Sample records for important pathogen causing

  1. Occurrence of Root Rot and Vascular Wilt Diseases in Roselle (Hibiscus sabdariffa L.) in Upper Egypt.

    PubMed

    Hassan, Naglaa; Shimizu, Masafumi; Hyakumachi, Mitsuro

    2014-03-01

    Roselle (Hibiscus sabdariffa L.) family Malvaceae is an important crop used in food, cosmetics and pharmaceutics industries. Roselle is cultivated mainly in Upper Egypt (Qena and Aswan governorates) producing 94% of total production. Root rot disease of roselle is one of the most important diseases that attack both seedlings and adult plants causing serious losses in crop productivity and quality. The main objective of the present study is to identify and characterize pathogens associated with root rot and wilt symptoms of roselle in Qena, Upper Egypt and evaluate their pathogenicity under greenhouse and field condition. Fusarium oxysporum, Macrophomina phaseolina, Fusarium solani, Fusarium equiseti and Fusarium semitectum were isolated from the natural root rot diseases in roselle. All isolated fungi were morphologically characterized and varied in their pathogenic potentialities. They could attack roselle plants causing damping-off and root rot/wilt diseases in different pathogenicity tests. The highest pathogenicity was caused by F. oxysporum and M. phaseolina followed by F. solani. The least pathogenic fungi were F. equiseti followed by F. semitectum. It obviously noted that Baladi roselle cultivar was more susceptible to infection with all tested fungi than Sobhia 17 under greenhouse and field conditions. This is the first report of fungal pathogens causing root rot and vascular wilt in roselle in Upper Egypt.

  2. Ventilator-associated pneumonia caused by ESKAPE organisms: cause, clinical features, and management.

    PubMed

    Sandiumenge, Alberto; Rello, Jordi

    2012-05-01

    Despite important geographical variations, Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter species (ESKAPE) pathogens constitute more than 80% of ventilator-associated pneumonia (VAP) episodes. Their clinical importance relies on their virulence and ability in developing mechanisms to decrease susceptibility to antimicrobials, increasing inappropriate therapy and affecting negatively on ICU patients' outcome. This review updates information on VAP due to ESKAPE pathogens. Although methicillin-resistant Staphylococcus aureus VAP may be clinically similar to that caused by susceptible strains, it is associated with poorer outcomes despite adequate treatment. Local colonization determines treatment options. The contribution of tracheobronchitis is an important issue. Minimum inhibitory concentration should be considered for nonfermentative Gram-negative bacteria VAP to prescribe extended infusion β-lactam treatment due to an increase of resistant strains. Strategies promoting antimicrobial diversity may protect against emergence and spread of resistance by ESKAPE pathogens. VAP due to ESKAPE pathogens represents a global challenge that can be prevented using stewardship programmes promoting diversity.

  3. The m.3291T>C mt-tRNALeu(UUR) mutation is definitely pathogenic and causes multisystem mitochondrial disease

    PubMed Central

    Yarham, John W.; Blakely, Emma L.; Alston, Charlotte L.; Roberts, Mark E.; Ealing, John; Pal, Piyali; Turnbull, Douglass M.; McFarland, Robert; Taylor, Robert W.

    2013-01-01

    Mitochondrial tRNA point mutations are important causes of human disease, and have been associated with a diverse range of clinical phenotypes. Definitively proving the pathogenicity of any given mt-tRNA mutation requires combined molecular, genetic and functional studies. Subsequent evaluation of the mutation using a pathogenicity scoring system is often very helpful in concluding whether or not the mutation is causing disease. Despite several independent reports linking the m.3291T>C mutation to disease in humans, albeit in association with several different phenotypes, its pathogenicity remains controversial. A lack of conclusive functional evidence and an over-emphasis on the poor evolutionary conservation of the affected nucleotide have contributed to this controversy. Here we describe an adult patient who presented with deafness and lipomas and evidence of mitochondrial abnormalities in his muscle biopsy, who harbours the m.3291T > C mutation, providing conclusive evidence of pathogenicity through analysis of mutation segregation with cytochrome c oxidase (COX) deficiency in single muscle fibres, underlining the importance of performing functional studies when assessing pathogenicity. PMID:23273904

  4. Current situation on highly pathogenic avian influenza

    USDA-ARS?s Scientific Manuscript database

    Avian influenza is one of the most important diseases affecting the poultry industry worldwide. Avian influenza viruses can cause a range of clinical disease in poultry. Viruses that cause severe disease and mortality are referred to as highly pathogenic avian influenza (HPAI) viruses. The Asian ...

  5. Occurrence of Root Rot and Vascular Wilt Diseases in Roselle (Hibiscus sabdariffa L.) in Upper Egypt

    PubMed Central

    Hassan, Naglaa; Shimizu, Masafumi

    2014-01-01

    Roselle (Hibiscus sabdariffa L.) family Malvaceae is an important crop used in food, cosmetics and pharmaceutics industries. Roselle is cultivated mainly in Upper Egypt (Qena and Aswan governorates) producing 94% of total production. Root rot disease of roselle is one of the most important diseases that attack both seedlings and adult plants causing serious losses in crop productivity and quality. The main objective of the present study is to identify and characterize pathogens associated with root rot and wilt symptoms of roselle in Qena, Upper Egypt and evaluate their pathogenicity under greenhouse and field condition. Fusarium oxysporum, Macrophomina phaseolina, Fusarium solani, Fusarium equiseti and Fusarium semitectum were isolated from the natural root rot diseases in roselle. All isolated fungi were morphologically characterized and varied in their pathogenic potentialities. They could attack roselle plants causing damping-off and root rot/wilt diseases in different pathogenicity tests. The highest pathogenicity was caused by F. oxysporum and M. phaseolina followed by F. solani. The least pathogenic fungi were F. equiseti followed by F. semitectum. It obviously noted that Baladi roselle cultivar was more susceptible to infection with all tested fungi than Sobhia 17 under greenhouse and field conditions. This is the first report of fungal pathogens causing root rot and vascular wilt in roselle in Upper Egypt. PMID:24808737

  6. Gall-ID: Tools for genotyping gall-causing phytopathogenic bacteria

    USDA-ARS?s Scientific Manuscript database

    Understanding the population structure and genetic diversity of plant pathogens, as well as the effect of agricultural practices on pathogen evolution, are important for disease management. Developments in molecular methods have contributed to increasing the resolution for accurate pathogen identifi...

  7. Draft genome sequence of Fusicladium effusum, cause of pecan scab

    USDA-ARS?s Scientific Manuscript database

    Pecan scab, caused by the plant pathogenic fungus Fusicladium effusum, is the most destructive disease of pecan, an important specialty crop cultivated in several regions of the world. At this time, no other members of the family Venturiaceae (in which the pathogen resides) have been reported sequen...

  8. Suppressive soils: back on the radar screen

    USDA-ARS?s Scientific Manuscript database

    Suppressive soils are those in which a pathogen does not establish or persist, establishes but causes little or no damage, or establishes and causes disease for a while but thereafter the disease is less important, although the pathogen may persist in the soil (Weller, 2002). ‘General suppression,’ ...

  9. Analysis of genome sequences from plant pathogenic Rhodococcus reveals genetic novelties in virulence loci

    USDA-ARS?s Scientific Manuscript database

    Members of Gram-positive Actinobacteria cause economically important diseases to plants. Within the Rhodococcus genus, some members can cause growth deformities and persist as pathogens on a wide range of host plants. The current model predicts that phytopathogenic isolates require a cluster of thre...

  10. The biology, identification and management of Rhizoctonia pathogens

    USDA-ARS?s Scientific Manuscript database

    Rhizoctonia solani is an economically important soilborne pathogen causing economic losses to crops, vegetables, ornamentals, forest trees and turfgrasses. The pathogenic isolates may belong to diverse genera and species and are variously responsible for pre- or post-emergence damping off of seedlin...

  11. The cause of global amphibian declines: a developmental endocrinologist's perspective.

    PubMed

    Hayes, T B; Falso, P; Gallipeau, S; Stice, M

    2010-03-15

    Greater than 70% of the world's amphibian species are in decline. We propose that there is probably not a single cause for global amphibian declines and present a three-tiered hierarchical approach that addresses interactions among and between ultimate and proximate factors that contribute to amphibian declines. There are two immediate (proximate) causes of amphibian declines: death and decreased recruitment (reproductive failure). Although much attention has focused on death, few studies have addressed factors that contribute to declines as a result of failed recruitment. Further, a great deal of attention has focused on the role of pathogens in inducing diseases that cause death, but we suggest that pathogen success is profoundly affected by four other ultimate factors: atmospheric change, environmental pollutants, habitat modification and invasive species. Environmental pollutants arise as likely important factors in amphibian declines because they have realized potential to affect recruitment. Further, many studies have documented immunosuppressive effects of pesticides, suggesting a role for environmental contaminants in increased pathogen virulence and disease rates. Increased attention to recruitment and ultimate factors that interact with pathogens is important in addressing this global crisis.

  12. The cause of global amphibian declines: a developmental endocrinologist's perspective

    PubMed Central

    Hayes, T. B.; Falso, P.; Gallipeau, S.; Stice, M.

    2010-01-01

    Greater than 70% of the world's amphibian species are in decline. We propose that there is probably not a single cause for global amphibian declines and present a three-tiered hierarchical approach that addresses interactions among and between ultimate and proximate factors that contribute to amphibian declines. There are two immediate (proximate) causes of amphibian declines: death and decreased recruitment (reproductive failure). Although much attention has focused on death, few studies have addressed factors that contribute to declines as a result of failed recruitment. Further, a great deal of attention has focused on the role of pathogens in inducing diseases that cause death, but we suggest that pathogen success is profoundly affected by four other ultimate factors: atmospheric change, environmental pollutants, habitat modification and invasive species. Environmental pollutants arise as likely important factors in amphibian declines because they have realized potential to affect recruitment. Further, many studies have documented immunosuppressive effects of pesticides, suggesting a role for environmental contaminants in increased pathogen virulence and disease rates. Increased attention to recruitment and ultimate factors that interact with pathogens is important in addressing this global crisis. PMID:20190117

  13. White Band Disease (type I) of endangered caribbean acroporid corals is caused by pathogenic bacteria.

    PubMed

    Kline, David I; Vollmer, Steven V

    2011-01-01

    Diseases affecting coral reefs have increased exponentially over the last three decades and contributed to their decline, particularly in the Caribbean. In most cases, the responsible pathogens have not been isolated, often due to the difficulty in isolating and culturing marine bacteria. White Band Disease (WBD) has caused unprecedented declines in the Caribbean acroporid corals, resulting in their listings as threatened on the US Threatened and Endangered Species List and critically endangered on the IUCN Red List. Yet, despite the importance of WBD, the probable pathogen(s) have not yet been determined. Here we present in situ transmission data from a series of filtrate and antibiotic treatments of disease tissue that indicate that WBD is contagious and caused by bacterial pathogen(s). Additionally our data suggest that Ampicillin could be considered as a treatment for WBD (type I).

  14. Urban Breeding Corvids as Disseminators of Ticks and Emerging Tick-Borne Pathogens.

    PubMed

    Sándor, Attila D; Kalmár, Zsuzsa; Matei, Ioana; Ionică, Angela Monica; Mărcuţan, Ioan-Daniel

    2017-02-01

    Crows (Corvidae) are common city dwellers worldwide and are increasingly important subjects of epidemiology studies. Although their importance as hosts and transmitters of a number of zoonotic parasites and pathogens is well known, there are no studies on their importance as tick hosts. After mosquitoes, ticks are the most important vectors of zoonotic pathogens, especially for those causing emerging zoonotic diseases. Pathogenic bacteria, especially Borrelia spp., Rickettsia spp., and Anaplasma spp., vectored by ticks, are the cause for most vector-borne diseases in Europe. Here we report on ticks and tick-borne pathogens harbored by urban breeding crows. A total of 36 birds (33.33%, n = 108) hosted ticks, with 91 individual ticks belonging to 6 species (Haemaphysalis concinna, Haemaphysalis parva, Haemaphysalis punctata, Hyalomma marginatum, Ixodes arboricola, and Ixodes ricinus). Rickettsia spp. DNA was found in 6.6% of ticks and 1.9% of bird tissues, whereas Anaplasma phagocytophilum was found in 5.9% of ticks and 0.9% of birds. Two rickettsial genospecies were located, Rickettsia helvetica and Rickettsia monacensis. This is the first study to determine such a diverse tick spectrum feeding on urban corvids, while highlighting their importance as tick hosts and raising concerns about their potential risk to human health.

  15. The most important parasites in Serbia involving the foodborne route of transmission

    NASA Astrophysics Data System (ADS)

    Petrović, J. M.; Prodanov-Radulović, J. Z.; Vasilev, S. D.

    2017-09-01

    Food can be an important route for transmission of parasites to humans. Compared to other foodborne pathogens in Serbia, foodborne (or potentially foodborne) parasites do not get the attention they undoubtedly deserve. The aim of this article is to give an overview of the most important parasitic pathogens that can be transmitted by food, and that cause disease in humans: Echinococcus, Trichinella, Taenia solium and Toxoplasma gondii. For each of these pathogens, the severity of human diseases they cause, incidence, mortality and case fatality rate among humans in Serbia as well as their prevalence in animal species in Serbia are described. Some of the described foodborne parasites can induce severe disease symptoms in humans associated with high case fatality rates, while others can cause massive outbreaks. All of the aforementioned parasites occur throughout Serbia and cause both severe public health problems and substantial economic losses in livestock production. In conclusion, the control measures of foodborne parasites certainly need to include education of farmers and improvement of veterinary sanitary measures in animal farming and animal waste control.

  16. Disease induction by human microbial pathogens in plant-model systems: potential, problems and prospects.

    PubMed

    van Baarlen, Peter; van Belkum, Alex; Thomma, Bart P H J

    2007-02-01

    Relatively simple eukaryotic model organisms such as the genetic model weed plant Arabidopsis thaliana possess an innate immune system that shares important similarities with its mammalian counterpart. In fact, some human pathogens infect Arabidopsis and cause overt disease with human symptomology. In such cases, decisive elements of the plant's immune system are likely to be targeted by the same microbial factors that are necessary for causing disease in humans. These similarities can be exploited to identify elementary microbial pathogenicity factors and their corresponding targets in a green host. This circumvents important cost aspects that often frustrate studies in humans or animal models and, in addition, results in facile ethical clearance.

  17. Anthracnose of lucky bamboo Dracaena sanderiana caused by the fungus Colletotrichum dracaenophilum in Egypt.

    PubMed

    Morsy, Ahmed A; Elshahawy, Ibrahim E

    2016-05-01

    Dracaena sanderiana, of the family Liliaceae, is among the ornamental plants most frequently imported into Egypt. Typical anthracnose symptoms were observed on the stems of imported D. sanderiana samples. The pathogen was isolated, demonstrated to be pathogenic based on Koch's rule and identified as Colletotrichum dracaenophilum. The optimum temperature for its growth ranges from 25 to 30 °C, maintained for 8 days. Kemazed 50% wettable powder (WP) was the most effective fungicide against the pathogen, as no fungal growth was observed over 100 ppm. The biocontrol agents Trichoderma harzianum and Trichoderma viride followed by Bacillus subtilis and Bacillus pumilus caused the highest reduction in fungal growth. To the best of our knowledge, this report describes the first time that this pathogen was observed on D. sanderiana in Egypt.

  18. Anthracnose of lucky bamboo Dracaena sanderiana caused by the fungus Colletotrichum dracaenophilum in Egypt

    PubMed Central

    Morsy, Ahmed A.; Elshahawy, Ibrahim E.

    2016-01-01

    Dracaena sanderiana, of the family Liliaceae, is among the ornamental plants most frequently imported into Egypt. Typical anthracnose symptoms were observed on the stems of imported D. sanderiana samples. The pathogen was isolated, demonstrated to be pathogenic based on Koch’s rule and identified as Colletotrichum dracaenophilum. The optimum temperature for its growth ranges from 25 to 30 °C, maintained for 8 days. Kemazed 50% wettable powder (WP) was the most effective fungicide against the pathogen, as no fungal growth was observed over 100 ppm. The biocontrol agents Trichoderma harzianum and Trichoderma viride followed by Bacillus subtilis and Bacillus pumilus caused the highest reduction in fungal growth. To the best of our knowledge, this report describes the first time that this pathogen was observed on D. sanderiana in Egypt. PMID:27222738

  19. Ecological competition and the incidence of Acinetobacter baumannii bloodstream infections in a teaching hospital in Southeastern Brazil.

    PubMed

    Lastoria, Letícia Chamma; Caldeira, Sílvia Maria; Moreira, Rayana Gonçalves; Akazawa, Renata Tamie; Maion, Júlia Coutinho; Fortaleza, Carlos Magno Castelo Branco

    2014-01-01

    Recently, pathogen ecology has been recognized as an important epidemiological determinant of healthcare-associated infections (HAIs). Acinetobacter baumannii is one of the most important agents known to cause HAIs. It is widespread in healthcare settings and exhibits seasonal variations in incidence. Little is known about the impact of competition with other hospital pathogens on the incidence of A. baumannii infection. We conducted an ecological study, enrolling patients who presented with healthcare-associated bloodstream infections (HA-BSIs) from 2005 to 2010 at a 450-bed teaching hospital in Brazil. HA-BSIs were said to be present when bacteria or fungi were recovered from blood cultures collected at least three days after admission. Monthly incidence rates were calculated for all HA-BSIs (overall or caused by specific pathogens or groups of pathogens). Multivariate Poisson regression models were used to identify the impacts of the incidence of several pathogens on the incidence of A. baumannii. The overall incidence rate of HA-BSI caused by A. baumannii was 2.5 per 10,000 patient-days. In the multivariate analysis, the incidence of HA-BSI caused by A. baumannii was negatively associated with the incidence rates of HA-BSI due to Staphylococcus aureus (rate ratio [RR]=0.88; 95% confidence interval [CI]=0.80-0.97), Enterobacter spp. (RR=0.84; 95%CI=0.74-0.94) and a pool of less common gram-negative pathogens. Our results suggest that competition between pathogens influences the etiology of HA-BSIs. It would be beneficial to take these findings into account in infection control policies.

  20. Viral meningitis.

    PubMed

    Chadwick, David R

    2005-01-01

    Viruses probably account for most cases of acute meningitis. Viral meningitis is often assumed to be a largely benign disease. For the commonest pathogens causing meningitis, enteroviruses, this is usually the case; however, for many of the other pathogens causing viral meningitis, and for common pathogens in the immunocompromised or infants, viral meningitis is frequently associated with substantial neurological complications and a significant mortality. Diagnostic methods for rapid and accurate identification of pathogens have improved over recent years, permitting more precise and earlier diagnoses. There have been fewer developments in therapies for viral meningitis, and there remain no effective therapies for most pathogens, emphasising the importance of prevention and early diagnosis. This review focuses on the presentation, diagnosis and management of viral meningitis and also covers the prevention of meningitis for pathogens where effective vaccines are available.

  1. Bacterial reproductive pathogens of cats and dogs.

    PubMed

    Graham, Elizabeth M; Taylor, David J

    2012-05-01

    With the notable exception of Brucella canis, exogenous bacterial pathogens are uncommon causes of reproductive disease in cats and dogs. Most bacterial reproductive infections are endogenous, and predisposing factors for infection are important. This article reviews the etiology, pathogenesis, clinical presentation, diagnosis, treatment, and public health significance of bacterial reproductive pathogens in cats and dogs.

  2. Conservation of Erwinia amylovora pathogenicity-relevant genes among Erwinia genomes.

    PubMed

    Borruso, Luigimaria; Salomone-Stagni, Marco; Polsinelli, Ivan; Schmitt, Armin Otto; Benini, Stefano

    2017-12-01

    The Erwinia genus comprises species that are plant pathogens, non-pathogen, epiphytes, and opportunistic human pathogens. Within the genus, Erwinia amylovora ranks among the top 10 plant pathogenic bacteria. It causes the fire blight disease and is a global threat to commercial apple and pear production. We analyzed the presence/absence of the E. amylovora genes reported to be important for pathogenicity towards Rosaceae within various Erwinia strains genomes. This simple bottom-up approach, allowed us to correlate the analyzed genes to pathogenicity, host specificity, and make useful considerations to drive targeted studies.

  3. Innate Immune Signaling Activated by MDR Bacteria in the Airway

    PubMed Central

    Parker, Dane; Ahn, Danielle; Cohen, Taylor; Prince, Alice

    2015-01-01

    Health care-associated bacterial pneumonias due to multiple-drug resistant (MDR) pathogens are an important public health problem and are major causes of morbidity and mortality worldwide. In addition to antimicrobial resistance, these organisms have adapted to the milieu of the human airway and have acquired resistance to the innate immune clearance mechanisms that normally prevent pneumonia. Given the limited efficacy of antibiotics, bacterial clearance from the airway requires an effective immune response. Understanding how specific airway pathogens initiate and regulate innate immune signaling, and whether this response is excessive, leading to host-induced pathology may guide future immunomodulatory therapy. We will focus on three of the most important causes of health care-associated pneumonia, Staphylococcus aureus, Pseudomonas aeruginosa, and Klebsiella pneumoniae, and review the mechanisms through which an inappropriate or damaging innate immune response is stimulated, as well as describe how airway pathogens cause persistent infection by evading immune activation. PMID:26582515

  4. Escherichia coli pathotypes

    USDA-ARS?s Scientific Manuscript database

    Escherichia coli strains are important commensals of the intestinal tract of humans and animals; however, pathogenic strains, including diarrhea-inducing E. coli and extraintestinal pathogenic E. coli. Intestinal E. coli pathotypes may cause a dehydrating watery diarrhea, or more severe diseases su...

  5. A Review of Eight High-Priority, Economically Important Viral Pathogens of Poultry within the Caribbean Region

    PubMed Central

    Gongora, Victor; Hartley, Dane; Oura, Christopher

    2018-01-01

    Viral pathogens cause devastating economic losses in poultry industries worldwide. The Caribbean region, which boasts some of the highest rates of poultry consumption in the world, is no exception. This review summarizes evidence for the circulation and spread of eight high-priority, economically important poultry viruses across the Caribbean region. Avian influenza virus (AIV), infectious bronchitis virus (IBV), Newcastle disease virus (NDV), infectious laryngotracheitis virus (ILTV), avian metapneumovirus (aMPV), infectious bursal disease virus (IBDV), fowl adenovirus group 1 (FADV Gp1), and egg drop syndrome virus (EDSV) were selected for review. This review of serological, molecular, and phylogenetic studies across Caribbean countries reveals evidence for sporadic outbreaks of respiratory disease caused by notifiable viral pathogens (AIV, IBV, NDV, and ILTV), as well as outbreaks of diseases caused by immunosuppressive viral pathogens (IBDV and FADV Gp1). This review highlights the need to strengthen current levels of surveillance and reporting for poultry diseases in domestic and wild bird populations across the Caribbean, as well as the need to strengthen the diagnostic capacity and capability of Caribbean national veterinary diagnostic laboratories. PMID:29373488

  6. Mycobacterium bovis and Other Uncommon Members of the Mycobacterium tuberculosis Complex.

    PubMed

    Esteban, Jaime; Muñoz-Egea, Maria-Carmen

    2016-12-01

    Since its discovery by Theobald Smith, Mycobacterium bovis has been a human pathogen closely related to animal disease. At present, M. bovis tuberculosis is still a problem of importance in many countries and is considered the main cause of zoonotic tuberculosis throughout the world. Recent development of molecular epidemiological tools has helped us to improve our knowledge about transmission patterns of this organism, which causes a disease indistinguishable from that caused by Mycobacterium tuberculosis. Diagnosis and treatment of this mycobacterium are similar to those for conventional tuberculosis, with the important exceptions of constitutive resistance to pyrazinamide and the fact that multidrug-resistant and extremely drug-resistant M. bovis strains have been described. Among other members of this complex, Mycobacterium africanum is the cause of many cases of tuberculosis in West Africa and can be found in other areas mainly in association with immigration. M. bovis BCG is the currently available vaccine for tuberculosis, but it can cause disease in some patients. Other members of the M. tuberculosis complex are mainly animal pathogens with only exceptional cases of human disease, and there are even some strains, like "Mycobacterium canettii," which is a rare human pathogen that could have an important role in the knowledge of the evolution of tuberculosis in the history.

  7. Vibrio Zinc-Metalloprotease Causes Photoinactivation of Coral Endosymbionts and Coral Tissue Lesions

    PubMed Central

    Sussman, Meir; Mieog, Jos C.; Doyle, Jason; Victor, Steven; Willis, Bette L.; Bourne, David G.

    2009-01-01

    Background Coral diseases are emerging as a serious threat to coral reefs worldwide. Of nine coral infectious diseases, whose pathogens have been characterized, six are caused by agents from the family Vibrionacae, raising questions as to their origin and role in coral disease aetiology. Methodology/Principal Findings Here we report on a Vibrio zinc-metalloprotease causing rapid photoinactivation of susceptible Symbiodinium endosymbionts followed by lesions in coral tissue. Symbiodinium photosystem II inactivation was diagnosed by an imaging pulse amplitude modulation fluorometer in two bioassays, performed by exposing Symbiodinium cells and coral juveniles to non-inhibited and EDTA-inhibited supernatants derived from coral white syndrome pathogens. Conclusion/Significance These findings demonstrate a common virulence factor from four phylogenetically related coral pathogens, suggesting that zinc-metalloproteases may play an important role in Vibrio pathogenicity in scleractinian corals. PMID:19225559

  8. The genomes of Mycosphaerella graminicola and M. fijiensis

    USDA-ARS?s Scientific Manuscript database

    Mycosphaerella graminicola and M. fijiensis are two of the most important pathogens of wheat and banana, respectively. Both pathogens cause economically significant diseases that can be controlled with fungicides, but have rapidly developed resistance rendering chemical control less than satisfactor...

  9. It's not all about us: evolution and maintenance of Cryptococcus virulence requires selection outside the human host.

    PubMed

    Gerstein, Aleeza C; Nielsen, Kirsten

    2017-04-01

    Cryptococcus is predominantly an AIDS-related pathogen that causes significant morbidity and mortality in immunocompromised patients. Research studies have historically focused on understanding how the organism causes human disease through the use of in vivo and in vitro model systems to identify virulence factors. Cryptococcus is not an obligate pathogen, however, as human-human transmission is either absent or rare. Selection in the environment must thus be invoked to shape the evolution of this taxa, and directly influences genotypic and trait diversity. Importantly, the evolution and maintenance of pathogenicity must also stem directly from environmental selection. To that end, here we examine abiotic and biotic stresses in the environment, and discuss how they could shape the factors that are commonly identified as important virulence traits. We identify a number of important unanswered questions about Cryptococcus diversity and evolution that are critical for understanding this deadly pathogen, and discuss how implementation of modern sampling and genomic tools could be utilized to answer these questions. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  10. Mycelial growth rate and toxin production in the seed pathogen Pyrenophora semeniperda: Resource trade-offs and temporally varying selection

    Treesearch

    S. E. Meyer; M. Masi; S. Clement; T. L. Davis; J. Beckstead

    2015-01-01

    Pyrenophora semeniperda, an important pathogen in Bromus tectorum seed banks in semi-arid western North America, exhibits >4-fold variation in mycelial growth rate. Host seeds exhibit seasonal changes in dormancy that affect the risk of pathogen-caused mortality. The hypothesis tested is that contrasting seed dormancy phenotypes select for contrasting strategies...

  11. Environmental Variation Generates Environmental Opportunist Pathogen Outbreaks.

    PubMed

    Anttila, Jani; Kaitala, Veijo; Laakso, Jouni; Ruokolainen, Lasse

    2015-01-01

    Many socio-economically important pathogens persist and grow in the outside host environment and opportunistically invade host individuals. The environmental growth and opportunistic nature of these pathogens has received only little attention in epidemiology. Environmental reservoirs are, however, an important source of novel diseases. Thus, attempts to control these diseases require different approaches than in traditional epidemiology focusing on obligatory parasites. Conditions in the outside-host environment are prone to fluctuate over time. This variation is a potentially important driver of epidemiological dynamics and affect the evolution of novel diseases. Using a modelling approach combining the traditional SIRS models to environmental opportunist pathogens and environmental variability, we show that epidemiological dynamics of opportunist diseases are profoundly driven by the quality of environmental variability, such as the long-term predictability and magnitude of fluctuations. When comparing periodic and stochastic environmental factors, for a given variance, stochastic variation is more likely to cause outbreaks than periodic variation. This is due to the extreme values being further away from the mean. Moreover, the effects of variability depend on the underlying biology of the epidemiological system, and which part of the system is being affected. Variation in host susceptibility leads to more severe pathogen outbreaks than variation in pathogen growth rate in the environment. Positive correlation in variation on both targets can cancel the effect of variation altogether. Moreover, the severity of outbreaks is significantly reduced by increase in the duration of immunity. Uncovering these issues helps in understanding and controlling diseases caused by environmental pathogens.

  12. Kisameet Clay Exhibits Potent Antibacterial Activity against the ESKAPE Pathogens

    PubMed Central

    Behroozian, Shekooh; Svensson, Sarah L.

    2016-01-01

    ABSTRACT The ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogens cause an increasing number of nosocomial infections worldwide since they escape the inhibitory effect of the available antibiotics and the immune response. Here, we report the broad-spectrum and potent antibacterial activity of Kisameet clay, a natural clay mineral from British Columbia, Canada, against a group of multidrug-resistant ESKAPE strains. The results suggest that this natural clay might be developed as a therapeutic option for the treatment of serious infections caused by these important pathogens. PMID:26814180

  13. An oak wilt primer

    Treesearch

    Jennifer Juzwik

    2000-01-01

    Oak wilt, caused by the fungus Ceratocystis fagacearum {Bretz} Hunt, is an important disease of oaks (Quercus spp.) in the eastern United States. the disease occurs in 22 states and is considered the most important forest disease problem in Illinois, Iowa, Minnesota, Texas and Wisconsin. The pathogen causes mortality of thousands...

  14. The atypical pneumonias: clinical diagnosis and importance.

    PubMed

    Cunha, B A

    2006-05-01

    The most common atypical pneumonias are caused by three zoonotic pathogens, Chlamydia psittaci (psittacosis), Francisella tularensis (tularemia), and Coxiella burnetii (Q fever), and three nonzoonotic pathogens, Chlamydia pneumoniae, Mycoplasma pneumoniae, and Legionella. These atypical agents, unlike the typical pathogens, often cause extrapulmonary manifestations. Atypical CAPs are systemic infectious diseases with a pulmonary component and may be differentiated clinically from typical CAPs by the pattern of extrapulmonary organ involvement which is characteristic for each atypical CAP. Zoonotic pneumonias may be eliminated from diagnostic consideration with a negative contact history. The commonest clinical problem is to differentiate legionnaire's disease from typical CAP as well as from C. pneumoniae or M. pneumonia infection. Legionella is the most important atypical pathogen in terms of severity. It may be clinically differentiated from typical CAP and other atypical pathogens by the use of a weighted point system of syndromic diagnosis based on the characteristic pattern of extrapulmonary features. Because legionnaire's disease often presents as severe CAP, a presumptive diagnosis of Legionella should prompt specific testing and empirical anti-Legionella therapy such as the Winthrop-University Hospital Infectious Disease Division's weighted point score system. Most atypical pathogens are difficult or dangerous to isolate and a definitive laboratory diagnosis is usually based on indirect, i.e., direct flourescent antibody (DFA), indirect flourescent antibody (IFA). Atypical CAP is virtually always monomicrobial; increased IFA IgG tests indicate past exposure and not concurrent infection. Anti-Legionella antibiotics include macrolides, doxycycline, rifampin, quinolones, and telithromycin. The drugs with the highest level of anti-Legionella activity are quinolones and telithromycin. Therapy is usually continued for 2 weeks if potent anti-Legionella drugs are used. In adults, M. pneumoniae and C. pneumoniae may exacerbate or cause asthma. The importance of the atypical pneumonias is not related to their frequency (approximately 15% of CAPs), but to difficulties in their diagnosis, and their nonresponsiveness to beta-lactam therapy. Because of the potential role of C. pneumoniae in coronary artery disease and multiple sclerosis (MS), and the role of M. pneumoniae and C. pneumoniae in causing or exacerbating asthma, atypical CAPs also have public health importance.

  15. Changing epidemiology of melioidosis? A case of acute pulmonary melioidosis with fatal outcome imported from Brazil.

    PubMed Central

    Aardema, H.; Luijnenburg, E. M.; Salm, E. F.; Bijlmer, H. A.; Visser, C. E.; Van't Wout, J. W.

    2005-01-01

    Melioidosis is an infectious disease caused by Burkholderia pseudomallei. It is endemic in South East Asia and tropical regions of Northern Australia. Sporadic cases have been described elsewhere. In this article we present a case of acute pulmonary melioidosis with fatal outcome imported from Brazil. The most common pathogen causing severe community-acquired pneumonia in Brazil is Streptococcus pneumoniae. Other possible pathogens include Legionella spp., Mycoplasma pneumonia, Gram-negative rods and viruses. There are few reports of melioidosis in the Americas. This article represents the second known human case of melioidosis from Brazil. Recognition of melioidosis as a possible cause of severe pneumonia, even if a patient has not been travelling in a highly endemic area, is important because of the therapeutic consequences. The epidemiology of melioidosis will be reviewed. PMID:16181507

  16. Post-translational modification of LipL32 during Leptospira interrogans infection

    USDA-ARS?s Scientific Manuscript database

    Leptospirosis, a re-emerging disease of global importance caused by pathogenic Leptospira spp., is considered the world’s most widespread zoonotic disease. Rats serve as asymptomatic carriers of pathogenic Leptospira and are critical for disease spread. In such reservoir hosts, leptospires colonize ...

  17. Bonamia parasites: a rapidly changing perspective on a genus of important mollusc pathogens.

    PubMed

    Engelsma, Marc Y; Culloty, Sarah C; Lynch, Sharon A; Arzul, Isabelle; Carnegie, Ryan B

    2014-07-24

    Organisms of the genus Bonamia are intracellular protistan parasites of oysters. To date, 4 species have been described (B. ostreae, B. exitiosa, B. perspora and B. roughleyi), although the status of B. roughleyi is controversial. Introduction especially of B. ostreae and B. exitiosa to naïve host populations has been shown to cause mass mortalities in the past and has had a dramatic impact on oyster production. Both B. ostreae and B. exitiosa are pathogens notifiable to the World Organisation for Animal Health (OIE) and the European Union. Effective management of the disease caused by these pathogens is complicated by the extensive nature of the oyster production process and limited options for disease control of the cultured stocks in open water. This review focuses on the recent advances in research on genetic relationships between Bonamia isolates, geographical distribution, susceptible host species, diagnostics, epizootiology, host-parasite interactions, and disease resistance and control of this globally important genus of oyster pathogens.

  18. Host-pathogen interaction in Fusarium oxysporum infections: where do we stand?

    PubMed

    Husaini, Amjad M; Sakina, Aafreen; Cambay, Souliha R

    2018-03-16

    Fusarium oxysporum, a ubiquitous soil-borne pathogen causes devastating vascular wilt in more than 100 plant species and ranks fifth among top ten fungal plant pathogens. It has emerged as a human pathogen too, causing infections in immune-compromised patients. It is, therefore, important to gain insight into the molecular processes involved in the pathogenesis of this trans-kingdom pathogen. A complex network comprising of interconnected and over lapping signal pathways; mitogen-activated protein kinase (MAPK) signaling pathways, Ras proteins, G-protein signaling components and their downstream pathways, components of the velvet (LaeA/VeA/VelB) complex and cAMP pathways, is involved in perceiving the host. This network regulates the expression of various pathogenicity genes. Plants have however evolved an elaborate protection system to combat this attack. They too possess intricate mechanisms at molecular level, which once triggered by pathogen attack transduce signals to activate defense response. This review focuses on understanding and presenting a wholistic picture of the molecular mechanisms of F. oxysporum-host interactions in plant immunity.

  19. The Z Proteins of Pathogenic but Not Nonpathogenic Arenaviruses Inhibit RIG-i-Like Receptor-Dependent Interferon Production

    PubMed Central

    Xing, Junji; Ly, Hinh

    2014-01-01

    ABSTRACT Arenavirus pathogens cause a wide spectrum of diseases in humans ranging from central nervous system disease to lethal hemorrhagic fevers with few treatment options. The reason why some arenaviruses can cause severe human diseases while others cannot is unknown. We find that the Z proteins of all known pathogenic arenaviruses, lymphocytic choriomeningitis virus (LCMV) and Lassa, Junin, Machupo, Sabia, Guanarito, Chapare, Dandenong, and Lujo viruses, can inhibit retinoic acid-inducible gene 1 (RIG-i) and Melanoma Differentiation-Associated protein 5 (MDA5), in sharp contrast to those of 14 other nonpathogenic arenaviruses. Inhibition of the RIG-i-like receptors (RLRs) by pathogenic Z proteins is mediated by the protein-protein interactions of Z and RLRs, which lead to the disruption of the interactions between RLRs and mitochondrial antiviral signaling (MAVS). The Z-RLR interactive interfaces are located within the N-terminal domain (NTD) of the Z protein and the N-terminal CARD domains of RLRs. Swapping of the LCMV Z NTD into the nonpathogenic Pichinde virus (PICV) genome does not affect virus growth in Vero cells but significantly inhibits the type I interferon (IFN) responses and increases viral replication in human primary macrophages. In summary, our results show for the first time an innate immune-system-suppressive mechanism shared by the diverse pathogenic arenaviruses and thus shed important light on the pathogenic mechanism of human arenavirus pathogens. IMPORTANCE We show that all known human-pathogenic arenaviruses share an innate immune suppression mechanism that is based on viral Z protein-mediated RLR inhibition. Our report offers important insights into the potential mechanism of arenavirus pathogenesis, provides a convenient way to evaluate the pathogenic potential of known and/or emerging arenaviruses, and reveals a novel target for the development of broad-spectrum therapies to treat this group of diverse pathogens. More broadly, our report provides a better understanding of the mechanisms of viral immune suppression and host-pathogen interactions. PMID:25552708

  20. Fusarium-induced diseases of tropical, perennial crops.

    PubMed

    Ploetz, Randy C

    2006-06-01

    ABSTRACT The world's oldest ecosystems are found in the tropics. They are diverse, highly evolved, but barely understood. This and subsequent papers describe diseases of tropical, perennial plants that are caused by Fusarium spp. Many of these are economically significant, difficult to manage, and of scientific interest. Some represent coevolved patho-systems (e.g., Panama disease, tracheomycosis of coffee, fusariosis of pineapple, and Fusarium wilt of oil palm), whereas others may be new-encounter diseases or are caused by generalist pathogens (cushion gall of cacao). New vector relationships are evident in other pathosystems (e.g., mango malformation), and two or more pathogens have been shown to cause some of the diseases (Panama disease and tracheomycosis of coffee). More work on these pathosystems is warranted as they could reveal much about the evolution of plant pathogens and the important diseases they cause.

  1. Biogeography of Human Infectious Diseases: A Global Historical Analysis

    PubMed Central

    Cashdan, Elizabeth

    2014-01-01

    Objectives Human pathogen richness and prevalence vary widely across the globe, yet we know little about whether global patterns found in other taxa also predict diversity in this important group of organisms. This study (a) assesses the relative importance of temperature, precipitation, habitat diversity, and population density on the global distributions of human pathogens and (b) evaluates the species-area predictions of island biogeography for human pathogen distributions on oceanic islands. Methods Historical data were used in order to minimize the influence of differential access to modern health care on pathogen prevalence. The database includes coded data (pathogen, environmental and cultural) for a worldwide sample of 186 non-industrial cultures, including 37 on islands. Prevalence levels for 10 pathogens were combined into a pathogen prevalence index, and OLS regression was used to model the environmental determinants of the prevalence index and number of pathogens. Results Pathogens (number and prevalence index) showed the expected latitudinal gradient, but predictors varied by latitude. Pathogens increased with temperature in high-latitude zones, while mean annual precipitation was a more important predictor in low-latitude zones. Other environmental factors associated with more pathogens included seasonal dry extremes, frost-free climates, and human population density outside the tropics. Islands showed the expected species-area relationship for all but the smallest islands, and the relationship was not mediated by habitat diversity. Although geographic distributions of free-living and parasitic taxa typically have different determinants, these data show that variables that influence the distribution of free-living organisms also shape the global distribution of human pathogens. Understanding the cause of these distributions is potentially important, since geographical variation in human pathogens has an important influence on global disparities in human welfare. PMID:25271730

  2. Biogeography of human infectious diseases: a global historical analysis.

    PubMed

    Cashdan, Elizabeth

    2014-01-01

    Human pathogen richness and prevalence vary widely across the globe, yet we know little about whether global patterns found in other taxa also predict diversity in this important group of organisms. This study (a) assesses the relative importance of temperature, precipitation, habitat diversity, and population density on the global distributions of human pathogens and (b) evaluates the species-area predictions of island biogeography for human pathogen distributions on oceanic islands. Historical data were used in order to minimize the influence of differential access to modern health care on pathogen prevalence. The database includes coded data (pathogen, environmental and cultural) for a worldwide sample of 186 non-industrial cultures, including 37 on islands. Prevalence levels for 10 pathogens were combined into a pathogen prevalence index, and OLS regression was used to model the environmental determinants of the prevalence index and number of pathogens. Pathogens (number and prevalence index) showed the expected latitudinal gradient, but predictors varied by latitude. Pathogens increased with temperature in high-latitude zones, while mean annual precipitation was a more important predictor in low-latitude zones. Other environmental factors associated with more pathogens included seasonal dry extremes, frost-free climates, and human population density outside the tropics. Islands showed the expected species-area relationship for all but the smallest islands, and the relationship was not mediated by habitat diversity. Although geographic distributions of free-living and parasitic taxa typically have different determinants, these data show that variables that influence the distribution of free-living organisms also shape the global distribution of human pathogens. Understanding the cause of these distributions is potentially important, since geographical variation in human pathogens has an important influence on global disparities in human welfare.

  3. Legionella and Mycobacterium Occurrence/Persistence in Homes and Office Buildings

    EPA Science Inventory

    Legionella and non-tuberculous Mycobacterium species are two of the more important environmental pathogens that cause human health effects. They contribute to the highest economic burden and one of the heaviest disease burdens of all of the waterborne pathogens that pose a risk t...

  4. Pruning of Manchurian crabapple for management of speck rot and Sphaeropsis rot in apple

    USDA-ARS?s Scientific Manuscript database

    Phacidiopycnis washingtonensis and Sphaeropsis pyriputrescens are two important quarantined fungal pathogens that cause post-harvest speck rot and Sphaeropsis rot, respectively, in apple. Due to detection of these pathogens in fruit shipments and quarantine regulation, export of apple from Washingto...

  5. The Mitochondrial Genome of Moniliophthora roreri, the frosty pod rot pathogen of cacao

    USDA-ARS?s Scientific Manuscript database

    Moniliophthora roreri and Moniliophthora perniciosa are closely related basidiomycetes that cause two important diseases in cacao (Theobroma cacao L.): frosty pod rot and the witches' broom disease, respectively. A comparison of the complete mitochondrial genomes of these pathogens shows a high degr...

  6. Demonstrating concepts of pathogenesis using effectors of Phytophthora infestans

    USDA-ARS?s Scientific Manuscript database

    Pathogenesis, or how pathogens cause disease, is an important concept in plant pathology. The study of pathogenesis in plant pathology has rapidly expanded and is now a significant portion of plant pathology research (especially research at the molecular level of host-pathogen interaction). With the...

  7. Escherichia coli as other Enterobacteriaceae: food poisoning and health effects

    USDA-ARS?s Scientific Manuscript database

    Many Escherichia coli strains are harmless, and they are an important commensal in the intestinal microflora; however, pathogenic strains also exist. The pathogenic strains can be divided into diarrhea-inducing strains and strains that reside in the intestines but only cause disease in bodily sites...

  8. Comparative genomic analyses of Clavibacter michiganensis subsp. insidiosus and aggressiveness on Medicago truncatula

    USDA-ARS?s Scientific Manuscript database

    Clavibacter michiganensis is the most economically important gram-positive bacterial plant pathogen with subspecies that cause serious diseases of maize, wheat, tomato, potato, and alfalfa. Much less is known about pathogenesis involving gram-positive plant pathogens than is known for gram-negative ...

  9. The race between infection and immunity - how do pathogens set the pace?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ribiero, Ruy M

    2009-01-01

    Infection is often referred to as a race between pathogen and immune response. This metaphor suggests that slower growing pathogens should be more easily controlled. However, a growing body ofevidence shows that many chronic infections are caused by failure to control slow growing pathogens. The slow growth of pathogens appears to directly affect the kinetics of the immune response. Compared with the response to fast growing pathogens, the T cell response to slow pathogens is delayed in its initiation, lymphocyte expansion is slow and the response often fails to clear the pathogen, leading to chronic infection. Understanding the 'rules ofthemore » race' for slow growing pathogens has important implications for vaccine design and immune control of many chronic infections.« less

  10. Label-free SERS detection of Salmonella Typhimurium on DNA aptamer modified AgNR substrates

    USDA-ARS?s Scientific Manuscript database

    Salmonella Typhimurium is an important foodborne pathogen which causes gastroenteritis in both humans and animals. Currently available rapid methods have relied on antibodies to offer specific recognition of the pathogen from the background. As a substitute of antibodies, nucleic acid aptamers offer...

  11. Testing the efficacy of bicarbonates as fungicides against Cercospora beticola

    USDA-ARS?s Scientific Manuscript database

    Cercospora leaf spot (CLS), caused by the fungal pathogen Cercospora beticola, is an economically important pathogen of sugar beets in many production areas throughout the world. The application of fungicides has been one of the most effective management tools for CLS, but their effectiveness has di...

  12. Pathogenicity and genetic diversity of Fusarium oxysporum causing soybean root rot in northeast China

    USDA-ARS?s Scientific Manuscript database

    Soybean is an important edible legume cultivated around the world. However, soybean production is seriously impacted by the widespread occurrence of root rot disease. In this study, genetic diversity and pathogenicity of Fusarium oxysporum associated with root rot of soybean in Heilongjiang province...

  13. Chitin degradation and utilization by virulent Aeromonas hydrophila strain ML10-51K

    USDA-ARS?s Scientific Manuscript database

    Virulent Aeromonas hydrophila (vAh) is one of the most important bacterial pathogens that causes persistent outbreaks of motile Aeromonas septicemia (MAS) in warm-water fishes. Among factors associated with MAS outbreaks, the survivability of this pathogen in aquatic environments is of great concern...

  14. Plant-derived antimicrobial eugenol modulates C. jejuni proteome and virulence critical for colonization in chickens

    USDA-ARS?s Scientific Manuscript database

    Campylobacter jejuni is an important foodborne pathogen that causes severe diarrhea in humans. Chickens act as the reservoir host for Campylobacter, wherein the pathogen colonizes the ceca leading to contaminated poultry products during slaughter. The potential of natural intervention strategies, in...

  15. Generation of Reactive Oxygen Species via NOXa Is Important for Development and Pathogenicity of Mycosphaerella graminicola.

    PubMed

    Choi, Yoon-E; Lee, Changsu; Goodwin, Stephen B

    2016-03-01

    The ascomycete fungus Mycosphaerella graminicola (synonym Zymoseptoria tritici) is an important pathogen of wheat causing economically significant losses. The primary nutritional mode of this fungus is thought to be hemibiotrophic. This pathogenic lifestyle is associated with an early biotrophic stage of nutrient uptake followed by a necrotrophic stage aided possibly by production of a toxin or reactive oxygen species (ROS). In many other fungi, the genes CREA and AREA are important during the biotrophic stage of infection, while the NOXa gene product is important during necrotrophic growth. To test the hypothesis that these genes are important for pathogenicity of M. graminicola, we employed an over-expression strategy for the selected target genes CREA, AREA, and NOXa, which might function as regulators of nutrient acquisition or ROS generation. Increased expressions of CREA, AREA, and NOXa in M. graminicola were confirmed via quantitative real-time PCR and strains were subsequently assayed for pathogenicity. Among them, the NOXa over-expression strain, NO2, resulted in significantly increased virulence. Moreover, instead of the usual filamentous growth, we observed a predominance of yeast-like growth of NO2 which was correlated with ROS production. Our data indicate that ROS generation via NOXa is important to pathogenicity as well as development in M. graminicola.

  16. Risks Posed by Reston, the Forgotten Ebolavirus

    PubMed Central

    Cantoni, Diego; Hamlet, Arran; Michaelis, Martin; Wass, Mark N.

    2016-01-01

    ABSTRACT Out of the five members of the Ebolavirus family, four cause life-threatening disease, whereas the fifth, Reston virus (RESTV), is nonpathogenic in humans. The reasons for this discrepancy remain unclear. In this review, we analyze the currently available information to provide a state-of-the-art summary of the factors that determine the human pathogenicity of Ebolaviruses. RESTV causes sporadic infections in cynomolgus monkeys and is found in domestic pigs throughout the Philippines and China. Phylogenetic analyses revealed that RESTV is most closely related to the Sudan virus, which causes a high mortality rate in humans. Amino acid sequence differences between RESTV and the other Ebolaviruses are found in all nine Ebolavirus proteins, though no one residue appears sufficient to confer pathogenicity. Changes in the glycoprotein contribute to differences in Ebolavirus pathogenicity but are not sufficient to confer pathogenicity on their own. Similarly, differences in VP24 and VP35 affect viral immune evasion and are associated with changes in human pathogenicity. A recent in silico analysis systematically determined the functional consequences of sequence variations between RESTV and human-pathogenic Ebolaviruses. Multiple positions in VP24 were differently conserved between RESTV and the other Ebolaviruses and may alter human pathogenicity. In conclusion, the factors that determine the pathogenicity of Ebolaviruses in humans remain insufficiently understood. An improved understanding of these pathogenicity-determining factors is of crucial importance for disease prevention and for the early detection of emergent and potentially human-pathogenic RESTVs. PMID:28066813

  17. Effects of damping-off caused by Rhizoctonia solani anastomosis group 2-1 on roots of wheat and oil seed rape quantified using X-ray Computed Tomography and real-time PCR

    PubMed Central

    Sturrock, Craig J.; Woodhall, James; Brown, Matthew; Walker, Catherine; Mooney, Sacha J.; Ray, Rumiana V.

    2015-01-01

    Rhizoctonia solani is a plant pathogenic fungus that causes significant establishment and yield losses to several important food crops globally. This is the first application of high resolution X-ray micro Computed Tomography (X-ray μCT) and real-time PCR to study host–pathogen interactions in situ and elucidate the mechanism of Rhizoctonia damping-off disease over a 6-day period caused by R. solani, anastomosis group (AG) 2-1 in wheat (Triticum aestivum cv. Gallant) and oil seed rape (OSR, Brassica napus cv. Marinka). Temporal, non-destructive analysis of root system architectures was performed using RooTrak and validated by the destructive method of root washing. Disease was assessed visually and related to pathogen DNA quantification in soil using real-time PCR. R. solani AG2-1 at similar initial DNA concentrations in soil was capable of causing significant damage to the developing root systems of both wheat and OSR. Disease caused reductions in primary root number, root volume, root surface area, and convex hull which were affected less in the monocotyledonous host. Wheat was more tolerant to the pathogen, exhibited fewer symptoms and developed more complex root systems. In contrast, R. solani caused earlier damage and maceration of the taproot of the dicot, OSR. Disease severity was related to pathogen DNA accumulation in soil only for OSR, however, reductions in root traits were significantly associated with both disease and pathogen DNA. The method offers the first steps in advancing current understanding of soil-borne pathogen behavior in situ at the pore scale, which may lead to the development of mitigation measures to combat disease influence in the field. PMID:26157449

  18. Effects of damping-off caused by Rhizoctonia solani anastomosis group 2-1 on roots of wheat and oil seed rape quantified using X-ray Computed Tomography and real-time PCR.

    PubMed

    Sturrock, Craig J; Woodhall, James; Brown, Matthew; Walker, Catherine; Mooney, Sacha J; Ray, Rumiana V

    2015-01-01

    Rhizoctonia solani is a plant pathogenic fungus that causes significant establishment and yield losses to several important food crops globally. This is the first application of high resolution X-ray micro Computed Tomography (X-ray μCT) and real-time PCR to study host-pathogen interactions in situ and elucidate the mechanism of Rhizoctonia damping-off disease over a 6-day period caused by R. solani, anastomosis group (AG) 2-1 in wheat (Triticum aestivum cv. Gallant) and oil seed rape (OSR, Brassica napus cv. Marinka). Temporal, non-destructive analysis of root system architectures was performed using RooTrak and validated by the destructive method of root washing. Disease was assessed visually and related to pathogen DNA quantification in soil using real-time PCR. R. solani AG2-1 at similar initial DNA concentrations in soil was capable of causing significant damage to the developing root systems of both wheat and OSR. Disease caused reductions in primary root number, root volume, root surface area, and convex hull which were affected less in the monocotyledonous host. Wheat was more tolerant to the pathogen, exhibited fewer symptoms and developed more complex root systems. In contrast, R. solani caused earlier damage and maceration of the taproot of the dicot, OSR. Disease severity was related to pathogen DNA accumulation in soil only for OSR, however, reductions in root traits were significantly associated with both disease and pathogen DNA. The method offers the first steps in advancing current understanding of soil-borne pathogen behavior in situ at the pore scale, which may lead to the development of mitigation measures to combat disease influence in the field.

  19. Comparative Pathogenomics Reveals Horizontally Acquired Novel Virulence Genes in Fungi Infecting Cereal Hosts

    PubMed Central

    Gardiner, Donald M.; McDonald, Megan C.; Covarelli, Lorenzo; Solomon, Peter S.; Rusu, Anca G.; Marshall, Mhairi; Kazan, Kemal; Chakraborty, Sukumar; McDonald, Bruce A.; Manners, John M.

    2012-01-01

    Comparative analyses of pathogen genomes provide new insights into how pathogens have evolved common and divergent virulence strategies to invade related plant species. Fusarium crown and root rots are important diseases of wheat and barley world-wide. In Australia, these diseases are primarily caused by the fungal pathogen Fusarium pseudograminearum. Comparative genomic analyses showed that the F. pseudograminearum genome encodes proteins that are present in other fungal pathogens of cereals but absent in non-cereal pathogens. In some cases, these cereal pathogen specific genes were also found in bacteria associated with plants. Phylogenetic analysis of selected F. pseudograminearum genes supported the hypothesis of horizontal gene transfer into diverse cereal pathogens. Two horizontally acquired genes with no previously known role in fungal pathogenesis were studied functionally via gene knockout methods and shown to significantly affect virulence of F. pseudograminearum on the cereal hosts wheat and barley. Our results indicate using comparative genomics to identify genes specific to pathogens of related hosts reveals novel virulence genes and illustrates the importance of horizontal gene transfer in the evolution of plant infecting fungal pathogens. PMID:23028337

  20. A maize resistance gene functions against bacterial streak disease in rice

    PubMed Central

    Zhao, Bingyu; Lin, Xinghua; Poland, Jesse; Trick, Harold; Leach, Jan; Hulbert, Scot

    2005-01-01

    Although cereal crops all belong to the grass family (Poacea), most of their diseases are specific to a particular species. Thus, a given cereal species is typically resistant to diseases of other grasses, and this nonhost resistance is generally stable. To determine the feasibility of transferring nonhost resistance genes (R genes) between distantly related grasses to control specific diseases, we identified a maize R gene that recognizes a rice pathogen, Xanthomonas oryzae pv. oryzicola, which causes bacterial streak disease. Bacterial streak is an important disease of rice in Asia, and no simply inherited sources of resistance have been identified in rice. Although X. o. pv. oryzicola does not cause disease on maize, we identified a maize gene, Rxo1, that conditions a resistance reaction to a diverse collection of pathogen strains. Surprisingly, Rxo1 also controls resistance to the unrelated pathogen Burkholderia andropogonis, which causes bacterial stripe of sorghum and maize. The same gene thus controls resistance reactions to both pathogens and nonpathogens of maize. Rxo1 has a nucleotide-binding site-leucine-rich repeat structure, similar to many previously identified R genes. Most importantly, Rxo1 functions after transfer as a transgene to rice, demonstrating the feasibility of nonhost R gene transfer between cereals and providing a valuable tool for controlling bacterial streak disease. PMID:16230639

  1. A maize resistance gene functions against bacterial streak disease in rice.

    PubMed

    Zhao, Bingyu; Lin, Xinghua; Poland, Jesse; Trick, Harold; Leach, Jan; Hulbert, Scot

    2005-10-25

    Although cereal crops all belong to the grass family (Poacea), most of their diseases are specific to a particular species. Thus, a given cereal species is typically resistant to diseases of other grasses, and this nonhost resistance is generally stable. To determine the feasibility of transferring nonhost resistance genes (R genes) between distantly related grasses to control specific diseases, we identified a maize R gene that recognizes a rice pathogen, Xanthomonas oryzae pv. oryzicola, which causes bacterial streak disease. Bacterial streak is an important disease of rice in Asia, and no simply inherited sources of resistance have been identified in rice. Although X. o. pv. oryzicola does not cause disease on maize, we identified a maize gene, Rxo1, that conditions a resistance reaction to a diverse collection of pathogen strains. Surprisingly, Rxo1 also controls resistance to the unrelated pathogen Burkholderia andropogonis, which causes bacterial stripe of sorghum and maize. The same gene thus controls resistance reactions to both pathogens and nonpathogens of maize. Rxo1 has a nucleotide-binding site-leucine-rich repeat structure, similar to many previously identified R genes. Most importantly, Rxo1 functions after transfer as a transgene to rice, demonstrating the feasibility of nonhost R gene transfer between cereals and providing a valuable tool for controlling bacterial streak disease.

  2. Crossover fungal pathogens: the biology and pathogenesis of fungi capable of crossing kingdoms to infect plants and humans.

    PubMed

    Gauthier, Gregory M; Keller, Nancy P

    2013-12-01

    The outbreak of fungal meningitis associated with contaminated methylprednisolone acetate has thrust the importance of fungal infections into the public consciousness. The predominant pathogen isolated from clinical specimens, Exserohilum rostratum (teleomorph: Setosphaeria rostrata), is a dematiaceous fungus that infects grasses and rarely humans. This outbreak highlights the potential for fungal pathogens to infect both plants and humans. Most crossover or trans-kingdom pathogens are soil saprophytes and include fungi in Ascomycota and Mucormycotina phyla. To establish infection, crossover fungi must overcome disparate, host-specific barriers, including protective surfaces (e.g. cuticle, skin), elevated temperature, and immune defenses. This review illuminates the underlying mechanisms used by crossover fungi to cause infection in plants and mammals, and highlights critical events that lead to human infection by these pathogens. Several genes including veA, laeA, and hapX are important in regulating biological processes in fungi important for both invasive plant and animal infections. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Staphylococcus aureus Responds to the Central Metabolite Pyruvate To Regulate Virulence.

    PubMed

    Harper, Lamia; Balasubramanian, Divya; Ohneck, Elizabeth A; Sause, William E; Chapman, Jessica; Mejia-Sosa, Bryan; Lhakhang, Tenzin; Heguy, Adriana; Tsirigos, Aristotelis; Ueberheide, Beatrix; Boyd, Jeffrey M; Lun, Desmond S; Torres, Victor J

    2018-01-23

    Staphylococcus aureus is a versatile bacterial pathogen that can cause significant disease burden and mortality. Like other pathogens, S. aureus must adapt to its environment to produce virulence factors to survive the immune responses evoked by infection. Despite the importance of environmental signals for S. aureus pathogenicity, only a limited number of these signals have been investigated in detail for their ability to modulate virulence. Here we show that pyruvate, a central metabolite, causes alterations in the overall metabolic flux of S. aureus and enhances its pathogenicity. We demonstrate that pyruvate induces the production of virulence factors such as the pore-forming leucocidins and that this induction results in increased virulence of community-acquired methicillin-resistant S. aureus (CA-MRSA) clone USA300. Specifically, we show that an efficient "pyruvate response" requires the activation of S. aureus master regulators AgrAC and SaeRS as well as the ArlRS two-component system. Altogether, our report further establishes a strong relationship between metabolism and virulence and identifies pyruvate as a novel regulatory signal for the coordination of the S. aureus virulon through intricate regulatory networks. IMPORTANCE Delineation of the influence of host-derived small molecules on the makeup of human pathogens is a growing field in understanding host-pathogen interactions. S. aureus is a prominent pathogen that colonizes up to one-third of the human population and can cause serious infections that result in mortality in ~15% of cases. Here, we show that pyruvate, a key nutrient and central metabolite, causes global changes to the metabolic flux of S. aureus and activates regulatory networks that allow significant increases in the production of leucocidins. These and other virulence factors are critical for S. aureus to infect diverse host niches, initiate infections, and effectively subvert host immune responses. Understanding how environmental signals, particularly ones that are essential to and prominent in the human host, affect virulence will allow us to better understand pathogenicity and consider more-targeted approaches to tackling the current S. aureus epidemic. Copyright © 2018 Harper et al.

  4. Comparative analysis of disease pathogenesis and molecular mechanisms of New World and Old World arenavirus infections

    PubMed Central

    McLay, Lisa; Liang, Yuying

    2014-01-01

    Arenaviruses can cause fatal human haemorrhagic fever (HF) diseases for which vaccines and therapies are extremely limited. Both the New World (NW) and Old World (OW) groups of arenaviruses contain HF-causing pathogens. Although these two groups share many similarities, important differences with regard to pathogenicity and molecular mechanisms of virus infection exist. These closely related pathogens share many characteristics, including genome structure, viral assembly, natural host selection and the ability to interfere with innate immune signalling. However, members of the NW and OW viruses appear to use different receptors for cellular entry, as well as different mechanisms of virus internalization. General differences in disease signs and symptoms and pathological lesions in patients infected with either NW or OW arenaviruses are also noted and discussed herein. Whilst both the OW Lassa virus (LASV) and the NW Junin virus (JUNV) can cause disruption of the vascular endothelium, which is an important pathological feature of HF, the immune responses to these related pathogens seem to be quite distinct. Whereas LASV infection results in an overall generalized immune suppression, patients infected with JUNV seem to develop a cytokine storm. Additionally, the type of immune response required for recovery and clearance of the virus is different between NW and OW infections. These differences may be important to allow the viruses to evade host immune detection. Understanding these differences will aid the development of new vaccines and treatment strategies against deadly HF viral infections. PMID:24068704

  5. Comparative analysis of disease pathogenesis and molecular mechanisms of New World and Old World arenavirus infections.

    PubMed

    McLay, Lisa; Liang, Yuying; Ly, Hinh

    2014-01-01

    Arenaviruses can cause fatal human haemorrhagic fever (HF) diseases for which vaccines and therapies are extremely limited. Both the New World (NW) and Old World (OW) groups of arenaviruses contain HF-causing pathogens. Although these two groups share many similarities, important differences with regard to pathogenicity and molecular mechanisms of virus infection exist. These closely related pathogens share many characteristics, including genome structure, viral assembly, natural host selection and the ability to interfere with innate immune signalling. However, members of the NW and OW viruses appear to use different receptors for cellular entry, as well as different mechanisms of virus internalization. General differences in disease signs and symptoms and pathological lesions in patients infected with either NW or OW arenaviruses are also noted and discussed herein. Whilst both the OW Lassa virus (LASV) and the NW Junin virus (JUNV) can cause disruption of the vascular endothelium, which is an important pathological feature of HF, the immune responses to these related pathogens seem to be quite distinct. Whereas LASV infection results in an overall generalized immune suppression, patients infected with JUNV seem to develop a cytokine storm. Additionally, the type of immune response required for recovery and clearance of the virus is different between NW and OW infections. These differences may be important to allow the viruses to evade host immune detection. Understanding these differences will aid the development of new vaccines and treatment strategies against deadly HF viral infections.

  6. Molecular markers for improving control of soil-borne pathogen Fusarium oxysporum in sugar beet

    USDA-ARS?s Scientific Manuscript database

    Fusarium oxysporum f. sp. betae (FOB) is an important pathogen of sugar beet worldwide causing leaf yellowing and vascular discoloration. The use of tolerant varieties is one of the most effective methods for managing this disease. In this study, a large germplasm collection,comprised of 29 sugar be...

  7. Effects of pre- and post-harvest application of selenium on inducing disease resistance and selenium accumulation in fruits

    USDA-ARS?s Scientific Manuscript database

    Botrytis cinerea, a ubiquitous fungal pathogen, causes severe damage (gray mold rot) on a large number of economically important fruits, vegetables, and ornamental crops at both pre- and post-harvest, which renders fruits unmarketable. Penicillium expansum is a widely spread fungal pathogen that cau...

  8. Selection for pro-inflammatory mediators produces chickens more resistant to Clostridium perfringens-induced necrotic enteritis

    USDA-ARS?s Scientific Manuscript database

    Clostridium perfringens is the fourth leading cause of bacterial-induced foodborne illnesses with an estimated economic burden of $342M USD per year. In addition to being a foodborne pathogen, C. perfringens is also an economically important poultry pathogen and is one of the known etiologic agents...

  9. Draft genome sequence of ‘Candidatus Phytoplasma pruni’ strain CX, a plant pathogenic bacterium

    USDA-ARS?s Scientific Manuscript database

    ‘Candidatus Phytoplasma pruni’ strain CX, belonging to subgroup 16SrIII-A, is a plant pathogenic bacterium causing economically important diseases in many fruit crops. Here we report the draft genome sequence that consists of 598,508 bases, with a G+C content of 27.21 mol%. ...

  10. Storage of resting spores of the gypsy moth fungal pathogen, Entomophaga maimaiga

    Treesearch

    Ann E. Hajek; Micheal M. Wheeler; Callie C. Eastburn; Leah S. Bauer

    2001-01-01

    The fungal pathogen, Entomophaga maimaiga causes epizootics in populations of the important North American forest defoliator gypsy moth (Lymantria dispar). Increasing use of thisfungus for biological control is dependent on our ability to produce and manipulate the long-lived overwintering resting spores (azygospores). E. maimaiga resting spores undergo obligate...

  11. Bioactive metabolites from Stenocarpella maydis, a stalk and ear rot pathogen of maize

    USDA-ARS?s Scientific Manuscript database

    Stenocarpella maydis is a fungal pathogen of major importance that causes a dry-rot of maize ears and is associated with a neuromycotoxicosis in cattle grazing harvested maize fields in southern Africa and Argentina. In an effort to investigate the potential roles of S. maydis metabolites in the fun...

  12. Medical and economic impact of extraintestinal infections due to Escherichia coli: focus on an increasingly important endemic problem.

    PubMed

    Russo, Thomas A; Johnson, James R

    2003-04-01

    Escherichia coli is probably the best-known bacterial species and one of the most frequently isolated organisms from clinical specimens. Despite this, underappreciation and misunderstandings exist among medical professionals and the lay public alike regarding E. coli as an extraintestinal pathogen. Underappreciated features include (i) the wide variety of extraintestinal infections E. coli can cause, (ii) the high incidence and associated morbidity, mortality, and costs of these diverse clinical syndromes, (iii) the pathogenic potential of different groups of E. coli strains for causing intestinal versus extraintestinal disease, and (iv) increasing antimicrobial resistance. In this era in which health news often sensationalizes uncommon infection syndromes or pathogens, the strains of E. coli that cause extraintestinal infection are an increasingly important endemic problem and underappreciated "killers". Billions of health care dollars, millions of work days, and hundreds of thousands of lives are lost each year to extraintestinal infections due to E. coli. New treatments and prevention measures will be needed for improved outcomes and a diminished disease burden.

  13. Centrality in the host-pathogen interactome is associated with pathogen fitness during infection.

    PubMed

    Crua Asensio, Núria; Muñoz Giner, Elisabet; de Groot, Natalia Sánchez; Torrent Burgas, Marc

    2017-01-16

    To perform their functions proteins must interact with each other, but how these interactions influence bacterial infection remains elusive. Here we demonstrate that connectivity in the host-pathogen interactome is directly related to pathogen fitness during infection. Using Y. pestis as a model organism, we show that the centrality-lethality rule holds for pathogen fitness during infection but only when the host-pathogen interactome is considered. Our results suggest that the importance of pathogen proteins during infection is directly related to their number of interactions with the host. We also show that pathogen proteins causing an extensive rewiring of the host interactome have a higher impact in pathogen fitness during infection. Hence, we conclude that hubs in the host-pathogen interactome should be explored as promising targets for antimicrobial drug design.

  14. Centrality in the host-pathogen interactome is associated with pathogen fitness during infection

    NASA Astrophysics Data System (ADS)

    Crua Asensio, Núria; Muñoz Giner, Elisabet; de Groot, Natalia Sánchez; Torrent Burgas, Marc

    2017-01-01

    To perform their functions proteins must interact with each other, but how these interactions influence bacterial infection remains elusive. Here we demonstrate that connectivity in the host-pathogen interactome is directly related to pathogen fitness during infection. Using Y. pestis as a model organism, we show that the centrality-lethality rule holds for pathogen fitness during infection but only when the host-pathogen interactome is considered. Our results suggest that the importance of pathogen proteins during infection is directly related to their number of interactions with the host. We also show that pathogen proteins causing an extensive rewiring of the host interactome have a higher impact in pathogen fitness during infection. Hence, we conclude that hubs in the host-pathogen interactome should be explored as promising targets for antimicrobial drug design.

  15. Comparative genomics of transport proteins in probiotic and pathogenic Escherichia coli and Salmonella enterica strains.

    PubMed

    Do, Jimmy; Zafar, Hassan; Saier, Milton H

    2017-06-01

    Escherichia coli is a genetically diverse species that can be pathogenic, probiotic, commensal, or a harmless laboratory strain. Pathogenic strains of E. coli cause urinary tract infections, diarrhea, hemorrhagic colitis, and pyelonephritis, while the two known probiotic E. coli strains combat inflammatory bowel disease and play a role in immunomodulation. Salmonella enterica, a close relative of E. coli, includes two important pathogenic serovars, Typhi and Typhimurium, causing typhoid fever and enterocolitis in humans, respectively, with the latter strain also causing a lethal typhoid fever-like disease in mice. In this study, we identify the transport systems and their substrates within seven E. coli strains: two probiotic strains, two extracellular pathogens, two intracellular pathogens, and K-12, as well as the two intracellular pathogenic S. enterica strains noted above. Transport systems characteristic of each probiotic or pathogenic species were thus identified, and the tabulated results obtained with all of these strains were compared. We found that the probiotic and pathogenic strains generally contain more iron-siderophore and sugar transporters than E. coli K-12. Pathogens have increased numbers of pore-forming toxins, protein secretion systems, decarboxylation-driven Na + exporters, electron flow-driven monovalent cation exporters, and putative transporters of unknown function compared to the probiotic strains. Both pathogens and probiotic strains encode metabolite transporters that reflect their intracellular versus extracellular environments. The results indicate that the probiotic strains live extracellularly. It seems that relatively few virulence factors can convert a beneficial or commensal microorganism into a pathogen. Taken together, the results reveal the distinguishing features of these strains and provide a starting point for future engineering of beneficial enteric bacteria. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Population-genomic insights into emergence, crop adaptation and dissemination of Pseudomonas syringae pathogens

    PubMed Central

    Monteil, Caroline L.; Yahara, Koji; Studholme, David J.; Mageiros, Leonardos; Méric, Guillaume; Swingle, Bryan; Morris, Cindy E.

    2016-01-01

    Many bacterial pathogens are well characterized but, in some cases, little is known about the populations from which they emerged. This limits understanding of the molecular mechanisms underlying disease. The crop pathogen Pseudomonas syringae sensu lato has been widely isolated from the environment, including wild plants and components of the water cycle, and causes disease in several economically important crops. Here, we compared genome sequences of 45 P. syringae crop pathogen outbreak strains with 69 closely related environmental isolates. Phylogenetic reconstruction revealed that crop pathogens emerged many times independently from environmental populations. Unexpectedly, differences in gene content between environmental populations and outbreak strains were minimal with most virulence genes present in both. However, a genome-wide association study identified a small number of genes, including the type III effector genes hopQ1 and hopD1, to be associated with crop pathogens, but not with environmental populations, suggesting that this small group of genes may play an important role in crop disease emergence. Intriguingly, genome-wide analysis of homologous recombination revealed that the locus Psyr 0346, predicted to encode a protein that confers antibiotic resistance, has been frequently exchanged among lineages and thus may contribute to pathogen fitness. Finally, we found that isolates from diseased crops and from components of the water cycle, collected during the same crop disease epidemic, form a single population. This provides the strongest evidence yet that precipitation and irrigation water are an overlooked inoculum source for disease epidemics caused by P. syringae. PMID:28348830

  17. Population-genomic insights into emergence, crop adaptation and dissemination of Pseudomonas syringae pathogens.

    PubMed

    Monteil, Caroline L; Yahara, Koji; Studholme, David J; Mageiros, Leonardos; Méric, Guillaume; Swingle, Bryan; Morris, Cindy E; Vinatzer, Boris A; Sheppard, Samuel K

    2016-10-01

    Many bacterial pathogens are well characterized but, in some cases, little is known about the populations from which they emerged. This limits understanding of the molecular mechanisms underlying disease. The crop pathogen Pseudomonas syringae sensu lato has been widely isolated from the environment, including wild plants and components of the water cycle, and causes disease in several economically important crops. Here, we compared genome sequences of 45 P. syringae crop pathogen outbreak strains with 69 closely related environmental isolates. Phylogenetic reconstruction revealed that crop pathogens emerged many times independently from environmental populations. Unexpectedly, differences in gene content between environmental populations and outbreak strains were minimal with most virulence genes present in both. However, a genome-wide association study identified a small number of genes, including the type III effector genes hopQ1 and hopD1 , to be associated with crop pathogens, but not with environmental populations, suggesting that this small group of genes may play an important role in crop disease emergence. Intriguingly, genome-wide analysis of homologous recombination revealed that the locus Psyr 0346, predicted to encode a protein that confers antibiotic resistance, has been frequently exchanged among lineages and thus may contribute to pathogen fitness. Finally, we found that isolates from diseased crops and from components of the water cycle, collected during the same crop disease epidemic, form a single population. This provides the strongest evidence yet that precipitation and irrigation water are an overlooked inoculum source for disease epidemics caused by P. syringae .

  18. Starch Hydrolysis and Vessel Occlusion Related to Wilt Symptoms in Olive Stems of Susceptible Cultivars Infected by Verticillium dahliae

    PubMed Central

    Trapero, Carlos; Alcántara, Esteban; Jiménez, Jaime; Amaro-Ventura, María C.; Romero, Joaquín; Koopmann, Birger; Karlovsky, Petr; von Tiedemann, Andreas; Pérez-Rodríguez, Mario; López-Escudero, Francisco J.

    2018-01-01

    This study investigated starch content, amount of pathogen DNA and density of occluded vessels in healthy and Verticillium dahliae infected olive shoots and stems. Starch hydrolysis is considered a mechanism to refill xylem vessels that suffered cavitation by either, drought conditions or pathogen infections. The main objective of this work was to evaluate this mechanism in olive plants subjected to V. dahliae infection or to drought conditions, in order to know the importance of cavitation in the development of wilting symptoms. In initial experiments starch content in the shoots was studied in trees of cultivars differing in the level of resistance growing in fields naturally infested with V. dahliae. The starch content, esteemed by microscopic observation of stem transversal sections stained with lugol, decreased with the level of symptom severity. Results were confirmed in a new experiment developed with young plants of cultivars ‘Picual’ (highly susceptible), ‘Arbequina’ (moderately susceptible) and ‘Frantoio’ (resistant), growing in pots under greenhouse conditions, either inoculated or not with V. dahliae. In this experiment, the pathogen DNA content, quantified by real-time PCR, and the density of occluded vessels, recorded by microscopic observations of transversal sections stained with toluidine blue, were related to the symptoms severity caused by the pathogen. Finally, a drought experiment was established with young plants of the cultivar ‘Picual’ grown in pots under greenhouse conditions in order to compare the effects caused by water deficit with those caused by the pathogen infection. In both cases, results show that starch hydrolysis occurred, what indirectly evidence the importance of xylem cavitation in the development of the symptoms caused by V. dahliae but in the water stressed plants no vessel occlusion was detected. PMID:29445388

  19. [Pathogenic factors of vibrios with special emphasis on Vibrio vulnificus].

    PubMed

    Shinoda, Sumio

    2005-07-01

    Bacteria of the genus Vibrio are normal habitants of the aquatic environment and play roles for biocontrole of aquatic ecosystem, but some species are believed to be human pathogens. These species can be classified into two groups according to the types of diseases they cause: the gastrointestinal infections and the extraintestinal infections. The pathogenic species produce various pathogenic factors including enterotoxin, hemolysin, cytotoxin, protease, siderophore, adhesive factor, and hemagglutinin. We studied various pathogenic factors of vibrios with special emphasis on protease and hemolysin of V. vulnificus. V. vulnificus is now recognized as being among the most rapidly fatal of human pathogens, although the infection is appeared in patients having underlying disease(s) such as liver dysfunction, alcoholic cirrhosis or haemochromatosis. V. vulnificus protease (VVP) is thought to be a major toxic factor causing skin damage in the patients having septicemia. VVP is a metalloprotease and degrades a number of biologically important proteins including elastin, fibrinogen, and plasma proteinase inhibitors of complement components. VVP causes skin damages through activation of the Factor XII-plasma kallikrein-kinin cascade and/or exocytotic histamine release from mast cells, and a haemorrhagic lesion through digestion of the vascular basement membrane. Thus, the protease is the most probable candidate for tissue damage and bacterial invasion during an infection. Pathogenic roles and functional mechanism of other factors including hemolysins of V. vulnificus and V. mimicus are also shown in this review article.

  20. Colonization history, host distribution, anthropogenic influence and landscape features shape populations of white pine blister rust, an invasive alien tree pathogen.

    PubMed

    Brar, Simren; Tsui, Clement K M; Dhillon, Braham; Bergeron, Marie-Josée; Joly, David L; Zambino, P J; El-Kassaby, Yousry A; Hamelin, Richard C

    2015-01-01

    White pine blister rust is caused by the fungal pathogen Cronartium ribicola J.C. Fisch (Basidiomycota, Pucciniales). This invasive alien pathogen was introduced into North America at the beginning of the 20th century on pine seedlings imported from Europe and has caused serious economic and ecological impacts. In this study, we applied a population and landscape genetics approach to understand the patterns of introduction and colonization as well as population structure and migration of C. ribicola. We characterized 1,292 samples of C. ribicola from 66 geographic locations in North America using single nucleotide polymorphisms (SNPs) and evaluated the effect of landscape features, host distribution, and colonization history on the structure of these pathogen populations. We identified eastern and western genetic populations in North America that are strongly differentiated. Genetic diversity is two to five times higher in eastern populations than in western ones, which can be explained by the repeated accidental introductions of the pathogen into northeastern North America compared with a single documented introduction into western North America. These distinct genetic populations are maintained by a barrier to gene flow that corresponds to a region where host connectivity is interrupted. Furthermore, additional cryptic spatial differentiation was identified in western populations. This differentiation corresponds to landscape features, such as mountain ranges, and also to host connectivity. We also detected genetic differentiation between the pathogen populations in natural stands and plantations, an indication that anthropogenic movement of this pathogen still takes place. These results highlight the importance of monitoring this invasive alien tree pathogen to prevent admixture of eastern and western populations where different pathogen races occur.

  1. Population genetic structure of Venturia effusa, cause of pecan scab, in the southeastern United States

    USDA-ARS?s Scientific Manuscript database

    Venturia effusa is the most important pathogen of pecan in the southeastern USA. Little information exists on the population biology and genetic diversity of the pathogen. A hierarchical sampling of a total of 784 isolates from 63 trees in 11 pecan orchards in the southeastern USA were screened agai...

  2. Genetic modification of European winegrapes with genes from an American wild relative confers resistance to the major diseases powdery and downy mildew

    USDA-ARS?s Scientific Manuscript database

    The two most economically important diseases of grapevine cultivation worldwide are caused by the fungal pathogen powdery mildew (Erysiphe necator syn. Uncinula necator) and the oomycete, downy mildew (Plasmopara viticola). These pathogens, endemic to North America, were introduced into Europe in t...

  3. Characterization of the common bean host and Pseudocercospora griseola the causative agent of angular leaf spot disease in Tanzania

    USDA-ARS?s Scientific Manuscript database

    Angular leaf spot (ALS) caused by the fungus Pseudocercospora griseola is one of the most important diseases of common bean in Tanzania. Breeding for resistance to this disease is complicated by the variable nature of the pathogen. In Tanzania no thorough analysis of the variability of this pathogen...

  4. From select agent to established pathogen: The response to Phakopsora pachyrhizi (soybean rust) in North America

    USDA-ARS?s Scientific Manuscript database

    The pathogen causing soybean rust, Phakopsora pachyrhizi Syd., was first described in Japan in 1902. The disease was important in the Eastern Hemisphere for many decades before the fungus was reported in Hawaii in 1994, which was followed by reports from countries in Africa and South America. In 200...

  5. MODELING HOST-PATHOGEN INTERACTIONS: COMPUTATIONAL BIOLOGY AND BIOINFORMATICS FOR INFECTIOUS DISEASE RESEARCH (Session introduction)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDermott, Jason E.; Braun, Pascal; Bonneau, Richard A.

    Pathogenic infections are a major cause of both human disease and loss of crop yields and animal stocks and thus cause immense damage to the worldwide economy. The significance of infectious diseases is expected to increase in an ever more connected warming world, in which new viral, bacterial and fungal pathogens can find novel hosts and ecologic niches. At the same time, the complex and sophisticated mechanisms by which diverse pathogenic agents evade defense mechanisms and subvert their hosts networks to suit their lifestyle needs is still very incompletely understood especially from a systems perspective [1]. Thus, understanding host-pathogen interactionsmore » is both an important and a scientifically fascinating topic. Recently, technology has offered the opportunity to investigate host-pathogen interactions on a level of detail and scope that offers immense computational and analytical possibilities. Genome sequencing was pioneered on some of these pathogens, and the number of strains and variants of pathogens sequenced to date vastly outnumbers the number of host genomes available. At the same time, for both plant and human hosts more and more data on population level genomic variation becomes available and offers a rich field for analysis into the genetic interactions between host and pathogen.« less

  6. Potential for Low-Pathogenic Avian H7 Influenza A Viruses To Replicate and Cause Disease in a Mammalian Model

    PubMed Central

    Zanin, Mark; Koçer, Zeynep A.; Poulson, Rebecca L.; Gabbard, Jon D.; Howerth, Elizabeth W.; Jones, Cheryl A.; Friedman, Kimberly; Seiler, Jon; Danner, Angela; Kercher, Lisa; McBride, Ryan; Paulson, James C.; Wentworth, David E.; Krauss, Scott; Tompkins, Stephen M.; Stallknecht, David E.

    2016-01-01

    ABSTRACT H7 subtype influenza A viruses are widely distributed and have been responsible for human infections and numerous outbreaks in poultry with significant impact. Despite this, the disease-causing potential of the precursor low-pathogenic (LP) H7 viruses from the wild bird reservoir has not been investigated. Our objective was to assess the disease-causing potential of 30 LP H7 viruses isolated from wild avian species in the United States and Canada using the DBA/2J mouse model. Without prior mammalian adaptation, the majority of viruses, 27 (90%), caused mortality in mice. Of these, 17 (56.7%) caused 100% mortality and 24 were of pathogenicity similar to that of A/Anhui/1/2013 (H7N9), which is highly pathogenic in mice. Viruses of duck origin were more pathogenic than those of shorebird origin, as 13 of 18 (72.2%) duck origin viruses caused 100% mortality while 4 of 12 (33.3%) shorebird origin viruses caused 100% mortality, despite there being no difference in mean lung viral titers between the groups. Replication beyond the respiratory tract was also evident, particularly in the heart and brain. Of the 16 viruses studied for fecal shedding, 11 were detected in fecal samples. These viruses exhibited a strong preference for avian-type α2,3-linked sialic acids; however, binding to mammalian-type α2,6-linked sialic acids was also detected. These findings indicate that LP avian H7 influenza A viruses are able to infect and cause disease in mammals without prior adaptation and therefore pose a potential public health risk. IMPORTANCE Low-pathogenic (LP) avian H7 influenza A viruses are widely distributed in the avian reservoir and are the precursors of numerous outbreaks of highly pathogenic avian influenza viruses in commercial poultry farms. However, unlike highly pathogenic H7 viruses, the disease-causing potential of LP H7 viruses from the wild bird reservoir has not been investigated. To address this, we studied 30 LP avian H7 viruses isolated from wild avian species in the United States and Canada using the DBA/2J mouse model. Surprisingly, the majority of these viruses, 90%, caused mortality in mice without prior mammalian adaptation, and 56.7% caused 100% mortality. There was also evidence of spread beyond the respiratory tract and fecal shedding. Therefore, the disease-causing potential of LP avian H7 influenza A viruses in mammals may be underestimated, and these viruses therefore pose a potential public health risk. PMID:27852855

  7. Communicable Diseases Prioritized for Surveillance and Epidemiological Research: Results of a Standardized Prioritization Procedure in Germany, 2011

    PubMed Central

    Balabanova, Yanina; Gilsdorf, Andreas; Buda, Silke; Burger, Reinhard; Eckmanns, Tim; Gärtner, Barbara; Groß, Uwe; Haas, Walter; Hamouda, Osamah; Hübner, Johannes; Jänisch, Thomas; Kist, Manfred; Kramer, Michael H.; Ledig, Thomas; Mielke, Martin; Pulz, Matthias; Stark, Klaus; Suttorp, Norbert; Ulbrich, Uta; Wichmann, Ole; Krause, Gérard

    2011-01-01

    Introduction To establish strategic priorities for the German national public health institute (RKI) and guide the institute's mid-term strategic decisions, we prioritized infectious pathogens in accordance with their importance for national surveillance and epidemiological research. Methods We used the Delphi process with internal (RKI) and external experts and a metric-consensus approach to score pathogens according to ten three-tiered criteria. Additional experts were invited to weight each criterion, leading to the calculation of a median weight by which each score was multiplied. We ranked the pathogens according to the total weighted score and divided them into four priority groups. Results 127 pathogens were scored. Eighty-six experts participated in the weighting; “Case fatality rate” was rated as the most important criterion. Twenty-six pathogens were ranked in the highest priority group; among those were pathogens with internationally recognised importance (e.g., Human Immunodeficiency Virus, Mycobacterium tuberculosis, Influenza virus, Hepatitis C virus, Neisseria meningitides), pathogens frequently causing large outbreaks (e.g., Campylobacter spp.), and nosocomial pathogens associated with antimicrobial resistance. Other pathogens in the highest priority group included Helicobacter pylori, Respiratory Syncytial Virus, Varicella zoster virus and Hantavirus. Discussion While several pathogens from the highest priority group already have a high profile in national and international health policy documents, high scores for other pathogens (e.g., Helicobacter pylori, Respiratory syncytial virus or Hantavirus) indicate a possible under-recognised importance within the current German public health framework. A process to strengthen respective surveillance systems and research has been started. The prioritization methodology has worked well; its modular structure makes it potentially useful for other settings. PMID:21991334

  8. Miscellaneous bacterial diseases

    USGS Publications Warehouse

    Friend, M.

    1999-01-01

    Disease in free-ranging birds is caused by many other pathogenic bacteria in addition to those illustrated within this section. These other diseases are currently considered less important because of their infrequent occurrence, the small numbers of birds generally lost annually, or because they primarily result from infection by opportunistic pathogens and they require concurrent disease processes for them to become apparent. The following brief highlights about the more important of these diseases are included to acquaint readers with their existence and provide some basic information about their ecology.

  9. Pythium species causing damping-off of alfalfa in Minnesota: Identification, pathogenicity and fungicide sensitivity

    USDA-ARS?s Scientific Manuscript database

    Damping-off and seed rot is an important disease of alfalfa, severely affecting stand establishment when conditions favor the disease. Globally, 15 Pythium species are reported to cause damping-off and seed rot of alfalfa, although surveys of species causing disease on alfalfa in Minnesota are lacki...

  10. Kinetoplastids: related protozoan pathogens, different diseases

    PubMed Central

    Stuart, Ken; Brun, Reto; Croft, Simon; Fairlamb, Alan; Gürtler, Ricardo E.; McKerrow, Jim; Reed, Steve; Tarleton, Rick

    2008-01-01

    Kinetoplastids are a group of flagellated protozoans that include the species Trypanosoma and Leishmania, which are human pathogens with devastating health and economic effects. The sequencing of the genomes of some of these species has highlighted their genetic relatedness and underlined differences in the diseases that they cause. As we discuss in this Review, steady progress using a combination of molecular, genetic, immunologic, and clinical approaches has substantially increased understanding of these pathogens and important aspects of the diseases that they cause. Consequently, the paths for developing additional measures to control these “neglected diseases” are becoming increasingly clear, and we believe that the opportunities for developing the drugs, diagnostics, vaccines, and other tools necessary to expand the armamentarium to combat these diseases have never been better. PMID:18382742

  11. Genome sequence resources for the wheat stripe rust pathogen (Puccinia striiformis f. sp. tritici) and the barley stripe rust pathogen (Puccinia striiformis f. sp. hordei).

    PubMed

    Xia, Chongjing; Wang, Meinan; Yin, Chuntao; Cornejo, Omar E; Hulbert, Scot; Chen, Xianming

    2018-05-24

    Puccinia striiformis f. sp. tritici (Pst) causes devastating stripe (yellow) rust on wheat and P. striiformis f. sp. hordei (Psh) causes stripe rust on barley. Several Pst genomes are available, but no Psh genome is available. More genomes of Pst and Psh are needed to understand the genome evolution and molecular mechanisms of their pathogenicity. We sequenced Pst isolate 93-210 and Psh isolate 93TX-2 using PacBio and Illumina technologies, and RNA sequencing. Their genomic sequences were assembled to contigs with high continuity and showed significant structural differences. The circular mitochondria genomes of both were complete. These genomes provide high-quality resources for deciphering the genomic basis of rapid evolution and host adaptation, identifying genes for avirulence and other important traits, and studying host-pathogen interaction.

  12. Exploring the molecular mechanisms of parasite-host interactions with a view towards new therapeutics and vaccines.

    PubMed

    Cross, Megan; Klepzig, Emma; Dallaston, Madeleine; Young, Neil D; Bailey, Ulla-Maja; Mason, Lyndel; Jones, Malcolm K; Gasser, Robin B; Hofmann, Andreas

    Despite the massive disease burden worldwide caused by parasitic nematodes and other infectious pathogens, the molecular basis of many infectious diseases caused by these pathogens has been unduly neglected for a long time. Therefore, accelerated progress towards novel therapeutics, and ultimately control of such infectious diseases, is of crucial importance. Capitalising on the wealth of data becoming available from proteomic and genomic studies, new protein targets at the pathogen-host interface can be identified and subjected to protein-based explorations of the molecular basis of pathogen-host interactions. By combining the use of systems and structural biology methodologies, insights into the structural and molecular mechanisms of these interactions can assist in the development of therapeutics and/or vaccines. This brief review examines two different proteins from the body wall of blood flukes - annexins and the stress-induced phosphoprotein 1 - both of which are presently interesting targets for the development of therapeutics.

  13. PCR-based Approaches for the Detection of Clinical Methicillin-resistant Staphylococcus aureus

    PubMed Central

    Liu, Ying; Zhang, Jiang; Ji, Yinduo

    2016-01-01

    Staphylococcus aureus is an important pathogen that can cause a variety of infections, including superficial and systematic infections, in humans and animals. The persistent emergence of multidrug resistant S. aureus, particularly methicillin-resistant S. aureus, has caused dramatically economic burden and concerns in the public health due to limited options of treatment of MRSA infections. In order to make a correct choice of treatment for physicians and understand the prevalence of MRSA, it is extremely critical to precisely and timely diagnose the pathogen that induces a specific infection of patients and to reveal the antibiotic resistant profile of the pathogen. In this review, we outlined different PCR-based approaches that have been successfully utilized for the rapid detection of S. aureus, including MRSA and MSSA, directly from various clinical specimens. The sensitivity and specificity of detections were pointed out. Both advantages and disadvantages of listed approaches were discussed. Importantly, an alternative approach is necessary to further confirm the detection results from the molecular diagnostic assays. PMID:27335617

  14. Host structural carbohydrate induces vector transmission of a bacterial plant pathogen.

    PubMed

    Killiny, Nabil; Almeida, Rodrigo P P

    2009-12-29

    Many insect-borne pathogens have complex life histories because they must colonize both hosts and vectors for successful dissemination. In addition, the transition from host to vector environments may require changes in gene expression before the pathogen's departure from the host. Xylella fastidiosa is a xylem-limited plant-pathogenic bacterium transmitted by leafhopper vectors that causes diseases in a number of economically important plants. We hypothesized that factors of host origin, such as plant structural polysaccharides, are important in regulating X. fastidiosa gene expression and mediating vector transmission of this pathogen. The addition of pectin and glucan to a simple defined medium resulted in dramatic changes in X. fastidiosa's phenotype and gene-expression profile. Cells grown in the presence of pectin became more adhesive than in other media tested. In addition, the presence of pectin and glucan in media resulted in significant changes in the expression of several genes previously identified as important for X. fastidiosa's pathogenicity in plants. Furthermore, vector transmission of X. fastidiosa was induced in the presence of both polysaccharides. Our data show that host structural polysaccharides mediate gene regulation in X. fastidiosa, which results in phenotypic changes required for vector transmission. A better understanding of how vector-borne pathogens transition from host to vector, and vice versa, may lead to previously undiscovered disease-control strategies.

  15. The Janus face of reactive oxygen species in resistance and susceptibility of plants to necrotrophic and biotrophic pathogens.

    PubMed

    Barna, B; Fodor, J; Harrach, B D; Pogány, M; Király, Z

    2012-10-01

    Plant pathogens can be divided into biotrophs and necrotrophs according to their different life styles; biotrophs prefer living, while necrotrophs prefer dead cells for nutritional purposes. Therefore tissue necrosis caused by reactive oxygen species (ROS) during pathogen infection increases host susceptibility to necrotrophic, but resistance to biotrophic pathogen. Consequently, elevation of antioxidant capacity of plants enhances their tolerance to development of necroses caused by necrotrophic pathogens. Plant hormones can strongly influence induction of ROS and antioxidants, thereby influencing susceptibility or resistance of plants to pathogens. Pathogen-induced ROS themselves are considered as signaling molecules. Generally, salicylic acid (SA) signaling induces defense against biotrophic pathogens, whereas jasmonic acid (JA) against necrotrophic pathogens. Furthermore pathogens can modify plant's defense signaling network for their own benefit by changing phytohormone homeostasis. On the other hand, ROS are harmful also to the pathogens, consequently they try to defend themselves by elevating antioxidant activity and secreting ROS scavengers in the infected tissue. The Janus face nature of ROS and plant cell death on biotrophic and on necrotrophic pathogens is also supported by the experiments with BAX inhibitor-1 and the mlo mutation of Mlo gene in barley. It was found that ROS and elevated plant antioxidant activity play an important role in systemic acquired resistance (SAR) and induced systemic resistance (ISR), as well as in mycorrhiza induced abiotic and biotic stress tolerance of plants. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  16. Defense-related proteins involved in sugarcane responses to biotic stress

    PubMed Central

    Souza, Thais P.; Dias, Renata O.; Silva-Filho, Marcio C.

    2017-01-01

    Abstract Sugarcane is one of the most important agricultural crops in the world. However, pathogen infection and herbivore attack cause constant losses in yield. Plants respond to pathogen infection by inducing the expression of several protein types, such as glucanases, chitinases, thaumatins, peptidase inhibitors, defensins, catalases and glycoproteins. Proteins induced by pathogenesis are directly or indirectly involved in plant defense, leading to pathogen death or inducing other plant defense responses. Several of these proteins are induced in sugarcane by different pathogens or insects and have antifungal or insecticidal activity. In this review, defense-related proteins in sugarcane are described, with their putative mechanisms of action, pathogen targets and biotechnological perspectives. PMID:28222203

  17. Molecular manipulation of the mating-type system and development of a new approach for characterizing pathogen virulence in Pyrenophora tritici-repentis

    USDA-ARS?s Scientific Manuscript database

    The ascomycete Pyrenophora tritici-repentis (Ptr) is an important fungal pathogen worldwide that causes tan spot of wheat. The fungus is self-fertile because each isolate contains both mating type (MAT) idiomorphs. In this work, we developed knockouts of the MAT genes in Ptr and tested fertility of ...

  18. Prevention of infectious diseases in aquaculture

    USGS Publications Warehouse

    Ahne, W.; Winton, J.R.; Kimura, T.

    1989-01-01

    Infectious diseases remain one of the most important limitations to the successful propagation of aquatic animals. Most of the losses caused by pathogens in aquaculture could be prevented by health inspection, adequate environment and sound management practices. Effective control measures, mainly based upon 1) avoidance of pathogens 2) modification of the environment 3) improvement of host resistance 4) vaccination and 5) chemoprophylaxis are described.

  19. Non-Cholera Vibrios: The Microbial Barometer of Climate Change.

    PubMed

    Baker-Austin, Craig; Trinanes, Joaquin; Gonzalez-Escalona, Narjol; Martinez-Urtaza, Jaime

    2017-01-01

    There is a growing interest in the role of climate change in driving the spread of waterborne infectious diseases, such as those caused by bacterial pathogens. One particular group of pathogenic bacteria - vibrios - are a globally important cause of diseases in humans and aquatic animals. These Gram-negative bacteria, including the species Vibrio vulnificus, Vibrio parahaemolyticus and Vibrio cholerae, grow in warm, low-salinity waters, and their abundance in the natural environment mirrors ambient environmental temperatures. In a rapidly warming marine environment, there are greater numbers of human infections, and most notably outbreaks linked to extreme weather events such as heatwaves in temperate regions such as Northern Europe. Because the growth of pathogenic vibrios in the natural environment is largely dictated by temperature, we argue that this group of pathogens represents an important and tangible barometer of climate change in marine systems. We provide a number of specific examples of the impacts of climate change on this group of bacteria and their associated diseases, and discuss advanced strategies to improve our understanding of these emerging waterborne diseases through the integration of microbiological, genomic, epidemiological, climatic, and ocean sciences. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  20. Developing Research in Infectious and Tropical Diseases in Africa: The Paradigm of Senegal.

    PubMed

    Sokhna, Cheikh; Gaye, Oumar; Doumbo, Ogobara

    2017-08-15

    Infectious diseases represent one of the greatest potential barriers to achievement of the third Sustainable Development Goals in African countries and around the world because they continue to pose major public health challenges. The surveillance of infectious diseases has recently assumed greater importance in most African countries, both because of the emergence of infectious diseases and because strains of pathogens that cause tuberculosis, malaria, cholera, dysentery, and pneumonia have developed resistance to common and inexpensive antimicrobial drugs. However, data on the pathogen-specific causes of infectious diseases are limited. Developing research in infectious and tropical diseases in Africa is urgently needed to better describe the distribution of pathogen-borne diseases and to know which pathogens actually cause fever. This research is critical for guiding treatment and policies in Africa. More effective diagnostics are also needed for these diseases, which often are misdiagnosed or diagnosed too late. A comprehensive review of this type of research is presented here. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  1. Persistent digestive disorders in the tropics: causative infectious pathogens and reference diagnostic tests

    PubMed Central

    2013-01-01

    Background Persistent digestive disorders account for considerable disease burden in the tropics. Despite advances in understanding acute gastrointestinal infections, important issues concerning epidemiology, diagnosis, treatment and control of most persistent digestive symptomatologies remain to be elucidated. Helminths and intestinal protozoa are considered to play major roles, but the full extent of the aetiologic spectrum is still unclear. We provide an overview of pathogens causing digestive disorders in the tropics and evaluate available reference tests. Methods We searched the literature to identify pathogens that might give rise to persistent diarrhoea, chronic abdominal pain and/or blood in the stool. We reviewed existing laboratory diagnostic methods for each pathogen and stratified them by (i) microscopy; (ii) culture techniques; (iii) immunological tests; and (iv) molecular methods. Pathogen-specific reference tests providing highest diagnostic accuracy are described in greater detail. Results Over 30 pathogens may cause persistent digestive disorders. Bacteria, viruses and parasites are important aetiologic agents of acute and long-lasting symptomatologies. An integrated approach, consisting of stool culture, microscopy and/or specific immunological techniques for toxin, antigen and antibody detection, is required for accurate diagnosis of bacteria and parasites. Molecular techniques are essential for sensitive diagnosis of many viruses, bacteria and intestinal protozoa, and are increasingly utilised as adjuncts for helminth identification. Conclusions Diagnosis of the broad spectrum of intestinal pathogens is often cumbersome. There is a need for rapid diagnostic tests that are simple and affordable for resource-constrained settings, so that the management of patients suffering from persistent digestive disorders can be improved. PMID:23347408

  2. YghJ, the secreted metalloprotease of pathogenic E. coli induces hemorrhagic fluid accumulation in mouse ileal loop.

    PubMed

    Tapader, Rima; Bose, Dipro; Pal, Amit

    2017-04-01

    YghJ, also known as SslE (Secreted and surface associated lipoprotein) is a cell surface associated and secreted lipoprotein harbouring M60 metalloprotease domain. Though the gene is known to be conserved among both pathogenic and commensal Escherichia coli isolates, the expression and secretion of YghJ was found to be higher among diverse E. coli pathotypes. YghJ, secreted from intestinal pathogens such as enterotoxigenic E. coli (ETEC) and enteropathogenic E. coli (EPEC) has been demonstrated to possess mucinase activity and hence facilitates colonization of these enteric pathogens to intestinal epithelial cells. Importantly, YghJ is also reported to be secreted from extraintestinal pathogenic E. coli isolates. In our previous study we have shown that YghJ, purified from a neonatal septicemic E. coli isolate could trigger induction of various proinflammatory cytokines in vitro. This led us to investigate the role of YghJ in causing in vivo tissue hemorrhage. In the present study, we validate the earlier in vitro finding and have showed that YghJ can cause extensive tissue damage in mouse ileum and is also able to induce significant fluid accumulation in a dose dependent manner in a mouse ileal loop (MIL) assay. Hence, our present study not only confirms the pathogenic potential of YghJ in sepsis pathophysiology but also indicates the enterotoxic ability of YghJ which makes it an important virulence determinant of intestinal pathogenic E. coli. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Evaluation of a mouse model for the West Nile virus group for the purpose of determining viral pathotypes.

    PubMed

    Bingham, John; Payne, Jean; Harper, Jennifer; Frazer, Leah; Eastwood, Sarah; Wilson, Susanne; Lowther, Sue; Lunt, Ross; Warner, Simone; Carr, Mary; Hall, Roy A; Durr, Peter A

    2014-06-01

    West Nile virus (WNV; family Flaviviridae; genus Flavivirus) group members are an important cause of viral meningoencephalitis in some areas of the world. They exhibit marked variation in pathogenicity, with some viral lineages (such as those from North America) causing high prevalence of severe neurological disease, whilst others (such as Australian Kunjin virus) rarely cause disease. The aim of this study was to characterize WNV disease in a mouse model and to elucidate the pathogenetic features that distinguish disease variation. Tenfold dilutions of five WNV strains (New York 1999, MRM16 and three horse isolates of WNV-Kunjin: Boort and two isolates from the 2011 Australian outbreak) were inoculated into mice by the intraperitoneal route. All isolates induced meningoencephalitis in different proportions of infected mice. WNVNY99 was the most pathogenic, the three horse isolates were of intermediate pathogenicity and WNVKUNV-MRM16 was the least, causing mostly asymptomatic disease with seroconversion. Infectivity, but not pathogenicity, was related to challenge dose. Using cluster analysis of the recorded clinical signs, histopathological lesions and antigen distribution scores, the cases could be classified into groups corresponding to disease severity. Metrics that were important in determining pathotype included neurological signs (paralysis and seizures), meningoencephalitis, brain antigen scores and replication in extra-neural tissues. Whereas all mice infected with WNVNY99 had extra-neural antigen, those infected with the WNV-Kunjin viruses only occasionally had antigen outside the nervous system. We conclude that the mouse model could be a useful tool for the assessment of pathotype for WNVs. © 2014 CSIRO.

  4. Acquisition and loss of virulence-associated factors during genome evolution and speciation in three clades of Bordetella species

    USDA-ARS?s Scientific Manuscript database

    Bacteria in the genus Bordetella include nine species that are important pathogens. B. pertussis causes whooping cough, a serious and sometimes fatal disease in infants and in elderly people. Some strains of B. parapertussis also cause whooping cough-like disease in children while others cause pn...

  5. Whole genome sequencing revealed host adaptation-focused genomic plasticity of pathogenic Leptospira

    PubMed Central

    Xu, Yinghua; Zhu, Yongzhang; Wang, Yuezhu; Chang, Yung-Fu; Zhang, Ying; Jiang, Xiugao; Zhuang, Xuran; Zhu, Yongqiang; Zhang, Jinlong; Zeng, Lingbing; Yang, Minjun; Li, Shijun; Wang, Shengyue; Ye, Qiang; Xin, Xiaofang; Zhao, Guoping; Zheng, Huajun; Guo, Xiaokui; Wang, Junzhi

    2016-01-01

    Leptospirosis, caused by pathogenic Leptospira spp., has recently been recognized as an emerging infectious disease worldwide. Despite its severity and global importance, knowledge about the molecular pathogenesis and virulence evolution of Leptospira spp. remains limited. Here we sequenced and analyzed 102 isolates representing global sources. A high genomic variability were observed among different Leptospira species, which was attributed to massive gene gain and loss events allowing for adaptation to specific niche conditions and changing host environments. Horizontal gene transfer and gene duplication allowed the stepwise acquisition of virulence factors in pathogenic Leptospira evolved from a recent common ancestor. More importantly, the abundant expansion of specific virulence-related protein families, such as metalloproteases-associated paralogs, were exclusively identified in pathogenic species, reflecting the importance of these protein families in the pathogenesis of leptospirosis. Our observations also indicated that positive selection played a crucial role on this bacteria adaptation to hosts. These novel findings may lead to greater understanding of the global diversity and virulence evolution of Leptospira spp. PMID:26833181

  6. [Recurrent clinical mastitis in dairy cattle - importance and causes].

    PubMed

    Grieger, A-S; Zoche-Golob, V; Paduch, J-H; Hoedemaker, M; Krömker, V

    2014-01-01

    Clinical mastitis as a frequently recurrent event can cause substantive economic loss on dairy farms. The reason for recurrent mastitis can be either a persistent infection of the bovine mammary gland by a mastitis pathogen or a reinfection of a quarter or udder after bacteriological cure. The virulence properties of a mastitis pathogen and the cure odds of an individual cow determine the development of persistent infections. Clinical episodes may alternate with periods without symptoms in the course of persistent infections. Strategies to reduce cases of recurrent mastitis have to include improved treatment concepts and measures to decrease new infection rates. The present literature review summarises the knowledge of definitions, frequencies, causes and effects of recurrent mastitis.

  7. Multiplex identification of sepsis-causing Gram-negative pathogens from the plasma of infected blood.

    PubMed

    Chung, Boram; Park, Chulmin; Cho, Sung-Yeon; Shin, Juyoun; Shin, Sun; Yim, Seon-Hee; Lee, Dong-Gun; Chung, Yeun-Jung

    2018-02-01

    Early and accurate detection of bacterial pathogens in the blood is the most crucial step for sepsis management. Gram-negative bacteria are the most common organisms causing severe sepsis and responsible for high morbidity and mortality. We aimed to develop a method for rapid multiplex identification of clinically important Gram-negative pathogens and also validated whether our system can identify Gram-negative pathogens with the cell-free plasm DNA from infected blood. We designed five MLPA probe sets targeting the genes specific to major Gram-negative pathogens (uidA and lacY for E. coli, ompA for A. baumannii, phoE for K. pneumoniae, and ecfX for P. aeruginosa) and one set targeting the CTX-M group 1 to identify the ESBL producing Gram-negative pathogens. All six target-specific peaks were clearly separated without any non-specific peaks in a multiplex reaction condition. The minimum detection limit was 100 fg of pathogen DNA. When we tested 28 Gram-negative clinical isolates, all of them were successfully identified without any non-specific peaks. To evaluate the clinical applicability, we tested seven blood samples from febrile patients. Three blood culture positive cases showed E. coli specific peaks, while no peak was detected in the other four culture negative samples. This technology can be useful for detection of major sepsis-causing, drug-resistant Gram-negative pathogens and also the major ESBL producing Gram-negatives from the blood of sepsis patients in a clinical setting. This system can help early initiation of effective antimicrobial treatment against Gram-negative pathogens for sepsis patients, which is very crucial for better treatment outcomes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Pathogenicity and infection strategies of the fire blight pathogen Erwinia amylovora in Rosaceae: state of the art.

    PubMed

    Vrancken, K; Holtappels, M; Schoofs, H; Deckers, T; Valcke, R

    2013-05-01

    Plants are host to a large amount of pathogenic bacteria. Fire blight, caused by the bacterium Erwinia amylovora, is an important disease in Rosaceae. Pathogenicity of E. amylovora is greatly influenced by the production of exopolysaccharides, such as amylovoran, and the use of the type III secretion system, which enables bacteria to penetrate host tissue and cause disease. When infection takes place, plants have to rely on the ability of each cell to recognize the pathogen and the signals emanating from the infection site in order to generate several defence mechanisms. These mechanisms consist of physical barriers and the production of antimicrobial components, both in a preformed and an inducible manner. Inducible defence responses are activated upon the recognition of elicitor molecules by plant cell receptors, either derived from invading micro-organisms or from pathogen-induced degradation of plant tissue. This recognition event triggers a signal transduction cascade, leading to a range of defence responses [reactive oxygen species (ROS), plant hormones, secondary metabolites, …] and redeployment of cellular energy in a fast, efficient and multiresponsive manner, which prevents further pathogen ingress. This review highlights the research that has been performed during recent years regarding this specific plant-pathogen interaction between Erwinia amylovora and Rosaceae, with a special emphasis on the pathogenicity and the infection strategy of E. amylovora and the possible defence mechanisms of the plant against this disease.

  9. A Family of Indoles Regulate Virulence and Shiga Toxin Production in Pathogenic E. coli

    PubMed Central

    Izrayelit, Yevgeniy; Bhatt, Shantanu; Cartwright, Emily; Wang, Wei; Swimm, Alyson I.; Benian, Guy M.; Schroeder, Frank C.; Kalman, Daniel

    2013-01-01

    Enteropathogenic Escherichia coli (EPEC), enterohemorrhagic E. coli (EHEC) and enteroaggregative E. coli (EAEC) are intestinal pathogens that cause food and water-borne disease in humans. Using biochemical methods and NMR-based comparative metabolomics in conjunction with the nematode Caenorhabditis elegans, we developed a bioassay to identify secreted small molecules produced by these pathogens. We identified indole, indole-3-carboxaldehyde (ICA), and indole-3-acetic acid (IAA), as factors that only in combination are sufficient to kill C. elegans. Importantly, although lethal to C. elegans, these molecules downregulate several bacterial processes important for pathogenesis in mammals. These include motility, biofilm formation and production of Shiga toxins. Some pathogenic E. coli strains are known to contain a Locus of Enterocyte Effacement (LEE), which encodes virulence factors that cause “attaching and effacing” (A/E) lesions in mammals, including formation of actin pedestals. We found that these indole derivatives also downregulate production of LEE virulence factors and inhibit pedestal formation on mammalian cells. Finally, upon oral administration, ICA inhibited virulence and promoted survival in a lethal mouse infection model. In summary, the C. elegans model in conjunction with metabolomics has facilitated identification of a family of indole derivatives that broadly regulate physiology in E. coli, and virulence in pathogenic strains. These molecules may enable development of new therapeutics that interfere with bacterial small-molecule signaling. PMID:23372726

  10. Transcriptome Analysis of Porphyromonas gingivalis and Acinetobacter baumannii in Polymicrobial Communities.

    PubMed

    Miller, Daniel P; Wang, Qian; Weinberg, Aaron; Lamont, Richard J

    2018-06-25

    Acinetobacter baumannii is a nosocomial, opportunistic pathogen that causes several serious conditions such as meningitis, septicemia, endocarditis and pneumonia. It can be found in the oral biofilm, which may be a reservoir for pneumonia and chronic obstructive pulmonary disease. Subgingival colonization by A. baumannii is associated with chronic and aggressive periodontitis as well as refractory periodontal disease. Porphyromonas gingivalis, a keystone periodontal pathogen localized to subgingival plaque, is also implicated in several chronic conditions including aspiration pneumonia. While both bacteria are found together in subgingival plaque and can cause multiple polymicrobial infections, nothing is known about the interactions between these two important human pathogens. In this study, we used RNA sequencing to understand the transcriptional response of both species as they adapt to heterotypic communities. Among the differentially regulated genes were those encoding a number of important virulence factors for both species including adhesion, biofilm formation, and protein secretion. Additionally, the presence of A. baumannii increased the abundance of P. gingivalis in model dual species communities Collectively these results suggest that both P. gingivalis and A. baumannii adapt to each other and have synergistic potential for increased pathogenicity. In identifying the mechanisms that promote pathogenicity and refractory disease, novel approaches to mitigate polymicrobial synergistic interactions may be developed to treat or prevent associated diseases. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  11. Gene flow in environmental Legionella pneumophila leads to genetic and pathogenic heterogeneity within a Legionnaires' disease outbreak.

    PubMed

    McAdam, Paul R; Vander Broek, Charles W; Lindsay, Diane S J; Ward, Melissa J; Hanson, Mary F; Gillies, Michael; Watson, Mick; Stevens, Joanne M; Edwards, Giles F; Fitzgerald, J Ross

    2014-01-01

    Legionnaires' disease is a severe form of pneumonia caused by the environmental bacterium Legionella pneumophila. Outbreaks commonly affect people with known risk factors, but the genetic and pathogenic complexity of L. pneumophila within an outbreak is not well understood. Here, we investigate the etiology of the major Legionnaires' disease outbreak that occurred in Edinburgh, UK, in 2012, by examining the evolutionary history, genome content, and virulence of L. pneumophila clinical isolates. Our high resolution genomic approach reveals that the outbreak was caused by multiple genetic subtypes of L. pneumophila, the majority of which had diversified from a single progenitor through mutation, recombination, and horizontal gene transfer within an environmental reservoir prior to release. In addition, we discover that some patients were infected with multiple L. pneumophila subtypes, a finding which can affect the certainty of source attribution. Importantly, variation in the complement of type IV secretion systems encoded by different genetic subtypes correlates with virulence in a Galleria mellonella model of infection, revealing variation in pathogenic potential among the outbreak source population of L. pneumophila. Taken together, our study indicates previously cryptic levels of pathogen heterogeneity within a Legionnaires' disease outbreak, a discovery that impacts on source attribution for future outbreak investigations. Furthermore, our data suggest that in addition to host immune status, pathogen diversity may be an important influence on the clinical outcome of individual outbreak infections.

  12. New trends in emerging pathogens.

    PubMed

    Skovgaard, Niels

    2007-12-15

    The emergence of pathogens is the result of a number of impact in all parts of the food chain. The emerging technologies in food production explain how new pathogens can establish themselves in the food chain and compromise food safety. The impact of the food technology is analysed for several bacteria, such as Yersinia, Campylobacter, Arcobacter, Helicobacter pullorum, Enterobacter sakazakii, Mycobacterium avium spp. paratuberculosis, prions related to vCJD and others. The importance of the ability of many microbes to form VBNC forms is elaborated on. Research on culture independent methods may address this outstanding issue to the better understanding of emerging pathogens. The "demerging" of pathogens also occur, and examples of this are explained. The reaction of bacteria to stresses and sublethal treatments, and how exposure to one stress factor can confer resistance to other stresses, literally speaking causing contagious resistance, are explained. The implication of this e.g. in modern approaches of food preservation, such as Minimally processed Foods, is considerable. Intestinal colonization of EHEC may be regulated by Quorum sensing, and this ability of microbes plays an important role in the colonization of microbes in food and on food processing equipment, an important factor in the emergence of pathogens. The emergence of Saccharomyces cerevisiae, as an opportunistic human pathogen, used for centuries for food and production of alcoholic beverages, calls for research in molecular tools to distinguish between probiotic and clinical strains. Cyclospora cayetanensis and Norovirus outbreaks can no longer be designated as emerging pathogens, they share however one characteristic in the epidemiology of emerging nature, the importance of the hygiene in the primary production stage, including supply of potable water, and the application of GMP and the HACCP principles in the beginning of the food chain. Hepatitis E virus is a potential emerging food borne pathogen and swine may serve as a source of infection in human, a most challenging issue in greater part of the world raising pigs. Tick-borne encephalitis virus infection, either thick borne or caused by consumption of raw milk, is an increasing trend in the industrialized part of the world. Consumer awareness, ethics of food, sustainability in food production, and trust in foods, are of growing importance to the consumer. The reaction of the consumer to new technology, such as nanotechnology, is unpredictable. Many efforts should be devoted to communication of non-biased information to both the food producers as well as the consumer.

  13. The pathogenicity of Aspergillus fumigatus, drug resistance, and nanoparticle delivery.

    PubMed

    Szalewski, David A; Hinrichs, Victoria S; Zinniel, Denise K; Barletta, Raúl G

    2018-03-27

    The genus Aspergillus includes fungal species that cause major health issues of significant economic importance. These microorganisms are also the culprit for production of carcinogenic aflatoxins in grain storages, contaminating crops, and economically straining the production process. Aspergillus fumigatus is a very important pathogenic species, being responsible for high human morbidity and mortality on a global basis. The prevalence of these infections in immunosuppressed individuals is on the rise, and physicians struggle with the diagnosis of these deadly pathogens. Several virulence determinants facilitate fungal invasion and evasion of the host immune response. Metabolic functions are also important for virulence and drug resistance, since they allow fungi to obtain nutrients for their own survival and growth. Following a positive diagnostic identification, mortality rates remain high due, in part, to emerging resistance to frequently used antifungal drugs. In this review, we discuss the role of the main virulence, drug target, and drug resistance determinants. We conclude with the review of new technologies being developed to treat aspergillosis. In particular, microsphere and nanoparticle delivery systems are discussed in the context of improving drug bioavailability. Aspergillus will likely continue to cause problematic infections in immunocompromised patients, so it is imperative to improve treatment options.

  14. Shared influence of pathogen and host genetics on a trade-off between latent period and spore production capacity in the wheat pathogen, Puccinia triticina.

    PubMed

    Pariaud, Bénédicte; Berg, Femke; Bosch, Frank; Powers, Stephen J; Kaltz, Oliver; Lannou, Christian

    2013-02-01

    Crop pathogens are notorious for their rapid adaptation to their host. We still know little about the evolution of their life cycles and whether there might be trade-offs between fitness components, limiting the evolutionary potential of these pathogens. In this study, we explored a trade-off between spore production capacity and latent period in Puccinia triticina, a fungal pathogen causing leaf rust on wheat. Using a simple multivariate (manova) technique, we showed that the covariance between the two traits is under shared control of host and pathogen, with contributions from host genotype (57%), pathogen genotype (18.4%) and genotype × genotype interactions (12.5%). We also found variation in sign and strength of genetic correlations for the pathogen, when measured on different host varieties. Our results suggest that these important pathogen life-history traits do not freely respond to directional selection and that precise evolutionary trajectories are contingent on the genetic identity of the interacting host and pathogen.

  15. Yersiniabactin iron uptake: mechanisms and role in Yersinia pestis pathogenesis

    PubMed Central

    Perry, Robert D.; Fetherston, Jacqueline D.

    2011-01-01

    Yersiniabactin (Ybt) is a siderophore-dependent iron uptake system encoded on a pathogenicity island that is widespread among pathogenic bacteria including the Yersiniae. While biosynthesis of the siderophore has been elucidated, the secretion mechanism and a few components of the uptake/utilization pathway are unidentified. ybt genes are transcriptionally repressed by Fur but activated by YbtA, likely in combination with the siderophore itself. The Ybt system is essential for the ability of Y. pestis to cause bubonic plague and important in pneumonic plague as well. However, the ability to cause fatal septicemic plague is independent of Ybt. PMID:21609780

  16. Persistent anthrax as a major driver of wildlife mortality in a tropical rainforest

    NASA Astrophysics Data System (ADS)

    Hoffmann, Constanze; Zimmermann, Fee; Biek, Roman; Kuehl, Hjalmar; Nowak, Kathrin; Mundry, Roger; Agbor, Anthony; Angedakin, Samuel; Arandjelovic, Mimi; Blankenburg, Anja; Brazolla, Gregory; Corogenes, Katherine; Couacy-Hymann, Emmanuel; Deschner, Tobias; Dieguez, Paula; Dierks, Karsten; Düx, Ariane; Dupke, Susann; Eshuis, Henk; Formenty, Pierre; Yuh, Yisa Ginath; Goedmakers, Annemarie; Gogarten, Jan F.; Granjon, Anne-Céline; McGraw, Scott; Grunow, Roland; Hart, John; Jones, Sorrel; Junker, Jessica; Kiang, John; Langergraber, Kevin; Lapuente, Juan; Lee, Kevin; Leendertz, Siv Aina; Léguillon, Floraine; Leinert, Vera; Löhrich, Therese; Marrocoli, Sergio; Mätz-Rensing, Kerstin; Meier, Amelia; Merkel, Kevin; Metzger, Sonja; Murai, Mizuki; Niedorf, Svenja; de Nys, Hélène; Sachse, Andreas; van Schijndel, Joost; Thiesen, Ulla; Ton, Els; Wu, Doris; Wieler, Lothar H.; Boesch, Christophe; Klee, Silke R.; Wittig, Roman M.; Calvignac-Spencer, Sébastien; Leendertz, Fabian H.

    2017-08-01

    Anthrax is a globally important animal disease and zoonosis. Despite this, our current knowledge of anthrax ecology is largely limited to arid ecosystems, where outbreaks are most commonly reported. Here we show that the dynamics of an anthrax-causing agent, Bacillus cereus biovar anthracis, in a tropical rainforest have severe consequences for local wildlife communities. Using data and samples collected over three decades, we show that rainforest anthrax is a persistent and widespread cause of death for a broad range of mammalian hosts. We predict that this pathogen will accelerate the decline and possibly result in the extirpation of local chimpanzee (Pan troglodytes verus) populations. We present the epidemiology of a cryptic pathogen and show that its presence has important implications for conservation.

  17. Persistent anthrax as a major driver of wildlife mortality in a tropical rainforest.

    PubMed

    Hoffmann, Constanze; Zimmermann, Fee; Biek, Roman; Kuehl, Hjalmar; Nowak, Kathrin; Mundry, Roger; Agbor, Anthony; Angedakin, Samuel; Arandjelovic, Mimi; Blankenburg, Anja; Brazolla, Gregory; Corogenes, Katherine; Couacy-Hymann, Emmanuel; Deschner, Tobias; Dieguez, Paula; Dierks, Karsten; Düx, Ariane; Dupke, Susann; Eshuis, Henk; Formenty, Pierre; Yuh, Yisa Ginath; Goedmakers, Annemarie; Gogarten, Jan F; Granjon, Anne-Céline; McGraw, Scott; Grunow, Roland; Hart, John; Jones, Sorrel; Junker, Jessica; Kiang, John; Langergraber, Kevin; Lapuente, Juan; Lee, Kevin; Leendertz, Siv Aina; Léguillon, Floraine; Leinert, Vera; Löhrich, Therese; Marrocoli, Sergio; Mätz-Rensing, Kerstin; Meier, Amelia; Merkel, Kevin; Metzger, Sonja; Murai, Mizuki; Niedorf, Svenja; De Nys, Hélène; Sachse, Andreas; van Schijndel, Joost; Thiesen, Ulla; Ton, Els; Wu, Doris; Wieler, Lothar H; Boesch, Christophe; Klee, Silke R; Wittig, Roman M; Calvignac-Spencer, Sébastien; Leendertz, Fabian H

    2017-08-02

    Anthrax is a globally important animal disease and zoonosis. Despite this, our current knowledge of anthrax ecology is largely limited to arid ecosystems, where outbreaks are most commonly reported. Here we show that the dynamics of an anthrax-causing agent, Bacillus cereus biovar anthracis, in a tropical rainforest have severe consequences for local wildlife communities. Using data and samples collected over three decades, we show that rainforest anthrax is a persistent and widespread cause of death for a broad range of mammalian hosts. We predict that this pathogen will accelerate the decline and possibly result in the extirpation of local chimpanzee (Pan troglodytes verus) populations. We present the epidemiology of a cryptic pathogen and show that its presence has important implications for conservation.

  18. Epidemiological analysis of tick-borne diseases in Zambia.

    PubMed

    Simuunza, Martin; Weir, William; Courcier, Emily; Tait, Andy; Shiels, Brian

    2011-02-10

    Tick-borne diseases are a constraint to livestock production in many developing countries as they cause high morbidity and mortality, which results in decreased production of meat, milk and other livestock by-products. The most important tick-borne diseases of livestock in sub-Saharan Africa are East Coast fever (caused by Theileria parva), babesiosis (caused by Babesia bigemina and B. bovis), anaplasmosis (caused by Anaplasma marginale) and heartwater (caused by Ehrlichia ruminantium). Despite their economic importance, information on the epidemiology of these diseases in many countries, including Zambia, is often inadequate, making rational disease control strategies difficult to implement. In this study 18S and 16S rRNA gene PCR assays were used for a comprehensive epidemiological analysis of tick-borne disease of cattle in three provinces of Zambia (Lusaka, Central and Eastern). All the disease pathogens under study (T. parva, T. mutans, T. taurotragi, B. bovis, B. bigemina, Anaplasma spp and E. ruminantium) were prevalent in each of the provinces surveyed. However, variation was observed in prevalence between regions and seasons. There was no association between live vaccination against East Coast fever and being PCR positive for T. parva. A number of risk factors were shown to be associated with (a) the occurrence of tick-borne pathogens in cattle and (b) cattle tick burdens in the wet season. A negative association was observed between the number of co-infecting pathogens and the erythrocyte packed cell volume (PCV) of carrier cattle. Crown Copyright © 2010. Published by Elsevier B.V. All rights reserved.

  19. Promiscuous Pathogenicity Islands and Phylogeny of Pathogenic Streptomyces spp.

    PubMed

    Zhang, Yucheng; Bignell, Dawn R D; Zuo, Ran; Fan, Qiurong; Huguet-Tapia, Jose C; Ding, Yousong; Loria, Rosemary

    2016-08-01

    Approximately 10 Streptomyces species cause disease on underground plant structures. The most economically important of these is potato scab, and the most studied of these pathogens is Streptomyces scabiei (syn. S. scabies). The main pathogenicity determinant of scab-causing Streptomyces species is a nitrated diketopiperazine, known as thaxtomin A (ThxA). In the pathogenic species Streptomyces turgidiscabies, ThxA biosynthetic genes reside on a mobile pathogenicity island (PAI). However, the mobilization of PAIs in other Streptomyces species remains uncharacterized. Here, we investigated the mobilization of the PAI of S. scabiei 87-22. Based on whole genome sequences, we inferred the evolutionary relationships of pathogenic Streptomyces species and discovered that Streptomyces sp. strain 96-12, a novel pathogenic species isolated from potatoes in Egypt, was phylogenetically grouped with nonpathogenic species rather than with known pathogenic species. We also found that Streptomyces sp. strain 96-12 contains a PAI that is almost identical to the PAI in S. scabiei 87-22, despite significant differences in their genome sequences. This suggested direct or indirect in vivo mobilization of the PAI between S. scabiei and nonpathogenic Streptomyces species. To test whether the S. scabiei 87-22 PAI could, indeed, be mobilized, S. scabiei 87-22 deletion mutants containing antibiotic resistance markers in the PAI were mated with Streptomyces diastatochromogenes, a nonpathogenic species. The PAI of S. scabiei was site-specifically inserted into the aviX1 gene of S. diastatochromogenes and conferred pathogenicity in radish seedling assays. Our results demonstrated that S. scabiei, the earliest described Streptomyces pathogen, could be the source of a PAI responsible for the emergence of novel pathogenic species.

  20. Control of Newcastle disease virus

    USDA-ARS?s Scientific Manuscript database

    Newcastle disease virus (NDV), also know as avian paramyxovirus serotype 1, is an important poultry pathogen worldwide. In naive poultry, the virulent forms of the virus cause high mortality. Because of this the virus is reportable to the World Organization for Animal Health and can be an important ...

  1. Assessment of genetic variation for pathogen-specific mastitis resistance in Valle del Belice dairy sheep.

    PubMed

    Tolone, Marco; Larrondo, Cristian; Yáñez, José M; Newman, Scott; Sardina, Maria Teresa; Portolano, Baldassare

    2016-07-28

    Mastitis resistance is a complex and multifactorial trait, and its expression depends on both genetic and environmental factors, including infection pressure. The objective of this research was to determine the genetic basis of mastitis resistance to specific pathogens using a repeatability threshold probit animal model. The most prevalent isolated pathogens were coagulase-negative staphylococci (CNS); 39 % of records and 77 % of the animals infected at least one time in the whole period of study. There was significant genetic variation only for Streptococci (STR). In addition, there was a positive genetic correlation between STR and all pathogens together (ALL) (0.36 ± 0.22), and CNS and ALL (0.92 ± 0.04). The results of our study support the presence of significant genetic variation for mastitis caused by Streptococci and suggest the importance of discriminating between different pathogens causing mastitis due to the fact that they most likely influence different genetic traits. Low heritabilities for pathogen specific-mastitis resistance may be considered when including bacteriological status as a measure of mastitis presence to implement breeding strategies for improving udder health in dairy ewes.

  2. Community-acquired methicillin-resistant Staphylococcus aureus: an emerging cause of acute bacterial parotitis.

    PubMed

    Nicolasora, Nelson P; Zacharek, Mark A; Malani, Anurag N

    2009-02-01

    Staphylococcus aureus has long been recognized as a cause of acute bacterial parotitis. A case of community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) parotitis is presented, highlighting the emergence of this increasingly important pathogen to cause a wide variety of infections. Also reviewed are the salient clinical and microbiologic features of this novel infection.

  3. Streptococcus suis - The "Two Faces" of a Pathobiont in the Porcine Respiratory Tract.

    PubMed

    Vötsch, Désirée; Willenborg, Maren; Weldearegay, Yenehiwot B; Valentin-Weigand, Peter

    2018-01-01

    Streptococcus (S.) suis is a frequent early colonizer of the upper respiratory tract of pigs. In fact, it is difficult to find S. suis -free animals under natural conditions, showing the successful adaptation of this pathogen to its porcine reservoir host. On the other hand, S. suis can cause life-threatening diseases and represents the most important bacterial cause of meningitis in pigs worldwide. Notably, S. suis can also cause zoonotic infections, such as meningitis, septicemia, endocarditis, and other diseases in humans. In Asia, it is classified as an emerging zoonotic pathogen and currently considered as one of the most important causes of bacterial meningitis in adults. The "two faces" of S. suis , one of a colonizing microbe and the other of a highly invasive pathogen, have raised many questions concerning the interpretation of diagnostic detection and the definition of virulence. Thus, one major research challenge is the identification of virulence-markers which allow differentiation of commensal and virulent strains. This is complicated by the high phenotypic and genotypic diversity of S. suis , as reflected by the occurrence of (at least) 33 capsular serotypes. In this review, we present current knowledge in the context of S. suis as a highly diverse pathobiont in the porcine respiratory tract that can exploit disrupted host homeostasis to flourish and promote inflammatory processes and invasive diseases in pigs and humans.

  4. Streptococcus suis – The “Two Faces” of a Pathobiont in the Porcine Respiratory Tract

    PubMed Central

    Vötsch, Désirée; Willenborg, Maren; Weldearegay, Yenehiwot B.; Valentin-Weigand, Peter

    2018-01-01

    Streptococcus (S.) suis is a frequent early colonizer of the upper respiratory tract of pigs. In fact, it is difficult to find S. suis-free animals under natural conditions, showing the successful adaptation of this pathogen to its porcine reservoir host. On the other hand, S. suis can cause life-threatening diseases and represents the most important bacterial cause of meningitis in pigs worldwide. Notably, S. suis can also cause zoonotic infections, such as meningitis, septicemia, endocarditis, and other diseases in humans. In Asia, it is classified as an emerging zoonotic pathogen and currently considered as one of the most important causes of bacterial meningitis in adults. The “two faces” of S. suis, one of a colonizing microbe and the other of a highly invasive pathogen, have raised many questions concerning the interpretation of diagnostic detection and the definition of virulence. Thus, one major research challenge is the identification of virulence-markers which allow differentiation of commensal and virulent strains. This is complicated by the high phenotypic and genotypic diversity of S. suis, as reflected by the occurrence of (at least) 33 capsular serotypes. In this review, we present current knowledge in the context of S. suis as a highly diverse pathobiont in the porcine respiratory tract that can exploit disrupted host homeostasis to flourish and promote inflammatory processes and invasive diseases in pigs and humans. PMID:29599763

  5. Proteomics of Plant Pathogenic Fungi

    PubMed Central

    González-Fernández, Raquel; Prats, Elena; Jorrín-Novo, Jesús V.

    2010-01-01

    Plant pathogenic fungi cause important yield losses in crops. In order to develop efficient and environmental friendly crop protection strategies, molecular studies of the fungal biological cycle, virulence factors, and interaction with its host are necessary. For that reason, several approaches have been performed using both classical genetic, cell biology, and biochemistry and the modern, holistic, and high-throughput, omic techniques. This work briefly overviews the tools available for studying Plant Pathogenic Fungi and is amply focused on MS-based Proteomics analysis, based on original papers published up to December 2009. At a methodological level, different steps in a proteomic workflow experiment are discussed. Separate sections are devoted to fungal descriptive (intracellular, subcellular, extracellular) and differential expression proteomics and interactomics. From the work published we can conclude that Proteomics, in combination with other techniques, constitutes a powerful tool for providing important information about pathogenicity and virulence factors, thus opening up new possibilities for crop disease diagnosis and crop protection. PMID:20589070

  6. Proteomics of plant pathogenic fungi.

    PubMed

    González-Fernández, Raquel; Prats, Elena; Jorrín-Novo, Jesús V

    2010-01-01

    Plant pathogenic fungi cause important yield losses in crops. In order to develop efficient and environmental friendly crop protection strategies, molecular studies of the fungal biological cycle, virulence factors, and interaction with its host are necessary. For that reason, several approaches have been performed using both classical genetic, cell biology, and biochemistry and the modern, holistic, and high-throughput, omic techniques. This work briefly overviews the tools available for studying Plant Pathogenic Fungi and is amply focused on MS-based Proteomics analysis, based on original papers published up to December 2009. At a methodological level, different steps in a proteomic workflow experiment are discussed. Separate sections are devoted to fungal descriptive (intracellular, subcellular, extracellular) and differential expression proteomics and interactomics. From the work published we can conclude that Proteomics, in combination with other techniques, constitutes a powerful tool for providing important information about pathogenicity and virulence factors, thus opening up new possibilities for crop disease diagnosis and crop protection.

  7. The Vast and Varied Global Burden of Norovirus: Prospects for Prevention and Control

    PubMed Central

    Lopman, Benjamin A.; Steele, Duncan; Kirkwood, Carl D.; Parashar, Umesh D.

    2016-01-01

    Globally, norovirus is associated with approximately one-fifth of all diarrhea cases, with similar prevalence in both children and adults, and is estimated to cause over 200,000 deaths annually in developing countries. Norovirus is an important pathogen in a number of high-priority domains: it is the most common cause of diarrheal episodes globally, the principal cause of foodborne disease outbreaks in the United States, a key health care–acquired infection, a common cause of travel-associated diarrhea, and a bane for deployed military troops. Partly as a result of this ubiquity and burden across a range of different populations, identifying target groups and strategies for intervention has been challenging. And, on top of the breadth of this public health problem, there remain important gaps in scientific knowledge regarding norovirus, especially with respect to disease in low-income settings. Many pathogens can cause acute gastroenteritis. Historically, rotavirus was the most common cause of severe disease in young children globally. Now, vaccines are available for rotavirus and are universally recommended by the World Health Organization. In countries with effective rotavirus vaccination programs, disease due to that pathogen has decreased markedly, but norovirus persists and is now the most common cause of pediatric gastroenteritis requiring medical attention. However, the data supporting the precise role of norovirus in low- and middle-income settings are sparse. With vaccines in the pipeline, addressing these and other important knowledge gaps is increasingly pressing. We assembled an expert group to assess the evidence for the global burden of norovirus and to consider the prospects for norovirus vaccine development. The group assessed the evidence in the areas of burden of disease, epidemiology, diagnostics, disease attribution, acquired immunity, and innate susceptibility, and the group considered how to bring norovirus vaccines from their current state of development to a viable product that will benefit global health. PMID:27115709

  8. The Vast and Varied Global Burden of Norovirus: Prospects for Prevention and Control.

    PubMed

    Lopman, Benjamin A; Steele, Duncan; Kirkwood, Carl D; Parashar, Umesh D

    2016-04-01

    Globally, norovirus is associated with approximately one-fifth of all diarrhea cases, with similar prevalence in both children and adults, and is estimated to cause over 200,000 deaths annually in developing countries. Norovirus is an important pathogen in a number of high-priority domains: it is the most common cause of diarrheal episodes globally, the principal cause of foodborne disease outbreaks in the United States, a key health care-acquired infection, a common cause of travel-associated diarrhea, and a bane for deployed military troops. Partly as a result of this ubiquity and burden across a range of different populations, identifying target groups and strategies for intervention has been challenging. And, on top of the breadth of this public health problem, there remain important gaps in scientific knowledge regarding norovirus, especially with respect to disease in low-income settings. Many pathogens can cause acute gastroenteritis. Historically, rotavirus was the most common cause of severe disease in young children globally. Now, vaccines are available for rotavirus and are universally recommended by the World Health Organization. In countries with effective rotavirus vaccination programs, disease due to that pathogen has decreased markedly, but norovirus persists and is now the most common cause of pediatric gastroenteritis requiring medical attention. However, the data supporting the precise role of norovirus in low- and middle-income settings are sparse. With vaccines in the pipeline, addressing these and other important knowledge gaps is increasingly pressing. We assembled an expert group to assess the evidence for the global burden of norovirus and to consider the prospects for norovirus vaccine development. The group assessed the evidence in the areas of burden of disease, epidemiology, diagnostics, disease attribution, acquired immunity, and innate susceptibility, and the group considered how to bring norovirus vaccines from their current state of development to a viable product that will benefit global health.

  9. Seed treatments to control seedborne fungal pathogens of vegetable crops.

    PubMed

    Mancini, Valeria; Romanazzi, Gianfranco

    2014-06-01

    Vegetable crops are frequently infected by fungal pathogens, which can include seedborne fungi. In such cases, the pathogen is already present within or on the seed surface, and can thus cause seed rot and seedling damping-off. Treatment of vegetable seeds has been shown to prevent plant disease epidemics caused by seedborne fungal pathogens. Furthermore, seed treatments can be useful in reducing the amounts of pesticides required to manage a disease, because effective seed treatments can eliminate the need for foliar application of fungicides later in the season. Although the application of fungicides is almost always effective, their non-target environmental impact and the development of pathogen resistance have led to the search for alternative methods, especially in the past few years. Physical treatments that have already been used in the past and treatments with biopesticides, such as plant extracts, natural compounds and biocontrol agents, have proved to be effective in controlling seedborne pathogens. These have been applied alone or in combination, and they are widely used owing to their broad spectrum in terms of disease control and production yield. In this review, the effectiveness of different seed treatments against the main seedborne pathogens of some important vegetable crops is critically discussed. © 2013 Society of Chemical Industry.

  10. Development and application of qPCR and RPA genus and species-specific detection of Phytophthora sojae and Phytophthora sansomeana root rot pathogens of soybean

    USDA-ARS?s Scientific Manuscript database

    Phytophthora root rot of soybean, caused by Phytophthora sojae is one of the most important diseases in the Midwest US, causing losses of up to 44 million bushels per year. Disease may also be caused by P. sansomeana, however the prevalence and damage caused by this species is not well known, partl...

  11. Iron Acquisition Mechanisms and Their Role in the Virulence of Burkholderia Species.

    PubMed

    Butt, Aaron T; Thomas, Mark S

    2017-01-01

    Burkholderia is a genus within the β -Proteobacteriaceae that contains at least 90 validly named species which can be found in a diverse range of environments. A number of pathogenic species occur within the genus. These include Burkholderia cenocepacia and Burkholderia multivorans , opportunistic pathogens that can infect the lungs of patients with cystic fibrosis, and are members of the Burkholderia cepacia complex (Bcc). Burkholderia pseudomallei is also an opportunistic pathogen, but in contrast to Bcc species it causes the tropical human disease melioidosis, while its close relative Burkholderia mallei is the causative agent of glanders in horses. For these pathogens to survive within a host and cause disease they must be able to acquire iron. This chemical element is essential for nearly all living organisms due to its important role in many enzymes and metabolic processes. In the mammalian host, the amount of accessible free iron is negligible due to the low solubility of the metal ion in its higher oxidation state and the tight binding of this element by host proteins such as ferritin and lactoferrin. As with other pathogenic bacteria, Burkholderia species have evolved an array of iron acquisition mechanisms with which to capture iron from the host environment. These mechanisms include the production and utilization of siderophores and the possession of a haem uptake system. Here, we summarize the known mechanisms of iron acquisition in pathogenic Burkholderia species and discuss the evidence for their importance in the context of virulence and the establishment of infection in the host. We have also carried out an extensive bioinformatic analysis to identify which siderophores are produced by each Burkholderia species that is pathogenic to humans.

  12. Iron Acquisition Mechanisms and Their Role in the Virulence of Burkholderia Species

    PubMed Central

    Butt, Aaron T.; Thomas, Mark S.

    2017-01-01

    Burkholderia is a genus within the β-Proteobacteriaceae that contains at least 90 validly named species which can be found in a diverse range of environments. A number of pathogenic species occur within the genus. These include Burkholderia cenocepacia and Burkholderia multivorans, opportunistic pathogens that can infect the lungs of patients with cystic fibrosis, and are members of the Burkholderia cepacia complex (Bcc). Burkholderia pseudomallei is also an opportunistic pathogen, but in contrast to Bcc species it causes the tropical human disease melioidosis, while its close relative Burkholderia mallei is the causative agent of glanders in horses. For these pathogens to survive within a host and cause disease they must be able to acquire iron. This chemical element is essential for nearly all living organisms due to its important role in many enzymes and metabolic processes. In the mammalian host, the amount of accessible free iron is negligible due to the low solubility of the metal ion in its higher oxidation state and the tight binding of this element by host proteins such as ferritin and lactoferrin. As with other pathogenic bacteria, Burkholderia species have evolved an array of iron acquisition mechanisms with which to capture iron from the host environment. These mechanisms include the production and utilization of siderophores and the possession of a haem uptake system. Here, we summarize the known mechanisms of iron acquisition in pathogenic Burkholderia species and discuss the evidence for their importance in the context of virulence and the establishment of infection in the host. We have also carried out an extensive bioinformatic analysis to identify which siderophores are produced by each Burkholderia species that is pathogenic to humans. PMID:29164069

  13. Test characteristics of milk amyloid A ELISA, somatic cell count, and bacteriological culture for detection of intramammary pathogens that cause subclinical mastitis.

    PubMed

    Jaeger, S; Virchow, F; Torgerson, P R; Bischoff, M; Biner, B; Hartnack, S; Rüegg, S R

    2017-09-01

    Bovine mastitis is an important disease in the dairy industry, causing economic losses as a result of withheld milk and treatment costs. Several studies have suggested milk amyloid A (MAA) as a promising biomarker in the diagnosis of mastitis. In the absence of a gold standard for diagnosis of subclinical mastitis, we estimated the diagnostic test accuracy of a commercial MAA-ELISA, somatic cell count (SCC), and bacteriological culture using Bayesian latent class modeling. We divided intramammary infections into 2 classes: those caused by major pathogens (e.g., Escherichia coli, Staphylococcus aureus, streptococci, and lacto-/enterococci) and those caused by all pathogens (major pathogens plus Corynebacterium bovis, coagulase-negative staphylococci, Bacillus spp., Streptomyces spp.). We applied the 3 diagnostic tests to all samples. Of 433 composite milk samples included in this study, 275 (63.5%) contained at least 1 colony of any bacterial species; of those, 56 contained major pathogens and 219 contained minor pathogens. The remaining 158 samples (36.5%) were sterile. We determined 2 different thresholds for the MAA-ELISA using Bayesian latent class modeling: 3.9 µg/mL to detect mastitis caused by major pathogens and 1.6 µg/mL to detect mastitis caused by all pathogens. The optimal SCC threshold for identification of subclinical mastitis was 150,000 cells/mL; this threshold led to higher specificity (Sp) than 100,000 cells/mL. Test accuracy for major-pathogen intramammary infections was as follows: SCC, sensitivity (Se) 92.6% and Sp 72.9%; MAA-ELISA, Se 81.4% and Sp 93.4%; bacteriological culture, Se 23.8% and Sp 95.2%. Test accuracy for all-pathogen intramammary infections was as follows: SCC, sensitivity 90.3% and Sp 71.8%; MAA-ELISA, Se 88.0% and Sp 65.2%; bacteriological culture, Se 83.8% and Sp 54.8%. We suggest the use of SCC and MAA-ELISA as a combined screening procedure for situations such as a Staphylococcus aureus control program. With Bayesian latent class analysis, we were able to identify a more differentiated use of the 3 diagnostic tools. The MAA-ELISA is a valuable addition to existing tools for the diagnosis of subclinical mastitis. The Authors. Published by the Federation of Animal Science Societies and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

  14. Host-Induced Silencing of Pathogenicity Genes Enhances Resistance to Fusarium oxysporum Wilt in Tomato.

    PubMed

    Bharti, Poonam; Jyoti, Poonam; Kapoor, Priya; Sharma, Vandana; Shanmugam, V; Yadav, Sudesh Kumar

    2017-08-01

    This study presents a novel approach of controlling vascular wilt in tomato by RNAi expression directed to pathogenicity genes of Fusarium oxysporum f. sp. lycopersici. Vascular wilt of tomato caused by Fusarium oxysporum f. sp. lycopersici leads to qualitative and quantitative loss of the crop. Limitation in the existing control measures necessitates the development of alternative strategies to increase resistance in the plants against pathogens. Recent findings paved way to RNAi, as a promising method for silencing of pathogenicity genes in fungus and provided effective resistance against fungal pathogens. Here, two important pathogenicity genes FOW2, a Zn(II)2Cys6 family putative transcription regulator, and chsV, a putative myosin motor and a chitin synthase domain, were used for host-induced gene silencing through hairpinRNA cassettes of these genes against Fusarium oxysporum f. sp. lycopersici. HairpinRNAs were assembled in appropriate binary vectors and transformed into tomato plant targeting FOW2 and chsV genes, for two highly pathogenic strains of Fusarium oxysporum viz. TOFOL-IHBT and TOFOL-IVRI. Transgenic tomatoes were analyzed for possible attainment of resistance in transgenic lines against fungal infection. Eight transgenic lines expressing hairpinRNA cassettes showed trivial disease symptoms after 6-8 weeks of infection. Hence, the host-induced posttranscriptional gene silencing of pathogenicity genes in transgenic tomato plants has enhanced their resistance to vascular wilt disease caused by Fusarium oxysporum.

  15. Examining the Link between Biofilm Formation and the Ability of Pathogenic Salmonella Strains to Colonize Multiple Host Species

    PubMed Central

    MacKenzie, Keith D.; Palmer, Melissa B.; Köster, Wolfgang L.; White, Aaron P.

    2017-01-01

    Salmonella are important pathogens worldwide and a predominant number of human infections are zoonotic in nature. The ability of strains to form biofilms, which is a multicellular behavior characterized by the aggregation of cells, is predicted to be a conserved strategy for increased persistence and survival. It may also contribute to the increasing number of infections caused by ingestion of contaminated fruits and vegetables. There is a correlation between biofilm formation and the ability of strains to colonize and replicate within the intestines of multiple host species. These strains predominantly cause localized gastroenteritis infections in humans. In contrast, there are salmonellae that cause systemic, disseminated infections in a select few host species; these “invasive” strains have a narrowed host range, and most are unable to form biofilms. This includes host-restricted Salmonella serovar Typhi, which are only able to infect humans, and atypical gastroenteritis strains associated with the opportunistic infection of immunocompromised patients. From the perspective of transmission, biofilm formation is advantageous for ensuring pathogen survival in the environment. However, from an infection point of view, biofilm formation may be an anti-virulence trait. We do not know if the capacity to form biofilms prevents a strain from accessing the systemic compartments within the host or if loss of the biofilm phenotype reflects a change in a strain’s interaction with the host. In this review, we examine the connections between biofilm formation, Salmonella disease states, degrees of host adaptation, and how this might relate to different transmission patterns. A better understanding of the dynamic lifecycle of Salmonella will allow us to reduce the burden of livestock and human infections caused by these important pathogens. PMID:29159172

  16. Comparative genomic analysis of multiple strains of two unusual plant pathogens: Pseudomonas corrugata and Pseudomonas mediterranea

    PubMed Central

    Trantas, Emmanouil A.; Licciardello, Grazia; Almeida, Nalvo F.; Witek, Kamil; Strano, Cinzia P.; Duxbury, Zane; Ververidis, Filippos; Goumas, Dimitrios E.; Jones, Jonathan D. G.; Guttman, David S.; Catara, Vittoria; Sarris, Panagiotis F.

    2015-01-01

    The non-fluorescent pseudomonads, Pseudomonas corrugata (Pcor) and P. mediterranea (Pmed), are closely related species that cause pith necrosis, a disease of tomato that causes severe crop losses. However, they also show strong antagonistic effects against economically important pathogens, demonstrating their potential for utilization as biological control agents. In addition, their metabolic versatility makes them attractive for the production of commercial biomolecules and bioremediation. An extensive comparative genomics study is required to dissect the mechanisms that Pcor and Pmed employ to cause disease, prevent disease caused by other pathogens, and to mine their genomes for genes that encode proteins involved in commercially important chemical pathways. Here, we present the draft genomes of nine Pcor and Pmed strains from different geographical locations. This analysis covered significant genetic heterogeneity and allowed in-depth genomic comparison. All examined strains were able to trigger symptoms in tomato plants but not all induced a hypersensitive-like response in Nicotiana benthamiana. Genome-mining revealed the absence of type III secretion system and known type III effector-encoding genes from all examined Pcor and Pmed strains. The lack of a type III secretion system appears to be unique among the plant pathogenic pseudomonads. Several gene clusters coding for type VI secretion system were detected in all genomes. Genome-mining also revealed the presence of gene clusters for biosynthesis of siderophores, polyketides, non-ribosomal peptides, and hydrogen cyanide. A highly conserved quorum sensing system was detected in all strains, although species specific differences were observed. Our study provides the basis for in-depth investigations regarding the molecular mechanisms underlying virulence strategies in the battle between plants and microbes. PMID:26300874

  17. Opportunistic Pathogenic Yeasts

    NASA Astrophysics Data System (ADS)

    Banerjee, Uma

    Advances in medical research, made during the last few decades, have improved the prophylactic, diagnostic and therapeutic capabilities for variety of infections/diseases. However, many of the prophylactic and therapeutic procedures have been seen in many instances to exact a price of host-vulnerability to an expanding group of opportunistic pathogens and yeasts are one of the important members in it. Fortunately amongst the vast majority of yeasts present in nature only few are considered to have the capability to cause infections when certain opportunities predisposes and these are termed as ‘opportunistic pathogenic yeasts.’ However, the term ‘pathogenic’ is quite tricky, as it depends of various factors of the host, the ‘bug’ and the environment to manifest the clinical infection. The borderline is expanding. In the present century with unprecedented increase in number of immune-compromised host in various disciplines of health care settings, where any yeast, which has the capability to grow at 37 ° C (normal body temperature of human), can be pathogenic and cause infection in particular situation

  18. Single Pathogen Challenge with Agents of the Bovine Respiratory Disease Complex.

    PubMed

    Gershwin, Laurel J; Van Eenennaam, Alison L; Anderson, Mark L; McEligot, Heather A; Shao, Matt X; Toaff-Rosenstein, Rachel; Taylor, Jeremy F; Neibergs, Holly L; Womack, James

    2015-01-01

    Bovine respiratory disease complex (BRDC) is an important cause of mortality and morbidity in cattle; costing the dairy and beef industries millions of dollars annually, despite the use of vaccines and antibiotics. BRDC is caused by one or more of several viruses (bovine respiratory syncytial virus, bovine herpes type 1 also known as infectious bovine rhinotracheitis, and bovine viral diarrhea virus), which predispose animals to infection with one or more bacteria. These include: Pasteurella multocida, Mannheimia haemolytica, Mycoplasma bovis, and Histophilus somni. Some cattle appear to be more resistant to BRDC than others. We hypothesize that appropriate immune responses to these pathogens are subject to genetic control. To determine which genes are involved in the immune response to each of these pathogens it was first necessary to experimentally induce infection separately with each pathogen to document clinical and pathological responses in animals from which tissues were harvested for subsequent RNA sequencing. Herein these infections and animal responses are described.

  19. Single Pathogen Challenge with Agents of the Bovine Respiratory Disease Complex

    PubMed Central

    Gershwin, Laurel J.; Van Eenennaam, Alison L.; Anderson, Mark L.; McEligot, Heather A.; Toaff-Rosenstein, Rachel; Taylor, Jeremy F.; Neibergs, Holly L.; Womack, James

    2015-01-01

    Bovine respiratory disease complex (BRDC) is an important cause of mortality and morbidity in cattle; costing the dairy and beef industries millions of dollars annually, despite the use of vaccines and antibiotics. BRDC is caused by one or more of several viruses (bovine respiratory syncytial virus, bovine herpes type 1 also known as infectious bovine rhinotracheitis, and bovine viral diarrhea virus), which predispose animals to infection with one or more bacteria. These include: Pasteurella multocida, Mannheimia haemolytica, Mycoplasma bovis, and Histophilus somni. Some cattle appear to be more resistant to BRDC than others. We hypothesize that appropriate immune responses to these pathogens are subject to genetic control. To determine which genes are involved in the immune response to each of these pathogens it was first necessary to experimentally induce infection separately with each pathogen to document clinical and pathological responses in animals from which tissues were harvested for subsequent RNA sequencing. Herein these infections and animal responses are described. PMID:26571015

  20. Bacterial pathogens of the bovine respiratory disease complex.

    PubMed

    Griffin, Dee; Chengappa, M M; Kuszak, Jennifer; McVey, D Scott

    2010-07-01

    Pneumonia caused by the bacterial pathogens discussed in this article is the most significant cause of morbidity and mortality of the BRDC. Most of these infectious bacteria are not capable of inducing significant disease without the presence of other predisposing environmental factors, physiologic stressors, or concurrent infections. Mannheimia haemolytica is the most common and serious of these bacterial agents and is therefore also the most highly characterized. There are other important bacterial pathogens of BRD, such as Pasteurella multocida, Histophulus somni, and Mycoplasma bovis. Mixed infections with these organisms do occur. These pathogens have unique and common virulence factors but the resulting pneumonic lesions may be similar. Although the amount and quality of research associated with BRD has increased, vaccination and therapeutic practices are not fully successful. A greater understanding of the virulence mechanisms of the infecting bacteria and pathogenesis of pneumonia, as well as the characteristics of the organisms that allow tissue persistence, may lead to improved management, therapeutics, and vaccines. Copyright 2010 Elsevier Inc. All rights reserved.

  1. Living in two worlds: the plant and insect lifestyles of Xylella fastidiosa.

    PubMed

    Chatterjee, Subhadeep; Almeida, Rodrigo P P; Lindow, Steven

    2008-01-01

    Diseases caused by Xylella fastidiosa have attained great importance worldwide as the pathogen and its insect vectors have been disseminated. Since this is the first plant pathogenic bacterium for which a complete genome sequence was determined, much progress has been made in understanding the process by which it spreads within the xylem vessels of susceptible plants as well as the traits that contribute to its acquisition and transmission by sharpshooter vectors. Although this pathogen shares many similarities with Xanthomonas species, such as its use of a small fatty acid signal molecule to coordinate virulence gene expression, the traits that it utilizes to cause disease and the manner in which they are regulated differ substantially from those of related plant pathogens. Its complex lifestyle as both a plant and insect colonist involves traits that are in conflict with these stages, thus apparently necessitating the use of a gene regulatory scheme that allows cells expressing different traits to co-occur in the plant.

  2. Cross inoculation of anthracnose pathogens infecting various tropical fruits

    NASA Astrophysics Data System (ADS)

    Suparman; Rahmiyah, M.; Pujiastuti, Y.; Gunawan, B.; Arsi

    2018-01-01

    Anthracnose disease is very important disease of tropical fruits causing significant yield losses. The disease is caused by Colletotrichum spp. and infects almost all tropical fruit species, especially the succulent ones. Various species of Colletotrichum infect various tropical fruits and there are possibilities for cross inoculation to occur among tropical fruits which might cause severe infection. An experimental research was conducted to examine the effect of cross inoculation of anthracnose pathogen among papaya, eggplant, chili and common bean on the infection development and severity of the disease on each inoculated fruit species. Colletotrichum spp. were isolated from naturally infected papaya, eggplant, chili and common bean. Each fungal isolate was purified and identified to determine the species name. The spores of each isolate were then used to separately inoculate healthy and sterilized papaya, eggplant, chili and common bean. The results showed that cross infection developed on chili, eggplant and papaya but not on bean. Chili showed the highest susceptibility to all Colletotrichum isolates and significantly different from eggplant and papaya. The anthracnose pathogen isolated from common bean showed no pathogenicity to other hosts and might be used as cross protection inoculant to the disease in the other hosts.

  3. The food-borne pathogen Campylobacter jejuni depends on the AddAB DNA repair system to defend against bile in the intestinal environment.

    PubMed

    Gourley, Christopher R; Negretti, Nicholas M; Konkel, Michael E

    2017-10-31

    Accurate repair of DNA damage is crucial to ensure genome stability and cell survival of all organisms. Bile functions as a defensive barrier against intestinal colonization by pathogenic microbes. Campylobacter jejuni, a leading bacterial cause of foodborne illness, possess strategies to mitigate the toxic components of bile. We recently found that growth of C. jejuni in medium with deoxycholate, a component of bile, caused DNA damage consistent with the exposure to reactive oxygen species. We hypothesized that C. jejuni must repair DNA damage caused by reactive oxygen species to restore chromosomal integrity. Our efforts focused on determining the importance of the putative AddAB DNA repair proteins. A C. jejuni addAB mutant demonstrated enhanced sensitivity to deoxycholate and was impaired in DNA double strand break repair. Complementation of the addAB mutant restored resistance to deoxycholate, as well as function of the DNA double strand break repair system. The importance of these findings translated to the natural host, where the AddAB system was found to be required for efficient C. jejuni colonization of the chicken intestine. This research provides new insight into the molecular mechanism utilized by C. jejuni, and possibly other intestinal pathogens, to survive in the presence of bile.

  4. Ozone bioindicator

    Treesearch

    John W. Coulston; Mark J. Ambrose

    2007-01-01

    Why Is Ozone Important? Ground-level ozone occurs at phytotoxic levels in the United States (Lefohn and Pinkerton 1988). Elevated levels of ozone can cause foliar injury to several tree species, may cause growth loss, and can make trees more susceptible to insects and pathogens (Chappelka and Samuelson 1998). However, tree species have varying degrees of sensitivity to...

  5. Persistence of Gliocephalotrichum spp. causing fruit rot of rambutan (Nephelium lappaceum L.) in Puerto Rico

    USDA-ARS?s Scientific Manuscript database

    Worldwide, fruit rot of rambutan is an important problem that limits the storage, marketing and long-distance transportation of the fruit. A complex of pathogens has been reported to cause fruit rot of rambutan and significant post-harvest economic losses. During 2009 and 2011 rambutan fruit rot was...

  6. Specific detection of the wheat blast pathogen (Magnaporthe oryzae Triticum) by loop-mediated isothermal amplification

    USDA-ARS?s Scientific Manuscript database

    Wheat blast, caused by Magnaporthe oryzae Triticum (MoT) pathotype, is an economically important fungal disease of wheat. Wheat blast symptoms are similar to Fusarium head scab and can cause confusion in the field. Currently, no in-field diagnostic exists for MoT. Loop-mediated isothermal amplificat...

  7. The interactomic analysis reveals pathogenic protein networks in Phomopsis longicolla underlying seed decay of soybean

    USDA-ARS?s Scientific Manuscript database

    Phomopsis longicolla T. W. Hobbs (syn. Diaporthe longicolla) is the primary cause of Phomopsis seed decay (PSD) in soybean, Glycine max (L.) Merrill. This disease causes poor seed quality and is one of the most economically important diseases in soybean. The objectives of this study were to perform ...

  8. Two whole genome sequences of Xylella fastidiosa (strains M12 and M23) causing almond leaf scorch disease in California

    USDA-ARS?s Scientific Manuscript database

    Xylella fastidiosa is a Gram negative, nutritionally fastidious plant pathogenic bacterium that causes many economically important diseases including almond leaf scorch disease (ALSD) and Pierce’s disease of grape in California, as well as citrus variegated chlorosis in South America. Genome inform...

  9. [Study on the pathogens correlated to sexually transmitted diseases in 285 pre-pubertal girls with vulvovaginitis in Beijing].

    PubMed

    Liu, Xiao-Yan; Sun, Hong-Mei; Feng, Yan-Ling; Hu, Jin; Zhao, Han-Qing; Zhang, Li-Ya

    2007-08-01

    To study the relationship between vulvovaginitis in pre-pubertal girls and pathogens as Chlamydia trachomatis (Ct), N. gonorrhoeae (Ng), Mycoplasma, Ureaplasma urealyticum (Uu), Mycoplasma hominis (Mh), M. genitalium (Mg), M. fermentans (Mf) and M. penetrans (Mpe), as well as to find out the proportion of mycoplasma which is correlated to sexually transmitted diseases (STD) and AIDS. METHODS Vulvae swab specimens from 285 pre-pubertal girls with vulvovaginitis (case group) and 128 healthy girls (control group) were collected and detected by nested polymerase chain reaction (nPCR) to identify the existence of pathogens as Ct, Ng, Uu, Mh, Mg, Mf and Mpe. nPCR with both high specificity and sensitivity, would not be influenced by the amount of pathogens in specimens or inactivated during the process of storage or transportation. The rate of detection on pathogens was 59.65% in the 285 specimens from case group including 'one kind of pathogen in one specimen' as 37.54% and 'two kinds' as 16.84% and 'three kinds' as 5.26%. However, in the 128 specimens from control group, the detectable rate of pathogen was 6.25%. Relationships were found between Ng (P < 0.01), Ct (P < 0.01), Uu (P < 0.01), Mg (P < 0.01), Mf (P < 0.05), Mpe (P < 0.01) and vulvovaginitis in pre-pubertal girls. In control group the pathogens were detected from 7 specimens including 5 Uu and 2 Mh. Some of the pathogens were correlated to STD and were important in causing vulvovaginitis in pre-pubertal girls. Vulvovaginitis might have been caused by more than one kind of pathogen in pre-pubertal girls. The locations of Mg, Mf and Ng in outer genital tracts were correlated to seasonal change. Macrolide seemed to be quite effective clinically in treating urogenital tract infection caused by mycoplasma and Ct.

  10. Identification of the infection route of a Fusarium seed pathogen into nondormant Bromus tectorum seeds

    Treesearch

    JanaLynn Franke; Brad Geary; Susan E. Meyer

    2014-01-01

    The genus Fusarium has a wide host range and causes many different forms of plant disease. These include seed rot and seedling blight diseases of cultivated plants. The diseases caused by Fusarium on wild plants are less well-known. In this study, we examined disease development caused by Fusarium sp. n on nondormant seeds of the important rangeland weed Bromus...

  11. Climate change accelerates local disease extinction rates in a long-term wild host-pathogen association.

    PubMed

    Zhan, Jiasui; Ericson, Lars; Burdon, Jeremy J

    2018-02-27

    Pathogens are a significant component of all plant communities. In recent years, the potential for existing and emerging pathogens of agricultural crops to cause increased yield losses as a consequence of changing climatic patterns has raised considerable concern. In contrast, the response of naturally occurring, endemic pathogens to a warming climate has received little attention. Here, we report on the impact of a signature variable of global climate change - increasing temperature - on the long-term epidemiology of a natural host-pathogen association involving the rust pathogen Triphragmium ulmariae and its host plant Filipendula ulmaria. In a host-pathogen metapopulation involving approximately 230 host populations growing on an archipelago of islands in the Gulf of Bothnia we assessed changes in host population size and pathogen epidemiological measures over a 25-year period. We show how the incidence of disease and its severity declines over that period and most importantly demonstrate a positive association between a long-term trend of increasing extinction rates in individual pathogen populations of the metapopulation and increasing temperature. Our results are highly suggestive that changing climatic patterns, particularly mean monthly growing season (April-November) temperature, are markedly influencing the epidemiology of plant disease in this host-pathogen association. Given the important role plant pathogens have in shaping the structure of communities, changes in the epidemiology of pathogens have potentially far-reaching impacts on ecological and evolutionary processes. For these reasons, it is essential to increase understanding of pathogen epidemiology, its response to warming, and to invoke these responses in forecasts for the future. © 2018 John Wiley & Sons Ltd.

  12. Bipolaris microstegii

    Treesearch

    Andrew M. Minnis; Amy Y. Rossman; Nathan M. Kleczewski; S. Luke. Flory

    2012-01-01

    Many species of Bipolaris are important pathogens of grasses. This new species was isolated from Microstegium vimineum, an invasive plant in the USA. The fungus causes disease on Microstegium, but it also infects a wider range of hosts.

  13. First report of DMI insensitive Cercospora beticola on sugar beet in Ontario, Canada

    USDA-ARS?s Scientific Manuscript database

    Cercospora leaf spot (CLS), caused by the fungal pathogen Cercospora beticola, is an economically important foliar disease of sugar beet in Ontario, Canada and worldwide. Fungicides are an important tool in the control of CLS. The first demethylation inhibitor (DMI) fungicide for sugar beet was regi...

  14. Bacterial Prostatitis: Bacterial Virulence, Clinical Outcomes, and New Directions.

    PubMed

    Krieger, John N; Thumbikat, Praveen

    2016-02-01

    Four prostatitis syndromes are recognized clinically: acute bacterial prostatitis, chronic bacterial prostatitis, chronic prostatitis/chronic pelvic pain syndrome, and asymptomatic prostatitis. Because Escherichia coli represents the most common cause of bacterial prostatitis, we investigated the importance of bacterial virulence factors and antimicrobial resistance in E. coli strains causing prostatitis and the potential association of these characteristics with clinical outcomes. A structured literature review revealed that we have limited understanding of the virulence-associated characteristics of E. coli causing acute prostatitis. Therefore, we completed a comprehensive microbiological and molecular investigation of a unique strain collection isolated from healthy young men. We also considered new data from an animal model system suggesting certain E. coli might prove important in the etiology of chronic prostatitis/chronic pelvic pain syndrome. Our human data suggest that E. coli needs multiple pathogenicity-associated traits to overcome anatomic and immune responses in healthy young men without urological risk factors. The phylogenetic background and accumulation of an exceptional repertoire of extraintestinal pathogenic virulence-associated genes indicate that these E. coli strains belong to a highly virulent subset of uropathogenic variants. In contrast, antibiotic resistance confers little added advantage to E. coli strains in these healthy outpatients. Our animal model data also suggest that certain pathogenic E. coli may be important in the etiology of chronic prostatitis/chronic pelvic pain syndrome through mechanisms that are dependent on the host genetic background and the virulence of the bacterial strain.

  15. Evolution, Diversity, and Taxonomy of the Peronosporaceae, with Focus on the Genus Peronospora.

    PubMed

    Thines, Marco; Choi, Young-Joon

    2016-01-01

    Downy mildews are a notorious group of oomycete plant pathogens, causing high economic losses in various crops and ornamentals. The most species-rich genus of oomycetes is the genus Peronospora. This review provides a wide overview of these pathogens, ranging from macro- and micro-evolutionary patterns, their biodiversity and ecology to short overviews for the currently economically most important pathogens and potential emerging diseases. In this overview, the taxonomy of economically relevant species is also discussed, as the application of the correct names and species concepts is a prerequisite for effective quarantine regulations and phytosanitary measures.

  16. MPV17-related mitochondrial DNA maintenance defect: New cases and review of clinical, biochemical, and molecular aspects.

    PubMed

    El-Hattab, Ayman W; Wang, Julia; Dai, Hongzheng; Almannai, Mohammed; Staufner, Christian; Alfadhel, Majid; Gambello, Michael J; Prasun, Pankaj; Raza, Saleem; Lyons, Hernando J; Afqi, Manal; Saleh, Mohammed A M; Faqeih, Eissa A; Alzaidan, Hamad I; Alshenqiti, Abduljabbar; Flore, Leigh Anne; Hertecant, Jozef; Sacharow, Stephanie; Barbouth, Deborah S; Murayama, Kei; Shah, Amit A; Lin, Henry C; Wong, Lee-Jun C

    2018-04-01

    Mitochondrial DNA (mtDNA) maintenance defects are a group of diseases caused by deficiency of proteins involved in mtDNA synthesis, mitochondrial nucleotide supply, or mitochondrial dynamics. One of the mtDNA maintenance proteins is MPV17, which is a mitochondrial inner membrane protein involved in importing deoxynucleotides into the mitochondria. In 2006, pathogenic variants in MPV17 were first reported to cause infantile-onset hepatocerebral mtDNA depletion syndrome and Navajo neurohepatopathy. To date, 75 individuals with MPV17-related mtDNA maintenance defect have been reported with 39 different MPV17 pathogenic variants. In this report, we present an additional 25 affected individuals with nine novel MPV17 pathogenic variants. We summarize the clinical features of all 100 affected individuals and review the total 48 MPV17 pathogenic variants. The vast majority of affected individuals presented with an early-onset encephalohepatopathic disease characterized by hepatic and neurological manifestations, failure to thrive, lactic acidemia, and mtDNA depletion detected mainly in liver tissue. Rarely, MPV17 deficiency can cause a late-onset neuromyopathic disease characterized by myopathy and peripheral neuropathy with no or minimal liver involvement. Approximately half of the MPV17 pathogenic variants are missense. A genotype with biallelic missense variants, in particular homozygous p.R50Q, p.P98L, and p.R41Q, can carry a relatively better prognosis. © 2017 Wiley Periodicals, Inc.

  17. Clinical pathology and assessment of pathogen exposure in southern and Alaskan sea otters

    USGS Publications Warehouse

    Hanni, K.D.; Mazet, J.A.K.; Gulland, F.M.D.; Estes, James A.; Staedler, M.; Murray, M.J.; Miller, M.; Jessup, David A.

    2003-01-01

    The southern sea otter (Enhydra lutris nereis) population in California (USA) and the Alaskan sea otter (E. lutris kenyoni) population in the Aleutian Islands (USA) chain have recently declined. In order to evaluate disease as a contributing factor to the declines, health assessments of these two sea otter populations were conducted by evaluating hematologic and/or serum biochemical values and exposure to six marine and terrestrial pathogens using blood collected during ongoing studies from 1995 through 2000. Samples from 72 free-ranging Alaskan, 78 free-ranging southern, and (for pathogen exposure only) 41 debilitated southern sea otters in rehabilitation facilities were evaluated and compared to investigate regional differences. Serum chemistry and hematology values did not indicate a specific disease process as a cause for the declines. Statistically significant differences were found between free-ranging adult southern and Alaskan population mean serum levels of creatinine kinase, alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase, calcium, cholesterol, creatinine, glucose, phosphorous, total bilirubin, blood urea nitrogen, and sodium. These were likely due to varying parasite loads, contaminant exposures, and physiologic or nutrition statuses. No free-ranging sea otters had signs of disease at capture, and prevalences of exposure to calicivirus, Brucella spp., and Leptospira spp. were low. The high prevalence (35%) of antibodies to Toxoplasma gondii in free-ranging southern sea otters, lack of antibodies to this parasite in Alaskan sea otters, and the pathogen's propensity to cause mortality in southern sea otters suggests that this parasite may be important to sea otter population dynamics in California but not in Alaska. The evidence for exposure to pathogens of public health importance (e.g., Leptospira spp., T. gondii) in the southern sea otter population, and the naïveté of both populations to other pathogens (e.g., morbillivirus and Coccidiodes immitis) may have important implications for their management and recovery.

  18. Clinical pathology and assessment of pathogen exposure in southern and Alaskan sea otters.

    PubMed

    Hanni, Krista D; Mazet, Jonna A K; Gulland, Frances M D; Estes, James; Staedler, Michelle; Murray, Michael J; Miller, Melissa; Jessup, David A

    2003-10-01

    The southern sea otter (Enhydra lutris nereis) population in California (USA) and the Alaskan sea otter (E. lutris kenyoni) population in the Aleutian Islands (USA) chain have recently declined. In order to evaluate disease as a contributing factor to the declines, health assessments of these two sea otter populations were conducted by evaluating hematologic and/or serum biochemical values and exposure to six marine and terrestrial pathogens using blood collected during ongoing studies from 1995 through 2000. Samples from 72 free-ranging Alaskan, 78 free-ranging southern, and (for pathogen exposure only) 41 debilitated southern sea otters in rehabilitation facilities were evaluated and compared to investigate regional differences. Serum chemistry and hematology values did not indicate a specific disease process as a cause for the declines. Statistically significant differences were found between free-ranging adult southern and Alaskan population mean serum levels of creatinine kinase, alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase, calcium, cholesterol, creatinine, glucose, phosphorous, total bilirubin, blood urea nitrogen, and sodium. These were likely due to varying parasite loads, contaminant exposures, and physiologic or nutrition statuses. No free-ranging sea otters had signs of disease at capture, and prevalences of exposure to calicivirus, Brucella spp., and Leptospira spp. were low. The high prevalence (35%) of antibodies to Toxoplasma gondii in free-ranging southern sea otters, lack of antibodies to this parasite in Alaskan sea otters, and the pathogen's propensity to cause mortality in southern sea otters suggests that this parasite may be important to sea otter population dynamics in California but not in Alaska. The evidence for exposure to pathogens of public health importance (e.g., Leptospira spp., T. gondii) in the southern sea otter population, and the naïveté of both populations to other pathogens (e.g., morbillivirus and Coccidiodes immitis) may have important implications for their management and recovery.

  19. Shifts in disease dynamics in a tropical amphibian assemblage are not due to pathogen attenuation.

    PubMed

    Voyles, Jamie; Woodhams, Douglas C; Saenz, Veronica; Byrne, Allison Q; Perez, Rachel; Rios-Sotelo, Gabriela; Ryan, Mason J; Bletz, Molly C; Sobell, Florence Ann; McLetchie, Shawna; Reinert, Laura; Rosenblum, Erica Bree; Rollins-Smith, Louise A; Ibáñez, Roberto; Ray, Julie M; Griffith, Edgardo J; Ross, Heidi; Richards-Zawacki, Corinne L

    2018-03-30

    Infectious diseases rarely end in extinction. Yet the mechanisms that explain how epidemics subside are difficult to pinpoint. We investigated host-pathogen interactions after the emergence of a lethal fungal pathogen in a tropical amphibian assemblage. Some amphibian host species are recovering, but the pathogen is still present and is as pathogenic today as it was almost a decade ago. In addition, some species have defenses that are more effective now than they were before the epidemic. These results suggest that host recoveries are not caused by pathogen attenuation and may be due to shifts in host responses. Our findings provide insights into the mechanisms underlying disease transitions, which are increasingly important to understand in an era of emerging infectious diseases and unprecedented global pandemics. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  20. An Annotated Checklist of the Human and Animal Entamoeba (Amoebida: Endamoebidae) Species- A Review Article

    PubMed Central

    HOOSHYAR, Hossein; ROSTAMKHANI, Parvin; REZAEIAN, Mostafa

    2015-01-01

    Background: The number of valid of pathogen and non-pathogen species of Entamoeba has continuously increased in human and animals. This review is performed to provide an update list and some summarized information on Entamoeba species, which were identified up to the 2014. Methods: We evaluated the Entamoeba genus with a broad systematic review of the literature, books and electronic databases until February 2014. The synonyms, hosts, pathogenicity and geographical distribution of valid species were considered and recorded. Repeated and unrelated cases were excluded. Results: Totally 51 defined species of Entamoeba were found and arranged by the number of nuclei in mature cyst according to Levin’s grouping. Seven of these species within the 4 nucleate mature cysts group and 1 species with one nucleate mature cyst are pathogen. E. histolytica, E. invadence, E. rananrum and E. anatis causes lethal infection in human, reptiles, amphibians and brides respectively, four species causes non-lethal mild dysentery. The other species were non-pathogen and are important to differential diagnosis of amoebiasis. Conclusion: There are some unknown true species of Entamoeba that available information on the morphology, hosts, pathogenicity and distribution of them are still very limited and more considerable investigation will be needed in order to clarify the status of them. PMID:26246811

  1. Silage review: Foodborne pathogens in silage and their mitigation by silage additives.

    PubMed

    Queiroz, O C M; Ogunade, I M; Weinberg, Z; Adesogan, A T

    2018-05-01

    Silage is one of the main ingredients in dairy cattle diets and it is an important source of nutrients, particularly energy and digestible fiber. Unlike properly made and managed silage, poorly made or contaminated silage can also be a source of pathogenic bacteria that may decrease dairy cow performance, reduce the safety and quality dairy products, and compromise animal and human health. Some of the pathogenic bacteria that are frequently or occasionally associated with silage are enterobacteria, Listeria, Bacillus spp., Clostridium spp., and Salmonella. The symptoms caused by these bacteria in dairy cows vary from mild diarrhea and reduced feed intake by Clostridium spp. to death and abortion by Listeria. Contamination of food products with pathogenic bacteria can cause losses of millions of dollars due to recalls of unsafe foods and decreases in the shelf life of dairy products. The presence of pathogenic bacteria in silage is usually due to contamination or poor management during the fermentation, aerobic exposure, or feed-out stages. Silage additives and inoculants can improve the safety of silage as well as the fermentation, nutrient recovery, quality, and shelf life. This review summarizes the literature on the main foodborne pathogens that occasionally infest silage and how additives can improve silage safety. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  2. First report of Monilinia fructicola causing postharvest decay of strawberries (Fragaria ananassa) in the United States

    USDA-ARS?s Scientific Manuscript database

    Monilinia fructicola is a world-wide economically important pathogen of stone fruits causing brown rot before and after harvest. In early summer of 2016, signs of Monilinia spp. decay were observed on strawberry fruit, harvested from organically grown plants in a high tunnel located in the middle o...

  3. The political ecology of forest health in the redwood region

    Treesearch

    Chris Lee; Yana Valachovic; Dan Stark

    2017-01-01

    Imported forest pests have changed North American forests and caused staggering monetary losses in the centuries since the country was founded. Since most problem-causing non-native pests are innocuous in their home ranges, where they have coevolved with their host trees, experts cannot predict which pathogens or insects will have lethal effect on other continents....

  4. The Pathogenicity Determinant of Citrus Tristeza Virus Causing the Seedling Yellows Syndrome is Located at the 3’-Terminal Region of the Viral Genome

    USDA-ARS?s Scientific Manuscript database

    Citrus tristeza virus (CTV) (genus Closterovirus, family Closteroviridae) causes some of the more important viral diseases of citrus worldwide. The ability to map disease-inducing determinants of CTV is needed to develop better diagnostic and disease control procedures. A distinctive phenotype of s...

  5. Evaluation of methods to detect the cotton pathogen Fusarium oxysporum f. sp. vasinfectum race 4

    USDA-ARS?s Scientific Manuscript database

    Fusarium wilt caused by Fusarium oxysporum f. sp. vasinfectum (Fov) is an important disease of cotton. Fov race 4, identified in the San Joaquin Valley of California, has caused serious losses and is a potential threat to US cotton production. Tests have been developed to rapidly identify race 4 i...

  6. Starting from the bench--prevention and control of foodborne and zoonotic diseases.

    PubMed

    Vongkamjan, Kitiya; Wiedmann, Martin

    2015-02-01

    Foodborne diseases are estimated to cause around 50 million disease cases and 3000 deaths a year in the US. Worldwide, food and waterborne diseases are estimated to cause more than 2 million deaths per year. Lab-based research is a key component of efforts to prevent and control foodborne diseases. Over the last two decades, molecular characterization of pathogen isolates has emerged as a key component of foodborne and zoonotic disease prevention and control. Characterization methods have evolved from banding pattern-based subtyping methods to sequenced-based approaches, including full genome sequencing. Molecular subtyping methods not only play a key role for characterizing pathogen transmission and detection of disease outbreaks, but also allow for identification of clonal pathogen groups that show distinct transmission characteristics. Importantly, the data generated from molecular characterization of foodborne pathogens also represent critical inputs for epidemiological and modeling studies. Continued and enhanced collaborations between infectious disease related laboratory sciences and epidemiologists, modelers, and other quantitative scientists will be critical to a One-Health approach that delivers societal benefits, including improved surveillance systems and prevention approaches for zoonotic and foodborne pathogens. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Apoptosis, Toll-like, RIG-I-like and NOD-like Receptors Are Pathways Jointly Induced by Diverse Respiratory Bacterial and Viral Pathogens

    PubMed Central

    Martínez, Isidoro; Oliveros, Juan C.; Cuesta, Isabel; de la Barrera, Jorge; Ausina, Vicente; Casals, Cristina; de Lorenzo, Alba; García, Ernesto; García-Fojeda, Belén; Garmendia, Junkal; González-Nicolau, Mar; Lacoma, Alicia; Menéndez, Margarita; Moranta, David; Nieto, Amelia; Ortín, Juan; Pérez-González, Alicia; Prat, Cristina; Ramos-Sevillano, Elisa; Regueiro, Verónica; Rodriguez-Frandsen, Ariel; Solís, Dolores; Yuste, José; Bengoechea, José A.; Melero, José A.

    2017-01-01

    Lower respiratory tract infections are among the top five leading causes of human death. Fighting these infections is therefore a world health priority. Searching for induced alterations in host gene expression shared by several relevant respiratory pathogens represents an alternative to identify new targets for wide-range host-oriented therapeutics. With this aim, alveolar macrophages were independently infected with three unrelated bacterial (Streptococcus pneumoniae, Klebsiella pneumoniae, and Staphylococcus aureus) and two dissimilar viral (respiratory syncytial virus and influenza A virus) respiratory pathogens, all of them highly relevant for human health. Cells were also activated with bacterial lipopolysaccharide (LPS) as a prototypical pathogen-associated molecular pattern. Patterns of differentially expressed cellular genes shared by the indicated pathogens were searched by microarray analysis. Most of the commonly up-regulated host genes were related to the innate immune response and/or apoptosis, with Toll-like, RIG-I-like and NOD-like receptors among the top 10 signaling pathways with over-expressed genes. These results identify new potential broad-spectrum targets to fight the important human infections caused by the bacteria and viruses studied here. PMID:28298903

  8. Etiology and outcome of community-acquired lung abscess.

    PubMed

    Takayanagi, Noboru; Kagiyama, Naho; Ishiguro, Takashi; Tokunaga, Daidou; Sugita, Yutaka

    2010-01-01

    Anaerobes are the first and Streptococcus species the second most common cause of community-acquired lung abscess (CALA) in the West. The etiologic pathogens of this disease have changed in Taiwan, with Klebsiella pneumoniae being reported as the most common cause of CALA. To determine the etiologies of community-acquired lung abscess. We retrospectively reviewed the records of 205 Japanese adult patients with CALA to evaluate etiologies and outcomes. We used not only traditional microbiological investigations but also percutaneous ultrasonography-guided transthoracic needle aspiration and protected specimen brushes. Of these 205 patients, 122 had documented bacteriological results, with 189 bacterial species isolated. Pure aerobic, mixed aerobic and anaerobic, and pure anaerobic bacteria were isolated in 90 (73.8%), 17 (13.9%), and 15 (12.3%) patients, respectively. The four most common etiologic pathogens were Streptococcus species (59.8%), anaerobes (26.2%), Gemella species (9.8%), and K. pneumoniae (8.2%). Streptococcus mitis was the most common among the Streptococcus species. Mean duration of antibiotic administration was 26 days. Six patients (2.9%, 3 with actinomycosis and 3 with nocardiosis) were treated with antibiotics for 76-189 days. Two patients with anaerobic lung abscess died. The first and second most common etiologic pathogens of CALA in our hospital were Streptococcus species and anaerobes, respectively. The etiologies in our study differ from those in Taiwan and are similar to those in the West with the exception that Streptococcus species were the most common etiologic pathogens in our study whereas anaerobes are the most frequent etiologic pathogens in Western countries. S. mitis and Gemella species are important etiologic pathogens as well. The identification of Actinomyces and Nocardia is important in order to define the adequate duration of antibiotic administration. Copyright 2010 S. Karger AG, Basel.

  9. [Human coronavirus infections: importance and diagnosis].

    PubMed

    Vabret, A; Brouard, J; Petitjean, J; Eugene-Ruellan, G; Freymuth, F

    1998-11-14

    POORLY-KNOWN VIRUS: Coronaviruses, so named because of their sun-ray-like aspect, were discovered in the sixties. The biology of these RNA viruses is complex and poorly understood. KNOWN PATHOGENS: Coronaviruses are known pathogens in veterinary medicine, causing disease states in several domestic species. In human medicine, they can cause benign respiratory infections, but few laboratories include coronaviruses in their routine diagnostic tests. SUSPECTED PATHOGENS: There is some data in the literature suggesting coronaviruses might be implicated in more severe diseases including multiple sclerosis, necrotizing enterocolitis, and lower respiratory tract infections, particularly in infants. IMPROVING DIAGNOSTIC METHODS: Due to the lack of reliable and sensitive diagnostic techniques, it is impossible to date to correctly assess the medical impact of these ubiquitous and endemic viruses. Molecular biology techniques enabling detection of human coronavirus infections should be applied to verifying the suspected implication of these viruses in diverse disease states.

  10. Mechanisms of Bacterial Colonization of the Respiratory Tract

    PubMed Central

    Siegel, Steven J.; Weiser, Jeffrey N.

    2016-01-01

    Respiratory tract infections are an important cause of morbidity and mortality worldwide. Chief among these are infections involving the lower airways. The opportunistic bacterial pathogens responsible for most cases of pneumonia can cause a range of local and invasive infections. However, bacterial colonization (or carriage) in the upper airway is the prerequisite of all these infections. Successful colonizers must attach to the epithelial lining, grow on the nutrient-limited mucosal surface, evade the host immune response, and transmit to a susceptible host. Here, we review the molecular mechanisms underlying these conserved stages of carriage. We also examine how the demands of colonization influence progression to disease. A range of bacteria can colonize the upper airway; nevertheless, we focus on strategies shared by many respiratory tract opportunistic pathogens. Understanding colonization opens a window to the evolutionary pressures these pathogens face within their animal hosts and that have selected for attributes that contribute to virulence and pathogenesis. PMID:26488280

  11. Diarrheagenic Escherichia coli

    PubMed Central

    Nataro, James P.; Kaper, James B.

    1998-01-01

    Escherichia coli is the predominant nonpathogenic facultative flora of the human intestine. Some E. coli strains, however, have developed the ability to cause disease of the gastrointestinal, urinary, or central nervous system in even the most robust human hosts. Diarrheagenic strains of E. coli can be divided into at least six different categories with corresponding distinct pathogenic schemes. Taken together, these organisms probably represent the most common cause of pediatric diarrhea worldwide. Several distinct clinical syndromes accompany infection with diarrheagenic E. coli categories, including traveler’s diarrhea (enterotoxigenic E. coli), hemorrhagic colitis and hemolytic-uremic syndrome (enterohemorrhagic E. coli), persistent diarrhea (enteroaggregative E. coli), and watery diarrhea of infants (enteropathogenic E. coli). This review discusses the current level of understanding of the pathogenesis of the diarrheagenic E. coli strains and describes how their pathogenic schemes underlie the clinical manifestations, diagnostic approach, and epidemiologic investigation of these important pathogens. PMID:9457432

  12. An Egyptian HPAI H5N1 isolate from clade 2.2.1.2 is highly pathogenic in an experimentally infected domestic duck breed (Sudani duck).

    PubMed

    Samir, M; Hamed, M; Abdallah, F; Kinh Nguyen, V; Hernandez-Vargas, E A; Seehusen, F; Baumgärtner, W; Hussein, A; Ali, A A H; Pessler, F

    2018-06-01

    The highly pathogenic avian influenza (HPAI) H5N1 viruses continue to cause major problems in poultry and can, although rarely, cause human infection. Being enzootic in domestic poultry, Egyptian isolates are continuously evolving, and novel clades vary in their pathogenicity in avian hosts. Considering the importance of domestic ducks as natural hosts of HPAI H5N1 viruses and their likelihood of physical contact with other avian hosts and humans, it is of utmost importance to characterize the pathogenicity of newly emerged HPAI strains in the domestic duck. The most recently identified Egyptian clade 2.2.1.2 HPAI H5N1 viruses have been isolated from naturally infected pigeons, turkeys and humans. However, essentially nothing is known about their pathogenicity in domestic ducks. We therefore characterized the pathogenicity of an Egyptian HPAI H5N1 isolate A/chicken/Faquos/amn12/2011 (clade 2.2.1.2) in Sudani duck, a domestic duck breed commonly reared in Egypt. While viral transcription (HA mRNA) was highest in lung, heart and kidney peaking between 40 and 48 hpi, lower levels were detected in brain. Weight loss of infected ducks started at 16 hpi and persisted until 120 hpi. The first severe clinical signs were noted by 32 hpi and peaked in severity at 72 and 96 hpi. Haematological analyses showed a decline in total leucocytes, granulocytes, platelets and granulocyte/lymphocyte ratio, but lymphocytosis. Upon necropsy, lesions were obvious in heart, liver, spleen and pancreas and consisted mainly of necrosis and petechial haemorrhage. Histologically, lungs were the most severely affected organs, whereas brain only showed mild neuronal degeneration and gliosis at 48 hpi despite obvious neurological clinical signs. Taken together, our results provide first evidence that this HPAI H5N1 isolate (clade 2.2.1.2) is highly pathogenic to Sudani ducks and highlight the importance of this breed as potential reservoir and disseminator of HPAI strains from this clade. © 2018 Blackwell Verlag GmbH.

  13. Polar bear encephalitis: establishment of a comprehensive next-generation pathogen analysis pipeline for captive and free-living wildlife.

    PubMed

    Szentiks, C A; Tsangaras, K; Abendroth, B; Scheuch, M; Stenglein, M D; Wohlsein, P; Heeger, F; Höveler, R; Chen, W; Sun, W; Damiani, A; Nikolin, V; Gruber, A D; Grobbel, M; Kalthoff, D; Höper, D; Czirják, G Á; Derisi, J; Mazzoni, C J; Schüle, A; Aue, A; East, M L; Hofer, H; Beer, M; Osterrieder, N; Greenwood, A D

    2014-05-01

    This report describes three possibly related incidences of encephalitis, two of them lethal, in captive polar bears (Ursus maritimus). Standard diagnostic methods failed to identify pathogens in any of these cases. A comprehensive, three-stage diagnostic 'pipeline' employing both standard serological methods and new DNA microarray and next generation sequencing-based diagnostics was developed, in part as a consequence of this initial failure. This pipeline approach illustrates the strengths, weaknesses and limitations of these tools in determining pathogen caused deaths in non-model organisms such as wildlife species and why the use of a limited number of diagnostic tools may fail to uncover important wildlife pathogens. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Biocontrol of Pathogens in the Meat Chain

    NASA Astrophysics Data System (ADS)

    Burgess, Catherine M.; Rivas, Lucia; McDonnell, Mary J.; Duffy, Geraldine

    Bacterial foodborne zoonotic diseases are of major concern, impacting public health and causing economic losses for the agricultural-food sector and the wider society. In the United States (US) alone foodborne illness from pathogens is responsible for 76 million cases of illnesses each year (Mead et al., 1999). Salmonella, Campylobacter jejuni and Enterohaemorraghic Escherichia coli (EHEC; predominately serotype O157:H7) and Listeria monocytogenes are the most predominant foodborne bacterial pathogens reported in the developed world (United States Department of Agriculture, 2001). The importance of meat and meat products as a vehicle of foodborne zoonotic pathogens cannot be underestimated (Center for Disease Control, 2006; Gillespie, O’Brien, Adak, Cheasty, & Willshaw, 2005; Mazick, Ethelberg, Nielsen, Molbak, & Lisby, 2006; Mead et al., 2006).

  15. Food-borne diseases - the challenges of 20 years ago still persist while new ones continue to emerge.

    PubMed

    Newell, Diane G; Koopmans, Marion; Verhoef, Linda; Duizer, Erwin; Aidara-Kane, Awa; Sprong, Hein; Opsteegh, Marieke; Langelaar, Merel; Threfall, John; Scheutz, Flemming; van der Giessen, Joke; Kruse, Hilde

    2010-05-30

    The burden of diseases caused by food-borne pathogens remains largely unknown. Importantly data indicating trends in food-borne infectious intestinal disease is limited to a few industrialised countries, and even fewer pathogens. It has been predicted that the importance of diarrhoeal disease, mainly due to contaminated food and water, as a cause of death will decline worldwide. Evidence for such a downward trend is limited. This prediction presumes that improvements in the production and retail of microbiologically safe food will be sustained in the developed world and, moreover, will be rolled out to those countries of the developing world increasingly producing food for a global market. In this review evidence is presented to indicate that the microbiological safety of food remains a dynamic situation heavily influenced by multiple factors along the food chain from farm to fork. Sustaining food safety standards will depend on constant vigilance maintained by monitoring and surveillance but, with the rising importance of other food-related issues, such as food security, obesity and climate change, competition for resources in the future to enable this may be fierce. In addition the pathogen populations relevant to food safety are not static. Food is an excellent vehicle by which many pathogens (bacteria, viruses/prions and parasites) can reach an appropriate colonisation site in a new host. Although food production practices change, the well-recognised food-borne pathogens, such as Salmonella spp. and Escherichia coli, seem able to evolve to exploit novel opportunities, for example fresh produce, and even generate new public health challenges, for example antimicrobial resistance. In addition, previously unknown food-borne pathogens, many of which are zoonotic, are constantly emerging. Current understanding of the trends in food-borne diseases for bacterial, viral and parasitic pathogens has been reviewed. The bacterial pathogens are exemplified by those well-recognized by policy makers; i.e. Salmonella, Campylobacter, E. coli and Listeria monocytogenes. Antimicrobial resistance in several bacterial food-borne pathogens (Salmonella, Campylobacter, Shigella and Vibrio spp., methicillin resistant Staphylcoccus aureas, E. coli and Enterococci) has been discussed as a separate topic because of its relative importance to policy issues. Awareness and surveillance of viral food-borne pathogens is generally poor but emphasis is placed on Norovirus, Hepatitis A, rotaviruses and newly emerging viruses such as SARS. Many food-borne parasitic pathogens are known (for example Ascaris, Cryptosporidia and Trichinella) but few of these are effectively monitored in foods, livestock and wildlife and their epidemiology through the food-chain is poorly understood. The lessons learned and future challenges in each topic are debated. It is clear that one overall challenge is the generation and maintenance of constructive dialogue and collaboration between public health, veterinary and food safety experts, bringing together multidisciplinary skills and multi-pathogen expertise. Such collaboration is essential to monitor changing trends in the well-recognised diseases and detect emerging pathogens. It will also be necessary understand the multiple interactions these pathogens have with their environments during transmission along the food chain in order to develop effective prevention and control strategies. Crown Copyright 2010. Published by Elsevier B.V. All rights reserved.

  16. Neofusicoccum ribis Associated with Leaf Blight on Rubber (Hevea brasiliensis) in Peninsular Malaysia

    PubMed Central

    Nyaka Ngobisa, A. I. C.; Zainal Abidin, M. A.; Wong, M. Y.; Wan Noordin, M. W. D.

    2013-01-01

    Hevea brasiliensis is a natural source of rubber and an important plantation tree species in Malaysia. Leaf blight disease caused by Fusicoccum substantially reduces the growth and performance of H. brasiliensis. The aim of this study was to use a combination of both morphological characteristics and molecular data to clarify the taxonomic position of the fungus associated with leaf blight disease. Fusicoccum species were isolated from infected leaves collected from plantations at 3 widely separated locations – Selangor, Perak, and Johor states – in Peninsular Malaysia in 2010. All the isolates were identified according to their conidial patterns and DNA sequences generated from internal transcribed spacers (ITS1 and ITS2), the 5.8S rRNA, and an unknown locus (BotF15) containing microsatellite repeats. Based on taxonomic and sequence data, Neofusicoccum ribis was identified as the main cause of leaf blight disease in H. brasiliensis in commercial plantations in Malaysia. A pathogenicity trial on detached leaves further confirmed that N. ribis causes leaf blight disease. N. ribis is an important leaf pathogen, and its detection in Malaysia has important implications for future planting of H. brasiliensis. PMID:25288924

  17. Neofusicoccum ribis Associated with Leaf Blight on Rubber (Hevea brasiliensis) in Peninsular Malaysia.

    PubMed

    Nyaka Ngobisa, A I C; Zainal Abidin, M A; Wong, M Y; Wan Noordin, M W D

    2013-03-01

    Hevea brasiliensis is a natural source of rubber and an important plantation tree species in Malaysia. Leaf blight disease caused by Fusicoccum substantially reduces the growth and performance of H. brasiliensis. The aim of this study was to use a combination of both morphological characteristics and molecular data to clarify the taxonomic position of the fungus associated with leaf blight disease. Fusicoccum species were isolated from infected leaves collected from plantations at 3 widely separated locations - Selangor, Perak, and Johor states - in Peninsular Malaysia in 2010. All the isolates were identified according to their conidial patterns and DNA sequences generated from internal transcribed spacers (ITS1 and ITS2), the 5.8S rRNA, and an unknown locus (BotF15) containing microsatellite repeats. Based on taxonomic and sequence data, Neofusicoccum ribis was identified as the main cause of leaf blight disease in H. brasiliensis in commercial plantations in Malaysia. A pathogenicity trial on detached leaves further confirmed that N. ribis causes leaf blight disease. N. ribis is an important leaf pathogen, and its detection in Malaysia has important implications for future planting of H. brasiliensis.

  18. Large-spored Alternaria pathogens in section Porri disentangled

    PubMed Central

    Woudenberg, J.H.C.; Truter, M.; Groenewald, J.Z.; Crous, P.W.

    2014-01-01

    The omnipresent fungal genus Alternaria was recently divided into 24 sections based on molecular and morphological data. Alternaria sect. Porri is the largest section, containing almost all Alternaria species with medium to large conidia and long beaks, some of which are important plant pathogens (e.g. Alternaria porri, A. solani and A. tomatophila). We constructed a multi-gene phylogeny on parts of the ITS, GAPDH, RPB2, TEF1 and Alt a 1 gene regions, which, supplemented with morphological and cultural studies, forms the basis for species recognition in sect. Porri. Our data reveal 63 species, of which 10 are newly described in sect. Porri, and 27 species names are synonymised. The three known Alternaria pathogens causing early blight on tomato all cluster in one clade, and are synonymised under the older name, A. linariae. Alternaria protenta, a species formerly only known as pathogen on Helianthus annuus, is also reported to cause early blight of potato, together with A. solani and A. grandis. Two clades with isolates causing purple blotch of onion are confirmed as A. allii and A. porri, but the two species cannot adequately be distinguished based on the number of beaks and branches as suggested previously. This is also found among the pathogens of Passifloraceae, which are reduced from four to three species. In addition to the known pathogen of sweet potato, A. bataticola, three more species are delineated of which two are newly described. A new Alternaria section is also described, comprising two large-spored Alternaria species with concatenate conidia. PMID:25492985

  19. Large-spored Alternaria pathogens in section Porri disentangled.

    PubMed

    Woudenberg, J H C; Truter, M; Groenewald, J Z; Crous, P W

    2014-09-01

    The omnipresent fungal genus Alternaria was recently divided into 24 sections based on molecular and morphological data. Alternaria sect. Porri is the largest section, containing almost all Alternaria species with medium to large conidia and long beaks, some of which are important plant pathogens (e.g. Alternaria porri, A. solani and A. tomatophila). We constructed a multi-gene phylogeny on parts of the ITS, GAPDH, RPB2, TEF1 and Alt a 1 gene regions, which, supplemented with morphological and cultural studies, forms the basis for species recognition in sect. Porri. Our data reveal 63 species, of which 10 are newly described in sect. Porri, and 27 species names are synonymised. The three known Alternaria pathogens causing early blight on tomato all cluster in one clade, and are synonymised under the older name, A. linariae. Alternaria protenta, a species formerly only known as pathogen on Helianthus annuus, is also reported to cause early blight of potato, together with A. solani and A. grandis. Two clades with isolates causing purple blotch of onion are confirmed as A. allii and A. porri, but the two species cannot adequately be distinguished based on the number of beaks and branches as suggested previously. This is also found among the pathogens of Passifloraceae, which are reduced from four to three species. In addition to the known pathogen of sweet potato, A. bataticola, three more species are delineated of which two are newly described. A new Alternaria section is also described, comprising two large-spored Alternaria species with concatenate conidia.

  20. Cucumber vein yellowing virus

    USDA-ARS?s Scientific Manuscript database

    Cucurbits are an important crop of temperate, subtropical and tropical regions of the world. Cucumber vein yellowing virus (CVYV) is a major viral pathogen of cucurbits. This chapter provides an overview of the biology of CVYV and the disease it causes....

  1. [The microbiology laboratory: a key participant in transplantation].

    PubMed

    Pérez, José L; Pumarola, Tomàs

    2007-04-01

    Together with organ rejection, infectious complications are still the most important cause of morbidity and mortality in organ transplant recipients. Many infectious complications have an exogenous origin, including those produced by organ-transmitted pathogens, whereas others are caused by latent microorganisms that become reactivated in the recipient. Accurate pre-transplantation assessment of the organ donor as well as the recipient can prevent some infectious complications or reduce their detrimental effects during the post-transplant period. A wide range of primary and opportunistic microorganisms can affect transplant recipients, and a detailed description of these pathogens is beyond the scope of this study. However, the importance of microbiology laboratories in centers with transplant programs and the need for integration and active participation of clinical microbiologists in multidisciplinary transplant teams should be emphasized. The work of these professionals is a key requisite to establish accurate diagnoses of infectious complications, which will benefit the patient and optimize the expenditure of resources.

  2. Beyond Candida albicans: Mechanisms of immunity to non-albicans Candida species

    PubMed Central

    Whibley, Natasha; Gaffen, Sarah L.

    2015-01-01

    The fungal genus Candida encompasses numerous species that inhabit a variety of hosts, either as commensal microbes and/or pathogens. Candida species are a major cause of fungal infections, yet to date there are no vaccines against Candida or indeed any other fungal pathogen. Our knowledge of immunity to Candida mainly comes from studies on C. albicans, the most frequent species associated with disease. However, non-albicans Candida (NAC) species also cause disease and their prevalence is increasing. Although research into immunity to NAC species is still at an early stage, it is becoming apparent that immunity to C. albicans differs in important ways from non-albicans species, with important implications for treatment, therapy and predicted demographic susceptibility. This review will discuss the current understanding of immunity to NAC species in the context of immunity to C. albicans, and highlight as-yet unanswered questions. PMID:26276374

  3. [Helminths of carnivores relevant to veterinary practice].

    PubMed

    Hasslinger, M A

    1986-01-01

    Especially in an urban environment man and carnivores live closely together, whereby one has to pay attention not only to animal parasites, but also to human pathogenic connections regarding these parasites. Because of the infection risk the animal owner has to be competently informed by his veterinarian. While some cestodes make great demands on hygiene, with others the cycle can be interrupted by consequent diet restrictions. Of all nematodes the stomach worm of the cat is of greater importance as it is easily overlooked because of its small size, is difficult to diagnose and is occurring in our regions with an infestation rate of about 40%. "Larva migrans visceralis" and "Larva migrans cutanea" caused by ascaride and hookworm larvae are important in human medicine and demand therapeutic measures. The contamination of parks, playgrounds and beaches with these parasites caused by carnivores requires a critical evaluation of the human pathogen interests.

  4. Haemophilus influenzae: an underrated cause of vulvovaginitis in young girls.

    PubMed Central

    Cox, R A

    1997-01-01

    AIMS: To establish the common pathogens associated with infective vulvovaginitis in young girls in the local population and to determine current management of this condition. METHODS: A prospective laboratory based survey was carried out over 19 months. A questionnaire was then sent to local general practitioners and hospital doctors. RESULTS: One hundred and six swabs were received during the study period of which 43 (40.5%) yielded organisms recognised as causes of vulvovaginitis. The most common pathogen was group A beta haemolytic streptococcus (19), with Haemophilus influenzae the second most common (11). Candida was isolated on nine occasions. The users' questionnaire had an overall response rate of 52%. Forty one per cent of respondents nominated candida as the most common cause of this condition. Forty six per cent were aware that beta haemolytic streptococci caused juvenile vulvovaginitis, but only four (3.6%) knew that H influenzae was a possible pathogen. The most popular agent for empirical treatment of vulvovaginitis was topical clotrimazole cream, although 24 respondents (22%) prescribed antibiotics that are active against both group A beta haemolytic streptococci and H influenzae. CONCLUSIONS: Although H influenzae is the second most common infective cause of juvenile vulvovaginitis in the local population, most doctors managing these patients were unaware of its importance and may not be prescribing appropriate empirical treatment. Images PMID:9389978

  5. Leptospiral uveitis - there is more to it than meets the eye!

    PubMed

    Verma, A; Stevenson, B

    2012-09-01

    Leptospirosis, caused by pathogenic species of genus Leptospira, is a highly prevalent zoonotic disease throughout many parts of the world, and an important emerging disease within the United States. Uveitis is a common complication of systemic infection in humans. A similar condition in horses is characterized by recurrent bouts of inflammation. In this article, we review advances in our understanding of leptospiral uveitis and its pathogenic mechanisms. © 2012 Blackwell Verlag GmbH.

  6. Phenol-Soluble Modulin Toxins of Staphylococcus haemolyticus

    PubMed Central

    Da, Fei; Joo, Hwang-Soo; Cheung, Gordon Y. C.; Villaruz, Amer E.; Rohde, Holger; Luo, Xiaoxing; Otto, Michael

    2017-01-01

    Coagulase-negative staphylococci (CoNS) are important nosocomial pathogens and the leading cause of sepsis. The second most frequently implicated species, after Staphylococcus epidermidis, is Staphylococcus haemolyticus. However, we have a significant lack of knowledge about what causes virulence of S. haemolyticus, as virulence factors of this pathogen have remained virtually unexplored. In contrast to the aggressive pathogen Staphylococcus aureus, toxin production has traditionally not been associated with CoNS. Recent findings have suggested that phenol-soluble modulins (PSMs), amphipathic peptide toxins with broad cytolytic activity, are widespread in staphylococci, but there has been no systematic assessment of PSM production in CoNS other than S. epidermidis. Here, we identified, purified, and characterized PSMs of S. haemolyticus. We found three PSMs of the β-type, which correspond to peptides that before were described to have anti-gonococcal activity. We also detected an α-type PSM that has not previously been described. Furthermore, we confirmed that S. haemolyticus does not produce a δ-toxin, as results from genome sequencing had indicated. All four S. haemolyticus PSMs had strong pro-inflammatory activity, promoting neutrophil chemotaxis. Notably, we identified in particular the novel α-type PSM, S. haemolyticus PSMα, as a potent hemolysin and leukocidin. For the first time, our study describes toxins of this important staphylococcal pathogen with the potential to have a significant impact on virulence during blood infection and sepsis. PMID:28596942

  7. Phenol-Soluble Modulin Toxins of Staphylococcus haemolyticus.

    PubMed

    Da, Fei; Joo, Hwang-Soo; Cheung, Gordon Y C; Villaruz, Amer E; Rohde, Holger; Luo, Xiaoxing; Otto, Michael

    2017-01-01

    Coagulase-negative staphylococci (CoNS) are important nosocomial pathogens and the leading cause of sepsis. The second most frequently implicated species, after Staphylococcus epidermidis , is Staphylococcus haemolyticus . However, we have a significant lack of knowledge about what causes virulence of S. haemolyticus , as virulence factors of this pathogen have remained virtually unexplored. In contrast to the aggressive pathogen Staphylococcus aureus , toxin production has traditionally not been associated with CoNS. Recent findings have suggested that phenol-soluble modulins (PSMs), amphipathic peptide toxins with broad cytolytic activity, are widespread in staphylococci, but there has been no systematic assessment of PSM production in CoNS other than S. epidermidis . Here, we identified, purified, and characterized PSMs of S. haemolyticus . We found three PSMs of the β-type, which correspond to peptides that before were described to have anti-gonococcal activity. We also detected an α-type PSM that has not previously been described. Furthermore, we confirmed that S. haemolyticus does not produce a δ-toxin, as results from genome sequencing had indicated. All four S. haemolyticus PSMs had strong pro-inflammatory activity, promoting neutrophil chemotaxis. Notably, we identified in particular the novel α-type PSM, S. haemolyticus PSMα, as a potent hemolysin and leukocidin. For the first time, our study describes toxins of this important staphylococcal pathogen with the potential to have a significant impact on virulence during blood infection and sepsis.

  8. Brain Meta-Transcriptomics from Harbor Seals to Infer the Role of the Microbiome and Virome in a Stranding Event.

    PubMed

    Rosales, Stephanie M; Thurber, Rebecca Vega

    2015-01-01

    Marine diseases are becoming more frequent, and tools for identifying pathogens and disease reservoirs are needed to help prevent and mitigate epizootics. Meta-transcriptomics provides insights into disease etiology by cataloguing and comparing sequences from suspected pathogens. This method is a powerful approach to simultaneously evaluate both the viral and bacterial communities, but few studies have applied this technique in marine systems. In 2009 seven harbor seals, Phoca vitulina, stranded along the California coast from a similar brain disease of unknown cause of death (UCD). We evaluated the differences between the virome and microbiome of UCDs and harbor seals with known causes of death. Here we determined that UCD stranded animals had no viruses in their brain tissue. However, in the bacterial community, we identified Burkholderia and Coxiella burnetii as important pathogens associated with this stranding event. Burkholderia were 100% prevalent and ~2.8 log2 fold more abundant in the UCD animals. Further, while C. burnetii was found in only 35.7% of all samples, it was highly abundant (~94% of the total microbial community) in a single individual. In this harbor seal, C. burnetii showed high transcription rates of invading and translation genes, implicating it in the pathogenesis of this animal. Based on these data we propose that Burkholderia taxa and C. burnetii are potentially important opportunistic neurotropic pathogens in UCD stranded harbor seals.

  9. Evolution of Influenza A Virus by Mutation and Re-Assortment

    PubMed Central

    Shao, Wenhan; Li, Xinxin; Goraya, Mohsan Ullah; Wang, Song; Chen, Ji-Long

    2017-01-01

    Influenza A virus (IAV), a highly infectious respiratory pathogen, has continued to be a significant threat to global public health. To complete their life cycle, influenza viruses have evolved multiple strategies to interact with a host. A large number of studies have revealed that the evolution of influenza A virus is mainly mediated through the mutation of the virus itself and the re-assortment of viral genomes derived from various strains. The evolution of influenza A virus through these mechanisms causes worldwide annual epidemics and occasional pandemics. Importantly, influenza A virus can evolve from an animal infected pathogen to a human infected pathogen. The highly pathogenic influenza virus has resulted in stupendous economic losses due to its morbidity and mortality both in human and animals. Influenza viruses fall into a category of viruses that can cause zoonotic infection with stable adaptation to human, leading to sustained horizontal transmission. The rapid mutations of influenza A virus result in the loss of vaccine optimal efficacy, and challenge the complete eradication of the virus. In this review, we highlight the current understanding of influenza A virus evolution caused by the mutation and re-assortment of viral genomes. In addition, we discuss the specific mechanisms by which the virus evolves. PMID:28783091

  10. Superficial veterinary mycoses.

    PubMed

    Bond, Ross

    2010-03-04

    Dermatophytes are significant pathogens in animal health due to their zoonotic potential, the economic consequences of infection in farm animal and fur production systems, and the distressing lesions they cause in small domestic pets. Malassezia spp are normal commensal and occasional pathogens of the skin of many veterinary species. Malassezia pachydermatis is a very common cause of otitis and pruritic dermatitis in dogs but is of less importance in other veterinary species. Dermatophytosis, and Malassezia otitis and dermatitis, represent the superficial mycoses of greatest significance in companion and farm animal health. Although the dermatophytes and Malassezia spp both exist in the stratum corneum of mammalian skin, there are important differences in the epidemiology, pathogenesis, and clinical consequences of infection. Dermatophytes are significant due to their zoonotic potential, the economic consequences of infection in farm animal and fur production systems, and the concern for owners of pets with inflammatory skin disease that is sometimes severe. Malassezia spp are normal commensals and occasional pathogens of the skin for many veterinary species, and M pachydermatis is a very common cause of otitis and pruritic dermatitis in dogs. This chapter will focus on the epidemiologic, clinical, diagnostic, and therapeutic aspects of dermatophytosis and Malassezia dermatitis in veterinary species. There are generally only sporadic reports of other superficial mycoses, such as candidiasis, piedra, and Rhodotorula dermatitis in veterinary medicine, and these are not included here. Copyright 2010 Elsevier Inc. All rights reserved.

  11. New genes of Xanthomonas citri subsp. citri involved in pathogenesis and adaptation revealed by a transposon-based mutant library

    PubMed Central

    2009-01-01

    Background Citrus canker is a disease caused by the phytopathogens Xanthomonas citri subsp. citri, Xanthomonas fuscans subsp. aurantifolli and Xanthomonas alfalfae subsp. citrumelonis. The first of the three species, which causes citrus bacterial canker type A, is the most widely spread and severe, attacking all citrus species. In Brazil, this species is the most important, being found in practically all areas where citrus canker has been detected. Like most phytobacterioses, there is no efficient way to control citrus canker. Considering the importance of the disease worldwide, investigation is needed to accurately detect which genes are related to the pathogen-host adaptation process and which are associated with pathogenesis. Results Through transposon insertion mutagenesis, 10,000 mutants of Xanthomonas citri subsp. citri strain 306 (Xcc) were obtained, and 3,300 were inoculated in Rangpur lime (Citrus limonia) leaves. Their ability to cause citrus canker was analyzed every 3 days until 21 days after inoculation; a set of 44 mutants showed altered virulence, with 8 presenting a complete loss of causing citrus canker symptoms. Sequencing of the insertion site in all 44 mutants revealed that 35 different ORFs were hit, since some ORFs were hit in more than one mutant, with mutants for the same ORF presenting the same phenotype. An analysis of these ORFs showed that some encoded genes were previously known as related to pathogenicity in phytobacteria and, more interestingly, revealed new genes never implicated with Xanthomonas pathogenicity before, including hypothetical ORFs. Among the 8 mutants with no canker symptoms are the hrpB4 and hrpX genes, two genes that belong to type III secretion system (TTSS), two hypothetical ORFS and, surprisingly, the htrA gene, a gene reported as involved with the virulence process in animal-pathogenic bacteria but not described as involved in phytobacteria virulence. Nucleic acid hybridization using labeled cDNA probes showed that some of the mutated genes are differentially expressed when the bacterium is grown in citrus leaves. Finally, comparative genomic analysis revealed that 5 mutated ORFs are in new putative pathogenicity islands. Conclusion The identification of these new genes related with Xcc infection and virulence is a great step towards the understanding of plant-pathogen interactions and could allow the development of strategies to control citrus canker. PMID:19149882

  12. Acanthamoeba: An Overview of the Challenges to the Development of a Consensus Methodology of Disinfection Efficacy Testing for Contact Lens Care Products.

    PubMed

    Brocious, Jeffrey; Tarver, Michelle E; Hampton, Denise; Eydelman, Malvina

    2018-04-24

    With the increasing incidence of more pathogens that can cause microbial keratitis (MK), it is necessary to periodically reassess disinfection multipurpose solutions testing requirements to ensure that relevant organisms to challenge them are being used. Current testing protocols have included common pathogens such as Pseudomonas aeruginosa, Staphylococcus aureus, Serratia marcescens, Candida albicans, and Fusarium solani but have omitted less common pathogens such as Acanthamoeba. Specifically, Acanthamoeba sp. has recently been identified as a prevalent cause of MK in certain countries. Developing an appropriate protocol for this unique organism presents a challenge, given its two distinct life stages, methods to grow the organism, encystment techniques, and many other parameters that can affect testing outcomes. Therefore, the appropriate combination of these parameters is crucial to developing a protocol that ensures consistent, accurate results. The FDA has recognized the importance of establishing a standardized testing protocol for this pathogen and embarked on research efforts to provide a recommended testing protocol for testing contact lens care products.

  13. Molecular epidemiological view on Shiga toxin-producing Escherichia coli causing human disease in Germany: Diversity, prevalence, and outbreaks.

    PubMed

    Fruth, Angelika; Prager, Rita; Tietze, Erhard; Rabsch, Wolfgang; Flieger, Antje

    2015-10-01

    Infections by intestinal pathogenic Escherichia coli (E. coli) are among those causing a high mortality and morbidity due to diarrheal disease and post infection sequelae worldwide. Since introduction of the Infection Protection Act in Germany 2001, these pathogens rank third among bacterial infections of the gastrointestinal tract. As a major pathovar Shiga toxin-producing E. coli (STEC) which include enterohemorrhagic E. coli (EHEC) play a leading role in occurrence of sporadic cases and disease outbreaks. An outstanding example is the large outbreak in spring 2011 caused by EHEC/EAEC O104:H4. To monitor and trace back STEC infections, national surveillance programs have been implemented including activities of the German National Reference Centre for Salmonella and other Enteric Bacterial Pathogens (NRC). This review highlights advances in our understanding of STEC in the last 20 years of STEC surveillance by the NRC. Here important characteristics of STEC strains from human infections and outbreaks in Germany between 1997 and 2013 are summarized. Copyright © 2015. Published by Elsevier GmbH.

  14. Whole Genome Sequencing Identifies a 78 kb Insertion from Chromosome 8 as the Cause of Charcot-Marie-Tooth Neuropathy CMTX3

    PubMed Central

    Brewer, Megan H.; Chaudhry, Rabia; Qi, Jessica; Kidambi, Aditi; Drew, Alexander P.; Ryan, Monique M.; Subramanian, Gopinath M.; Young, Helen K.; Zuchner, Stephan; Reddel, Stephen W.; Nicholson, Garth A.; Kennerson, Marina L.

    2016-01-01

    With the advent of whole exome sequencing, cases where no pathogenic coding mutations can be found are increasingly being observed in many diseases. In two large, distantly-related families that mapped to the Charcot-Marie-Tooth neuropathy CMTX3 locus at chromosome Xq26.3-q27.3, all coding mutations were excluded. Using whole genome sequencing we found a large DNA interchromosomal insertion within the CMTX3 locus. The 78 kb insertion originates from chromosome 8q24.3, segregates fully with the disease in the two families, and is absent from the general population as well as 627 neurologically normal chromosomes from in-house controls. Large insertions into chromosome Xq27.1 are known to cause a range of diseases and this is the first neuropathy phenotype caused by an interchromosomal insertion at this locus. The CMTX3 insertion represents an understudied pathogenic structural variation mechanism for inherited peripheral neuropathies. Our finding highlights the importance of considering all structural variation types when studying unsolved inherited peripheral neuropathy cases with no pathogenic coding mutations. PMID:27438001

  15. Chlamydia cell biology and pathogenesis.

    PubMed

    Elwell, Cherilyn; Mirrashidi, Kathleen; Engel, Joanne

    2016-06-01

    Chlamydia spp. are important causes of human disease for which no effective vaccine exists. These obligate intracellular pathogens replicate in a specialized membrane compartment and use a large arsenal of secreted effectors to survive in the hostile intracellular environment of the host. In this Review, we summarize the progress in decoding the interactions between Chlamydia spp. and their hosts that has been made possible by recent technological advances in chlamydial proteomics and genetics. The field is now poised to decipher the molecular mechanisms that underlie the intimate interactions between Chlamydia spp. and their hosts, which will open up many exciting avenues of research for these medically important pathogens.

  16. Chlamydia cell biology and pathogenesis

    PubMed Central

    Elwell, Cherilyn; Mirrashidi, Kathleen; Engel, Joanne

    2016-01-01

    Chlamydia spp. are important causes of human disease for which no effective vaccine exists. These obligate intracellular pathogens replicate in a specialized membrane compartment and use a large arsenal of secreted effectors to survive in the hostile intracellular environment of the host. In this Review, we summarize the progress in decoding the interactions between Chlamydia spp. and their hosts that has been made possible by recent technological advances in chlamydial proteomics and genetics. The field is now poised to decipher the molecular mechanisms that underlie the intimate interactions between Chlamydia spp. and their hosts, which will open up many exciting avenues of research for these medically important pathogens. PMID:27108705

  17. Systematic Phenotyping of a Large-Scale Candida glabrata Deletion Collection Reveals Novel Antifungal Tolerance Genes

    PubMed Central

    Hiller, Ekkehard; Istel, Fabian; Tscherner, Michael; Brunke, Sascha; Ames, Lauren; Firon, Arnaud; Green, Brian; Cabral, Vitor; Marcet-Houben, Marina; Jacobsen, Ilse D.; Quintin, Jessica; Seider, Katja; Frohner, Ingrid; Glaser, Walter; Jungwirth, Helmut; Bachellier-Bassi, Sophie; Chauvel, Murielle; Zeidler, Ute; Ferrandon, Dominique; Gabaldón, Toni; Hube, Bernhard; d'Enfert, Christophe; Rupp, Steffen; Cormack, Brendan; Haynes, Ken; Kuchler, Karl

    2014-01-01

    The opportunistic fungal pathogen Candida glabrata is a frequent cause of candidiasis, causing infections ranging from superficial to life-threatening disseminated disease. The inherent tolerance of C. glabrata to azole drugs makes this pathogen a serious clinical threat. To identify novel genes implicated in antifungal drug tolerance, we have constructed a large-scale C. glabrata deletion library consisting of 619 unique, individually bar-coded mutant strains, each lacking one specific gene, all together representing almost 12% of the genome. Functional analysis of this library in a series of phenotypic and fitness assays identified numerous genes required for growth of C. glabrata under normal or specific stress conditions, as well as a number of novel genes involved in tolerance to clinically important antifungal drugs such as azoles and echinocandins. We identified 38 deletion strains displaying strongly increased susceptibility to caspofungin, 28 of which encoding proteins that have not previously been linked to echinocandin tolerance. Our results demonstrate the potential of the C. glabrata mutant collection as a valuable resource in functional genomics studies of this important fungal pathogen of humans, and to facilitate the identification of putative novel antifungal drug target and virulence genes. PMID:24945925

  18. Time-resolved dual transcriptomics reveal early induced Nicotiana benthamiana root genes and conserved infection-promoting Phytophthora palmivora effectors.

    PubMed

    Evangelisti, Edouard; Gogleva, Anna; Hainaux, Thomas; Doumane, Mehdi; Tulin, Frej; Quan, Clément; Yunusov, Temur; Floch, Kévin; Schornack, Sebastian

    2017-05-11

    Plant-pathogenic oomycetes are responsible for economically important losses in crops worldwide. Phytophthora palmivora, a tropical relative of the potato late blight pathogen, causes rotting diseases in many tropical crops including papaya, cocoa, oil palm, black pepper, rubber, coconut, durian, mango, cassava and citrus. Transcriptomics have helped to identify repertoires of host-translocated microbial effector proteins which counteract defenses and reprogram the host in support of infection. As such, these studies have helped in understanding how pathogens cause diseases. Despite the importance of P. palmivora diseases, genetic resources to allow for disease resistance breeding and identification of microbial effectors are scarce. We employed the model plant Nicotiana benthamiana to study the P. palmivora root infections at the cellular and molecular levels. Time-resolved dual transcriptomics revealed different pathogen and host transcriptome dynamics. De novo assembly of P. palmivora transcriptome and semi-automated prediction and annotation of the secretome enabled robust identification of conserved infection-promoting effectors. We show that one of them, REX3, suppresses plant secretion processes. In a survey for early transcriptionally activated plant genes we identified a N. benthamiana gene specifically induced at infected root tips that encodes a peptide with danger-associated molecular features. These results constitute a major advance in our understanding of P. palmivora diseases and establish extensive resources for P. palmivora pathogenomics, effector-aided resistance breeding and the generation of induced resistance to Phytophthora root infections. Furthermore, our approach to find infection-relevant secreted genes is transferable to other pathogen-host interactions and not restricted to plants.

  19. Inheritance of high levels of resistance to common bacterial blight caused by Xanthomonas Axonopodis pv. Phaseoli in common bean (Phaseolus vulgaris L.)

    USDA-ARS?s Scientific Manuscript database

    Common bacterial blight caused by the pathogen Xanthomonas axonopodis pv. phaseoli (Xap) is an important biotic factor limiting common bean (Phaseolus vulgaris L.) production. A few interspecific bean breeding lines such as VAX 6 exhibit a high level of resistance to a wide range of Xap strains repr...

  20. Development of SSR markers for genetic diversity and phylogenetic studies of Phomopsis longicolla causing Phomopsis seed decay in soybean

    USDA-ARS?s Scientific Manuscript database

    Phomopsis longicolla T. W. Hobbs (syn. Diaporthe longicolla) is the primary cause of Phomopsis seed decay (PSD) in soybean, Glycine max (L.) Merrill. The genome of P. longicolla type strain TWH P74 represents one of the important fungal pathogens in the Diaporthe-Phomopsis complex. In this study, th...

  1. Evaluation of soybean breeding lines for resistance to Phomopsis seed decay: Results of 2014, 2015, and 2016 field trials in Stoneville, Mississippi

    USDA-ARS?s Scientific Manuscript database

    Soybean [Glycine max (L.) Merr.] is one of the most important crops in the world. Phomopsis seed decay (PSD) is a soybean seed disease that causes poor seed quality. This disease is caused primarily by a fungal pathogen, Phomopsis longicolla (syn. Diaporthe longicolla). Planting PSD-resistant soybea...

  2. Potassium fertilizer applied immediately after planting had no impact on Douglas-fir seedling mortality caused by laminated root rot on a forested site in Washington State.

    Treesearch

    Walter G. Thies; Rick G. Kelsey; Douglas J. Westlind; Jeff Madsen

    2006-01-01

    Phellinus weirii causes laminated root rot (LRR), a major disease affecting growth and survival of Pseudotsuga menziesii (Douglas-fir) and other commercially important conifer species throughout the Pacific Northwest. Increasing tree vigor and resistance to pathogens through application of K fertilizer is a suggested disease...

  3. Squash vein yellowing virus

    USDA-ARS?s Scientific Manuscript database

    Cucurbits are an important crop of temperate, subtropical and tropical regions of the world. Squash vein yellowing virus (SqVYV) is a major viral pathogen of cucurbits. This chapter provides an overview of the biology of SqVYV and the disease it causes....

  4. STREPTOCOCCUS: A WORLDWIDE FISH HEALTH PROBLEM

    USDA-ARS?s Scientific Manuscript database

    Streptococcus iniae and S. agalactiae are important emergent pathogens that affect many fish species worldwide, especially in warm-water regions. In marine and freshwater systems, these Gram-positive bacteria cause significant economic losses, estimated at hundreds of millions of dollars annually. ...

  5. Partial budget of the discounted annual benefit of mastitis control strategies.

    PubMed

    Allore, H G; Erb, H N

    1998-08-01

    The objective of this study was to rank the benefits associated with various mastitis control strategies in simulated herds with intramammary infections caused by Streptococcus agalactiae, Streptococcus spp. other than Strep. agalactiae, Staphylococcus aureus, coagulase-negative staphylococci, and Escherichia coli. The control strategies tested were prevention, vaccination for E. coli, lactation therapy, and dry cow antibiotic therapy. Partial budgets were based on changes caused by mastitis control strategies from the mean values for milk, fat, and protein yields of the control herd and the number of cows that were culled under a fixed mastitis culling criterion. Each annual benefit (dollars per cow per year) of a mastitis control strategy was compared with the revenue for the control herd and was calculated under two different milk pricing plans (3.5% milk fat and multiple-component pricing), three net replacement costs, and three prevalences of pathogen-specific intramammary infection. Twenty replicates of each control strategy were run with SIMMAST (a dynamic discrete event stochastic simulation model) for 5 simulated yr. Rankings of discounted annual benefits differed only slightly according to milk pricing plans within a pathogen group but differed among the pathogen groups. Differences in net replacement costs for cows culled because of mastitis did not change the ranking of control strategies within a pathogen group. Both prevention and dry cow therapy were important mastitis control strategies. For herds primarily infected with environmental pathogens, strategies that included vaccination for mastitis caused by E. coli dominated strategies that did not include vaccination against this microorganism.

  6. Genome characterization and population genetic structure of the zoonotic pathogen, Streptococcus canis

    PubMed Central

    2012-01-01

    Background Streptococcus canis is an important opportunistic pathogen of dogs and cats that can also infect a wide range of additional mammals including cows where it can cause mastitis. It is also an emerging human pathogen. Results Here we provide characterization of the first genome sequence for this species, strain FSL S3-227 (milk isolate from a cow with an intra-mammary infection). A diverse array of putative virulence factors was encoded by the S. canis FSL S3-227 genome. Approximately 75% of these gene sequences were homologous to known Streptococcal virulence factors involved in invasion, evasion, and colonization. Present in the genome are multiple potentially mobile genetic elements (MGEs) [plasmid, phage, integrative conjugative element (ICE)] and comparison to other species provided convincing evidence for lateral gene transfer (LGT) between S. canis and two additional bovine mastitis causing pathogens (Streptococcus agalactiae, and Streptococcus dysgalactiae subsp. dysgalactiae), with this transfer possibly contributing to host adaptation. Population structure among isolates obtained from Europe and USA [bovine = 56, canine = 26, and feline = 1] was explored. Ribotyping of all isolates and multi locus sequence typing (MLST) of a subset of the isolates (n = 45) detected significant differentiation between bovine and canine isolates (Fisher exact test: P = 0.0000 [ribotypes], P = 0.0030 [sequence types]), suggesting possible host adaptation of some genotypes. Concurrently, the ancestral clonal complex (54% of isolates) occurred in many tissue types, all hosts, and all geographic locations suggesting the possibility of a wide and diverse niche. Conclusion This study provides evidence highlighting the importance of LGT in the evolution of the bacteria S. canis, specifically, its possible role in host adaptation and acquisition of virulence factors. Furthermore, recent LGT detected between S. canis and human bacteria (Streptococcus urinalis) is cause for concern, as it highlights the possibility for continued acquisition of human virulence factors for this emerging zoonotic pathogen. PMID:23244770

  7. Amphibian decline and extinction: what we know and what we need to learn.

    PubMed

    Collins, James P

    2010-11-01

    For over 350 million yr, thousands of amphibian species have lived on Earth. Since the 1980s, amphibians have been disappearing at an alarming rate, in many cases quite suddenly. What is causing these declines and extinctions? In the modern era (post 1500) there are 6 leading causes of biodiversity loss in general, and all of these acting alone or together are responsible for modern amphibian declines: commercial use; introduced/exotic species that compete with, prey on, and parasitize native frogs and salamanders; land use change; contaminants; climate change; and infectious disease. The first 3 causes are historical in the sense that they have been operating for hundreds of years, although the rate of change due to each accelerated greatly after about the mid-20th century. Contaminants, climate change, and emerging infectious diseases are modern causes suspected of being responsible for the so-called 'enigmatic decline' of amphibians in protected areas. Introduced/exotic pathogens, land use change, and infectious disease are the 3 causes with a clear role in amphibian decline as well as extinction; thus far, the other 3 causes are only implicated in decline and not extinction. The present work is a review of the 6 causes with a focus on pathogens and suggested areas where new research is needed. Batrachochytrium dendrobatidis (Bd) is a chytrid fungus that is an emerging infectious disease causing amphibian population decline and species extinction. Historically, pathogens have not been seen as a major cause of extinction, but Bd is an exception, which is why it is such an interesting, important pathogen to understand. The late 20th and early 21st century global biodiversity loss is characterized as a sixth extinction event. Amphibians are a striking example of these losses as they disappear at a rate that greatly exceeds historical levels. Consequently, modern amphibian decline and extinction is a lens through which we can view the larger story of biodiversity loss and its consequences.

  8. Transcriptome Remodeling Contributes to Epidemic Disease Caused by the Human Pathogen Streptococcus pyogenes.

    PubMed

    Beres, Stephen B; Kachroo, Priyanka; Nasser, Waleed; Olsen, Randall J; Zhu, Luchang; Flores, Anthony R; de la Riva, Ivan; Paez-Mayorga, Jesus; Jimenez, Francisco E; Cantu, Concepcion; Vuopio, Jaana; Jalava, Jari; Kristinsson, Karl G; Gottfredsson, Magnus; Corander, Jukka; Fittipaldi, Nahuel; Di Luca, Maria Chiara; Petrelli, Dezemona; Vitali, Luca A; Raiford, Annessa; Jenkins, Leslie; Musser, James M

    2016-05-31

    For over a century, a fundamental objective in infection biology research has been to understand the molecular processes contributing to the origin and perpetuation of epidemics. Divergent hypotheses have emerged concerning the extent to which environmental events or pathogen evolution dominates in these processes. Remarkably few studies bear on this important issue. Based on population pathogenomic analysis of 1,200 Streptococcus pyogenes type emm89 infection isolates, we report that a series of horizontal gene transfer events produced a new pathogenic genotype with increased ability to cause infection, leading to an epidemic wave of disease on at least two continents. In the aggregate, these and other genetic changes substantially remodeled the transcriptomes of the evolved progeny, causing extensive differential expression of virulence genes and altered pathogen-host interaction, including enhanced immune evasion. Our findings delineate the precise molecular genetic changes that occurred and enhance our understanding of the evolutionary processes that contribute to the emergence and persistence of epidemically successful pathogen clones. The data have significant implications for understanding bacterial epidemics and for translational research efforts to blunt their detrimental effects. The confluence of studies of molecular events underlying pathogen strain emergence, evolutionary genetic processes mediating altered virulence, and epidemics is in its infancy. Although understanding these events is necessary to develop new or improved strategies to protect health, surprisingly few studies have addressed this issue, in particular, at the comprehensive population genomic level. Herein we establish that substantial remodeling of the transcriptome of the human-specific pathogen Streptococcus pyogenes by horizontal gene flow and other evolutionary genetic changes is a central factor in precipitating and perpetuating epidemic disease. The data unambiguously show that the key outcome of these molecular events is evolution of a new, more virulent pathogenic genotype. Our findings provide new understanding of epidemic disease. Copyright © 2016 Beres et al.

  9. The medically important aerobic actinomycetes: epidemiology and microbiology.

    PubMed Central

    McNeil, M M; Brown, J M

    1994-01-01

    The aerobic actinomycetes are soil-inhabiting microorganisms that occur worldwide. In 1888, Nocard first recognized the pathogenic potential of this group of microorganisms. Since then, several aerobic actinomycetes have been a major source of interest for the commercial drug industry and have proved to be extremely useful microorganisms for producing novel antimicrobial agents. They have also been well known as potential veterinary pathogens affecting many different animal species. The medically important aerobic actinomycetes may cause significant morbidity and mortality, in particular in highly susceptible severely immunocompromised patients, including transplant recipients and patients infected with human immunodeficiency virus. However, the diagnosis of these infections may be difficult, and effective antimicrobial therapy may be complicated by antimicrobial resistance. The taxonomy of these microorganisms has been problematic. In recent revisions of their classification, new pathogenic species have been recognized. The development of additional and more reliable diagnostic tests and of a standardized method for antimicrobial susceptibility testing and the application of molecular techniques for the diagnosis and subtyping of these microorganisms are needed to better diagnose and treat infected patients and to identify effective control measures for these unusual pathogens. We review the epidemiology and microbiology of the major medically important aerobic actinomycetes. Images PMID:7923055

  10. Plasmid vectors for Xylella fastidiosa utilizing a toxin-antitoxin system for plasmid stability in the absence of antibiotic selection

    USDA-ARS?s Scientific Manuscript database

    The phytopathogen Xylella fastidiosa causes disease in a variety of important crop and landscape plants. Functional genetic studies have led to a broader understanding of virulence mechanisms used by this pathogen in the grapevine host. Plasmid shuttle vectors are important tools in studies of bacte...

  11. Marine cargo imports and forest pest introductions

    Treesearch

    Frank H. Koch

    2009-01-01

    A major pathway for the introduction of nonindigenous forest pests is accidental transport on cargo imported from overseas. Diseases may be brought into the United States via commercial trade of nursery stock or other live plant material, as has been suggested for Phytophthora ramorum, the pathogen that causes sudden oak death (Ivors and others 2006). Insects may...

  12. Molecular characterization of pathogenic Fusarium species in cucurbit plants from Kermanshah province, Iran

    PubMed Central

    Chehri, K.; Salleh, B.; Yli-Mattila, T.; Reddy, K.R.N.; Abbasi, S.

    2011-01-01

    Fusarium is one of the important phytopathogenic genera of microfungi causing serious losses on cucurbit plants in Kermanshah province, the largest area of cucurbits plantation in Iran. Therefore, the objectives in this study were to isolate and identify disease-causing Fusarium spp. from infected cucurbit plants, to ascertain their pathogenicity, and to determine their phylogenetic relationships. A total of 100 Fusarium isolates were obtained from diseased cucurbit plants collected from fields in different geographic regions in Kermanshah province, Iran. According to morphological characters, all isolates were identified as Fusarium oxysporum, Fusarium proliferatum, Fusarium equiseti, Fusarium semitectum and Fusarium solani. All isolates of the five Fusarium spp. were evaluated for their pathogenicity on healthy cucumber (Cucumis sativus) and honeydew melon (Cucumis melo) seedlings in the glasshouse. F. oxysporum caused damping-off in 20–35 days on both cucurbit seedlings tested. Typical stem rot symptoms were observed within 15 days after inoculation with F. solani on both seedlings. Based on the internal transcribed spacer (ITS) regions of ribosomal DNA (rDNA) restriction fragment length polymorphism (RFLP) analysis, the five Fusarium species were divided into two major groups. In particular, isolates belonging to the F. solani species complex (FSSC) were separated into two RFLP types. Grouping among Fusarium strains derived from restriction analysis was in agreement with criteria used in morphological classification. Therefore, the PCR-ITS-RFLP method provides a simple and rapid procedure for the differentiation of Fusarium strains at species level. This is the first report on identification and pathogenicity of major plant pathogenic Fusarium spp. causing root and stem rot on cucurbits in Iran. PMID:23961146

  13. Utilizing Bacillus to inhibit the growth and infection by sheath blight pathogen, Rhizoctoniasolani in rice

    NASA Astrophysics Data System (ADS)

    Margani, R.; Hadiwiyono; Widadi, S.

    2018-03-01

    Rhizoctonia solani Kuhn is a common pathogen of rice. The pathogen causes sheath blight of rice. The pathogen can cause loss in the production of rice up to 45%. So far, the disease however is still poorly taken care of by the farmers and researchers, so the control measures is nearly never practiced by the farmers in the fields. It due to the unavailability of effective control method of the disease. Therefore, development to control the disease is important. Bacillus is one of popular bacteria which is effective as biological control agent of a lot of pathogens in plants, but it has not been used for control sheath blight in rice yet. The current researches were aimed to study the potential of Bacillus collected from healthy rice as candidates of biological control agent of the disease. The results showed that some isolates showed indications to inhibit significantly the growth and infection of the pathogen. We obtained at least five isolates of Bacillus collected from leaves, sheath, and stem of healthy rice fields. All of the isolates could effectively inhibit the growth of R. solani in vitro on potato dextrose medium at range 30.33-58.00%, whereas in vivo B05 isolate was the most effective in inhibiting the infection of pathogen at 30.43%. It was not significantly different (P≥0.05) to application of hexaconazol with dosage of 2 ml L-1.

  14. Pathogen transport in groundwater systems: contrasts with traditional solute transport

    NASA Astrophysics Data System (ADS)

    Hunt, Randall J.; Johnson, William P.

    2017-06-01

    Water quality affects many aspects of water availability, from precluding use to societal perceptions of fit-for-purpose. Pathogen source and transport processes are drivers of water quality because they have been responsible for numerous outbreaks resulting in large economic losses due to illness and, in some cases, loss of life. Outbreaks result from very small exposure (e.g., less than 20 viruses) from very strong sources (e.g., trillions of viruses shed by a single infected individual). Thus, unlike solute contaminants, an acute exposure to a very small amount of contaminated water can cause immediate adverse health effects. Similarly, pathogens are larger than solutes. Thus, interactions with surfaces and settling become important even as processes important for solutes such as diffusion become less important. These differences are articulated in "Colloid Filtration Theory", a separate branch of pore-scale transport. Consequently, understanding pathogen processes requires changes in how groundwater systems are typically characterized, where the focus is on the leading edges of plumes and preferential flow paths, even if such features move only a very small fraction of the aquifer flow. Moreover, the relatively short survival times of pathogens in the subsurface require greater attention to very fast (<10 year) flow paths. By better understanding the differences between pathogen and solute transport mechanisms discussed here, a more encompassing view of water quality and source water protection is attained. With this more holistic view and theoretical understanding, better evaluations can be made regarding drinking water vulnerability and the relation between groundwater and human health.

  15. MERS, SARS and other coronaviruses as causes of pneumonia.

    PubMed

    Yin, Yudong; Wunderink, Richard G

    2018-02-01

    Human coronaviruses (HCoVs) have been considered to be relatively harmless respiratory pathogens in the past. However, after the outbreak of the severe acute respiratory syndrome (SARS) and emergence of the Middle East respiratory syndrome (MERS), HCoVs have received worldwide attention as important pathogens in respiratory tract infection. This review focuses on the epidemiology, pathogenesis and clinical characteristics among SARS-coronaviruses (CoV), MERS-CoV and other HCoV infections. © 2017 Asian Pacific Society of Respirology.

  16. Avian influenza viruses in humans.

    PubMed

    Malik Peiris, J S

    2009-04-01

    Past pandemics arose from low pathogenic avian influenza (LPAI) viruses. In more recent times, highly pathogenic avian influenza (HPAI) H5N1, LPAI H9N2 and both HPAI and LPAI H7 viruses have repeatedly caused zoonotic disease in humans. Such infections did not lead to sustained human-to-human transmission. Experimental infection of human volunteers and seroepidemiological studies suggest that avian influenza viruses of other subtypes may also infect humans. Viruses of the H7 subtype appear to have a predilection to cause conjunctivitis and influenza-like illness (ILI), although HPAI H7N7 virus has also caused fatal respiratory disease. Low pathogenic H9N2 viruses have caused mild ILI and its occurrence may be under-recognised for this reason. In contrast, contemporary HPAI H5N1 viruses are exceptional in their virulence for humans and differ from human seasonal influenza viruses in their pathogenesis. Patients have a primary viral pneumonia progressing to acute respiratory distress syndrome (ARDS) and multiple organ dysfunction syndrome. Over 380 human cases have been confirmed to date, with an overall case fatality of 63%. The zoonotic transmission of avian influenza is a rare occurrence, butthe greater public health concern is the adaptation of such viruses to efficient human transmission, which could lead to a pandemic. A better understanding of the ecology of avian influenza viruses and the biological determinants of transmissibility and pathogenicity in humans is important for pandemic preparedness.

  17. Colony Collapse Disorder: A Descriptive Study

    PubMed Central

    vanEngelsdorp, Dennis; Evans, Jay D.; Saegerman, Claude; Mullin, Chris; Haubruge, Eric; Nguyen, Bach Kim; Frazier, Maryann; Frazier, Jim; Cox-Foster, Diana; Chen, Yanping; Underwood, Robyn; Tarpy, David R.; Pettis, Jeffery S.

    2009-01-01

    Background Over the last two winters, there have been large-scale, unexplained losses of managed honey bee (Apis mellifera L.) colonies in the United States. In the absence of a known cause, this syndrome was named Colony Collapse Disorder (CCD) because the main trait was a rapid loss of adult worker bees. We initiated a descriptive epizootiological study in order to better characterize CCD and compare risk factor exposure between populations afflicted by and not afflicted by CCD. Methods and Principal Findings Of 61 quantified variables (including adult bee physiology, pathogen loads, and pesticide levels), no single measure emerged as a most-likely cause of CCD. Bees in CCD colonies had higher pathogen loads and were co-infected with a greater number of pathogens than control populations, suggesting either an increased exposure to pathogens or a reduced resistance of bees toward pathogens. Levels of the synthetic acaricide coumaphos (used by beekeepers to control the parasitic mite Varroa destructor) were higher in control colonies than CCD-affected colonies. Conclusions/Significance This is the first comprehensive survey of CCD-affected bee populations that suggests CCD involves an interaction between pathogens and other stress factors. We present evidence that this condition is contagious or the result of exposure to a common risk factor. Potentially important areas for future hypothesis-driven research, including the possible legacy effect of mite parasitism and the role of honey bee resistance to pesticides, are highlighted. PMID:19649264

  18. Colony collapse disorder: a descriptive study.

    PubMed

    Vanengelsdorp, Dennis; Evans, Jay D; Saegerman, Claude; Mullin, Chris; Haubruge, Eric; Nguyen, Bach Kim; Frazier, Maryann; Frazier, Jim; Cox-Foster, Diana; Chen, Yanping; Underwood, Robyn; Tarpy, David R; Pettis, Jeffery S

    2009-08-03

    Over the last two winters, there have been large-scale, unexplained losses of managed honey bee (Apis mellifera L.) colonies in the United States. In the absence of a known cause, this syndrome was named Colony Collapse Disorder (CCD) because the main trait was a rapid loss of adult worker bees. We initiated a descriptive epizootiological study in order to better characterize CCD and compare risk factor exposure between populations afflicted by and not afflicted by CCD. Of 61 quantified variables (including adult bee physiology, pathogen loads, and pesticide levels), no single measure emerged as a most-likely cause of CCD. Bees in CCD colonies had higher pathogen loads and were co-infected with a greater number of pathogens than control populations, suggesting either an increased exposure to pathogens or a reduced resistance of bees toward pathogens. Levels of the synthetic acaricide coumaphos (used by beekeepers to control the parasitic mite Varroa destructor) were higher in control colonies than CCD-affected colonies. This is the first comprehensive survey of CCD-affected bee populations that suggests CCD involves an interaction between pathogens and other stress factors. We present evidence that this condition is contagious or the result of exposure to a common risk factor. Potentially important areas for future hypothesis-driven research, including the possible legacy effect of mite parasitism and the role of honey bee resistance to pesticides, are highlighted.

  19. Global Warming Will Bring New Fungal Diseases for Mammals

    PubMed Central

    Garcia-Solache, Monica A.; Casadevall, Arturo

    2010-01-01

    ABSTRACT Fungi are major pathogens of plants, other fungi, rotifers, insects, and amphibians, but relatively few cause disease in mammals. Fungi became important human pathogens only in the late 20th century, primarily in hosts with impaired immunity as a consequence of medical interventions or HIV infection. The relatively high resistance of mammals has been attributed to a combination of a complex immune system and endothermy. Mammals maintain high body temperatures relative to environmental temperatures, creating a thermally restrictive ambient for the majority of fungi. According to this view, protection given by endothermy requires a temperature gradient between those of mammals and the environment. We hypothesize that global warming will increase the prevalence of fungal diseases in mammals by two mechanisms: (i) increasing the geographic range of currently pathogenic species and (ii) selecting for adaptive thermotolerance for species with significant pathogenic potential but currently not pathogenic by virtue of being restricted by mammalian temperatures. PMID:20689745

  20. IHH Gene Mutations Causing Short Stature With Nonspecific Skeletal Abnormalities and Response to Growth Hormone Therapy.

    PubMed

    Vasques, Gabriela A; Funari, Mariana F A; Ferreira, Frederico M; Aza-Carmona, Miriam; Sentchordi-Montané, Lucia; Barraza-García, Jimena; Lerario, Antonio M; Yamamoto, Guilherme L; Naslavsky, Michel S; Duarte, Yeda A O; Bertola, Debora R; Heath, Karen E; Jorge, Alexander A L

    2018-02-01

    Genetic evaluation has been recognized as an important tool to elucidate the causes of growth disorders. To investigate the cause of short stature and to determine the phenotype of patients with IHH mutations, including the response to recombinant human growth hormone (rhGH) therapy. We studied 17 families with autosomal-dominant short stature by using whole exome sequencing and screened IHH defects in 290 patients with growth disorders. Molecular analyses were performed to evaluate the potential impact of N-terminal IHH variants. We identified 10 pathogenic or possibly pathogenic variants in IHH, an important regulator of endochondral ossification. Molecular analyses revealed a smaller potential energy of mutated IHH molecules. The allele frequency of rare, predicted to be deleterious IHH variants found in short-stature samples (1.6%) was higher than that observed in two control cohorts (0.017% and 0.08%; P < 0.001). Identified IHH variants segregate with short stature in a dominant inheritance pattern. Affected individuals typically manifest mild disproportional short stature with a frequent finding of shortening of the middle phalanx of the fifth finger. None of them have classic features of brachydactyly type A1, which was previously associated with IHH mutations. Five patients heterozygous for IHH variants had a good response to rhGH therapy. The mean change in height standard deviation score in 1 year was 0.6. Our study demonstrated the association of pathogenic variants in IHH with short stature with nonspecific skeletal abnormalities and established a frequent cause of growth disorder, with a preliminary good response to rhGH. Copyright © 2017 Endocrine Society

  1. The FUN of identifying gene function in bacterial pathogens; insights from Salmonella functional genomics.

    PubMed

    Hammarlöf, Disa L; Canals, Rocío; Hinton, Jay C D

    2013-10-01

    The availability of thousands of genome sequences of bacterial pathogens poses a particular challenge because each genome contains hundreds of genes of unknown function (FUN). How can we easily discover which FUN genes encode important virulence factors? One solution is to combine two different functional genomic approaches. First, transcriptomics identifies bacterial FUN genes that show differential expression during the process of mammalian infection. Second, global mutagenesis identifies individual FUN genes that the pathogen requires to cause disease. The intersection of these datasets can reveal a small set of candidate genes most likely to encode novel virulence attributes. We demonstrate this approach with the Salmonella infection model, and propose that a similar strategy could be used for other bacterial pathogens. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. An aversion to Verticillium

    USDA-ARS?s Scientific Manuscript database

    Verticillium wilt is a one of the most serious diseases affecting field production of ornamental trees and shrubs. The disease is caused by the soilborne fungus, Verticillium dahliae. The pathogen is very common in agricultural fields and infects hundreds of economically important plant species incl...

  3. Spatial dynamics and control of a crop pathogen with mixed-mode transmission.

    PubMed

    McQuaid, Christopher Finn; van den Bosch, Frank; Szyniszewska, Anna; Alicai, Titus; Pariyo, Anthony; Chikoti, Patrick Chiza; Gilligan, Christopher Aidan

    2017-07-01

    Trade or sharing that moves infectious planting material between farms can, for vertically-transmitted plant diseases, act as a significant force for dispersal of pathogens, particularly where the extent of material movement may be greater than that of infected vectors or inoculum. The network over which trade occurs will then effect dispersal, and is important to consider when attempting to control the disease. We consider the difference that planting material exchange can make to successful control of cassava brown streak disease, an important viral disease affecting one of Africa's staple crops. We use a mathematical model of smallholders' fields to determine the effect of informal trade on both the spread of the pathogen and its control using clean-seed systems, determining aspects that could limit the damage caused by the disease. In particular, we identify the potentially detrimental effects of markets, and the benefits of a community-based approach to disease control.

  4. Expression of pathogenicity-related genes of Xylella fastidiosa in vitro and in planta.

    PubMed

    de Souza, Alessandra A; Takita, Marco A; Pereira, Eridan O; Coletta-Filho, Helvécio D; Machado, Marcos A

    2005-04-01

    Xylella fastidiosa is responsible for several economically important plant diseases. It is currently assumed that the symptoms are caused by vascular occlusion due to biofilm formation. Microarray technology was previously used to examine the global gene expression profile of X. fastidiosa freshly isolated from symptomatic plants or after several passages by axenic culture medium, and different pathogenicity profiles have been obtained. In the present study the expression of some pathogenicity-related genes was evaluated in vitro and in planta by RT-PCR. The results suggest that adhesion is important at the beginning of biofilm formation, while the genes related to adaptation are essential for the organism's maintenance in planta. Similar results were observed in vitro mainly for the adhesion genes. The pattern of expression observed suggests that adhesion modulates biofilm formation whereas the expression of some adaptation genes may be related to the environment in which the organism is living.

  5. Inactivation of the Catalytic Subunit of cAMP-Dependent Protein Kinase A Causes Delayed Appressorium Formation and Reduced Pathogenicity of Colletotrichum gloeosporioides

    PubMed Central

    Priyatno, Tri Puji; Abu Bakar, Farah Diba; Kamaruddin, Nurhaida; Mahadi, Nor Muhammad; Abdul Murad, Abdul Munir

    2012-01-01

    The cyclic AMP- (cAMP-) dependent protein kinase A signaling pathway is one of the major signaling pathways responsible for regulation of the morphogenesis and pathogenesis of several pathogenic fungi. To evaluate the role of this pathway in the plant pathogenic fungus, Colletotrichum gloeosporioides, the gene encoding the catalytic subunit of cAMP-dependent protein kinase A, CgPKAC, was cloned, inactivated, and the mutant was analyzed. Analysis of the Cgpkac mutant generated via gene replacement showed that the mutants were able to form appressoria; however, their formation was delayed compared to the wild type. In addition, the mutant conidia underwent bipolar germination after appressoria formation, but no appressoria were generated from the second germ tube. The mutants also showed reduced ability to adhere to a hydrophobic surface and to degrade lipids localized in the appressoria. Based on the number of lesions produced during a pathogenicity test, the mutant's ability to cause disease in healthy mango fruits was reduced, which may be due to failure to penetrate into the fruit. These findings indicate that cAMP-dependent protein kinase A has an important role in regulating morphogenesis and is required for pathogenicity of C. gloeosporioides. PMID:22666136

  6. Draft whole genome sequence of groundnut stem rot fungus Athelia rolfsii revealing genetic architect of its pathogenicity and virulence.

    PubMed

    Iquebal, M A; Tomar, Rukam S; Parakhia, M V; Singla, Deepak; Jaiswal, Sarika; Rathod, V M; Padhiyar, S M; Kumar, Neeraj; Rai, Anil; Kumar, Dinesh

    2017-07-13

    Groundnut (Arachis hypogaea L.) is an important oil seed crop having major biotic constraint in production due to stem rot disease caused by fungus, Athelia rolfsii causing 25-80% loss in productivity. As chemical and biological combating strategies of this fungus are not very effective, thus genome sequencing can reveal virulence and pathogenicity related genes for better understanding of the host-parasite interaction. We report draft assembly of Athelia rolfsii genome of ~73 Mb having 8919 contigs. Annotation analysis revealed 16830 genes which are involved in fungicide resistance, virulence and pathogenicity along with putative effector and lethal genes. Secretome analysis revealed CAZY genes representing 1085 enzymatic genes, glycoside hydrolases, carbohydrate esterases, carbohydrate-binding modules, auxillary activities, glycosyl transferases and polysaccharide lyases. Repeat analysis revealed 11171 SSRs, LTR, GYPSY and COPIA elements. Comparative analysis with other existing ascomycotina genome predicted conserved domain family of WD40, CYP450, Pkinase and ABC transporter revealing insight of evolution of pathogenicity and virulence. This study would help in understanding pathogenicity and virulence at molecular level and development of new combating strategies. Such approach is imperative in endeavour of genome based solution in stem rot disease management leading to better productivity of groundnut crop in tropical region of world.

  7. Exopolysaccharide Productivity and Biofilm Phenotype on Oral Commensal Bacteria as Pathogenesis of Chronic Periodontitis

    DTIC Science & Technology

    2012-01-01

    2 Exopolysaccharide Productivity and Biofilm Phenotype on Oral Commensal Bacteria as Pathogenesis of Chronic Periodontitis Takeshi Yamanaka1...species biofilm in the oral cavity can cause persistent chronic periodontitis along with the importance of dental plaque formation and maturation...independent manner could be pathogenic for periodontal tissues and can cause chronic periodontitis lesions. 2.1 Initial colonizers on the tooth surface

  8. Infection processes of xylem-colonizing pathogenic bacteria: possible explanations for the scarcity of qualitative disease resistance genes against them in crops.

    PubMed

    Bae, Chungyun; Han, Sang Wook; Song, Yu-Rim; Kim, Bo-Young; Lee, Hyung-Jin; Lee, Je-Min; Yeam, Inhwa; Heu, Sunggi; Oh, Chang-Sik

    2015-07-01

    Disease resistance against xylem-colonizing pathogenic bacteria in crops. Plant pathogenic bacteria cause destructive diseases in many commercially important crops. Among these bacteria, eight pathogens, Ralstonia solanacearum, Xanthomonas oryzae pv. oryzae, X. campestris pv. campestris, Erwinia amylovora, Pantoea stewartii subsp. stewartii, Clavibacter michiganensis subsp. michiganensis, Pseudomonas syringae pv. actinidiae, and Xylella fastidiosa, infect their host plants through different infection sites and paths and eventually colonize the xylem tissues of their host plants, resulting in wilting symptoms by blocking water flow or necrosis of xylem tissues. Noticeably, only a relatively small number of resistant cultivars in major crops against these vascular bacterial pathogens except X. oryzae pv. oryzae have been found or generated so far, although these pathogens threaten productivity of major crops. In this review, we summarize the lifestyles of major xylem-colonizing bacterial pathogens and then discuss the progress of current research on disease resistance controlled by qualitative disease resistance genes or quantitative trait loci against them. Finally, we propose infection processes of xylem-colonizing bacterial pathogens as one of possible reasons for why so few qualitative disease resistance genes against these pathogens have been developed or identified so far in crops.

  9. Antimicrobial susceptibility profiles of gram-negative bacteria causing infections collected across India during 2014-2016: Study for monitoring antimicrobial resistance trend report.

    PubMed

    Veeraraghavan, Balaji; Jesudason, Mark Ranjan; Prakasah, John Antony Jude; Anandan, Shalini; Sahni, Rani Diana; Pragasam, Agila Kumari; Bakthavatchalam, Yamuna Devi; Selvakumar, Rajesh Joseph; Dhole, T N; Rodrigues, Camilla; Roy, Indranil; Joshi, Sangeetha; Chaudhuri, Bhaskar Narayan; Chitnis, D S

    2018-01-01

    The emergence of antibiotic resistance among bacterial pathogens in the hospital and community has increased the concern to the health-care providers due to the limited treatment options. Surveillance of antimicrobial resistance (AMR) in frequently isolated bacterial pathogens causing severe infections is of great importance. The data generated will be useful for the clinicians to decide empiric therapy on the local epidemiological resistance profile of the antimicrobial agents. This study aims to monitor the distribution of bacterial pathogen and their susceptibility pattern to the commonly used antimicrobial agents. This study includes Gram-negative bacilli collected from intra-abdominal, urinary tract and respiratory tract infections during 2014-2016. Isolates were collected from seven hospitals across India. All the study isolates were characterised up to species level, and minimum inhibitory concentration was determined for a wide range of antimicrobials included in the study panel. The test results were interpreted as per standard Clinical Laboratory Standards Institute guidelines. A total of 2731 isolates of gram-negative bacteria were tested during study period. The most frequently isolated pathogens were 44% of Escherichia coli (n = 1205) followed by 25% of Klebsiella pneumoniae (n = 676) and 11% of Pseudomonas aeruginosa (n = 308). Among the antimicrobials tested, carbapenems were the most active, followed by amikacin and piperacillin/tazobactam. The rate of extended-spectrum beta-lactamase (ESBL)-positive isolates were ranged from 66%-77% in E. coli to 61%-72% in K. pneumoniae, respectively. Overall, colistin retains its activity in > 90% of the isolates tested and appear promising. Increasing rates of ESBL producers have been noted, which is alarming. Further, carbapenem resistance was also gradually increasing, which needs much attention. Overall, this study data show that carbapenems, amikacin and colistin continue to be the best agents available to treat drug-resistant infections. Thus continuous monitoring of susceptibility profile of the clinically important Gram-negative pathogens is of great importance to guide effective antimicrobial therapy.

  10. Linking environmental nutrient enrichment and disease emergence in humans and wildlife

    PubMed Central

    Johnson, Pieter T. J.; Townsend, Alan R.; Cleveland, Cory C.; Glibert, Patricia M.; Howarth, Robert W.; McKenzie, Valerie J.; Rejmankova, Eliska; Ward, Mary H.

    2009-01-01

    Worldwide increases in the numbers of human and wildlife diseases present ecologists with the challenge of understanding how large-scale environmental changes affect host-parasite interactions. One of the most profound changes to Earth’s ecosystems is the alteration of global nutrient cycles, including those of phosphorus (P) and especially nitrogen (N). Alongside the obvious direct benefits of nutrient application for food production, growing evidence suggests that anthropogenic inputs of N and P can indirectly affect the abundance of infectious and noninfectious pathogens, sometimes leading to epidemic conditions. However, the mechanisms underpinning observed correlations, and how such patterns vary with disease type, have long remained conjectural. Here, we discuss recent experimental advances in this area to critically evaluate the relationship between environmental nutrient enrichment and disease. Given the inter-related nature of human and wildlife disease emergence, we include a broad range of human and wildlife examples from terrestrial, marine and freshwater ecosystems. We examine the consequences of nutrient pollution on directly transmitted, vector-borne, complex life cycle, and noninfectious pathogens, including West Nile virus, malaria, harmful algal blooms, coral reef diseases and amphibian malformations. Our synthetic examination suggests that the effects of environmental nutrient enrichment on disease are complex and multifaceted, varying with the type of pathogen, host species and condition, attributes of the ecosystem and the degree of enrichment; some pathogens increase in abundance whereas others decline or disappear. Nevertheless, available evidence indicates that ecological changes associated with nutrient enrichment often exacerbate infection and disease caused by generalist parasites with direct or simple life cycles. Observed mechanisms include changes in host/vector density, host distribution, infection resistance, pathogen virulence or toxicity, or the direct supplementation of pathogens. Collectively, these pathogens may be particularly dangerous because they can continue to cause mortality even as their hosts decline, potentially leading to sustained epidemics or chronic pathology. We suggest that interactions between nutrient enrichment and disease will become increasingly important in tropical and subtropical regions, where forecasted increases in nutrient application will occur in an environment rich with infectious pathogens. We emphasize the importance of careful disease management in conjunction with continued intensification of global nutrient cycles. PMID:20349828

  11. Ergot: from witchcraft to biotechnology.

    PubMed

    Haarmann, Thomas; Rolke, Yvonne; Giesbert, Sabine; Tudzynski, Paul

    2009-07-01

    The ergot diseases of grasses, caused by members of the genus Claviceps, have had a severe impact on human history and agriculture, causing devastating epidemics. However, ergot alkaloids, the toxic components of Claviceps sclerotia, have been used intensively (and misused) as pharmaceutical drugs, and efficient biotechnological processes have been developed for their in vitro production. Molecular genetics has provided detailed insight into the genetic basis of ergot alkaloid biosynthesis and opened up perspectives for the design of new alkaloids and the improvement of production strains; it has also revealed the refined infection strategy of this biotrophic pathogen, opening up the way for better control. Nevertheless, Claviceps remains an important pathogen worldwide, and a source for potential new drugs for central nervous system diseases.

  12. Entamoeba histolytica: a snapshot of current research and methods for genetic analysis

    PubMed Central

    Morf, Laura; Singh, Upinder

    2012-01-01

    Entamoeba histolytica represents one of the leading causes of parasitic death worldwide. Although identified as the causative agent of amebiasis since 1875, the molecular mechanisms by which the parasite causes disease are still not fully understood. Studying Entamoeba reveals insights into a eukaryotic cell that differs in many ways from better-studied model organisms. Thus, much can be learned from this protozoan parasite on evolution, cell biology and RNA biology. In this review we discuss selected research highlights in Entamoeba research and focus on the development of molecular biological techniques to study this pathogen. We end by highlighting some of the many questions that remain to be answered in order to fully understand this important human pathogen. PMID:22664276

  13. Infection strategies of enteric pathogenic Escherichia coli

    PubMed Central

    Clements, Abigail; Young, Joanna C.; Constantinou, Nicholas; Frankel, Gad

    2012-01-01

    Enteric Escherichia coli (E. coli) are both natural flora of humans and important pathogens causing significant morbidity and mortality worldwide. Traditionally enteric E. coli have been divided into 6 pathotypes, with further pathotypes often proposed. In this review we suggest expansion of the enteric E. coli into 8 pathotypes to include the emerging pathotypes of adherent invasive E. coli (AIEC) and Shiga-toxin producing enteroaggregative E. coli (STEAEC). The molecular mechanisms that allow enteric E. coli to colonize and cause disease in the human host are examined and for two of the pathotypes that express a type 3 secretion system (T3SS) we discuss the complex interplay between translocated effectors and manipulation of host cell signaling pathways that occurs during infection. PMID:22555463

  14. An Interspecies Comparative Analysis of the Predicted Secretomes of the Necrotrophic Plant Pathogens Sclerotinia sclerotiorum and Botrytis cinerea

    PubMed Central

    2015-01-01

    Phytopathogenic fungi form intimate associations with host plant species and cause disease. To be successful, fungal pathogens communicate with a susceptible host through the secretion of proteinaceous effectors, hydrolytic enzymes and metabolites. Sclerotinia sclerotiorum and Botrytis cinerea are economically important necrotrophic fungal pathogens that cause disease on numerous crop species. Here, a powerful bioinformatics pipeline was used to predict the refined S. sclerotiorum and B. cinerea secretomes, identifying 432 and 499 proteins respectively. Analyses focusing on S. sclerotiorum revealed that 16% of the secretome encoding genes resided in small, sequence heterogeneous, gene clusters that were distributed over 13 of the 16 predicted chromosomes. Functional analyses highlighted the importance of plant cell hydrolysis, oxidation-reduction processes and the redox state to the S. sclerotiorum and B. cinerea secretomes and potentially host infection. Only 8% of the predicted proteins were distinct between the two secretomes. In contrast to S. sclerotiorum, the B. cinerea secretome lacked CFEM- or LysM-containing proteins. The 115 fungal and oomycete genome comparison identified 30 proteins specific to S. sclerotiorum and B. cinerea, plus 11 proteins specific to S. sclerotiorum and 32 proteins specific to B. cinerea. Expressed sequence tag (EST) and proteomic analyses showed that 246 S. sclerotiorum secretome encoding genes had EST support, including 101 which were only expressed in vitro and 49 which were only expressed in planta, whilst 42 predicted proteins were experimentally proven to be secreted. These detailed in silico analyses of two important necrotrophic pathogens will permit informed choices to be made when candidate effector proteins are selected for function analyses in planta. PMID:26107498

  15. Toxicity and aggregation of the polyglutamine disease protein, ataxin-3 is regulated by its binding to VCP/p97 in Drosophila melanogaster.

    PubMed

    Ristic, Gorica; Sutton, Joanna R; Libohova, Kozeta; Todi, Sokol V

    2018-04-26

    Among the nine dominantly inherited, age-dependent neurodegenerative diseases caused by abnormal expansion in the polyglutamine (polyQ) repeat of otherwise unrelated proteins is Spinocerebellar Ataxia Type 3 (SCA3). SCA3 is caused by polyQ expansion in the deubiquitinase (DUB), ataxin-3. Molecular sequelae related to SCA3 remain unclear. Here, we sought to understand the role of protein context in SCA3 by focusing on the interaction between this DUB and Valosin-Containing Protein (VCP). VCP is bound directly by ataxin-3 through an arginine-rich area preceding the polyQ repeat. We examined the importance of this interaction in ataxin-3-dependent degeneration in Drosophila melanogaster. Our assays with new isogenic fly lines expressing pathogenic ataxin-3 with an intact or mutated VCP-binding site show that disrupting the ataxin-3-VCP interaction delays the aggregation of the toxic protein in vivo. Importantly, early on flies that express pathogenic ataxin-3 with a mutated VCP-binding site are indistinguishable from flies that do not express any SCA3 protein. Also, reducing levels of VCP through RNA-interference has a similar, protective effect to mutating the VCP-binding site of pathogenic ataxin-3. Based on in vivo pulse-chases, aggregated species of ataxin-3 are highly stable, in a manner independent of VCP-binding. Collectively, our results highlight an important role for the ataxin-3-VCP interaction in SCA3, based on a model that posits a seeding effect from VCP on pathogenic ataxin-3 aggregation and subsequent toxicity. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Insights into host-finding by Culex mosquitoes: New tools for surveillance?

    USDA-ARS?s Scientific Manuscript database

    Culex mosquitoes are important vectors of pathogens and parasites causing diseases such as West Nile virus, St. Louis encephalitis, Japanese encephalitis, Venezuelan equine encephalitis and bancroftian filariasis. Surveillance of these species is based on traps using conventional mosquito attractan...

  17. Proposal to conserve the name Bipolaris against Cochliobolus (Ascomycota: Pleosporales: Pleosporaceae)

    USDA-ARS?s Scientific Manuscript database

    The fungal genera Bipolaris Shoemaker and Cochliobolus Drechsler have been applied to economically important plant pathogens causing diseases of cereal crops worldwide, especially southern corn leaf blight. There are major accounts of these genera including those incorporating molecular phylogenetic...

  18. Genetic modification of the diarrhoeal pathogen Cryptosporidium parvum.

    PubMed

    Vinayak, Sumiti; Pawlowic, Mattie C; Sateriale, Adam; Brooks, Carrie F; Studstill, Caleb J; Bar-Peled, Yael; Cipriano, Michael J; Striepen, Boris

    2015-07-23

    Recent studies into the global causes of severe diarrhoea in young children have identified the protozoan parasite Cryptosporidium as the second most important diarrhoeal pathogen after rotavirus. Diarrhoeal disease is estimated to be responsible for 10.5% of overall child mortality. Cryptosporidium is also an opportunistic pathogen in the contexts of human immunodeficiency virus (HIV)-caused AIDS and organ transplantation. There is no vaccine and only a single approved drug that provides no benefit for those in gravest danger: malnourished children and immunocompromised patients. Cryptosporidiosis drug and vaccine development is limited by the poor tractability of the parasite, which includes a lack of systems for continuous culture, facile animal models, and molecular genetic tools. Here we describe an experimental framework to genetically modify this important human pathogen. We established and optimized transfection of C. parvum sporozoites in tissue culture. To isolate stable transgenics we developed a mouse model that delivers sporozoites directly into the intestine, a Cryptosporidium clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 system, and in vivo selection for aminoglycoside resistance. We derived reporter parasites suitable for in vitro and in vivo drug screening, and we evaluated the basis of drug susceptibility by gene knockout. We anticipate that the ability to genetically engineer this parasite will be transformative for Cryptosporidium research. Genetic reporters will provide quantitative correlates for disease, cure and protection, and the role of parasite genes in these processes is now open to rigorous investigation.

  19. Co-occurrence and hybridization of anther-smut pathogens specialized on Dianthus hosts.

    PubMed

    Petit, Elsa; Silver, Casey; Cornille, Amandine; Gladieux, Pierre; Rosenthal, Lisa; Bruns, Emily; Yee, Sarah; Antonovics, Janis; Giraud, Tatiana; Hood, Michael E

    2017-04-01

    Host specialization has important consequences for the diversification and ecological interactions of obligate pathogens. The anther-smut disease of natural plant populations, caused by Microbotryum fungi, has been characterized by specialized host-pathogen interactions, which contribute in part to the isolation among these numerous fungal species. This study investigated the molecular variation of Microbotryum pathogens within the geographic and host-specific distributions on wild Dianthus species in southern European Alps. In contrast to prior studies on this pathogen genus, a range of overlapping host specificities was observed for four delineated Microbotryum lineages on Dianthus hosts, and their frequent co-occurrence within single-host populations was quantified at local and regional scales. In addition to potential consequences for direct pathogen competition, the sympatry of Microbotryum lineages led to hybridization between them in many populations, and these admixed genotypes suffered significant meiotic sterility. Therefore, this investigation of the anther-smut fungi reveals how variation in the degrees of host specificity can have major implications for ecological interactions and genetic integrity of differentiated pathogen lineages. © 2017 John Wiley & Sons Ltd.

  20. Occurrence of Virulence Genes Associated with Diarrheagenic Escherichia coli Isolated from Raw Cow’s Milk from Two Commercial Dairy Farms in the Eastern Cape Province, South Africa

    PubMed Central

    Caine, Lesley-Anne; Nwodo, Uchechukwu U.; Okoh, Anthony I.; Ndip, Roland N.; Green, Ezekiel

    2014-01-01

    Escherichia coli remains a public health concern worldwide as an organism that causes diarrhea and its reservoir in raw milk may play an important role in the survival and transport of pathogenic strains. Diarrheagenic E. coli strains are diverse food-borne pathogens and causes diarrhea with varying virulence in humans. We investigated the prevalence of pathogenic E. coli in raw milk from two commercial dairy farms. Four hundred raw milk samples, 200 from each dairy farm, were screened for the presence of fliCH7, eagR, ial, eagg, lt, and papC genes. In dairy farm A, 100 E. coli were identified based on culture, oxidase and Gram staining, while 88 isolates from dairy farm B were identified in the same manner. Gene detection showed fliCH7 27 (54%) to be the highest gene detected from farm A and lt 2 (4%) to be the lowest. The highest gene detected in dairy farm B was fliCH7 16 (43.2%) and papC 1 (2.7%) was the least. The amplification of pathogenic genes associated with diarrheagenic E. coli from cows’ raw milk demonstrates that potentially virulent E. coli strains are widely distributed in raw milk and may be a cause of concern for human health. PMID:25411727

  1. Neoehrlichiosis: an emerging tick-borne zoonosis caused by Candidatus Neoehrlichia mikurensis.

    PubMed

    Silaghi, Cornelia; Beck, Relja; Oteo, José A; Pfeffer, Martin; Sprong, Hein

    2016-03-01

    Candidatus Neoehrlichia mikurensis is an emerging tick-borne pathogen causing a systemic inflammatory syndrome mostly in persons with underlying hematologic or autoimmune diseases. As it is neither well-known nor well-recognized, it might be misdiagnosed as recurrence of the underlying disease or as an unrelated arteriosclerotic vascular event. The pathogen is transmitted by hard ticks of the genus Ixodes and is closely associated with rodents in which transplacental transmission occurs. Transovarial transmission in ticks has not yet been shown. Infection rates vary greatly in ticks and rodents, but the causes for its spatiotemporal variations are largely unknown. This review summarizes the current state of knowledge on the geographical distribution and clinical importance of Ca. N. mikurensis. By elucidating the life history traits of this pathogen and determining more accurately its incidence in the human population, a better assessment of its public health relevance can be made. Most urgent research needs are the in vitro-cultivation of the pathogen, the development of specific serological tests, the determination of the full genomic sequence, the routine implementation of molecular diagnosis in diseased patients with a particular panel of underlying diseases, and promoting the knowledge about neoehrlichiosis among general practitioners, hospital physicians and the risk groups such as forest workers or immune-compromised people to raise awareness about this disease that can easily be treated when correctly diagnosed.

  2. The enemy within: phloem-limited pathogens

    USDA-ARS?s Scientific Manuscript database

    The growing impact of phloem-limited pathogens on high-value crops has led to a renewed interest in understanding how they cause disease. Although these pathogens cause substantial crop losses, many are poorly characterized. In this review, we present examples of phloem-limited pathogens that includ...

  3. Grapevine Pathogenic Microorganisms: Understanding Infection Strategies and Host Response Scenarios

    PubMed Central

    Armijo, Grace; Schlechter, Rudolf; Agurto, Mario; Muñoz, Daniela; Nuñez, Constanza; Arce-Johnson, Patricio

    2016-01-01

    Grapevine (Vitis vinifera L.) is one of the most important fruit crop worldwide. Commercial cultivars are greatly affected by a large number of pathogenic microorganisms that cause diseases during pre- and/or post-harvest periods, affecting production, processing and export, along with fruit quality. Among the potential threats, we can find bacteria, fungi, oomycete, or viruses with different life cycles, infection mechanisms and evasion strategies. While plant–pathogen interactions are cycles of resistance and susceptibility, resistance traits from natural resources are selected and may be used for breeding purposes and for a sustainable agriculture. In this context, here we summarize some of the most important diseases affecting V. vinifera together with their causal agents. The aim of this work is to bring a comprehensive review of the infection strategies deployed by significant types of pathogens while understanding the host response in both resistance and susceptibility scenarios. New approaches being used to uncover grapevine status during biotic stresses and scientific-based procedures needed to control plant diseases and crop protection are also addressed. PMID:27066032

  4. Profiling a killer, the development of Cryptococcus neoformans

    PubMed Central

    Kozubowski, Lukasz; Heitman, Joseph

    2012-01-01

    The ability of fungi to transition between unicellular and multicellular growth has a profound impact on our health and the economy. Many important fungal pathogens of humans, animals, and plants are dimorphic, and the ability to switch between morphological states has been associated with their virulence. Cryptococcus neoformans is a human fungal pathogen that causes life-threatening meningoencephalitis in immunocompromised and, in some cases, immunocompetent hosts. Cryptococcus neoformans grows vegetatively as a budding yeast and switches to hyphal growth during the sexual cycle, which is important in the study of cryptococcal pathogenicity because spores resulting from sexual development are infectious propagules and can colonize the lungs of a host. In addition, sexual reproduction contributes to the genotypic variability of Cryptococcus species, which may lead to increased fitness and virulence. Despite significant advances in our understanding of the mechanisms behind the development of C. neoformans, our knowledge is still incomplete. Recent studies have led to the emergence of many intriguing questions and hypotheses. In this review, we describe and discuss the most interesting aspects of C. neoformans development and address their impact on pathogenicity. PMID:21658085

  5. Horse species symposium: a novel approach to monitoring pathogen progression during uterine and placental infection in the mare using bioluminescence imaging technology and lux-modified bacteria.

    PubMed

    Ryan, P L; Christiansen, D L; Hopper, R M; Walters, F K; Moulton, K; Curbelo, J; Greene, J M; Willard, S T

    2011-05-01

    Uterine and placental infections are the leading cause of abortion, stillbirth, and preterm delivery in the mare. Whereas uterine and placental infections in women have been studied extensively, a comprehensive examination of the pathogenic processes leading to this unsatisfactory pregnancy outcome in the mare has yet to be completed. Most information in the literature relating to late-term pregnancy loss in mares is based on retrospective studies of clinical cases submitted for necropsy. Here we report the development and application of a novel approach, whereby transgenically modified bacteria transformed with lux genes of Xenorhabdus luminescens or Photorhabdus luminescens origin and biophotonic imaging are utilized to better understand pathogen-induced preterm birth in late-term pregnant mares. This technology uses highly sensitive bioluminescence imaging camera systems to localize and monitor pathogen progression during tissue invasion by measuring the bioluminescent signatures emitted by the lux-modified pathogens. This method has an important advantage in that it allows for the potential tracking of pathogens in vivo in real time and over time, which was hitherto impossible. Although the application of this technology in domestic animals is in its infancy, investigators were successful in identifying the fetal lungs, sinuses, nares, urinary, and gastrointestinal systems as primary tissues for pathogen invasion after experimental infection of pregnant mares with lux-modified Escherichia coli. It is important that pathogens were not detected in other vital organs, such as the liver, brain, and cardiac system. Such precision in localizing sites of pathogen invasion provides potential application for this novel approach in the development of more targeted therapeutic interventions for pathogen-related diseases in the equine and other domestic species.

  6. Use of molecular markers to compare Fusarium verticillioides pathogenic strains isolated from plants and humans.

    PubMed

    Chang, S C; Macêdo, D P C; Souza-Motta, C M; Oliveira, N T

    2013-08-12

    Fusarium verticillioides is a pathogen of agriculturally important crops, especially maize. It is considered one of the most important pathogens responsible for fumonisin contamination of food products, which causes severe, chronic, and acute intoxication in humans and animals. Moreover, it is recognized as a cause of localized infections in immunocompetent patients and disseminated infections among severely immunosuppressed patients. Several molecular tools have been used to analyze the intraspecific variability of fungi. The objective of this study was to use molecular markers to compare pathogenic isolates of F. verticillioides and isolates of the same species obtained from clinical samples of patients with Fusarium mycoses. The molecular markers that we used were inter-simple sequence repeat markers (primers GTG5 and GACA4), intron splice site primer (primer EI1), random amplified polymorphic DNA marker (primer OPW-6), and restriction fragment length polymorphism-internal transcribed spacer (ITS) from rDNA. From the data obtained, clusters were generated based on the UPGMA clustering method. The amplification products obtained using primers ITS4 and ITS5 and loci ITS1-5.8-ITS2 of the rDNA yielded fragments of approximately 600 bp for all the isolates. Digestion of the ITS region fragment using restriction enzymes such as EcoRI, DraI, BshI, AluI, HaeIII, HinfI, MspI, and PstI did not permit differentiation among pathogenic and clinical isolates. The inter-simple sequence repeat, intron splice site primer, and random amplified polymorphic DNA markers presented high genetic homogeneity among clinical isolates in contrast to the high variability found among the phytopathogenic isolates of F. verticillioides.

  7. Antimicrobial Mechanisms of Macrophages and the Immune Evasion Strategies of Staphylococcus aureus

    PubMed Central

    Flannagan, Ronald S.; Heit, Bryan; Heinrichs, David E.

    2015-01-01

    Habitually professional phagocytes, including macrophages, eradicate microbial invaders from the human body without overt signs of infection. Despite this, there exist select bacteria that are professional pathogens, causing significant morbidity and mortality across the globe and Staphylococcus aureus is no exception. S. aureus is a highly successful pathogen that can infect virtually every tissue that comprises the human body causing a broad spectrum of diseases. The profound pathogenic capacity of S. aureus can be attributed, in part, to its ability to elaborate a profusion of bacterial effectors that circumvent host immunity. Macrophages are important professional phagocytes that contribute to both the innate and adaptive immune response, however from in vitro and in vivo studies, it is evident that they fail to eradicate S. aureus. This review provides an overview of the antimicrobial mechanisms employed by macrophages to combat bacteria and describes the immune evasion strategies and some representative effectors that enable S. aureus to evade macrophage-mediated killing. PMID:26633519

  8. Swine dysentery: aetiology, pathogenicity, determinants of transmission and the fight against the disease.

    PubMed

    Alvarez-Ordóñez, Avelino; Martínez-Lobo, Francisco Javier; Arguello, Héctor; Carvajal, Ana; Rubio, Pedro

    2013-05-10

    Swine Dysentery (SD) is a severe mucohaemorhagic enteric disease of pigs caused by Brachyspira hyodysenteriae, which has a large impact on pig production and causes important losses due to mortality and sub-optimal performance. Although B. hyodysenteriae has been traditionally considered a pathogen mainly transmitted by direct contact, through the introduction of subclinically infected animals into a previously uninfected herd, recent findings position B. hyodysenteriae as a potential threat for indirect transmission between farms. This article summarizes the knowledge available on the etiological agent of SD and its virulence traits, and reviews the determinants of SD transmission. The between-herds and within-herd transmission routes are addressed. The factors affecting disease transmission are thoroughly discussed, i.e., environmental survival of the pathogen, husbandry factors (production system, production stage, farm management), role of vectors, diet influence and interaction of the microorganism with gut microbiota. Finally, prophylactic and therapeutic approaches to fight against the disease are briefly described.

  9. Group A Streptococcus produce pilus-like structures containing protective antigens and Lancefield T antigens.

    PubMed

    Mora, Marirosa; Bensi, Giuliano; Capo, Sabrina; Falugi, Fabiana; Zingaretti, Chiara; Manetti, Andrea G O; Maggi, Tiziana; Taddei, Anna Rita; Grandi, Guido; Telford, John L

    2005-10-25

    Although pili have long been recognized in Gram-negative pathogens as important virulence factors involved in adhesion and invasion, very little is known about extended surface organelles in Gram-positive pathogens. Here we report that Group A Streptococcus (GAS), a Gram-positive human-specific pathogen that causes pharyngitis, impetigo, invasive disease, necrotizing fasciitis, and autoimmune sequelae has long, surface-exposed, pilus-like structures composed of members of a family of extracellular matrix-binding proteins. We describe four variant pili and show that each is recognized by a specific serum of the Lancefield T-typing system, which has been used for over five decades to characterize GAS isolates. Furthermore, we show that immunization of mice with a combination of recombinant pilus proteins confers protection against mucosal challenge with virulent GAS bacteria. The data indicate that induction of a protective immune response against these structures may be a useful strategy for development of a vaccine against disease caused by GAS infection.

  10. Fleas as parasites of the family Canidae

    PubMed Central

    2011-01-01

    Historically, flea-borne diseases are among the most important medical diseases of humans. Plague and murine typhus are known for centuries while the last years brought some new flea-transmitted pathogens, like R. felis and Bartonella henselae. Dogs may play an essential or an accidental role in the natural transmission cycle of flea-borne pathogens. They support the growth of some of the pathogens or they serve as transport vehicles for infected fleas between their natural reservoirs and humans. More than 15 different flea species have been described in domestic dogs thus far. Several other species have been found to be associated with wild canids. Fleas found on dogs originate from rodents, birds, insectivores and from other Carnivora. Dogs therefore may serve as ideal bridging hosts for the introduction of flea-borne diseases from nature to home. In addition to their role as ectoparasites they cause nuisance for humans and animals and may be the cause for severe allergic reactions. PMID:21767354

  11. Swine Dysentery: Aetiology, Pathogenicity, Determinants of Transmission and the Fight against the Disease

    PubMed Central

    Alvarez-Ordóñez, Avelino; Martínez-Lobo, Francisco Javier; Arguello, Héctor; Carvajal, Ana; Rubio, Pedro

    2013-01-01

    Swine Dysentery (SD) is a severe mucohaemorhagic enteric disease of pigs caused by Brachyspira hyodysenteriae, which has a large impact on pig production and causes important losses due to mortality and sub-optimal performance. Although B. hyodysenteriae has been traditionally considered a pathogen mainly transmitted by direct contact, through the introduction of subclinically infected animals into a previously uninfected herd, recent findings position B. hyodysenteriae as a potential threat for indirect transmission between farms. This article summarizes the knowledge available on the etiological agent of SD and its virulence traits, and reviews the determinants of SD transmission. The between-herds and within-herd transmission routes are addressed. The factors affecting disease transmission are thoroughly discussed, i.e., environmental survival of the pathogen, husbandry factors (production system, production stage, farm management), role of vectors, diet influence and interaction of the microorganism with gut microbiota. Finally, prophylactic and therapeutic approaches to fight against the disease are briefly described. PMID:23665849

  12. Pine wood nematode, Bursaphelenchus xylophilus.

    PubMed

    Futai, Kazuyoshi

    2013-01-01

    After devastating vast areas of pine forests in Asian countries, the pine wilt disease spread into European forests in 1999 and is causing worldwide concern. This disease involves very complicated interactions between a pathogenic nematode, its vector beetle, host pine species, and fungi in dead hosts. Pathogenicity of the pine wood nematode is determined not only by its physical and chemical traits but also by its behavioral traits. Most life history traits of the pine wood nematode, such as its phoretic relationship with vector beetles, seem to be more effective in virulent than in avirulent isolates or species. As the pathogenicity determinants, secreted enzymes, and surface coat proteins are very important, they have therefore been studied intensively. The mechanism of quick death of a large pine tree as a result of infection by a tiny nematode could be ascribed to the dysfunction of the water-conducting system caused by the death of parenchyma cells, which must have originally evolved as an inherent resistant system.

  13. Emergence and Adaptation of a Novel Highly Pathogenic H7N9 Influenza Virus in Birds and Humans from a 2013 Human-Infecting Low-Pathogenic Ancestor.

    PubMed

    Qi, Wenbao; Jia, Weixin; Liu, Di; Li, Jing; Bi, Yuhai; Xie, Shumin; Li, Bo; Hu, Tao; Du, Yingying; Xing, Li; Zhang, Jiahao; Zhang, Fuchun; Wei, Xiaoman; Eden, John-Sebastian; Li, Huanan; Tian, Huaiyu; Li, Wei; Su, Guanming; Lao, Guangjie; Xu, Chenggang; Xu, Bing; Liu, Wenjun; Zhang, Guihong; Ren, Tao; Holmes, Edward C; Cui, Jie; Shi, Weifeng; Gao, George F; Liao, Ming

    2018-01-15

    Since its emergence in 2013, the H7N9 low-pathogenic avian influenza virus (LPAIV) has been circulating in domestic poultry in China, causing five waves of human infections. A novel H7N9 highly pathogenic avian influenza virus (HPAIV) variant possessing multiple basic amino acids at the cleavage site of the hemagglutinin (HA) protein was first reported in two cases of human infection in January 2017. More seriously, those novel H7N9 HPAIV variants have been transmitted and caused outbreaks on poultry farms in eight provinces in China. Herein, we demonstrate the presence of three different amino acid motifs at the cleavage sites of these HPAIV variants which were isolated from chickens and humans and likely evolved from the preexisting LPAIVs. Animal experiments showed that these novel H7N9 HPAIV variants are both highly pathogenic in chickens and lethal to mice. Notably, human-origin viruses were more pathogenic in mice than avian viruses, and the mutations in the PB2 gene associated with adaptation to mammals (E627K, A588V, and D701N) were identified by next-generation sequencing (NGS) and Sanger sequencing of the isolates from infected mice. No polymorphisms in the key amino acid substitutions of PB2 and HA in isolates from infected chicken lungs were detected by NGS. In sum, these results highlight the high degree of pathogenicity and the valid transmissibility of this new H7N9 variant in chickens and the quick adaptation of this new H7N9 variant to mammals, so the risk should be evaluated and more attention should be paid to this variant. IMPORTANCE Due to the recent increased numbers of zoonotic infections in poultry and persistent human infections in China, influenza A(H7N9) virus has remained a public health threat. Most of the influenza A(H7N9) viruses reported previously have been of low pathogenicity. Now, these novel H7N9 HPAIV variants have caused human infections in three provinces and outbreaks on poultry farms in eight provinces in China. We analyzed the molecular features and compared the relative characteristics of one H7N9 LPAIV and two H7N9 HPAIVs isolated from chickens and two human-origin H7N9 HPAIVs in chicken and mouse models. We found that all HPAIVs both are highly pathogenic and have valid transmissibility in chickens. Strikingly, the human-origin viruses were more highly pathogenic than the avian-origin viruses in mice, and dynamic mutations were confirmed by NGS and Sanger sequencing. Our findings offer important insight into the origin, adaptation, pathogenicity, and transmissibility of these viruses to both poultry and mammals. Copyright © 2018 American Society for Microbiology.

  14. Novel Antigens for enterotoxigenic Escherichia coli (ETEC) Vaccines

    PubMed Central

    Fleckenstein, James M.; Sheikh, Alaullah; Qadri, Firdausi

    2014-01-01

    Enterotoxigenic Escherichia coli (ETEC) are the most common bacterial pathogens-causing diarrhea in developing countries where they cause hundreds of thousands of deaths, mostly in children. These organisms are leading cause of diarrheal illness in travelers to endemic countries. ETEC pathogenesis, and consequently vaccine approaches, have largely focused on plasmid-encoded enterotoxins or fimbrial colonization factors. To date these approaches have not yielded a broadly protective vaccine. However, recent studies suggest that ETEC pathogenesis is more complex than previously appreciated and involves additional plasmid and chromosomally-encoded virulence molecules that can be targeted in vaccines. Here, we review recent novel antigen discovery efforts, potential contribution of these proteins to the molecular pathogenesis of ETEC and protective immunity, and the potential implications for development of next generation vaccines for important pathogens. These proteins may help to improve the effectiveness of future vaccines by making simpler and possibly broadly protective because of their conserved nature. PMID:24702311

  15. Genomic Tools and Animal Health.

    PubMed

    Zanella, Ricardo

    2016-09-07

    Animals have been selected to improve their productivity in order to increase the profitability to the producer. In this scenario, not much attention was given to health traits. As a consequence of that, selection was made for animals with higher production and a shortened productive life. In addition to that, the intense production system used in livestock has forced animals to be exposed to higher pathogen loads, therefore predisposing them to infections. Infectious diseases are known to be caused by micro-organisms that are able to infect and colonize the host, affecting their physiological functions and causing problems in their production and on animal welfare. Even with the best management practices, diseases are still the most important cause of economic losses in the animal industry. In this review article we have addressed the new tools that could be used to select animals to better cope with diseases and pathogens.

  16. Biology of Acinetobacter baumannii: Pathogenesis, Antibiotic Resistance Mechanisms, and Prospective Treatment Options

    PubMed Central

    Lee, Chang-Ro; Lee, Jung Hun; Park, Moonhee; Park, Kwang Seung; Bae, Il Kwon; Kim, Young Bae; Cha, Chang-Jun; Jeong, Byeong Chul; Lee, Sang Hee

    2017-01-01

    Acinetobacter baumannii is undoubtedly one of the most successful pathogens responsible for hospital-acquired nosocomial infections in the modern healthcare system. Due to the prevalence of infections and outbreaks caused by multi-drug resistant A. baumannii, few antibiotics are effective for treating infections caused by this pathogen. To overcome this problem, knowledge of the pathogenesis and antibiotic resistance mechanisms of A. baumannii is important. In this review, we summarize current studies on the virulence factors that contribute to A. baumannii pathogenesis, including porins, capsular polysaccharides, lipopolysaccharides, phospholipases, outer membrane vesicles, metal acquisition systems, and protein secretion systems. Mechanisms of antibiotic resistance of this organism, including acquirement of β-lactamases, up-regulation of multidrug efflux pumps, modification of aminoglycosides, permeability defects, and alteration of target sites, are also discussed. Lastly, novel prospective treatment options for infections caused by multi-drug resistant A. baumannii are summarized. PMID:28348979

  17. Coagulase-negative staphylococci as reservoirs of genes facilitating MRSA infection

    PubMed Central

    Otto, Michael

    2013-01-01

    Recent research has suggested that Staphylococcus epidermidis is a reservoir of genes that, after horizontal transfer, facilitate the potential of Staphylococcus aureus to colonize, survive during infection, or resist antibiotic treatment, traits that are notably manifest in methicillin-resistant S. aureus (MRSA). S. aureus is a dangerous human pathogen and notorious for acquiring antibiotic resistance. MRSA in particular is one of the most frequent causes of morbidity and death in hospitalized patients. S. aureus is an extremely versatile pathogen with a multitude of mechanisms to cause disease and circumvent immune defenses. In contrast, most other staphylococci, such as S. epidermidis, are commonly benign commensals and only occasionally cause disease. Recent findings highlight the key importance of efforts to better understand how genes of staphylococci other than S. aureus contribute to survival in the human host, how they are transferred to S. aureus, and why this exchange appears to be uni-directional. PMID:23165978

  18. Serotype O18 avian pathogenic and neonatal meningitis Escherichia coli strains employ similar pathogenic strategies for the onset of meningitis.

    PubMed

    Krishnan, Subramanian; Chang, Alexander C; Hodges, Jacqueline; Couraud, Pierre-Olivier; Romero, Ignacio A; Weksler, Babette; Nicholson, Bryon A; Nolan, Lisa K; Prasadarao, Nemani V

    2015-01-01

    Neonatal meningitis Escherichia coli K1 (NMEC) are thought to be transmitted from mothers to newborns during delivery or by nosocomial infections. However, the source of E. coli K1 causing these infections is not clear. Avian pathogenic E. coli (APEC) have the potential to cause infection in humans while human E. coli have potential to cause colibacillosis in poultry, suggesting that these strains may lack host specificity. APEC strains are capable of causing meningitis in newborn rats; however, it is unclear whether these bacteria use similar mechanisms to that of NMEC to establish disease. Using four representative APEC and NMEC strains that belong to serotype O18, we demonstrate that these strains survive in human serum similar to that of the prototypic NMEC strain E44, a derivative of RS218. These bacteria also bind and enter both macrophages and human cerebral microvascular endothelial cells (HCMEC/D3) with similar frequency as that of E44. The amino acid sequences of the outer membrane protein A (OmpA), an important virulence factor in the pathogenesis of meningitis, are identical within these representative APEC and NMEC strains. Further, these strains also require FcγRI-α chain (CD64) and Ecgp96 as receptors for OmpA in macrophages and HCMEC/D3, respectively, to bind and enter these cells. APEC and NMEC strains induce meningitis in newborn mice with varying degree of pathology in the brains as assessed by neutrophil recruitment and neuronal apoptosis. Together, these results suggest that serotype O18 APEC strains utilize similar pathogenic mechanisms as those of NMEC strains in causing meningitis.

  19. Approaches for Reverse Line Blot-Based Detection of Microbial Pathogens in Ixodes ricinus Ticks Collected in Austria and Impact of the Chosen Method.

    PubMed

    Schötta, Anna-Margarita; Wijnveld, Michiel; Stockinger, Hannes; Stanek, Gerold

    2017-07-01

    Ticks transmit a large number of pathogens capable of causing human disease. In this study, the PCR-reverse line blot (RLB) method was used to screen for pathogens in a total of 554 Ixodes ricinus ticks collected from all provinces of Austria. These pathogens belong to the genera Borrelia , Rickettsiae , Anaplasma / Ehrlichia (including " Candidatus Neoehrlichia"), Babesia , and Coxiella The pathogens with the highest detected prevalence were spirochetes of the Borrelia burgdorferi sensu lato complex, in 142 ticks (25.6%). Borrelia afzelii (80/142) was the most frequently detected species, followed by Borrelia burgdorferi sensu stricto (38/142) and Borrelia valaisiana (36/142). Borrelia garinii/Borrelia bavariensis , Borrelia lusitaniae , and Borrelia spielmanii were found in 28 ticks, 5 ticks, and 1 tick, respectively. Rickettsia spp. were detected in 93 ticks (16.8%): R. helvetica (39/93), R. raoultii (38/93), R. monacensis (2/93), and R. slovaca (1/93). Thirteen Rickettsia samples remain uncharacterized. " Candidatus Neoehrlichia mikurensis," Babesia spp. ( B. venatorum , B. divergens , B. microti ), and Anaplasma phagocytophilum were found in 4.5%, 2.7%, and 0.7%, respectively. Coxiella burnetii was not detected. Multiple microorganisms were detected in 40 ticks (7.2%), and the cooccurrence of Babesia spp. and " Candidatus Neoehrlichia mikurensis" showed a significant positive correlation. We also compared different PCR-RLBs for detection of Borrelia burgdorferi sensu lato and Rickettsia spp. and showed that different detection approaches provide highly diverse results, indicating that analysis of environmental samples remains challenging. IMPORTANCE This study determined the wide spectrum of tick-borne bacterial and protozoal pathogens that can be encountered in Austria. Surveillance of (putative) pathogenic microorganisms occurring in the environment is of medical importance, especially when those agents can be transmitted by ticks and cause disease. The observation of significant coinfections of certain microorganisms in field-collected ticks is an initial step to an improved understanding of microbial interactions in ticks. In addition, we show that variations in molecular detection methods, such as in primer pairs and target genes, can considerably influence the final results. For instance, detection of certain genospecies of borreliae may be better or worse by one method or the other, a fact of great importance for future screening studies. Copyright © 2017 American Society for Microbiology.

  20. Approaches for Reverse Line Blot-Based Detection of Microbial Pathogens in Ixodes ricinus Ticks Collected in Austria and Impact of the Chosen Method

    PubMed Central

    Wijnveld, Michiel; Stockinger, Hannes; Stanek, Gerold

    2017-01-01

    ABSTRACT Ticks transmit a large number of pathogens capable of causing human disease. In this study, the PCR-reverse line blot (RLB) method was used to screen for pathogens in a total of 554 Ixodes ricinus ticks collected from all provinces of Austria. These pathogens belong to the genera Borrelia, Rickettsiae, Anaplasma/Ehrlichia (including “Candidatus Neoehrlichia”), Babesia, and Coxiella. The pathogens with the highest detected prevalence were spirochetes of the Borrelia burgdorferi sensu lato complex, in 142 ticks (25.6%). Borrelia afzelii (80/142) was the most frequently detected species, followed by Borrelia burgdorferi sensu stricto (38/142) and Borrelia valaisiana (36/142). Borrelia garinii/Borrelia bavariensis, Borrelia lusitaniae, and Borrelia spielmanii were found in 28 ticks, 5 ticks, and 1 tick, respectively. Rickettsia spp. were detected in 93 ticks (16.8%): R. helvetica (39/93), R. raoultii (38/93), R. monacensis (2/93), and R. slovaca (1/93). Thirteen Rickettsia samples remain uncharacterized. “Candidatus Neoehrlichia mikurensis,” Babesia spp. (B. venatorum, B. divergens, B. microti), and Anaplasma phagocytophilum were found in 4.5%, 2.7%, and 0.7%, respectively. Coxiella burnetii was not detected. Multiple microorganisms were detected in 40 ticks (7.2%), and the cooccurrence of Babesia spp. and “Candidatus Neoehrlichia mikurensis” showed a significant positive correlation. We also compared different PCR-RLBs for detection of Borrelia burgdorferi sensu lato and Rickettsia spp. and showed that different detection approaches provide highly diverse results, indicating that analysis of environmental samples remains challenging. IMPORTANCE This study determined the wide spectrum of tick-borne bacterial and protozoal pathogens that can be encountered in Austria. Surveillance of (putative) pathogenic microorganisms occurring in the environment is of medical importance, especially when those agents can be transmitted by ticks and cause disease. The observation of significant coinfections of certain microorganisms in field-collected ticks is an initial step to an improved understanding of microbial interactions in ticks. In addition, we show that variations in molecular detection methods, such as in primer pairs and target genes, can considerably influence the final results. For instance, detection of certain genospecies of borreliae may be better or worse by one method or the other, a fact of great importance for future screening studies. PMID:28455331

  1. A genomic approach to the understanding of Xylella fastidiosa pathogenicity.

    PubMed

    Lambais, M R; Goldman, M H; Camargo, L E; Goldman, G H

    2000-10-01

    Xylella fastidiosa is a fastidious, xylem-limited bacterium that causes several economically important plant diseases, including citrus variegated chlorosis (CVC). X. fastidiosa is the first plant pathogen to have its genome completely sequenced. In addition, it is probably the least previously studied of any organism for which the complete genome sequence is available. Several pathogenicity-related genes have been identified in the X. fastidiosa genome by similarity with other bacterial genes involved in pathogenesis in plants, as well as in animals. The X. fastidiosa genome encodes different classes of proteins directly or indirectly involved in cell-cell interactions, degradation of plant cell walls, iron homeostasis, anti-oxidant responses, synthesis of toxins, and regulation of pathogenicity. Neither genes encoding members of the type III protein secretion system nor avirulence-like genes have been identified in X. fastidiosa.

  2. Evaluation of Escherichia coli isolates from healthy chickens to determine their potential risk to poultry and human health.

    PubMed

    Stromberg, Zachary R; Johnson, James R; Fairbrother, John M; Kilbourne, Jacquelyn; Van Goor, Angelica; Curtiss, Roy; Mellata, Melha

    2017-01-01

    Extraintestinal pathogenic Escherichia coli (ExPEC) strains are important pathogens that cause diverse diseases in humans and poultry. Some E. coli isolates from chicken feces contain ExPEC-associated virulence genes, so appear potentially pathogenic; they conceivably could be transmitted to humans through handling and/or consumption of contaminated meat. However, the actual extraintestinal virulence potential of chicken-source fecal E. coli is poorly understood. Here, we assessed whether fecal E. coli isolates from healthy production chickens could cause diseases in a chicken model of avian colibacillosis and three rodent models of ExPEC-associated human infections. From 304 E. coli isolates from chicken fecal samples, 175 E. coli isolates were screened by PCR for virulence genes associated with human-source ExPEC or avian pathogenic E. coli (APEC), an ExPEC subset that causes extraintestinal infections in poultry. Selected isolates genetically identified as ExPEC and non-ExPEC isolates were assessed in vitro for virulence-associated phenotypes, and in vivo for disease-causing ability in animal models of colibacillosis, sepsis, meningitis, and urinary tract infection. Among the study isolates, 13% (40/304) were identified as ExPEC; the majority of these were classified as APEC and uropathogenic E. coli, but none as neonatal meningitis E. coli. Multiple chicken-source fecal ExPEC isolates resembled avian and human clinical ExPEC isolates in causing one or more ExPEC-associated illnesses in experimental animal infection models. Additionally, some isolates that were classified as non-ExPEC were able to cause ExPEC-associated illnesses in animal models, and thus future studies are needed to elucidate their mechanisms of virulence. These findings show that E. coli isolates from chicken feces contain ExPEC-associated genes, exhibit ExPEC-associated in vitro phenotypes, and can cause ExPEC-associated infections in animal models, and thus may pose a health threat to poultry and consumers.

  3. Evaluation of Escherichia coli isolates from healthy chickens to determine their potential risk to poultry and human health

    PubMed Central

    Johnson, James R.; Fairbrother, John M.; Kilbourne, Jacquelyn; Van Goor, Angelica; Curtiss, Roy; Mellata, Melha

    2017-01-01

    Extraintestinal pathogenic Escherichia coli (ExPEC) strains are important pathogens that cause diverse diseases in humans and poultry. Some E. coli isolates from chicken feces contain ExPEC-associated virulence genes, so appear potentially pathogenic; they conceivably could be transmitted to humans through handling and/or consumption of contaminated meat. However, the actual extraintestinal virulence potential of chicken-source fecal E. coli is poorly understood. Here, we assessed whether fecal E. coli isolates from healthy production chickens could cause diseases in a chicken model of avian colibacillosis and three rodent models of ExPEC-associated human infections. From 304 E. coli isolates from chicken fecal samples, 175 E. coli isolates were screened by PCR for virulence genes associated with human-source ExPEC or avian pathogenic E. coli (APEC), an ExPEC subset that causes extraintestinal infections in poultry. Selected isolates genetically identified as ExPEC and non-ExPEC isolates were assessed in vitro for virulence-associated phenotypes, and in vivo for disease-causing ability in animal models of colibacillosis, sepsis, meningitis, and urinary tract infection. Among the study isolates, 13% (40/304) were identified as ExPEC; the majority of these were classified as APEC and uropathogenic E. coli, but none as neonatal meningitis E. coli. Multiple chicken-source fecal ExPEC isolates resembled avian and human clinical ExPEC isolates in causing one or more ExPEC-associated illnesses in experimental animal infection models. Additionally, some isolates that were classified as non-ExPEC were able to cause ExPEC-associated illnesses in animal models, and thus future studies are needed to elucidate their mechanisms of virulence. These findings show that E. coli isolates from chicken feces contain ExPEC-associated genes, exhibit ExPEC-associated in vitro phenotypes, and can cause ExPEC-associated infections in animal models, and thus may pose a health threat to poultry and consumers. PMID:28671990

  4. Recommendations for control of pathogens and infectious diseases in fish research facilities☆

    PubMed Central

    Kent, Michael L.; Feist, Stephen W.; Harper, Claudia; Hoogstraten-Miller, Shelley; Mac Law, J.; Sánchez-Morgado, José M.; Tanguay, Robert L.; Sanders, George E.; Spitsbergen, Jan M.; Whipps, Christopher M.

    2012-01-01

    Concerns about infectious diseases in fish used for research have risen along with the dramatic increase in the use of fish as models in biomedical research. In addition to acute diseases causing severe morbidity and mortality, underlying chronic conditions that cause low-grade or subclinical infections may confound research results. Here we present recommendations and strategies to avoid or minimize the impacts of infectious agents in fishes maintained in the research setting. There are distinct differences in strategies for control of pathogens in fish used for research compared to fishes reared as pets or in aquaculture. Also, much can be learned from strategies and protocols for control of diseases in rodents used in research, but there are differences. This is due, in part, the unique aquatic environment that is modified by the source and quality of the water provided and the design of facilities. The process of control of pathogens and infectious diseases in fish research facilities is relatively new, and will be an evolving process over time. Nevertheless, the goal of documenting, detecting, and excluding pathogens in fish is just as important as in mammalian research models. PMID:18755294

  5. Comprehensive Rare Variant Analysis via Whole-Genome Sequencing to Determine the Molecular Pathology of Inherited Retinal Disease.

    PubMed

    Carss, Keren J; Arno, Gavin; Erwood, Marie; Stephens, Jonathan; Sanchis-Juan, Alba; Hull, Sarah; Megy, Karyn; Grozeva, Detelina; Dewhurst, Eleanor; Malka, Samantha; Plagnol, Vincent; Penkett, Christopher; Stirrups, Kathleen; Rizzo, Roberta; Wright, Genevieve; Josifova, Dragana; Bitner-Glindzicz, Maria; Scott, Richard H; Clement, Emma; Allen, Louise; Armstrong, Ruth; Brady, Angela F; Carmichael, Jenny; Chitre, Manali; Henderson, Robert H H; Hurst, Jane; MacLaren, Robert E; Murphy, Elaine; Paterson, Joan; Rosser, Elisabeth; Thompson, Dorothy A; Wakeling, Emma; Ouwehand, Willem H; Michaelides, Michel; Moore, Anthony T; Webster, Andrew R; Raymond, F Lucy

    2017-01-05

    Inherited retinal disease is a common cause of visual impairment and represents a highly heterogeneous group of conditions. Here, we present findings from a cohort of 722 individuals with inherited retinal disease, who have had whole-genome sequencing (n = 605), whole-exome sequencing (n = 72), or both (n = 45) performed, as part of the NIHR-BioResource Rare Diseases research study. We identified pathogenic variants (single-nucleotide variants, indels, or structural variants) for 404/722 (56%) individuals. Whole-genome sequencing gives unprecedented power to detect three categories of pathogenic variants in particular: structural variants, variants in GC-rich regions, which have significantly improved coverage compared to whole-exome sequencing, and variants in non-coding regulatory regions. In addition to previously reported pathogenic regulatory variants, we have identified a previously unreported pathogenic intronic variant in CHM in two males with choroideremia. We have also identified 19 genes not previously known to be associated with inherited retinal disease, which harbor biallelic predicted protein-truncating variants in unsolved cases. Whole-genome sequencing is an increasingly important comprehensive method with which to investigate the genetic causes of inherited retinal disease. Copyright © 2017. Published by Elsevier Inc.

  6. Recommendations for control of pathogens and infectious diseases in fish research facilities

    USGS Publications Warehouse

    Kent, M.L.; Feist, S.W.; Harper, C.; Hoogstraten-Miller, S.; Law, J.M.; Sanchez-Morgado, J. M.; Tanguay, R.L.; Sanders, G.E.; Spitsbergen, J.M.; Whipps, Christopher M.

    2009-01-01

    Concerns about infectious diseases in fish used for research have risen along with the dramatic increase in the use of fish as models in biomedical research. In addition to acute diseases causing severe morbidity and mortality, underlying chronic conditions that cause low-grade or subclinical infections may confound research results. Here we present recommendations and strategies to avoid or minimize the impacts of infectious agents in fishes maintained in the research setting. There are distinct differences in strategies for control of pathogens in fish used for research compared to fishes reared as pets or in aquaculture. Also, much can be learned from strategies and protocols for control of diseases in rodents used in research, but there are differences. This is due, in part, the unique aquatic environment that is modified by the source and quality of the water provided and the design of facilities. The process of control of pathogens and infectious diseases in fish research facilities is relatively new, and will be an evolving process over time. Nevertheless, the goal of documenting, detecting, and excluding pathogens in fish is just as important as in mammalian research models.

  7. The genome sequence of the plant pathogen Xylella fastidiosa. The Xylella fastidiosa Consortium of the Organization for Nucleotide Sequencing and Analysis.

    PubMed

    Simpson, A J; Reinach, F C; Arruda, P; Abreu, F A; Acencio, M; Alvarenga, R; Alves, L M; Araya, J E; Baia, G S; Baptista, C S; Barros, M H; Bonaccorsi, E D; Bordin, S; Bové, J M; Briones, M R; Bueno, M R; Camargo, A A; Camargo, L E; Carraro, D M; Carrer, H; Colauto, N B; Colombo, C; Costa, F F; Costa, M C; Costa-Neto, C M; Coutinho, L L; Cristofani, M; Dias-Neto, E; Docena, C; El-Dorry, H; Facincani, A P; Ferreira, A J; Ferreira, V C; Ferro, J A; Fraga, J S; França, S C; Franco, M C; Frohme, M; Furlan, L R; Garnier, M; Goldman, G H; Goldman, M H; Gomes, S L; Gruber, A; Ho, P L; Hoheisel, J D; Junqueira, M L; Kemper, E L; Kitajima, J P; Krieger, J E; Kuramae, E E; Laigret, F; Lambais, M R; Leite, L C; Lemos, E G; Lemos, M V; Lopes, S A; Lopes, C R; Machado, J A; Machado, M A; Madeira, A M; Madeira, H M; Marino, C L; Marques, M V; Martins, E A; Martins, E M; Matsukuma, A Y; Menck, C F; Miracca, E C; Miyaki, C Y; Monteriro-Vitorello, C B; Moon, D H; Nagai, M A; Nascimento, A L; Netto, L E; Nhani, A; Nobrega, F G; Nunes, L R; Oliveira, M A; de Oliveira, M C; de Oliveira, R C; Palmieri, D A; Paris, A; Peixoto, B R; Pereira, G A; Pereira, H A; Pesquero, J B; Quaggio, R B; Roberto, P G; Rodrigues, V; de M Rosa, A J; de Rosa, V E; de Sá, R G; Santelli, R V; Sawasaki, H E; da Silva, A C; da Silva, A M; da Silva, F R; da Silva, W A; da Silveira, J F; Silvestri, M L; Siqueira, W J; de Souza, A A; de Souza, A P; Terenzi, M F; Truffi, D; Tsai, S M; Tsuhako, M H; Vallada, H; Van Sluys, M A; Verjovski-Almeida, S; Vettore, A L; Zago, M A; Zatz, M; Meidanis, J; Setubal, J C

    2000-07-13

    Xylella fastidiosa is a fastidious, xylem-limited bacterium that causes a range of economically important plant diseases. Here we report the complete genome sequence of X. fastidiosa clone 9a5c, which causes citrus variegated chlorosis--a serious disease of orange trees. The genome comprises a 52.7% GC-rich 2,679,305-base-pair (bp) circular chromosome and two plasmids of 51,158 bp and 1,285 bp. We can assign putative functions to 47% of the 2,904 predicted coding regions. Efficient metabolic functions are predicted, with sugars as the principal energy and carbon source, supporting existence in the nutrient-poor xylem sap. The mechanisms associated with pathogenicity and virulence involve toxins, antibiotics and ion sequestration systems, as well as bacterium-bacterium and bacterium-host interactions mediated by a range of proteins. Orthologues of some of these proteins have only been identified in animal and human pathogens; their presence in X. fastidiosa indicates that the molecular basis for bacterial pathogenicity is both conserved and independent of host. At least 83 genes are bacteriophage-derived and include virulence-associated genes from other bacteria, providing direct evidence of phage-mediated horizontal gene transfer.

  8. PCR Followed by Electrospray Ionization Mass Spectrometry for Broad-Range Identification of Fungal Pathogens

    PubMed Central

    Massire, Christian; Buelow, Daelynn R.; Zhang, Sean X.; Lovari, Robert; Matthews, Heather E.; Toleno, Donna M.; Ranken, Raymond R.; Hall, Thomas A.; Metzgar, David; Sampath, Rangarajan; Blyn, Lawrence B.; Ecker, David J.; Gu, Zhengming; Walsh, Thomas J.

    2013-01-01

    Invasive fungal infections are a significant cause of morbidity and mortality among immunocompromised patients. Early and accurate identification of these pathogens is central to direct therapy and to improve overall outcome. PCR coupled with electrospray ionization mass spectrometry (PCR/ESI-MS) was evaluated as a novel means for identification of fungal pathogens. Using a database grounded by 60 ATCC reference strains, a total of 394 clinical fungal isolates (264 molds and 130 yeasts) were analyzed by PCR/ESI-MS; results were compared to phenotypic identification, and discrepant results were sequence confirmed. PCR/ESI-MS identified 81.4% of molds to either the genus or species level, with concordance rates of 89.7% and 87.4%, respectively, to phenotypic identification. Likewise, PCR/ESI-MS was able to identify 98.4% of yeasts to either the genus or species level, agreeing with 100% of phenotypic results at both the genus and species level. PCR/ESI-MS performed best with Aspergillus and Candida isolates, generating species-level identification in 94.4% and 99.2% of isolates, respectively. PCR/ESI-MS is a promising new technology for broad-range detection and identification of medically important fungal pathogens that cause invasive mycoses. PMID:23303501

  9. Mobile Microbiome

    PubMed Central

    Han, Y.W.; Wang, X.

    2013-01-01

    The link between oral infections and adverse systemic conditions has attracted much attention in the research community. Several mechanisms have been proposed, including spread of the oral infection due to transient bacteremia resulting in bacterial colonization in extra-oral sites, systemic injury by free toxins of oral pathogens, and systemic inflammation caused by soluble antigens of oral pathogens. Mounting evidence supports a major role of the systemic spread of oral commensals and pathogens to distant body sites causing extra-oral infections and inflammation. We review here the most recent findings on systemic infections and inflammation complicated by oral bacteria, including cardiovascular disease, adverse pregnancy outcomes, rheumatoid arthritis, inflammatory bowel disease and colorectal cancer, respiratory tract infections, and organ inflammations and abscesses. The recently identified virulence mechanisms of oral species Fusobacterium nucleatum, Porphyromonas gingivalis, Streptococcus mutans, and Campylobacter rectus are also reviewed. A pattern emerges indicating that only select subtype(s) of a given species, e.g., F. nucleatum subspecies animalis and polymorphum and S. mutans non-c serotypes, are prone to extra-oral translocation. These findings advocate the importance of identification and quantification of potential pathogens at the subtype levels for accurate prediction of disease potential. PMID:23625375

  10. Insect pathogenic fungus interacts with the gut microbiota to accelerate mosquito mortality

    PubMed Central

    Wei, Ge; Lai, Yiling; Wang, Guandong; Chen, Huan; Li, Fang

    2017-01-01

    The insect gut microbiota plays crucial roles in modulating the interactions between the host and intestinal pathogens. Unlike viruses, bacteria, and parasites, which need to be ingested to cause disease, entomopathogenic fungi infect insects through the cuticle and proliferate in the hemolymph. However, interactions between the gut microbiota and entomopathogenic fungi are unknown. Here we show that the pathogenic fungus Beauveria bassiana interacts with the gut microbiota to accelerate mosquito death. After topical fungal infection, mosquitoes with gut microbiota die significantly faster than mosquitoes without microbiota. Furthermore, fungal infection causes dysbiosis of mosquito gut microbiota with a significant increase in gut bacterial load and a significant decrease in bacterial diversity. In particular, the opportunistic pathogenic bacterium Serratia marcescens overgrows in the midgut and translocates to the hemocoel, which promotes fungal killing of mosquitoes. We further reveal that fungal infection down-regulates antimicrobial peptide and dual oxidase expression in the midgut. Duox down-regulation in the midgut is mediated by secretion of the toxin oosporein from B. bassiana. Our findings reveal the important contribution of the gut microbiota in B. bassiana-killing activity, providing new insights into the mechanisms of fungal pathogenesis in insects. PMID:28533370

  11. Enteroaggregative Escherichia coli: An Emerging Enteric Food Borne Pathogen.

    PubMed

    Kaur, P; Chakraborti, A; Asea, A

    2010-01-01

    Enteroaggregative Escherichia coli (EAEC) are quite heterogeneous category of an emerging enteric pathogen associated with cases of acute or persistent diarrhea worldwide in children and adults, and over the past decade has received increasing attention as a cause of watery diarrhea, which is often persistent. EAEC infection is an important cause of diarrhea in outbreak and non-outbreak settings in developing and developed countries. Recently, EAEC has been implicated in the development of irritable bowel syndrome, but this remains to be confirmed. EAEC is defined as a diarrheal pathogen based on its characteristic aggregative adherence (AA) to HEp-2 cells in culture and its biofilm formation on the intestinal mucosa with a "stacked-brick" adherence phenotype, which is related to the presence of a 60 MDa plasmid (pAA). At the molecular level, strains demonstrating the aggregative phenotype are quite heterogeneous; several virulence factors are detected by polymerase chain reaction; however, none exhibited 100% specificity. Although several studies have identified specific virulence factor(s) unique to EAEC, the mechanism by which EAEC exerts its pathogenesis is, thus, far unknown. The present review updates the current knowledge on the epidemiology, chronic complications, detection, virulence factors, and treatment of EAEC, an emerging enteric food borne pathogen.

  12. Use of Endophytic and Rhizosphere Actinobacteria from Grapevine Plants To Reduce Nursery Fungal Graft Infections That Lead to Young Grapevine Decline

    PubMed Central

    Álvarez-Pérez, José Manuel; González-García, Sandra; Cobos, Rebeca; Olego, Miguel Ángel; Ibañez, Ana; Díez-Galán, Alba; Garzón-Jimeno, Enrique

    2017-01-01

    ABSTRACT Endophytic and rhizosphere actinobacteria isolated from the root system of 1-year-old grafted Vitis vinifera plants were evaluated for their activities against fungi that cause grapevine trunk diseases. A total of 58 endophytic and 94 rhizosphere isolates were tested. Based on an in vitro bioassay, 15.5% of the endophytic isolates and 30.8% of the rhizosphere isolates exhibited antifungal activity against the fungal pathogen Diplodia seriata, whereas 13.8% of the endophytic isolates and 16.0% of the rhizosphere isolates showed antifungal activity against Dactylonectria macrodidyma (formerly Ilyonectria macrodidyma). The strains which showed the greatest in vitro efficacy against both pathogens were further analyzed for their ability to inhibit the growth of Phaeomoniella chlamydospora and Phaeoacremonium minimum (formerly Phaeoacremonium aleophilum). Based on their antifungal activity, three rhizosphere isolates and three endophytic isolates were applied on grafts in an open-root field nursery in a 3-year trial. The field trial led to the identification of one endophytic strain, Streptomyces sp. VV/E1, and two rhizosphere isolates, Streptomyces sp. VV/R1 and Streptomyces sp. VV/R4, which significantly reduced the infection rates produced by the fungal pathogens Dactylonectria sp., Ilyonectria sp., P. chlamydospora, and P. minimum, all of which cause young grapevine decline. The VV/R1 and VV/R4 isolates also significantly reduced the mortality level of grafted plants in the nursery. This study shows that certain actinobacteria could represent a promising new tool for controlling fungal trunk pathogens that infect grapevine plants through the root system in nurseries. IMPORTANCE Grapevine trunk diseases are a major threat to the wine and grape industry worldwide. They cause a significant reduction in yields as well as in grape quality, and they can even cause plant death. Trunk diseases are caused by fungal pathogens that enter through pruning wounds and/or the root system. Although different strategies have recently been developed to protect pruning wounds using antifungal compounds (natural or synthetic) or biocontrol agents, no tools are yet available for controlling soil pathogens that infect plants through their root system. This study shows that different actinobacterial isolates, when applied to grafts in a nursery, can significantly reduce the infection rate caused by fungal pathogens that enter through the root system. This is a new, promising, and green alternative for preventing the decline of young grapevines in nurseries and vineyards. PMID:28986378

  13. Use of Endophytic and Rhizosphere Actinobacteria from Grapevine Plants To Reduce Nursery Fungal Graft Infections That Lead to Young Grapevine Decline.

    PubMed

    Álvarez-Pérez, José Manuel; González-García, Sandra; Cobos, Rebeca; Olego, Miguel Ángel; Ibañez, Ana; Díez-Galán, Alba; Garzón-Jimeno, Enrique; Coque, Juan José R

    2017-12-15

    Endophytic and rhizosphere actinobacteria isolated from the root system of 1-year-old grafted Vitis vinifera plants were evaluated for their activities against fungi that cause grapevine trunk diseases. A total of 58 endophytic and 94 rhizosphere isolates were tested. Based on an in vitro bioassay, 15.5% of the endophytic isolates and 30.8% of the rhizosphere isolates exhibited antifungal activity against the fungal pathogen Diplodia seriata , whereas 13.8% of the endophytic isolates and 16.0% of the rhizosphere isolates showed antifungal activity against Dactylonectria macrodidyma (formerly Ilyonectria macrodidyma ). The strains which showed the greatest in vitro efficacy against both pathogens were further analyzed for their ability to inhibit the growth of Phaeomoniella chlamydospora and Phaeoacremonium minimum (formerly Phaeoacremonium aleophilum ). Based on their antifungal activity, three rhizosphere isolates and three endophytic isolates were applied on grafts in an open-root field nursery in a 3-year trial. The field trial led to the identification of one endophytic strain, Streptomyces sp. VV/E1, and two rhizosphere isolates, Streptomyces sp. VV/R1 and Streptomyces sp. VV/R4, which significantly reduced the infection rates produced by the fungal pathogens Dactylonectria sp., Ilyonectria sp., P. chlamydospora , and P. minimum , all of which cause young grapevine decline. The VV/R1 and VV/R4 isolates also significantly reduced the mortality level of grafted plants in the nursery. This study shows that certain actinobacteria could represent a promising new tool for controlling fungal trunk pathogens that infect grapevine plants through the root system in nurseries. IMPORTANCE Grapevine trunk diseases are a major threat to the wine and grape industry worldwide. They cause a significant reduction in yields as well as in grape quality, and they can even cause plant death. Trunk diseases are caused by fungal pathogens that enter through pruning wounds and/or the root system. Although different strategies have recently been developed to protect pruning wounds using antifungal compounds (natural or synthetic) or biocontrol agents, no tools are yet available for controlling soil pathogens that infect plants through their root system. This study shows that different actinobacterial isolates, when applied to grafts in a nursery, can significantly reduce the infection rate caused by fungal pathogens that enter through the root system. This is a new, promising, and green alternative for preventing the decline of young grapevines in nurseries and vineyards. Copyright © 2017 American Society for Microbiology.

  14. A Novel Hybrid Iron Regulation Network Combines Features from Pathogenic and Nonpathogenic Yeasts.

    PubMed

    Gerwien, Franziska; Safyan, Abu; Wisgott, Stephanie; Hille, Fabrice; Kaemmer, Philipp; Linde, Jörg; Brunke, Sascha; Kasper, Lydia; Hube, Bernhard

    2016-10-18

    Iron is an essential micronutrient for both pathogens and their hosts, which restrict iron availability during infections in an effort to prevent microbial growth. Successful human pathogens like the yeast Candida glabrata have thus developed effective iron acquisition strategies. Their regulation has been investigated well for some pathogenic fungi and in the model organism Saccharomyces cerevisiae, which employs an evolutionarily derived system. Here, we show that C. glabrata uses a regulation network largely consisting of components of the S. cerevisiae regulon but also of elements of other pathogenic fungi. Specifically, similarly to baker's yeast, Aft1 is the main positive regulator under iron starvation conditions, while Cth2 degrades mRNAs encoding iron-requiring enzymes. However, unlike the case with S. cerevisiae, a Sef1 ortholog is required for full growth under iron limitation conditions, making C. glabrata an evolutionary intermediate to SEF1-dependent fungal pathogens. Therefore, C. glabrata has evolved an iron homeostasis system which seems to be unique within the pathogenic fungi. The fungus Candida glabrata represents an evolutionarily close relative of the well-studied and benign baker's yeast and model organism Saccharomyces cerevisiae On the other hand, C. glabrata is an important opportunistic human pathogen causing both superficial and systemic infections. The ability to acquire trace metals, in particular, iron, and to tightly regulate this process during infection is considered an important virulence attribute of a variety of pathogens. Importantly, S. cerevisiae uses a highly derivative regulatory system distinct from those of other fungi. Until now, the regulatory mechanism of iron homeostasis in C. glabrata has been mostly unknown. Our study revealed a hybrid iron regulation network that is unique to C. glabrata and is placed at an evolutionary midpoint between those of S. cerevisiae and related fungal pathogens. We thereby show that, in the host, even a successful human pathogen can rely largely on a strategy normally found in nonpathogenic fungi from a terrestrial environment. Copyright © 2016 Gerwien et al.

  15. Stem rots of oil palm caused by Ganoderma boninense: pathogen biology and epidemiology.

    PubMed

    Pilotti, C A

    2005-01-01

    Oil palm (Elaeis guineensis Jacq.) has been grown in Papua New Guinea since the early 1960s. The most important disease of oil palm in PNG is a stem rot of the palm base. This is the same disease that constitutes a major threat to sustainable oil palm production in SE Asia. Investigations into the causal pathogen have revealed that the stem rots in PNG are caused predominantly by the basidiomycete Ganoderma boninense, with a minor pathogen identified as G. tornatum G. tornatum was found to have a broad host range whereas G. boninense appears to be restricted to palms. The population structure of G. boninense was investigated using inter-fertility studies between isolates collected from basal stem rots on oil palm. Although the G. boninense field populations are predominantly comprised of distinct individuals, a number of isolates were found that share single mating alleles. This indicates that out-crossing had occurred over several generations in the resident or wild population of G. boninense prior to colonization of oil palm. No direct hereditary relationship between isolates on neighbouring diseased palms was found, although an indirect link between isolates causing upper stem rot and basal stem rot was detected.

  16. Analyses of Xylella whole genome sequences and proposal of Xylella taiwanensis sp. nov.

    USDA-ARS?s Scientific Manuscript database

    Xylella fastidiosa is a Gram negative, xylem limited and nutritionally fastidious plant pathogenic bacterium that cause disease in many economically important plants. A single species, fastidiosa, with three subspecies (fastidiosa, multiplex, and pauca) have been described. Most Xylella strains were...

  17. Capsular Polysaccharide Interferes With Biofilm Formation by Pasteurella Multocida Serogroup A

    USDA-ARS?s Scientific Manuscript database

    Pasteurella multocida is an important multihost animal and zoonotic pathogen that is capable of causing respiratory and multisystemic diseases, bacteremia,and bite wound infections. The glycosaminoglycan capsule of P. multocida is an essential virulence factor that protects the bacterium from host d...

  18. Characterization of the Asian citrus psyllid transcriptome

    USDA-ARS?s Scientific Manuscript database

    The Asian citrus psyllid (Diaphorina citri Kuwayama) and other psyllids are important agricultural pests that cause extensive economic damage by feeding and as vectors of plant pathogens. No psyllid genomes have been characterized, and little is known about the composition of psyllid genomes or the ...

  19. Fabrication of biomimetically-patterned surfaces and their application to probing plant-bacteria interactions

    USDA-ARS?s Scientific Manuscript database

    Understanding of plant-bacterial interactions is of critical importance for developing effective control measures against infectious diseases caused by foodborne human pathogens. However, limitations of existing scientific tools to access and evaluate natural plant tissues, and the large variations ...

  20. Assessment of Flavobacterium columnare from golden shiners Notemingonus crysoleucas subject to crowding stress

    USDA-ARS?s Scientific Manuscript database

    Intensive aquaculture practices and exposure to environmental stressors can trigger outbreaks of Flavobacterium columnare, a bacterial pathogen that causes columnaris disease in commercially important fish including Golden Shiners. A rapid assessment of the bacterial load is essential to prevent out...

  1. Hijacked: Co-option of host behavior by entomophthoralean fungi

    USDA-ARS?s Scientific Manuscript database

    Over 700 species of fungi are known to infect and cause disease in insects and other arthropods. The majority of insect pathogenic fungi are classified in the phyla Entomophthoromycotina and Ascomycotina, and many are ecologically important in regulating insect populations. To summarize fungal-inse...

  2. Fusarium Species and Their Associated Mycotoxins.

    PubMed

    Munkvold, Gary P

    2017-01-01

    The genus Fusarium includes numerous toxigenic species that are pathogenic to plants or humans, and are able to colonize a wide range of environments on earth. The genus comprises around 70 well-known species, identified by using a polyphasic approach, and as many as 300 putative species, according to phylogenetic species concepts; many putative species do not yet have formal names. Fusarium is one of the most economically important fungal genera because of yield loss due to plant pathogenic activity; mycotoxin contamination of food and feed products which often render them unaccep for marketing; and health impacts to humans and livestock, due to consumption of mycotoxins. Among the most important mycotoxins produced by species of Fusarium are the trichothecenes and the fumonisins. Fumonisins cause fatal livestock diseases and are considered potentially carcinogenic mycotoxins for humans, while trichothecenes are potent inhibitors of protein synthesis. This chapter summarizes the main aspects of morphology, pathology, and toxigenicity of the main Fusarium species that colonize different agricultural crops and environments worldwide, and cause mycotoxin contamination of food and feed.

  3. Developments in Fungal Taxonomy

    PubMed Central

    Guarro, Josep; Gené, Josepa; Stchigel, Alberto M.

    1999-01-01

    Fungal infections, especially those caused by opportunistic species, have become substantially more common in recent decades. Numerous species cause human infections, and several new human pathogens are discovered yearly. This situation has created an increasing interest in fungal taxonomy and has led to the development of new methods and approaches to fungal biosystematics which have promoted important practical advances in identification procedures. However, the significance of some data provided by the new approaches is still unclear, and results drawn from such studies may even increase nomenclatural confusion. Analyses of rRNA and rDNA sequences constitute an important complement of the morphological criteria needed to allow clinical fungi to be more easily identified and placed on a single phylogenetic tree. Most of the pathogenic fungi so far described belong to the kingdom Fungi; two belong to the kingdom Chromista. Within the Fungi, they are distributed in three phyla and in 15 orders (Pneumocystidales, Saccharomycetales, Dothideales, Sordariales, Onygenales, Eurotiales, Hypocreales, Ophiostomatales, Microascales, Tremellales, Poriales, Stereales, Agaricales, Schizophyllales, and Ustilaginales). PMID:10398676

  4. Streptococcus suis, an important pig pathogen and emerging zoonotic agent—an update on the worldwide distribution based on serotyping and sequence typing

    PubMed Central

    Goyette-Desjardins, Guillaume; Auger, Jean-Philippe; Xu, Jianguo; Segura, Mariela; Gottschalk, Marcelo

    2014-01-01

    Streptococcus suis is an important pathogen causing economic problems in the pig industry. Moreover, it is a zoonotic agent causing severe infections to people in close contact with infected pigs or pork-derived products. Although considered sporadic in the past, human S. suis infections have been reported during the last 45 years, with two large outbreaks recorded in China. In fact, the number of reported human cases has significantly increased in recent years. In this review, we present the worldwide distribution of serotypes and sequence types (STs), as determined by multilocus sequence typing, for pigs (between 2002 and 2013) and humans (between 1968 and 2013). The methods employed for S. suis identification and typing, the current epidemiological knowledge regarding serotypes and STs and the zoonotic potential of S. suis are discussed. Increased awareness of S. suis in both human and veterinary diagnostic laboratories and further establishment of typing methods will contribute to our knowledge of this pathogen, especially in regions where complete and/or recent data is lacking. More research is required to understand differences in virulence that occur among S. suis strains and if these differences can be associated with specific serotypes or STs. PMID:26038745

  5. Pathogen transport in groundwater systems: Contrasts with traditional solute transport

    USGS Publications Warehouse

    Hunt, Randall J.; Johnson, William P.

    2017-01-01

    Water quality affects many aspects of water availability, from precluding use to societal perceptions of fit-for-purpose. Pathogen source and transport processes are drivers of water quality because they have been responsible for numerous outbreaks resulting in large economic losses due to illness and, in some cases, loss of life. Outbreaks result from very small exposure (e.g., less than 20 viruses) from very strong sources (e.g., trillions of viruses shed by a single infected individual). Thus, unlike solute contaminants, an acute exposure to a very small amount of contaminated water can cause immediate adverse health effects. Similarly, pathogens are larger than solutes. Thus, interactions with surfaces and settling become important even as processes important for solutes such as diffusion become less important. These differences are articulated in “Colloid Filtration Theory”, a separate branch of pore-scale transport. Consequently, understanding pathogen processes requires changes in how groundwater systems are typically characterized, where the focus is on the leading edges of plumes and preferential flow paths, even if such features move only a very small fraction of the aquifer flow. Moreover, the relatively short survival times of pathogens in the subsurface require greater attention to very fast (<10 year) flow paths. By better understanding the differences between pathogen and solute transport mechanisms discussed here, a more encompassing view of water quality and source water protection is attained. With this more holistic view and theoretical understanding, better evaluations can be made regarding drinking water vulnerability and the relation between groundwater and human health.

  6. Nonribosomal peptide synthetase biosynthetic clusters of ESKAPE pathogens.

    PubMed

    Gulick, Andrew M

    2017-08-02

    Covering: up to 2017.Natural products are important secondary metabolites produced by bacterial and fungal species that play important roles in cellular growth and signaling, nutrient acquisition, intra- and interspecies communication, and virulence. A subset of natural products is produced by nonribosomal peptide synthetases (NRPSs), a family of large, modular enzymes that function in an assembly line fashion. Because of the pharmaceutical activity of many NRPS products, much effort has gone into the exploration of their biosynthetic pathways and the diverse products they make. Many interesting NRPS pathways have been identified and characterized from both terrestrial and marine bacterial sources. Recently, several NRPS pathways in human commensal bacterial species have been identified that produce molecules with antibiotic activity, suggesting another source of interesting NRPS pathways may be the commensal and pathogenic bacteria that live on the human body. The ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) have been identified as a significant cause of human bacterial infections that are frequently multidrug resistant. The emerging resistance profile of these organisms has prompted calls from multiple international agencies to identify novel antibacterial targets and develop new approaches to treat infections from ESKAPE pathogens. Each of these species contains several NRPS biosynthetic gene clusters. While some have been well characterized and produce known natural products with important biological roles in microbial physiology, others have yet to be investigated. This review catalogs the NRPS pathways of ESKAPE pathogens. The exploration of novel NRPS products may lead to a better understanding of the chemical communication used by human pathogens and potentially to the discovery of novel therapeutic approaches.

  7. Effects of an invasive forest pathogen on abundance of ticks and their vertebrate hosts in a California Lyme disease focus.

    PubMed

    Swei, Andrea; Ostfeld, Richard S; Lane, Robert S; Briggs, Cheryl J

    2011-05-01

    Invasive species, including pathogens, can have important effects on local ecosystems, including indirect consequences on native species. This study focuses on the effects of an invasive plant pathogen on a vertebrate community and Ixodes pacificus, the vector of the Lyme disease pathogen (Borrelia burgdorferi) in California. Phytophthora ramorum, the causative agent of sudden oak death, is a non-native pathogen killing trees in California and Oregon. We conducted a multi-year study using a gradient of SOD-caused disturbance to assess the impact on the dusky-footed woodrat (Neotoma fuscipes) and the deer mouse (Peromyscus maniculatus), two reservoir hosts of B. burgdorferi, as well as the impact on the Columbian black-tailed deer (Odocoileus hemionus columbianus) and the western fence lizard (Sceloporus occidentalis), both of which are important hosts for I. pacificus but are not pathogen reservoirs. Abundances of P. maniculatus and S. occidentalis were positively correlated with greater SOD disturbance, whereas N. fuscipes abundance was negatively correlated. We did not find a change in space use by O. hemionus. Our data show that SOD has a positive impact on the density of nymphal ticks, which is expected to increase the risk of human exposure to Lyme disease all else being equal. A positive correlation between SOD disturbance and the density of nymphal ticks was expected given increased abundances of two important hosts: deer mice and western fence lizards. However, further research is needed to integrate the direct effects of SOD on ticks, for example via altered abiotic conditions with host-mediated indirect effects.

  8. Modelling the effects of phylogeny and body size on within-host pathogen replication and immune response.

    PubMed

    Banerjee, Soumya; Perelson, Alan S; Moses, Melanie

    2017-11-01

    Understanding how quickly pathogens replicate and how quickly the immune system responds is important for predicting the epidemic spread of emerging pathogens. Host body size, through its correlation with metabolic rates, is theoretically predicted to impact pathogen replication rates and immune system response rates. Here, we use mathematical models of viral time courses from multiple species of birds infected by a generalist pathogen (West Nile Virus; WNV) to test more thoroughly how disease progression and immune response depend on mass and host phylogeny. We use hierarchical Bayesian models coupled with nonlinear dynamical models of disease dynamics to incorporate the hierarchical nature of host phylogeny. Our analysis suggests an important role for both host phylogeny and species mass in determining factors important for viral spread such as the basic reproductive number, WNV production rate, peak viraemia in blood and competency of a host to infect mosquitoes. Our model is based on a principled analysis and gives a quantitative prediction for key epidemiological determinants and how they vary with species mass and phylogeny. This leads to new hypotheses about the mechanisms that cause certain taxonomic groups to have higher viraemia. For example, our models suggest that higher viral burst sizes cause corvids to have higher levels of viraemia and that the cellular rate of virus production is lower in larger species. We derive a metric of competency of a host to infect disease vectors and thereby sustain the disease between hosts. This suggests that smaller passerine species are highly competent at spreading the disease compared with larger non-passerine species. Our models lend mechanistic insight into why some species (smaller passerine species) are pathogen reservoirs and some (larger non-passerine species) are potentially dead-end hosts for WNV. Our techniques give insights into the role of body mass and host phylogeny in the spread of WNV and potentially other zoonotic diseases. The major contribution of this work is a computational framework for infectious disease modelling at the within-host level that leverages data from multiple species. This is likely to be of interest to modellers of infectious diseases that jump species barriers and infect multiple species. Our method can be used to computationally determine the competency of a host to infect mosquitoes that will sustain WNV and other zoonotic diseases. We find that smaller passerine species are more competent in spreading the disease than larger non-passerine species. This suggests the role of host phylogeny as an important determinant of within-host pathogen replication. Ultimately, we view our work as an important step in linking within-host viral dynamics models to between-host models that determine spread of infectious disease between different hosts. © 2017 The Author(s).

  9. Discrimination between Pseudogymnoascus destructans, other dermatophytes of cave-dwelling bats, and related innocuous keratinophilic fungi based on electronic-nose/GC signatures of VOC-metabolites produced in culture

    Treesearch

    Alphus Dan Wilson; Lisa Beth Forse

    2017-01-01

    White-nose syndrome (WNS), caused by the fungal dermatophyte (Pseudogymnoascus destructans), is considered the most important disease affecting hibernating bats in North America. The identification of dermatophytic fungi, isolated from the skins of cave-dwelling bat species, is necessary to distinguish pathogenic (disease-causing) microbes from those that are innocuous...

  10. Dry eye disease caused by viral infection: review.

    PubMed

    Alves, Monica; Angerami, Rodrigo Nogueira; Rocha, Eduardo Melani

    2013-01-01

    Dry eye disease and ocular surface disorders may be caused or worsened by viral agents. There are several known and suspected virus associated to ocular surface diseases. The possible pathogenic mechanisms for virus-related dry eye disease are presented herein. This review serves to reinforce the importance of ophthalmologists as one of the healthcare professional able to diagnose a potentially large number of infected patients with high prevalent viral agents.

  11. Analysis of genetic relationships between potato psyllid (Bactericera cockerelli) populations in the United States, Mexico and Guatemala using ITS2 and inter simple sequence repeat (ISSR) data

    USDA-ARS?s Scientific Manuscript database

    The potato psyllid, Bactericera cockerelli (Sulc), is an important factor in Zebra Complex (ZC), a disease that causes economic losses on potato crops. Although the exact cause of ZC is not yet known, it may be related to the toxicity of psyllid saliva, pathogens transmitted by this insect, or a com...

  12. Predators indirectly control vector-borne disease: linking predator-prey and host-pathogen models.

    PubMed

    Moore, Sean M; Borer, Elizabeth T; Hosseini, Parviez R

    2010-01-06

    Pathogens transmitted by arthropod vectors are common in human populations, agricultural systems and natural communities. Transmission of these vector-borne pathogens depends on the population dynamics of the vector species as well as its interactions with other species within the community. In particular, predation may be sufficient to control pathogen prevalence indirectly via the vector. To examine the indirect effect of predators on vectored-pathogen dynamics, we developed a theoretical model that integrates predator-prey and host-pathogen theory. We used this model to determine whether predation can prevent pathogen persistence or alter the stability of host-pathogen dynamics. We found that, in the absence of predation, pathogen prevalence in the host increases with vector fecundity, whereas predation on the vector causes pathogen prevalence to decline, or even become extinct, with increasing vector fecundity. We also found that predation on a vector may drastically slow the initial spread of a pathogen. The predator can increase host abundance indirectly by reducing or eliminating infection in the host population. These results highlight the importance of studying interactions that, within the greater community, may alter our predictions when studying disease dynamics. From an applied perspective, these results also suggest situations where an introduced predator or the natural enemies of a vector may slow the rate of spread of an emerging vector-borne pathogen.

  13. Two-dimensional proteome reference maps for the human pathogenic filamentous fungus Aspergillus fumigatus.

    PubMed

    Vödisch, Martin; Albrecht, Daniela; Lessing, Franziska; Schmidt, André D; Winkler, Robert; Guthke, Reinhard; Brakhage, Axel A; Kniemeyer, Olaf

    2009-03-01

    The filamentous fungus Aspergillus fumigatus has become the most important airborne fungal pathogen causing life-threatening infections in immunosuppressed patients. We established a 2-D reference map for A. fumigatus. Using MALDI-TOF-MS/MS, we identified 381 spots representing 334 proteins. Proteins involved in cellular metabolism, protein synthesis, transport processes and cell cycle were most abundant. Furthermore, we established a protocol for the isolation of mitochondria of A. fumigatus and developed a mitochondrial proteome reference map. 147 proteins represented by 234 spots were identified.

  14. Human susceptibility to legionnaires' disease.

    PubMed

    Berrington, William R; Hawn, Thomas R

    2013-01-01

    Legionella pneumophila is a facultative intracellular pathogen that is an important cause of pneumonia. Although host factors that may predispose to acquisition of Legionnaire's Disease (LD) include comorbid illnesses (e.g., diabetes, chronic lung disease), age, male sex, and smoking, many individuals have no identifiable risk factors. Some studies suggest that genetic factors may enhance susceptibility to LD. In this chapter we discuss current techniques and scientific methods to identify genetic susceptibility factors. These genetic studies provide insight into the human immune response to intracellular pathogens and may improve strategies for treatment and vaccine development.

  15. Rhizosphaera Needle Disease of Fir

    Treesearch

    Mike Albers; Jana Albers; Jane Cummings-Carlson; Linda Haugen; Nancy Wenner

    1996-01-01

    Rhizosphaera pini is a common plant pathogen in the Lake States, Northeastern States and Canada. A closely related pathogen, Rhizosphaera kalkhoffii, causes a common needle blight on spruce and other conifers. R. pini is often considered to be a weak pathogen, occurring on stressed foliage or foliage killed by other causes. However, it has been observed causing...

  16. A Critical Role of Zinc Importer AdcABC in Group A Streptococcus-Host Interactions During Infection and Its Implications for Vaccine Development.

    PubMed

    Makthal, Nishanth; Nguyen, Kimberly; Do, Hackwon; Gavagan, Maire; Chandrangsu, Pete; Helmann, John D; Olsen, Randall J; Kumaraswami, Muthiah

    2017-07-01

    Bacterial pathogens must overcome host immune mechanisms to acquire micronutrients for successful replication and infection. Streptococcus pyogenes, also known as group A streptococcus (GAS), is a human pathogen that causes a variety of clinical manifestations, and disease prevention is hampered by lack of a human GAS vaccine. Herein, we report that the mammalian host recruits calprotectin (CP) to GAS infection sites and retards bacterial growth by zinc limitation. However, a GAS-encoded zinc importer and a nuanced zinc sensor aid bacterial defense against CP-mediated growth inhibition and contribute to GAS virulence. Immunization of mice with the extracellular component of the zinc importer confers protection against systemic GAS challenge. Together, we identified a key early stage host-GAS interaction and translated that knowledge into a novel vaccine strategy against GAS infection. Furthermore, we provided evidence that a similar struggle for zinc may occur during other streptococcal infections, which raises the possibility of a broad-spectrum prophylactic strategy against multiple streptococcal pathogens. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  17. A proteomics approach to study synergistic and antagonistic interactions of the fungal-bacterial consortium Fusarium oxysporum wild-type MSA 35.

    PubMed

    Moretti, Marino; Grunau, Alexander; Minerdi, Daniela; Gehrig, Peter; Roschitzki, Bernd; Eberl, Leo; Garibaldi, Angelo; Gullino, Maria Lodovica; Riedel, Kathrin

    2010-09-01

    Fusarium oxysporum is an important plant pathogen that causes severe damage of many economically important crop species. Various microorganisms have been shown to inhibit this soil-borne plant pathogen, including non-pathogenic F. oxysporum strains. In this study, F. oxysporum wild-type (WT) MSA 35, a biocontrol multispecies consortium that consists of a fungus and numerous rhizobacteria mainly belonging to gamma-proteobacteria, was analyzed by two complementary metaproteomic approaches (2-DE combined with MALDI-Tof/Tof MS and 1-D PAGE combined with LC-ESI-MS/MS) to identify fungal or bacterial factors potentially involved in antagonistic or synergistic interactions between the consortium members. Moreover, the proteome profiles of F. oxysporum WT MSA 35 and its cured counter-part CU MSA 35 (WT treated with antibiotics) were compared with unravel the bacterial impact on consortium functioning. Our study presents the first proteome mapping of an antagonistic F. oxysporum strain and proposes candidate proteins that might play an important role for the biocontrol activity and the close interrelationship between the fungus and its bacterial partners.

  18. Characterization of duck H5N1 influenza viruses with differing pathogenicity in mallard (Anas platyrhynchos) ducks.

    PubMed

    Tang, Yinghua; Wu, Peipei; Peng, Daxin; Wang, Xiaobo; Wan, Hongquan; Zhang, Pinghu; Long, Jinxue; Zhang, Wenjun; Li, Yanfang; Wang, Wenbin; Zhang, Xiaorong; Liu, Xiufan

    2009-12-01

    A number of H5N1 influenza outbreaks have occurred in aquatic birds in Asia. As aquatic birds are the natural reservoir of influenza A viruses and do not usually show clinical disease upon infection, the repeated H5N1 outbreaks have highlighted the importance of continuous surveillance on H5N1 viruses in aquatic birds. In the present study we characterized the biological properties of four H5N1 avian influenza viruses, which had been isolated from ducks, in different animal models. In specific pathogen free (SPF) chickens, all four isolates were highly pathogenic. In SPF mice, the S and Y isolates were moderately pathogenic. However, in mallard ducks, two isolates had low pathogenicity, while the other two were highly pathogenic and caused lethal infection. A representative isolate with high pathogenicity in ducks caused systemic infection and replicated effectively in all 10 organs tested in challenged ducks, whereas a representative isolate with low pathogenicity in ducks was only detected in some organs in a few challenged ducks. Comparison of complete genomic sequences from the four isolates showed that the same amino acid residues that have been reported to be associated with virulence and host adaption/restriction of influenza viruses were present in the PB2, HA, NA, M and NS genes, while the amino acid residues at the HA cleavage site were diverse. From these results it appeared that the virulence of H5N1 avian influenza viruses was increased for ducks and that amino acid substitutions at the HA cleavage site might have contributed to the differing pathogenicity of these isolates in mallards. A procedure for the intravenous pathogenicity index test in a mallard model for assessing the virulence of H5/H7 subtype avian influenza viruses in waterfowl is described.

  19. Viable-but-Nonculturable Listeria monocytogenes and Salmonella enterica Serovar Thompson Induced by Chlorine Stress Remain Infectious.

    PubMed

    Highmore, Callum J; Warner, Jennifer C; Rothwell, Steve D; Wilks, Sandra A; Keevil, C William

    2018-04-17

    The microbiological safety of fresh produce is monitored almost exclusively by culture-based detection methods. However, bacterial food-borne pathogens are known to enter a viable-but-nonculturable (VBNC) state in response to environmental stresses such as chlorine, which is commonly used for fresh produce decontamination. Here, complete VBNC induction of green fluorescent protein-tagged Listeria monocytogenes and Salmonella enterica serovar Thompson was achieved by exposure to 12 and 3 ppm chlorine, respectively. The pathogens were subjected to chlorine washing following incubation on spinach leaves. Culture data revealed that total viable L. monocytogenes and Salmonella Thompson populations became VBNC by 50 and 100 ppm chlorine, respectively, while enumeration by direct viable counting found that chlorine caused a <1-log reduction in viability. The pathogenicity of chlorine-induced VBNC L. monocytogenes and Salmonella Thompson was assessed by using Caenorhabditis elegans Ingestion of VBNC pathogens by C. elegans resulted in a significant life span reduction ( P = 0.0064 and P < 0.0001), and no significant difference between the life span reductions caused by the VBNC and culturable L. monocytogenes treatments was observed. L. monocytogenes was visualized beyond the nematode intestinal lumen, indicating resuscitation and cell invasion. These data emphasize the risk that VBNC food-borne pathogens could pose to public health should they continue to go undetected. IMPORTANCE Many bacteria are known to enter a viable-but-nonculturable (VBNC) state in response to environmental stresses. VBNC cells cannot be detected by standard laboratory culture techniques, presenting a problem for the food industry, which uses these techniques to detect pathogen contaminants. This study found that chlorine, a sanitizer commonly used for fresh produce, induces a VBNC state in the food-borne pathogens Listeria monocytogenes and Salmonella enterica It was also found that chlorine is ineffective at killing total populations of the pathogens. A life span reduction was observed in Caenorhabditis elegans that ingested these VBNC pathogens, with VBNC L. monocytogenes as infectious as its culturable counterpart. These data show that VBNC food-borne pathogens can both be generated and avoid detection by industrial practices while potentially retaining the ability to cause disease. Copyright © 2018 Highmore et al.

  20. Response of different common bean lines to Phaeoisariopsis griseola in Puerto Rico

    USDA-ARS?s Scientific Manuscript database

    Angular leaf spot (ALS), caused by Phaeoisariopsis griseola (Sacc.) Ferraris sin. Pseudocercospora griseola (Sacc.) Crous & U. Braun., is an important disease in common bean Phaseolus vulgaris L. in the Caribbean and Central America. The wide pathogen variability makes it necessary to continuously m...

  1. Genetics and breeding of bacterial leaf spot resistance

    USDA-ARS?s Scientific Manuscript database

    Bacterial leaf spot (BLS) caused by the pathogen Xanthomonas campestris pv. vitians (Xcv) is a globally important disease of whole head and baby leaf lettuce that reduces crop yield and quality. Host resistance is the most feasible method to reduce disease losses. Screening Lactuca accessions has id...

  2. Gaps and perspectives of pathotype and race determination in golovinomyces cichoracearum and podosphaera xanthii.

    USDA-ARS?s Scientific Manuscript database

    Golovinomyces cichoracearum and Podosphaera xanthii (family Erysiphaceae) are the most important species causing cucurbit powdery mildew (CPM), a serious disease of field and greenhouse cucurbits. Both species are highly variable in their pathogenicity and virulence, as indicated by the existence of...

  3. A molecular tug-of-war: Global plant proteome changes during viral infection

    USDA-ARS?s Scientific Manuscript database

    Plant pathogenic viruses cause a number of economically important diseases in food, fuel, and fiber crops worldwide. As obligate parasites with highly reduced genomes, viruses rely heavily on their hosts for replication, assembly, intra- and intercellular movement, and attraction of vectors for disp...

  4. A searchable database for the genome of Phomopsis longicolla (isolate MSPL 10-6)

    USDA-ARS?s Scientific Manuscript database

    Phomopsis longicolla (syn. Diaporthe longicolla) is an important seed-borne fungal pathogen that primarily causes Phomopsis seed decay (PSD) in most soybean production areas worldwide. This disease severely decreases soybean seed quality by reducing seed viability and oil quality, altering seed com...

  5. Identification of candidate effector genes of Pratylenchus penetrans

    USDA-ARS?s Scientific Manuscript database

    Pratylenchus penetrans is considered one of the most important species among root lesion nematodes (RLN) due to the detrimental and economic impact that it causes in a wide range of crops. Similar to other plant-pathogens, P. penetrans harbors a significant number of predicted secreted proteins that...

  6. Fish Vaccine Development and Use to Prevent Streptococcal Diseases

    USDA-ARS?s Scientific Manuscript database

    An important pathogen of tilapia, hybrid striped bass and trout raised in intensive aquaculture is Streptococcus sp., a cause of severe economic losses in the fish farming industry. Infected fish experience severe to moderate mortality due to Streptococcus iniae and/or S. agalactiae. The diseased ...

  7. Vaccine development for protection against systemic infections with Streptococcus suis and Haemophilus parasuis in swine

    USDA-ARS?s Scientific Manuscript database

    Both Streptococcus suis and Haemophilus parasuis are important invasive bacterial pathogens of swine, commonly causing meningitis, arthritis, polyserositis, and septicemia. Due to the presence of many serotypes and high genotypic variability, efficacious vaccines are not readily available. We are us...

  8. Of Two Make One: The Biosynthesis of Phenazines

    USDA-ARS?s Scientific Manuscript database

    Phenazine compounds produced by certain species of bacteria have antibiotic activity against a wide range of bacterial and fungal pathogens including many that cause important root diseases of plants. The antibiotic activity of these compounds has long been known but the mechanism of synthesis is po...

  9. Investigations of Fusarium diseases within Inland Pacific Northwest forest nurseries

    Treesearch

    Robert L. James; R. Kasten Dumroese

    2007-01-01

    Fusarium spp. cause important diseases that limit production of seedlings in forest nurseries worldwide. Several aspects of these diseases have been investigated for many years within Inland Pacific Northwest nurseries to better understand disease etiology, pathogen inoculum sources, and epidemiology. Investigations have also involved improving...

  10. Analysis of gene expression in two growth states of Xylella fastidiosa and its relationship with pathogenicity.

    PubMed

    de Souza, Alessandra A; Takita, Marco A; Coletta-Filho, Helvécio D; Caldana, Camila; Goldman, Gustavo H; Yanai, Giane M; Muto, Nair H; de Oliveira, Regina C; Nunes, Luiz R; Machado, Marcos A

    2003-10-01

    Xylella fastidiosa is a plant pathogen responsible for diseases of economically important crops. Although there is considerable disagreement about its mechanism of pathogenicity, blockage of the vessels is one of the most accepted hypotheses. Loss of virulence by this bacterium was observed after serial passages in axenic culture. To confirm the loss of pathogenicity of X. fastidiosa, the causing agent of citrus variegated chlorosis (CVC), freshly-isolated bacteria (first passage [FP] condition) as well as bacteria obtained after 46 passages in axenic culture (several passage [SP] condition) were inoculated into sweet orange and periwinkle plants. Using real time quantitative polymerase chain reaction, we verified that the colonization of FP cells was more efficient for both hosts. The sequence of the complete X. fastidiosa genome allowed the construction of a DNA microarray that was used to investigate the total changes in gene expression associated with the FP condition. Most genes found to be induced in the FP condition were associated with adhesion and probably with adaptation to the host environment. This report represents the first study of the transcriptome of this pathogen, which has recently gained more importance, since the genome of several strains has been either partially or entirely sequenced.

  11. [New insight into bacterial zoonotic pathogens posing health hazards to humans].

    PubMed

    Ciszewski, Marcin; Czekaj, Tomasz; Szewczyk, Eligia Maria

    2014-01-01

    This article presents the problem of evolutionary changes of zoonotic pathogens responsible for human diseases. Everyone is exposed to the risk of zoonotic infection, particularly employees having direct contact with animals, i.e. veterinarians, breeders, butchers and workers of animal products' processing industry. The article focuses on pathogens monitored by the European Centre for Disease Prevention and Control (ECDC), which has been collecting statistical data on zoonoses from all European Union countries for 19 years and publishing collected data in annual epidemiological reports. Currently, the most important 11 pathogens responsible for causing human zoonotic diseases are being monitored, of which seven are bacteria: Salmonella spp., Campylobacter spp., Listeria monocytogenes, Mycobacterium bovis, Brucella spp., Coxiella burnetti and Verotoxin-producing E. coli (VTEC)/Shiga-like toxin producing E. coli (STEC). As particularly important are considered foodborne pathogens. The article also includes new emerging zoonotic bacteria, which are not currently monitored by ECDC but might pose a serious epidemiological problem in a foreseeable future: Streptococcus iniae, S. suis, S. dysgalactiae and staphylococci: Staphylococcus intermedius, S. pseudintermedius. Those species have just crossed the animal-human interspecies barrier. The exact mechanism of this phenomenon remains unknown, it is connected, however, with genetic variability, capability to survive in changing environment. These abilities derive from DNA rearrangement and horizontal gene transfer between bacterial cells. Substantial increase in the number of scientific publications on this subject, observed over the last few years, illustrates the importance of the problem.

  12. A novel role of the ferric reductase Cfl1 in cell wall integrity, mitochondrial function, and invasion to host cells in Candida albicans.

    PubMed

    Yu, Qilin; Dong, Yijie; Xu, Ning; Qian, Kefan; Chen, Yulu; Zhang, Biao; Xing, Laijun; Li, Mingchun

    2014-11-01

    Candida albicans is an important opportunistic pathogen, causing both superficial mucosal infections and life-threatening systemic diseases. Iron acquisition is an important factor for pathogen-host interaction and also a significant element for the pathogenicity of this organism. Ferric reductases, which convert ferric iron into ferrous iron, are important components of the high-affinity iron uptake system. Sequence analyses have identified at least 17 putative ferric reductase genes in C. albicans genome. CFL1 was the first ferric reductase identified in C. albicans. However, little is known about its roles in C. albicans physiology and pathogenicity. In this study, we found that disruption of CFL1 led to hypersensitivity to chemical and physical cell wall stresses, activation of the cell wall integrity (CWI) pathway, abnormal cell wall composition, and enhanced secretion, indicating a defect in CWI in this mutant. Moreover, this mutant showed abnormal mitochondrial activity and morphology, suggesting a link between ferric reductases and mitochondrial function. In addition, this mutant displayed decreased ability of adhesion to both the polystyrene microplates and buccal epithelial cells and invasion of host epithelial cells. These findings revealed a novel role of C. albicans Cfl1 in maintenance of CWI, mitochondrial function, and interaction between this pathogen and the host. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  13. Epidemiology, clinical features, diagnosis and treatment of Haemophilus ducreyi - a disappearing pathogen?

    PubMed

    Lewis, David A

    2014-06-01

    Chancroid, caused by Haemophilus ducreyi, has declined in importance as a sexually transmitted pathogen in most countries where it was previously endemic. The global prevalence of chancroid is unknown as most countries lack the required laboratory diagnostic capacity and surveillance systems to determine this. H. ducreyi has recently emerged as a cause of chronic skin ulceration in some South Pacific islands. Although no antimicrobial susceptibility data for H. ducreyi have been published for two decades, it is still assumed that the infection will respond successfully to treatment with recommended cephalosporin, macrolide or fluoroquinolone-based regimens. HIV-1-infected patients require careful follow-up due to reports of treatment failure with single dose regimens. Buboes may need additional treatment with either aspiration or excision and drainage.

  14. Disturbance in forest ecosystems caused by pathogens and insects

    Treesearch

    Philip M. Wargo; Philip M. Wargo

    1995-01-01

    Pathogens and insects are major driving forces of processes in forested ecosystems. Disturbances caused by them are as intimately involved in ecosystem dynamics as the more sudden and obvious abiotic disturbances, for example, those caused by wind or fire. However, because pathogens and insects are selective and may affect only one or several related species of...

  15. Multiplex real-time PCR assay for detection of pathogenic Vibrio parahaemolyticus strains.

    PubMed

    He, Peiyan; Chen, Zhongwen; Luo, Jianyong; Wang, Henghui; Yan, Yong; Chen, Lixia; Gao, Wenjie

    2014-01-01

    Foodborne disease caused by pathogenic Vibrio parahaemolyticus has become a serious public health problem in many countries. Rapid diagnosis and the identification of pathogenic V. parahaemolyticus are very important in the context of public health. In this study, an EvaGreen-based multiplex real-time PCR assay was established for the detection of pathogenic V. parahaemolyticus. This assay targeted three genetic markers of V. parahaemolyticus (species-specific gene toxR and virulence genes tdh and trh). The assay could unambiguously identify pathogenic V. parahaemolyticus with a minimum detection limit of 1.4 pg genomic DNA per reaction (concentration giving a positive multiplex real-time PCR result in 95% of samples). The specificity of the assay was evaluated using 72 strains of V. parahaemolyticus and other bacteria. A validation of the assay with clinical samples confirmed its sensitivity and specificity. Our data suggest the newly established multiplex real-time PCR assay is practical, cost-effective, specific, sensitive and capable of high-throughput detection of pathogenic V. parahaemolyticus. Copyright © 2014. Published by Elsevier Ltd.

  16. Recovery Estimation of Dried Foodborne Pathogens Is Directly Related to Rehydration Kinetics

    PubMed Central

    Lang, Emilie; Zoz, Fiona; Iaconelli, Cyril; Guyot, Stéphane; Alvarez-Martin, Pablo; Beney, Laurent; Perrier-Cornet, Jean-Marie; Gervais, Patrick

    2016-01-01

    Drying is a common process which is used to preserve food products and technological microorganisms, but which is deleterious for the cells. The aim of this study is to differentiate the effects of drying alone from the effects of the successive and necessary rehydration. Rehydration of dried bacteria is a critical step already studied in starter culture but not for different kinetics and not for pathogens. In the present study, the influence of rehydration kinetics was investigated for three foodborne pathogens involved in neonatal diseases caused by the consumption of rehydrated milk powder: Salmonella enterica subsp. enterica serovar Typhimurium, Salmonella enterica subsp. enterica serovar Senftenberg and Cronobacter sakazakii. Bacteria were dried in controlled relative humidity atmospheres and then rehydrated using different methods. Our results showed that the survival of the three pathogens was strongly related to rehydration kinetics. Consequently, rehydration is an important step to consider during food safety assessment or during studies of dried foodborne pathogens. Also, it has to be considered with more attention in consumers’ homes during the preparation of food, like powdered infant formula, to avoid pathogens recovery. PMID:27494169

  17. The Impact of Oxygen on Bacterial Enteric Pathogens.

    PubMed

    Wallace, N; Zani, A; Abrams, E; Sun, Y

    2016-01-01

    Bacterial enteric pathogens are responsible for a tremendous amount of foodborne illnesses every year through the consumption of contaminated food products. During their transit from contaminated food sources to the host gastrointestinal tract, these pathogens are exposed and must adapt to fluctuating oxygen levels to successfully colonize the host and cause diseases. However, the majority of enteric infection research has been conducted under aerobic conditions. To raise awareness of the importance in understanding the impact of oxygen, or lack of oxygen, on enteric pathogenesis, we describe in this review the metabolic and physiological responses of nine bacterial enteric pathogens exposed to environments with different oxygen levels. We further discuss the effects of oxygen levels on virulence regulation to establish potential connections between metabolic adaptations and bacterial pathogenesis. While not providing an exhaustive list of all bacterial pathogens, we highlight key differences and similarities among nine facultative anaerobic and microaerobic pathogens in this review to argue for a more in-depth understanding of the diverse impact oxygen levels have on enteric pathogenesis. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Autophagy plays an important role in protecting Pacific oysters from OsHV-1 and Vibrio aestuarianus infections

    PubMed Central

    Moreau, Pierrick; Moreau, Kevin; Segarra, Amélie; Tourbiez, Delphine; Travers, Marie-Agnès; Rubinsztein, David C; Renault, Tristan

    2015-01-01

    Recent mass mortality outbreaks around the world in Pacific oysters, Crassostrea gigas, have seriously affected the aquaculture economy. Although the causes for these mortality outbreaks appear complex, infectious agents are involved. Two pathogens are associated with mass mortality outbreaks, the virus ostreid herpesvirus 1 (OsHV-1) and the bacterium Vibrio aestuarianus. Here we describe the interactions between these 2 pathogens and autophagy, a conserved intracellular pathway playing a key role in innate immunity. We show for the first time that autophagy pathway is present and functional in Pacific oysters and plays an important role to protect animals from infections. This study contributes to better understand the innate immune system of Pacific oysters. PMID:25714877

  19. Autophagy plays an important role in protecting Pacific oysters from OsHV-1 and Vibrio aestuarianus infections.

    PubMed

    Moreau, Pierrick; Moreau, Kevin; Segarra, Amélie; Tourbiez, Delphine; Travers, Marie-Agnès; Rubinsztein, David C; Renault, Tristan

    2015-01-01

    Recent mass mortality outbreaks around the world in Pacific oysters, Crassostrea gigas, have seriously affected the aquaculture economy. Although the causes for these mortality outbreaks appear complex, infectious agents are involved. Two pathogens are associated with mass mortality outbreaks, the virus ostreid herpesvirus 1 (OsHV-1) and the bacterium Vibrio aestuarianus. Here we describe the interactions between these 2 pathogens and autophagy, a conserved intracellular pathway playing a key role in innate immunity. We show for the first time that autophagy pathway is present and functional in Pacific oysters and plays an important role to protect animals from infections. This study contributes to better understand the innate immune system of Pacific oysters.

  20. The trans-kingdom identification of negative regulators of pathogen hypervirulence.

    PubMed

    Brown, Neil A; Urban, Martin; Hammond-Kosack, Kim E

    2016-01-01

    Modern society and global ecosystems are increasingly under threat from pathogens, which cause a plethora of human, animal, invertebrate and plant diseases. Of increasing concern is the trans-kingdom tendency for increased pathogen virulence that is beginning to emerge in natural, clinical and agricultural settings. The study of pathogenicity has revealed multiple examples of convergently evolved virulence mechanisms. Originally described as rare, but increasingly common, are interactions where a single gene deletion in a pathogenic species causes hypervirulence. This review utilised the pathogen-host interaction database (www.PHI-base.org) to identify 112 hypervirulent mutations from 37 pathogen species, and subsequently interrogates the trans-kingdom, conserved, molecular, biochemical and cellular themes that cause hypervirulence. This study investigates 22 animal and 15 plant pathogens including 17 bacterial and 17 fungal species. Finally, the evolutionary significance and trans-kingdom requirement for negative regulators of hypervirulence and the implication of pathogen hypervirulence and emerging infectious diseases on society are discussed. © FEMS 2015.

  1. Genetic Fine Structure of a Salmonella enterica Serovar Typhi Strain Associated with the 2005 Outbreak of Typhoid Fever in Kelantan, Malaysia

    PubMed Central

    Baddam, Ramani; Kumar, Narender; Thong, Kwai-Lin; Ngoi, Soo-Tein; Teh, Cindy Shuan Ju; Yap, Kien-Pong; Chai, Lay-Ching; Avasthi, Tiruvayipati Suma

    2012-01-01

    Among enteric pathogens, Salmonella enterica serovar Typhi is responsible for the largest number of food-borne outbreaks and fatalities. The ability of the pathogen to cause systemic infection for extended durations leads to a high cost of disease control. Chronic carriers play important roles in the evolution of Salmonella Typhi; therefore, identification and in-depth characterization of isolates from clinical cases and carriers, especially those from zones of endemicity where the pathogen has not been extensively studied, are necessary. Here, we describe the genome sequence of the highly virulent Salmonella Typhi strain BL196/05 isolated during the outbreak of typhoid in Kelantan, Malaysia, in 2005. The whole-genome sequence and comparative genomics of this strain should enable us to understand the virulence mechanisms and evolutionary dynamics of this pathogen in Malaysia and elsewhere. PMID:22689247

  2. The proportional lack of archaeal pathogens: Do viruses/phages hold the key?

    PubMed Central

    Gill, Erin E; Brinkman, Fiona S L

    2011-01-01

    Although Archaea inhabit the human body and possess some characteristics of pathogens, there is a notable lack of pathogenic archaeal species identified to date. We hypothesize that the scarcity of disease-causing Archaea is due, in part, to mutually-exclusive phage and virus populations infecting Bacteria and Archaea, coupled with an association of bacterial virulence factors with phages or mobile elements. The ability of bacterial phages to infect Bacteria and then use them as a vehicle to infect eukaryotes may be difficult for archaeal viruses to evolve independently. Differences in extracellular structures between Bacteria and Archaea would make adsorption of bacterial phage particles onto Archaea (i.e. horizontal transfer of virulence) exceedingly hard. If phage and virus populations are indeed exclusive to their respective host Domains, this has important implications for both the evolution of pathogens and approaches to infectious disease control. PMID:21328413

  3. TolC is required for pathogenicity of Xylella fastidiosa in Vitis vinifera grapevines.

    PubMed

    Reddy, Joseph D; Reddy, Stephanie L; Hopkins, Don L; Gabriel, Dean W

    2007-04-01

    Xylella fastidiosa infects a wide range of hosts and causes serious diseases on some of them. The complete genomic sequences of both a citrus variegated chlorosis (CVC) and a Pierce's disease (PD) strain revealed two type I protein secretion plus two multidrug resistance efflux systems, and all evidently were dependent on a single tolC homolog. Marker exchange mutagenesis of the single tolC gene in PD strain Temecula resulted in a total loss of pathogenicity on grape. Importantly, the tolC- mutant strains were not recovered after inoculation into grape xylem, strongly indicating that multidrug efflux is critical to survival of this fastidious pathogen. Both survival and pathogenicity were restored by complementation using tolC cloned in shuttle vector pBBR1MCS-5, which was shown to replicate autonomously, without selection, for 60 days in Temecula growing in planta. These results also demonstrate the ability to complement mutations in X. fastidiosa.

  4. Neutrophil evasion strategies by Streptococcus pneumoniae and Staphylococcus aureus.

    PubMed

    Lewis, Megan L; Surewaard, Bas G J

    2018-03-01

    Humans are well equipped to defend themselves against bacteria. The innate immune system employs diverse mechanisms to recognize, control and initiate a response that can destroy millions of different microbes. Microbes that evade the sophisticated innate immune system are able to escape detection and could become pathogens. The pathogens Streptococcus pneumoniae and Staphylococcus aureus are particularly successful due to the development of a wide variety of virulence strategies for bacterial pathogenesis and they invest significant efforts towards mechanisms that allow for neutrophil evasion. Neutrophils are a primary cellular defense and can rapidly kill invading microbes, which is an indispensable function for maintaining host health. This review compares the key features of Streptococcus pneumoniae and Staphylococcus aureus in epidemiology, with a specific focus on virulence mechanisms utilized to evade neutrophils in bacterial pathogenesis. It is important to understand the complex interactions between pathogenic bacteria and neutrophils so that we can disrupt the ability of pathogens to cause disease.

  5. Unprecedented Abundance of Protein Tyrosine Phosphorylation Modulates Shigella flexneri Virulence.

    PubMed

    Standish, Alistair James; Teh, Min Yan; Tran, Elizabeth Ngoc Hoa; Doyle, Matthew Thomas; Baker, Paul J; Morona, Renato

    2016-10-09

    Evidence is accumulating that protein tyrosine phosphorylation plays a crucial role in the ability of important human bacterial pathogens to cause disease. While most works have concentrated on its role in the regulation of a major bacterial virulence factor, the polysaccharide capsule, recent studies have suggested a much broader role for this post-translational modification. This prompted us to investigate protein tyrosine phosphorylation in the human pathogen Shigella flexneri. We first completed a tyrosine phosphoproteome, identifying 905 unique tyrosine phosphorylation sites on at least 573 proteins (approximately 15% of all proteins). This is the most tyrosine-phosphorylated sites and proteins in a single bacterium identified to date, substantially more than the level seen in eukaryotic cells. Most had not previously been identified and included proteins encoded by the virulence plasmid, which is essential for S. flexneri to invade cells and cause disease. In order to investigate the function of these phosphorylation sites in important virulence factors, phosphomimetic and ablative mutations were constructed in the type 3 secretion system ATPase Spa47 and the master virulence regulator VirB. This revealed that tyrosine residues phosphorylated in our study are critical for Spa47 and VirB activity, and tyrosine phosphorylation likely regulates their functional activity and subsequently the virulence of this major human pathogen. This study suggests that tyrosine phosphorylation plays a critical role in regulating a wide variety of virulence factors in the human pathogen S. flexneri and serves as a base for future studies defining its complete role. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Genetic characteristics and pathogenic mechanisms of periodontal pathogens.

    PubMed

    Amano, A; Chen, C; Honma, K; Li, C; Settem, R P; Sharma, A

    2014-05-01

    Periodontal disease is caused by a group of bacteria that utilize a variety of strategies and molecular mechanisms to evade or overcome host defenses. Recent research has uncovered new evidence illuminating interesting aspects of the virulence of these bacteria and their genomic variability. This paper summarizes some of the strategies utilized by the major species - Aggregatibacter actinomycetemcomitans, Tannerella forsythia, Treponema denticola, and Porphyromonas gingivalis - implicated in the pathogenesis of periodontal disease. Whole-genome sequencing of 14 diverse A. actinomycetemcomitans strains has revealed variations in their genetic content (ranging between 0.4% and 19.5%) and organization. Strikingly, isolates from human periodontal sites showed no genomic changes during persistent colonization. T. forsythia manipulates the cytokine responses of macrophages and monocytes through its surface glycosylation. Studies have revealed that bacterial surface-expressed O-linked glycans modulate T-cell responses during periodontal inflammation. Periodontal pathogens belonging to the "red complex" consortium express neuraminidases, which enables them to scavenge sialic acid from host glycoconjugates. Analysis of recent data has demonstrated that the cleaved sialic acid acts as an important nutrient for bacterial growth and a molecule for the decoration of bacteria surfaces to help evade the host immune attack. In addition, bacterial entry into host cells is also an important prerequisite for the lifestyle of periodontal pathogens such as P. gingivalis. Studies have shown that, after its entry into the cell, this bacterium uses multiple sorting pathways destined for autophagy, lysosomes, or recycling pathways. In addition, P. gingivalis releases outer membrane vesicles which enter cells via endocytosis and cause cellular functional impairment.

  7. Managing root-knot nematodes: A case for cover crops in establishing peach orchards

    USDA-ARS?s Scientific Manuscript database

    Root-knot nematodes (Meloidogyne spp.) are an important pathogen of peach in the United States. Several Meloidogyne spp. have been reported to cause damage to stone fruits, but M. incognita and M. javanica are the predominant species on peach. Preplant fumigant nematicides have traditionally been ...

  8. Draft Genome Sequence of Cercospora arachidicola, Cause of Early Leaf Spot in Peanut

    USDA-ARS?s Scientific Manuscript database

    Cercospora arachidicola and Cercosporidium personatum, causal agents of early and late leaf spot, respectively, are important fungal pathogens of peanut. Leaf spot disease is a major contributor to the economic losses experienced by peanut farmers and the industry. Though peanut germplasms with so...

  9. Complete genome sequence of the plant pathogen Erwinia amylovora strain ATCC 49946

    USDA-ARS?s Scientific Manuscript database

    Erwinia amylovora causes the economically important disease fire blight that affects rosaceous plants, especially pear and apple. Here we report the complete genome sequence and annotation of strain ATCC 49946. The analysis of the sequence and its comparison with sequenced genomes of closely related...

  10. Label-free SERS detection of Salmonella Typhimurium on DNA aptamer modified AgNR substrates

    USDA-ARS?s Scientific Manuscript database

    A straightforward label-free method based on aptamer binding and surface enhanced Raman specstroscopy (SERS) has been developed for the detection of Salmonella Typhimurium, an important foodborne pathogen that causes gastroenteritis in both humans and animals. Surface of the SERS-active silver nanor...

  11. Characterization of resistance to powdery mildew in the Hop cultivars Newport and Comet

    USDA-ARS?s Scientific Manuscript database

    Hop powdery mildew, caused by Podosphaera macularis, is an important disease in the Northwestern U.S. Outbreaks of powdery mildew on cultivars previously resistant to the disease have been reported increasingly with the emergence of virulent pathogen strains capable of overcoming a commonly deployed...

  12. Detoxification of the Fusarium toxin fusaric acid by the soil fungus Aspergillus

    USDA-ARS?s Scientific Manuscript database

    The fungal pathogen Fusarium oxysporum f. sp. vasinfectum (Fov) causes Fusarium wilt in cotton (Gossypium hirsutum L.) and produces the toxin fusaric acid (FA). Previous research indicates that in the high producing strains of Fov, FA plays an important role in virulence. To address the problems o...

  13. Heroes and villains: Research identifies harmful and beneficial microbes in nursery soil

    USDA-ARS?s Scientific Manuscript database

    Phytophthora and Pythium species are common pathogens in nursery systems that can cause rhododendron root rot. Plants with root rot are often stunted, and may wilt and die, thus directly reducing nursery profit. Rhododendrons are an important crop in Pacific Northwest nurseries, but are highly susc...

  14. The genetic diversity of contemporary swine influenza A viruses in the United States

    USDA-ARS?s Scientific Manuscript database

    Introduction: Influenza A virus (IAV) is one of the most important respiratory pathogens of swine. It impacts mortality and causes significant financial losses through decreased production and the costs associated with vaccination and treatment. Further, due to the susceptibility of swine to transie...

  15. Origins of the Xylella fastidiosa prophage-like regions and their impact in genome differentiation

    USDA-ARS?s Scientific Manuscript database

    Xylella fastidiosa is a Gram negative plant pathogen causing many economically important diseases, and analyses of completely sequenced X. fastidiosa genome strains allowed the identification of many prophage-like elements and possibly phage remnants, accounting for up to 15% of the genome compositi...

  16. Screening of wild and cultivated Capsicum germplasm reveals new sources of Verticillium wilt resistance

    USDA-ARS?s Scientific Manuscript database

    Verticillium wilt caused by Verticillium dahliae is an important soilborne disease of pepper (Capsicum species) worldwide. Most commercial pepper cultivars lack resistance to this pathogen. Our objective was to identify resistance to multiple V. dahliae isolates in wild and cultivated Capsicum acces...

  17. Editorial: Emerging approaches for typing, detection, characterization, and traceback of Escherichia coli

    USDA-ARS?s Scientific Manuscript database

    Commensal E. coli inhabit the large intestines of humans and animals and are important in maintaining normal intestinal homeostasis. There are also many groups of disease-causing E. coli, including diarrheagenic and extra-intestinal pathogenic E. coli (ExPEC). There are approximately O188 somatic O...

  18. Detection, breeding, and selection of durable resistance to brown rust in sugarcane

    USDA-ARS?s Scientific Manuscript database

    Brown rust, caused by Puccinia melanocephala, is an important disease of sugarcane in Louisiana. The adaptability of the pathogen has repeatedly resulted in resistant cultivars becoming susceptible once they are widely grown. The frequency of the brown rust resistance gene Bru1 was low in the breedi...

  19. Prevalence of Campylobacter spp. in bulk tank milk and filters from US dairies

    USDA-ARS?s Scientific Manuscript database

    Campylobacter spp. is an important zoonotic microaerophilic bacterial pathogen that caused the majority of US outbreaks associated with nonpasteurized milk from 2007 to 2012. Bulk tank milk and milk filter samples were collected from 236 dairy operations in 17 top dairy states from March through Jul...

  20. Managing Abiotic Factors of Compost to Increase Soilborne Disease Suppression

    ERIC Educational Resources Information Center

    Griffin, Deirdre E.

    2012-01-01

    Soilborne pathogens can devastate crops, causing economic losses for farmers due to reduced yields and expensive management practices. Fumigants and fungicides have harmful impacts on the surrounding environment and can be toxic to humans. Therefore, alternative methods of disease management are important. The disease suppressive abilities of…

  1. StuA is a key regulator of fumonisin production and virulence in Fusarium verticillioides

    USDA-ARS?s Scientific Manuscript database

    Fusarium verticillioides is one of the most important pathogens of maize, producing fumonisin mycotoxins during infection. Ingestion of fumonisin-contaminated corn causes fatal toxicity in livestock and is associated with neural tube birth defects and growth stunting in children. It is also a potent...

  2. A novel phakopsora pachyrhizi resistance allele (rpp) contributed by PI 567068A

    USDA-ARS?s Scientific Manuscript database

    Soybean rust (SBR) caused by the obligate, fungal pathogen Phakopsora pachyrhizi is an economic threat to soybean production, especially in the Americas. Host plant resistance is an important management strategy for SBR. The most recently described resistance to P. pachyrhizi (Rpp) gene is Rpp6 co...

  3. Nox Complex signal and MAPK cascade pathway are cross-linked and essential for pathogenicity and conidiation of mycoparasite Coniothyrium minitans

    USDA-ARS?s Scientific Manuscript database

    The NADPH oxidase complex of a sclerotial mycoparasite Coniothyrium minitans, an important biocontrol agent against crop diseases caused by Sclerotinia sclerotiorum, was identified and its functions involved in conidiation and mycoparasitism were studied. Gene knock-out and complementation experimen...

  4. Identification of Bordetella bronchseptica in fatal pneumonia of dogs and cats

    USDA-ARS?s Scientific Manuscript database

    Infection with Bordetella bronchiseptica is a common cause of tracheobronchitis and upper respiratory disease in dogs and cats, but it can also lead to fatal pneumonia. Identification of this pathogen is important due the risk of transmission to other animals, availability of vaccines and potential...

  5. Role of alternate hosts in epidemiology and pathogen variation of cereal rusts

    USDA-ARS?s Scientific Manuscript database

    Cereal rusts, caused by obligate and biotrophic fungi in the genus Puccinia of basidiomycete are an important group of diseases threatening the world food security. With the recent discovery of alternate hosts for the stripe rust fungus (Puccinia striiformis), all cereal rust fungi are now known ...

  6. Participation of chitin-binding peroxidase isoforms in the wilt pathogenesis of cotton

    USDA-ARS?s Scientific Manuscript database

    Specific chitin-binding isozymes of peroxidase (POX) play an important role in pathogenesis of plant diseases caused with fungi. We studied the dynamics of peroxidase activity in two varieties of cotton (Gossypium hirsutum L.); one was a susceptible and the other resistant to the plant pathogen Vert...

  7. Breeding and genetics of lettuce for resistance against race 2 Verticillium wilt

    USDA-ARS?s Scientific Manuscript database

    Verticillium wilt, caused by Verticillium dahliae Kleb., is an economically important disease of lettuce in central coastal California. Most isolates of the pathogen detected in the Salinas Valley belong to race 1 for which complete resistance exists. However, adequate level of resistance is not ava...

  8. Interpreting diplodiosis: bioactive metabolites in Stenocarpella maydis ear rot of maize

    USDA-ARS?s Scientific Manuscript database

    Stenocarpella maydis is a fungal pathogen of major importance that causes a dry-rot of maize ears and is associated with a neuromycotoxicosis in cattle grazing harvested maize fields in southern Africa and Argentina. Chemical investigations of S. maydis rotted kernels at harvest in Illinois led to t...

  9. Prevalence and characteristics of Shiga toxin-producing Escherichia coli in finishing pigs: implications on public health

    USDA-ARS?s Scientific Manuscript database

    Shiga toxin-producing Escherichia coli (STEC) are important food-borne pathogens, which can cause serious illnesses, including hemorrhagic colitis and hemolytic uremic syndrome. To examine if pigs are potential animal reservoirs for human STEC infections, we conducted a longitudinal cohort study in ...

  10. The consequences of human actions on risks for infectious diseases: a review

    PubMed Central

    Lindahl, Johanna F.; Grace, Delia

    2015-01-01

    The human population is growing, requiring more space for food production, and needing more animals to feed it. Emerging infectious diseases are increasing, causing losses in both human and animal lives, as well as large costs to society. Many factors are contributing to disease emergence, including climate change, globalization and urbanization, and most of these factors are to some extent caused by humans. Pathogens may be more or less prone to emergence in themselves, and rapidly mutating viruses are more common among the emerging pathogens. The climate-sensitive vector-borne diseases are likely to be emerging due to climate changes and environmental changes, such as increased irrigation. This review lists the factors within pathogens that make them prone to emergence, and the modes of transmission that are affected. The anthropogenic changes contributing to disease emergence are described, as well as how they directly and indirectly cause either increased numbers of susceptible or exposed individuals, or cause increased infectivity. Many actions may have multiple direct or indirect effects, and it may be difficult to assess what the consequences may be. In addition, most anthropogenic drivers are related to desired activities, such as logging, irrigation, trade, and travelling, which the society is requiring. It is important to research more about the indirect and direct effects of the different actions to understand both the benefits and the risks. PMID:26615822

  11. A Novel Missense Mutation p.Gly162Glu of the Gene MYL2 Involved in Hypertrophic Cardiomyopathy: A Pedigree Analysis of a Proband.

    PubMed

    Renaudin, Pauline; Janin, Alexandre; Millat, Gilles; Chevalier, Philippe

    2018-04-01

    Hypertrophic cardiomyopathy (HCM), a common and clinically heterogeneous disease characterized by unexplained ventricular myocardial hypertrophy, is mostly caused by mutations in sarcomeric genes. Identifying the genetic cause is important for management, therapy, and genetic counseling. A molecular diagnosis was performed on a 51-year-old woman diagnosed with HCM using a next-generation sequencing workflow based on a panel designed for sequencing the most prevalent cardiomyopathy-causing genes. Segregation analysis was performed on the woman's family. A novel myosin regulatory light chain (MYL2) missense variant, NM_000432.3:c485G>A, p.Gly162Glu, was identified and firstly considered as a putative pathogenic mutation. Among the 27 family members tested, 16 were carriers for the MYL2-p.Gly162Glu mutation, of whom 12 with the phenotype were positive. None of the 11 family members without mutation had cardiomyopathy. Genetic analysis combined with a segregation study allowed us to classify this novel MYL2 variation, p.Gly162Glu, as a novel pathogenic mutation leading to a familial form of HCM. Due to absence of fast in vitro approaches to evaluate the functional impact of missense variants on HCM-causing genes, segregation studies remain, when possible, the easiest approach to evaluate the putative pathogenicity of novel gene variants, more particularly missense ones.

  12. Pseudogymnoascus destructans transcriptome changes during white-nose syndrome infections

    PubMed Central

    Reeder, Sophia M.; Palmer, Jonathan M.; Prokkola, Jenni M.; Lilley, Thomas M.; Reeder, DeeAnn M.

    2017-01-01

    ABSTRACT White nose syndrome (WNS) is caused by the psychrophilic fungus Pseudogymnoascus destructans that can grow in the environment saprotrophically or parasitically by infecting hibernating bats. Infections are pathological in many species of North American bats, disrupting hibernation and causing mortality. To determine what fungal pathways are involved in infection of living tissue, we examined fungal gene expression using RNA-Seq. We compared P. destructans gene expression when grown in culture to that during infection of a North American bat species, Myotis lucifugus, that shows high WNS mortality. Cultured P. destructans was grown at 10 to 14 C and P. destructans growing in vivo was presumably exposed to temperatures ranging from 4 to 8 C during torpor and up to 37 C during periodic arousals. We found that when P. destructans is causing WNS, the most significant differentially expressed genes were involved in heat shock responses, cell wall remodeling, and micronutrient acquisition. These results indicate that this fungal pathogen responds to host-pathogen interactions by regulating gene expression in ways that may contribute to evasion of host responses. Alterations in fungal cell wall structures could allow P. destructans to avoid detection by host pattern recognition receptors and antibody responses. This study has also identified several fungal pathways upregulated during WNS infection that may be candidates for mitigating infection pathology. By identifying host-specific pathogen responses, these observations have important implications for host-pathogen evolutionary relationships in WNS and other fungal diseases. PMID:28614673

  13. Pseudogymnoascus destructans transcriptome changes during white-nose syndrome infections.

    PubMed

    Reeder, Sophia M; Palmer, Jonathan M; Prokkola, Jenni M; Lilley, Thomas M; Reeder, DeeAnn M; Field, Kenneth A

    2017-11-17

    White nose syndrome (WNS) is caused by the psychrophilic fungus Pseudogymnoascus destructans that can grow in the environment saprotrophically or parasitically by infecting hibernating bats. Infections are pathological in many species of North American bats, disrupting hibernation and causing mortality. To determine what fungal pathways are involved in infection of living tissue, we examined fungal gene expression using RNA-Seq. We compared P. destructans gene expression when grown in culture to that during infection of a North American bat species, Myotis lucifugus, that shows high WNS mortality. Cultured P. destructans was grown at 10 to 14 C and P. destructans growing in vivo was presumably exposed to temperatures ranging from 4 to 8 C during torpor and up to 37 C during periodic arousals. We found that when P. destructans is causing WNS, the most significant differentially expressed genes were involved in heat shock responses, cell wall remodeling, and micronutrient acquisition. These results indicate that this fungal pathogen responds to host-pathogen interactions by regulating gene expression in ways that may contribute to evasion of host responses. Alterations in fungal cell wall structures could allow P. destructans to avoid detection by host pattern recognition receptors and antibody responses. This study has also identified several fungal pathways upregulated during WNS infection that may be candidates for mitigating infection pathology. By identifying host-specific pathogen responses, these observations have important implications for host-pathogen evolutionary relationships in WNS and other fungal diseases.

  14. The potential of pathogens as biological control of parthenium weed (Parthenium hysterophorus L.) in Ethiopia.

    PubMed

    Taye, T; Gossmann, M; Einhorn, G; Büttner, C; Metz, R; Abate, D

    2002-01-01

    P. hsyterophorus is an exotic invasive annual weed now causing severe infestation in Ethiopia. Studies on diagnosis, incidence and distribution of pathogens associated with parthenium weed in Ethiopia were carried out from 1998-2002. Several fungal isolates were obtained from seed and other parts of parthenium plants. Among them were putative pathogenic fungal species of the genus Helminthosporium, Phoma, Curvularia, Chaetomium, Alternaria, and Fusarium. However, pathogenecity test of the isolates obtained showed no or non-specific symptoms. It was concluded that these pathogens could be opportunistic with insignificant potential for biological control of parthenium. Two most important diseases associated with parthenium were a rust disease, caused by Puccinia abrupta var. partheniicola, and a phyllody disease, caused by a phytoplasma of fababean phyllody (PBP) phytoplasma group. The rust was commonly found in cool mid altitude (1500-2500 m) areas while phyllody was observed in low to mid altitude regions (900-2500 m) of Ethiopia, with a disease incidence up to 100% and 75%, respectively, in some locations. Study of the individual effects of the rust and phyllody diseases under field conditions showed a reduction on weed morphological parameters (plant height, leaf area, and dry matter yield). Parthenium seed production was reduced by 42% and 85% due to rust and phyllody, respectively. Phyllody and rust diseases of parthenium showed significant potential for classical biological control of parthenium after further confirmation of insect vectors that transmit phyllody and host range of phyllody disease to the related economic plants in Ethiopia.

  15. Chromobacterium violaceum: important insights for virulence and biotechnological potential by exoproteomic studies.

    PubMed

    Ciprandi, Alessandra; da Silva, Wanderson Marques; Santos, Agenor Valadares; de Castro Pimenta, Adriano Monteiro; Carepo, Marta Sofia Peixe; Schneider, Maria Paula Cruz; Azevedo, Vasco; Silva, Artur

    2013-07-01

    Chromobacterium violaceum is a beta-proteobacterium with high biotechnological potential, found in tropical environments. This bacterium causes opportunistic infections in both humans and animals, that can spread throughout several tissues, quickly leading to the death of the host. Genomic studies identified potential mechanisms of pathogenicity but no further studies were done to confirm the expression of these systems. In this study 36 unique protein entries were identified in databank from a two-dimensional profile of C. violaceum secreted proteins. Chromobacterium violaceum exoproteomic preliminary studies confirmed the production of proteins identified as virulence factors (such as a collagenase, flagellum proteins, metallopeptidases, and toxins), allowing us to better understand its pathogenicity mechanisms. Biotechnologically interesting proteins (such as chitinase and chitosanase) were also identified among the secreted proteins, as well as proteins involved in the transport and capture of amino acids, carbohydrates, and oxidative stress protection. Overall, the secreted proteins identified provide us important insights on pathogenicity mechanisms, biotechnological potential, and environment adaptation of C. violaceum.

  16. A network-patch methodology for adapting agent-based models for directly transmitted disease to mosquito-borne disease.

    PubMed

    Manore, Carrie A; Hickmann, Kyle S; Hyman, James M; Foppa, Ivo M; Davis, Justin K; Wesson, Dawn M; Mores, Christopher N

    2015-01-01

    Mosquito-borne diseases cause significant public health burden and are widely re-emerging or emerging. Understanding, predicting, and mitigating the spread of mosquito-borne disease in diverse populations and geographies are ongoing modelling challenges. We propose a hybrid network-patch model for the spread of mosquito-borne pathogens that accounts for individual movement through mosquito habitats, extending the capabilities of existing agent-based models (ABMs) to include vector-borne diseases. The ABM are coupled with differential equations representing 'clouds' of mosquitoes in patches accounting for mosquito ecology. We adapted an ABM for humans using this method and investigated the importance of heterogeneity in pathogen spread, motivating the utility of models of individual behaviour. We observed that the final epidemic size is greater in patch models with a high risk patch frequently visited than in a homogeneous model. Our hybrid model quantifies the importance of the heterogeneity in the spread of mosquito-borne pathogens, guiding mitigation strategies.

  17. Identification of Genetic Bases of Vibrio fluvialis Species-Specific Biochemical Pathways and Potential Virulence Factors by Comparative Genomic Analysis

    PubMed Central

    Lu, Xin; Liang, Weili; Wang, Yunduan; Xu, Jialiang

    2014-01-01

    Vibrio fluvialis is an important food-borne pathogen that causes diarrheal illness and sometimes extraintestinal infections in humans. In this study, we sequenced the genome of a clinical V. fluvialis strain and determined its phylogenetic relationships with other Vibrio species by comparative genomic analysis. We found that the closest relationship was between V. fluvialis and V. furnissii, followed by those with V. cholerae and V. mimicus. Moreover, based on genome comparisons and gene complementation experiments, we revealed genetic mechanisms of the biochemical tests that differentiate V. fluvialis from closely related species. Importantly, we identified a variety of genes encoding potential virulence factors, including multiple hemolysins, transcriptional regulators, and environmental survival and adaptation apparatuses, and the type VI secretion system, which is indicative of complex regulatory pathways modulating pathogenesis in this organism. The availability of V. fluvialis genome sequences may promote our understanding of pathogenic mechanisms for this emerging pathogen. PMID:24441165

  18. Multidrug-resistant pathogens in patients with pneumonia coming from the community.

    PubMed

    Sibila, Oriol; Rodrigo-Troyano, Ana; Shindo, Yuichiro; Aliberti, Stefano; Restrepo, Marcos I

    2016-05-01

    Identification of patients with multidrug-resistant (MDR) pathogens at initial diagnosis is essential for the appropriate selection of empiric treatment of patients with pneumonia coming from the community. The term Healthcare-Associated Pneumonia (HCAP) is controversial for this purpose. Our goal is to summarize and interpret the data addressing the association of MDR pathogens and community-onset pneumonia. Most recent clinical studies conclude that HCAP risk factor does not accurately identify resistant pathogens. Several risk factors related to MDR pathogens, including new ones that were not included in the original HCAP definition, have been described and different risk scores have been proposed. The present review focuses on the most recent literature assessing the importance of different risk factors for MDR pathogens in patients with pneumonia coming from the community. These included generally MDR risk factors, specific risk factors related to methicillin-resistant Staphylococcus aureus or Pseudomonas aeruginosa and clinical scoring systems develop to assess the MDR risk factors and its application in clinical practice. Different MDR risk factors and prediction scores have been recently developed. However, further research is needed in order to help clinicians in distinguishing between different MDR pathogens causing pneumonia.

  19. Characterization and isolation of an extracellular serine protease from the tomato pathogen Colletotrichum coccodes, and it's role in pathogenicity

    USGS Publications Warehouse

    Redman, Regina S.; Rodriguez, Rusty J.

    2002-01-01

    Extracellular enzymes play an important role in the pathogenicity and virulence of phytopathogenic fungi. Several isolates of Colletotrichum coccodes causal agent of anthracnose on tomato, were screened to determine the relationship between protease activity and virulence. A direct relationship was observed between extracellular protease activity and the induction of disease symptoms of fruit and mortality in plants. Isolate Cc155 exhibited the highest protease activity after five days of growth in protease induction medium and produced an extracellular serine protease (sp78) that was 78 kDa, auto-degradative, glucose repressible, and non-glycosylated. To determine the role of sp78 in pathogenicity, a UV-induced extracellular protease deficient mutant (np155) was generated from the wildtype isolate Cc155. Np155 maintained growth rates comparable to Cc155 and produced wildtype levels of extracellular cellulase but did not produce extracellular protease. Unlike Cc155, np155 caused no disease symptoms on tomato fruit and 0% mortality on tomato seedlings. These results suggest that extracellular protease activity is required for pathogenicity and virulence of C. coccodes and that the elimination of protease activity transforms a virulent pathogen to a non-pathogenic endophyte.

  20. Characterization and isolation of an extracellular serine protease from the tomato pathogen Colletotrichum coccodes, and it's role in pathogenicity

    USGS Publications Warehouse

    Redman, R.S.; Rodriguez, R.J.

    2002-01-01

    Extracellular enzymes play an important role in the pathogenicity and virulence of phytopathogenic fungi. Several isolates of Colletotrichum coccodes, causal agent of anthracnose on tomato, were screened to determine the relationship between protease activity and virulence. A direct relationship was observed between extracellular protease activity and the induction of disease symptoms of fruit and mortality in plants. Isolate Cc155 exhibited the highest protease activity after five days of growth in protease induction medium and produced an extracellular serine protease (sp78) that was 78 kDa, auto-degradative, glucose repressible, and non-glycosylated. To determine the role of sp78 in pathogenicity, a uv-induced extracellular protease deficient mutant (np155) was generated from the wildtype isolate Cc155. Np155 maintained growth rates comparable to Cc155 and produced wildtype levels of extracellular cellulase but did not produce extracellular protease. Unlike Cc155, np155 caused no disease symptoms on tomato fruit and 0% mortality on tomato seedlings. These results suggest that extracellular protease activity is required for pathogenicity and virulence of C. coccodes, and that the elimination of protease activity transforms a virulent pathogen to a non-pathogenic endophyte.

  1. The early response during the interaction of fungal phytopathogen and host plant.

    PubMed

    Shen, Yilin; Liu, Na; Li, Chuang; Wang, Xin; Xu, Xiaomeng; Chen, Wan; Xing, Guozhen; Zheng, Wenming

    2017-05-01

    Plants can be infected by a variety of pathogens, most of which can cause severe economic losses. The plants resist the invasion of pathogens via the innate or acquired immune system for surviving biotic stress. The associations between plants and pathogens are sophisticated beyond imaging and the interactions between them can occur at a very early stage after their touching each other. A number of researchers in the past decade have shown that many biochemical events appeared even as early as 5 min after their touching for plant disease resistance response. The early molecular interactions of plants and pathogens are likely to involve protein phosphorylation, ion fluxes, reactive oxygen species (ROS) and other signalling transduction. Here, we reviewed the recent progress in the study for molecular interaction response of fungal pathogens and host plant at the early infection stage, which included many economically important crop fungal pathogens such as cereal rust fungi, tomato Cladosporium fulvum , rice blast and so on. By dissecting the earlier infection stage of the diseases, the avirulent/virulent genes of pathogen or resistance genes of plant could be defined more clearly and accurately, which would undoubtedly facilitate fungal pathogenesis study and resistant crop breeding. © 2017 The Authors.

  2. The early response during the interaction of fungal phytopathogen and host plant

    PubMed Central

    Shen, Yilin; Liu, Na; Li, Chuang; Wang, Xin; Xu, Xiaomeng; Chen, Wan; Xing, Guozhen

    2017-01-01

    Plants can be infected by a variety of pathogens, most of which can cause severe economic losses. The plants resist the invasion of pathogens via the innate or acquired immune system for surviving biotic stress. The associations between plants and pathogens are sophisticated beyond imaging and the interactions between them can occur at a very early stage after their touching each other. A number of researchers in the past decade have shown that many biochemical events appeared even as early as 5 min after their touching for plant disease resistance response. The early molecular interactions of plants and pathogens are likely to involve protein phosphorylation, ion fluxes, reactive oxygen species (ROS) and other signalling transduction. Here, we reviewed the recent progress in the study for molecular interaction response of fungal pathogens and host plant at the early infection stage, which included many economically important crop fungal pathogens such as cereal rust fungi, tomato Cladosporium fulvum, rice blast and so on. By dissecting the earlier infection stage of the diseases, the avirulent/virulent genes of pathogen or resistance genes of plant could be defined more clearly and accurately, which would undoubtedly facilitate fungal pathogenesis study and resistant crop breeding. PMID:28469008

  3. Transcriptome analysis of the fungal pathogen Fusarium oxysporum f. sp. medicaginis during colonisation of resistant and susceptible Medicago truncatula hosts identifies differential pathogenicity profiles and novel candidate effectors.

    PubMed

    Thatcher, Louise F; Williams, Angela H; Garg, Gagan; Buck, Sally-Anne G; Singh, Karam B

    2016-11-03

    Pathogenic members of the Fusarium oxysporum species complex are responsible for vascular wilt disease on many important crops including legumes, where they can be one of the most destructive disease causing necrotrophic fungi. We previously developed a model legume-infecting pathosystem based on the reference legume Medicago truncatula and a pathogenic F. oxysporum forma specialis (f. sp.) medicaginis (Fom). To dissect the molecular pathogenicity arsenal used by this root-infecting pathogen, we sequenced its transcriptome during infection of a susceptible and resistant host accession. High coverage RNA-Seq of Fom infected root samples harvested from susceptible (DZA315) or resistant (A17) M. truncatula seedlings at early or later stages of infection (2 or 7 days post infection (dpi)) and from vegetative (in vitro) samples facilitated the identification of unique and overlapping sets of in planta differentially expressed genes. This included enrichment, particularly in DZA315 in planta up-regulated datasets, for proteins associated with sugar, protein and plant cell wall metabolism, membrane transport, nutrient uptake and oxidative processes. Genes encoding effector-like proteins were identified, including homologues of the F. oxysporum f. sp. lycopersici Secreted In Xylem (SIX) proteins, and several novel candidate effectors based on predicted secretion, small protein size and high in-planta induced expression. The majority of the effector candidates contain no known protein domains but do share high similarity to predicted proteins predominantly from other F. oxysporum ff. spp. as well as other Fusaria (F. solani, F. fujikori, F. verticilloides, F. graminearum and F. pseudograminearum), and from another wilt pathogen of the same class, a Verticillium species. Overall, this suggests these novel effector candidates may play important roles in Fusaria and wilt pathogen virulence. Combining high coverage in planta RNA-Seq with knowledge of fungal pathogenicity protein features facilitated the identification of differentially expressed pathogenicity associated genes and novel effector candidates expressed during infection of a resistant or susceptible M. truncatula host. The knowledge from this first in depth in planta transcriptome sequencing of any F. oxysporum ff. spp. pathogenic on legumes will facilitate the dissection of Fusarium wilt pathogenicity mechanisms on many important legume crops.

  4. Comparative Proteomic Analysis of Different Isolates of Fusarium oxysporum f.sp. lycopersici to Exploit the Differentially Expressed Proteins Responsible for Virulence on Tomato Plants

    PubMed Central

    Manikandan, Rajendran; Harish, Sankarasubramanian; Karthikeyan, Gandhi; Raguchander, Thiruvengadam

    2018-01-01

    The vascular wilt of tomato caused by Fusarium oxysporum f.sp. lycopersici is an important soil borne pathogen causes severe yield loss. The molecular characterization and their interaction with its host is necessary to develop a protection strategy. 20 isolates of F. oxysporum f.sp. lycopersici (FOL) were isolated from wilt infected tomato plants across Tamil Nadu. They were subjected to cultural, morphological, molecular and virulence studies. The results revealed that all the isolates produced both micro and macro conidia with different size, number of cells. The colors of the culture and growth pattern were also varied. In addition, chlamydospores were observed terminally and intercalary. The PCR analysis with F. oxysporum species-specific primer significantly amplified an amplicon of 600 bp fragment in all the isolates. Based on the above characters and pathogenicity, isolate FOL-8 was considered as virulent and FOL-20 was considered as least virulent. Proteomics strategy was adopted to determine the virulence factors between the isolates of FOL-8 and FOL-20. The 2D analyses have showed the differential expression of 17 different proteins. Among them, three proteins were down regulated and 14 proteins were significantly up regulated in FOL-8 than FOL-20 isolate. Among the 17 proteins, 10 distinct spots were analyzed by MALDI-TOF. The functions of the analyzed proteins, suggested that they were involved in pathogenicity, symptom expression and disease development, sporulation, growth, and higher penetration rate on tomato root tissue. Overall, these experiments proves the role of proteome in pathogenicity of F. oxysporum f.sp. lycopersici in tomato and unravels the mechanism behinds the virulence of the pathogen in causing wilt disease. PMID:29559969

  5. Incidence of Aeromonas spp. infection in fish and chicken meat and its related public health hazards: A review.

    PubMed

    Praveen, Praveen Kumar; Debnath, Chanchal; Shekhar, Shashank; Dalai, Nirupama; Ganguly, Subha

    2016-01-01

    Aeromonas is recognized to cause a variety of diseases in man. In humans, they are associated with intestinal and extra-intestinal infections. With the growing importance of Aeromonas as an emerging pathogen, it is important to combat this organism. It is indisputable that Aeromonas strains may produce many different putative virulence factors such as enterotoxins, hemolysins or cytotoxins, and antibiotic resistance against different antibiotics. The ability of these bacteria to grow competitively at 5°C may be indicative of their potential as a public health hazard. Comprehensive enteric disease surveillance strategies, prevention and education are essential for meeting the challenges in the years ahead. It is important for us to promote the value of enteric cultures when patients have a gastrointestinal illness or bloody diarrhea or when multiple cases of enteric disease occur after a common exposure. With the growing importance of Aeromonas as an emerging pathogen, it is important to combat this organism. It is indisputable that Aeromonas strains may produce many different putative virulence factors, such as enterotoxins, hemolysins or cytotoxins. It has been established that aerolysin is a virulence factor contributing to the pathogenesis of Aeromonas hydrophila infection. Fish and chicken play an important role in the transmission of this pathogen to humans. In the present study, the high prevalence of toxin-producing strains was found among the Aeromonas isolates. The ability of these bacteria to grow competitively at 5°C may be indicative of their potential as a public health hazard. The present review was constructed with a view to highlight the zoonotic importance of Aeromonas pathogen in fish and chicken meat.

  6. Incidence of Aeromonas spp. infection in fish and chicken meat and its related public health hazards: A review

    PubMed Central

    Praveen, Praveen Kumar; Debnath, Chanchal; Shekhar, Shashank; Dalai, Nirupama; Ganguly, Subha

    2016-01-01

    Aeromonas is recognized to cause a variety of diseases in man. In humans, they are associated with intestinal and extra-intestinal infections. With the growing importance of Aeromonas as an emerging pathogen, it is important to combat this organism. It is indisputable that Aeromonas strains may produce many different putative virulence factors such as enterotoxins, hemolysins or cytotoxins, and antibiotic resistance against different antibiotics. The ability of these bacteria to grow competitively at 5°C may be indicative of their potential as a public health hazard. Comprehensive enteric disease surveillance strategies, prevention and education are essential for meeting the challenges in the years ahead. It is important for us to promote the value of enteric cultures when patients have a gastrointestinal illness or bloody diarrhea or when multiple cases of enteric disease occur after a common exposure. With the growing importance of Aeromonas as an emerging pathogen, it is important to combat this organism. It is indisputable that Aeromonas strains may produce many different putative virulence factors, such as enterotoxins, hemolysins or cytotoxins. It has been established that aerolysin is a virulence factor contributing to the pathogenesis of Aeromonas hydrophila infection. Fish and chicken play an important role in the transmission of this pathogen to humans. In the present study, the high prevalence of toxin-producing strains was found among the Aeromonas isolates. The ability of these bacteria to grow competitively at 5°C may be indicative of their potential as a public health hazard. The present review was constructed with a view to highlight the zoonotic importance of Aeromonas pathogen in fish and chicken meat. PMID:27051177

  7. Haemophilus influenzae serotype a as a cause of serious invasive infections.

    PubMed

    Ulanova, Marina; Tsang, Raymond S W

    2014-01-01

    Haemophilus influenzae, particularly H influenzae serotype b (Hib), is an important pathogen that causes serious diseases like meningitis and septicaemia. Since the introduction of Hib conjugate vaccines in the 1990s, the epidemiology of invasive H influenzae disease has changed substantially, with most infections now caused by non-Hib strains. We discuss the importance of H influenzae serotype a (Hia) as a cause of serious morbidity and mortality and its global epidemiology, clinical presentation, microbiology, immunology, prevention, and control. Much like Hib, the capsule of Hia is an important virulence factor contributing to the development of invasive disease. Molecular typing of Hia has identified distinct clonal groups, with some linked to severe disease and high case-fatality rates. Similarities between Hia and Hib capsules, their clinical presentation, and immunology of infection suggest that a bivalent Hia-Hib capsular polysaccharide-protein conjugate vaccine could offer protection against these two important serotypes of H influenzae. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Evaluation of effects of Mycoplasma mastitis on milk composition in dairy cattle from South Australia.

    PubMed

    Al-Farha, Abd Al-Bar; Hemmatzadeh, Farhid; Khazandi, Manouchehr; Hoare, Andrew; Petrovski, Kiro

    2017-11-25

    Mycoplasma mastitis is increasingly posing significant impact on dairy industry. Although the effects of major conventional mastitis pathogens on milk components has been widely addressed in the literature, limited data on the effects of different Mycoplasma and Acholeplasma spp. on milk quality and quantity is available. The aim of this study was to determine the casual relationship of Mycoplasma spp. and A. laidlawii to mastitis and compare them to subclinical mastitis caused by conventional mastitis pathogens from a single dairy herd in South Australia; Mycoplasma spp. and A. laidlawii were detected using PCR applied directly to milk samples. The herd had mastitis problem with high somatic cell count and low response rate to conventional antimicrobial therapy. A total of 288 cow-level milk samples were collected aseptically and used in this study. Conventional culture showed a predominance of coagulase-negative staphylococci, followed by coagulase-positive staphylococci, Streptococcus spp., Enterococcus spp., E. coli, and Klebsiella spp. PCR results showed a high prevalence of mycoplasmas (76.7%), including A. laidlawii (10.8%), M. bovis (6.2%), M. bovirhinis (5.6%), M. arginini (2%), and (52.1%) of cows were co-infected with two or more Mycoplasma and Acholeplasma species. Mycoplasma co-infection significantly increased somatic cell counts (SCC) similar to conventional mastitis pathogens and compared to non-infected cows with 389.3, 550.3 and 67.3 respectively; and decreased the milk yield with 29.0, 29.9 and 34.4 l, respectively. Mycoplasma co-infection caused significant increase in protein percentage, and significant decrease in fat percentage and total milk solids, similar to other conventional mastitis pathogens. In contrast, changes in milk composition and yield caused by various individual Mycoplasma species were non-significant. Mycoplasma mastitis had on-farm economic consequences similar to common conventional mastitis pathogens. Results of our study indicate that co-infection Mycoplasma mastitis caused similar effect on milk composition to other mastitis pathogens and we hope these findings raise the awareness of the importance of their detection on routine diagnostic panels.

  9. Competition for attachment of aquaculture candidate probiotic and pathogenic bacteria on fish intestinal mucus.

    PubMed

    Vine, N G; Leukes, W D; Kaiser, H; Daya, S; Baxter, J; Hecht, T

    2004-06-01

    Probiotics for aquaculture are generally only selected by their ability to produce antimicrobial metabolites; however, attachment to intestinal mucus is important in order to remain within the gut of its host. Five candidate probiotics (AP1-AP5), isolated from the clownfish, Amphiprion percula (Lacepéde), were examined for their ability to attach to fish intestinal mucus and compete with two pathogens, Aeromonas hydrophila and Vibrio alginolyticus. Two different radioactive isotopes were used to quantify competition between pathogens and probionts. Attachment of the pathogens was enhanced by the presence of the candidate probiotics. However, the addition of the candidate probiotics after the pathogens resulted in reduced pathogen attachment. Only AP5 caused lower attachment success of V. alginolyticus when added before the pathogen. When AP5 was added first, the average attachment change was 41% compared with 72% when added after V. alginolyticus, suggesting that the probiotic is displaced but that enhanced attachment of the pathogen does not occur. Conversely, when V. alginolyticus was added first, followed by AP5, attachment change was 37% while AP5 had 92% attachment change when added second. This implies that the pathogen was displaced by the candidate probiotic and therefore it appeared that, based on the ability of probiont AP5 to attach to mucus, the growth of the pathogen in the digestive tract might be suppressed by the candidate probiont's presence.

  10. Development of qPCR systems to quantify shoot infections by canker-causing pathogens in stone fruits and nut crops.

    PubMed

    Luo, Y; Gu, S; Felts, D; Puckett, R D; Morgan, D P; Michailides, T J

    2017-02-01

    To develop real-time PCR assays for quantification of shoot infection levels of canker disease of stone fruits and nut crops caused by six fungal pathogen groups. This study focused on six major canker-causing fungal pathogen groups: Phomopsis sp., Botryosphaeria dothidea, Lasiodiplodia sp., Cytospora sp., Neofusicoccum sp. and Diplodia sp., occurring in stone fruits and nut crops in California. DNA primers were designed to specifically target each of the six pathogen groups after the specificity tests using canker-causing and non-canker-causing pathogens and by using DNA sequences of other species from GenBank using blast. The quantitative real-time PCR (qPCR) systems were developed and used to quantify the infection levels of inoculated dried plum shoots. For Neofusicoccum sp. and Phomopsis sp., which were used in inoculation of walnut shoots, the values of the molecular severity ranged from 5·60 to 6·94 during the 16 days of latent infection period. The qPCR assays were more efficient, accurate and precise to quantify latent infections caused by canker-causing pathogens as compared to the traditional plating methods. This study demonstrated the potential of using the developed qPCR systems for epidemiological studies on canker diseases of woody plants. © 2016 The Society for Applied Microbiology.

  11. Quantifying known and emerging uterine pathogens, and evaluating their association with metritis and fever in dairy cows.

    PubMed

    Cunha, Federico; Jeon, Soo Jin; Daetz, Rodolfo; Vieira-Neto, Achilles; Laporta, Jimena; Jeong, K Casey; Barbet, Anthony F; Risco, Carlos A; Galvão, Klibs N

    2018-07-01

    Metritis is caused by polymicrobial infection; however, recent metagenomic work challenges the importance of known pathogens such as Escherichia coli and Trueperella pyogenes while identifying potential new pathogens such as Bacteroides pyogenes, Porphyromonas levii and Helcococcus ovis. This study aims to quantify known and emerging uterine pathogens, and to evaluate their association with metritis and fever in dairy cows. Metritis was diagnosed at 6 ± 2 days postpartum, a uterine swab was collected and rectal temperature was measured. 39 cows were classified into three groups: Healthy (n = 14), Metritis without fever (MNoFever; n = 12), and Metritis with fever (MFever; n = 13). Absolute copy number was determined for total bacteria and for 8 potentially pathogenic bacteria using droplet digital PCR. Both MNoFever and MFever cows had higher copy number of total bacteria, Fusobacterium necrophorum, Prevotella melaninogenica, Bacteroides pyogenes, Porphyromonas levii, and Helcococcus ovis than Healthy cows. MNoFever and MFever groups were similar. There was no difference among groups in copy number of Escherichia coli, Trueperella pyogenes, and Bacteroides heparinolyticus, and they all had low copy numbers. Our work confirms the importance of some bacteria identified by culture-based studies in the pathogenesis of metritis such as Fusobacterium necrophorum and Prevotella melaninogenica; however, it challenges the importance of others such as Escherichia coli and Trueperella pyogenes at the time of metritis diagnosis. Additionally, Bacteroides pyogenes, Porphyromonas levii, and Helcococcus ovis were recognized as emerging pathogens involved in the etiology of metritis. Furthermore, fever was not associated with the total bacterial load or specific bacteria. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. [Important vector-borne infectious diseases among humans in Germany. Epidemiological aspects].

    PubMed

    Frank, C; Faber, M; Hellenbrand, W; Wilking, H; Stark, K

    2014-05-01

    Vector-borne infections pathogenic to humans play an important role in Germany. The relevant zoonotic pathogens are either endemic throughout Germany (e.g. Borrelia burgdorferi sensu latu) or only in specific regions, e.g. tick-borne encephalitis (TBE) virus and hantavirus. They cause a substantial burden of disease. Prevention and control largely rely on public advice and the application of personal protective measures (e.g. TBE virus vaccination and protection against vectors). High quality surveillance and targeted epidemiological studies are fundamental for the evaluation of temporal and spatial risks of infection and the effectiveness of preventive measures. Aside from endemic pathogens, vector-borne infections acquired abroad, mostly transmitted by mosquitoes, have to be systematically and intensively monitored as well, to assess the risk of infection for German residents traveling abroad and to adequately evaluate the risk of autochthonous transmission. Related issues, such as invasive species of mosquitoes in Germany and climate change, have to be taken into consideration. Such pathogens include West Nile, dengue and chikungunya viruses, as well as malaria parasites (Plasmodium species). The article presents an overview of the epidemiological situation of selected relevant vector-borne infections in Germany.

  13. Seed bank survival of an invasive species, but not of two native species, declines with invasion.

    PubMed

    Orrock, John L; Christopher, Cory C; Dutra, Humberto P

    2012-04-01

    Soil-borne seed pathogens may play an important role in either hindering or facilitating the spread of invasive exotic plants. We examined whether the invasive shrub Lonicera maackii (Caprifoliaceae) affected fungi-mediated mortality of conspecific and native shrub seeds in a deciduous forest in eastern Missouri. Using a combination of L. maackii removal and fungicide treatments, we found no effect of L. maackii invasion on seed viability of the native Symphoricarpos orbiculatus (Caprifoliaceae) or Cornus drummondii (Cornaceae). In contrast, fungi were significant agents of L. maackii seed mortality in invaded habitats. Losses of L. maackii to soil fungi were also significant in invaded habitats where L. maackii had been removed, although the magnitude of the effect of fungi was lower, suggesting that changes in soil chemistry or microhabitat caused by L. maackii were responsible for affecting fungal seed pathogens. Our work suggests that apparent competition via soil pathogens is not an important factor contributing to impacts of L. maackii on native shrubs. Rather, we found that fungal seed pathogens have density-dependent effects on L. maackii seed survival. Therefore, while fungal pathogens may provide little biotic resistance to early invasion by L. maackii, our study illustrates that more work is needed to understand how changes in fungal pathogens during the course of an invasion contribute to the potential for restoration of invaded systems. More generally, our study suggests that increased rates of fungal pathogen attack may be realized by invasive plants, such as L. maackii, that change the chemical or physical environment of the habitats they invade.

  14. The Interactomic Analysis Reveals Pathogenic Protein Networks in Phomopsis longicolla Underlying Seed Decay of Soybean.

    PubMed

    Li, Shuxian; Musungu, Bryan; Lightfoot, David; Ji, Pingsheng

    2018-01-01

    Phomopsis longicolla T. W. Hobbs (syn. Diaporthe longicolla ) is the primary cause of Phomopsis seed decay (PSD) in soybean, Glycine max (L.) Merrill. This disease results in poor seed quality and is one of the most economically important seed diseases in soybean. The objectives of this study were to infer protein-protein interactions (PPI) and to identify conserved global networks and pathogenicity subnetworks in P. longicolla including orthologous pathways for cell signaling and pathogenesis. The interlog method used in the study identified 215,255 unique PPIs among 3,868 proteins. There were 1,414 pathogenicity related genes in P. longicolla identified using the pathogen host interaction (PHI) database. Additionally, 149 plant cell wall degrading enzymes (PCWDE) were detected. The network captured five different classes of carbohydrate degrading enzymes, including the auxiliary activities, carbohydrate esterases, glycoside hydrolases, glycosyl transferases, and carbohydrate binding molecules. From the PPI analysis, novel interacting partners were determined for each of the PCWDE classes. The most predominant class of PCWDE was a group of 60 glycoside hydrolases proteins. The glycoside hydrolase subnetwork was found to be interacting with 1,442 proteins within the network and was among the largest clusters. The orthologous proteins FUS3, HOG, CYP1, SGE1, and the g5566t.1 gene identified in this study could play an important role in pathogenicity. Therefore, the P. longicolla protein interactome (PiPhom) generated in this study can lead to a better understanding of PPIs in soybean pathogens. Furthermore, the PPI may aid in targeting of genes and proteins for further studies of the pathogenicity mechanisms.

  15. The Interactomic Analysis Reveals Pathogenic Protein Networks in Phomopsis longicolla Underlying Seed Decay of Soybean

    PubMed Central

    Li, Shuxian; Musungu, Bryan; Lightfoot, David; Ji, Pingsheng

    2018-01-01

    Phomopsis longicolla T. W. Hobbs (syn. Diaporthe longicolla) is the primary cause of Phomopsis seed decay (PSD) in soybean, Glycine max (L.) Merrill. This disease results in poor seed quality and is one of the most economically important seed diseases in soybean. The objectives of this study were to infer protein–protein interactions (PPI) and to identify conserved global networks and pathogenicity subnetworks in P. longicolla including orthologous pathways for cell signaling and pathogenesis. The interlog method used in the study identified 215,255 unique PPIs among 3,868 proteins. There were 1,414 pathogenicity related genes in P. longicolla identified using the pathogen host interaction (PHI) database. Additionally, 149 plant cell wall degrading enzymes (PCWDE) were detected. The network captured five different classes of carbohydrate degrading enzymes, including the auxiliary activities, carbohydrate esterases, glycoside hydrolases, glycosyl transferases, and carbohydrate binding molecules. From the PPI analysis, novel interacting partners were determined for each of the PCWDE classes. The most predominant class of PCWDE was a group of 60 glycoside hydrolases proteins. The glycoside hydrolase subnetwork was found to be interacting with 1,442 proteins within the network and was among the largest clusters. The orthologous proteins FUS3, HOG, CYP1, SGE1, and the g5566t.1 gene identified in this study could play an important role in pathogenicity. Therefore, the P. longicolla protein interactome (PiPhom) generated in this study can lead to a better understanding of PPIs in soybean pathogens. Furthermore, the PPI may aid in targeting of genes and proteins for further studies of the pathogenicity mechanisms. PMID:29666630

  16. FNR Regulates the Expression of Important Virulence Factors Contributing to the Pathogenicity of Avian Pathogenic Escherichia coli

    PubMed Central

    Barbieri, Nicolle L.; Vande Vorde, Jessica A.; Baker, Alison R.; Horn, Fabiana; Li, Ganwu; Logue, Catherine M.; Nolan, Lisa K.

    2017-01-01

    Avian pathogenic Escherichia coli (APEC) is the etiologic agent of colibacillosis, an important cause of morbidity and mortality in poultry. Though, many virulence factors associated with APEC pathogenicity are known, their regulation remains unclear. FNR (fumarate and nitrate reduction) is a well-known global regulator that works as an oxygen sensor and has previously been described as a virulence regulator in bacterial pathogens. The goal of this study was to examine the role of FNR in the regulation of APEC virulence factors, such as Type I fimbriae, and processes such as adherence and invasion, type VI secretion, survival during oxidative stress, and growth in iron-restricted environments. To accomplish this goal, APEC O1, a well-characterized, highly virulent, and fully sequenced strain of APEC harboring multiple virulence mechanisms, some of which are plasmid-linked, was compared to its FNR mutant for expression of various virulence traits. Deletion of FNR was found to affect APEC O1's adherence, invasion and expression of ompT, a plasmid-encoded outer membrane protein, type I fimbriae, and aatA, encoding an autotransporter. Indeed, the fnr− mutant showed an 8-fold reduction in expression of type I fimbriae and a highly significant (P < 0.0001) reduction in expression of fimA, ompT (plasmid-borne), and aatA. FNR was also found to regulate expression of the type VI secretion system, affecting the expression of vgrG. Further, FNR was found to be important to APEC O1's growth in iron-deficient media and survival during oxidative stress with the mutant showing a 4-fold decrease in tolerance to oxidative stress, as compared to the wild type. Thus, our results suggest that FNR functions as an important regulator of APEC virulence. PMID:28690981

  17. Photobacterium damselae subsp. damselae, an Emerging Fish Pathogen in the Black Sea: Evidence of a Multiclonal Origin

    PubMed Central

    Terceti, Mateus S.; Ogut, Hamdi

    2016-01-01

    ABSTRACT Photobacterium damselae subsp. damselae is considered to be an emerging pathogen of marine fish of importance in aquaculture, with a notable increase in its geographical distribution during the last several years. In this study, we carried out for the first time to our knowledge a genetic and pathobiological characterization of 14 strains isolated from sea bass (Dicentrarchus labrax) reared in the Southeastern Black Sea, where high mortalities were observed at two aquaculture farms during the summer and autumn of 2011. Heterogeneity was evidenced among strains in phenotypical traits, such as sucrose fermentation, motility, and hemolysis. Although 11 of 14 isolates were hemolytic, we found that all of the isolates lacked the pPHDD1 virulence plasmid that encodes the phospholipase-D damselysin (Dly) and the pore-forming toxin PhlyP, two hemolysins previously reported to constitute major virulence factors for turbot. Subsequent PCR and sequencing analyses demonstrated that the 11 hemolytic isolates harbored a complete hlyAch gene, a chromosome I-borne gene that encodes HlyAch hemolysin, whereas the three nonhemolytic isolates contained hlyAch pseudogenes caused by insertion sequence elements. Virulence challenges with two representative strains revealed that, albeit less virulent than the pPHDD1-harboring strain RM-71, the plasmidless hlyAch-positive and hlyAch-negative Black Sea isolates were pathogenic for sea bass. A phylogenetic analysis based on the toxR gene sequence uncovered a greater diversity in the isolates, indicating that the presence of this pathogen in the Black Sea was not caused by the introduction and spread of a single virulent clone but by the proliferation of different clones. IMPORTANCE The geographical distribution of marine bacterial pathogens is undergoing a worldwide increase. In particular, bacteria of the group vibrios are increasingly being isolated as the causative agents of disease in novel species of cultivated fish in areas where they had not been previously reported. Here we characterize for the first time to our knowledge a collection of isolates of the fish and human pathogen Photobacterium damselae subsp. damselae from diseased sea bass reared in the Black Sea. We uncovered great genetic diversity in the Black Sea isolates of this pathogen, suggesting a multiclonal origin. We also demonstrate for the first time that these isolates bear pathogenic potential for sea bass cultures by virulence challenges. PMID:27084008

  18. Seedborne Pathogenic Fungi in Common Bean (Phaseolus vulgaris cv. INTA Rojo) in Nicaragua.

    PubMed

    Marcenaro, Delfia; Valkonen, Jari P T

    2016-01-01

    Common bean (Phaseolus vulgaris L.) is an important legume with high nutritional value. In Nicaragua, certified healthy seeds of local bean varieties are not available, and seedborne fungi have gained little attention. Here, were surveyed seedborne pathogenic fungi in an important local bean cultivar, 'INTA Rojo'. Beans grown in the four main production areas in Nicaragua (Boaco, Carazo, Estelí, Matagalpa) for future use as seed stock were sampled from four seed storehouses and six seed lots. A total of 133 fungal strains were isolated from surface-sterilized beans and inoculated to healthy lima beans (Phaseolus lunatus) under controlled conditions. Eighty-seven isolates caused symptoms of varying severity in the seedlings, including discoloration, necrotic lesions, cankers, rot, and lethal necrosis. Pathogenic isolates were divided into eight phenotypically distinguishable groups based on morphology and growth characteristics on artificial growth medium, and further identified by analysis of the internal transcribed spacer sequences (ITS1 and ITS2) of the ribosomal RNA genes. The pathogenic isolates belonged to eight genera. Fusarium spp. (F. chlamydosporum, F. equiseti, F. incarnatum), Lasiodiplodia theobromae, Macrophomina phaseolina, and Penicillium citrinum were the most damaging and common fungi found in the seed lots. Furthermore, Corynespora cassiicola, Colletotrichum capsisi, Colletotrichum gloeosporioides, Aspergillus flavus, and Diaporthe sp. (Phomopsis) were seedborne in cultivar 'INTA Rojo' and found to be pathogenic to bean seedlings. This study reveals, for the first time, many seedborne pathogenic fungi in beans in Nicaragua; furthermore, prior to this study, little information was available concerning F. equiseti, F. incarnatum, L. theobromae, C. cassiicola, and Diaporthe spp. as seedborne pathogens of common bean. Our results lay the basis for developing diagnostic tools for seed health inspection and for further study of the epidemiology, ecology, and control of the pathogenic fungi of common beans in the field.

  19. Bacterial genomics reveal the complex epidemiology of an emerging pathogen in arctic and boreal ungulates

    USGS Publications Warehouse

    Forde, Taya L.; Orsel, Karin; Zadoks, Ruth N.; Biek, Roman; Adams, Layne G.; Checkley, Sylvia L.; Davison, Tracy; De Buck, Jeroen; Dumond, Mathieu; Elkin, Brett T.; Finnegan, Laura; Macbeth, Bryan J.; Nelson, Cait; Niptanatiak, Amanda; Sather, Shane; Schwantje, Helen M.; van der Meer, Frank; Kutz, Susan J.

    2016-01-01

    Northern ecosystems are currently experiencing unprecedented ecological change, largely driven by a rapidly changing climate. Pathogen range expansion, and emergence and altered patterns of infectious disease, are increasingly reported in wildlife at high latitudes. Understanding the causes and consequences of shifting pathogen diversity and host-pathogen interactions in these ecosystems is important for wildlife conservation, and for indigenous populations that depend on wildlife. Among the key questions are whether disease events are associated with endemic or recently introduced pathogens, and whether emerging strains are spreading throughout the region. In this study, we used a phylogenomic approach to address these questions of pathogen endemicity and spread for Erysipelothrix rhusiopathiae, an opportunistic multi-host bacterial pathogen associated with recent mortalities in arctic and boreal ungulate populations in North America. We isolated E. rhusiopathiae from carcasses associated with large-scale die-offs of muskoxen in the Canadian Arctic Archipelago, and from contemporaneous mortality events and/or population declines among muskoxen in northwestern Alaska and caribou and moose in western Canada. Bacterial genomic diversity differed markedly among these locations; minimal divergence was present among isolates from muskoxen in the Canadian Arctic, while in caribou and moose populations, strains from highly divergent clades were isolated from the same location, or even from within a single carcass. These results indicate that mortalities among northern ungulates are not associated with a single emerging strain of E. rhusiopathiae, and that alternate hypotheses need to be explored. Our study illustrates the value and limitations of bacterial genomic data for discriminating between ecological hypotheses of disease emergence, and highlights the importance of studying emerging pathogens within the broader context of environmental and host factors.

  20. Evaluating the pathogenic potential of environmental Escherichia coli by using the Caenorhabditis elegans infection model.

    PubMed

    Merkx-Jacques, Alexandra; Coors, Anja; Brousseau, Roland; Masson, Luke; Mazza, Alberto; Tien, Yuan-Ching; Topp, Edward

    2013-04-01

    The detection and abundance of Escherichia coli in water is used to monitor and mandate the quality of drinking and recreational water. Distinguishing commensal waterborne E. coli isolates from those that cause diarrhea or extraintestinal disease in humans is important for quantifying human health risk. A DNA microarray was used to evaluate the distribution of virulence genes in 148 E. coli environmental isolates from a watershed in eastern Ontario, Canada, and in eight clinical isolates. Their pathogenic potential was evaluated with Caenorhabditis elegans, and the concordance between the bioassay result and the pathotype deduced by genotyping was explored. Isolates identified as potentially pathogenic on the basis of their complement of virulence genes were significantly more likely to be pathogenic to C. elegans than those determined to be potentially nonpathogenic. A number of isolates that were identified as nonpathogenic on the basis of genotyping were pathogenic in the infection assay, suggesting that genotyping did not capture all potentially pathogenic types. The detection of the adhesin-encoding genes sfaD, focA, and focG, which encode adhesins; of iroN2, which encodes a siderophore receptor; of pic, which encodes an autotransporter protein; and of b1432, which encodes a putative transposase, was significantly associated with pathogenicity in the infection assay. Overall, E. coli isolates predicted to be pathogenic on the basis of genotyping were indeed so in the C. elegans infection assay. Furthermore, the detection of C. elegans-infective environmental isolates predicted to be nonpathogenic on the basis of genotyping suggests that there are hitherto-unrecognized virulence factors or combinations thereof that are important in the establishment of infection.

  1. EIF2AK4 Mutations in Patients Diagnosed With Pulmonary Arterial Hypertension.

    PubMed

    Best, D Hunter; Sumner, Kelli L; Smith, Benjamin P; Damjanovich-Colmenares, Kristy; Nakayama, Ikue; Brown, Lynette M; Ha, Youna; Paul, Eleri; Morris, Ashley; Jama, Mohamed A; Dodson, Mark W; Bayrak-Toydemir, Pinar; Elliott, C Gregory

    2017-04-01

    Differentiating pulmonary venoocclusive disease (PVOD) and pulmonary capillary hemangiomatosis (PCH) from idiopathic pulmonary arterial hypertension (IPAH) or heritable pulmonary arterial hypertension (HPAH) is important clinically. Mutations in eukaryotic translation initiation factor 2 alpha kinase 4 (EIF2AK4) cause heritable PVOD and PCH, whereas mutations in other genes cause HPAH. The aim of this study was to describe the frequency of pathogenic EIF2AK4 mutations in patients diagnosed clinically with IPAH or HPAH. Sanger sequencing and deletion/duplication analysis were performed to detect mutations in the bone morphogenetic protein receptor type II (BMPR2) gene in 81 patients diagnosed at 30 North American medical centers with IPAH (n = 72) or HPAH (n = 9). BMPR2 mutation-negative patients (n = 67) were sequenced for mutations in four other genes (ACVRL1, ENG, CAV1, and KCNK3) known to cause HPAH. Patients negative for mutations in all known PAH genes (n = 66) were then sequenced for mutations in EIF2AK4. We assessed the pathogenicity of EIF2AK4 mutations and reviewed clinical characteristics of patients with pathogenic EIF2AK4 mutations. Pathogenic BMPR2 mutations were identified in 8 of 72 (11.1%) patients with IPAH and 6 of 9 (66.7%) patients with HPAH. A novel homozygous EIF2AK4 mutation (c.257+4A>C) was identified in 1 of 9 (11.1%) patients diagnosed with HPAH. The novel EIF2AK4 mutation (c.257+4A>C) was homozygous in two sisters with severe pulmonary hypertension. None of the 72 patients with IPAH had biallelic EIF2AK4 mutations. Pathogenic biallelic EIF2AK4 mutations are rarely identified in patients diagnosed with HPAH. Identification of pathogenic biallelic EIF2AK4 mutations can aid clinicians in differentiating HPAH from heritable PVOD or PCH. Copyright © 2016 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  2. Plant Pathogen-Induced Water-Soaking Promotes Salmonella enterica Growth on Tomato Leaves

    PubMed Central

    Potnis, Neha; Colee, James; Jones, Jeffrey B.

    2015-01-01

    Plant pathogen infection is a critical factor for the persistence of Salmonella enterica on plants. We investigated the mechanisms responsible for the persistence of S. enterica on diseased tomato plants by using four diverse bacterial spot Xanthomonas species that differ in disease severities. Xanthomonas euvesicatoria and X. gardneri infection fostered S. enterica growth, while X. perforans infection did not induce growth but supported the persistence of S. enterica. X. vesicatoria-infected leaves harbored S. enterica populations similar to those on healthy leaves. Growth of S. enterica was associated with extensive water-soaking and necrosis in X. euvesicatoria- and X. gardneri-infected plants. The contribution of water-soaking to the growth of S. enterica was corroborated by an increased growth of populations on water-saturated leaves in the absence of a plant pathogen. S. enterica aggregates were observed with bacterial spot lesions caused by either X. euvesicatoria or X. vesicatoria; however, more S. enterica aggregates formed on X. euvesicatoria-infected leaves as a result of larger lesion sizes per leaf area and extensive water-soaking. Sparsely distributed lesions caused by X. vesicatoria infection do not support the overall growth of S. enterica or aggregates in areas without lesions or water-soaking; S. enterica was observed as single cells and not aggregates. Thus, pathogen-induced water-soaking and necrosis allow S. enterica to replicate and proliferate on tomato leaves. The finding that the pathogen-induced virulence phenotype affects the fate of S. enterica populations in diseased plants suggests that targeting of plant pathogen disease is important in controlling S. enterica populations on plants. PMID:26386057

  3. Preoperative biliary colonization/infection caused by multidrug-resistant (MDR) pathogens in patients undergoing major hepatectomy with extrahepatic bile duct resection.

    PubMed

    Sugawara, Gen; Yokoyama, Yukihiro; Ebata, Tomoki; Igami, Tsuyoshi; Yamaguchi, Junpei; Mizuno, Takashi; Yagi, Tetsuya; Nagino, Masato

    2018-05-01

    The aim of this study was to review the surgical outcomes of patients who underwent major hepatectomy with extrahepatic bile duct resection after preoperative biliary drainage with a particular focus on the impact of preoperative biliary colonization/infection caused by multidrug-resistant pathogens. Medical records of patients who underwent hepatobiliary resection after preoperative external biliary drainage between 2001 and 2015 were reviewed retrospectively. Prophylactic antibiotics were selected according to the results of drug susceptibility tests of surveillance bile cultures. In total, 565 patients underwent surgical resection. Based on the results of bile cultures, the patients were classified into three groups: group A, patients with negative bile cultures (n = 113); group B, patients with positive bile cultures without multidrug-resistant pathogen growth (n = 416); and group C, patients with multidrug-resistant pathogen-positive bile culture (n = 36). The incidence of organ/space surgical site infection, bacteremia, median duration of postoperative hospital stay, and the mortality rate did not differ among the three groups. The incidence of incisional surgical site infection and infectious complications caused by multidrug-resistant pathogens was significantly higher in group C than in groups A and B. Fifty-two patients had postoperative infectious complications caused by multidrug-resistant pathogens. Multivariate analysis identified preoperative multidrug-resistant pathogen-positive bile culture as a significant independent risk factor for postoperative infectious complications caused by multidrug-resistant pathogens (P< .001). Major hepatectomy with extrahepatic bile duct resection after biliary drainage can be performed with acceptable rates of morbidity and mortality using appropriate antibiotic prophylaxis, even in patients with biliary colonization/infection caused by multidrug-resistant pathogens. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Low-Pathogenic Influenza A Viruses in North American Diving Ducks Contribute to the Emergence of a Novel Highly Pathogenic Influenza A(H7N8) Virus.

    PubMed

    Xu, Yifei; Ramey, Andrew M; Bowman, Andrew S; DeLiberto, Thomas J; Killian, Mary L; Krauss, Scott; Nolting, Jacqueline M; Torchetti, Mia Kim; Reeves, Andrew B; Webby, Richard J; Stallknecht, David E; Wan, Xiu-Feng

    2017-05-01

    Introductions of low-pathogenic avian influenza (LPAI) viruses of subtypes H5 and H7 into poultry from wild birds have the potential to mutate to highly pathogenic avian influenza (HPAI) viruses, but such viruses' origins are often unclear. In January 2016, a novel H7N8 HPAI virus caused an outbreak in turkeys in Indiana, USA. To determine the virus's origin, we sequenced the genomes of 441 wild-bird origin influenza A viruses (IAVs) from North America and subjected them to evolutionary analyses. The results showed that the H7N8 LPAI virus most likely circulated among diving ducks in the Mississippi flyway during autumn 2015 and was subsequently introduced to Indiana turkeys, in which it evolved high pathogenicity. Preceding the outbreak, an isolate with six gene segments (PB2, PB1, PA, HA, NA, and NS) sharing >99% sequence identity with those of H7N8 turkey isolates was recovered from a diving duck sampled in Kentucky, USA. H4N8 IAVs from other diving ducks possessed five H7N8-like gene segments (PB2, PB1, NA, MP, and NS; >98% sequence identity). Our findings suggest that viral gene constellations circulating among diving ducks can contribute to the emergence of IAVs that affect poultry. Therefore, diving ducks may serve an important and understudied role in the maintenance, diversification, and transmission of IAVs in the wild-bird reservoir. IMPORTANCE In January 2016, a novel H7N8 HPAI virus caused a disease outbreak in turkeys in Indiana, USA. To determine the origin of this virus, we sequenced and analyzed 441 wild-bird origin influenza virus strains isolated from wild birds inhabiting North America. We found that the H7N8 LPAI virus most likely circulated among diving ducks in the Mississippi flyway during autumn 2015 and was subsequently introduced to Indiana turkeys, in which it evolved high pathogenicity. Our results suggest that viral gene constellations circulating among diving ducks can contribute to the emergence of IAVs that affect poultry. Therefore, diving ducks may play an important and understudied role in the maintenance, diversification, and transmission of IAVs in the wild-bird reservoir. Our study also highlights the importance of a coordinated, systematic, and collaborative surveillance for IAVs in both poultry and wild-bird populations. Copyright © 2017 American Society for Microbiology.

  5. Low-Pathogenic Influenza A Viruses in North American Diving Ducks Contribute to the Emergence of a Novel Highly Pathogenic Influenza A(H7N8) Virus

    PubMed Central

    Xu, Yifei; Bowman, Andrew S.; DeLiberto, Thomas J.; Killian, Mary L.; Krauss, Scott; Nolting, Jacqueline M.; Torchetti, Mia Kim; Reeves, Andrew B.; Webby, Richard J.; Stallknecht, David E.

    2017-01-01

    ABSTRACT Introductions of low-pathogenic avian influenza (LPAI) viruses of subtypes H5 and H7 into poultry from wild birds have the potential to mutate to highly pathogenic avian influenza (HPAI) viruses, but such viruses' origins are often unclear. In January 2016, a novel H7N8 HPAI virus caused an outbreak in turkeys in Indiana, USA. To determine the virus's origin, we sequenced the genomes of 441 wild-bird origin influenza A viruses (IAVs) from North America and subjected them to evolutionary analyses. The results showed that the H7N8 LPAI virus most likely circulated among diving ducks in the Mississippi flyway during autumn 2015 and was subsequently introduced to Indiana turkeys, in which it evolved high pathogenicity. Preceding the outbreak, an isolate with six gene segments (PB2, PB1, PA, HA, NA, and NS) sharing >99% sequence identity with those of H7N8 turkey isolates was recovered from a diving duck sampled in Kentucky, USA. H4N8 IAVs from other diving ducks possessed five H7N8-like gene segments (PB2, PB1, NA, MP, and NS; >98% sequence identity). Our findings suggest that viral gene constellations circulating among diving ducks can contribute to the emergence of IAVs that affect poultry. Therefore, diving ducks may serve an important and understudied role in the maintenance, diversification, and transmission of IAVs in the wild-bird reservoir. IMPORTANCE In January 2016, a novel H7N8 HPAI virus caused a disease outbreak in turkeys in Indiana, USA. To determine the origin of this virus, we sequenced and analyzed 441 wild-bird origin influenza virus strains isolated from wild birds inhabiting North America. We found that the H7N8 LPAI virus most likely circulated among diving ducks in the Mississippi flyway during autumn 2015 and was subsequently introduced to Indiana turkeys, in which it evolved high pathogenicity. Our results suggest that viral gene constellations circulating among diving ducks can contribute to the emergence of IAVs that affect poultry. Therefore, diving ducks may play an important and understudied role in the maintenance, diversification, and transmission of IAVs in the wild-bird reservoir. Our study also highlights the importance of a coordinated, systematic, and collaborative surveillance for IAVs in both poultry and wild-bird populations. PMID:28202755

  6. Evaluation of the Seeplex® Meningitis ACE Detection kit for the detection of 12 common bacterial and viral pathogens of acute meningitis.

    PubMed

    Shin, So Youn; Kwon, Kye Chul; Park, Jong Woo; Kim, Ji Myung; Shin, So Young; Koo, Sun Hoe

    2012-01-01

    Bacterial meningitis is an infectious disease with high rates of mortality and high frequency of severe sequelae. Early identification of causative bacterial and viral pathogens is important for prompt and proper treatment of meningitis and for prevention of life-threatening clinical outcomes. In the present study, we evaluated the value of the Seeplex Meningitis ACE Detection kit (Seegene Inc., Korea), a newly developed multiplex PCR kit employing dual priming oligonucleotide methods, for diagnosing acute meningitis. Analytical sensitivity of the kit was studied using reference strains for each pathogen targeted by the kit, while it's analytical specificity was studied using the human genome DNA and 58 clinically well-identified reference strains. For clinical validation experiment, we used 27 control cerebrospinal fluid (CSF) samples and 78 clinical CSF samples collected from patients at the time of diagnosis of acute meningitis. The lower detection limits ranged from 10(1) copies/µL to 5×10(1) copies/µL for the 12 viral and bacterial pathogens targeted. No cross-reaction was observed. In the validation study, high detection rate of 56.4% was obtained. None of the control samples tested positive, i.e., false-positive results were absent. The Seeplex Meningitis ACE Detection kit showed high sensitivity, specificity, and detection rate for the identification of pathogens in clinical CSF samples. This kit may be useful for rapid identification of important acute meningitis-causing pathogens.

  7. Evaluation of the Seeplex® Meningitis ACE Detection Kit for the Detection of 12 Common Bacterial and Viral Pathogens of Acute Meningitis

    PubMed Central

    Shin, So Youn; Kwon, Kye Chul; Park, Jong Woo; Kim, Ji Myung; Shin, So Young

    2012-01-01

    Background Bacterial meningitis is an infectious disease with high rates of mortality and high frequency of severe sequelae. Early identification of causative bacterial and viral pathogens is important for prompt and proper treatment of meningitis and for prevention of life-threatening clinical outcomes. In the present study, we evaluated the value of the Seeplex Meningitis ACE Detection kit (Seegene Inc., Korea), a newly developed multiplex PCR kit employing dual priming oligonucleotide methods, for diagnosing acute meningitis. Methods Analytical sensitivity of the kit was studied using reference strains for each pathogen targeted by the kit, while it's analytical specificity was studied using the human genome DNA and 58 clinically well-identified reference strains. For clinical validation experiment, we used 27 control cerebrospinal fluid (CSF) samples and 78 clinical CSF samples collected from patients at the time of diagnosis of acute meningitis. Results The lower detection limits ranged from 101 copies/µL to 5×101 copies/µL for the 12 viral and bacterial pathogens targeted. No cross-reaction was observed. In the validation study, high detection rate of 56.4% was obtained. None of the control samples tested positive, i.e., false-positive results were absent. Conclusions The Seeplex Meningitis ACE Detection kit showed high sensitivity, specificity, and detection rate for the identification of pathogens in clinical CSF samples. This kit may be useful for rapid identification of important acute meningitis-causing pathogens. PMID:22259778

  8. The role of strigolactones and ethylene in disease caused by Pythium irregulare.

    PubMed

    Blake, Sara N; Barry, Karen M; Gill, Warwick M; Reid, James B; Foo, Eloise

    2016-06-01

    Plant hormones play key roles in defence against pathogen attack. Recent work has begun to extend this role to encompass not just the traditional disease/stress hormones, such as ethylene, but also growth-promoting hormones. Strigolactones (SLs) are the most recently defined group of plant hormones with important roles in plant-microbe interactions, as well as aspects of plant growth and development, although the knowledge of their role in plant-pathogen interactions is extremely limited. The oomycete Pythium irregulare is a poorly controlled pathogen of many crops. Previous work has indicated an important role for ethylene in defence against this oomycete. We examined the role of ethylene and SLs in response to this pathogen in pea (Pisum sativum L.) at the molecular and whole-plant levels using a set of well-characterized hormone mutants, including an ethylene-insensitive ein2 mutant and SL-deficient and insensitive mutants. We identified a key role for ethylene signalling in specific cell types that reduces pathogen invasion, extending the work carried out in other species. However, we found no evidence that SL biosynthesis or response influences the interaction of pea with P. irregulare or that synthetic SL influences the growth or hyphal branching of the oomycete in vitro. Future work should seek to extend our understanding of the role of SLs in other plant interactions, including with other fungal, bacterial and viral pathogens, nematodes and insect pests. © 2015 BSPP AND JOHN WILEY & SONS LTD.

  9. UroPathogenic Escherichia coli (UPEC) Infections: Virulence Factors, Bladder Responses, Antibiotic, and Non-antibiotic Antimicrobial Strategies

    PubMed Central

    Terlizzi, Maria E.; Gribaudo, Giorgio; Maffei, Massimo E.

    2017-01-01

    Urinary tract infections (UTIs) are one of the most common pathological conditions in both community and hospital settings. It has been estimated that about 150 million people worldwide develop UTI each year, with high social costs in terms of hospitalizations and medical expenses. Among the common uropathogens associated to UTIs development, UroPathogenic Escherichia coli (UPEC) is the primary cause. UPEC strains possess a plethora of both structural (as fimbriae, pili, curli, flagella) and secreted (toxins, iron-acquisition systems) virulence factors that contribute to their capacity to cause disease, although the ability to adhere to host epithelial cells in the urinary tract represents the most important determinant of pathogenicity. On the opposite side, the bladder epithelium shows a multifaceted array of host defenses including the urine flow and the secretion of antimicrobial substances, which represent useful tools to counteract bacterial infections. The fascinating and intricate dynamics between these players determine a complex interaction system that needs to be revealed. This review will focus on the most relevant components of UPEC arsenal of pathogenicity together with the major host responses to infection, the current approved treatment and the emergence of resistant UPEC strains, the vaccine strategies, the natural antimicrobial compounds along with innovative anti-adhesive and prophylactic approaches to prevent UTIs. PMID:28861072

  10. A case of severe soft tissue infection due to Streptococcus tigurinus diagnosed by necropsy in which genomic analysis was useful for clarifying its pathogenicity.

    PubMed

    Yoshizawa, Hidenori; Motooka, Daisuke; Matsumoto, Yuki; Katada, Ryuichi; Nakamura, Shota; Morii, Eiichi; Iida, Tetsuya; Matsumoto, Hiroshi

    2018-05-01

    Post-mortem detection of pathogenetic microorganisms in severe infectious death is significantly important for diagnosing the cause of death as well as for public health. However, it is difficult to recognize whether a microorganism detected from post-mortem materials is truly pathogenic or not. We report a case of severe soft tissue infection due to Streptococcus oralis subsp. tigurinus (S. tigurinus), a recently reported species, in which whole-genome analysis was performed to clarify its pathogenicity. A 46-year-old woman had died with symptoms of a severe infectious disease. A post-mortem examination was performed by a medical examiner. The external findings suggested a soft tissue infection; subsequently, pathological specimens sampled by necropsy revealed findings compatible with necrotizing fasciitis. In the post-mortem bacterial test, S. tigurinus was detected from the localized autopsy sample. Whole-genome sequencing was performed to analyze its pathogenicity and detected a strain of S. tigurinus with genetic determinants that were specific and unique to its highly virulent strains as a result of gene annotation. Utilizing various technologies, such as whole-genome sequencing, may be a powerful tool for diagnosing the cause of infectious death accurately and safely. © 2018 Japanese Society of Pathology and John Wiley & Sons Australia, Ltd.

  11. The lyme disease pathogen has no effect on the survival of its rodent reservoir host.

    PubMed

    Voordouw, Maarten J; Lachish, Shelly; Dolan, Marc C

    2015-01-01

    Zoonotic pathogens that cause devastating morbidity and mortality in humans may be relatively harmless in their natural reservoir hosts. The tick-borne bacterium Borrelia burgdorferi causes Lyme disease in humans but few studies have investigated whether this pathogen reduces the fitness of its reservoir hosts under natural conditions. We analyzed four years of capture-mark-recapture (CMR) data on a population of white-footed mice, Peromyscus leucopus, to test whether B. burgdorferi and its tick vector affect the survival of this important reservoir host. We used a multi-state CMR approach to model mouse survival and mouse infection rates as a function of a variety of ecologically relevant explanatory factors. We found no effect of B. burgdorferi infection or tick burden on the survival of P. leucopus. Our estimates of the probability of infection varied by an order of magnitude (0.051 to 0.535) and were consistent with our understanding of Lyme disease in the Northeastern United States. B. burgdorferi establishes a chronic avirulent infection in their rodent reservoir hosts because this pathogen depends on rodent mobility to achieve transmission to its sedentary tick vector. The estimates of B. burgdorferi infection risk will facilitate future theoretical studies on the epidemiology of Lyme disease.

  12. The Mitochondrial Genome and a 60-kb Nuclear DNA Segment from Naegleria fowleri, the Causative Agent of Primary Amoebic Meningoencephalitis

    PubMed Central

    Herman, Emily K.; Greninger, Alexander L.; Visvesvara, Govinda S.; Marciano-Cabral, Francine; Dacks, Joel B.; Chiu, Charles Y.

    2013-01-01

    Naegleria fowleri is a unicellular eukaryote causing primary amoebic meningoencephalitis, a neuropathic disease killing 99% of those infected, usually within 7–14 days. N. fowleri is found globally in regions including the US and Australia. The genome of the related non-pathogenic species Naegleria gruberi has been sequenced, but the genetic basis for N. fowleri pathogenicity is unclear. To generate such insight, we sequenced and assembled the mitochondrial genome and a 60-kb segment of nuclear genome from N. fowleri. The mitochondrial genome is highly similar to its counterpart in N. gruberi in gene complement and organization, while distinct lack of synteny is observed for the nuclear segments. Even in this short (60-kb) segment, we identified examples of potential factors for pathogenesis, including ten novel N. fowleri-specific genes. We also identified a homologue of cathepsin B; proteases proposed to be involved in the pathogenesis of diverse eukaryotic pathogens, including N. fowleri. Finally, we demonstrate a likely case of horizontal gene transfer between N. fowleri and two unrelated amoebae, one of which causes granulomatous amoebic encephalitis. This initial look into the N. fowleri nuclear genome has revealed several examples of potential pathogenesis factors, improving our understanding of a neglected pathogen of increasing global importance. PMID:23360210

  13. Enteroaggregative Escherichia coli: An Emerging Enteric Food Borne Pathogen

    PubMed Central

    Kaur, P.; Chakraborti, A.; Asea, A.

    2010-01-01

    Enteroaggregative Escherichia coli (EAEC) are quite heterogeneous category of an emerging enteric pathogen associated with cases of acute or persistent diarrhea worldwide in children and adults, and over the past decade has received increasing attention as a cause of watery diarrhea, which is often persistent. EAEC infection is an important cause of diarrhea in outbreak and non-outbreak settings in developing and developed countries. Recently, EAEC has been implicated in the development of irritable bowel syndrome, but this remains to be confirmed. EAEC is defined as a diarrheal pathogen based on its characteristic aggregative adherence (AA) to HEp-2 cells in culture and its biofilm formation on the intestinal mucosa with a “stacked-brick” adherence phenotype, which is related to the presence of a 60 MDa plasmid (pAA). At the molecular level, strains demonstrating the aggregative phenotype are quite heterogeneous; several virulence factors are detected by polymerase chain reaction; however, none exhibited 100% specificity. Although several studies have identified specific virulence factor(s) unique to EAEC, the mechanism by which EAEC exerts its pathogenesis is, thus, far unknown. The present review updates the current knowledge on the epidemiology, chronic complications, detection, virulence factors, and treatment of EAEC, an emerging enteric food borne pathogen. PMID:20300577

  14. The trans-kingdom identification of negative regulators of pathogen hypervirulence

    PubMed Central

    Brown, Neil A.; Urban, Martin; Hammond-Kosack, Kim E.

    2015-01-01

    Modern society and global ecosystems are increasingly under threat from pathogens, which cause a plethora of human, animal, invertebrate and plant diseases. Of increasing concern is the trans-kingdom tendency for increased pathogen virulence that is beginning to emerge in natural, clinical and agricultural settings. The study of pathogenicity has revealed multiple examples of convergently evolved virulence mechanisms. Originally described as rare, but increasingly common, are interactions where a single gene deletion in a pathogenic species causes hypervirulence. This review utilised the pathogen–host interaction database (www.PHI-base.org) to identify 112 hypervirulent mutations from 37 pathogen species, and subsequently interrogates the trans-kingdom, conserved, molecular, biochemical and cellular themes that cause hypervirulence. This study investigates 22 animal and 15 plant pathogens including 17 bacterial and 17 fungal species. Finally, the evolutionary significance and trans-kingdom requirement for negative regulators of hypervirulence and the implication of pathogen hypervirulence and emerging infectious diseases on society are discussed. PMID:26468211

  15. Rice Sheath Rot: An Emerging Ubiquitous Destructive Disease Complex

    PubMed Central

    Bigirimana, Vincent de P.; Hua, Gia K. H.; Nyamangyoku, Obedi I.; Höfte, Monica

    2015-01-01

    Around one century ago, a rice disease characterized mainly by rotting of sheaths was reported in Taiwan. The causal agent was identified as Acrocylindrium oryzae, later known as Sarocladium oryzae. Since then it has become clear that various other organisms can cause similar disease symptoms, including Fusarium sp. and fluorescent pseudomonads. These organisms have in common that they produce a range of phytotoxins that induce necrosis in plants. The same agents also cause grain discoloration, chaffiness, and sterility and are all seed-transmitted. Rice sheath rot disease symptoms are found in all rice-growing areas of the world. The disease is now getting momentum and is considered as an important emerging rice production threat. The disease can lead to variable yield losses, which can be as high as 85%. This review aims at improving our understanding of the disease etiology of rice sheath rot and mainly deals with the three most reported rice sheath rot pathogens: S. oryzae, the Fusarium fujikuroi complex, and Pseudomonas fuscovaginae. Causal agents, pathogenicity determinants, interactions among the various pathogens, epidemiology, geographical distribution, and control options will be discussed. PMID:26697031

  16. Zika Virus as an Emerging Global Pathogen

    PubMed Central

    Beckham, J. David; Pastula, Daniel M.; Massey, Aaron; Tyler, Kenneth L.

    2016-01-01

    IMPORTANCE Zika virus (ZIKV) is an emerging arthropod-borne virus (arbovirus) in the genus Flavivirus that has caused a widespread outbreak of febrile illness, is associated with neurological disease, and has spread across the Pacific to the Americas in a short period. OBSERVATIONS In this review, we discuss what is currently known about ZIKV, neuroimmunologic complications, and the impact on global human health. Zika virus spread across Africa and Asia in part owing to unique genomic evolutionary conditions and pressures resulting in specific human disease manifestations, complications, and pathogenesis. Recent data suggest that acute ZIKV infection in pregnant women may result in acute infection of fetal tissue and brain tissue, causing microcephaly and potentially severe debilitation of the infant or even death of the fetus. Cases of acute ZIKV are also associated with Guillain-Barré syndrome. With the increased number of cases, new complications such as ocular involvement and sexual transmission have been reported. CONCLUSIONS AND RELEVANCE Zika virus is an emerging viral pathogen with significant consequences on human health throughout the world. Ongoing research into this pathogen is urgently needed to produce viable vaccine and therapeutic options. PMID:27183312

  17. Parallel evolution of Streptococcus pneumoniae and Streptococcus mitis to pathogenic and mutualistic lifestyles.

    PubMed

    Kilian, Mogens; Riley, David R; Jensen, Anders; Brüggemann, Holger; Tettelin, Hervé

    2014-07-22

    The bacterium Streptococcus pneumoniae is one of the leading causes of fatal infections affecting humans. Intriguingly, phylogenetic analysis shows that the species constitutes one evolutionary lineage in a cluster of the otherwise commensal Streptococcus mitis strains, with which humans live in harmony. In a comparative analysis of 35 genomes, including phylogenetic analyses of all predicted genes, we have shown that the pathogenic pneumococcus has evolved into a master of genomic flexibility while lineages that evolved into the nonpathogenic S. mitis secured harmonious coexistence with their host by stabilizing an approximately 15%-reduced genome devoid of many virulence genes. Our data further provide evidence that interspecies gene transfer between S. pneumoniae and S. mitis occurs in a unidirectional manner, i.e., from S. mitis to S. pneumoniae. Import of genes from S. mitis and other mitis, anginosus, and salivarius group streptococci ensured allelic replacements and antigenic diversification and has been driving the evolution of the remarkable structural diversity of capsular polysaccharides of S. pneumoniae. Our study explains how the unique structural diversity of the pneumococcal capsule emerged and conceivably will continue to increase and reveals a striking example of the fragile border between the commensal and pathogenic lifestyles. While genomic plasticity enabling quick adaptation to environmental stress is a necessity for the pathogenic streptococci, the commensal lifestyle benefits from stability. Importance: One of the leading causes of fatal infections affecting humans, Streptococcus pneumoniae, and the commensal Streptococcus mitis are closely related obligate symbionts associated with hominids. Faced with a shortage of accessible hosts, the two opposing lifestyles evolved in parallel. We have shown that the nonpathogenic S. mitis secured harmonious coexistence with its host by stabilizing a reduced genome devoid of many virulence genes. Meanwhile, the pathogenic pneumococcus evolved into a master of genomic flexibility and imports genes from S. mitis and other related streptococci. This process ensured antigenic diversification and has been driving the evolution of the remarkable structural diversity of capsular polysaccharides of S. pneumoniae, which conceivably will continue to increase and present a challenge to disease prevention. Copyright © 2014 Kilian et al.

  18. A Novel Protective Vaccine Antigen from the Core Escherichia coli Genome

    PubMed Central

    Moriel, Danilo G.; Tan, Lendl; Goh, Kelvin G. K.; Ipe, Deepak S.; Lo, Alvin W.; Peters, Kate M.

    2016-01-01

    ABSTRACT Escherichia coli is a versatile pathogen capable of causing intestinal and extraintestinal infections that result in a huge burden of global human disease. The diversity of E. coli is reflected by its multiple different pathotypes and mosaic genome composition. E. coli strains are also a major driver of antibiotic resistance, emphasizing the urgent need for new treatment and prevention measures. Here, we used a large data set comprising 1,700 draft and complete genomes to define the core and accessory genome of E. coli and demonstrated the overlapping relationship between strains from different pathotypes. In combination with proteomic investigation, this analysis revealed core genes that encode surface-exposed or secreted proteins that represent potential broad-coverage vaccine antigens. One of these antigens, YncE, was characterized as a conserved immunogenic antigen able to protect against acute systemic infection in mice after vaccination. Overall, this work provides a genomic blueprint for future analyses of conserved and accessory E. coli genes. The work also identified YncE as a novel antigen that could be exploited in the development of a vaccine against all pathogenic E. coli strains—an important direction given the high global incidence of infections caused by multidrug-resistant strains for which there are few effective antibiotics. IMPORTANCE E. coli is a multifaceted pathogen of major significance to global human health and an important contributor to increasing antibiotic resistance. Given the paucity of therapies still effective against multidrug-resistant pathogenic E. coli strains, novel treatment and prevention strategies are urgently required. In this study, we defined the core and accessory components of the E. coli genome by examining a large collection of draft and completely sequenced strains available from public databases. This data set was mined by employing a reverse-vaccinology approach in combination with proteomics to identify putative broadly protective vaccine antigens. One such antigen was identified that was highly immunogenic and induced protection in a mouse model of bacteremia. Overall, our study provides a genomic and proteomic framework for the selection of novel vaccine antigens that could mediate broad protection against pathogenic E. coli. PMID:27904885

  19. DEVELOPMENT OF A MOLECULAR METHOD TO IDENTIFY ...

    EPA Pesticide Factsheets

    Hepatitis E virus (HEV) is an emerging pathogen that causes significant illness in the developing world. Like the hepatitis A virus, it is transmitted via the fecal-oral route and can cause short-term, acute hepatitis. In addition, hepatitis E has been found to cause a significant rate of mortality in pregnant women. Thus far, a hepatitis E outbreak has not been reported in the U. S. although a swine variant of the virus is common in Midwestern hogs. Since it will be important to identify the presence of this virus in the water supply, we have developed and are testing a reverse transcription-polymerase chain reaction (RT-PCR) method that should be able to identify all of the known HEV strains. Develop sensitive techniques to detect and identify emerging human waterborne pathogenic viruses and viruses on the CCL.Determine effectiveness of viral indicators to measure microbial quality in water matrices.Support activities: (a) culture and distribution of mammalian cells for Agency and scientific community research needs, (b) provide operator expertise for research requiring confocal and electron microscopy, (c) glassware cleaning, sterilization and biological waste disposal for the Cincinnati EPA facility, (d) operation of infectious pathogenic suite, (e) maintenance of walk-in constant temperature rooms and (f) provide Giardia cysts.

  20. Actinobaculum schaalii, a new cause of knee prosthetic joint infection in elderly.

    PubMed

    Jacquier, H; Benmansour, H; Zadegan, F; Hannouche, D; Micaelo, M; Mongiat-Artus, P; Salomon, E; Cambau, E; Berçot, B

    2016-08-01

    Actinobaculum schaalii is an emerging pathogen particularly involved in urinary tract infection of elderly people and/or patient with urological risk factors of urinary tract infection. This microorganism is a difficult-to-diagnose pathogen and is rarely involved in systemic or deep infections. Here, we report the first case of prosthetic joint infection due to A. schaalii in an 84-year-old man with a benign prostatic hyperplasia associated with chronic retention of urine. This case underlines the importance to optimize the diagnosis of emerging uropathogens as A. schaalii, to prevent systemic infections, particularly in patients with orthopaedic implants.

  1. A Novel Botrytis Species Is Associated with a Newly Emergent Foliar Disease in Cultivated Hemerocallis

    PubMed Central

    Grant-Downton, Robert T.; Terhem, Razak B.; Kapralov, Maxim V.; Mehdi, Saher; Rodriguez-Enriquez, M. Josefina; Gurr, Sarah J.; van Kan, Jan A. L.; Dewey, Frances M.

    2014-01-01

    Foliar tissue samples of cultivated daylilies (Hemerocallis hybrids) showing the symptoms of a newly emergent foliar disease known as ‘spring sickness’ were investigated for associated fungi. The cause(s) of this disease remain obscure. We isolated repeatedly a fungal species which proved to be member of the genus Botrytis, based on immunological tests. DNA sequence analysis of these isolates, using several different phyogenetically informative genes, indicated that they represent a new Botrytis species, most closely related to B. elliptica (lily blight, fire blight) which is a major pathogen of cultivated Lilium. The distinction of the isolates was confirmed by morphological analysis of asexual sporulating cultures. Pathogenicity tests on Hemerocallis tissues in vitro demonstrated that this new species was able to induce lesions and rapid tissue necrosis. Based on this data, we infer that this new species, described here as B. deweyae, is likely to be an important contributor to the development of ‘spring sickness’ symptoms. Pathogenesis may be promoted by developmental and environmental factors that favour assault by this necrotrophic pathogen. The emergence of this disease is suggested to have been triggered by breeding-related changes in cultivated hybrids, particularly the erosion of genetic diversity. Our investigation confirms that emergent plant diseases are important and deserve close monitoring, especially in intensively in-bred plants. PMID:24887415

  2. Paradigms: examples from the bacterium Xylella fastidiosa.

    PubMed

    Purcell, Alexander

    2013-01-01

    The history of advances in research on Xylella fastidiosa provides excellent examples of how paradigms both advance and limit our scientific understanding of plant pathogens and the plant diseases they cause. I describe this from a personal perspective, having been directly involved with many persons who made paradigm-changing discoveries, beginning with the discovery that a bacterium, not a virus, causes Pierce's disease of grape and other plant diseases in numerous plant species, including important crop and forest species.

  3. Intraclade Variability in Toxin Production and Cytotoxicity of Bacillus cereus Group Type Strains and Dairy-Associated Isolates

    PubMed Central

    Jian, Jiahui; Beno, Sarah M.; Wiedmann, Martin

    2018-01-01

    ABSTRACT While some species in the Bacillus cereus group are well-characterized human pathogens (e.g., B. anthracis and B. cereus sensu stricto), the pathogenicity of other species (e.g., B. pseudomycoides) either has not been characterized or is presently not well understood. To provide an updated characterization of the pathogenic potential of species in the B. cereus group, we classified a set of 52 isolates, including 8 type strains and 44 isolates from dairy-associated sources, into 7 phylogenetic clades and characterized them for (i) the presence of toxin genes, (ii) phenotypic characteristics used for identification, and (iii) cytotoxicity to human epithelial cells. Overall, we found that B. cereus toxin genes are broadly distributed but are not consistently present within individual species and/or clades. After growth at 37°C, isolates within a clade did not typically show a consistent cytotoxicity phenotype, except for isolates in clade VI (B. weihenstephanensis/B. mycoides), where none of the isolates were cytotoxic, and isolates in clade I (B. pseudomycoides), which consistently displayed cytotoxic activity. Importantly, our study highlights that B. pseudomycoides is cytotoxic toward human cells. Our results indicate that the detection of toxin genes does not provide a reliable approach to predict the pathogenic potential of B. cereus group isolates, as the presence of toxin genes is not always consistent with cytotoxicity phenotype. Overall, our results suggest that isolates from multiple B. cereus group clades have the potential to cause foodborne illness, although cytotoxicity is not always consistently found among isolates within each clade. IMPORTANCE Despite the importance of the Bacillus cereus group as a foodborne pathogen, characterizations of the pathogenic potential of all B. cereus group species were lacking. We show here that B. pseudomycoides (clade I), which has been considered a harmless environmental microorganism, produces toxins and exhibits a phenotype consistent with the production of pore-forming toxins. Furthermore, B. mycoides/B. weihenstephanensis isolates (clade VI) did not show cytotoxicity when grown at 37°C, despite carrying multiple toxin genes. Overall, we show that the current standard methods to characterize B. cereus group isolates and to detect the presence of toxin genes are not reliable indicators of species, phylogenetic clades, or an isolate's cytotoxic capacity, suggesting that novel methods are still needed for differentiating pathogenic from nonpathogenic species within the B. cereus group. Our results also contribute data that are necessary to facilitate risk assessments and a better understanding as to which B. cereus group species are likely to cause foodborne illness. PMID:29330180

  4. Transcriptome profiling of soybean (Glycine max) roots challenged with pathogenic and non-pathogenic isolates of Fusarium oxysporum.

    PubMed

    Lanubile, Alessandra; Muppirala, Usha K; Severin, Andrew J; Marocco, Adriano; Munkvold, Gary P

    2015-12-21

    Fusarium oxysporum is one of the most common fungal pathogens causing soybean root rot and seedling blight in U.S.A. In a recent study, significant variation in aggressiveness was observed among isolates of F. oxysporum collected from roots in Iowa, ranging from highly pathogenic to weakly or non-pathogenic isolates. We used RNA-seq analysis to investigate the molecular aspects of the interactions of a partially resistant soybean genotype with non-pathogenic/pathogenic isolates of F. oxysporum at 72 and 96 h post inoculation (hpi). Markedly different gene expression profiles were observed in response to the two isolates. A peak of highly differentially expressed genes (HDEGs) was triggered at 72 hpi in soybean roots and the number of HDEGs was about eight times higher in response to the pathogenic isolate compared to the non-pathogenic one (1,659 vs. 203 HDEGs, respectively). Furthermore, the magnitude of induction was much greater in response to the pathogenic isolate. This response included a stronger activation of defense-related genes, transcription factors, and genes involved in ethylene biosynthesis, secondary and sugar metabolism. The obtained data provide an important insight into the transcriptional responses of soybean-F. oxysporum interactions and illustrate the more drastic changes in the host transcriptome in response to the pathogenic isolate. These results may be useful in the developing new methods of broadening resistance of soybean to F. oxysporum, including the over-expression of key soybean genes.

  5. Candidatus Syngnamydia Venezia, a Novel Member of the Phylum Chlamydiae from the Broad Nosed Pipefish, Syngnathus typhle

    PubMed Central

    Schmidt-Posthaus, Heike; Nufer, Lisbeth; Wilson, Anthony; Svercel, Miroslav; Richter, Denis; Segner, Helmut; Pospischil, Andreas; Vaughan, Lloyd

    2013-01-01

    Chlamydia are obligate intracellular bacteria and important pathogens of humans and animals. Chlamydia-related bacteria are also major fish pathogens, infecting epithelial cells of the gills and skin to cause the disease epitheliocystis. Given the wide distribution, ancient origins and spectacular diversity of bony fishes, this group offers a rich resource for the identification and isolation of novel Chlamydia. The broad-nosed pipefish (Syngnathus typhle) is a widely distributed and genetically diverse temperate fish species, susceptible to epitheliocystis across much of its range. We describe here a new bacterial species, Candidatus Syngnamydia venezia; epitheliocystis agent of S. typhle and close relative to other chlamydial pathogens which are known to infect diverse hosts ranging from invertebrates to humans. PMID:23951025

  6. Reservoirs and alternate hosts for pathogens of commercially important crustaceans: a review.

    PubMed

    Small, Hamish J; Pagenkopp, Katrina M

    2011-01-01

    There is a considerable body of literature describing the causative agents of many diseases of crustaceans. Given that many of these crustaceans support commercially important fisheries, it is somewhat surprising that comparatively little information is available regarding the natural transmission pathways and reservoirs of many of the disease-causing agents. In this paper we review what is known about reservoirs and alternate hosts for several important diseases of commercially important crustaceans and provide recommendations on future areas of research. Copyright © 2010 Elsevier Inc. All rights reserved.

  7. II. Pathogens

    Treesearch

    Ned B. Klopfenstein; Brian W. Geils

    2011-01-01

    Invasive fungal pathogens have caused immeasurably large ecological and economic damage to forests. It is well known that invasive fungal pathogens can cause devastating forest diseases (e.g., white pine blister rust, chestnut blight, Dutch elm disease, dogwood anthracnose, butternut canker, Scleroderris canker of pines, sudden oak death, pine pitch canker) (Maloy 1997...

  8. Genomic dissection of host-microbe and microbe-microbe interactions for advanced plant breeding.

    PubMed

    Kroll, Samuel; Agler, Matthew T; Kemen, Eric

    2017-04-01

    Agriculture faces many emerging challenges to sustainability, including limited nutrient resources, losses from diseases caused by current and emerging pathogens and environmental degradation. Microorganisms have great importance for plant growth and performance, including the potential to increase yields, nutrient uptake and pathogen resistance. An urgent need is therefore to understand and engineer plants and their associated microbial communities. Recent massive genomic sequencing of host plants and associated microbes offers resources to identify novel mechanisms of communal assembly mediated by the host. For example, host-microbe and microbe-microbe interactions are involved in niche formation, thereby contributing to colonization. By leveraging genomic resources, genetic traits underlying those mechanisms will become important resources to design plants selecting and hosting beneficial microbial communities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Best Practices for Preventing Vector-Borne Diseases in Dogs and Humans.

    PubMed

    Dantas-Torres, Filipe; Otranto, Domenico

    2016-01-01

    Vector-borne diseases constitute a diversified group of illnesses, which are caused by a multitude of pathogens transmitted by arthropod vectors, such as mosquitoes, fleas, ticks, and sand flies. Proper management of these diseases is important from both human and veterinary medicine standpoints, given that many of these pathogens are transmissible to humans and dogs, which often live in close contact. In this review, we summarize the most important vector-borne diseases of dogs and humans and the best practices for their prevention. The control of these diseases would ultimately improve animal and human health and wellbeing, particularly in developing countries in the tropics, where the risk of these diseases is high and access to health care is poor. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Molecular detection of Anaplasma platys, Ehrlichia canis, Hepatozoon canis and Rickettsia monacensis in dogs from Maio Island of Cape Verde archipelago.

    PubMed

    Lauzi, Stefania; Maia, João P; Epis, Sara; Marcos, Ricardo; Pereira, Cristina; Luzzago, Camilla; Santos, Marta; Puente-Payo, Pablo; Giordano, Alessia; Pajoro, Massimo; Sironi, Giuseppe; Faustino, Augusto

    2016-07-01

    Tick-borne diseases are emerging worldwide and have an important zoonotic relevance. Dogs play an important role in the epidemiology of several zoonotic tick-borne pathogens acting as sentinels and/or reservoirs. This study focused on the molecular identification of tick-borne pathogens in blood samples of 153 autochthonous asymptomatic dogs in Maio Island, Cape Verde archipelago. Eighty-four (54.9%) dogs were positive for one or more pathogens. Fifty-five (35.9%) dogs were infected with Hepatozoon canis, 53 (34.6%) with Anaplasma platys, five (3.3%) with Ehrlichia canis and Rickettsia monacensis, an emerging human pathogen, was also identified in a single dog (0.7%). The former three pathogens cause important canine tick-borne diseases that are transmitted or potentially transmitted by Rhipicephalus sanguineus s.l., the only hard tick identified in Cape Verde. Furthermore, Wolbachia spp. was amplified from the blood of one dog. None of the dogs were positive for Anaplasma phagocytophilum, Borrelia burgdorferi sensu lato, Midichloria mitochondrii, Bartonella spp., Babesia spp. or Theileria spp. Fifty-four (35.3%) animals showed single infections and 30 (19.6%) co-infections, with A. platys and H. canis co-infection being the most frequent (28 dogs, 18.3%). The frequency of E. canis infection was statistically different among age groups (P=0.017), being higher among dogs older than 4 years compared to younger dogs. Infection by A. platys was also statistically different among age groups (P=0.031), being higher in dogs younger than 2 years compared to older dogs. The statistical analyses showed no significant association of PCR positivity with gender or location. The frequency of tick-borne pathogens detected in dogs in Maio Island, including R. monacensis, highlights the need to improve diagnosis and control in order to prevent the risk of transmission of these pathogens among dogs and humans living in or travelling to this touristic island. Copyright © 2016 Elsevier GmbH. All rights reserved.

  11. Characterization of postharvest fungicide-resistant Botrytis cinerea isolates from commercially stored apple fruit

    USDA-ARS?s Scientific Manuscript database

    Botrytis cinerea causes grey mold of apple fruit and is one of the most economically important postharvest pathogens of global concern. Eight fludioxonil sensitive B. cinerea isolates from Pennsylvania had EC50 values ranging from 0.004 to 0.0038 µg/ml fludioxonil that were dual resistant to pyrimet...

  12. Overexpression of a modified plant thionin enhances disease resistance to citrus canker and huanglongbing (HLB, citrus greening)

    USDA-ARS?s Scientific Manuscript database

    Huanglongbing (HLB or citrus greening disease) caused by Candidatus Liberibacter asiaticus (Las) is a great threat to the United States citrus industry. Citrus canker is also an economically important disease associated with a bacterial pathogen (Xanthomonas citri). In this study, we characterized e...

  13. Vaccination of sex reversed hybrid tilapia (Oreochromis niloticus X O. aureus) with an inactivated Vibrio vulnificus vaccine

    USDA-ARS?s Scientific Manuscript database

    Vibrio vulnificus causes disease in economically important aquaculture raised fish and is an opportunistic human pathogen. This study reports on the isolation of V. vulnificus from diseased hybrid tilapia (Oreochromis niloticus X O. aureus) cultured in a North American water reuse facility. Our ob...

  14. Overland transmission of Ceratocystis fagacearum: extending our understanding

    Treesearch

    Jennifer Juzwik

    1999-01-01

    Oak wilt is an important disease of oaks (Quercus spp.) in 22 states of the eastern United States. The causal fungus, Ceratocystis fagacearum J. Hunt, causes mortality of thousands of native oaks annually across the upper midwestern states. The pathogen is transmitted from diseased to healthy trees below ground via functional root...

  15. Thermal inactivation of Salmonella Typhimurium on dressed chicken skin previously exposed to acidified sodium chlorite or carvacrol

    USDA-ARS?s Scientific Manuscript database

    Salmonella is a leading cause of foodborne illness, and live poultry is a main reservoir of this pathogen. Cross-contamination and transportation of contaminated poultry meat act as an important vehicle of Salmonella infections in humans. In this study, we assessed the effect of two antimicrobials:...

  16. Virulence gene profiles of shiga toxin-producing Escherichia coli isolated from fecal samples of finishing swine

    USDA-ARS?s Scientific Manuscript database

    Shiga toxin-producing Escherichia coli (STEC) are important pathogens responsible for food-borne outbreaks and serious illness including hemorrhagic colitis and hemolytic uremic syndrome. Certain STEC serogroups may cause edema disease in swine; and similar to cattle, swine have been shown to be a ...

  17. Assembly and annotation of the wildrice transcriptome challenged by Cochliobolus miyabeanus, the fungal brown spot pathogen

    USDA-ARS?s Scientific Manuscript database

    American wildrice (Zizania palustris) is an aquatic cereal that is harvested from natural stands and commercial paddies for its gourmet grain. Fungal brown spot (FBS), caused by Cochliobolus miyabeanus, is the most important disease that inflicts annual yield losses in this crop. The development of ...

  18. Digital PCR technology for detection of palm infecting phytoplasmas belonging to group 16SrIV that occur in Florida

    USDA-ARS?s Scientific Manuscript database

    Phytoplasmas are an economically important group of plant pathogens that negatively impact a wide variety of plants in agricultural and natural ecosystems. In Florida, palms are essential elements in the nursery and landscaping industries that suffer from diseases caused by phytoplasmas that are rel...

  19. Mycobacteriosis associated with Mycobacterium peregrinum infection in Red-crowned Cranes (Grus japonensis) in China.

    PubMed

    Liu, Huimin; Yan, Jing; Luo, Jing; Yan, Ruoqian; Chen, Hao; Cheng, Hai; Liu, Dawei; He, Hongxuan

    2014-07-01

    We describe mycobacteriosis caused by Mycobacterium peregrinum in Red-crowned Cranes (Grus japonensis) in China. Isolates were identified by bacteriology, molecular identification methods, and phylogenetic analysis. This study shows that M. peregrinum is an important pathogen for mycobacteriosis and could represent a threat to conservation efforts of endangered species.

  20. Blue mold to genomics and beyond: Insights into the biology and virulence of phytopathogenic Penicillium species

    USDA-ARS?s Scientific Manuscript database

    Pomes, mainly apples and pears, are economically important fruits produced and consumed worldwide. The United States is the second largest producer of pome fruit in the world behind China. Penicillium expansum and other Penicillium spp. are the most common fungal plant pathogens that cause blue mold...

  1. Evaluation of pathogenicity and insect transmission of Xylella fastidiosa strains to olive plants

    USDA-ARS?s Scientific Manuscript database

    Xylella fastidiosa (Xf) is a xylem-limited bacterium that causes disease in a number of economically important crops in California and worldwide. Newly observed scorching symptoms in olive trees may be due to Xf infection. If true, “olive leaf scorch disease” (OLSD) would represent a new threat to...

  2. Development of soybean with novel sources of resistance to Phomopsis seed decay

    USDA-ARS?s Scientific Manuscript database

    Phomopsis seed decay (PSD) is an important soybean disease that results in poor seed quality in most soybean production areas of the United States. PSD is caused primarily by the fungal pathogen Phomopsis longicolla. In 2009, due to the prevalence of hot and humid environments from pod fill to harve...

  3. Detoxification of the fusarium toxin fusaric acid by the soil fungus aspergillus tubingensis

    USDA-ARS?s Scientific Manuscript database

    The fungal pathogen Fusarium oxysporum f. sp. vasinfectum (F.o.v.) causes cotton wilt and produces the toxin fusaric acid (FA). Previous research indicates that in the high producing strains of F.o.v., FA plays an important role in virulence. To address the problems of emerging virulent isolates su...

  4. Diversity of Multi-drug Resistant Salmonella enterica Associated with Cull Cattle at Harvest in the United States

    USDA-ARS?s Scientific Manuscript database

    Background: Salmonella is an important foodborne pathogen, causing millions of cases of food poisoning in the U.S. each year. While poultry products and contaminated fresh produce are well established vectors for Salmonella, several foodborne disease case studies have shown that undercooked ground b...

  5. Screening of sorghum lines against long smut and grain mold pathogens

    USDA-ARS?s Scientific Manuscript database

    Long smut infection is severe in the drier regions of Africa and Asia; whereas, grain mold is the most important widespread complex disease where sorghum is grown worldwide. Both fungal diseases cause significant losses in grain yield and quality. Long smut has not yet been observed in the United ...

  6. Stripe rust epidemiological regions, virulence dynamics, pathogen reproduction modes, yield losses, forecasting models, and management in the United States

    USDA-ARS?s Scientific Manuscript database

    Stripe rust of wheat, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most important diseases in the United States. Epidemiological regions were determined based on epidemic patterns, cropping systems, geographic barriers, weather patterns, and inoculum exchanges. Areas where Ps...

  7. Importance of resolving fungal nomenclature: the case of multiple pathogenic species in the Cryptococcus genus

    USDA-ARS?s Scientific Manuscript database

    Cryptococcosis is a major fungal disease caused by members of the Cryptococcus gattii and Cryptococcus neoformans species complexes. After more than 15 years of molecular genetic and phenotypic studies and much debate, a proposal for a taxonomic revision was made. The two varieties within C. neoform...

  8. Complete genome sequence of Campylobacter jejuni YH001 from beef liver which contains a novel plasmid

    USDA-ARS?s Scientific Manuscript database

    Campylobacter jejuni is an important foodborne pathogen that causes gastroenteritis in humans and is commonly found in poultry and meat products. Here, we report the complete genome sequence of a Campylobacter jejuni strain recently isolated from retail beef liver. The genome size was 1,712,361 bp, ...

  9. Distinctive Expansion of Gene Families Associated with Virulence Functions in the Genomes of Grapevine Trunk Pathogens

    USDA-ARS?s Scientific Manuscript database

    Trunk diseases are responsible for important economic losses in all viticulture production systems. They are caused by distantly-related fungi that form chronic wood infections. Variation in wood-decay abilities and production of phytotoxic compounds are thought to contribute to differences in the d...

  10. Bioassay conditions for infection of Pinus radiata seedlings with Phytophthora pinifolia zoospores

    USDA-ARS?s Scientific Manuscript database

    Phytophthora pinifolia is known to cause a devastating disease on Monterey pines in Chile. Although this pathogen is not yet present in the U.S., there is reason for concern. The main source of Monterey pine genetic material is found in California and there is potential for other important tree sp...

  11. Quantification of disease expression conferred by three host gene-necrotrophic effector interactions in the wheat-Parastagonospora nodorum pathosystem

    USDA-ARS?s Scientific Manuscript database

    The disease Septoria nodorum blotch (SNB) is caused by the necrotrophic fungal pathogen Parastagonospora nodorum, which induces cell death in wheat through the production of necrotrophic effectors (NEs). The objective of this project is to determine the relative importance of three host gene-NE int...

  12. Genomic dissection of nonhost resistance to wheat stem rust in Brachypodium distachyon

    USDA-ARS?s Scientific Manuscript database

    Wheat stem rust caused by the fungus Puccinia graminis f.sp. tritici (Pgt) is a devastating disease that has largely been controlled for decades by the deployment of resistance genes. However, new races of this pathogen have emerged that overcome many important wheat stem rust resistance genes used ...

  13. Comparative quantification of Campylobacter jejuni from environmental samples using traditional and molecular biological techniques

    USDA-ARS?s Scientific Manuscript database

    Campylobacter jejuni (C. jejuni) is one of the most common causes of gastroenteritis in the world. Given the potential risks to human, animal and environmental health the development and optimization of methods to quantify this important pathogen in environmental samples is essential. Two of the mos...

  14. Cryptic diversity, pathogenicity, and evolutionary species boundaries in Cercospora populations associated with Cercospora leaf spot of Beta vulgaris

    USDA-ARS?s Scientific Manuscript database

    Cercospora is one of the largest genera of hyphomycetes accommodating several important phytopathogenic species associated with foliar diseases of vegetable and field crops. Cercospora leaf spot (CLS), caused by C. beticola, is a destructive disease of Beta vulgaris (sugar beet, table beet and swiss...

  15. Predicting pre-planting risk of Stagonospora nodorum blotch in winter wheat using machine learning models

    USDA-ARS?s Scientific Manuscript database

    Pre-planting factors have been associated with the late-season severity of Stagonospora nodorum blotch (SNB), caused by the fungal pathogen Parastagonospora nodorum, in winter wheat (Triticum aestivum). The relative importance of these factors in the risk of SNB has not been determined and this know...

  16. Characterization of mechamisms underlying degradation of sclerotia of Sclerotinia sclerotiorum by Aspergillus aculeatus Asp-4 using a combined qRT-PCR and proteomic approach

    USDA-ARS?s Scientific Manuscript database

    Background: The biological control agent Aspergillus Asp-4 colonizes and degrades sclerotia of Sclerotinia sclerotiorum resulting in reduced germination and disease caused by this important plant pathogen. Molecular mechanisms of mycoparasites underlying colonization, degradation, and reduction of...

  17. Use of quantitative traits to assess aggressiveness of Phakopsora pachyrhizi isolates from Nigeria and the United States

    USDA-ARS?s Scientific Manuscript database

    Soybean rust, caused by Phakopsora pachyrhizi, is one of the most important foliar diseases of soybean worldwide. The soybean-P. pachyrhizi interaction is often complex because of the genetic variability in host and pathogen genotypes. In a compatible reaction, soybean genotypes produce tan colored ...

  18. Bioluminescence Imaging to Track Bacteroides fragilis Inhibition of Vibrio parahaemolyticus Infection in Mice.

    PubMed

    Li, Zhengchao; Deng, Huimin; Zhou, Yazhou; Tan, Yafang; Wang, Xiaoyi; Han, Yanping; Liu, Yangyang; Wang, Ye; Yang, Ruifu; Bi, Yujing; Zhi, Fachao

    2017-01-01

    Bacteroides fragilis is an anaerobic, Gram-negative, commensal bacterium of the human gut. It plays an important role in promoting the maturation of the immune system, as well as suppressing abnormal inflammation. Many recent studies have focused on the relationship between B. fragilis and human immunity, and indicate that B. fragilis has many useful probiotic effects. As inhibition of intestinal pathogens is an important characteristic of probiotic strains, this study examined whether B. fragilis could inhibit pathogenic bacteria. Results showed that Vibrio parahaemolyticus was inhibited by B. fragilis in vitro , and that B. fragilis could protect both RAW 264.7 and LoVo cells from damage caused by V. parahaemolyticus . Using in vivo imaging, we constructed a light-emitting V. parahaemolyticus strain and showed that B. fragilis might shorten the colonization time and reduce the number of lux -expressing bacteria in a mouse model. These results provide useful information for developing B. fragilis into a probiotic product, and also indicate that this commensal bacterium might aid in the clinical treatment of gastroenteritis caused by V. parahaemolyticus .

  19. Bioluminescence Imaging to Track Bacteroides fragilis Inhibition of Vibrio parahaemolyticus Infection in Mice

    PubMed Central

    Li, Zhengchao; Deng, Huimin; Zhou, Yazhou; Tan, Yafang; Wang, Xiaoyi; Han, Yanping; Liu, Yangyang; Wang, Ye; Yang, Ruifu; Bi, Yujing; Zhi, Fachao

    2017-01-01

    Bacteroides fragilis is an anaerobic, Gram-negative, commensal bacterium of the human gut. It plays an important role in promoting the maturation of the immune system, as well as suppressing abnormal inflammation. Many recent studies have focused on the relationship between B. fragilis and human immunity, and indicate that B. fragilis has many useful probiotic effects. As inhibition of intestinal pathogens is an important characteristic of probiotic strains, this study examined whether B. fragilis could inhibit pathogenic bacteria. Results showed that Vibrio parahaemolyticus was inhibited by B. fragilis in vitro, and that B. fragilis could protect both RAW 264.7 and LoVo cells from damage caused by V. parahaemolyticus. Using in vivo imaging, we constructed a light-emitting V. parahaemolyticus strain and showed that B. fragilis might shorten the colonization time and reduce the number of lux-expressing bacteria in a mouse model. These results provide useful information for developing B. fragilis into a probiotic product, and also indicate that this commensal bacterium might aid in the clinical treatment of gastroenteritis caused by V. parahaemolyticus. PMID:28553617

  20. In Vitro Emergence of High Persistence upon Periodic Aminoglycoside Challenge in the ESKAPE Pathogens.

    PubMed

    Michiels, Joran Elie; Van den Bergh, Bram; Verstraeten, Natalie; Fauvart, Maarten; Michiels, Jan

    2016-08-01

    Health care-associated infections present a major threat to modern medical care. Six worrisome nosocomial pathogens-Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.-are collectively referred to as the "ESKAPE bugs." They are notorious for extensive multidrug resistance, yet persistence, or the phenotypic tolerance displayed by a variant subpopulation, remains underappreciated in these pathogens. Importantly, persistence can prevent eradication of antibiotic-sensitive bacterial populations and is thought to act as a catalyst for the development of genetic resistance. Concentration- and time-dependent aminoglycoside killing experiments were used to investigate persistence in the ESKAPE pathogens. Additionally, a recently developed method for the experimental evolution of persistence was employed to investigate adaptation to high-dose, extended-interval aminoglycoside therapy in vitro We show that ESKAPE pathogens exhibit biphasic killing kinetics, indicative of persister formation. In vitro cycling between aminoglycoside killing and persister cell regrowth, evocative of clinical high-dose extended-interval therapy, caused a 37- to 213-fold increase in persistence without the emergence of resistance. Increased persistence also manifested in biofilms and provided cross-tolerance to different clinically important antibiotics. Together, our results highlight a possible drawback of intermittent, high-dose antibiotic therapy and suggest that clinical diagnostics might benefit from taking into account persistence. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  1. Paleogene Radiation of a Plant Pathogenic Mushroom

    PubMed Central

    Coetzee, Martin P. A.; Bloomer, Paulette; Wingfield, Michael J.; Wingfield, Brenda D.

    2011-01-01

    Background The global movement and speciation of fungal plant pathogens is important, especially because of the economic losses they cause and the ease with which they are able to spread across large areas. Understanding the biogeography and origin of these plant pathogens can provide insights regarding their dispersal and current day distribution. We tested the hypothesis of a Gondwanan origin of the plant pathogenic mushroom genus Armillaria and the currently accepted premise that vicariance accounts for the extant distribution of the species. Methods The phylogeny of a selection of Armillaria species was reconstructed based on Maximum Parsimony (MP), Maximum Likelihood (ML) and Bayesian Inference (BI). A timeline was then placed on the divergence of lineages using a Bayesian relaxed molecular clock approach. Results Phylogenetic analyses of sequenced data for three combined nuclear regions provided strong support for three major geographically defined clades: Holarctic, South American-Australasian and African. Molecular dating placed the initial radiation of the genus at 54 million years ago within the Early Paleogene, postdating the tectonic break-up of Gondwana. Conclusions The distribution of extant Armillaria species is the result of ancient long-distance dispersal rather than vicariance due to continental drift. As these finding are contrary to most prior vicariance hypotheses for fungi, our results highlight the important role of long-distance dispersal in the radiation of fungal pathogens from the Southern Hemisphere. PMID:22216099

  2. Synergisms between microbial pathogens in plant disease complexes: a growing trend

    PubMed Central

    Lamichhane, Jay Ram; Venturi, Vittorio

    2015-01-01

    Plant diseases are often thought to be caused by one species or even by a specific strain. Microbes in nature, however, mostly occur as part of complex communities and this has been noted since the time of van Leeuwenhoek. Interestingly, most laboratory studies focus on single microbial strains grown in pure culture; we were therefore unaware of possible interspecies and/or inter-kingdom interactions of pathogenic microbes in the wild. In human and animal infections, it is now being recognized that many diseases are the result of multispecies synergistic interactions. This increases the complexity of the disease and has to be taken into consideration in the development of more effective control measures. On the other hand, there are only a few reports of synergistic pathogen–pathogen interactions in plant diseases and the mechanisms of interactions are currently unknown. Here we review some of these reports of synergism between different plant pathogens and their possible implications in crop health. Finally, we briefly highlight the recent technological advances in diagnostics as these are beginning to provide important insights into the microbial communities associated with complex plant diseases. These examples of synergistic interactions of plant pathogens that lead to disease complexes might prove to be more common than expected and understanding the underlying mechanisms might have important implications in plant disease epidemiology and management. PMID:26074945

  3. Antimicrobial resistance of mastitis pathogens.

    PubMed

    Oliver, Stephen P; Murinda, Shelton E

    2012-07-01

    Antibiotics are used extensively in the dairy industry to combat disease and to improve animal performance. Antibiotics such as penicillin, cephalosporin, streptomycin, and tetracycline are used for the treatment and prevention of diseases affecting dairy cows caused by a variety of gram-positive and gram-negative bacteria. Antibiotics are often administrated routinely to entire herds to prevent mastitis during the dry period. An increase in the incidence of disease in a herd generally results in increased use of antimicrobials, which in turn increases the potential for antibiotic residues in milk and the potential for increased bacterial resistance to antimicrobials. Continued use of antibiotics in the treatment and prevention of diseases of dairy cows will continue to be scrutinized. It is clear that strategies employing the prudent use of antimicrobials are needed. This clearly illustrates the importance of effective herd disease prevention and control programs. Based on studies published to date, scientific evidence does not support widespread, emerging resistance among mastitis pathogens to antibacterial drugs even though many of these antibiotics have been used in the dairy industry for treatment and prevention of disease for several decades. However, it is clear that use of antibiotics in dairy cows can contribute to increased antimicrobial resistance. While antimicrobial resistance does occur, we are of the opinion that the advantages of using antibiotics for the treatment of mastitis far outweigh the disadvantages. The clinical consequences of antimicrobial resistance of dairy pathogens affecting humans appear small. Antimicrobial resistance among dairy pathogens, particularly those found in milk, is likely not a human health concern as long as the milk is pasteurized. However, there are an increasing number of people who choose to consume raw milk. Transmission of an antimicrobial-resistant mastitis pathogen and/or foodborne pathogen to humans could occur if contaminated unpasteurized milk is consumed, which is another important reason why people should not consume raw milk. Likewise, resistant bacteria contaminating meat from dairy cows should not be a significant human health concern if the meat is cooked properly. Prudent use of antibiotics in the dairy industry is important, worthwhile, and necessary. Use of antibiotics at times when animals are susceptible to new infection such as the dry period is a sound management decision and a prudent use of antibiotics on the farm. Strategies involving prudent use of antibiotics for treatment encompass identification of the pathogen causing the infection, determining the susceptibility/resistance of the pathogen to assess the most appropriate antibiotic to use for treatment, and a sufficient treatment duration to ensure effective concentrations of the antibiotic to eliminate the pathogen. As the debate on the use of antibiotics in animal agriculture continues, we need to consider the consequences of, “What would happen if antibiotics are banned for use in the dairy industry and in other food-producing animals?” The implications of this question are far reaching and include such aspects as animal welfare, health, and well-being and impacts on food quantity, quality, and food costs. This question should be an important aspect in this ongoing and controversial debate!

  4. Mechanism of Penicillium expansum in response to exogenous nitric oxide based on proteomics analysis.

    PubMed

    Lai, Tongfei; Chen, Yong; Li, Boqiang; Qin, Guozheng; Tian, Shiping

    2014-05-30

    Penicillium expansum is an important fungal pathogen, which causes blue mold rot in various fruits and produces a mycotoxin (patulin) with potential damage to public health. Here, we found that nitric oxide (NO) donor could significantly inhibit germinability of P. expansum spores, resulting in lower virulence to apple fruit. Based on two dimension electrophoresis (2-DE) and mass spectrometry (MS) analysis, we identified ten differentially expressed proteins in response to exogenous NO in P. expansum. Among of them, five proteins, such as glutamine synthetase (GS), amidohydrolase, nitrilases, nitric oxide dioxygenase (NOD) and heat shock protein 70, were up-regulated. Others including tetratricopeptide repeat domain, UDP-N-acetylglucosamine pyrophosphorylase, enolase (Eno), heat shock protein 60 and K homology RNA-binding domain were down-regulated. The expression of three genes associated with the identified proteins (GS, NOD, and Eno) was evaluated at the mRNA level by RT-PCR. Our results provide the novel evidence for understanding the mechanism, by which NO regulates growth of P. expansum and its virulence. Crop diseases caused by fungal pathogens lead to huge economic losses every year in the world. Application of chemical fungicides to control diseases brings the concern about food and environmental safety. Screening new antimicrobial compounds and exploring involved mechanisms have great significance to development of new disease management strategies. Nitric oxide (NO), as an important intracellular signaling molecule, has been proved to be involved in many physiological processes and defense responses during plant-pathogen interactions. In this study, we firstly found that NO at high concentration could distinctly delay spore germination and significantly reduce virulence of P. expansum to fruit host, identified some important proteins in response to NO stress and characterized the functions of these proteins. These results provide novel evidence for understanding the mechanism of NO regulating virulence of the fungal pathogen, but are beneficial for screening new targets of antifungal compounds. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Modification of a Pollen Trap Design To Capture Airborne Conidia of Entomophaga maimaiga and Detection of Conidia by Quantitative PCR.

    PubMed

    Bittner, Tonya D; Hajek, Ann E; Liebhold, Andrew M; Thistle, Harold

    2017-09-01

    The goal of this study was to develop effective and practical field sampling methods for quantification of aerial deposition of airborne conidia of Entomophaga maimaiga over space and time. This important fungal pathogen is a major cause of larval death in invasive gypsy moth ( Lymantria dispar ) populations in the United States. Airborne conidia of this pathogen are relatively large (similar in size to pollen), with unusual characteristics, and require specialized methods for collection and quantification. Initially, dry sampling (settling of spores from the air onto a dry surface) was used to confirm the detectability of E. maimaiga at field sites with L. dispar deaths caused by E. maimaiga , using quantitative PCR (qPCR) methods. We then measured the signal degradation of conidial DNA on dry surfaces under field conditions, ultimately rejecting dry sampling as a reliable method due to rapid DNA degradation. We modified a chamber-style trap commonly used in palynology to capture settling spores in buffer. We tested this wet-trapping method in a large-scale (137-km) spore-trapping survey across gypsy moth outbreak regions in Pennsylvania undergoing epizootics, in the summer of 2016. Using 4-day collection periods during the period of late instar and pupal development, we detected variable amounts of target DNA settling from the air. The amounts declined over the season and with distance from the nearest defoliated area, indicating airborne spore dispersal from outbreak areas. IMPORTANCE We report on a method for trapping and quantifying airborne spores of Entomophaga maimaiga , an important fungal pathogen affecting gypsy moth ( Lymantria dispar ) populations. This method can be used to track dispersal of E. maimaiga from epizootic areas and ultimately to provide critical understanding of the spatial dynamics of gypsy moth-pathogen interactions. Copyright © 2017 American Society for Microbiology.

  6. Legionnaires disease: historical perspective.

    PubMed Central

    Winn, W C

    1988-01-01

    In the summer of 1976, a mysterious epidemic of fatal respiratory disease in Philadelphia launched an intensive investigation that resulted in the definition of a new family of pathogenic bacteria, the Legionellaceae. In retrospect, members of the family had been isolated from clinical specimens as early as 1943. Unsolved epidemics of acute respiratory disease dating to the 1950s were subsequently attributed to the newly described pathogens. In the intervening years, the Legionellaceae have been firmly established as important causes of sporadic and epidemic respiratory disease. The sources of the infecting bacteria are environmental, and geographic variation in the frequency of infection has been documented. Airborne dissemination of bacteria from cooling towers and evaporative condensers has been responsible for some epidemics, but potable water systems are perhaps more important sources. The mode of transmission from drinking water is unclear. The Legionellaceae are gram-negative, facultative, intracellular pathogens. The resident alveolar macrophage, usually an effective antibacterial defense, is the primary site of growth. Cell-mediated immunity appears to be the most important immunological defense; the role of humoral immunity is less clear. Erythromycin remains the antibiotic of choice for therapy of infected patients, but identification and eradication of environmental sources are also essential for the control of infection. Images PMID:3060246

  7. Extreme sensitivity to ultraviolet light in the fungal pathogen causing white-nose syndrome of bats

    Treesearch

    Jonathan M. Palmer; Kevin P. Drees; Jeffrey T. Foster; Daniel L. Lindner

    2018-01-01

    Bat white-nose syndrome (WNS), caused by the fungal pathogen Pseudogymnoascus destructans, has decimated North American hibernating bats since its emergence in 2006. Here, we utilize comparative genomics to examine the evolutionary history of this pathogen in comparison to six closely related nonpathogenic species....

  8. Signals of Systemic Immunity in Plants: Progress and Open Questions

    PubMed Central

    Ádám, Attila L.; Nagy, Zoltán Á.; Kátay, György; Mergenthaler, Emese; Viczián, Orsolya

    2018-01-01

    Systemic acquired resistance (SAR) is a defence mechanism that induces protection against a wide range of pathogens in distant, pathogen-free parts of plants after a primary inoculation. Multiple mobile compounds were identified as putative SAR signals or important factors for influencing movement of SAR signalling elements in Arabidopsis and tobacco. These include compounds with very different chemical structures like lipid transfer protein DIR1 (DEFECTIVE IN INDUCED RESISTANCE1), methyl salicylate (MeSA), dehydroabietinal (DA), azelaic acid (AzA), glycerol-3-phosphate dependent factor (G3P) and the lysine catabolite pipecolic acid (Pip). Genetic studies with different SAR-deficient mutants and silenced lines support the idea that some of these compounds (MeSA, DIR1 and G3P) are activated only when SAR is induced in darkness. In addition, although AzA doubled in phloem exudate of tobacco mosaic virus (TMV) infected tobacco leaves, external AzA treatment could not induce resistance neither to viral nor bacterial pathogens, independent of light conditions. Besides light intensity and timing of light exposition after primary inoculation, spectral distribution of light could also influence the SAR induction capacity. Recent data indicated that TMV and CMV (cucumber mosaic virus) infection in tobacco, like bacteria in Arabidopsis, caused massive accumulation of Pip. Treatment of tobacco leaves with Pip in the light, caused a drastic and significant local and systemic decrease in lesion size of TMV infection. Moreover, two very recent papers, added in proof, demonstrated the role of FMO1 (FLAVIN-DEPENDENT-MONOOXYGENASE1) in conversion of Pip to N-hydroxypipecolic acid (NHP). NHP systemically accumulates after microbial attack and acts as a potent inducer of plant immunity to bacterial and oomycete pathogens in Arabidopsis. These results argue for the pivotal role of Pip and NHP as an important signal compound of SAR response in different plants against different pathogens. PMID:29642641

  9. The chicken as a natural model for extraintestinal infections caused by avian pathogenic Escherichia coli (APEC).

    PubMed

    Antão, Esther-Maria; Glodde, Susanne; Li, Ganwu; Sharifi, Reza; Homeier, Timo; Laturnus, Claudia; Diehl, Ines; Bethe, Astrid; Philipp, Hans-C; Preisinger, Rudolf; Wieler, Lothar H; Ewers, Christa

    2008-01-01

    E. coli infections in avian species have become an economic threat to the poultry industry worldwide. Several factors have been associated with the virulence of E. coli in avian hosts, but no specific virulence gene has been identified as being entirely responsible for the pathogenicity of avian pathogenic E. coli (APEC). Needless to say, the chicken would serve as the best model organism for unravelling the pathogenic mechanisms of APEC, an extraintestinal pathogen. Five-week-old white leghorn SPF chickens were infected intra-tracheally with a well characterized APEC field strain IMT5155 (O2:K1:H5) using different doses corresponding to the respective models of infection established, that is, the lung colonization model allowing re-isolation of bacteria only from the lung but not from other internal organs, and the systemic infection model. These two models represent the crucial steps in the pathogenesis of APEC infections, including the colonization of the lung epithelium and the spread of bacteria throughout the bloodstream. The read-out system includes a clinical score, pathomorphological changes and bacterial load determination. The lung colonization model has been established and described for the first time in this study, in addition to a comprehensive account of a systemic infection model which enables the study of severe extraintestinal pathogenic E. coli (ExPEC) infections. These in vivo models enable the application of various molecular approaches to study host-pathogen interactions more closely. The most important application of such genetic manipulation techniques is the identification of genes required for extraintestinal virulence, as well as host genes involved in immunity in vivo. The knowledge obtained from these studies serves the dual purpose of shedding light on the nature of virulence itself, as well as providing a route for rational attenuation of the pathogen for vaccine construction, a measure by which extraintestinal infections, including those caused by APEC, could eventually be controlled and prevented in the field.

  10. A Cluster of Paralytic Poliomyelitis Cases Due to Transmission of Slightly Diverged Sabin 2 Vaccine Poliovirus

    PubMed Central

    Korotkova, Ekaterina A.; Gmyl, Anatoly P.; Yakovenko, Maria L.; Ivanova, Olga E.; Eremeeva, Tatyana P.; Kozlovskaya, Liubov I.; Shakaryan, Armen K.; Lipskaya, Galina Y.; Parshina, Irina L.; Loginovskikh, Nataliya V.; Morozova, Nadezhda S.

    2016-01-01

    ABSTRACT Four cases of acute flaccid paralysis caused by slightly evolved (Sabin-like) vaccine polioviruses of serotype 2 were registered in July to August 2010 in an orphanage of Biysk (Altai Region, Russia). The Biysk cluster of vaccine-associated paralytic poliomyelitis (VAPP) had several uncommon, if not unique, features. (i) Until this outbreak, Sabin-like viruses (in distinction to more markedly evolved vaccine-derived polioviruses [VDPVs]) were reported to cause only sporadic cases of VAPP. Consequently, VAPP cases were not considered to require outbreak-type responses. However, the Biysk outbreak completely blurred the borderline between Sabin-like viruses and VDPVs in epidemiological terms. (ii) The outbreak demonstrated a very high disease/infection ratio, apparently exceeding even that reported for wild polioviruses. The viral genome structures did not provide any substantial hints as to the underlying reason(s) for such pathogenicity. (iii) The replacement of intestinal poliovirus lineages by other Sabin-like lineages during short intervals after the disease onsets was observed in two patients. Again, the sequences of the respective genomes provided no clues to explain these events. (iv) The polioviruses isolated from the patients and their contacts demonstrated a striking heterogeneity as well as rapid and uneven evolution of the whole genomes and their parts, apparently due to extensive interpersonal contacts in a relatively small closed community, multiple bottlenecking, and recombination. Altogether, the results demonstrate several new aspects of pathogenicity, epidemiology, and evolution of vaccine-related polioviruses and underscore several serious gaps in understanding these problems. IMPORTANCE The oral poliovirus vaccine largely contributed to the nearly complete disappearance of poliovirus-caused poliomyelitis. Being generally safe, it can, in some cases, result in a paralytic disease. Two types of such outcomes are distinguished: those caused by slightly diverged (Sabin-like) viruses on the one hand and those caused by significantly diverged VDPVs on the other. This classification is based on the number of mutations in the viral genome region encoding a viral structural protein. Until now, only sporadic poliomyelitis cases due to Sabin-like polioviruses had been described, and in distinction from the VDPV-triggered outbreaks, they did not require broad-scale epidemiological responses. Here, an unusual outbreak of poliomyelitis caused by a Sabin-like virus is reported, which had an exceptionally high disease/infection ratio. This outbreak blurred the borderline between Sabin-like polioviruses and VDPVs both in pathogenicity and in the kind of responses required, as well as underscoring important gaps in understanding the pathogenicity, epidemiology, and evolution of vaccine-derived polioviruses. PMID:27099315

  11. Dembo polymerase chain reaction technique for detection of bovine abortion, diarrhea, and respiratory disease complex infectious agents in potential vectors and reservoirs.

    PubMed

    Rahpaya, Sayed Samim; Tsuchiaka, Shinobu; Kishimoto, Mai; Oba, Mami; Katayama, Yukie; Nunomura, Yuka; Kokawa, Saki; Kimura, Takashi; Kobayashi, Atsushi; Kirino, Yumi; Okabayashi, Tamaki; Nonaka, Nariaki; Mekata, Hirohisa; Aoki, Hiroshi; Shiokawa, Mai; Umetsu, Moeko; Morita, Tatsushi; Hasebe, Ayako; Otsu, Keiko; Asai, Tetsuo; Yamaguchi, Tomohiro; Makino, Shinji; Murata, Yoshiteru; Abi, Ahmad Jan; Omatsu, Tsutomu; Mizutani, Tetsuya

    2018-05-31

    Bovine abortion, diarrhea, and respiratory disease complexes, caused by infectious agents, result in high and significant economic losses for the cattle industry. These pathogens are likely transmitted by various vectors and reservoirs including insects, birds, and rodents. However, experimental data supporting this possibility are scarce. We collected 117 samples and screened them for 44 bovine abortive, diarrheal, and respiratory disease complex pathogens by using Dembo polymerase chain reaction (PCR), which is based on TaqMan real-time PCR. Fifty-seven samples were positive for at least one pathogen, including bovine viral diarrhea virus, bovine enterovirus, Salmonella enterica ser. Dublin, Salmonella enterica ser. Typhimurium, and Neospora caninum ; some samples were positive for multiple pathogens. Bovine viral diarrhea virus and bovine enterovirus were the most frequently detected pathogens, especially in flies, suggesting an important role of flies in the transmission of these viruses. Additionally, we detected the N. caninum genome from a cockroach sample for the first time. Our data suggest that insects (particularly flies), birds, and rodents are potential vectors and reservoirs of abortion, diarrhea, and respiratory infectious agents, and that they may transmit more than one pathogen at the same time.

  12. Prophenoloxidase system and its role in shrimp immune responses against major pathogens.

    PubMed

    Amparyup, Piti; Charoensapsri, Walaiporn; Tassanakajon, Anchalee

    2013-04-01

    The global shrimp industry still faces various serious disease-related problems that are mainly caused by pathogenic bacteria and viruses. Understanding the host defense mechanisms is likely to be beneficial in designing and implementing effective strategies to solve the current and future pathogen-related problems. Melanization, which is performed by phenoloxidase (PO) and controlled by the prophenoloxidase (proPO) activation cascade, plays an important role in the invertebrate immune system in allowing a rapid response to pathogen infection. The activation of the proPO system, by the specific recognition of microorganisms by pattern-recognition proteins (PRPs), triggers a serine proteinase cascade, eventually leading to the cleavage of the inactive proPO to the active PO that functions to produce the melanin and toxic reactive intermediates against invading pathogens. This review highlights the recent discoveries of the critical roles of the proPO system in the shrimp immune responses against major pathogens, and emphasizes the functional characterizations of four major groups of genes and proteins in the proPO cascade in penaeid shrimp, that is the PRPs, serine proteinases, proPO and inhibitors. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Nosocomial Outbreak of Serious Canine Infectious Tracheobronchitis (Kennel Cough) Caused by Canine Herpesvirus Infection▿

    PubMed Central

    Kawakami, Kazuo; Ogawa, Hiroyuki; Maeda, Ken; Imai, Ayako; Ohashi, Emi; Matsunaga, Satoru; Tohya, Yukinobu; Ohshima, Takahisa; Mochizuki, Masami

    2010-01-01

    Canine herpesvirus (CHV; Canid herpesvirus 1) is principally a perinatal pathogen of pregnant bitches and newborn pups and secondarily a respiratory tract pathogen of older pups and dogs. Infectious disease of the canine respiratory tract frequently occurs among dogs in groups, in which it is called “ infectious tracheobronchitis” (ITB). Mortality from ITB is generally negligible, and the clinical importance of CHV as an ITB pathogen is considered to be low. The present report describes a novel ITB outbreak accompanied by death among aged dogs in an animal medical center. Most inpatient dogs had received medications that could induce immunosuppression. CHV was the only pathogen identified, and several CHV isolates were recovered in cell culture. No other viral pathogens or significant bacterial pathogens were found. Molecular and serological analyses revealed that the causative CHV isolates were from a single source but that none was a peculiar strain when the strains were compared with previous CHV strains. The virus had presumably spread among the dogs predisposed to infection in the center. The present results serve as a warning to canine clinics that, under the specific set of circumstances described, such serious CHV outbreaks may be expected wherever canine ITB occurs. PMID:20107103

  14. A comparative hidden Markov model analysis pipeline identifies proteins characteristic of cereal-infecting fungi

    PubMed Central

    2013-01-01

    Background Fungal pathogens cause devastating losses in economically important cereal crops by utilising pathogen proteins to infect host plants. Secreted pathogen proteins are referred to as effectors and have thus far been identified by selecting small, cysteine-rich peptides from the secretome despite increasing evidence that not all effectors share these attributes. Results We take advantage of the availability of sequenced fungal genomes and present an unbiased method for finding putative pathogen proteins and secreted effectors in a query genome via comparative hidden Markov model analyses followed by unsupervised protein clustering. Our method returns experimentally validated fungal effectors in Stagonospora nodorum and Fusarium oxysporum as well as the N-terminal Y/F/WxC-motif from the barley powdery mildew pathogen. Application to the cereal pathogen Fusarium graminearum reveals a secreted phosphorylcholine phosphatase that is characteristic of hemibiotrophic and necrotrophic cereal pathogens and shares an ancient selection process with bacterial plant pathogens. Three F. graminearum protein clusters are found with an enriched secretion signal. One of these putative effector clusters contains proteins that share a [SG]-P-C-[KR]-P sequence motif in the N-terminal and show features not commonly associated with fungal effectors. This motif is conserved in secreted pathogenic Fusarium proteins and a prime candidate for functional testing. Conclusions Our pipeline has successfully uncovered conservation patterns, putative effectors and motifs of fungal pathogens that would have been overlooked by existing approaches that identify effectors as small, secreted, cysteine-rich peptides. It can be applied to any pathogenic proteome data, such as microbial pathogen data of plants and other organisms. PMID:24252298

  15. Investigation of the Fusarium virguliforme Transcriptomes Induced during Infection of Soybean Roots Suggests that Enzymes with Hydrolytic Activities Could Play a Major Role in Root Necrosis

    PubMed Central

    Sahu, Binod B.; Baumbach, Jordan L.; Singh, Prashant; Srivastava, Subodh K.; Yi, Xiaoping

    2017-01-01

    Sudden death syndrome (SDS) is caused by the fungal pathogen, Fusarium virguliforme, and is a major threat to soybean production in North America. There are two major components of this disease: (i) root necrosis and (ii) foliar SDS. Root symptoms consist of root necrosis with vascular discoloration. Foliar SDS is characterized by interveinal chlorosis and leaf necrosis, and in severe cases by flower and pod abscission. A major toxin involved in initiating foliar SDS has been identified. Nothing is known about how root necrosis develops. In order to unravel the mechanisms used by the pathogen to cause root necrosis, the transcriptome of the pathogen in infected soybean root tissues of a susceptible cultivar, ‘Essex’, was investigated. The transcriptomes of the germinating conidia and mycelia were also examined. Of the 14,845 predicted F. virguliforme genes, we observed that 12,017 (81%) were expressed in germinating conidia and 12,208 (82%) in mycelia and 10,626 (72%) in infected soybean roots. Of the 10,626 genes induced in infected roots, 224 were transcribed only following infection. Expression of several infection-induced genes encoding enzymes with oxidation-reduction properties suggests that degradation of antimicrobial compounds such as the phytoalexin, glyceollin, could be important in early stages of the root tissue infection. Enzymes with hydrolytic and catalytic activities could play an important role in establishing the necrotrophic phase. The expression of a large number of genes encoding enzymes with catalytic and hydrolytic activities during the late infection stages suggests that cell wall degradation could be involved in root necrosis and the establishment of the necrotrophic phase in this pathogen. PMID:28095498

  16. Investigation of the Fusarium virguliforme Transcriptomes Induced during Infection of Soybean Roots Suggests that Enzymes with Hydrolytic Activities Could Play a Major Role in Root Necrosis.

    PubMed

    Sahu, Binod B; Baumbach, Jordan L; Singh, Prashant; Srivastava, Subodh K; Yi, Xiaoping; Bhattacharyya, Madan K

    2017-01-01

    Sudden death syndrome (SDS) is caused by the fungal pathogen, Fusarium virguliforme, and is a major threat to soybean production in North America. There are two major components of this disease: (i) root necrosis and (ii) foliar SDS. Root symptoms consist of root necrosis with vascular discoloration. Foliar SDS is characterized by interveinal chlorosis and leaf necrosis, and in severe cases by flower and pod abscission. A major toxin involved in initiating foliar SDS has been identified. Nothing is known about how root necrosis develops. In order to unravel the mechanisms used by the pathogen to cause root necrosis, the transcriptome of the pathogen in infected soybean root tissues of a susceptible cultivar, 'Essex', was investigated. The transcriptomes of the germinating conidia and mycelia were also examined. Of the 14,845 predicted F. virguliforme genes, we observed that 12,017 (81%) were expressed in germinating conidia and 12,208 (82%) in mycelia and 10,626 (72%) in infected soybean roots. Of the 10,626 genes induced in infected roots, 224 were transcribed only following infection. Expression of several infection-induced genes encoding enzymes with oxidation-reduction properties suggests that degradation of antimicrobial compounds such as the phytoalexin, glyceollin, could be important in early stages of the root tissue infection. Enzymes with hydrolytic and catalytic activities could play an important role in establishing the necrotrophic phase. The expression of a large number of genes encoding enzymes with catalytic and hydrolytic activities during the late infection stages suggests that cell wall degradation could be involved in root necrosis and the establishment of the necrotrophic phase in this pathogen.

  17. Dual RNA-Sequencing of Eucalyptus nitens during Phytophthora cinnamomi Challenge Reveals Pathogen and Host Factors Influencing Compatibility

    PubMed Central

    Meyer, Febé E.; Shuey, Louise S.; Naidoo, Sitha; Mamni, Thandekile; Berger, Dave K.; Myburg, Alexander A.; van den Berg, Noëlani; Naidoo, Sanushka

    2016-01-01

    Damage caused by Phytophthora cinnamomi Rands remains an important concern on forest tree species. The pathogen causes root and collar rot, stem cankers, and dieback of various economically important Eucalyptus spp. In South Africa, susceptible cold tolerant Eucalyptus plantations have been affected by various Phytophthora spp. with P. cinnamomi considered one of the most virulent. The molecular basis of this compatible interaction is poorly understood. In this study, susceptible Eucalyptus nitens plants were stem inoculated with P. cinnamomi and tissue was harvested five days post inoculation. Dual RNA-sequencing, a technique which allows the concurrent detection of both pathogen and host transcripts during infection, was performed. Approximately 1% of the reads mapped to the draft genome of P. cinnamomi while 78% of the reads mapped to the Eucalyptus grandis genome. The highest expressed P. cinnamomi gene in planta was a putative crinkler effector (CRN1). Phylogenetic analysis indicated the high similarity of this P. cinnamomi CRN1 to that of Phytophthora infestans. Some CRN effectors are known to target host nuclei to suppress defense. In the host, over 1400 genes were significantly differentially expressed in comparison to mock inoculated trees, including suites of pathogenesis related (PR) genes. In particular, a PR-9 peroxidase gene with a high similarity to a Carica papaya PR-9 ortholog previously shown to be suppressed upon infection by Phytophthora palmivora was down-regulated two-fold. This PR-9 gene may represent a cross-species effector target during P. cinnamomi infection. This study identified pathogenicity factors, potential manipulation targets, and attempted host defense mechanisms activated by E. nitens that contributed to the susceptible outcome of the interaction. PMID:26973660

  18. Significance of Viable but Nonculturable Escherichia coli: Induction, Detection, and Control.

    PubMed

    Ding, Tian; Suo, Yuanjie; Xiang, Qisen; Zhao, Xihong; Chen, Shiguo; Ye, Xingqian; Liu, Donghong

    2017-03-28

    Diseases caused by foodborne or waterborne pathogens are emerging. Many pathogens can enter into the viable but nonculturable (VBNC) state, which is a survival strategy when exposed to harsh environmental stresses. Pathogens in the VBNC state have the ability to evade conventional microbiological detection methods, posing a significant and potential health risk. Therefore, controlling VBNC bacteria in food processing and the environment is of great importance. As the typical one of the gram-negatives, Escherichia coli ( E. coli ) is a widespread foodborne and waterborne pathogenic bacterium and is able to enter into a VBNC state in extreme conditions (similar to the other gram-negative bacteria), including inducing factors and resuscitation stimulus. VBNC E. coli has the ability to recover both culturability and pathogenicity, which may bring potential health risk. This review describes the concrete factors (nonthermal treatment, chemical agents, and environmental factors) that induce E. coli into the VBNC state, the condition or stimulus required for resuscitation of VBNC E. coli , and the methods for detecting VBNC E. coli . Furthermore, the mechanism of genes and proteins involved in the VBNC E. coli is also discussed in this review.

  19. Detecting Staphylococcus aureus in milk from dairy cows using sniffer dogs.

    PubMed

    Fischer-Tenhagen, C; Theby, V; Krömker, V; Heuwieser, W

    2018-05-01

    Fast and accurate identification of disease-causing pathogens is essential for specific antimicrobial therapy in human and veterinary medicine. In these experiments, dogs were trained to identify Staphylococcus aureus and differentiate it from other common mastitis-causing pathogens by smell. Headspaces from agar plates, inoculated raw milk samples, or field samples collected from cows with Staphylococcus aureus and other mastitis-causing pathogens were used for training and testing. The ability to learn the specific odor of Staphylococcus aureus in milk depended on the concentration of the pathogens in the training samples. Sensitivity and specificity for identifying Staphylococcus aureus were 91.3 and 97.9%, respectively, for pathogens grown on agar plates; 83.8 and 98.0% for pathogens inoculated in raw milk; and 59.0 and 93.2% for milk samples from mastitic cows. The results of these experiments underline the potential of odor detection as a diagnostic tool for pathogen diagnosis. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  20. Zebrafish as a useful model for zoonotic Vibrio parahaemolyticus pathogenicity in fish and human.

    PubMed

    Zhang, Qinghua; Dong, Xuehong; Chen, Biao; Zhang, Yonghua; Zu, Yao; Li, Weiming

    2016-02-01

    Vibrio parahaemolyticus is an important aquatic zoonotic pathogen worldwide that causes vibriosis in many marine fish, and sepsis, gastroenteritis and wound infection in humans. However, the pathogenesis of different sources of V. parahaemolyticus is not fully understood. Here, we examined the pathogenicity and histopathology of fish (V. parahaemolyticus 1.2164) and human (V. parahaemolyticus 17) strains in a zebrafish (Danio rerio). We found that different infection routes resulted in different mortality in zebrafish. Moreover, death due to V. parahaemolyticus 1.2164 infection occurred quicker than that caused by V. parahaemolyticus 17 infection. Hematoxylin-eosin staining of liver, kidney and intestine sections showed histological lesions in all three organs after infection with either strain. V. parahaemolyticus 1.2164 caused more severe damage than V. parahaemolyticus 17. In particular, V. parahaemolyticus 1.2164 treatment induced more serious hydropic degeneration and venous sinus necrosis in the liver than V. parahaemolyticus 17 treatment. The expression levels of three proinflammatory cytokines, interleukin 1β (il1β), interferon phi 1 (ifnϕ1) and tumor necrosis factor α (tnfα), as determined by quantitative real-time PCR, were upregulated in all examined tissues of infected fish. Notably, the peak levels of tnfα were significantly higher than those of il1β and ifnϕ1, suggesting, together with pathological results, that tnfα and il1β play an important role in acute sepsis. High amounts of tnfα may be related to acute liver necrosis, while ifnϕ1 may respond to V. parahaemolyticus and play an antibacterial role for chronically infected adult zebrafish. Taken together, our results suggest that the zebrafish model of V. parahaemolyticus infection is useful for studying strain differences in V. parahaemolyticus pathogenesis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Fate of Salmonella enterica and Enterohemorrhagic Escherichia coli Cells Artificially Internalized into Vegetable Seeds during Germination.

    PubMed

    Liu, Da; Cui, Yue; Walcott, Ronald; Chen, Jinru

    2018-01-01

    Vegetable seeds contaminated with bacterial pathogens have been linked to fresh-produce-associated outbreaks of gastrointestinal infections. This study was undertaken to observe the physiological behavior of Salmonella enterica and enterohemorrhagic Escherichia coli (EHEC) cells artificially internalized into vegetable seeds during the germination process. Surface-decontaminated seeds of alfalfa, fenugreek, lettuce, and tomato were vacuum-infiltrated with four individual strains of Salmonella or EHEC. Contaminated seeds were germinated at 25°C for 9 days, and different sprout/seedling tissues were microbiologically analyzed every other day. The internalization of Salmonella and EHEC cells into vegetable seeds was confirmed by the absence of pathogens in seed-rinsing water and the presence of pathogens in seed homogenates after postinternalization seed surface decontamination. Results show that 317 (62%) and 343 (67%) of the 512 collected sprout/seedling tissue samples were positive for Salmonella and EHEC, respectively. The average Salmonella populations were significantly larger ( P < 0.05) than the EHEC populations. Significantly larger Salmonella populations were recovered from the cotyledon and seed coat tissues, followed by the root tissues, but the mean EHEC populations from all sampled tissue sections were statistically similar, except in pregerminated seeds. Three Salmonella and two EHEC strains had significantly larger cell populations on sprout/seedling tissues than other strains used in the study. Salmonella and EHEC populations from fenugreek and alfalfa tissues were significantly larger than those from tomato and lettuce tissues. The study showed the fate of internalized human pathogens on germinating vegetable seeds and sprout/seedling tissues and emphasized the importance of using pathogen-free seeds for sprout production. IMPORTANCE The internalization of microorganisms into vegetable seeds could occur naturally and represents a possible pathway of vegetable seed contamination by human pathogens. The present study investigated the ability of two important bacterial pathogens, Salmonella and enterohemorrhagic Escherichia coli (EHEC), when artificially internalized into vegetable seeds, to grow and disseminate along vegetable sprouts/seedlings during germination. The data from the study revealed that the pathogen cells artificially internalized into vegetable seeds caused the contamination of different tissues of sprouts/seedlings and that pathogen growth on germinating seeds is bacterial species and vegetable seed-type dependent. These results further stress the necessity of using pathogen-free vegetable seeds for edible sprout production. Copyright © 2017 American Society for Microbiology.

  2. Host pathogen relations: exploring animal models for fungal pathogens.

    PubMed

    Harwood, Catherine G; Rao, Reeta P

    2014-06-30

    Pathogenic fungi cause superficial infections but pose a significant public health risk when infections spread to deeper tissues, such as the lung. Within the last three decades, fungi have been identified as the leading cause of nosocomial infections making them the focus of research. This review outlines the model systems such as the mouse, zebrafish larvae, flies, and nematodes, as well as ex vivo and in vitro systems available to study common fungal pathogens.

  3. Five Reasons to Consider Phytophthora infestans a Reemerging Pathogen.

    PubMed

    Fry, W E; Birch, P R J; Judelson, H S; Grünwald, N J; Danies, G; Everts, K L; Gevens, A J; Gugino, B K; Johnson, D A; Johnson, S B; McGrath, M T; Myers, K L; Ristaino, J B; Roberts, P D; Secor, G; Smart, C D

    2015-07-01

    Phytophthora infestans has been a named pathogen for well over 150 years and yet it continues to "emerge", with thousands of articles published each year on it and the late blight disease that it causes. This review explores five attributes of this oomycete pathogen that maintain this constant attention. First, the historical tragedy associated with this disease (Irish potato famine) causes many people to be fascinated with the pathogen. Current technology now enables investigators to answer some questions of historical significance. Second, the devastation caused by the pathogen continues to appear in surprising new locations or with surprising new intensity. Third, populations of P. infestans worldwide are in flux, with changes that have major implications to disease management. Fourth, the genomics revolution has enabled investigators to make tremendous progress in terms of understanding the molecular biology (especially the pathogenicity) of P. infestans. Fifth, there remain many compelling unanswered questions.

  4. Summary of taxa-specific research: 2. pathogens

    Treesearch

    Ned Klopfenstein; Brian Geils

    2009-01-01

    Damage caused by invasive forest pathogens is widely viewed as more severe, long-term, widespread, and difficult to restore than that caused by any other biological disturbance agent. In the last century, pathogens introduced into our native forests have threatened extinction of native tree species and critically degraded many different ecosystems across North America...

  5. Litter chemistry, community shift, and non-additive effects drive litter decomposition changes following invasion by a generalist pathogen

    Treesearch

    Richard C. Cobb; David M. Rizzo

    2016-01-01

    Forest pathogens have strong potential to shape ecosystem function by altering litterfall, microclimate, and changing community structure. We quantified changes in litter decomposition from a set of distinct diseases caused by Phytophthora ramorum, an exotic generalist pathogen. Phytophthora ramorum causes leaf blight and...

  6. Detection of Pneumonia Associated Pathogens Using a Prototype Multiplexed Pneumonia Test in Hospitalized Patients with Severe Pneumonia

    PubMed Central

    Schulte, Berit; Eickmeyer, Holm; Heininger, Alexandra; Juretzek, Stephanie; Karrasch, Matthias; Denis, Olivier; Roisin, Sandrine; Pletz, Mathias W.; Klein, Matthias; Barth, Sandra; Lüdke, Gerd H.; Thews, Anne; Torres, Antoni; Cillóniz, Catia; Straube, Eberhard; Autenrieth, Ingo B.; Keller, Peter M.

    2014-01-01

    Severe pneumonia remains an important cause of morbidity and mortality. Polymerase chain reaction (PCR) has been shown to be more sensitive than current standard microbiological methods – particularly in patients with prior antibiotic treatment – and therefore, may improve the accuracy of microbiological diagnosis for hospitalized patients with pneumonia. Conventional detection techniques and multiplex PCR for 14 typical bacterial pneumonia-associated pathogens were performed on respiratory samples collected from adult hospitalized patients enrolled in a prospective multi-center study. Patients were enrolled from March until September 2012. A total of 739 fresh, native samples were eligible for analysis, of which 75 were sputa, 421 aspirates, and 234 bronchial lavages. 276 pathogens were detected by microbiology for which a valid PCR result was generated (positive or negative detection result by Curetis prototype system). Among these, 120 were identified by the prototype assay, 50 pathogens were not detected. Overall performance of the prototype for pathogen identification was 70.6% sensitivity (95% confidence interval (CI) lower bound: 63.3%, upper bound: 76.9%) and 95.2% specificity (95% CI lower bound: 94.6%, upper bound: 95.7%). Based on the study results, device cut-off settings were adjusted for future series production. The overall performance with the settings of the CE series production devices was 78.7% sensitivity (95% CI lower bound: 72.1%) and 96.6% specificity (95% CI lower bound: 96.1%). Time to result was 5.2 hours (median) for the prototype test and 43.5 h for standard-of-care. The Pneumonia Application provides a rapid and moderately sensitive assay for the detection of pneumonia-causing pathogens with minimal hands-on time. Trial Registration Deutsches Register Klinischer Studien (DRKS) DRKS00005684 PMID:25397673

  7. The Emerging British Verticillium longisporum Population Consists of Aggressive Brassica Pathogens.

    PubMed

    Depotter, Jasper R L; Rodriguez-Moreno, Luis; Thomma, Bart P H J; Wood, Thomas A

    2017-11-01

    Verticillium longisporum is an economically important fungal pathogen of brassicaceous crops that originated from at least three hybridization events between different Verticillium spp., leading to the hybrid lineages A1/D1, A1/D2, and A1/D3. Isolates of lineage A1/D1 generally cause stem striping on oilseed rape (Brassica napus), which has recently been reported for the first time to occur in the United Kingdom. Intriguingly, the emerging U.K. population is distinct from the north-central European stem striping population. Little is known about the pathogenicity of the newly emerged U.K. population; hence, pathogenicity tests were executed to compare British isolates to previously characterized reference strains. In addition to the model plant Arabidopsis thaliana, the pathogenicity of four British isolates was assessed on four cultivars of three Brassica crop species: oilseed rape (Quartz and Incentive), cauliflower (Clapton), and Chinese cabbage (Hilton). To this end, vascular discoloration of the roots, plant biomass accumulations, and fungal stem colonization upon isolate infection were evaluated. The British isolates appeared to be remarkably aggressive, because plant biomass was significantly affected and severe vascular discoloration was observed. The British isolates were successful stem colonizers and the extent of fungal colonization negatively correlated with plant biomass of cauliflower and Quartz oilseed rape. However, in Quartz, the fungal colonization of A1/D1 isolates was significantly lower than that of the virulent reference isolate from lineage A1/D3, PD589. Moreover, despite levels of stem colonization similar to those of A1/D1 strains, PD589 did not cause significant disease on Incentive. Thus, A1/D1 isolates, including British isolates, are aggressive oilseed rape pathogens despite limited colonization levels in comparison with a virulent A1/D3 isolate.

  8. Norepinephrine and dopamine increase motility, biofilm formation, and virulence of Vibrio harveyi

    PubMed Central

    Yang, Qian; Anh, Nguyen D. Q.; Bossier, Peter; Defoirdt, Tom

    2014-01-01

    Vibrio harveyi is one of the major pathogens of aquatic organisms, affecting both vertebrates and invertebrates, and causes important losses in the aquaculture industry. In order to develop novel methods to control disease caused by this pathogen, we need to obtain a better understanding of pathogenicity mechanisms. Sensing of catecholamines increases both growth and production of virulence-related factors in pathogens of terrestrial animals and humans. However, at this moment, knowledge on the impact of catecholamines on the virulence of pathogens of aquatic organisms is lacking. In the present study, we report that in V. harveyi, norepinephrine (NE) and dopamine (Dopa) increased growth in serum-supplemented medium, siderophore production, swimming motility, and expression of genes involved in flagellar motility, biofilm formation, and exopolysaccharide production. Consistent with this, pretreatment of V. harveyi with catecholamines prior to inoculation into the rearing water resulted in significantly decreased survival of gnotobiotic brine shrimp larvae, when compared to larvae challenged with untreated V. harveyi. Further, NE-induced effects could be neutralized by α-adrenergic antagonists or by the bacterial catecholamine receptor antagonist LED209, but not by β-adrenergic or dopaminergic antagonists. Dopa-induced effects could be neutralized by dopaminergic antagonists or LED209, but not by adrenergic antagonists. Together, our results indicate that catecholamine sensing increases the success of transmission of V. harveyi and that interfering with catecholamine sensing might be an interesting strategy to control vibriosis in aquaculture. We hypothesize that upon tissue and/or hemocyte damage during infection, pathogens come into contact with elevated catecholamine levels, and that this stimulates the expression of virulence factors that are required to colonize a new host. PMID:25414697

  9. Application of Proteomics for the Investigation of the Effect of Initial pH on Pathogenic Mechanisms of Fusarium proliferatum on Banana Fruit.

    PubMed

    Li, Taotao; Wu, Qixian; Wang, Yong; John, Afiya; Qu, Hongxia; Gong, Liang; Duan, Xuewu; Zhu, Hong; Yun, Ze; Jiang, Yueming

    2017-01-01

    Fusarium proliferatum is an important pathogen and causes a great economic loss to fruit industry. Environmental pH-value plays a regulatory role in fungi pathogenicity, however, the mechanism needs further exploration. In this study, F. proliferatum was cultured under two initial pH conditions of 5 and 10. No obvious difference was observed in the growth rate of F. proliferatum between two pH-values. F. proliferatum cultured under both pH conditions infected banana fruit successfully, and smaller lesion diameter was presented on banana fruit inoculated with pH 10-cultured fungi. Proteomic approach based on two-dimensional electrophoresis (2-DE) was used to investigate the changes in secretome of this fungus between pH 5 and 10. A total of 39 differential spots were identified using matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry (MALDI-TOF/TOF-MS) and liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). Compared to pH 5 condition, proteins related to cell wall degrading enzymes (CWDEs) and proteolysis were significantly down-regulated at pH 10, while proteins related to oxidation-reduction process and transport were significantly up-regulated under pH 10 condition. Our results suggested that the downregulation of CWDEs and other virulence proteins in the pH 10-cultured F. proliferatum severely decreased its pathogenicity, compared to pH 5-cultured fungi. However, the alkaline environment did not cause a complete loss of the pathogenic ability of F. proliferatum , probably due to the upregulation of the oxidation-reduction related proteins at pH 10, which may partially compensate its pathogenic ability.

  10. Plant pathogen-induced water-soaking promotes Salmonella enterica growth on tomato leaves.

    PubMed

    Potnis, Neha; Colee, James; Jones, Jeffrey B; Barak, Jeri D

    2015-12-01

    Plant pathogen infection is a critical factor for the persistence of Salmonella enterica on plants. We investigated the mechanisms responsible for the persistence of S. enterica on diseased tomato plants by using four diverse bacterial spot Xanthomonas species that differ in disease severities. Xanthomonas euvesicatoria and X. gardneri infection fostered S. enterica growth, while X. perforans infection did not induce growth but supported the persistence of S. enterica. X. vesicatoria-infected leaves harbored S. enterica populations similar to those on healthy leaves. Growth of S. enterica was associated with extensive water-soaking and necrosis in X. euvesicatoria- and X. gardneri-infected plants. The contribution of water-soaking to the growth of S. enterica was corroborated by an increased growth of populations on water-saturated leaves in the absence of a plant pathogen. S. enterica aggregates were observed with bacterial spot lesions caused by either X. euvesicatoria or X. vesicatoria; however, more S. enterica aggregates formed on X. euvesicatoria-infected leaves as a result of larger lesion sizes per leaf area and extensive water-soaking. Sparsely distributed lesions caused by X. vesicatoria infection do not support the overall growth of S. enterica or aggregates in areas without lesions or water-soaking; S. enterica was observed as single cells and not aggregates. Thus, pathogen-induced water-soaking and necrosis allow S. enterica to replicate and proliferate on tomato leaves. The finding that the pathogen-induced virulence phenotype affects the fate of S. enterica populations in diseased plants suggests that targeting of plant pathogen disease is important in controlling S. enterica populations on plants. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  11. Different Cellular Origins and Functions of Extracellular Proteins from Escherichia coli O157:H7 and O104:H4 as Determined by Comparative Proteomic Analysis

    PubMed Central

    Islam, Nazrul; Nagy, Attila; Garrett, Wesley M.; Shelton, Dan

    2016-01-01

    ABSTRACT Extracellular proteins play important roles in bacterial interactions with the environmental matrices. In this study, we examined the extracellular proteins from Escherichia coli O157:H7 and O104:H4 by tandem mass spectrometry. We identified 500 and 859 proteins from the growth media of E. coli O157:H7 and O104:H4, respectively, including 371 proteins common to both strains. Among proteins that were considered specific to E. coli O157:H7 or present at higher relative abundances in O157:H7 medium, most (57 of 65) had secretion signal sequences in their encoding genes. Noticeably, the proteins included locus of enterocyte effacement (LEE) virulence factors, proteins required for peptidyl-lipoprotein accumulation, and proteins involved in iron scavenging. In contrast, a much smaller proportion of proteins (37 of 150) that were considered specific to O104:H4 or presented at higher relative abundances in O104:H4 medium had signals targeting them for secretion. These proteins included Shiga toxin 2 subunit B and O104:H4 signature proteins, including AAF/1 major fimbrial subunit and serine protease autotransporters. Most of the abundant proteins from the growth medium of E. coli O104:H4 were annotated as having functions in the cytoplasm. We provide evidence that the extensive presence of cytoplasmic proteins in E. coli O104:H4 growth medium was due to biological processes independent of cell lysis, indicating alternative mechanisms for this potent pathogen releasing cytoplasmic contents into the growth milieu, which could play a role in interaction with the environmental matrices, such as pathogenesis and biofilm formation. IMPORTANCE In this study, we compared the extracellular proteins from two of the most prominent foodborne pathogenic E. coli organisms that have caused severe outbreaks in the United States and in Europe. E. coli O157:H7 is a well-studied Shiga toxigenic foodborne pathogen of the enterohemorrhagic pathotype that has caused numerous outbreaks associated with various contaminated foods worldwide. E. coli O104:H4 is a newly emerged Shiga toxigenic foodborne pathogen of the enteroaggregative pathotype that gained notoriety for causing one of the most deadly foodborne outbreaks in Europe in 2011. Comparison of proteins in the growth medium revealed significant differences in the compositions of the extracellular proteins for these two pathogens. These differences may provide valuable information regarding the cellular responses of these pathogens to their environment, including cell survival and pathogenesis. PMID:27208096

  12. Synanthropic Mammals as Potential Hosts of Tick-Borne Pathogens in Panama.

    PubMed

    Bermúdez, Sergio E; Gottdenker, Nicole; Krishnvajhala, Aparna; Fox, Amy; Wilder, Hannah K; González, Kadir; Smith, Diorene; López, Marielena; Perea, Milixa; Rigg, Chystrie; Montilla, Santiago; Calzada, José E; Saldaña, Azael; Caballero, Carlos M; Lopez, Job E

    2017-01-01

    Synanthropic wild mammals can be important hosts for many vector-borne zoonotic pathogens. The aim of this study was determine the exposure of synanthropic mammals to two types of tick-borne pathogens in Panama, spotted fever group Rickettsia (SFGR) and Borrelia relapsing fever (RF) spirochetes. One hundred and thirty-one wild mammals were evaluated, including two gray foxes, two crab-eating foxes (from zoos), four coyotes, 62 opossum and 63 spiny rats captured close to rural towns. To evaluate exposure to SFGR, serum samples from the animals were tested by indirect immunofluorescence assay (IFA) using Rickettsia rickettsii and Candidatus Rickettsia amblyommii antigen. Immunoblotting was performed using Borrelia turicatae protein lysates and rGlpQ, to assess infection caused by RF spirochetes. One coyote (25%) and 27 (43%) opossums showed seroreactivity to SFGR. Of these opossums, 11 were seroreactive to C. R. amblyommii. Serological reactivity was not detected to B. turicatae in mammal samples. These findings may reflect a potential role of both mammals in the ecology of tick-borne pathogens in Panama.

  13. The coronafacoyl phytotoxins: structure, biosynthesis, regulation and biological activities.

    PubMed

    Bignell, Dawn R D; Cheng, Zhenlong; Bown, Luke

    2018-05-01

    Phytotoxins are secondary metabolites that contribute to the development and/or severity of diseases caused by various plant pathogenic microorganisms. The coronafacoyl phytotoxins are an important family of plant toxins that are known or suspected to be produced by several phylogenetically distinct plant pathogenic bacteria, including the gammaproteobacterium Pseudomonas syringae and the actinobacterium Streptomyces scabies. At least seven different family members have been identified, of which coronatine was the first to be described and is the best-characterized. Though nonessential for disease development, coronafacoyl phytotoxins appear to enhance the severity of disease symptoms induced by pathogenic microbes during host infection. In addition, the identification of coronafacoyl phytotoxin biosynthetic genes in organisms not known to be plant pathogens suggests that these metabolites may have additional roles other than as virulence factors. This review focuses on our current understanding of the structures, biosynthesis, regulation, biological activities and evolution of coronafacoyl phytotoxins as well as the different methods that are used to detect these metabolites and the organisms that produce them.

  14. Deducing the pathogenic contribution of recessive ABCA4 alleles in an outbred population.

    PubMed

    Schindler, Emily I; Nylen, Erik L; Ko, Audrey C; Affatigato, Louisa M; Heggen, Andrew C; Wang, Kai; Sheffield, Val C; Stone, Edwin M

    2010-10-01

    Accurate prediction of the pathogenic effects of specific genotypes is important for the design and execution of clinical trials as well as for meaningful counseling of individual patients. However, for many autosomal recessive diseases, it can be difficult to deduce the relative pathogenic contribution of individual alleles because relatively few affected individuals share the same two disease-causing variations. In this study, we used multiple regression analysis to estimate the pathogenicity of specific alleles of ABCA4 in patients with retinal phenotypes ranging from Stargardt disease to retinitis pigmentosa. This analysis revealed quantitative allelic effects on two aspects of the visual phenotype, visual acuity (P < 10(-3)) and visual field (P < 10(-7)). Discordance between visual acuity and visual field in individual patients suggests the existence of at least two non-ABCA4 modifying factors. The findings of this study will facilitate the discovery of factors that modify ABCA4 disease and will also aid in the optimal selection of subjects for clinical trials of new therapies.

  15. Extraction of Total Nucleic Acids From Ticks for the Detection of Bacterial and Viral Pathogens

    PubMed Central

    Crowder, Chris D.; Rounds, Megan A.; Phillipson, Curtis A.; Picuri, John M.; Matthews, Heather E.; Halverson, Justina; Schutzer, Steven E.; Ecker, David J.; Eshoo, Mark W.

    2010-01-01

    Ticks harbor numerous bacterial, protozoal, and viral pathogens that can cause serious infections in humans and domestic animals. Active surveillance of the tick vector can provide insight into the frequency and distribution of important pathogens in the environment. Nucleic-acid based detection of tick-borne bacterial, protozoan, and viral pathogens requires the extraction of both DNA and RNA (total nucleic acids) from ticks. Traditional methods for nucleic acid extraction are limited to extraction of either DNA or the RNA from a sample. Here we present a simple bead-beating based protocol for extraction of DNA and RNA from a single tick and show detection of Borrelia burgdorferi and Powassan virus from individual, infected Ixodes scapularis ticks. We determined expected yields for total nucleic acids by this protocol for a variety of adult tick species. The method is applicable to a variety of arthropod vectors, including fleas and mosquitoes, and was partially automated on a liquid handling robot. PMID:20180313

  16. Epidemiology of Acute Febrile Illness in Latin America.

    PubMed

    Moreira, José; Bressan, Clarisse S; Brasil, Patricia; Siqueira, Andre M

    2018-05-16

    The causes of acute febrile illness (AFI) in Latin America (LA) are diverse and its complexity increase as the proportion of fever due to malaria decreases as control and new pathogens emerge in the region. In this context, it is important to shed light over the gaps on the epidemiological characteristics and the geographic range for many AFI aetiologies. To review studies on community-acquired fever etiology other than malaria in LA, and to highlight knowledge gaps and challenges needing further investigation. PubMed from 2012 to April 2018 CONTENT: We found 17 eligible studies describing 13,539 patients. The median number of pathogens tested per individuals was 3.5, with range varying from 2 to 17. A causative pathogen could be determined for 6,661 (49.2%) individuals. The most frequently reported pathogen during the study periods was dengue virus (DENV) (14 studies), followed by Chikungunya virus (9) and Zika virus (7). Among the studies reporting concurrent infections, 296 patients (2.2%) were found to have co-infections. In-hospital mortality was reported in 8 (47%) studies, ranging between 0-18%. DENV is the febrile illness most frequently reported, reflecting its importance, while CHIKV and ZIKV present increasing trends since its emergence in the region. Studies with systematic and harmonized approach for detection of multiple pathogens are needed and would probably reveal a higher burden of neglected pathogens such as Rickettsia spp. and arenaviruses. The lack of point-of-care tests and harmonized approach limits the care provided by health professionals and the efficacy of surveillance for AFI in the region. Copyright © 2018. Published by Elsevier Ltd.

  17. Itraconazole-resistant Candida auris with phospholipase, proteinase and hemolysin activity from a case of vulvovaginitis.

    PubMed

    Kumar, Dharmendra; Banerjee, Tuhina; Pratap, Chandra Bhan; Tilak, Ragini

    2015-04-15

    Since the emergence of pathogenic non-albicans Candida species, a number of new isolates have been added to the list. One such unusual species is Candida auris (C. auris), recently isolated and studied in few reports. In this study, a case of vulvovaginitis caused by Candida auris incidentally identified by molecular methods using internal transcribed spacer polymerase chain reaction (ITS PCR) is described. Antifungal susceptibility testing revealed the isolate to be resistant to itraconazole (MIC ≥ 2 µg/ml) and expressed important virulence factors including phospholipase, proteinase and hemolysin activity. The patient was successfully treated with oral fluconazole and did not have any invasive fungemia. Very few cases of this emerging pathogen have been reported. However, its isolation from clinical specimens reveals the significance of non-albicans candida species over C. albicans and the diversity of Candida spp causing infections.

  18. A mouse model of Salmonella typhi infection

    PubMed Central

    Mathur, Ramkumar; Oh, Hyunju; Zhang, Dekai; Park, Sung-Gyoo; Seo, Jin; Koblansky, Alicia; Hayden, Matthew S.; Ghosh, Sankar

    2012-01-01

    Salmonella spp. are gram-negative flagellated bacteria that can cause food and water-borne gastroenteritis and typhoid fever in humans. We now report that flagellin from Salmonella spp. is recognized in mouse intestine by Toll-like receptor 11 (TLR11). Absence of TLR11 renders mice more susceptible to infection by S. typhimurium, with increased dissemination of the bacteria and enhanced lethality. Unlike S. typhimurium, S. typhi, a human obligatory pathogen that causes typhoid fever, is normally unable to infect mice. TLR11 is expressed in mice but not in humans, and remarkably, we find that tlr11−/− mice are efficiently infected with orally-administered S. typhi. We also find that tlr11−/− mice can be immunized against S. typhi. Therefore, tlr11−/− mice represent the first small animal model for the study of the immune response to S. typhi, and for the development of vaccines against this important human pathogen. PMID:23101627

  19. Understanding pathogenic single-nucleotide polymorphisms in multidomain proteins – studies of isolated domains are not enough

    PubMed Central

    Randles, Lucy G; Dawes, Gwen J S; Wensley, Beth G; Steward, Annette; Nickson, Adrian A; Clarke, Jane

    2013-01-01

    Studying the effects of pathogenic mutations is more complex in multidomain proteins when compared with single domains: mutations occurring at domain boundaries may have a large effect on a neighbouring domain that will not be detected in a single-domain system. To demonstrate this, we present a study that utilizes well-characterized model protein domains from human spectrin to investigate the effect of disease-and non-disease-causing single point mutations occurring at the boundaries of human spectrin repeats. Our results show that mutations in the single domains have no clear correlation with stability and disease; however, when studied in a tandem model system, the disease-causing mutations are shown to disrupt stabilizing interactions that exist between domains. This results in a much larger decrease in stability than would otherwise have been predicted, and demonstrates the importance of studying such mutations in the correct protein context. PMID:23241237

  20. Complement and innate immune evasion strategies of the human pathogenic fungus Candida albicans.

    PubMed

    Luo, Shanshan; Skerka, Christine; Kurzai, Oliver; Zipfel, Peter F

    2013-12-15

    Candida albicans is a medically important fungus that can cause a wide range of diseases ranging from superficial infections to disseminated disease, which manifests primarily in immuno-compromised individuals. Despite the currently applied anti-fungal therapies, both mortality and morbidity caused by this human pathogenic fungus are still unacceptably high. Therefore new prophylactic and therapeutic strategies are urgently needed to prevent fungal infection. In order to define new targets for combating fungal disease, there is a need to understand the immune evasion strategies of C. albicans in detail. In this review, we summarize different sophisticated immune evasion strategies that are utilized by C. albicans. The description of the molecular mechanisms used for immune evasion does on one hand help to understand the infection process, and on the other hand provides valuable information to define new strategies and diagnostic approaches to fight and interfere with Candida infections. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Sexually Transmitted Diseases and Infertility

    PubMed Central

    TSEVAT, Danielle G.; WIESENFELD, Harold C.; Parks, Caitlin; PEIPERT, Jeffrey F.

    2016-01-01

    Female infertility, including tubal factor infertility, is a major public health concern worldwide. Most cases of tubal factor infertility are attributable to untreated sexually transmitted diseases that ascend along the reproductive tract and are capable of causing tubal inflammation, damage, and scarring. Evidence has consistently demonstrated the effects of Chlamydia trachomatis and Neisseria gonorrhoeae as pathogenic bacteria involved in reproductive tract morbidities including tubal factor infertility and pelvic inflammatory disease. There is limited evidence in the medical literature that other sexually transmitted organisms, including Mycoplasma genitalium, Trichomonas vaginalis, and other microorganisms within the vaginal microbiome may be important factors involved in the pathology of infertility. Further investigation into the vaginal microbiome and other potential pathogens is necessary in order to identify preventable causes of tubal factor infertility. Improved clinical screening and prevention of ascending infection may provide a solution to the persistent burden of infertility. PMID:28007229

  2. Influenza Virus Infection of Marine Mammals.

    PubMed

    Fereidouni, Sasan; Munoz, Olga; Von Dobschuetz, Sophie; De Nardi, Marco

    2016-03-01

    Interspecies transmission may play a key role in the evolution and ecology of influenza A viruses. The importance of marine mammals as hosts or carriers of potential zoonotic pathogens such as highly pathogenic H5 and H7 influenza viruses is not well understood. The fact that influenza viruses are some of the few zoonotic pathogens known to have caused infection in marine mammals, evidence for direct transmission of influenza A virus H7N7 subtype from seals to man, transmission of pandemic H1N1 influenza viruses to seals and also limited evidence for long-term persistence of influenza B viruses in seal populations without significant genetic change, makes monitoring of influenza viruses in marine mammal populations worth being performed. In addition, such monitoring studies could be a great tool to better understand the ecology of influenza viruses in nature.

  3. A PR-1-like Protein of Fusarium oxysporum Functions in Virulence on Mammalian Hosts*

    PubMed Central

    Prados-Rosales, Rafael C.; Roldán-Rodríguez, Raquel; Serena, Carolina; López-Berges, Manuel S.; Guarro, Josep; Martínez-del-Pozo, Álvaro; Di Pietro, Antonio

    2012-01-01

    The pathogenesis-related PR-1-like protein family comprises secreted proteins from the animal, plant, and fungal kingdoms whose biological function remains poorly understood. Here we have characterized a PR-1-like protein, Fpr1, from Fusarium oxysporum, an ubiquitous fungal pathogen that causes vascular wilt disease on a wide range of plant species and can produce life-threatening infections in immunocompromised humans. Fpr1 is secreted and proteolytically processed by the fungus. The fpr1 gene is required for virulence in a disseminated immunodepressed mouse model, and its function depends on the integrity of the proposed active site of PR-1-like proteins. Fpr1 belongs to a gene family that has expanded in plant pathogenic Sordariomycetes. These results suggest that secreted PR-1-like proteins play important roles in fungal pathogenicity. PMID:22553200

  4. Stress signaling pathways for the pathogenicity of Cryptococcus.

    PubMed

    Bahn, Yong-Sun; Jung, Kwang-Woo

    2013-12-01

    Sensing, responding, and adapting to the surrounding environment are crucial for all living organisms to survive, proliferate, and differentiate in their biological niches. This ability is also essential for Cryptococcus neoformans and its sibling species Cryptococcus gattii, as these pathogens have saprobic and parasitic life cycles in natural and animal host environments. The ability of Cryptococcus to cause fatal meningoencephalitis is highly related to its capability to remodel and optimize its metabolic and physiological status according to external cues. These cues act through multiple stress signaling pathways through a panoply of signaling components, including receptors/sensors, small GTPases, secondary messengers, kinases, transcription factors, and other miscellaneous adaptors or regulators. In this minireview, we summarize and highlight the importance of several stress signaling pathways that influence the pathogenicity of Cryptococcus and discuss future challenges in these areas.

  5. Stress Signaling Pathways for the Pathogenicity of Cryptococcus

    PubMed Central

    Jung, Kwang-Woo

    2013-01-01

    Sensing, responding, and adapting to the surrounding environment are crucial for all living organisms to survive, proliferate, and differentiate in their biological niches. This ability is also essential for Cryptococcus neoformans and its sibling species Cryptococcus gattii, as these pathogens have saprobic and parasitic life cycles in natural and animal host environments. The ability of Cryptococcus to cause fatal meningoencephalitis is highly related to its capability to remodel and optimize its metabolic and physiological status according to external cues. These cues act through multiple stress signaling pathways through a panoply of signaling components, including receptors/sensors, small GTPases, secondary messengers, kinases, transcription factors, and other miscellaneous adaptors or regulators. In this minireview, we summarize and highlight the importance of several stress signaling pathways that influence the pathogenicity of Cryptococcus and discuss future challenges in these areas. PMID:24078305

  6. [Pathogenicity factors of bacteria with glycosylating activity].

    PubMed

    Tartakovskaia, D I; Araslanova, V A; Belyĭ, Iu F

    2011-01-01

    A and B toxins of Clostridium difficile, a-toxin of C. novyi, lehal toxin of C. sordellii, and TpeL toxin of C. perfringens belong to the group of the so-called large Clostridium toxins. These toxins modify low-molecular weight guanosine triphosphate-binding proteins of the Rho/Ras family by their glycosylation that results in inactivation of major signal pathways in eukaryotic cells. Lgt glycosyltransferases, a new group of pathogenicity factors also capable of inactivating eukaryotic substrates via glycosylation, have recently been identified in Legionella. They are transported into cytoplasm of eukaryotic target cells by type 4 secretory system of Legionella. After translocation, the enzyme inhibits protein synthesis by attaching glucose residue to Ser53 of 1A elongation factor. The available data suggest an important role of bacterial glycosylating factors in the action of pathogens causing infectious diseases.

  7. Listeria Occurrence in Poultry Flocks: Detection and Potential Implications.

    PubMed

    Rothrock, Michael J; Davis, Morgan L; Locatelli, Aude; Bodie, Aaron; McIntosh, Tori G; Donaldson, Janet R; Ricke, Steven C

    2017-01-01

    Foodborne pathogens such as Salmonella, Campylobacter, Escherichia coli , and Listeria are a major concern within the food industry due to their pathogenic potential to cause infection. Of these, Listeria monocytogenes , possesses a high mortality rate (approximately 20%) and is considered one of the most dangerous foodborne pathogens. Although the usual reservoirs for Listeria transmission have been extensively studied, little is known about the relationship between Listeria and live poultry production. Sporadic and isolated cases of listeriosis have been attributed to poultry production and Listeria spp. have been isolated from all stages of poultry production and processing. Farm studies suggest that live birds may be an important vector and contributor to contamination of the processing environment and transmission of Listeria to consumers. Therefore, the purpose of this review is to highlight the occurrence, incidence, and potential systemic interactions of Listeria spp. with poultry.

  8. Streptomyces scabies 87-22 contains a coronafacic acid-like biosynthetic cluster that contributes to plant-microbe interactions.

    PubMed

    Bignell, Dawn R D; Seipke, Ryan F; Huguet-Tapia, José C; Chambers, Alan H; Parry, Ronald J; Loria, Rosemary

    2010-02-01

    Plant-pathogenic Streptomyces spp. cause scab disease on economically important root and tuber crops, the most important of which is potato. Key virulence determinants produced by these species include the cellulose synthesis inhibitor, thaxtomin A, and the secreted Nec1 protein that is required for colonization of the plant host. Recently, the genome sequence of Streptomyces scabies 87-22 was completed, and a biosynthetic cluster was identified that is predicted to synthesize a novel compound similar to coronafacic acid (CFA), a component of the virulence-associated coronatine phytotoxin produced by the plant-pathogenic bacterium Pseudomonas syringae. Southern analysis indicated that the cfa-like cluster in S. scabies 87-22 is likely conserved in other strains of S. scabies but is absent from two other pathogenic streptomycetes, S. turgidiscabies and S. acidiscabies. Transcriptional analyses demonstrated that the cluster is expressed during plant-microbe interactions and that expression requires a transcriptional regulator embedded in the cluster as well as the bldA tRNA. A knockout strain of the biosynthetic cluster displayed a reduced virulence phenotype on tobacco seedlings compared with the wild-type strain. Thus, the cfa-like biosynthetic cluster is a newly discovered locus in S. scabies that contributes to host-pathogen interactions.

  9. RNA Editing of the GP Gene of Ebola Virus is an Important Pathogenicity Factor.

    PubMed

    Volchkova, Valentina A; Dolnik, Olga; Martinez, Mikel J; Reynard, Olivier; Volchkov, Viktor E

    2015-10-01

    Synthesis of the surface glycoprotein GP of Ebola virus (EBOV) is dependent on transcriptional RNA editing, whereas direct expression of the GP gene results in synthesis of nonstructural secreted glycoprotein sGP. In this study, we investigate the role of RNA editing in the pathogenicity of EBOV using a guinea pig model and recombinant guinea pig-adapted EBOV containing mutations at the editing site, allowing expression of surface GP without the need for RNA editing, and also preventing synthesis of sGP. We demonstrate that the elimination of the editing site leads to EBOV attenuation in vivo, explained by lower virus spread caused by the higher virus cytotoxicity and, most likely, by an increased ability of the host defense systems to recognize and eliminate virus-infected cells. We also demonstrate that expression of sGP does not affect pathogenicity of EBOV in guinea pigs. In conclusion, data obtained indicate that downregulation of the level of surface GP expression through a mechanism of GP gene RNA editing plays an important role in the high pathogenicity of EBOV. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. In Vitro Emergence of High Persistence upon Periodic Aminoglycoside Challenge in the ESKAPE Pathogens

    PubMed Central

    Verstraeten, Natalie; Fauvart, Maarten

    2016-01-01

    Health care-associated infections present a major threat to modern medical care. Six worrisome nosocomial pathogens—Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.—are collectively referred to as the “ESKAPE bugs.” They are notorious for extensive multidrug resistance, yet persistence, or the phenotypic tolerance displayed by a variant subpopulation, remains underappreciated in these pathogens. Importantly, persistence can prevent eradication of antibiotic-sensitive bacterial populations and is thought to act as a catalyst for the development of genetic resistance. Concentration- and time-dependent aminoglycoside killing experiments were used to investigate persistence in the ESKAPE pathogens. Additionally, a recently developed method for the experimental evolution of persistence was employed to investigate adaptation to high-dose, extended-interval aminoglycoside therapy in vitro. We show that ESKAPE pathogens exhibit biphasic killing kinetics, indicative of persister formation. In vitro cycling between aminoglycoside killing and persister cell regrowth, evocative of clinical high-dose extended-interval therapy, caused a 37- to 213-fold increase in persistence without the emergence of resistance. Increased persistence also manifested in biofilms and provided cross-tolerance to different clinically important antibiotics. Together, our results highlight a possible drawback of intermittent, high-dose antibiotic therapy and suggest that clinical diagnostics might benefit from taking into account persistence. PMID:27185802

  11. Genome assembly of the fungus Cochliobolus miyabeanus, and transcriptome analysis during early stages of infection on American wild rice (Zizania palustris L.)

    USDA-ARS?s Scientific Manuscript database

    Cochliobolus miyabeanus causes a severe, yield-reducing leaf spot disease on rice (Oryza sativa) and two North American specialty crops, American wildrice (Zizania palustris) and switchgrass (Panicum virgatum). Despite the importance of the pathogen in wildrice, little is known about mechanisms of p...

  12. Low prevalence of Neospora caninum and Toxoplasma gondii antibodies in dogs in Jilin, Henan and Anhui Provinces of the People’s Republic of China

    USDA-ARS?s Scientific Manuscript database

    Background: Neospora caninum and Toxoplasma gondii are important pathogens of worldwide distribution. N. caninum is a major cause of abortion in cattle and dogs are main reservoirs because they excrete the environmentally resistant oocysts. Toxoplasmosis is a worldwide zoonosis and dogs are consider...

  13. A North American isolate of Fusarium graminearum: toxicity and biosynthesis of a new type A trichothecene

    USDA-ARS?s Scientific Manuscript database

    Fusarium graminearum is one of the economically most important plant pathogens causing diseases such as Fusarium Head Blight (FHB) of small grain cereals and ear rot of maize. The mycotoxin deoxynivalenol (DON) produced by F. graminearum is a virulence factor in wheat and probably also on other host...

  14. Reaction of mid-southern U.S. southern cultivars to Bean pod mottle virus and Tobacco ringspot virus

    USDA-ARS?s Scientific Manuscript database

    Bean pod mottle virus (BPMV) and Tobacco ringspot virus (TRSV) are two important viral pathogens causing reduction of seed yield and quality in soybean. There are various BPMV and TRSV isolates observed, but no host resistance reported so far. The objective of this study was to screen modern soybean...

  15. Pathogenic variability of individuals and populations of cucurbit powdery mildew–great confusion and great mystery, or why we still need the classical phytopathology.

    USDA-ARS?s Scientific Manuscript database

    Golovinomyces cichoracearum and Podosphaera xanthii (family Erysiphales) are considered the most important species causing cucurbit powdery mildew (CPM), a serious disease of field and greenhouse cucurbits. Podosphaera xanthii (Px) is common in subtropical and tropical areas and in greenhouses in te...

  16. Application of a new approach for characterization and denomination of races of cucurbit powdery mildews – a case study on the Czech pathogen population

    USDA-ARS?s Scientific Manuscript database

    Golovinomyces cichoracearum (Gc) and Podosphaera xanthii (Px) (Ascomycetes, Erysiphaceae) are the most important fungal species causing cucurbit powdery mildew (CPM), a serious disease of field and greenhouse cucurbits. Both species are highly variable, as indicated by the existence of large number ...

  17. Draft genome sequences of Chrysoporthe austroafricana, Diplodia scrobiculata, Fusarium nygamai, Leptographium lundbergii, Limonomyces culmigenus, Stagonosporopsis tanaceti, and Thielaviopsis punctulata

    USDA-ARS?s Scientific Manuscript database

    Basidiomycete fungi in the genus Limonomyces are important pathogens of turfgrasses, causing pink patch and cream leaf blight diseases on numerous grass hosts worldwide. Much is unknown about the biology and taxonomy of these fungi, and molecular resources are extremely rare. Here, we report draft...

  18. Pathogenicity, fungicide resistance, and genetic variability of Phytophthora rubi isolates from raspberry (Rubus idaeus) in the Western United States

    USDA-ARS?s Scientific Manuscript database

    Root rot of raspberry (Rubus idaeus), thought to be primarily caused by Phytophthora rubi, is an economically important disease in the western United States. The objectives of this study were to determine which Phytophthora species are involved in root rot, examine the efficacy of different isolatio...

  19. Sclerenchymatous ring as a barrier to phloem feeding by Asian citrus psyllid: Evidence from electrical penetration graph and visualization of stylet pathways

    USDA-ARS?s Scientific Manuscript database

    Asian citrus psyllid (ACP) feeding behaviors play a significant role in the transmission of the phloem-limited Candidatus Liberibacter asiaticus (CLas) bacteria that cause citrus greening disease. Sustained phloem ingestion by ACP on CLas infected plants is very important in pathogen acquisition and...

  20. Identification of Diaporthe longicolla on dry edible peas (Pisum sativum), dry edible beans (Phaseolus vulgaris) and soybeans (Glycine max) in North Dakota

    USDA-ARS?s Scientific Manuscript database

    Diaporthe longicolla is a fungal pathogen that causes Phomopsis seed decay and stem disease of soybean, economically important diseases in some U.S. states. Dry edible bean, dry edible pea and soybean stems with unidentified lesions were collected from fields in North Dakota. Diaporthe longicolla ...

Top