Sample records for important operating parameters

  1. Operational Parameters in Acoustic Signature Inspection of Railroad Wheels

    DOT National Transportation Integrated Search

    1980-04-01

    A brief summary is given of some prior studies which established the feasibility of using acoustic signatures for inspection of railroad wheels. The purpose of the present work was to elucidate operational parameters which would be of importance for ...

  2. Optimization of operating parameters in polysilicon chemical vapor deposition reactor with response surface methodology

    NASA Astrophysics Data System (ADS)

    An, Li-sha; Liu, Chun-jiao; Liu, Ying-wen

    2018-05-01

    In the polysilicon chemical vapor deposition reactor, the operating parameters are complex to affect the polysilicon's output. Therefore, it is very important to address the coupling problem of multiple parameters and solve the optimization in a computationally efficient manner. Here, we adopted Response Surface Methodology (RSM) to analyze the complex coupling effects of different operating parameters on silicon deposition rate (R) and further achieve effective optimization of the silicon CVD system. Based on finite numerical experiments, an accurate RSM regression model is obtained and applied to predict the R with different operating parameters, including temperature (T), pressure (P), inlet velocity (V), and inlet mole fraction of H2 (M). The analysis of variance is conducted to describe the rationality of regression model and examine the statistical significance of each factor. Consequently, the optimum combination of operating parameters for the silicon CVD reactor is: T = 1400 K, P = 3.82 atm, V = 3.41 m/s, M = 0.91. The validation tests and optimum solution show that the results are in good agreement with those from CFD model and the deviations of the predicted values are less than 4.19%. This work provides a theoretical guidance to operate the polysilicon CVD process.

  3. Experimental study on performance of new low-density proppant

    NASA Astrophysics Data System (ADS)

    Tian, Yu; Qu, Zhanqing; Cheng, Yingchun; Gong, Yuanzhi

    2018-04-01

    In recent years, Unconventional oil and gas resources have gradually become an important part of oil and gas development. The development of the above resources must be applied to hydraulic fracturing technology. As a key material in fracturing technology, the proppant is an important factor influencing the success of fracturing. The parameters of ceramsite are excellent which can be used in most fracturing operation. And self-suspension proppant also has good parameters, gelling and gelling breaking, can greatly simplify the oilfield fracturing site construction difficulty, so it can be a new kind of fracturing material as oilfield operation.

  4. Investigation on sense of control parameters for joystick interface in remote operated container crane application

    NASA Astrophysics Data System (ADS)

    Abdullah, U. N. N.; Handroos, H.

    2017-09-01

    Introduction: This paper presents the study of sense of control parameters to improve the lack of direct motion feeling through remote operated container crane station (ROCCS) joystick interface. The investigations of the parameters in this study are important to develop the engineering parameters related to the sense of control goal in the next design process. Methodology: Structured interviews and observations were conducted to obtain the user experience data from thirteen remote container crane operators from two international terminals. Then, interview analysis, task analysis, activity analysis and time line analysis were conducted to compare and contrast the results from interviews and observations. Results: Four experience parameters were identified to support the sense of control goal in the later design improvement of the ROCC joystick interface. The significance of difficulties to control, unsynchronized movements, facilitate in control and decision making in unexpected situation as parameters to the sense of control goal were validated by' feedbacks from operators as well as analysis. Contribution: This study provides feedback directly from end users towards developing a sustainable control interface for ROCCS in specific and remote operated off-road vehicles in general.

  5. The performance of H2O, R134a, SES36, ethanol, and HFE7100 two-phase closed thermosyphons for varying operating parameters and geometry

    NASA Astrophysics Data System (ADS)

    Andrzejczyk, Rafał; Muszyński, Tomasz

    2017-09-01

    In this study, the influences of different parameters at performance two-phase closed thermosiphon (TPCT) was presented. It has been confirmed that the working fluid, as well as operating parameters and fill ratio, are very important factors in the performance of TPCT. The article shows characteristics of gravitational tube geometries, as well as the technical characteristic of the most important system components, i.e., the evaporator/condenser. The experiment's plan and the results of it for the two-phase thermosiphon for both evaluated geometries with varying thermal and fluid flow parameters are presented. Experiments were performed for the most perspective working fluids, namely: water, R134a, SES36, ethanol and HFE7100. Obtained research proves the possibility to use TPCT for heat recovery from the industrial waste water.

  6. Characterizing and Optimizing Photocathode Laser Distributions for Ultra-low Emittance Electron Beam Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, F.; Bohler, D.; Ding, Y.

    2015-12-07

    Photocathode RF gun has been widely used for generation of high-brightness electron beams for many different applications. We found that the drive laser distributions in such RF guns play important roles in minimizing the electron beam emittance. Characterizing the laser distributions with measurable parameters and optimizing beam emittance versus the laser distribution parameters in both spatial and temporal directions are highly desired for high-brightness electron beam operation. In this paper, we report systematic measurements and simulations of emittance dependence on the measurable parameters represented for spatial and temporal laser distributions at the photocathode RF gun systems of Linac Coherent Lightmore » Source. The tolerable parameter ranges for photocathode drive laser distributions in both directions are presented for ultra-low emittance beam operations.« less

  7. Synthetic aperture radar operator tactical target acquisition research

    NASA Technical Reports Server (NTRS)

    Hershberger, M. L.; Craig, D. W.

    1978-01-01

    A radar target acquisition research study was conducted to access the effects of two levels of 13 radar sensor, display, and mission parameters on operator tactical target acquisition. A saturated fractional-factorial screening design was employed to examine these parameters. Data analysis computed ETA squared values for main and second-order effects for the variables tested. Ranking of the research parameters in terms of importance to system design revealed four variables (radar coverage, radar resolution/multiple looks, display resolution, and display size) accounted for 50 percent of the target acquisition probability variance.

  8. Spherical Harmonic-based Random Fields Based on Real Particle 3D Data: Improved Numerical Algorithm and Quantitative Comparison to Real Particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    X Liu; E Garboczi; m Grigoriu

    Many parameters affect the cyclone efficiency, and these parameters can have different effects in different flow regimes. Therefore the maximum-efficiency cyclone length is a function of the specific geometry and operating conditions in use. In this study, we obtained a relationship describing the minimum particle diameter or maximum cyclone efficiency by using a theoretical approach based on cyclone geometry and fluid properties. We have compared the empirical predictions with corresponding literature data and observed good agreement. The results address the importance of fluid properties. Inlet and vortex finder cross-sections, cone-apex diameter, inlet Reynolds number and surface roughness are found tomore » be the other important parameters affecting cyclone height. The surface friction coefficient, on the other hand, is difficult to employ in the calculations.We developed a theoretical approach to find the maximum-efficiency heights for cyclones with tangential inlet and we suggested a relation for this height as a function of cyclone geometry and operating parameters. In order to generalize use of the relation, two dimensionless parameters, namely for geometric and operational variables, we defined and results were presented in graphical form such that one can calculate and enter the values of these dimensionless parameters and then can find the maximum efficiency height of his own specific cyclone.« less

  9. Sound quality characteristics of refrigerator noise in real living environments with relation to psychoacoustical and autocorrelation function parameters.

    PubMed

    Sato, Shin-ichi; You, Jin; Jeon, Jin Yong

    2007-07-01

    Psychoacoustical and autocorrelation function (ACF) parameters were employed to describe the temporal fluctuations of refrigerator noise during starting, transition into/from the stationary phase and termination of operation. The temporal fluctuations of refrigerator noise include a click at start-up, followed by a rapid increase in volume, a change of pitch, and termination of the operation. Subjective evaluations of the noise of 24 different refrigerators were conducted in a real living environment. The relationship between objective measures and perceived noisiness was examined by multiple regression analysis. Sound quality indices were developed based on psychoacoustical and ACF parameters. The psychoacoustical parameters found to be important for evaluating noisiness in the stationary phase were loudness and roughness. The relationship between noisiness and ACF parameters shows that sound energy and its fluctuations are important for evaluating noisiness. Also, refrigerator sounds that had a fluctuation of pitch were rated as more annoying. The tolerance level for the starting phase of refrigerator noise was found to be 33 dBA, which is the level where 65% of the participants in the subjective tests were satisfied.

  10. Selection of the battery pack parameters for an electric vehicle based on performance requirements

    NASA Astrophysics Data System (ADS)

    Koniak, M.; Czerepicki, A.

    2017-06-01

    Each type of vehicle has specific power requirements. Some require a rapid charging, other make long distances between charges, but a common feature is the longest battery life time. Additionally, the battery is influenced by factors such as temperature, depth of discharge and the operation current. The article contain the parameters of chemical cells that should be taken into account during the design of the battery for a specific application. This is particularly important because the batteries are not properly matched and can wear prematurely and cause an additional costs. The method of selecting the correct cell type should take previously discussed features and operating characteristics of the vehicle into account. The authors present methods of obtaining such characteristics along with their assessment and examples. Also there has been described an example of the battery parameters selection based on design assumptions of the vehicle and the expected performance characteristics. Selecting proper battery operating parameters is important due to its impact on the economic result of investments in electric vehicles. For example, for some Li-Ion technologies, the earlier worn out of batteries in a fleet of cruise boats or buses having estimated lifetime of 10 years is not acceptable, because this will cause substantial financial losses for the owner of the rolling stock. The presented method of choosing the right cell technology in the selected application, can be the basis for making the decision on future battery technical parameters.

  11. Development of system design information for carbon dioxide using an amine type sorber

    NASA Technical Reports Server (NTRS)

    Rankin, R. L.; Roehlich, F.; Vancheri, F.

    1971-01-01

    Development work on system design information for amine type carbon dioxide sorber is reported. Amberlite IR-45, an aminated styrene divinyl benzene matrix, was investigated to determine the influence of design parameters of sorber particle size, process flow rate, CO2 partial pressure, total pressure, and bed designs. CO2 capacity and energy requirements for a 4-man size system were related mathematically to important operational parameters. Some fundamental studies in CO2 sorber capacity, energy requirements, and process operation were also performed.

  12. An approach for cooling by solar energy

    NASA Astrophysics Data System (ADS)

    Rabeih, S. M.; Wahhab, M. A.; Asfour, H. M.

    The present investigation is concerned with the possibility to base the operation of a household refrigerator on solar energy instead of gas fuel. The currently employed heating system is to be replaced by a solar collector with an absorption area of two sq m. Attention is given to the required changes in the generator design, the solar parameters at the location of refrigerator installation, the mathematical approach for the thermal analysis of the solar collector, the development of a computer program for the evaluation of the important parameters, the experimental test rig, and the measurement of the experimental parameters. A description is given of the obtained optimum operating conditions for the considered system.

  13. Fatigue reassessment for lifetime extension of offshore wind monopile substructures

    NASA Astrophysics Data System (ADS)

    Ziegler, Lisa; Muskulus, Michael

    2016-09-01

    Fatigue reassessment is required to decide about lifetime extension of aging offshore wind farms. This paper presents a methodology to identify important parameters to monitor during the operational phase of offshore wind turbines. An elementary effects method is applied to analyze the global sensitivity of residual fatigue lifetimes to environmental, structural and operational parameters. Therefore, renewed lifetime simulations are performed for a case study which consists of a 5 MW turbine with monopile substructure in 20 m water depth. Results show that corrosion, turbine availability, and turbulence intensity are the most influential parameters. This can vary strongly for other settings (water depth, turbine size, etc.) making case-specific assessments necessary.

  14. Modelling Parameters Characterizing Selected Water Supply Systems in Lower Silesia Province

    NASA Astrophysics Data System (ADS)

    Nowogoński, Ireneusz; Ogiołda, Ewa

    2017-12-01

    The work presents issues of modelling water supply systems in the context of basic parameters characterizing their operation. In addition to typical parameters, such as water pressure and flow rate, assessing the age of the water is important, as a parameter of assessing the quality of the distributed medium. The analysis was based on two facilities, including one with a diverse spectrum of consumers, including residential housing and industry. The carried out simulations indicate the possibility of the occurrence of water quality degradation as a result of excessively long periods of storage in the water supply network. Also important is the influence of the irregularity of water use, especially in the case of supplying various kinds of consumers (in the analysed case - mining companies).

  15. Use of an Expansion Tube to Examine Scramjet Combustion at Hypersonic Velocities

    NASA Technical Reports Server (NTRS)

    Rizkalla, Oussama; Bakos, Robert J.; Chinitz, Wallace; Pulsonetti, Maria V; Erdos, John I.

    1989-01-01

    Combustion testing at total enthalpy conditions corresponding to flight Math numbers in excess of 12 requires the use of impulse facilities. The expansion tube is the only operational facility of its size which can provide these conditions without excessive oxygen dissociation or driver gas contamination. Expansio tube operation is described herein and the operational parameters having the largest impact on its performance are determined. These are: driver-to-intermediate chamber pressure ratio, driver gas molecular weight and specific heat ratio, and driver gas temperature. Increases in the lase named parameter will markedly affect the test section static pressure. Preliminary calibration tests are discussed and test gas conditions which have been achieved are presented. Calculated and experimental test times are compared and the parameters affecting test time are discussed. The direction of future work using this important experimental tool is indicated.

  16. Use of an expansion tube to examine scramjet combustion at hypersonic velocities

    NASA Technical Reports Server (NTRS)

    Rizkalla, O.; Bakos, R. J.; Pulsonetti, M.; Chinitz, Wallace; Erdos, John I.

    1989-01-01

    Combustion testing at total enthalpy conditions corresponding to flight Mach numbers in excess of 12 requires the use of impulse facilities. The expansion tube is the only operational facility of its size which can provide these conditions without excessive oxygen dissociation or driver gas contamination. Expansion tube operation is described herein and the operational parameters having the largest impact on its performance are determined. These are: driver-to-intermediate chamber pressure ratio, driver gas molecular weight and specific heat ratio, and driver gas temperature. Increases in the last-named parameter will markedly affect the test section static pressure. Preliminary calibration tests are discussed and test gas conditions which have been achieved are presented. Calculated and experimental test times are compared and the parameters affecting test time are discussed. The direction of future work using this important experimental tool is indicated.

  17. Numerical simulation of active track tensioning system for autonomous hybrid vehicle

    NASA Astrophysics Data System (ADS)

    Mȩżyk, Arkadiusz; Czapla, Tomasz; Klein, Wojciech; Mura, Gabriel

    2017-05-01

    One of the most important components of a high speed tracked vehicle is an efficient suspension system. The vehicle should be able to operate both in rough terrain for performance of engineering tasks as well as on the road with high speed. This is especially important for an autonomous platform that operates either with or without human supervision, so that the vibration level can rise compared to a manned vehicle. In this case critical electronic and electric parts must be protected to ensure the reliability of the vehicle. The paper presents a dynamic parameters determination methodology of suspension system for an autonomous high speed tracked platform with total weight of about 5 tonnes and hybrid propulsion system. Common among tracked vehicles suspension solutions and cost-efficient, the torsion-bar system was chosen. One of the most important issues was determining optimal track tensioning - in this case an active hydraulic system was applied. The selection of system parameters was performed with using numerical model based on multi-body dynamic approach. The results of numerical analysis were used to define parameters of active tensioning control system setup. LMS Virtual.Lab Motion was used for multi-body dynamics numerical calculation and Matlab/SIMULINK for control system simulation.

  18. Mathematical modeling of non-stationary gas flow in gas pipeline

    NASA Astrophysics Data System (ADS)

    Fetisov, V. G.; Nikolaev, A. K.; Lykov, Y. V.; Duchnevich, L. N.

    2018-03-01

    An analysis of the operation of the gas transportation system shows that for a considerable part of time pipelines operate in an unsettled regime of gas movement. Its pressure and flow rate vary along the length of pipeline and over time as a result of uneven consumption and selection, switching on and off compressor units, shutting off stop valves, emergence of emergency leaks. The operational management of such regimes is associated with difficulty of reconciling the operating modes of individual sections of gas pipeline with each other, as well as with compressor stations. Determining the grounds that cause change in the operating mode of the pipeline system and revealing patterns of these changes determine the choice of its parameters. Therefore, knowledge of the laws of changing the main technological parameters of gas pumping through pipelines in conditions of non-stationary motion is of great importance for practice.

  19. The 12-foot pressure wind tunnel restoration project model support systems

    NASA Technical Reports Server (NTRS)

    Sasaki, Glen E.

    1992-01-01

    The 12 Foot Pressure Wind Tunnel is a variable density, low turbulence wind tunnel that operates at subsonic speeds, and up to six atmospheres total pressure. The restoration of this facility is of critical importance to the future of the U.S. aerospace industry. As part of this project, several state of the art model support systems are furnished to provide an optimal balance between aerodynamic and operational efficiency parameters. Two model support systems, the Rear Strut Model Support, and the High Angle of Attack Model Support are discussed. This paper covers design parameters, constraints, development, description, and component selection.

  20. Sensitivity study of Space Station Freedom operations cost and selected user resources

    NASA Technical Reports Server (NTRS)

    Accola, Anne; Fincannon, H. J.; Williams, Gregory J.; Meier, R. Timothy

    1990-01-01

    The results of sensitivity studies performed to estimate probable ranges for four key Space Station parameters using the Space Station Freedom's Model for Estimating Space Station Operations Cost (MESSOC) are discussed. The variables examined are grouped into five main categories: logistics, crew, design, space transportation system, and training. The modification of these variables implies programmatic decisions in areas such as orbital replacement unit (ORU) design, investment in repair capabilities, and crew operations policies. The model utilizes a wide range of algorithms and an extensive trial logistics data base to represent Space Station operations. The trial logistics data base consists largely of a collection of the ORUs that comprise the mature station, and their characteristics based on current engineering understanding of the Space Station. A nondimensional approach is used to examine the relative importance of variables on parameters.

  1. Rendering of HDR content on LDR displays: an objective approach

    NASA Astrophysics Data System (ADS)

    Krasula, Lukáš; Narwaria, Manish; Fliegel, Karel; Le Callet, Patrick

    2015-09-01

    Dynamic range compression (or tone mapping) of HDR content is an essential step towards rendering it on traditional LDR displays in a meaningful way. This is however non-trivial and one of the reasons is that tone mapping operators (TMOs) usually need content-specific parameters to achieve the said goal. While subjective TMO parameter adjustment is the most accurate, it may not be easily deployable in many practical applications. Its subjective nature can also influence the comparison of different operators. Thus, there is a need for objective TMO parameter selection to automate the rendering process. To that end, we investigate into a new objective method for TMO parameters optimization. Our method is based on quantification of contrast reversal and naturalness. As an important advantage, it does not require any prior knowledge about the input HDR image and works independently on the used TMO. Experimental results using a variety of HDR images and several popular TMOs demonstrate the value of our method in comparison to default TMO parameter settings.

  2. Analyzing Effect of System Inertia on Grid Frequency Forecasting Usnig Two Stage Neuro-Fuzzy System

    NASA Astrophysics Data System (ADS)

    Chourey, Divyansh R.; Gupta, Himanshu; Kumar, Amit; Kumar, Jitesh; Kumar, Anand; Mishra, Anup

    2018-04-01

    Frequency forecasting is an important aspect of power system operation. The system frequency varies with load-generation imbalance. Frequency variation depends upon various parameters including system inertia. System inertia determines the rate of fall of frequency after the disturbance in the grid. Though, inertia of the system is not considered while forecasting the frequency of power system during planning and operation. This leads to significant errors in forecasting. In this paper, the effect of inertia on frequency forecasting is analysed for a particular grid system. In this paper, a parameter equivalent to system inertia is introduced. This parameter is used to forecast the frequency of a typical power grid for any instant of time. The system gives appreciable result with reduced error.

  3. The HelCat dual-source plasma device.

    PubMed

    Lynn, Alan G; Gilmore, Mark; Watts, Christopher; Herrea, Janis; Kelly, Ralph; Will, Steve; Xie, Shuangwei; Yan, Lincan; Zhang, Yue

    2009-10-01

    The HelCat (Helicon-Cathode) device has been constructed to support a broad range of basic plasma science experiments relevant to the areas of solar physics, laboratory astrophysics, plasma nonlinear dynamics, and turbulence. These research topics require a relatively large plasma source capable of operating over a broad region of parameter space with a plasma duration up to at least several milliseconds. To achieve these parameters a novel dual-source system was developed utilizing both helicon and thermionic cathode sources. Plasma parameters of n(e) approximately 0.5-50 x 10(18) m(-3) and T(e) approximately 3-12 eV allow access to a wide range of collisionalities important to the research. The HelCat device and initial characterization of plasma behavior during dual-source operation are described.

  4. Performance analysis of air conditioning system and airflow simulation in an operating theater

    NASA Astrophysics Data System (ADS)

    Alhamid, Muhammad Idrus; Budihardjo, Rahmat

    2018-02-01

    The importance of maintaining performance of a hospital operating theater is to establish an adequate circulation of clean air within the room. The parameter of air distribution in a space should be based on Air Changes per Hour (ACH) to maintain a positive room pressure. The dispersion of airborne particles in the operating theater was governed by regulating the air distribution so that the operating theater meets clean room standards ie ISO 14664 and ASHRAE 170. Here, we introduced several input parameters in a simulation environment to observe the pressure distribution in the room. Input parameters were air temperature, air velocity and volumetric flow rate entering and leaving room for existing and designed condition. In the existing operating theatre, several observations were found. It was found that the outlet air velocity at the HEPA filter above the operating table was too high thus causing a turbulent airflow pattern. Moreover, the setting temperature at 19°C was found to be too low. The supply of air into the room was observed at lower than 20 ACH which is under the standard requirement. Our simulation using FloVent 8.2™ program showed that not only airflow turbulence could be reduced but also the amount of particle contamination could also be minimized.

  5. Automated system for generation of soil moisture products for agricultural drought assessment

    NASA Astrophysics Data System (ADS)

    Raja Shekhar, S. S.; Chandrasekar, K.; Sesha Sai, M. V. R.; Diwakar, P. G.; Dadhwal, V. K.

    2014-11-01

    Drought is a frequently occurring disaster affecting lives of millions of people across the world every year. Several parameters, indices and models are being used globally to forecast / early warning of drought and monitoring drought for its prevalence, persistence and severity. Since drought is a complex phenomenon, large number of parameter/index need to be evaluated to sufficiently address the problem. It is a challenge to generate input parameters from different sources like space based data, ground data and collateral data in short intervals of time, where there may be limitation in terms of processing power, availability of domain expertise, specialized models & tools. In this study, effort has been made to automate the derivation of one of the important parameter in the drought studies viz Soil Moisture. Soil water balance bucket model is in vogue to arrive at soil moisture products, which is widely popular for its sensitivity to soil conditions and rainfall parameters. This model has been encoded into "Fish-Bone" architecture using COM technologies and Open Source libraries for best possible automation to fulfill the needs for a standard procedure of preparing input parameters and processing routines. The main aim of the system is to provide operational environment for generation of soil moisture products by facilitating users to concentrate on further enhancements and implementation of these parameters in related areas of research, without re-discovering the established models. Emphasis of the architecture is mainly based on available open source libraries for GIS and Raster IO operations for different file formats to ensure that the products can be widely distributed without the burden of any commercial dependencies. Further the system is automated to the extent of user free operations if required with inbuilt chain processing for every day generation of products at specified intervals. Operational software has inbuilt capabilities to automatically download requisite input parameters like rainfall, Potential Evapotranspiration (PET) from respective servers. It can import file formats like .grd, .hdf, .img, generic binary etc, perform geometric correction and re-project the files to native projection system. The software takes into account the weather, crop and soil parameters to run the designed soil water balance model. The software also has additional features like time compositing of outputs to generate weekly, fortnightly profiles for further analysis. Other tools to generate "Area Favorable for Crop Sowing" using the daily soil moisture with highly customizable parameters interface has been provided. A whole India analysis would now take a mere 20 seconds for generation of soil moisture products which would normally take one hour per day using commercial software.

  6. Effective 2D-3D medical image registration using Support Vector Machine.

    PubMed

    Qi, Wenyuan; Gu, Lixu; Zhao, Qiang

    2008-01-01

    Registration of pre-operative 3D volume dataset and intra-operative 2D images gradually becomes an important technique to assist radiologists in diagnosing complicated diseases easily and quickly. In this paper, we proposed a novel 2D/3D registration framework based on Support Vector Machine (SVM) to compensate the disadvantages of generating large number of DRR images in the stage of intra-operation. Estimated similarity metric distribution could be built up from the relationship between parameters of transform and prior sparse target metric values by means of SVR method. Based on which, global optimal parameters of transform are finally searched out by an optimizer in order to guide 3D volume dataset to match intra-operative 2D image. Experiments reveal that our proposed registration method improved performance compared to conventional registration method and also provided a precise registration result efficiently.

  7. In orbit adiabatic demagnetization refrigeration for bolometric and microcalorimetric detectors

    NASA Astrophysics Data System (ADS)

    Hepburn, I. D.; Ade, P. A. R.; Davenport, I.; Smith, A.; Sumner, T. J.

    1992-12-01

    The new generation of photon detectors for satellite based mm/submm and X-ray astronomical observations require cooling to temperatures in the range 60 to 300 mK. At present Adiabatic Demagnetization Refrigeration (ADR) is the best proposed technique for producing these temperatures in orbit due to its inherent simplicity and gravity independent operation. For the efficient utilization of an ADR it is important to realize long operational times at base temperature with short recycle times. These criteria are dependent on several parameters; the required operating temperature, the cryogen bath temperature, the amount of heat leakage to the paramagnetic salt, the volume and type of salt and the maximum obtainable magnetic field. For space application these parameters are restricted by the limitations imposed on the physical size, the mass, the available electrical power and the cooling power available. The design considerations required in order to match these parameters are described and test data from a working laboratory system is presented.

  8. COSP for Windows: Strategies for Rapid Analyses of Cyclic Oxidation Behavior

    NASA Technical Reports Server (NTRS)

    Smialek, James L.; Auping, Judith V.

    2002-01-01

    COSP is a publicly available computer program that models the cyclic oxidation weight gain and spallation process. Inputs to the model include the selection of an oxidation growth law and a spalling geometry, plus oxide phase, growth rate, spall constant, and cycle duration parameters. Output includes weight change, the amounts of retained and spalled oxide, the total oxygen and metal consumed, and the terminal rates of weight loss and metal consumption. The present version is Windows based and can accordingly be operated conveniently while other applications remain open for importing experimental weight change data, storing model output data, or plotting model curves. Point-and-click operating features include multiple drop-down menus for input parameters, data importing, and quick, on-screen plots showing one selection of the six output parameters for up to 10 models. A run summary text lists various characteristic parameters that are helpful in describing cyclic behavior, such as the maximum weight change, the number of cycles to reach the maximum weight gain or zero weight change, the ratio of these, and the final rate of weight loss. The program includes save and print options as well as a help file. Families of model curves readily show the sensitivity to various input parameters. The cyclic behaviors of nickel aluminide (NiAl) and a complex superalloy are shown to be properly fitted by model curves. However, caution is always advised regarding the uniqueness claimed for any specific set of input parameters,

  9. Heat transfer characteristics of a surface type direct contact boiler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deeds, R.S.; Jacobs, H.R.; Boehm, R.F.

    1976-03-01

    Two direct contact heat exchangers were constructed and test results were obtained using water and refrigerant 113 as the working fluids. The heat exchangers were operated in a three-phase mode; the water remained liquid throughout the vessel and the liquid refrigerant 113 underwent vaporization following direct injection into the water. The effect of important operational parameters--operating heights, refrigerant 113 injection techniques, mass flow ratios, and temperatures--was studied to determine generalized trends important in the design and operation of a prototype three-phase direct contact heat exchanger. The primary system used in this study performed well overall. The initial favorable results ofmore » this study warrant further investigation of direct contact heat exchange as a means of utilizing geothermal energy.« less

  10. Examination of the operator and compensator tank role in urban wastewater treatment using activated sludge method.

    PubMed

    Mokhtari Azar, Akbar; Ghadirpour Jelogir, Ali; Nabi Bidhendi, Gholam Reza; Zaredar, Narges

    2011-04-01

    No doubt, operator is one of the main fundaments in wastewater treatment plants. By identifying the inadequacies, the operator could be considered as an important key in treatment plant. Several methods are used for wastewater treatment that requires spending a lot of cost. However, all investments of treatment facilities are usable when the expected efficiency of the treatment plant was obtained. Using experienced operator, this goal is more easily accessible. In this research, the wastewater of an urban community contaminated with moderated, diluted and highly concentrated pollution has been treated using surface and deep aeration treatment method. Sampling of these pilots was performed during winter 2008 to summer 2009. The results indicate that all analyzed parameters were eliminated using activated sludge and surface aeration methods. However, in activated sludge and deep aeration methods in combination with suitable function of operator, more pollutants could be eliminated. Hence, existence of operator in wastewater treatment plants is the basic principle to achieve considered efficiency. Wastewater treatment system is not intelligent itself and that is the operator who can organize even an inefficient system by its continuous presence. The converse of this fact is also real. Despite the various units and appropriate design of wastewater treatment plant, without an operator, the studied process cannot be expected highly efficient. In places frequently affected by the shock of organic and hydraulic loads, the compensator tank is important to offset the wastewater treatment process. Finally, in regard to microbial parameters, existence of disinfection unit is very useful.

  11. Optimization of operator and physical parameters for laser welding of dental materials.

    PubMed

    Bertrand, C; le Petitcorps, Y; Albingre, L; Dupuis, V

    2004-04-10

    Interactions between lasers and materials are very complex phenomena. The success of laser welding procedures in dental metals depends on the operator's control of many parameters. The aims of this study were to evaluate factors relating to the operator's dexterity and the choice of the welding parameters (power, pulse duration and therefore energy), which are recognized determinants of weld quality. In vitro laboratory study. FeNiCr dental drawn wires were chosen for these experiments because their properties are well known. Different diameters of wires were laser welded, then tested in tension and compared to the control material as extruded, in order to evaluate the quality of the welding. Scanning electron microscopy of the fractured zone and micrograph observations perpendicular and parallel to the wire axis were also conducted in order to analyse the depth penetration and the quality of the microstructure. Additionally, the micro-hardness (Vickers type) was measured both in the welded and the heat-affected zones and then compared to the non-welded alloy. Adequate combination of energy and pulse duration with the power set in the range between 0.8 to 1 kW appears to improve penetration depth of the laser beam and success of the welding procedure. Operator skill is also an important variable. The variation in laser weld quality in dental FeNiCr wires attributable to operator skill can be minimized by optimization of the physical welding parameters.

  12. Stability assessment and operating parameter optimization on experimental results in very small plasma focus, using sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Jafari, Hossein; Habibi, Morteza

    2018-04-01

    Regarding the importance of stability in small-scale plasma focus devices for producing the repeatable and strength pinching, a sensitivity analysis approach has been used for applicability in design parameters optimization of an actually very low energy device (84 nF, 48 nH, 8-9.5 kV, ∼2.7-3.7 J). To optimize the devices functional specification, four different coaxial electrode configurations have been studied, scanning an argon gas pressure range from 0.6 to 1.5 mbar via the charging voltage variation study from 8.3 to 9.3 kV. The strength and efficient pinching was observed for the tapered anode configuration, over an expanded operating pressure range of 0.6 to 1.5 mbar. The analysis results showed that the most sensitive of the pinch voltage was associated with 0.88 ± 0.8mbar argon gas pressure and 8.3-8.5 kV charging voltage, respectively, as the optimum operating parameters. From the viewpoint of stability assessment of the device, it was observed that the least variation in stable operation of the device was for a charging voltage range of 8.3 to 8.7 kV in an operating pressure range from 0.6 to 1.1 mbar.

  13. Key results from the first plasma operation phase and outlook for future performance in Wendelstein 7-X

    PubMed Central

    Dinklage, Andreas; Turkin, Yuriy; Bozhenkov, Sergey; Geiger, Joachim; Fuchert, Golo; Bosch, Hans-Stephan; Rahbarnia, Kian; Thomsen, Henning; Neuner, Ulrich; Klinger, Thomas; Langenberg, Andreas; Trimiño Mora, Humberto; Kornejew, Petra; Hirsch, Matthias; Pablant, Novimir

    2017-01-01

    The first physics operation phase on the stellarator experiment Wendelstein 7-X was successfully completed in March 2016 after about 10 weeks of operation. Experiments in this phase were conducted with five graphite limiters as the primary plasma-facing components. Overall, the results were beyond the expectations published shortly before the start of operation [Sunn Pedersen et al., Nucl. Fusion 55, 126001 (2015)] both with respect to parameters reached and with respect to physics themes addressed. We report here on some of the most important plasma experiments that were conducted. The importance of electric fields on global confinement will be discussed, and the obtained results will be compared and contrasted with results from other devices, quantified in terms of the fusion triple product. Expected values for the triple product in future operation phases will also be described and put into a broader fusion perspective. PMID:29104420

  14. Drainage and fractionation of wood fibers in a flotation froth

    Treesearch

    J.Y. Zhu; Freya Tan

    2005-01-01

    Understanding fiber fractionation in a froth is very important to the quality of recovered fibers in flotation deinking operations. Fiber length is a very important fiber quality parameter in paper-making. For example, long fibers tend to produce a paper with higher tear strength than short fibers. In this study, fibers in froth collected at different froth drainage...

  15. Effects of the Fuel Price Increase on the Operating Cost of Freight Transport Vehicles

    NASA Astrophysics Data System (ADS)

    Gohari, Adel; Matori, Nasir; Yusof, Khamaruzaman Wan; Toloue, Iraj; Myint, Kin Cho

    2018-03-01

    One of the most important criteria in freight modal choices is the transport operating cost in which fuel price changes has a significant effect on it. This paper presents the impact of fuel price increases on the operating cost of the different transport modes for the containerized freight transportation. In this study, an operating cost equation was applied to compare the operating cost of different freight transport vehicles as well as evaluation of the operating cost changes across a range of fuel prices between the current price and one-hundred percent increase. The equation consists of influential parameters such as fuel cost, driver wage and maintenance cost of a vehicle. It has been concluded that the effect of the fuel price increase on the operating cost of different freight transportation modes is not in the same rate. According to equation and effective parameters considered, comparing the results showed that truck has the highest cost, train has the largest increase in price. Finally, the ship is the most influenced vehicle in terms of operating cost percentage increase when the rate of fuel price increase, followed by train and truck.

  16. Systems and methods for optimal power flow on a radial network

    DOEpatents

    Low, Steven H.; Peng, Qiuyu

    2018-04-24

    Node controllers and power distribution networks in accordance with embodiments of the invention enable distributed power control. One embodiment includes a node controller including a distributed power control application; a plurality of node operating parameters describing the operating parameter of a node and a set of at least one node selected from the group consisting of an ancestor node and at least one child node; wherein send node operating parameters to nodes in the set of at least one node; receive operating parameters from the nodes in the set of at least one node; calculate a plurality of updated node operating parameters using an iterative process to determine the updated node operating parameters using the node operating parameters that describe the operating parameters of the node and the set of at least one node, where the iterative process involves evaluation of a closed form solution; and adjust node operating parameters.

  17. An analysis of parameter sensitivities of preference-inspired co-evolutionary algorithms

    NASA Astrophysics Data System (ADS)

    Wang, Rui; Mansor, Maszatul M.; Purshouse, Robin C.; Fleming, Peter J.

    2015-10-01

    Many-objective optimisation problems remain challenging for many state-of-the-art multi-objective evolutionary algorithms. Preference-inspired co-evolutionary algorithms (PICEAs) which co-evolve the usual population of candidate solutions with a family of decision-maker preferences during the search have been demonstrated to be effective on such problems. However, it is unknown whether PICEAs are robust with respect to the parameter settings. This study aims to address this question. First, a global sensitivity analysis method - the Sobol' variance decomposition method - is employed to determine the relative importance of the parameters controlling the performance of PICEAs. Experimental results show that the performance of PICEAs is controlled for the most part by the number of function evaluations. Next, we investigate the effect of key parameters identified from the Sobol' test and the genetic operators employed in PICEAs. Experimental results show improved performance of the PICEAs as more preferences are co-evolved. Additionally, some suggestions for genetic operator settings are provided for non-expert users.

  18. Research of some operating parameters and the emissions level variation in a spark ignited engine through on-board investigation methods in different loading conditions

    NASA Astrophysics Data System (ADS)

    Iosif, Ferenti; Baldean, Doru Laurean

    2014-06-01

    The present paper shows research made on a spark ignited engine with port fuel injection in different operation conditions in order to improve the comprehension about the cold start sequence, acceleration when changing the gear ratios, quality of combustion process and also any measures to be taken for pollutant reduction in such cases. The engineering endeavor encompasses the pollutants investigation during the operation time of gasoline supplied engine with four inline cylinders in different conditions. The temperature and any other parameters were measured with specific sensors installed on the engine or in the exhaust pipes. All the data collected has been evaluated using electronic investigation systems and highly developed equipment. In this manner it has enabled the outline of the idea of how pollutants of engine vary in different operating conditions. Air quality in the everyday environment is very important for the human health, and thus the ambient air quality has a well-known importance in the European pollution standards and legislation. The high level of attention directed to the pollution problem in the European lifestyle is a driving force for all kinds of studies in the field of the reduction of engine emission.

  19. JPRS Report, Science & Technology, Japan.

    DTIC Science & Technology

    1988-05-04

    360 tons of HAP ( hydroxyapatite ) for medical applications, as food additives, and for use in tooth pastes is imported. There are plenty of raw...pressure ratio (qr = PjUj 2/pmum 2, equal to about 1.5) of the jet to the mainflow are chosen for the operating parameters of the jet. Quartz glass for...intermediate flow. The parameters which affect self-ignition and flame maintenance in an actual supersonic burner are the size of the recirculation

  20. On the Singularity Structure of WKB Solution of the Boosted Whittaker Equation: its Relevance to Resurgent Functions with Essential Singularities

    NASA Astrophysics Data System (ADS)

    Kamimoto, Shingo; Kawai, Takahiro; Koike, Tatsuya

    2016-12-01

    Inspired by the symbol calculus of linear differential operators of infinite order applied to the Borel transformed WKB solutions of simple-pole type equation [Kamimoto et al. (RIMS Kôkyûroku Bessatsu B 52:127-146, 2014)], which is summarized in Section 1, we introduce in Section 2 the space of simple resurgent functions depending on a parameter with an infra-exponential type growth order, and then we define the assigning operator A which acts on the space and produces resurgent functions with essential singularities. In Section 3, we apply the operator A to the Borel transforms of the Voros coefficient and its exponentiation for the Whittaker equation with a large parameter so that we may find the Borel transforms of the Voros coefficient and its exponentiation for the boosted Whittaker equation with a large parameter. In Section 4, we use these results to find the explicit form of the alien derivatives of the Borel transformed WKB solutions of the boosted Whittaker equation with a large parameter. The results in this paper manifest the importance of resurgent functions with essential singularities in developing the exact WKB analysis, the WKB analysis based on the resurgent function theory. It is also worth emphasizing that the concrete form of essential singularities we encounter is expressed by the linear differential operators of infinite order.

  1. Ultrasonic cleaning: Fundamental theory and application

    NASA Technical Reports Server (NTRS)

    Fuchs, F. John

    1995-01-01

    This presentation describes: the theory of ultrasonics, cavitation and implosion; the importance and application of ultrasonics in precision cleaning; explanations of ultrasonic cleaning equipment options and their application; process parameters for ultrasonic cleaning; and proper operation of ultrasonic cleaning equipment to achieve maximum results.

  2. Uncertainty quantification for accident management using ACE surrogates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varuttamaseni, A.; Lee, J. C.; Youngblood, R. W.

    The alternating conditional expectation (ACE) regression method is used to generate RELAP5 surrogates which are then used to determine the distribution of the peak clad temperature (PCT) during the loss of feedwater accident coupled with a subsequent initiation of the feed and bleed (F and B) operation in the Zion-1 nuclear power plant. The construction of the surrogates assumes conditional independence relations among key reactor parameters. The choice of parameters to model is based on the macroscopic balance statements governing the behavior of the reactor. The peak clad temperature is calculated based on the independent variables that are known tomore » be important in determining the success of the F and B operation. The relationship between these independent variables and the plant parameters such as coolant pressure and temperature is represented by surrogates that are constructed based on 45 RELAP5 cases. The time-dependent PCT for different values of F and B parameters is calculated by sampling the independent variables from their probability distributions and propagating the information through two layers of surrogates. The results of our analysis show that the ACE surrogates are able to satisfactorily reproduce the behavior of the plant parameters even though a quasi-static assumption is primarily used in their construction. The PCT is found to be lower in cases where the F and B operation is initiated, compared to the case without F and B, regardless of the F and B parameters used. (authors)« less

  3. Online residence time distribution measurement of thermochemical biomass pretreatment reactors

    DOE PAGES

    Sievers, David A.; Kuhn, Erik M.; Stickel, Jonathan J.; ...

    2015-11-03

    Residence time is a critical parameter that strongly affects the product profile and overall yield achieved from thermochemical pretreatment of lignocellulosic biomass during production of liquid transportation fuels. The residence time distribution (RTD) is one important measure of reactor performance and provides a metric to use when evaluating changes in reactor design and operating parameters. An inexpensive and rapid RTD measurement technique was developed to measure the residence time characteristics in biomass pretreatment reactors and similar equipment processing wet-granular slurries. Sodium chloride was pulsed into the feed entering a 600 kg/d pilot-scale reactor operated at various conditions, and aqueous saltmore » concentration was measured in the discharge using specially fabricated electrical conductivity instrumentation. This online conductivity method was superior in both measurement accuracy and resource requirements compared to offline analysis. Experimentally measured mean residence time values were longer than estimated by simple calculation and screw speed and throughput rate were investigated as contributing factors. In conclusion, a semi-empirical model was developed to predict the mean residence time as a function of operating parameters and enabled improved agreement.« less

  4. Flight Performance Handbook for Orbital Operations: Orbital Mechanics and Astrodynamics Formulae, Theorems, Techniques, and Applications

    NASA Technical Reports Server (NTRS)

    Ambrosio, Alphonso; Blitzer, Leon; Conte, S.D.; Cooper, Donald H.; Dergarabedian, P.; Dethlefsen, D.G.; Lunn, Richard L.; Ireland, Richard O.; Jensen, Arnold A.; Kang, Garfield; hide

    1961-01-01

    This handbook provides parametric data useful both to the space vehicle designer and mission analyst. It provides numerical and analytical relationships between missions and gross vehicle characteristics as a function of performance parameters. The effects of missile constraints and gross guidance limitations plus operational constraints such as launch site location, tracking net location, orbit visibility and mission on trajectory and orbit design parameters are exhibited. The influence of state-of- the-art applications of solar power as compared to future applications of nuclear power on orbit design parameters, such as eclipse time, are among the parameters included in the study. The principal aim, however, is in providing the analyst with useful parametric design information to cover the general area of earth satellite missions in the region of near-earth to cislunar space and beyond and from injection to atmospheric entry and controlled descent. The chapters are organized around the central idea of orbital operations in the 1961-1969 era with emphasis on parametric flight mechanics studies for ascent phase and parking orbits, transfer maneuvers, rendezvous maneuver, operational orbit considerations, and operational orbit control. The results are based almost entirely on the principles of flight and celestial mechanics. Numerous practical examples have been worked out in detail. This is especially important where it has been difficult or impossible to represent all possible variations of the parameters. The handbook contains analytical formulae and sufficient textual material to permit their proper use. The analytic methods consist of both exact and rapid, approximate methods. Scores of tables, working graphs and illustrations amplify the mathematical models which, together with important facts and data, cover the engineering and scientific applications of orbital mechanics. Each of the five major chapters are arranged to provide a rapid review of an entire astrodynamic subject. By the use of compact graphical and tabular presentation the full scope of the material is made available in an easy-to-use style. Throughout the volume the analyst is shown, by means of suitable introductions, notes, authoritative examples, and cross-references the vital interrelation of the various orbital mechanics topics in the general field of earth satellites and satellite rendezvous. The handbook is designed to give the analyst rapid, reliable access to the mathematics of orbital mechanics needed for virtually any working requirements.

  5. Survey of beam instrumentation used in SLC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ecklund, S.D.

    A survey of beam instruments used at SLAC in the SLC machine is presented. The basic utility and operation of each device is briefly described. The various beam instruments used at the Stanford Linear Collider (SLC), can be classified by the function they perform. Beam intensity, position and size are typical of the parameters of beam which are measured. Each type of parameter is important for adjusting or tuning the machine in order to achieve optimum performance. 39 refs.

  6. Cost related sensitivity analysis for optimal operation of a grid-parallel PEM fuel cell power plant

    NASA Astrophysics Data System (ADS)

    El-Sharkh, M. Y.; Tanrioven, M.; Rahman, A.; Alam, M. S.

    Fuel cell power plants (FCPP) as a combined source of heat, power and hydrogen (CHP&H) can be considered as a potential option to supply both thermal and electrical loads. Hydrogen produced from the FCPP can be stored for future use of the FCPP or can be sold for profit. In such a system, tariff rates for purchasing or selling electricity, the fuel cost for the FCPP/thermal load, and hydrogen selling price are the main factors that affect the operational strategy. This paper presents a hybrid evolutionary programming and Hill-Climbing based approach to evaluate the impact of change of the above mentioned cost parameters on the optimal operational strategy of the FCPP. The optimal operational strategy of the FCPP for different tariffs is achieved through the estimation of the following: hourly generated power, the amount of thermal power recovered, power trade with the local grid, and the quantity of hydrogen that can be produced. Results show the importance of optimizing system cost parameters in order to minimize overall operating cost.

  7. Operational Risk Management of Fatigue Effects

    DTIC Science & Technology

    2005-05-01

    response time (RT) and reduced response accuracy 2f. Impaired manual control 2g. Vigilance impairment 2h. Narrowed attention 2i. Hypnagogic hallucinations...exclusion of other essential parameters). Important for both command and control teams and for aircrews. 2i. Hypnagogic hallucinations. Dreams that occur

  8. Bayesian Inference for Time Trends in Parameter Values using Weighted Evidence Sets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. L. Kelly; A. Malkhasyan

    2010-09-01

    There is a nearly ubiquitous assumption in PSA that parameter values are at least piecewise-constant in time. As a result, Bayesian inference tends to incorporate many years of plant operation, over which there have been significant changes in plant operational and maintenance practices, plant management, etc. These changes can cause significant changes in parameter values over time; however, failure to perform Bayesian inference in the proper time-dependent framework can mask these changes. Failure to question the assumption of constant parameter values, and failure to perform Bayesian inference in the proper time-dependent framework were noted as important issues in NUREG/CR-6813, performedmore » for the U. S. Nuclear Regulatory Commission’s Advisory Committee on Reactor Safeguards in 2003. That report noted that “in-dustry lacks tools to perform time-trend analysis with Bayesian updating.” This paper describes an applica-tion of time-dependent Bayesian inference methods developed for the European Commission Ageing PSA Network. These methods utilize open-source software, implementing Markov chain Monte Carlo sampling. The paper also illustrates an approach to incorporating multiple sources of data via applicability weighting factors that address differences in key influences, such as vendor, component boundaries, conditions of the operating environment, etc.« less

  9. A physics-based fractional order model and state of energy estimation for lithium ion batteries. Part II: Parameter identification and state of energy estimation for LiFePO4 battery

    NASA Astrophysics Data System (ADS)

    Li, Xiaoyu; Pan, Ke; Fan, Guodong; Lu, Rengui; Zhu, Chunbo; Rizzoni, Giorgio; Canova, Marcello

    2017-11-01

    State of energy (SOE) is an important index for the electrochemical energy storage system in electric vehicles. In this paper, a robust state of energy estimation method in combination with a physical model parameter identification method is proposed to achieve accurate battery state estimation at different operating conditions and different aging stages. A physics-based fractional order model with variable solid-state diffusivity (FOM-VSSD) is used to characterize the dynamic performance of a LiFePO4/graphite battery. In order to update the model parameter automatically at different aging stages, a multi-step model parameter identification method based on the lexicographic optimization is especially designed for the electric vehicle operating conditions. As the battery available energy changes with different applied load current profiles, the relationship between the remaining energy loss and the state of charge, the average current as well as the average squared current is modeled. The SOE with different operating conditions and different aging stages are estimated based on an adaptive fractional order extended Kalman filter (AFEKF). Validation results show that the overall SOE estimation error is within ±5%. The proposed method is suitable for the electric vehicle online applications.

  10. Bayesian Inference for Time Trends in Parameter Values: Case Study for the Ageing PSA Network of the European Commission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dana L. Kelly; Albert Malkhasyan

    2010-06-01

    There is a nearly ubiquitous assumption in PSA that parameter values are at least piecewise-constant in time. As a result, Bayesian inference tends to incorporate many years of plant operation, over which there have been significant changes in plant operational and maintenance practices, plant management, etc. These changes can cause significant changes in parameter values over time; however, failure to perform Bayesian inference in the proper time-dependent framework can mask these changes. Failure to question the assumption of constant parameter values, and failure to perform Bayesian inference in the proper time-dependent framework were noted as important issues in NUREG/CR-6813, performedmore » for the U. S. Nuclear Regulatory Commission’s Advisory Committee on Reactor Safeguards in 2003. That report noted that “industry lacks tools to perform time-trend analysis with Bayesian updating.” This paper describes an application of time-dependent Bayesian inference methods developed for the European Commission Ageing PSA Network. These methods utilize open-source software, implementing Markov chain Monte Carlo sampling. The paper also illustrates the development of a generic prior distribution, which incorporates multiple sources of generic data via weighting factors that address differences in key influences, such as vendor, component boundaries, conditions of the operating environment, etc.« less

  11. Patient-specific biomechanical model of hypoplastic left heart to predict post-operative cardio-circulatory behaviour.

    PubMed

    Cutrì, Elena; Meoli, Alessio; Dubini, Gabriele; Migliavacca, Francesco; Hsia, Tain-Yen; Pennati, Giancarlo

    2017-09-01

    Hypoplastic left heart syndrome is a complex congenital heart disease characterised by the underdevelopment of the left ventricle normally treated with a three-stage surgical repair. In this study, a multiscale closed-loop cardio-circulatory model is created to reproduce the pre-operative condition of a patient suffering from such pathology and virtual surgery is performed. Firstly, cardio-circulatory parameters are estimated using a fully closed-loop cardio-circulatory lumped parameter model. Secondly, a 3D standalone FEA model is build up to obtain active and passive ventricular characteristics and unloaded reference state. Lastly, the 3D model of the single ventricle is coupled to the lumped parameter model of the circulation obtaining a multiscale closed-loop pre-operative model. Lacking any information on the fibre orientation, two cases were simulated: (i) fibre distributed as in the physiological right ventricle and (ii) fibre as in the physiological left ventricle. Once the pre-operative condition is satisfactorily simulated for the two cases, virtual surgery is performed. The post-operative results in the two cases highlighted similar hemodynamic behaviour but different local mechanics. This finding suggests that the knowledge of the patient-specific fibre arrangement is important to correctly estimate the single ventricle's working condition and consequently can be valuable to support clinical decision. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  12. wsacrvpthrc.a1

    DOE Data Explorer

    Gaustad, Krista; Hardin, Joseph

    2015-12-14

    The wsacr PCM process executed by the sacr3 binary reads in wsacr.00 data and produces CF/Radial compliant NetCDF files for each of the radar operational scanning modes. This incorporates raw data from the radar, as well as scientifically important base derived parameters that affect interpretation of the data.

  13. wsacrppivh.a1

    DOE Data Explorer

    Gaustad, Krista; Hardin, Joseph

    2015-07-22

    The wsacr PCM process executed by the sacr3 binary reads in wsacr.00 data and produces CF/Radial compliant NetCDF files for each of the radar operational scanning modes. This incorporates raw data from the radar, as well as scientifically important base derived parameters that affect interpretation of the data.

  14. wsacrzrhiv.a1

    DOE Data Explorer

    Gaustad, Krista; Hardin, Joseph

    2015-07-22

    The wsacr PCM process executed by the sacr3 binary reads in wsacr.00 data and produces CF/Radial compliant NetCDF files for each of the radar operational scanning modes. This incorporates raw data from the radar, as well as scientifically important base derived parameters that affect interpretation of the data.

  15. kasacrvpthrc.a1

    DOE Data Explorer

    Gaustad, Krista; Hardin, Joseph

    2015-07-22

    The kasacr PCM process executed by the sacr3 binary reads in kasacr.00 data and produces CF/Radial compliant NetCDF files for each of the radar operational scanning modes. This incorporates raw data from the radar, as well as scientifically important base derived parameters that affect interpretation of the data.

  16. Theory based scaling of edge turbulence and implications for the scrape-off layer width

    NASA Astrophysics Data System (ADS)

    Myra, J. R.; Russell, D. A.; Zweben, S. J.

    2016-11-01

    Turbulence and plasma parameter data from the National Spherical Torus Experiment (NSTX) [Ono et al., Nucl. Fusion 40, 557 (2000)] is examined and interpreted based on various theoretical estimates. In particular, quantities of interest for assessing the role of turbulent transport on the midplane scrape-off layer heat flux width are assessed. Because most turbulence quantities exhibit large scatter and little scaling within a given operation mode, this paper focuses on length and time scales and dimensionless parameters between operational modes including Ohmic, low (L), and high (H) modes using a large NSTX edge turbulence database [Zweben et al., Nucl. Fusion 55, 093035 (2015)]. These are compared with theoretical estimates for drift and interchange rates, profile modification saturation levels, a resistive ballooning condition, and dimensionless parameters characterizing L and H mode conditions. It is argued that the underlying instability physics governing edge turbulence in different operational modes is, in fact, similar, and is consistent with curvature-driven drift ballooning. Saturation physics, however, is dependent on the operational mode. Five dimensionless parameters for drift-interchange turbulence are obtained and employed to assess the importance of turbulence in setting the scrape-off layer heat flux width λq and its scaling. An explicit proportionality of the width λq to the safety factor and major radius (qR) is obtained under these conditions. Quantitative estimates and reduced model numerical simulations suggest that the turbulence mechanism is not negligible in determining λq in NSTX, at least for high plasma current discharges.

  17. Theory based scaling of edge turbulence and implications for the scrape-off layer width

    DOE PAGES

    Myra, J. R.; Russell, D. A.; Zweben, S. J.

    2016-11-01

    Turbulence and plasma parameter data from the National Spherical Torus Experiment (NSTX) is examined and interpreted based on various theoretical estimates. In particular, quantities of interest for assessing the role of turbulent transport on the midplane scrape-off layer heat flux width are assessed. Because most turbulence quantities exhibit large scatter and little scaling within a given operation mode, this paper focuses on length and time scales and dimensionless parameters between operational modes including Ohmic, low (L), and high (H) modes using a large NSTX edge turbulence database. These are compared with theoretical estimates for drift and interchange rates, profile modificationmore » saturation levels, a resistive ballooning condition, and dimensionless parameters characterizing L and H mode conditions. It is argued that the underlying instability physics governing edge turbulence in different operational modes is, in fact, similar, and is consistent with curvature-driven drift ballooning. Saturation physics, however, is dependent on the operational mode. Five dimensionless parameters for drift-interchange turbulence are obtained and employed to assess the importance of turbulence in setting the scrape-off layer heat flux width λ q and its scaling. An explicit proportionality of the width λ q to the safety factor and major radius (qR) is obtained under these conditions. Lastly, quantitative estimates and reduced model numerical simulations suggest that the turbulence mechanism is not negligible in determining λ q in NSTX, at least for high plasma current discharges.« less

  18. Emission rate modeling and risk assessment at an automobile plant from painting operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, A.; Shrivastava, A.; Kulkarni, A.

    Pollution from automobile plants from painting operations has been addressed in the Clean Act Amendments (1990). The estimation of pollutant emissions from automobile painting operation were done mostly by approximate procedures than by actual calculations. The purpose of this study was to develop a methodology for calculating the emissions of the pollutants from painting operation in an automobile plant. Five scenarios involving an automobile painting operation, located in Columbus (Ohio), were studied for pollutant emission and concomitant risk associated with that. In the study of risk, a sensitivity analysis was done using Crystal Ball{reg{underscore}sign} on the parameters involved in risk.more » This software uses the Monte Carlo principle. The most sensitive factor in the risk analysis was the ground level concentration of the pollutants. All scenarios studied met the safety goal (a risk value of 1 x 10{sup {minus}6}) with different confidence levels. The highest level of confidence in meeting the safety goal was displayed by Scenario 1 (Alpha Industries). The results from the scenarios suggest that risk is associated with the quantity of released toxic pollutants. The sensitivity analysis of the various parameter shows that average spray rate of paint is the most important parameter in the estimation of pollutants from the painting operations. The entire study is a complete module that can be used by the environmental pollution control agencies for estimation of pollution levels and estimation of associated risk. The study can be further extended to other operations in an automobile industry or to different industries.« less

  19. Big Bay Harbor Operation and Maintenance Activities, Marquette County, Michigan.

    DTIC Science & Technology

    1975-04-01

    and Custom House St. Paul, Minnesota 55101 April 1975 ENVIRON1ENTAL ASSESSMENT REPORT OPERATION AND MAINTENANCE BIG BAY HARBOR BIG BAY, MICHIGAN LAKE...these parameters is important because of the deleterious effects of the parent and breakdown products. The presence of heavy metals, taconite tailings...iron mines further south in the county. 2.522 Powell Township is governed by a town supervisor and town board, all of whom are elected. The town owns a

  20. Aircraft dual-shaft jet engine with indirect action fuel flow controller

    NASA Astrophysics Data System (ADS)

    Tudosie, Alexandru-Nicolae

    2017-06-01

    The paper deals with an aircraft single-jet engine's control system, based on a fuel flow controller. Considering the engine as controlled object and its thrust the most important operation effect, from the multitude of engine's parameters only its rotational speed n is measurable and proportional to its thrust, so engine's speed has become the most important controlled parameter. Engine's control system is based on fuel injection Qi dosage, while the output is engine's speed n. Based on embedded system's main parts' mathematical models, the author has described the system by its block diagram with transfer functions; furthermore, some Simulink-Matlab simulations are performed, concerning embedded system quality (its output parameters time behavior) and, meanwhile, some conclusions concerning engine's parameters mutual influences are revealed. Quantitative determinations are based on author's previous research results and contributions, as well as on existing models (taken from technical literature). The method can be extended for any multi-spool engine, single- or twin-jet.

  1. 40 CFR 60.2944 - What operating parameter monitoring equipment must I install, and what operating parameters must...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false What operating parameter monitoring equipment must I install, and what operating parameters must I monitor? 60.2944 Section 60.2944 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Operator...

  2. Parametric Analysis of a Hover Test Vehicle using Advanced Test Generation and Data Analysis

    NASA Technical Reports Server (NTRS)

    Gundy-Burlet, Karen; Schumann, Johann; Menzies, Tim; Barrett, Tony

    2009-01-01

    Large complex aerospace systems are generally validated in regions local to anticipated operating points rather than through characterization of the entire feasible operational envelope of the system. This is due to the large parameter space, and complex, highly coupled nonlinear nature of the different systems that contribute to the performance of the aerospace system. We have addressed the factors deterring such an analysis by applying a combination of technologies to the area of flight envelop assessment. We utilize n-factor (2,3) combinatorial parameter variations to limit the number of cases, but still explore important interactions in the parameter space in a systematic fashion. The data generated is automatically analyzed through a combination of unsupervised learning using a Bayesian multivariate clustering technique (AutoBayes) and supervised learning of critical parameter ranges using the machine-learning tool TAR3, a treatment learner. Covariance analysis with scatter plots and likelihood contours are used to visualize correlations between simulation parameters and simulation results, a task that requires tool support, especially for large and complex models. We present results of simulation experiments for a cold-gas-powered hover test vehicle.

  3. OTF CCSDS Mission Operations Prototype Parameter Service. Phase I: Exit Presentation

    NASA Technical Reports Server (NTRS)

    Reynolds, Walter F.; Lucord, Steven A.; Stevens, John E.

    2009-01-01

    This slide presentation reviews the prototype of phase 1 of the parameter service design of the CCSDS mission operations. The project goals are to: (1) Demonstrate the use of Mission Operations standards to implement the Parameter Service (2) Demonstrate interoperability between Houston MCC and a CCSDS Mission Operations compliant mission operations center (3) Utilize Mission Operations Common Architecture. THe parameter service design, interfaces, and structures are described.

  4. Towards Improving our Understanding on the Retrievals of Key Parameters Characterising Land Surface Interactions from Space: Introduction & First Results from the PREMIER-EO Project

    NASA Astrophysics Data System (ADS)

    Ireland, Gareth; North, Matthew R.; Petropoulos, George P.; Srivastava, Prashant K.; Hodges, Crona

    2015-04-01

    Acquiring accurate information on the spatio-temporal variability of soil moisture content (SM) and evapotranspiration (ET) is of key importance to extend our understanding of the Earth system's physical processes, and is also required in a wide range of multi-disciplinary research studies and applications. The utility and applicability of Earth Observation (EO) technology provides an economically feasible solution to derive continuous spatio-temporal estimates of key parameters characterising land surface interactions, including ET as well as SM. Such information is of key value to practitioners, decision makers and scientists alike. The PREMIER-EO project recently funded by High Performance Computing Wales (HPCW) is a research initiative directed towards the development of a better understanding of EO technology's present ability to derive operational estimations of surface fluxes and SM. Moreover, the project aims at addressing knowledge gaps related to the operational estimation of such parameters, and thus contribute towards current ongoing global efforts towards enhancing the accuracy of those products. In this presentation we introduce the PREMIER-EO project, providing a detailed overview of the research aims and objectives for the 1 year duration of the project's implementation. Subsequently, we make available the initial results of the work carried out herein, in particular, related to an all-inclusive and robust evaluation of the accuracy of existing operational products of ET and SM from different ecosystems globally. The research outcomes of this project, once completed, will provide an important contribution towards addressing the knowledge gaps related to the operational estimation of ET and SM. This project results will also support efforts ongoing globally towards the operational development of related products using technologically advanced EO instruments which were launched recently or planned be launched in the next 1-2 years. Key Words: PREMIER-EO, HPC Wales, Soil Moisture, Evapotranspiration, , Earth Observation

  5. Instrument to average 100 data sets

    NASA Technical Reports Server (NTRS)

    Tuma, G. B.; Birchenough, A. G.; Rice, W. J.

    1977-01-01

    An instrumentation system is currently under development which will measure many of the important parameters associated with the operation of an internal combustion engine. Some of these parameters include mass-fraction burn rate, ignition energy, and the indicated mean effective pressure. One of the characteristics of an internal combustion engine is the cycle-to-cycle variation of these parameters. A curve-averaging instrument has been produced which will generate the average curve, over 100 cycles, of any engine parameter. the average curve is described by 2048 discrete points which are displayed on an oscilloscope screen to facilitate recording and is available in real time. Input can be any parameter which is expressed as a + or - 10-volt signal. Operation of the curve-averaging instrument is defined between 100 and 6000 rpm. Provisions have also been made for averaging as many as four parameters simultaneously, with a subsequent decrease in resolution. This provides the means to correlate and perhaps interrelate the phenomena occurring in an internal combustion engine. This instrument has been used successfully on a 1975 Chevrolet V8 engine, and on a Continental 6-cylinder aircraft engine. While this instrument was designed for use on an internal combustion engine, with some modification it can be used to average any cyclically varying waveform.

  6. Selection of Levels of Dressing Process Parameters by Using TOPSIS Technique for Surface Roughness of En-31 Work piece in CNC Cylindrical Grinding Machine

    NASA Astrophysics Data System (ADS)

    Patil, Sanjay S.; Bhalerao, Yogesh J.

    2017-02-01

    Grinding is metal cutting process used for mainly finishing the automobile components. The grinding wheel performance becomes dull by using it most of times. So it should be reshaping for consistent performance. It is necessary to remove dull grains of grinding wheel which is known as dressing process. The surface finish produced on the work piece is dependent on the dressing parameters in sub-sequent grinding operation. Multi-point diamond dresser has four important parameters such as the dressing cross feed rate, dressing depth of cut, width of the diamond dresser and drag angle of the dresser. The range of cross feed rate level is from 80-100 mm/min, depth of cut varies from 10 - 30 micron, width of diamond dresser is from 0.8 - 1.10mm and drag angle is from 40o - 500, The relative closeness to ideal levels of dressing parameters are found for surface finish produced on the En-31 work piece during sub-sequent grinding operation by using Technique of Order Preference by Similarity to Ideal Solution (TOPSIS).In the present work, closeness to ideal solution i.e. levels of dressing parameters are found for Computer Numerical Control (CNC) cylindrical angular grinding machine. After the TOPSIS technique, it is found that the value of Level I is 0.9738 which gives better surface finish on the En-31 work piece in sub-sequent grinding operation which helps the user to select the correct levels (combinations) of dressing parameters.

  7. Energy consumption and energy-saving potential analysis of pollutant abatement systems in a 1000MW coal-fired power plant.

    PubMed

    Yang, Hang; Zhang, Yongxin; Zheng, Chenghang; Wu, Xuecheng; Chen, Linghong; Gao, Xiang; Fu, Joshua S

    2018-05-10

    The pollutant abatement systems are widely applied in the coal-fired power sector and the energy consumption was considered an important part of the auxiliary power. An energy consumption analysis and assessment model of pollutant abatement systems in a power unit was developed based on the dynamic parameters and technology. The energy consumption of pollutant abatement systems in a 1000 MW coal-fired power unit which meet the ultra-low emission limits and the factors of operating parameters including unit load and inlet concentration of pollutants on the operating power were analyzed. The results show that the total power consumption of the pollutant abatement systems accounted for 1.27% of the gross power generation during the monitoring period. The WFGD system consumed 67% of the rate while the SCR and ESP systems consumed 8.9% and 24.1%. The power consumption rate of pollutant abatement systems decreased with the increase of unit load and increased with the increase of the inlet concentration of pollutants. The operation adjustment was also an effective method to increase the energy efficiency. For example, the operation adjustment of slurry circulation pumps could promote the energy-saving operation of WFGD system. Implication Statement The application of pollutant abatement technologies increases the internal energy consumption of the power plant, which will lead to an increase of power generation costs. The real-time energy consumption of the different pollutant abatement systems in a typical power unit is analyzed based on the dynamic operating data. Further, the influence of different operating parameters on the operating power of the system and the possible energy-saving potential are analyzed.

  8. Evaluation of automotive mass airflow sensors for animal environment research and control

    USDA-ARS?s Scientific Manuscript database

    Mass air flow is an important parameter to consider in animal research applications, especially for the generation of heat and moisture production data. The high flow rates and low operating pressures in animal research facilities present a unique and costly challenge for measurement of mass air fl...

  9. Techniques for measuring particle size distribution of particulate matter emitted from animal feeding operations

    USDA-ARS?s Scientific Manuscript database

    Particle size distribution (PSD) is perhaps the most important physical parameter governing the airborne particle behavior. Various methods and techniques are available for conducting PSD analyses. Unfortunately, there is no single agreed upon method to determine the PSDs of particulate matter (PM) ...

  10. Estimation of Transport and Kinetic Parameters of Vanadium Redox Batteries Using Static Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Seong Beom; Pratt, III, Harry D.; Anderson, Travis M.

    Mathematical models of Redox Flow Batteries (RFBs) can be used to analyze cell performance, optimize battery operation, and control the energy storage system efficiently. Among many other models, physics-based electrochemical models are capable of predicting internal states of the battery, such as temperature, state-of-charge, and state-of-health. In the models, estimating parameters is an important step that can study, analyze, and validate the models using experimental data. A common practice is to determine these parameters either through conducting experiments or based on the information available in the literature. However, it is not easy to investigate all proper parameters for the modelsmore » through this way, and there are occasions when important information, such as diffusion coefficients and rate constants of ions, has not been studied. Also, the parameters needed for modeling charge-discharge are not always available. In this paper, an efficient way to estimate parameters of physics-based redox battery models will be proposed. Furthermore, this paper also demonstrates that the proposed approach can study and analyze aspects of capacity loss/fade, kinetics, and transport phenomena of the RFB system.« less

  11. Estimation of Transport and Kinetic Parameters of Vanadium Redox Batteries Using Static Cells

    DOE PAGES

    Lee, Seong Beom; Pratt, III, Harry D.; Anderson, Travis M.; ...

    2018-03-27

    Mathematical models of Redox Flow Batteries (RFBs) can be used to analyze cell performance, optimize battery operation, and control the energy storage system efficiently. Among many other models, physics-based electrochemical models are capable of predicting internal states of the battery, such as temperature, state-of-charge, and state-of-health. In the models, estimating parameters is an important step that can study, analyze, and validate the models using experimental data. A common practice is to determine these parameters either through conducting experiments or based on the information available in the literature. However, it is not easy to investigate all proper parameters for the modelsmore » through this way, and there are occasions when important information, such as diffusion coefficients and rate constants of ions, has not been studied. Also, the parameters needed for modeling charge-discharge are not always available. In this paper, an efficient way to estimate parameters of physics-based redox battery models will be proposed. Furthermore, this paper also demonstrates that the proposed approach can study and analyze aspects of capacity loss/fade, kinetics, and transport phenomena of the RFB system.« less

  12. Self-acting shaft seals

    NASA Technical Reports Server (NTRS)

    Ludwig, L. P.

    1978-01-01

    Self-acting seals are described in detail. The mathematical models for obtaining a seal force balance and the equilibrium operating film thickness are outlined. Particular attention is given to primary ring response (seal vibration) to rotating seat face runout. This response analysis reveals three different vibration models with secondary seal friction being an important parameter. Leakage flow inlet pressure drop and affects of axisymmetric sealing face deformations are discussed. Experimental data on self-acting face seals operating under simulated gas turbine conditions are given. Also a spiral groove seal design operated to 244 m/sec (800 ft/sec) is described.

  13. Study of quiet turbofan STOL aircraft for short haul transportation

    NASA Technical Reports Server (NTRS)

    Higgins, T. P.; Stout, E. G.; Sweet, H. S.

    1973-01-01

    Conceptual designs of Quiet Turbofan STOL Short-Haul Transport Aircraft for the mid-1980 time period are developed and analyzed to determine their technical, operational, and economic feasibility. A matrix of aircraft using various high-lift systems and design parameters are considered. Variations in aircraft characteristics, airport geometry and location, and operational techniques are analyzed systematically to determine their effects on the market, operating economics, and community acceptance. In these studies, the total systems approach is considered to be critically important in analyzing the potential of STOL aircraft to reduce noise pollution and alleviate the increasing air corridor and airport congestion.

  14. Study of quiet turbofan STOL aircraft for short-haul transportation. Volume 1: Summary

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Conceptual designs of Quiet Turbofan STOL Short-Haul Transport Aircraft for the mid-1980 time period are developed and analyzed to determine their technical, operational, and economic feasibility. A matrix of aircraft using various high-lift systems and design parameters are considered. Variations in aircraft characteristics, airport geometry and location, and operational techniques are analyzed systematically to determine their effects on the market, operating economics, and community acceptance. The total systems approach is considered to be critically important in analyzing the potential of STOL aircraft to reduce noise pollution and alleviate the increasing air corridor and airport congestion.

  15. Dynamic PID loop control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pei, L.; Klebaner, A.; Theilacker, J.

    2011-06-01

    The Horizontal Test Stand (HTS) SRF Cavity and Cryomodule 1 (CM1) of eight 9-cell, 1.3GHz SRF cavities are operating at Fermilab. For the cryogenic control system, how to hold liquid level constant in the cryostat by regulation of its Joule-Thompson JT-valve is very important after cryostat cool down to 2.0 K. The 72-cell cryostat liquid level response generally takes a long time delay after regulating its JT-valve; therefore, typical PID control loop should result in some cryostat parameter oscillations. This paper presents a type of PID parameter self-optimal and Time-Delay control method used to reduce cryogenic system parameters oscillation.

  16. Flexible operation strategy for environment control system in abnormal supply power condition

    NASA Astrophysics Data System (ADS)

    Liping, Pang; Guoxiang, Li; Hongquan, Qu; Yufeng, Fang

    2017-04-01

    This paper establishes an optimization method that can be applied to the flexible operation of the environment control system in an abnormal supply power condition. A proposed conception of lifespan is used to evaluate the depletion time of the non-regenerative substance. The optimization objective function is to maximize the lifespans. The optimization variables are the allocated powers of subsystems. The improved Non-dominated Sorting Genetic Algorithm is adopted to obtain the pareto optimization frontier with the constraints of the cabin environmental parameters and the adjustable operating parameters of the subsystems. Based on the same importance of objective functions, the preferred power allocation of subsystems can be optimized. Then the corresponding running parameters of subsystems can be determined to ensure the maximum lifespans. A long-duration space station with three astronauts is used to show the implementation of the proposed optimization method. Three different CO2 partial pressure levels are taken into consideration in this study. The optimization results show that the proposed optimization method can obtain the preferred power allocation for the subsystems when the supply power is at a less-than-nominal value. The method can be applied to the autonomous control for the emergency response of the environment control system.

  17. Fuzzy simulation in concurrent engineering

    NASA Technical Reports Server (NTRS)

    Kraslawski, A.; Nystrom, L.

    1992-01-01

    Concurrent engineering is becoming a very important practice in manufacturing. A problem in concurrent engineering is the uncertainty associated with the values of the input variables and operating conditions. The problem discussed in this paper concerns the simulation of processes where the raw materials and the operational parameters possess fuzzy characteristics. The processing of fuzzy input information is performed by the vertex method and the commercial simulation packages POLYMATH and GEMS. The examples are presented to illustrate the usefulness of the method in the simulation of chemical engineering processes.

  18. Rock mechanics issues in completion and stimulation operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warpinski, N.R.

    Rock mechanisms parameters such as the in situ stresses, elastic properties, failure characteristics, and poro-elastic response are important to most completion and stimulation operations. Perforating, hydraulic fracturing, wellbore stability, and sand production are examples of technology that are largely controlled by the rock mechanics of the process. While much research has been performed in these areas, there has been insufficient application that research by industry. In addition, there are new research needs that must be addressed for technology advancement.

  19. Prediction of plasma properties in mercury ion thrusters

    NASA Technical Reports Server (NTRS)

    Longhurst, G. R.

    1978-01-01

    A simplified theoretical model was developed which obtains to first order the plasma properties in the discharge chamber of a mercury ion thruster from basic thruster design and controllable operating parameters. The basic operation and design of ion thrusters is discussed, and the important processes which influence the plasma properties are described in terms of the design and control parameters. The conservation for mass, charge and energy were applied to the ion production region, which was defined as the region of the discharge chamber having as its outer boundary the surface of revolution of the innermost field line to intersect the anode. Mass conservation and the equations describing the various processes involved with mass addition and removal from the ion production region are satisfied by a Maxwellian electron density spatial distribution in that region.

  20. Technology needs of advanced Earth observation spacecraft

    NASA Technical Reports Server (NTRS)

    Herbert, J. J.; Postuchow, J. R.; Schartel, W. A.

    1984-01-01

    Remote sensing missions were synthesized which could contribute significantly to the understanding of global environmental parameters. Instruments capable of sensing important land and sea parameters are combined with a large antenna designed to passively quantify surface emitted radiation at several wavelengths. A conceptual design for this large deployable antenna was developed. All subsystems required to make the antenna an autonomous spacecraft were conceptually designed. The entire package, including necessary orbit transfer propulsion, is folded to package within the Space Transportation System (STS) cargo bay. After separation, the antenna, its integral feed mast, radiometer receivers, power system, and other instruments are automatically deployed and transferred to the operational orbit. The design resulted in an antenna with a major antenna dimension of 120 meters, weighing 7650 kilograms, and operating at an altitude of 700 kilometers.

  1. Key Parameters for Operator Diagnosis of BWR Plant Condition during a Severe Accident

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clayton, Dwight A.; Poore, III, Willis P.

    2015-01-01

    The objective of this research is to examine the key information needed from nuclear power plant instrumentation to guide severe accident management and mitigation for boiling water reactor (BWR) designs (specifically, a BWR/4-Mark I), estimate environmental conditions that the instrumentation will experience during a severe accident, and identify potential gaps in existing instrumentation that may require further research and development. This report notes the key parameters that instrumentation needs to measure to help operators respond to severe accidents. A follow-up report will assess severe accident environmental conditions as estimated by severe accident simulation model analysis for a specific US BWR/4-Markmore » I plant for those instrumentation systems considered most important for accident management purposes.« less

  2. Biofiltration: Fundamentals, design and operations principles and applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swanson, W.J.; Loehr, R.C.

    1997-06-01

    Biofiltration is a biological air pollution control technology for volatile organic compounds (VOCs). This paper summarizes the fundamentals, design and operation, and application of the process. Biofiltration has been demonstrated to be an effective technology for VOCs from many industries. Large and full-scale systems are in use in Europe and the US. With proper design and operation, VOC removal efficiencies of 95--99% have been achieved. Important parameters for design and performance are empty-bed contact time, gas surface loading, mass loading, elimination capacity, and removal efficiency. Key design and operation factors include chemical and media properties, moisture, pH, temperature, nutrient availability,more » gas pretreatment, and variations in loading.« less

  3. Temporal evolution of a seismic sequence induced by a gas injection in the Eastern coast of Spain.

    PubMed

    Ruiz-Barajas, S; Sharma, N; Convertito, V; Zollo, A; Benito, B

    2017-06-06

    Induced seismicity associated with energy production is becoming an increasingly important issue worldwide for the hazard it poses to the exposed population and structures. We analyze one of the rare cases of induced seismicity associated with the underwater gas storage operations observed in the Castor platform, located in the Valencia gulf, east Spain, near a complex and important geological structure. In September 2013, some gas injection operations started at Castor, producing a series of seismic events around the reservoir area. The larger magnitude events (up to 4.2) took place some days after the end of the injection, with EMS intensities in coastal towns up to degree III. In this work, the seismic sequence is analyzed with the aim of detecting changes in statistical parameters describing the earthquake occurrence before and after the injection and identifying possible proxies to be used for monitoring the sequence evolution. Moreover, we explore the potential predictability of these statistical parameters which can be used to control the field operations in injection/storage fluid reservoirs. We firstly perform a retrospective approach and next a perspective analysis. We use different techniques for estimating the value of the expected maximum magnitude that can occur due to antropogenic activities in Castor.

  4. Determination of capacity of single-toggle jaw crusher, taking into account parameters of kinematics of its working mechanism

    NASA Astrophysics Data System (ADS)

    Golikov, N. S.; Timofeev, I. P.

    2018-05-01

    Efficiency increase of jaw crushers makes the foundation of rational kinematics and stiffening of the elements of the machine possible. Foundation of rational kinematics includes establishment of connection between operation mode parameters of the crusher and its technical characteristics. The main purpose of this research is just to establish such a connection. Therefore this article shows analytical procedure of getting connection between operation mode parameters of the crusher and its capacity. Theoretical, empirical and semi-empirical methods of capacity determination of a single-toggle jaw crusher are given, taking into account physico-mechanical properties of crushed material and kinematics of the working mechanism. When developing a mathematical model, the method of closed vector polygons by V. A. Zinoviev was used. The expressions obtained in the article give an opportunity to solve important scientific and technical problems, connected with finding the rational kinematics of the jaw crusher mechanism, carrying out a comparative assessment of different crushers and giving the recommendations about updating the available jaw crushers.

  5. Continuous Rating for Diggability Assessment in Surface Mines

    NASA Astrophysics Data System (ADS)

    IPHAR, Melih

    2016-10-01

    The rocks can be loosened either by drilling-blasting or direct excavation using powerful machines in opencast mining operations. The economics of rock excavation is considered for each method to be applied. If blasting operation is not preferred and also the geological structures and rock mass properties in site are convenient (favourable ground conditions) for ripping or direct excavation method by mining machines, the next step is to determine which machine or excavator should be selected for the excavation purposes. Many researchers have proposed several diggability or excavatability assessment methods for deciding on excavator type to be used in the field. Most of these systems are generally based on assigning a rating for the parameters having importance in rock excavation process. However, the sharp transitions between the two adjacent classes for a given parameter can lead to some uncertainties. In this paper, it has been proposed that varying rating should be assigned for a given parameter called as “continuous rating” instead of giving constant rating for a given class.

  6. Optimization of bead milling parameters for the cell disruption of microalgae: process modeling and application to Porphyridium cruentum and Nannochloropsis oculata.

    PubMed

    Montalescot, V; Rinaldi, T; Touchard, R; Jubeau, S; Frappart, M; Jaouen, P; Bourseau, P; Marchal, L

    2015-11-01

    A study of cell disruption by bead milling for two microalgae, Nannochloropsis oculata and Porphyridium cruentum, was performed. Strains robustness was quantified by high-pressure disruption assays. The hydrodynamics in the bead mill grinding chamber was studied by Residence Time Distribution modeling. Operating parameters effects were analyzed and modeled in terms of stress intensities and stress number. RTD corresponded to a 2 CSTR in series model. First order kinetics cell disruption was modeled in consequence. Continuous bead milling was efficient for both strains disruption. SI-SN modeling was successfully adapted to microalgae. As predicted by high pressure assays, N. oculata was more resistant than P. cruentum. The critical stress intensity was twice more important for N. oculata than for P. cruentum. SI-SN modeling allows the determination of operating parameters minimizing energy consumption and gives a scalable approach to develop and optimize microalgal disruption by bead milling. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. A canonical correlation neural network for multicollinearity and functional data.

    PubMed

    Gou, Zhenkun; Fyfe, Colin

    2004-03-01

    We review a recent neural implementation of Canonical Correlation Analysis and show, using ideas suggested by Ridge Regression, how to make the algorithm robust. The network is shown to operate on data sets which exhibit multicollinearity. We develop a second model which not only performs as well on multicollinear data but also on general data sets. This model allows us to vary a single parameter so that the network is capable of performing Partial Least Squares regression (at one extreme) to Canonical Correlation Analysis (at the other)and every intermediate operation between the two. On multicollinear data, the parameter setting is shown to be important but on more general data no particular parameter setting is required. Finally, we develop a second penalty term which acts on such data as a smoother in that the resulting weight vectors are much smoother and more interpretable than the weights without the robustification term. We illustrate our algorithms on both artificial and real data.

  8. Volcanic Ash Data Assimilation System for Atmospheric Transport Model

    NASA Astrophysics Data System (ADS)

    Ishii, K.; Shimbori, T.; Sato, E.; Tokumoto, T.; Hayashi, Y.; Hashimoto, A.

    2017-12-01

    The Japan Meteorological Agency (JMA) has two operations for volcanic ash forecasts, which are Volcanic Ash Fall Forecast (VAFF) and Volcanic Ash Advisory (VAA). In these operations, the forecasts are calculated by atmospheric transport models including the advection process, the turbulent diffusion process, the gravitational fall process and the deposition process (wet/dry). The initial distribution of volcanic ash in the models is the most important but uncertain factor. In operations, the model of Suzuki (1983) with many empirical assumptions is adopted to the initial distribution. This adversely affects the reconstruction of actual eruption plumes.We are developing a volcanic ash data assimilation system using weather radars and meteorological satellite observation, in order to improve the initial distribution of the atmospheric transport models. Our data assimilation system is based on the three-dimensional variational data assimilation method (3D-Var). Analysis variables are ash concentration and size distribution parameters which are mutually independent. The radar observation is expected to provide three-dimensional parameters such as ash concentration and parameters of ash particle size distribution. On the other hand, the satellite observation is anticipated to provide two-dimensional parameters of ash clouds such as mass loading, top height and particle effective radius. In this study, we estimate the thickness of ash clouds using vertical wind shear of JMA numerical weather prediction, and apply for the volcanic ash data assimilation system.

  9. 40 CFR 60.3043 - What operating parameter monitoring equipment must I install, and what operating parameters must...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false What operating parameter monitoring equipment must I install, and what operating parameters must I monitor? 60.3043 Section 60.3043 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Emission...

  10. Optimising Microbial Growth with a Bench-Top Bioreactor

    ERIC Educational Resources Information Center

    Baker, A. M. R.; Borin, S. L.; Chooi, K. P.; Huang, S. S.; Newgas, A. J. S.; Sodagar, D.; Ziegler, C. A.; Chan, G. H. T.; Walsh, K. A. P.

    2006-01-01

    The effects of impeller size, agitation and aeration on the rate of yeast growth were investigated using bench-top bioreactors. This exercise, carried out over a six-month period, served as an effective demonstration of the importance of different operating parameters on cell growth and provided a means of determining the optimisation conditions…

  11. Geometric model for softwood transverse thermal conductivity. Part I

    Treesearch

    Hong-mei Gu; Audrey Zink-Sharp

    2005-01-01

    Thermal conductivity is a very important parameter in determining heat transfer rate and is required for developing of drying models and in industrial operations such as adhesive cure rate. Geometric models for predicting softwood thermal conductivity in the radial and tangential directions were generated in this study based on obervation and measurements of wood...

  12. The determination of operational and support requirements and costs during the conceptual design of space systems

    NASA Technical Reports Server (NTRS)

    Ebeling, Charles; Beasley, Kenneth D.

    1992-01-01

    The first year of research to provide NASA support in predicting operational and support parameters and costs of proposed space systems is reported. Some of the specific research objectives were (1) to develop a methodology for deriving reliability and maintainability parameters and, based upon their estimates, determine the operational capability and support costs, and (2) to identify data sources and establish an initial data base to implement the methodology. Implementation of the methodology is accomplished through the development of a comprehensive computer model. While the model appears to work reasonably well when applied to aircraft systems, it was not accurate when used for space systems. The model is dynamic and should be updated as new data become available. It is particularly important to integrate the current aircraft data base with data obtained from the Space Shuttle and other space systems since subsystems unique to a space vehicle require data not available from aircraft. This research only addressed the major subsystems on the vehicle.

  13. Effects of wastewater constituents and operational conditions on the composition and dynamics of anodic microbial communities in bioelectrochemical systems.

    PubMed

    Kokko, Marika; Epple, Stefanie; Gescher, Johannes; Kerzenmacher, Sven

    2018-06-01

    Over the last decade, there has been an ever-growing interest in bioelectrochemical systems (BES) as a sustainable technology enabling simultaneous wastewater treatment and biological production of, e.g. electricity, hydrogen, and further commodities. A key component of any BES degrading organic matter is the anode where electric current is biologically generated from the oxidation of organic compounds. The performance of BES depends on the interactions of the anodic microbial communities. To optimize the operational parameters and process design of BES a better comprehension of the microbial community dynamics and interactions at the anode is required. This paper reviews the abundance of different microorganisms in anodic biofilms and discusses their roles and possible side reactions with respect to their implications on the performance of BES utilizing wastewaters. The most important operational parameters affecting anodic microbial communities grown with wastewaters are highlighted and guidelines for controlling the composition of microbial communities are given. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delpassand, M.S.

    The power section of a mud driven progressing cavity drill motors consists of a steel rotor shaped with an external helix rotating within a stationary tube with a molded helical elastomeric lining (stator). Operating temperature of the elastomer lining is an important parameter that affects the stator life. Motor operating conditions such as down hole temperature, torque, differential pressure, and speed determine the elastomer temperature. This paper presents an analysis technique to predict stator elastomer temperature as a function of the motor`s operating parameters. A non-linear finite element analysis technique is used to predict the stator temperature. Physical and mechanicalmore » properties of the elastomer are measured, using laboratory equipment such as Monsanto`s RPA2000 dynamic analyzer and BFGoodrich model (II) flexometer. Boundary conditions of the finite element model are defined based on the down hole temperature, differential pressure, and the motor`s speed. Results of the finite element analysis are compared with laboratory test data to verify the accuracy of the analysis.« less

  15. Design, fabrication, and operation of a test rig for high-speed tapered-roller bearings

    NASA Technical Reports Server (NTRS)

    Signer, H. R.

    1974-01-01

    A tapered-roller bearing test machine was designed, fabricated and successfully operated at speeds to 20,000 rpm. Infinitely variable radial loads to 26,690 N (6,000 lbs.) and thrust loads to 53,380 N (12,000 lbs.) can be applied to test bearings. The machine instrumentation proved to have the accuracy and reliability required for parametric bearing performance testing and has the capability of monitoring all programmed test parameters at continuous operation during life testing. This system automatically shuts down a test if any important test parameter deviates from the programmed conditions, or if a bearing failure occurs. A lubrication system was developed as an integral part of the machine, capable of lubricating test bearings by external jets and by means of passages feeding through the spindle and bearing rings into the critical internal bearing surfaces. In addition, provisions were made for controlled oil cooling of inner and outer rings to effect the type of bearing thermal management that is required when testing at high speeds.

  16. Mars Pathfinder Atmospheric Entry Navigation Operations

    NASA Technical Reports Server (NTRS)

    Braun, R. D.; Spencer, D. A.; Kallemeyn, P. H.; Vaughan, R. M.

    1997-01-01

    On July 4, 1997, after traveling close to 500 million km, the Pathfinder spacecraft successfully completed entry, descent, and landing, coming to rest on the surface of Mars just 27 km from its target point. In the present paper, the atmospheric entry and approach navigation activities required in support of this mission are discussed. In particular, the flight software parameter update and landing site prediction analyses performed by the Pathfinder operations navigation team are described. A suite of simulation tools developed during Pathfinder's design cycle, but extendible to Pathfinder operations, are also presented. Data regarding the accuracy of the primary parachute deployment algorithm is extracted from the Pathfinder flight data, demonstrating that this algorithm performed as predicted. The increased probability of mission success through the software parameter update process is discussed. This paper also demonstrates the importance of modeling atmospheric flight uncertainties in the estimation of an accurate landing site. With these atmospheric effects included, the final landed ellipse prediction differs from the post-flight determined landing site by less then 0.5 km in downtrack.

  17. Nonlinear system analysis in bipolar integrated circuits

    NASA Astrophysics Data System (ADS)

    Fang, T. F.; Whalen, J. J.

    1980-01-01

    Since analog bipolar integrated circuits (IC's) have become important components in modern communication systems, the study of the Radio Frequency Interference (RFI) effects in bipolar IC amplifiers is an important subject for electromagnetic compatibility (EMC) engineering. The investigation has focused on using the nonlinear circuit analysis program (NCAP) to predict RF demodulation effects in broadband bipolar IC amplifiers. The audio frequency (AF) voltage at the IC amplifier output terminal caused by an amplitude modulated (AM) RF signal at the IC amplifier input terminal was calculated and compared to measured values. Two broadband IC amplifiers were investigated: (1) a cascode circuit using a CA3026 dual differential pair; (2) a unity gain voltage follower circuit using a micro A741 operational amplifier (op amp). Before using NCAP for RFI analysis, the model parameters for each bipolar junction transistor (BJT) in the integrated circuit were determined. Probe measurement techniques, manufacturer's data, and other researcher's data were used to obtain the required NCAP BJT model parameter values. An important contribution included in this effort is a complete set of NCAP BJT model parameters for most of the transistor types used in linear IC's.

  18. A gyrokinetic perspective on the JET-ILW pedestal

    NASA Astrophysics Data System (ADS)

    Hatch, D. R.; Kotschenreuther, M.; Mahajan, S.; Valanju, P.; Liu, X.

    2017-03-01

    JET has been unable to recover historical confinement levels when operating with an ITER-like wall (ILW) due largely to the inaccessibility of high pedestal temperatures. Finding a path to overcome this challenge is of utmost importance for both a prospective JET DT campaign and for future ITER operation. Gyrokinetic simulations (using the Gene code) quantitatively capture experimental transport levels for a representative experimental discharge and qualitatively recover the major experimental trends. Microtearing turbulence is a major transport mechanisms for the low-temperature pedestals characteristic of unseeded JET-ILW discharges. At higher temperatures and/or lower {ρ\\ast} , we identify electrostatic ITG transport of a type that is strongly shear-suppressed on smaller machines. Consistent with observations, this transport mechanism is strongly reduced by the presence of a low-Z impurity (e.g. carbon or nitrogen at the level of {{Z}\\text{eff}}∼ 2 ), recovering the accessibility of high pedestal temperatures. Notably, simulations based on dimensionless {ρ\\ast} scans recover historical scaling behavior except in the unique JET-ILW parameter regime where ITG turbulence becomes important. Our simulations also elucidate the observed degradation of confinement caused by gas puffing, emphasizing the important role of the density pedestal structure. This study maps out important regions of parameter space, providing insights that may point to optimal physical regimes that can enable the recovery of high pedestal temperatures on JET.

  19. Steven's orbital reduction factor in ionic clusters

    NASA Astrophysics Data System (ADS)

    Gajek, Z.; Mulak, J.

    1985-11-01

    General expressions for reduction coefficients of matrix elements of angular momentum operator in ionic clusters or molecular systems have been derived. The reduction in this approach results from overlap and covalency effects and plays an important role in the reconciling of magnetic and spectroscopic experimental data. The formulated expressions make possible a phenomenological description of the effect with two independent parameters for typical equidistant clusters. Some detailed calculations also suggest the possibility of a one-parameter description. The results of these calculations for some ionic uranium compounds are presented as an example.

  20. Randomization in clinical trials: stratification or minimization? The HERMES free simulation software.

    PubMed

    Fron Chabouis, Hélène; Chabouis, Francis; Gillaizeau, Florence; Durieux, Pierre; Chatellier, Gilles; Ruse, N Dorin; Attal, Jean-Pierre

    2014-01-01

    Operative clinical trials are often small and open-label. Randomization is therefore very important. Stratification and minimization are two randomization options in such trials. The first aim of this study was to compare stratification and minimization in terms of predictability and balance in order to help investigators choose the most appropriate allocation method. Our second aim was to evaluate the influence of various parameters on the performance of these techniques. The created software generated patients according to chosen trial parameters (e.g., number of important prognostic factors, number of operators or centers, etc.) and computed predictability and balance indicators for several stratification and minimization methods over a given number of simulations. Block size and proportion of random allocations could be chosen. A reference trial was chosen (50 patients, 1 prognostic factor, and 2 operators) and eight other trials derived from this reference trial were modeled. Predictability and balance indicators were calculated from 10,000 simulations per trial. Minimization performed better with complex trials (e.g., smaller sample size, increasing number of prognostic factors, and operators); stratification imbalance increased when the number of strata increased. An inverse correlation between imbalance and predictability was observed. A compromise between predictability and imbalance still has to be found by the investigator but our software (HERMES) gives concrete reasons for choosing between stratification and minimization; it can be downloaded free of charge. This software will help investigators choose the appropriate randomization method in future two-arm trials.

  1. Ensemble Kalman Filter for Dynamic State Estimation of Power Grids Stochastically Driven by Time-correlated Mechanical Input Power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenthal, William Steven; Tartakovsky, Alex; Huang, Zhenyu

    State and parameter estimation of power transmission networks is important for monitoring power grid operating conditions and analyzing transient stability. Wind power generation depends on fluctuating input power levels, which are correlated in time and contribute to uncertainty in turbine dynamical models. The ensemble Kalman filter (EnKF), a standard state estimation technique, uses a deterministic forecast and does not explicitly model time-correlated noise in parameters such as mechanical input power. However, this uncertainty affects the probability of fault-induced transient instability and increased prediction bias. Here a novel approach is to model input power noise with time-correlated stochastic fluctuations, and integratemore » them with the network dynamics during the forecast. While the EnKF has been used to calibrate constant parameters in turbine dynamical models, the calibration of a statistical model for a time-correlated parameter has not been investigated. In this study, twin experiments on a standard transmission network test case are used to validate our time-correlated noise model framework for state estimation of unsteady operating conditions and transient stability analysis, and a methodology is proposed for the inference of the mechanical input power time-correlation length parameter using time-series data from PMUs monitoring power dynamics at generator buses.« less

  2. Ensemble Kalman Filter for Dynamic State Estimation of Power Grids Stochastically Driven by Time-correlated Mechanical Input Power

    DOE PAGES

    Rosenthal, William Steven; Tartakovsky, Alex; Huang, Zhenyu

    2017-10-31

    State and parameter estimation of power transmission networks is important for monitoring power grid operating conditions and analyzing transient stability. Wind power generation depends on fluctuating input power levels, which are correlated in time and contribute to uncertainty in turbine dynamical models. The ensemble Kalman filter (EnKF), a standard state estimation technique, uses a deterministic forecast and does not explicitly model time-correlated noise in parameters such as mechanical input power. However, this uncertainty affects the probability of fault-induced transient instability and increased prediction bias. Here a novel approach is to model input power noise with time-correlated stochastic fluctuations, and integratemore » them with the network dynamics during the forecast. While the EnKF has been used to calibrate constant parameters in turbine dynamical models, the calibration of a statistical model for a time-correlated parameter has not been investigated. In this study, twin experiments on a standard transmission network test case are used to validate our time-correlated noise model framework for state estimation of unsteady operating conditions and transient stability analysis, and a methodology is proposed for the inference of the mechanical input power time-correlation length parameter using time-series data from PMUs monitoring power dynamics at generator buses.« less

  3. An algorithm to estimate aircraft cruise black carbon emissions for use in developing a cruise emissions inventory.

    PubMed

    Peck, Jay; Oluwole, Oluwayemisi O; Wong, Hsi-Wu; Miake-Lye, Richard C

    2013-03-01

    To provide accurate input parameters to the large-scale global climate simulation models, an algorithm was developed to estimate the black carbon (BC) mass emission index for engines in the commercial fleet at cruise. Using a high-dimensional model representation (HDMR) global sensitivity analysis, relevant engine specification/operation parameters were ranked, and the most important parameters were selected. Simple algebraic formulas were then constructed based on those important parameters. The algorithm takes the cruise power (alternatively, fuel flow rate), altitude, and Mach number as inputs, and calculates BC emission index for a given engine/airframe combination using the engine property parameters, such as the smoke number, available in the International Civil Aviation Organization (ICAO) engine certification databank. The algorithm can be interfaced with state-of-the-art aircraft emissions inventory development tools, and will greatly improve the global climate simulations that currently use a single fleet average value for all airplanes. An algorithm to estimate the cruise condition black carbon emission index for commercial aircraft engines was developed. Using the ICAO certification data, the algorithm can evaluate the black carbon emission at given cruise altitude and speed.

  4. Study of parameters affecting the conversion in a plug flow reactor for reactions of the type 2A→B

    NASA Astrophysics Data System (ADS)

    Beltran-Prieto, Juan Carlos; Long, Nguyen Huynh Bach Son

    2018-04-01

    Modeling of chemical reactors is an important tool to quantify reagent conversion, product yield and selectivity towards a specific compound and to describe the behavior of the system. Proposal of differential equations describing the mass and energy balance are among the most important steps required during the modeling process as they play a special role in the design and operation of the reactor. Parameters governing transfer of heat and mass have a strong relevance in the rate of the reaction. Understanding this information is important for the selection of reactor and operating regime. In this paper we studied the irreversible gas-phase reaction 2A→B. We model the conversion that can be achieved as function of the reactor volume and feeding temperature. Additionally, we discuss the effect of activation energy and the heat of reaction on the conversion achieved in the tubular reactor. Furthermore, we considered that dimerization occurs instantaneously in the catalytic surface to develop equations for the determination of rate of reaction per unit area of three different catalytic surface shapes. This data can be combined with information about the global rate of conversion in the reactor to improve regent conversion and yield of product.

  5. TOPICAL REVIEW: Physics and phenomena in pulsed magnetrons: an overview

    NASA Astrophysics Data System (ADS)

    Bradley, J. W.; Welzel, T.

    2009-05-01

    This paper reviews the contribution made to the observation and understanding of the basic physical processes occurring in an important type of magnetized low-pressure plasma discharge, the pulsed magnetron. In industry, these plasma sources are operated typically in reactive mode where a cathode is sputtered in the presence of both chemically reactive and noble gases typically with the power modulated in the mid-frequency (5-350 kHz) range. In this review, we concentrate mostly, however, on physics-based studies carried out on magnetron systems operated in argon. This simplifies the physical-chemical processes occurring and makes interpretation of the observations somewhat easier. Since their first recorded use in 1993 there have been more than 300 peer-reviewed paper publications concerned with pulsed magnetrons, dealing wholly or in part with fundamental observations and basic studies. The fundamentals of these plasmas and the relationship between the plasma parameters and thin film quality regularly have whole sessions at international conferences devoted to them; however, since many different types of magnetron geometries have been used worldwide with different operating parameters the important results are often difficult to tease out. For example, we find the detailed observations of the plasma parameter (particle density and temperature) evolution from experiment to experiment are at best difficult to compare and at worst contradictory. We review in turn five major areas of studies which are addressed in the literature and try to draw out the major results. These areas are: fast electron generation, bulk plasma heating, short and long-term plasma parameter rise and decay rates, plasma potential modulation and transient phenomena. The influence of these phenomena on the ion energy and ion energy flux at the substrate is discussed. This review, although not exhaustive, will serve as a useful guide for more in-depth investigations using the referenced literature and also hopefully as an inspiration for future studies.

  6. Process development for robust removal of aggregates using cation exchange chromatography in monoclonal antibody purification with implementation of quality by design.

    PubMed

    Xu, Zhihao; Li, Jason; Zhou, Joe X

    2012-01-01

    Aggregate removal is one of the most important aspects in monoclonal antibody (mAb) purification. Cation-exchange chromatography (CEX), a widely used polishing step in mAb purification, is able to clear both process-related impurities and product-related impurities. In this study, with the implementation of quality by design (QbD), a process development approach for robust removal of aggregates using CEX is described. First, resin screening studies were performed and a suitable CEX resin was chosen because of its relatively better selectivity and higher dynamic binding capacity. Second, a pH-conductivity hybrid gradient elution method for the CEX was established, and the risk assessment for the process was carried out. Third, a process characterization study was used to evaluate the impact of the potentially important process parameters on the process performance with respect to aggregate removal. Accordingly, a process design space was established. Aggregate level in load is the critical parameter. Its operating range is set at 0-3% and the acceptable range is set at 0-5%. Equilibration buffer is the key parameter. Its operating range is set at 40 ± 5 mM acetate, pH 5.0 ± 0.1, and acceptable range is set at 40 ± 10 mM acetate, pH 5.0 ± 0.2. Elution buffer, load mass, and gradient elution volume are non-key parameters; their operating ranges and acceptable ranges are equally set at 250 ± 10 mM acetate, pH 6.0 ± 0.2, 45 ± 10 g/L resin, and 10 ± 20% CV respectively. Finally, the process was scaled up 80 times and the impurities removal profiles were revealed. Three scaled-up runs showed that the size-exclusion chromatography (SEC) purity of the CEX pool was 99.8% or above and the step yield was above 92%, thereby proving that the process is both consistent and robust.

  7. Airbreathing engine selection criteria for SSTO propulsion system

    NASA Astrophysics Data System (ADS)

    Ohkami, Yoshiaki; Maita, Masataka

    1995-02-01

    This paper presents airbreathing engine selection criteria to be applied to the propulsion system of a Single Stage To Orbit (SSTO). To establish the criteria, a relation among three major parameters, i.e., delta-V capability, weight penalty, and effective specific impulse of the engine subsystem, is derived as compared to these parameters of the LH2/LOX rocket engine. The effective specific impulse is a function of the engine I(sub sp) and vehicle thrust-to-drag ratio which is approximated by a function of the vehicle velocity. The weight penalty includes the engine dry weight, cooling subsystem weight. The delta-V capability is defined by the velocity region starting from the minimum operating velocity up to the maximum velocity. The vehicle feasibility is investigated in terms of the structural and propellant weights, which requires an iteration process adjusting the system parameters. The system parameters are computed by iteration based on the Newton-Raphson method. It has been concluded that performance in the higher velocity region is extremely important so that the airbreathing engines are required to operate beyond the velocity equivalent to the rocket engine exhaust velocity (approximately 4500 m/s).

  8. 40 CFR 60.58c - Reporting and recordkeeping requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....57c(d), the owner or operator shall maintain all operating parameter data collected; (xvii) For...) Identification of calendar days for which data on emission rates or operating parameters specified under... operating parameters not measured, reasons for not obtaining the data, and a description of corrective...

  9. Fuzzy based attitude controller for flexible spacecraft with on/off thrusters

    NASA Astrophysics Data System (ADS)

    Knapp, Roger G.; Adams, Neil J.

    A fuzzy-based attitude controller is designed for attitude control of a generic spacecraft with on/off thrusters. The controller is comprised of packages of rules dedicated to addressing different objectives (e.g., disturbance rejection, low fuel consumption, avoiding the excitation of flexible appendages, etc.). These rule packages can be inserted or removed depending on the requirements of the particular spacecraft and are parameterized based on vehicle parameters such as inertia or operational parameters such as the maneuvering rate. Individual rule packages can be 'weighted' relative to each other to emphasize the importance of one objective relative to another. Finally, the fuzzy controller and rule packages are demonstrated using the high-fidelity Space Shuttle Interactive On-Orbit Simulator (IOS) while performing typical on-orbit operations and are subsequently compared with the existing shuttle flight control system performance.

  10. Fuzzy based attitude controller for flexible spacecraft with on/off thrusters

    NASA Astrophysics Data System (ADS)

    Knapp, Roger Glenn

    1993-05-01

    A fuzzy-based attitude controller is designed for attitude control of a generic spacecraft with on/off thrusters. The controller is comprised of packages of rules dedicated to addressing different objectives (e.g., disturbance rejection, low fuel consumption, avoiding the excitation of flexible appendages, etc.). These rule packages can be inserted or removed depending on the requirements of the particular spacecraft and are parameterized based on vehicle parameters such as inertia or operational parameters such as the maneuvering rate. Individual rule packages can be 'weighted' relative to each other to emphasize the importance of one objective relative to another. Finally, the fuzzy controller and rule packages are demonstrated using the high-fidelity Space Shuttle Interactive On-Orbit Simulator (IOS) while performing typical on-orbit operations and are subsequently compared with the existing shuttle flight control system performance.

  11. Cyclic steaming in heavy oil diatomite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, M.; Beatty, F.D.

    1995-12-31

    Chevron currently uses cyclic steaming as a recovery method to produce economically its heavy oil diatomite resource in the Cymric field, San Joaquin Valley, California. A highly instrumented, cyclically steaming well from this field was simulated in this study to delineate important production mechanisms, to optimize operations, and to improve reservoir management. The model was constrained, as much as possible, by the available measured data. Results show that fluid flow from the well to the reservoir is primarily through the hydraulic fracture induced by the injected steam. Parameters with unique importance to modeling cyclic steaming in diatomites are: (1) inducedmore » fracture dimension (length and height), (2) matrix permeability, (3) oil/water capillary pressure, (4) grid size perpendicular to fracture face, and (5) producing bottomhole pressures. Additionally, parameters important for conventional steam injection processes, such as relative permeabilities and injected steam volume, quality, and rate, are important for diatomites also. Oil production rates and steam/oil ratios calculated by this model compare reasonably with field data.« less

  12. The need for control of magnetic parameters for energy efficient performance of magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Farhat, I. A. H.; Gale, E.; Alpha, C.; Isakovic, A. F.

    2017-07-01

    Optimizing energy performance of Magnetic Tunnel Junctions (MTJs) is the key for embedding Spin Transfer Torque-Random Access Memory (STT-RAM) in low power circuits. Due to the complex interdependencies of the parameters and variables of the device operating energy, it is important to analyse parameters with most effective control of MTJ power. The impact of threshold current density, Jco , on the energy and the impact of HK on Jco are studied analytically, following the expressions that stem from Landau-Lifshitz-Gilbert-Slonczewski (LLGS-STT) model. In addition, the impact of other magnetic material parameters, such as Ms , and geometric parameters such as tfree and λ is discussed. Device modelling study was conducted to analyse the impact at the circuit level. Nano-magnetism simulation based on NMAGTM package was conducted to analyse the impact of controlling HK on the switching dynamics of the film.

  13. Proposal of a Roundabout Solution within a Particular Traflc Operation

    NASA Astrophysics Data System (ADS)

    Ližbetin, Ján; Stopka, Ondrej

    2016-11-01

    This paper presents the practical solution of the transport telematics elements within a particular traffic operation when providing a transport and logistics services. A roundabout helps to increase the fluency and safety of transport and logistics services in cities and urban areas, however, the positive effect can be achieved only after determining the proper intersection parameters. Based on a survey performed in a real traffic situation, the practical application of roundabout in the city of Pilsen is processed in the most important part of the paper.

  14. ''Do-it-yourself'' software program calculates boiler efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1984-03-01

    An easy-to-use software package is described which runs on the IBM Personal Computer. The package calculates boiler efficiency, an important parameter of operating costs and equipment wellbeing. The program stores inputs and calculated results for 20 sets of boiler operating data, called cases. Cases can be displayed and modified on the CRT screen through multiple display pages or copied to a printer. All intermediate calculations are performed by this package. They include: steam enthalpy; water enthalpy; air humidity; gas, oil, coal, and wood heat capacity; and radiation losses.

  15. Evaluating effective swath width and droplet distribution of aerial spraying systems on M-18B and Thrush 510G airplanes

    USDA-ARS?s Scientific Manuscript database

    Aerial spraying plays an important role in promoting agricultural production and protecting the biological environment due to its flexibility, high effectiveness, and large operational area per unit of time. In order to evaluate the performance parameters of the spraying systems on two fixed wing ai...

  16. Minimization of operational impacts on spectrophotometer color measurements for cotton

    USDA-ARS?s Scientific Manuscript database

    A key cotton quality and processing property that is gaining increasing importance is the color of the cotton. Cotton fiber in the U.S. is classified for color using the Uster® High Volume Instrument (HVI), using the parameters Rd and +b. Rd and +b are specific to cotton fiber and are not typical ...

  17. Item Pool Design for an Operational Variable-Length Computerized Adaptive Test

    ERIC Educational Resources Information Center

    He, Wei; Reckase, Mark D.

    2014-01-01

    For computerized adaptive tests (CATs) to work well, they must have an item pool with sufficient numbers of good quality items. Many researchers have pointed out that, in developing item pools for CATs, not only is the item pool size important but also the distribution of item parameters and practical considerations such as content distribution…

  18. Design and Development of Maize Dehusker cum Sheller: A Technology for Northern Transition Zone of Karnataka, India

    NASA Astrophysics Data System (ADS)

    Chilur, Rudragouda; Kumar, Sushilendra

    2018-06-01

    The Maize ( Zea mays L.) crop is one of the most important cereal in agricultural production systems of Northern Transition Zone (Hyderabad-Karnataka region) in India. These Hyderabad Karnataka farmers (small-medium) are lack of economic technologies with maize dehusking and shelling, which fulfils the two major needs as crops and as livestock in farming. The portable medium size (600 kg/h capacity) electric motor (2.23 kW) operated Maize Dehusker cum Sheller (MDS) was designed to resolve the issue by considering engineering properties of maize. The developed trapezium shaped MDS machine having overall dimensions (length × (top and bottom) × height) of 1200 × (500 and 610) × 810 mm. The selected operational parameters viz, cylinder peripheral speed (7.1 m/s), concave clearance (25 mm) and feed rate (600 kg/h) were studied for machine-performance and seed-quality parameters. The performance of machine under these parameters showed the dehusking efficiency of 99.56%, shelling efficiency of 98.01%, cleaning efficiency of 99.11%, total loss of 3.63% machine capacity of 527.11 kg/kW-h and germination percentage of 98.93%. Overall machine performance was found satisfactory for maize dehusking cum shelling operation as well as to produce the maize grains for seeding purpose.

  19. Design and Development of Maize Dehusker cum Sheller: A Technology for Northern Transition Zone of Karnataka, India

    NASA Astrophysics Data System (ADS)

    Chilur, Rudragouda; Kumar, Sushilendra

    2018-02-01

    The Maize (Zea mays L.) crop is one of the most important cereal in agricultural production systems of Northern Transition Zone (Hyderabad-Karnataka region) in India. These Hyderabad Karnataka farmers (small-medium) are lack of economic technologies with maize dehusking and shelling, which fulfils the two major needs as crops and as livestock in farming. The portable medium size (600 kg/h capacity) electric motor (2.23 kW) operated Maize Dehusker cum Sheller (MDS) was designed to resolve the issue by considering engineering properties of maize. The developed trapezium shaped MDS machine having overall dimensions (length × (top and bottom) × height) of 1200 × (500 and 610) × 810 mm. The selected operational parameters viz, cylinder peripheral speed (7.1 m/s), concave clearance (25 mm) and feed rate (600 kg/h) were studied for machine-performance and seed-quality parameters. The performance of machine under these parameters showed the dehusking efficiency of 99.56%, shelling efficiency of 98.01%, cleaning efficiency of 99.11%, total loss of 3.63% machine capacity of 527.11 kg/kW-h and germination percentage of 98.93%. Overall machine performance was found satisfactory for maize dehusking cum shelling operation as well as to produce the maize grains for seeding purpose.

  20. Evaluation of flip-flop jet nozzles for use as practical excitation devices

    NASA Technical Reports Server (NTRS)

    Raman, Ganesh; Rice, Edward J.; Cornelius, David M.

    1994-01-01

    This paper describes the flowfield characteristics of the flip-flop jet nozzle and the potential for using this nozzle as a practical excitation device. It appears from the existing body of published information that there is a lack of data on the parameters affecting the operation of such nozzles and on the mechanism of operation of these nozzles. An attempt is made in the present work to study the important parameters affecting the operation and performance of a flip-flop jet nozzle. Measurements were carried out to systematically assess the effect of varying the nozzle pressure ratio (NPR) as well as the length and volume of the feedback tube on the frequency of oscillation of this device. Flow visualization was used to obtain a better understanding of the jet flowfield and of the processes occurring within the feedback tube. The frequency of oscillation of the flip-flop jet depended significantly on the feedback tube length and volume as well as on the nozzle pressure ratio. In contrast, the coherent velocity perturbation levels did not depend on the above mentioned parameters. The data presented in this paper would be useful for modeling such flip-flop excitation devices that are potentially useful for controlling practical shear flows.

  1. Design and analysis of a nuclear reactor core for innovative small light water reactors

    NASA Astrophysics Data System (ADS)

    Soldatov, Alexey I.

    In order to address the energy needs of developing countries and remote communities, Oregon State University has proposed the Multi-Application Small Light Water Reactor (MASLWR) design. In order to achieve five years of operation without refueling, use of 8% enriched fuel is necessary. This dissertation is focused on core design issues related with increased fuel enrichment (8.0%) and specific MASLWR operational conditions (such as lower operational pressure and temperature, and increased leakage due to small core). Neutron physics calculations are performed with the commercial nuclear industry tools CASMO-4 and SIMULATE-3, developed by Studsvik Scandpower Inc. The first set of results are generated from infinite lattice level calculations with CASMO-4, and focus on evaluation of the principal differences between standard PWR fuel and MASLWR fuel. Chapter 4-1 covers aspects of fuel isotopic composition changes with burnup, evaluation of kinetic parameters and reactivity coefficients. Chapter 4-2 discusses gadolinium self-shielding and shadowing effects, and subsequent impacts on power generation peaking and Reactor Control System shadowing. The second aspect of the research is dedicated to core design issues, such as reflector design (chapter 4-3), burnable absorber distribution and programmed fuel burnup and fuel use strategy (chapter 4-4). This section also includes discussion of the parameters important for safety and evaluation of Reactor Control System options for the proposed core design. An evaluation of the sensitivity of the proposed design to uncertainty in calculated parameters is presented in chapter 4-5. The results presented in this dissertation cover a new area of reactor design and operational parameters, and may be applicable to other small and large pressurized water reactor designs.

  2. Impact of signal scattering and parametric uncertainties on receiver operating characteristics

    NASA Astrophysics Data System (ADS)

    Wilson, D. Keith; Breton, Daniel J.; Hart, Carl R.; Pettit, Chris L.

    2017-05-01

    The receiver operating characteristic (ROC curve), which is a plot of the probability of detection as a function of the probability of false alarm, plays a key role in the classical analysis of detector performance. However, meaningful characterization of the ROC curve is challenging when practically important complications such as variations in source emissions, environmental impacts on the signal propagation, uncertainties in the sensor response, and multiple sources of interference are considered. In this paper, a relatively simple but realistic model for scattered signals is employed to explore how parametric uncertainties impact the ROC curve. In particular, we show that parametric uncertainties in the mean signal and noise power substantially raise the tails of the distributions; since receiver operation with a very low probability of false alarm and a high probability of detection is normally desired, these tails lead to severely degraded performance. Because full a priori knowledge of such parametric uncertainties is rarely available in practice, analyses must typically be based on a finite sample of environmental states, which only partially characterize the range of parameter variations. We show how this effect can lead to misleading assessments of system performance. For the cases considered, approximately 64 or more statistically independent samples of the uncertain parameters are needed to accurately predict the probabilities of detection and false alarm. A connection is also described between selection of suitable distributions for the uncertain parameters, and Bayesian adaptive methods for inferring the parameters.

  3. Intelligent Planning for Laser Refractive Surgeries

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Yue, Yong; Elsheikh, Ahmed; Bao, Fangjun

    2018-02-01

    Refractive error is one of leading ophthalmic diseases for both genders all over the world. Laser refractive correction surgery, e.g., laser in-situ keratomileusis (LASIK), has been commonly used worldwide. The prediction of surgical parameters, e.g., corneal ablation depth, depends on the doctor’s experience, theoretical formula and surgery reference manual in the preoperative diagnosis. The error of prediction may present a potential surgical risk and complication. Being aware of the surgery parameters is important because these can be used to estimate a patient’s post-operative visual quality and help the surgeon plan a suitable treatment. Therefore, in this paper we discuss data mining techniques that can be utilized for the prediction of laser refractive correction surgery parameters. It can provide the surgeon with a reference for possible surgical parameters and outcomes of the patient before the laser refractive correction surgery.

  4. Teamwork and error in the operating room: analysis of skills and roles.

    PubMed

    Catchpole, K; Mishra, A; Handa, A; McCulloch, P

    2008-04-01

    To analyze the effects of surgical, anesthetic, and nursing teamwork skills on technical outcomes. The value of team skills in reducing adverse events in the operating room is presently receiving considerable attention. Current work has not yet identified in detail how the teamwork and communication skills of surgeons, anesthetists, and nurses affect the course of an operation. Twenty-six laparoscopic cholecystectomies and 22 carotid endarterectomies were studied using direct observation methods. For each operation, teams' skills were scored for the whole team, and for nursing, surgical, and anesthetic subteams on 4 dimensions (leadership and management [LM]; teamwork and cooperation; problem solving and decision making; and situation awareness). Operating time, errors in surgical technique, and other procedural problems and errors were measured as outcome parameters for each operation. The relationships between teamwork scores and these outcome parameters within each operation were examined using analysis of variance and linear regression. Surgical (F(2,42) = 3.32, P = 0.046) and anesthetic (F(2,42) = 3.26, P = 0.048) LM had significant but opposite relationships with operating time in each operation: operating time increased significantly with higher anesthetic but decreased with higher surgical LM scores. Errors in surgical technique had a strong association with surgical situation awareness (F(2,42) = 7.93, P < 0.001) in each operation. Other procedural problems and errors were related to the intraoperative LM skills of the nurses (F(5,1) = 3.96, P = 0.027). Detailed analysis of team interactions and dimensions is feasible and valuable, yielding important insights into relationships between nontechnical skills, technical performance, and operative duration. These results support the concept that interventions designed to improve teamwork and communication may have beneficial effects on technical performance and patient outcome.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volker, Arno; Hunter, Alan

    Anisotropic materials are being used increasingly in high performance industrial applications, particularly in the aeronautical and nuclear industries. Some important examples of these materials are composites, single-crystal and heavy-grained metals. Ultrasonic array imaging in these materials requires exact knowledge of the anisotropic material properties. Without this information, the images can be adversely affected, causing a reduction in defect detection and characterization performance. The imaging operation can be formulated in two consecutive and reciprocal focusing steps, i.e., focusing the sources and then focusing the receivers. Applying just one of these focusing steps yields an interesting intermediate domain. The resulting common focusmore » point gather (CFP-gather) can be interpreted to determine the propagation operator. After focusing the sources, the observed travel-time in the CFP-gather describes the propagation from the focus point to the receivers. If the correct propagation operator is used, the measured travel-times should be the same as the time-reversed focusing operator due to reciprocity. This makes it possible to iteratively update the focusing operator using the data only and allows the material to be imaged without explicit knowledge of the anisotropic material parameters. Furthermore, the determined propagation operator can also be used to invert for the anisotropic medium parameters. This paper details the proposed technique and demonstrates its use on simulated array data from a specimen of Inconel single-crystal alloy commonly used in the aeronautical and nuclear industries.« less

  6. Influence of experimental parameters on sonochemistry dosimetries: KI oxidation, Fricke reaction and H2O2 production.

    PubMed

    Merouani, Slimane; Hamdaoui, Oualid; Saoudi, Fethi; Chiha, Mahdi

    2010-06-15

    Central events of the ultrasonic action are the cavitation bubbles that can be considered as microreactors. Adiabatic collapse of cavitation bubbles leads to the formation of reactive species such as hydroxyl radicals (*OH), hydrogen peroxide (H(2)O(2)) and hydroperoxyl radicals (HOO*). Several chemical methods were used to detect the production of these reactive moieties in sonochemistry. In this work, the influence of several operational parameters on the sonochemistry dosimetries namely KI oxidation, Fricke reaction and H(2)O(2) production using 300 kHz ultrasound was investigated. The main experimental parameters showing significant effect in KI oxidation dosimetry were initial KI concentration, acoustic power and pH. The solution temperature showed restricted influence on KI oxidation. The acoustic power and liquid temperature highly affected Fricke reaction dosimetry. Operational conditions having important influence on H(2)O(2) formation were acoustic power, solution temperature and pH. For the three tested dosimetries, the sonochemical efficiency was independent of liquid volume. Copyright 2010 Elsevier B.V. All rights reserved.

  7. Stable Electrical Operation of 6H-SiC JFETs and ICs for Thousands of Hours at 500 C

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.; Spry, David J.; Chen, Liang-Yu; Beheim, Glenn M.; Okojie, Robert S.; Chang, Carl W.; Meredith, Roger D.; Ferrier, Terry L.; Evans, Laura J.; Krasowski, Michael J.; hide

    2008-01-01

    The fabrication and testing of the first semiconductor transistors and small-scale integrated circuits (ICs) to achieve up to 3000 h of stable electrical operation at 500 C in air ambient is reported. These devices are based on an epitaxial 6H-SiC junction field-effect transistor process that successfully integrated high temperature ohmic contacts, dielectric passivation, and ceramic packaging. Important device and circuit parameters exhibited less than 10% of change over the course of the 500 C operational testing. These results establish a new technology foundation for realizing durable 500 C ICs for combustion-engine sensing and control, deep-well drilling, and other harsh-environment applications.

  8. Effect of fossil fuels on the parameters of CO2 capture.

    PubMed

    Nagy, Tibor; Mizsey, Peter

    2013-08-06

    The carbon dioxide capture is a more and more important issue in the design and operation of boilers and/or power stations because of increasing environmental considerations. Such processes, absorber desorber should be able to cope with flue gases from the use of different fossil primary energy sources, in order to guarantee a flexible, stable, and secure energy supply operation. The changing flue gases have significant influence on the optimal operation of the capture process, that is, where the required heating of the desorber is the minimal. Therefore special considerations are devoted to the proper design and control of such boiler and/or power stations equipped with CO2 capture process.

  9. Surface and Atmospheric Parameter Retrieval From AVIRIS Data: The Importance of Non-Linear Effects

    NASA Technical Reports Server (NTRS)

    Green Robert O.; Moreno, Jose F.

    1996-01-01

    AVIRIS data represent a new and important approach for the retrieval of atmospheric and surface parameters from optical remote sensing data. Not only as a test for future space systems, but also as an operational airborne remote sensing system, the development of algorithms to retrieve information from AVIRIS data is an important step to these new approaches and capabilities. Many things have been learned since AVIRIS became operational, and the successive technical improvements in the hardware and the more sophisticated calibration techniques employed have increased the quality of the data to the point of almost meeting optimum user requirements. However, the potential capabilities of imaging spectrometry over the standard multispectral techniques have still not been fully demonstrated. Reasons for this are the technical difficulties in handling the data, the critical aspect of calibration for advanced retrieval methods, and the lack of proper models with which to invert the measured AVIRIS radiances in all the spectral channels. To achieve the potential of imaging spectrometry, these issues must be addressed. In this paper, an algorithm to retrieve information about both atmospheric and surface parameters from AVIRIS data, by using model inversion techniques, is described. Emphasis is put on the derivation of the model itself as well as proper inversion techniques, robust to noise in the data and an inadequate ability of the model to describe natural variability in the data. The problem of non-linear effects is addressed, as it has been demonstrated to be a major source of error in the numerical values retrieved by more simple, linear-based approaches. Non-linear effects are especially critical for the retrieval of surface parameters where both scattering and absorption effects are coupled, as well as in the cases of significant multiple-scattering contributions. However, sophisticated modeling approaches can handle such non-linear effects, which are especially important over vegetated surfaces. All the data used in this study were acquired during the 1991 Multisensor Airborne Campaign (MAC-Europe), as part of the European Field Experiment on a Desertification-threatened Area (EFEDA), carried out in Spain in June-July 1991.

  10. Maclaurin symmetric mean operators of linguistic intuitionistic fuzzy numbers and their application to multiple-attribute decision-making

    NASA Astrophysics Data System (ADS)

    Liu, Peide; Qin, Xiyou

    2017-11-01

    Linguistic intuitionistic fuzzy number (LIFN) is a special intuitionistic fuzzy number which can more easily describe the vagueness existing in the real decision-making. Maclaurin symmetric mean (MSM) operator has the characteristic of considering the interrelationships among any number of input parameters. In this paper, we extended the MSM operator to the LIFNs and some extended MSM operators for LIFNs were proposed, some new decision-making methods were developed. Firstly, we introduced the definition, score function, properties and operational rules of the LIFNs. Then, we proposed some linguistic intuitionistic fuzzy MSM operators, such as linguistic intuitionistic fuzzy Maclaurin symmetric mean operator, weighted linguistic intuitionistic fuzzy Maclaurin symmetric mean (WLIFMSM) operator, linguistic intuitionistic fuzzy dual Maclaurin symmetric mean operator, weighted linguistic intuitionistic fuzzy dual Maclaurin symmetric mean (WLIFDMSM) operator. In the meantime, we studied some important properties of these operators, and developed some methods based on WLIFMSM operator and WLIFDMSM operator for multi-attribute decision-making. Finally, we use an example to demonstrate the effectiveness of the proposed methods.

  11. Recycle dynamics during centrifugal compressor ESD, start-up and surge control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Botros, K.K.; Jones, B.J.; Richards, D.J.

    1996-12-31

    Recycle systems are important components in the operation of centrifugal compressor stations. They are essential during a start-up operation, for surge protection and for emergency shutdown (ESD). These operations are inherently dynamic where interactions between equipment, control and gas flow occur in a complex manner with the associated risk of compressor surge. Of particular importance are the effects or recycle system capacity, the recycle valve characteristics, check valve dynamic behavior, piping geometry and capacitance around the compressor unit, and the performance characteristics of the centrifugal compressor itself. This paper presents numerical results of the effects of some of these parametersmore » on surge control, ESD and unit startup. These parameters are: (1) The effects of damping the surge control flow signal in an attempt to suppress the signal noise, on the integrity of the surge control system; (2) The effects of recycle valve characteristics, stroke time and valve capacity on ESD; (3) The effects of recycle line size on ESD; and (4) The effects of the recycle valve closing time (or rate) on the startup operation, with the intent of shortening this time to minimum for environmental reasons. Results were obtained from the solution of the pertinent dynamic equations describing the gas and equipment dynamics which has been verified against field and laboratory measurements. The samples presented in this paper were applied to a 24 MW natural gas compressor station on the NOVA Gas Transmission system, and to a scale-down laboratory model. Influence of other parameters from this investigation were published elsewhere and are cited in the reference section.« less

  12. MOSE: A Demonstrator for an Automatic Operational System for the Optical Turbulence Forecast for ESO Sites

    NASA Astrophysics Data System (ADS)

    Masciadri, Elena; Lascaux, F.; Turchi, A.; Fini, L.

    2017-09-01

    "Most of the observations performed with new-generation ground-based telescopes are employing the Service Mode. To optimize the flexible-scheduling of scientific programs and instruments, the optical turbulence (OT) forecast is a must, particularly when observations are supported by adaptive optics (AO) and Interferometry. Reliable OT forecast are crucial to optimize the usage of AO and interferometric facilities which is not possible when using only optical measurements. Numerical techniques are the best placed to achieve such a goal. The MOSE project (MOdeling ESO Sites), co-funded by ESO, aimed at proving the feasibility of the forecast of (1) all the classical atmospheric parameters (such as temperature, wind speed and direction, relative humidity) and (2) the optical turbulence i.e. the CN 2 profiles and all the main integrated astro-climatic parameters derived from the CN 2 (the seeing, the isoplanatic angle, the wavefront coherence time) above the two ESO sites of Cerro Paranal and Cerro Armazones. The proposed technique is based on the use of a non-hydrostatic atmospheric meso-scale model and a dedicated code for the optical turbulence. The final goal of the project aimed at implementing an automatic system for the operational forecasts of the aforementioned parameters to support the astronomical observations above the two sites. MOSE Phase A and B have been completed and a set of dedicated papers have been published on the topic. Model performances have been extensively quantified with several dedicated figures of merit and we proved that our tool is able to provide reliable forecasts of optical turbulence and atmospheric parameters with very satisfactory score of success. This should guarantee us to make a step ahead in the framework of the Service Mode of new generation telescopes. A conceptual design as well as an operational plan of the automatic system has been submitted to ESO as integral part of the feasibility study. We completed a negotiation with ESO for the implementation of the demonstrator of system on March 2016. In this seminar I will review the principles on which the proposed technique is based on; I will briefly review the most important challenges associated to the optical turbulence forecast for ground-based observations, I will summarize the most important results we achieved at conclusion of the feasibility study, how our results open new scenarios for the operation of the most sophisticated AO systems (WFAO), the next steps for the implementation of a demonstrator and plans for the forecast of further parameters. I will conclude showing a few outputs of the operational system we implemented for the LBT in the context of a similar project (ALTA Project). "

  13. Fuzzy logic controller optimization

    DOEpatents

    Sepe, Jr., Raymond B; Miller, John Michael

    2004-03-23

    A method is provided for optimizing a rotating induction machine system fuzzy logic controller. The fuzzy logic controller has at least one input and at least one output. Each input accepts a machine system operating parameter. Each output produces at least one machine system control parameter. The fuzzy logic controller generates each output based on at least one input and on fuzzy logic decision parameters. Optimization begins by obtaining a set of data relating each control parameter to at least one operating parameter for each machine operating region. A model is constructed for each machine operating region based on the machine operating region data obtained. The fuzzy logic controller is simulated with at least one created model in a feedback loop from a fuzzy logic output to a fuzzy logic input. Fuzzy logic decision parameters are optimized based on the simulation.

  14. 40 CFR Table 4 to Subpart Ooo of... - Operating Parameter Levels

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Operating Parameter Levels 4 Table 4 to..., Table 4 Table 4 to Subpart OOO of Part 63—Operating Parameter Levels Device Parameters to be monitored... concentration level or reading at outlet of device Maximum organic HAP concentration or reading a 25 to 50 mm...

  15. New developments in flash radiography

    NASA Astrophysics Data System (ADS)

    Mattsson, Arne

    2007-01-01

    The paper will review some of the latest developments in flash radiography. A series of multi anode tubes has been developed. These are tubes with several x-ray sources within the same vacuum enclosure. The x-ray sources are closely spaced, to come as close as possible to a single source. The x-ray sources are sequentially pulsed, at times that can be independently chosen. Tubes for voltages in the range 150 - 500 kV, with up to eight x-ray sources, will be described. Combining a multi anode tube with an intensified CCD camera, will make it possible to generate short "x-ray movies". A new flash x-ray control system has been developed. The system is operated from a PC or Laptop. All parameters of a multi channel flash x-ray system can be remotely set and monitored. The system will automatically store important operation parameters.

  16. Research on three-dimensional reconstruction method based on binocular vision

    NASA Astrophysics Data System (ADS)

    Li, Jinlin; Wang, Zhihui; Wang, Minjun

    2018-03-01

    As the hot and difficult issue in computer vision, binocular stereo vision is an important form of computer vision,which has a broad application prospects in many computer vision fields,such as aerial mapping,vision navigation,motion analysis and industrial inspection etc.In this paper, a research is done into binocular stereo camera calibration, image feature extraction and stereo matching. In the binocular stereo camera calibration module, the internal parameters of a single camera are obtained by using the checkerboard lattice of zhang zhengyou the field of image feature extraction and stereo matching, adopted the SURF operator in the local feature operator and the SGBM algorithm in the global matching algorithm are used respectively, and the performance are compared. After completed the feature points matching, we can build the corresponding between matching points and the 3D object points using the camera parameters which are calibrated, which means the 3D information.

  17. Fuzzy based attitude controller for flexible spacecraft with on/off thrusters. M.S. Thesis - M.I.T., 1993

    NASA Technical Reports Server (NTRS)

    Knapp, Roger Glenn

    1993-01-01

    A fuzzy-based attitude controller is designed for attitude control of a generic spacecraft with on/off thrusters. The controller is comprised of packages of rules dedicated to addressing different objectives (e.g., disturbance rejection, low fuel consumption, avoiding the excitation of flexible appendages, etc.). These rule packages can be inserted or removed depending on the requirements of the particular spacecraft and are parameterized based on vehicle parameters such as inertia or operational parameters such as the maneuvering rate. Individual rule packages can be 'weighted' relative to each other to emphasize the importance of one objective relative to another. Finally, the fuzzy controller and rule packages are demonstrated using the high-fidelity Space Shuttle Interactive On-Orbit Simulator (IOS) while performing typical on-orbit operations and are subsequently compared with the existing shuttle flight control system performance.

  18. Critical parameters for coarse coal underground slurry haulage systems

    NASA Technical Reports Server (NTRS)

    Maynard, D. P.

    1981-01-01

    Factors are identified which must be considered in meeting the requirements of a transportation system for conveying, in a pipeline, the coal mined by a continuous mining machine to a storage location neat the mine entrance or to a coal preparation plant located near the surface. For successful operation, the slurry haulage the system should be designed to operated in the turbulent flow regime at a flow rate at least 30% greater than the deposition velocity (slurry flow rate at which the solid particles tend to settle in the pipe). The capacity of the haulage system should be compatible with the projected coal output. Partical size, solid concentration, density, and viscosity of the suspension are if importance as well as the selection of the pumps, pipes, and valves. The parameters with the greatest effect on system performance ar flow velocity, pressure coal particle size, and solids concentration.

  19. Preliminary tests of the electrostatic plasma accelerator

    NASA Technical Reports Server (NTRS)

    Aston, G.; Acker, T.

    1990-01-01

    This report describes the results of a program to verify an electrostatic plasma acceleration concept and to identify those parameters most important in optimizing an Electrostatic Plasma Accelerator (EPA) thruster based upon this thrust mechanism. Preliminary performance measurements of thrust, specific impulse and efficiency were obtained using a unique plasma exhaust momentum probe. Reliable EPA thruster operation was achieved using one power supply.

  20. Deinking selectivity (Z-factor) : a new parameter to evaluate the performance of flotation deinking process

    Treesearch

    J.Y. Zhu; F. Tan; K.L. Scallon; Y. Zhao; Y. Deng

    2004-01-01

    Reducing fiber loss is also important to conserve resources and reduce the cost of secondary fibers. This study proposes a deinking selectivity concept that considers both ink removal and fiber yield in determining the performance of deinking operations. The defined deinking selectivity, or Z-factor, is expressed by the ratio of ink removal expressed by the...

  1. An actual load forecasting methodology by interval grey modeling based on the fractional calculus.

    PubMed

    Yang, Yang; Xue, Dingyü

    2017-07-17

    The operation processes for thermal power plant are measured by the real-time data, and a large number of historical interval data can be obtained from the dataset. Within defined periods of time, the interval information could provide important information for decision making and equipment maintenance. Actual load is one of the most important parameters, and the trends hidden in the historical data will show the overall operation status of the equipments. However, based on the interval grey parameter numbers, the modeling and prediction process is more complicated than the one with real numbers. In order not lose any information, the geometric coordinate features are used by the coordinates of area and middle point lines in this paper, which are proved with the same information as the original interval data. The grey prediction model for interval grey number by the fractional-order accumulation calculus is proposed. Compared with integer-order model, the proposed method could have more freedom with better performance for modeling and prediction, which can be widely used in the modeling process and prediction for the small amount interval historical industry sequence samples. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Introduction to polymer-based solid-contact ion-selective electrodes-basic concepts, practical considerations, and current research topics.

    PubMed

    Bieg, Christoph; Fuchsberger, Kai; Stelzle, Martin

    2017-01-01

    This review aims at providing an introductory overview for researchers new to the field of ion-selective electrodes. Both state of the art technology and novel developments towards solid-contact reference (sc-RE) and solid-contact ion selective electrodes (sc-ISE) are discussed. This technology has potentially widespread and important applications provided certain performance criteria can be met. We present basic concepts, operation principles, and theoretical considerations with regard to their function. Analytical performance and suitability of sc-RE and sc-ISE for a given application depend on critical parameters, which are discussed in this review. Comprehensive evaluation of sensor performance along this set of parameters is considered indispensable to allow for a well-founded comparison of different technologies. Methods and materials employed in the construction of sc-RE and sc-ISE, in particular the solid contact and the polymer membrane composite, are presented and discussed in detail. Operation principles beyond potentiometry are mentioned, which would further extend the field of ISE application. Finally, we conclude by directing the reader to important areas for further scientific research and development work considered particularly critical and promising for advancing this field in sensor R&D. Graphical Abstract ᅟ.

  3. Thermal control systems for low-temperature heat rejection on a lunar base

    NASA Technical Reports Server (NTRS)

    Sridhar, K. R.; Gottmann, Matthias

    1992-01-01

    One of the important issues in the lunar base architecture is the design of a Thermal Control System (TCS) to reject the low temperature heat from the base. The TCS ensures that the base and all components inside are maintained within the operating temperature range. A significant portion of the total mass of the TCS is due to the radiator. Shading the radiation from the sun and the hot lunar soil could decrease the radiator operating temperature significantly. Heat pumps have been in use for terrestrial applications. To optimize the mass of the heat pump augmented TCS, all promising options have to be evaluated and compared. Careful attention is given to optimizing system operating parameters, working fluids, and component masses. The systems are modeled for full load operation.

  4. Simulation and optimization of ammonia removal at low temperature for a double channel oxidation ditch based on fully coupled activated sludge model (FCASM): a full-scale study.

    PubMed

    Yang, Min; Sun, Peide; Wang, Ruyi; Han, Jingyi; Wang, Jianqiao; Song, Yingqi; Cai, Jing; Tang, Xiudi

    2013-09-01

    An optimal operating condition for ammonia removal at low temperature, based on fully coupled activated sludge model (FCASM), was determined in a full-scale oxidation ditch process wastewater treatment plant (WWTP). The FCASM-based mechanisms model was calibrated and validated with the data measured on site. Several important kinetic parameters of the modified model were tested through respirometry experiment. Validated model was used to evaluate the relationship between ammonia removal and operating parameters, such as temperature (T), dissolved oxygen (DO), solid retention time (SRT) and hydraulic retention time of oxidation ditch (HRT). The simulated results showed that low temperature have a negative effect on the ammonia removal. Through orthogonal simulation tests of the last three factors and combination with the analysis of variance, the optimal operating mode acquired of DO, SRT, HRT for the WWTP at low temperature were 3.5 mg L(-1), 15 d and 14 h, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Universal MOSFET parameter analyzer

    NASA Astrophysics Data System (ADS)

    Klekachev, A. V.; Kuznetsov, S. N.; Pikulev, V. B.; Gurtov, V. A.

    2006-05-01

    MOSFET analyzer is developed to extract most important parameters of transistors. Instead of routine DC transfer and output characteristics, analyzer provides an evaluation of interface states density by applying charge pumping technique. There are two features that outperform the analyzer among similar products of other vendors. It is compact (100 × 80 × 50 mm 3 in dimensions) and lightweight (< 200 gram) instrument with ultra low power supply (< 2.5 W). The analyzer operates under control of IBM PC by means of USB interface that simultaneously provides power supply. Owing to the USB-compatible microcontroller as the basic element, designed analyzer offers cost-effective solution for diverse applications. The enclosed software runs under Windows 98/2000/XP operating systems, it has convenient graphical interface simplifying measurements for untrained user. Operational characteristics of analyzer are as follows: gate and drain output voltage within limits of +/-10V measuring current range of 1pA ÷ 10 mA; lowest limit of interface states density characterization of ~10 9 cm -2 • eV -1. The instrument was designed on the base of component parts from CYPRESS and ANALOG DEVICES (USA).

  6. Effect of Rock Properties on ROP Modeling Using Statistical and Intelligent Methods: A Case Study of an Oil Well in Southwest of Iran

    NASA Astrophysics Data System (ADS)

    Bezminabadi, Sina Norouzi; Ramezanzadeh, Ahmad; Esmaeil Jalali, Seyed-Mohammad; Tokhmechi, Behzad; Roustaei, Abbas

    2017-03-01

    Rate of penetration (ROP) is one of the key indicators of drilling operation performance. The estimation of ROP in drilling engineering is very important in terms of more accurate assessment of drilling time which affects operation costs. Hence, estimation of a ROP model using operational and environmental parameters is crucial. For this purpose, firstly physical and mechanical properties of rock were derived from well logs. Correlation between the pair data were determined to find influential parameters on ROP. A new ROP model has been developed in one of the Azadegan oil field wells in southwest of Iran. The model has been simulated using Multiple Nonlinear Regression (MNR) and Artificial Neural Network (ANN). By adding the rock properties, the estimation of the models were precisely improved. The results of simulation using MNR and ANN methods showed correlation coefficients of 0.62 and 0.87, respectively. It was concluded that the performance of ANN model in ROP prediction is fairly better than MNR method.

  7. Multiscale Models for the Two-Stream Instability

    NASA Astrophysics Data System (ADS)

    Joseph, Ilon; Dimits, Andris; Banks, Jeffrey; Berger, Richard; Brunner, Stephan; Chapman, Thomas

    2017-10-01

    Interpenetrating streams of plasma found in many important scenarios in nature and in the laboratory can develop kinetic two-stream instabilities that exchange momentum and energy between the streams. A quasilinear model for the electrostatic two-stream instability is under development as a component of a multiscale model that couples fluid simulations to kinetic theory. Parameters of the model will be validated with comparison to full kinetic simulations using LOKI and efficient strategies for numerical solution of the quasilinear model and for coupling to the fluid model will be discussed. Extending the kinetic models into the collisional regime requires an efficient treatment of the collision operator. Useful reductions of the collision operator relative to the full multi-species Landau-Fokker-Plank operator are being explored. These are further motivated both by careful consideration of the parameter orderings relevant to two-stream scenarios and by the particular 2D+2V phase space used in the LOKI code. Prepared for US DOE by LLNL under Contract DE-AC52-07NA27344 and LDRD project 17- ERD-081.

  8. Mathematical model for the analysis of structure and optimal operational parameters of a solid oxide fuel cell generator

    NASA Astrophysics Data System (ADS)

    Coralli, Alberto; Villela de Miranda, Hugo; Espiúca Monteiro, Carlos Felipe; Resende da Silva, José Francisco; Valadão de Miranda, Paulo Emílio

    2014-12-01

    Solid oxide fuel cells are globally recognized as a very promising technology in the area of highly efficient electricity generation with a low environmental impact. This technology can be advantageously implemented in many situations in Brazil and it is well suited to the use of ethanol as a primary energy source, an important feature given the highly developed Brazilian ethanol industry. In this perspective, a simplified mathematical model is developed for a fuel cell and its balance of plant, in order to identify the optimal system structure and the most convenient values for the operational parameters, with the aim of maximizing the global electric efficiency. In this way it is discovered the best operational configuration for the desired application, which is the distributed generation in the concession area of the electricity distribution company Elektro. The data regarding this configuration are required for the continuation of the research project, i.e. the development of a prototype, a cost analysis of the developed system and a detailed perspective of the market opportunities in Brazil.

  9. Selecting the Parameters of the Orientation Engine for a Technological Spacecraft

    NASA Astrophysics Data System (ADS)

    Belousov, A. I.; Sedelnikov, A. V.

    2018-01-01

    This work provides a solution to the issues of providing favorable conditions for carrying out gravitationally sensitive technological processes on board a spacecraft. It is noted that an important role is played by the optimal choice of the orientation system of the spacecraft and the main parameters of the propulsion system as the most important executive organ of the system of orientation and control of the orbital motion of the spacecraft. Advantages and disadvantages of two different orientation systems are considered. One of them assumes the periodic impulsive inclusion of a low thrust liquid rocket engines, the other is based on the continuous operation of the executing elements. A conclusion is drawn on the need to take into account the composition of gravitationally sensitive processes when choosing the orientation system of the spacecraft.

  10. Finite element analysis of history-dependent damage in time-dependent fracture mechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishnaswamy, P.; Brust, F.W.; Ghadiali, N.D.

    1993-11-01

    The demands for structural systems to perform reliably under both severe and changing operating conditions continue to increase. Under these conditions time-dependent straining and history-dependent damage become extremely important. This work focuses on studying creep crack growth using finite element (FE) analysis. Two important issues, namely, (1) the use of history-dependent constitutive laws, and (2) the use of various fracture parameters in predicting creep crack growth, have both been addressed in this work. The constitutive model used here is the one developed by Murakami and Ohno and is based on the concept of a creep hardening surface. An implicit FEmore » algorithm for this model was first developed and verified for simple geometries and loading configurations. The numerical methodology developed here has been used to model stationary and growing cracks in CT specimens. Various fracture parameters such as the C[sub 1], C[sup *], T[sup *], J were used to compare the numerical predictions with experimental results available in the literature. A comparison of the values of these parameters as a function of time has been made for both stationary and growing cracks. The merit of using each of these parameters has also been discussed.« less

  11. Spin-component-scaled Møller-Plesset (SCS-MP) perturbation theory: a generalization of the MP approach with improved properties.

    PubMed

    Fink, Reinhold F

    2010-11-07

    A rigorous perturbation theory is proposed, which has the same second order energy as the spin-component-scaled Møller-Plesset second order (SCS-MP2) method of Grimme [J. Chem. Phys. 118, 9095 (2003)]. This upgrades SCS-MP2 to a systematically improvable, true wave-function-based method. The perturbation theory is defined by an unperturbed Hamiltonian, Ĥ(0), that contains the ordinary Fock operator and spin operators Ŝ(2) that act either on the occupied or the virtual orbital spaces. Two choices for Ĥ(0) are discussed and the importance of a spin-pure Ĥ((0)) is underlined. Like the SCS-MP2 approach, the theory contains two parameters (c(os) and c(ss)) that scale the opposite-spin and the same-spin contributions to the second order perturbation energy. It is shown that these parameters can be determined from theoretical considerations by a Feenberg scaling approach or a fit of the wave functions from the perturbation theory to the exact one from a full configuration interaction calculation. The parameters c(os)=1.15 and c(ss)=0.75 are found to be optimal for a reasonable test set of molecules. The meaning of these parameters and the consequences following from a well defined improved MP method are discussed.

  12. Automated Storm Tracking and the Lightning Jump Algorithm Using GOES-R Geostationary Lightning Mapper (GLM) Proxy Data.

    PubMed

    Schultz, Elise V; Schultz, Christopher J; Carey, Lawrence D; Cecil, Daniel J; Bateman, Monte

    2016-01-01

    This study develops a fully automated lightning jump system encompassing objective storm tracking, Geostationary Lightning Mapper proxy data, and the lightning jump algorithm (LJA), which are important elements in the transition of the LJA concept from a research to an operational based algorithm. Storm cluster tracking is based on a product created from the combination of a radar parameter (vertically integrated liquid, VIL), and lightning information (flash rate density). Evaluations showed that the spatial scale of tracked features or storm clusters had a large impact on the lightning jump system performance, where increasing spatial scale size resulted in decreased dynamic range of the system's performance. This framework will also serve as a means to refine the LJA itself to enhance its operational applicability. Parameters within the system are isolated and the system's performance is evaluated with adjustments to parameter sensitivity. The system's performance is evaluated using the probability of detection (POD) and false alarm ratio (FAR) statistics. Of the algorithm parameters tested, sigma-level (metric of lightning jump strength) and flash rate threshold influenced the system's performance the most. Finally, verification methodologies are investigated. It is discovered that minor changes in verification methodology can dramatically impact the evaluation of the lightning jump system.

  13. Automated Storm Tracking and the Lightning Jump Algorithm Using GOES-R Geostationary Lightning Mapper (GLM) Proxy Data

    NASA Technical Reports Server (NTRS)

    Schultz, Elise; Schultz, Christopher Joseph; Carey, Lawrence D.; Cecil, Daniel J.; Bateman, Monte

    2016-01-01

    This study develops a fully automated lightning jump system encompassing objective storm tracking, Geostationary Lightning Mapper proxy data, and the lightning jump algorithm (LJA), which are important elements in the transition of the LJA concept from a research to an operational based algorithm. Storm cluster tracking is based on a product created from the combination of a radar parameter (vertically integrated liquid, VIL), and lightning information (flash rate density). Evaluations showed that the spatial scale of tracked features or storm clusters had a large impact on the lightning jump system performance, where increasing spatial scale size resulted in decreased dynamic range of the system's performance. This framework will also serve as a means to refine the LJA itself to enhance its operational applicability. Parameters within the system are isolated and the system's performance is evaluated with adjustments to parameter sensitivity. The system's performance is evaluated using the probability of detection (POD) and false alarm ratio (FAR) statistics. Of the algorithm parameters tested, sigma-level (metric of lightning jump strength) and flash rate threshold influenced the system's performance the most. Finally, verification methodologies are investigated. It is discovered that minor changes in verification methodology can dramatically impact the evaluation of the lightning jump system.

  14. Automated Storm Tracking and the Lightning Jump Algorithm Using GOES-R Geostationary Lightning Mapper (GLM) Proxy Data

    PubMed Central

    SCHULTZ, ELISE V.; SCHULTZ, CHRISTOPHER J.; CAREY, LAWRENCE D.; CECIL, DANIEL J.; BATEMAN, MONTE

    2017-01-01

    This study develops a fully automated lightning jump system encompassing objective storm tracking, Geostationary Lightning Mapper proxy data, and the lightning jump algorithm (LJA), which are important elements in the transition of the LJA concept from a research to an operational based algorithm. Storm cluster tracking is based on a product created from the combination of a radar parameter (vertically integrated liquid, VIL), and lightning information (flash rate density). Evaluations showed that the spatial scale of tracked features or storm clusters had a large impact on the lightning jump system performance, where increasing spatial scale size resulted in decreased dynamic range of the system’s performance. This framework will also serve as a means to refine the LJA itself to enhance its operational applicability. Parameters within the system are isolated and the system’s performance is evaluated with adjustments to parameter sensitivity. The system’s performance is evaluated using the probability of detection (POD) and false alarm ratio (FAR) statistics. Of the algorithm parameters tested, sigma-level (metric of lightning jump strength) and flash rate threshold influenced the system’s performance the most. Finally, verification methodologies are investigated. It is discovered that minor changes in verification methodology can dramatically impact the evaluation of the lightning jump system. PMID:29303164

  15. Tool Support for Parametric Analysis of Large Software Simulation Systems

    NASA Technical Reports Server (NTRS)

    Schumann, Johann; Gundy-Burlet, Karen; Pasareanu, Corina; Menzies, Tim; Barrett, Tony

    2008-01-01

    The analysis of large and complex parameterized software systems, e.g., systems simulation in aerospace, is very complicated and time-consuming due to the large parameter space, and the complex, highly coupled nonlinear nature of the different system components. Thus, such systems are generally validated only in regions local to anticipated operating points rather than through characterization of the entire feasible operational envelope of the system. We have addressed the factors deterring such an analysis with a tool to support envelope assessment: we utilize a combination of advanced Monte Carlo generation with n-factor combinatorial parameter variations to limit the number of cases, but still explore important interactions in the parameter space in a systematic fashion. Additional test-cases, automatically generated from models (e.g., UML, Simulink, Stateflow) improve the coverage. The distributed test runs of the software system produce vast amounts of data, making manual analysis impossible. Our tool automatically analyzes the generated data through a combination of unsupervised Bayesian clustering techniques (AutoBayes) and supervised learning of critical parameter ranges using the treatment learner TAR3. The tool has been developed around the Trick simulation environment, which is widely used within NASA. We will present this tool with a GN&C (Guidance, Navigation and Control) simulation of a small satellite system.

  16. Giant omental cyst simulating ascites in a Nigerian child: case report and critique of clinical parameters and investigative modalities.

    PubMed

    Rahman, G A; Johnson, A W

    2001-03-01

    We report our experience of managing an 18-month-old boy in whom a giant omental cyst of 4.6 kg, which constituted 42% of his pre-operative weight, masqueraded as massive ascites. Pre-operative diagnosis and early surgical intervention were facilitated by inter-disciplinary collaboration, ultrasonography and radiological contrast studies. The differential diagnoses and treatment options of omental and mesenteric cysts are discussed. The importance of ultrasonography as an initial imaging tool for arriving at the correct diagnosis in a child with ascites of obscure aetiology is emphasized.

  17. Validation and Verification of Operational Land Analysis Activities at the Air Force Weather Agency

    NASA Technical Reports Server (NTRS)

    Shaw, Michael; Kumar, Sujay V.; Peters-Lidard, Christa D.; Cetola, Jeffrey

    2011-01-01

    The NASA developed Land Information System (LIS) is the Air Force Weather Agency's (AFWA) operational Land Data Assimilation System (LDAS) combining real time precipitation observations and analyses, global forecast model data, vegetation, terrain, and soil parameters with the community Noah land surface model, along with other hydrology module options, to generate profile analyses of global soil moisture, soil temperature, and other important land surface characteristics. (1) A range of satellite data products and surface observations used to generate the land analysis products (2) Global, 1/4 deg spatial resolution (3) Model analysis generated at 3 hours

  18. Operator induced variability in left ventricular measurements with cardiovascular magnetic resonance is improved after training.

    PubMed

    Karamitsos, Theodoros D; Hudsmith, Lucy E; Selvanayagam, Joseph B; Neubauer, Stefan; Francis, Jane M

    2007-01-01

    Accurate and reproducible measurement of left ventricular (LV) mass and function is a significant strength of Cardiovascular Magnetic Resonance (CMR). Reproducibility and accuracy of these measurements is usually reported between experienced operators. However, an increasing number of inexperienced operators are now training in CMR and are involved in post-processing analysis. The aim of the study was to assess the interobserver variability of the manual planimetry of LV contours amongst two experienced and six inexperienced operators before and after a two months training period. Ten healthy normal volunteers (5 men, mean age 34+/-14 years) comprised the study population. LV volumes, mass, and ejection fraction were manually evaluated using Argus software (Siemens Medical Solutions, Erlangen, Germany) for each subject, once by the two experienced and twice by the six inexperienced operators. The mean values of experienced operators were considered the reference values. The agreement between operators was evaluated by means of Bland-Altman analysis. Training involved standardized data acquisition, simulated off-line analysis and mentoring. The trainee operators demonstrated improvement in the measurement of all the parameters compared to the experienced operators. The mean ejection fraction variability improved from 7.2% before training to 3.7% after training (p=0.03). The parameter in which the trainees showed the least improvement was LV mass (from 7.7% to 6.7% after training). The basal slice selection and contour definition were the main sources of errors. An intensive two month training period significantly improved the accuracy of LV functional measurements. Adequate training of new CMR operators is of paramount importance in our aim to maintain the accuracy and high reproducibility of CMR in LV function analysis.

  19. Parameters affecting mechanical and thermal responses in bone drilling: A review.

    PubMed

    Lee, JuEun; Chavez, Craig L; Park, Joorok

    2018-04-11

    Surgical bone drilling is performed variously to correct bone fractures, install prosthetics, or for therapeutic treatment. The primary concern in bone drilling is to extract donor bone sections and create receiving holes without damaging the bone tissue either mechanically or thermally. We review current results from experimental and theoretical studies to investigate the parameters related to such effects. This leads to a comprehensive understanding of the mechanical and thermal aspects of bone drilling to reduce their unwanted complications. This review examines the important bone-drilling parameters of bone structure, drill-bit geometry, operating conditions, and material evacuation, and considers the current techniques used in bone drilling. We then analyze the associated mechanical and thermal effects and their contributions to bone-drilling performance. In this review, we identify a favorable range for each parameter to reduce unwanted complications due to mechanical or thermal effects. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Effect of Stemming to Burden Ratio and Powder Factor on Blast Induced Rock Fragmentation- A Case Study

    NASA Astrophysics Data System (ADS)

    Prasad, Sandeep; Choudhary, B. S.; Mishra, A. K.

    2017-08-01

    Rock fragmentation size is very important parameters for economical point of view in any surface mining. Rock fragment size direct effects on the costs of drilling, blasting, loading, secondary blasting and crushing. The main purpose of this study is to investigate effect of blast design parameters such as burden, blast hole length, stemming length, and powder factor on rock fragmentation. The fragment sizes (MFS, K50, m), and maximum fragment size (K95, m) of rock were determined by using the computer software. For every blast, after blasting operation, the images of whole muck pile are captured and there images were used for fragmentation analysis by using the Fragalyst software. It was observed that the optimal fragment size (MFS, K50, m and maximum fragment size, K95, m) of rock depends strongly on the blast design parameters and explosive parameters.

  1. Effect of tool geometry and cutting parameters on delamination and thrust forces in drilling CFRP/Al-Li

    NASA Astrophysics Data System (ADS)

    El Bouami, Souhail; Habak, Malek; Franz, Gérald; Velasco, Raphaël; Vantomme, Pascal

    2016-10-01

    Composite materials are increasingly used for structural parts in the aeronautic industries. Carbon Fiber-Reinforced Plastics (CFRP) are often used in combination with metallic materials, mostly aluminium alloys. This raises new problems in aircraft assembly. Delamination is one of these problems. In this study, CFRP/Al-Li stacks is used as experimental material for investigation effect of interaction of cutting parameters (cutting speed and feed rate) and tool geometry on delamination and thrust forces in drilling operation. A plan of experiments, based on Taguchi design method, was employed to investigate the influence of tool geometry and in particular the point angle and cutting parameters on delamination and axial effort. The experimental results demonstrate that the feed rate is the major parameter and the importance of tool point angle in delamination and thrust forces in the stacks were shown.

  2. Time trends in prostate cancer surgery: data from an Internet-based multicentre database.

    PubMed

    Schostak, Martin; Baumunk, Daniel; Jagota, Anita; Klopf, Christian; Winter, Alexander; Schäfers, Sebastian; Kössler, Robert; Brennecke, Volker; Fischer, Tom; Hagel, Susanne; Höchel, Steffen; Jäkel, Dierk; Lehsnau, Mike; Krege, Susanne; Rüffert, Bernd; Pretzer, Jana; Becht, Eduard; Zegenhagen, Thomas; Miller, Kurt; Weikert, Steffen

    2012-02-01

    To report our experience with an Internet-based multicentre database that enables tumour documentation, as well as the collection of quality-related parameters and follow-up data, in surgically treated patients with prostate cancer. The system was used to assess the quality of prostate cancer surgery and to analyze possible time-dependent trends in the quality of care. An Internet-based database system enabled a standardized collection of treatment data and clinical findings from the participating urological centres for the years 2005-2009. An analysis was performed aiming to evaluate relevant patient characteristics (age, pathological tumour stage, preoperative International Index of Erectile Function-5 score), intra-operative parameters (operating time, percentage of nerve-sparing operations, complication rate, transfusion rate, number of resected lymph nodes) and postoperative parameters (hospitalization time, re-operation rate, catheter indwelling time). Mean values were calculated and compared for each annual cohort from 2005 to 2008. The overall survival rate was also calculated for a subgroup of the Berlin patients. A total of 914, 1120, 1434 and 1750 patients submitted to radical prostatectomy in 2005, 2006, 2007 and 2008 were documented in the database. The mean age at the time of surgery remained constant (66 years) during the study period. More than half the patients already had erectile dysfunction before surgery (median International Index of Erectile Function-5 score of 19-20). During the observation period, there was a decrease in the percentage of pT2 tumours (1% in 2005; 64% in 2008) and a slight increase in the percentage of patients with lymph node metastases (8% in 2005; 10% in 2008). No time trend was found for the operating time (142-155 min) or the percentage of nerve-sparing operations (72-78% in patients without erectile dysfunction). A decreasing frequency was observed for the parameters: blood transfusions (1.9% in 2005; 0.5% in 2008), postoperative bleeding (2.6%; 1.2%) and re-operations (4.5%; 2.8%). The mean hospitalization time decreased accordingly (10 days in 2005; 8 days in 2008). The examined subcohort had an overall mortality of 1.5% (median follow-up of 3 years). An Internet-based database system for tumour documentation in patients with prostate cancer enables the collection and assessment of important parameters for the quality of care and outcomes. The participating centres show an improvement in the quality of surgical management, including a reduction of the complication rate. © 2011 THE AUTHORS. BJU INTERNATIONAL © 2011 BJU INTERNATIONAL.

  3. An equilibrium-preserving discretization for the nonlinear Rosenbluth-Fokker-Planck operator in arbitrary multi-dimensional geometry

    NASA Astrophysics Data System (ADS)

    Taitano, W. T.; Chacón, L.; Simakov, A. N.

    2017-06-01

    The Fokker-Planck collision operator is an advection-diffusion operator which describe dynamical systems such as weakly coupled plasmas [1,2], photonics in high temperature environment [3,4], biological [5], and even social systems [6]. For plasmas in the continuum, the Fokker-Planck collision operator supports such important physical properties as conservation of number, momentum, and energy, as well as positivity. It also obeys the Boltzmann's H-theorem [7-11], i.e., the operator increases the system entropy while simultaneously driving the distribution function towards a Maxwellian. In the discrete, when these properties are not ensured, numerical simulations can either fail catastrophically or suffer from significant numerical pollution [12,13]. There is strong emphasis in the literature on developing numerical techniques to solve the Fokker-Planck equation while preserving these properties [12-24]. In this short note, we focus on the analytical equilibrium preserving property, meaning that the Fokker-Planck collision operator vanishes when acting on an analytical Maxwellian distribution function. The equilibrium preservation property is especially important, for example, when one is attempting to capture subtle transport physics. Since transport arises from small O (ɛ) corrections to the equilibrium [25] (where ɛ is a small expansion parameter), numerical truncation error present in the equilibrium solution may dominate, overwhelming transport dynamics.

  4. [Heart Rate Variability as an Indicator of Mental Stress in Surgeons - A Review of the Literature].

    PubMed

    Thielmann, B; Boeckelmann, I

    2016-10-01

    The risk assessment of mental stress and early detection of mental illness among surgeons are much debated issues, because the perceived working conditions are important for their own health and that of the patients. Studies of predominantly mental stress are increasing and stay up-to-date. The psychological strain of surgeons is generally regarded as high. In order to objectively determine stress, the heart rate and its variability have been established as parameters. Based on the physiological stress parameter, it is possible to determine the previous level of strain. This work presents a summary of recent scientific studies to explore the stress in operative surgeons on the basis of the physiological stress parameters heart rate (HR) and heart rate variability (HRV). A PubMed search until spring of 2014 was performed. A total of 10 studies were included which deal with the mental stress and strain analysis by surgeons. In this case, 4 studies used only the HR and the further 6 studies used the HRV as a stress parameter. First stress and strain analyses of surgeons have been around since the early 1980s. The studies were usually carried out solely within the sample examined. Control groups have rarely or not been studied. In summary, stressed surgeons offered a higher intraoperative heart rate and a low expression of the HRV. The same was experienced in operating surgeons compared to the assistant surgeons or with inexperienced operating surgeons compared to experienced surgeons. Georg Thieme Verlag KG Stuttgart · New York.

  5. Introduction of organic/hydro-organic matrices in inductively coupled plasma optical emission spectrometry and mass spectrometry: a tutorial review. Part II. Practical considerations.

    PubMed

    Leclercq, Amélie; Nonell, Anthony; Todolí Torró, José Luis; Bresson, Carole; Vio, Laurent; Vercouter, Thomas; Chartier, Frédéric

    2015-07-23

    Inductively coupled plasma optical emission spectrometry (ICP-OES) and mass spectrometry (ICP-MS) are increasingly used to carry out analyses in organic/hydro-organic matrices. The introduction of such matrices into ICP sources is particularly challenging and can be the cause of numerous drawbacks. This tutorial review, divided in two parts, explores the rich literature related to the introduction of organic/hydro-organic matrices in ICP sources. Part I provided theoretical considerations associated with the physico-chemical properties of such matrices, in an attempt to understand the induced phenomena. Part II of this tutorial review is dedicated to more practical considerations on instrumentation, instrumental and operating parameters, as well as analytical strategies for elemental quantification in such matrices. Two important issues are addressed in this part: the first concerns the instrumentation and optimization of instrumental and operating parameters, pointing out (i) the description, benefits and drawbacks of different kinds of nebulization and desolvation devices and the impact of more specific instrumental parameters such as the injector characteristics and the material used for the cone; and, (ii) the optimization of operating parameters, for both ICP-OES and ICP-MS. Even if it is at the margin of this tutorial review, Electrothermal Vaporization and Laser Ablation will also be shortly described. The second issue is devoted to the analytical strategies for elemental quantification in such matrices, with particular insight into the isotope dilution technique, particularly used in speciation analysis by ICP-coupled separation techniques. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Optimization of solid content, carbon/nitrogen ratio and food/inoculum ratio for biogas production from food waste.

    PubMed

    Dadaser-Celik, Filiz; Azgin, Sukru Taner; Yildiz, Yalcin Sevki

    2016-12-01

    Biogas production from food waste has been used as an efficient waste treatment option for years. The methane yields from decomposition of waste are, however, highly variable under different operating conditions. In this study, a statistical experimental design method (Taguchi OA 9 ) was implemented to investigate the effects of simultaneous variations of three parameters on methane production. The parameters investigated were solid content (SC), carbon/nitrogen ratio (C/N) and food/inoculum ratio (F/I). Two sets of experiments were conducted with nine anaerobic reactors operating under different conditions. Optimum conditions were determined using statistical analysis, such as analysis of variance (ANOVA). A confirmation experiment was carried out at optimum conditions to investigate the validity of the results. Statistical analysis showed that SC was the most important parameter for methane production with a 45% contribution, followed by F/I ratio with a 35% contribution. The optimum methane yield of 151 l kg -1 volatile solids (VS) was achieved after 24 days of digestion when SC was 4%, C/N was 28 and F/I were 0.3. The confirmation experiment provided a methane yield of 167 l kg -1 VS after 24 days. The analysis showed biogas production from food waste may be increased by optimization of operating conditions. © The Author(s) 2016.

  7. Surveillance for unattended gas compressor stations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stastny, F.J.

    1974-06-01

    Surveillance devices in unattended compressor stations include those which detect trespassing by unauthorized personnel and those which protect the major operating equipment from damage and/or self-destruction. The latter monitor the critical operating parameters of major equipment and shut down the equipment when these parameters are exceeded; a table presents a function monitor and control list for such devices. Detection and apprehension of unauthorized personnel is a subject of increasing importance to guarantee station operability for reliable service and yet minimize staff personnel. An effective intrusion-detection system must (1) pinpoint the location and indicate the nature of the intrusion and (2)more » detect and respond rapidly to give security personnel a reasonable probability of apprehending or deterring the intruder before damage is done. The 2nd requirement is most difficult to satisfy when the facility is in a remote location, as is usually the case. Some of the parameters to consider in selecting an intrusion-detection system include concealment, legality, active vs. passive detector, back-up power, weather conditions, reliability, maintenance, discrimination, and compromising by intruders. Types of detectors include photo cell, infrared and radio frequency, audio,vibration, taut wire, circuit continuity, radar, and closed-circuit TV. The numerous types of devices and systems available provide sufficient diversity to enable a company to select a single device or a hybrid system which would incorporate several different devices for protecting unattended facilities.« less

  8. Study on Performance of Integration Control by Man and Machine in Stage of Final Approaching for Spaceship Rendezvous and Docking

    NASA Astrophysics Data System (ADS)

    Zhou, Qianxiang; Liu, Zhongqi

    With the development of manned space technology, space rendezvous and docking (RVD) technology will play a more and more important role. The astronauts’ participation in a final close period of man-machine combination control is an important way of RVD technology. Spacecraft RVD control involves control problem of a total of 12 degrees of freedom (location) and attitude which it relative to the inertial space the orbit. Therefore, in order to reduce the astronauts’ operation load and reduce the security requirements to the ground station and achieve an optimal performance of the whole man-machine system, it is need to study how to design the number of control parameters of astronaut or aircraft automatic control system. In this study, with the laboratory conditions on the ground, a method was put forward to develop an experimental system in which the performance evaluation of spaceship RVD integration control by man and machine could be completed. After the RVD precision requirements were determined, 26 male volunteers aged 20-40 took part in the performance evaluation experiments. The RVD integration control success rates and total thruster ignition time were chosen as evaluation indices. Results show that if less than three RVD parameters control tasks were finished by subject and the rest of parameters control task completed by automation, the RVD success rate would be larger than eighty-eight percent and the fuel consumption would be optimized. In addition, there were two subjects who finished the whole six RVD parameters control tasks by enough train. In conclusion, if the astronauts' role should be integrated into the RVD control, it was suitable for them to finish the heading, pitch and roll control in order to assure the man-machine system high performance. If astronauts were needed to finish all parameter control, two points should be taken into consideration, one was enough fuel and another was enough long operation time.

  9. Modeling, Modal Properties, and Mesh Stiffness Variation Instabilities of Planetary Gears

    NASA Technical Reports Server (NTRS)

    Parker, Robert G.; Lin, Jian; Krantz, Timothy L. (Technical Monitor)

    2001-01-01

    Planetary gear noise and vibration are primary concerns in their applications in helicopters, automobiles, aircraft engines, heavy machinery and marine vehicles. Dynamic analysis is essential to the noise and vibration reduction. This work analytically investigates some critical issues and advances the understanding of planetary gear dynamics. A lumped-parameter model is built for the dynamic analysis of general planetary gears. The unique properties of the natural frequency spectra and vibration modes are rigorously characterized. These special structures apply for general planetary gears with cyclic symmetry and, in practically important case, systems with diametrically opposed planets. The special vibration properties are useful for subsequent research. Taking advantage of the derived modal properties, the natural frequency and vibration mode sensitivities to design parameters are investigated. The key parameters include mesh stiffnesses, support/bearing stiffnesses, component masses, moments of inertia, and operating speed. The eigen-sensitivities are expressed in simple, closed-form formulae associated with modal strain and kinetic energies. As disorders (e.g., mesh stiffness variation. manufacturing and assembling errors) disturb the cyclic symmetry of planetary gears, their effects on the free vibration properties are quantitatively examined. Well-defined veering rules are derived to identify dramatic changes of natural frequencies and vibration modes under parameter variations. The knowledge of free vibration properties, eigen-sensitivities, and veering rules provide important information to effectively tune the natural frequencies and optimize structural design to minimize noise and vibration. Parametric instabilities excited by mesh stiffness variations are analytically studied for multi-mesh gear systems. The discrepancies of previous studies on parametric instability of two-stage gear chains are clarified using perturbation and numerical methods. The operating conditions causing parametric instabilities are expressed in closed-form suitable for design guidance. Using the well-defined modal properties of planetary gears, the effects of mesh parameters on parametric instability are analytically identified. Simple formulae are obtained to suppress particular instabilities by adjusting contact ratios and mesh phasing.

  10. Concurrently adjusting interrelated control parameters to achieve optimal engine performance

    DOEpatents

    Jiang, Li; Lee, Donghoon; Yilmaz, Hakan; Stefanopoulou, Anna

    2015-12-01

    Methods and systems for real-time engine control optimization are provided. A value of an engine performance variable is determined, a value of a first operating condition and a value of a second operating condition of a vehicle engine are detected, and initial values for a first engine control parameter and a second engine control parameter are determined based on the detected first operating condition and the detected second operating condition. The initial values for the first engine control parameter and the second engine control parameter are adjusted based on the determined value of the engine performance variable to cause the engine performance variable to approach a target engine performance variable. In order to cause the engine performance variable to approach the target engine performance variable, adjusting the initial value for the first engine control parameter necessitates a corresponding adjustment of the initial value for the second engine control parameter.

  11. 40 CFR 60.2945 - Is there a minimum amount of operating parameter monitoring data I must obtain?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... parameter monitoring data I must obtain? 60.2945 Section 60.2945 Protection of Environment ENVIRONMENTAL... Operator Training and Qualification Monitoring § 60.2945 Is there a minimum amount of operating parameter monitoring data I must obtain? (a) Except for monitor malfunctions, associated repairs, and required quality...

  12. 40 CFR 60.2945 - Is there a minimum amount of operating parameter monitoring data I must obtain?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... parameter monitoring data I must obtain? 60.2945 Section 60.2945 Protection of Environment ENVIRONMENTAL... Operator Training and Qualification Monitoring § 60.2945 Is there a minimum amount of operating parameter monitoring data I must obtain? (a) Except for monitor malfunctions, associated repairs, and required quality...

  13. 40 CFR 60.2945 - Is there a minimum amount of operating parameter monitoring data I must obtain?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... parameter monitoring data I must obtain? 60.2945 Section 60.2945 Protection of Environment ENVIRONMENTAL... Operator Training and Qualification Monitoring § 60.2945 Is there a minimum amount of operating parameter monitoring data I must obtain? (a) Except for monitor malfunctions, associated repairs, and required quality...

  14. Influence of regenerator void volume on performance of a precooled 4 K Stirling type pulse tube cryocooler

    NASA Astrophysics Data System (ADS)

    Li, Zhuopei; Jiang, Yanlong; Gan, Zhihua; Qiu, Limin; Chen, Jie

    2015-09-01

    Stirling type pulse tube cryocoolers (SPTC), typically operating at 30-60 Hz, have the advantage of compact structure, light weight, and long life compared with Gifford-McMahon type (1-2 Hz) PTC (GMPTC). The behavior of flow and heat transfer in the regenerator of a 4 K SPTC deviates from that at warmer temperatures and low frequencies. In this paper the behavior of 4 K regenerator at high frequencies is investigated based on a single-stage 4 K SPTC precooled by a two-stage GMPTC. The 4 K SPTC and the GMPTC is thermally coupled with two thermal bridges. The 4 K SPTC uses a 10 K cold inertance tube as phase shifter to improve phase relationship between mass flow and pressure. The regenerator void volume is an important factor that significantly influences the heat transfer between regenerator matrix and working fluid helium, pressure drop along the regenerator, and phase shift between mass flow and pressure. In this paper, influence of regenerator void volume on the performance of the 4 K SPTC with different operating parameters including operating frequencies and average pressure is studied theoretically and experimentally. The first and second precooling powers provided by the GMPTC are obtained which are important parameters to evaluate the efficiency of the whole 4 K system with precooling. The results of the regenerator void volume are given and discussed in normalized form for general use.

  15. A sensitivity analysis of process design parameters, commodity prices and robustness on the economics of odour abatement technologies.

    PubMed

    Estrada, José M; Kraakman, N J R Bart; Lebrero, Raquel; Muñoz, Raúl

    2012-01-01

    The sensitivity of the economics of the five most commonly applied odour abatement technologies (biofiltration, biotrickling filtration, activated carbon adsorption, chemical scrubbing and a hybrid technology consisting of a biotrickling filter coupled with carbon adsorption) towards design parameters and commodity prices was evaluated. Besides, the influence of the geographical location on the Net Present Value calculated for a 20 years lifespan (NPV20) of each technology and its robustness towards typical process fluctuations and operational upsets were also assessed. This comparative analysis showed that biological techniques present lower operating costs (up to 6 times) and lower sensitivity than their physical/chemical counterparts, with the packing material being the key parameter affecting their operating costs (40-50% of the total operating costs). The use of recycled or partially treated water (e.g. secondary effluent in wastewater treatment plants) offers an opportunity to significantly reduce costs in biological techniques. Physical/chemical technologies present a high sensitivity towards H2S concentration, which is an important drawback due to the fluctuating nature of malodorous emissions. The geographical analysis evidenced high NPV20 variations around the world for all the technologies evaluated, but despite the differences in wage and price levels, biofiltration and biotrickling filtration are always the most cost-efficient alternatives (NPV20). When, in an economical evaluation, the robustness is as relevant as the overall costs (NPV20), the hybrid technology would move up next to BTF as the most preferred technologies. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Investigation of methods for sterilization of potting compounds and mated surfaces

    NASA Technical Reports Server (NTRS)

    Tulius, J. J.; Daley, D. J.; Phillips, G. B.

    1972-01-01

    The feasibility of using formaldehyde-liberating synthetic resins or polymers for the sterilization of potting compounds, mated and occluded areas, and spacecraft surfaces was demonstrated. The detailed study of interrelated parameters of formaldehyde gas sterilization revealed that efficient cycle conditions can be developed for the sterilization of spacecraft components. It was determined that certain parameters were more important than others in the development of cycles for specific applications. The use of formaldehyde gas for the sterilization of spacecraft components provides NASA with a highly efficient method which is inexpensive, reproducible, easily quantitated, materials compatible, operationally simple, generally non-hazardous and not thermally destructive.

  17. The Total Gaussian Class of Quasiprobabilities and its Relation to Squeezed-State Excitations

    NASA Technical Reports Server (NTRS)

    Wuensche, Alfred

    1996-01-01

    The class of quasiprobabilities obtainable from the Wigner quasiprobability by convolutions with the general class of Gaussian functions is investigated. It can be described by a three-dimensional, in general, complex vector parameter with the property of additivity when composing convolutions. The diagonal representation of this class of quasiprobabilities is connected with a generalization of the displaced Fock states in direction of squeezing. The subclass with real vector parameter is considered more in detail. It is related to the most important kinds of boson operator ordering. The properties of a specific set of discrete excitations of squeezed coherent states are given.

  18. Influence of Constraint in Parameter Space on Quantum Games

    NASA Astrophysics Data System (ADS)

    Zhao, Hai-Jun; Fang, Xi-Ming

    2004-04-01

    We study the influence of the constraint in the parameter space on quantum games. Decomposing SU(2) operator into product of three rotation operators and controlling one kind of them, we impose a constraint on the parameter space of the players' operator. We find that the constraint can provide a tuner to make the bilateral payoffs equal, so that the mismatch of the players' action at multi-equilibrium could be avoided. We also find that the game exhibits an intriguing structure as a function of the parameter of the controlled operators, which is useful for making game models.

  19. Modeling Mass and Thermal Transport in Thin Porous Media of PEM Fuel Cells

    NASA Astrophysics Data System (ADS)

    Konduru, Vinaykumar

    Water transport in the Porous Transport Layer (PTL) plays an important role in the efficient operation of polymer electrolyte membrane fuel cells (PEMFC). Excessive water content as well as dry operating conditions are unfavorable for efficient and reliable operation of the fuel cell. The effect of thermal conductivity and porosity on water management are investigated by simulating two-phase flow in the PTL of the fuel cell using a network model. In the model, the PTL consists of a pore-phase and a solid-phase. Different models of the PTLs are generated using independent Weibull distributions for the pore-phase and the solid-phase. The specific arrangement of the pores and solid elements is varied to obtain different PTL realizations for the same Weibull parameters. The properties of PTL are varied by changing the porosity and thermal conductivity. The parameters affecting operating conditions include the temperature, relative humidity in the flow channel and voltage and current density. In addition, a novel high-speed capable Surface Plasmon Resonance (SPR) microscope was built based on Kretschmann's configuration utilizing a collimated Kohler illumination. The SPR allows thin film characterization in a thickness of approximately 0-200nm by measuring the changes in the refractive index. Various independent experiments were run to measure film thickness during droplet coalescence during condensation.

  20. Investigation on the influence of electrode geometry on characteristics of coaxial dielectric barrier discharge reactor driven by an oscillating microsecond pulsed power supply

    NASA Astrophysics Data System (ADS)

    Miao, Chuanrun; Liu, Feng; Wang, Qian; Cai, Meiling; Fang, Zhi

    2018-03-01

    In this paper, an oscillating microsecond pulsed power supply with rise time of several tens of nanosecond (ns) is used to excite a coaxial DBD with double layer dielectric barriers. The effects of various electrode geometries by changing the size of inner quartz tube (different electrode gaps) on the discharge uniformity, power deposition, energy efficiency, and operation temperature are investigated by electrical, optical, and temperature diagnostics. The electrical parameters of the coaxial DBD are obtained from the measured applied voltage and current using an equivalent electrical model. The energy efficiency and the power deposition in air gap of coaxial DBD with various electrode geometries are also obtained with the obtained electrical parameters, and the heat loss and operation temperature are analyzed by a heat conduction model. It is found that at the same applied voltage, with the increasing of the air gap, the discharge uniformity becomes worse and the discharge power deposition and the energy efficiency decrease. At 2.5 mm air gap and 24 kV applied voltage, the energy efficiency of the coaxial DBD reaches the maximum value of 68.4%, and the power deposition in air gap is 23.6 W and the discharge uniformity is the best at this case. The corresponding operation temperature of the coaxial DBD reaches 64.3 °C after 900 s operation and the temperature of the inner dielectric barrier is 114.4 °C under thermal balance. The experimental results provide important experimental references and are important to optimize the design and the performance of coaxial DBD reactor.

  1. Rotor Wake Vortex Definition: Initial Evaluation of 3-C PIV Results of the Hart-II Study

    NASA Technical Reports Server (NTRS)

    Burley, Casey L.; Brooks, Thomas F.; vanderWall, Berend; Richard, Hughes; Raffel, Markus; Beaumier, Philippe; Delrieux, Yves; Lim, Joon W.; Yu, Yung H.; Tung, Chee

    2002-01-01

    An initial evaluation is made of extensive three-component (3C) particle image velocimetry (PIV) measurements within the wake across a rotor disk plane. The model is a 40 percent scale BO-105 helicopter main rotor in forward flight simulation. This study is part of the HART II test program conducted in the German-Dutch Wind Tunnel (DNW). Included are wake vortex field measurements over the advancing and retreating sides of the rotor operating at a typical descent landing condition important for impulsive blade-vortex interaction (BVI) noise. Also included are advancing side results for rotor angle variations from climb to steep descent. Using detailed PIV vector maps of the vortex fields, methods of extracting key vortex parameters are examined and a new method was developed and evaluated. An objective processing method, involving a center-of-vorticity criterion and a vorticity 'disk' integration, was used to determine vortex core size, strength, core velocity distribution characteristics, and unsteadiness. These parameters are mapped over the rotor disk and offer unique physical insight for these parameters of importance for rotor noise and vibration prediction.

  2. Optimal Energy Consumption Analysis of Natural Gas Pipeline

    PubMed Central

    Liu, Enbin; Li, Changjun; Yang, Yi

    2014-01-01

    There are many compressor stations along long-distance natural gas pipelines. Natural gas can be transported using different boot programs and import pressures, combined with temperature control parameters. Moreover, different transport methods have correspondingly different energy consumptions. At present, the operating parameters of many pipelines are determined empirically by dispatchers, resulting in high energy consumption. This practice does not abide by energy reduction policies. Therefore, based on a full understanding of the actual needs of pipeline companies, we introduce production unit consumption indicators to establish an objective function for achieving the goal of lowering energy consumption. By using a dynamic programming method for solving the model and preparing calculation software, we can ensure that the solution process is quick and efficient. Using established optimization methods, we analyzed the energy savings for the XQ gas pipeline. By optimizing the boot program, the import station pressure, and the temperature parameters, we achieved the optimal energy consumption. By comparison with the measured energy consumption, the pipeline now has the potential to reduce energy consumption by 11 to 16 percent. PMID:24955410

  3. Study of Material Densification of In718 in the Higher Throughput Parameter Regime

    NASA Technical Reports Server (NTRS)

    Cordner, Samuel

    2016-01-01

    Selective Laser Melting (SLM) is a powder bed fusion additive manufacturing process used increasingly in the aerospace industry to reduce the cost, weight, and fabrication time for complex propulsion components. Previous optimization studies for SLM using the Concept Laser M1 and M2 machines at NASA Marshall Space Flight Center have centered on machine default parameters. The objective of this project is to characterize how heat treatment affects density and porosity from a microscopic point of view. This is performs using higher throughput parameters (a previously unexplored region of the manufacturing operating envelope for this application) on material consolidation. Density blocks were analyzed to explore the relationship between build parameters (laser power, scan speed, and hatch spacing) and material consolidation (assessed in terms of density and porosity). The study also considers the impact of post-processing, specifically hot isostatic pressing and heat treatment, as well as deposition pattern on material consolidation in the higher energy parameter regime. Metallurgical evaluation of specimens will also be presented. This work will contribute to creating a knowledge base (understanding material behavior in all ranges of the AM equipment operating envelope) that is critical to transitioning AM from the custom low rate production sphere it currently occupies to the world of mass high rate production, where parts are fabricated at a rapid rate with confidence that they will meet or exceed all stringent functional requirements for spaceflight hardware. These studies will also provide important data on the sensitivity of material consolidation to process parameters that will inform the design and development of future flight articles using SLM.

  4. The Impact of Uncertain Physical Parameters on HVAC Demand Response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yannan; Elizondo, Marcelo A.; Lu, Shuai

    HVAC units are currently one of the major resources providing demand response (DR) in residential buildings. Models of HVAC with DR function can improve understanding of its impact on power system operations and facilitate the deployment of DR technologies. This paper investigates the importance of various physical parameters and their distributions to the HVAC response to DR signals, which is a key step to the construction of HVAC models for a population of units with insufficient data. These parameters include the size of floors, insulation efficiency, the amount of solid mass in the house, and efficiency of the HVAC units.more » These parameters are usually assumed to follow Gaussian or Uniform distributions. We study the effect of uncertainty in the chosen parameter distributions on the aggregate HVAC response to DR signals, during transient phase and in steady state. We use a quasi-Monte Carlo sampling method with linear regression and Prony analysis to evaluate sensitivity of DR output to the uncertainty in the distribution parameters. The significance ranking on the uncertainty sources is given for future guidance in the modeling of HVAC demand response.« less

  5. Development of ITER non-activation phase operation scenarios

    DOE PAGES

    Kim, S. H.; Poli, F. M.; Koechl, F.; ...

    2017-06-29

    Non-activation phase operations in ITER in hydrogen (H) and helium (He) will be important for commissioning of tokamak systems, such as diagnostics, heating and current drive (HCD) systems, coils and plasma control systems, and for validation of techniques necessary for establishing operations in DT. The assessment of feasible HCD schemes at various toroidal fields (2.65–5.3 T) has revealed that the previously applied assumptions need to be refined for the ITER non-activation phase H/He operations. A study of the ranges of plasma density and profile shape using the JINTRAC suite of codes has indicated that the hydrogen pellet fuelling into Hemore » plasmas should be utilized taking the optimization of IC power absorption, neutral beam shine-through density limit and H-mode access into account. The EPED1 estimation of the edge pedestal parameters has been extended to various H operation conditions, and the combined EPED1 and SOLPS estimation has provided guidance for modelling the edge pedestal in H/He operations. The availability of ITER HCD schemes, ranges of achievable plasma density and profile shape, and estimation of the edge pedestal parameters for H/He plasmas have been integrated into various time-dependent tokamak discharge simulations. In this paper, various H/He scenarios at a wide range of plasma current (7.5–15 MA) and field (2.65–5.3 T) have been developed for the ITER non-activation phase operation, and the sensitivity of the developed scenarios to the used assumptions has been investigated to provide guidance for further development.« less

  6. Development of ITER non-activation phase operation scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, S. H.; Poli, F. M.; Koechl, F.

    Non-activation phase operations in ITER in hydrogen (H) and helium (He) will be important for commissioning of tokamak systems, such as diagnostics, heating and current drive (HCD) systems, coils and plasma control systems, and for validation of techniques necessary for establishing operations in DT. The assessment of feasible HCD schemes at various toroidal fields (2.65–5.3 T) has revealed that the previously applied assumptions need to be refined for the ITER non-activation phase H/He operations. A study of the ranges of plasma density and profile shape using the JINTRAC suite of codes has indicated that the hydrogen pellet fuelling into Hemore » plasmas should be utilized taking the optimization of IC power absorption, neutral beam shine-through density limit and H-mode access into account. The EPED1 estimation of the edge pedestal parameters has been extended to various H operation conditions, and the combined EPED1 and SOLPS estimation has provided guidance for modelling the edge pedestal in H/He operations. The availability of ITER HCD schemes, ranges of achievable plasma density and profile shape, and estimation of the edge pedestal parameters for H/He plasmas have been integrated into various time-dependent tokamak discharge simulations. In this paper, various H/He scenarios at a wide range of plasma current (7.5–15 MA) and field (2.65–5.3 T) have been developed for the ITER non-activation phase operation, and the sensitivity of the developed scenarios to the used assumptions has been investigated to provide guidance for further development.« less

  7. Elements of an algorithm for optimizing a parameter-structural neural network

    NASA Astrophysics Data System (ADS)

    Mrówczyńska, Maria

    2016-06-01

    The field of processing information provided by measurement results is one of the most important components of geodetic technologies. The dynamic development of this field improves classic algorithms for numerical calculations in the aspect of analytical solutions that are difficult to achieve. Algorithms based on artificial intelligence in the form of artificial neural networks, including the topology of connections between neurons have become an important instrument connected to the problem of processing and modelling processes. This concept results from the integration of neural networks and parameter optimization methods and makes it possible to avoid the necessity to arbitrarily define the structure of a network. This kind of extension of the training process is exemplified by the algorithm called the Group Method of Data Handling (GMDH), which belongs to the class of evolutionary algorithms. The article presents a GMDH type network, used for modelling deformations of the geometrical axis of a steel chimney during its operation.

  8. Systematization of material consumption norms in spray-coating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lelyukh, I.M.

    1995-03-01

    Regulating the consumption of materials is particularly important in the economics and organization of spray-coating operations. Three main factors are taken into account when establishing norms for the consumption of the materials of the coating: the physicomechanical and chemical properties of the particles; the shape of the substrate; the dimensions of the substrate. The most important parameters of the spraying regime are the velocity and temperature of the particles. Given the same velocity, the optimum particle kinetic energy for producing a strong bond with the substrate depends on particle shape and size and the density of the materials being spray-coated.more » These parameters determine the heating of the particles in the plasma jet or, in the case of the use of a detonation gun, during collision with the surface of the part. Powders of fragmented or drop shape are used to obtain coatings by spraying.« less

  9. Effects of System Timing Parameters on Operator Performance in a Personnel Records Task

    DTIC Science & Technology

    1981-03-01

    work sampling, embedded performance measures, and operator satisfaction ratings) are needed to provide a complete analysis of the effects of the four...HFL-8 l-l/NPRDC-8 1-1 March 1981 EFFECTS OF SYSTEM TIMING PARAMETERS ON OPERATOR PERFORMANCE IN A PERSONNEL RECORDS TASK Robert C. Williges Beverly H...and Subtitle) S. TYPE OF REPORT & PERIOD COVERED EFFECTS OF SYSTEM TIMING PARAMETERS ON OPERATOR PERFORMANCE IN A PERSONNEL RECORDS TASK Final

  10. Selection of operating parameters on the basis of hydrodynamics in centrifugal partition chromatography for the purification of nybomycin derivatives.

    PubMed

    Adelmann, S; Baldhoff, T; Koepcke, B; Schembecker, G

    2013-01-25

    The selection of solvent systems in centrifugal partition chromatography (CPC) is the most critical point in setting up a separation. Therefore, lots of research was done on the topic in the last decades. But the selection of suitable operating parameters (mobile phase flow rate, rotational speed and mode of operation) with respect to hydrodynamics and pressure drop limit in CPC is still mainly driven by experience of the chromatographer. In this work we used hydrodynamic analysis for the prediction of most suitable operating parameters. After selection of different solvent systems with respect to partition coefficients for the target compound the hydrodynamics were visualized. Based on flow pattern and retention the operating parameters were selected for the purification runs of nybomycin derivatives that were carried out with a 200 ml FCPC(®) rotor. The results have proven that the selection of optimized operating parameters by analysis of hydrodynamics only is possible. As the hydrodynamics are predictable by the physical properties of the solvent system the optimized operating parameters can be estimated, too. Additionally, we found that dispersion and especially retention are improved if the less viscous phase is mobile. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  11. Mapping an operator's perception of a parameter space

    NASA Technical Reports Server (NTRS)

    Pew, R. W.; Jagacinski, R. J.

    1972-01-01

    Operators monitored the output of two versions of the crossover model having a common random input. Their task was to make discrete, real-time adjustments of the parameters k and tau of one of the models to make its output time history converge to that of the other, fixed model. A plot was obtained of the direction of parameter change as a function of position in the (tau, k) parameter space relative to the nominal value. The plot has a great deal of structure and serves as one form of representation of the operator's perception of the parameter space.

  12. Biomechanical study of anterior spinal instrumentation configurations

    PubMed Central

    Cloutier, Luc P.; Grimard, Guy

    2007-01-01

    The biomechanical impact of the surgical instrumentation configuration for spine surgery is hard to evaluate by the surgeons in pre-operative situation. This study was performed to evaluate different configurations of the anterior instrumentation of the spine, with simulated post-operative conditions, to recommend configurations to the surgeons. Four biomechanical parameters of the anterior instrumentation with simulated post-operative conditions have been studied. They were the screw diameter (5.5–7.5 mm) and its angle (0°–22.5°), the bone grip of the screw (mono–bi cortical) and the amount of instrumented levels (5–8). Eight configurations were tested using an experimental plan with instrumented synthetic spinal models. A follower load was applied and the models were loaded in flexion, torsion and lateral bending. At 5 Nm, average final stiffness was greater in flexion (0.92 Nm/°) than in lateral bending (0.56 Nm/°) and than in torsion (0.26 Nm/°). The screw angle was the parameter influencing the most the final stiffness and the coupling behaviors. It has a significant effect (p ≤ 0.05) on increasing the final stiffness for a 22.5° screw angle in flexion and for a coronal screw angle (0°) in lateral bending. The bi-cortical bone grip of the screw significantly increased the initial stiffness in flexion and lateral bending. Mathematical models representing the behavior of an instrumented spinal model have been used to identify optimal instrumentation configurations. A variation of the angle of the screw from 22.5° to 0° gave a global final stiffness diminution of 13% and a global coupling diminution of 40%. The screw angle was the most important parameter affecting the stiffness and the coupling of the instrumented spine with simulated post-operative conditions. Information about the effect of four different biomechanical parameters will be helpful in preoperative situations to guide surgeons in their clinical choices. PMID:17205240

  13. Concept for an International Standard related to Space Weather Effects on Space Systems

    NASA Astrophysics Data System (ADS)

    Tobiska, W. Kent; Tomky, Alyssa

    There is great interest in developing an international standard related to space weather in order to specify the tools and parameters needed for space systems operations. In particular, a standard is important for satellite operators who may not be familiar with space weather. In addition, there are others who participate in space systems operations that would also benefit from such a document. For example, the developers of software systems that provide LEO satellite orbit determination, radio communication availability for scintillation events (GEO-to-ground L and UHF bands), GPS uncertainties, and the radiation environment from ground-to-space for commercial space tourism. These groups require recent historical data, current epoch specification, and forecast of space weather events into their automated or manual systems. Other examples are national government agencies that rely on space weather data provided by their organizations such as those represented in the International Space Environment Service (ISES) group of 14 national agencies. Designers, manufacturers, and launchers of space systems require real-time, operational space weather parameters that can be measured, monitored, or built into automated systems. Thus, a broad scope for the document will provide a useful international standard product to a variety of engineering and science domains. The structure of the document should contain a well-defined scope, consensus space weather terms and definitions, and internationally accepted descriptions of the main elements of space weather, its sources, and its effects upon space systems. Appendices will be useful for describing expanded material such as guidelines on how to use the standard, how to obtain specific space weather parameters, and short but detailed descriptions such as when best to use some parameters and not others; appendices provide a path for easily updating the standard since the domain of space weather is rapidly changing with new advances in scientific and engineering understanding. We present a draft outline that can be used as the basis for such a standard.

  14. Study on temperature measurement of gas turbine blade based on analysis of error caused by the reflected radiation and emission angle

    NASA Astrophysics Data System (ADS)

    Li, Dong; Feng, Chi; Gao, Shan; Chen, Liwei; Daniel, Ketui

    2018-06-01

    Accurate measurement of gas turbine blade temperature is of great significance as far as blade health monitoring is concerned. An important method for measuring this temperature is the use of a radiation pyrometer. In this research, error of the pyrometer caused by reflected radiation from the surfaces surrounding the target and the emission angle of the target was analyzed. Important parameters for this analysis were the view factor between interacting surfaces, spectral directional emissivity, pyrometer operating wavelength and the surface temperature distribution on the blades and the vanes. The interacting surface of the rotor blade and the vane models used were discretized using triangular surface elements from which contour integral was used to calculate the view factor between the surface elements. Spectral directional emissivities were obtained from an experimental setup of Ni based alloy samples. A pyrometer operating wavelength of 1.6 μm was chosen. Computational fluid dynamics software was used to simulate the temperature distribution of the rotor blade and the guide vane based on the actual gas turbine input parameters. Results obtained in this analysis show that temperature error introduced by reflected radiation and emission angle ranges from  ‑23 K to 49 K.

  15. Colloidal Fouling of Nanofiltration Membranes: Development of a Standard Operating Procedure

    PubMed Central

    Al Mamun, Md Abdullaha; Bhattacharjee, Subir; Pernitsky, David; Sadrzadeh, Mohtada

    2017-01-01

    Fouling of nanofiltration (NF) membranes is the most significant obstacle to the development of a sustainable and energy-efficient NF process. Colloidal fouling and performance decline in NF processes is complex due to the combination of cake formation and salt concentration polarization effects, which are influenced by the properties of the colloids and the membrane, the operating conditions of the test, and the solution chemistry. Although numerous studies have been conducted to investigate the influence of these parameters on the performance of the NF process, the importance of membrane preconditioning (e.g., compaction and equilibrating with salt water), as well as the determination of key parameters (e.g., critical flux and trans-membrane osmotic pressure) before the fouling experiment have not been reported in detail. The aim of this paper is to present a standard experimental and data analysis protocol for NF colloidal fouling experiments. The developed methodology covers preparation and characterization of water samples and colloidal particles, pre-test membrane compaction and critical flux determination, measurement of experimental data during the fouling test, and the analysis of that data to determine the relative importance of various fouling mechanisms. The standard protocol is illustrated with data from a series of flat sheet, bench-scale experiments. PMID:28106775

  16. Learning Aggregation Operators for Preference Modeling

    NASA Astrophysics Data System (ADS)

    Torra, Vicenç

    Aggregation operators are useful tools for modeling preferences. Such operators include weighted means, OWA and WOWA operators, as well as some fuzzy integrals, e.g. Choquet and Sugeno integrals. To apply these operators in an effective way, their parameters have to be properly defined. In this chapter, we review some of the existing tools for learning these parameters from examples.

  17. Natural Environmental Service Support to NASA Vehicle, Technology, and Sensor Development Programs

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The research performed under this contract involved definition of the natural environmental parameters affecting the design, development, and operation of space and launch vehicles. The Universities Space Research Association (USRA) provided the manpower and resources to accomplish the following tasks: defining environmental parameters critical for design, development, and operation of launch vehicles; defining environmental forecasts required to assure optimal utilization of launch vehicles; and defining orbital environments of operation and developing models on environmental parameters affecting launch vehicle operations.

  18. Downhole telemetry system

    DOEpatents

    Normann, R.A.; Kadlec, E.R.

    1994-11-08

    A downhole telemetry system is described for optically communicating to the surface operating parameters of a drill bit during ongoing drilling operations. The downhole telemetry system includes sensors mounted with a drill bit for monitoring at least one operating parameter of the drill bit and generating a signal representative thereof. The downhole telemetry system includes means for transforming and optically communicating the signal to the surface as well as means at the surface for producing a visual display of the optically communicated operating parameters of the drill bit. 7 figs.

  19. Downhole telemetry system

    DOEpatents

    Normann, Randy A.; Kadlec, Emil R.

    1994-01-01

    A downhole telemetry system is described for optically communicating to the surface operating parameters of a drill bit during ongoing drilling operations. The downhole telemetry system includes sensors mounted with a drill bit for monitoring at least one operating parameter of the drill bit and generating a signal representative thereof. The downhole telemetry system includes means for transforming and optically communicating the signal to the surface as well as means at the surface for producing a visual display of the optically communicated operating parameters of the drill bit.

  20. Thermophilic versus Mesophilic Anaerobic Digestion of Sewage Sludge: A Comparative Review

    PubMed Central

    Gebreeyessus, Getachew D.; Jenicek, Pavel

    2016-01-01

    During advanced biological wastewater treatment, a huge amount of sludge is produced as a by-product of the treatment process. Hence, reuse and recovery of resources and energy from the sludge is a big technological challenge. The processing of sludge produced by Wastewater Treatment Plants (WWTPs) is massive, which takes up a big part of the overall operational costs. In this regard, anaerobic digestion (AD) of sewage sludge continues to be an attractive option to produce biogas that could contribute to the wastewater management cost reduction and foster the sustainability of those WWTPs. At the same time, AD reduces sludge amounts and that again contributes to the reduction of the sludge disposal costs. However, sludge volume minimization remains, a challenge thus improvement of dewatering efficiency is an inevitable part of WWTP operation. As a result, AD parameters could have significant impact on sludge properties. One of the most important operational parameters influencing the AD process is temperature. Consequently, the thermophilic and the mesophilic modes of sludge AD are compared for their pros and cons by many researchers. However, most comparisons are more focused on biogas yield, process speed and stability. Regarding the biogas yield, thermophilic sludge AD is preferred over the mesophilic one because of its faster biochemical reaction rate. Equally important but not studied sufficiently until now was the influence of temperature on the digestate quality, which is expressed mainly by the sludge dewateringability, and the reject water quality (chemical oxygen demand, ammonia nitrogen, and pH). In the field of comparison of thermophilic and mesophilic digestion process, few and often inconclusive research, unfortunately, has been published so far. Hence, recommendations for optimized technologies have not yet been done. The review presented provides a comparison of existing sludge AD technologies and the gaps that need to be filled so as to optimize the connection between the two systems. In addition, many other relevant AD process parameters, including sludge rheology, which need to be addressed, are also reviewed and presented. PMID:28952577

  1. Geological and petrological considerations relevant to the disposal of radioactive wastes by hydraulic fracturing: an example at the US Department of Energy's Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haase, C.S.

    1983-01-01

    At Oak Ridge National Laboratory the Pumpkin Valley Shale is used as a host formation for hydraulic fracturing waste disposal. Determination of the relationships between the distribution of different lithologies and porosity-permeability trends within this host formation allows these properties, important to hydraulic fracturing operations, to be related to measurable and mappable geological and petrological parameters. It also permits extrapolation of such patterns to little-studied portions of the Pumpkin Valley Shale. Such knowledge better allows for the satisfactory operation and assessment of the hydraulic fracturing at Oak Ridge National Laboratory.

  2. A frequency control method for regulating wireless power to implantable devices.

    PubMed

    Ping Si; Hu, A P; Malpas, S; Budgett, D

    2008-03-01

    This paper presents a method to regulate the power transferred over a wireless link by adjusting the resonant operating frequency of the primary converter. A significant advantage of this method is that effective power regulation is maintained under variations in load, coupling and circuit parameters. This is particularly important when the wireless supply is used to power implanted medical devices where substantial coupling variations between internal and external systems is expected. The operating frequency is changed dynamically by altering the effective tuning capacitance through soft switched phase control. A thorough analysis of the proposed system has been undertaken, and experimental results verify its functionality.

  3. Honing process optimization algorithms

    NASA Astrophysics Data System (ADS)

    Kadyrov, Ramil R.; Charikov, Pavel N.; Pryanichnikova, Valeria V.

    2018-03-01

    This article considers the relevance of honing processes for creating high-quality mechanical engineering products. The features of the honing process are revealed and such important concepts as the task for optimization of honing operations, the optimal structure of the honing working cycles, stepped and stepless honing cycles, simulation of processing and its purpose are emphasized. It is noted that the reliability of the mathematical model determines the quality parameters of the honing process control. An algorithm for continuous control of the honing process is proposed. The process model reliably describes the machining of a workpiece in a sufficiently wide area and can be used to operate the CNC machine CC743.

  4. ALICE HLT Cluster operation during ALICE Run 2

    NASA Astrophysics Data System (ADS)

    Lehrbach, J.; Krzewicki, M.; Rohr, D.; Engel, H.; Gomez Ramirez, A.; Lindenstruth, V.; Berzano, D.; ALICE Collaboration

    2017-10-01

    ALICE (A Large Ion Collider Experiment) is one of the four major detectors located at the LHC at CERN, focusing on the study of heavy-ion collisions. The ALICE High Level Trigger (HLT) is a compute cluster which reconstructs the events and compresses the data in real-time. The data compression by the HLT is a vital part of data taking especially during the heavy-ion runs in order to be able to store the data which implies that reliability of the whole cluster is an important matter. To guarantee a consistent state among all compute nodes of the HLT cluster we have automatized the operation as much as possible. For automatic deployment of the nodes we use Foreman with locally mirrored repositories and for configuration management of the nodes we use Puppet. Important parameters like temperatures, network traffic, CPU load etc. of the nodes are monitored with Zabbix. During periods without beam the HLT cluster is used for tests and as one of the WLCG Grid sites to compute offline jobs in order to maximize the usage of our cluster. To prevent interference with normal HLT operations we separate the virtual machines running the Grid jobs from the normal HLT operation via virtual networks (VLANs). In this paper we give an overview of the ALICE HLT operation in 2016.

  5. Experimental study on effects of drilling parameters on respirable dust production during roof bolting operations.

    PubMed

    Jiang, Hua; Luo, Yi; McQuerrey, Joe

    2018-02-01

    Underground coalmine roof bolting operators exhibit a continued risk for overexposure to airborne levels of respirable coal and crystalline silica dust from the roof drilling operation. Inhaling these dusts can cause coal worker's pneumoconiosis and silicosis. This research explores the effect of drilling control parameters, specifically drilling bite depth, on the reduction of respirable dust generated during the drilling process. Laboratory drilling experiments were conducted and results demonstrated the feasibility of this dust control approach. Both the weight and size distribution of the dust particles collected from drilling tests with different bite depths were analyzed. The results showed that the amount of total inhalable and respirable dust was inversely proportional to the drilling bite depth. Therefore, control of the drilling process to achieve proper high-bite depth for the rock can be an important approach to reducing the generation of harmful dust. Different from conventional passive engineering controls, such as mist drilling and ventilation approaches, this approach is proactive and can cut down the generation of respirable dust from the source. These findings can be used to develop an integrated drilling control algorithm to achieve the best drilling efficiency as well as reducing respirable dust and noise.

  6. Thermal analysis of EAST neutral beam injectors for long-pulse beam operation

    NASA Astrophysics Data System (ADS)

    Chundong, HU; Yongjian, XU; Yuanlai, XIE; Yahong, XIE; Lizhen, LIANG; Caichao, JIANG; Sheng, LIU; Jianglong, WEI; Peng, SHENG; Zhimin, LIU; Ling, TAO; the NBI Team

    2018-04-01

    Two sets of neutral beam injectors (NBI-1 and NBI-2) have been mounted on the EAST tokamak since 2014. NBI-1 and NBI-2 are co-direction and counter-direction, respectively. As with in-depth physics and engineering study of EAST, the ability of long pulse beam injection should be required in the NBI system. For NBIs, the most important and difficult thing that should be overcome is heat removal capacity of heat loaded components for long-pulse beam extraction. In this article, the thermal state of the components of EAST NBI is investigated using water flow calorimetry and thermocouple temperatures. Results show that (1) operation parameters have an obvious influence on the heat deposited on the inner components of the beamline, (2) a suitable operation parameter can decrease the heat loading effectively and obtain longer beam pulse length, and (3) under the cooling water pressure of 0.25 MPa, the predicted maximum beam pulse length will be up to 260 s with 50 keV beam energy by a duty factor of 0.5. The results present that, in this regard, the EAST NBI-1 system has the ability of long-pulse beam injection.

  7. Automatic outdoor monitoring system for photovoltaic panels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stefancich, Marco; Simpson, Lin; Chiesa, Matteo

    Long-term acquisition of solar panel performance parameters, for panels operated at maximum power point in their real environment, is of critical importance in the photovoltaic research sector. However, few options exist for the characterization of non-standard panels such as concentrated photovoltaic systems, heavily soiled or shaded panels or those operating under non-standard spectral illumination; certainly, it is difficult to find such a measurement system that is flexible and affordable enough to be adopted by the smaller research institutes or universities. We present here an instrument aiming to fill this gap, autonomously tracking and maintaining any solar panel at maximum powermore » point while continuously monitoring its operational parameters and dissipating the produced energy without connection to the power grid. The instrument allows periodic acquisition of current-voltage curves to verify the employed maximum power point tracking approach. At the same time, with hardware schematics and software code being provided, it provides a flexible open development environment for the monitoring of non-standard generators like concentrator photovoltaic systems and to test novel power tracking approaches. The key issues, and the corresponding solutions, encountered in the design are analyzed in detail and the relevant schematics presented.« less

  8. Automatic outdoor monitoring system for photovoltaic panels.

    PubMed

    Stefancich, Marco; Simpson, Lin; Chiesa, Matteo

    2016-05-01

    Long-term acquisition of solar panel performance parameters, for panels operated at maximum power point in their real environment, is of critical importance in the photovoltaic research sector. However, few options exist for the characterization of non-standard panels such as concentrated photovoltaic systems, heavily soiled or shaded panels or those operating under non-standard spectral illumination; certainly, it is difficult to find such a measurement system that is flexible and affordable enough to be adopted by the smaller research institutes or universities. We present here an instrument aiming to fill this gap, autonomously tracking and maintaining any solar panel at maximum power point while continuously monitoring its operational parameters and dissipating the produced energy without connection to the power grid. The instrument allows periodic acquisition of current-voltage curves to verify the employed maximum power point tracking approach. At the same time, with hardware schematics and software code being provided, it provides a flexible open development environment for the monitoring of non-standard generators like concentrator photovoltaic systems and to test novel power tracking approaches. The key issues, and the corresponding solutions, encountered in the design are analyzed in detail and the relevant schematics presented.

  9. Transient chaos and crisis phenomena in butterfly valves driven by solenoid actuators

    NASA Astrophysics Data System (ADS)

    Naseradinmousavi, Peiman; Nataraj, C.

    2012-11-01

    Chilled water systems used in the industry and on board ships are critical for safe and reliable operation. It is hence important to understand the fundamental physics of these systems. This paper focuses in particular on a critical part of the automation system, namely, actuators and valves that are used in so-called "smart valve" systems. The system is strongly nonlinear, and necessitates a nonlinear dynamic analysis to be able to predict all critical phenomena that affect effective operation and efficient design. The derived mathematical model includes electromagnetics, fluid mechanics, and mechanical dynamics. Nondimensionalization has been carried out in order to reduce the large number of parameters to a few critical independent sets to help carry out a broad parametric analysis. The system stability analysis is then carried out with the aid of the tools from nonlinear dynamic analysis. This reveals that the system is unstable in a certain region of the parameter space. The system is also shown to exhibit crisis and transient chaotic responses; this is characterized using Lyapunov exponents and power spectra. Knowledge and avoidance of these dangerous regimes is necessary for successful and safe operation.

  10. Calibrating Parameters of Power System Stability Models using Advanced Ensemble Kalman Filter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Renke; Diao, Ruisheng; Li, Yuanyuan

    With the ever increasing penetration of renewable energy, smart loads, energy storage, and new market behavior, today’s power grid becomes more dynamic and stochastic, which may invalidate traditional study assumptions and pose great operational challenges. Thus, it is of critical importance to maintain good-quality models for secure and economic planning and real-time operation. Following the 1996 Western Systems Coordinating Council (WSCC) system blackout, North American Electric Reliability Corporation (NERC) and Western Electricity Coordinating Council (WECC) in North America enforced a number of policies and standards to guide the power industry to periodically validate power grid models and calibrate poor parametersmore » with the goal of building sufficient confidence in model quality. The PMU-based approach using online measurements without interfering with the operation of generators provides a low-cost alternative to meet NERC standards. This paper presents an innovative procedure and tool suites to validate and calibrate models based on a trajectory sensitivity analysis method and an advanced ensemble Kalman filter algorithm. The developed prototype demonstrates excellent performance in identifying and calibrating bad parameters of a realistic hydro power plant against multiple system events.« less

  11. Enhanced visual perception through tone mapping

    NASA Astrophysics Data System (ADS)

    Harrison, Andre; Mullins, Linda L.; Raglin, Adrienne; Etienne-Cummings, Ralph

    2016-05-01

    Tone mapping operators compress high dynamic range images to improve the picture quality on a digital display when the dynamic range of the display is lower than that of the image. However, tone mapping operators have been largely designed and evaluated based on the aesthetic quality of the resulting displayed image or how perceptually similar the compressed image appears relative to the original scene. They also often require per image tuning of parameters depending on the content of the image. In military operations, however, the amount of information that can be perceived is more important than the aesthetic quality of the image and any parameter adjustment needs to be as automated as possible regardless of the content of the image. We have conducted two studies to evaluate the perceivable detail of a set of tone mapping algorithms, and we apply our findings to develop and test an automated tone mapping algorithm that demonstrates a consistent improvement in the amount of perceived detail. An automated, and thereby predictable, tone mapping method enables a consistent presentation of perceivable features, can reduce the bandwidth required to transmit the imagery, and can improve the accessibility of the data by reducing the needed expertise of the analyst(s) viewing the imagery.

  12. Thermo-electric analysis of the interconnection of the LHC main superconducting bus bars

    NASA Astrophysics Data System (ADS)

    Granieri, P. P.; Breschi, M.; Casali, M.; Bottura, L.; Siemko, A.

    2013-01-01

    Spurred by the question of the maximum allowable energy for the operation of the Large Hadron Collider (LHC), we have progressed in the understanding of the thermo-electric behavior of the 13 kA superconducting bus bars interconnecting its main magnets. A deep insight of the underlying mechanisms is required to ensure the protection of the accelerator against undesired effects of resistive transitions. This is especially important in case of defective interconnections which can jeopardize the operation of the whole LHC. In this paper we present a numerical model of the interconnections between the main dipole and quadrupole magnets, validated against experimental tests of an interconnection sample with a purposely built-in defect. We consider defective interconnections featuring a lack of bonding among the superconducting cables and the copper stabilizer components, such as those that could be present in the machine. We evaluate the critical defect length limiting the maximum allowable current for powering the magnets. We determine the dependence of the critical defect length on different parameters as the heat transfer towards the cooling helium bath, the quality of manufacturing, the operating conditions and the protection system parameters, and discuss the relevant mechanisms.

  13. Plasma Perturbations in High-Speed Probing of Hall Thruster Discharge Chambers: Quantification and Mitigation

    NASA Technical Reports Server (NTRS)

    Jorns, Benjamin A.; Goebel, Dan M.; Hofer, Richard R.

    2015-01-01

    An experimental investigation is presented to quantify the effect of high-speed probing on the plasma parameters inside the discharge chamber of a 6-kW Hall thruster. Understanding the nature of these perturbations is of significant interest given the importance of accurate plasma measurements for characterizing thruster operation. An array of diagnostics including a high-speed camera and embedded wall probes is employed to examine in real time the changes in electron temperature and plasma potential induced by inserting a high-speed reciprocating Langmuir probe into the discharge chamber. It is found that the perturbations onset when the scanning probe is downstream of the electron temperature peak, and that along channel centerline, the perturbations are best characterized as a downstream shift of plasma parameters by 15-20% the length of the discharge chamber. A parametric study is performed to investigate techniques to mitigate the observed probe perturbations including varying probe speed, probe location, and operating conditions. It is found that the perturbations largely disappear when the thruster is operated at low power and low discharge voltage. The results of this mitigation study are discussed in the context of recommended methods for generating unperturbed measurements of the discharge chamber plasma.

  14. Intra-operative mapping of the atria: the first step towards individualization of atrial fibrillation therapy?

    PubMed

    Kik, Charles; Mouws, Elisabeth M J P; Bogers, Ad J J C; de Groot, Natasja M S

    2017-07-01

    Atrial fibrillation (AF), an age-related progressive disease, is becoming a worldwide epidemic with a prevalence rate of 33 million. Areas covered: In this expert review, an overview of important results obtained from previous intra-operative mapping studies is provided. In addition, our novel intra-operative high resolution mapping studies, its surgical considerations and data analyses are discussed. Furthermore, the importance of high resolution mapping studies of both sinus rhythm and AF for the development of future AF therapy is underlined by our most recent results. Expert commentary: Progression of AF is determined by the extensiveness of electropathology which is defined as conduction disorders caused by structural damage of atrial tissue. The severity of electropathology is a major determinant of therapy failure. At present, we do not have any diagnostic tool to determine the degree of electropathology in the individual patient and we can thus not select the most optimal treatment modality for the individual patient. An intra-operative, high resolution scale, epicardial mapping approach combined with quantification of electrical parameters may serve as a diagnostic tool to stage AF in the individual patient and to provide patient tailored therapy.

  15. Validation and Verification of Operational Land Analysis Activities at the Air Force Weather Agency

    NASA Technical Reports Server (NTRS)

    Shaw, Michael; Kumar, Sujay V.; Peters-Lidard, Christa D.; Cetola, Jeffrey

    2012-01-01

    The NASA developed Land Information System (LIS) is the Air Force Weather Agency's (AFWA) operational Land Data Assimilation System (LDAS) combining real time precipitation observations and analyses, global forecast model data, vegetation, terrain, and soil parameters with the community Noah land surface model, along with other hydrology module options, to generate profile analyses of global soil moisture, soil temperature, and other important land surface characteristics. (1) A range of satellite data products and surface observations used to generate the land analysis products (2) Global, 1/4 deg spatial resolution (3) Model analysis generated at 3 hours. AFWA recognizes the importance of operational benchmarking and uncertainty characterization for land surface modeling and is developing standard methods, software, and metrics to verify and/or validate LIS output products. To facilitate this and other needs for land analysis activities at AFWA, the Model Evaluation Toolkit (MET) -- a joint product of the National Center for Atmospheric Research Developmental Testbed Center (NCAR DTC), AFWA, and the user community -- and the Land surface Verification Toolkit (LVT), developed at the Goddard Space Flight Center (GSFC), have been adapted to operational benchmarking needs of AFWA's land characterization activities.

  16. Influence of extrinsic operational parameters on salt diffusion during ultrasound assisted meat curing.

    PubMed

    Inguglia, Elena S; Zhang, Zhihang; Burgess, Catherine; Kerry, Joseph P; Tiwari, Brijesh K

    2018-02-01

    The present study investigated the effect of geometric parameters of the ultrasound instrument during meat salting in order to enhance salt diffusion and salt distribution in pork meat on a lab scale. The effects of probe size (∅2.5 and 1.3cm) and of different distances between the transducer and the meat sample (0.3, 0.5, and 0.8cm) on NaCl diffusion were investigated. Changes in the moisture content and NaCl gain were used to evaluate salt distribution and diffusion in the samples, parallel and perpendicular to ultrasound propagation direction. Results showed that 0.3cm was the most efficient distance between the probe and the sample to ensure a higher salt diffusion rate. A distance of 0.5cm was however considered as a trade-off distance to ensure salt diffusion and maintenance of meat quality parameters. The enhancement of salt diffusion by ultrasound was observed to decrease with increased horizontal distance from the probe. This study is of valuable importance for meat processing industries willing to apply new technologies on a larger scale and with defined operational standards. The data suggest that the geometric parameters of ultrasound systems can have strong influence on the efficiency of ultrasonic enhancement of NaCl uptake in meat and can be a crucial element in determining salt uptake during meat processing. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Discharge runaway in high power impulse magnetron sputtering of carbon: the effect of gas pressure, composition and target peak voltage

    NASA Astrophysics Data System (ADS)

    Vitelaru, Catalin; Aijaz, Asim; Constantina Parau, Anca; Kiss, Adrian Emil; Sobetkii, Arcadie; Kubart, Tomas

    2018-04-01

    Pressure and target voltage driven discharge runaway from low to high discharge current density regimes in high power impulse magnetron sputtering of carbon is investigated. The main purpose is to provide a meaningful insight of the discharge dynamics, with the ultimate goal to establish a correlation between discharge properties and process parameters to control the film growth. This is achieved by examining a wide range of pressures (2–20 mTorr) and target voltages (700–850 V) and measuring ion saturation current density at the substrate position. We show that the minimum plasma impedance is an important parameter identifying the discharge transition as well as establishing a stable operating condition. Using the formalism of generalized recycling model, we introduce a new parameter, ‘recycling ratio’, to quantify the process gas recycling for specific process conditions. The model takes into account the ion flux to the target, the amount of gas available, and the amount of gas required for sustaining the discharge. We show that this parameter describes the relation between the gas recycling and the discharge current density. As a test case, we discuss the pressure and voltage driven transitions by changing the gas composition when adding Ne into the discharge. We propose that standard Ar HiPIMS discharges operated with significant gas recycling do not require Ne to increase the carbon ionization.

  18. New Parameterization of Neutron Absorption Cross Sections

    NASA Technical Reports Server (NTRS)

    Tripathi, Ram K.; Wilson, John W.; Cucinotta, Francis A.

    1997-01-01

    Recent parameterization of absorption cross sections for any system of charged ion collisions, including proton-nucleus collisions, is extended for neutron-nucleus collisions valid from approx. 1 MeV to a few GeV, thus providing a comprehensive picture of absorption cross sections for any system of collision pairs (charged or uncharged). The parameters are associated with the physics of the problem. At lower energies, optical potential at the surface is important, and the Pauli operator plays an increasingly important role at intermediate energies. The agreement between the calculated and experimental data is better than earlier published results.

  19. An assessment of cruise NOx emissions of short-haul commercial flights

    NASA Astrophysics Data System (ADS)

    Turgut, Enis T.; Usanmaz, Oznur

    2017-12-01

    Cruise NOx emissions of aircraft are an important input parameter for studies investigating climate change due to their ability to alter the concentrations of certain trace gases, such as ozone, methane, and hydroxyl in the atmosphere, and to induce positive radiative forcing. Therefore, it is of importance to minimize estimation errors on NOx emitted from aircraft engines at high altitude. In this study, the cruise NOx emissions of a frequently-used narrow-bodied aircraft type operating domestic flights in Turkey, are quantified based on numerous actual flight, actual emissions and actual meteorological data. The overall average cruise NOx emissions index is found to be ∼10 g/kg fuel. In addition, newly-developed parameters of the aircraft cruise NOx footprint and NOx intensity are calculated to be 0.5 g/pa-NM and ∼60 g/NM, respectively. Regarding the effects of flight parameters on cruise NOx emissions, while there is a distinct increase in NOx parameters with an increase in aircraft mass, this may differ for altitude. The results reveal that the NOx emissions index tends to increase slightly by 1-2%, particularly above 28,000 ft, whereas NOx intensity decreases at a rate of 2.4-2.7% per 2000 ft of cruise altitude increase.

  20. Analysis of cloud top height and cloud coverage from satellites using the O2 A and B bands

    NASA Technical Reports Server (NTRS)

    Kuze, Akihiko; Chance, Kelly V.

    1994-01-01

    Cloud height and cloud coverage detection are important for total ozone retrieval using ultraviolet and visible scattered light. Use of the O2 A and B bands, around 761 and 687 nm, by a satellite-borne instrument of moderately high spectral resolution viewing in the nadir makes it possible to detect cloud top height and related parameters, including fractional coverage. The measured values of a satellite-borne spectrometer are convolutions of the instrument slit function and the atmospheric transmittance between cloud top and satellite. Studies here determine the optical depth between a satellite orbit and the Earth or cloud top height to high accuracy using FASCODE 3. Cloud top height and a cloud coverage parameter are determined by least squares fitting to calculated radiance ratios in the oxygen bands. A grid search method is used to search the parameter space of cloud top height and the coverage parameter to minimize an appropriate sum of squares of deviations. For this search, nonlinearity of the atmospheric transmittance (i.e., leverage based on varying amounts of saturation in the absorption spectrum) is important for distinguishing between cloud top height and fractional coverage. Using the above-mentioned method, an operational cloud detection algorithm which uses minimal computation time can be implemented.

  1. Noise-aided computation within a synthetic gene network through morphable and robust logic gates

    NASA Astrophysics Data System (ADS)

    Dari, Anna; Kia, Behnam; Wang, Xiao; Bulsara, Adi R.; Ditto, William

    2011-04-01

    An important goal for synthetic biology is to build robust and tunable genetic regulatory networks that are capable of performing assigned operations, usually in the presence of noise. In this work, a synthetic gene network derived from the bacteriophage λ underpins a reconfigurable logic gate wherein we exploit noise and nonlinearity through the application of the logical stochastic resonance paradigm. This biological logic gate can emulate or “morph” the AND and OR operations through varying internal system parameters in a noisy background. Such genetic circuits can afford intriguing possibilities in the realization of engineered genetic networks in which the actual function of the gate can be changed after the network has been built, via an external control parameter. In this article, the full system characterization is reported, with the logic gate performance studied in the presence of external and internal noise. The robustness of the gate, to noise, is studied and illustrated through numerical simulations.

  2. Subthreshold SPICE Model Optimization

    NASA Astrophysics Data System (ADS)

    Lum, Gregory; Au, Henry; Neff, Joseph; Bozeman, Eric; Kamin, Nick; Shimabukuro, Randy

    2011-04-01

    The first step in integrated circuit design is the simulation of said design in software to verify proper functionally and design requirements. Properties of the process are provided by fabrication foundries in the form of SPICE models. These SPICE models contain the electrical data and physical properties of the basic circuit elements. A limitation of these models is that the data collected by the foundry only accurately model the saturation region. This is fine for most users, but when operating devices in the subthreshold region they are inadequate for accurate simulation results. This is why optimizing the current SPICE models to characterize the subthreshold region is so important. In order to accurately simulate this region of operation, MOSFETs of varying widths and lengths are fabricated and the electrical test data is collected. From the data collected the parameters of the model files are optimized through parameter extraction rather than curve fitting. With the completed optimized models the circuit designer is able to simulate circuit designs for the sub threshold region accurately.

  3. How to assess intestinal viability during surgery: A review of techniques

    PubMed Central

    Urbanavičius, Linas; Pattyn, Piet; Van de Putte, Dirk; Venskutonis, Donatas

    2011-01-01

    Objective and quantitative intraoperative methods of bowel viability assessment are essential in gastrointestinal surgery. Exact determination of the borderline of the viable bowel with the help of an objective test could result in a decrease of postoperative ischemic complications. An accurate, reproducible and cost effective method is desirable in every operating theater dealing with abdominal operations. Numerous techniques assessing various parameters of intestinal viability are described by the studies. However, there is no consensus about their clinical use. To evaluate the available methods, a systematic search of the English literature was performed. Virtues and drawbacks of the techniques and possibilities of clinical application are reviewed. Valuable parameters related to postoperative intestinal anastomotic or stoma complications are analyzed. Important issues in the measurement and interpretation of bowel viability are discussed. To date, only a few methods are applicable in surgical practice. Further studies are needed to determine the limiting values of intestinal tissue oxygenation and flow indicative of ischemic complications and to standardize the methods. PMID:21666808

  4. Modeling Total Dissolved Gas for Optimal Operation of Multireservoir Systems

    DOE PAGES

    Politano, Marcela; Castro, Alejandro; Hadjerioua, Boualem

    2017-02-09

    One important environmental issue of hydropower in the Columbia and Snake River Basins (Pacific Northwest region of United States) is elevated total dissolved gas (TDG) downstream of a dam, which has the potential to cause gas bubble disease in affected fish. Gas supersaturation in the Columbia River Basin primarily occurs due to dissolution of bubbles entrained during spill events. This paper presents a physically based TDG model that can be used to optimize spill operations in multireservoir hydropower systems. Independent variables of the model are forebay TDG, tailwater elevation, spillway and powerhouse discharges, project head, and environmental parameters such asmore » temperature and atmospheric pressure. The model contains seven physically meaningful experimental parameters, which were calibrated and validated against TDG data collected downstream of Rock Island Dam (Washington) from 2008 to 2012. In conclusion, a sensitivity analysis was performed to increase the understanding of the relationships between TDG downstream of the dam and processes such as air entrainment, lateral powerhouse flow, and dissolution.« less

  5. Theoretical research of helium pulsating heat pipe under steady state conditions

    NASA Astrophysics Data System (ADS)

    Xu, D.; Liu, H. M.; Li, L. F.; Huang, R. J.; Wang, W.

    2015-12-01

    As a new-type heat pipe, pulsating heat pipe (PHP) has several outstanding features, such as great heat transport ability, strong adjustability, small size and simple construction. PHP is a complex two-phase flow system associated with many physical subjects and parameters, which utilizes the pressure and temperature changes in volume expansion and contraction during phase changes to excite the pulsation motion of liquid plugs and vapor bubbles in the capillary tube between the evaporator and the condenser. At present time, some experimental investigation of helium PHP have been done. However, theoretical research of helium PHP is rare. In this paper, the physical and mathematical models of operating mechanism for helium PHP under steady state are established based on the conservation of mass, momentum, and energy. Several important parameters are correlated and solved, including the liquid filling ratio, flow velocity, heat power, temperature, etc. Based on the results, the operational driving force and flow resistances of helium PHP are analysed, and the flow and heat transfer is further studied.

  6. Detector Control System for the AFP detector in ATLAS experiment at CERN

    NASA Astrophysics Data System (ADS)

    Banaś, E.; Caforio, D.; Czekierda, S.; Hajduk, Z.; Olszowska, J.; Seabra, L.; Šícho, P.

    2017-10-01

    The ATLAS Forward Proton (AFP) detector consists of two forward detectors located at 205 m and 217 m on either side of the ATLAS experiment. The aim is to measure the momenta and angles of diffractively scattered protons. In 2016, two detector stations on one side of the ATLAS interaction point were installed and commissioned. The detector infrastructure and necessary services were installed and are supervised by the Detector Control System (DCS), which is responsible for the coherent and safe operation of the detector. A large variety of used equipment represents a considerable challenge for the AFP DCS design. Industrial Supervisory Control and Data Acquisition (SCADA) product Siemens WinCCOA, together with the CERN Joint Control Project (JCOP) framework and standard industrial and custom developed server applications and protocols are used for reading, processing, monitoring and archiving of the detector parameters. Graphical user interfaces allow for overall detector operation and visualization of the detector status. Parameters, important for the detector safety, are used for alert generation and interlock mechanisms.

  7. Orthogonal optimization of a water hydraulic pilot-operated pressure-reducing valve

    NASA Astrophysics Data System (ADS)

    Mao, Xuyao; Wu, Chao; Li, Bin; Wu, Di

    2017-12-01

    In order to optimize the comprehensive characteristics of a water hydraulic pilot-operated pressure-reducing valve, numerical orthogonal experimental design was adopted. Six parameters of the valve, containing diameters of damping plugs, volume of spring chamber, half cone angle of main spool, half cone angle of pilot spool, mass of main spool and diameter of main spool, were selected as the orthogonal factors, and each factor has five different levels. An index of flowrate stability, pressure stability and pressure overstrike stability (iFPOS) was used to judge the merit of each orthogonal attempt. Embedded orthogonal process turned up and a final optimal combination of these parameters was obtained after totally 50 numerical orthogonal experiments. iFPOS could be low to a fairly low value which meant that the valve could have much better stabilities. During the optimization, it was also found the diameters of damping plugs and main spool played important roles in stability characteristics of the valve.

  8. 40 CFR 63.1447 - What are my operation and maintenance requirements?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... measures that flow or pressure sensors, damper plates, automated damper switches and motors are operating... operating limit parameter, a rationale for why you chose the parameter, a description of the method used to...

  9. 40 CFR 63.1447 - What are my operation and maintenance requirements?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... measures that flow or pressure sensors, damper plates, automated damper switches and motors are operating... operating limit parameter, a rationale for why you chose the parameter, a description of the method used to...

  10. A review of pharmaceutical extrusion: critical process parameters and scaling-up.

    PubMed

    Thiry, J; Krier, F; Evrard, B

    2015-02-01

    Hot melt extrusion has been a widely used process in the pharmaceutical area for three decades. In this field, it is important to optimize the formulation in order to meet specific requirements. However, the process parameters of the extruder should be as much investigated as the formulation since they have a major impact on the final product characteristics. Moreover, a design space should be defined in order to obtain the expected product within the defined limits. This gives some freedom to operate as long as the processing parameters stay within the limits of the design space. Those limits can be investigated by varying randomly the process parameters but it is recommended to use design of experiments. An examination of the literature is reported in this review to summarize the impact of the variation of the process parameters on the final product properties. Indeed, the homogeneity of the mixing, the state of the drug (crystalline or amorphous), the dissolution rate, the residence time, can be influenced by variations in the process parameters. In particular, the impact of the following process parameters: temperature, screw design, screw speed and feeding, on the final product, has been reviewed. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Dual ant colony operational modal analysis parameter estimation method

    NASA Astrophysics Data System (ADS)

    Sitarz, Piotr; Powałka, Bartosz

    2018-01-01

    Operational Modal Analysis (OMA) is a common technique used to examine the dynamic properties of a system. Contrary to experimental modal analysis, the input signal is generated in object ambient environment. Operational modal analysis mainly aims at determining the number of pole pairs and at estimating modal parameters. Many methods are used for parameter identification. Some methods operate in time while others in frequency domain. The former use correlation functions, the latter - spectral density functions. However, while some methods require the user to select poles from a stabilisation diagram, others try to automate the selection process. Dual ant colony operational modal analysis parameter estimation method (DAC-OMA) presents a new approach to the problem, avoiding issues involved in the stabilisation diagram. The presented algorithm is fully automated. It uses deterministic methods to define the interval of estimated parameters, thus reducing the problem to optimisation task which is conducted with dedicated software based on ant colony optimisation algorithm. The combination of deterministic methods restricting parameter intervals and artificial intelligence yields very good results, also for closely spaced modes and significantly varied mode shapes within one measurement point.

  12. Identifying key sources of uncertainty in the modelling of greenhouse gas emissions from wastewater treatment.

    PubMed

    Sweetapple, Christine; Fu, Guangtao; Butler, David

    2013-09-01

    This study investigates sources of uncertainty in the modelling of greenhouse gas emissions from wastewater treatment, through the use of local and global sensitivity analysis tools, and contributes to an in-depth understanding of wastewater treatment modelling by revealing critical parameters and parameter interactions. One-factor-at-a-time sensitivity analysis is used to screen model parameters and identify those with significant individual effects on three performance indicators: total greenhouse gas emissions, effluent quality and operational cost. Sobol's method enables identification of parameters with significant higher order effects and of particular parameter pairs to which model outputs are sensitive. Use of a variance-based global sensitivity analysis tool to investigate parameter interactions enables identification of important parameters not revealed in one-factor-at-a-time sensitivity analysis. These interaction effects have not been considered in previous studies and thus provide a better understanding wastewater treatment plant model characterisation. It was found that uncertainty in modelled nitrous oxide emissions is the primary contributor to uncertainty in total greenhouse gas emissions, due largely to the interaction effects of three nitrogen conversion modelling parameters. The higher order effects of these parameters are also shown to be a key source of uncertainty in effluent quality. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Bayesian network representing system dynamics in risk analysis of nuclear systems

    NASA Astrophysics Data System (ADS)

    Varuttamaseni, Athi

    2011-12-01

    A dynamic Bayesian network (DBN) model is used in conjunction with the alternating conditional expectation (ACE) regression method to analyze the risk associated with the loss of feedwater accident coupled with a subsequent initiation of the feed and bleed operation in the Zion-1 nuclear power plant. The use of the DBN allows the joint probability distribution to be factorized, enabling the analysis to be done on many simpler network structures rather than on one complicated structure. The construction of the DBN model assumes conditional independence relations among certain key reactor parameters. The choice of parameter to model is based on considerations of the macroscopic balance statements governing the behavior of the reactor under a quasi-static assumption. The DBN is used to relate the peak clad temperature to a set of independent variables that are known to be important in determining the success of the feed and bleed operation. A simple linear relationship is then used to relate the clad temperature to the core damage probability. To obtain a quantitative relationship among different nodes in the DBN, surrogates of the RELAP5 reactor transient analysis code are used. These surrogates are generated by applying the ACE algorithm to output data obtained from about 50 RELAP5 cases covering a wide range of the selected independent variables. These surrogates allow important safety parameters such as the fuel clad temperature to be expressed as a function of key reactor parameters such as the coolant temperature and pressure together with important independent variables such as the scram delay time. The time-dependent core damage probability is calculated by sampling the independent variables from their probability distributions and propagate the information up through the Bayesian network to give the clad temperature. With the knowledge of the clad temperature and the assumption that the core damage probability has a one-to-one relationship to it, we have calculated the core damage probably as a function of transient time. The use of the DBN model in combination with ACE allows risk analysis to be performed with much less effort than if the analysis were done using the standard techniques.

  14. Robust design of configurations and parameters of adaptable products

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Chen, Yongliang; Xue, Deyi; Gu, Peihua

    2014-03-01

    An adaptable product can satisfy different customer requirements by changing its configuration and parameter values during the operation stage. Design of adaptable products aims at reducing the environment impact through replacement of multiple different products with single adaptable ones. Due to the complex architecture, multiple functional requirements, and changes of product configurations and parameter values in operation, impact of uncertainties to the functional performance measures needs to be considered in design of adaptable products. In this paper, a robust design approach is introduced to identify the optimal design configuration and parameters of an adaptable product whose functional performance measures are the least sensitive to uncertainties. An adaptable product in this paper is modeled by both configurations and parameters. At the configuration level, methods to model different product configuration candidates in design and different product configuration states in operation to satisfy design requirements are introduced. At the parameter level, four types of product/operating parameters and relations among these parameters are discussed. A two-level optimization approach is developed to identify the optimal design configuration and its parameter values of the adaptable product. A case study is implemented to illustrate the effectiveness of the newly developed robust adaptable design method.

  15. Electrophysiological Features of Single Store-Operated Calcium Channels in HEK S4 Cell Line with Stable STIM1 Protein Knockdown.

    PubMed

    Shalygin, A V; Vigont, V A; Glushankova, L N; Zimina, O A; Kolesnikov, D O; Skopin, A Yu; Kaznacheeva, E V

    2017-07-01

    An important role in intracellular calcium signaling is played by store-operated channels activated by STIM proteins, calcium sensors of the endoplasmic reticulum. In stable STIM1 knockdown HEK S4 cells, single channels activated by depletion of intracellular calcium stores were detected by cell-attached patch-clamp technique and their electrophysiological parameters were described. Comparison of the properties of single channels in HEK293 and HEK S4 cells revealed no significant differences in their current-voltage curves, while regulation of store-operated calcium channels in these cell lines depended on the level of STIM1 expression. We can conclude that electrophysiological peculiarities of store-regulated calcium entry observed in different cells can be explained by differences in STIM1 expression.

  16. Dimensional analysis of detrimental ozone generation by positive wire-to-plate corona discharge in air

    NASA Astrophysics Data System (ADS)

    Bo, Z.; Chen, J. H.

    2010-02-01

    The dimensional analysis technique is used to formulate a correlation between ozone generation rate and various parameters that are important in the design and operation of positive wire-to-plate corona discharges in indoor air. The dimensionless relation is determined by linear regression analysis based on the results from 36 laboratory-scale experiments. The derived equation is validated by experimental data and a numerical model published in the literature. Applications of such derived equation are illustrated through an example selection of the appropriate set of operating conditions in the design/operation of a photocopier to follow the federal regulations of ozone emission. Finally, a new current-voltage characteristic equation is proposed for positive wire-to-plate corona discharges based on the derived dimensionless equation.

  17. Tethered Satellites as an Enabling Platform for Operational Space Weather Monitoring Systems

    NASA Technical Reports Server (NTRS)

    Gilchrist, Brian E.; Krause, Linda Habash; Gallagher, Dennis Lee; Bilen, Sven Gunnar; Fuhrhop, Keith; Hoegy, Walt R.; Inderesan, Rohini; Johnson, Charles; Owens, Jerry Keith; Powers, Joseph; hide

    2013-01-01

    Tethered satellites offer the potential to be an important enabling technology to support operational space weather monitoring systems. Space weather "nowcasting" and forecasting models rely on assimilation of near-real-time (NRT) space environment data to provide warnings for storm events and deleterious effects on the global societal infrastructure. Typically, these models are initialized by a climatological model to provide "most probable distributions" of environmental parameters as a function of time and space. The process of NRT data assimilation gently pulls the climate model closer toward the observed state (e.g., via Kalman smoothing) for nowcasting, and forecasting is achieved through a set of iterative semi-empirical physics-based forward-prediction calculations. Many challenges are associated with the development of an operational system, from the top-level architecture (e.g., the required space weather observatories to meet the spatial and temporal requirements of these models) down to the individual instruments capable of making the NRT measurements. This study focuses on the latter challenge: we present some examples of how tethered satellites (from 100s of m to 20 km) are uniquely suited to address certain shortfalls in our ability to measure critical environmental parameters necessary to drive these space weather models. Examples include long baseline electric field measurements, magnetized ionospheric conductivity measurements, and the ability to separate temporal from spatial irregularities in environmental parameters. Tethered satellite functional requirements are presented for two examples of space environment observables.

  18. Modification and testing of an engine and fuel control system for a hydrogen fuelled gas turbine

    NASA Astrophysics Data System (ADS)

    Funke, H. H.-W.; Börner, S.; Hendrick, P.; Recker, E.

    2011-10-01

    The control of pollutant emissions has become more and more important by the development of new gas turbines. The use of hydrogen produced by renewable energy sources could be an alternative. Besides the reduction of NOx emissions emerged during the combustion process, another major question is how a hydrogen fuelled gas turbine including the metering unit can be controlled and operated. This paper presents a first insight in modifications on an Auxiliary Power Unit (APU) GTCP 36300 for using gaseous hydrogen as a gas turbine fuel. For safe operation with hydrogen, the metering of hydrogen has to be fast, precise, and secure. So, the quality of the metering unit's control loop has an important influence on this topic. The paper documents the empiric determination of the proportional integral derivative (PID) control parameters for the metering unit.

  19. Dependence of the source performance on plasma parameters at the BATMAN test facility

    NASA Astrophysics Data System (ADS)

    Wimmer, C.; Fantz, U.

    2015-04-01

    The investigation of the dependence of the source performance (high jH-, low je) for optimum Cs conditions on the plasma parameters at the BATMAN (Bavarian Test MAchine for Negative hydrogen ions) test facility is desirable in order to find key parameters for the operation of the source as well as to deepen the physical understanding. The most relevant source physics takes place in the extended boundary layer, which is the plasma layer with a thickness of several cm in front of the plasma grid: the production of H-, its transport through the plasma and its extraction, inevitably accompanied by the co-extraction of electrons. Hence, a link of the source performance with the plasma parameters in the extended boundary layer is expected. In order to characterize electron and negative hydrogen ion fluxes in the extended boundary layer, Cavity Ring-Down Spectroscopy and Langmuir probes have been applied for the measurement of the H- density and the determination of the plasma density, the plasma potential and the electron temperature, respectively. The plasma potential is of particular importance as it determines the sheath potential profile at the plasma grid: depending on the plasma grid bias relative to the plasma potential, a transition in the plasma sheath from an electron repelling to an electron attracting sheath takes place, influencing strongly the electron fraction of the bias current and thus the amount of co-extracted electrons. Dependencies of the source performance on the determined plasma parameters are presented for the comparison of two source pressures (0.6 Pa, 0.45 Pa) in hydrogen operation. The higher source pressure of 0.6 Pa is a standard point of operation at BATMAN with external magnets, whereas the lower pressure of 0.45 Pa is closer to the ITER requirements (p ≤ 0.3 Pa).

  20. Evaluating Machine Learning Regression Algorithms for Operational Retrieval of Biophysical Parameters: Opportunities for Sentinel

    NASA Astrophysics Data System (ADS)

    Verrelst, Jochem; Rivera, J. P.; Alonso, L.; Guanter, L.; Moreno, J.

    2012-04-01

    ESA’s upcoming satellites Sentinel-2 (S2) and Sentinel-3 (S3) aim to ensure continuity for Landsat 5/7, SPOT- 5, SPOT-Vegetation and Envisat MERIS observations by providing superspectral images of high spatial and temporal resolution. S2 and S3 will deliver near real-time operational products with a high accuracy for land monitoring. This unprecedented data availability leads to an urgent need for developing robust and accurate retrieval methods. Machine learning regression algorithms could be powerful candidates for the estimation of biophysical parameters from satellite reflectance measurements because of their ability to perform adaptive, nonlinear data fitting. By using data from the ESA-led field campaign SPARC (Barrax, Spain), it was recently found [1] that Gaussian processes regression (GPR) outperformed competitive machine learning algorithms such as neural networks, support vector regression) and kernel ridge regression both in terms of accuracy and computational speed. For various Sentinel configurations (S2-10m, S2- 20m, S2-60m and S3-300m) three important biophysical parameters were estimated: leaf chlorophyll content (Chl), leaf area index (LAI) and fractional vegetation cover (FVC). GPR was the only method that reached the 10% precision required by end users in the estimation of Chl. In view of implementing the regressor into operational monitoring applications, here the portability of locally trained GPR models to other images was evaluated. The associated confidence maps proved to be a good indicator for evaluating the robustness of the trained models. Consistent retrievals were obtained across the different images, particularly over agricultural sites. To make the method suitable for operational use, however, the poorer confidences over bare soil areas suggest that the training dataset should be expanded with inputs from various land cover types.

  1. Deriving adaptive operating rules of hydropower reservoirs using time-varying parameters generated by the EnKF

    NASA Astrophysics Data System (ADS)

    Feng, Maoyuan; Liu, Pan; Guo, Shenglian; Shi, Liangsheng; Deng, Chao; Ming, Bo

    2017-08-01

    Operating rules have been used widely to decide reservoir operations because of their capacity for coping with uncertain inflow. However, stationary operating rules lack adaptability; thus, under changing environmental conditions, they cause inefficient reservoir operation. This paper derives adaptive operating rules based on time-varying parameters generated using the ensemble Kalman filter (EnKF). A deterministic optimization model is established to obtain optimal water releases, which are further taken as observations of the reservoir simulation model. The EnKF is formulated to update the operating rules sequentially, providing a series of time-varying parameters. To identify the index that dominates the variations of the operating rules, three hydrologic factors are selected: the reservoir inflow, ratio of future inflow to current available water, and available water. Finally, adaptive operating rules are derived by fitting the time-varying parameters with the identified dominant hydrologic factor. China's Three Gorges Reservoir was selected as a case study. Results show that (1) the EnKF has the capability of capturing the variations of the operating rules, (2) reservoir inflow is the factor that dominates the variations of the operating rules, and (3) the derived adaptive operating rules are effective in improving hydropower benefits compared with stationary operating rules. The insightful findings of this study could be used to help adapt reservoir operations to mitigate the effects of changing environmental conditions.

  2. Simulating environmental and psychological acoustic factors of the operating room.

    PubMed

    Bennett, Christopher L; Dudaryk, Roman; Ayers, Andrew L; McNeer, Richard R

    2015-12-01

    In this study, an operating room simulation environment was adapted to include quadraphonic speakers, which were used to recreate a composed clinical soundscape. To assess validity of the composed soundscape, several acoustic parameters of this simulated environment were acquired in the presence of alarms only, background noise only, or both. These parameters were also measured for comparison from size-matched operating rooms at Jackson Memorial Hospital. The parameters examined included sound level, reverberation time, and predictive metrics of speech intelligibility in quiet and noise. It was found that the sound levels and acoustic parameters were comparable between the simulated environment and the actual operating rooms. The impact of the background noise on the perception of medical alarms was then examined, and was found to have little impact on the audibility of the alarms. This study is a first in kind report of a comparison between the environmental and psychological acoustical parameters of a hospital simulation environment and actual operating rooms.

  3. Enhanced Engine Performance During Emergency Operation Using a Model-Based Engine Control Architecture

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey T.; Connolly, Joseph W.

    2016-01-01

    This paper discusses the design and application of model-based engine control (MBEC) for use during emergency operation of the aircraft. The MBEC methodology is applied to the Commercial Modular Aero-Propulsion System Simulation 40k (CMAPSS40k) and features an optimal tuner Kalman Filter (OTKF) to estimate unmeasured engine parameters, which can then be used for control. During an emergency scenario, normally-conservative engine operating limits may be relaxed to increase the performance of the engine and overall survivability of the aircraft; this comes at the cost of additional risk of an engine failure. The MBEC architecture offers the advantage of estimating key engine parameters that are not directly measureable. Estimating the unknown parameters allows for tighter control over these parameters, and on the level of risk the engine will operate at. This will allow the engine to achieve better performance than possible when operating to more conservative limits on a related, measurable parameter.

  4. Enhanced Engine Performance During Emergency Operation Using a Model-Based Engine Control Architecture

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey T.; Connolly, Joseph W.

    2015-01-01

    This paper discusses the design and application of model-based engine control (MBEC) for use during emergency operation of the aircraft. The MBEC methodology is applied to the Commercial Modular Aero-Propulsion System Simulation 40,000 (CMAPSS40,000) and features an optimal tuner Kalman Filter (OTKF) to estimate unmeasured engine parameters, which can then be used for control. During an emergency scenario, normally-conservative engine operating limits may be relaxed to increase the performance of the engine and overall survivability of the aircraft; this comes at the cost of additional risk of an engine failure. The MBEC architecture offers the advantage of estimating key engine parameters that are not directly measureable. Estimating the unknown parameters allows for tighter control over these parameters, and on the level of risk the engine will operate at. This will allow the engine to achieve better performance than possible when operating to more conservative limits on a related, measurable parameter.

  5. Characterizing operant hyperactivity in the Spontaneously Hypertensive Rat

    PubMed Central

    2012-01-01

    Background Operant hyperactivity, the emission of reinforced responses at an inordinately high rate, has been reported in children with ADHD and in the Spontaneously Hypertensive Rat (SHR), the most widely studied animal model of ADHD. The SHR emits behavior at hyperactive levels, relative to a normoactive strain, only when such behavior is seldom reinforced. Because of its dependence on rate of reinforcement, operant hyperactivity appears to be driven primarily by incentive motivation, not motoric capacity. This claim was evaluated in the present study using a novel strategy, based on the organization of behavior in bouts of reinforced responses separated by pauses. Method Male SHR, Wistar-Kyoto (WKY) and Wistar rats (WIS) were exposed each to a multiple variable-interval schedule of sucrose reinforcement (12, 24, 48, 96, and 192 s) between post-natal days (PND) 48 and 93. Responding in each schedule was examined in two epochs, PND 58-62 and 89-93. Parameters of response-reinforcement functions (Herrnstein's hyperbola) and bout-organized behavior were estimated in each epoch. Results SHR emitted higher response rates than WKY and WIS, but only when rate of reinforcement was low (fewer than 2 reinforcers per minute), and particularly in the second epoch. Estimates of Herrnstein's hyperbola parameters suggested the primacy of motivational over motoric factors driving the response-rate differential. Across epochs and schedules, a more detailed analysis of response bouts by SHR revealed that these were shorter than those by WKY, but more frequent than those by WKY and WIS. Differences in bout length subsided between epochs, but differences in bout-initiation rate were exacerbated. These results were interpreted in light of robust evidence linking changes in bout-organization parameters and experimental manipulations of motivation and response-reinforcement contingency. Conclusions Operant hyperactivity in SHR was confirmed. Although incentive motivation appears to play an important role in operant hyperactivity and motoric capacity cannot be ruled out as a factor, response-bout patterns suggest that operant hyperactivity is primarily driven by steeper delay-of-reinforcement gradients. Convergence of this conclusion with theoretical accounts of ADHD and with free-operant performance in children with ADHD supports the use of SHR as an animal model of ADHD. PMID:22277367

  6. Stochastic backscatter modelling for the prediction of pollutant removal from an urban street canyon: A large-eddy simulation

    NASA Astrophysics Data System (ADS)

    O'Neill, J. J.; Cai, X.-M.; Kinnersley, R.

    2016-10-01

    The large-eddy simulation (LES) approach has recently exhibited its appealing capability of capturing turbulent processes inside street canyons and the urban boundary layer aloft, and its potential for deriving the bulk parameters adopted in low-cost operational urban dispersion models. However, the thin roof-level shear layer may be under-resolved in most LES set-ups and thus sophisticated subgrid-scale (SGS) parameterisations may be required. In this paper, we consider the important case of pollutant removal from an urban street canyon of unit aspect ratio (i.e. building height equal to street width) with the external flow perpendicular to the street. We show that by employing a stochastic SGS model that explicitly accounts for backscatter (energy transfer from unresolved to resolved scales), the pollutant removal process is better simulated compared with the use of a simpler (fully dissipative) but widely-used SGS model. The backscatter induces additional mixing within the shear layer which acts to increase the rate of pollutant removal from the street canyon, giving better agreement with a recent wind-tunnel experiment. The exchange velocity, an important parameter in many operational models that determines the mass transfer between the urban canopy and the external flow, is predicted to be around 15% larger with the backscatter SGS model; consequently, the steady-state mean pollutant concentration within the street canyon is around 15% lower. A database of exchange velocities for various other urban configurations could be generated and used as improved input for operational street canyon models.

  7. Impact of Reactor Operating Parameters on Cask Reactivity in BWR Burnup Credit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ilas, Germina; Betzler, Benjamin R; Ade, Brian J

    This paper discusses the effect of reactor operating parameters used in fuel depletion calculations on spent fuel cask reactivity, with relevance for boiling-water reactor (BWR) burnup credit (BUC) applications. Assessments that used generic BWR fuel assembly and spent fuel cask configurations are presented. The considered operating parameters, which were independently varied in the depletion simulations for the assembly, included fuel temperature, bypass water density, specific power, and operating history. Different operating history scenarios were considered for the assembly depletion to determine the effect of relative power distribution during the irradiation cycles, as well as the downtime between cycles. Depletion, decay,more » and criticality simulations were performed using computer codes and associated nuclear data within the SCALE code system. Results quantifying the dependence of cask reactivity on the assembly depletion parameters are presented herein.« less

  8. Technical parameters for specifying imagery requirements

    NASA Technical Reports Server (NTRS)

    Coan, Paul P.; Dunnette, Sheri J.

    1994-01-01

    Providing visual information acquired from remote events to various operators, researchers, and practitioners has become progressively more important as the application of special skills in alien or hazardous situations increases. To provide an understanding of the technical parameters required to specify imagery, we have identified, defined, and discussed seven salient characteristics of images: spatial resolution, linearity, luminance resolution, spectral discrimination, temporal discrimination, edge definition, and signal-to-noise ratio. We then describe a generalizing imaging system and identified how various parts of the system affect the image data. To emphasize the different applications of imagery, we have constrasted the common television system with the significant parameters of a televisual imaging system for technical applications. Finally, we have established a method by which the required visual information can be specified by describing certain technical parameters which are directly related to the information content of the imagery. This method requires the user to complete a form listing all pertinent data requirements for the imagery.

  9. Sensitivity analysis for best-estimate thermal models of vertical dry cask storage systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeVoe, Remy R.; Robb, Kevin R.; Skutnik, Steven E.

    Loading requirements for dry cask storage of spent nuclear fuel are driven primarily by decay heat capacity limitations, which themselves are determined through recommended limits on peak cladding temperature within the cask. This study examines the relative sensitivity of peak material temperatures within the cask to parameters that influence both the stored fuel residual decay heat as well as heat removal mechanisms. Here, these parameters include the detailed reactor operating history parameters (e.g., soluble boron concentrations and the presence of burnable poisons) as well as factors that influence heat removal, including non-dominant processes (such as conduction from the fuel basketmore » to the canister and radiation within the canister) and ambient environmental conditions. By examining the factors that drive heat removal from the cask alongside well-understood factors that drive decay heat, it is therefore possible to make a contextual analysis of the most important parameters to evaluation of peak material temperatures within the cask.« less

  10. Sensitivity analysis for best-estimate thermal models of vertical dry cask storage systems

    DOE PAGES

    DeVoe, Remy R.; Robb, Kevin R.; Skutnik, Steven E.

    2017-07-08

    Loading requirements for dry cask storage of spent nuclear fuel are driven primarily by decay heat capacity limitations, which themselves are determined through recommended limits on peak cladding temperature within the cask. This study examines the relative sensitivity of peak material temperatures within the cask to parameters that influence both the stored fuel residual decay heat as well as heat removal mechanisms. Here, these parameters include the detailed reactor operating history parameters (e.g., soluble boron concentrations and the presence of burnable poisons) as well as factors that influence heat removal, including non-dominant processes (such as conduction from the fuel basketmore » to the canister and radiation within the canister) and ambient environmental conditions. By examining the factors that drive heat removal from the cask alongside well-understood factors that drive decay heat, it is therefore possible to make a contextual analysis of the most important parameters to evaluation of peak material temperatures within the cask.« less

  11. Performance analysis and evaluation of direct phase measuring deflectometry

    NASA Astrophysics Data System (ADS)

    Zhao, Ping; Gao, Nan; Zhang, Zonghua; Gao, Feng; Jiang, Xiangqian

    2018-04-01

    Three-dimensional (3D) shape measurement of specular objects plays an important role in intelligent manufacturing applications. Phase measuring deflectometry (PMD)-based methods are widely used to obtain the 3D shapes of specular surfaces because they offer the advantages of a large dynamic range, high measurement accuracy, full-field and noncontact operation, and automatic data processing. To enable measurement of specular objects with discontinuous and/or isolated surfaces, a direct PMD (DPMD) method has been developed to build a direct relationship between phase and depth. In this paper, a new virtual measurement system is presented and is used to optimize the system parameters and evaluate the system's performance in DPMD applications. Four system parameters are analyzed to obtain accurate measurement results. Experiments are performed using simulated and actual data and the results confirm the effects of these four parameters on the measurement results. Researchers can therefore select suitable system parameters for actual DPMD (including PMD) measurement systems to obtain the 3D shapes of specular objects with high accuracy.

  12. Biomedical implications of information processing in chemical systems: non-classical approach to photochemistry of coordination compounds.

    PubMed

    Szaciłowski, Konrad

    2007-01-01

    Analogies between photoactive nitric oxide generators and various electronic devices: logic gates and operational amplifiers are presented. These analogies have important biological consequences: application of control parameters allows for better targeting and control of nitric oxide drugs. The same methodology may be applied in the future for other therapeutic strategies and at the same time helps to understand natural regulatory and signaling processes in biological systems.

  13. System identification for modeling for control of flexible structures

    NASA Technical Reports Server (NTRS)

    Mettler, Edward; Milman, Mark

    1986-01-01

    The major components of a design and operational flight strategy for flexible structure control systems are presented. In this strategy an initial distributed parameter control design is developed and implemented from available ground test data and on-orbit identification using sophisticated modeling and synthesis techniques. The reliability of this high performance controller is directly linked to the accuracy of the parameters on which the design is based. Because uncertainties inevitably grow without system monitoring, maintaining the control system requires an active on-line system identification function to supply parameter updates and covariance information. Control laws can then be modified to improve performance when the error envelopes are decreased. In terms of system safety and stability the covariance information is of equal importance as the parameter values themselves. If the on-line system ID function detects an increase in parameter error covariances, then corresponding adjustments must be made in the control laws to increase robustness. If the error covariances exceed some threshold, an autonomous calibration sequence could be initiated to restore the error enveloped to an acceptable level.

  14. Determination of design and operation parameters for upper atmospheric research instrumentation to yield optimum resolution with deconvolution

    NASA Technical Reports Server (NTRS)

    Ioup, George E.; Ioup, Juliette W.

    1991-01-01

    The final report for work on the determination of design and operation parameters for upper atmospheric research instrumentation to yield optimum resolution with deconvolution is presented. Papers and theses prepared during the research report period are included. Among all the research results reported, note should be made of the specific investigation of the determination of design and operation parameters for upper atmospheric research instrumentation to yield optimum resolution with deconvolution. A methodology was developed to determine design and operation parameters for error minimization when deconvolution is included in data analysis. An error surface is plotted versus the signal-to-noise ratio (SNR) and all parameters of interest. Instrumental characteristics will determine a curve in this space. The SNR and parameter values which give the projection from the curve to the surface, corresponding to the smallest value for the error, are the optimum values. These values are constrained by the curve and so will not necessarily correspond to an absolute minimum in the error surface.

  15. Electrical Characterization of Semiconductor Materials and Devices

    NASA Astrophysics Data System (ADS)

    Deen, M.; Pascal, Fabien

    Semiconductor materials and devices continue to occupy a preeminent technological position due to their importance when building integrated electronic systems used in a wide range of applications from computers, cell-phones, personal digital assistants, digital cameras and electronic entertainment systems, to electronic instrumentation for medical diagnositics and environmental monitoring. Key ingredients of this technological dominance have been the rapid advances made in the quality and processing of materials - semiconductors, conductors and dielectrics - which have given metal oxide semiconductor device technology its important characteristics of negligible standby power dissipation, good input-output isolation, surface potential control and reliable operation. However, when assessing material quality and device reliability, it is important to have fast, nondestructive, accurate and easy-to-use electrical characterization techniques available, so that important parameters such as carrier doping density, type and mobility of carriers, interface quality, oxide trap density, semiconductor bulk defect density, contact and other parasitic resistances and oxide electrical integrity can be determined. This chapter describes some of the more widely employed and popular techniques that are used to determine these important parameters. The techniques presented in this chapter range in both complexity and test structure requirements from simple current-voltage measurements to more sophisticated low-frequency noise, charge pumping and deep-level transient spectroscopy techniques.

  16. Adapting water treatment design and operations to the impacts of global climate change

    NASA Astrophysics Data System (ADS)

    Clark, Robert M.; Li, Zhiwei; Buchberger, Steven G.

    2011-12-01

    It is anticipated that global climate change will adversely impact source water quality in many areas of the United States and will therefore, potentially, impact the design and operation of current and future water treatment systems. The USEPA has initiated an effort called the Water Resources Adaptation Program (WRAP) which is intended to develop tools and techniques that can assess the impact of global climate change on urban drinking water and wastewater infrastructure. A three step approach for assessing climate change impacts on water treatment operation and design is being persude in this effort. The first step is the stochastic characterization of source water quality, the second step is the application of the USEPA Water Treatment Plant model and the third step is the application of cost algorithms to provide a metric that can be used to assess the coat impact of climate change. A model has been validated using data collected from Cincinnati's Richard Miller Water Treatment Plant for the USEPA Information Collection Rule (ICR) database. An analysis of the water treatment processes in response to assumed perturbations in raw water quality identified TOC, pH, and bromide as the three most important parameters affecting performance of the Miller WTP. The Miller Plant was simulated using the EPA WTP model to examine the impact of these parameters on selected regulated water quality parameters. Uncertainty in influent water quality was analyzed to estimate the risk of violating drinking water maximum contaminant levels (MCLs).Water quality changes in the Ohio River were projected for 2050 using Monte Carlo simulation and the WTP model was used to evaluate the effects of water quality changes on design and operation. Results indicate that the existing Miller WTP might not meet Safe Drinking Water Act MCL requirements for certain extreme future conditions. However, it was found that the risk of MCL violations under future conditions could be controlled by enhancing existing WTP design and operation or by process retrofitting and modification.

  17. Application of a mechanistic model as a tool for on-line monitoring of pilot scale filamentous fungal fermentation processes-The importance of evaporation effects.

    PubMed

    Mears, Lisa; Stocks, Stuart M; Albaek, Mads O; Sin, Gürkan; Gernaey, Krist V

    2017-03-01

    A mechanistic model-based soft sensor is developed and validated for 550L filamentous fungus fermentations operated at Novozymes A/S. The soft sensor is comprised of a parameter estimation block based on a stoichiometric balance, coupled to a dynamic process model. The on-line parameter estimation block models the changing rates of formation of product, biomass, and water, and the rate of consumption of feed using standard, available on-line measurements. This parameter estimation block, is coupled to a mechanistic process model, which solves the current states of biomass, product, substrate, dissolved oxygen and mass, as well as other process parameters including k L a, viscosity and partial pressure of CO 2 . State estimation at this scale requires a robust mass model including evaporation, which is a factor not often considered at smaller scales of operation. The model is developed using a historical data set of 11 batches from the fermentation pilot plant (550L) at Novozymes A/S. The model is then implemented on-line in 550L fermentation processes operated at Novozymes A/S in order to validate the state estimator model on 14 new batches utilizing a new strain. The product concentration in the validation batches was predicted with an average root mean sum of squared error (RMSSE) of 16.6%. In addition, calculation of the Janus coefficient for the validation batches shows a suitably calibrated model. The robustness of the model prediction is assessed with respect to the accuracy of the input data. Parameter estimation uncertainty is also carried out. The application of this on-line state estimator allows for on-line monitoring of pilot scale batches, including real-time estimates of multiple parameters which are not able to be monitored on-line. With successful application of a soft sensor at this scale, this allows for improved process monitoring, as well as opening up further possibilities for on-line control algorithms, utilizing these on-line model outputs. Biotechnol. Bioeng. 2017;114: 589-599. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  18. Inversion for Refractivity Parameters Using a Dynamic Adaptive Cuckoo Search with Crossover Operator Algorithm

    PubMed Central

    Zhang, Zhihua; Sheng, Zheng; Shi, Hanqing; Fan, Zhiqiang

    2016-01-01

    Using the RFC technique to estimate refractivity parameters is a complex nonlinear optimization problem. In this paper, an improved cuckoo search (CS) algorithm is proposed to deal with this problem. To enhance the performance of the CS algorithm, a parameter dynamic adaptive operation and crossover operation were integrated into the standard CS (DACS-CO). Rechenberg's 1/5 criteria combined with learning factor were used to control the parameter dynamic adaptive adjusting process. The crossover operation of genetic algorithm was utilized to guarantee the population diversity. The new hybrid algorithm has better local search ability and contributes to superior performance. To verify the ability of the DACS-CO algorithm to estimate atmospheric refractivity parameters, the simulation data and real radar clutter data are both implemented. The numerical experiments demonstrate that the DACS-CO algorithm can provide an effective method for near-real-time estimation of the atmospheric refractivity profile from radar clutter. PMID:27212938

  19. Performance mapping of a 30 cm engineering model thruster

    NASA Technical Reports Server (NTRS)

    Poeschel, R. L.; Vahrenkamp, R. P.

    1975-01-01

    A 30 cm thruster representative of the engineering model design has been tested over a wide range of operating parameters to document performance characteristics such as electrical and propellant efficiencies, double ion and beam divergence thrust loss, component equilibrium temperatures, operational stability, etc. Data obtained show that optimum power throttling, in terms of maximum thruster efficiency, is not highly sensitive to parameter selection. Consequently, considerations of stability, discharge chamber erosion, thrust losses, etc. can be made the determining factors for parameter selection in power throttling operations. Options in parameter selection based on these considerations are discussed.

  20. 40 CFR 63.1161 - Performance testing and test methods.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Facilities and Hydrochloric Acid Regeneration Plants § 63.1161 Performance testing and test methods. (a...) Establishment of hydrochloric acid regeneration plant operating parameters. (1) During the performance test for hydrochloric acid regeneration plants, the owner or operator shall establish site-specific operating parameter...

  1. 40 CFR 63.1161 - Performance testing and test methods.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Facilities and Hydrochloric Acid Regeneration Plants § 63.1161 Performance testing and test methods. (a...) Establishment of hydrochloric acid regeneration plant operating parameters. (1) During the performance test for hydrochloric acid regeneration plants, the owner or operator shall establish site-specific operating parameter...

  2. Synchronisation, acquisition and tracking for telemetry and data reception

    NASA Astrophysics Data System (ADS)

    Vandoninck, A.

    1992-06-01

    The important parameters of synchronization, acquisition, and tracking are addressed, and each function is highlighted separately. The following sequence is such as the functions occur in the system in time and for the type of data to be received, with distinction between telemetry and data reception, between direct carrier modulation or the use of a subcarrier, and between deep space and normal reception. For the telemetry reception the acquisition is described taking into account the difference in performances as geostationary or polar orbits, and the dependencies on the different Doppler offsets and rates are distinguished. The related functions and parameters are covered and the specifications of an average receiver are summarized. The synchronization of the valid data is described with a distinction for data directly modulated or via a subcarrier, the type of modulation and bitrate. The relevant functions and parameters of the average receiver/demodulator are summarized. The tracking of the signal in the course of the operational phase is described and relevant parameters of an actual system are presented. The reception of real data is handled and a sequence of acquisition, synchronization, and tracking is applied. Here higher bitrates and direct modulation schemes play an important role. The market equipment with the relevant parameters are discussed. The three functions in cases where deep reception is needed are covered. The high performance receiver/demodulator functions and how the acquisition, synchronization, and tracking is handled in such application, are explained.

  3. Analyzing the effect of cutting parameters on surface roughness and tool wear when machining nickel based hastelloy - 276

    NASA Astrophysics Data System (ADS)

    Khidhir, Basim A.; Mohamed, Bashir

    2011-02-01

    Machining parameters has an important factor on tool wear and surface finish, for that the manufacturers need to obtain optimal operating parameters with a minimum set of experiments as well as minimizing the simulations in order to reduce machining set up costs. The cutting speed is one of the most important cutting parameter to evaluate, it clearly most influences on one hand, tool life, tool stability, and cutting process quality, and on the other hand controls production flow. Due to more demanding manufacturing systems, the requirements for reliable technological information have increased. For a reliable analysis in cutting, the cutting zone (tip insert-workpiece-chip system) as the mechanics of cutting in this area are very complicated, the chip is formed in the shear plane (entrance the shear zone) and is shape in the sliding plane. The temperature contributed in the primary shear, chamfer and sticking, sliding zones are expressed as a function of unknown shear angle on the rake face and temperature modified flow stress in each zone. The experiments were carried out on a CNC lathe and surface finish and tool tip wear are measured in process. Machining experiments are conducted. Reasonable agreement is observed under turning with high depth of cut. Results of this research help to guide the design of new cutting tool materials and the studies on evaluation of machining parameters to further advance the productivity of nickel based alloy Hastelloy - 276 machining.

  4. Collisional considerations in axial-collection plasma mass filters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ochs, I. E.; Gueroult, R.; Fisch, N. J.

    The chemical inhomogeneity of nuclear waste makes chemical separations difficult, while the correlation between radioactivity and nuclear mass makes mass-based separation, and in particular plasma-based separation, an attractive alternative. Here, we examine a particular class of plasma mass filters, namely filters in which (a) species of different masses are collected along magnetic field lines at opposite ends of an open-field-line plasma device and (b) gyro-drift effects are important for the separation process. Using an idealized cylindrical model, we derive a set of dimensionless parameters which provide minimum necessary conditions for an effective mass filter function in the presence of ion-ionmore » and ion-neutral collisions. Through simulations of the constant-density profile, turbulence-free devices, we find that these parameters accurately describe the mass filter performance in more general magnetic geometries. We then use these parameters to study the design and upgrade of current experiments, as well as to derive general scalings for the throughput of production mass filters. Most importantly, we find that ion temperatures above 3 eV and magnetic fields above 104 G are critical to ensure a feasible mass filter function when operating at an ion density of 10 13 cm –3.« less

  5. Collisional considerations in axial-collection plasma mass filters

    DOE PAGES

    Ochs, I. E.; Gueroult, R.; Fisch, N. J.; ...

    2017-04-01

    The chemical inhomogeneity of nuclear waste makes chemical separations difficult, while the correlation between radioactivity and nuclear mass makes mass-based separation, and in particular plasma-based separation, an attractive alternative. Here, we examine a particular class of plasma mass filters, namely filters in which (a) species of different masses are collected along magnetic field lines at opposite ends of an open-field-line plasma device and (b) gyro-drift effects are important for the separation process. Using an idealized cylindrical model, we derive a set of dimensionless parameters which provide minimum necessary conditions for an effective mass filter function in the presence of ion-ionmore » and ion-neutral collisions. Through simulations of the constant-density profile, turbulence-free devices, we find that these parameters accurately describe the mass filter performance in more general magnetic geometries. We then use these parameters to study the design and upgrade of current experiments, as well as to derive general scalings for the throughput of production mass filters. Most importantly, we find that ion temperatures above 3 eV and magnetic fields above 104 G are critical to ensure a feasible mass filter function when operating at an ion density of 10 13 cm –3.« less

  6. System for controlling a hybrid energy system

    DOEpatents

    Hoff, Brian D.; Akasam, Sivaprasad

    2013-01-29

    A method includes identifying a first operating sequence of a repeated operation of at least one non-traction load. The method also includes determining first and second parameters respectively indicative of a requested energy and output energy of the at least one non-traction load and comparing the determined first and second parameters at a plurality of time increments of the first operating sequence. The method also includes determining a third parameter of the hybrid energy system indicative of energy regenerated from the at least one non-traction load and monitoring the third parameter at the plurality of time increments of the first operating sequence. The method also includes determining at least one of an energy deficiency or an energy surplus associated with the non-traction load of the hybrid energy system and selectively adjusting energy stored within the storage device during at least a portion of a second operating sequence.

  7. State of Arts of Monumental Stones Diagnosis and Monitoring

    NASA Astrophysics Data System (ADS)

    Tiano, P.; Riminesi, C.

    2017-08-01

    The conservation and maintenance of a monumental stone building is a complex aim where different disciplines are involved. First step is concerning the determination of the state of conservation of stone material present, than determine its modification on time, as such and after conservation treatments applied on: cleaning, protecting, strengthening. In order to fulfill such objectives suitable parameters must be selected and the most appropriate diagnostic techniques for their quantitative evaluation operated. In this context, the determination of the surface water absorption, moisture content, colour variation and mechanical properties are important parameters for the control, and the monitoring over time, of the state of conservation of the monumental stone surfaces. These parameters are strongly related not only to the stone characteristics but also to the evaluation of products's performance: efficiency and durability. Their rate of variation, determined in monitoring campaigns, is fundamental for elaborate by properly predictive model a schedule maintenance protocol.

  8. A generalized analysis of solar space heating

    NASA Astrophysics Data System (ADS)

    Clark, J. A.

    A life-cycle model is developed for solar space heating within the United States. The model consists of an analytical relationship among five dimensionless parameters that include all pertinent technical, climatological, solar, operating and economic factors that influence the performance of a solar space heating system. An important optimum condition presented is the break-even metered cost of conventional fuel at which the cost of the solar system is equal to that of a conventional heating system. The effect of Federal (1980) and State (1979) income tax credits on these costs is determined. A parameter that includes both solar availability and solar system utilization is derived and plotted on a map of the U.S. This parameter shows the most favorable present locations for solar space heating application to be in the Central and Mountain States. The data employed are related to the rehabilitated solar data recently made available by the National Climatic Center.

  9. Control voltage and power fluctuations when connecting wind farms

    NASA Astrophysics Data System (ADS)

    Berinde, Ioan; Bǎlan, Horia; Oros Pop, Teodora Susana

    2015-12-01

    Voltage, frequency, active power and reactive power are very important parameters in terms of power quality. These parameters are followed when connecting any power plant, the more the connection of wind farms. Connecting wind farms to the electricity system must not cause interference outside the limits set by regulations. Modern solutions for fast and automatic voltage control and power fluctuations using electronic control systems of reactive power flows. FACTS (Flexible Alternating Current Transmision System) systems, established on the basis of power electronic circuits ensure control of electrical status quantities to achieve the necessary transfer of power to the power grid. FACTS devices can quickly control parameters and sizes of state power lines, such as impedance line voltages and phase angles of the voltages of the two ends of the line. Their use can lead to improvement in power system operation by increasing the transmission capacity of power lines, power flow control lines, improved static and transient stability reserve.

  10. Geological and petrological considerations relevant to the disposal of radioactive wastes by hydraulic fracturing: an example at the US Department of Energy's Oak Ridge National Laboratory. [Pumpkin Valley shales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haase, C.S.

    1982-01-01

    At Oak Ridge National Laboratory the Pumpkin Valley Shale is used as a host formation for hydraulic-fracturing waste disposal. Determination of the relationships between the distribution of different lithologies and porosity-permeability trends within this host formation allows these properties, important to hydraulic-fracturing operations, to be related to measurable and mappable geological and petrological parameters. It also permits extrapolation of such patterns to little-studied portions of the Pumpkin Valley Shale. Such knowledge better allows for the satisfactory operation and assessment of the hydraulic fracturing at Oak Ridge National Laboratory.

  11. Microfluidic-based photocatalytic microreactor for environmental application: a review of fabrication substrates and techniques, and operating parameters.

    PubMed

    Das, Susmita; Srivastava, Vimal Chandra

    2016-06-08

    Photochemical technology with microfluidics is emerging as a new platform in environmental science. Microfluidic technology has various advantages, like better mixing and a shorter diffusion distance for the reactants and products; and uniform distribution of light on the photocatalyst. Depending on the material type and related applications, several fabrication techniques have been adopted by various researchers. Microreactors have been prepared by various techniques, such as lithography, etching, mechanical microcutting technology, etc. Lithography can be classified into photolithography, soft lithography and X-ray lithography techniques whereas the etching process is divided into wet etching (chemical etching) and dry etching (plasma etching) techniques. Several substrates, like polymers, such as polydimethyl-siloxane (PDMS), polymethyle-methacrylate (PMMA), hydrogel, etc.; metals, such as stainless steel, titanium foil, etc.; glass, such as silica capillary, glass slide, etc.; and ceramics have been used for microchannel fabrication. During degradation in a microreactor, the degradation efficiency is affected by few important parameters such as flow rate, initial concentration of the target compound, microreactor dimensions, light intensity, photocatalyst structure and catalyst support. The present paper discusses and critically reviews fabrication techniques and substrates used for microchannel fabrication and critical operating parameters for organics, especially dye degradation in the microreactor. The kinetics of degradation has also been discussed.

  12. Optimizing the operating parameters of corona electrostatic separation for recycling waste scraped printed circuit boards by computer simulation of electric field.

    PubMed

    Li, Jia; Lu, Hongzhou; Liu, Shushu; Xu, Zhenming

    2008-05-01

    The printed circuit board (PCB) has a metal content of nearly 28% metal, including an abundance of nonferrous metals such as copper, lead, and tin. The purity of precious metals in PCBs is more than 10 times that of rich-content minerals. Therefore, the recycling of PCBs is an important subject, not only from the viewpoint of waste treatment, but also with respect to the recovery of valuable materials. Compared with traditional process the corona electrostatic separation (CES) had no waste water or gas during the process and it had high productivity with a low-energy cost. In this paper, the roll-type corona electrostatic separator was used to separate metals and nonmetals from scraped waste PCBs. The software MATLAB was used to simulate the distribution of electric field in separating space. It was found that, the variations of parameters of electrodes and applied voltages directly influenced the distribution of electric field. Through the correlation of simulated and experimental results, the good separation results were got under the optimized operating parameter: U=20-30 kV, L=L(1)=L(2)=0.21 m, R(1)=0.114, R(2)=0.019 m, theta(1)=20 degrees and theta(2)=60 degrees .

  13. Optimising the operational parameters of a spherical steriliser for the treatment of oil palm fresh fruit bunch

    NASA Astrophysics Data System (ADS)

    Kumaradevan, D.; Chuah, K. H.; Moey, L. K.; Mohan, V.; Wan, W. T.

    2015-09-01

    The extraction of crude palm oil (CPO) begins with the sterilization of oil palm fresh fruit bunch (FFB) in a pressurized, saturated-steam chamber. Sterilization loosens the palm fruits from the stalks and deactivates the free fatty acid (FFA)-producing enzymes. Operational parameters affecting the quality and yield of CPO from an industrial spherical sterilizer are studied at a palm oil mill. The factors are the ripeness of FFB, the number of days before treatment of FFB, and the number of pressure peaks applied in the sterilization process. The results indicate that the degree of ripeness of FFB is the most important parameter affecting the quality and yield of CPO. Ripeness is graded based on the fruits’ colour and the presence of loose fruits. Over ripe FFB that goes for the sterilization process has higher FFA content in CPO and more oil loss to the condensate chamber. The spontaneous reaction on FFB due to accumulation at the loading ramp also gives rise to higher FFA content. Oil loss to condensate chamber is reduced using a two-peak sterilization technique for over ripe FFB; the peak refers to the pressure level of stream after a flushing and refilling cycle. Overall, the generated solution improves the quality and yield of the palm oil mill.

  14. Introduction on the operational storm surge forecasting system in Korea Operational Oceanographic System (KOOS)

    NASA Astrophysics Data System (ADS)

    Kwon, Jae-Il; Park, Kwang-Soon; Choi, Jung-Woon; Lee, Jong-Chan; Heo, Ki-Young; Kim, Sang-Ik

    2017-04-01

    During last more than 50 years, 258 typhoons passed and affected the Korean peninsula in terms of high winds, storm surges and extreme waves. In this study we explored the performance of the operational storm surge forecasting system in the Korea Operational Oceanographic System (KOOS) with 8 typhoons from 2010 to 2016. The operation storm surge forecasting system for the typhoon in KOOS is based on 2D depth averaged model with tides and CE (U.S. Army Corps of Engineers) wind model. Two key parameters of CE wind model, the locations of typhoon center and its central atmospheric pressure are based from Korea Meteorological administrative (KMA)'s typhoon information provided from 1 day to 3 hour intervals with the approach of typhoon through the KMA's web-site. For 8 typhoons cases, the overall errors, other performances and analysis such as peak time and surge duration are presented in each case. The most important factor in the storm surge errors in the operational forecasting system is the accuracy of typhoon passage prediction.

  15. Continuous quality improvement for the clinical decision unit.

    PubMed

    Mace, Sharon E

    2004-01-01

    Clinical decision units (CDUs) are a relatively new and growing area of medicine in which patients undergo rapid evaluation and treatment. Continuous quality improvement (CQI) is important for the establishment and functioning of CDUs. CQI in CDUs has many advantages: better CDU functioning, fulfillment of Joint Commission on Accreditation of Healthcare Organizations mandates, greater efficiency/productivity, increased job satisfaction, better performance improvement, data availability, and benchmarking. Key elements include a database with volume indicators, operational policies, clinical practice protocols (diagnosis specific/condition specific), monitors, benchmarks, and clinical pathways. Examples of these important parameters are given. The CQI process should be individualized for each CDU and hospital.

  16. Experimental study on copper cathode erosion rate and rotational velocity of magnetically driven arcs in a well-type cathode non-transferred plasma torch operating in air

    NASA Astrophysics Data System (ADS)

    Chau, S. W.; Hsu, K. L.; Lin, D. L.; Tzeng, C. C.

    2007-04-01

    The cathode erosion rate, arc root velocity and output power of a well-type cathode (WTC), non-transferred plasma torch operating in air are studied experimentally in this paper. An external solenoid to generate a magnetically driven arc and a circular swirler to produce a vortex flow structure are equipped in the studied torch system, which is designed to reduce the erosion rate at the cathode. A least square technique is applied to correlate the system parameters, i.e. current, axial magnetic field and mass flow rate, with the cathode erosion rate, arc root velocity and system power output. In the studied WTC torch system, the cathode erosion has a major thermal erosion component and a minor component due to the ion-bombardment effect. The cathode erosion increases with the increase of current due to the enhancement in both Joule heating and ion bombardment. The axial magnetic field can significantly reduce the cathode erosion by reducing the thermal loading of cathode materials at the arc root and improving the heat transfer to gas near the cathode. But, the rise in the mass flow rate leads to the deterioration of erosion, since the ion-bombardment effect prevails over the convective cooling at the cathode. The most dominant system parameter to influence the arc root velocity is the axial magnetic field, which is mainly contributed to the magnetic force driving the arc. The growth in current has a negative impact on increasing the arc root velocity, because the friction force acting at the spot due to a severe molten condition becomes the dominant component counteracting the magnetic force. The mass flow rate also suppresses the arc root velocity, as a result of which the arc root moves in the direction against that of the swirled working gas. All system parameters such as current, magnetic field and gas flow rate increase with the increase in the torch output power. The experimental evidences suggest that the axial magnetic field is the most important parameter to operate the straight-polarity WTC plasma torch at high output power with a limited cathode erosion rate. This emphasizes the importance of an external magnetic field on a WTC torch system for reducing the erosion at the cathode.

  17. Parameter Optimization of PAL-XFEL Injector

    NASA Astrophysics Data System (ADS)

    Lee, Jaehyun; Ko, In Soo; Han, Jang-Hui; Hong, Juho; Yang, Haeryong; Min, Chang Ki; Kang, Heung-Sik

    2018-05-01

    A photoinjector is used as the electron source to generate a high peak current and low emittance beam for an X-ray free electron laser (FEL). The beam emittance is one of the critical parameters to determine the FEL performance together with the slice energy spread and the peak current. The Pohang Accelerator Laboratory X-ray Free Electron Laser (PAL-XFEL) was constructed in 2015, and the beam commissioning was carried out in spring 2016. The injector is running routinely for PAL-XFEL user operation. The operational parameters of the injector have been optimized experimentally, and these are somewhat different from the originally designed ones. Therefore, we study numerically the injector parameters based on the empirically optimized parameters and review the present operating condition.

  18. Formability of dual-phase steels in deep drawing of rectangular parts: Influence of blank thickness and die radius

    NASA Astrophysics Data System (ADS)

    López, Ana María Camacho; Regueras, José María Gutiérrez

    2017-10-01

    The new goals of automotive industry related with environment concerns, the reduction of fuel emissions and the security requirements have driven up to new designs which main objective is reducing weight. It can be achieved through new materials such as nano-structured materials, fibre-reinforced composites or steels with higher strength, among others. Into the last group, the Advance High Strength Steels (AHSS) and particularly, dual-phase steels are in a predominant situation. However, despite of their special characteristics, they present issues related to their manufacturability such as springback, splits and cracks, among others. This work is focused on the deep drawing processof rectangular shapes, a very usual forming operation that allows manufacturing several automotive parts like oil pans, cases, etc. Two of the main parameters in this process which affect directly to the characteristics of final product are blank thickness (t) and die radius (Rd). Influence of t and Rd on the formability of dual-phase steels has been analysed considering values typically used in industrial manufacturing for a wide range of dual-phase steels using finite element modelling and simulation; concretely, the influence of these parameters in the percentage of thickness reduction pt(%), a quite important value for manufactured parts by deep drawing operations, which affects to its integrity and its service behaviour. Modified Morh Coulomb criteria (MMC) has been used in order to obtain Fracture Forming Limit Diagrams (FFLD) which take into account an important failure mode in dual-phase steels: shear fracture. Finally, a relation between thickness reduction percentage and studied parameters has been established fordual-phase steels, obtaining a collection of equations based on Design of Experiments (D.O.E) technique, which can be useful in order to predict approximate results.

  19. An optimal-estimation-based aerosol retrieval algorithm using OMI near-UV observations

    NASA Astrophysics Data System (ADS)

    Jeong, U.; Kim, J.; Ahn, C.; Torres, O.; Liu, X.; Bhartia, P. K.; Spurr, R. J. D.; Haffner, D.; Chance, K.; Holben, B. N.

    2016-01-01

    An optimal-estimation(OE)-based aerosol retrieval algorithm using the OMI (Ozone Monitoring Instrument) near-ultraviolet observation was developed in this study. The OE-based algorithm has the merit of providing useful estimates of errors simultaneously with the inversion products. Furthermore, instead of using the traditional look-up tables for inversion, it performs online radiative transfer calculations with the VLIDORT (linearized pseudo-spherical vector discrete ordinate radiative transfer code) to eliminate interpolation errors and improve stability. The measurements and inversion products of the Distributed Regional Aerosol Gridded Observation Network campaign in northeast Asia (DRAGON NE-Asia 2012) were used to validate the retrieved aerosol optical thickness (AOT) and single scattering albedo (SSA). The retrieved AOT and SSA at 388 nm have a correlation with the Aerosol Robotic Network (AERONET) products that is comparable to or better than the correlation with the operational product during the campaign. The OE-based estimated error represented the variance of actual biases of AOT at 388 nm between the retrieval and AERONET measurements better than the operational error estimates. The forward model parameter errors were analyzed separately for both AOT and SSA retrievals. The surface reflectance at 388 nm, the imaginary part of the refractive index at 354 nm, and the number fine-mode fraction (FMF) were found to be the most important parameters affecting the retrieval accuracy of AOT, while FMF was the most important parameter for the SSA retrieval. The additional information provided with the retrievals, including the estimated error and degrees of freedom, is expected to be valuable for relevant studies. Detailed advantages of using the OE method were described and discussed in this paper.

  20. An Optimal-Estimation-Based Aerosol Retrieval Algorithm Using OMI Near-UV Observations

    NASA Technical Reports Server (NTRS)

    Jeong, U; Kim, J.; Ahn, C.; Torres, O.; Liu, X.; Bhartia, P. K.; Spurr, R. J. D.; Haffner, D.; Chance, K.; Holben, B. N.

    2016-01-01

    An optimal-estimation(OE)-based aerosol retrieval algorithm using the OMI (Ozone Monitoring Instrument) near-ultraviolet observation was developed in this study. The OE-based algorithm has the merit of providing useful estimates of errors simultaneously with the inversion products. Furthermore, instead of using the traditional lookup tables for inversion, it performs online radiative transfer calculations with the VLIDORT (linearized pseudo-spherical vector discrete ordinate radiative transfer code) to eliminate interpolation errors and improve stability. The measurements and inversion products of the Distributed Regional Aerosol Gridded Observation Network campaign in northeast Asia (DRAGON NE-Asia 2012) were used to validate the retrieved aerosol optical thickness (AOT) and single scattering albedo (SSA). The retrieved AOT and SSA at 388 nm have a correlation with the Aerosol Robotic Network (AERONET) products that is comparable to or better than the correlation with the operational product during the campaign. The OEbased estimated error represented the variance of actual biases of AOT at 388 nm between the retrieval and AERONET measurements better than the operational error estimates. The forward model parameter errors were analyzed separately for both AOT and SSA retrievals. The surface reflectance at 388 nm, the imaginary part of the refractive index at 354 nm, and the number fine-mode fraction (FMF) were found to be the most important parameters affecting the retrieval accuracy of AOT, while FMF was the most important parameter for the SSA retrieval. The additional information provided with the retrievals, including the estimated error and degrees of freedom, is expected to be valuable for relevant studies. Detailed advantages of using the OE method were described and discussed in this paper.

  1. Correlation between mass transfer coefficient kLa and relevant operating parameters in cylindrical disposable shaken bioreactors on a bench-to-pilot scale

    PubMed Central

    2013-01-01

    Background Among disposable bioreactor systems, cylindrical orbitally shaken bioreactors show important advantages. They provide a well-defined hydrodynamic flow combined with excellent mixing and oxygen transfer for mammalian and plant cell cultivations. Since there is no known universal correlation between the volumetric mass transfer coefficient for oxygen kLa and relevant operating parameters in such bioreactor systems, the aim of this current study is to experimentally determine a universal kLa correlation. Results A Respiration Activity Monitoring System (RAMOS) was used to measure kLa values in cylindrical disposable shaken bioreactors and Buckingham’s π-Theorem was applied to define a dimensionless equation for kLa. In this way, a scale- and volume-independent kLa correlation was developed and validated in bioreactors with volumes from 2 L to 200 L. The final correlation was used to calculate cultivation parameters at different scales to allow a sufficient oxygen supply of tobacco BY-2 cell suspension cultures. Conclusion The resulting equation can be universally applied to calculate the mass transfer coefficient for any of seven relevant cultivation parameters such as the reactor diameter, the shaking frequency, the filling volume, the viscosity, the oxygen diffusion coefficient, the gravitational acceleration or the shaking diameter within an accuracy range of +/− 30%. To our knowledge, this is the first kLa correlation that has been defined and validated for the cited bioreactor system on a bench-to-pilot scale. PMID:24289110

  2. The relationship between thermal environments and clothing insulation for elderly individuals in Shanghai, China.

    PubMed

    Jiao, Yu; Yu, Hang; Wang, Tian; An, Yusong; Yu, Yifan

    2017-12-01

    The relationship between thermal environmental parameters and clothing insulation is an important element in improving thermal comfort for the elderly. A field study was conducted on the indoor, transition space, and outdoor thermal environments of 17 elderly facilities in Shanghai, China. A random questionnaire survey was used to gather data from 672 valid samples. A statistical analysis of the data was conducted, and multiple linear regression models were established to quantify the relationships between clothing insulation, respondent age, indoor air temperature, and indoor relative humidity. Results indicated that the average thermal insulation of winter and summer clothing is 1.38 clo and 0.44 clo, respectively, for elderly men and 1.39 clo and 0.45 clo, respectively, for elderly women. It was also found that the thermal insulation of winter clothing is linearly correlated with age, and that there were seasonal differences in the relationship between clothing insulation and the environment. During winter, the clothing insulation is negatively correlated only with indoor temperature parameters (air temperature and operative temperature) for elderly males, while it is negatively correlated with indoor temperature parameters as well as transition space and outdoor air temperature for elderly females. In summer, clothing insulation for both elderly males and females is negatively correlated with outdoor temperature, as well as indoor temperature parameters (air temperature and operative temperature). The thermal insulation of summer clothing is also negatively correlated with transitional space temperature for males. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Correlation between mass transfer coefficient kLa and relevant operating parameters in cylindrical disposable shaken bioreactors on a bench-to-pilot scale.

    PubMed

    Klöckner, Wolf; Gacem, Riad; Anderlei, Tibor; Raven, Nicole; Schillberg, Stefan; Lattermann, Clemens; Büchs, Jochen

    2013-12-02

    Among disposable bioreactor systems, cylindrical orbitally shaken bioreactors show important advantages. They provide a well-defined hydrodynamic flow combined with excellent mixing and oxygen transfer for mammalian and plant cell cultivations. Since there is no known universal correlation between the volumetric mass transfer coefficient for oxygen kLa and relevant operating parameters in such bioreactor systems, the aim of this current study is to experimentally determine a universal kLa correlation. A Respiration Activity Monitoring System (RAMOS) was used to measure kLa values in cylindrical disposable shaken bioreactors and Buckingham's π-Theorem was applied to define a dimensionless equation for kLa. In this way, a scale- and volume-independent kLa correlation was developed and validated in bioreactors with volumes from 2 L to 200 L. The final correlation was used to calculate cultivation parameters at different scales to allow a sufficient oxygen supply of tobacco BY-2 cell suspension cultures. The resulting equation can be universally applied to calculate the mass transfer coefficient for any of seven relevant cultivation parameters such as the reactor diameter, the shaking frequency, the filling volume, the viscosity, the oxygen diffusion coefficient, the gravitational acceleration or the shaking diameter within an accuracy range of +/- 30%. To our knowledge, this is the first kLa correlation that has been defined and validated for the cited bioreactor system on a bench-to-pilot scale.

  4. Effect of multi-tank thermal energy storage, recuperator effectiveness, and solar receiver conductance on the performance of a concentrated solar supercritical CO 2-based power plant operating under different seasonal conditions

    DOE PAGES

    Osorio, Julian D.; Hovsapian, Rob; Ordonez, Juan C.

    2016-09-13

    Renewable energy technologies based on solar energy concentration are important alternatives to supply the rising energy demand in the world and to mitigate the negative environmental impact caused by the extensive use of fossil-fuels. In this work, a thermodynamic model based on energy and exergy analyses is developed to study the transient behavior of a Concentrated Solar Power (CSP) supercritical CO2 plant operating under different seasonal conditions. The system analyzed is composed of a central receiver, hot and cold thermal energy storage units, a heat exchanger, a recuperator, and three-stage compression and expansion subsystems with intercoolers between compressors and reheatersmore » between turbines, respectively. From the exergy analysis, the recuperator, the hot thermal energy storage, and the solar receiver were identified as the main sources for exergy destruction with more than 70% of the total lost work in the plant. These components offer an important potential to improve the system’s performance via design optimization. With reference parameters, the system reaches efficiencies of about 18.5%. These efficiencies are increased with a combination of improved design parameters, reaching values of between 24.1% and 26.2%, depending on the season, which are relatively good for CSP plants.« less

  5. Optimization study on structural analyses for the J-PARC mercury target vessel

    NASA Astrophysics Data System (ADS)

    Guan, Wenhai; Wakai, Eiichi; Naoe, Takashi; Kogawa, Hiroyuki; Wakui, Takashi; Haga, Katsuhiro; Takada, Hiroshi; Futakawa, Masatoshi

    2018-06-01

    The spallation neutron source at the Japan Proton Accelerator Research Complex (J-PARC) mercury target vessel is used for various materials science studies, work is underway to achieve stable operation at 1 MW. This is very important for enhancing the structural integrity and durability of the target vessel, which is being developed for 1 MW operation. In the present study, to reduce thermal stress and relax stress concentrations more effectively in the existing target vessel in J-PARC, an optimization approach called the Taguchi method (TM) is applied to thermo-mechanical analysis. The ribs and their relative parameters, as well as the thickness of the mercury vessel and shrouds, were selected as important design parameters for this investigation. According to the analytical results of 18 model types designed using the TM, the optimal design was determined. It is characterized by discrete ribs and a thicker vessel wall than the current design. The maximum thermal stresses in the mercury vessel and the outer shroud were reduced by 14% and 15%, respectively. Furthermore, it was indicated that variations in rib width, left/right rib intervals, and shroud thickness could influence the maximum thermal stress performance. It is therefore concluded that the TM was useful for optimizing the structure of the target vessel and to reduce the thermal stress in a small number of calculation cases.

  6. Effect of multi-tank thermal energy storage, recuperator effectiveness, and solar receiver conductance on the performance of a concentrated solar supercritical CO 2-based power plant operating under different seasonal conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osorio, Julian D.; Hovsapian, Rob; Ordonez, Juan C.

    Renewable energy technologies based on solar energy concentration are important alternatives to supply the rising energy demand in the world and to mitigate the negative environmental impact caused by the extensive use of fossil-fuels. In this work, a thermodynamic model based on energy and exergy analyses is developed to study the transient behavior of a Concentrated Solar Power (CSP) supercritical CO2 plant operating under different seasonal conditions. The system analyzed is composed of a central receiver, hot and cold thermal energy storage units, a heat exchanger, a recuperator, and three-stage compression and expansion subsystems with intercoolers between compressors and reheatersmore » between turbines, respectively. From the exergy analysis, the recuperator, the hot thermal energy storage, and the solar receiver were identified as the main sources for exergy destruction with more than 70% of the total lost work in the plant. These components offer an important potential to improve the system’s performance via design optimization. With reference parameters, the system reaches efficiencies of about 18.5%. These efficiencies are increased with a combination of improved design parameters, reaching values of between 24.1% and 26.2%, depending on the season, which are relatively good for CSP plants.« less

  7. Numerical research of dynamic characteristics in tower solar cavity receiver based on step-change radiation flux

    NASA Astrophysics Data System (ADS)

    Chen, Zhengwei; Wang, Yueshe; Hao, Yun; Wang, Qizhi

    2013-07-01

    The solar cavity receiver is an important light-energy to thermal-energy convector in the tower solar thermal power plant system. The heat flux in the inner surface of the cavity will show the characteristics of non-continuous step change especially in non-normal and transient weather conditions, which may result in a continuous dynamic variation of the characteristic parameters. Therefore, the research of dynamic characteristics of the receiver plays a very important role in the operation and the control safely in solar cavity receiver system. In this paper, based on the non-continuous step change of radiation flux, a non-linear dynamic model is put forward to obtain the effects of the non-continuous step change radiation flux and step change feed water flow on the receiver performance by sequential modular approach. The subject investigated in our study is a 1MW solar power station constructed in Yanqing County, Beijing. This study has obtained the dynamic responses of the characteristic parameters in the cavity receiver, such as drum pressure, drum water level, main steam flow and main steam enthalpy under step change radiation flux. And the influence law of step-change feed water flow to the dynamic characteristics in the receiver also has been analyzed. The results have a reference value for the safe operation and the control in solar cavity receiver system.

  8. Exponential Modelling for Mutual-Cohering of Subband Radar Data

    NASA Astrophysics Data System (ADS)

    Siart, U.; Tejero, S.; Detlefsen, J.

    2005-05-01

    Increasing resolution and accuracy is an important issue in almost any type of radar sensor application. However, both resolution and accuracy are strongly related to the available signal bandwidth and energy that can be used. Nowadays, often several sensors operating in different frequency bands become available on a sensor platform. It is an attractive goal to use the potential of advanced signal modelling and optimization procedures by making proper use of information stemming from different frequency bands at the RF signal level. An important prerequisite for optimal use of signal energy is coherence between all contributing sensors. Coherent multi-sensor platforms are greatly expensive and are thus not available in general. This paper presents an approach for accurately estimating object radar responses using subband measurements at different RF frequencies. An exponential model approach allows to compensate for the lack of mutual coherence between independently operating sensors. Mutual coherence is recovered from the a-priori information that both sensors have common scattering centers in view. Minimizing the total squared deviation between measured data and a full-range exponential signal model leads to more accurate pole angles and pole magnitudes compared to single-band optimization. The model parameters (range and magnitude of point scatterers) after this full-range optimization process are also more accurate than the parameters obtained from a commonly used super-resolution procedure (root-MUSIC) applied to the non-coherent subband data.

  9. Vectorial capacity and vector control: reconsidering sensitivity to parameters for malaria elimination

    PubMed Central

    Brady, Oliver J.; Godfray, H. Charles J.; Tatem, Andrew J.; Gething, Peter W.; Cohen, Justin M.; McKenzie, F. Ellis; Perkins, T. Alex; Reiner, Robert C.; Tusting, Lucy S.; Sinka, Marianne E.; Moyes, Catherine L.; Eckhoff, Philip A.; Scott, Thomas W.; Lindsay, Steven W.; Hay, Simon I.; Smith, David L.

    2016-01-01

    Background Major gains have been made in reducing malaria transmission in many parts of the world, principally by scaling-up coverage with long-lasting insecticidal nets and indoor residual spraying. Historically, choice of vector control intervention has been largely guided by a parameter sensitivity analysis of George Macdonald's theory of vectorial capacity that suggested prioritizing methods that kill adult mosquitoes. While this advice has been highly successful for transmission suppression, there is a need to revisit these arguments as policymakers in certain areas consider which combinations of interventions are required to eliminate malaria. Methods and Results Using analytical solutions to updated equations for vectorial capacity we build on previous work to show that, while adult killing methods can be highly effective under many circumstances, other vector control methods are frequently required to fill effective coverage gaps. These can arise due to pre-existing or developing mosquito physiological and behavioral refractoriness but also due to additive changes in the relative importance of different vector species for transmission. Furthermore, the optimal combination of interventions will depend on the operational constraints and costs associated with reaching high coverage levels with each intervention. Conclusions Reaching specific policy goals, such as elimination, in defined contexts requires increasingly non-generic advice from modelling. Our results emphasize the importance of measuring baseline epidemiology, intervention coverage, vector ecology and program operational constraints in predicting expected outcomes with different combinations of interventions. PMID:26822603

  10. Advanced interactive display formats for terminal area traffic control

    NASA Technical Reports Server (NTRS)

    Grunwald, Arthur J.

    1996-01-01

    This report describes the basic design considerations for perspective air traffic control displays. A software framework has been developed for manual viewing parameter setting (MVPS) in preparation for continued, ongoing developments on automated viewing parameter setting (AVPS) schemes. Two distinct modes of MVPS operations are considered, both of which utilize manipulation pointers imbedded in the three-dimensional scene: (1) direct manipulation of the viewing parameters -- in this mode the manipulation pointers act like the control-input device, through which the viewing parameter changes are made. Part of the parameters are rate controlled, and part of them position controlled. This mode is intended for making fast, iterative small changes in the parameters. (2) Indirect manipulation of the viewing parameters -- this mode is intended primarily for introducing large, predetermined changes in the parameters. Requests for changes in viewing parameter setting are entered manually by the operator by moving viewing parameter manipulation pointers on the screen. The motion of these pointers, which are an integral part of the 3-D scene, is limited to the boundaries of the screen. This arrangement has been chosen in order to preserve the correspondence between the spatial lay-outs of the new and the old viewing parameter setting, a feature which contributes to preventing spatial disorientation of the operator. For all viewing operations, e.g. rotation, translation and ranging, the actual change is executed automatically by the system, through gradual transitions with an exponentially damped, sinusoidal velocity profile, in this work referred to as 'slewing' motions. The slewing functions, which eliminate discontinuities in the viewing parameter changes, are designed primarily for enhancing the operator's impression that he, or she, is dealing with an actually existing physical system, rather than an abstract computer-generated scene. The proposed, continued research efforts will deal with the development of automated viewing parameter setting schemes. These schemes employ an optimization strategy, aimed at identifying the best possible vantage point, from which the air traffic control scene can be viewed for a given traffic situation. They determine whether a change in viewing parameter setting is required and determine the dynamic path along which the change to the new viewing parameter setting should take place.

  11. On-line estimation of error covariance parameters for atmospheric data assimilation

    NASA Technical Reports Server (NTRS)

    Dee, Dick P.

    1995-01-01

    A simple scheme is presented for on-line estimation of covariance parameters in statistical data assimilation systems. The scheme is based on a maximum-likelihood approach in which estimates are produced on the basis of a single batch of simultaneous observations. Simple-sample covariance estimation is reasonable as long as the number of available observations exceeds the number of tunable parameters by two or three orders of magnitude. Not much is known at present about model error associated with actual forecast systems. Our scheme can be used to estimate some important statistical model error parameters such as regionally averaged variances or characteristic correlation length scales. The advantage of the single-sample approach is that it does not rely on any assumptions about the temporal behavior of the covariance parameters: time-dependent parameter estimates can be continuously adjusted on the basis of current observations. This is of practical importance since it is likely to be the case that both model error and observation error strongly depend on the actual state of the atmosphere. The single-sample estimation scheme can be incorporated into any four-dimensional statistical data assimilation system that involves explicit calculation of forecast error covariances, including optimal interpolation (OI) and the simplified Kalman filter (SKF). The computational cost of the scheme is high but not prohibitive; on-line estimation of one or two covariance parameters in each analysis box of an operational bozed-OI system is currently feasible. A number of numerical experiments performed with an adaptive SKF and an adaptive version of OI, using a linear two-dimensional shallow-water model and artificially generated model error are described. The performance of the nonadaptive versions of these methods turns out to depend rather strongly on correct specification of model error parameters. These parameters are estimated under a variety of conditions, including uniformly distributed model error and time-dependent model error statistics.

  12. Effect of Process Parameters on Catalytic Incineration of Solvent Emissions

    PubMed Central

    Ojala, Satu; Lassi, Ulla; Perämäki, Paavo; Keiski, Riitta L.

    2008-01-01

    Catalytic oxidation is a feasible and affordable technology for solvent emission abatement. However, finding optimal operation conditions is important, since they are strongly dependent on the application area of VOC incineration. This paper presents the results of the laboratory experiments concerning four most central parameters, that is, effects of concentration, gas hourly space velocity (GHSV), temperature, and moisture on the oxidation of n-butyl acetate. Both fresh and industrially aged commercial Pt/Al2O3 catalysts were tested to determine optimal process conditions and the significance order and level of selected parameters. The effects of these parameters were evaluated by computer-aided statistical experimental design. According to the results, GHSV was the most dominant parameter in the oxidation of n-butyl acetate. Decreasing GHSV and increasing temperature increased the conversion of n-butyl acetate. The interaction effect of GHSV and temperature was more significant than the effect of concentration. Both of these affected the reaction by increasing the conversion of n-butyl acetate. Moisture had only a minor decreasing effect on the conversion, but it also decreased slightly the formation of by products. Ageing did not change the significance order of the above-mentioned parameters, however, the effects of individual parameters increased slightly as a function of ageing. PMID:18584032

  13. Dynamic Computation of Change Operations in Version Management of Business Process Models

    NASA Astrophysics Data System (ADS)

    Küster, Jochen Malte; Gerth, Christian; Engels, Gregor

    Version management of business process models requires that changes can be resolved by applying change operations. In order to give a user maximal freedom concerning the application order of change operations, position parameters of change operations must be computed dynamically during change resolution. In such an approach, change operations with computed position parameters must be applicable on the model and dependencies and conflicts of change operations must be taken into account because otherwise invalid models can be constructed. In this paper, we study the concept of partially specified change operations where parameters are computed dynamically. We provide a formalization for partially specified change operations using graph transformation and provide a concept for their applicability. Based on this, we study potential dependencies and conflicts of change operations and show how these can be taken into account within change resolution. Using our approach, a user can resolve changes of business process models without being unnecessarily restricted to a certain order.

  14. Dynamics of Female Pelvic Floor Function Using Urodynamics, Ultrasound and Magnetic Resonance Imaging (MRI)

    PubMed Central

    Constantinou, Christos E.

    2009-01-01

    In this review the diagnostic potential of evaluating female pelvic floor muscle (PFM)) function using magnetic and ultrasound imaging in the context of urodynamic observations is considered in terms of determining the mechanisms of urinary continence. A new approach is used to consider the dynamics of PFM activity by introducing new parameters derived from imaging. Novel image processing techniques are applied to illustrate the static anatomy and dynamics PFM function of stress incontinent women pre and post operatively as compared to asymptomatic subjects. Function was evaluated from the dynamics of organ displacement produced during voluntary and reflex activation. Technical innovations include the use of ultrasound analysis of movement of structures during maneuvers that are associated with external stimuli. Enabling this approach is the development of criteria and fresh and unique parameters that define the kinematics of PFM function. Principal among these parameters, are displacement, velocity, acceleration and the trajectory of pelvic floor landmarks. To accomplish this objective, movement detection, including motion tracking algorithms and segmentation algorithms were developed to derive new parameters of trajectory, displacement, velocity and acceleration, and strain of pelvic structures during different maneuvers. Results highlight the importance of timing the movement and deformation to fast and stressful maneuvers, which are important for understanding the neuromuscular control and function of PFM. Furthermore, observations suggest that timing of responses is a significant factor separating the continent from the incontinent subjects. PMID:19303690

  15. Kubios HRV--heart rate variability analysis software.

    PubMed

    Tarvainen, Mika P; Niskanen, Juha-Pekka; Lipponen, Jukka A; Ranta-Aho, Perttu O; Karjalainen, Pasi A

    2014-01-01

    Kubios HRV is an advanced and easy to use software for heart rate variability (HRV) analysis. The software supports several input data formats for electrocardiogram (ECG) data and beat-to-beat RR interval data. It includes an adaptive QRS detection algorithm and tools for artifact correction, trend removal and analysis sample selection. The software computes all the commonly used time-domain and frequency-domain HRV parameters and several nonlinear parameters. There are several adjustable analysis settings through which the analysis methods can be optimized for different data. The ECG derived respiratory frequency is also computed, which is important for reliable interpretation of the analysis results. The analysis results can be saved as an ASCII text file (easy to import into MS Excel or SPSS), Matlab MAT-file, or as a PDF report. The software is easy to use through its compact graphical user interface. The software is available free of charge for Windows and Linux operating systems at http://kubios.uef.fi. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  16. Living with heterogeneities in bioreactors: understanding the effects of environmental gradients on cells.

    PubMed

    Lara, Alvaro R; Galindo, Enrique; Ramírez, Octavio T; Palomares, Laura A

    2006-11-01

    The presence of spatial gradients in fundamental culture parameters, such as dissolved gases, pH, concentration of substrates, and shear rate, among others, is an important problem that frequently occurs in large-scale bioreactors. This problem is caused by a deficient mixing that results from limitations inherent to traditional scale-up methods and practical constraints during large-scale bioreactor design and operation. When cultured in a heterogeneous environment, cells are continuously exposed to fluctuating conditions as they travel through the various zones of a bioreactor. Such fluctuations can affect cell metabolism, yields, and quality of the products of interest. In this review, the theoretical analyses that predict the existence of environmental gradients in bioreactors and their experimental confirmation are reviewed. The origins of gradients in common culture parameters and their effects on various organisms of biotechnological importance are discussed. In particular, studies based on the scale-down methodology, a convenient tool for assessing the effect of environmental heterogeneities, are surveyed.

  17. Influence of spray nozzle shape upon atomization process

    NASA Astrophysics Data System (ADS)

    Beniuga, Marius; Mihai, Ioan

    2016-12-01

    The atomization process is affected by a number of operating parameters (pressure, viscosity, temperature, etc.) [1-6] and the adopted constructive solution. In this article are compared parameters of atomized liquid jet with two nozzles that have different lifespan, one being new and the other one out. The last statement shows that the second nozzle was monitored as time of operation on the one hand and on the other hand, two dimensional nozzles have been analyzed using laser profilometry. To compare the experimental parameters was carried an experimental stand to change the period and pulse width in injecting liquid through two nozzles. Atomized liquid jets were photographed and filmed quickly. Images obtained were analyzed using a Matlab code that allowed to determine a number of parameters that characterize an atomized jet. Knowing the conditions and operating parameters of atomized jet, will establish a new wastewater nozzle block of parameter values that can be implemented in controller that provides dosing of the liquid injected. Experimental measurements to observe the myriad forms of atomized droplets to a wide range of operating conditions, realized using the electronic control module.

  18. In situ sensors for measurements in the global trosposphere

    NASA Technical Reports Server (NTRS)

    Saeger, M. L.; Eaton, W. C.; Wright, R. S.; White, J. H.; Tommerdahl, J. B.

    1981-01-01

    Current techniques available for the in situ measurement of ambient trace gas species, particulate composition, and particulate size distribution are reviewed. The operational specifications of the various techniques are described. Most of the techniques described are those that have been used in airborne applications or show promise of being adaptable to airborne applications. Some of the instruments described are specialty items that are not commercially-available. In situ measurement techniques for several meteorological parameters important in the study of the distribution and transport of ambient air pollutants are discussed. Some remote measurement techniques for meteorological parameters are also discussed. State-of-the-art measurement capabilities are compared with a list of capabilities and specifications desired by NASA for ambient measurements in the global troposphere.

  19. Research on Thermodynamic Parameters of a Micro-Turbine for Standalone Cogeneration

    NASA Astrophysics Data System (ADS)

    Chekardovskiy, M. N.; Chekardovskiy, S. M.; Chekardovskaya, I. A.; Mihajlenko, A. I.

    2016-10-01

    In order to advance the heating and hot water systems in the Russian Federation we need to address the problem of introducing new sources of heat and electric energy. The paper overviews the relationship between the reliability, efficiency and diagnostic maintenance of the GMTU, the studies of rated and operating conditions of the GMTU, the development and improvement of methods for calculating rated and operating thermodynamic and diagnostic parameter of the unit. This resulted in developing a passport of thermodynamic parameters that can be compared to the parameters of the same units when they operate for the purpose of diagnosing their state.

  20. A review and assessment of hydrodynamic cavitation as a technology for the future.

    PubMed

    Gogate, Parag R; Pandit, Aniruddha B

    2005-01-01

    In the present work, the current status of the hydrodynamic cavitation reactors has been reviewed discussing the bubble dynamics analysis, optimum design considerations, design correlations for cavitational intensity (in terms of collapse pressure)/cavitational yield and different successful chemical synthesis applications clearly illustrating the utility of these types of reactors. The theoretical discussion based on the modeling of the bubble dynamics equations aims at understanding the design information related to the dependency of the cavitational intensity on the operating parameters and recommendations have been made for the choice of the optimized conditions of operating parameters. The design information based on the theoretical analysis has also been supported with some experimental illustrations concentrating on the chemical synthesis applications. Assessment of the hydrodynamic cavitation reactors and comparison with the sonochemical reactors has been done by citing the different industrially important reactions (oxidation of toluene, o-xylene, m-xylene, p-xylene, mesitylene, o-nitrotoluene, p-nitrotoluene, m-nitrotoluene, o-chlorotoluene and p-chlorotoulene, and trans-esterification reaction i.e., synthesis of bio-diesel). Some recommendations have also been made for the future work to be carried out as well as the choice of the operating conditions for realizing the dream of industrial scale applications of the cavitational reactors.

  1. Push the flash floating gate memories toward the future low energy application

    NASA Astrophysics Data System (ADS)

    Della Marca, V.; Just, G.; Regnier, A.; Ogier, J.-L.; Simola, R.; Niel, S.; Postel-Pellerin, J.; Lalande, F.; Masoero, L.; Molas, G.

    2013-01-01

    In this paper the energy consumption of flash floating gate cell, during a channel hot electron operation, is investigated. We characterize the device using different ramp and box pulses on control gate, to find the best solution to have low energy consumption and good cell performances. We use a new dynamic method to measure the drain current absorption in order to evaluate the impact of different bias conditions, and to study the cell behavior. The programming window and the energy consumption are considered as fundamental parameters. Using this dynamic technique, three zones of work are found; it is possible to optimize the drain voltage during the programming operation to minimize the energy consumption. Moreover, the cell's performances are improved using the CHISEL effect, with a reverse body bias. After the study concerning the programming pulses adjusting, we show the results obtained by increasing the channel doping dose parameter. Considering a channel hot electron programming operation, it is important to focus our attention on the bitline leakage consumption contribution. We measured it for the unselected bitline cells, and we show the effects of the lightly doped drain implantation energy on the leakage current. In this way the impact of gate induced drain leakage in band-to-band tunneling regime decreases, improving the cell's performances in a memory array.

  2. Advisory Algorithm for Scheduling Open Sectors, Operating Positions, and Workstations

    NASA Technical Reports Server (NTRS)

    Bloem, Michael; Drew, Michael; Lai, Chok Fung; Bilimoria, Karl D.

    2012-01-01

    Air traffic controller supervisors configure available sector, operating position, and work-station resources to safely and efficiently control air traffic in a region of airspace. In this paper, an algorithm for assisting supervisors with this task is described and demonstrated on two sample problem instances. The algorithm produces configuration schedule advisories that minimize a cost. The cost is a weighted sum of two competing costs: one penalizing mismatches between configurations and predicted air traffic demand and another penalizing the effort associated with changing configurations. The problem considered by the algorithm is a shortest path problem that is solved with a dynamic programming value iteration algorithm. The cost function contains numerous parameters. Default values for most of these are suggested based on descriptions of air traffic control procedures and subject-matter expert feedback. The parameter determining the relative importance of the two competing costs is tuned by comparing historical configurations with corresponding algorithm advisories. Two sample problem instances for which appropriate configuration advisories are obvious were designed to illustrate characteristics of the algorithm. Results demonstrate how the algorithm suggests advisories that appropriately utilize changes in airspace configurations and changes in the number of operating positions allocated to each open sector. The results also demonstrate how the advisories suggest appropriate times for configuration changes.

  3. Fast estimation of space-robots inertia parameters: A modular mathematical formulation

    NASA Astrophysics Data System (ADS)

    Nabavi Chashmi, Seyed Yaser; Malaek, Seyed Mohammad-Bagher

    2016-10-01

    This work aims to propose a new technique that considerably helps enhance time and precision needed to identify ;Inertia Parameters (IPs); of a typical Autonomous Space-Robot (ASR). Operations might include, capturing an unknown Target Space-Object (TSO), ;active space-debris removal; or ;automated in-orbit assemblies;. In these operations generating precise successive commands are essential to the success of the mission. We show how a generalized, repeatable estimation-process could play an effective role to manage the operation. With the help of the well-known Force-Based approach, a new ;modular formulation; has been developed to simultaneously identify IPs of an ASR while it captures a TSO. The idea is to reorganize the equations with associated IPs with a ;Modular Set; of matrices instead of a single matrix representing the overall system dynamics. The devised Modular Matrix Set will then facilitate the estimation process. It provides a conjugate linear model in mass and inertia terms. The new formulation is, therefore, well-suited for ;simultaneous estimation processes; using recursive algorithms like RLS. Further enhancements would be needed for cases the effect of center of mass location becomes important. Extensive case studies reveal that estimation time is drastically reduced which in-turn paves the way to acquire better results.

  4. Planning Coverage Campaigns for Mission Design and Analysis: CLASP for DESDynl

    NASA Technical Reports Server (NTRS)

    Knight, Russell L.; McLaren, David A.; Hu, Steven

    2013-01-01

    Mission design and analysis presents challenges in that almost all variables are in constant flux, yet the goal is to achieve an acceptable level of performance against a concept of operations, which might also be in flux. To increase responsiveness, automated planning tools are used that allow for the continual modification of spacecraft, ground system, staffing, and concept of operations, while returning metrics that are important to mission evaluation, such as area covered, peak memory usage, and peak data throughput. This approach was applied to the DESDynl mission design using the CLASP planning system, but since this adaptation, many techniques have changed under the hood for CLASP, and the DESDynl mission concept has undergone drastic changes. The software produces mission evaluation products, such as memory highwater marks, coverage percentages, given a mission design in the form of coverage targets, concept of operations, spacecraft parameters, and orbital parameters. It tries to overcome the lack of fidelity and timeliness of mission requirements coverage analysis during mission design. Previous techniques primarily use Excel in ad hoc fashion to approximate key factors in mission performance, often falling victim to overgeneralizations necessary in such an adaptation. The new program allows designers to faithfully represent their mission designs quickly, and get more accurate results just as quickly.

  5. Sensor-Based Optimized Control of the Full Load Instability in Large Hydraulic Turbines

    PubMed Central

    Presas, Alexandre; Valero, Carme; Egusquiza, Eduard

    2018-01-01

    Hydropower plants are of paramount importance for the integration of intermittent renewable energy sources in the power grid. In order to match the energy generated and consumed, Large hydraulic turbines have to work under off-design conditions, which may lead to dangerous unstable operating points involving the hydraulic, mechanical and electrical system. Under these conditions, the stability of the grid and the safety of the power plant itself can be compromised. For many Francis Turbines one of these critical points, that usually limits the maximum output power, is the full load instability. Therefore, these machines usually work far away from this unstable point, reducing the effective operating range of the unit. In order to extend the operating range of the machine, working closer to this point with a reasonable safety margin, it is of paramount importance to monitor and to control relevant parameters of the unit, which have to be obtained with an accurate sensor acquisition strategy. Within the framework of a large EU project, field tests in a large Francis Turbine located in Canada (rated power of 444 MW) have been performed. Many different sensors were used to monitor several working parameters of the unit for all its operating range. Particularly for these tests, more than 80 signals, including ten type of different sensors and several operating signals that define the operating point of the unit, were simultaneously acquired. The present study, focuses on the optimization of the acquisition strategy, which includes type, number, location, acquisition frequency of the sensors and corresponding signal analysis to detect the full load instability and to prevent the unit from reaching this point. A systematic approach to determine this strategy has been followed. It has been found that some indicators obtained with different types of sensors are linearly correlated with the oscillating power. The optimized strategy has been determined based on the correlation characteristics (linearity, sensitivity and reactivity), the simplicity of the installation and the acquisition frequency necessary. Finally, an economic and easy implementable protection system based on the resulting optimized acquisition strategy is proposed. This system, which can be used in a generic Francis turbine with a similar full load instability, permits one to extend the operating range of the unit by working close to the instability with a reasonable safety margin. PMID:29601512

  6. Sensor-Based Optimized Control of the Full Load Instability in Large Hydraulic Turbines.

    PubMed

    Presas, Alexandre; Valentin, David; Egusquiza, Mònica; Valero, Carme; Egusquiza, Eduard

    2018-03-30

    Hydropower plants are of paramount importance for the integration of intermittent renewable energy sources in the power grid. In order to match the energy generated and consumed, Large hydraulic turbines have to work under off-design conditions, which may lead to dangerous unstable operating points involving the hydraulic, mechanical and electrical system. Under these conditions, the stability of the grid and the safety of the power plant itself can be compromised. For many Francis Turbines one of these critical points, that usually limits the maximum output power, is the full load instability. Therefore, these machines usually work far away from this unstable point, reducing the effective operating range of the unit. In order to extend the operating range of the machine, working closer to this point with a reasonable safety margin, it is of paramount importance to monitor and to control relevant parameters of the unit, which have to be obtained with an accurate sensor acquisition strategy. Within the framework of a large EU project, field tests in a large Francis Turbine located in Canada (rated power of 444 MW) have been performed. Many different sensors were used to monitor several working parameters of the unit for all its operating range. Particularly for these tests, more than 80 signals, including ten type of different sensors and several operating signals that define the operating point of the unit, were simultaneously acquired. The present study, focuses on the optimization of the acquisition strategy, which includes type, number, location, acquisition frequency of the sensors and corresponding signal analysis to detect the full load instability and to prevent the unit from reaching this point. A systematic approach to determine this strategy has been followed. It has been found that some indicators obtained with different types of sensors are linearly correlated with the oscillating power. The optimized strategy has been determined based on the correlation characteristics (linearity, sensitivity and reactivity), the simplicity of the installation and the acquisition frequency necessary. Finally, an economic and easy implementable protection system based on the resulting optimized acquisition strategy is proposed. This system, which can be used in a generic Francis turbine with a similar full load instability, permits one to extend the operating range of the unit by working close to the instability with a reasonable safety margin.

  7. Environmental impact assessment of coal power plants in operation

    NASA Astrophysics Data System (ADS)

    Bartan, Ayfer; Kucukali, Serhat; Ar, Irfan

    2017-11-01

    Coal power plants constitute an important component of the energy mix in many countries. However, coal power plants can cause several environmental risks such as: climate change and biodiversity loss. In this study, a tool has been proposed to calculate the environmental impact of a coal-fired thermal power plant in operation by using multi-criteria scoring and fuzzy logic method. We take into account the following environmental parameters in our tool: CO, SO2, NOx, particulate matter, fly ash, bottom ash, the cooling water intake impact on aquatic biota, and the thermal pollution. In the proposed tool, the boundaries of the fuzzy logic membership functions were established taking into account the threshold values of the environmental parameters which were defined in the environmental legislation. Scoring of these environmental parameters were done with the statistical analysis of the environmental monitoring data of the power plant and by using the documented evidences that were obtained during the site visits. The proposed method estimates each environmental impact factor level separately and then aggregates them by calculating the Environmental Impact Score (EIS). The proposed method uses environmental monitoring data and documented evidence instead of using simulation models. The proposed method has been applied to the 4 coal-fired power plants that have been operation in Turkey. The Environmental Impact Score was obtained for each power plant and their environmental performances were compared. It is expected that those environmental impact assessments will contribute to the decision-making process for environmental investments to those plants. The main advantage of the proposed method is its flexibility and ease of use.

  8. Operational Mapping of Soil Moisture Using Synthetic Aperture Radar Data: Application to the Touch Basin (France)

    PubMed Central

    Baghdadi, Nicolas; Aubert, Maelle; Cerdan, Olivier; Franchistéguy, Laurent; Viel, Christian; Martin, Eric; Zribi, Mehrez; Desprats, Jean François

    2007-01-01

    Soil moisture is a key parameter in different environmental applications, such as hydrology and natural risk assessment. In this paper, surface soil moisture mapping was carried out over a basin in France using satellite synthetic aperture radar (SAR) images acquired in 2006 and 2007 by C-band (5.3 GHz) sensors. The comparison between soil moisture estimated from SAR data and in situ measurements shows good agreement, with a mapping accuracy better than 3%. This result shows that the monitoring of soil moisture from SAR images is possible in operational phase. Moreover, moistures simulated by the operational Météo-France ISBA soil-vegetation-atmosphere transfer model in the SIM-Safran-ISBA-Modcou chain were compared to radar moisture estimates to validate its pertinence. The difference between ISBA simulations and radar estimates fluctuates between 0.4 and 10% (RMSE). The comparison between ISBA and gravimetric measurements of the 12 March 2007 shows a RMSE of about 6%. Generally, these results are very encouraging. Results show also that the soil moisture estimated from SAR images is not correlated with the textural units defined in the European Soil Geographical Database (SGDBE) at 1:1000000 scale. However, dependence was observed between texture maps and ISBA moisture. This dependence is induced by the use of the texture map as an input parameter in the ISBA model. Even if this parameter is very important for soil moisture estimations, radar results shown that the textural map scale at 1:1000000 is not appropriate to differentiate moistures zones. PMID:28903238

  9. Global sensitivity analysis of water age and temperature for informing salmonid disease management

    NASA Astrophysics Data System (ADS)

    Javaheri, Amir; Babbar-Sebens, Meghna; Alexander, Julie; Bartholomew, Jerri; Hallett, Sascha

    2018-06-01

    Many rivers in the Pacific Northwest region of North America are anthropogenically manipulated via dam operations, leading to system-wide impacts on hydrodynamic conditions and aquatic communities. Understanding how dam operations alter abiotic and biotic variables is important for designing management actions. For example, in the Klamath River, dam outflows could be manipulated to alter water age and temperature to reduce risk of parasite infections in salmon by diluting or altering viability of parasite spores. However, sensitivity of water age and temperature to the riverine conditions such as bathymetry can affect outcomes from dam operations. To examine this issue in detail, we conducted a global sensitivity analysis of water age and temperature to a comprehensive set of hydraulics and meteorological parameters in the Klamath River, California, where management of salmonid disease is a high priority. We applied an analysis technique, which combined Latin-hypercube and one-at-a-time sampling methods, and included simulation runs with the hydrodynamic numerical model of the Lower Klamath. We found that flow rate and bottom roughness were the two most important parameters that influence water age. Water temperature was more sensitive to inflow temperature, air temperature, solar radiation, wind speed, flow rate, and wet bulb temperature respectively. Our results are relevant for managers because they provide a framework for predicting how water within 'high infection risk' sections of the river will respond to dam water (low infection risk) input. Moreover, these data will be useful for prioritizing the use of water age (dilution) versus temperature (spore viability) under certain contexts when considering flow manipulation as a method to reduce risk of infection and disease in Klamath River salmon.

  10. On-Orbit Performance of the Helioseismic and Magnetic Imager Instrument onboard the Solar Dynamics Observatory

    NASA Astrophysics Data System (ADS)

    Hoeksema, J. T.; Baldner, C. S.; Bush, R. I.; Schou, J.; Scherrer, P. H.

    2018-03-01

    The Helioseismic and Magnetic Imager (HMI) instrument is a major component of NASA's Solar Dynamics Observatory (SDO) spacecraft. Since commencement of full regular science operations on 1 May 2010, HMI has operated with remarkable continuity, e.g. during the more than five years of the SDO prime mission that ended 30 September 2015, HMI collected 98.4% of all possible 45-second velocity maps; minimizing gaps in these full-disk Dopplergrams is crucial for helioseismology. HMI velocity, intensity, and magnetic-field measurements are used in numerous investigations, so understanding the quality of the data is important. This article describes the calibration measurements used to track the performance of the HMI instrument, and it details trends in important instrument parameters during the prime mission. Regular calibration sequences provide information used to improve and update the calibration of HMI data. The set-point temperature of the instrument front window and optical bench is adjusted regularly to maintain instrument focus, and changes in the temperature-control scheme have been made to improve stability in the observable quantities. The exposure time has been changed to compensate for a 20% decrease in instrument throughput. Measurements of the performance of the shutter and tuning mechanisms show that they are aging as expected and continue to perform according to specification. Parameters of the tunable optical-filter elements are regularly adjusted to account for drifts in the central wavelength. Frequent measurements of changing CCD-camera characteristics, such as gain and flat field, are used to calibrate the observations. Infrequent expected events such as eclipses, transits, and spacecraft off-points interrupt regular instrument operations and provide the opportunity to perform additional calibration. Onboard instrument anomalies are rare and seem to occur quite uniformly in time. The instrument continues to perform very well.

  11. PV systems photoelectric parameters determining for field conditions and real operation conditions

    NASA Astrophysics Data System (ADS)

    Shepovalova, Olga V.

    2018-05-01

    In this work, research experience and reference documentation have been generalized related to PV systems photoelectric parameters (PV array output parameters) determining. The basic method has been presented that makes it possible to determine photoelectric parameters with the state-of-the-art reliability and repeatability. This method provides an effective tool for PV systems comparison and evaluation of PV system parameters that the end-user will have in the course of its real operation for compliance with those stipulated in reference documentation. The method takes in consideration all parameters that may possibly affect photoelectric performance and that are supported by sufficiently valid procedures for their values testing. Test conditions, requirements for equipment subject to tests and test preparations have been established and the test procedure for fully equipped PV system in field tests and in real operation conditions has been described.

  12. Performance characterization of a Bosch CO sub 2 reduction subsystem

    NASA Technical Reports Server (NTRS)

    Heppner, D. B.; Hallick, T. M.; Schubert, F. H.

    1980-01-01

    The performance of Bosch hardware at the subsystem level (up to five-person capacity) in terms of five operating parameters was investigated. The five parameters were: (1) reactor temperature, (2) recycle loop mass flow rate, (3) recycle loop gas composition (percent hydrogen), (4) recycle loop dew point and (5) catalyst density. Experiments were designed and conducted in which the five operating parameters were varied and Bosch performance recorded. A total of 12 carbon collection cartridges provided over approximately 250 hours of operating time. Generally, one cartridge was used for each parameter that was varied. The Bosch hardware was found to perform reliably and reproducibly. No startup, reaction initiation or carbon containment problems were observed. Optimum performance points/ranges were identified for the five parameters investigated. The performance curves agreed with theoretical projections.

  13. Chaos minimization in DC-DC boost converter using circuit parameter optimization

    NASA Astrophysics Data System (ADS)

    Sudhakar, N.; Natarajan, Rajasekar; Gourav, Kumar; Padmavathi, P.

    2017-11-01

    DC-DC converters are prone to several types of nonlinear phenomena including bifurcation, quasi periodicity, intermittency and chaos. These undesirable effects must be controlled for periodic operation of the converter to ensure the stability. In this paper an effective solution to control of chaos in solar fed DC-DC boost converter is proposed. Controlling of chaos is significantly achieved using optimal circuit parameters obtained through Bacterial Foraging Optimization Algorithm. The optimization renders the suitable parameters in minimum computational time. The obtained results are compared with the operation of traditional boost converter. Further the obtained results with BFA optimized parameter ensures the operations of the converter are within the controllable region. To elaborate the study of bifurcation analysis with optimized and unoptimized parameters are also presented.

  14. 40 CFR 63.1447 - What are my operation and maintenance requirements?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...., verify by appropriate measures that flow or pressure sensors, damper plates, automated damper switches... description of each selected operating limit parameter, a rationale for why you chose the parameter, a...

  15. 40 CFR 63.1447 - What are my operation and maintenance requirements?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...., verify by appropriate measures that flow or pressure sensors, damper plates, automated damper switches... description of each selected operating limit parameter, a rationale for why you chose the parameter, a...

  16. 40 CFR 63.1447 - What are my operation and maintenance requirements?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...., verify by appropriate measures that flow or pressure sensors, damper plates, automated damper switches... description of each selected operating limit parameter, a rationale for why you chose the parameter, a...

  17. Effects of Fuel Laminar Flame Speed Compared to Engine Tumble Ratio, Ignition Energy, and Injection Strategy on Lean and EGR Dilute Spark Ignition Combustion

    DOE PAGES

    Kolodziej, Christopher P.; Pamminger, Michael; Sevik, James; ...

    2017-03-28

    Previously we show that fuels with higher laminar flame speed also have increased tolerance to EGR dilution. In this work, the effects of fuel laminar flame speed on both lean and EGR dilute spark ignition combustion stability were examined. Fuels blends of pure components (iso-octane, n-heptane, toluene, ethanol, and methanol) were derived at two levels of laminar flame speed. Each fuel blend was tested in a single-cylinder spark-ignition engine under both lean-out and EGR dilution sweeps until the coefficient of variance of indicated mean effective pressure increased above thresholds of 3% and 5%. The relative importance of fuel laminar flamemore » speed to changes to engine design parameters (spark ignition energy, tumble ratio, and port vs. direct injection) was also assessed. Our results showed that fuel laminar flame speed can have as big an effect on lean or EGR dilute engine operation as engine design parameters, with the largest effects seen during EGR dilute operation and when changes were made to cylinder charge motion.« less

  18. Scaling Relationships for ELM Diverter Heat Flux on DIII D

    NASA Astrophysics Data System (ADS)

    Peters, E. A.; Makowski, M. A.; Leonard, A. W.

    2015-11-01

    Edge Localized Modes (ELMs) are periodic plasma instabilities that occur during H-mode operation in tokamaks. Left unmitigated, these instabilities result in concentrated particle and heat fluxes at the divertor and stand to cause serious damage to the plasma facing components of tokamaks. The purpose of this research is to find scaling relationships that predict divertor heat flux due to ELMs based on plasma parameters at the time of instability. This will be accomplished by correlating characteristic ELM parameters with corresponding plasma measurements and analyzing the data for trends. One early assessment is the effect of the heat transmission coefficient ? on the in/out asymmetry of the calculated ELM heat fluxes. Using IR camera data, further assessments in this study will continue to emphasize in/out asymmetry in ELMs, as this has important implications for ITER operation. Work supported in part by the US DOE, DE-AC52-07NA27344, DE-FC02-04ER54698, Office of Workforce Development for Teachers and Scientists (WDTS) under the Science Undergraduate Laboratory Internships Program (SULI).

  19. Effects of Fuel Laminar Flame Speed Compared to Engine Tumble Ratio, Ignition Energy, and Injection Strategy on Lean and EGR Dilute Spark Ignition Combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolodziej, Christopher P.; Pamminger, Michael; Sevik, James

    Previously we show that fuels with higher laminar flame speed also have increased tolerance to EGR dilution. In this work, the effects of fuel laminar flame speed on both lean and EGR dilute spark ignition combustion stability were examined. Fuels blends of pure components (iso-octane, n-heptane, toluene, ethanol, and methanol) were derived at two levels of laminar flame speed. Each fuel blend was tested in a single-cylinder spark-ignition engine under both lean-out and EGR dilution sweeps until the coefficient of variance of indicated mean effective pressure increased above thresholds of 3% and 5%. The relative importance of fuel laminar flamemore » speed to changes to engine design parameters (spark ignition energy, tumble ratio, and port vs. direct injection) was also assessed. Our results showed that fuel laminar flame speed can have as big an effect on lean or EGR dilute engine operation as engine design parameters, with the largest effects seen during EGR dilute operation and when changes were made to cylinder charge motion.« less

  20. A Quantitative Determination of Magnetic Nanoparticle Separation Using On-Off Field Operation of Quadrupole Magnetic Field-Flow Fractionation (QMgFFF)

    PubMed Central

    Orita, Toru; Moore, Lee R.; Joshi, Powrnima; Tomita, Masahiro; Horiuchi, Takashi; Zborowski, Maciej

    2014-01-01

    Quadrupole Magnetic Field-Flow Fractionation (QMgFFF) is a technique for characterization of sub-micrometer magnetic particles based on their retention in the magnetic field from flowing suspensions. Different magnetic field strengths and volumetric flow rates were tested using on-off field application and two commercial nanoparticle preparations that significantly differed in their retention parameter, λ (by nearly 8-fold). The fractograms showed a regular pattern of higher retention (98.6% v. 53.3%) for the larger particle (200 nm v. 90 nm) at the higher flow rate (0.05 mL/min v. 0.01 mL/min) at the highest magnetic field (0.52 T), as expected because of its lower retention parameter. The significance of this approach is a demonstration of a system that is simpler in operation than a programmed field QMgFFF in applications to particle mixtures consisting of two distinct particle fractions. This approach could be useful for detection of unwanted particulate contaminants, especially important in industrial and biomedical applications. PMID:23842422

  1. Instrument for the measurement and determination of chemical pulse column parameters

    DOEpatents

    Marchant, Norman J.; Morgan, John P.

    1990-01-01

    An instrument for monitoring and measuring pneumatic driving force pulse parameters applied to chemical separation pulse columns obtains real time pulse frequency and root mean square amplitude values, calculates column inch values and compares these values against preset limits to alert column operators to the variations of pulse column operational parameters beyond desired limits.

  2. BRAF mutation status in papillary thyroid carcinoma: significance for surgical strategy.

    PubMed

    Miccoli, P; Basolo, F

    2014-02-01

    BRAF mutation is probably the only molecular marker acting as a risk factor that is available before surgery: for this reason, soon after it became quite widespread, it seemed an important tool as a guide towards an individualized surgical therapy in papillary thyroid carcinoma. Capsule invasion, multifocality, and lymph node involvement are the most important parameters influencing the choice of surgical strategy in front of small papillary cancers and, in more detail, of micro papillary carcinomas. The relationship between these parameters and the BRAF mutation are closely examined through the more recent literature. Capsular invasion seems to show the strongest correlation with the mutation and this has important correlations, thus suggesting that a more aggressive local surgery might be advisable, whereas the correlation between the mutation and lymph node involvement would be weaker, at least according to the most recent studies. The personalization of surgical therapy, today, seems easier to achieve thanks to molecular testing. In particular, an important result could be in the short term reduction in the number of completion thyroidectomies following simple lobectomies. Also, post operative radioactivated iodine therapies should be more carefully evaluated and tailored according to BRAF status. A possible flow chart for the decision of the therapeutic approach is proposed in accordance to the results of the literature.

  3. Ground reaction forces on stairs. Part II: knee implant patients versus normals.

    PubMed

    Stacoff, Alex; Kramers-de Quervain, Inès A; Luder, Gerhard; List, Renate; Stüssi, Edgar

    2007-06-01

    The goal of this study was to compare selected parameters of vertical ground reaction forces (GRF) of good outcome patients with different prosthesis designs with a matched control group during level walking, stair ascent and descent. Forty subjects, 29 with three main implant designs (including four subjects with a passive knee flexion restriction), and 11 healthy controls were measured with 8-10 repetitions. Vertical ground reaction forces were measured during two consecutive steps with force plates embedded in the walkway and the staircase. Defined parameters of the force signals were used to compare the results of the test groups. The results show, that, postoperatively, good outcome patients produce gait patterns of the vertical ground reaction force which are comparable to normal healthy subjects with the exception of a few distinct differences: a significant reduction (p<0.05) in the vertical loading on the operated side during level walking at take-off, at weight acceptance and take-off during stair ascent of the normal stair. During stair descent, the patients did not reduce load on the operated side, but increased load variation and side-to-side asymmetry; thus, the mechanical loads on the implants were high, which may be important information with respect to loading protocols of knee implant simulators. No systematic differences in any of the test parameters were found between posterior cruciate-retaining (LCS MB and Innex CR) versus non-retaining (LCS RP and Innex UCOR) implant designs. The restricted group showed significant reductions (p<0.05) of several loading parameters as well as an increased side-to-side asymmetry. About one third of the force parameters of the good outcome patients showed a side-to-side asymmetry between two consecutive steps, which was over a proposed level of acceptance.

  4. The Role of Economic Uncertainty on the Block Economic Value - a New Valuation Approach / Rola Czynnika Niepewności Przy Obliczaniu Wskaźnika Rentowności - Nowe Podejście

    NASA Astrophysics Data System (ADS)

    Dehghani, H.; Ataee-Pour, M.

    2012-12-01

    The block economic value (EV) is one of the most important parameters in mine evaluation. This parameter can affect significant factors such as mining sequence, final pit limit and net present value. Nowadays, the aim of open pit mine planning is to define optimum pit limits and an optimum life of mine production scheduling that maximizes the pit value under some technical and operational constraints. Therefore, it is necessary to calculate the block economic value at the first stage of the mine planning process, correctly. Unrealistic block economic value estimation may cause the mining project managers to make the wrong decision and thus may impose inexpiable losses to the project. The effective parameters such as metal price, operating cost, grade and so forth are always assumed certain in the conventional methods of EV calculation. While, obviously, these parameters have uncertain nature. Therefore, usually, the conventional methods results are far from reality. In order to solve this problem, a new technique is used base on an invented binomial tree which is developed in this research. This method can calculate the EV and project PV under economic uncertainty. In this paper, the EV and project PV were initially determined using Whittle formula based on certain economic parameters and a multivariate binomial tree based on the economic uncertainties such as the metal price and cost uncertainties. Finally the results were compared. It is concluded that applying the metal price and cost uncertainties causes the calculated block economic value and net present value to be more realistic than certain conditions.

  5. Validating an Air Traffic Management Concept of Operation Using Statistical Modeling

    NASA Technical Reports Server (NTRS)

    He, Yuning; Davies, Misty Dawn

    2013-01-01

    Validating a concept of operation for a complex, safety-critical system (like the National Airspace System) is challenging because of the high dimensionality of the controllable parameters and the infinite number of states of the system. In this paper, we use statistical modeling techniques to explore the behavior of a conflict detection and resolution algorithm designed for the terminal airspace. These techniques predict the robustness of the system simulation to both nominal and off-nominal behaviors within the overall airspace. They also can be used to evaluate the output of the simulation against recorded airspace data. Additionally, the techniques carry with them a mathematical value of the worth of each prediction-a statistical uncertainty for any robustness estimate. Uncertainty Quantification (UQ) is the process of quantitative characterization and ultimately a reduction of uncertainties in complex systems. UQ is important for understanding the influence of uncertainties on the behavior of a system and therefore is valuable for design, analysis, and verification and validation. In this paper, we apply advanced statistical modeling methodologies and techniques on an advanced air traffic management system, namely the Terminal Tactical Separation Assured Flight Environment (T-TSAFE). We show initial results for a parameter analysis and safety boundary (envelope) detection in the high-dimensional parameter space. For our boundary analysis, we developed a new sequential approach based upon the design of computer experiments, allowing us to incorporate knowledge from domain experts into our modeling and to determine the most likely boundary shapes and its parameters. We carried out the analysis on system parameters and describe an initial approach that will allow us to include time-series inputs, such as the radar track data, into the analysis

  6. Operator control systems and methods for swing-free gantry-style cranes

    DOEpatents

    Feddema, J.T.; Petterson, B.J.; Robinett, R.D. III

    1998-07-28

    A system and method are disclosed for eliminating swing motions in gantry-style cranes while subject to operator control. The present invention comprises an infinite impulse response (IIR) filter and a proportional-integral (PI) feedback controller. The IIR filter receives input signals (commanded velocity or acceleration) from an operator input device and transforms them into output signals in such a fashion that the resulting motion is swing free (i.e., end-point swinging prevented). The parameters of the IIR filter are updated in real time using measurements from a hoist cable length encoder. The PI feedback controller compensates for modeling errors and external disturbances, such as wind or perturbations caused by collision with objects. The PI feedback controller operates on cable swing angle measurements provided by a cable angle sensor. The present invention adjusts acceleration and deceleration to eliminate oscillations. An especially important feature of the present invention is that it compensates for variable-length cable motions from multiple cables attached to a suspended payload. 10 figs.

  7. Operator control systems and methods for swing-free gantry-style cranes

    DOEpatents

    Feddema, John T.; Petterson, Ben J.; Robinett, III, Rush D.

    1998-01-01

    A system and method for eliminating swing motions in gantry-style cranes while subject to operator control is presented. The present invention comprises an infinite impulse response ("IIR") filter and a proportional-integral ("PI") feedback controller (50). The IIR filter receives input signals (46) (commanded velocity or acceleration) from an operator input device (45) and transforms them into output signals (47) in such a fashion that the resulting motion is swing free (i.e., end-point swinging prevented). The parameters of the IIR filter are updated in real time using measurements from a hoist cable length encoder (25). The PI feedback controller compensates for modeling errors and external disturbances, such as wind or perturbations caused by collision with objects. The PI feedback controller operates on cable swing angle measurements provided by a cable angle sensor (27). The present invention adjusts acceleration and deceleration to eliminate oscillations. An especially important feature of the present invention is that it compensates for variable-length cable motions from multiple cables attached to a suspended payload.

  8. Development of large-aperture electro-optical switch for high power laser at CAEP

    NASA Astrophysics Data System (ADS)

    Zhang, Xiongjun; Wu, Dengsheng; Zhang, Jun; Lin, Donghui; Zheng, Jiangang; Zheng, Kuixing

    2015-02-01

    Large-aperture electro-optical switch based on plasma Pockels cell (PPC) is one of important components for inertial confinement fusion (ICF) laser facility. We have demonstrated a single-pulse driven 4×1 PPC with 400mm×400mm aperture for SGIII laser facility. And four 2×1 PPCs modules with 350mm×350mm aperture have been operated in SGII update laser facility. It is different to the PPC of NIF and LMJ for its simple operation to perform Pockels effect. With optimized operation parameters, the PPCs meet the SGII-U laser requirement of four-pass amplification control. Only driven by one high voltage pulser, the simplified PPC system would be provided with less associated diagnostics, and higher reliability. To farther reduce the insert loss of the PPC, research on the large-aperture PPC based on DKDP crystal driven by one pulse is developed. And several single-pulse driven PPCs with 80mm×80mm DKDP crystal have been manufactured and operated in laser facilities.

  9. Age is a significant predictor of early and late improvement in semen parameters after microsurgical varicocele repair.

    PubMed

    Kimura, M; Nagao, K; Tai, T; Kobayashi, H; Nakajima, K

    2017-04-01

    Accumulating evidence indicates that varicocele repair improves sperm quality. However, longitudinal changes in sperm parameters and predictors of improved semen characteristics after surgery have not been fully investigated. We retrospectively reviewed data from 100 men who underwent microsurgical subinguinal varicocele repair at a single centre. Follow-up semen examinations were carried out at 3, 6 and 12 months post-operatively. Logistic regression was used to identify predictors of early (3 months) and late (≥6 months) improvement in semen parameters after varicocele repair. At 3 months post-operatively, 76.1% of the patients had improved total motile sperm counts, which continued to improve significantly up to 12 months post-operatively (p = .016). When comparing changes in semen parameters between younger (<37 years) and older (≥37 years) men, post-operative improvements in sperm concentration and motility were greater among younger men. Multivariate analysis showed that younger age was associated with early (p = .043) and late (p = .010) post-operative improvement in total motile sperm count. Our findings indicate that early varicocele repair improved semen parameters after surgery. © 2016 Blackwell Verlag GmbH.

  10. Computer Program for Assessing the Economic Feasibility of Solar Energy for Single Family Residences and Light Commercial Applications

    NASA Technical Reports Server (NTRS)

    Forney, J. A.; Walker, D.; Lanier, M.

    1979-01-01

    Computer program, SHCOST, was used to perform economic analyses of operational test sites. The program allows consideration of the economic parameters which are important to the solar system user. A life cycle cost and cash flow comparison is made between a solar heating system and a conventional system. The program assists in sizing the solar heating system. A sensitivity study and plot capability allow the user to select the most cost effective system configuration.

  11. Fission-powered in-core thermoacoustic sensor

    DOE PAGES

    Garrett, Steven L.; Smith, James A.; Smith, Robert W. M.; ...

    2016-04-07

    A thermoacoustic engine is operated within the core of a nuclear reactor to acoustically telemeter coolant temperature (frequency-encoded) and reactor power level (amplitude-encoded) outside the reactor, thus providing the values of these important parameters without external electrical power or wiring. We present data from two hydrophones in the coolant (far from the core) and an accelerometer attached to a structure outside the reactor. Furthermore, these signals have been detected even in the presence of substantial background noise generated by the reactor's fluid pumps.

  12. Magnetic field errors tolerances of Nuclotron booster

    NASA Astrophysics Data System (ADS)

    Butenko, Andrey; Kazinova, Olha; Kostromin, Sergey; Mikhaylov, Vladimir; Tuzikov, Alexey; Khodzhibagiyan, Hamlet

    2018-04-01

    Generation of magnetic field in units of booster synchrotron for the NICA project is one of the most important conditions for getting the required parameters and qualitative accelerator operation. Research of linear and nonlinear dynamics of ion beam 197Au31+ in the booster have carried out with MADX program. Analytical estimation of magnetic field errors tolerance and numerical computation of dynamic aperture of booster DFO-magnetic lattice are presented. Closed orbit distortion with random errors of magnetic fields and errors in layout of booster units was evaluated.

  13. Fission-powered in-core thermoacoustic sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garrett, Steven L.; Smith, James A.; Smith, Robert W. M.

    2016-04-04

    A thermoacoustic engine is operated within the core of a nuclear reactor to acoustically telemeter coolant temperature (frequency-encoded) and reactor power level (amplitude-encoded) outside the reactor, thus providing the values of these important parameters without external electrical power or wiring. We present data from two hydrophones in the coolant (far from the core) and an accelerometer attached to a structure outside the reactor. These signals have been detected even in the presence of substantial background noise generated by the reactor's fluid pumps.

  14. Life sciences get important new data from Spacelab mission. III

    NASA Technical Reports Server (NTRS)

    Schuiling, Roelof L.; Young, Steven

    1991-01-01

    An investigation of the effects of weightlessness on the human body is reported that was conducted on a flight of the Space Shuttle Columbia. Experiments are described regarding zero-gravity effects on the human perception of balance, the growth of lymphocytes, and general life-sciences examinations of body mass, body fluid, pulmonary parameters, and echocardiograph imaging. Specific attention is given to the day-to-day operations of the mission, and particular emphasis is given to the study of rodents and jellyfish reacting to microgravity.

  15. OPERATION TEAPOT, Nevada Test Site, February-May 1955. Project 33.2. The Effects of Noise in Blast-Resistant Shelters

    DTIC Science & Technology

    1956-05-01

    in this par- t.cular instance was not a parameter of importance in the etiology of fatigue. Many of the animals received significant doses of ionizing...noise levels in the range of 150 to i60 db is clearly etiologic in the production of the fatigue syndrome., Much less is known about the effects on...I.i Primary . . . . . . . . . . . . . i 2 :condary . . . . . . . . . . . . CHAPTER 2 THEORY AND BACKGROUND . . . . . . . 12 2.1 Description of the

  16. Development of Radar Control system for Multi-mode Active Phased Array Radar for atmospheric probing

    NASA Astrophysics Data System (ADS)

    Yasodha, Polisetti; Jayaraman, Achuthan; Thriveni, A.

    2016-07-01

    Modern multi-mode active phased array radars require highly efficient radar control system for hassle free real time radar operation. The requirement comes due to the distributed architecture of the active phased array radar, where each antenna element in the array is connected to a dedicated Transmit-Receive (TR) module. Controlling the TR modules, which are generally few hundreds in number, and functioning them in synchronisation, is a huge task during real time radar operation and should be handled with utmost care. Indian MST Radar, located at NARL, Gadanki, which is established during early 90's, as an outcome of the middle atmospheric program, is a remote sensing instrument for probing the atmosphere. This radar has a semi-active array, consisting of 1024 antenna elements, with limited beam steering, possible only along the principle planes. To overcome the limitations and difficulties, the radar is being augmented into fully active phased array, to accomplish beam agility and multi-mode operations. Each antenna element is excited with a dedicated 1 kW TR module, located in the field and enables to position the radar beam within 20° conical volume. A multi-channel receiver makes the radar to operate in various modes like Doppler Beam Swinging (DBS), Spaced Antenna (SA), Frequency Domain Interferometry (FDI) etc. Present work describes the real-time radar control (RC) system for the above described active phased array radar. The radar control system consists of a Spartan 6 FPGA based Timing and Control Signal Generator (TCSG), and a computer containing the software for controlling all the subsystems of the radar during real-time radar operation and also for calibrating the radar. The main function of the TCSG is to generate the control and timing waveforms required for various subsystems of the radar. Important components of the RC system software are (i) TR module configuring software which does programming, controlling and health parameter monitoring of the TR modules, (ii) radar operation software which facilitates experimental parameter setting and operating the radar in different modes, (iii) beam steering software which computes the amplitude co-efficients and phases required for each TR module, for forming the beams selected for radar operation with the desired shape and (iv) Calibration software for calibrating the radar by measuring the differential insertion phase and amplitudes in all 1024 Transmit and Receive paths and correcting them. The TR module configuring software is a major task as it needs to control 1024 TR modules, which are located in the field about 150 m away from the RC system in the control room. Each TR module has a processor identified with a dedicated IP address, along with memory to store the instructions and parameters required for radar operation. A communication link is designed using Gigabit Ethernet (GbE) switches to realise 1 to 1024 way switching network. RC system computer communicates with the each processor using its IP address and establishes connection, via 1 to 1024 port GbE switching network. The experimental parameters data are pre-loaded parallely into all the TR modules along with the phase shifter data required for beam steering using this network. A reference timing pulse is sent to all the TR modules simultaneously, which indicates the start of radar operation. RC system also monitors the status parameters from the TR modules indicating their health during radar operation at regular intervals, via GbE switching network. Beam steering software generates the phase shift required for each TR module for the beams selected for operation. Radar operational software calls the phase shift data required for beam steering and adds it to the calibration phase obtained through calibration software and loads the resultant phase data into TR modules. Timed command/data transfer to/from subsystems and synchronisation of subsystems is essential for proper real-time operation of the active phased array radar and the RC system ensures that the commands/experimental parameter data are properly transferred to all subsystems especially to TR modules. In case of failure of any TR module, it is indicated to the user for further rectification. Realisation of the RC system is at an advanced stage. More details will be presented in the conference.

  17. Systematic parameter estimation and sensitivity analysis using a multidimensional PEMFC model coupled with DAKOTA.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Chao Yang; Luo, Gang; Jiang, Fangming

    2010-05-01

    Current computational models for proton exchange membrane fuel cells (PEMFCs) include a large number of parameters such as boundary conditions, material properties, and numerous parameters used in sub-models for membrane transport, two-phase flow and electrochemistry. In order to successfully use a computational PEMFC model in design and optimization, it is important to identify critical parameters under a wide variety of operating conditions, such as relative humidity, current load, temperature, etc. Moreover, when experimental data is available in the form of polarization curves or local distribution of current and reactant/product species (e.g., O2, H2O concentrations), critical parameters can be estimated inmore » order to enable the model to better fit the data. Sensitivity analysis and parameter estimation are typically performed using manual adjustment of parameters, which is also common in parameter studies. We present work to demonstrate a systematic approach based on using a widely available toolkit developed at Sandia called DAKOTA that supports many kinds of design studies, such as sensitivity analysis as well as optimization and uncertainty quantification. In the present work, we couple a multidimensional PEMFC model (which is being developed, tested and later validated in a joint effort by a team from Penn State Univ. and Sandia National Laboratories) with DAKOTA through the mapping of model parameters to system responses. Using this interface, we demonstrate the efficiency of performing simple parameter studies as well as identifying critical parameters using sensitivity analysis. Finally, we show examples of optimization and parameter estimation using the automated capability in DAKOTA.« less

  18. Application of exergetic sustainability index to a nano-scale irreversible Brayton cycle operating with ideal Bose and Fermi gasses

    NASA Astrophysics Data System (ADS)

    Açıkkalp, Emin; Caner, Necmettin

    2015-09-01

    In this study, a nano-scale irreversible Brayton cycle operating with quantum gasses including Bose and Fermi gasses is researched. Developments in the nano-technology cause searching the nano-scale machines including thermal systems to be unavoidable. Thermodynamic analysis of a nano-scale irreversible Brayton cycle operating with Bose and Fermi gasses was performed (especially using exergetic sustainability index). In addition, thermodynamic analysis involving classical evaluation parameters such as work output, exergy output, entropy generation, energy and exergy efficiencies were conducted. Results are submitted numerically and finally some useful recommendations were conducted. Some important results are: entropy generation and exergetic sustainability index are affected mostly for Bose gas and power output and exergy output are affected mostly for the Fermi gas by x. At the high temperature conditions, work output and entropy generation have high values comparing with other degeneracy conditions.

  19. Developing a weather observation routine during ICARUS

    NASA Astrophysics Data System (ADS)

    Mei, F.; Hubbe, J. M.; de Boer, G.; Lawrence, D.; Shupe, M.; Ivey, M.; Dexheimer, D.; Schmid, B.

    2016-12-01

    Starting in 2014, the Atmospheric Radiation Measurement (ARM) program began a major reconfiguration to more tightly link measurements and atmospheric models. As part of this the reconfiguration, ARM's North Slope of Alaska (NSA) site is being upgraded to include additional observations to support modeling and process studies. The Inaugural Campaigns for ARM Research using Unmanned Systems (ICARUS) have been launched in 2016. This internal initiative at Oliktok Point, Alaska focus on developing routine operations of Unmanned Aerial Systems (UAS) and Tethered Balloon Systems (TBS). The main purpose of ICARUS is to collect spatial data about surface radiation, heat fluxes, and vertical profiles of the basic atmospheric state (temperature, humidity, and horizontal wind). Based on the data collected during ICARUS, we will develop the operation routines for each atmospheric state measurement, and then optimize the operation schedule to maximize the data collection capacity. The statistical representation of important atmospheric state parameters will be discussed.

  20. Computer code for analyzing the performance of aquifer thermal energy storage systems

    NASA Astrophysics Data System (ADS)

    Vail, L. W.; Kincaid, C. T.; Kannberg, L. D.

    1985-05-01

    A code called Aquifer Thermal Energy Storage System Simulator (ATESSS) has been developed to analyze the operational performance of ATES systems. The ATESSS code provides an ability to examine the interrelationships among design specifications, general operational strategies, and unpredictable variations in the demand for energy. The uses of the code can vary the well field layout, heat exchanger size, and pumping/injection schedule. Unpredictable aspects of supply and demand may also be examined through the use of a stochastic model of selected system parameters. While employing a relatively simple model of the aquifer, the ATESSS code plays an important role in the design and operation of ATES facilities by augmenting experience provided by the relatively few field experiments and demonstration projects. ATESSS has been used to characterize the effect of different pumping/injection schedules on a hypothetical ATES system and to estimate the recovery at the St. Paul, Minnesota, field experiment.

  1. Designing Security-Hardened Microkernels For Field Devices

    NASA Astrophysics Data System (ADS)

    Hieb, Jeffrey; Graham, James

    Distributed control systems (DCSs) play an essential role in the operation of critical infrastructures. Perimeter field devices are important DCS components that measure physical process parameters and perform control actions. Modern field devices are vulnerable to cyber attacks due to their increased adoption of commodity technologies and that fact that control networks are no longer isolated. This paper describes an approach for creating security-hardened field devices using operating system microkernels that isolate vital field device operations from untrusted network-accessible applications. The approach, which is influenced by the MILS and Nizza architectures, is implemented in a prototype field device. Whereas, previous microkernel-based implementations have been plagued by poor inter-process communication (IPC) performance, the prototype exhibits an average IPC overhead for protected device calls of 64.59 μs. The overall performance of field devices is influenced by several factors; nevertheless, the observed IPC overhead is low enough to encourage the continued development of the prototype.

  2. In situ determination of the static inductance and resistance of a plasma focus capacitor bank.

    PubMed

    Saw, S H; Lee, S; Roy, F; Chong, P L; Vengadeswaran, V; Sidik, A S M; Leong, Y W; Singh, A

    2010-05-01

    The static (unloaded) electrical parameters of a capacitor bank are of utmost importance for the purpose of modeling the system as a whole when the capacitor bank is discharged into its dynamic electromagnetic load. Using a physical short circuit across the electromagnetic load is usually technically difficult and is unnecessary. The discharge can be operated at the highest pressure permissible in order to minimize current sheet motion, thus simulating zero dynamic load, to enable bank parameters, static inductance L(0), and resistance r(0) to be obtained using lightly damped sinusoid equations given the bank capacitance C(0). However, for a plasma focus, even at the highest permissible pressure it is found that there is significant residual motion, so that the assumption of a zero dynamic load introduces unacceptable errors into the determination of the circuit parameters. To overcome this problem, the Lee model code is used to fit the computed current trace to the measured current waveform. Hence the dynamics is incorporated into the solution and the capacitor bank parameters are computed using the Lee model code, and more accurate static bank parameters are obtained.

  3. In situ determination of the static inductance and resistance of a plasma focus capacitor bank

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saw, S. H.; Institute for Plasma Focus Studies, 32 Oakpark Drive, Chadstone, Victoria 3148; Lee, S.

    2010-05-15

    The static (unloaded) electrical parameters of a capacitor bank are of utmost importance for the purpose of modeling the system as a whole when the capacitor bank is discharged into its dynamic electromagnetic load. Using a physical short circuit across the electromagnetic load is usually technically difficult and is unnecessary. The discharge can be operated at the highest pressure permissible in order to minimize current sheet motion, thus simulating zero dynamic load, to enable bank parameters, static inductance L{sub 0}, and resistance r{sub 0} to be obtained using lightly damped sinusoid equations given the bank capacitance C{sub 0}. However, formore » a plasma focus, even at the highest permissible pressure it is found that there is significant residual motion, so that the assumption of a zero dynamic load introduces unacceptable errors into the determination of the circuit parameters. To overcome this problem, the Lee model code is used to fit the computed current trace to the measured current waveform. Hence the dynamics is incorporated into the solution and the capacitor bank parameters are computed using the Lee model code, and more accurate static bank parameters are obtained.« less

  4. Simulations of Low Power DIII-D Helicon Antenna Coupling

    NASA Astrophysics Data System (ADS)

    Smithe, David; Jenkins, Thomas

    2017-10-01

    We present an overview and initial progress for a new project to model coupling of the DIII-D Helicon Antenna. We lay the necessary computational groundwork for the modeling of both low-power and high power helicon antenna operation, by constructing numerical representations for both the antenna hardware and the DIII-D plasma. CAD files containing the detailed geometry of the low power antenna hardware are imported into the VSim software's FDTD plasma model. The plasma can be represented numerically by importing EQDSK or EFIT files. In addition, approximate analytic forms for the ensuing profiles and fields are constructed to facilitate parameter scans in the various regimes of anticipated antenna operation. To verify the accuracy of the numerical plasma and antenna representations, we will then run baseline simulations of low-power antenna operation, and verify that the predictions for loading, linear coupling, and mode partitioning (i.e. into helicon and slow modes) are consistent with the measurements from the low power helicon antenna experimental campaign, as well as with other independent models. Progress on these baseline simulations will be presented, and any inconsistencies and issues that arise during this process will be identified. Support provided by DOE Grant DE-SC0017843.

  5. 40 CFR Table 4 to Subpart Mmmm of... - Model Rule-Operating Parameters for Existing Sewage Sludge Incineration Units a

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Existing Sewage Sludge Incineration Units a 4 Table 4 to Subpart MMMM of Part 60 Protection of Environment... SOURCES Emission Guidelines and Compliance Times for Existing Sewage Sludge Incineration Units Pt. 60... Sewage Sludge Incineration Units a For these operating parameters You must establish these operating...

  6. 40 CFR Table 4 to Subpart Mmmm of... - Model Rule-Operating Parameters for Existing Sewage Sludge Incineration Units a

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Existing Sewage Sludge Incineration Units a 4 Table 4 to Subpart MMMM of Part 60 Protection of Environment... SOURCES Emission Guidelines and Compliance Times for Existing Sewage Sludge Incineration Units Pt. 60... Sewage Sludge Incineration Units a For these operating parameters You must establish these operating...

  7. Optical and Thermal Analyses of High-Power Laser Diode Arrays

    NASA Technical Reports Server (NTRS)

    Vasilyev, Aleksey; Allan, Graham R.; Schafer, John; Stephen, Mark A.; Young, Stefano

    2004-01-01

    An important need, especially for space-borne applications, is the early identification and rejection of laser diode arrays which may fail prematurely. The search for reliable failure predictors is ongoing and has led to the development of two techniques, infrared imagery and monitoring the Temporally-resolved and Spectrally-Resolved (TSR) optical output from which temperature of the device can be measured. This is in addition to power monitoring on long term burn stations. A direct measurement of the temperature of the active region is an important parameter as the lifetime of Laser Diode Arrays (LDA) decreases exponentially with increasing temperature. We measure the temperature from time-resolving the spectral emission in an analogous method to Voss et al. In this paper we briefly discuss the measurement setup and present temperature data derived from thermal images and TSR data for two differently designed high-power 808 nanometer LDA packages of similar specification operated in an electrical and thermal environment that mimic the expected operational conditions.

  8. Development of display design and command usage guidelines for Spacelab experiment computer applications

    NASA Technical Reports Server (NTRS)

    Dodson, D. W.; Shields, N. L., Jr.

    1979-01-01

    Individual Spacelab experiments are responsible for developing their CRT display formats and interactive command scenarios for payload crew monitoring and control of experiment operations via the Spacelab Data Display System (DDS). In order to enhance crew training and flight operations, it was important to establish some standardization of the crew/experiment interface among different experiments by providing standard methods and techniques for data presentation and experiment commanding via the DDS. In order to establish optimum usage guidelines for the Spacelab DDS, the capabilities and limitations of the hardware and Experiment Computer Operating System design had to be considered. Since the operating system software and hardware design had already been established, the Display and Command Usage Guidelines were constrained to the capabilities of the existing system design. Empirical evaluations were conducted on a DDS simulator to determine optimum operator/system interface utilization of the system capabilities. Display parameters such as information location, display density, data organization, status presentation and dynamic update effects were evaluated in terms of response times and error rates.

  9. Oil-shale program

    NASA Astrophysics Data System (ADS)

    Bader, B. E.

    1981-10-01

    The principal activities of the Sandia National Laboratories in the Department of Energy Oil shale program during the period April 1 to June 30, 1981 are discussed. Currently, Sandia's activities are focused upon: the development and use of analytical and experimental modeling techniques to describe and predict the retort properties and retorting process parameters that are important to the preparation, operation, and stability of in situ retorts, and the development, deployment, and field use of instrumentation, data acquisition, and process monitoring systems to characterize and evaluate in site up shale oil recovery operations. In-house activities and field activities (at the Geokinetics Oil Shale Project and the Occidental Oil Shale Project) are described under the headings: bed preparation, bed characterization, retorting process, and structural stability.

  10. Evans function computation for the stability of travelling waves

    NASA Astrophysics Data System (ADS)

    Barker, B.; Humpherys, J.; Lyng, G.; Lytle, J.

    2018-04-01

    In recent years, the Evans function has become an important tool for the determination of stability of travelling waves. This function, a Wronskian of decaying solutions of the eigenvalue equation, is useful both analytically and computationally for the spectral analysis of the linearized operator about the wave. In particular, Evans-function computation allows one to locate any unstable eigenvalues of the linear operator (if they exist); this allows one to establish spectral stability of a given wave and identify bifurcation points (loss of stability) as model parameters vary. In this paper, we review computational aspects of the Evans function and apply it to multidimensional detonation waves. This article is part of the theme issue `Stability of nonlinear waves and patterns and related topics'.

  11. Remote Control and Monitoring of VLBI Experiments by Smartphones

    NASA Astrophysics Data System (ADS)

    Ruztort, C. H.; Hase, H.; Zapata, O.; Pedreros, F.

    2012-12-01

    For the remote control and monitoring of VLBI operations, we developed a software optimized for smartphones. This is a new tool based on a client-server architecture with a Web interface optimized for smartphone screens and cellphone networks. The server uses variables of the Field System and its station specific parameters stored in the shared memory. The client running on the smartphone by a Web interface analyzes and visualizes the current status of the radio telescope, receiver, schedule, and recorder. In addition, it allows commands to be sent remotely to the Field System computer and displays the log entries. The user has full access to the entire operation process, which is important in emergency cases. The software also integrates a webcam interface.

  12. Interference and Compatibility Studies Between Satellite Service Systems and Systems Using High Altitude Platform Stations

    NASA Astrophysics Data System (ADS)

    Milas, Vasilis; Koletta, Maria; Constantinou, Philip

    2003-07-01

    This paper provides the results of interference and compatibility studies in order to assess the sharing conditions between Fixed Satellite Service (FSS) and Fixed Service provided by High Altitude Platform Stations (HAPS) in the same operational frequency bands and discusses the most important operational parameters that have an impact on the interference calculations. To characterize interference phenomena between the two systems carrier to interference (C/I) ratios are evaluated. Simulation results under the scenario of a realistic deployment of HAPS and the use of different satellite configurations are presented. An interesting result derived from the simulations is that FSS/GSO Earth Stations and HAPS ground stations may coexist in the HAPS coverage area under certain considerations.

  13. Lidar Remote Sensing

    NASA Technical Reports Server (NTRS)

    McGill, Matthew J.; Starr, David OC. (Technical Monitor)

    2002-01-01

    The laser radar, or lidar (for light detection and ranging) is an important tool for atmospheric studies. Lidar provides a unique and powerful method for unobtrusively profiling aerosols, wind, water vapor, temperature, and other atmospheric parameters. This brief overview of lidar remote sensing is focused on atmospheric applications involving pulsed lasers. The level of technical detail is aimed at the educated non-lidar expert and references are provided for further investigation of specific topics. The article is divided into three main sections. The first describes atmospheric scattering processes and the physics behind laser-atmosphere interactions. The second section highlights some of the primary lidar applications, with brief descriptions of each measurement capability. The third section describes the practical aspects of lidar operation, including the governing equation and operational considerations.

  14. National Synchrotron Light Source annual report 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hulbert, S.L.; Lazarz, N.M.

    1992-04-01

    This report discusses the following research conducted at NSLS: atomic and molecular science; energy dispersive diffraction; lithography, microscopy and tomography; nuclear physics; UV photoemission and surface science; x-ray absorption spectroscopy; x-ray scattering and crystallography; x-ray topography; workshop on surface structure; workshop on electronic and chemical phenomena at surfaces; workshop on imaging; UV FEL machine reviews; VUV machine operations; VUV beamline operations; VUV storage ring parameters; x-ray machine operations; x-ray beamline operations; x-ray storage ring parameters; superconducting x-ray lithography source; SXLS storage ring parameters; the accelerator test facility; proposed UV-FEL user facility at the NSLS; global orbit feedback systems; and NSLSmore » computer system.« less

  15. The Effects of Operational Parameters on a Mono-wire Cutting System: Efficiency in Marble Processing

    NASA Astrophysics Data System (ADS)

    Yilmazkaya, Emre; Ozcelik, Yilmaz

    2016-02-01

    Mono-wire block cutting machines that cut with a diamond wire can be used for squaring natural stone blocks and the slab-cutting process. The efficient use of these machines reduces operating costs by ensuring less diamond wire wear and longer wire life at high speeds. The high investment costs of these machines will lead to their efficient use and reduce production costs by increasing plant efficiency. Therefore, there is a need to investigate the cutting performance parameters of mono-wire cutting machines in terms of rock properties and operating parameters. This study aims to investigate the effects of the wire rotational speed (peripheral speed) and wire descending speed (cutting speed), which are the operating parameters of a mono-wire cutting machine, on unit wear and unit energy, which are the performance parameters in mono-wire cutting. By using the obtained results, cuttability charts for each natural stone were created on the basis of unit wear and unit energy values, cutting optimizations were performed, and the relationships between some physical and mechanical properties of rocks and the optimum cutting parameters obtained as a result of the optimization were investigated.

  16. Optimization of Operation Parameters for Helical Flow Cleanout with Supercritical CO2 in Horizontal Wells Using Back-Propagation Artificial Neural Network.

    PubMed

    Song, Xianzhi; Peng, Chi; Li, Gensheng; He, Zhenguo; Wang, Haizhu

    2016-01-01

    Sand production and blockage are common during the drilling and production of horizontal oil and gas wells as a result of formation breakdown. The use of high-pressure rotating jets and annular helical flow is an effective way to enhance horizontal wellbore cleanout. In this paper, we propose the idea of using supercritical CO2 (SC-CO2) as washing fluid in water-sensitive formation. SC-CO2 is manifested to be effective in preventing formation damage and enhancing production rate as drilling fluid, which justifies tis potential in wellbore cleanout. In order to investigate the effectiveness of SC-CO2 helical flow cleanout, we perform the numerical study on the annular flow field, which significantly affects sand cleanout efficiency, of SC-CO2 jets in horizontal wellbore. Based on the field data, the geometry model and mathematical models were built. Then a numerical simulation of the annular helical flow field by SC-CO2 jets was accomplished. The influences of several key parameters were investigated, and SC-CO2 jets were compared to conventional water jets. The results show that flow rate, ambient temperature, jet temperature, and nozzle assemblies play the most important roles on wellbore flow field. Once the difference between ambient temperatures and jet temperatures is kept constant, the wellbore velocity distributions will not change. With increasing lateral nozzle size or decreasing rear/forward nozzle size, suspending ability of SC-CO2 flow improves obviously. A back-propagation artificial neural network (BP-ANN) was successfully employed to match the operation parameters and SC-CO2 flow velocities. A comprehensive model was achieved to optimize the operation parameters according to two strategies: cost-saving strategy and local optimal strategy. This paper can help to understand the distinct characteristics of SC-CO2 flow. And it is the first time that the BP-ANN is introduced to analyze the flow field during wellbore cleanout in horizontal wells.

  17. Optimization of Operation Parameters for Helical Flow Cleanout with Supercritical CO2 in Horizontal Wells Using Back-Propagation Artificial Neural Network

    PubMed Central

    Song, Xianzhi; Peng, Chi; Li, Gensheng

    2016-01-01

    Sand production and blockage are common during the drilling and production of horizontal oil and gas wells as a result of formation breakdown. The use of high-pressure rotating jets and annular helical flow is an effective way to enhance horizontal wellbore cleanout. In this paper, we propose the idea of using supercritical CO2 (SC-CO2) as washing fluid in water-sensitive formation. SC-CO2 is manifested to be effective in preventing formation damage and enhancing production rate as drilling fluid, which justifies tis potential in wellbore cleanout. In order to investigate the effectiveness of SC-CO2 helical flow cleanout, we perform the numerical study on the annular flow field, which significantly affects sand cleanout efficiency, of SC-CO2 jets in horizontal wellbore. Based on the field data, the geometry model and mathematical models were built. Then a numerical simulation of the annular helical flow field by SC-CO2 jets was accomplished. The influences of several key parameters were investigated, and SC-CO2 jets were compared to conventional water jets. The results show that flow rate, ambient temperature, jet temperature, and nozzle assemblies play the most important roles on wellbore flow field. Once the difference between ambient temperatures and jet temperatures is kept constant, the wellbore velocity distributions will not change. With increasing lateral nozzle size or decreasing rear/forward nozzle size, suspending ability of SC-CO2 flow improves obviously. A back-propagation artificial neural network (BP-ANN) was successfully employed to match the operation parameters and SC-CO2 flow velocities. A comprehensive model was achieved to optimize the operation parameters according to two strategies: cost-saving strategy and local optimal strategy. This paper can help to understand the distinct characteristics of SC-CO2 flow. And it is the first time that the BP-ANN is introduced to analyze the flow field during wellbore cleanout in horizontal wells. PMID:27249026

  18. The Shock Pulse Index and Its Application in the Fault Diagnosis of Rolling Element Bearings

    PubMed Central

    Sun, Peng; Liao, Yuhe; Lin, Jin

    2017-01-01

    The properties of the time domain parameters of vibration signals have been extensively studied for the fault diagnosis of rolling element bearings (REBs). Parameters like kurtosis and Envelope Harmonic-to-Noise Ratio are the most widely applied in this field and some important progress has been made. However, since only one-sided information is contained in these parameters, problems still exist in practice when the signals collected are of complicated structure and/or contaminated by strong background noises. A new parameter, named Shock Pulse Index (SPI), is proposed in this paper. It integrates the mutual advantages of both the parameters mentioned above and can help effectively identify fault-related impulse components under conditions of interference of strong background noises, unrelated harmonic components and random impulses. The SPI optimizes the parameters of Maximum Correlated Kurtosis Deconvolution (MCKD), which is used to filter the signals under consideration. Finally, the transient information of interest contained in the filtered signal can be highlighted through demodulation with the Teager Energy Operator (TEO). Fault-related impulse components can therefore be extracted accurately. Simulations show the SPI can correctly indicate the fault impulses under the influence of strong background noises, other harmonic components and aperiodic impulse and experiment analyses verify the effectiveness and correctness of the proposed method. PMID:28282883

  19. Functional relationships of landfill and landraise capacity with design and operation parameters.

    PubMed

    Aivaliotis, Vassilis; Dokas, Ioannis; Hatzigiannakou, Maria; Panagiotakopoulos, Demetrios

    2004-08-01

    Solid waste management presses for effective landfill design and operation. While planning and operating a landfill (LF) or a landraise (LR), choices need to be made regarding: (1) LF-LR morphology (base shape, side slopes, final cover thickness, LR/LF height/depth); (2) cell geometry (height, length, slopes); and (3) operation parameters (waste density, working face length, cover thicknesses). These parameters affect LF/LR capacity, operation lifespan and construction/ operation costs. In this paper, relationships are generated between capacity (C, space available for waste) and the above parameters. Incorporating real data into simulation kgamma A1.38, runs, two types of functions are developed: first, C = where A is the LF/LR base area size and kgamma a base shape-dependent coefficient; and second, C = alpha(p,gamma,A) + delta(p,gamma,A)Xp for every parameter p, where Xp is the value of p and alpha(p,gamma,A) and delta(p,gamma,A) are parameter- and base (shape/size)-specific coefficients. Moreover, the relationship between LF depth and LR height that balances excavation volume with cover material, is identified. Another result is that, for a symmetrical combination of LF/LR, with base surface area shape between square and 1:2 orthogonal, and final density between 500 and 800 kg m(-3), waste quantity placed ranges from 1.76A1.38 to 2.55A1.38 tons. The significance of such functions is obvious, as they allow the analyst to investigate alternative LF/LR schemes and make trade-off analyses.

  20. Validation of DYSTOOL for unsteady aerodynamic modeling of 2D airfoils

    NASA Astrophysics Data System (ADS)

    González, A.; Gomez-Iradi, S.; Munduate, X.

    2014-06-01

    From the point of view of wind turbine modeling, an important group of tools is based on blade element momentum (BEM) theory using 2D aerodynamic calculations on the blade elements. Due to the importance of this sectional computation of the blades, the National Renewable Wind Energy Center of Spain (CENER) developed DYSTOOL, an aerodynamic code for 2D airfoil modeling based on the Beddoes-Leishman model. The main focus here is related to the model parameters, whose values depend on the airfoil or the operating conditions. In this work, the values of the parameters are adjusted using available experimental or CFD data. The present document is mainly related to the validation of the results of DYSTOOL for 2D airfoils. The results of the computations have been compared with unsteady experimental data of the S809 and NACA0015 profiles. Some of the cases have also been modeled using the CFD code WMB (Wind Multi Block), within the framework of a collaboration with ACCIONA Windpower. The validation has been performed using pitch oscillations with different reduced frequencies, Reynolds numbers, amplitudes and mean angles of attack. The results have shown a good agreement using the methodology of adjustment for the value of the parameters. DYSTOOL have demonstrated to be a promising tool for 2D airfoil unsteady aerodynamic modeling.

  1. Calibrating a forest landscape model to simulate frequent fire in Mediterranean-type shrublands

    USGS Publications Warehouse

    Syphard, A.D.; Yang, J.; Franklin, J.; He, H.S.; Keeley, J.E.

    2007-01-01

    In Mediterranean-type ecosystems (MTEs), fire disturbance influences the distribution of most plant communities, and altered fire regimes may be more important than climate factors in shaping future MTE vegetation dynamics. Models that simulate the high-frequency fire and post-fire response strategies characteristic of these regions will be important tools for evaluating potential landscape change scenarios. However, few existing models have been designed to simulate these properties over long time frames and broad spatial scales. We refined a landscape disturbance and succession (LANDIS) model to operate on an annual time step and to simulate altered fire regimes in a southern California Mediterranean landscape. After developing a comprehensive set of spatial and non-spatial variables and parameters, we calibrated the model to simulate very high fire frequencies and evaluated the simulations under several parameter scenarios representing hypotheses about system dynamics. The goal was to ensure that observed model behavior would simulate the specified fire regime parameters, and that the predictions were reasonable based on current understanding of community dynamics in the region. After calibration, the two dominant plant functional types responded realistically to different fire regime scenarios. Therefore, this model offers a new alternative for simulating altered fire regimes in MTE landscapes. ?? 2007 Elsevier Ltd. All rights reserved.

  2. Important operational parameters of membrane bioreactor-sludge disintegration (MBR-SD) system for zero excess sludge production.

    PubMed

    Yoon, Seong-Hoon

    2003-04-01

    In order to prevent excess sludge production during wastewater treatment, a membrane bioreactor-sludge disintegration (MBR-SD) system has been introduced, where the disintegrated sludge is recycled to the bioreactor as a feed solution. In this study, a mathematical model was developed by incorporating a sludge disintegration term into the conventional activated sludge model and the relationships among the operational parameters were investigated. A new definition of F/M ratio for the MBR-SD system was suggested to evaluate the actual organic loading rate. The actual F/M ratio was expected to be much higher than the apparent F/M ratio in MBR-SD. The kinetic parameters concerning the biodegradability of organics hardly affect the system performance. Instead, sludge solubilization ratio (alpha) in the SD process and particulate hydrolysis rate constant (k(h)) in biological reaction determine the sludge disintegration number (SDN), which is related with the overall economics of the MBR-SD system. Under reasonable alpha and k(h) values, SDN would range between 3 and 5 which means the amount of sludge required to be disintegrated would be 3-5 times higher for preventing a particular amount of sludge production. Finally, normalized sludge disintegration rate (q/V) which is needed to maintain a certain level of MLSS in the MBR-SD system was calculated as a function of F/V ratio.

  3. Understanding the operational parameters affecting NDMA formation at Advanced Water Treatment Plants.

    PubMed

    Farré, Maria José; Döderer, Katrin; Hearn, Laurence; Poussade, Yvan; Keller, Jurg; Gernjak, Wolfgang

    2011-01-30

    N-nitrosodimethylamine (NDMA) can be formed when secondary effluents are disinfected by chloramines. By means of bench scale experiments this paper investigates operational parameters than can help Advanced Water Treatment Plants (AWTPs) to reduce the formation of NDMA during the production of high quality recycled water. The formation of NDMA was monitored during a contact time of 24h using dimethylamine as NDMA model precursor and secondary effluent from wastewater treatment plants. The three chloramine disinfection strategies tested were pre-formed and in-line formed monochloramine, and pre-formed dichloramine. Although the latter is not employed on purpose in full-scale applications, it has been suggested as the main contributing chemical generating NDMA during chloramination. After 24h, the NDMA formation decreased in both matrices tested in the order: pre-formed dichloramine>in-line formed monochloramine≫pre-formed monochloramine. The most important parameter to consider for the inhibition of NDMA formation was the length of contact time between disinfectant and wastewater. Formation of NDMA was initially inhibited for up to 6h with concentrations consistently <10 ng/L during these early stages of disinfection, regardless of the disinfection strategy. The reduction of the contact time was implemented in Bundamba AWTP (Queensland, Australia), where NDMA concentrations were reduced by a factor of 20 by optimizing the disinfection strategy. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Modelling of dynamic contact length in rail grinding process

    NASA Astrophysics Data System (ADS)

    Zhi, Shaodan; Li, Jianyong; Zarembski, A. M.

    2014-09-01

    Rails endure frequent dynamic loads from the passing trains for supporting trains and guiding wheels. The accumulated stress concentrations will cause the plastic deformation of rail towards generating corrugations, contact fatigue cracks and also other defects, resulting in more dangerous status even the derailment risks. So the rail grinding technology has been invented with rotating grinding stones pressed on the rail with defects removal. Such rail grinding works are directed by experiences rather than scientifically guidance, lacking of flexible and scientific operating methods. With grinding control unit holding the grinding stones, the rail grinding process has the characteristics not only the surface grinding but also the running railway vehicles. First of all, it's important to analyze the contact length between the grinding stone and the rail, because the contact length is a critical parameter to measure the grinding capabilities of stones. Moreover, it's needed to build up models of railway vehicle unit bonded with the grinding stone to represent the rail grinding car. Therefore the theoretical model for contact length is developed based on the geometrical analysis. And the calculating models are improved considering the grinding car's dynamic behaviors during the grinding process. Eventually, results are obtained based on the models by taking both the operation parameters and the structure parameters into the calculation, which are suitable for revealing the process of rail grinding by combining the grinding mechanism and the railway vehicle systems.

  5. Neural network evaluation of tokamak current profiles for real time control

    NASA Astrophysics Data System (ADS)

    Wróblewski, Dariusz

    1997-02-01

    Active feedback control of the current profile, requiring real-time determination of the current profile parameters, is envisioned for tokamaks operating in enhanced confinement regimes. The distribution of toroidal current in a tokamak is now routinely evaluated based on external (magnetic probes, flux loops) and internal (motional Stark effect) measurements of the poloidal magnetic field. However, the analysis involves reconstruction of magnetohydrodynamic equilibrium and is too intensive computationally to be performed in real time. In the present study, a neural network is used to provide a mapping from the magnetic measurements (internal and external) to selected parameters of the safety factor profile. The single-pass, feedforward calculation of output of a trained neural network is very fast, making this approach particularly suitable for real-time applications. The network was trained on a large set of simulated equilibrium data for the DIII-D tokamak. The database encompasses a large variety of current profiles including the hollow current profiles important for reversed central shear operation. The parameters of safety factor profile (a quantity related to the current profile through the magnetic field tilt angle) estimated by the neural network include central safety factor, q0, minimum value of q, qmin, and the location of qmin. Very good performance of the trained neural network both for simulated test data and for experimental datais demonstrated.

  6. Neural network evaluation of tokamak current profiles for real time control (abstract)

    NASA Astrophysics Data System (ADS)

    Wróblewski, Dariusz

    1997-01-01

    Active feedback control of the current profile, requiring real-time determination of the current profile parameters, is envisioned for tokamaks operating in enhanced confinement regimes. The distribution of toroidal current in a tokamak is now routinely evaluated based on external (magnetic probes, flux loops) and internal (motional Stark effect) measurements of the poloidal magnetic field. However, the analysis involves reconstruction of magnetohydrodynamic equilibrium and is too intensive computationally to be performed in real time. In the present study, a neural network is used to provide a mapping from the magnetic measurements (internal and external) to selected parameters of the safety factor profile. The single-pass, feedforward calculation of output of a trained neural network is very fast, making this approach particularly suitable for real-time applications. The network was trained on a large set of simulated equilibrium data for the DIII-D tokamak. The database encompasses a large variety of current profiles including the hollow current profiles important for reversed central shear operation. The parameters of safety factor profile (a quantity related to the current profile through the magnetic field tilt angle) estimated by the neural network include central safety factor, q0, minimum value of q, qmin, and the location of qmin. Very good performance of the trained neural network both for simulated test data and for experimental data is demonstrated.

  7. Understanding facilities design parameters for a remanufacturing system

    NASA Astrophysics Data System (ADS)

    Topcu, Aysegul; Cullinane, Thomas

    2005-11-01

    Remanufacturing is rapidly becoming a very important element in the economies of the world. Products such as washing machines, clothes driers, automobile parts, cell phones and a wide range of consumer durable goods are being reclaimed and sent through processes that restore these products to levels of operating performance that are as good or better than their new product performance. The operations involved in the remanufacturing process add several new dimensions to the work that must be performed. Disassembly is an operation that rarely appears on the operations chart of a typical production facility. The inspection and test functions in remanufacturing most often involve several more tasks than those involved in the first time manufacturing cycle. A close evaluation of most any remanufacturing operation reveals several points in the process in which parts must be cleaned, tested and stored. Although several researchers have focused their work on optimizing the disassembly function and the inspection, test and store functions, very little research has been devoted to studying the impact of the facilities design on the effectiveness of the remanufacturing process. The purpose of this paper will be to delineate the differences between first time manufacturing operations and remanufacturing operations for durable goods and to identify the features of the facilities design that must be considered if the remanufacturing operations are to be effective.

  8. Effect of at-the-source noise reduction on performance and weights of a tilt-rotor aircraft

    NASA Technical Reports Server (NTRS)

    Gibs, J.; Stepniewski, W. Z.; Spencer, R.

    1975-01-01

    Reduction of far-field acoustic signature through modification of basic design parameters (tip speed, number of blades, disc loading and rotor blade area) was examined, using a tilt-rotor flight research aircraft as a baseline configuration. Of those design parameters, tip speed appeared as the most important. Next, preliminary design of two aircraft was performed, postulating the following reduction of noise level from that of the baseline machine, at 500 feet from the spot of OGE hover. In one aircraft, the PNL was lowered by 10 PNdB and in the other, OASPL decreased by 10 dB. The resulting weight and performance penalties were examined. Then, PNL and EPNL aspects of terminal operation were compared for the baseline and quieter aircraft.

  9. Analysis of Fluctuating Static Pressure Measurements in the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Igoe, William B.

    1996-01-01

    Dynamic measurements of fluctuating static pressure levels were taken with flush-mounted, high-frequency response pressure transducers at 11 locations in the circuit of the National Transonic Facility (NTF) across the complete operating range of this wind tunnel. Measurements were taken at test-section Mach numbers from 0.1 to 1.2, at pressures from 1 to 8.6 atm, and at temperatures from ambient to -250 F, which resulted in dynamic flow disturbance measurements at the highest Reynolds numbers available in a transonic ground test facility. Tests were also made by independent variation of the Mach number, the Reynolds number, or the fan drive power while the other two parameters were held constant, which for the first time resulted in a distinct separation of the effects of these three important parameters.

  10. Safe Operation and Alignment of the Variable Pulse Width Laser at the US Army Research Laboratory

    DTIC Science & Technology

    2016-02-01

    that the stored lamp parameters match the desired flashlamp operating parameters. Then go back to the main menu and press “B” to select the desired...operating the laser at a high voltage, either press “STOP” on the flashlamp controller to discharge the capacitors or fire the laser a few times at

  11. Study of Material Consolidation at Higher Throughput Parameters in Selective Laser Melting of Inconel 718

    NASA Technical Reports Server (NTRS)

    Prater, Tracie

    2016-01-01

    Selective Laser Melting (SLM) is a powder bed fusion additive manufacturing process used increasingly in the aerospace industry to reduce the cost, weight, and fabrication time for complex propulsion components. SLM stands poised to revolutionize propulsion manufacturing, but there are a number of technical questions that must be addressed in order to achieve rapid, efficient fabrication and ensure adequate performance of parts manufactured using this process in safety-critical flight applications. Previous optimization studies for SLM using the Concept Laser M1 and M2 machines at NASA Marshall Space Flight Center have centered on machine default parameters. The objective of this work is to characterize the impact of higher throughput parameters (a previously unexplored region of the manufacturing operating envelope for this application) on material consolidation. In phase I of this work, density blocks were analyzed to explore the relationship between build parameters (laser power, scan speed, hatch spacing, and layer thickness) and material consolidation (assessed in terms of as-built density and porosity). Phase II additionally considers the impact of post-processing, specifically hot isostatic pressing and heat treatment, as well as deposition pattern on material consolidation in the same higher energy parameter regime considered in the phase I work. Density and microstructure represent the "first-gate" metrics for determining the adequacy of the SLM process in this parameter range and, as a critical initial indicator of material quality, will factor into a follow-on DOE that assesses the impact of these parameters on mechanical properties. This work will contribute to creating a knowledge base (understanding material behavior in all ranges of the AM equipment operating envelope) that is critical to transitioning AM from the custom low rate production sphere it currently occupies to the world of mass high rate production, where parts are fabricated at a rapid rate with confidence that they will meet or exceed all stringent functional requirements for spaceflight hardware. These studies will also provide important data on the sensitivity of material consolidation to process parameters that will inform the design and development of future flight articles using SLM.

  12. Integrated Logistics Support Analysis of the International Space Station Alpha: An Overview of the Maintenance Time Dependent Parameter Prediction Methods Enhancement

    NASA Technical Reports Server (NTRS)

    Sepehry-Fard, F.; Coulthard, Maurice H.

    1995-01-01

    The objective of this publication is to introduce the enhancement methods for the overall reliability and maintainability methods of assessment on the International Space Station. It is essential that the process to predict the values of the maintenance time dependent variable parameters such as mean time between failure (MTBF) over time do not in themselves generate uncontrolled deviation in the results of the ILS analysis such as life cycle costs, spares calculation, etc. Furthermore, the very acute problems of micrometeorite, Cosmic rays, flares, atomic oxygen, ionization effects, orbital plumes and all the other factors that differentiate maintainable space operations from non-maintainable space operations and/or ground operations must be accounted for. Therefore, these parameters need be subjected to a special and complex process. Since reliability and maintainability strongly depend on the operating conditions that are encountered during the entire life of the International Space Station, it is important that such conditions are accurately identified at the beginning of the logistics support requirements process. Environmental conditions which exert a strong influence on International Space Station will be discussed in this report. Concurrent (combined) space environments may be more detrimental to the reliability and maintainability of the International Space Station than the effects of a single environment. In characterizing the logistics support requirements process, the developed design/test criteria must consider both the single and/or combined environments in anticipation of providing hardware capability to withstand the hazards of the International Space Station profile. The effects of the combined environments (typical) in a matrix relationship on the International Space Station will be shown. The combinations of the environments where the total effect is more damaging than the cumulative effects of the environments acting singly, may include a combination such as temperature, humidity, altitude, shock, and vibration while an item is being transported. The item's acceptance to its end-of-life sequence must be examined for these effects.

  13. Linear modeling of human hand-arm dynamics relevant to right-angle torque tool interaction.

    PubMed

    Ay, Haluk; Sommerich, Carolyn M; Luscher, Anthony F

    2013-10-01

    A new protocol was evaluated for identification of stiffness, mass, and damping parameters employing a linear model for human hand-arm dynamics relevant to right-angle torque tool use. Powered torque tools are widely used to tighten fasteners in manufacturing industries. While these tools increase accuracy and efficiency of tightening processes, operators are repetitively exposed to impulsive forces, posing risk of upper extremity musculoskeletal injury. A novel testing apparatus was developed that closely mimics biomechanical exposure in torque tool operation. Forty experienced torque tool operators were tested with the apparatus to determine model parameters and validate the protocol for physical capacity assessment. A second-order hand-arm model with parameters extracted in the time domain met model accuracy criterion of 5% for time-to-peak displacement error in 93% of trials (vs. 75% for frequency domain). Average time-to-peak handle displacement and relative peak handle force errors were 0.69 ms and 0.21%, respectively. Model parameters were significantly affected by gender and working posture. Protocol and numerical calculation procedures provide an alternative method for assessing mechanical parameters relevant to right-angle torque tool use. The protocol more closely resembles tool use, and calculation procedures demonstrate better performance of parameter extraction using time domain system identification methods versus frequency domain. Potential future applications include parameter identification for in situ torque tool operation and equipment development for human hand-arm dynamics simulation under impulsive forces that could be used for assessing torque tools based on factors relevant to operator health (handle dynamics and hand-arm reaction force).

  14. Framework for Uncertainty Assessment - Hanford Site-Wide Groundwater Flow and Transport Modeling

    NASA Astrophysics Data System (ADS)

    Bergeron, M. P.; Cole, C. R.; Murray, C. J.; Thorne, P. D.; Wurstner, S. K.

    2002-05-01

    Pacific Northwest National Laboratory is in the process of development and implementation of an uncertainty estimation methodology for use in future site assessments that addresses parameter uncertainty as well as uncertainties related to the groundwater conceptual model. The long-term goals of the effort are development and implementation of an uncertainty estimation methodology for use in future assessments and analyses being made with the Hanford site-wide groundwater model. The basic approach in the framework developed for uncertainty assessment consists of: 1) Alternate conceptual model (ACM) identification to identify and document the major features and assumptions of each conceptual model. The process must also include a periodic review of the existing and proposed new conceptual models as data or understanding become available. 2) ACM development of each identified conceptual model through inverse modeling with historical site data. 3) ACM evaluation to identify which of conceptual models are plausible and should be included in any subsequent uncertainty assessments. 4) ACM uncertainty assessments will only be carried out for those ACMs determined to be plausible through comparison with historical observations and model structure identification measures. The parameter uncertainty assessment process generally involves: a) Model Complexity Optimization - to identify the important or relevant parameters for the uncertainty analysis; b) Characterization of Parameter Uncertainty - to develop the pdfs for the important uncertain parameters including identification of any correlations among parameters; c) Propagation of Uncertainty - to propagate parameter uncertainties (e.g., by first order second moment methods if applicable or by a Monte Carlo approach) through the model to determine the uncertainty in the model predictions of interest. 5)Estimation of combined ACM and scenario uncertainty by a double sum with each component of the inner sum (an individual CCDF) representing parameter uncertainty associated with a particular scenario and ACM and the outer sum enumerating the various plausible ACM and scenario combinations in order to represent the combined estimate of uncertainty (a family of CCDFs). A final important part of the framework includes identification, enumeration, and documentation of all the assumptions, which include those made during conceptual model development, required by the mathematical model, required by the numerical model, made during the spatial and temporal descretization process, needed to assign the statistical model and associated parameters that describe the uncertainty in the relevant input parameters, and finally those assumptions required by the propagation method. Pacific Northwest National Laboratory is operated for the U.S. Department of Energy under Contract DE-AC06-76RL01830.

  15. CME Arrival-time Validation of Real-time WSA-ENLIL+Cone Simulations at the CCMC/SWRC

    NASA Astrophysics Data System (ADS)

    Wold, A. M.; Mays, M. L.; Taktakishvili, A.; Jian, L.; Odstrcil, D.; MacNeice, P. J.

    2016-12-01

    The Wang-Sheeley-Arge (WSA)-ENLIL+Cone model is used extensively in space weather operations worldwide to model CME propagation, as such it is important to assess its performance. We present validation results of the WSA-ENLIL+Cone model installed at the Community Coordinated Modeling Center (CCMC) and executed in real-time by the CCMC/Space Weather Research Center (SWRC). The SWRC is a CCMC sub-team that provides space weather services to NASA robotic mission operators and science campaigns, and also prototypes new forecasting models and techniques. CCMC/SWRC uses the WSA-ENLIL+Cone model to predict CME arrivals at NASA missions throughout the inner heliosphere. In this work we compare model predicted CME arrival-times to in-situ ICME shock observations near Earth (ACE, Wind), STEREO-A and B for simulations completed between March 2010 - July 2016 (over 1500 runs). We report hit, miss, false alarm, and correct rejection statistics for all three spacecraft. For hits we compute the bias, RMSE, and average absolute CME arrival time error, and the dependence of these errors on CME input parameters. We compare the predicted geomagnetic storm strength (Kp index) to the CME arrival time error for Earth-directed CMEs. The predicted Kp index is computed using the WSA-ENLIL+Cone plasma parameters at Earth with a modified Newell et al. (2007) coupling function. We also explore the impact of the multi-spacecraft observations on the CME parameters used initialize the model by comparing model validation results before and after the STEREO-B communication loss (since September 2014) and STEREO-A side-lobe operations (August 2014-December 2015). This model validation exercise has significance for future space weather mission planning such as L5 missions.

  16. Combined treatment technology based on synergism between hydrodynamic cavitation and advanced oxidation processes.

    PubMed

    Gogate, Parag R; Patil, Pankaj N

    2015-07-01

    The present work highlights the novel approach of combination of hydrodynamic cavitation and advanced oxidation processes for wastewater treatment. The initial part of the work concentrates on the critical analysis of the literature related to the combined approaches based on hydrodynamic cavitation followed by a case study of triazophos degradation using different approaches. The analysis of different combinations based on hydrodynamic cavitation with the Fenton chemistry, advanced Fenton chemistry, ozonation, photocatalytic oxidation, and use of hydrogen peroxide has been highlighted with recommendations for important design parameters. Subsequently degradation of triazophos pesticide in aqueous solution (20 ppm solution of commercially available triazophos pesticide) has been investigated using hydrodynamic cavitation and ozonation operated individually and in combination for the first time. Effect of different operating parameters like inlet pressure (1-8 bar) and initial pH (2.5-8) have been investigated initially. The effect of addition of Fenton's reagent at different loadings on the extent of degradation has also been investigated. The combined method of hydrodynamic cavitation and ozone has been studied using two approaches of injecting ozone in the solution tank and at the orifice (at the flow rate of 0.576 g/h and 1.95 g/h). About 50% degradation of triazophos was achieved by hydrodynamic cavitation alone under optimized operating parameters. About 80% degradation of triazophos was achieved by combination of hydrodynamic cavitation and Fenton's reagent whereas complete degradation was achieved using combination of hydrodynamic cavitation and ozonation. TOC removal of 96% was also obtained for the combination of ozone and hydrodynamic cavitation making it the best treatment strategy for removal of triazophos. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Performance evaluation of a hybrid-passive landfill leachate treatment system using multivariate statistical techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallace, Jack, E-mail: jack.wallace@ce.queensu.ca; Champagne, Pascale, E-mail: champagne@civil.queensu.ca; Monnier, Anne-Charlotte, E-mail: anne-charlotte.monnier@insa-lyon.fr

    Highlights: • Performance of a hybrid passive landfill leachate treatment system was evaluated. • 33 Water chemistry parameters were sampled for 21 months and statistically analyzed. • Parameters were strongly linked and explained most (>40%) of the variation in data. • Alkalinity, ammonia, COD, heavy metals, and iron were criteria for performance. • Eight other parameters were key in modeling system dynamics and criteria. - Abstract: A pilot-scale hybrid-passive treatment system operated at the Merrick Landfill in North Bay, Ontario, Canada, treats municipal landfill leachate and provides for subsequent natural attenuation. Collected leachate is directed to a hybrid-passive treatment system,more » followed by controlled release to a natural attenuation zone before entering the nearby Little Sturgeon River. The study presents a comprehensive evaluation of the performance of the system using multivariate statistical techniques to determine the interactions between parameters, major pollutants in the leachate, and the biological and chemical processes occurring in the system. Five parameters (ammonia, alkalinity, chemical oxygen demand (COD), “heavy” metals of interest, with atomic weights above calcium, and iron) were set as criteria for the evaluation of system performance based on their toxicity to aquatic ecosystems and importance in treatment with respect to discharge regulations. System data for a full range of water quality parameters over a 21-month period were analyzed using principal components analysis (PCA), as well as principal components (PC) and partial least squares (PLS) regressions. PCA indicated a high degree of association for most parameters with the first PC, which explained a high percentage (>40%) of the variation in the data, suggesting strong statistical relationships among most of the parameters in the system. Regression analyses identified 8 parameters (set as independent variables) that were most frequently retained for modeling the five criteria parameters (set as dependent variables), on a statistically significant level: conductivity, dissolved oxygen (DO), nitrite (NO{sub 2}{sup −}), organic nitrogen (N), oxidation reduction potential (ORP), pH, sulfate and total volatile solids (TVS). The criteria parameters and the significant explanatory parameters were most important in modeling the dynamics of the passive treatment system during the study period. Such techniques and procedures were found to be highly valuable and could be applied to other sites to determine parameters of interest in similar naturalized engineered systems.« less

  18. Parametric tests of a 40-Ah bipolar nickel-hydrogen battery

    NASA Technical Reports Server (NTRS)

    Cataldo, R. L.

    1986-01-01

    A series of tests were performed to characterize battery performance relating to certain operating parameters which include charge current, discharge current, temperature, and pressure. The parameters were varied to confirm battery design concepts and to determine optimal operating conditions.

  19. A linear regression approach to evaluate the green supply chain management impact on industrial organizational performance.

    PubMed

    Mumtaz, Ubaidullah; Ali, Yousaf; Petrillo, Antonella

    2018-05-15

    The increase in the environmental pollution is one of the most important topic in today's world. In this context, the industrial activities can pose a significant threat to the environment. To manage problems associate to industrial activities several methods, techniques and approaches have been developed. Green supply chain management (GSCM) is considered one of the most important "environmental management approach". In developing countries such as Pakistan the implementation of GSCM practices is still in its initial stages. Lack of knowledge about its effects on economic performance is the reason because of industries fear to implement these practices. The aim of this research is to perceive the effects of GSCM practices on organizational performance in Pakistan. In this research the GSCM practices considered are: internal practices, external practices, investment recovery and eco-design. While, the performance parameters considered are: environmental pollution, operational cost and organizational flexibility. A set of hypothesis propose the effect of each GSCM practice on the performance parameters. Factor analysis and linear regression are used to analyze the survey data of Pakistani industries, in order to authenticate these hypotheses. The findings of this research indicate a decrease in environmental pollution and operational cost with the implementation of GSCM practices, whereas organizational flexibility has not improved for Pakistani industries. These results aim to help managers regarding their decision of implementing GSCM practices in the industrial sector of Pakistan. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Factors controlling nitrous oxide emissions from a full-scale activated sludge system in the tropics.

    PubMed

    Brotto, Ariane C; Kligerman, Débora C; Andrade, Samara A; Ribeiro, Renato P; Oliveira, Jaime L M; Chandran, Kartik; de Mello, William Z

    2015-08-01

    Despite interest in characterizing nitrous oxide (N2O) emissions from wastewater treatment plants (WWTPs) in several parts of the globe, there are few studies in tropical zones. This study focus on the contribution of the scientific knowledge of anthropogenic nitrogen greenhouse gas emissions to climate change in tropical countries, investigating factors controlling N2O emissions in a non-biological nitrogen removal municipal WWTP. In terms of operational parameters, dissolved oxygen (DO) concentrations displayed a biphasic impact on N2O production and emission, with the highest emission at DO of 2.0 mg O2 L(-1). The low solids retention time of 3 days also played a significant role, leading to nitrite accumulation, which is an important trigger for N2O production during nitrification. Furthermore, other factor especially important for tropical countries, namely, temperature, also had a positive correlation with N2O production. Emission factors estimated for this study were 0.12 (0.02-0.31)% of the influent total nitrogen load and 8.1 (3-17) g N2O person(-1) year(-1), 2.5 times higher than currently proposed emission factors. Therefore, the highly variability and dependence on operational parameters reinforce the use of a single emission factor is inadequate, especially for developing countries with limited or variable extent of biological wastewater treatment and in regions of the world with widely varying climate patterns.

  1. Signal noise ratio analysis and on-orbit performance estimation of a solar occultation Fourier transform spectrometer

    NASA Astrophysics Data System (ADS)

    Li, Bicen; Xu, Pengmei; Hou, Lizhou; Wang, Caiqin

    2017-10-01

    Taking the advantages of high spectral resolution, high sensitivity and wide spectral coverage, space borne Fourier transform infrared spectrometer (FTS) plays more and more important role in atmospheric composition sounding. The combination of solar occultation and FTS technique improves the sensitivity of instrument. To achieve both high spectral resolution and high signal to noise ratio (SNR), reasonable allocation and optimization for instrument parameters are the foundation and difficulty. The solar occultation FTS (SOFTS) is a high spectral resolution (0.03 cm-1) FTS operating from 2.4 to 13.3 μm (750-4100cm-1), which will determine the altitude profile information of typical 10-100km for temperature, pressure, and the volume mixing ratios for several dozens of atmospheric compositions. As key performance of SOFTS, SNR is crucially important to high accuracy retrieval of atmospheric composition, which is required to be no less than 100:1 at the radiance of 5800K blackbody. Based on the study of various parameters and its interacting principle, according to interference theory and operation principle of time modulated FTS, a simulation model of FTS SNR has been built, which considers satellite orbit, spectral radiometric features of sun and atmospheric composition, optical system, interferometer and its control system, measurement duration, detector sensitivity, noise of detector and electronic system and so on. According to the testing results of SNR at the illuminating of 1000 blackbody, the on-orbit SNR performance of SOFTS is estimated, which can meet the mission requirement.

  2. Vectorial capacity and vector control: reconsidering sensitivity to parameters for malaria elimination.

    PubMed

    Brady, Oliver J; Godfray, H Charles J; Tatem, Andrew J; Gething, Peter W; Cohen, Justin M; McKenzie, F Ellis; Perkins, T Alex; Reiner, Robert C; Tusting, Lucy S; Sinka, Marianne E; Moyes, Catherine L; Eckhoff, Philip A; Scott, Thomas W; Lindsay, Steven W; Hay, Simon I; Smith, David L

    2016-02-01

    Major gains have been made in reducing malaria transmission in many parts of the world, principally by scaling-up coverage with long-lasting insecticidal nets and indoor residual spraying. Historically, choice of vector control intervention has been largely guided by a parameter sensitivity analysis of George Macdonald's theory of vectorial capacity that suggested prioritizing methods that kill adult mosquitoes. While this advice has been highly successful for transmission suppression, there is a need to revisit these arguments as policymakers in certain areas consider which combinations of interventions are required to eliminate malaria. Using analytical solutions to updated equations for vectorial capacity we build on previous work to show that, while adult killing methods can be highly effective under many circumstances, other vector control methods are frequently required to fill effective coverage gaps. These can arise due to pre-existing or developing mosquito physiological and behavioral refractoriness but also due to additive changes in the relative importance of different vector species for transmission. Furthermore, the optimal combination of interventions will depend on the operational constraints and costs associated with reaching high coverage levels with each intervention. Reaching specific policy goals, such as elimination, in defined contexts requires increasingly non-generic advice from modelling. Our results emphasize the importance of measuring baseline epidemiology, intervention coverage, vector ecology and program operational constraints in predicting expected outcomes with different combinations of interventions. © The Author 2016. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene.

  3. Simulation of Propellant Loading System Senior Design Implement in Computer Algorithm

    NASA Technical Reports Server (NTRS)

    Bandyopadhyay, Alak

    2010-01-01

    Propellant loading from the Storage Tank to the External Tank is one of the very important and time consuming pre-launch ground operations for the launch vehicle. The propellant loading system is a complex integrated system involving many physical components such as the storage tank filled with cryogenic fluid at a very low temperature, the long pipe line connecting the storage tank with the external tank, the external tank along with the flare stack, and vent systems for releasing the excess fuel. Some of the very important parameters useful for design purpose are the prediction of pre-chill time, loading time, amount of fuel lost, the maximum pressure rise etc. The physics involved for mathematical modeling is quite complex due to the fact the process is unsteady, there is phase change as some of the fuel changes from liquid to gas state, then conjugate heat transfer in the pipe walls as well as between solid-to-fluid region. The simulation is very tedious and time consuming too. So overall, this is a complex system and the objective of the work is student's involvement and work in the parametric study and optimization of numerical modeling towards the design of such system. The students have to first become familiar and understand the physical process, the related mathematics and the numerical algorithm. The work involves exploring (i) improved algorithm to make the transient simulation computationally effective (reduced CPU time) and (ii) Parametric study to evaluate design parameters by changing the operational conditions

  4. Advanced interactive display formats for terminal area traffic control

    NASA Technical Reports Server (NTRS)

    Grunwald, Arthur J.

    1995-01-01

    The basic design considerations for perspective Air Traffic Control displays are described. A software framework has been developed for manual viewing parameter setting (MVPS) in preparation for continued, ongoing developments on automated viewing parameter setting (AVPS) schemes. The MVPS system is based on indirect manipulation of the viewing parameters. Requests for changes in viewing parameter setting are entered manually by the operator by moving viewing parameter manipulation pointers on the screen. The motion of these pointers, which are an integral part of the 3-D scene, is limited to the boundaries of screen. This arrangement has been chosen, in order to preserve the correspondence between the new and the old viewing parameter setting, a feature which contributes to preventing spatial disorientation of the operator. For all viewing operations, e.g. rotation, translation and ranging, the actual change is executed automatically by the system, through gradual transitions with an exponentially damped, sinusoidal velocity profile, in this work referred to as 'slewing' motions. The slewing functions, which eliminate discontinuities in the viewing parameter changes, are designed primarily for enhancing the operator's impression that he, or she, is dealing with an actually existing physical system, rather than an abstract computer generated scene. Current, ongoing efforts deal with the development of automated viewing parameter setting schemes. These schemes employ an optimization strategy, aimed at identifying the best possible vantage point, from which the Air Traffic Control scene can be viewed, for a given traffic situation.

  5. Electron cyclotron resonance plasma production by using pulse mode microwaves and dependences of ion beam current and plasma parameters on the pulse condition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiriyama, Ryutaro; Takenaka, Tomoya; Kurisu, Yousuke

    2012-02-15

    We measure the ion beam current and the plasma parameters by using the pulse mode microwave operation in the first stage of a tandem type ECRIS. The time averaged extracted ion beam current in the pulse mode operation is larger than that of the cw mode operation with the same averaged microwave power. The electron density n{sub e} in the pulse mode is higher and the electron temperature T{sub e} is lower than those of the cw mode operation. These plasma parameters are considered to cause in the increase of the ion beam current and are suitable to produce molecularmore » or cluster ions.« less

  6. National Synchrotron Light Source annual report 1991. Volume 1, October 1, 1990--September 30, 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hulbert, S.L.; Lazarz, N.M.

    1992-04-01

    This report discusses the following research conducted at NSLS: atomic and molecular science; energy dispersive diffraction; lithography, microscopy and tomography; nuclear physics; UV photoemission and surface science; x-ray absorption spectroscopy; x-ray scattering and crystallography; x-ray topography; workshop on surface structure; workshop on electronic and chemical phenomena at surfaces; workshop on imaging; UV FEL machine reviews; VUV machine operations; VUV beamline operations; VUV storage ring parameters; x-ray machine operations; x-ray beamline operations; x-ray storage ring parameters; superconducting x-ray lithography source; SXLS storage ring parameters; the accelerator test facility; proposed UV-FEL user facility at the NSLS; global orbit feedback systems; and NSLSmore » computer system.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy, Surajit; Ladpli, Purim; Chang, Fu-Kuo

    Accurate interpretation of in-situ piezoelectric sensor signals is a challenging task. This article presents the development of a numerical compensation model based on physical insight to address the influence of structural loads on piezo-sensor signals. The model requires knowledge of in-situ strain and temperature distribution in a structure while acquiring sensor signals. The parameters of the numerical model are obtained using experiments on flat aluminum plate under uniaxial tensile loading. It is shown that the model parameters obtained experimentally can be used for different structures, and sensor layout. Furthermore, the combined effects of load and temperature on the piezo-sensor responsemore » are also investigated and it is observed that both of these factors have a coupled effect on the sensor signals. It is proposed to obtain compensation model parameters under a range of operating temperatures to address this coupling effect. An important outcome of this study is a new load monitoring concept using in-situ piezoelectric sensor signals to track changes in the load paths in a structure.« less

  8. Switchable Scattering Meta-Surfaces for Broadband Terahertz Modulation

    PubMed Central

    Unlu, M.; Hashemi, M. R.; Berry, C. W.; Li, S.; Yang, S.-H.; Jarrahi, M.

    2014-01-01

    Active tuning and switching of electromagnetic properties of materials is of great importance for controlling their interaction with electromagnetic waves. In spite of their great promise, previously demonstrated reconfigurable metamaterials are limited in their operation bandwidth due to their resonant nature. Here, we demonstrate a new class of meta-surfaces that exhibit electrically-induced switching in their scattering parameters at room temperature and over a broad range of frequencies. Structural configuration of the subwavelength meta-molecules determines their electromagnetic response to an incident electromagnetic radiation. By reconfiguration of the meta-molecule structure, the strength of the induced electric field and magnetic field in the opposite direction to the incident fields are varied and the scattering parameters of the meta-surface are altered, consequently. We demonstrate a custom-designed meta-surface with switchable scattering parameters at a broad range of terahertz frequencies, enabling terahertz intensity modulation with record high modulation depths and modulation bandwidths through a fully integrated, voltage-controlled device platform at room temperature. PMID:25028123

  9. Multiple-objective optimization in precision laser cutting of different thermoplastics

    NASA Astrophysics Data System (ADS)

    Tamrin, K. F.; Nukman, Y.; Choudhury, I. A.; Shirley, S.

    2015-04-01

    Thermoplastics are increasingly being used in biomedical, automotive and electronics industries due to their excellent physical and chemical properties. Due to the localized and non-contact process, use of lasers for cutting could result in precise cut with small heat-affected zone (HAZ). Precision laser cutting involving various materials is important in high-volume manufacturing processes to minimize operational cost, error reduction and improve product quality. This study uses grey relational analysis to determine a single optimized set of cutting parameters for three different thermoplastics. The set of the optimized processing parameters is determined based on the highest relational grade and was found at low laser power (200 W), high cutting speed (0.4 m/min) and low compressed air pressure (2.5 bar). The result matches with the objective set in the present study. Analysis of variance (ANOVA) is then carried out to ascertain the relative influence of process parameters on the cutting characteristics. It was found that the laser power has dominant effect on HAZ for all thermoplastics.

  10. Profiling optimization for big data transfer over dedicated channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yun, D.; Wu, Qishi; Rao, Nageswara S

    The transfer of big data is increasingly supported by dedicated channels in high-performance networks, where transport protocols play an important role in maximizing applicationlevel throughput and link utilization. The performance of transport protocols largely depend on their control parameter settings, but it is prohibitively time consuming to conduct an exhaustive search in a large parameter space to find the best set of parameter values. We propose FastProf, a stochastic approximation-based transport profiler, to quickly determine the optimal operational zone of a given data transfer protocol/method over dedicated channels. We implement and test the proposed method using both emulations based onmore » real-life performance measurements and experiments over physical connections with short (2 ms) and long (380 ms) delays. Both the emulation and experimental results show that FastProf significantly reduces the profiling overhead while achieving a comparable level of end-to-end throughput performance with the exhaustive search-based approach.« less

  11. Control voltage and power fluctuations when connecting wind farms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berinde, Ioan, E-mail: ioan-berinde@yahoo.com; Bălan, Horia, E-mail: hbalan@mail.utcluj.ro; Oros, Teodora Susana, E-mail: teodoraoros-87@yahoo.com

    2015-12-23

    Voltage, frequency, active power and reactive power are very important parameters in terms of power quality. These parameters are followed when connecting any power plant, the more the connection of wind farms. Connecting wind farms to the electricity system must not cause interference outside the limits set by regulations. Modern solutions for fast and automatic voltage control and power fluctuations using electronic control systems of reactive power flows. FACTS (Flexible Alternating Current Transmision System) systems, established on the basis of power electronic circuits ensure control of electrical status quantities to achieve the necessary transfer of power to the power grid.more » FACTS devices can quickly control parameters and sizes of state power lines, such as impedance line voltages and phase angles of the voltages of the two ends of the line. Their use can lead to improvement in power system operation by increasing the transmission capacity of power lines, power flow control lines, improved static and transient stability reserve.« less

  12. A generalized analysis of solar space heating in the United States

    NASA Astrophysics Data System (ADS)

    Clark, J. A.

    A life-cycle model is developed for solar space heating within the United States that is based on the solar design data from the Los Alamos Scientific Laboratory. The model consists of an analytical relationship among five dimensionless parameters that include all pertinent technical, climatological, solar, operating and economic factors that influence the performance of a Solar Space Heating System. An important optimum condition presented is the 'Breakeven' metered cost of conventional fuel at which the cost of the solar system is equal to that of a conventional heating system. The effect of Federal (1980) and State (1979) income tax credits on these costs is determined. A parameter that includes both solar availability and solar system utilization is derived and plotted on a map of the U.S. This parameter shows the most favorable present locations for solar space heating application to be in the Central and Mountain States. The data employed are related to the rehabilitated solar data recently made available by the National Climatic Center (SOLMET).

  13. Multi-objective optimisation of wastewater treatment plant control to reduce greenhouse gas emissions.

    PubMed

    Sweetapple, Christine; Fu, Guangtao; Butler, David

    2014-05-15

    This study investigates the potential of control strategy optimisation for the reduction of operational greenhouse gas emissions from wastewater treatment in a cost-effective manner, and demonstrates that significant improvements can be realised. A multi-objective evolutionary algorithm, NSGA-II, is used to derive sets of Pareto optimal operational and control parameter values for an activated sludge wastewater treatment plant, with objectives including minimisation of greenhouse gas emissions, operational costs and effluent pollutant concentrations, subject to legislative compliance. Different problem formulations are explored, to identify the most effective approach to emissions reduction, and the sets of optimal solutions enable identification of trade-offs between conflicting objectives. It is found that multi-objective optimisation can facilitate a significant reduction in greenhouse gas emissions without the need for plant redesign or modification of the control strategy layout, but there are trade-offs to consider: most importantly, if operational costs are not to be increased, reduction of greenhouse gas emissions is likely to incur an increase in effluent ammonia and total nitrogen concentrations. Design of control strategies for a high effluent quality and low costs alone is likely to result in an inadvertent increase in greenhouse gas emissions, so it is of key importance that effects on emissions are considered in control strategy development and optimisation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Neural network models for biological waste-gas treatment systems.

    PubMed

    Rene, Eldon R; Estefanía López, M; Veiga, María C; Kennes, Christian

    2011-12-15

    This paper outlines the procedure for developing artificial neural network (ANN) based models for three bioreactor configurations used for waste-gas treatment. The three bioreactor configurations chosen for this modelling work were: biofilter (BF), continuous stirred tank bioreactor (CSTB) and monolith bioreactor (MB). Using styrene as the model pollutant, this paper also serves as a general database of information pertaining to the bioreactor operation and important factors affecting gas-phase styrene removal in these biological systems. Biological waste-gas treatment systems are considered to be both advantageous and economically effective in treating a stream of polluted air containing low to moderate concentrations of the target contaminant, over a rather wide range of gas-flow rates. The bioreactors were inoculated with the fungus Sporothrix variecibatus, and their performances were evaluated at different empty bed residence times (EBRT), and at different inlet styrene concentrations (C(i)). The experimental data from these bioreactors were modelled to predict the bioreactors performance in terms of their removal efficiency (RE, %), by adequate training and testing of a three-layered back propagation neural network (input layer-hidden layer-output layer). Two models (BIOF1 and BIOF2) were developed for the BF with different combinations of easily measurable BF parameters as the inputs, that is concentration (gm(-3)), unit flow (h(-1)) and pressure drop (cm of H(2)O). The model developed for the CSTB used two inputs (concentration and unit flow), while the model for the MB had three inputs (concentration, G/L (gas/liquid) ratio, and pressure drop). Sensitivity analysis in the form of absolute average sensitivity (AAS) was performed for all the developed ANN models to ascertain the importance of the different input parameters, and to assess their direct effect on the bioreactors performance. The performance of the models was estimated by the regression coefficient values (R(2)) for the test data set. The results obtained from this modelling work can be useful for obtaining important relationships between different bioreactor parameters and for estimating their safe operating regimes. Copyright © 2011. Published by Elsevier B.V.

  15. Modeling and optimization of a typical fuel cell-heat engine hybrid system and its parametric design criteria

    NASA Astrophysics Data System (ADS)

    Zhao, Yingru; Chen, Jincan

    A theoretical modeling approach is presented, which describes the behavior of a typical fuel cell-heat engine hybrid system in steady-state operating condition based on an existing solid oxide fuel cell model, to provide useful fundamental design characteristics as well as potential critical problems. The different sources of irreversible losses, such as the electrochemical reaction, electric resistances, finite-rate heat transfer between the fuel cell and the heat engine, and heat-leak from the fuel cell to the environment are specified and investigated. Energy and entropy analyses are used to indicate the multi-irreversible losses and to assess the work potentials of the hybrid system. Expressions for the power output and efficiency of the hybrid system are derived and the performance characteristics of the system are presented and discussed in detail. The effects of the design parameters and operating conditions on the system performance are studied numerically. It is found that there exist certain optimum criteria for some important parameters. The results obtained here may provide a theoretical basis for both the optimal design and operation of real fuel cell-heat engine hybrid systems. This new approach can be easily extended to other fuel cell hybrid systems to develop irreversible models suitable for the investigation and optimization of similar energy conversion settings and electrochemistry systems.

  16. SEMINAR PUBLICATION: OPERATIONAL PARAMETERS FOR HAZARDOUS WASTE COMBUSTION DEVICES

    EPA Science Inventory

    The information in the document is based on presentations at the EPA-sponsored seminar series on Operational Parameters for Hazardous Waste Combustion Devices. This series consisted of five seminars held in 1992. Hazardous waste combustion devices are regulated under the Resource...

  17. Review & Peer Review of “Parameters for Properly Designed and Operated Flares” Documents

    EPA Pesticide Factsheets

    This page contains two 2012 memoranda on the review of EPA's parameters for properly designed and operated flares. One details the process of peer review, and the other provides background information and specific charge questions to the panel.

  18. Normalized vertical ice mass flux profiles from vertically pointing 8-mm-wavelength Doppler radar

    NASA Technical Reports Server (NTRS)

    Orr, Brad W.; Kropfli, Robert A.

    1993-01-01

    During the FIRE 2 (First International Satellite Cloud Climatology Project Regional Experiment) project, NOAA's Wave Propagation Laboratory (WPL) operated its 8-mm wavelength Doppler radar extensively in the vertically pointing mode. This allowed for the calculation of a number of important cirrus cloud parameters, including cloud boundary statistics, cloud particle characteristic sizes and concentrations, and ice mass content (imc). The flux of imc, or, alternatively, ice mass flux (imf), is also an important parameter of a cirrus cloud system. Ice mass flux is important in the vertical redistribution of water substance and thus, in part, determines the cloud evolution. It is important for the development of cloud parameterizations to be able to define the essential physical characteristics of large populations of clouds in the simplest possible way. One method would be to normalize profiles of observed cloud properties, such as those mentioned above, in ways similar to those used in the convective boundary layer. The height then scales from 0.0 at cloud base to 1.0 at cloud top, and the measured cloud parameter scales by its maximum value so that all normalized profiles have 1.0 as their maximum value. The goal is that there will be a 'universal' shape to profiles of the normalized data. This idea was applied to estimates of imf calculated from data obtained by the WPL cloud radar during FIRE II. Other quantities such as median particle diameter, concentration, and ice mass content can also be estimated with this radar, and we expect to also examine normalized profiles of these quantities in time for the 1993 FIRE II meeting.

  19. Process model comparison and transferability across bioreactor scales and modes of operation for a mammalian cell bioprocess.

    PubMed

    Craven, Stephen; Shirsat, Nishikant; Whelan, Jessica; Glennon, Brian

    2013-01-01

    A Monod kinetic model, logistic equation model, and statistical regression model were developed for a Chinese hamster ovary cell bioprocess operated under three different modes of operation (batch, bolus fed-batch, and continuous fed-batch) and grown on two different bioreactor scales (3 L bench-top and 15 L pilot-scale). The Monod kinetic model was developed for all modes of operation under study and predicted cell density, glucose glutamine, lactate, and ammonia concentrations well for the bioprocess. However, it was computationally demanding due to the large number of parameters necessary to produce a good model fit. The transferability of the Monod kinetic model structure and parameter set across bioreactor scales and modes of operation was investigated and a parameter sensitivity analysis performed. The experimentally determined parameters had the greatest influence on model performance. They changed with scale and mode of operation, but were easily calculated. The remaining parameters, which were fitted using a differential evolutionary algorithm, were not as crucial. Logistic equation and statistical regression models were investigated as alternatives to the Monod kinetic model. They were less computationally intensive to develop due to the absence of a large parameter set. However, modeling of the nutrient and metabolite concentrations proved to be troublesome due to the logistic equation model structure and the inability of both models to incorporate a feed. The complexity, computational load, and effort required for model development has to be balanced with the necessary level of model sophistication when choosing which model type to develop for a particular application. Copyright © 2012 American Institute of Chemical Engineers (AIChE).

  20. Estimation technique of corrective effects for forecasting of reliability of the designed and operated objects of the generating systems

    NASA Astrophysics Data System (ADS)

    Truhanov, V. N.; Sultanov, M. M.

    2017-11-01

    In the present article researches of statistical material on the refusals and malfunctions influencing operability of heat power installations have been conducted. In this article the mathematical model of change of output characteristics of the turbine depending on number of the refusals revealed in use has been presented. The mathematical model is based on methods of mathematical statistics, probability theory and methods of matrix calculation. The novelty of this model is that it allows to predict the change of the output characteristic in time, and the operating influences have been presented in an explicit form. As desirable dynamics of change of the output characteristic (function, reliability) the law of distribution of Veybull which is universal is adopted since at various values of parameters it turns into other types of distributions (for example, exponential, normal, etc.) It should be noted that the choice of the desirable law of management allows to determine the necessary management parameters with use of the saved-up change of the output characteristic in general. The output characteristic can be changed both on the speed of change of management parameters, and on acceleration of change of management parameters. In this article the technique of an assessment of the pseudo-return matrix has been stated in detail by the method of the smallest squares and the standard Microsoft Excel functions. Also the technique of finding of the operating effects when finding restrictions both for the output characteristic, and on management parameters has been considered. In the article the order and the sequence of finding of management parameters has been stated. A concrete example of finding of the operating effects in the course of long-term operation of turbines has been shown.

  1. Multiple frequency method for operating electrochemical sensors

    DOEpatents

    Martin, Louis P [San Ramon, CA

    2012-05-15

    A multiple frequency method for the operation of a sensor to measure a parameter of interest using calibration information including the steps of exciting the sensor at a first frequency providing a first sensor response, exciting the sensor at a second frequency providing a second sensor response, using the second sensor response at the second frequency and the calibration information to produce a calculated concentration of the interfering parameters, using the first sensor response at the first frequency, the calculated concentration of the interfering parameters, and the calibration information to measure the parameter of interest.

  2. Optimizing the availability of a buffered industrial process

    DOEpatents

    Martz, Jr., Harry F.; Hamada, Michael S.; Koehler, Arthur J.; Berg, Eric C.

    2004-08-24

    A computer-implemented process determines optimum configuration parameters for a buffered industrial process. A population size is initialized by randomly selecting a first set of design and operation values associated with subsystems and buffers of the buffered industrial process to form a set of operating parameters for each member of the population. An availability discrete event simulation (ADES) is performed on each member of the population to determine the product-based availability of each member. A new population is formed having members with a second set of design and operation values related to the first set of design and operation values through a genetic algorithm and the product-based availability determined by the ADES. Subsequent population members are then determined by iterating the genetic algorithm with product-based availability determined by ADES to form improved design and operation values from which the configuration parameters are selected for the buffered industrial process.

  3. Impact of various operating modes on performance and emission parameters of small heat source

    NASA Astrophysics Data System (ADS)

    Vician, Peter; Holubčík, Michal; Palacka, Matej; Jandačka, Jozef

    2016-06-01

    Thesis deals with the measurement of performance and emission parameters of small heat source for combustion of biomass in each of its operating modes. As the heat source was used pellet boiler with an output of 18 kW. The work includes design of experimental device for measuring the impact of changes in air supply and method for controlling the power and emission parameters of heat sources for combustion of woody biomass. The work describes the main factors that affect the combustion process and analyze the measurements of emissions at the heat source. The results of experiment demonstrate the values of performance and emissions parameters for the different operating modes of the boiler, which serve as a decisive factor in choosing the appropriate mode.

  4. Transmission line design for the lunar environment

    NASA Technical Reports Server (NTRS)

    Gaustad, Krista L.; Gordon, Lloyd B.

    1990-01-01

    How the mass, operating temperature, and efficiency of a transmission line operating on the moon are affected by its operating parameters, the lunar environment, and the choice of materials is examined. The key transmission line parameters which have an effect on mass, operating temperature, and efficiency are voltage, power loss, and waveform. The choice of waveform for transmission will be influenced by the waveform of the source and load, and therefore an analysis of both DC and AC transmission is necessary for a complete understanding of lunar power transmission. The data presented are for the DC case only; however, the discussion of the environmental effects and of material selection is pertinent to both AC and DC transmission. The operating voltage is shown to be a key parameter in transmission line design. The role efficiency plays in transmission line design is also examined. The analyses include above- and below-the-surface operation for both a vacuum-insulated, two-wire, transmission line, and a solid-dielectric-insulated, coaxial, transmission line.

  5. Trends in Trace Element Fractionation Between Foraminiferal Species and the Role of Biomineralization

    NASA Astrophysics Data System (ADS)

    Reichart, G. J.; Nooijer, L. D.; Geerken, E.; Mezger, E.; van Dijk, I. V.; Daemmer, L. K.

    2017-12-01

    Reconstructions of past climate and environments are largely based on stable isotopes and trace element concentrations measured on fossil foraminiferal calcite. Their element and isotope composition roughly reflects seawater composition and physical conditions, which in turn, are related to paleoceanographic parameters. More recently, attempts are being made to infer ranges in environmental parameters using the observed differences in the composition within individual tests. Remarkably, inter-species differences in trace element incorporation are well-correlated over a wide range of environmental conditions. This is particularly remarkable knowing that different environmental factors influence incorporation of these elements at various magnitudes. Most likely the complex biomineralization of foraminifera potentially offsets trace elements similarly at all these scales and also between different species. This suggests that at least parts of the mechanisms underlying foraminiferal biomineralization are similar for all species, which in turn provides important clues on the cellular mechanisms operating during calcification. Moreover, the systematics in trace element partitioning between species could potentially provide important clues for unravelling past changes in trace element composition of the ancient ocean.

  6. An accurate behavioral model for single-photon avalanche diode statistical performance simulation

    NASA Astrophysics Data System (ADS)

    Xu, Yue; Zhao, Tingchen; Li, Ding

    2018-01-01

    An accurate behavioral model is presented to simulate important statistical performance of single-photon avalanche diodes (SPADs), such as dark count and after-pulsing noise. The derived simulation model takes into account all important generation mechanisms of the two kinds of noise. For the first time, thermal agitation, trap-assisted tunneling and band-to-band tunneling mechanisms are simultaneously incorporated in the simulation model to evaluate dark count behavior of SPADs fabricated in deep sub-micron CMOS technology. Meanwhile, a complete carrier trapping and de-trapping process is considered in afterpulsing model and a simple analytical expression is derived to estimate after-pulsing probability. In particular, the key model parameters of avalanche triggering probability and electric field dependence of excess bias voltage are extracted from Geiger-mode TCAD simulation and this behavioral simulation model doesn't include any empirical parameters. The developed SPAD model is implemented in Verilog-A behavioral hardware description language and successfully operated on commercial Cadence Spectre simulator, showing good universality and compatibility. The model simulation results are in a good accordance with the test data, validating high simulation accuracy.

  7. Study on Matching a 300 MVA Motor Generator with an Ohmic Heating Power Supply in HL-2M

    NASA Astrophysics Data System (ADS)

    Peng, Jianfei; Xuan, Weimin; Wang, Haibing; Li, Huajun; Wang, Yingqiao; Wang, Shujin

    2013-03-01

    A new 300 MVA/1350 MJ motor generator (MG) will be built to feed all of the poloidal field power supplies (PFPS) and auxiliary heating power supplies of the HL-2M tokamak. The MG has a vertical-shaft salient pole 6-phase synchronous generator and a coaxial 8500 kW induction motor. The Ohmic heating power supply (OHPS) consisting of 4-quadrant DC pulsed convertor is the one with the highest parameters among the PFPS. Therefore, the match between the generator and the OHPS is very important. The matching study with Matlab/Simulink is described in this paper. The simulation results show that the subtransient reactance of the generator is closely related to the inversion operation of the OHPS. By setting various subtransient reactance in the simulation generator model and considering the cost reduction, the optimized parameters are obtained as x″d = 0.405 p.u. at 100 Hz for the generator. The models built in the simulation can be used as an important tool for studying the dynamic characteristics and the control strategy of other HL-2M PFPSes.

  8. Modern Perspectives on Numerical Modeling of Cardiac Pacemaker Cell

    PubMed Central

    Maltsev, Victor A.; Yaniv, Yael; Maltsev, Anna V.; Stern, Michael D.; Lakatta, Edward G.

    2015-01-01

    Cardiac pacemaking is a complex phenomenon that is still not completely understood. Together with experimental studies, numerical modeling has been traditionally used to acquire mechanistic insights in this research area. This review summarizes the present state of numerical modeling of the cardiac pacemaker, including approaches to resolve present paradoxes and controversies. Specifically we discuss the requirement for realistic modeling to consider symmetrical importance of both intracellular and cell membrane processes (within a recent “coupled-clock” theory). Promising future developments of the complex pacemaker system models include the introduction of local calcium control, mitochondria function, and biochemical regulation of protein phosphorylation and cAMP production. Modern numerical and theoretical methods such as multi-parameter sensitivity analyses within extended populations of models and bifurcation analyses are also important for the definition of the most realistic parameters that describe a robust, yet simultaneously flexible operation of the coupled-clock pacemaker cell system. The systems approach to exploring cardiac pacemaker function will guide development of new therapies, such as biological pacemakers for treating insufficient cardiac pacemaker function that becomes especially prevalent with advancing age. PMID:24748434

  9. K →π matrix elements of the chromomagnetic operator on the lattice

    NASA Astrophysics Data System (ADS)

    Constantinou, M.; Costa, M.; Frezzotti, R.; Lubicz, V.; Martinelli, G.; Meloni, D.; Panagopoulos, H.; Simula, S.; ETM Collaboration

    2018-04-01

    We present the results of the first lattice QCD calculation of the K →π matrix elements of the chromomagnetic operator OCM=g s ¯ σμ νGμ νd , which appears in the effective Hamiltonian describing Δ S =1 transitions in and beyond the standard model. Having dimension five, the chromomagnetic operator is characterized by a rich pattern of mixing with operators of equal and lower dimensionality. The multiplicative renormalization factor as well as the mixing coefficients with the operators of equal dimension have been computed at one loop in perturbation theory. The power divergent coefficients controlling the mixing with operators of lower dimension have been determined nonperturbatively, by imposing suitable subtraction conditions. The numerical simulations have been carried out using the gauge field configurations produced by the European Twisted Mass Collaboration with Nf=2 +1 +1 dynamical quarks at three values of the lattice spacing. Our result for the B parameter of the chromomagnetic operator at the physical pion and kaon point is BCMOK π=0.273 (69 ) , while in the SU(3) chiral limit we obtain BCMO=0.076 (23 ) . Our findings are significantly smaller than the model-dependent estimate BCMO˜1 - 4 , currently used in phenomenological analyses, and improve the uncertainty on this important phenomenological quantity.

  10. 40 CFR Table 3 to Subpart Ec of... - Operating Parameters To Be Monitored and Minimum Measurement and Recording Frequencies

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... filter Wet scrubber Dry scrubber followed by fabric filter and wet scrubber Maximum operating parameters: Maximum charge rate Continuous 1×hour ✔ ✔ ✔ Maximum fabric filter inlet temperature Continuous 1×minute...

  11. 40 CFR Table 3 to Subpart Ec of... - Operating Parameters To Be Monitored and Minimum Measurement and Recording Frequencies

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... filter Wet scrubber Dry scrubber followed by fabric filter and wet scrubber Maximum operating parameters: Maximum charge rate Continuous 1×hour ✔ ✔ ✔ Maximum fabric filter inlet temperature Continuous 1×minute...

  12. Centrifugal compressor controller for minimizing power consumption while avoiding surge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haley, P.F.; Junk, B.S.; Renaud, M.A.

    1987-08-18

    For use with a variable capacity centrifugal compressor driven by an electric motor, a controller is described for adjusting the capacity of the compressor to satisfy a demand, minimize electric power consumption and avoid a surge condition. The controller consists of: a. means for sensing an operating parameter that is indicative of the capacity of the compressor; b. means for setting a selected setpoint that represents a desired value of the operating parameter; c. surge sensing means for detecting an impending surge by sensing fluctuation in the electric current supplied to the compressor motor, wherein an impending surge is detectedmore » whenever fluctuations in excess of a predetermined amplitude occur in excess of a predetermined frequency; and d. control means, responsive to the operating parameter sensing means, the setpoint setting means, and the surge sensing means, for controlling the compressor, such that its capacity is minimally above a level that would cause a surge condition yet is sufficient to maintain the operating parameter at the setpoint.« less

  13. Exploring extended scalar sectors with di-Higgs signals: a Higgs EFT perspective

    NASA Astrophysics Data System (ADS)

    Corbett, Tyler; Joglekar, Aniket; Li, Hao-Lin; Yu, Jiang-Hao

    2018-05-01

    We consider extended scalar sectors of the Standard Model as ultraviolet complete motivations for studying the effective Higgs self-interaction operators of the Standard Model effective field theory. We investigate all motivated heavy scalar models which generate the dimension-six effective operator, | H|6, at tree level and proceed to identify the full set of tree-level dimension-six operators by integrating out the heavy scalars. Of seven models which generate | H|6 at tree level only two, quadruplets of hypercharge Y = 3 Y H and Y = Y H , generate only this operator. Next we perform global fits to constrain relevant Wilson coefficients from the LHC single Higgs measurements as well as the electroweak oblique parameters S and T. We find that the T parameter puts very strong constraints on the Wilson coefficient of the | H|6 operator in the triplet and quadruplet models, while the singlet and doublet models could still have Higgs self-couplings which deviate significantly from the standard model prediction. To determine the extent to which the | H|6 operator could be constrained, we study the di-Higgs signatures at the future 100 TeV collider and explore future sensitivity of this operator. Projected onto the Higgs potential parameters of the extended scalar sectors, with 30 ab-1 luminosity data we will be able to explore the Higgs potential parameters in all seven models.

  14. Forecasting Propagation and Evolution of CMEs in an Operational Setting: What Has Been Learned

    NASA Technical Reports Server (NTRS)

    Zheng, Yihua; Macneice, Peter; Odstrcil, Dusan; Mays, M. L.; Rastaetter, Lutz; Pulkkinen, Antti; Taktakishvili, Aleksandre; Hesse, Michael; Kuznetsova, M. Masha; Lee, Hyesook; hide

    2013-01-01

    One of the major types of solar eruption, coronal mass ejections (CMEs) not only impact space weather, but also can have significant societal consequences. CMEs cause intense geomagnetic storms and drive fast mode shocks that accelerate charged particles, potentially resulting in enhanced radiation levels both in ions and electrons. Human and technological assets in space can be endangered as a result. CMEs are also the major contributor to generating large amplitude Geomagnetically Induced Currents (GICs), which are a source of concern for power grid safety. Due to their space weather significance, forecasting the evolution and impacts of CMEs has become a much desired capability for space weather operations worldwide. Based on our operational experience at Space Weather Research Center at NASA Goddard Space Flight Center (http://swrc.gsfc.nasa.gov), we present here some of the insights gained about accurately predicting CME impacts, particularly in relation to space weather operations. These include: 1. The need to maximize information to get an accurate handle of three-dimensional (3-D) CME kinetic parameters and therefore improve CME forecast; 2. The potential use of CME simulation results for qualitative prediction of regions of space where solar energetic particles (SEPs) may be found; 3. The need to include all CMEs occurring within a 24 h period for a better representation of the CME interactions; 4. Various other important parameters in forecasting CME evolution in interplanetary space, with special emphasis on the CME propagation direction. It is noted that a future direction for our CME forecasting is to employ the ensemble modeling approach.

  15. The role of post-operative radiographs in predicting risk of flexor pollicis longus tendon rupture after volar plate fixation of distal radius fractures - a case control study.

    PubMed

    Selvan, D R; Perry, D; Machin, D G; Brown, D J

    2014-12-01

    Volar plating of distal radius fractures is one of the common procedures performed in trauma surgery. Flexor pollicis longus (FPL) rupture has been described as complication following volar plating of distal radius fractures. The aim of our study was to investigate the possible relation between parameters measured on post-operative radiographs and the occurrence of FPL ruptures. This was a case control study. The post-operative radiographs of 11 FPL rupture, and 22 non-FPL rupture patients were reviewed with respect to fracture reduction and plate position and the various parameters were calculated by five independent people. Logistic regression was used to examine the importance of the variables. We identified two significant factors to predict FPL rupture after volar plating of distal radial fractures. These were radial tilt and plate distance from the joint line. The odds ratio of ruptures was 0.74 (95% CI 0.57-0.95) for every degree of radial tilt <25° and 0.50 (95% CI 0.28-0.88) for every millimetre that the distal end of the plate was away from the volar lip of the distal radius at the wrist joint. Post-operative radiographs could help us predict FPL rupture after distal radius volar plating. The findings also highlight the need for good fracture reduction and thoughtful placement of the volar plate intraoperatively to minimise the risk of FPL tendon rupture. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Wastewater treatment using hybrid treatment schemes based on cavitation and Fenton chemistry: a review.

    PubMed

    Bagal, Manisha V; Gogate, Parag R

    2014-01-01

    Advanced oxidation processes such as cavitation and Fenton chemistry have shown considerable promise for wastewater treatment applications due to the ease of operation and simple reactor design. In this review, hybrid methods based on cavitation coupled with Fenton process for the treatment of wastewater have been discussed. The basics of individual processes (Acoustic cavitation, Hydrodynamic cavitation, Fenton chemistry) have been discussed initially highlighting the need for combined processes. The different types of reactors used for the combined processes have been discussed with some recommendations for large scale operation. The effects of important operating parameters such as solution temperature, initial pH, initial pollutant concentration and Fenton's reagent dosage have been discussed with guidelines for selection of optimum parameters. The optimization of power density is necessary for ultrasonic processes (US) and combined processes (US/Fenton) whereas the inlet pressure needs to be optimized in the case of Hydrodynamic cavitation (HC) based processes. An overview of different pollutants degraded under optimized conditions using HC/Fenton and US/Fenton process with comparison with individual processes have been presented. It has been observed that the main mechanism for the synergy of the combined process depends on the generation of additional hydroxyl radicals and its proper utilization for the degradation of the pollutant, which is strongly dependent on the loading of hydrogen peroxide. Overall, efficient wastewater treatment with high degree of energy efficiency can be achieved using combined process operating under optimized conditions, as compared to the individual process. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Forecasting propagation and evolution of CMEs in an operational setting: What has been learned

    NASA Astrophysics Data System (ADS)

    Zheng, Yihua; Macneice, Peter; Odstrcil, Dusan; Mays, M. L.; Rastaetter, Lutz; Pulkkinen, Antti; Taktakishvili, Aleksandre; Hesse, Michael; Masha Kuznetsova, M.; Lee, Hyesook; Chulaki, Anna

    2013-10-01

    of the major types of solar eruption, coronal mass ejections (CMEs) not only impact space weather, but also can have significant societal consequences. CMEs cause intense geomagnetic storms and drive fast mode shocks that accelerate charged particles, potentially resulting in enhanced radiation levels both in ions and electrons. Human and technological assets in space can be endangered as a result. CMEs are also the major contributor to generating large amplitude Geomagnetically Induced Currents (GICs), which are a source of concern for power grid safety. Due to their space weather significance, forecasting the evolution and impacts of CMEs has become a much desired capability for space weather operations worldwide. Based on our operational experience at Space Weather Research Center at NASA Goddard Space Flight Center (http://swrc.gsfc.nasa.gov), we present here some of the insights gained about accurately predicting CME impacts, particularly in relation to space weather operations. These include: 1. The need to maximize information to get an accurate handle of three-dimensional (3-D) CME kinetic parameters and therefore improve CME forecast; 2. The potential use of CME simulation results for qualitative prediction of regions of space where solar energetic particles (SEPs) may be found; 3. The need to include all CMEs occurring within a 24 h period for a better representation of the CME interactions; 4. Various other important parameters in forecasting CME evolution in interplanetary space, with special emphasis on the CME propagation direction. It is noted that a future direction for our CME forecasting is to employ the ensemble modeling approach.

  18. Characterization of a FBG sensor interrogation system based on a mode-locked laser scheme.

    PubMed

    Madrigal, Javier; Fraile-Peláez, Francisco Javier; Zheng, Di; Barrera, David; Sales, Salvador

    2017-10-02

    This paper is focused on the characterization of a fiber Bragg grating (FBG) sensor interrogation system based on a fiber ring laser with a semiconductor optical amplifier as the gain medium, and an in-loop electro-optical modulator. This system operates as a switchable active (pulsed) mode-locked laser. The operation principle of the system is explained theoretically and validated experimentally. The ability of the system to interrogate an array of different FBGs in wavelength and spatial domain is demonstrated. Simultaneously, the influence of several important parameters on the performance of the interrogation technique has been investigated. Specifically, the effects of the bandwidth and the reflectivity of the FBGs, the SOA gain, and the depth of the intensity modulation have been addressed.

  19. Low Noise Amplifiers for 140 Ghz Wide-Band Cryogenic Receivers

    NASA Technical Reports Server (NTRS)

    Larkoski, Patricia V.; Kangaslahti, Pekka; Samoska, Lorene; Lai, Richard; Sarkozy, Stephen

    2013-01-01

    We report S-parameter and noise measurements for three different Indium Phosphide 35-nanometer-gate-length High Electron Mobility Transistor (HEMT) Low Noise Amplifier (LNA) designs operating in the frequency range centered on 140 gigahertz. When packaged in a Waveguide Rectangular-6.1 waveguide housing, the LNAs have an average measured noise figure of 3.0 decibels - 3.6 decibels over the 122-170 gigahertz band. One LNA was cooled to 20 degrees Kelvin and a record low noise temperature of 46 Kelvin, or 0.64 decibels noise figure, was measured at 152 gigahertz. These amplifiers can be used to develop receivers for instruments that operate in the 130-170 gigahertz atmospheric window, which is an important frequency band for ground-based astronomy and millimeter-wave imaging applications.

  20. A phenomenological model for orificed hollow cathodes. Ph.D. Thesis, 1 Dec. 1981 - 1 Dec. 1982; [electrostatic thruster

    NASA Technical Reports Server (NTRS)

    Siegfried, D. E.

    1982-01-01

    A quartz hollow tube cathode was used to determine the operating conditions within a mercury orificed hollow cathode. Insert temperature profiles, cathode current distributions, plasma properties profile, and internal pressure-mass flow rate results are summarized and used in a phenomenological model which qualitatively describes electron emission and plasma production processes taking place within the cathode. By defining an idealized ion production region within which most of the plasma processes are concentrated, this model is expressed analytically as a simple set of equations which relate cathode dimensions and specifiable operating conditions, such as mass flow rate and discharge current, to such important parameters as emission surface temperature and internal plasma properties. Key aspects of the model are examined.

  1. Error analysis of stochastic gradient descent ranking.

    PubMed

    Chen, Hong; Tang, Yi; Li, Luoqing; Yuan, Yuan; Li, Xuelong; Tang, Yuanyan

    2013-06-01

    Ranking is always an important task in machine learning and information retrieval, e.g., collaborative filtering, recommender systems, drug discovery, etc. A kernel-based stochastic gradient descent algorithm with the least squares loss is proposed for ranking in this paper. The implementation of this algorithm is simple, and an expression of the solution is derived via a sampling operator and an integral operator. An explicit convergence rate for leaning a ranking function is given in terms of the suitable choices of the step size and the regularization parameter. The analysis technique used here is capacity independent and is novel in error analysis of ranking learning. Experimental results on real-world data have shown the effectiveness of the proposed algorithm in ranking tasks, which verifies the theoretical analysis in ranking error.

  2. Processing and Characterization of Thousand-Hour 500 C Durable 4H-SiC JFET Integrated Circuits

    NASA Technical Reports Server (NTRS)

    Spry, David J.; Neudeck, Philip G.; Chen, Liangyu; Lukco, Dorothy; Chang, Carl W.; Beheim, Glenn M.; Krasowski, Michael J.; Prokop, Norman F.

    2016-01-01

    This work reports fabrication and testing of integrated circuits (ICs) with two levels of interconnect that consistently achieve greater than 1000 hours of stable electrical operation at 500 C in air ambient. These ICs are based on 4H-SiC junction field effect transistor (JFET) technology that integrates hafnium ohmic contacts with TaSi2 interconnects and SiO2 and Si3N4 dielectric layers over 1-m scale vertical topology. Following initial burn-in, important circuit parameters remain stable for more than 1000 hours of 500 C operational testing. These results advance the technology foundation for realizing long-term durable 500 C ICs with increased functional capability for sensing and control combustion engine, planetary, deep-well drilling, and other harsh-environment applications.

  3. Processing and Characterization of Thousand-Hour 500 C Durable 4H-SiC JFET Integrated Circuits

    NASA Technical Reports Server (NTRS)

    Spry, David J.; Neudeck, Philip G.; Chen, Liang-Yu; Lukco, Dorothy; Chang, Carl W.; Beheim, Glenn M.; Krasowski, Michael J.; Prokop, Norman F.

    2016-01-01

    This work reports fabrication and testing of integrated circuits (ICs) with two levels of interconnect that consistently achieve greater than 1000 hours of stable electrical operation at 500 C in air ambient. These ICs are based on 4H-SiC junction field effect transistor (JFET) technology that integrates hafnium ohmic contacts with TaSi2 interconnects and SiO2 and Si3N4 dielectric layers over approximately 1-micrometer scale vertical topology. Following initial burn-in, important circuit parameters remain stable for more than 1000 hours of 500 C operational testing. These results advance the technology foundation for realizing long-term durable 500 C ICs with increased functional capability for sensing and control combustion engine, planetary, deep-well drilling, and other harsh-environment applications.

  4. Investigation of the effects of electron plasma frequency on the operation of a helix TWT

    NASA Astrophysics Data System (ADS)

    Oksuz, Lutfi; Haytural, Necati; Uygun, Emre; Bozduman, Ferhat; Yesiltepe, Hakan; Gulec, Ali

    2016-10-01

    The oscillations of electrons are an important subject for the design procedure of linear beam tubes such as klystrons and TWTs. These oscillation frequencies may be affected by the finite region of the tube if the plasma wavelength of the electrons are larger than the bounding region of the device, leading to a reduced plasma frequency which further leads to an increase in wavelength. Following the Pierce's theory on traveling wave tubes, it is seen that the reduced plasma frequency takes place in space charge terms which also include the Pierce's gain parameter C. In this study the effects of plasma frequency on the operation of a helix TWT are investigated using CST Particle Studio. This project is supported by TUBITAK with project number: 1140075.

  5. Distributed Evaluation of Local Sensitivity Analysis (DELSA), with application to hydrologic models

    USGS Publications Warehouse

    Rakovec, O.; Hill, Mary C.; Clark, M.P.; Weerts, A. H.; Teuling, A. J.; Uijlenhoet, R.

    2014-01-01

    This paper presents a hybrid local-global sensitivity analysis method termed the Distributed Evaluation of Local Sensitivity Analysis (DELSA), which is used here to identify important and unimportant parameters and evaluate how model parameter importance changes as parameter values change. DELSA uses derivative-based “local” methods to obtain the distribution of parameter sensitivity across the parameter space, which promotes consideration of sensitivity analysis results in the context of simulated dynamics. This work presents DELSA, discusses how it relates to existing methods, and uses two hydrologic test cases to compare its performance with the popular global, variance-based Sobol' method. The first test case is a simple nonlinear reservoir model with two parameters. The second test case involves five alternative “bucket-style” hydrologic models with up to 14 parameters applied to a medium-sized catchment (200 km2) in the Belgian Ardennes. Results show that in both examples, Sobol' and DELSA identify similar important and unimportant parameters, with DELSA enabling more detailed insight at much lower computational cost. For example, in the real-world problem the time delay in runoff is the most important parameter in all models, but DELSA shows that for about 20% of parameter sets it is not important at all and alternative mechanisms and parameters dominate. Moreover, the time delay was identified as important in regions producing poor model fits, whereas other parameters were identified as more important in regions of the parameter space producing better model fits. The ability to understand how parameter importance varies through parameter space is critical to inform decisions about, for example, additional data collection and model development. The ability to perform such analyses with modest computational requirements provides exciting opportunities to evaluate complicated models as well as many alternative models.

  6. A new process sensitivity index to identify important system processes under process model and parametric uncertainty

    DOE PAGES

    Dai, Heng; Ye, Ming; Walker, Anthony P.; ...

    2017-03-28

    A hydrological model consists of multiple process level submodels, and each submodel represents a process key to the operation of the simulated system. Global sensitivity analysis methods have been widely used to identify important processes for system model development and improvement. The existing methods of global sensitivity analysis only consider parametric uncertainty, and are not capable of handling model uncertainty caused by multiple process models that arise from competing hypotheses about one or more processes. To address this problem, this study develops a new method to probe model output sensitivity to competing process models by integrating model averaging methods withmore » variance-based global sensitivity analysis. A process sensitivity index is derived as a single summary measure of relative process importance, and the index includes variance in model outputs caused by uncertainty in both process models and their parameters. Here, for demonstration, the new index is used to assign importance to the processes of recharge and geology in a synthetic study of groundwater reactive transport modeling. The recharge process is simulated by two models that convert precipitation to recharge, and the geology process is simulated by two models of hydraulic conductivity. Each process model has its own random parameters. Finally, the new process sensitivity index is mathematically general, and can be applied to a wide range of problems in hydrology and beyond.« less

  7. A new process sensitivity index to identify important system processes under process model and parametric uncertainty

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Heng; Ye, Ming; Walker, Anthony P.

    A hydrological model consists of multiple process level submodels, and each submodel represents a process key to the operation of the simulated system. Global sensitivity analysis methods have been widely used to identify important processes for system model development and improvement. The existing methods of global sensitivity analysis only consider parametric uncertainty, and are not capable of handling model uncertainty caused by multiple process models that arise from competing hypotheses about one or more processes. To address this problem, this study develops a new method to probe model output sensitivity to competing process models by integrating model averaging methods withmore » variance-based global sensitivity analysis. A process sensitivity index is derived as a single summary measure of relative process importance, and the index includes variance in model outputs caused by uncertainty in both process models and their parameters. Here, for demonstration, the new index is used to assign importance to the processes of recharge and geology in a synthetic study of groundwater reactive transport modeling. The recharge process is simulated by two models that convert precipitation to recharge, and the geology process is simulated by two models of hydraulic conductivity. Each process model has its own random parameters. Finally, the new process sensitivity index is mathematically general, and can be applied to a wide range of problems in hydrology and beyond.« less

  8. Aerodynamics as a subway design parameter

    NASA Technical Reports Server (NTRS)

    Kurtz, D. W.

    1976-01-01

    A parametric sensitivity study has been performed on the system operational energy requirement in order to guide subway design strategy. Aerodynamics can play a dominant or trivial role, depending upon the system characteristics. Optimization of the aerodynamic parameters may not minimize the total operational energy. Isolation of the station box from the tunnel and reduction of the inertial power requirements pay the largest dividends in terms of the operational energy requirement.

  9. An Anaylsis of Control Requirements and Control Parameters for Direct-Coupled Turbojet Engines

    NASA Technical Reports Server (NTRS)

    Novik, David; Otto, Edward W.

    1947-01-01

    Requirements of an automatic engine control, as affected by engine characteristics, have been analyzed for a direct-coupled turbojet engine. Control parameters for various conditions of engine operation are discussed. A hypothetical engine control is presented to illustrate the use of these parameters. An adjustable speed governor was found to offer a desirable method of over-all engine control. The selection of a minimum value of fuel flow was found to offer a means of preventing unstable burner operation during steady-state operation. Until satisfactory high-temperature-measuring devices are developed, air-fuel ratio is considered to be a satisfactory acceleration-control parameter for the attainment of the maximum acceleration rates consistent with safe turbine temperatures. No danger of unstable burner operation exists during acceleration if a temperature-limiting acceleration control is assumed to be effective. Deceleration was found to be accompanied by the possibility of burner blow-out even if a minimum fuel-flow control that prevents burner blow-out during steady-state operation is assumed to be effective. Burner blow-out during deceleration may be eliminated by varying the value of minimum fuel flow as a function of compressor-discharge pressure, but in no case should the fuel flow be allowed to fall below the value required for steady-state burner operation.

  10. MARG - A Low Cost Solid State Microwave Areal Precipitation Measurement System

    NASA Astrophysics Data System (ADS)

    Paulitsch, Helmut; Dombai, Ferenc; Cremonini, Roberto; Bechini, Renzo

    2014-05-01

    Water is an essential resource for us so the measurements of its movement throughout the whole cycle is very important. The rainfall is discontinuous in space and in time having large natural variability unlike many other meteorological parameters. The widely used method for getting relatively accurate precipitation data over land is the combination of radar rainfall estimations and rain gauge data. The typically used radar data is coming from long-range weather radars operating in C or S band, or from mini radars operating in X band which is attenuating heavily in strong precipitation. Using such radar data we are facing several constraints: operating costs and limitations of long range radars, X band radars can be blocked totally in heavy thunderstorms even in short range, dual polarization solutions are expensive, etc. Recognizing that an important gap exists in instrumental precipitation measurements over land a consortium has been organized and a project has been established to develop a new measurement device, the so called Microwave Areal Rain Gauge (MARG). MARG is based on FMCW radar principle using solid state transmitter and digital signal processing and operating in C band. The MARG project aims to provide an innovative, real-time, low-cost, user friendly and accurate sensor technology to monitor and to measure continuously the rainfall intensity distribution over an area around some thousand square km. The MARG project proposal has been granted by the EU in FP7-SME-2012 funding scheme. The developed instrument is able to monitor in real-time intensity and spatial distribution of rainfall in rural and urban environments and can be operated by commercial weather data and value-added forecast product suppliers. To achieve sufficient isolation between the transmitter and receiver modules, and to avoid using complex and expensive microwave components, two parabolic antennae are used to transmit and receive the FMCW signal. The radar frontend operates in the C-band at 5.6 GHz with a maximal output power of 20 W continuous and a rainfall detection range of up to 30 km. Doppler processing is included in the signal processing for the purpose of clutter elimination. The reflectivity - rainfall conversion is performed with adjustable parameters as a function of rainfall type derived from morphological parameters of reflectivity fields and disdrometer measurements. Several algorithms, including mean bias correction, range correction and kriging interpolation with existing rain gauge networks to calibrate radar rainfall estimations are also foreseen. The MARG sensor will provide reflectivity, Doppler and precipitation data, but all measurements are organized and stored on the user centre's web server. The database contains precipitation data, measurement identification, and all available auxiliary meteorological data (e.g. temperature and air pressure). Precipitation data are further processed and combined with geographic background information through a GIS system. Finally the processed products, e.g. rainfall accumulation maps, are provided to the users by the GIS-based web service in the MARG user-centre module.

  11. Propagation-invariant beams with quantum pendulum spectra: from Bessel beams to Gaussian beam-beams.

    PubMed

    Dennis, Mark R; Ring, James D

    2013-09-01

    We describe a new class of propagation-invariant light beams with Fourier transform given by an eigenfunction of the quantum mechanical pendulum. These beams, whose spectra (restricted to a circle) are doubly periodic Mathieu functions in azimuth, depend on a field strength parameter. When the parameter is zero, pendulum beams are Bessel beams, and as the parameter approaches infinity, they resemble transversely propagating one-dimensional Gaussian wave packets (Gaussian beam-beams). Pendulum beams are the eigenfunctions of an operator that interpolates between the squared angular momentum operator and the linear momentum operator. The analysis reveals connections with Mathieu beams, and insight into the paraxial approximation.

  12. Force Modeling and State Propagation for Navigation and Maneuver Planning for the Proximity Operations Nano-Satellite Flight Demonstration Mission

    NASA Astrophysics Data System (ADS)

    Roscoe, C.; Griesbach, J.; Westphal, J.; Hawes, D.; Carrico, J.

    2013-09-01

    The state propagation accuracy resulting from different choices of gravitational force models and orbital perturbations is investigated for a pair of CubeSats flying in formation in low Earth orbit (LEO). Accurate on-board state propagation is necessary to autonomously plan maneuvers and perform proximity operations and docking safely. The ability to perform high-precision navigation is made especially challenging by the limited computer processing power available on-board the spacecraft. Propagation accuracy is investigated both in terms of the absolute (chief) state and the relative (deputy relative to chief) state. Different perturbing effects are quantified and related directly to important mission factors such as maneuver accuracy, fuel use (mission lifetime), and collision prediction/avoidance (mission safety). The Proximity Operations Nano-Satellite Flight Demonstration (PONSFD) program is to demonstrate rendezvous proximity operations (RPO), formation flying, and docking with a pair of 3U CubeSats. The program is sponsored by NASA Ames via the Office of the Chief Technologist (OCT) in support of its Small Spacecraft Technology Program (SSTP). The goal of the mission is to demonstrate complex RPO and docking operations with a pair of low-cost 3U CubeSat satellites using passive navigation sensors. The primary orbital perturbation affecting spacecraft in low Earth orbit (LEO) is the Earth oblateness, or J2, perturbation. Provided that a spacecraft does not have an extremely high area-to-mass ratio or is not flying at a very low altitude, the effect of J2 will usually be greater than that of atmospheric drag, which will typically be the next largest perturbing force in LEO. After these perturbations, factors such as higher-order Earth gravitational parameters, third-body perturbations, and solar radiation pressure will follow in magnitude but will have much less noticeable effects than J2 and drag. For spacecraft formations, where relative dynamics and not absolute dynamics are of primary importance, J2 will still be significant but drag effects become highly dependent on differences in the ballistic coefficients of the spacecraft in the formation. The PONSFD program uses a pair of 3U CubeSats with protruding solar panels, which means that inertial attitude differences between the two spacecraft will result in large differences in presented cross-sectional area. However, on-board prediction of drag effects may not be practical in all circumstances because it requires accurate knowledge of the Earth's atmospheric density as well as of the attitude of both spacecraft. This paper investigates the accuracy of performing long-term state propagation using different choices of gravitational force models and orbital perturbations for a wide range of orbit altitude and inclination possibilities. Propagation accuracy is affected by a number of orbit parameters and force model parameters which makes performing such a study with uncertain orbit knowledge a challenging prospect. However, much intuition can be gained by breaking the study down in terms of each of these parameters to see the effect of each one individually. The results of this study will be used to select a propagation method for the on-board navigation system for the mission.

  13. The problem of carrying out a diagnosis of an internal combustion engine by vibroacoustical parameters

    NASA Technical Reports Server (NTRS)

    Lukanin, V. N.; Sidorov, V. I.

    1973-01-01

    The physics of noise formation in an internal combustion engine is discussed. A dependence of the acoustical radiation on the engine operating process, its construction, and operational parameters, as well as on the degree of wear on its parts, has been established. An example of tests conducted on an internal combustion engine is provided. A system for cybernetic diagnostics for internal combustion engines by vibroacoustical parameters is diagrammed.

  14. Atomization of liquids in a Pease-Anthony Venturi scrubber. Part I. Jet dynamics.

    PubMed

    Gonçalves, J A S; Costa, M A M; Henrique, P R; Coury, J R

    2003-02-28

    Jet dynamics, in particular jet penetration, is an important design parameter affecting the collection efficiency of Venturi scrubbers. A mathematical description of the trajectory, break-up and penetration of liquid jets initially transversal to a subsonic gas stream is presented. Experimental data obtained from a laboratory scale Venturi scrubber, operated with liquid injected into the throat through a single orifice, jet velocities between 6.07 and 15.9 m/s, and throat gas velocities between 58.3 and 74.9 m/s, is presented and used to validate the model.

  15. Design and Flight Test of a Cable Angle Feedback Control System for Improving Helicopter Slung Load Operations at Low Speed

    DTIC Science & Technology

    2014-04-01

    improve the damping of the load pendulum motions, but the load feedback generally had the effect of making the load feel heavier to the pilot [28...0.25 2 1000lbs 16,000lbs 0.06 Another important parameter is the slung load pendulum frequency. Using a simple pendulum model, this natural...the expected yaw and heave modes. The presence of the load adds oscillatory pendulum modes in the pitch and roll axes, as expected. Table 2-3

  16. Image synthesis for SAR system, calibration and processor design

    NASA Technical Reports Server (NTRS)

    Holtzman, J. C.; Abbott, J. L.; Kaupp, V. H.; Frost, V. S.

    1978-01-01

    The Point Scattering Method of simulating radar imagery rigorously models all aspects of the imaging radar phenomena. Its computational algorithms operate on a symbolic representation of the terrain test site to calculate such parameters as range, angle of incidence, resolution cell size, etc. Empirical backscatter data and elevation data are utilized to model the terrain. Additionally, the important geometrical/propagation effects such as shadow, foreshortening, layover, and local angle of incidence are rigorously treated. Applications of radar image simulation to a proposed calibrated SAR system are highlighted: soil moisture detection and vegetation discrimination.

  17. A CCIR aeronautical mobile satellite report

    NASA Technical Reports Server (NTRS)

    Davarian, Faramaz; Bishop, Dennis; Rogers, David; Smith, Ernest K.

    1989-01-01

    Propagation effects in the aeronautical mobile-satellite service differ from those in the fixed-satellite service and other mobile-satellite services because: small antennas are used on aircraft, and the aircraft body may affect the performance of the antenna; high aircraft speeds cause large Doppler spreads; aircraft terminals must accommodate a large dynamic range in transmission and reception; and due to their high speeds, banking maneuvers, and three-dimensional operation, aircraft routinely require exceptionally high integrity of communications, making even short-term propagation effects very important. Data and models specifically required to characterize the path impairments are discussed, which include: tropospheric effects, including gaseous attenuation, cloud and rain attenuation, fog attenuation, refraction and scintillation; surface reflection (multipath) effects; ionospheric effects such as scintillation; and environmental effects (aircraft motion, sea state, land surface type). Aeronautical mobile-satellite systems may operate on a worldwide basis, including propagation paths at low elevation angles. Several measurements of multipath parameters over land and sea were conducted. In some cases, laboratory simulations are used to compare measured data and verify model parameters. The received signals is considered in terms of its possible components: a direct wave subject to atmospheric effects, and a reflected wave, which generally contains mostly a diffuse component.

  18. The impact of the condenser on cytogenetic image quality in digital microscope system.

    PubMed

    Ren, Liqiang; Li, Zheng; Li, Yuhua; Zheng, Bin; Li, Shibo; Chen, Xiaodong; Liu, Hong

    2013-01-01

    Optimizing operational parameters of the digital microscope system is an important technique to acquire high quality cytogenetic images and facilitate the process of karyotyping so that the efficiency and accuracy of diagnosis can be improved. This study investigated the impact of the condenser on cytogenetic image quality and system working performance using a prototype digital microscope image scanning system. Both theoretical analysis and experimental validations through objectively evaluating a resolution test chart and subjectively observing large numbers of specimen were conducted. The results show that the optimal image quality and large depth of field (DOF) are simultaneously obtained when the numerical aperture of condenser is set as 60%-70% of the corresponding objective. Under this condition, more analyzable chromosomes and diagnostic information are obtained. As a result, the system shows higher working stability and less restriction for the implementation of algorithms such as autofocusing especially when the system is designed to achieve high throughput continuous image scanning. Although the above quantitative results were obtained using a specific prototype system under the experimental conditions reported in this paper, the presented evaluation methodologies can provide valuable guidelines for optimizing operational parameters in cytogenetic imaging using the high throughput continuous scanning microscopes in clinical practice.

  19. Gasification of algal biomass (Cladophora glomerata L.) with CO2/H2O/O2 in a circulating fluidized bed.

    PubMed

    Ebadi, Abdol Ghaffar; Hisoriev, Hikmat

    2017-11-28

    Gasification is one of the most important thermochemical routes to produce both synthesis gas (syngas) and chars. The quality of produced syngas wieldy depends on the operating conditions (temperature, residence time, heating rate, and gasifying agent), hydrodynamic properties of gasifier (particle size, minimum fluidization velocity, and gasifier size), and type of feedstock (coal, biomass, oil, and municipal solid wastes). In the present study, simulation of syngas production via circulating fluidized bed (CFB) gasification of algal biomass (Cladophora glomerata L.) at different gasifying agents and particle sizes was carried out, using Aspen Plus simulator. The model which has been validated by using experimental data of the technical literature was used to evaluate the influence of operating conditions on gas composition and performance parameters. The results show that biomass gasification using pure oxygen as the gasification agent has great potential to improve the caloric value of produced gas and performance indicators. It was also found that the produced gas caloric value, syngas yield, and performance parameters (CCE and CGE) increase with reaction temperature but are inversely proportional to the biomass particle size.

  20. Equivalent Sensor Radiance Generation and Remote Sensing from Model Parameters. Part 1; Equivalent Sensor Radiance Formulation

    NASA Technical Reports Server (NTRS)

    Wind, Galina; DaSilva, Arlindo M.; Norris, Peter M.; Platnick, Steven E.

    2013-01-01

    In this paper we describe a general procedure for calculating equivalent sensor radiances from variables output from a global atmospheric forecast model. In order to take proper account of the discrepancies between model resolution and sensor footprint the algorithm takes explicit account of the model subgrid variability, in particular its description of the probably density function of total water (vapor and cloud condensate.) The equivalent sensor radiances are then substituted into an operational remote sensing algorithm processing chain to produce a variety of remote sensing products that would normally be produced from actual sensor output. This output can then be used for a wide variety of purposes such as model parameter verification, remote sensing algorithm validation, testing of new retrieval methods and future sensor studies. We show a specific implementation using the GEOS-5 model, the MODIS instrument and the MODIS Adaptive Processing System (MODAPS) Data Collection 5.1 operational remote sensing cloud algorithm processing chain (including the cloud mask, cloud top properties and cloud optical and microphysical properties products.) We focus on clouds and cloud/aerosol interactions, because they are very important to model development and improvement.

  1. Multi-sensor Cloud Retrieval Simulator and Remote Sensing from Model Parameters . Pt. 1; Synthetic Sensor Radiance Formulation; [Synthetic Sensor Radiance Formulation

    NASA Technical Reports Server (NTRS)

    Wind, G.; DaSilva, A. M.; Norris, P. M.; Platnick, S.

    2013-01-01

    In this paper we describe a general procedure for calculating synthetic sensor radiances from variable output from a global atmospheric forecast model. In order to take proper account of the discrepancies between model resolution and sensor footprint, the algorithm takes explicit account of the model subgrid variability, in particular its description of the probability density function of total water (vapor and cloud condensate.) The simulated sensor radiances are then substituted into an operational remote sensing algorithm processing chain to produce a variety of remote sensing products that would normally be produced from actual sensor output. This output can then be used for a wide variety of purposes such as model parameter verification, remote sensing algorithm validation, testing of new retrieval methods and future sensor studies.We show a specific implementation using the GEOS-5 model, the MODIS instrument and the MODIS Adaptive Processing System (MODAPS) Data Collection 5.1 operational remote sensing cloud algorithm processing chain (including the cloud mask, cloud top properties and cloud optical and microphysical properties products). We focus on clouds because they are very important to model development and improvement.

  2. Enhancing wind turbines efficiency with passive reconfiguration of flexible blades

    NASA Astrophysics Data System (ADS)

    Cognet, Vincent P. A.; Thiria, Benjamin; Courrech Du Pont, Sylvain; MSC Team; PMMH Team

    2015-11-01

    Nature provides excellent examples where flexible materials are advantageous in a fluid stream. By folding, leaves decrease the drag caused by air stream; and birds' flapping is much more efficient with flexible wings. Motivated by this, we investigate the effect of flexible blades on the performance of a wind turbine. The effect of chordwise flexible blades is studied both experimentally and theoretically on a small wind turbine in steady state. Four parameters are varied: the wind velocity, the resisting torque, the pitch angle, and the blade's bending modulus. We find an optimum efficiency with respect to the bending modulus. By tuning our four parameters, the wind turbine with flexible blades has a high-efficiency range significantly larger than rigid blades', and, furthermore enhances the operating range. These results are all the more important as one of the current issues concerning wind turbines is the enlargement of their operating range. To explain these results, we propose a simple two-dimensional model by discretising the blade along the radius. We take into account the variation of drag and lift coefficients with the bending ability. This model matches experimental observations and demonstrates the contribution of the reconfiguration of the blade. Matiere et Systemes Complexes.

  3. Data pieces-based parameter identification for lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Gao, Wei; Zou, Yuan; Sun, Fengchun; Hu, Xiaosong; Yu, Yang; Feng, Sen

    2016-10-01

    Battery characteristics vary with temperature and aging, it is necessary to identify battery parameters periodically for electric vehicles to ensure reliable State-of-Charge (SoC) estimation, battery equalization and safe operation. Aiming for on-board applications, this paper proposes a data pieces-based parameter identification (DPPI) method to identify comprehensive battery parameters including capacity, OCV (open circuit voltage)-Ah relationship and impedance-Ah relationship simultaneously only based on battery operation data. First a vehicle field test was conducted and battery operation data was recorded, then the DPPI method is elaborated based on vehicle test data, parameters of all 97 cells of the battery package are identified and compared. To evaluate the adaptability of the proposed DPPI method, it is used to identify battery parameters of different aging levels and different temperatures based on battery aging experiment data. Then a concept of ;OCV-Ah aging database; is proposed, based on which battery capacity can be identified even though the battery was never fully charged or discharged. Finally, to further examine the effectiveness of the identified battery parameters, they are used to perform SoC estimation for the test vehicle with adaptive extended Kalman filter (AEKF). The result shows good accuracy and reliability.

  4. The feasibility of inflight measurement of lightning strike parameters

    NASA Technical Reports Server (NTRS)

    Crouch, K. E.; Plumer, J. A.

    1978-01-01

    The appearance of nonmetallic structural materials and microelectronics in aircraft design has resulted in a need for better knowledge of hazardous environments such as lightning and the effects these environments have on the aircraft. This feasibility study was performed to determine the lightning parameters in the greatest need of clarification and the performance requirements of equipment necessary to sense and record these parameters on an instrumented flight research aircraft. It was found that electric field rate of change, lightning currents, and induced voltages in aircraft wiring are the parameters of greatest importance. Flat-plate electric field sensors and resistive current shunts are proposed for electric field and current sensors, to provide direct measurements of these parameters. Six bit analog-to-digital signal conversion at a 5 nanosecond sampling rate, short-term storage of 85000 bits and long term storage of 5 x 10 to the 7th power bits of electric field, current and induced voltage data on the airplane are proposed, with readout and further analysis to be accomplished on the ground. A NASA F-106B was found to be suitable for use as the research aircraft because it has a minimum number of possible lightning attachment points, space for the necessary instrumentation, and appears to meet operational requirements. Safety considerations are also presented.

  5. A new moving strategy for the sequential Monte Carlo approach in optimizing the hydrological model parameters

    NASA Astrophysics Data System (ADS)

    Zhu, Gaofeng; Li, Xin; Ma, Jinzhu; Wang, Yunquan; Liu, Shaomin; Huang, Chunlin; Zhang, Kun; Hu, Xiaoli

    2018-04-01

    Sequential Monte Carlo (SMC) samplers have become increasing popular for estimating the posterior parameter distribution with the non-linear dependency structures and multiple modes often present in hydrological models. However, the explorative capabilities and efficiency of the sampler depends strongly on the efficiency in the move step of SMC sampler. In this paper we presented a new SMC sampler entitled the Particle Evolution Metropolis Sequential Monte Carlo (PEM-SMC) algorithm, which is well suited to handle unknown static parameters of hydrologic model. The PEM-SMC sampler is inspired by the works of Liang and Wong (2001) and operates by incorporating the strengths of the genetic algorithm, differential evolution algorithm and Metropolis-Hasting algorithm into the framework of SMC. We also prove that the sampler admits the target distribution to be a stationary distribution. Two case studies including a multi-dimensional bimodal normal distribution and a conceptual rainfall-runoff hydrologic model by only considering parameter uncertainty and simultaneously considering parameter and input uncertainty show that PEM-SMC sampler is generally superior to other popular SMC algorithms in handling the high dimensional problems. The study also indicated that it may be important to account for model structural uncertainty by using multiplier different hydrological models in the SMC framework in future study.

  6. Design parameters for rotating cylindrical filtration

    NASA Technical Reports Server (NTRS)

    Schwille, John A.; Mitra, Deepanjan; Lueptow, Richard M.

    2002-01-01

    Rotating cylindrical filtration displays significantly reduced plugging of filter pores and build-up of a cake layer, but the number and range of parameters that can be adjusted complicates the design of these devices. Twelve individual parameters were investigated experimentally by measuring the build-up of particles on the rotating cylindrical filter after a fixed time of operation. The build-up of particles on the filter depends on the rotational speed, the radial filtrate flow, the particle size and the gap width. Other parameters, such as suspension concentration and total flow rate are less important. Of the four mechanisms present in rotating filters to reduce pore plugging and cake build-up, axial shear, rotational shear, centrifugal sedimentation and vortical motion, the evidence suggests rotational shear is the dominant mechanism, although the other mechanisms still play minor roles. The ratio of the shear force acting parallel to the filter surface on a particle to the Stokes drag acting normal to the filter surface on the particle due to the difference between particle motion and filtrate flow can be used as a non-dimensional parameter that predicts the degree of particle build-up on the filter surface for a wide variety of filtration conditions. c2002 Elsevier Science B.V. All rights reserved.

  7. Lasers in esthetic treatment of gingival melanin hyperpigmentation: a review article.

    PubMed

    Bakhshi, Mahin; Rahmani, Somayeh; Rahmani, Ali

    2015-11-01

    The health and suitability of mouth components play an important role towards defining facial attractiveness. An important component of the oral cavity is the color of the gingival tissue. Gingival melanin hyperpigmentation is caused by several reasons and affects people across ethnicity, race, age, and both gender. Lasers are presently being used for gingival melanin depigmentation. In this article, we reviewed studies on laser parameters, duration of gingival healing, pain perception during and after the operation, scores used for the evaluation of gingival melanin hyperpigmentation, follow-up period, treatment results, and recurrence reports. We conclude that laser ablation for gingival depigmentation is one of the most pleasant, reliable, acceptable, and impressive techniques available for treating gingival melanin hyperpigmentation.

  8. Auditing of chromatographic data.

    PubMed

    Mabie, J T

    1998-01-01

    During a data audit, it is important to ensure that there is clear documentation and an audit trail. The Quality Assurance Unit should review all areas, including the laboratory, during the conduct of the sample analyses. The analytical methodology that is developed should be documented prior to sample analyses. This is an important document for the auditor, as it is the instrumental piece used by the laboratory personnel to maintain integrity throughout the process. It is expected that this document will give insight into the sample analysis, run controls, run sequencing, instrument parameters, and acceptance criteria for the samples. The sample analysis and all supporting documentation should be audited in conjunction with this written analytical method and any supporting Standard Operating Procedures to ensure the quality and integrity of the data.

  9. Application of a Constant Gain Extended Kalman Filter for In-Flight Estimation of Aircraft Engine Performance Parameters

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.; Litt, Jonathan S.

    2005-01-01

    An approach based on the Constant Gain Extended Kalman Filter (CGEKF) technique is investigated for the in-flight estimation of non-measurable performance parameters of aircraft engines. Performance parameters, such as thrust and stall margins, provide crucial information for operating an aircraft engine in a safe and efficient manner, but they cannot be directly measured during flight. A technique to accurately estimate these parameters is, therefore, essential for further enhancement of engine operation. In this paper, a CGEKF is developed by combining an on-board engine model and a single Kalman gain matrix. In order to make the on-board engine model adaptive to the real engine s performance variations due to degradation or anomalies, the CGEKF is designed with the ability to adjust its performance through the adjustment of artificial parameters called tuning parameters. With this design approach, the CGEKF can maintain accurate estimation performance when it is applied to aircraft engines at offnominal conditions. The performance of the CGEKF is evaluated in a simulation environment using numerous component degradation and fault scenarios at multiple operating conditions.

  10. Studying Spacecraft Charging via Numerical Simulations

    NASA Astrophysics Data System (ADS)

    Delzanno, G. L.; Moulton, D.; Meierbachtol, C.; Svyatskiy, D.; Vernon, L.

    2015-12-01

    The electrical charging of spacecraft due to bombarding charged particles can affect their performance and operation. We study this charging using CPIC; a particle-in-cell code specifically designed for studying plasma-material interactions [1]. CPIC is based on multi-block curvilinear meshes, resulting in near-optimal computational performance while maintaining geometric accuracy. Relevant plasma parameters are imported from the SHIELDS framework (currently under development at LANL), which simulates geomagnetic storms and substorms in the Earth's magnetosphere. Simulated spacecraft charging results of representative Van Allen Probe geometries using these plasma parameters will be presented, along with an overview of the code. [1] G.L. Delzanno, E. Camporeale, J.D. Moulton, J.E. Borovsky, E.A. MacDonald, and M.F. Thomsen, "CPIC: A Curvilinear Particle-In-Cell Code for Plasma-Material Interaction Studies," IEEE Trans. Plas. Sci., 41 (12), 3577 (2013).

  11. Stochastic Inversion of 2D Magnetotelluric Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Jinsong

    2010-07-01

    The algorithm is developed to invert 2D magnetotelluric (MT) data based on sharp boundary parametrization using a Bayesian framework. Within the algorithm, we consider the locations and the resistivity of regions formed by the interfaces are as unknowns. We use a parallel, adaptive finite-element algorithm to forward simulate frequency-domain MT responses of 2D conductivity structure. Those unknown parameters are spatially correlated and are described by a geostatistical model. The joint posterior probability distribution function is explored by Markov Chain Monte Carlo (MCMC) sampling methods. The developed stochastic model is effective for estimating the interface locations and resistivity. Most importantly, itmore » provides details uncertainty information on each unknown parameter. Hardware requirements: PC, Supercomputer, Multi-platform, Workstation; Software requirements C and Fortan; Operation Systems/version is Linux/Unix or Windows« less

  12. High-efficiency 3 W/40 K single-stage pulse tube cryocooler for space application

    NASA Astrophysics Data System (ADS)

    Zhang, Ankuo; Wu, Yinong; Liu, Shaoshuai; Liu, Biqiang; Yang, Baoyu

    2018-03-01

    Temperature is an extremely important parameter for space-borne infrared detectors. To develop a quantum-well infrared photodetector (QWIP), a high-efficiency Stirling-type pulse tube cryocooler (PTC) has been designed, manufactured and experimentally investigated for providing a large cooling power at 40 K cold temperature. Simulated and experimental studies were carried out to analyse the effects of low temperature on different energy flows and losses, and the performance of the PTC was improved by optimizing components and parameters such as regenerator and operating frequency. A no-load lowest temperature of 26.2 K could be reached at a frequency of 51 Hz, and the PTC could efficiently offer cooling power of 3 W at 40 K cold temperature when the input power was 225 W. The efficiency relative to the Carnot efficiency was approximately 8.4%.

  13. An Image Encryption Algorithm Utilizing Julia Sets and Hilbert Curves

    PubMed Central

    Sun, Yuanyuan; Chen, Lina; Xu, Rudan; Kong, Ruiqing

    2014-01-01

    Image encryption is an important and effective technique to protect image security. In this paper, a novel image encryption algorithm combining Julia sets and Hilbert curves is proposed. The algorithm utilizes Julia sets’ parameters to generate a random sequence as the initial keys and gets the final encryption keys by scrambling the initial keys through the Hilbert curve. The final cipher image is obtained by modulo arithmetic and diffuse operation. In this method, it needs only a few parameters for the key generation, which greatly reduces the storage space. Moreover, because of the Julia sets’ properties, such as infiniteness and chaotic characteristics, the keys have high sensitivity even to a tiny perturbation. The experimental results indicate that the algorithm has large key space, good statistical property, high sensitivity for the keys, and effective resistance to the chosen-plaintext attack. PMID:24404181

  14. Real gas flow parameters for NASA Langley 22-inch Mach 20 helium tunnel

    NASA Technical Reports Server (NTRS)

    Hollis, Brian R.

    1992-01-01

    A computational procedure was developed which can be used to determine the flow properties in hypersonic helium wind tunnels in which real gas behavior is significant. In this procedure, a three-coefficient virial equation of state and the assumption of isentropic nozzle flow are employed to determine the tunnel reservoir, nozzle, throat, freestream, and post-normal shock conditions. This method was applied to a range of conditions which encompasses the operational capabilities of the LaRC 22-Inch Mach 20 Helium Tunnel. Results are presented graphically in the form of real gas correction factors which can be applied to perfect gas calculations. Important thermodynamic properties of helium are also plotted versus pressure and temperature. The computational scheme used to determine the real-helium flow parameters was incorporated into a FORTRAN code which is discussed.

  15. Sensorless Estimation and Nonlinear Control of a Rotational Energy Harvester

    NASA Astrophysics Data System (ADS)

    Nunna, Kameswarie; Toh, Tzern T.; Mitcheson, Paul D.; Astolfi, Alessandro

    2013-12-01

    It is important to perform sensorless monitoring of parameters in energy harvesting devices in order to determine the operating states of the system. However, physical measurements of these parameters is often a challenging task due to the unavailability of access points. This paper presents, as an example application, the design of a nonlinear observer and a nonlinear feedback controller for a rotational energy harvester. A dynamic model of a rotational energy harvester with its power electronic interface is derived and validated. This model is then used to design a nonlinear observer and a nonlinear feedback controller which yield a sensorless closed-loop system. The observer estimates the mechancial quantities from the measured electrical quantities while the control law sustains power generation across a range of source rotation speeds. The proposed scheme is assessed through simulations and experiments.

  16. High peak current operation of x-ray free-electron laser multiple beam lines by suppressing coherent synchrotron radiation effects

    NASA Astrophysics Data System (ADS)

    Hara, Toru; Kondo, Chikara; Inagaki, Takahiro; Togawa, Kazuaki; Fukami, Kenji; Nakazawa, Shingo; Hasegawa, Taichi; Morimoto, Osamu; Yoshioka, Masamichi; Maesaka, Hirokazu; Otake, Yuji; Tanaka, Hitoshi

    2018-04-01

    The parallel operation of multiple beam lines is an important means to expand the opportunity of user experiments at x-ray free-electron laser (XFEL) facilities. At SPring-8 Angstrom free-electron laser (SACLA), the multi-beam-line operation had been tested using two beam lines, but transverse coherent synchrotron radiation (CSR) effects at a dogleg beam transport severely limited the laser performance. To suppress the CSR effects, a new beam optics based on two double bend achromat (DBA) structures was introduced for the dogleg. After the replacement of the beam optics, high peak current bunches of more than 10 kA are now stably transported through the dogleg and the laser pulse output is increased by a factor of 2-3. In the multi-beam-line operation of SACLA, the electron beam parameters, such as the beam energy and peak current, can be adjusted independently for each beam line. Thus the laser output can be optimized and wide spectral tunability is ensured for all beam lines.

  17. Air pollution control through biotrickling filters: a review considering operational aspects and expected performance.

    PubMed

    Schiavon, Marco; Ragazzi, Marco; Rada, Elena Cristina; Torretta, Vincenzo

    2016-12-01

    The biological removal of pollutants, especially through biotrickling filters (BTFs), has recently become attractive for the low investment and operational costs and the low secondary pollution. This paper is intended to investigate the state of the art on BTF applications. After an overview on the biodegradation process and the typical parameters involved, this paper presents the analysis of a group of 16 literature studies chosen as the references for this sector. The reference studies differ from one another by the pollutants treated (volatile organic compounds [VOC], hydrogen sulphide, nitrogen oxides and trimethylamine), the geometry and size of the BTFs, and the procedures of the tests. The reference studies are analyzed and discussed in terms of the operational conditions and the results obtained, especially with respect to the removal efficiencies (REs) and the elimination capacities (ECs) of the pollutants considered. Empty bed residence time (EBRT), pollutant loading rate, temperature, pH, oxygen availability, trickling liquid flow rate, inoculum selection and biomass control strategies revealed to be the most important operational factors influencing the removal performance of a BTF.

  18. Serial Interface through Stream Protocol on EPICS Platform for Distributed Control and Monitoring

    NASA Astrophysics Data System (ADS)

    Das Gupta, Arnab; Srivastava, Amit K.; Sunil, S.; Khan, Ziauddin

    2017-04-01

    Remote operation of any equipment or device is implemented in distributed systems in order to control and proper monitoring of process values. For such remote operations, Experimental Physics and Industrial Control System (EPICS) is used as one of the important software tool for control and monitoring of a wide range of scientific parameters. A hardware interface is developed for implementation of EPICS software so that different equipment such as data converters, power supplies, pump controllers etc. could be remotely operated through stream protocol. EPICS base was setup on windows as well as Linux operating system for control and monitoring while EPICS modules such as asyn and stream device were used to interface the equipment with standard RS-232/RS-485 protocol. Stream Device protocol communicates with the serial line with an interface to asyn drivers. Graphical user interface and alarm handling were implemented with Motif Editor and Display Manager (MEDM) and Alarm Handler (ALH) command line channel access utility tools. This paper will describe the developed application which was tested with different equipment and devices serially interfaced to the PCs on a distributed network.

  19. Optimal robust control strategy of a solid oxide fuel cell system

    NASA Astrophysics Data System (ADS)

    Wu, Xiaojuan; Gao, Danhui

    2018-01-01

    Optimal control can ensure system safe operation with a high efficiency. However, only a few papers discuss optimal control strategies for solid oxide fuel cell (SOFC) systems. Moreover, the existed methods ignore the impact of parameter uncertainty on system instantaneous performance. In real SOFC systems, several parameters may vary with the variation of operation conditions and can not be identified exactly, such as load current. Therefore, a robust optimal control strategy is proposed, which involves three parts: a SOFC model with parameter uncertainty, a robust optimizer and robust controllers. During the model building process, boundaries of the uncertain parameter are extracted based on Monte Carlo algorithm. To achieve the maximum efficiency, a two-space particle swarm optimization approach is employed to obtain optimal operating points, which are used as the set points of the controllers. To ensure the SOFC safe operation, two feed-forward controllers and a higher-order robust sliding mode controller are presented to control fuel utilization ratio, air excess ratio and stack temperature afterwards. The results show the proposed optimal robust control method can maintain the SOFC system safe operation with a maximum efficiency under load and uncertainty variations.

  20. Local Sensitivity of Predicted CO 2 Injectivity and Plume Extent to Model Inputs for the FutureGen 2.0 site

    DOE PAGES

    Zhang, Z. Fred; White, Signe K.; Bonneville, Alain; ...

    2014-12-31

    Numerical simulations have been used for estimating CO2 injectivity, CO2 plume extent, pressure distribution, and Area of Review (AoR), and for the design of CO2 injection operations and monitoring network for the FutureGen project. The simulation results are affected by uncertainties associated with numerous input parameters, the conceptual model, initial and boundary conditions, and factors related to injection operations. Furthermore, the uncertainties in the simulation results also vary in space and time. The key need is to identify those uncertainties that critically impact the simulation results and quantify their impacts. We introduce an approach to determine the local sensitivity coefficientmore » (LSC), defined as the response of the output in percent, to rank the importance of model inputs on outputs. The uncertainty of an input with higher sensitivity has larger impacts on the output. The LSC is scalable by the error of an input parameter. The composite sensitivity of an output to a subset of inputs can be calculated by summing the individual LSC values. We propose a local sensitivity coefficient method and applied it to the FutureGen 2.0 Site in Morgan County, Illinois, USA, to investigate the sensitivity of input parameters and initial conditions. The conceptual model for the site consists of 31 layers, each of which has a unique set of input parameters. The sensitivity of 11 parameters for each layer and 7 inputs as initial conditions is then investigated. For CO2 injectivity and plume size, about half of the uncertainty is due to only 4 or 5 of the 348 inputs and 3/4 of the uncertainty is due to about 15 of the inputs. The initial conditions and the properties of the injection layer and its neighbour layers contribute to most of the sensitivity. Overall, the simulation outputs are very sensitive to only a small fraction of the inputs. However, the parameters that are important for controlling CO2 injectivity are not the same as those controlling the plume size. The three most sensitive inputs for injectivity were the horizontal permeability of Mt Simon 11 (the injection layer), the initial fracture-pressure gradient, and the residual aqueous saturation of Mt Simon 11, while those for the plume area were the initial salt concentration, the initial pressure, and the initial fracture-pressure gradient. The advantages of requiring only a single set of simulation results, scalability to the proper parameter errors, and easy calculation of the composite sensitivities make this approach very cost-effective for estimating AoR uncertainty and guiding cost-effective site characterization, injection well design, and monitoring network design for CO2 storage projects.« less

  1. Theoretical study of nanoparticle formation in thermal plasma processing: Nucleation, coagulation and aggregation

    NASA Astrophysics Data System (ADS)

    Mendoza Gonzalez, Norma Yadira

    This work presents a mathematical modeling study of the synthesis of nanoparticles in radio frequency (RF) inductively coupled plasma (ICP) reactors. The purpose is to further investigate the influence of process parameters on the final size and morphology of produced particles. The proposed model involves the calculation of flow and temperature fields of the plasma gas. Evaporation of raw particles is also accounted with the particle trajectory and temperature history calculated with a Lagrangian approach. The nanoparticle formation is considered by homogeneous nucleation and the growth is caused by condensation and Brownian coagulation. The growth of fractal aggregates is considered by introducing a power law exponent Df. Transport of nanoparticles occurs by convection, thermophoresis and Brownian diffusion. The method of moments is used to solve the particle dynamics equation. The model is validated using experimental results from plasma reactors at laboratory scale. The results are presented in the following manner. First, use is made of the computational fluid dynamics software (CFD), Fluent 6.1 with a commercial companion package specifically developped for aerosols named: Fine Particle Model (FPM). This package is used to study the relationship between the operating parameters effect and the properties of the end products at the laboratory scale. Secondly, a coupled hybrid model for the synthesis of spherical particles and fractal aggregates is developped in place of the FPM package. Results obtained from this model will allow to identify the importance of each parameter in defining the morphology of spherical primary particles and fractal aggregates of nanoparticles. The solution of the model was made using the geometries and operating conditions of existing reactors at the Centre de Recherche en Energie, Plasma et Electrochimie (CREPE) of the Universite de Sherbrooke, for which experimental results were obtained experimentally. Additionally, this study demonstrates the importance of the flow and temperature fields on the growth of fractal particles; namely the aggregates.

  2. Amazon river dolphins (Inia geoffrensis) use a high-frequency short-range biosonar.

    PubMed

    Ladegaard, Michael; Jensen, Frants Havmand; de Freitas, Mafalda; Ferreira da Silva, Vera Maria; Madsen, Peter Teglberg

    2015-10-01

    Toothed whales produce echolocation clicks with source parameters related to body size; however, it may be equally important to consider the influence of habitat, as suggested by studies on echolocating bats. A few toothed whale species have fully adapted to river systems, where sonar operation is likely to result in higher clutter and reverberation levels than those experienced by most toothed whales at sea because of the shallow water and dense vegetation. To test the hypothesis that habitat shapes the evolution of toothed whale biosonar parameters by promoting simpler auditory scenes to interpret in acoustically complex habitats, echolocation clicks of wild Amazon river dolphins were recorded using a vertical seven-hydrophone array. We identified 404 on-axis biosonar clicks having a mean SLpp of 190.3 ± 6.1 dB re. 1 µPa, mean SLEFD of 132.1 ± 6.0 dB re. 1 µPa(2)s, mean Fc of 101.2 ± 10.5 kHz, mean BWRMS of 29.3 ± 4.3 kHz and mean ICI of 35.1 ± 17.9 ms. Piston fit modelling resulted in an estimated half-power beamwidth of 10.2 deg (95% CI: 9.6-10.5 deg) and directivity index of 25.2 dB (95% CI: 24.9-25.7 dB). These results support the hypothesis that river-dwelling toothed whales operate their biosonars at lower amplitude and higher sampling rates than similar-sized marine species without sacrificing high directivity, in order to provide high update rates in acoustically complex habitats and simplify auditory scenes through reduced clutter and reverberation levels. We conclude that habitat, along with body size, is an important evolutionary driver of source parameters in toothed whale biosonars. © 2015. Published by The Company of Biologists Ltd.

  3. An adaptive learning control system for aircraft

    NASA Technical Reports Server (NTRS)

    Mekel, R.; Nachmias, S.

    1978-01-01

    A learning control system and its utilization as a flight control system for F-8 Digital Fly-By-Wire (DFBW) research aircraft is studied. The system has the ability to adjust a gain schedule to account for changing plant characteristics and to improve its performance and the plant's performance in the course of its own operation. Three subsystems are detailed: (1) the information acquisition subsystem which identifies the plant's parameters at a given operating condition; (2) the learning algorithm subsystem which relates the identified parameters to predetermined analytical expressions describing the behavior of the parameters over a range of operating conditions; and (3) the memory and control process subsystem which consists of the collection of updated coefficients (memory) and the derived control laws. Simulation experiments indicate that the learning control system is effective in compensating for parameter variations caused by changes in flight conditions.

  4. Apparatus for sensor failure detection and correction in a gas turbine engine control system

    NASA Technical Reports Server (NTRS)

    Spang, H. A., III; Wanger, R. P. (Inventor)

    1981-01-01

    A gas turbine engine control system maintains a selected level of engine performance despite the failure or abnormal operation of one or more engine parameter sensors. The control system employs a continuously updated engine model which simulates engine performance and generates signals representing real time estimates of the engine parameter sensor signals. The estimate signals are transmitted to a control computational unit which utilizes them in lieu of the actual engine parameter sensor signals to control the operation of the engine. The estimate signals are also compared with the corresponding actual engine parameter sensor signals and the resulting difference signals are utilized to update the engine model. If a particular difference signal exceeds specific tolerance limits, the difference signal is inhibited from updating the model and a sensor failure indication is provided to the engine operator.

  5. Influence of additive laser manufacturing parameters on surface using density of partially melted particles

    NASA Astrophysics Data System (ADS)

    Rosa, Benoit; Brient, Antoine; Samper, Serge; Hascoët, Jean-Yves

    2016-12-01

    Mastering the additive laser manufacturing surface is a real challenge and would allow functional surfaces to be obtained without finishing. Direct Metal Deposition (DMD) surfaces are composed by directional and chaotic textures that are directly linked to the process principles. The aim of this work is to obtain surface topographies by mastering the operating process parameters. Based on experimental investigation, the influence of operating parameters on the surface finish has been modeled. Topography parameters and multi-scale analysis have been used in order to characterize the DMD obtained surfaces. This study also proposes a methodology to characterize DMD chaotic texture through topography filtering and 3D image treatment. In parallel, a new parameter is proposed: density of particles (D p). Finally, this study proposes a regression modeling between process parameters and density of particles parameter.

  6. Representation of natural numbers in quantum mechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benioff, Paul

    2001-03-01

    This paper represents one approach to making explicit some of the assumptions and conditions implied in the widespread representation of numbers by composite quantum systems. Any nonempty set and associated operations is a set of natural numbers or a model of arithmetic if the set and operations satisfy the axioms of number theory or arithmetic. This paper is limited to k-ary representations of length L and to the axioms for arithmetic modulo k{sup L}. A model of the axioms is described based on an abstract L-fold tensor product Hilbert space H{sup arith}. Unitary maps of this space onto a physicalmore » parameter based product space H{sup phy} are then described. Each of these maps makes states in H{sup phy}, and the induced operators, a model of the axioms. Consequences of the existence of many of these maps are discussed along with the dependence of Grover's and Shor's algorithms on these maps. The importance of the main physical requirement, that the basic arithmetic operations are efficiently implementable, is discussed. This condition states that there exist physically realizable Hamiltonians that can implement the basic arithmetic operations and that the space-time and thermodynamic resources required are polynomial in L.« less

  7. Noise pollution effect in flour factory on workers' hearing in Lamerd City.

    PubMed

    Mohammadizadeh, M; Ahmadi, S H; Sekhavati, E; Ahani-Jegar, K

    2015-01-01

    Introduction: Noise pollution is one of the most important problems in industry that has an effect on the auditory system and other physiological parameters, as well as persons in noise exposure situations. While noise-induced hearing loss is preventable, once acquired, hearing loss is permanent and irreversible. Methodology: In the current study, noise in various sections of Flour Company in Lamerd estimated via the audio recorder, which revealed that the operators' expression remained larger than the state criterion; hence, the perception experiment (audio recorder) was performed on the operators and its outcomes were examined via utilizing SPSS 16 of version. Findings: Overall, Pearson relationship r = 0.453 discovered among job reports and the performance decline between all operators by significant stage p≤0.05. Moreover, T-test applied to examine noise impact on operators included in boisterous rooms (mean more than 85 dB) also average=26. 71 and regular deviation=11.72 got (p≤0.05) that was greater than 25db (as the standard hearing threshold). Conclusion: The outcomes of audio measuring and T-test revealed that the noise corruption has an impact on the hearing of bodies operating in noisy rooms.

  8. Factors affecting clinical outcome following treatment of early childhood caries under general anaesthesia: a two-year follow-up.

    PubMed

    El Batawi, H Y

    2014-06-01

    To investigate factors that might affect the clinical outcome of early childhood caries treatment under dental general anaesthesia (DGA). Retrospective longitudinal study. The medical records of paediatric patients with early childhood caries who underwent full dental rehabilitation under DGA during 2011 in a private medical facility in Jeddah, Saudi Arabia, were investigated. Study parameters were the patient's financial arrangements and compliance with suggested recall plan. Statistical analysis of caries recurrence and the need to repeat the rehabilitation process was also performed. Eighteen percent failed to attend any post-operative visit. Twenty-six percent did not comply with the post-operative preventive plan. The overall relapse rate was high (58.5%), with the highest percentage (68%) among the non-compliant group. The highest frequency of repeat DGA (10%) was in the non-compliant group. Despite the high rate of post-operative caries recurrence, DGA is still an acceptable treatment option as it minimises the need for future dental treatment. Compliance by caregivers with post-operative care plans is as important as the procedure itself. In Saudi Arabia, targeting the actual caregivers with post-operative dental health education presents challenges that might affect the clinical outcome of DGA.

  9. Prognostics using Engineering and Environmental Parameters as Applied to State of Health (SOH) Radionuclide Aerosol Sampler Analyzer (RASA) Real-Time Monitoring

    NASA Astrophysics Data System (ADS)

    Hutchenson, K. D.; Hartley-McBride, S.; Saults, T.; Schmidt, D. P.

    2006-05-01

    The International Monitoring System (IMS) is composed in part of radionuclide particulate and gas monitoring systems. Monitoring the operational status of these systems is an important aspect of nuclear weapon test monitoring. Quality data, process control techniques, and predictive models are necessary to detect and predict system component failures. Predicting failures in advance provides time to mitigate these failures, thus minimizing operational downtime. The Provisional Technical Secretariat (PTS) requires IMS radionuclide systems be operational 95 percent of the time. The United States National Data Center (US NDC) offers contributing components to the IMS. This effort focuses on the initial research and process development using prognostics for monitoring and predicting failures of the RASA two (2) days into the future. The predictions, using time series methods, are input to an expert decision system, called SHADES (State of Health Airflow and Detection Expert System). The results enable personnel to make informed judgments about the health of the RASA system. Data are read from a relational database, processed, and displayed to the user in a GIS as a prototype GUI. This procedure mimics the real time application process that could be implemented as an operational system, This initial proof-of-concept effort developed predictive models focused on RASA components for a single site (USP79). Future work shall include the incorporation of other RASA systems, as well as their environmental conditions that play a significant role in performance. Similarly, SHADES currently accommodates specific component behaviors at this one site. Future work shall also include important environmental variables that play an important part of the prediction algorithms.

  10. Sodium Sulfur Technology Program Nastec

    NASA Technical Reports Server (NTRS)

    Highley, Bob; Somerville, W. Andrew

    1992-01-01

    The NaSTEC program focuses on developing currently available sodium sulfur cells for use in space applications and investigating the operational parameters of the cells. The specific goals of the program are to determine the operational parameters and verify safety limits of Na/S technology battery cells; test long term zero-g operation; and create a life test database. The program approach and ground and flight test objectives are described in textual and graphic form.

  11. Natural Language Processing for Joint Fire Observer Training

    DTIC Science & Technology

    2010-11-01

    training system. However, many of the tasks an operator performs are routine and can be automated. The Intelligent Operator Training Assistant ( IOTA ) is...whole JFETS training session might be handled by the IOTA . In other cases, where the soldier departs from pre-defined parameters, the human operator...is able to take over control of the session from the IOTA until the soldier is back within the established parameters. We enable this flexibility

  12. Methods for using groundwater model predictions to guide hydrogeologic data collection, with application to the Death Valley regional groundwater flow system

    USGS Publications Warehouse

    Tiedeman, C.R.; Hill, M.C.; D'Agnese, F. A.; Faunt, C.C.

    2003-01-01

    Calibrated models of groundwater systems can provide substantial information for guiding data collection. This work considers using such models to guide hydrogeologic data collection for improving model predictions by identifying model parameters that are most important to the predictions. Identification of these important parameters can help guide collection of field data about parameter values and associated flow system features and can lead to improved predictions. Methods for identifying parameters important to predictions include prediction scaled sensitivities (PSS), which account for uncertainty on individual parameters as well as prediction sensitivity to parameters, and a new "value of improved information" (VOII) method presented here, which includes the effects of parameter correlation in addition to individual parameter uncertainty and prediction sensitivity. In this work, the PSS and VOII methods are demonstrated and evaluated using a model of the Death Valley regional groundwater flow system. The predictions of interest are advective transport paths originating at sites of past underground nuclear testing. Results show that for two paths evaluated the most important parameters include a subset of five or six of the 23 defined model parameters. Some of the parameters identified as most important are associated with flow system attributes that do not lie in the immediate vicinity of the paths. Results also indicate that the PSS and VOII methods can identify different important parameters. Because the methods emphasize somewhat different criteria for parameter importance, it is suggested that parameters identified by both methods be carefully considered in subsequent data collection efforts aimed at improving model predictions.

  13. Experimental Assessment of the Hydraulics of a Miniature Axial-Flow Left Ventricular Assist Device

    NASA Astrophysics Data System (ADS)

    Smith, P. Alex; Cohn, William; Metcalfe, Ralph

    2017-11-01

    A minimally invasive partial-support left ventricular assist device (LVAD) has been proposed with a flow path from the left atrium to the arterial system to reduce left ventricular stroke work. In LVAD design, peak and average efficiency must be balanced over the operating range to reduce blood trauma. Axial flow pumps have many geometric parameters. Until recently, testing all these parameters was impractical, but modern 3D printing technology enables multi-parameter studies. Following theoretical design, experimental hydraulic evaluation in steady state conditions examines pressure, flow, pressure-flow gradient, efficiency, torque, and axial force as output parameters. Preliminary results suggest that impeller blades and stator vanes with higher inlet angles than recommended by mean line theory (MLT) produce flatter gradients and broader efficiency curves, increasing compatibility with heart physiology. These blades also produce less axial force, which reduces bearing load. However, they require slightly higher torque, which is more demanding of the motor. MLT is a low order, empirical model developed on large pumps. It does not account for the significant viscous losses in small pumps like LVADs. This emphasizes the importance of experimental testing for hydraulic design. Roderick D MacDonald Research Fund.

  14. Determination of kinetic parameters of 1,3-propanediol fermentation by Clostridium diolis using statistically optimized medium.

    PubMed

    Kaur, Guneet; Srivastava, Ashok K; Chand, Subhash

    2012-09-01

    1,3-propanediol (1,3-PD) is a chemical compound of immense importance primarily used as a raw material for fiber and textile industry. It can be produced by the fermentation of glycerol available abundantly as a by-product from the biodiesel plant. The present study was aimed at determination of key kinetic parameters of 1,3-PD fermentation by Clostridium diolis. Initial experiments on microbial growth inhibition were followed by optimization of nutrient medium recipe by statistical means. Batch kinetic data from studies in bioreactor using optimum concentration of variables obtained from statistical medium design was used for estimation of kinetic parameters of 1,3-PD production. Direct use of raw glycerol from biodiesel plant without any pre-treatment for 1,3-PD production using this strain investigated for the first time in this work gave results comparable to commercial glycerol. The parameter values obtained in this study would be used to develop a mathematical model for 1,3-PD to be used as a guide for designing various reactor operating strategies for further improving 1,3-PD production. An outline of protocol for model development has been discussed in the present work.

  15. GEODYN system description, volume 1. [computer program for estimation of orbit and geodetic parameters

    NASA Technical Reports Server (NTRS)

    Chin, M. M.; Goad, C. C.; Martin, T. V.

    1972-01-01

    A computer program for the estimation of orbit and geodetic parameters is presented. The areas in which the program is operational are defined. The specific uses of the program are given as: (1) determination of definitive orbits, (2) tracking instrument calibration, (3) satellite operational predictions, and (4) geodetic parameter estimation. The relationship between the various elements in the solution of the orbit and geodetic parameter estimation problem is analyzed. The solution of the problems corresponds to the orbit generation mode in the first case and to the data reduction mode in the second case.

  16. Critical thresholds of liver function parameters for ketosis prediction in dairy cows using receiver operating characteristic (ROC) analysis.

    PubMed

    Sun, Yuhang; Wang, Bo; Shu, Shi; Zhang, Hongyou; Xu, Chuang; Wu, Ling; Xia, Cheng

    2015-01-01

    Fatty liver syndrome and ketosis are important metabolic disorders in high-producing cows during early lactation with fatty liver usually preceding ketosis. To date, parameters for early prediction of the risk of ketosis have not been investigated in China. To determine the predictive value of some parameters on the risk of ketosis in China. In a descriptive study, 48 control and 32 ketotic Holstein Friesian cows were randomly selected from one farm with a serum β-hydroxybutyrate (BHBA) concentration of 1.20 mmol/L as cutoff point. The risk prediction thresholds for ketosis were determined by receiver operating characteristic (ROC) analysis. In line with a high BHBA concentration, blood glucose concentration was significantly lower in ketotic cows compared to control animals (2.77 ± 0.24 versus 3.34 ± 0.03 mmol/L; P = 0.02). Thresholds were more than 0.76 mmol/L for nonesterified fatty acids (NEFA, with 65% sensitivity and 92% specificity), more than 104 U/L for aspartate aminotransferase (AST, 74% and 85%, respectively), less than 140 U/L for cholinesterase (CHE, 75% and 59%, respectively), and more than 3.3 µmol/L for total bilirubin (TBIL, 58% and 83%, respectively). There were significant correlations between BHBA and glucose (R = -4.74), or CHE (R = -0.262), BHBA and NEFA (R = 0.520), or AST (R = 0.525), or TBIL (R = 0.278), or direct bilirubin (DBIL, R = 0.348). AST, CHE, TBIL and NEFA may be useful parameters for risk prediction of ketosis. This study might be of value in addressing novel directions for future research on the connection between ketosis and liver dysfunction.

  17. [Economic assessment of low flow anesthesia with analysis of the break-even point. Experience at an underutilized operating room].

    PubMed

    Varesio, V; Agosta, I; Masullo, F; Malnati, R; Martegani, G M

    1997-04-01

    Many authors indicate the importance of economic saving obtained with the use of the inhalation rebreathing anaesthesia instead of non rebreathing anaesthesia, always referring to parameters which are the duration of anesthesia (1 hour) and the use of the operating theatre each year. It is presumed that the utilization of rebreathing system is at least a 1.000 hours/year. However it is not necessary that all the operating theatres employ 1.000 hours/year in rebreathing anesthesia. This method requires annual depreciation costs of the capital invested for the purchase of new adequate ventilators, to modificative those already existing and guarantee adequate monitoring and the maintenance of these equipment. The importance is stressed of individuating a method of economical evaluation comparing the effective savings obtained with the real utilization of rebreathing anesthesia for each operating theatre and the costs of purchasing and maintaining the equipment. From our point of view the break-even point analysis has demonstrated to be a consistent instrument for the evaluation of the real economic advantage of rebreathing system in each hospital. It is suggested to utilize a conventional formula for the determination of the break even point, which means the minimal number of hours for year that justifies economically the adoption of rebreathing anaesthesia. An example of this analysis has been applied for an operating theatre in the hospital of Morbegno, where the major utilization of regional anaesthesia leads to a reduced number hours/year of rebreathing anesthesia which remains anyhow economically advantageous.

  18. Intuitionistic fuzzy evidential power aggregation operator and its application in multiple criteria decision-making

    NASA Astrophysics Data System (ADS)

    Jiang, Wen; Wei, Boya

    2018-02-01

    The theory of intuitionistic fuzzy sets (IFS) is widely used for dealing with vagueness and the Dempster-Shafer (D-S) evidence theory has a widespread use in multiple criteria decision-making problems under uncertain situation. However, there are many methods to aggregate intuitionistic fuzzy numbers (IFNs), but the aggregation operator to fuse basic probability assignment (BPA) is rare. Power average (P-A) operator, as a powerful operator, is useful and important in information fusion. Motivated by the idea of P-A power, in this paper, a new operator based on the IFS and D-S evidence theory is proposed, which is named as intuitionistic fuzzy evidential power average (IFEPA) aggregation operator. First, an IFN is converted into a BPA, and the uncertainty is measured in D-S evidence theory. Second, the difference between BPAs is measured by Jousselme distance and a satisfying support function is proposed to get the support degree between each other effectively. Then the IFEPA operator is used for aggregating the original IFN and make a more reasonable decision. The proposed method is objective and reasonable because it is completely driven by data once some parameters are required. At the same time, it is novel and interesting. Finally, an application of developed models to the 'One Belt, One road' investment decision-making problems is presented to illustrate the effectiveness and feasibility of the proposed operator.

  19. Parameter estimation for chaotic systems using a hybrid adaptive cuckoo search with simulated annealing algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheng, Zheng, E-mail: 19994035@sina.com; Wang, Jun; Zhou, Bihua

    2014-03-15

    This paper introduces a novel hybrid optimization algorithm to establish the parameters of chaotic systems. In order to deal with the weaknesses of the traditional cuckoo search algorithm, the proposed adaptive cuckoo search with simulated annealing algorithm is presented, which incorporates the adaptive parameters adjusting operation and the simulated annealing operation in the cuckoo search algorithm. Normally, the parameters of the cuckoo search algorithm are kept constant that may result in decreasing the efficiency of the algorithm. For the purpose of balancing and enhancing the accuracy and convergence rate of the cuckoo search algorithm, the adaptive operation is presented tomore » tune the parameters properly. Besides, the local search capability of cuckoo search algorithm is relatively weak that may decrease the quality of optimization. So the simulated annealing operation is merged into the cuckoo search algorithm to enhance the local search ability and improve the accuracy and reliability of the results. The functionality of the proposed hybrid algorithm is investigated through the Lorenz chaotic system under the noiseless and noise condition, respectively. The numerical results demonstrate that the method can estimate parameters efficiently and accurately in the noiseless and noise condition. Finally, the results are compared with the traditional cuckoo search algorithm, genetic algorithm, and particle swarm optimization algorithm. Simulation results demonstrate the effectiveness and superior performance of the proposed algorithm.« less

  20. Transforming graph states using single-qubit operations.

    PubMed

    Dahlberg, Axel; Wehner, Stephanie

    2018-07-13

    Stabilizer states form an important class of states in quantum information, and are of central importance in quantum error correction. Here, we provide an algorithm for deciding whether one stabilizer (target) state can be obtained from another stabilizer (source) state by single-qubit Clifford operations (LC), single-qubit Pauli measurements (LPM) and classical communication (CC) between sites holding the individual qubits. What is more, we provide a recipe to obtain the sequence of LC+LPM+CC operations which prepare the desired target state from the source state, and show how these operations can be applied in parallel to reach the target state in constant time. Our algorithm has applications in quantum networks, quantum computing, and can also serve as a design tool-for example, to find transformations between quantum error correcting codes. We provide a software implementation of our algorithm that makes this tool easier to apply. A key insight leading to our algorithm is to show that the problem is equivalent to one in graph theory, which is to decide whether some graph G ' is a vertex-minor of another graph G The vertex-minor problem is, in general, [Formula: see text]-Complete, but can be solved efficiently on graphs which are not too complex. A measure of the complexity of a graph is the rank-width which equals the Schmidt-rank width of a subclass of stabilizer states called graph states, and thus intuitively is a measure of entanglement. Here, we show that the vertex-minor problem can be solved in time O (| G | 3 ), where | G | is the size of the graph G , whenever the rank-width of G and the size of G ' are bounded. Our algorithm is based on techniques by Courcelle for solving fixed parameter tractable problems, where here the relevant fixed parameter is the rank width. The second half of this paper serves as an accessible but far from exhausting introduction to these concepts, that could be useful for many other problems in quantum information.This article is part of a discussion meeting issue 'Foundations of quantum mechanics and their impact on contemporary society'. © 2018 The Author(s).

  1. Adjustments of the TaD electron density reconstruction model with GNSS-TEC parameters for operational application purposes

    NASA Astrophysics Data System (ADS)

    Kutiev, Ivan; Marinov, Pencho; Fidanova, Stefka; Belehaki, Anna; Tsagouri, Ioanna

    2012-12-01

    Validation results on the latest version of TaD model (TaDv2) show realistic reconstruction of the electron density profiles (EDPs) with an average error of 3 TECU, similar to the error obtained from GNSS-TEC calculated paremeters. The work presented here has the aim to further improve the accuracy of the TaD topside reconstruction, adjusting the TEC parameter calculated from TaD model with the TEC parameter calculated by GNSS transmitting RINEX files provided by receivers co-located with the Digisondes. The performance of the new version is tested during a storm period demonstrating further improvements in respect to the previous version. Statistical comparison of modeled and observed TEC confirms the validity of the proposed adjustment. A significant benefit of the proposed upgrade is that it facilitates the real-time implementation of TaD. The model needs a reliable measure of the scale height at the peak height, which is supposed to be provided by Digisondes. Oftenly, the automatic scaling software fails to correctly calculate the scale height at the peak, Hm, due to interferences in the receiving signal. Consequently the model estimated topside scale height is wrongly calculated leading to unrealistic results for the modeled EDP. The proposed TEC adjustment forces the model to correctly reproduce the topside scale height, despite the inaccurate values of Hm. This adjustment is very important for the application of TaD in an operational environment.

  2. A study in cost analysis of aggregate production as depending on drilling and blasting design

    NASA Astrophysics Data System (ADS)

    Bilim, Niyazi; Çelik, Arif; Kekeç, Bilgehan

    2017-10-01

    Since aggregate production has vital importance for many engineering projects-such as construction, highway and plant-mixed concrete production-this study was undertaken to determine how the costs for such production are affected by the design of drilling and blasting processes used. Aggregates are used in the production of concrete and asphalt, which are critical resources for the construction sector. The ongoing population increase and the growth of living standards around the world drive the increasing demand for these products. As demand grows, competition has naturally arisen among producers in the industry. Competition in the market has directly affected prices, which leads to the need for new measures and cost analysis on production costs. The cost calculation is one of the most important parameters in mining activities. Aggregate production operations include drilling, blasting, secondary crushing (if necessary), loading, hauling and crushing-screening, and each of these factors affects cost. In this study, drilling and blasting design parameters (such as hole diameter, hole depth, hole distance and burden) were investigated and evaluated for their effect on the total cost of quarrying these products, based on a particular quarry selected for this research. As the result of evaluation, the parameters actually driving costs have been identified, and their effects on the cost have been determined. In addition, some suggestions are presented regarding production design which may lead to avoiding increased production costs.

  3. Degradation of PPCPs in activated sludge from different WWTPs in Denmark.

    PubMed

    Chen, Xijuan; Vollertsen, Jes; Nielsen, Jeppe Lund; Dall, Agnieszka Gieraltowska; Bester, Kai

    2015-12-01

    Pharmaceuticals and Personal care products (PPCPs) are often found in effluents from wastewater treatment plants (WWTPs) due to insufficient removal during wastewater treatment processes. To understand the factors affecting the removal of PPCPs in classical activated sludge WWTPs, the present study was performed to assess the removal of frequently occurring pharmaceuticals (Naproxen, Fenoprofen, Ketoprofen, Dichlofenac, Carbamazepine) and the biocide Triclosan in activated sludge from four different Danish WWTPs. The respective degradation constants were compared to operational parameters previous shown to be of importance for degradation of micropollutants such as biomass concentration, and sludge retention time (SRT). The most rapid degradation, was observed for NSAID pharmaceuticals (55-90% for Fenoprofen, 77-94% for Ketoprofen and 46-90% for Naproxen), followed by Triclosan (61-91%), while Dichlofenac and Carbamazepine were found to be persistent in the systems. Degradation rate constants were calculated as 0.0026-0.0407 for NSAID pharmaceuticals and 0.0022-0.0065 for triclosan. No relationships were observed between degradation rates and biomass concentrations in the diverse sludges. However, for the investigated PPCPs, the optimal SRT was within 14-20 days (for these values degradation of these PPCPs was the most efficient). Though all of these parameters influence the degradation rate, none of them seems to be overall decisive. These observations indicate that the biological composition of the sludge is more important than the design parameters of the respective treatment plant.

  4. A parametric numerical study of mixing in a cylindrical duct

    NASA Astrophysics Data System (ADS)

    Oechsle, V. L.; Mongia, H. C.; Holderman, J. D.

    1992-07-01

    The interaction is described of some of the important parameters affecting the mixing process in a quick mixing region of a rich burn/quick mix/lean burn (RQL) combustor. The performance of the quick mixing region is significantly affected by the geometric designs of both the mixing domain and the jet inlet orifices. Several of the important geometric parameters and operating conditions affecting the mixing process were analytically studied. Parameters such as jet-to-mainstream momentum flux ratio (J), mass flow ratio (MR), orifice geometry, orifice orientation, and number of orifices/row (equally spaced around the circumferential direction were analyzed. Three different sets of orifice shapes were studied: (1) square, (2) elongated slots, and (3) equilateral triangles. Based on the analytical results, the best mixing configuration depends significantly on the penetration depth of the jet to prevent the hot mainstream flow from being entrained behind the orifice. The structure in a circular mixing section is highly weighted toward the outer wall and any mixing structure affecting this area significantly affects the overall results. The increase in the number of orifices per row increases the mixing at higher J conditions. Higher slot slant angles and aspect ratios are generally the best mixing configurations at higher momentum flux ratio (J) conditions. However, the square and triangular shaped orifices were more effective mixing configurations at lower J conditions.

  5. Temporal patterns and source apportionment of nitrate-nitrogen leaching in a paddy field at Kelantan, Malaysia.

    PubMed

    Hussain, Hazilia; Yusoff, Mohd Kamil; Ramli, Mohd Firuz; Abd Latif, Puziah; Juahir, Hafizan; Zawawi, Mohamed Azwan Mohammed

    2013-11-15

    Nitrate-nitrogen leaching from agricultural areas is a major cause for groundwater pollution. Polluted groundwater with high levels of nitrate is hazardous and cause adverse health effects. Human consumption of water with elevated levels of NO3-N has been linked to the infant disorder methemoglobinemia and also to non-Hodgkin's disease lymphoma in adults. This research aims to study the temporal patterns and source apportionment of nitrate-nitrogen leaching in a paddy soil at Ladang Merdeka Ismail Mulong in Kelantan, Malaysia. The complex data matrix (128 x 16) of nitrate-nitrogen parameters was subjected to multivariate analysis mainly Principal Component Analysis (PCA) and Discriminant Analysis (DA). PCA extracted four principal components from this data set which explained 86.4% of the total variance. The most important contributors were soil physical properties confirmed using Alyuda Forecaster software (R2 = 0.98). Discriminant analysis was used to evaluate the temporal variation in soil nitrate-nitrogen on leaching process. Discriminant analysis gave four parameters (hydraulic head, evapotranspiration, rainfall and temperature) contributing more than 98% correct assignments in temporal analysis. DA allowed reduction in dimensionality of the large data set which defines the four operating parameters most efficient and economical to be monitored for temporal variations. This knowledge is important so as to protect the precious groundwater from contamination with nitrate.

  6. Switching and optimizing control for coal flotation process based on a hybrid model

    PubMed Central

    Dong, Zhiyong; Wang, Ranfeng; Fan, Minqiang; Fu, Xiang

    2017-01-01

    Flotation is an important part of coal preparation, and the flotation column is widely applied as efficient flotation equipment. This process is complex and affected by many factors, with the froth depth and reagent dosage being two of the most important and frequently manipulated variables. This paper proposes a new method of switching and optimizing control for the coal flotation process. A hybrid model is built and evaluated using industrial data. First, wavelet analysis and principal component analysis (PCA) are applied for signal pre-processing. Second, a control model for optimizing the set point of the froth depth is constructed based on fuzzy control, and a control model is designed to optimize the reagent dosages based on expert system. Finally, the least squares-support vector machine (LS-SVM) is used to identify the operating conditions of the flotation process and to select one of the two models (froth depth or reagent dosage) for subsequent operation according to the condition parameters. The hybrid model is developed and evaluated on an industrial coal flotation column and exhibits satisfactory performance. PMID:29040305

  7. Effect of Elasticity on Stability of Viscoelastic Liquid Curtain

    NASA Astrophysics Data System (ADS)

    Mohammad Karim, Alireza; Suszynski, Wieslaw; Francis, Lorraine; Carvalho, Marcio; University of Minnesota, Twin Cities Collaboration; Pontifícia Universidade Católica do Rio de Janeiro Collaboration; Dow Chemical Company Collaboration

    2016-11-01

    Curtain coating is one the preferred methods for high-speed precision application of single-layer and multi-layer coatings in industry. Despite the extensive variety of applications of curtain coating, its operation is challenging and uniform coating is only obtained in a certain range of operating parameters, called the coating window. The two main physical mechanisms that limit curtain coating are the breakup of the liquid curtain, below a critical flow rate, and the catastrophic event of air entrainment, which occurs above a certain web speed. The rheological characteristics of the coating liquid play an important role on these mechanisms, but the fundamental understanding of the role of rheology is still not complete. In this work, we analyze the relative importance of shear and extensional viscosity on both curtain breakup and dynamic contact line instability (i.e. air entrainment). Aqueous solutions of polyethylene oxide (PEO) and polyethylene glycol (PEG) of different molecular weights were used as model liquids to obtain fluids with different levels of extensional thickening behavior. We would like to acknowledge the financial support from the Dow Chemical Company.

  8. Parallel Electrochemical Treatment System and Application for Identifying Acid-Stable Oxygen Evolution Electrocatalysts

    DOE PAGES

    Jones, Ryan J. R.; Shinde, Aniketa; Guevarra, Dan; ...

    2015-01-05

    There are many energy technologies require electrochemical stability or preactivation of functional materials. Due to the long experiment duration required for either electrochemical preactivation or evaluation of operational stability, parallel screening is required to enable high throughput experimentation. We found that imposing operational electrochemical conditions to a library of materials in parallel creates several opportunities for experimental artifacts. We discuss the electrochemical engineering principles and operational parameters that mitigate artifacts int he parallel electrochemical treatment system. We also demonstrate the effects of resistive losses within the planar working electrode through a combination of finite element modeling and illustrative experiments. Operationmore » of the parallel-plate, membrane-separated electrochemical treatment system is demonstrated by exposing a composition library of mixed metal oxides to oxygen evolution conditions in 1M sulfuric acid for 2h. This application is particularly important because the electrolysis and photoelectrolysis of water are promising future energy technologies inhibited by the lack of highly active, acid-stable catalysts containing only earth abundant elements.« less

  9. Recommendations for the use of mist nets for inventory and monitoring of bird populations

    USGS Publications Warehouse

    Ralph, C. John; Dunn, Erica H.; Peach, Will J.; Handel, Colleen M.; Ralph, C. John; Dunn, Erica H.

    2004-01-01

    We provide recommendations on the best practices for mist netting for the purposes of monitoring population parameters such as abundance and demography. Studies should be carefully thought out before nets are set up, to ensure that sampling design and estimated sample size will allow study objectives to be met. Station location, number of nets, type of nets, net placement, and schedule of operation should be determined by the goals of the particular project, and we provide guidelines for typical mist-net studies. In the absence of study-specific requirements for novel protocols, commonly used protocols should be used to enable comparison of results among studies. Regardless of the equipment, net layout, or netting schedule selected, it is important for all studies that operations be strictly standardized, and a well-written operation protocol will help in attaining this goal. We provide recommendations for data to be collected on captured birds, and emphasize the need for good training of project personnel

  10. Integrating GLL-Weibull Distribution Within a Bayesian Framework for Life Prediction of Shape Memory Alloy Spring Undergoing Thermo-mechanical Fatigue

    NASA Astrophysics Data System (ADS)

    Kundu, Pradeep; Nath, Tameshwer; Palani, I. A.; Lad, Bhupesh K.

    2018-06-01

    The present paper tackles an important but unmapped problem of the reliability estimations of smart materials. First, an experimental setup is developed for accelerated life testing of the shape memory alloy (SMA) springs. Generalized log-linear Weibull (GLL-Weibull) distribution-based novel approach is then developed for SMA spring life estimation. Applied stimulus (voltage), elongation and cycles of operation are used as inputs for the life prediction model. The values of the parameter coefficients of the model provide better interpretability compared to artificial intelligence based life prediction approaches. In addition, the model also considers the effect of operating conditions, making it generic for a range of the operating conditions. Moreover, a Bayesian framework is used to continuously update the prediction with the actual degradation value of the springs, thereby reducing the uncertainty in the data and improving the prediction accuracy. In addition, the deterioration of material with number of cycles is also investigated using thermogravimetric analysis and scanning electron microscopy.

  11. End-to-end simulation and verification of GNC and robotic systems considering both space segment and ground segment

    NASA Astrophysics Data System (ADS)

    Benninghoff, Heike; Rems, Florian; Risse, Eicke; Brunner, Bernhard; Stelzer, Martin; Krenn, Rainer; Reiner, Matthias; Stangl, Christian; Gnat, Marcin

    2018-01-01

    In the framework of a project called on-orbit servicing end-to-end simulation, the final approach and capture of a tumbling client satellite in an on-orbit servicing mission are simulated. The necessary components are developed and the entire end-to-end chain is tested and verified. This involves both on-board and on-ground systems. The space segment comprises a passive client satellite, and an active service satellite with its rendezvous and berthing payload. The space segment is simulated using a software satellite simulator and two robotic, hardware-in-the-loop test beds, the European Proximity Operations Simulator (EPOS) 2.0 and the OOS-Sim. The ground segment is established as for a real servicing mission, such that realistic operations can be performed from the different consoles in the control room. During the simulation of the telerobotic operation, it is important to provide a realistic communication environment with different parameters like they occur in the real world (realistic delay and jitter, for example).

  12. Standard operation procedures for conducting the on-the-road driving test, and measurement of the standard deviation of lateral position (SDLP)

    PubMed Central

    Verster, Joris C; Roth, Thomas

    2011-01-01

    This review discusses the methodology of the standardized on-the-road driving test and standard operation procedures to conduct the test and analyze the data. The on-the-road driving test has proven to be a sensitive and reliable method to examine driving ability after administration of central nervous system (CNS) drugs. The test is performed on a public highway in normal traffic. Subjects are instructed to drive with a steady lateral position and constant speed. Its primary parameter, the standard deviation of lateral position (SDLP), ie, an index of ‘weaving’, is a stable measure of driving performance with high test–retest reliability. SDLP differences from placebo are dose-dependent, and do not depend on the subject’s baseline driving skills (placebo SDLP). It is important that standard operation procedures are applied to conduct the test and analyze the data in order to allow comparisons between studies from different sites. PMID:21625472

  13. Standard operation procedures for conducting the on-the-road driving test, and measurement of the standard deviation of lateral position (SDLP).

    PubMed

    Verster, Joris C; Roth, Thomas

    2011-01-01

    This review discusses the methodology of the standardized on-the-road driving test and standard operation procedures to conduct the test and analyze the data. The on-the-road driving test has proven to be a sensitive and reliable method to examine driving ability after administration of central nervous system (CNS) drugs. The test is performed on a public highway in normal traffic. Subjects are instructed to drive with a steady lateral position and constant speed. Its primary parameter, the standard deviation of lateral position (SDLP), ie, an index of 'weaving', is a stable measure of driving performance with high test-retest reliability. SDLP differences from placebo are dose-dependent, and do not depend on the subject's baseline driving skills (placebo SDLP). It is important that standard operation procedures are applied to conduct the test and analyze the data in order to allow comparisons between studies from different sites.

  14. Automatic Synthetic Aperture Radar based oil spill detection and performance estimation via a semi-automatic operational service benchmark.

    PubMed

    Singha, Suman; Vespe, Michele; Trieschmann, Olaf

    2013-08-15

    Today the health of ocean is in danger as it was never before mainly due to man-made pollutions. Operational activities show regular occurrence of accidental and deliberate oil spill in European waters. Since the areas covered by oil spills are usually large, satellite remote sensing particularly Synthetic Aperture Radar represents an effective option for operational oil spill detection. This paper describes the development of a fully automated approach for oil spill detection from SAR. Total of 41 feature parameters extracted from each segmented dark spot for oil spill and 'look-alike' classification and ranked according to their importance. The classification algorithm is based on a two-stage processing that combines classification tree analysis and fuzzy logic. An initial evaluation of this methodology on a large dataset has been carried out and degree of agreement between results from proposed algorithm and human analyst was estimated between 85% and 93% respectively for ENVISAT and RADARSAT. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Coastal microbial quality of surface sediments in different environments along the Italian coast.

    PubMed

    Chiaretti, G; Onorati, F; Borrello, P; Orasi, A; Mugnai, C

    2014-09-20

    In order to improve sediment handling following dredging operations, this study aims to statistically derive ranges of distribution for certain microbiological parameters, according to four environmental types inspired by Italian legislation on seaports: ports of international/national importance, ports of regional importance, port channels in brackish environments, and marine coastal areas. A national database was developed using microbiological data from technical reports available at the Italian Ministry of Environment and National Institute of Environmental Protection and Research (ISPRA) for the period 1990-2008. The parameters considered were total coliform bacteria, faecal coliform bacteria, Escherichia coli, enterococci, sulfite-reducing clostridia (SRC), total bacterial counts at 22 °C and at 37 °C, and fungi. The data were statistically analyzed: (1) to verify the correspondence with the identified environmental types and rank them according to the concentration gradient and (2) to describe the data distribution in order to obtain reference ranges typical for each parameter/environmental type. The four environmental types considered were clearly different for enterococci, SRC, and fungi, highlighting a correspondence with Italian legislation. For the remaining parameters, at least two environmental types were merged. In general, the less contaminated environments were small ports and relatively unimpacted coastal areas. The ranges defined for relatively clean coastal areas can be considered a target for other areas both from an environmental point of view and for the sediment management implications. These values could be used as a comparison in environmental surveys addressing marine or brackish sediment handling and may represent a future line of evidence for the assessment of overall sediment quality.

  16. When tractography meets tracer injections: a systematic study of trends and variation sources of diffusion-based connectivity.

    PubMed

    Aydogan, Dogu Baran; Jacobs, Russell; Dulawa, Stephanie; Thompson, Summer L; Francois, Maite Christi; Toga, Arthur W; Dong, Hongwei; Knowles, James A; Shi, Yonggang

    2018-04-16

    Tractography is a powerful technique capable of non-invasively reconstructing the structural connections in the brain using diffusion MRI images, but the validation of tractograms is challenging due to lack of ground truth. Owing to recent developments in mapping the mouse brain connectome, high-resolution tracer injection-based axonal projection maps have been created and quickly adopted for the validation of tractography. Previous studies using tracer injections mainly focused on investigating the match in projections and optimal tractography protocols. Being a complicated technique, however, tractography relies on multiple stages of operations and parameters. These factors introduce large variabilities in tractograms, hindering the optimization of protocols and making the interpretation of results difficult. Based on this observation, in contrast to previous studies, in this work we focused on quantifying and ranking the amount of performance variation introduced by these factors. For this purpose, we performed over a million tractography experiments and studied the variability across different subjects, injections, anatomical constraints and tractography parameters. By using N-way ANOVA analysis, we show that all tractography parameters are significant and importantly performance variations with respect to the differences in subjects are comparable to the variations due to tractography parameters, which strongly underlines the importance of fully documenting the tractography protocols in scientific experiments. We also quantitatively show that inclusion of anatomical constraints is the most significant factor for improving tractography performance. Although this critical factor helps reduce false positives, our analysis indicates that anatomy-informed tractography still fails to capture a large portion of axonal projections.

  17. Ubiquitous remote operation collaborative interface for MRI scanners

    NASA Astrophysics Data System (ADS)

    Morris, H. Douglas

    2001-05-01

    We have developed a remote control interface for research class magnetic resonance imaging (MRI) spectrometers. The goal of the interface is to provide a better collaborative environment for geographically dispersed researchers and a tool that can teach students of medical imaging in a network-based laboratory using state-of-the-art MR instrumentation that would not otherwise be available. The interface for the remote operator(s) is now ubiquitous web browser, which was chosen for the ease of controlling the operator interface, the display of both image and text information, and the wide availability on many computer platforms. The remote operator is presented with an active display in which they may select and control most of the parameters in the MRI experiment. The MR parameters are relayed via web browser to a CGI program running in a standard web server, which passes said parameters to the MRI manufacturers control software. The data returned to the operator(s) consists of the parameters used in acquiring that image, a flat 8-bit grayscale GIF representation of the image, and a 16-bit grayscale image that can be viewed by an appropriate application. It is obvious that the utility of this interface would be helpful for researchers of regional and national facilities to more closely collaborate with colleagues across their region, the nation, or the world. And medical imaging students can put much of their classroom discussions into practice on machinery that would not normally be available to them.

  18. Inhalational and dermal exposures during spray application of biocides.

    PubMed

    Berger-Preiss, Edith; Boehncke, Andrea; Könnecker, Gustav; Mangelsdorf, Inge; Holthenrich, Dagmar; Koch, Wolfgang

    2005-01-01

    Data on inhalational and potential dermal exposures during spray application of liquid biocidal products were generated. On the one hand, model experiments with different spraying devices using fluorescent tracers were carried out to investigate the influence of parameters relevant to the exposure (e.g. spraying equipment, nozzle size, direction of application). On the other hand, measurements were performed at selected workplaces (during disinfection operations in food and feed areas; pest control operations for private, public and veterinary hygiene; wood protection and antifouling applications) after application of biocidal products such as Empire 20, Responsar SC, Omexan-forte, Actellic, Perma-forte; Fendona SC, Pyrethrum mist; CBM 8, Aldekol Des 03, TAD CID, Basileum, Basilit. The measurements taken in the model rooms demonstrated dependence of the inhalation exposure on the type of spraying device used, in the following order: "spraying with low pressure" < "airless spraying" < "fogging" indicating that the particle diameter of the released spray droplets is the most important parameter. In addition inhalation exposure was lowest when the spraying direction was downward. Also for the potential dermal exposure, the spraying direction was of particular importance: overhead spraying caused the highest contamination of body surfaces. The data of inhalational and potential dermal exposures gained through workplace measurements showed considerable variation. During spraying procedures with low-pressure equipments, dose rates of active substances inhaled by the operators ranged from 7 to 230 microg active substance (a.s.)/h. An increase in inhaled dose rates (6-33 mg a.s./h) was observed after use of high application volumes/time unit during wood protection applications indoors. Spraying in the veterinary sector using medium-pressure sprayers led to inhaled dose rates between 2 and 24mga.s./h. The highest inhaled dose rates were measured during fogging (114 mg a.s./h) and after-high-pressure applications in the antifouling sector (110-300 mg a.s./h). The potential dermal exposure of spray operators was lowest (dose rates from 0.2 to 7 mg a.s./h) in the areas of food and feed disinfection and private and public hygiene during spraying with low-pressure devices. During fogging, wood protection and antifouling applications, high-potential dermal exposures of the operators were determined. Dermal dose rates varied between 100 and 34,000 mg a.s./h.

  19. 20 years of research on the Alcator C-Mod tokamaka)

    NASA Astrophysics Data System (ADS)

    Greenwald, M.; Bader, A.; Baek, S.; Bakhtiari, M.; Barnard, H.; Beck, W.; Bergerson, W.; Bespamyatnov, I.; Bonoli, P.; Brower, D.; Brunner, D.; Burke, W.; Candy, J.; Churchill, M.; Cziegler, I.; Diallo, A.; Dominguez, A.; Duval, B.; Edlund, E.; Ennever, P.; Ernst, D.; Faust, I.; Fiore, C.; Fredian, T.; Garcia, O.; Gao, C.; Goetz, J.; Golfinopoulos, T.; Granetz, R.; Grulke, O.; Hartwig, Z.; Horne, S.; Howard, N.; Hubbard, A.; Hughes, J.; Hutchinson, I.; Irby, J.; Izzo, V.; Kessel, C.; LaBombard, B.; Lau, C.; Li, C.; Lin, Y.; Lipschultz, B.; Loarte, A.; Marmar, E.; Mazurenko, A.; McCracken, G.; McDermott, R.; Meneghini, O.; Mikkelsen, D.; Mossessian, D.; Mumgaard, R.; Myra, J.; Nelson-Melby, E.; Ochoukov, R.; Olynyk, G.; Parker, R.; Pitcher, S.; Podpaly, Y.; Porkolab, M.; Reinke, M.; Rice, J.; Rowan, W.; Schmidt, A.; Scott, S.; Shiraiwa, S.; Sierchio, J.; Smick, N.; Snipes, J. A.; Snyder, P.; Sorbom, B.; Stillerman, J.; Sung, C.; Takase, Y.; Tang, V.; Terry, J.; Terry, D.; Theiler, C.; Tronchin-James, A.; Tsujii, N.; Vieira, R.; Walk, J.; Wallace, G.; White, A.; Whyte, D.; Wilson, J.; Wolfe, S.; Wright, G.; Wright, J.; Wukitch, S.; Zweben, S.

    2014-11-01

    The object of this review is to summarize the achievements of research on the Alcator C-Mod tokamak [Hutchinson et al., Phys. Plasmas 1, 1511 (1994) and Marmar, Fusion Sci. Technol. 51, 261 (2007)] and to place that research in the context of the quest for practical fusion energy. C-Mod is a compact, high-field tokamak, whose unique design and operating parameters have produced a wealth of new and important results since it began operation in 1993, contributing data that extends tests of critical physical models into new parameter ranges and into new regimes. Using only high-power radio frequency (RF) waves for heating and current drive with innovative launching structures, C-Mod operates routinely at reactor level power densities and achieves plasma pressures higher than any other toroidal confinement device. C-Mod spearheaded the development of the vertical-target divertor and has always operated with high-Z metal plasma facing components—approaches subsequently adopted for ITER. C-Mod has made ground-breaking discoveries in divertor physics and plasma-material interactions at reactor-like power and particle fluxes and elucidated the critical role of cross-field transport in divertor operation, edge flows and the tokamak density limit. C-Mod developed the I-mode and the Enhanced Dα H-mode regimes, which have high performance without large edge localized modes and with pedestal transport self-regulated by short-wavelength electromagnetic waves. C-Mod has carried out pioneering studies of intrinsic rotation and demonstrated that self-generated flow shear can be strong enough in some cases to significantly modify transport. C-Mod made the first quantitative link between the pedestal temperature and the H-mode's performance, showing that the observed self-similar temperature profiles were consistent with critical-gradient-length theories and followed up with quantitative tests of nonlinear gyrokinetic models. RF research highlights include direct experimental observation of ion cyclotron range of frequency (ICRF) mode-conversion, ICRF flow drive, demonstration of lower-hybrid current drive at ITER-like densities and fields and, using a set of novel diagnostics, extensive validation of advanced RF codes. Disruption studies on C-Mod provided the first observation of non-axisymmetric halo currents and non-axisymmetric radiation in mitigated disruptions. A summary of important achievements and discoveries are included.

  20. Durability of Membrane Electrode Assemblies (MEAs) in PEM Fuel Cells Operated on Pure Hydrogen and Oxygen

    NASA Technical Reports Server (NTRS)

    Stanic, Vesna; Braun, James; Hoberecht, Mark

    2003-01-01

    Proton exchange membrane (PEM) fuel cells are energy sources that have the potential to replace alkaline fuel cells for space programs. Broad power ranges, high peak-to-nominal power capabilities, low maintenance costs, and the promise of increased life are the major advantages of PEM technology in comparison to alkaline technology. The probability of PEM fuel cells replacing alkaline fuel cells for space applications will increase if the promise of increased life is verified by achieving a minimum of 10,000 hours of operating life. Durability plays an important role in the process of evaluation and selection of MEAs for Teledyne s Phase I contract with the NASA Glenn Research Center entitled Proton Exchange Membrane Fuel cell (PEMFC) Power Plant Technology Development for 2nd Generation Reusable Launch Vehicles (RLVs). For this contract, MEAs that are typically used for H2/air operation were selected as potential candidates for H2/O2 PEM fuel cells because their catalysts have properties suitable for O2 operation. They were purchased from several well-established MEA manufacturers who are world leaders in the manufacturing of diverse products and have committed extensive resources in an attempt to develop and fully commercialize MEA technology. A total of twelve MEAs used in H2/air operation were initially identified from these manufacturers. Based on the manufacturers specifications, nine of these were selected for evaluation. Since 10,000 hours is almost equivalent to 14 months, it was not possible to perform continuous testing with each MEA selected during Phase I of the contract. Because of the lack of time, a screening test on each MEA was performed for 400 hours under accelerated test conditions. The major criterion for an MEA pass or fail of the screening test was the gas crossover rate. If the gas crossover rate was higher than the membrane intrinsic permeability after 400 hours of testing, it was considered that the MEA had failed the test. Three types of MEAs out of the nine total membranes failed the test. The evaluation results showed that fuel cell operating conditions (current, pressure, stoichiometric flow rates) were the parameters that influenced the durability of MEAs. In addition, the durability test results indicated that the type of membrane was also an important parameter for MEA durability. At accelerated test conditions, the MEAs with casted membranes failed during the 400 hour test. However, the MEAs prepared from the casted membrane with support as well as extruded membranes, both passed the 400h durability test at accelerated operating test conditions. As a result of the MEA accelerated durability tests, four MEAs were selected for further endurance testing. These tests are being carried out with four-cell stacks under nominal fuel cell operating conditions.

Top