutrient biolifting across the climosequence, the Ba isotopes provided the most robust tracer of biolifting and have the greatest potential to find application as an isotopic proxy for P dynamics in soils.

  20. The Fertile Grounds Initiative: A new way to close nutrient flows at regional level resulting in better agricultural productivity and less environmental losses

    NASA Astrophysics Data System (ADS)

    van Beek, Christy; van Duivenbooden, Niek; Noij, Gert-Jan

    2014-05-01

    The threat of declining soil fertility levels is well known. Yet, and despite numerous efforts, we seem incapable of changing the current situation of sink areas in developed countries and depletion areas in developing countries. With negative consequences (i.e. loss in productive capacity and loss in environmental quality) in both areas. Moreover, due to globalization and urbanization nutrient flows become increasingly disconnected. Soil nutrient depletion cannot simply be compensated for with mineral fertilisers, for the following reasons: • mineral fertilisers are often not affordable for smallholders and fertiliser subsidy systems are not always successful • mineral fertilisers do not contain organic matter and therefore do not halt the degradation of the soil • mineral fertilisers work best in combination with organic sources of nutrients (compost, farm yard manure, etc.) • To halt soil degradation an integrated approach is needed, including reducing losses of nutrients and organic matter from soils at risk. Presently, more actors are getting involved in reallocation of nutrients, especially in the energy and waste sector. Time has come for a new approach to bring together demands and supplies for nutrients. We therefore present the Fertile Grounds Initiative: a broker for nutrient supply and demand in the region. The Fertile Grounds Initiative is based on the findings that: • Organic ánd mineral nutrients are required for increased and sustainable production; • Nutrients have a value and should be treated as such; • Due to globalization and urbanization nutrient flows are ever more polarized between depletion and concentration areas; • The demand for energy poses new threats and opportunities for nutrient management. In the Fertile Grounds Initiative nutrient suppliers from the energy sector, waste management, fertilizer companies, etc. and demands for nutrients from farmers are brought together in a dynamic platform. This platform acts as a nutrient bank and integrates different sources of nutrients into high quality crop nutrition products. A capacity building programme ensures proper application of the nutrients and optimal use of on-farm nutrients. To further shape our ideas of the Fertile Grounds Initiative you are cordially invited to become involved.

  1. Interactions of corn meal or molasses with a soybean-sunflower meal mix or flaxseed meal on production, milk fatty acids composition, and nutrient utilization in dairy cows fed grass hay-based diets

    USDA-ARS?s Scientific Manuscript database

    We investigated the interactions of molasses or corn meal [nonstructural carbohydrate (NSC) sources] with flaxseed meal or a soybean-sunflower meal protein mix [rumen-degradable protein (RDP) sources] on animal production, milk fatty acids profile, and nutrient utilization in organic Jersey cows fed...

  2. Honey Creek Watershed Project Tillage Demonstration Results 1981.

    DTIC Science & Technology

    1982-01-01

    previous levels of water quality. Of these nonpoint sources, nutrient runoff from agricultural watersheds is most significant. This publication reports...return to previous levels of water quality. Of these nonpoint sources, nu- trient runoff from agricultural watersheds is most significent. How, though...was the Corps, experienced as civil engineers, to address nutrient runoff and erosion control in farm areas? Their answer to this question was to ask

  3. Modeling nutrient sources, transport and management strategies in a coastal watershed, Southeast China.

    PubMed

    Zhou, Pei; Huang, Jinliang; Hong, Huasheng

    2018-01-01

    Integrated watershed management requires an analytical model capable of revealing the full range of impacts that would be caused by the uses and developments in the watershed. The SPAtially Referenced Regressions On Watershed Attributes (SPARROW) model was developed in this study to provide empirical estimates of the sources, transport of total nitrogen (TN) and total phosphorus (TP) and to develop nutrient management strategies in the Jiulong River Watershed, southeast China that has enormous influence on the region's ecological safety. We calibrated the model using data related to daily streamflow, monthly TN and TP concentrations in 2014 at 30 locations. The model produced R 2 values for TN with 0.95 and TP with 0.94. It was found that for the entire watershed, TN came from fertilizer application (43%), livestock breeding (39%) and sewage discharge (18%), while TP came from livestock breeding (46%), fertilizer application (46%), and industrial discharge (8%). Fifty-eight percent of the TN and 80% of the TP in upstream reaches are delivered to the outlets of North and West rivers. A scenario analysis with SPARROW was coupled to develop suitable management strategies. Results revealed that controlling nutrient sources was effective in improving water quality. Normally sharp reduction in nutrient sources is not operational feasible. Hence, it is recommended that preventing nutrient on land from entering into the river as a suitable strategy in watershed management. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Production of ethanol from a mixture of waste paper and kitchen waste via a process of successive liquefaction, presaccharification, and simultaneous saccharification and fermentation.

    PubMed

    Nishimura, Hiroto; Tan, Li; Kira, Noriko; Tomiyama, Shigeo; Yamada, Kazuo; Sun, Zhao-Yong; Tang, Yue-Qin; Morimura, Shigeru; Kida, Kenji

    2017-09-01

    Efficient ethanol production from waste paper requires the addition of expensive nutrients. To reduce the production cost of ethanol from waste paper, a study on how to produce ethanol efficiently by adding kitchen waste (potentially as a carbon source, nutrient source, and acidity regulator) to waste paper was performed and a process of successive liquefaction, presaccharification, and simultaneous saccharification and fermentation (L+PSSF) was developed. The individual saccharification performances of waste paper and kitchen waste were not influenced by their mixture. Liquefaction of kitchen waste at 90°C prior to presaccharification and simultaneous saccharification and fermentation (PSSF) was essential for efficient ethanol fermentation. Ethanol at concentrations of 46.6 or 43.6g/l was obtained at the laboratory scale after fermentation for 96h, even without pH adjustment and/or the addition of extra nutrients. Similarly, ethanol at a concentration of 45.5g/l was obtained at the pilot scale after fermentation for 48h. The ethanol concentration of L+PSSF of the mixture of waste paper and kitchen waste was comparable to that of PSSF of waste paper with added nutrients (yeast extract and peptone) and pH adjustment using H 2 SO 4 , indicating that kitchen waste is not only a carbon source but also an excellent nutrient source and acidity regulator for fermentation of the mixture of waste paper and kitchen waste. Copyright © 2017. Published by Elsevier Ltd.

  5. Sources and Delivery of Nutrients to the Northwestern Gulf of Mexico from Streams in the South-Central United States

    USGS Publications Warehouse

    Rebich, R.A.; Houston, N.A.; Mize, S.V.; Pearson, D.K.; Ging, P.B.; Evan, Hornig C.

    2011-01-01

    SPAtially Referenced Regressions On Watershed attributes (SPARROW) models were developed to estimate nutrient inputs [total nitrogen (TN) and total phosphorus (TP)] to the northwestern part of the Gulf of Mexico from streams in the South-Central United States (U.S.). This area included drainages of the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf hydrologic regions. The models were standardized to reflect nutrient sources and stream conditions during 2002. Model predictions of nutrient loads (mass per time) and yields (mass per area per time) generally were greatest in streams in the eastern part of the region and along reaches near the Texas and Louisiana shoreline. The Mississippi River and Atchafalaya River watersheds, which drain nearly two-thirds of the conterminous U.S., delivered the largest nutrient loads to the Gulf of Mexico, as expected. However, the three largest delivered TN yields were from the Trinity River/Galveston Bay, Calcasieu River, and Aransas River watersheds, while the three largest delivered TP yields were from the Calcasieu River, Mermentau River, and Trinity River/Galveston Bay watersheds. Model output indicated that the three largest sources of nitrogen from the region were atmospheric deposition (42%), commercial fertilizer (20%), and livestock manure (unconfined, 17%). The three largest sources of phosphorus were commercial fertilizer (28%), urban runoff (23%), and livestock manure (confined and unconfined, 23%). ?? 2011 American Water Resources Association. This article is a U.S. Government work and is in the public domain in the USA.

  6. Patterns and processes of nutrient transfers from land to water: a catchment approach to evaluate Good Agricultural Practice in Ireland

    NASA Astrophysics Data System (ADS)

    Mellander, P.-E.; Melland, A. R.; Shortle, G.; Wall, D.; Mechan, S.; Buckley, C.; Fealy, R.; Jordan, P.

    2009-04-01

    Eutrophication of fresh, transitional and coastal waters by excessive nutrient inputs is one of the most widespread water quality problems in developed countries. Sources of nutrient nitrogen (N) and phosphorus (P) can come from a multiplicity of sources and be dependent on numerous hydrological controls from catchments with both urban and agricultural landuses. Aquatic impacts are widely reported as a result of excessive nutrient transfers from land to water and include changes in ecological integrity and loss of amenity. In the European Union, the Water Framework Directive (WFD) and associated Directives are the key structures with which member states must develop national and often trans-national polices to deal with issues of water resources management. The linked Nitrates Directive is particularly concerned with integrating sustainable agriculture and good water quality objectives and is written into national polices. In Ireland this policy is the Nitrates Directive National Action Programme (NAP), Statutory Instruction 378, Good Agricultural Practise regulation, and amongst other things, sets targets and limits on the use of organic and inorganic fertilisers, soil fertility and slurry/fertiliser spreading and cultivation times. To evaluate the effectiveness of this policy, Teagasc, the Irish Agriculture and Food Development Authority, is undertaking a catchment scale audit on sources, sinks, and changes in nutrient use and export over several years. The Agricultural Catchments Programme is based on a science-stakeholder-management partnership to generate knowledge and specifically to protect water quality from nitrogen and phosphorus transfers within the constraints of the requirements of modern Irish agricultural practises. Eight catchments of 5-12 km2 have been selected for the programme to represent a range of agricultural intensities and vulnerabilities to nitrogen and phosphorus loss including catchments that are situated on permeable and impermeable grassland soils; areas where arable production represents a significant landuse; and catchments on productive and unproductive aquifers. The catchments were identified using a GIS-based multicriteria decision analysis with objective criteria that included landuse data (including agricultural and settlement statistics) combined with soils and geology data to evaluate the risk of P and N loss. Shortlisted catchments were then finalised using practical criteria based on the potential for hydrometry and hydrochemistry research. In each catchment, a conceptual model approach is being used to hypothesize the sources, seasonal mobilisation and pathways of nutrients and water through the soil/subsoil system and transfer into surface and ground water systems to stratify each catchment experimental design. Knowledge of the nutrient management of each catchment farm and resulting soil fertility will be used to monitor the sources of agricultural N and P. Environmental soil nutrient tests will provide baselines and checks on the potential for mobilisation. Areas of high soil fertility that are coincident with high surface or sub-surface hydrological connectivity will be monitored for subsequent nutrient transfer. Other potential nutrient source loads within the catchments, such as rural waste-water treatment plants and domestic septic systems, will be factored in as non-agricultural sources. Similarly, the potential for farmyard transfers will also be assessed. The net balance of nutrient transfer at the catchment outlets will be monitored using a high resolution method that is coincident with hydrometric measurements to ensure that there is a full understanding of the inter-dependence between point and diffuse nutrient transfers and hydrodynamics. This source to transfer approach is highly appropriate and a move towards inductive understanding of nutrient use and export in river catchments - the scale at which policies for water resources management will be assessed under the WFD. The data are also highly conducive to constraining catchment scale, distributed models for predicting chemical transfers in runoff. As the Programme is aiming to integrate the often perceived contentious objectives of water quality management with those of sustainable agriculture, farm economics will also be monitored at the same time and an assessment made of farmer attitudes. An advisory programme is also a major component and dedicated farm advisors will ensure that farmers are fully appraised of obligations and opportunities in the National Action Programme.

  7. Impact of whole grains on the gut microbiota: the next frontier for oats?

    PubMed

    Rose, Devin J

    2014-10-01

    The gut microbiota plays important roles in proper gut function and can contribute to or help prevent disease. Whole grains, including oats, constitute important sources of nutrients for the gut microbiota and contribute to a healthy gut microbiome. In particular, whole grains provide NSP and resistant starch, unsaturated TAG and complex lipids, and phenolics. The composition of these constituents is unique in oats compared with other whole grains. Therefore, oats may contribute distinctive effects on gut health relative to other grains. Studies designed to determine these effects may uncover new human-health benefits of oat consumption.

  8. Alluvial Mountain Meadow Source-Sink Dynamics: Land-Cover Effects on Water and Fluvial Carbon Export

    NASA Astrophysics Data System (ADS)

    Weiss, T.; Covino, T. P.; Wohl, E.; Rhoades, C.; Fegel, T.; Clow, D. W.

    2017-12-01

    Fluvial networks of historically glaciated mountain landscapes alternate between confined and unconfined valley segments. In low-gradient unconfined reaches, river-connected wet meadows commonly establish, and have been recognized as important locations of long-term water, carbon, and nutrient storage. Among connected meadow floodplains, sink-source behavior shifts as a function of flow state; storing water at high flows (snowmelt) and contributing toward higher late-season baseflows. Despite these benefits, historical and contemporary land-use practices often result in the simplification of wet meadow systems, leading to reduced river-floodplain connectivity, lower water-tables and reductions in hydrologic buffering capacity. In this study, we are exploring hydrologic-carbon relationships across a gradient of valley confinement and river-floodplain connectivity (connected, n=3; disconnected, n=4) within the Colorado Rockies. Our approach includes hydrologic analysis, fluorometric assays, water chemistry, instream metabolic measures, and land-cover assessment to examine patterns between land-form, carbon quantity and quality, and stream ecosystem productivity. Between different meadow types, preliminary results suggest differences between instream productivity, carbon qualities, and hydrologic-carbon sink-source dynamics across the season. These data and analyses will provide insight into water, carbon and nutrient flux dynamics as a function of land-cover in mountain headwaters.

  9. How phosphorus limitation can control climatic gas sources and sinks

    NASA Astrophysics Data System (ADS)

    Gypens, Nathalie; Borges, Alberto V.; Ghyoot, Caroline

    2017-04-01

    Since the 1950's, anthropogenic activities severely increased river nutrient loads in European coastal areas. Subsequent implementation of nutrient reduction policies have considerably reduced phosphorus (P) loads from mid-1980's, while nitrogen (N) loads were maintained, inducing a P limitation of phytoplankton growth in many eutrophied coastal areas such as the Southern Bight of the North Sea (SBNS). When dissolved inorganic phosphorous (DIP) is limiting, most phytoplankton organisms are able to indirectly acquire P from dissolved organic P (DOP). We investigate the impact of DOP use on the importance of phytoplankton production and atmospheric fluxes of CO2 and dimethylsulfide (DMS) in the SBNS from 1951 to 2007 using an extended version of the R-MIRO-BIOGAS model. This model includes a description of the ability of phytoplankton organisms to use DOP as a source of P. Results show that primary production can increase up to 70% due to DOP uptake in limiting DIP conditions. Consequently, simulated DMS emissions double while CO2 emissions to the atmosphere decrease, relative to the reference simulation without DOP uptake. At the end of the simulated period (late 2000's), the net direction of air-sea CO2 annual flux, changed from a source to a sink for atmospheric CO2 in response to use of DOP and increase of primary production.

  10. Zinc

    MedlinePlus

    ... Guidelines for Americans and the U.S. Department of Agriculture's MyPlate . Where can I find out more about ... on food sources of zinc: U.S. Department of Agriculture's (USDA’s) National Nutrient Database Nutrient List for zinc ( ...

  11. Vitamin E

    MedlinePlus

    ... Guidelines for Americans and the U.S. Department of Agriculture's MyPlate . Where can I find out more about ... food sources of vitamin E: U.S. Department of Agriculture's (USDA's) National Nutrient Database Nutrient List for vitamin ...

  12. Vitamin C

    MedlinePlus

    ... Guidelines for Americans and the U.S. Department of Agriculture's MyPlate . Where can I find out more about ... food sources of vitamin C: U.S. Department of Agriculture's (USDA's) National Nutrient Database Nutrient List for vitamin ...

  13. Vitamin D

    MedlinePlus

    ... Guidelines for Americans and the U.S. Department of Agriculture's MyPlate . Where can I find out more about ... food sources of vitamin D: U.S. Department of Agriculture's (USDA's) National Nutrient Database Nutrient List for vitamin ...

  14. Vitamin A

    MedlinePlus

    ... Guidelines for Americans and the U.S. Department of Agriculture's MyPlate . Where can I find out more about ... food sources of vitamin A: U.S. Department of Agriculture's (USDA's) National Nutrient Database Nutrient List for vitamin ...

  15. Effect of nutrient enrichment on the source and composition of sediment organic carbon in tropical seagrass beds in the South China Sea.

    PubMed

    Liu, Songlin; Jiang, Zhijian; Zhang, Jingping; Wu, Yunchao; Lian, Zhonglian; Huang, Xiaoping

    2016-09-15

    To assess the effect of nutrient enrichment on the source and composition of sediment organic carbon (SOC) beneath Thalassia hemprichii and Enhalus acoroides in tropical seagrass beds, Xincun Bay, South China Sea, intertidal sediment, primary producers, and seawater samples were collected. No significant differences on sediment δ(13)C, SOC, and microbial biomass carbon (MBC) were observed between T. hemprichii and E. acoroides. SOC was mainly of autochthonous origin, while the contribution of seagrass to SOC was less than that of suspended particulate organic matter, macroalgae and epiphytes. High nutrient concentrations contributed substantially to SOC of seagrass, macroalgae, and epiphytes. The SOC, MBC, and MBC/SOC ratio in the nearest transect to fish farming were the highest. This suggested a more labile composition of SOC and shorter turnover times in higher nutrient regions. Therefore, the research indicates that nutrient enrichment could enhance plant-derived contributions to SOC and microbial use efficiency. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Pregnant Canadian Women Achieve Recommended Intakes of One-Carbon Nutrients through Prenatal Supplementation but the Supplement Composition, Including Choline, Requires Reconsideration.

    PubMed

    Masih, Shannon P; Plumptre, Lesley; Ly, Anna; Berger, Howard; Lausman, Andrea Y; Croxford, Ruth; Kim, Young-In; O'Connor, Deborah L

    2015-08-01

    Folate, vitamin B-6, vitamin B-12, and choline are involved in one-carbon metabolism and play critical roles in pregnancy including prevention of birth defects and promotion of neurodevelopment. However, excessive intakes may adversely affect disease susceptibility in offspring. Intakes of these nutrients during pregnancy are not well characterized. Our aim was to determine dietary and supplemental intakes and major dietary sources of one-carbon nutrients during pregnancy. In pregnant women (n = 368) at ≤16 wk postconception, supplement use >30 d before pregnancy was assessed by maternal recall and supplement and dietary intakes in early (0-16 wk) and late pregnancy (23-37 wk) were assessed by food-frequency questionnaire. Preconception, 60.1% (95% CI: 55.8, 64.3) of women used B vitamin-containing supplements. This increased to 92.8% (95% CI: 89.6, 95.2) in early and 89.0% (95% CI: 85.0, 92.3) in late pregnancy. Median supplemental folic acid, vitamin B-12, and vitamin B-6 were 1000 μg/d, 2.6 μg/d, and 1.9 mg/d, respectively. Forty-one percent and 50% of women had dietary intakes of folate and vitamin B-6 less than the estimated average requirement (520 mg/d dietary folate equivalents and 1.6 mg/d, respectively). Eight-seven percent of women had choline intakes less than the Adequate Intake (450 mg/d). Dietary intakes did not change appreciably during pregnancy. Fruits and vegetables and fortified foods contributed ∼57% to total dietary folate intake. Fruits and vegetables contributed ∼32% to total dietary vitamin B-6 intake and dairy and egg products contributed ∼37% to total dietary vitamin B-12 intake. Vitamin supplements were an important source of one-carbon nutrients during pregnancy in our sample. Without supplements, many women would not have consumed quantities of folate and vitamin B-6 consistent with recommendations. Given the importance of choline in pregnancy, further research to consider inclusion in prenatal supplements is warranted. This trial was registered at clinicaltrials.gov as NCT02244684. © 2015 American Society for Nutrition.

  17. Chemical evolution of the Salton Sea, California: nutrient and selenium dynamics

    USGS Publications Warehouse

    Schroeder, Roy A.; Orem, William H.; Kharaka, Yousif K.

    2002-01-01

    The Salton Sea is a 1000-km2 terminal lake located in the desert area of southeastern California. This saline (∼44 000 mg l−1 dissolved solids) lake started as fresh water in 1905–07 by accidental flooding of the Colorado River, and it is maintained by agricultural runoff of irrigation water diverted from the Colorado River. The Salton Sea and surrounding wetlands have recently acquired substantial ecological importance because of the death of large numbers of birds and fish, and the establishment of a program to restore the health of the Sea. In this report, we present new data on the salinity and concentration of selected chemicals in the Salton Sea water, porewater and sediments, emphasizing the constituents of concern: nutrients (N and P), Se and salinity. Chemical profiles from a Salton Sea core estimated to have a sedimentation rate of 2.3 mm yr−1 show increasing concentrations of OC, N, and P in younger sediment that are believed to reflect increasing eutrophication of the lake. Porewater profiles from two locations in the Sea show that diffusion from bottom sediment is only a minor source of nutrients to the overlying water as compared to irrigation water inputs. Although loss of N and Se by microbial-mediated volatilization is possible, comparison of selected element concentrations in river inputs and water and sediments from the Salton Sea indicates that most of the N (from fertilizer) and virtually all of the Se (delivered in irrigation water from the Colorado River) discharged to the Sea still reside within its bottom sediment. Laboratory simulation on mixtures of sediment and water from the Salton Sea suggest that sediment is a potential source of N and Se to the water column under aerobic conditions. Hence, it is important that any engineered changes made to the Salton Sea for remediation or for transfer of water out of the basin do not result in remobilization of nutrients and Se from the bottom sediment into the overlying water.

  18. Comparative Metabolomics of Mycoplasma bovis and Mycoplasma gallisepticum Reveals Fundamental Differences in Active Metabolic Pathways and Suggests Novel Gene Annotations.

    PubMed

    Masukagami, Y; De Souza, D P; Dayalan, S; Bowen, C; O'Callaghan, S; Kouremenos, K; Nijagal, B; Tull, D; Tivendale, K A; Markham, P F; McConville, M J; Browning, G F; Sansom, F M

    2017-01-01

    Mycoplasmas are simple, but successful parasites that have the smallest genome of any free-living cell and are thought to have a highly streamlined cellular metabolism. Here, we have undertaken a detailed metabolomic analysis of two species, Mycoplasma bovis and Mycoplasma gallisepticum , which cause economically important diseases in cattle and poultry, respectively. Untargeted gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry analyses of mycoplasma metabolite extracts revealed significant differences in the steady-state levels of many metabolites in central carbon metabolism, while 13 C stable isotope labeling studies revealed marked differences in carbon source utilization. These data were mapped onto in silico metabolic networks predicted from genome wide annotations. The analyses elucidated distinct differences, including a clear difference in glucose utilization, with a marked decrease in glucose uptake and glycolysis in M. bovis compared to M. gallisepticum , which may reflect differing host nutrient availabilities. The 13 C-labeling patterns also revealed several functional metabolic pathways that were previously unannotated in these species, allowing us to assign putative enzyme functions to the products of a number of genes of unknown function, especially in M. bovis . This study demonstrates the considerable potential of metabolomic analyses to assist in characterizing significant differences in the metabolism of different bacterial species and in improving genome annotation. IMPORTANCE Mycoplasmas are pathogenic bacteria that cause serious chronic infections in production animals, resulting in considerable losses worldwide, as well as causing disease in humans. These bacteria have extremely reduced genomes and are thought to have limited metabolic flexibility, even though they are highly successful persistent parasites in a diverse number of species. The extent to which different Mycoplasma species are capable of catabolizing host carbon sources and nutrients, or synthesizing essential metabolites, remains poorly defined. We have used advanced metabolomic techniques to identify metabolic pathways that are active in two species of Mycoplasma that infect distinct hosts (poultry and cattle). We show that these species exhibit marked differences in metabolite steady-state levels and carbon source utilization. This information has been used to functionally characterize previously unknown genes in the genomes of these pathogens. These species-specific differences are likely to reflect important differences in host nutrient levels and pathogenic mechanisms.

  19. Nutrient removal by prairie filter strips in agricultural landscapes

    Treesearch

    X. Zhou; M.J. Helmers; H. Asbjornsen; R. Kolka; M.D. Tomer; R.M. Cruse

    2014-01-01

    Nitrogen (N) and phosphorus (P) from agricultural landscapes have been identified as primary sources of excess nutrients in aquatic systems. The main objective of this study was to evaluate the effectiveness of prairie filter strips (PFS) in removing nutrients from cropland runoff in 12 small watersheds in central Iowa. Four treatments with PFS of different spatial...

  20. Fungal nutrient allocation in common mycorrhizal networks is regulated by the carbon source strength of individual host plants

    USDA-ARS?s Scientific Manuscript database

    • The common mycorrhizal networks (CMN) of arbuscular mycorrhizal (AM) fungi in the soil provide multiple host plants with nutrients, but the mechanisms by which the nutrient transport to individual host plants within one CMN is controlled, are currently unknown. • We followed by radioactive and st...

  1. Enhancing phosphorus and zinc acquisition efficiency in rice: a critical review of root traits and their potential utility in rice breeding.

    PubMed

    Rose, T J; Impa, S M; Rose, M T; Pariasca-Tanaka, J; Mori, A; Heuer, S; Johnson-Beebout, S E; Wissuwa, M

    2013-07-01

    Rice is the world's most important cereal crop and phosphorus (P) and zinc (Zn) deficiency are major constraints to its production. Where fertilizer is applied to overcome these nutritional constraints it comes at substantial cost to farmers and the efficiency of fertilizer use is low. Breeding crops that are efficient at acquiring P and Zn from native soil reserves or fertilizer sources has been advocated as a cost-effective solution, but would benefit from knowledge of genes and mechanisms that confer enhanced uptake of these nutrients by roots. This review discusses root traits that have been linked to P and Zn uptake in rice, including traits that increase mobilization of P/Zn from soils, increase the volume of soil explored by roots or root surface area to recapture solubilized nutrients, enhance the rate of P/Zn uptake across the root membrane, and whole-plant traits that affect root growth and nutrient capture. In particular, this review focuses on the potential for these traits to be exploited through breeding programmes to produce nutrient-efficient crop cultivars. Few root traits have so far been used successfully in plant breeding for enhanced P and Zn uptake in rice or any other crop. Insufficient genotypic variation for traits or the failure to enhance nutrient uptake under realistic field conditions are likely reasons for the limited success. More emphasis is needed on field studies in mapping populations or association panels to identify those traits and underlying genes that are able to enhance nutrient acquisition beyond the level already present in most cultivars.

  2. Use of micronutrient supplements among pregnant women in Alberta: results from the Alberta Pregnancy Outcomes and Nutrition (APrON) cohort.

    PubMed

    Gómez, Mariel Fajer; Field, Catherine J; Olstad, Dana Lee; Loehr, Sarah; Ramage, Stephanie; McCargar, Linda J

    2015-10-01

    Maternal nutrient intake in the prenatal period is an important determinant of fetal growth and development and supports maternal health. Many women, however, fail to meet their prenatal nutrient requirements through diet alone and are therefore advised to consume nutrient supplements. The purpose of this study was to describe the use of natural health products (NHP) by pregnant women in each trimester of pregnancy. Women (n = 599) participating in the first cohort of the Alberta Pregnancy Outcomes and Nutrition (APrON) study completed an interviewer-administered supplement intake questionnaire during each trimester of pregnancy. NHP use was high, with >90% taking multivitamin/mineral supplements, and nearly half taking at least one additional single-nutrient supplement. Compliance with supplementation guidelines was high for folic acid (>90%), vitamin D (∼70%) and calcium (∼80%), but low for iron (<30%) and for all four nutrients together (≤11%). On average, women met or exceeded the recommended dietary allowance for folic acid, vitamin D and iron from NHPs alone, with median daily intakes of 1000 μg, 400 IU and 27 mg, respectively. The median calcium intake was 250 mg d(-1) . Up to 26% of women exceeded the tolerable upper intake level for folic acid and up to 19% did so for iron at some point of their pregnancy. Findings highlight the need to consider both dietary and supplemental sources of micronutrients when assessing the nutrient intakes of pregnant women. © 2013 John Wiley & Sons Ltd.

  3. Estimation of Dust Emission from the Western Coastal Plains of Arabian Peninsula

    NASA Astrophysics Data System (ADS)

    Anisimov, Anatolii; Stenchikov, Georgiy

    2016-04-01

    This study is aimed at quantifying local-scale dust emission from the coastal areas of western Arabian Peninsula. The dust emitted from these areas is frequently deposited directly to the Red Sea, acting as an important component of the nutrient balance of marine ecosystems. Most chemicals including iron, phosphorus, and nitrogen are introduced to the Red Sea with airborne dust. This process is especially significant for the oligotrophic northern Red Sea, where nutrients from the Indian Ocean cannot reach and the nutrient supply from land river discharge is negligible. The dust deposition to the Red Sea associated with major dust storms was recently estimated to be about 6 Tg/yr, but this estimate does not account for local, small-scale dust outbreaks occurring during fair weather conditions or moderate winds. The seasonality and the magnitude of this nutrient supply are largely unknown. In the present study, we quantify dust emissions using the fine-scale off-line version-4 of the Community Land Model (CLM4) with the high-resolution datasets as input parameters. We examine the model sensitivity to the spatial resolution of input land cover and vegetation data, and compare the results with weather station observations and reanalysis to choose the best model configuration. The model results are shown to be in reasonable agreement with station visibility measurements and the frequency of dust event reports. To improve the spatial characteristics of dust emission, we apply two state-of-the-art dust source functions. We found that the source function based on measurements from SEVIRI satellite substantially improves the simulation results, being in good agreement with both reanalysis data and station measurements. We identify the major dust source hot-spot areas over the coastal plain and analyze the seasonal and diurnal variability of dust emissions. The annual dust generation from the 145000 km2 coastal area reaches 6 Tg/yr. Roughly half of emitted dust could be deposited to the Red Sea, which is comparable to the deposition from major dust events. A substantial part of this dust is generated in the northern coastal plain and is predominantly deposited to the northern Red Sea, providing essentially the sole supply of nutrients to the oceanic ecosystems.

  4. Potassium

    MedlinePlus

    ... Guidelines for Americans and the U.S. Department of Agriculture’s MyPlate . Where can I find out more about ... on food sources of potassium: U.S. Department of Agriculture’s (USDA) National Nutrient Database Nutrient List for potassium ( ...

  5. Vitamin B6

    MedlinePlus

    ... Guidelines for Americans and the U.S. Department of Agriculture's MyPlate . Where can I find out more about ... food sources of vitamin B6: U.S. Department of Agriculture's (USDA's) National Nutrient Database Nutrient List for vitamin ...

  6. Vitamin B12

    MedlinePlus

    ... Guidelines for Americans and the U.S. Department of Agriculture's MyPlate . Where can I find out more about ... food sources of vitamin B12: U.S. Department of Agriculture's (USDA's) National Nutrient Database Nutrient List for vitamin ...

  7. Selected nutrients and pesticides in streams of the eastern Iowa basins, 1970-95

    USGS Publications Warehouse

    Schnoebelen, Douglas J.; Becher, Kent D.; Bobier, Matthew W.; Wilton, Thomas

    1999-01-01

     The statistical analysis of the nutrient data typically indicated a strong positive correlation of nitrate with streamflow. Total phosphorus concentrations with streamflow showed greater variability than nitrate, perhaps reflecting the greater potential of transport of phosphorus on sediment rather than in the dissolved phase as with nitrate. Ammonia and ammonia plus organic nitrogen showed no correlation with streamflow or a weak positive correlation. Seasonal variations and the relations of nutrients and pesticides to streamflow generally corresponded with nonpoint‑source loadings, although possible point sources for nutrients were indicated by the data at selected monitoring sites. Statistical trend tests for concentrations and loads were computed for nitrate, ammonia, and total phosphorus. Trend analysis indicated decreases for ammonia and total phosphorus concentrations at several sites and increases for nitrate concentrations at other sites in the study unit.

  8. Groundwater-derived nutrient inputs to the Upper Gulf of Thailand

    NASA Astrophysics Data System (ADS)

    Burnett, William C.; Wattayakorn, Gullaya; Taniguchi, Makoto; Dulaiova, Henrieta; Sojisuporn, Pramot; Rungsupa, Sompop; Ishitobi, Tomotoshi

    2007-01-01

    We report here the first direct measurements of nutrient fluxes via groundwater discharge into the Upper Gulf of Thailand. Nutrient and standard oceanographic surveys were conducted during the wet and dry seasons along the Chao Phraya River, Estuary and out into the Upper Gulf of Thailand. Additional measurements in selected near-shore regions of the Gulf included manual and automatic seepage meter deployments, as well as nutrient evaluations of seepage and coastal waters. The river transects characterized the distribution of biogeochemical parameters in this highly contaminated urban environment. Seepage flux measurements together with nutrient analyses of seepage fluids were used to estimate nutrient fluxes via groundwater pathways for comparison to riverine fluxes. Our findings show that disseminated seepage of nutrient-rich mostly saline groundwater into the Upper Gulf of Thailand is significant. Estimated fluxes of dissolved inorganic nitrogen (DIN) supplied via groundwater discharge were 40-50% of that delivered by the Chao Phraya River, inorganic phosphate was 60-70%, and silica was 15-40%. Dissolved organic nitrogen (DON) and phosphorus (DOP) groundwater fluxes were also high at 30-40% and 30-130% of the river inputs, respectively. These observations are especially impressive since the comparison is being made to the river that is the largest source of fresh water into the Gulf of Thailand and flows directly through the megacity of Bangkok with high nutrient loadings from industrial and domestic sources.

  9. Growth of mono- and mixed cultures of Nannochloropsis salina and Phaeodactylum tricornutum on struvite as a nutrient source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Ryan W.; Siccardi, Anthony J.; Huysman, Nathan D.

    In this paper, the suitability of crude and purified struvite (MgNH 4PO 4), a major precipitate in wastewater streams, was investigated for renewable replacement of conventional nitrogen and phosphate resources for cultivation of microalgae. Bovine effluent wastewater stone, the source of crude struvite, was characterized for soluble N/P, trace metals, and biochemical components and compared to the purified mineral. Cultivation trials using struvite as a major nutrient source were conducted using two microalgae production strains, Nannochloropsis salina and Phaeodactylum tricornutum, in both lab and outdoor pilot-scale raceways in a variety of seasonal conditions. Both crude and purified struvite-based media weremore » found to result in biomass productivities at least as high as established media formulations (maximum outdoor co-culture yield ~20 ± 4 g AFDW/m 2/day). Finally, analysis of nutrient uptake by the alga suggest that struvite provides increased nutrient utilization efficiency, and that crude struvite satisfies the trace metals requirement and results in increased pigment productivity for both microalgae strains.« less

  10. Blending water- and nutrient-source wastewaters for cost-effective cultivation of high lipid content microalgal species Micractinium inermum NLP-F014.

    PubMed

    Park, Seonghwan; Kim, Jeongmi; Yoon, Youngjin; Park, Younghyun; Lee, Taeho

    2015-12-01

    The possibility of utilizing blended wastewaters from different streams was investigated for cost-efficient microalgal cultivation. The influent of a domestic wastewater treatment plant and the liquid fertilizer from a swine wastewater treatment plant were selected as water- and nutrient-source wastewaters, respectively. The growth of Micractinium inermum NLP-F014 in the blended wastewater medium without any pretreatment was comparable to that in Bold's Basal Medium. The optimum blending ratio of 5-15% (vv(-1)) facilitated biomass production up to 5.7 g-dry cell weight (DCW) L(-1), and the maximum biomass productivity (1.03 g-DCWL(-1)d(-1)) was achieved after three days of cultivation. Nutrient depletion induced lipid accumulation in the cell up to 39.1% (ww(-1)) and the maximum lipid productivity was 0.19 g-FAMEL(-1)d(-1). These results suggest that blending water- and nutrient-source wastewaters at a proper ratio without pretreatment can significantly cut costs in microalgae cultivation for biodiesel production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Nutrient loading and selected water-quality and biological characteristics of Dickinson Bayou near Houston, Texas, 1995-97

    USGS Publications Warehouse

    East, Jeffery W.; Paul, Edna M.; Porter, Stephen D.

    1998-01-01

    Algal samples were collected at seven stations and were analyzed for periphyton identification and enumeration, and chlorophyll a and chlorophyll b concentrations. The large relative abundance of soil algae at stations in the middle of the watershed likely indicates the cumulative effects on water quality of agricultural nonpoint sources. Farther downstream near the State Highway 3 bridge, and downstream of three major tributary inflows, the increase in abundance of soil algae to a larger-than-expected level might reflect water-quality influences from predominantly urban nonpoint sources in the drainage basins of the three major tributary inflows. Nutrient concentrations do not appear to limit algal production in the upper (non-tidal) reach of Dickinson Bayou; but nutrient concentrations could have been limiting benthicalgal production in the lower (tidal) reach of the bayou during the time of the synoptic survey. If nitrogen is the limiting resource for algal productivity in the tidal reach of Dickinson Bayou, eutrophication of the system could be (at least partially) mitigated if nonpoint-source nutrient loads into the Bayou were reduced. 

  12. Investigation of utilization of the algal biomass residue after oil extraction to lower the total production cost of biodiesel.

    PubMed

    Gao, Min-Tian; Shimamura, Takashi; Ishida, Nobuhiro; Takahashi, Haruo

    2012-09-01

    In this study, component analysis of a novel biodiesel-producing alga, Pseudochoricystis ellipsoidea, was performed. The component analysis results indicated that proteins and amino acids are abundant in P. ellipsoidea while the sugar content is relatively low. Rather than its use as a carbon source, the use of the algal biomass residue after oil extraction as a nutrient source provided a new way for lowering the total production cost of biodiesel. In both lactic acid and ethanol fermentations, the use of the residue instead of high-cost nutrient yeast extract allowed a significant saving, showing the promise of the algal biomass residue for use as a fermentation nutrient source. Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  13. Source-separated urine opens golden opportunities for microbial electrochemical technologies.

    PubMed

    Ledezma, Pablo; Kuntke, Philipp; Buisman, Cees J N; Keller, Jürg; Freguia, Stefano

    2015-04-01

    The food security of a booming global population demands a continuous and sustainable supply of fertilisers. Their current once-through use [especially of the macronutrients nitrogen (N), phosphorus (P), and potassium (K)] requires a paradigm shift towards recovery and reuse. In the case of source-separated urine, efficient recovery could supply 20% of current macronutrient usage and remove 50-80% of nutrients present in wastewater. However, suitable technology options are needed to allow nutrients to be separated from urine close to the source. Thus far none of the proposed solutions has been widely implemented due to intrinsic limitations. Microbial electrochemical technologies (METs) have proved to be technically and economically viable for N recovery from urine, opening the path for novel decentralised systems focused on nutrient recovery and reuse. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. An economical approach for d-lactic acid production utilizing unpolished rice from aging paddy as major nutrient source.

    PubMed

    Lu, Zhengdong; Lu, Mingbo; He, Feng; Yu, Longjiang

    2009-03-01

    In order to reduce the raw material cost of d-lactic acid fermentation, the unpolished rice from aging paddy was used as major nutrient source in this study. The unpolished rice saccharificate, wheat bran powder and yeast extract were employed as carbon source, nitrogen source and growth factors, respectively. Response surface methodology (RSM) was applied to optimize the dosages of medium compositions. As a result, when the fermentation was carried out under the optimal conditions for wheat bran powder (29.10g/l) and yeast extract (2.50g/l), the d-lactic acid yield reached 731.50g/kg unpolished rice with a volumetric production rate of 1.50g/(lh). In comparison with fresh corn and polished rice, the d-lactic acid yield increased by 5.79% and 8.71%, and the raw material cost decreased by 65% and 52%, respectively, when the unpolished rice was used as a major nutrient source. These results might provide a reference for the industrial production of d-lactic acid.

  15. Fertilisation of the Southern Atlantic: Ephemeral River Valleys as a replenishing source of nutrient-enriched mineral aerosols

    NASA Astrophysics Data System (ADS)

    Dansie, Andrew; Wiggs, Giles; Thomas, David

    2016-04-01

    Oceanic dust deposition provides biologically important iron and macronutrients (Phosphorus (P) and Nitrogen-based (N) compounds) that contribute to phytoplankton growth, marine productivity and oceanic atmospheric CO2 uptake. Research on dust emission sources to date has largely focused on the northern hemisphere and on ephemeral lakes and pans. Our work considers the ephemeral river valleys of the west coast of Namibia as an important yet overlooked source of ocean-fertilizing dust. Dust plumes are frequently emitted from the river valleys by strong easterly winds during the Southern Hemisphere winter, when the upwelling of the Benguela Current is at its weakest. We present field data from dust emission source areas along the main river channels near the coastal termini of the Huab, Kuiseb and Tsauchab river valleys. Collected data include erodible surface sediment, wind-blown flux, and associated meteorological data. Extensive surface sediment sampling was also undertaken throughout the combined 34,250 km2 extent of each river valley catchment with samples collected from within the main river channels, the main branches of each river system, selected tributaries, and into the upper watersheds. Geochemical data show valley sediment and wind-blown flux material have high concentrations of bioavailable Fe, P and N, exceeding that measured at the major dry lake basin dust sources in southern Africa. The contribution of fertilising deposition material is enhanced by both the spatial proximity of the source areas to the ocean and enrichment of source material by ephemeral fluvial accumulation and desiccation. Results show that geographical factors within each watershed play a key role in the nutrient composition of the emitting fluvial deposits in the river valleys. Analysis explores potential relationships between land use, geology, climate and precipitation in the upper watersheds and their influence on bioavailability of Fe, P and N compounds in wind-erodible valley sediments. MODIS data for dust plume identification and chlorophyll concentration in the southern Atlantic is utilised to investigate associations between recorded dust emission events and phytoplankton growth in the ocean surface waters.

  16. Spatial contrast in phytoplankton, bacteria and microzooplankton grazing between the eutrophic Yellow Sea and the oligotrophic South China Sea

    NASA Astrophysics Data System (ADS)

    Zhang, Yafeng; Wang, Xutao; Yin, Kedong

    2018-01-01

    Three cruises were conducted to investigate the distributions of nutrients, chlorophyll a (Chl- a), new and regenerated primary production, bacterial abundance and production, and microzooplankton grazing rates in the Yellow Sea (YS) and the South China Sea (SCS) during March and May. As the water column moved from low to high temperature, weak to strong stratification and high to low nutrients from the YS to the SCS, Chl- a, primary production and bacterial biomass decreased. In contrast, bacterial production, microzooplankton grazing and size preference increased from the YS to the SCS. The increasing grazing activity and decreasing f-ratio from the YS to the SCS suggest roles of regenerated nutrients in the supporting the community increased and more bacteria played important roles in the carbon flow in the oligotrophic SCS than in the eutrophic YS. These variabilities force the classical food chain dominated community in the eutrophic waters into the microbial loop, which is dominant in oligotrophic waters. As nutrients decrease, temperature and grazing activity increase from the YS to the SCS. The increasing ratio of integrated bacterial production to integrated primary production indicates that communities change from autotrophy to heterotrophy and waters change from a carbon sink to a carbon source.

  17. Synergy between nutrients and warming enhances methane ebullition from experimental lakes

    NASA Astrophysics Data System (ADS)

    Davidson, Thomas A.; Audet, Joachim; Jeppesen, Erik; Landkildehus, Frank; Lauridsen, Torben L.; Søndergaard, Martin; Syväranta, Jari

    2018-01-01

    Lakes and ponds are important natural sources of the potent greenhouse gas methane (CH4), with small shallow waters identified as particular hotspots1,2. Ebullition (bubbles) of CH4 makes up a large proportion of total CH4 flux3,4. However, difficulty measuring such episodic events5 makes prediction of how ebullition responds to nutrient enrichment and rising temperatures challenging. Here, the world's longest running, mesocosm-based, shallow lake climate change experiment was used to investigate how the combination of warming and eutrophication (that is, nutrient enrichment) affects CH4 ebullition. Eutrophication without heating increased the relative contribution of ebullition from 51% to 75%. More strikingly the combination of nutrient enrichment and experimental warming treatments of +2-3 °C and +4-5 °C had a synergistic effect, increasing mean annual ebullition by at least 1900 mg CH4-C m-2 yr-1. In contrast, diffusive flux showed no response to eutrophication and only a small increase at higher temperatures (average 63 mg CH4-C m-2 yr-1). As shallow lakes are the most common lake type globally, abundant in highly climate sensitive regions6 and most vulnerable to eutrophication, these results suggest their current and future contributions to atmospheric CH4 concentrations may be significantly underestimated.

  18. Carbon and nitrogen stoichiometry across stream ecosystems

    NASA Astrophysics Data System (ADS)

    Wymore, A.; Kaushal, S.; McDowell, W. H.; Kortelainen, P.; Bernhardt, E. S.; Johnes, P.; Dodds, W. K.; Johnson, S.; Brookshire, J.; Spencer, R.; Rodriguez-Cardona, B.; Helton, A. M.; Barnes, R.; Argerich, A.; Haq, S.; Sullivan, P. L.; López-Lloreda, C.; Coble, A. A.; Daley, M.

    2017-12-01

    Anthropogenic activities are altering carbon and nitrogen concentrations in surface waters globally. The stoichiometry of carbon and nitrogen regulates important watershed biogeochemical cycles; however, controls on carbon and nitrogen ratios in aquatic environments are poorly understood. Here we use a multi-biome and global dataset (tropics to Arctic) of stream water chemistry to assess relationships between dissolved organic carbon (DOC) and nitrate, ammonium and dissolved organic nitrogen (DON), providing a new conceptual framework to consider interactions between DOC and the multiple forms of dissolved nitrogen. We found that across streams the total dissolved nitrogen (TDN) pool is comprised of very little ammonium and as DOC concentrations increase the TDN pool shifts from nitrate to DON dominated. This suggests that in high DOC systems, DON serves as the primary source of nitrogen. At the global scale, DOC and DON are positively correlated (r2 = 0.67) and the average C: N ratio of dissolved organic matter (molar ratio of DOC: DON) across our data set is approximately 31. At the biome and smaller regional scale the relationship between DOC and DON is highly variable (r2 = 0.07 - 0.56) with the strongest relationships found in streams draining the mixed temperate forests of the northeastern United States. DOC: DON relationships also display spatial and temporal variability including latitudinal and seasonal trends, and interactions with land-use. DOC: DON ratios correlated positively with gradients of energy versus nutrient limitation pointing to the ecological role (energy source versus nutrient source) that DON plays with stream ecosystems. Contrary to previous findings we found consistently weak relationships between DON and nitrate which may reflect DON's duality as an energy or nutrient source. Collectively these analyses demonstrate how gradients of DOC drive compositional changes in the TDN pool and reveal a high degree of variability in the C: N ratio (3-100) of stream water dissolved organic matter.

  19. Nutrient export from watersheds on Mt. Desert Island, maine, as a function of land use and fire history

    USGS Publications Warehouse

    Nielsen, M.G.; Kahl, J.S.

    2007-01-01

    A study of 13 small (less than 7.5 km2) watersheds on Mt. Desert Island, Maine, was conducted from January 1999 to September 2000 to determine nutrient export delivery to coastal waters around the island, and to determine whether a series of wildfires in 1947 have affected nutrient export in burned watersheds. Nutrient export (nitrate-nitrogen, total nitrogen, total phosphorus) was determined for each watershed during the study period, and was normalized by watershed area. The yield of nitrate-nitrogen (N) ranged from 10 to 140 kg/km2/year. Total N yield ranged from 42 to 250 kg/ km2/year. Total phosphorus (P) yield ranged from 1.4 to 7.9 kg/km2/year. Watersheds entirely within Acadia National Park (lacking human land-based nutrient sources) exported significantly less total N and total P than watersheds that were partly or entirely outside the park boundary. Nitrate-N export was not significantly different in these two groups of watersheds, perhaps because atmospheric deposition is a dominant source of nitrate in the study area. No relation was observed between burn history and nutrient export. Any effect of burn history may be masked by other landscape-level factors related to nutrient export. ?? Springer Science + Business Media B.V. 2007.

  20. Leaf life span and the mobility of "non-mobile" mineral nutrients - the case of boron in conifers

    Treesearch

    Pedro J. Aphalo; Anna W. Schoettle; Tarja Lehto

    2002-01-01

    Nutrient conservation is considered important for the adaptation of plants to infertile environments. The importance of leaf life spans in controlling mean residence time of nutrients in plants has usually been analyzed in relation to nutrients that can be retranslocated within the plant. Longer leaf life spans increase the mean residence time of all mineral...

Top