Physiological principles of vestibular function on earth and in space
NASA Technical Reports Server (NTRS)
Minor, L. B.
1998-01-01
Physiological mechanisms underlying vestibular function have important implications for our ability to understand, predict, and modify balance processes during and after spaceflight. The microgravity environment of space provides many unique opportunities for studying the effects of changes in gravitoinertial force on structure and function of the vestibular system. Investigations of basic vestibular physiology and of changes in reflexes occurring as a consequence of exposure to microgravity have important implications for diagnosis and treatment of vestibular disorders in human beings. This report reviews physiological principles underlying control of vestibular processes on earth and in space. Information is presented from a functional perspective with emphasis on signals arising from labyrinthine receptors. Changes induced by microgravity in linear acceleration detected by the vestibulo-ocular reflexes. Alterations of the functional requirements for postural control in space are described. Areas of direct correlation between studies of vestibular reflexes in microgravity and vestibular disorders in human beings are discussed.
Bone and muscle endocrine functions: Unexpected paradigms of inter-organ communication
Karsenty, Gerard; Olson, Eric N.
2016-01-01
Most physiological functions originate with the communication between organs. Mouse genetics has revived this holistic view of physiology through the identification of inter-organ communications that are unanticipated, functionally important and would have been difficult to uncover otherwise. This review highlights this point by showing how two tissues usually not seen as endocrine ones, bone and striated muscles, influence in a significant manner several physiological processes. PMID:26967290
The TRPM2 channel: A thermo-sensitive metabolic sensor.
Kashio, Makiko; Tominaga, Makoto
2017-09-03
Living organisms continually experience changes in ambient temperature. To detect such temperature changes for adaptive behavioral responses, we evolved the ability to sense temperature. Thermosensitive transient receptor potential (TRP) channels, so-called thermo-TRPs, are involved in many physiologic functions in diverse organisms and constitute important temperature sensors. One of the important roles of thermo-TRPs is detecting ambient temperature in sensory neurons. Importantly, the functional expression of thermo-TRPs is observed not only in sensory neurons but also in tissues and cells that are not exposed to drastic temperature changes, indicating that thermo-TRPs are involved in many physiologic functions within the body's normal temperature range. Among such thermo-TRPs, this review focuses on one thermo-sensitive metabolic sensor in particular, TRPM2, and summarizes recent progress to clarify the regulatory mechanisms and physiologic functions of TRPM2 at body temperature under various metabolic states.
New Ways of Thinking about (and Teaching about) Intestinal Epithelial Function
ERIC Educational Resources Information Center
Barrett, Kim E.
2008-01-01
This article summarizes a presentation made at the Teaching Refresher Course of the American Physiological Society, which was held at the Experimental Biology meeting in 2007. The intestinal epithelium has important ion transport and barrier functions that contribute pivotally to normal physiological functioning of the intestine and other body…
Comparative Fecal Metagenomics Unveils Unique Functional Capacity of the Swine Gut
Uncovering the taxonomic composition and functional capacity within the swine gut microbial consortia is of great importance to animal physiology and health and to food and water safety due to the presence of human pathogens in pig feces. Limited information on the physiological...
The heart and potassium: a banana republic.
Khan, Ehsan; Spiers, Christine; Khan, Maria
2013-03-01
The importance of potassium in maintaining stable cardiac function is a clinically understood phenomenon. Physiologically the importance of potassium in cardiac function is described by the large number of different kinds of potassium ions channels found in the heart compared to channels and membrane transport mechanisms for other ions such as sodium and calcium. Potassium is important in physiological homeostatic control of cardiac function, but is also of relevance to the diseased state, as potassium-related effects may stabilize or destabilize cardiac function. This article aims to provide a detailed understanding of potassium-mediated cardiac function. This will help the clinical practitioner evaluate how modulation of potassium ion channels by disease and pharmacological manipulation affect the cardiac patient, thus aiding in decision making when faced with clinical problems related to potassium.
Kuzmiak-Glancy, Sarah; Jaimes, Rafael; Wengrowski, Anastasia M; Kay, Matthew W
2015-06-01
What is the topic of this review? This review discusses how the function and electrophysiology of isolated perfused hearts are affected by oxygenation and energy utilization. The impact of oxygenation on fluorescence measurements in perfused hearts is also discussed. What advances does it highlight? Recent studies have illuminated the inherent differences in electromechanical function, energy utilization rate and oxygen requirements between the primary types of excised heart preparations. A summary and analysis of how these variables affect experimental results are necessary to elevate the physiological relevance of these approaches in order to advance the field of whole-heart research. The ex vivo perfused heart recreates important aspects of in vivo conditions to provide insight into whole-organ function. In this review we discuss multiple types of ex vivo heart preparations, explain how closely each mimic in vivo function, and discuss how changes in electromechanical function and inadequate oxygenation of ex vivo perfused hearts may affect measurements of physiology. Hearts that perform physiological work have high oxygen demand and are likely to experience hypoxia when perfused with a crystalloid perfusate. Adequate myocardial oxygenation is critically important for obtaining physiologically relevant measurements, so when designing experiments the type of ex vivo preparation and the capacity of perfusate to deliver oxygen must be carefully considered. When workload is low, such as during interventions that inhibit contraction, oxygen demand is also low, which could dramatically alter a physiological response to experimental variables. Changes in oxygenation also alter the optical properties of cardiac tissue, an effect that may influence optical signals measured from both endogenous and exogenous fluorophores. Careful consideration of oxygen supply, working condition, and wavelengths used to acquire optical signals is critical for obtaining physiologically relevant measurements during ex vivo perfused heart studies. © 2015 The Authors. Experimental Physiology © 2015 The Physiological Society.
Obradović, Jelena
2012-05-01
The focus of this article is to present current progress in understanding the interplay among adversity, physiological sensitivity to context, and adaptive functioning, with an emphasis on implications and future directions for resilience researchers. It includes a review of current literature that demonstrates (a) links between various levels of adversity exposure and variability in physiological reactivity, (b) how the interplay between children's physiological reactivity and different sources of risk and adversity relates to variability in adaptive functioning, and (c) various approaches for capturing a more dynamic nature of physiological reactivity and related processes. Throughout, important conceptual and empirical issues are highlighted.
Regulation of the cellular and physiological effects of glutamine.
Chwals, Walter J
2004-10-01
Glutamine is the most abundant amino acid in humans and possesses many functions in the body. It is the major transporter of amino-nitrogen between cells and an important fuel source for rapidly dividing cells such as cells of the immune and gastrointestinal systems. It is important in the synthesis of nucleic acids, glutathione, citrulline, arginine, gamma aminobutyric acid, and glucose. It is important for growth, gastrointestinal integrity, acid-base homeostasis, and optimal immune function. The regulation of glutamine levels in cells via glutaminase and glutamine synthetase is discussed. The cellular and physiologic effects of glutamine upon the central nervous system, gastrointestinal function, during metabolic support, and following tissue injury and critical illness is also discussed.
Cholinergic modulation of cognitive processing: insights drawn from computational models
Newman, Ehren L.; Gupta, Kishan; Climer, Jason R.; Monaghan, Caitlin K.; Hasselmo, Michael E.
2012-01-01
Acetylcholine plays an important role in cognitive function, as shown by pharmacological manipulations that impact working memory, attention, episodic memory, and spatial memory function. Acetylcholine also shows striking modulatory influences on the cellular physiology of hippocampal and cortical neurons. Modeling of neural circuits provides a framework for understanding how the cognitive functions may arise from the influence of acetylcholine on neural and network dynamics. We review the influences of cholinergic manipulations on behavioral performance in working memory, attention, episodic memory, and spatial memory tasks, the physiological effects of acetylcholine on neural and circuit dynamics, and the computational models that provide insight into the functional relationships between the physiology and behavior. Specifically, we discuss the important role of acetylcholine in governing mechanisms of active maintenance in working memory tasks and in regulating network dynamics important for effective processing of stimuli in attention and episodic memory tasks. We also propose that theta rhythm plays a crucial role as an intermediary between the physiological influences of acetylcholine and behavior in episodic and spatial memory tasks. We conclude with a synthesis of the existing modeling work and highlight future directions that are likely to be rewarding given the existing state of the literature for both empiricists and modelers. PMID:22707936
Anatomy and Physiology of the Small Bowel.
Volk, Neil; Lacy, Brian
2017-01-01
Comprehension of small intestine physiology and function provides a framework for the understanding of several important disease pathways of the gastrointestinal system. This article reviews the development, anatomy and histology of the small bowel in addition to physiology and digestion of key nutrients. Copyright © 2016 Elsevier Inc. All rights reserved.
The concept of function in modern physiology.
Roux, Etienne
2014-06-01
An overview of the scientific literature shows that the concept of function is central in physiology. However, the concept itself is not defined by physiologists. On the other hand, the teleological, namely, the 'goal-directed' dimension of function, and its subsequent explanatory relevance, is a philosophical problem. Intuitively, the function of a trait in a system explains why this trait is present, but, in the early 1960s, Ernest Nagel and Carl Hempel have shown that this inference cannot be logically founded. However, they showed that self-regulated systems are teleological. According to the selectionist theories, the function of an item is its effect that has been selected by natural selection, a process that explains its presence. As they restrict the functional attribution of a trait to its past selective value and not its current properties, these theories are inconsistent with the concept of function in physiology. A more adequate one is the causal role theory, for which a function of a trait in a system is its causal contribution to the functional capacity of the system. However, this leaves unsolved the question of the 'surplus meaning' of the teleological dimension of function. The significance of considering organisms as 'purpose-like' (teleological) systems may reside not in its explanatory power but in its methodological fruitfulness in physiology. In this view, the teleological dimension of physiological functions is convergent to but not imported from, the teleological dimension of evolutionary biology. © 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.
[Physical rehabilitation in multiple sclerosis: general principles and high-tech approaches].
Peresedova, A V; Chernikova, L A; Zavalishin, I A
2013-01-01
In a chronic and disabling disease like multiple sclerosis, rehabilitation programs are of major importance for the preservation of physical, physiological, social and professional functioning and improvement of quality of life. Currently, it is generally assumed that physical activity is an important component of non-pharmacological rehabilitation in multiple sclerosis. Properly organized exercise is a safe and efficient way to induce improvements in a number of physiological functions. A multidisciplinary rehabilitative approach should be recommended. The main recommendations for the use of exercise for patients with multiple sclerosis have been listed. An important aspect of the modern physical rehabilitation in multiple sclerosis is the usage of high-tech methods. The published results of robot-assisted training to improve the hand function and walking impairment have been represented. An important trend in the rehabilitation of patients with multiple sclerosis is the reduction of postural disorders through training balance coordination. The role of transcranial magnetic stimulation in spasticity reducing is being investigated. The use of telemedicine capabilities is quite promising. Due to the fact that the decline in physical activity can lead to the deterioration of many aspects of physiological functions and, ultimately, to mobility decrease, further research of the role of physical rehabilitation as an important therapeutic approach in preventing the progression of disability in multiple sclerosis is required.
Oxidant/Antioxidant Balance in Animal Nutrition and Health: The Role of Protein Oxidation
Celi, Pietro; Gabai, Gianfranco
2015-01-01
This review examines the role that oxidative stress (OS), and protein oxidation in particular, plays in nutrition, metabolism, and health of farm animals. The route by which redox homeostasis is involved in some important physiological functions and the implications of the impairment of oxidative status on animal health and diseases is also examined. Proteins have various and, at the same time, unique biological functions and their oxidation can result in structural changes and various functional modifications. Protein oxidation seems to be involved in pathological conditions, such as respiratory diseases and parasitic infection; however, some studies also suggest that protein oxidation plays a crucial role in the regulation of important physiological functions, such as reproduction, nutrition, metabolism, lactation, gut health, and neonatal physiology. As the characterization of the mechanisms by which OS may influence metabolism and health is attracting considerable scientific interest, the aim of this review is to present veterinary scientists and clinicians with various aspects of oxidative damage to proteins. PMID:26664975
A new class of methods for functional connectivity estimation
NASA Astrophysics Data System (ADS)
Lin, Wutu
Measuring functional connectivity from neural recordings is important in understanding processing in cortical networks. The covariance-based methods are the current golden standard for functional connectivity estimation. However, the link between the pair-wise correlations and the physiological connections inside the neural network is unclear. Therefore, the power of inferring physiological basis from functional connectivity estimation is limited. To build a stronger tie and better understand the relationship between functional connectivity and physiological neural network, we need (1) a realistic model to simulate different types of neural recordings with known ground truth for benchmarking; (2) a new functional connectivity method that produce estimations closely reflecting the physiological basis. In this thesis, (1) I tune a spiking neural network model to match with human sleep EEG data, (2) introduce a new class of methods for estimating connectivity from different kinds of neural signals and provide theory proof for its superiority, (3) apply it to simulated fMRI data as an application.
Anthony, Kenneth R N; Connolly, Sean R
2004-11-01
The physiological responses of organisms to resources and environmental conditions are important determinants of niche boundaries. In previous work, functional relationships between organism energetics and environment have been limited to energy intakes. However, energetic costs of maintenance may also depend on the supply of resources. In many mixotrophic organisms, two such resource types are light and particle concentration (turbidity). Using two coral species with contrasting abundances along light and turbidity gradients (Acropora valida and Turbinaria mesenterina), we incorporate the dual resource-stressor roles of these variables by calibrating functional responses of energy costs (respiration and loss of organic carbon) as well as energy intake (photosynthesis and particle feeding). This allows us to characterize physiological niche boundaries along light and turbidity gradients, identify species-specific differences in these boundaries, and assess the sensitivity of these differences to interspecific differences in particular functional response parameters. The turbidity-light niche of T. mesenterina was substantially larger than that of A. valida, consistent with its broader ecological distribution. As expected, the responses of photosynthesis, heterotrophic capacity, respiration, and organic carbon loss to light and turbidity varied between species. Niche boundaries were highly sensitive to the functional responses of energy costs to light and turbidity. Moreover, the study species' niche differences were almost entirely attributable to species-specific differences in one functional response: that of respiration to turbidity. These results demonstrate that functional responses of energy-loss processes are important determinants of species-specific physiological limits to growth, and thereby of niche differences in reef corals. Given that many resources can stress organisms when supply rates are high, we propose that the functional responses of energy losses will prove to be important determinants of niche differences in other systems as well.
Morphology, physiology, genetics, enigmas, and status of an extremely rare tree: Mutant tanoak
Philip M. McDonald; Jianwei Zhang; Randy S. Senock; Jessica W. Wright
2013-01-01
Important physical characteristics, morphological attributes, physiological functions, and genetic properties of mutant tanoak, Notholithocarpus densiflorus f. attenuato-dentatus (Fagaceae), and normal tanoak, Notholithocarpus densiflorus (Hook. & Arn.) Manos, Cannon & S. H. Oh, were studied on the Challenge...
The liver in regulation of iron homeostasis.
Rishi, Gautam; Subramaniam, V Nathan
2017-09-01
The liver is one of the largest and most functionally diverse organs in the human body. In addition to roles in detoxification of xenobiotics, digestion, synthesis of important plasma proteins, gluconeogenesis, lipid metabolism, and storage, the liver also plays a significant role in iron homeostasis. Apart from being the storage site for excess body iron, it also plays a vital role in regulating the amount of iron released into the blood by enterocytes and macrophages. Since iron is essential for many important physiological and molecular processes, it increases the importance of liver in the proper functioning of the body's metabolism. This hepatic iron-regulatory function can be attributed to the expression of many liver-specific or liver-enriched proteins, all of which play an important role in the regulation of iron homeostasis. This review focuses on these proteins and their known roles in the regulation of body iron metabolism. Copyright © 2017 the American Physiological Society.
McCully, Alexandra L; Behringer, Megan G; Gliessman, Jennifer R; Pilipenko, Evgeny V; Mazny, Jeffrey L; Lynch, Michael; Drummond, D Allan; McKinlay, James B
2018-05-04
Microbial mutualistic cross-feeding interactions are ubiquitous and can drive important community functions. Engaging in cross-feeding undoubtedly affects the physiology and metabolism of individual species involved. However, the nature in which an individual's physiology is influenced by cross-feeding and the importance of those physiological changes for the mutualism have received little attention. We previously developed a genetically tractable coculture to study bacterial mutualisms. The coculture consists of fermentative Escherichia coli and phototrophic Rhodopseudomonas palustris In this coculture, E. coli anaerobically ferments sugars into excreted organic acids as a carbon source for R. palustris In return, a genetically-engineered R. palustris constitutively converts N 2 into NH 4 + , providing E. coli with essential nitrogen. Using RNA-seq and proteomics, we identified transcript and protein levels that differ in each partner when grown in coculture versus monoculture. When in coculture with R. palustris , E. coli gene-expression changes resembled a nitrogen starvation response under the control of the transcriptional regulator NtrC. By genetically disrupting E. coli NtrC, we determined that a nitrogen starvation response is important for a stable coexistence, especially at low R. palustris NH 4 + excretion levels. Destabilization of the nitrogen starvation regulatory network resulted in variable growth trends and in some cases, extinction. Our results highlight that alternative physiological states can be important for survival within cooperative cross-feeding relationships. Importance Mutualistic cross-feeding between microbes within multispecies communities is widespread. Studying how mutualistic interactions influence the physiology of each species involved is important for understanding how mutualisms function and persist in both natural and applied settings. Using a bacterial mutualism consisting of Rhodopseudomonas palustris and Escherichia coli growing cooperatively through bidirectional nutrient exchange, we determined that an E. coli nitrogen starvation response is important for maintaining a stable coexistence. The lack of an E. coli nitrogen starvation response ultimately destabilized the mutualism and, in some cases, led to community collapse after serial transfers. Our findings thus inform on the potential necessity of an alternative physiological state for mutualistic coexistence with another species compared to the physiology of species grown in isolation. Copyright © 2018 American Society for Microbiology.
Dallmann, André; Ince, Ibrahim; Meyer, Michaela; Willmann, Stefan; Eissing, Thomas; Hempel, Georg
2017-11-01
In the past years, several repositories for anatomical and physiological parameters required for physiologically based pharmacokinetic modeling in pregnant women have been published. While providing a good basis, some important aspects can be further detailed. For example, they did not account for the variability associated with parameters or were lacking key parameters necessary for developing more detailed mechanistic pregnancy physiologically based pharmacokinetic models, such as the composition of pregnancy-specific tissues. The aim of this meta-analysis was to provide an updated and extended database of anatomical and physiological parameters in healthy pregnant women that also accounts for changes in the variability of a parameter throughout gestation and for the composition of pregnancy-specific tissues. A systematic literature search was carried out to collect study data on pregnancy-related changes of anatomical and physiological parameters. For each parameter, a set of mathematical functions was fitted to the data and to the standard deviation observed among the data. The best performing functions were selected based on numerical and visual diagnostics as well as based on physiological plausibility. The literature search yielded 473 studies, 302 of which met the criteria to be further analyzed and compiled in a database. In total, the database encompassed 7729 data. Although the availability of quantitative data for some parameters remained limited, mathematical functions could be generated for many important parameters. Gaps were filled based on qualitative knowledge and based on physiologically plausible assumptions. The presented results facilitate the integration of pregnancy-dependent changes in anatomy and physiology into mechanistic population physiologically based pharmacokinetic models. Such models can ultimately provide a valuable tool to investigate the pharmacokinetics during pregnancy in silico and support informed decision making regarding optimal dosing regimens in this vulnerable special population.
The physiological functions of central nervous system pericytes and a potential role in pain
Beazley-Long, Nicholas; Durrant, Alexandra M; Swift, Matthew N; Donaldson, Lucy F
2018-01-01
Central nervous system (CNS) pericytes regulate critical functions of the neurovascular unit in health and disease. CNS pericytes are an attractive pharmacological target for their position within the neurovasculature and for their role in neuroinflammation. Whether the function of CNS pericytes also affects pain states and nociceptive mechanisms is currently not understood. Could it be that pericytes hold the key to pain associated with CNS blood vessel dysfunction? This article reviews recent findings on the important physiological functions of CNS pericytes and highlights how these neurovascular functions could be linked to pain states. PMID:29623199
Physiological significance of TRPV2 as a mechanosensor, thermosensor and lipid sensor.
Shibasaki, Koji
2016-09-01
This review provides a summary of the physiological significance of the TRPV2 ion channel. While TRPV2 was initially characterized as a noxious heat sensor, we found that TRPV2 can also act as a mechanosensor in embryonic neurons or adult myenteric neurons. Here, we summarize the newly characterized functions of TRPV2, including the research progress that has been made toward our understanding of TRPV2 physiology, and discuss other recent data pertaining to TRPV2. It is thought that TRPV2 may be an important drug target based on its broad expression patterns and important physiological roles. The possible associations between diseases and TRPV2 are also discussed.
Magder, Sheldon
2007-12-01
Discussions of cardiac physiology and pathophysiology most often emphasise the function of the left heart. However, right heart dysfunction plays an important role in critically ill patients and is often not recognised. This is probably because the role of the right ventricle is for generating flow more than pressure, and flow is not easy to evaluate. Of importance, when right ventricular function limits cardiac output, assessing left ventricular function gives little indication of overall cardiac performance. It has recently become evident that the right ventricle also has different genetic origins and characteristics from the left ventricle. The right and left ventricles interact through series effects, diastolic interactions and systolic interactions. The mechanisms of these, and their physiological and pathological significance are discussed.
Multiple functions of BCL-2 family proteins.
Hardwick, J Marie; Soane, Lucian
2013-02-01
BCL-2 family proteins are the regulators of apoptosis, but also have other functions. This family of interacting partners includes inhibitors and inducers of cell death. Together they regulate and mediate the process by which mitochondria contribute to cell death known as the intrinsic apoptosis pathway. This pathway is required for normal embryonic development and for preventing cancer. However, before apoptosis is induced, BCL-2 proteins have critical roles in normal cell physiology related to neuronal activity, autophagy, calcium handling, mitochondrial dynamics and energetics, and other processes of normal healthy cells. The relative importance of these physiological functions compared to their apoptosis functions in overall organismal physiology is difficult to decipher. Apoptotic and noncanonical functions of these proteins may be intertwined to link cell growth to cell death. Disentanglement of these functions may require delineation of biochemical activities inherent to the characteristic three-dimensional shape shared by distantly related viral and cellular BCL-2 family members.
Functional metabolite assemblies—a review
NASA Astrophysics Data System (ADS)
Aizen, Ruth; Tao, Kai; Rencus-Lazar, Sigal; Gazit, Ehud
2018-05-01
Metabolites are essential for the normal operation of cells and fulfill various physiological functions. It was recently found that in several metabolic disorders, the associated metabolites could self-assemble to generate amyloid-like structures, similar to canonical protein amyloids that have a role in neurodegenerative disorders. Yet, assemblies with typical amyloid characteristics are also known to have physiological function. In addition, many non-natural proteins and peptides presenting amyloidal properties have been used for the fabrication of functional nanomaterials. Similarly, functional metabolite assemblies are also found in nature, demonstrating various physiological roles. A notable example is the structural color formed by guanine crystals or fluorescent crystals in feline eyes responsible for enhanced night vision. Moreover, some metabolites have been used for the in vitro fabrication of functional materials, such as glycine crystals presenting remarkable piezoelectric properties or indigo films used to assemble organic semi-conductive electronic devices. Therefore, we believe that the study of metabolite assemblies is not only important in order to understand their role in normal physiology and in pathology, but also paves a new route in exploring the fabrication of organic, bio-compatible materials.
Hahn, Andrew D; Rowe, Daniel B
2012-02-01
As more evidence is presented suggesting that the phase, as well as the magnitude, of functional MRI (fMRI) time series may contain important information and that there are theoretical drawbacks to modeling functional response in the magnitude alone, removing noise in the phase is becoming more important. Previous studies have shown that retrospective correction of noise from physiologic sources can remove significant phase variance and that dynamic main magnetic field correction and regression of estimated motion parameters also remove significant phase fluctuations. In this work, we investigate the performance of physiologic noise regression in a framework along with correction for dynamic main field fluctuations and motion regression. Our findings suggest that including physiologic regressors provides some benefit in terms of reduction in phase noise power, but it is small compared to the benefit of dynamic field corrections and use of estimated motion parameters as nuisance regressors. Additionally, we show that the use of all three techniques reduces phase variance substantially, removes undesirable spatial phase correlations and improves detection of the functional response in magnitude and phase. Copyright © 2011 Elsevier Inc. All rights reserved.
Hernandez, L L
2018-04-25
Lactation is a physiological event that is exclusive to mammals. Lactation evolved as a strategy to improve the survival of the young by providing them with the complete nutrition that is required for survival upon birth as well as maternal-offspring bonding. Typically, milk production by the dam matches the demand of the young. The dairy cow is a unique exception in which the discoveries and genetic selection related to lactation physiology have been applied and resulted in a dramatic increase in milk yield of dairy cows. Studies on the role of mammary-derived serotonin and the coordination of various aspects of milk production and maternal metabolism have revealed novel mechanisms by which milk production and maternal metabolism can be improved. Furthermore, the investigation into molecular and cellular mechanisms regulating mammary gland function has revealed the importance of epigenetics on mammary gland function. Understanding mammary gland function at the cellular and physiological levels will be important for improving mammary gland control of maternal metabolism during early lactation. The early lactation period is a critical time for a dairy cow as that is when she is most susceptible to disease and metabolic disorders that can lead to negative effects on her productive capacity and overall health. Our research in the area of serotonin physiology has illustrated the importance of serotonin on the regulation of lactation and maternal homeostasis. Future research in the area of lactation physiology should be targeted at improving maternal health and longevity in the herd through manipulation of the signals the mammary gland sends to coordinate maternal metabolism and synthesize milk. Specifically, we believe that serotonin will play a central role in understanding the communication between the mammary gland and the maternal physiology during lactation. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Physiology in conservation translocations.
Tarszisz, Esther; Dickman, Christopher R; Munn, Adam J
2014-01-01
Conservation translocations aim to restore species to their indigenous ranges, protect populations from threats and/or reinstate ecosystem functions. They are particularly important for the conservation and management of rare and threatened species. Despite tremendous efforts and advancement in recent years, animal conservation translocations generally have variable success, and the reasons for this are often uncertain. We suggest that when little is known about the physiology and wellbeing of individuals either before or after release, it will be difficult to determine their likelihood of survival, and this could limit advancements in the science of translocations for conservation. In this regard, we argue that physiology offers novel approaches that could substantially improve translocations and associated practices. As a discipline, it is apparent that physiology may be undervalued, perhaps because of the invasive nature of some physiological measurement techniques (e.g. sampling body fluids, surgical implantation). We examined 232 publications that dealt with translocations of terrestrial vertebrates and aquatic mammals and, defining 'success' as high or low, determined how many of these studies explicitly incorporated physiological aspects into their protocols and monitoring. From this review, it is apparent that physiological evaluation before and after animal releases could progress and improve translocation/reintroduction successes. We propose a suite of physiological measures, in addition to animal health indices, for assisting conservation translocations over the short term and also for longer term post-release monitoring. Perhaps most importantly, we argue that the incorporation of physiological assessments of animals at all stages of translocation can have important welfare implications by helping to reduce the total number of animals used. Physiological indicators can also help to refine conservation translocation methods. These approaches fall under a new paradigm that we term 'translocation physiology' and represent an important sub-discipline within conservation physiology generally.
Impact of Labile Zinc on Heart Function: From Physiology to Pathophysiology.
Turan, Belma; Tuncay, Erkan
2017-11-12
Zinc plays an important role in biological systems as bound and histochemically reactive labile Zn 2+ . Although Zn 2+ concentration is in the nM range in cardiomyocytes at rest and increases dramatically under stimulation, very little is known about precise mechanisms controlling the intracellular distribution of Zn 2+ and its variations during cardiac function. Recent studies are focused on molecular and cellular aspects of labile Zn 2+ and its homeostasis in mammalian cells and growing evidence clarified the molecular mechanisms underlying Zn 2+ -diverse functions in the heart, leading to the discovery of novel physiological functions of labile Zn 2+ in parallel to the discovery of subcellular localization of Zn 2+ -transporters in cardiomyocytes. Additionally, important experimental data suggest a central role of intracellular labile Zn 2+ in excitation-contraction coupling in cardiomyocytes by shaping Ca 2+ dynamics. Cellular labile Zn 2+ is tightly regulated against its adverse effects through either Zn 2+ -transporters, Zn 2+ -binding molecules or Zn 2+ -sensors, and, therefore plays a critical role in cellular signaling pathways. The present review summarizes the current understanding of the physiological role of cellular labile Zn 2+ distribution in cardiomyocytes and how a remodeling of cellular Zn 2+ -homeostasis can be important in proper cell function with Zn 2+ -transporters under hyperglycemia. We also emphasize the recent investigations on Zn 2+ -transporter functions from the standpoint of human heart health to diseases together with their clinical interest as target proteins in the heart under pathological condition, such as diabetes.
Differences in autonomic physiological responses between good and poor inductive reasoners.
Melis, C; van Boxtel, A
2001-11-01
We investigated individual- and task-related differences in autonomic physiological responses induced by time limited figural and verbal inductive reasoning tasks. In a group of 52 participants, the percentage of correctly responded task items was evaluated together with nine different autonomic physiological response measures and respiration rate (RR). Weighted multidimensional scaling analyses of the physiological responses revealed three underlying dimensions, primarily characterized by RR, parasympathetic, and sympathetic activity. RR and sympathetic activity appeared to be relatively more important response dimensions for poor reasoners, whereas parasympathetic responsivity was relatively more important for good reasoners. These results suggest that poor reasoners showed higher levels of cognitive processing intensity than good reasoners. Furthermore, for the good reasoners, the dimension of sympathetic activity was relatively more important during the figural than during the verbal reasoning task, which was explained in terms of hemispheric lateralization in autonomic function.
Sepúlveda, Francisco V.; Pablo Cid, L.; Teulon, Jacques; Niemeyer, María Isabel
2015-01-01
K+ channels fulfill roles spanning from the control of excitability to the regulation of transepithelial transport. Here we review two groups of K+ channels, pH-regulated K2P channels and the transport group of Kir channels. After considering advances in the molecular aspects of their gating based on structural and functional studies, we examine their participation in certain chosen physiological and pathophysiological scenarios. Crystal structures of K2P and Kir channels reveal rather unique features with important consequences for the gating mechanisms. Important tasks of these channels are discussed in kidney physiology and disease, K+ homeostasis in the brain by Kir channel-equipped glia, and central functions in the hearing mechanism in the inner ear and in acid secretion by parietal cells in the stomach. K2P channels fulfill a crucial part in central chemoreception probably by virtue of their pH sensitivity and are central to adrenal secretion of aldosterone. Finally, some unorthodox behaviors of the selectivity filters of K2P channels might explain their normal and pathological functions. Although a great deal has been learned about structure, molecular details of gating, and physiological functions of K2P and Kir K+-transport channels, this has been only scratching at the surface. More molecular and animal studies are clearly needed to deepen our knowledge. PMID:25540142
Physiology in conservation translocations
Tarszisz, Esther; Dickman, Christopher R.; Munn, Adam J.
2014-01-01
Conservation translocations aim to restore species to their indigenous ranges, protect populations from threats and/or reinstate ecosystem functions. They are particularly important for the conservation and management of rare and threatened species. Despite tremendous efforts and advancement in recent years, animal conservation translocations generally have variable success, and the reasons for this are often uncertain. We suggest that when little is known about the physiology and wellbeing of individuals either before or after release, it will be difficult to determine their likelihood of survival, and this could limit advancements in the science of translocations for conservation. In this regard, we argue that physiology offers novel approaches that could substantially improve translocations and associated practices. As a discipline, it is apparent that physiology may be undervalued, perhaps because of the invasive nature of some physiological measurement techniques (e.g. sampling body fluids, surgical implantation). We examined 232 publications that dealt with translocations of terrestrial vertebrates and aquatic mammals and, defining ‘success’ as high or low, determined how many of these studies explicitly incorporated physiological aspects into their protocols and monitoring. From this review, it is apparent that physiological evaluation before and after animal releases could progress and improve translocation/reintroduction successes. We propose a suite of physiological measures, in addition to animal health indices, for assisting conservation translocations over the short term and also for longer term post-release monitoring. Perhaps most importantly, we argue that the incorporation of physiological assessments of animals at all stages of translocation can have important welfare implications by helping to reduce the total number of animals used. Physiological indicators can also help to refine conservation translocation methods. These approaches fall under a new paradigm that we term ‘translocation physiology’ and represent an important sub-discipline within conservation physiology generally. PMID:27293675
Ursache, Alexandra; Noble, Kimberly G; Blair, Clancy
2015-01-01
Several studies have investigated associations between socioeconomic status (SES) and indicators of children's physiological and cognitive self-regulation. Although objective measures of family SES may be good proxies for families' experiences of disadvantage, less is known about subjective aspects of families' experiences. We hypothesize that subjective social status (SSS) and perceived stress may be important independent predictors of children's stress physiology and executive functioning (EF). Eighty-two children from diverse SES backgrounds were administered EF measures and provided saliva samples for cortisol assay. Caregivers reported on objective SES, SSS, and perceived stress. Results suggest that SES and SSS are both independently and positively related to EF. In models predicting stress physiology, higher perceived stress was associated with lower baseline cortisol. Moreover, SES and age interacted to predict cortisol levels such that among younger children, lower SES was associated with higher cortisol, whereas among older children, lower SES was associated with lower cortisol. Results highlight the importance of considering both objective and subjective indicators of families' SES and stressful experiences in relation to multiple aspects of children's self-regulation.
Studies on functional foods in Japan--state of the art.
Arai, S
1996-01-01
This paper pinpoints the "tertiary" function of foods which, different from the conventional "primary" and "secondary" functions that are related to nutrition and preference, respectively, is understood to be directly involved in the modulation of our physiological systems such as the immune, endocrine, nerve, circulatory, and digestive systems. Insights into this newly defined function are particularly important in that the intake of some physiologically functional constituents of foods could be effective in preventing diseases that may be caused by disorders in these physiological systems. Technologically, it has become feasible to design and produce physiologically functional foods (simply, functional foods) that are expected to satisfy in whole or in part a today's demand for disease prevention by eating. Such public expectations are reflected in the activation and development of systematic, large-scale studies on foods as seen in "Grant-in-Aid" research sponsored by the Ministry of Education, Science, and Culture. Meanwhile, the Ministry of Health and Welfare has initiated a policy of officially approving functional foods in terms of "foods for specified health uses" as defined by new legislation. Up to now (October 1995), 58 items have thus been approved. The first was a hypoallergenic rice product approved as of June 1, 1993. Here I discuss details of studies on rice-based functional foods. Other basic and applied studies directed toward the tertiary function, with future perspectives for functional foods, are also discussed.
Lazovic, Biljana; Zlatkovic Svenda, Mirjana; Durmic, Tijana; Stajic, Zoran; Duric, Vesna; Zugic, Vladimir
2016-11-01
The major oxygen sensors in the human body are peripheral chemoreceptors. also known as interoreceptors- as connected with internal organs, located in the aortic arch and in the body of the common carotid artery. Chemoreceptor function under physiological conditions. Stimulation of peripheral chemoreceptors during enviromental hypoxia causes a reflex-mediated increased ventilation, followed by the increase of the muscle sympatic activity, aiming to maintain tissue oxygen homeostatis, as well as glucosae, homeostatis. Besides that, peripheral chemoreceptors interact with central chemoreceptors. responsible for carbon dioxide changes . and they are able to modulate each other. Chemoreceptor function in pathophysiological conditions. Investigations of respiratory function in many pathological processes, such as hypertension, obstructive sleep apnea, congestive heart failure and many other diseases that are presented with enhanced peripheral chemosensitivity and impaired functional sy mpatholysis ultimately determine the peripheral chemorcceptor role and significance of peripheral chemoreceptors in the process of those pathological conditions development. Considering this, the presumed influence of peripheral chemoreceptors is important in patients having the above mentioned pathology. The importance and the role of peripheral chemoreceptors in the course of the breathing control is still controversial, despite many scientific attempts to solve this problem. The main objective of this review is to give the latest data on the peripheral chemoreceptor role and to highlight the importance of peripheral chemoreceptors for maintaining of oxygen homeostasis in pateints with hypoxia caused by either physiological or pathological conditions.
Martínez de Victoria, Emilio
2016-07-12
Calcium (Ca) is the most abundant mineral element in our body. It accounts for about 2% of body weight. The functions of calcium are: a) functions skeletal and b) regulatory functions. Bone consists of a protein matrix that mineralizes mainly with calcium (the most abundant), phosphate and magnesium, for it is essential an adequate dietary intake of Ca, phosphorus and vitamin D. The ionic Ca (Ca2+) is essential to maintain and / or perform different specialized functions of, virtually, all body cells cellular. Because of its important functions Ca2+ must be closely regulated, keeping plasma concentrations within narrow ranges. For this reason there is an accurate response against hypocalcemia or hypercalcemia in which the parathormone, calcitriol, calcitonin and vitamin K are involved. Ca intakes in the Spanish population are low in a significant percentage of the older adult’s population, especially in women. The main source of Ca in the diet is milk and milk derivatives. Green leafy vegetables, fruits and legumes can be important sources of Ca in a Mediterranean dietary pattern. The bioavailability of dietary Ca depends on physiological and dietary factors. Physiological include age, physiological status (gestation and lactation) Ca and vitamin D status and disease. Several studies relate Ca intake in the diet and various diseases, such as osteoporosis, cancer, cardiovascular disease and obesity.
Wu, James T.; Kral, John G.
2004-01-01
Objective: Ghrelin is a novel gastric hormone recognized in 1999 as a mediator of growth hormone release. Since growth hormone is anabolic, an important function of ghrelin may be to coordinate energy needs with the growth process. Newly discovered biologic roles of ghrelin imply that it may have other important physiological functions as well. This is a review of recent clinically relevant, yet less well-known, physiologic actions of ghrelin. Summary Background Data: Ghrelin has profound orexigenic, adipogenic, and somatotrophic properties, increasing food intake and body weight. Secreted predominantly from the stomach, ghrelin is the natural ligand for the growth hormone secretagogue receptor in the pituitary gland, thus fulfilling criteria of a brain-gut peptide. The brain-gut axis is the effector of anabolism by regulating growth, feeding, and metabolism via vagal afferents mediating ghrelin signaling. However, the wide tissue distribution of ghrelin suggests that it may have other functions as well. Methods: Systematic literature review of all PubMed citations between 1999 and August 2003 focusing on clinically relevant biochemical and physiological characteristics of ghrelin. Results: Ghrelin is an important component of an integrated regulatory system of growth and metabolism acting via the vagus nerve, and is implicated in a variety of altered energy states such as obesity, eating disorders, neoplasia, and cachexia. It also enhances immune responses and potentially down-regulates anti-inflammatory molecules. Ghrelin's role as a brain-gut peptide emphasizes the significance of afferent vagal fibers as a major pathway to the brain, serving the purpose of maintaining physiologic homeostasis. Conclusions: The discovery of ghrelin has increased our understanding of feeding regulation, nutritional homeostasis, and metabolic processes. Further characterization of ghrelin's functions will likely generate new pharmacological approaches to diagnose and treat different disease entities including those related to the over-nutrition of obesity and the catabolic response to surgical trauma. PMID:15024307
Impact of Labile Zinc on Heart Function: From Physiology to Pathophysiology
Turan, Belma; Tuncay, Erkan
2017-01-01
Zinc plays an important role in biological systems as bound and histochemically reactive labile Zn2+. Although Zn2+ concentration is in the nM range in cardiomyocytes at rest and increases dramatically under stimulation, very little is known about precise mechanisms controlling the intracellular distribution of Zn2+ and its variations during cardiac function. Recent studies are focused on molecular and cellular aspects of labile Zn2+ and its homeostasis in mammalian cells and growing evidence clarified the molecular mechanisms underlying Zn2+-diverse functions in the heart, leading to the discovery of novel physiological functions of labile Zn2+ in parallel to the discovery of subcellular localization of Zn2+-transporters in cardiomyocytes. Additionally, important experimental data suggest a central role of intracellular labile Zn2+ in excitation-contraction coupling in cardiomyocytes by shaping Ca2+ dynamics. Cellular labile Zn2+ is tightly regulated against its adverse effects through either Zn2+-transporters, Zn2+-binding molecules or Zn2+-sensors, and, therefore plays a critical role in cellular signaling pathways. The present review summarizes the current understanding of the physiological role of cellular labile Zn2+ distribution in cardiomyocytes and how a remodeling of cellular Zn2+-homeostasis can be important in proper cell function with Zn2+-transporters under hyperglycemia. We also emphasize the recent investigations on Zn2+-transporter functions from the standpoint of human heart health to diseases together with their clinical interest as target proteins in the heart under pathological condition, such as diabetes. PMID:29137144
Humor theories and the physiological benefits of laughter.
Wilkins, Julia; Eisenbraun, Amy Janel
2009-01-01
There are 3 main theories used to explain the functions of humor: (1) the relief theory, (2) the incongruity theory, and (3) the superiority theory. While these theories focus on the specific role that humor plays for people in situations such as dealing with misfortune, making sense of rule violations, and bonding with others, we propose that underlying each of these theories are the physiological benefits of laughter. We draw on findings from empirical studies on laughter to demonstrate that these physiological benefits occur regardless of the theory that is used to explain the humor function. Findings from these studies have important implications for nurse practitioners working in hospice settings, long-term care facilities, nursing homes, and hospitals.
Zhu, Lu; Almaça, Joana; Dadi, Prasanna K; Hong, Hao; Sakamoto, Wataru; Rossi, Mario; Lee, Regina J; Vierra, Nicholas C; Lu, Huiyan; Cui, Yinghong; McMillin, Sara M; Perry, Nicole A; Gurevich, Vsevolod V; Lee, Amy; Kuo, Bryan; Leapman, Richard D; Matschinsky, Franz M; Doliba, Nicolai M; Urs, Nikhil M; Caron, Marc G; Jacobson, David A; Caicedo, Alejandro; Wess, Jürgen
2017-02-01
β-arrestins are critical signalling molecules that regulate many fundamental physiological functions including the maintenance of euglycemia and peripheral insulin sensitivity. Here we show that inactivation of the β-arrestin-2 gene, barr2, in β-cells of adult mice greatly impairs insulin release and glucose tolerance in mice fed with a calorie-rich diet. Both glucose and KCl-induced insulin secretion and calcium responses were profoundly reduced in β-arrestin-2 (barr2) deficient β-cells. In human β-cells, barr2 knockdown abolished glucose-induced insulin secretion. We also show that the presence of barr2 is essential for proper CAMKII function in β-cells. Importantly, overexpression of barr2 in β-cells greatly ameliorates the metabolic deficits displayed by mice consuming a high-fat diet. Thus, our data identify barr2 as an important regulator of β-cell function, which may serve as a new target to improve β-cell function.
Characterization of dynamic physiology of the bladder by optical coherence tomography
NASA Astrophysics Data System (ADS)
Yuan, Zhijia; Keng, Kerri; Pan, Rubin; Ren, Hugang; Du, Congwu; Kim, Jason; Pan, Yingtian
2012-03-01
Because of its high spatial resolution and noninvasive imaging capabilities, optical coherence tomography has been used to characterize the morphological details of various biological tissues including urinary bladder and to diagnose their alternations (e.g., cancers). In addition to static morphology, the dynamic features of tissue morphology can provide important information that can be used to diagnose the physiological and functional characteristics of biological tissues. Here, we present the imaging studies based on optical coherence tomography to characterize motion related physiology and functions of rat bladder detrusor muscles and compared the results with traditional biomechanical measurements. Our results suggest that optical coherence tomography is capable of providing quantitative evaluation of contractile functions of intact bladder (without removing bladder epithelium and connective tissue), which is potentially of more clinical relevance for future clinical diagnosis - if incorporated with cystoscopic optical coherence tomography.
The short history of gastroenterology.
Sródka, A
2003-12-01
In this paper research on the stomach and bowel physiology is presented in a historical perspective. The author tries to show how digestive processes were interpreted by the ancients and how they tried to adjust them to the dominating humoral theory of disease. It is pointed out that the breakthrough which created a new way of understanding of the function of the digestive system was made by Andreas Vesalius and his modern model of anatomy. The meaning of acceptance of chemical processes in digestion by iatrochemics representatives in XVII century is shown. Physiological research in XIX century, which decided about a rapid development of physiology, especially the physiology of the gastrointestinal tract, is discussed. Experiments were performed by all main representatives of this discipline: Claude Bernard, Jan Ewangelista Purkyne, Rudolph Heidenhain and especially Ivan Pavlov, who, thanks to the discoveries in the secretion physiology, explained basic functions of the central nervous system. The XX century was dominated by the research showing the important role of the endocrine system and biological agents in the regulation of secretion and motility of the digestive system. The following discoveries are discussed: Ernest Sterling (secretin), John Edkins (gastrin) and André Latarjet and Lester Dragstedt (acetylcholine). It is underlined that Polish scientists play an important role in the development of the gastroenterological science--among others, Walery Jaworski, who made a historical suggestion about the role of the spiral bacteria in etiopathogenesis of the peptic ulcer, Leon Popielski, who stated the stimulating influence of histamine on the stomach acid secretion, Julian Walawski, who discovered enterogastrons--hormones decreasing secretion. As a supplement, there is the list of achievements in the field of the physiology and pathology of the gastrointestinal tract awarded with Nobel Prize and the list of most important Polish papers in this field.
Regvar, Marjana; Eichert, Diane; Kaulich, Burkhard; Gianoncelli, Alessandra; Pongrac, Paula; Vogel-Mikuš, Katarina; Kreft, Ivan
2011-01-01
Mature developed seeds are physiologically and biochemically committed to store nutrients, principally as starch, protein, oils, and minerals. The composition and distribution of elements inside the aleurone cell layer reflect their biogenesis, structural characteristics, and physiological functions. It is therefore of primary importance to understand the mechanisms underlying metal ion accumulation, distribution, storage, and bioavailability in aleurone subcellular organelles for seed fortification purposes. Synchrotron radiation soft X-ray full-field imaging mode (FFIM) and low-energy X-ray fluorescence (LEXRF) spectromicroscopy were applied to characterize major structural features and the subcellular distribution of physiologically important elements (Zn, Fe, Na, Mg, Al, Si, and P). These direct imaging methods reveal the accumulation patterns between the apoplast and symplast, and highlight the importance of globoids with phytic acid mineral salts and walls as preferential storage structures. C, N, and O chemical topographies are directly linked to the structural backbone of plant substructures. Zn, Fe, Na, Mg, Al, and P were linked to globoid structures within protein storage vacuoles with variable levels of co-localization. Si distribution was atypical, being contained in the aleurone apoplast and symplast, supporting a physiological role for Si in addition to its structural function. These results reveal that the immobilization of metals within the observed endomembrane structures presents a structural and functional barrier and affects bioavailability. The combination of high spatial and chemical X-ray microscopy techniques highlights how in situ analysis can yield new insights into the complexity of the wheat aleurone layer, whose precise biochemical composition, morphology, and structural characteristics are still not unequivocally resolved. PMID:21447756
Physiology of Sedentary Behavior and Its Relationship to Health Outcomes
Thyfault, John P; Du, Mengmeng; Kraus, William E; Levine, James A; Booth, Frank W
2014-01-01
Purpose This paper reports on the findings and recommendations of the “Physiology of Sedentary Behavior and its Relationship to Health Outcomes” group, a part of a larger workshop entitled Sedentary Behavior: Identifying Research Priorities sponsored by the National Heart, and Lung and Blood Institute and the National Institute on Aging, which aimed to establish sedentary behavior research priorities. Methods The discussion within our workshop lead to the formation of critical physiological research objectives related to sedentary behaviors, that if appropriately researched would greatly impact our overall understanding of human health and longevity. Results and Conclusions Primary questions are related to physiological “health outcomes” including the influence of physical activity vs. sedentary behavior on function of a number of critical physiological systems (aerobic capacity, skeletal muscle metabolism and function, telomeres/genetic stability, and cognitive function). The group also derived important recommendations related to the “central and peripheral mechanisms” that govern sedentary behavior and how energy balance has a role in mediating these processes. General recommendations for future sedentary physiology research efforts include that studies of sedentary behavior, including that of sitting time only, should focus on the physiological impact of a “lack of human movement” in contradistinction to the effects of physical movement and that new models or strategies for studying sedentary behavior induced adaptations and links to disease development are needed to elucidate underlying mechanism(s). PMID:25222820
Garcia, Isabella; Bhullar, Paramjit K; Tepe, Burak; Ortiz-Guzman, Joshua; Huang, Longwen; Herman, Alexander M; Chaboub, Lesley; Deneen, Benjamin; Justice, Nicholas J; Arenkiel, Benjamin R
2016-01-01
Neuropeptides play important physiological functions during distinct behaviors such as arousal, learning, memory, and reproduction. However, the role of local, extrahypothalamic neuropeptide signaling in shaping synapse formation and neuronal plasticity in the brain is not well understood. Here, we characterize the spatiotemporal expression profile of the neuropeptide corticotropin-releasing hormone (CRH) and its receptor CRHR1 in the mouse OB throughout development. We found that CRH-expressing interneurons are present in the external plexiform layer, that its cognate receptor is expressed by granule cells, and show that both CRH and CRHR1 expression enriches in the postnatal period when olfaction becomes important towards olfactory-related behaviors. Further, we provide electrophysiological evidence that CRHR1-expressing granule cells functionally respond to CRH ligand, and that the physiological circuitry of CRHR1 knockout mice is abnormal, leading to impaired olfactory behaviors. Together, these data suggest a physiologically relevant role for local CRH signaling towards shaping the neuronal circuitry within the mouse OB.
Albumin modification and fragmentation in renal disease.
Donadio, Carlo; Tognotti, Danika; Donadio, Elena
2012-02-18
Albumin is the most important antioxidant substance in plasma and performs many physiological functions. Furthermore, albumin is the major carrier of endogenous molecules and exogenous ligands. This paper reviews the importance of post-translational modifications of albumin and fragments thereof in patients with renal disease. First, current views and controversies on renal handling of proteins, mainly albumin, will be discussed. Post-translational modifications, namely the fragmentation of albumin found with proteomic techniques in nephrotic patients, diabetics, and ESRD patients will be presented and discussed. It is reasonable to hypothesize that proteolytic fragmentation of serum albumin is due to a higher susceptibility to proteases, induced by oxidative stress. The clinical relevance of the fragmentation of albumin has not yet been established. These modifications could affect some physiological functions of albumin and have a patho-physiological role in uremic syndrome. Proteomic analysis of serum allows the identification of over-expressed proteins and can detect post-translational modifications of serum proteins, hitherto hidden, using standard laboratory techniques. Copyright © 2011 Elsevier B.V. All rights reserved.
Seed birth to death: dual functions of reactive oxygen species in seed physiology.
Jeevan Kumar, S P; Rajendra Prasad, S; Banerjee, Rintu; Thammineni, Chakradhar
2015-09-01
Reactive oxygen species (ROS) are considered to be detrimental to seed viability. However, recent studies have demonstrated that ROS have key roles in seed germination particularly in the release of seed dormancy and embryogenesis, as well as in protection from pathogens. This review considers the functions of ROS in seed physiology. ROS are present in all cells and at all phases of the seed life cycle. ROS accumulation is important in breaking seed dormancy, and stimulating seed germination and protection from pathogens. However, excessive ROS accumulation can be detrimental. Therefore, knowledge of the mechanisms by which ROS influence seed physiology will provide insights that may not only allow the development of seed quality markers but also help us understand how dormancy can be broken in several recalcitrant species. Reactive oxygen species have a dual role in seed physiology. Understanding the relative importance of beneficial and detrimental effects of ROS provides great scope for the improvement and maintenance of seed vigour and quality, factors that may ultimately increase crop yields. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Effect of sensory and motor connectivity on hand function in pediatric hemiplegia.
Gupta, Disha; Barachant, Alexandre; Gordon, Andrew M; Ferre, Claudio; Kuo, Hsing-Ching; Carmel, Jason B; Friel, Kathleen M
2017-11-01
We tested the hypothesis that somatosensory system injury would more strongly affect movement than motor system injury in children with unilateral cerebral palsy (USCP). This hypothesis was based on how somatosensory and corticospinal circuits adapt to injury during development; whereas the motor system can maintain connections to the impaired hand from the uninjured hemisphere, this does not occur in the somatosensory system. As a corollary, cortical injury strongly impairs sensory function, so we hypothesized that cortical lesions would impair hand function more than subcortical lesions. Twenty-four children with unilateral cerebral palsy had physiological and anatomical measures of the motor and somatosensory systems and lesion classification. Motor physiology was performed with transcranial magnetic stimulation and somatosensory physiology with vibration-evoked electroencephalographic potentials. Tractography of the corticospinal tract and the medial lemniscus was performed with diffusion tensor imaging, and lesions were classified by magnetic resonance imaging. Anatomical and physiological results were correlated with measures of hand function using 2 independent statistical methods. Children with disruptions in the somatosensory connectivity and cortical lesions had the most severe upper extremity impairments, particularly somatosensory function. Motor system connectivity was significantly correlated with bimanual function, but not unimanual function or somatosensory function. Both sensory and motor connectivity impact hand function in children with USCP. Somatosensory connectivity could be an important target for recovery of hand function in children with USCP. Ann Neurol 2017;82:766-780. © 2017 American Neurological Association.
Physiologically relevant organs on chips
Yum, Kyungsuk; Hong, Soon Gweon; Lee, Luke P.
2015-01-01
Recent advances in integrating microengineering and tissue engineering have generated promising microengineered physiological models for experimental medicine and pharmaceutical research. Here we review the recent development of microengineered physiological systems, or organs on chips, that reconstitute the physiologically critical features of specific human tissues and organs and their interactions. This technology uses microengineering approaches to construct organ-specific microenvironments, reconstituting tissue structures, tissue–tissue interactions and interfaces, and dynamic mechanical and biochemical stimuli found in specific organs, to direct cells to assemble into functional tissues. We first discuss microengineering approaches to reproduce the key elements of physiologically important, dynamic mechanical microenvironments, biochemical microenvironments, and microarchitectures of specific tissues and organs in microfluidic cell culture systems. This is followed by examples of microengineered individual organ models that incorporate the key elements of physiological microenvironments into single microfluidic cell culture systems to reproduce organ-level functions. Finally, microengineered multiple organ systems that simulate multiple organ interactions to better represent human physiology, including human responses to drugs, is covered in this review. This emerging organs-on-chips technology has the potential to become an alternative to 2D and 3D cell culture and animal models for experimental medicine, human disease modeling, drug development, and toxicology. PMID:24357624
Neurophysiological Basis of Sleep’s Function on Memory and Cognition
Spencer, Rebecca M. C.
2013-01-01
A wealth of recent studies support a function of sleep on memory and cognitive processing. At a physiological level, sleep supports memory in a number of ways including neural replay and enhanced plasticity in the context of reduced ongoing input. This paper presents behavioral evidence for sleep’s role in selective remembering and forgetting of declarative memories, in generalization of these memories, and in motor skill consolidation. Recent physiological data reviewed suggests how these behavioral changes might be supported by sleep. Importantly, in reviewing these findings, an integrated view of how distinct sleep stages uniquely contribute to memory processing emerges. This model will be useful in developing future behavioral and physiological studies to test predictions that emerge. PMID:24600607
Newman, Amy E M; Edmunds, Nicholas B; Ferraro, Shannon; Heffell, Quentin; Merritt, Gillian M; Pakkala, Jesse J; Schilling, Cory R; Schorno, Sarah
2015-03-15
Conspecific density is widely recognized as an important ecological factor across the animal kingdom; however, the physiological impacts are less thoroughly described. In fact, population density is rarely mentioned as a factor in physiological studies on captive animals and, when it is infrequently addressed, the animals used are reared and housed at densities far above those in nature, making the translation of results from the laboratory to natural systems difficult. We survey the literature to highlight this important ecophysiological gap and bring attention to the possibility that conspecific density prior to experimentation may be a critical factor influencing results. Across three taxa: mammals, birds, and fish, we present evidence from ecology that density influences glucocorticoid levels, immune function, and body condition with the intention of stimulating discussion and increasing consideration of population density in physiology studies. We conclude with several directives to improve the applicability of insights gained in the laboratory to organisms in the natural environment. Copyright © 2015 the American Physiological Society.
Liu, Suxuan; Xiong, Xinyu; Zhao, Xianxian; Yang, Xiaofeng; Wang, Hong
2015-05-09
Eukaryotic cell membrane dynamics change in curvature during physiological and pathological processes. In the past ten years, a novel protein family, Fes/CIP4 homology-Bin/Amphiphysin/Rvs (F-BAR) domain proteins, has been identified to be the most important coordinators in membrane curvature regulation. The F-BAR domain family is a member of the Bin/Amphiphysin/Rvs (BAR) domain superfamily that is associated with dynamic changes in cell membrane. However, the molecular basis in membrane structure regulation and the biological functions of F-BAR protein are unclear. The pathophysiological role of F-BAR protein is unknown. This review summarizes the current understanding of structure and function in the BAR domain superfamily, classifies F-BAR family proteins into nine subfamilies based on domain structure, and characterizes F-BAR protein structure, domain interaction, and functional relevance. In general, F-BAR protein binds to cell membrane via F-BAR domain association with membrane phospholipids and initiates membrane curvature and scission via Src homology-3 (SH3) domain interaction with its partner proteins. This process causes membrane dynamic changes and leads to seven important cellular biological functions, which include endocytosis, phagocytosis, filopodium, lamellipodium, cytokinesis, adhesion, and podosome formation, via distinct signaling pathways determined by specific domain-binding partners. These cellular functions play important roles in many physiological and pathophysiological processes. We further summarize F-BAR protein expression and mutation changes observed in various diseases and developmental disorders. Considering the structure feature and functional implication of F-BAR proteins, we anticipate that F-BAR proteins modulate physiological and pathophysiological processes via transferring extracellular materials, regulating cell trafficking and mobility, presenting antigens, mediating extracellular matrix degradation, and transmitting signaling for cell proliferation.
Than, Minh T; Kudlow, Brian A; Han, Min
2013-06-01
Identifying the physiological functions of microRNAs (miRNAs) is often challenging because miRNAs commonly impact gene expression under specific physiological conditions through complex miRNA::mRNA interaction networks and in coordination with other means of gene regulation, such as transcriptional regulation and protein degradation. Such complexity creates difficulties in dissecting miRNA functions through traditional genetic methods using individual miRNA mutations. To investigate the physiological functions of miRNAs in neurons, we combined a genetic "enhancer" approach complemented by biochemical analysis of neuronal miRNA-induced silencing complexes (miRISCs) in C. elegans. Total miRNA function can be compromised by mutating one of the two GW182 proteins (AIN-1), an important component of miRISC. We found that combining an ain-1 mutation with a mutation in unc-3, a neuronal transcription factor, resulted in an inappropriate entrance into the stress-induced, alternative larval stage known as dauer, indicating a role of miRNAs in preventing aberrant dauer formation. Analysis of this genetic interaction suggests that neuronal miRNAs perform such a role partly by regulating endogenous cyclic guanosine monophosphate (cGMP) signaling, potentially influencing two other dauer-regulating pathways. Through tissue-specific immunoprecipitations of miRISC, we identified miRNAs and their likely target mRNAs within neuronal tissue. We verified the biological relevance of several of these miRNAs and found that many miRNAs likely regulate dauer formation through multiple dauer-related targets. Further analysis of target mRNAs suggests potential miRNA involvement in various neuronal processes, but the importance of these miRNA::mRNA interactions remains unclear. Finally, we found that neuronal genes may be more highly regulated by miRNAs than intestinal genes. Overall, our study identifies miRNAs and their targets, and a physiological function of these miRNAs in neurons. It also suggests that compromising other aspects of gene expression, along with miRISC, can be an effective approach to reveal miRNA functions in specific tissues under specific physiological conditions.
The Cajal school and the physiological role of astrocytes: a way of thinking
Navarrete, Marta; Araque, Alfonso
2014-01-01
Cajal is widely recognized by the scientific community for his important contributions to our knowledge of the neuronal organization of the nervous system. His studies on neuroglial cells are less recognized, yet they are no less relevant to our current understanding of the cellular bases of brain structure. Two pioneering studies published a century ago –“Something about the physiological significance of neuroglia” (Ramón y Cajal, 1897) and “A contribution to the understanding of neuroglia in the human brain” (Ramón y Cajal, 1913)—focused on glial cells and their role in brain physiology. Novel findings obtained using state-of-the-art and sophisticated technologies largely confirm many of the groundbreaking hypotheses proposed by Cajal related to the structural-functional properties of neuroglia. Here we propose to the reader a journey guided by the ideas of Cajal through the recent findings on the functional significance of astrocytes, the most abundant neuroglial cell type in the nervous system. Astrocyte–neuron interaction, which represents an emerging field in current neuroscience with important implications for our understanding of the cellular processes underlying brain function, has its roots in many of the original concepts proposed by Cajal. PMID:24904302
D'hondt, Catheleyne; Iyyathurai, Jegan; Himpens, Bernard; Leybaert, Luc; Bultynck, Geert
2014-01-01
Intercellular communication in primary bovine corneal endothelial cells (BCECs) is mainly driven by the release of extracellular ATP through Cx43 hemichannels. Studying the characteristics of Ca2+-wave propagation in BCECs, an important form of intercellular communication, in response to physiological signaling events has led to the discovery of important insights in the functional properties and regulation of native Cx43 hemichannels. Together with ectopic expression models for Cx43 hemichannels and truncated/mutated Cx43 versions, it became very clear that loop/tail interactions play a key role in controlling the activity of Cx43 hemichannels. Interestingly, the negative regulation of Cx43 hemichannels by enhanced actin/myosin contractility seems to impinge upon loss of these loop/tail interactions essential for opening Cx43 hemichannels. Finally, these molecular insights have spurred the development of novel peptide tools that can selectively inhibit Cx43 hemichannels, but neither Cx43 gap junctions nor hemichannels formed by other Cx isoforms. These tools now set the stage to hunt for novel physiological functions for Cx43 hemichannels in primary cells and tissues and to tackle disease conditions associated with excessive, pathological Cx43-hemichannel openings. PMID:25309448
Plasticity of brain wave network interactions and evolution across physiologic states
Liu, Kang K. L.; Bartsch, Ronny P.; Lin, Aijing; Mantegna, Rosario N.; Ivanov, Plamen Ch.
2015-01-01
Neural plasticity transcends a range of spatio-temporal scales and serves as the basis of various brain activities and physiologic functions. At the microscopic level, it enables the emergence of brain waves with complex temporal dynamics. At the macroscopic level, presence and dominance of specific brain waves is associated with important brain functions. The role of neural plasticity at different levels in generating distinct brain rhythms and how brain rhythms communicate with each other across brain areas to generate physiologic states and functions remains not understood. Here we perform an empirical exploration of neural plasticity at the level of brain wave network interactions representing dynamical communications within and between different brain areas in the frequency domain. We introduce the concept of time delay stability (TDS) to quantify coordinated bursts in the activity of brain waves, and we employ a system-wide Network Physiology integrative approach to probe the network of coordinated brain wave activations and its evolution across physiologic states. We find an association between network structure and physiologic states. We uncover a hierarchical reorganization in the brain wave networks in response to changes in physiologic state, indicating new aspects of neural plasticity at the integrated level. Globally, we find that the entire brain network undergoes a pronounced transition from low connectivity in Deep Sleep and REM to high connectivity in Light Sleep and Wake. In contrast, we find that locally, different brain areas exhibit different network dynamics of brain wave interactions to achieve differentiation in function during different sleep stages. Moreover, our analyses indicate that plasticity also emerges in frequency-specific networks, which represent interactions across brain locations mediated through a specific frequency band. Comparing frequency-specific networks within the same physiologic state we find very different degree of network connectivity and link strength, while at the same time each frequency-specific network is characterized by a different signature pattern of sleep-stage stratification, reflecting a remarkable flexibility in response to change in physiologic state. These new aspects of neural plasticity demonstrate that in addition to dominant brain waves, the network of brain wave interactions is a previously unrecognized hallmark of physiologic state and function. PMID:26578891
Expression of regulatory proteins in choroid plexus changes in early stages of Alzheimer disease.
Krzyzanowska, Agnieszka; García-Consuegra, Inés; Pascual, Consuelo; Antequera, Desiree; Ferrer, Isidro; Carro, Eva
2015-04-01
Recent studies indicate that the choroid plexus has important physiologic and pathologic roles in Alzheimer disease (AD). To obtain additional insight on choroid plexus function, we performed a proteomic analysis of choroid plexus samples from patients with AD stages I to II (n = 16), III to IV (n = 16), and V to VI (n = 11) and 7 age-matched control subjects. We used 2-dimensional differential gel electrophoresis coupled with mass spectrometry to generate a complete picture of changes in choroid plexus protein expression occurring in AD patients. We identified 6 proteins: 14-3-3 β/α, 14-3-3 ε, moesin, proteasome activator complex subunit 1, annexin V, and aldehyde dehydrogenase, which were significantly regulated in AD patient samples (p < 0.05, >1.5-fold variation in expression vs control samples). These proteins are implicated in major physiologic functions including mitochondrial dysfunction and apoptosis regulation. These findings contribute additional significance to the emerging importance of molecular and functional changes of choroid plexus function in the pathophysiology of AD.
[Physiology and disease of the endocrine function of the pancreas (author's transl)].
Stubbe, P
1980-12-01
Qualitative and quantitative immunocytochemistry, electronmicroscopy and radio-immuno-assays led to the discovery of 5 pancreatic polypeptide hormones under physiological conditions. The active endocrine cells and the produced hormones are termed A, B, D, D1, and PP cell and glucagon, insulin, somatostatin, vasoactive intestinal polypeptide (VIP) and pancreatic polypeptide (PP) respectively. Beside the physiology of secretion and action a survey of pathological conditions in the paediatric age group is given. Insulin is the most important of pancreatic hormones in childhood. Therefore diagnosis and treatment of hyperinsulinism are described in extension.
Cosić, Kresimir; Popović, Sinisa; Kukolja, Davor; Horvat, Marko; Dropuljić, Branimir
2010-02-01
The significant proportion of severe psychological problems related to intensive stress in recent large peacekeeping operations underscores the importance of effective methods for strengthening the prevention and treatment of stress-related disorders. Adaptive control of virtual reality (VR) stimulation presented in this work, based on estimation of the person's emotional state from physiological signals, may enhance existing stress inoculation training (SIT). Physiology-driven adaptive VR stimulation can tailor the progress of stressful stimuli delivery to the physiological characteristics of each individual, which is indicated for improvement in stress resistance. Following an overview of physiology-driven adaptive VR stimulation, its major functional subsystems are described in more detail. A specific algorithm of stimuli delivery applicable to SIT is outlined.
Animal Models for the Study of Female Sexual Dysfunction
Marson, Lesley; Giamberardino, Maria Adele; Costantini, Raffaele; Czakanski, Peter; Wesselmann, Ursula
2017-01-01
Introduction Significant progress has been made in elucidating the physiological and pharmacological mechanisms of female sexual function through preclinical animal research. The continued development of animal models is vital for the understanding and treatment of the many diverse disorders that occur in women. Aim To provide an updated review of the experimental models evaluating female sexual function that may be useful for clinical translation. Methods Review of English written, peer-reviewed literature, primarily from 2000 to 2012, that described studies on female sexual behavior related to motivation, arousal, physiological monitoring of genital function and urogenital pain. Main Outcomes Measures Analysis of supporting evidence for the suitability of the animal model to provide measurable indices related to desire, arousal, reward, orgasm, and pelvic pain. Results The development of female animal models has provided important insights in the peripheral and central processes regulating sexual function. Behavioral models of sexual desire, motivation, and reward are well developed. Central arousal and orgasmic responses are less well understood, compared with the physiological changes associated with genital arousal. Models of nociception are useful for replicating symptoms and identifying the neurobiological pathways involved. While in some cases translation to women correlates with the findings in animals, the requirement of circulating hormones for sexual receptivity in rodents and the multifactorial nature of women’s sexual function requires better designed studies and careful analysis. The current models have studied sexual dysfunction or pelvic pain in isolation; combining these aspects would help to elucidate interactions of the pathophysiology of pain and sexual dysfunction. Conclusions Basic research in animals has been vital for understanding the anatomy, neurobiology, and physiological mechanisms underlying sexual function and urogenital pain. These models are important for understanding the etiology of female sexual function and for future development of pharmacological treatments for sexual dysfunctions with or without pain. PMID:27784584
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slutsky, R.; Ashburn, W.L.
1982-01-01
The relationship between nuclear medicine and cardiology has continued to produce a surfeit of interesting, illuminating, and important reports involving the analysis of cardiac function, perfusion, and metabolism. To simplify the presentation, this review is broken down into three major subheadings: analysis of myocardial perfusion; imaging of the recent myocardial infarction; and the evaluation of myocardial function. There appears to be an increasingly important relationship between cardiology, particularly cardiac physiology, and nuclear imaging techniques. (KRM)
Liu, Ping; Chen, Bojun; Wang, Zhao-Wen
2014-01-01
Slo2 channels are prominent K+ channels in mammalian neurons but their physiological functions are not well understood. Here we investigate physiological functions and regulation of the C. elegans homologue SLO-2 in motor neurons through electrophysiological analyses of wild-type and mutant worms. We find that SLO-2 is the primary K+ channel conducting delayed outward current in cholinergic motor neurons, and one of two K+ channels with this function in GABAergic motor neurons. Loss-of-function mutation of slo-2 increases the duration and charge transfer rate of spontaneous postsynaptic current bursts at the neuromuscular junction, which are physiological signals used by motor neurons to control muscle cells, without altering postsynaptic receptor sensitivity. SLO-2 activity in motor neurons depends on Ca2+ entry through EGL-19, an L-type voltage-gated Ca2+ channel (CaV1), but not on other proteins implicated in either Ca2+ entry or intracellular Ca2+ release. Thus, SLO-2 is functionally coupled with CaV1 and regulates neurotransmitter release. PMID:25300429
Cheng, Hang; Jin, Chengyan; Wu, Jing; Zhu, Shan; Liu, Yong-Jun; Chen, Jingtao
2017-12-01
The lung is an important open organ and the primary site of respiration. Many life-threatening diseases develop in the lung, e.g., pneumonia, asthma, chronic obstructive pulmonary diseases (COPDs), pulmonary fibrosis, and lung cancer. In the lung, innate immunity serves as the frontline in both anti-irritant response and anti-tumor defense and is also critical for mucosal homeostasis; thus, it plays an important role in containing these pulmonary diseases. Innate lymphoid cells (ILCs), characterized by their strict tissue residence and distinct function in the mucosa, are attracting increased attention in innate immunity. Upon sensing the danger signals from damaged epithelium, ILCs activate, proliferate, and release numerous cytokines with specific local functions; they also participate in mucosal immune-surveillance, immune-regulation, and homeostasis. However, when their functions become uncontrolled, ILCs can enhance pathological states and induce diseases. In this review, we discuss the physiological and pathological functions of ILC subsets 1 to 3 in the lung, and how the pathogenic environment affects the function and plasticity of ILCs.
Ultrasound Imaging in Teaching Cardiac Physiology
ERIC Educational Resources Information Center
Johnson, Christopher D.; Montgomery, Laura E. A.; Quinn, Joe G.; Roe, Sean M.; Stewart, Michael T.; Tansey, Etain A.
2016-01-01
This laboratory session provides hands-on experience for students to visualize the beating human heart with ultrasound imaging. Simple views are obtained from which students can directly measure important cardiac dimensions in systole and diastole. This allows students to derive, from first principles, important measures of cardiac function, such…
Caveolins and caveolae in ocular physiology and pathophysiology.
Gu, Xiaowu; Reagan, Alaina M; McClellan, Mark E; Elliott, Michael H
2017-01-01
Caveolae are specialized, invaginated plasma membrane domains that are defined morphologically and by the expression of signature proteins called, caveolins. Caveolae and caveolins are abundant in a variety of cell types including vascular endothelium, glia, and fibroblasts where they play critical roles in transcellular transport, endocytosis, mechanotransduction, cell proliferation, membrane lipid homeostasis, and signal transduction. Given these critical cellular functions, it is surprising that ablation of the caveolae organelle does not result in lethality suggesting instead that caveolae and caveolins play modulatory roles in cellular homeostasis. Caveolar components are also expressed in ocular cell types including retinal vascular cells, Müller glia, retinal pigment epithelium (RPE), conventional aqueous humor outflow cells, the corneal epithelium and endothelium, and the lens epithelium. In the eye, studies of caveolae and other membrane microdomains (i.e., "lipid rafts") have lagged behind what is a substantial body of literature outside vision science. However, interest in caveolae and their molecular components has increased with accumulating evidence of important roles in vision-related functions such as blood-retinal barrier homeostasis, ocular inflammatory signaling, pathogen entry at the ocular surface, and aqueous humor drainage. The recent association of CAV1/2 gene loci with primary open angle glaucoma and intraocular pressure has further enhanced the need to better understand caveolar functions in the context of ocular physiology and disease. Herein, we provide the first comprehensive review of literature on caveolae, caveolins, and other membrane domains in the context of visual system function. This review highlights the importance of caveolae domains and their components in ocular physiology and pathophysiology and emphasizes the need to better understand these important modulators of cellular function. Copyright © 2016 Elsevier Ltd. All rights reserved.
Caveolins and caveolae in ocular physiology and pathophysiology
Gu, Xiaowu; Reagan, Alaina M.; McClellan, Mark E.; Elliott, Michael H.
2016-01-01
Caveolae are specialized, invaginated plasma membrane domains that are defined morphologically and by the expression of signature proteins called, caveolins. Caveolae and caveolins are abundant in a variety of cell types including vascular endothelium, glia, and fibroblasts where they play critical roles in transcellular transport, endocytosis, mechanotransduction, cell proliferation, membrane lipid homeostasis, and signal transduction. Given these critical cellular functions, it is surprising that ablation of the caveolae organelle does not result in lethality suggesting instead that caveolae and caveolins play modulatory roles in cellular homeostasis. Caveolar components are also expressed in ocular cell types including retinal vascular cells, Müller glia, retinal pigment epithelium (RPE), conventional aqueous humor outflow cells, the corneal epithelium and endothelium, and the lens epithelium. In the eye, studies of caveolae and other membrane microdomains (i.e., “lipid rafts”) have lagged behind what is a substantial body of literature outside vision science. However, interest in caveolae and their molecular components has increased with accumulating evidence of important roles in vision-related functions such as blood-retinal barrier homeostasis, ocular inflammatory signalling, pathogen entry at the ocular surface, and aqueous humor drainage. The recent association of CAV1/2 gene loci with primary open angle glaucoma and intraocular pressure has further enhanced the need to better understand caveolar functions in the context of ocular physiology and disease. Herein, we provide the first comprehensive review of literature on caveolae, caveolins, and other membrane domains in the context of visual system function. This review highlights the importance of caveolae domains and their components in ocular physiology and pathophysiology and emphasizes the need to better understand these important modulators of cellular function. PMID:27664379
Distribution, function and physiological role of melatonin in the lower gut
Chen, Chun-Qiu; Fichna, Jakub; Bashashati, Mohammad; Li, Yong-Yu; Storr, Martin
2011-01-01
Melatonin is a hormone with endocrine, paracrine and autocrine actions. It is involved in the regulation of multiple functions, including the control of the gastrointestinal (GI) system under physiological and pathophysiological conditions. Since the gut contains at least 400 times more melatonin than the pineal gland, a review of the functional importance of melatonin in the gut seems useful, especially in the context of recent clinical trials. Melatonin exerts its physiological effects through specific membrane receptors, named melatonin-1 receptor (MT1), MT2 and MT3. These receptors can be found in the gut and their involvement in the regulation of GI motility, inflammation and pain has been reported in numerous basic and clinical studies. Stable levels of melatonin in the lower gut that are unchanged following a pinealectomy suggest local synthesis and, furthermore, implicate physiological importance of endogenous melatonin in the GI tract. Presently, only a small number of human studies report possible beneficial and also possible harmful effects of melatonin in case reports and clinical trials. These human studies include patients with lower GI diseases, especially patients with irritable bowel syndrome, inflammatory bowel disease and colorectal cancer. In this review, we summarize the presently available information on melatonin effects in the lower gut and discuss available in vitro and in vivo data. We furthermore aim to evaluate whether melatonin may be useful in future treatment of symptoms or diseases involving the lower gut. PMID:22025877
Cortisol Levels and Conduct Disorder in Adolescent Mothers
ERIC Educational Resources Information Center
Pajer, Kathleen; Gardner, William
2004-01-01
This study investigates the function of the hypothalamic-pituitary-adrenal (HPA) axis in adolescent antisocial girls. This question is important because disturbance of HPA functioning has been found in populations of violent adult males and antisocial adolescent males, suggesting that it may be a marker of a physiological disorder associated with…
USDA-ARS?s Scientific Manuscript database
Calmodulin, a ubiquitous calcium sensor, plays an important role in decoding the stress-triggered intracellular calcium changes and regulates the functions of numerous target proteins involved in various physiological responses in plants. To determine the functional significance of calmodulin in fl...
Epoxide hydrolases: structure, function, mechanism, and assay.
Arand, Michael; Cronin, Annette; Adamska, Magdalena; Oesch, Franz
2005-01-01
Epoxide hydrolases are a class of enzymes important in the detoxification of genotoxic compounds, as well as in the control of physiological signaling molecules. This chapter gives an overview on the function, structure, and enzymatic mechanism of structurally characterized epoxide hydrolases and describes selected assays for the quantification of epoxide hydrolase activity.
Crino, Ondi L; Johnson, Erin E; Blickley, Jessica L; Patricelli, Gail L; Breuner, Creagh W
2013-06-01
Roads have been associated with behavioral and physiological changes in wildlife. In birds, roads decrease reproductive success and biodiversity and increase physiological stress. Although the consequences of roads on individuals and communities have been well described, the mechanisms through which roads affect birds remain largely unexplored. Here, we examine one mechanism through which roads could affect birds: traffic noise. We exposed nestling mountain white-crowned sparrows (Zonotrichia leucophrys oriantha) to experimentally elevated traffic noise for 5 days during the nestling period. Following exposure to traffic noise we measured nestling stress physiology, immune function, body size, condition and survival. Based on prior studies, we expected the traffic noise treatment to result in elevated stress hormones (glucocorticoids), and declines in immune function, body size, condition and survival. Surprisingly, nestlings exposed to traffic noise had lower glucocorticoid levels and improved condition relative to control nests. These results indicate that traffic noise does affect physiology and development in white-crowned sparrows, but not at all as predicted. Therefore, when evaluating the mechanisms through which roads affect avian populations, other factors (e.g. edge effects, pollution and mechanical vibration) may be more important than traffic noise in explaining elevated nestling stress responses in this species.
Physiologically relevant organs on chips.
Yum, Kyungsuk; Hong, Soon Gweon; Healy, Kevin E; Lee, Luke P
2014-01-01
Recent advances in integrating microengineering and tissue engineering have generated promising microengineered physiological models for experimental medicine and pharmaceutical research. Here we review the recent development of microengineered physiological systems, or also known as "ogans-on-chips", that reconstitute the physiologically critical features of specific human tissues and organs and their interactions. This technology uses microengineering approaches to construct organ-specific microenvironments, reconstituting tissue structures, tissue-tissue interactions and interfaces, and dynamic mechanical and biochemical stimuli found in specific organs, to direct cells to assemble into functional tissues. We first discuss microengineering approaches to reproduce the key elements of physiologically important, dynamic mechanical microenvironments, biochemical microenvironments, and microarchitectures of specific tissues and organs in microfluidic cell culture systems. This is followed by examples of microengineered individual organ models that incorporate the key elements of physiological microenvironments into single microfluidic cell culture systems to reproduce organ-level functions. Finally, microengineered multiple organ systems that simulate multiple organ interactions to better represent human physiology, including human responses to drugs, is covered in this review. This emerging organs-on-chips technology has the potential to become an alternative to 2D and 3D cell culture and animal models for experimental medicine, human disease modeling, drug development, and toxicology. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Martin, T John
2016-07-01
Although parathyroid hormone-related protein (PTHrP) was discovered as a cancer-derived hormone, it has been revealed as an important paracrine/autocrine regulator in many tissues, where its effects are context dependent. Thus its location and action in the vasculature explained decades-long observations that injection of PTH into animals rapidly lowered blood pressure by producing vasodilatation. Its roles have been specified in development and maturity in cartilage and bone as a crucial regulator of endochondral bone formation and bone remodeling, respectively. Although it shares actions with parathyroid hormone (PTH) through the use of their common receptor, PTHR1, PTHrP has other actions mediated by regions within the molecule beyond the amino-terminal sequence that resembles PTH, including the ability to promote placental transfer of calcium from mother to fetus. A striking feature of the physiology of PTHrP is that it possesses structural features that equip it to be transported in and out of the nucleus, and makes use of a specific nuclear import mechanism to do so. Evidence from mouse genetic experiments shows that PTHrP generated locally in bone is essential for normal bone remodeling. Whereas the main physiological function of PTH is the hormonal regulation of calcium metabolism, locally generated PTHrP is the important physiological mediator of bone remodeling postnatally. Thus the use of intermittent injection of PTH as an anabolic therapy for bone appears to be a pharmacological application of the physiological function of PTHrP. There is much current interest in the possibility of developing PTHrP analogs that might enhance the therapeutic anabolic effects. Copyright © 2016 the American Physiological Society.
Stress Physiology in Infancy and Early Childhood: Cortisol Flexibility, Attunement and Coordination.
Atkinson, L; Jamieson, B; Khoury, J; Ludmer, J; Gonzalez, A
2016-08-01
Research on stress physiology in infancy has assumed increasing importance due to its lifelong implications. In this review, we focus on measurement of hypothalamic-pituitary-adrenal (HPA) function, in particular, and on complementary autonomic processes. We suggest that the measure of HPA function has been overly exclusive, focusing on individual reactivity to single, pragmatically selected laboratory challenges. We advocate use of multiple, strategically chosen challenges and within-subject designs. By administering one challenge that typically does not provoke reactivity and another that does, it is possible to represent allostatic load in terms of "flexibility," the capacity to titrate response to challenge. We also recommend assessing infant reactivity in the context of the primary caregiver's physiological function. Infant-mother "attunement" is central to developmental psychology, permeating diverse developmental domains with varied consequences. A review of adrenocortical attunement suggests that attunement is a reliable process, manifest across varied populations. However, attunement appears stronger in the context of more highly stressful circumstances, such that administration of multiple, selected challenges may help evaluate the degree to which individuals titrate attunement to challenge and determine the correlates of this differential attunement. Finally, we advocate studying the "coordination" of HPA function with other aspects of stress physiology and variation in the degree of this coordination. The use of multiple stressors is important here because each stress system is differentially sensitive to different types of challenge. Therefore, use of single stressors in between-subject designs impedes full recognition of the role played by each system. Overall, we recommend measure of flexibility, attunement, and coordination in the context of multiple challenges to capture allostasis in environmental and physiological context. The simultaneous use of such inclusive and integrative metrics may yield more reliable findings than has hitherto been the case. The interrelation of these metrics can be understood in the context of the adaptive calibration model.. © 2016 British Society for Neuroendocrinology.
USDA-ARS?s Scientific Manuscript database
Plant cells possess a number of membrane bound organelles that play important roles in compartmentalizing a large number of biochemical pathways and physiological functions that have potentially harmful intermediates or by-products. The plasma membrane is particularly important as it holds the enti...
Septin functions in organ system physiology and pathology
Dolat, Lee; Hu, Qicong
2015-01-01
Human septins comprise a family of 13 genes that encode for >30 protein isoforms with ubiquitous and tissue-specific expressions. Septins are GTP-binding proteins that assemble into higher-order oligomers and filamentous polymers, which associate with cell membranes and the cytoskeleton. In the last decade, much progress has been made in understanding the biochemical properties and cell biological functions of septins. In parallel, a growing number of studies show that septins play important roles for the development and physiology of specific tissues and organs. Here, we review the expression and function of septins in the cardiovascular, immune, nervous, urinary, digestive, respiratory, endocrine, reproductive, and integumentary organ systems. Furthermore, we discuss how the tissue-specific functions of septins relate to the pathology of human diseases that arise from aberrations in septin expression. PMID:24114910
Sarewicz, Marcin; Osyczka, Artur
2015-01-01
Mitochondrial respiration, an important bioenergetic process, relies on operation of four membranous enzymatic complexes linked functionally by mobile, freely diffusible elements: quinone molecules in the membrane and water-soluble cytochromes c in the intermembrane space. One of the mitochondrial complexes, complex III (cytochrome bc1 or ubiquinol:cytochrome c oxidoreductase), provides an electronic connection between these two diffusible redox pools linking in a fully reversible manner two-electron quinone oxidation/reduction with one-electron cytochrome c reduction/oxidation. Several features of this homodimeric enzyme implicate that in addition to its well-defined function of contributing to generation of proton-motive force, cytochrome bc1 may be a physiologically important point of regulation of electron flow acting as a sensor of the redox state of mitochondria that actively responds to changes in bioenergetic conditions. These features include the following: the opposing redox reactions at quinone catalytic sites located on the opposite sides of the membrane, the inter-monomer electronic connection that functionally links four quinone binding sites of a dimer into an H-shaped electron transfer system, as well as the potential to generate superoxide and release it to the intermembrane space where it can be engaged in redox signaling pathways. Here we highlight recent advances in understanding how cytochrome bc1 may accomplish this regulatory physiological function, what is known and remains unknown about catalytic and side reactions within the quinone binding sites and electron transfers through the cofactor chains connecting those sites with the substrate redox pools. We also discuss the developed molecular mechanisms in the context of physiology of mitochondria. Copyright © 2015 the American Physiological Society.
Martínez, Luisa M; Fernández-Ocaña, Ana; Rey, Pedro J; Salido, Teresa; Amil-Ruiz, Francisco; Manzaneda, Antonio J
2018-06-08
Some polyploid species show enhanced physiological tolerance to drought compared with their progenitors. However, very few studies have examined the consistency of physiological drought response between genetically differentiated natural polyploid populations, which is key to evaluation of the importance of adaptive evolution after polyploidization in those systems where drought exerts a selective pressure. A comparative functional approach was used to investigate differentiation of drought-tolerance-related traits in the Brachypodium species complex, a model system for grass polyploid adaptive speciation and functional genomics that comprises three closely related annual species: the two diploid parents, B. distachyon and B. stacei, and the allotetraploid derived from them, B. hybridum. Differentiation of drought-tolerance-related traits between ten genetically distinct B. hybridum populations and its ecological correlates was further analysed. The functional drought response is overall well differentiated between Brachypodium species. Brachypodium hybridum allotetraploids showed a transgressive expression pattern in leaf phytohormone content in response to drought. In contrast, other B. hybridum physiological traits correlated to B. stacei ones. Particularly, proline and water content were the traits that best discriminated these species from B. distachyon under drought. After polyploid formation and/or colonization, B. hybridum populations have adaptively diverged physiologically and genetically in response to variations in aridity.
Krüppel-like factors are effectors of nuclear receptor signaling
Knoedler, Joseph R.; Denver, Robert J.
2015-01-01
Binding of steroid and thyroid hormones to their cognate nuclear receptors (NRs) impacts virtually every aspect of postembryonic development, physiology and behavior, and inappropriate signaling by NRs may contribute to disease. While NRs regulate genes by direct binding to hormone response elements in the genome, their actions may depend on the activity of other transcription factors (TFs) that may or may not bind DNA. The Krüppel-like family of transcription factors (KLF) is an evolutionarily conserved class of DNA-binding proteins that influence many aspects of development and physiology. Several members of this family have been shown to play diverse roles in NR signaling. For example, KLFs 1) act as accessory transcription factors for NR actions, 2) regulate expression of NR genes, and 3) as gene products of primary NR response genes function as key players in NR-dependent transcriptional networks. In mouse models, deletion of different KLFs leads to aberrant transcriptional and physiological responses to hormones, underscoring the importance of these proteins in the regulation of hormonal signaling. Understanding the functional relationships between NRs and KLFs will yield important insights into mechanisms of NR signaling. In this review we present a conceptual framework for understanding how KLFs participate in NR signaling, and we provide examples of how these proteins function to effect hormone action. PMID:24642391
Aspinwall, Michael J; Lowry, David B; Taylor, Samuel H; Juenger, Thomas E; Hawkes, Christine V; Johnson, Mari-Vaughn V; Kiniry, James R; Fay, Philip A
2013-09-01
Examining intraspecific variation in growth and function in relation to climate may provide insight into physiological evolution and adaptation, and is important for predicting species responses to climate change. Under common garden conditions, we grew nine genotypes of the C₄ species Panicum virgatum originating from different temperature and precipitation environments. We hypothesized that genotype productivity, morphology and physiological traits would be correlated with climate of origin, and a suite of adaptive traits would show high broad-sense heritability (H(2)). Genotype productivity and flowering time increased and decreased, respectively, with home-climate temperature, and home-climate temperature was correlated with genotypic differences in a syndrome of morphological and physiological traits. Genotype leaf and tiller size, leaf lamina thickness, leaf mass per area (LMA) and C : N ratios increased with home-climate temperature, whereas leaf nitrogen per unit mass (Nm ) and chlorophyll (Chl) decreased with home-climate temperature. Trait variation was largely explained by genotypic differences (H(2) = 0.33-0.85). Our results provide new insight into the role of climate in driving functional trait coordination, local adaptation and genetic divergence within species. These results emphasize the importance of considering intraspecific variation in future climate change scenarios. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
Nonlinear dynamics, fractals, cardiac physiology and sudden death
NASA Technical Reports Server (NTRS)
Goldberger, Ary L.
1987-01-01
The authors propose a diametrically opposite viewpoint to the generally accepted tendency of equating healthy function with order and disease with chaos. With regard to the question of sudden cardiac death and chaos, it is suggested that certain features of dynamical chaos related to fractal structure and fractal dynamics may be important organizing principles in normal physiology and that certain pathologies, including ventricular fibrillation, represent a class of 'pathological periodicities'. Some laboratory work bearing on the relation of nonlinear analysis to physiological and pathophysiological data is briefly reviewed, with tentative theories and models described in reference to the mechanism of ventricular fibrillation.
NASA Astrophysics Data System (ADS)
Schneider, F. D.; Morsdorf, F.; Schmid, B.; Petchey, O. L.; Hueni, A.; Schimel, D.; Schaepman, M. E.
2016-12-01
Forest functional traits offer a mechanistic link between ecological processes and community structure and assembly rules. However, measuring functional traits of forests in a continuous and consistent way is particularly difficult due to the complexity of in-situ measurements and geo-referencing. New imaging spectroscopy measurements overcome these limitations allowing to map physiological traits on broad spatial scales. We mapped leaf chlorophyll, carotenoids and leaf water content over 900 ha of temperate mixed forest (Fig. 1a). The selected traits are functionally important because they are indicating the photosynthetic potential of trees, leaf longevity and protection, as well as tree water and drought stress. Spatially continuous measurements on the scale of individual tree crowns allowed to assess functional diversity patterns on a range of ecological extents. We used indexes of functional richness, divergence and evenness to map different aspects of diversity. Fig. 1b shows an example of physiological richness at an extent of 240 m radius. We compared physiological to morphological diversity patterns, derived based on plant area index, canopy height and foliage height diversity. Our results show that patterns of physiological and morphological diversity generally agree, independently measured by airborne imaging spectroscopy and airborne laser scanning, respectively. The occurrence of disturbance areas and mixtures of broadleaf and needle trees were the main drivers of the observed diversity patterns. Spatial patterns at varying extents and richness-area relationships indicated that environmental filtering is the predominant community assembly process. Our results demonstrate the potential for mapping physiological and morphological diversity in a temperate mixed forest between and within species on scales relevant to study community assembly and structure from space and test the corresponding measurement schemes.
Lombardi, Giovanni; Barbaro, Mosè; Locatelli, Massimo; Banfi, Giuseppe
2017-06-01
The endocrine function of bone is now a recognized feature of this tissue. Bone-derived hormones that modulate whole-body homeostasis, are being discovered as for the effects on bone of novel and classic hormones produced by other tissues become known. Often, however, the data regarding these last generation bone-derived or bone-targeting hormones do not give about a clear picture of their physiological roles or concentration ranges. A certain degree of uncertainty could stem from differences in the pre-analytical management of biological samples. The pre-analytical phase comprises a series of decisions and actions (i.e., choice of sample matrix, methods of collection, transportation, treatment and storage) preceding analysis. Errors arising in this phase will inevitably be carried over to the analytical phase where they can reduce the measurement accuracy, ultimately, leading discrepant results. While the pre-analytical phase is all important, in routine laboratory medicine, it is often not given due consideration in research and clinical trials. This is particularly true for novel molecules, such as the hormones regulating the endocrine function of bone. In this review we discuss the importance of the pre-analytical variables affecting the measurement of last generation bone-associated hormones and describe their, often debated and rarely clear physiological roles.
Effects of blue light on the circadian system and eye physiology.
Tosini, Gianluca; Ferguson, Ian; Tsubota, Kazuo
2016-01-01
Light-emitting diodes (LEDs) have been used to provide illumination in industrial and commercial environments. LEDs are also used in TVs, computers, smart phones, and tablets. Although the light emitted by most LEDs appears white, LEDs have peak emission in the blue light range (400-490 nm). The accumulating experimental evidence has indicated that exposure to blue light can affect many physiologic functions, and it can be used to treat circadian and sleep dysfunctions. However, blue light can also induce photoreceptor damage. Thus, it is important to consider the spectral output of LED-based light sources to minimize the danger that may be associated with blue light exposure. In this review, we summarize the current knowledge of the effects of blue light on the regulation of physiologic functions and the possible effects of blue light exposure on ocular health.
Fitzgerald, G A; Yang, G; Paschos, G K; Liang, X; Skarke, C
2015-09-01
Molecular clockworks knit together diverse biological networks and compelling evidence from model systems infers their importance in metabolism, immunological and cardiovascular function. Despite this and the diurnal variation in many aspects of human physiology and the phenotypic expression of disease, our understanding of the role and importance of clock function and dysfunction in humans is modest. There are tantalizing hints of connection across the translational divide and some correlative evidence of gene variation and human disease but most of what we know derives from forced desynchrony protocols in controlled environments. We now have the ability to monitor quantitatively ex vivo or in vivo the genome, metabolome, proteome and microbiome of humans in the wild. Combining this capability, with the power of mobile telephony and the evolution of remote sensing, affords a new opportunity for deep phenotyping, including the characterization of diurnal behaviour and the assessment of the impact of the clock on approved drug function. © 2015 John Wiley & Sons Ltd.
Physiological and pathological functions of acid-sensing ion channels in the central nervous system
Chu, Xiang-Ping; Xiong, Zhi-Gang
2012-01-01
Protons are important signals for neuronal function. In the central nervous system (CNS), proton concentrations change locally when synaptic vesicles release their acidic contents into the synaptic cleft, and globally in ischemia, seizures, traumatic brain injury, and other neurological disorders due to lactic acid accumulation. The finding that protons gate a distinct family of ion channels, the acid-sensing ion channels (ASICs), has shed new light on the mechanism of acid signaling and acidosis-associated neuronal injury. Accumulating evidence has suggested that ASICs play important roles in physiological processes such as synaptic plasticity, learning/memory, fear conditioning, and retinal integrity, and in pathological conditions such as brain ischemia, multiple sclerosis, epileptic seizures, and malignant glioma. Thus, targeting these channels may lead to novel therapeutic interventions for neurological disorders. The goal of this review is to provide an update on recent advances in our understanding of the functions of ASICs in the CNS. PMID:22204324
USDA-ARS?s Scientific Manuscript database
Glutaredoxins (Grxs) have been identified across taxa as important mediators in various physiological functions. A chloroplastic monothiol glutaredoxin, AtGRXS16 from "Arabidopsis thaliana", comprises two distinct functional domains, an N-terminal domain (NTD) with GlyIleTyr-TyrIleGly (GIY-YIG) endo...
Patel, Ruchin G
2017-02-01
The nose is a complex structure important in facial aesthetics and in respiratory physiology. Nasal defects can pose a challenge to reconstructive surgeons who must re-create nasal symmetry while maintaining nasal function. A basic understanding of the underlying nasal anatomy is thus necessary for successful nasal reconstruction. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
BOLD magnetic resonance imaging in nephrology
Hall, Michael E; Jordan, Jennifer H; Juncos, Luis A; Hundley, W Gregory; Hall, John E
2018-01-01
Magnetic resonance (MR) imaging, a non-invasive modality that provides anatomic and physiologic information, is increasingly used for diagnosis of pathophysiologic conditions and for understanding renal physiology in humans. Although functional MR imaging methods were pioneered to investigate the brain, they also offer powerful techniques for investigation of other organ systems such as the kidneys. However, imaging the kidneys provides unique challenges due to potential complications from contrast agents. Therefore, development of non-contrast techniques to study kidney anatomy and physiology is important. Blood oxygen level-dependent (BOLD) MR is a non-contrast imaging technique that provides functional information related to renal tissue oxygenation in various pathophysiologic conditions. Here we discuss technical considerations, clinical uses and future directions for use of BOLD MR as well as complementary MR techniques to better understand renal pathophysiology. Our intent is to summarize kidney BOLD MR applications for the clinician rather than focusing on the complex physical challenges that functional MR imaging encompasses; however, we briefly discuss some of those issues. PMID:29559807
Coping behaviour as an adaptation to stress: post-disturbance preening in colonial seabirds.
Henson, Shandelle M; Weldon, Lynelle M; Hayward, James L; Greene, Daniel J; Megna, Libby C; Serem, Maureen C
2012-01-01
In humans, coping behaviour is an action taken to soothe oneself during or after a stressful or threatening situation. Some human behaviours with physiological functions also serve as coping behaviours, for example, comfort sucking in infants and comfort eating in adults. In birds, the behaviour of preening, which has important physiological functions, has been postulated to soothe individuals after stressful situations. We combine two existing modelling approaches - logistic regression and Darwinian dynamics - to explore theoretically how a behaviour with crucial physiological function might evolve into a coping behaviour. We apply the method to preening in colonial seabirds to investigate whether and how preening might be co-opted as a coping behaviour in the presence of predators. We conduct an in-depth study of the environmental correlates of preening in a large gull colony in Washington, USA, and we perform an independent field test for comfort preening by computing the change in frequency of preening in gulls that were alerted to a predator, but did not flee.
McDonald, Nathan A; Vander Kooi, Craig W; Ohi, Melanie D; Gould, Kathleen L
2015-12-21
F-BAR proteins function in diverse cellular processes by linking membranes to the actin cytoskeleton. Through oligomerization, multiple F-BAR domains can bend membranes into tubules, though the physiological importance of F-BAR-to-F-BAR assemblies is not yet known. Here, we investigate the F-BAR domain of the essential cytokinetic scaffold, Schizosaccharomyces pombe Cdc15, during cytokinesis. Challenging a widely held view that membrane deformation is a fundamental property of F-BARs, we report that the Cdc15 F-BAR binds, but does not deform, membranes in vivo or in vitro, and six human F-BAR domains-including those from Fer and RhoGAP4-share this property. Nevertheless, tip-to-tip interactions between F-BAR dimers are critical for Cdc15 oligomerization and high-avidity membrane binding, stabilization of contractile ring components at the medial cortex, and the fidelity of cytokinesis. F-BAR oligomerization is also critical for Fer and RhoGAP4 physiological function, demonstrating its broad importance to F-BAR proteins that function without membrane bending. Copyright © 2015 Elsevier Inc. All rights reserved.
Lipid microdomains and the regulation of ion channel function
Dart, Caroline
2010-01-01
Many types of ion channel localize to cholesterol and sphingolipid-enriched regions of the plasma membrane known as lipid microdomains or ‘rafts’. The precise physiological role of these unique lipid microenvironments remains elusive due largely to difficulties associated with studying these potentially extremely small and dynamic domains. Nevertheless, increasing evidence suggests that membrane rafts regulate channel function in a number of different ways. Raft-enriched lipids such as cholesterol and sphingolipids exert effects on channel activity either through direct protein–lipid interactions or by influencing the physical properties of the bilayer. Rafts also appear to selectively recruit interacting signalling molecules to generate subcellular compartments that may be important for efficient and selective signal transduction. Direct interaction with raft-associated scaffold proteins such as caveolin can also influence channel function by altering gating kinetics or by affecting trafficking and surface expression. Selective association of ion channels with specific lipid microenvironments within the membrane is thus likely to be an important and fundamental regulatory aspect of channel physiology. This brief review highlights some of the existing evidence for raft modulation of channel function. PMID:20519314
K+ channels of Müller glial cells in retinal disorders.
Gao, Feng; Xu, Linjie; Zhao, Yuan; Sun, Xinghuai; Wang, Zhongfeng
2018-02-01
Müller cell is the major type glial cell in the vertebrate retina. Müller cells express various types of K+ channels, such as inwardly rectifying K+ (Kir) channels, big conductance Ca2+-activated K+ (BKCa) channels, delayed rectifier K+ channels (KDR), and transient A-type K+ channels. These K+ channels play important roles in maintaining physiological functions of Müller cells. Under some retinal pathological conditions, the changed expression and functions of K+ channels may contribute to retinal pathogenesis. In this article, we reviewed the physiological properties of K+ channels in retinal Müller cells and the functional changes of these channels in retinal disorders. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Miyake, Chikahiro
2010-12-01
An electron flow in addition to the major electron sinks in C(3) plants [both photosynthetic carbon reduction (PCR) and photorespiratory carbon oxidation (PCO) cycles] is termed an alternative electron flow (AEF) and functions in the chloroplasts of leaves. The water-water cycle (WWC; Mehler-ascorbate peroxidase pathway) and cyclic electron flow around PSI (CEF-PSI) have been studied as the main AEFs in chloroplasts and are proposed to play a physiologically important role in both the regulation of photosynthesis and the alleviation of photoinhibition. In the present review, I discuss the molecular mechanisms of both AEFs and their functions in vivo. To determine their physiological function, accurate measurement of the electron flux of AEFs in vivo are required. Methods to assay electron flux in CEF-PSI have been developed recently and their problematic points are discussed. The common physiological function of both the WWC and CEF-PSI is the supply of ATP to drive net CO(2) assimilation. The requirement for ATP depends on the activities of both PCR and PCO cycles, and changes in both WWC and CEF-PSI were compared with the data obtained in intact leaves. Furthermore, the fact that CEF-PSI cannot function independently has been demonstrated. I propose a model for the regulation of CEF-PSI by WWC, in which WWC is indispensable as an electron sink for the expression of CEF-PSI activity.
Intracellular pH in sperm physiology.
Nishigaki, Takuya; José, Omar; González-Cota, Ana Laura; Romero, Francisco; Treviño, Claudia L; Darszon, Alberto
2014-08-01
Intracellular pH (pHi) regulation is essential for cell function. Notably, several unique sperm ion transporters and enzymes whose elimination causes infertility are either pHi dependent or somehow related to pHi regulation. Amongst them are: CatSper, a Ca(2+) channel; Slo3, a K(+) channel; the sperm-specific Na(+)/H(+) exchanger and the soluble adenylyl cyclase. It is thus clear that pHi regulation is of the utmost importance for sperm physiology. This review briefly summarizes the key components involved in pHi regulation, their characteristics and participation in fundamental sperm functions such as motility, maturation and the acrosome reaction. Copyright © 2014 Elsevier Inc. All rights reserved.
Sobolewski, Marissa; Allen, Joshua L.; Morris-Schaffer, Keith; Klocke, Carolyn; Conrad, Katherine; Cory-Slechta, Deborah A.
2017-01-01
Prenatal stress and nutrition are well-known to alter a broad range of physiological systems, notably metabolic, endocrine and neurobehavioral function. Commonly used methods for oral administration of xenobiotics can, by acting as a stressor or altering normal nutrition intake, alter these physiological systems as well. Taken together, oral administration methods may unintentionally introduce confounding physiological effects that can mask or enhance toxicity of xenobiotics, particularly if they share biological targets. Consequently, it should be preferable to develop alternative methods without these potential confounds. The aim of this study was to determine the suitability of mealworms as an alternative treat-based method to deliver xenobiotics via the orogastric route. Accurate oral administration is contingent on motivation and preference; mice reliably preferred mealworms over wafer cookie treats. Further, ingestion of wafer cookies significantly increased mouse blood glucose levels, whereas unaltered mealworms produced no such change. Mealworms functioned effectively to orally administer glucose, as glucose-spiked mealworms produced a rise in blood glucose equivalent to the ingestion of the wafer cookie. Mealworms did not interfere with the physiological function of orally administered d-amphetamine, as both mealworm and oral gavage administered d-amphetamine showed similar alterations in locomotor behavior (mice did not fully consume d-amphetamine-dosed cookies and thus could not be compared). Collectively, the findings indicate that mealworms are a preferred and readily consumed treat, which importantly mimics environmental-relevant nutritional intake, and mealworms per se do not alter glucose metabolic pathways. Additionally, mealworms accurately delivered xenobiotics into blood circulation and did not interfere with the physiological function of administered xenobiotics. Thus mealworm-based oral administration may be a preferable and accurate route of xenobiotic administration that eliminates physiological alterations associated with other methods of delivery. PMID:27094606
Sobolewski, Marissa; Allen, Joshua L; Morris-Schaffer, Keith; Klocke, Carolyn; Conrad, Katherine; Cory-Slechta, Deborah A
2016-01-01
Prenatal stress and nutrition are well-known to alter a broad range of physiological systems, notably metabolic, endocrine and neurobehavioral function. Commonly used methods for oral administration of xenobiotics can, by acting as a stressor or altering normal nutrition intake, alter these physiological systems as well. Taken together, oral administration methods may unintentionally introduce confounding physiological effects that can mask or enhance toxicity of xenobiotics, particularly if they share biological targets. Consequently, it should be preferable to develop alternative methods without these potential confounds. The aim of this study was to determine the suitability of mealworms as an alternative treat-based method to deliver xenobiotics via the orogastric route. Accurate oral administration is contingent on motivation and preference; mice reliably preferred mealworms over wafer cookie treats. Further, ingestion of wafer cookies significantly increased mouse blood glucose levels, whereas unaltered mealworms produced no such change. Mealworms functioned effectively to orally administer glucose, as glucose-spiked mealworms produced a rise in blood glucose equivalent to the ingestion of the wafer cookie. Mealworms did not interfere with the physiological function of orally administered d-amphetamine, as both mealworm and oral gavage administered d-amphetamine showed similar alterations in locomotor behavior (mice did not fully consume d-amphetamine-dosed cookies and thus could not be compared). Collectively, the findings indicate that mealworms are a preferred and readily consumed treat, which importantly mimics environmental-relevant nutritional intake, and mealworms per se do not alter glucose metabolic pathways. Additionally, mealworms accurately delivered xenobiotics into blood circulation and did not interfere with the physiological function of administered xenobiotics. Thus mealworm-based oral administration may be a preferable and accurate route of xenobiotic administration that eliminates physiological alterations associated with other methods of delivery. Copyright © 2016. Published by Elsevier Inc.
Heteromeric MT1/MT2 Melatonin Receptors Modulate Photoreceptor Function
Baba, Kenkichi; Benleulmi-Chaachoua, Abla; Journé, Anne-Sophie; Kamal, Maud; Guillaume, Jean-Luc; Dussaud, Sébastien; Gbahou, Florence; Yettou, Katia; Liu, Cuimei; Contreras-Alcantara, Susana; Jockers, Ralf; Tosini, Gianluca
2013-01-01
The formation of G protein-coupled receptor (GPCR) heteromers elicits signaling diversification and holds great promise for improved drug selectivity. Most studies have been conducted in heterologous expression systems; however, in vivo validation is missing from most cases thus questioning the physiological significance of GPCR heteromerization. Melatonin MT1 and MT2 receptors have been shown to exist as homo- and heteromers in vitro. We show here that the effect of melatonin on rod photoreceptor light sensitivity is mediated by melatonin MT1/MT2 receptor heteromers. This effect involves activation of the heteromer-specific PLC/PKC pathway and is abolished in MT1−/− and MT2−/− mice as well as in mice overexpressing a non-functional MT2 receptor mutant that competes with the formation of functional MT1/MT2 heteromers in photoreceptor cells. This study establishes the essential role of melatonin receptor heteromers in retinal function and supports the physiological importance of GPCR heteromerization. Finally, our work may have important therapeutic implications, as the heteromer complex may provide a unique pharmacological target to improve photoreceptor functioning and to extend the viability of photoreceptors during aging. PMID:24106342
Dehkhoda, Farhad; Lee, Christine M. M.; Medina, Johan; Brooks, Andrew J.
2018-01-01
The growth hormone receptor (GHR), although most well known for regulating growth, has many other important biological functions including regulating metabolism and controlling physiological processes related to the hepatobiliary, cardiovascular, renal, gastrointestinal, and reproductive systems. In addition, growth hormone signaling is an important regulator of aging and plays a significant role in cancer development. Growth hormone activates the Janus kinase (JAK)–signal transducer and activator of transcription (STAT) signaling pathway, and recent studies have provided a new understanding of the mechanism of JAK2 activation by growth hormone binding to its receptor. JAK2 activation is required for growth hormone-mediated activation of STAT1, STAT3, and STAT5, and the negative regulation of JAK–STAT signaling comprises an important step in the control of this signaling pathway. The GHR also activates the Src family kinase signaling pathway independent of JAK2. This review covers the molecular mechanisms of GHR activation and signal transduction as well as the physiological consequences of growth hormone signaling. PMID:29487568
Complex systems dynamics in aging: new evidence, continuing questions.
Cohen, Alan A
2016-02-01
There have long been suggestions that aging is tightly linked to the complex dynamics of the physiological systems that maintain homeostasis, and in particular to dysregulation of regulatory networks of molecules. This review synthesizes recent work that is starting to provide evidence for the importance of such complex systems dynamics in aging. There is now clear evidence that physiological dysregulation--the gradual breakdown in the capacity of complex regulatory networks to maintain homeostasis--is an emergent property of these regulatory networks, and that it plays an important role in aging. It can be measured simply using small numbers of biomarkers. Additionally, there are indications of the importance during aging of emergent physiological processes, functional processes that cannot be easily understood through clear metabolic pathways, but can nonetheless be precisely quantified and studied. The overall role of such complex systems dynamics in aging remains an important open question, and to understand it future studies will need to distinguish and integrate related aspects of aging research, including multi-factorial theories of aging, systems biology, bioinformatics, network approaches, robustness, and loss of complexity.
Marriage and health: his and hers.
Kiecolt-Glaser, J K; Newton, T L
2001-07-01
This review focuses on the pathway leading from the marital relationship to physical health. Evidence from 64 articles published in the past decade, particularly marital interaction studies, suggests that marital functioning is consequential for health; negative dimensions of marital functioning have indirect influences on health outcomes through depression and health habits, and direct influences on cardiovascular, endocrine, immune, neurosensory, and other physiological mechanisms. Moreover, individual difference variables such as trait hostility augment the impact of marital processes on biological systems. Emerging themes in the past decade include the importance of differentiating positive and negative dimensions of marital functioning, the explanatory power of behavioral data, and gender differences in the pathways from the marital relationship to physiological functioning. Contemporary models of gender that emphasize self-processes, traits, and roles furnish alternative perspectives on the differential costs and benefits of marriage for men's and women's health.
What have we learned about GPER function in physiology and disease from knockout mice?
Prossnitz, Eric R.; Hathaway, Helen J.
2015-01-01
Estrogens, predominantly 17β-estradiol, exert diverse effects throughout the body in both normal and patho-physiology, during development and in reproductive, metabolic, endocrine, cardiovascular, nervous, musculoskeletal and immune systems. Estrogen and its receptors also play important roles in carcinogenesis and therapy, particularly for breast cancer. In addition to the classical nuclear estrogen receptors (ERα and ERβ) that traditionally mediate predominantly genomic signaling, the G protein-coupled estrogen receptor GPER has become recognized as a critical mediator of rapid signaling in response to estrogen. Mouse models, and in particular knockout (KO) mice, represent an important approach to understand the functions of receptors in normal physiology and disease. Whereas ERα KO mice display multiple significant defects in reproduction and mammary gland development, ERβ KO phenotypes are more limited, and GPER KO exhibit no reproductive deficits. However, the study of GPER KO mice over the last six years has revealed that GPER deficiency results in multiple physiological alterations including obesity, cardiovascular dysfunction, insulin resistance and glucose intolerance. In addition, the lack of estrogen-mediated effects in numerous tissues of GPER KO mice, studied in vivo or ex vivo, including those of the cardiovascular, endocrine, nervous and immune systems, reveals GPER as a genuine mediator of estrogen action. Importantly, GPER KO mice have also revealed roles for GPER in breast carcinogenesis and metastasis. In combination with the supporting effects of GPER-selective ligands and GPER knockdown approaches, GPER KO mice demonstrate the therapeutic potential of targeting GPER activity in diseases as diverse as obesity, diabetes, multiple sclerosis, hypertension, atherosclerosis, myocardial infarction, stroke and cancer. PMID:26189910
Role of central vagal 5-HT3 receptors in gastrointestinal physiology and pathophysiology
Browning, Kirsteen N.
2015-01-01
Vagal neurocircuits are vitally important in the co-ordination and modulation of GI reflexes and homeostatic functions. 5-hydroxytryptamine (5-HT; serotonin) is critically important in the regulation of several of these autonomic gastrointestinal (GI) functions including motility, secretion and visceral sensitivity. While several 5-HT receptors are involved in these physiological responses, the ligand-gated 5-HT3 receptor appears intimately involved in gut-brain signaling, particularly via the afferent (sensory) vagus nerve. 5-HT is released from enterochromaffin cells in response to mechanical or chemical stimulation of the GI tract which leads to activation of 5-HT3 receptors on the terminals of vagal afferents. 5-HT3 receptors are also present on the soma of vagal afferent neurons, including GI vagal afferent neurons, where they can be activated by circulating 5-HT. The central terminals of vagal afferents also exhibit 5-HT3 receptors that function to increase glutamatergic synaptic transmission to second order neurons of the nucleus tractus solitarius within the brainstem. While activation of central brainstem 5-HT3 receptors modulates visceral functions, it is still unclear whether central vagal neurons, i.e., nucleus of the tractus solitarius (NTS) and dorsal motor nucleus of the vagus (DMV) neurons themselves also display functional 5-HT3 receptors. Thus, activation of 5-HT3 receptors may modulate the excitability and activity of gastrointestinal vagal afferents at multiple sites and may be involved in several physiological and pathophysiological conditions, including distention- and chemical-evoked vagal reflexes, nausea, and vomiting, as well as visceral hypersensitivity. PMID:26578870
Specialized physiological studies in support of manned space flight
NASA Technical Reports Server (NTRS)
Luft, U. C.
1980-01-01
The reversible changes that take place in the cardiovascular system during weightlessness were investigated. Particular attention was given to the assessment of cardiovascular functions during and after space missions. One of the most important of these functions is the amount of blood pumped by the heart per min at rest and during exercise of gravitational stress.
NASA Technical Reports Server (NTRS)
Usachev, V. V.; Shinkarevskaya, I. P.
1973-01-01
Functional changes in systemic and cerebral hemodynamics were studied with respect to vestibular stresses. The main types of responses, differing qualitatively with respect to the tolerance of test subjects to low accelerations (particularly to Coriolis accelerations), were established. This is of practical importance in the selection of aircraft and space pilots. The data presented sheds light on the physiological mechanisms of adaptation and disturbed compensation during vestibular stimulation. Further studies in this important field of aerospace medicine are outlined.
Jahan-Mihan, Alireza; Luhovyy, Bohdan L.; Khoury, Dalia El; Anderson, G. Harvey
2011-01-01
Dietary proteins elicit a wide range of nutritional and biological functions. Beyond their nutritional role as the source of amino acids for protein synthesis, they are instrumental in the regulation of food intake, glucose and lipid metabolism, blood pressure, bone metabolism and immune function. The interaction of dietary proteins and their products of digestion with the regulatory functions of the gastrointestinal (GI) tract plays a dominant role in determining the physiological properties of proteins. The site of interaction is widespread, from the oral cavity to the colon. The characteristics of proteins that influence their interaction with the GI tract in a source-dependent manner include their physico-chemical properties, their amino acid composition and sequence, their bioactive peptides, their digestion kinetics and also the non-protein bioactive components conjugated with them. Within the GI tract, these products affect several regulatory functions by interacting with receptors releasing hormones, affecting stomach emptying and GI transport and absorption, transmitting neural signals to the brain, and modifying the microflora. This review discusses the interaction of dietary proteins during digestion and absorption with the physiological and metabolic functions of the GI tract, and illustrates the importance of this interaction in the regulation of amino acid, glucose, lipid metabolism, and food intake. PMID:22254112
Urra, Javier A; Villaroel-Espíndola, Franz; Covarrubias, Alejandra A; Rodríguez-Gil, Joan Enric; Ramírez-Reveco, Alfredo; Concha, Ilona I
2014-01-01
Dopamine is a catecholamine with multiple physiological functions, playing a key role in nervous system; however its participation in reproductive processes and sperm physiology is controversial. High dopamine concentrations have been reported in different portions of the feminine and masculine reproductive tract, although the role fulfilled by this catecholamine in reproductive physiology is as yet unknown. We have previously shown that dopamine type 2 receptor is functional in boar sperm, suggesting that dopamine acts as a physiological modulator of sperm viability, capacitation and motility. In the present study, using immunodetection methods, we revealed the presence of several proteins important for the dopamine uptake and signalling in mammalian sperm, specifically monoamine transporters as dopamine (DAT), serotonin (SERT) and norepinephrine (NET) transporters in equine sperm. We also demonstrated for the first time in equine sperm a functional dopamine transporter using 4-[4-(Dimethylamino)styryl]-N-methylpyridinium iodide (ASP(+)), as substrate. In addition, we also showed that dopamine (1 mM) treatment in vitro, does not affect sperm viability but decreases total and progressive sperm motility. This effect is reversed by blocking the dopamine transporter with the selective inhibitor vanoxerine (GBR12909) and non-selective inhibitors of dopamine reuptake such as nomifensine and bupropion. The effect of dopamine in sperm physiology was evaluated and we demonstrated that acrosome integrity and thyrosine phosphorylation in equine sperm is significantly reduced at high concentrations of this catecholamine. In summary, our results revealed the presence of monoamine transporter DAT, NET and SERT in equine sperm, and that the dopamine uptake by DAT can regulate sperm function, specifically acrosomal integrity and sperm motility.
Covarrubias, Alejandra A.; Rodríguez-Gil, Joan Enric; Ramírez-Reveco, Alfredo; Concha, Ilona I.
2014-01-01
Dopamine is a catecholamine with multiple physiological functions, playing a key role in nervous system; however its participation in reproductive processes and sperm physiology is controversial. High dopamine concentrations have been reported in different portions of the feminine and masculine reproductive tract, although the role fulfilled by this catecholamine in reproductive physiology is as yet unknown. We have previously shown that dopamine type 2 receptor is functional in boar sperm, suggesting that dopamine acts as a physiological modulator of sperm viability, capacitation and motility. In the present study, using immunodetection methods, we revealed the presence of several proteins important for the dopamine uptake and signalling in mammalian sperm, specifically monoamine transporters as dopamine (DAT), serotonin (SERT) and norepinephrine (NET) transporters in equine sperm. We also demonstrated for the first time in equine sperm a functional dopamine transporter using 4-[4-(Dimethylamino)styryl]-N-methylpyridinium iodide (ASP+), as substrate. In addition, we also showed that dopamine (1 mM) treatment in vitro, does not affect sperm viability but decreases total and progressive sperm motility. This effect is reversed by blocking the dopamine transporter with the selective inhibitor vanoxerine (GBR12909) and non-selective inhibitors of dopamine reuptake such as nomifensine and bupropion. The effect of dopamine in sperm physiology was evaluated and we demonstrated that acrosome integrity and thyrosine phosphorylation in equine sperm is significantly reduced at high concentrations of this catecholamine. In summary, our results revealed the presence of monoamine transporter DAT, NET and SERT in equine sperm, and that the dopamine uptake by DAT can regulate sperm function, specifically acrosomal integrity and sperm motility. PMID:25402186
Adam, Stewart I; Srinet, Prateek; Aronberg, Ryan M; Rosenberg, Graeme; Leder, Steven B
2015-01-01
To investigate physiologic parameters, voice production abilities, and functional verbal communication ratings of the Blom low profile voice inner cannula and Passy-Muir one-way tracheotomy tube speaking valves. Case series with planned data collection. Large, urban, tertiary care teaching hospital. Referred sample of 30 consecutively enrolled adults requiring a tracheotomy tube and tested with Blom and Passy-Muir valves. Physiologic parameters recorded were oxygen saturation, respiration rate, and heart rate. Voice production abilities included maximum voice intensity in relation to ambient room noise and maximum phonation duration of the vowel/a/. Functional verbal communication was determined from randomized and blinded listener ratings of counting 1-10, saying the days of the week, and reading aloud the sentence, "There is according to legend a boiling pot of gold at one end." There were no significant differences (p>0.05) between the Blom and Passy-Muir valves for the physiologic parameters of oxygen saturation, respiration rate, and heart rate; voice production abilities of both maximum intensity and duration of/a/; and functional verbal communication ratings. Both valves allowed for significantly greater maximum voice intensity over ambient room noise (p<0.001). The Blom low profile voice inner cannula and Passy-Muir one-way speaking valves exhibited equipoise regarding patient physiologic parameters, voice production abilities, and functional verbal communication ratings. Readers will understand the importance of verbal communication for patients who require a tracheotomy tube; will be able to determine the differences between the Blom low profile voice inner cannula and Passy-Muir one-way tracheotomy tube speaking valves; and will be confident in knowing that both the Blom and Passy-Muir one-way tracheotomy tube speaking valves are equivalent regarding physiological functioning and speech production abilities. Copyright © 2015 Elsevier Inc. All rights reserved.
Endocrine effects of the herbicide linuron on the American Goldfinch (Carduelis tristis)
Sughrue, K.M.; Brittingham, M.C.; French, J.B.
2008-01-01
Certain contaminants alter normal physiological function, morphology, and behavior of exposed organisms through an endocrine mechanism. We evaluated how the herbicide linuron, an endocrine-active compound, affects physiological parameters and secondary sex characteristics of the American Goldfinch (Carduelis tristis). When administered at relatively low doses (control, 1.0, 4.0, and 16.0 μg linuron per gram of body mass per day), linuron delayed prealternate molt progression in a dose-dependent manner. At the high dose level, linuron exposure lowered hematocrit and female plasma thyroxine concentrations and increased body mass. Neither plasma testosterone concentrations nor the color of plumage or integument of birds in the treatment groups were different from those of the control group. Overall, the physiological effects that were measured suggested disruption of thyroid function. These results highlight the importance of continual monitoring of avian populations for potential effects of exposure to pesticides and other chemicals at sublethal concentrations.
Effects of blue light on the circadian system and eye physiology
Ferguson, Ian; Tsubota, Kazuo
2016-01-01
Light-emitting diodes (LEDs) have been used to provide illumination in industrial and commercial environments. LEDs are also used in TVs, computers, smart phones, and tablets. Although the light emitted by most LEDs appears white, LEDs have peak emission in the blue light range (400–490 nm). The accumulating experimental evidence has indicated that exposure to blue light can affect many physiologic functions, and it can be used to treat circadian and sleep dysfunctions. However, blue light can also induce photoreceptor damage. Thus, it is important to consider the spectral output of LED-based light sources to minimize the danger that may be associated with blue light exposure. In this review, we summarize the current knowledge of the effects of blue light on the regulation of physiologic functions and the possible effects of blue light exposure on ocular health. PMID:26900325
[Cell renovation in the intestinal epithelium in aging].
Gusel'nikova, E A; Konovalov, S S; Poliakova, V O; Kvetnoĭ, I M
2010-01-01
The ability to cell renovation of two basic cell types of intestinal mucosa is the important mechanism for the regulation and support of the gut physiological functions in aging and under the influence of the ecological negative factors. The study of the processes of cell renovation of the intestinal epithelial and neuroendocrine cells in physiological and radiological aging has a great interest, because the irradiation in the subletal doses could be considered as the model of artificial aging, and this fact enables studying of the radiological influence as the ecological factor, promoting the aging. In this study, the increase of cell proliferation in intestinal mucosa in physiological as well as artificial aging was observed. It was shown, that the total population of mitotic cells increases two times. These data testify about active participation of the mechanisms of cell renovation in the safety of gut functions during aging.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Bin; He, Lei; Dong, Hongbin
2011-07-01
Highlights: {yields} The mouse Slc39a8 gene encodes the ZIP8 transporter. {yields} ZIP8 functions endogenously as a electroneutral Zn{sup 2+}/(HCO{sub 3}{sup -}){sub 2} symporter. {yields} A Slc39a8(neo/neo) hypomorph mouse, due to retention of the neo mini-gene, has been created. {yields} ZIP8 expression in utero is {approx}90% decreased in all tissues examined. {yields} This mouse model will be useful for studying developmental and in utero physiological functions of ZIP8. -- Abstract: Previously this laboratory has identified the mouse Slc39a8 gene encoding the ZIP8 transporter, important in cadmium uptake. ZIP8 functions endogenously as a electroneutral Zn{sup 2+}/(HCO{sub 3}{sup -}){sub 2} symporter, moving bothmore » ions into the cell. The overall physiological importance of ZIP8 remains unclear. Herein we describe generation of a mouse line carrying the Slc39a8(neo) allele, containing the Frt-flanked neomycin-resistance (neo) mini-cassette in intron 3 and loxP sites in introns 3 and 6. Cre recombinase functions correctly in Escherichia coli and in adeno-Cre-infected mouse fetal fibroblasts, but does not function in the intact mouse for reasons not clear. Slc39a8(neo) is a hypomorphic allele, because Slc39a8(neo/neo) homozygotes exhibit dramatically decreased ZIP8 expression in embryo, fetus, and visceral yolk sac - in comparison to their littermate wild-type controls. This ZIP8 hypomorph will be instrumental in studying developmental and in utero physiological functions of the ZIP8 transporter.« less
The physiological and pathophysiological functions of renal and extrarenal vasopressin V2 receptors.
Juul, Kristian Vinter; Bichet, Daniel G; Nielsen, Søren; Nørgaard, Jens Peter
2014-05-01
The arginine vasopressin (AVP) type 2 receptor (V2R) is unique among AVP receptor subtypes in signaling through cAMP. Its key function is in the kidneys, facilitating the urine concentrating mechanism through the AVP/V2 type receptor/aquaporin 2 system in the medullary and cortical collecting ducts. Recent clinical and research observations strongly support the existence of an extrarenal V2R. The clinical importance of the extrarenal V2R spans widely from stimulation of coagulation factor in the endothelium to as yet untested potential therapeutic targets. These include V2R-regulated membranous fluid turnover in the inner ear, V2R-regulated mitogensis and apoptosis in certain tumor tissues, and numerous other cell types where the physiological role of V2Rs still requires further research. Here, we review current evidence on the physiological and pathophysiological functions of renal and extrarenal V2Rs. These functions of V2R are important, not only in rare diseases with loss or gain of function of V2R but also in relation to the recent use of nonpeptide V2R antagonists to treat hyponatremia and possibly retard the growth of cysts and development of renal failure in autosomal dominant polycystic kidney disease. The main functions of V2R in principal cells of the collecting duct are water, salt, and urea transport by modifying the trafficking of aquaporin 2, epithelial Na(+) channels, and urea transporters and vasodilation and stimulation of coagulation factor properties, mainly seen with pharmacological doses of 1-desamino-8-D-AVP. The AVPR2 gene is located on the X chromosome, in a region with high probability of escape from inactivation; this may lead to phenotypic sex differences, with females expressing higher levels of transcript than males.
Hunger Games: Interactive Ultrasound Imaging for Learning Gastrointestinal Physiology.
Kafer, Ilana; Rennie, William; Noor, Ali; Pellerito, John S
2017-02-01
Ultrasound is playing an increasingly important role in medical student education. Although most uses of ultrasound have focused on learning purely anatomic relationships or augmentation of the physical examination, there is little documentation of the value of ultrasound as a learning tool regarding physiology alone or in association with anatomy. We devised an interactive learning session for first-year medical students using ultrasound to combine both anatomic and physiologic principles as an integration of gastrointestinal and vascular function. The incorporation of our activity, The Hunger Games, provides the foundation for a powerful integration tool for medical student education. © 2016 by the American Institute of Ultrasound in Medicine.
Physiological geroscience: targeting function to increase healthspan and achieve optimal longevity.
Seals, Douglas R; Justice, Jamie N; LaRocca, Thomas J
2016-04-15
Most nations of the world are undergoing rapid and dramatic population ageing, which presents great socio-economic challenges, as well as opportunities, for individuals, families, governments and societies. The prevailing biomedical strategy for reducing the healthcare impact of population ageing has been 'compression of morbidity' and, more recently, to increase healthspan, both of which seek to extend the healthy period of life and delay the development of chronic diseases and disability until a brief period at the end of life. Indeed, a recently established field within biological ageing research, 'geroscience', is focused on healthspan extension. Superimposed on this background are new attitudes and demand for 'optimal longevity' - living long, but with good health and quality of life. A key obstacle to achieving optimal longevity is the progressive decline in physiological function that occurs with ageing, which causes functional limitations (e.g. reduced mobility) and increases the risk of chronic diseases, disability and mortality. Current efforts to increase healthspan centre on slowing the fundamental biological processes of ageing such as inflammation/oxidative stress, increased senescence, mitochondrial dysfunction, impaired proteostasis and reduced stress resistance. We propose that optimization of physiological function throughout the lifespan should be a major emphasis of any contemporary biomedical policy addressing global ageing. Effective strategies should delay, reduce in magnitude or abolish reductions in function with ageing (primary prevention) and/or improve function or slow further declines in older adults with already impaired function (secondary prevention). Healthy lifestyle practices featuring regular physical activity and ideal energy intake/diet composition represent first-line function-preserving strategies, with pharmacological agents, including existing and new pharmaceuticals and novel 'nutraceutical' compounds, serving as potential complementary approaches. Future research efforts should focus on defining the temporal patterns of functional declines with ageing, identifying the underlying mechanisms and modulatory factors involved, and establishing the most effective lifestyle practices and pharmacological options for maintaining function. Continuing development of effective behavioural approaches for enhancing adherence to healthy ageing practices in diverse populations, and ongoing analysis of the socio-economic costs and benefits of healthspan extension will be important supporting goals. To meet the demands created by rapid population ageing, a new emphasis in physiological geroscience is needed, which will require the collaborative, interdisciplinary efforts of investigators working throughout the translational research continuum from basic science to public health. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.
Physiologic measures of sexual function in women: a review.
Woodard, Terri L; Diamond, Michael P
2009-07-01
To review and describe physiologic measures of assessing sexual function in women. Literature review. Studies that use instruments designed to measure female sexual function. Women participating in studies of female sexual function. Various instruments that measure physiologic features of female sexual function. Appraisal of the various instruments, including their advantages and disadvantages. Many unique physiologic methods of evaluating female sexual function have been developed during the past four decades. Each method has its benefits and limitations. Many physiologic methods exist, but most are not well-validated. In addition there has been an inability to correlate most physiologic measures with subjective measures of sexual arousal. Furthermore, given the complex nature of the sexual response in women, physiologic measures should be considered in context of other data, including the history, physical examination, and validated questionnaires. Nonetheless, the existence of appropriate physiologic measures is vital to our understanding of female sexual function and dysfunction.
Krizbai, I A; Bauer, H; Amberger, A; Hennig, B; Szabó, H; Fuchs, R; Bauer, H C
2000-09-01
The capacity of vascular endothelial cells to modulate their phenotype in response to changes in environmental conditions is one of the most important characteristics of this cell type. Since different growth factors may play an important signalling role in this adaptive process we have investigated the effect of endothelial cell growth factor (ECGF) on morphological, physiological and molecular characteristics of cerebral endothelial cells (CECs). CECs grown in the presence of ECGF and its cofactor heparin exhibit an epithelial-like morphology (type I CECs). Upon removal of growth factors, CECs develop an elongated spindle-like shape (type II CECs) which is accompanied by the reorganization of actin filaments and the induction of alpha-actin expression. Since one of the most important functions of CECs is the creation of a selective diffusion barrier between the blood and the central nervous system (CNS), we have studied the expression of junction-related proteins in both cell types. We have found that removal of growth factors from endothelial cultures leads to the downregulation of cadherin and occludin protein levels. The loss of junctional proteins was accompanied by a significant increase in the migratory activity and an altered protease activity profile of the cells. TGF-beta1 suppressed endothelial migration in all experiments. Our data provide evidence to suggest that particular endothelial functions are largely controlled by the presence of growth factors. The differences in adhesiveness and migration may play a role in important physiological and pathological processes of endothelial cells such as vasculogenesis or tumor progression.
Zhang, Genyi; Hasek, Like Y; Lee, Byung-Hoo; Hamaker, Bruce R
2015-04-01
Glycemic carbohydrates in foods are an important macronutrient providing the biological fuel of glucose for a variety of physiological processes. A classification of glycemic carbohydrates into rapidly digestible carbohydrate (RDC) and slowly digestible carbohydrate (SDC) has been used to specify their nutritional quality related to glucose homeostasis that is essential to normal functioning of the brain and critical to life. Although there have been many studies and reviews on slowly digestible starch (SDS) and SDC, the mechanisms of their slow digestion and absorption were mostly investigated from the material side without considering the physiological processes of their in vivo digestion, absorption, and most importantly interactions with other food components and the gastrointestinal tract. In this article, the physiological processes modulating the bioavailability of carbohydrates, specifically the rate and extent of their digestion and absorption as well as the related locations, in a whole food context, will be discussed by focusing on the activities of the gastrointestinal tract including glycolytic enzymes and glucose release, sugar sensing, gut hormones, and neurohormonal negative feedback mechanisms. It is hoped that a deep understanding of these physiological processes will facilitate the development of innovative dietary approaches to achieve desired carbohydrate or glucose bioavailability for improved health.
Falls and Fall-Prevention in Older Persons: Geriatrics Meets Spaceflight!
Goswami, Nandu
2017-01-01
This paper provides a general overview of key physiological consequences of microgravity experienced during spaceflight and of important parallels and connections to the physiology of aging. Microgravity during spaceflight influences cardiovascular function, cerebral autoregulation, musculoskeletal, and sensorimotor system performance. A great deal of research has been carried out to understand these influences and to provide countermeasures to reduce the observed negative consequences of microgravity on physiological function. Such research can inform and be informed by research related to physiological changes and the deterioration of physiological function due to aging. For example, head-down bedrest is used as a model to study effects of spaceflight deconditioning due to reduced gravity. As hospitalized older persons spend up to 80% of their time in bed, the deconditioning effects of bedrest confinement on physiological functions and parallels with spaceflight deconditioning can be exploited to understand and combat both variations of deconditioning. Deconditioning due to bed confinement in older persons can contribute to a downward spiral of increasing frailty, orthostatic intolerance, falls, and fall-related injury. As astronauts in space spend substantial amounts of time carrying out exercise training to counteract the microgravity-induced deconditioning and to counteract orthostatic intolerance on return to Earth, it is logical to suggest some of these interventions for bed-confined older persons. Synthesizing knowledge regarding deconditioning due to reduced gravitational stress in space and deconditioning during bed confinement allows for a more comprehensive approach that can incorporate aspects such as (mal-) nutrition, muscle strength and function, cardiovascular (de-) conditioning, and cardio-postural interactions. The impact of such integration can provide new insights and lead to methods of value for both space medicine and geriatrics (Geriatrics meets spaceflight!). In particular, such integration can lead to procedures that address the morbidity and the mortality associated with bedrest immobilization and in the rising health care costs associated with an aging population demographic. PMID:29075195
Falls and Fall-Prevention in Older Persons: Geriatrics Meets Spaceflight!
Goswami, Nandu
2017-01-01
This paper provides a general overview of key physiological consequences of microgravity experienced during spaceflight and of important parallels and connections to the physiology of aging. Microgravity during spaceflight influences cardiovascular function, cerebral autoregulation, musculoskeletal, and sensorimotor system performance. A great deal of research has been carried out to understand these influences and to provide countermeasures to reduce the observed negative consequences of microgravity on physiological function. Such research can inform and be informed by research related to physiological changes and the deterioration of physiological function due to aging. For example, head-down bedrest is used as a model to study effects of spaceflight deconditioning due to reduced gravity. As hospitalized older persons spend up to 80% of their time in bed, the deconditioning effects of bedrest confinement on physiological functions and parallels with spaceflight deconditioning can be exploited to understand and combat both variations of deconditioning. Deconditioning due to bed confinement in older persons can contribute to a downward spiral of increasing frailty, orthostatic intolerance, falls, and fall-related injury. As astronauts in space spend substantial amounts of time carrying out exercise training to counteract the microgravity-induced deconditioning and to counteract orthostatic intolerance on return to Earth, it is logical to suggest some of these interventions for bed-confined older persons. Synthesizing knowledge regarding deconditioning due to reduced gravitational stress in space and deconditioning during bed confinement allows for a more comprehensive approach that can incorporate aspects such as (mal-) nutrition, muscle strength and function, cardiovascular (de-) conditioning, and cardio-postural interactions. The impact of such integration can provide new insights and lead to methods of value for both space medicine and geriatrics (Geriatrics meets spaceflight!). In particular, such integration can lead to procedures that address the morbidity and the mortality associated with bedrest immobilization and in the rising health care costs associated with an aging population demographic.
Zhao, Hua; Zhang, Bei-Lin; Yang, Shao-Jun; Rusak, Benjamin
2015-01-15
Serotonergic neurons in the dorsal raphe nucleus (DRN) play an important role in regulation of many physiological functions. The lateral nucleus of the habenular complex (LHb) is closely connected to the DRN both morphologically and functionally. The LHb is a key regulator of the activity of DRN serotonergic neurons, and it also receives reciprocal input from the DRN. The LHb is also a major way-station that receives limbic system input via the stria medullaris and provides output to the DRN and thereby indirectly connects a number of other brain regions to the DRN. The complex interactions of the LHb and DRN contribute to the regulation of numerous important behavioral and physiological mechanisms, including those regulating cognition, reward, pain sensitivity and patterns of sleep and waking. Disruption of these functions is characteristic of major psychiatric illnesses, so there has been a great deal of interest in how disturbed LHb-DRN interactions may contribute to the symptoms of these illnesses. This review summarizes recent research related to the roles of the LHb-DRN system in regulation of higher brain functions and the possible role of disturbed LHb-DRN function in the pathogenesis of psychiatric disorders, especially depression. Copyright © 2014 Elsevier B.V. All rights reserved.
Functional Food and Cardiovascular Disease Prevention and Treatment: A Review.
Asgary, Sedigheh; Rastqar, Ali; Keshvari, Mahtab
2018-03-12
Cardiovascular disease (CVD) is now the leading cause of death globally and is a growing health concern. Lifestyle factors, including nutrition, play an important role in the etiology and treatment of CVD. Functional foods based on their basic nutritional functions can decrease the risk of many chronic diseases and have some physiological benefits. They contain physiologically active components either from plant or animal sources, marketed with the claim of their ability to reduce heart disease risk, focusing primarily on established risk factors, which are hyperlipidemia, diabetes, metabolic syndrome, obesity/overweight, elevated lipoprotein A level, small dense low-density lipoprotein cholesterol (LDL-C), and elevated inflammatory marker levels. Functional foods are suspected to exert their cardioprotective effects mainly through blood lipid profile level and improve hypertension control, endothelial function, platelet aggregation, and antioxidant actions. Clinical and epidemiological observations indicate that vegetable and fruit fiber, nuts and seeds, sea foods, coffee, tea, and dark chocolate have cardioprotective potential in humans, as well whole-grain products containing intact grain kernels rich in fiber and trace nutrients. They are nutritionally more important because they contain phytoprotective substances that might work synergistically to reduce cardiovascular risk. This review will focus on the reciprocal interaction between functional foods and the potential link to cardiovascular health and the possible mechanisms of action.
Pimentel, David; Haeussler, Dagmar Johanna; Matsui, Reiko; Burgoyne, Joseph Robert; Cohen, Richard Alan
2012-01-01
Abstract Significance: Reactive oxygen and nitrogen species contributing to homeostatic regulation and the pathogenesis of various cardiovascular diseases, including atherosclerosis, hypertension, endothelial dysfunction, and cardiac hypertrophy, is well established. The ability of oxidant species to mediate such effects is in part dependent on their ability to induce specific modifications on particular amino acids, which alter protein function leading to changes in cell signaling and function. The thiol containing amino acids, methionine and cysteine, are the only oxidized amino acids that undergo reduction by cellular enzymes and are, therefore, prime candidates in regulating physiological signaling. Various reports illustrate the significance of reversible oxidative modifications on cysteine thiols and their importance in modulating cardiovascular function and physiology. Recent Advances: The use of mass spectrometry, novel labeling techniques, and live cell imaging illustrate the emerging importance of reversible thiol modifications in cellular redox signaling and have advanced our analytical abilities. Critical Issues: Distinguishing redox signaling from oxidative stress remains unclear. S-nitrosylation as a precursor of S-glutathionylation is controversial and needs further clarification. Subcellular distribution of glutathione (GSH) may play an important role in local regulation, and targeted tools need to be developed. Furthermore, cellular redundancies of thiol metabolism complicate analysis and interpretation. Future Directions: The development of novel pharmacological analogs that specifically target subcellular compartments of GSH to promote or prevent local protein S-glutathionylation as well as the establishment of conditional gene ablation and transgenic animal models are needed. Antioxid. Redox Signal. 16, 524–542. PMID:22010840
Rimon, Abraham; Kozachkov-Magrisso, Lena; Padan, Etana
2012-11-27
pH and Na(+) homeostasis in all cells requires Na(+)/H(+) antiporters. The crystal structure of NhaA, the main antiporter of Escherichia coli, has provided general insights into antiporter mechanisms and their pH regulation. Functional studies of NhaA in the membrane have yielded valuable information regarding its functionality in situ at physiological pH. Here, we Cys-scanned the discontinuous transmembrane segment (TM) IV (helices IVp and IVc connected by an extended chain) of NhaA to explore its functionality at physiological pH. We then tested the accessibility of the Cys replacements to the positively charged SH reagent [2-(trimethylammonium)ethyl] methanethiosulfonate bromide (MTSET) and the negatively charged 2-sulfonatoethyl methanethiosulfonate (MTSES) in intact cells at pH 8.5 and 6.5 and in parallel tested their accessibility to MTSET in high-pressure membranes at both pH values. We found that the outer membrane of E. coli TA16 acts as a partially permeable barrier to MTSET. Overcoming this technical problem, we revealed that (a) Cys replacement of the most conserved residues of TM IV strongly increases the apparent K(m) of NhaA to both Na(+) and Li(+), (b) the cationic passage of NhaA at physiological pH is lined by the most conserved and functionally important residues of TM IV, and (c) a pH shift from 6.5 to 8.5 induces conformational changes in helix IVp and in the extended chain at physiological pH.
Functional MRI of the placenta – From rodents to humans
Avni, R.; Neeman, M.; Garbow, J.R.
2015-01-01
The placenta performs a wide range of physiological functions; insufficiencies in these functions may result in a variety of severe prenatal and postnatal syndromes with long-term negative impacts on human adult health. Recent advances in magnetic resonance imaging (MRI) studies of placental function, in both animal models and humans, have contributed significantly to our understanding of placental structure, blood flow, oxygenation status, and metabolic profile, and have provided important insights into pregnancy complications. PMID:25916594
Translational Perspective on the Role of Testosterone in Sexual Function and Dysfunction.
Podlasek, Carol A; Mulhall, John; Davies, Kelvin; Wingard, Christopher J; Hannan, Johanna L; Bivalacqua, Trinity J; Musicki, Biljana; Khera, Mohit; González-Cadavid, Nestor F; Burnett, Arthur L
2016-08-01
The biological importance of testosterone is generally accepted by the medical community; however, controversy focuses on its relevance to sexual function and the sexual response, and our understanding of the extent of its role in this area is evolving. To provide scientific evidence examining the role of testosterone at the cellular and molecular levels as it pertains to normal erectile physiology and the development of erectile dysfunction and to assist in guiding successful therapeutic interventions for androgen-dependent sexual dysfunction. In this White Paper, the Basic Science Committee of the Sexual Medicine Society of North America assessed the current basic science literature examining the role of testosterone in sexual function and dysfunction. Testosterone plays an important role in sexual function through multiple processes: physiologic (stimulates activity of nitric oxide synthase), developmental (establishes and maintains the structural and functional integrity of the penis), neural (development, maintenance, function, and plasticity of the cavernous nerve and pelvic ganglia), therapeutically for dysfunctional regulation (beneficial effect on aging, diabetes, and prostatectomy), and phosphodiesterase type 5 inhibition (testosterone supplement to counteract phosphodiesterase type 5 inhibitor resistance). Despite controversies concerning testosterone with regard to sexual function, basic science studies provide incontrovertible evidence for a significant role of testosterone in sexual function and suggest that properly administered testosterone therapy is potentially advantageous for treating male sexual dysfunction. Published by Elsevier Inc.
Hoff, Max; Balfanz, Sabine; Ehling, Petra; Gensch, Thomas; Baumann, Arnd
2011-07-01
Rhythmic activity of cells and cellular networks plays an important role in physiology. In the nervous system oscillations of electrical activity and/or second messenger concentrations are important to synchronize neuronal activity. At the molecular level, rhythmic activity can be initiated by different routes. We have recently shown that an octopamine-activated G-protein-coupled receptor (GPCR; DmOctα1Rb, CG3856) from Drosophila initiates Ca(2+) oscillations. Here, we have unraveled the molecular basis of cellular Ca(2+) signaling controlled by the DmOctα1Rb receptor using a combination of pharmacological intervention, site-directed mutagenesis, and functional cellular Ca(2+) imaging on heterologously expressed receptors. Phosphorylation of a single amino acid residue in the third intracellular loop of the GPCR by PKC is necessary and sufficient to desensitize the receptor. From its desensitized state, DmOctα1Rb is resensitized by dephosphorylation, and a new Ca(2+) signal occurs on octopamine stimulation. Our findings show that transient changes of the receptor's surface profile have a strong effect on its physiological signaling properties. We expect that the detailed knowledge of DmOctα1Rb-dependent signal transduction fosters the identification of specific drugs that can be used for GPCR-mediated pest control, since octopamine serves important physiological and behavioral functions in arthropods.
Salt- and pH-Triggered Helix-Coil Transition of Ionic Polypeptides under Physiology Conditions.
Yuan, Jingsong; Zhang, Yi; Sun, Yue; Cai, Zhicheng; Yang, Lijiang; Lu, Hua
2018-06-11
Controlling the helix-coil transition of polypeptides under physiological conditions is an attractive way toward smart functional materials. Here, we report the synthesis of a series of tertiary amine-functionalized ethylene glycol (EG x )-linked polypeptide electrolytes with their secondary structures tunable under physiological conditions. The resultant polymers, denoted as P(EG x DMA-Glu) ( x = 1, 2, and 3), show excellent aqueous solubility (>20 mg/mL) regardless of their charge states. Unlike poly-l-lysine that can form a helix only at pH above 10, P(EG x DMA-Glu) undergo a pH-dependent helix-coil switch with their transition points within the physiological range (pH ∼5.3-6.5). Meanwhile, P(EG x DMA-Glu) exhibit an unusual salt-induced helical conformation presumably owing to the unique properties of EG x linkers. Together, the current work highlights the importance of fine-tuning the linker chemistry in achieving conformation-switchable polypeptides and represents a facile approach toward stimuli-responsive biopolymers for advanced biological applications.
Multiscale entropy-based methods for heart rate variability complexity analysis
NASA Astrophysics Data System (ADS)
Silva, Luiz Eduardo Virgilio; Cabella, Brenno Caetano Troca; Neves, Ubiraci Pereira da Costa; Murta Junior, Luiz Otavio
2015-03-01
Physiologic complexity is an important concept to characterize time series from biological systems, which associated to multiscale analysis can contribute to comprehension of many complex phenomena. Although multiscale entropy has been applied to physiological time series, it measures irregularity as function of scale. In this study we purpose and evaluate a set of three complexity metrics as function of time scales. Complexity metrics are derived from nonadditive entropy supported by generation of surrogate data, i.e. SDiffqmax, qmax and qzero. In order to access accuracy of proposed complexity metrics, receiver operating characteristic (ROC) curves were built and area under the curves was computed for three physiological situations. Heart rate variability (HRV) time series in normal sinus rhythm, atrial fibrillation, and congestive heart failure data set were analyzed. Results show that proposed metric for complexity is accurate and robust when compared to classic entropic irregularity metrics. Furthermore, SDiffqmax is the most accurate for lower scales, whereas qmax and qzero are the most accurate when higher time scales are considered. Multiscale complexity analysis described here showed potential to assess complex physiological time series and deserves further investigation in wide context.
Centrifuges in gravitational physiology research
NASA Technical Reports Server (NTRS)
Ballard, Rodney W.; Davies, Phil; Fuller, Charles A.
1993-01-01
Data from space flight and ground based experiments have clearly demonstrated the importance of Earth gravity for normal physiological function in man and animals. Gravitational Physiology is concerned with the role and influence of gravity on physiological systems. Research in this field examines how we perceive and respond to gravity and the mechanisms underlying these responses. Inherent in our search for answers to these questions is the ability to alter gravity, which is not physically possible without leaving Earth. However, useful experimental paradigms have been to modify the perceived force of gravity by changing either the orientation of subjects to the gravity vector (i.e., postural changes) or by applying inertial forces to augment the magnitude of the gravity vector. The later technique has commonly been used by applying centripetal force via centrifugation.
Noninvasive physiologic assessment of coronary stenoses using cardiac CT.
Xu, Lei; Sun, Zhonghua; Fan, Zhanming
2015-01-01
Coronary CT angiography (CCTA) has become an important noninvasive imaging modality in the diagnosis of coronary artery disease (CAD). CCTA enables accurate evaluation of coronary artery stenosis. However, CCTA provides limited information on the physiological significance of stenotic lesions. A noninvasive "one-stop-shop" diagnostic test that can provide both anatomical significance and functional significance of stenotic lesions would be beneficial in the diagnosis and management of CAD. Recently, with the introduction of novel techniques, such as myocardial CT perfusion, CT-derived fractional flow reserve (FFRCT), and transluminal attenuation gradient (TAG), CCTA has emerged as a noninvasive method for the assessment of both anatomy of coronary lesions and its physiological consequences during a single study. This review provides an overview of the current status of new CT techniques for the physiologic assessments of CAD.
Multidrug Efflux Systems in Microaerobic and Anaerobic Bacteria
Xu, Zeling; Yan, Aixin
2015-01-01
Active drug efflux constitutes an important mechanism of antibiotic and multidrug resistance in bacteria. Understanding the distribution, expression, and physiological functions of multidrug efflux pumps, especially under physiologically and clinically relevant conditions of the pathogens, is the key to combat drug resistance. In animal hosts, most wounded, infected and inflamed tissues display low oxygen tensions. In this article, we summarize research development on multidrug efflux pumps in the medicinally relevant microaerobic and anaerobic pathogens and their implications in the effort to combat drug-resistant infections. PMID:27025630
ENaC/DEG in Tumor Development and Progression
Liu, Cui; Zhu, Li-Li; Xu, Si-Guang; Ji, Hong-Long; Li, Xiu-Min
2016-01-01
The epithelial Na+ channel/degenerin (ENaC/DEG) superfamily, including the acid-sensing ion channels (ASICs), is characterized by a high degree of similarity in structure but highly diverse in physiological functions. These ion channels have been shown to be important in several physiological functions of normal epithelial cells, including salt homeostasis, fluid transportation and cell mobility. There is increasing evidence suggesting that ENaC/DEG channels are critically engaged in cancer cell biology, such as proliferation, migration, invasion and apoptosis, playing a role in tumor development and progression. In this review, we will discuss recent studies showing the role of ENaC and ASIC channels in epithelial cells and its relationship to the oncogenesis. PMID:27698929
Lakatos, Bálint; Kovács, Attila; Tokodi, Márton; Doronina, Alexandra; Merkely, Béla
2016-07-01
Accurate assessment of right ventricular geometry and function is of high clinical importance. However, several limitations have to be taken into consideration if using conventional echocardiographic parameters. Advanced echocardiographic techniques, such as speckle-tracking analysis or 3D echocardiography are reliable and simple tools providing a cost-effective and non-invasive alternative of current modalities used to characterize the right ventricle. There is a growing interest in the diagnostic and prognostic value of these methods regarding pathological (right ventricular infarction, pulmonary hypertension, arrhythmogenic right ventricular dysplasia, follow-up of heart transplantation) and even physiological (athlete's heart) alterations of the right ventricle. Orv. Hetil., 2016, 157(29), 1139-1146.
Development of the field of structural physiology
FUJIYOSHI, Yoshinori
2015-01-01
Electron crystallography is especially useful for studying the structure and function of membrane proteins — key molecules with important functions in neural and other cells. Electron crystallography is now an established technique for analyzing the structures of membrane proteins in lipid bilayers that closely simulate their natural biological environment. Utilizing cryo-electron microscopes with helium-cooled specimen stages that were developed through a personal motivation to understand the functions of neural systems from a structural point of view, the structures of membrane proteins can be analyzed at a higher than 3 Å resolution. This review covers four objectives. First, I introduce the new research field of structural physiology. Second, I recount some of the struggles involved in developing cryo-electron microscopes. Third, I review the structural and functional analyses of membrane proteins mainly by electron crystallography using cryo-electron microscopes. Finally, I discuss multifunctional channels named “adhennels” based on structures analyzed using electron and X-ray crystallography. PMID:26560835
Yang, Yimu; Schmidt, Eric P.
2013-01-01
Once thought to be a structure of small size and uncertain significance, the endothelial glycocalyx is now known to be an important regulator of endothelial function. Studies of the systemic vasculature have demonstrated that the glycocalyx forms a substantial in vivo endothelial surface layer (ESL) critical to inflammation, barrier function and mechanotransduction. The pulmonary ESL is significantly thicker than the systemic ESL, suggesting unique physiologic function. We have recently demonstrated that the pulmonary ESL regulates exposure of endothelial surface adhesion molecules, thereby serving as a barrier to neutrophil adhesion and extravasation. While the pulmonary ESL is not a critical structural component of the endothelial barrier to fluid and protein, it serves a major role in the mechanotransduction of vascular pressure, with impact on the active regulation of endothelial permeability. It is likely that the ESL serves numerous additional functions in vascular physiology, representing a fertile area for future investigation. PMID:24073386
Misalignment with the external light environment drives metabolic and cardiac dysfunction.
West, Alexander C; Smith, Laura; Ray, David W; Loudon, Andrew S I; Brown, Timothy M; Bechtold, David A
2017-09-12
Most organisms use internal biological clocks to match behavioural and physiological processes to specific phases of the day-night cycle. Central to this is the synchronisation of internal processes across multiple organ systems. Environmental desynchrony (e.g. shift work) profoundly impacts human health, increasing cardiovascular disease and diabetes risk, yet the underlying mechanisms remain unclear. Here, we characterise the impact of desynchrony between the internal clock and the external light-dark (LD) cycle on mammalian physiology. We reveal that even under stable LD environments, phase misalignment has a profound effect, with decreased metabolic efficiency and disrupted cardiac function including prolonged QT interval duration. Importantly, physiological dysfunction is not driven by disrupted core clock function, nor by an internal desynchrony between organs, but rather the altered phase relationship between the internal clockwork and the external environment. We suggest phase misalignment as a major driver of pathologies associated with shift work, chronotype and social jetlag.The misalignment between internal circadian rhythm and the day-night cycle can be caused by genetic, behavioural and environmental factors, and may have a profound impact on human physiology. Here West et al. show that desynchrony between the internal clock and the external environment alter metabolic parameters and cardiac function in mice.
Electrophysiological experiments in microgravity: lessons learned and future challenges.
Wuest, Simon L; Gantenbein, Benjamin; Ille, Fabian; Egli, Marcel
2018-01-01
Advances in electrophysiological experiments have led to the discovery of mechanosensitive ion channels (MSCs) and the identification of the physiological function of specific MSCs. They are believed to play important roles in mechanosensitive pathways by allowing for cells to sense their mechanical environment. However, the physiological function of many MSCs has not been conclusively identified. Therefore, experiments have been developed that expose cells to various mechanical loads, such as shear flow, membrane indentation, osmotic challenges and hydrostatic pressure. In line with these experiments, mechanical unloading, as experienced in microgravity, represents an interesting alternative condition, since exposure to microgravity leads to a series of physiological adaption processes. As outlined in this review, electrophysiological experiments performed in microgravity have shown an influence of gravity on biological functions depending on ion channels at all hierarchical levels, from the cellular level to organs. In this context, calcium signaling represents an interesting cellular pathway, as it involves the direct action of calcium-permeable ion channels, and specific gravitatic cells have linked graviperception to this pathway. Multiple key proteins in the graviperception pathways have been identified. However, measurements on vertebrae cells have revealed controversial results. In conclusion, electrophysiological experiments in microgravity have shown that ion-channel-dependent physiological processes are altered in mechanically unloaded conditions. Future experiments may provide a better understanding of the underlying mechanisms.
Hopkins, Susan R; Prisk, G Kim
2010-12-01
Since the lung receives the entire cardiac output, sophisticated imaging techniques are not required in order to measure total organ perfusion. However, for many years studying lung function has required physiologists to consider the lung as a single entity: in imaging terms as a single voxel. Since imaging, and in particular functional imaging, allows the acquisition of spatial information important for studying lung function, these techniques provide considerable promise and are of great interest for pulmonary physiologists. In particular, despite the challenges of low proton density and short T2* in the lung, noncontrast MRI techniques to measure pulmonary perfusion have several advantages including high reliability and the ability to make repeated measurements under a number of physiologic conditions. This brief review focuses on the application of a particular arterial spin labeling (ASL) technique, ASL-FAIRER (flow sensitive inversion recovery with an extra radiofrequency pulse), to answer physiologic questions related to pulmonary function in health and disease. The associated measurement of regional proton density to correct for gravitational-based lung deformation (the "Slinky" effect (Slinky is a registered trademark of Pauf-Slinky incorporated)) and issues related to absolute quantification are also discussed. Copyright © 2010 Wiley-Liss, Inc.
Prohibitin( PHB) roles in granulosa cell physiology.
Chowdhury, Indrajit; Thomas, Kelwyn; Thompson, Winston E
2016-01-01
Ovarian granulosa cells (GC) play an important role in the growth and development of the follicle in the process known as folliculogenesis. In the present review, we focus on recent developments in prohibitin (PHB) research in relation to GC physiological functions. PHB is a member of a highly conserved eukaryotic protein family containing the repressor of estrogen activity (REA)/stomatin/PHB/flotillin/HflK/C (SPFH) domain (also known as the PHB domain) found in diverse species from prokaryotes to eukaryotes. PHB is ubiquitously expressed in a circulating free form or is present in multiple cellular compartments including mitochondria, nucleus and plasma membrane. In mitochondria, PHB is anchored to the mitochondrial inner membrane and forms complexes with the ATPases associated with proteases having diverse cellular activities. PHB continuously shuttles between the mitochondria, cytosol and nucleus. In the nucleus, PHB interacts with various transcription factors and modulates transcriptional activity directly or through interactions with chromatin remodeling proteins. Many functions have been attributed to the mitochondrial and nuclear PHB complexes such as cellular differentiation, anti-proliferation, morphogenesis and maintenance of the functional integrity of the mitochondria. However, to date, the regulation of PHB expression patterns and GC physiological functions are not completely understood.
Prohibitin (PHB) roles in granulosa cell physiology
Chowdhury, Indrajit; Thomas, Kelwyn; Thompson, Winston E.
2015-01-01
Ovarian granulosa cells (GC) play an important role in the growth and development of the follicle in the process known as folliculogenesis. In the present review, we focus on the recent developments in prohibitin (PHB) research in relation to GC physiological functions. PHB is a member of highly conserved eukaryotic protein family containing the repressor of estrogen activity (REA)/stomatin/prohibitin/flotillin/HflK/C (SPFH) domain [also known as the PHB domain] found in divergent species from prokaryotes to eukaryotes. PHB is ubiquitously expressed either in circulating free form or is present in multiple cellular compartments including mitochondria, nucleus and plasma membrane. In mitochondria, PHB is anchored to the mitochondrial inner membrane (IMM), and form complexes with the ATPases Associated with diverse cellular Activities (m-AAA) proteases. PHB continuously shuttles between the mitochondria, cytosol and nucleus. In the nucleus, PHB interacts with various transcription factors and modulate transcriptional activity directly or through interactions with chromatin remodeling proteins. Multiple functions have been attributed to the mitochondrial and nuclear prohibitin complexes such as cellular differentiation, anti-proliferation, morphogenesis and maintaining the functional integrity of the mitochondria. However, to date, the regulation of PHB expression patterns and GC physiological functions are not completely understood. PMID:26496733
Parajuli, Shankar P.; Zheng, Yun-Min; Levin, Robert; Wang, Yong-Xiao
2016-01-01
ABSTRACT Contraction and relaxation of urinary bladder smooth muscle cells (UBSMCs) represent the important physiological functions of the bladder. Contractile responses in UBSMCs are regulated by a number of ion channels including big-conductance Ca2+- activated K+ (BK) channels. Great progress has been made in studies of BK channels in UBSMCs. The intent of this review is to summarize recent exciting findings with respect to the functional interactions of BK channels with muscarinic receptors, ryanodine receptors (RyRs) and inositol triphosphate receptors (IP3Rs) as well as their functional importance under normal and pathophysiological conditions. BK channels are highly expressed in UBSMCs. Activation of muscarinic M3 receptors inhibits the BK channel activity, facilitates opening of voltage-dependent Ca2+ (CaV) channels, and thereby enhances excitability and contractility of UBSMCs. Signaling molecules and regulatory mechanisms involving RyRs and IP3Rs have a significant effect on functions of BK channels and thereby regulate cellular responses in UBSMCs under normal and pathophysiological conditions including overactive bladders. Moreover, BK channels may represent a novel target for the treatment of bladder dysfunctions. PMID:27101440
Defining the Physiological Factors that Contribute to Postflight Changes in Functional Performance
NASA Technical Reports Server (NTRS)
Bloomberg, J. J.; Arzeno, N.; Buxton, R.; Feiveson, A. H.; Kofman, I.; Lawrence, E.; Lee, S. M. C.; Mulavara, A. P.; Peters, B. T.; Platts, S. H.;
2009-01-01
Astronauts experience alterations in multiple physiological systems due to exposure to the microgravity conditions of space flight. These physiological changes include sensorimotor disturbances, cardiovascular deconditioning and loss of muscle mass and strength. These changes might affect the ability of crewmembers to perform critical mission tasks immediately after landing on lunar and Martian surfaces. To date, changes in functional performance have not been systematically studied or correlated with physiological changes. To understand how changes in physiological function impact functional performance an interdisciplinary pre/postflight testing regimen (Functional Task Test, FTT) has been developed that systematically evaluates both astronaut postflight functional performance and related physiological changes. The overall objective of the FTT is to identify the key underlying physiological factors that contribute to performance of functional tests that are representative of critical mission tasks. This study will identify which physiological systems contribute the most to impaired performance on each functional test. This will allow us to identify the physiological systems that play the largest role in decrement in functional performance. Using this information we can then design and implement countermeasures that specifically target the physiological systems most responsible for the altered functional performance associated with space flight. The functional test battery was designed to address high priority tasks identified by the Constellation program as critical for mission success. The set of functional tests making up the FTT include the: 1) Seat Egress and Walk Test, 2) Ladder Climb Test, 3) Recovery from Fall/Stand Test, 4) Rock Translation Test, 5) Jump Down Test, 6) Torque Generation Test, and 7) Construction Activity Board Test. Corresponding physiological measures include assessments of postural and gait control, dynamic visual acuity, fine motor control, plasma volume, orthostatic intolerance, upper and lower body muscle strength, power, fatigue, control and neuromuscular drive. Crewmembers perform both functional and physiological tests before and after short (Shuttle) and long-duration (ISS) space flight. Data are collected on R+0 (Shuttle only), R+1, R+6 and R+30.
NASA Astrophysics Data System (ADS)
Fei, T.; Skidmore, A.; Liu, Y.
2012-07-01
Thermal environment is especially important to ectotherm because a lot of physiological functions rely on the body temperature such as thermoregulation. The so-called behavioural thermoregulation function made use of the heterogeneity of the thermal properties within an individual's habitat to sustain the animal's physiological processes. This function links the spatial utilization and distribution of individual ectotherm with the thermal properties of habitat (thermal habitat). In this study we modelled the relationship between the two by a spatial explicit model that simulates the movements of a lizard in a controlled environment. The model incorporates a lizard's transient body temperatures with a cellular automaton algorithm as a way to link the physiology knowledge of the animal with the spatial utilization of its microhabitat. On a larger spatial scale, 'thermal roughness' of the habitat was defined and used to predict the habitat occupancy of the target species. The results showed the habitat occupancy can be modelled by the cellular automaton based algorithm at a smaller scale, and can be modelled by the thermal roughness index at a larger scale.
Schiller, Alicia M.; Pellegrino, Peter Ricci; Zucker, Irving H.
2016-01-01
Tubuloglomerular feedback and the myogenic response are widely appreciated as important regulators of renal blood flow, but the role of the sympathetic nervous system in physiological renal blood flow control remains controversial. Where classic studies using static measures of renal blood flow failed, dynamic approaches have succeeded in demonstrating sympathetic control of renal blood flow under normal physiological conditions. This review focuses on transfer function analysis of renal pressure-flow, which leverages the physical relationship between blood pressure and flow to assess the underlying vascular control mechanisms. Studies using this approach indicate that the renal nerves are important in the rapid regulation of the renal vasculature. Animals with intact renal innervation show a sympathetic signature in the frequency range associated with sympathetic vasomotion that is eliminated by renal denervation. In conscious rabbits, this sympathetic signature exerts vasoconstrictive, baroreflex control of renal vascular conductance, matching well with the rhythmic, baroreflex-influenced control of renal sympathetic nerve activity and complementing findings from other studies employing dynamic approaches to study renal sympathetic vascular control. In this light, classic studies reporting that nerve stimulation and renal denervation do not affect static measures of renal blood flow provide evidence for the strength of renal autoregulation rather than evidence against physiological renal sympathetic control of renal blood flow. Thus, alongside tubuloglomerular feedback and the myogenic response, renal sympathetic outflow should be considered an important physiological regulator of renal blood flow. Clinically, renal sympathetic vasomotion may be important for solving the problems facing the field of therapeutic renal denervation. PMID:27514571
Schiller, Alicia M; Pellegrino, Peter Ricci; Zucker, Irving H
2017-05-01
Tubuloglomerular feedback and the myogenic response are widely appreciated as important regulators of renal blood flow, but the role of the sympathetic nervous system in physiological renal blood flow control remains controversial. Where classic studies using static measures of renal blood flow failed, dynamic approaches have succeeded in demonstrating sympathetic control of renal blood flow under normal physiological conditions. This review focuses on transfer function analysis of renal pressure-flow, which leverages the physical relationship between blood pressure and flow to assess the underlying vascular control mechanisms. Studies using this approach indicate that the renal nerves are important in the rapid regulation of the renal vasculature. Animals with intact renal innervation show a sympathetic signature in the frequency range associated with sympathetic vasomotion that is eliminated by renal denervation. In conscious rabbits, this sympathetic signature exerts vasoconstrictive, baroreflex control of renal vascular conductance, matching well with the rhythmic, baroreflex-influenced control of renal sympathetic nerve activity and complementing findings from other studies employing dynamic approaches to study renal sympathetic vascular control. In this light, classic studies reporting that nerve stimulation and renal denervation do not affect static measures of renal blood flow provide evidence for the strength of renal autoregulation rather than evidence against physiological renal sympathetic control of renal blood flow. Thus, alongside tubuloglomerular feedback and the myogenic response, renal sympathetic outflow should be considered an important physiological regulator of renal blood flow. Clinically, renal sympathetic vasomotion may be important for solving the problems facing the field of therapeutic renal denervation. Copyright © 2016 Elsevier B.V. All rights reserved.
Anatomy and physiology of urinary elimination. Part 1.
Pellatt, Glynis Collis
Elimination of urine is an essential bodily function, but independence in this activity may be affected by physical and mental disability. Part 1 of this article discusses the anatomy and physiology of the renal and urinary tract and the production of urine. Urinalysis is a vital nursing assessment and the collection of specimens and the range of tests undertaken are outlined. Assisting patients to use the toilet, commode or bedpan is an essential nursing skill. The importance of sensitivity, empathy and moving and handling risk assessment is discussed, and the assessment and management of urinary tract infection and urinary tract stones are addressed. The importance of prevention of cross infection for nurses and patients is highlighted throughout the article.
Erickson, Michelle A.
2018-01-01
Central nervous system (CNS) barriers predominantly mediate the immune-privileged status of the brain, and are also important regulators of neuroimmune communication. It is increasingly appreciated that communication between the brain and immune system contributes to physiologic processes, adaptive responses, and disease states. In this review, we discuss the highly specialized features of brain barriers that regulate neuroimmune communication in health and disease. In section I, we discuss the concept of immune privilege, provide working definitions of brain barriers, and outline the historical work that contributed to the understanding of CNS barrier functions. In section II, we discuss the unique anatomic, cellular, and molecular characteristics of the vascular blood–brain barrier (BBB), blood–cerebrospinal fluid barrier, and tanycytic barriers that confer their functions as neuroimmune interfaces. In section III, we consider BBB-mediated neuroimmune functions and interactions categorized as five neuroimmune axes: disruption, responses to immune stimuli, uptake and transport of immunoactive substances, immune cell trafficking, and secretions of immunoactive substances. In section IV, we discuss neuroimmune functions of CNS barriers in physiologic and disease states, as well as pharmacological interventions for CNS diseases. Throughout this review, we highlight many recent advances that have contributed to the modern understanding of CNS barriers and their interface functions. PMID:29496890
Uriniferous tubule: structural and functional organization.
Christensen, Erik Ilsø; Wagner, Carsten A; Kaissling, Brigitte
2012-04-01
The uriniferous tubule is divided into the proximal tubule, the intermediate (thin) tubule, the distal tubule and the collecting duct. The present chapter is based on the chapters by Maunsbach and Christensen on the proximal tubule, and by Kaissling and Kriz on the distal tubule and collecting duct in the 1992 edition of the Handbook of Physiology, Renal Physiology. It describes the fine structure (light and electron microscopy) of the entire mammalian uriniferous tubule, mainly in rats, mice, and rabbits. The structural data are complemented by recent data on the location of the major transport- and transport-regulating proteins, revealed by morphological means(immunohistochemistry, immunofluorescence, and/or mRNA in situ hybridization). The structural differences along the uriniferous tubule strictly coincide with the distribution of the major luminal and basolateral transport proteins and receptors and both together provide the basis for the subdivision of the uriniferous tubule into functional subunits. Data on structural adaptation to defined functional changes in vivo and to genetical alterations of specified proteins involved in transepithelial transport importantly deepen our comprehension of the correlation of structure and function in the kidney, of the role of each segment or cell type in the overall renal function,and our understanding of renal pathophysiology. © 2012 American Physiological Society. Compr Physiol 2:933-996, 2012.
Gene Duplication and Evolutionary Innovations in Hemoglobin-Oxygen Transport
2016-01-01
During vertebrate evolution, duplicated hemoglobin (Hb) genes diverged with respect to functional properties as well as the developmental timing of expression. For example, the subfamilies of genes that encode the different subunit chains of Hb are ontogenetically regulated such that functionally distinct Hb isoforms are expressed during different developmental stages. In some vertebrate taxa, functional differentiation between co-expressed Hb isoforms may also contribute to physiologically important divisions of labor. PMID:27053736
High throughput gene expression profiling: a molecular approach to integrative physiology
Liang, Mingyu; Cowley, Allen W; Greene, Andrew S
2004-01-01
Integrative physiology emphasizes the importance of understanding multiple pathways with overlapping, complementary, or opposing effects and their interactions in the context of intact organisms. The DNA microarray technology, the most commonly used method for high-throughput gene expression profiling, has been touted as an integrative tool that provides insights into regulatory pathways. However, the physiology community has been slow in acceptance of these techniques because of early failure in generating useful data and the lack of a cohesive theoretical framework in which experiments can be analysed. With recent advances in both technology and analysis, we propose a concept of multidimensional integration of physiology that incorporates data generated by DNA microarray and other functional, genomic, and proteomic approaches to achieve a truly integrative understanding of physiology. Analysis of several studies performed in simpler organisms or in mammalian model animals supports the feasibility of such multidimensional integration and demonstrates the power of DNA microarray as an indispensable molecular tool for such integration. Evaluation of DNA microarray techniques indicates that these techniques, despite limitations, have advanced to a point where the question-driven profiling research has become a feasible complement to the conventional, hypothesis-driven research. With a keen sense of homeostasis, global regulation, and quantitative analysis, integrative physiologists are uniquely positioned to apply these techniques to enhance the understanding of complex physiological functions. PMID:14678487
Hayward, Christopher S; Fresiello, Libera; Meyns, Bart
2016-05-01
The majority of patients currently implanted with left ventricular assist devices have the expectation of support for more than 2 years. As a result, survival alone is no longer a sufficient distinctive for this technology, and there have been many studies within the last few years examining functional capacity and exercise outcomes. Despite strong evidence for functional class improvements and increases in simple measures of walking distance, there remains incomplete normalization of exercise capacity, even in the presence of markedly improved resting hemodynamics. Reasons for this remain unclear. Despite current pumps being run at a fixed speed, it is widely recognized that pump outputs significantly increase with exercise. The mechanism of this increase involves the interaction between preload, afterload, and the intrinsic pump function curves. The role of the residual heart function is also important in determining total cardiac output, as well as whether the aortic valve opens with exercise. Interactions with the vasculature, with skeletal muscle blood flow and the state of the autonomic nervous system are also likely to be important contributors to exercise performance. Further studies examining optimization of pump function with active pump speed modulation and options for optimization of the overall patient condition are likely to be needed to allow left ventricular assist devices to be used with the hope of full functional physiological recovery.
2011-01-01
Background The basic function of the immune system is to protect an organism against infection in order to minimize the fitness costs of being infected. According to life-history theory, energy resources are in a trade-off between the costly demands of immunity and other physiological demands. Concerning fish, both physiology and immunity are influenced by seasonal changes (i.e. temporal variation) associated to the changes of abiotic factors (such as primarily water temperature) and interactions with pathogens and parasites. In this study, we investigated the potential associations between the physiology and immunocompetence of common carp (Cyprinus carpio) collected during five different periods of a given year. Our sampling included the periods with temporal variability and thus, it presented a different level in exposure to parasites. We analyzed which of two factors, seasonality or parasitism, had the strongest impact on changes in fish physiology and immunity. Results We found that seasonal changes play a key role in affecting the analyzed measurements of physiology, immunity and parasitism. The correlation analysis revealed the relationships between the measures of overall host physiology, immunity and parasite load when temporal variability effect was removed. When analyzing separately parasite groups with different life-strategies, we found that fish with a worse condition status were infected more by monogeneans, representing the most abundant parasite group. The high infection by cestodes seems to activate the phagocytes. A weak relationship was found between spleen size and abundance of trematodes when taking into account seasonal changes. Conclusions Even if no direct trade-off between the measures of host immunity and physiology was confirmed when taking into account the seasonality, it seems that seasonal variability affects host immunity and physiology through energy allocation in a trade-off between life important functions, especially reproduction and fish condition. Host immunity measures were not found to be in a trade-off with the investigated physiological traits or functions, but we confirmed the immunosuppressive role of 11-ketotestosterone on fish immunity measured by complement activity. We suggest that the different parasite life-strategies influence different aspects of host physiology and activate the different immunity pathways. PMID:21708010
USDA-ARS?s Scientific Manuscript database
Calcium (Ca) is one of the most abundant inorganic elements in the human body and has many important physiological roles. Prebiotics and bioactive peptides are two important substances used to promote calcium uptake. However, the difference in mechanisms of the calcium uptake from these two suppleme...
Sominsky, Luba; Fuller, Erin A; Bondarenko, Evgeny; Ong, Lin Kooi; Averell, Lee; Nalivaiko, Eugene; Dunkley, Peter R; Dickson, Phillip W; Hodgson, Deborah M
2013-01-01
Neonatal exposure of rodents to an immune challenge alters a variety of behavioural and physiological parameters in adulthood. In particular, neonatal lipopolysaccharide (LPS; 0.05 mg/kg, i.p.) exposure produces robust increases in anxiety-like behaviour, accompanied by persistent changes in hypothalamic-pituitary-adrenal (HPA) axis functioning. Altered autonomic nervous system (ANS) activity is an important physiological contributor to the generation of anxiety. Here we examined the long term effects of neonatal LPS exposure on ANS function and the associated changes in neuroendocrine and behavioural indices. ANS function in Wistar rats, neonatally treated with LPS, was assessed via analysis of tyrosine hydroxylase (TH) in the adrenal glands on postnatal days (PNDs) 50 and 85, and via plethysmographic assessment of adult respiratory rate in response to mild stress (acoustic and light stimuli). Expression of genes implicated in regulation of autonomic and endocrine activity in the relevant brain areas was also examined. Neonatal LPS exposure produced an increase in TH phosphorylation and activity at both PNDs 50 and 85. In adulthood, LPS-treated rats responded with increased respiratory rates to the lower intensities of stimuli, indicative of increased autonomic arousal. These changes were associated with increases in anxiety-like behaviours and HPA axis activity, alongside altered expression of the GABA-A receptor α2 subunit, CRH receptor type 1, CRH binding protein, and glucocorticoid receptor mRNA levels in the prefrontal cortex, hippocampus and hypothalamus. The current findings suggest that in addition to the commonly reported alterations in HPA axis functioning, neonatal LPS challenge is associated with a persistent change in ANS activity, associated with, and potentially contributing to, the anxiety-like phenotype. The findings of this study reflect the importance of changes in the perinatal microbial environment on the ontogeny of physiological processes.
Reim, Tina; Balfanz, Sabine; Baumann, Arnd; Blenau, Wolfgang; Thamm, Markus; Scheiner, Ricarda
2017-01-01
The biogenic monoamines norepinephrine and epinephrine regulate important physiological functions in vertebrates. Insects such as honeybees do not synthesize these neuroactive substances. Instead, they employ octopamine and tyramine for comparable physiological functions. These biogenic amines activate specific guanine nucleotide-binding (G) protein-coupled receptors (GPCRs). Based on pharmacological data obtained on heterologously expressed receptors, α- and β-adrenergic-like octopamine receptors are better activated by octopamine than by tyramine. Conversely, GPCRs forming the type 1 tyramine receptor clade (synonymous to octopamine/tyramine receptors) are better activated by tyramine than by octopamine. More recently, receptors were characterized which are almost exclusively activated by tyramine, thus forming an independent type 2 tyramine receptor clade. Functionally, type 1 tyramine receptors inhibit adenylyl cyclase activity, leading to a decrease in intracellular cAMP concentration ([cAMP] i ). Type 2 tyramine receptors can mediate Ca 2+ signals or both Ca 2+ signals and effects on [cAMP] i . We here provide evidence that the honeybee tyramine receptor 2 (AmTAR2), when heterologously expressed in flpTM cells, exclusively causes an increase in [cAMP] i . The receptor displays a pronounced preference for tyramine over octopamine. Its activity can be blocked by a series of established antagonists, of which mianserin and yohimbine are most efficient. The functional characterization of two tyramine receptors from the honeybee, AmTAR1 (previously named AmTYR1) and AmTAR2, which respond to tyramine by changing cAMP levels in opposite direction, is an important step towards understanding the actions of tyramine in honeybee behavior and physiology, particularly in comparison to the effects of octopamine. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sominsky, Luba; Fuller, Erin A.; Bondarenko, Evgeny; Ong, Lin Kooi; Averell, Lee; Nalivaiko, Eugene; Dunkley, Peter R.; Dickson, Phillip W.; Hodgson, Deborah M.
2013-01-01
Neonatal exposure of rodents to an immune challenge alters a variety of behavioural and physiological parameters in adulthood. In particular, neonatal lipopolysaccharide (LPS; 0.05 mg/kg, i.p.) exposure produces robust increases in anxiety-like behaviour, accompanied by persistent changes in hypothalamic-pituitary-adrenal (HPA) axis functioning. Altered autonomic nervous system (ANS) activity is an important physiological contributor to the generation of anxiety. Here we examined the long term effects of neonatal LPS exposure on ANS function and the associated changes in neuroendocrine and behavioural indices. ANS function in Wistar rats, neonatally treated with LPS, was assessed via analysis of tyrosine hydroxylase (TH) in the adrenal glands on postnatal days (PNDs) 50 and 85, and via plethysmographic assessment of adult respiratory rate in response to mild stress (acoustic and light stimuli). Expression of genes implicated in regulation of autonomic and endocrine activity in the relevant brain areas was also examined. Neonatal LPS exposure produced an increase in TH phosphorylation and activity at both PNDs 50 and 85. In adulthood, LPS-treated rats responded with increased respiratory rates to the lower intensities of stimuli, indicative of increased autonomic arousal. These changes were associated with increases in anxiety-like behaviours and HPA axis activity, alongside altered expression of the GABA-A receptor α2 subunit, CRH receptor type 1, CRH binding protein, and glucocorticoid receptor mRNA levels in the prefrontal cortex, hippocampus and hypothalamus. The current findings suggest that in addition to the commonly reported alterations in HPA axis functioning, neonatal LPS challenge is associated with a persistent change in ANS activity, associated with, and potentially contributing to, the anxiety-like phenotype. The findings of this study reflect the importance of changes in the perinatal microbial environment on the ontogeny of physiological processes. PMID:23483921
The Peroxisomal NAD Carrier from Arabidopsis Imports NAD in Exchange with AMP.
van Roermund, Carlo W T; Schroers, Martin G; Wiese, Jan; Facchinelli, Fabio; Kurz, Samantha; Wilkinson, Sabrina; Charton, Lennart; Wanders, Ronald J A; Waterham, Hans R; Weber, Andreas P M; Link, Nicole
2016-07-01
Cofactors such as NAD, AMP, and Coenzyme A (CoA) are essential for a diverse set of reactions and pathways in the cell. Specific carrier proteins are required to distribute these cofactors to different cell compartments, including peroxisomes. We previously identified a peroxisomal transport protein in Arabidopsis (Arabidopsis thaliana) called the peroxisomal NAD carrier (PXN). When assayed in vitro, this carrier exhibits versatile transport functions, e.g. catalyzing the import of NAD or CoA, the exchange of NAD/NADH, and the export of CoA. These observations raise the question about the physiological function of PXN in plants. Here, we used Saccharomyces cerevisiae to address this question. First, we confirmed that PXN, when expressed in yeast, is active and targeted to yeast peroxisomes. Secondl, detailed uptake analyses revealed that the CoA transport function of PXN can be excluded under physiological conditions due to its low affinity for this substrate. Third, we expressed PXN in diverse mutant yeast strains and investigated the suppression of the mutant phenotypes. These studies provided strong evidences that PXN was not able to function as a CoA transporter or a redox shuttle by mediating a NAD/NADH exchange, but instead catalyzed the import of NAD into peroxisomes against AMP in intact yeast cells. © 2016 American Society of Plant Biologists. All Rights Reserved.
Wing pathology of white-nose syndrome in bats suggests life-threatening disruption of physiology
2010-01-01
White-nose syndrome (WNS) is causing unprecedented declines in several species of North American bats. The characteristic lesions of WNS are caused by the fungus Geomyces destructans, which erodes and replaces the living skin of bats while they hibernate. It is unknown how this infection kills the bats. We review here the unique physiological importance of wings to hibernating bats in relation to the damage caused by G. destructans and propose that mortality is caused by catastrophic disruption of wing-dependent physiological functions. Mechanisms of disease associated with G. destructans seem specific to hibernating bats and are most analogous to disease caused by chytrid fungus in amphibians. PMID:21070683
Wing pathology of white-nose syndrome in bats suggests life-threatening disruption of physiology
Cryan, Paul M.; Meteyer, Carol U.; Boyles, Justin G.; Blehert, David S.
2010-01-01
White-nose syndrome (WNS) is causing unprecedented declines in several species of North American bats. The characteristic lesions of WNS are caused by the fungus Geomyces destructans, which erodes and replaces the living skin of bats while they hibernate. It is unknown how this infection kills the bats. We review here the unique physiological importance of wings to hibernating bats in relation to the damage caused by G. destructans and propose that mortality is caused by catastrophic disruption of wing-dependent physiological functions. Mechanisms of disease associated with G. destructans seem specific to hibernating bats and are most analogous to disease caused by chytrid fungus in amphibians.
Role of leptin in female reproduction.
Pérez-Pérez, Antonio; Sánchez-Jiménez, Flora; Maymó, Julieta; Dueñas, José L; Varone, Cecilia; Sánchez-Margalet, Víctor
2015-01-01
Reproductive function is dependent on energy resources. The role of weight, body composition, fat distribution and the effect of diet have been largely investigated in experimental female animals as well as in women. Any alteration in diet and/or weight may induce abnormalities in timing of sexual maturation and fertility. However, the cellular mechanisms involved in the fine coordination of energy balance and reproduction are largely unknown. The brain and hypothalamic structures receive endocrine and/or metabolic signals providing information on the nutritional status and the degree of fat stores. Adipose tissue acts both as a store of energy and as an active endocrine organ, secreting a large number of biologically important molecules termed adipokines. Adipokines have been shown to be involved in regulation of the reproductive functions. The first adipokine described was leptin. Extensive research over the last 10 years has shown that leptin is not only an adipose tissue-derived messenger of the amount of energy stores to the brain, but also a crucial hormone/cytokine for a number of diverse physiological processes, such as inflammation, angiogenesis, hematopoiesis, immune function, and most importantly, reproduction. Leptin plays an integral role in the normal physiology of the reproductive system with complex interactions at all levels of the hypothalamic-pituitary gonadal (HPG) axis. In addition, leptin is also produced by placenta, where it plays an important autocrine function. Observational studies have demonstrated that states of leptin excess, deficiency, or resistance can be associated with abnormal reproductive function. This review focuses on the leptin action in female reproduction.
Regulation of metabolism by the Mediator complex.
Youn, Dou Yeon; Xiaoli, Alus M; Pessin, Jeffrey E; Yang, Fajun
2016-01-01
The Mediator complex was originally discovered in yeast, but it is conserved in all eukaryotes. Its best-known function is to regulate RNA polymerase II-dependent gene transcription. Although the mechanisms by which the Mediator complex regulates transcription are often complicated by the context-dependent regulation, this transcription cofactor complex plays a pivotal role in numerous biological pathways. Biochemical, molecular, and physiological studies using cancer cell lines or model organisms have established the current paradigm of the Mediator functions. However, the physiological roles of the mammalian Mediator complex remain poorly defined, but have attracted a great interest in recent years. In this short review, we will summarize some of the reported functions of selective Mediator subunits in the regulation of metabolism. These intriguing findings suggest that the Mediator complex may be an important player in nutrient sensing and energy balance in mammals.
Biochemical factors modulating female genital sexual arousal physiology.
Traish, Abdulmaged M; Botchevar, Ella; Kim, Noel N
2010-09-01
Female genital sexual arousal responses are complex neurophysiological processes consisting of central and peripheral components that occur following sexual stimulation. The peripheral responses in sexual arousal include genital vasocongestion, engorgement and lubrication resulting from a surge of vaginal and clitoral blood flow. These hemodynamic events are mediated by a host of neurotransmitters and vasoactive agents. To discuss the role of various biochemical factors modulating female genital sexual arousal responses. A comprehensive literature review was conducted using the PubMed database and citations were selected, based on topical relevance, and examined for study methodology and major findings. Data from peer-reviewed publications. Adrenergic as well as non-adrenergic non-cholinergic neurotransmitters play an important role in regulating genital physiological responses by mediating vascular and non-vascular smooth muscle contractility. Vasoactive peptides and neuropeptides also modulate genital sexual responses by regulating vascular and non-vascular smooth muscle cells and epithelial function. The endocrine milieu, particularly sex steroid hormones, is critical in the maintenance of tissue structure and function. Reduced levels of estrogens and androgen are associated with dramatic alterations in genital tissue structure, including the nerve network, as well as the response to physiological modulators. Furthermore, estrogen and androgen deficiency is associated with reduced expression of sex steroid receptors and most importantly with attenuated genital blood flow and lubrication in response to pelvic nerve stimulation. This article provides an integrated framework describing the physiological and molecular basis of various pathophysiological conditions associated with female genital sexual arousal dysfunction. © 2010 International Society for Sexual Medicine.
Physiology and pathophysiology of potassium homeostasis.
Palmer, Biff F; Clegg, Deborah J
2016-12-01
Total body potassium content and proper distribution of potassium across the cell membrane is of critical importance for normal cellular function. Potassium homeostasis is maintained by several different methods. In the kidney, total body potassium content is achieved by alterations in renal excretion of potassium in response to variations in intake. Insulin and beta-adrenergic tone play critical roles in maintaining the internal distribution of potassium under normal conditions. Despite homeostatic pathways designed to maintain potassium levels within the normal range, disorders of altered potassium homeostasis are common. The clinical approach to designing effective treatments relies on understanding the pathophysiology and regulatory influences which govern the internal distribution and external balance of potassium. Here we provide an overview of the key regulatory aspects of normal potassium physiology. This review is designed to provide an overview of potassium homeostasis as well as provide references of seminal papers to guide the reader into a more in depth discussion of the importance of potassium balance. This review is designed to be a resource for educators and well-informed clinicians who are teaching trainees about the importance of potassium balance. Copyright © 2016 the American Physiological Society.
Visual artistic creativity and the brain.
Heilman, Kenneth M; Acosta, Lealani Mae
2013-01-01
Creativity is the development of a new or novel understanding--insight that leads to the expression of orderly relationships (e.g., finding and revealing the thread that unites). Visual artistic creativity plays an important role in the quality of human lives, and the goal of this chapter is to describe some of the brain mechanisms that may be important in visual artistic creativity. The initial major means of learning how the brain mediates any activity is to understand the anatomy and physiology that may support these processes. A further understanding of specific cognitive activities and behaviors may be gained by studying patients who have diseases of the brain and how these diseases influence these functions. Physiological recording such as electroencephalography and brain imaging techniques such as PET and fMRI have also allowed us to gain a better understanding of the brain mechanisms important in visual creativity. In this chapter, we discuss anatomic and physiological studies, as well as neuropsychological studies of healthy artists and patients with neurological disease that have helped us gain some insight into the brain mechanisms that mediate artistic creativity. © 2013 Elsevier B.V. All rights reserved.
The Physiology Constant Database of Teen-Agers in Beijing
Wei-Qi, Wei; Guang-Jin, Zhu; Cheng-Li, Xu; Shao-Mei, Han; Bao-Shen, Qi; Li, Chen; Shu-Yu, Zu; Xiao-Mei, Zhou; Wen-Feng, Hu; Zheng-Guo, Zhang
2004-01-01
Physiology constants of adolescents are important to understand growing living systems and are a useful reference in clinical and epidemiological research. Until recently, physiology constants were not available in China and therefore most physiologists, physicians, and nutritionists had to use data from abroad for reference. However, the very difference between the Eastern and Western races casts doubt on the usefulness of overseas data. We have therefore created a database system to provide a repository for the storage of physiology constants of teen-agers in Beijing. The several thousands of pieces of data are now divided into hematological biochemistry, lung function, and cardiac function with all data manually checked before being transferred into the database. The database was accomplished through the development of a web interface, scripts, and a relational database. The physiology data were integrated into the relational database system to provide flexible facilities by using combinations of various terms and parameters. A web browser interface was designed for the users to facilitate their searching. The database is available on the web. The statistical table, scatter diagram, and histogram of the data are available for both anonym and user according to queries, while only the user can achieve detail, including download data and advanced search. PMID:15258669
Strategies to identify microRNA targets: New advances
USDA-ARS?s Scientific Manuscript database
MicroRNAs (miRNAs) are small regulatory RNA molecules functioning to modulate gene expression at the post-transcriptional level, and playing an important role in many developmental and physiological processes. Ten thousand miRNAs have been discovered in various organisms. Although considerable progr...
Controls of Isotopic Patterns in Saprotrophic and Ectomycorrhizal Fungi
Isotopes of nitrogen (δ15N) and carbon (δ13C) in ectomycorrhizal and saprotrophic fungi contain important information about ecological functioning, but the complexity of physiological and ecosystem processes contributing to fungal carbon and nitrogen dynamics has limited our abil...
METHODS FOR MONITORING THE EFFECTS OF ENVIRONMENTAL TOXINS ON THE VISUAL SYSTEM.
A high percentage of neurotoxic compounds adversely effect the visual system. Our goal is to apply the tools of vision science to problems of toxicological import, exposure-related alterations in visual physiology, psychophysical function, and ocular development. Methods can ...
Fusarium verticillioides: The very model of a modern mycotoxigenic phytopathogen
USDA-ARS?s Scientific Manuscript database
The importance of understanding Fusarium verticillioides and its ecological, physiological, and phytopathological functions cannot be understated due to its threat to corn, one of the most valuable food crops worldwide. Indeed, disease outbreaks and subsequent grain contamination with mycotoxins adv...
Anatomy and physiology of the cornea.
DelMonte, Derek W; Kim, Terry
2011-03-01
The importance of the cornea to the ocular structure and visual system is often overlooked because of the cornea's unassuming transparent nature. The cornea lacks the neurobiological sophistication of the retina and the dynamic movement of the lens; yet, without its clarity, the eye would not be able to perform its necessary functions. The complexity of structure and function necessary to maintain such elegant simplicity is the wonder that draws us to one of the most important components of our visual system. Copyright © 2011 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
Physiological Factors Contributing to Postflight Changes in Functional Performance
NASA Technical Reports Server (NTRS)
Bloomberg, J. J.; Feedback, D. L.; Feiverson, A. H.; Lee, S. M. C.; Mulavara, A. P.; Peters, B. T.; Platts, S. H.; Reschke, M. F.; Ryder, J.; Spiering, B. A.;
2009-01-01
Astronauts experience alterations in multiple physiological systems due to exposure to the microgravity conditions of space flight. These physiological changes include sensorimotor disturbances, cardiovascular deconditioning and loss of muscle mass and strength. These changes might affect the ability of crewmembers to perform critical mission tasks immediately after landing on lunar and Martian surfaces. To date, changes in functional performance have not been systematically studied or correlated with physiological changes. To understand how changes in physiological function impact functional performance an interdisciplinary pre/postflight testing regimen (Functional Task Test, FTT) has been developed that systematically evaluates both astronaut postflight functional performance and related physiological changes. The overall objectives of the FTT are to: Develop a set of functional tasks that represent critical mission tasks for Constellation. Determine the ability to perform these tasks after flight. Identify the key physiological factors that contribute to functional decrements. Use this information to develop targeted countermeasures. The functional test battery was designed to address high priority tasks identified by the Constellation program as critical for mission success. The set of functional tests making up the FTT include the: 1) Seat Egress and Walk Test, 2) Ladder Climb Test, 3) Recovery from Fall/Stand Test, 4) Rock Translation Test, 5) Jump Down Test, 6) Torque Generation Test, and 7) Construction Activity Board Test. Corresponding physiological measures include assessments of postural and gait control, dynamic visual acuity, fine motor control, plasma volume, orthostatic intolerance, upper and lower body muscle strength, power, fatigue, control and neuromuscular drive. Crewmembers will perform both functional and physiological tests before and after short (Shuttle) and long-duration (ISS) space flight. Data will be collected on R+0 (Shuttle only), R+1, R+6 and R+30. Using a multivariate regression model we will identify which physiological systems contribute the most to impaired performance on each functional test. This will allow us to identify the physiological systems that play the largest role in decrement in functional performance. Using this information we can then design and implement countermeasures that specifically target the physiological systems most responsible for the altered functional performance associated with space flight.
Nielsen, Morten Schak; Axelsen, Lene Nygaard; Sorgen, Paul L.; Verma, Vandana; Delmar, Mario; Holstein-Rathlou, Niels-Henrik
2013-01-01
Gap junctions are essential to the function of multicellular animals, which require a high degree of coordination between cells. In vertebrates, gap junctions comprise connexins and currently 21 connexins are known in humans. The functions of gap junctions are highly diverse and include exchange of metabolites and electrical signals between cells, as well as functions, which are apparently unrelated to intercellular communication. Given the diversity of gap junction physiology, regulation of gap junction activity is complex. The structure of the various connexins is known to some extent; and structural rearrangements and intramolecular interactions are important for regulation of channel function. Intercellular coupling is further regulated by the number and activity of channels present in gap junctional plaques. The number of connexins in cell-cell channels is regulated by controlling transcription, translation, trafficking, and degradation; and all of these processes are under strict control. Once in the membrane, channel activity is determined by the conductive properties of the connexin involved, which can be regulated by voltage and chemical gating, as well as a large number of posttranslational modifications. The aim of the present article is to review our current knowledge on the structure, regulation, function, and pharmacology of gap junctions. This will be supported by examples of how different connexins and their regulation act in concert to achieve appropriate physiological control, and how disturbances of connexin function can lead to disease. © 2012 American Physiological Society. Compr Physiol 2:1981-2035, 2012. PMID:23723031
Pap, Péter L; Sesarman, Alina; Vágási, Csongor I; Buehler, Deborah M; Pătraş, Laura; Versteegh, Maaike A; Banciu, Manuela
2014-01-01
Temporally changing environmental conditions occur in most parts of the world and can exert strong pressure on the immune defense of organisms. Seasonality may result in changes in physiological traits over the year, and such changes may be essential for the optimization of defense against infections. Evidence from field and laboratory studies suggest the existence of links between environmental conditions, such as infection risk, and the ability of animals to mount an immune response or to overcome infections; however, the importance of parasites in mediating seasonal change in immune defense is still debated. In this study, we test the hypothesis that seasonal change in immune function and connected physiological traits is related to parasite infection. We sampled captive house sparrows (Passer domesticus) once every 2 mo over 14 mo and compared the annual variation in 12 measures of condition, immune function, antioxidant status, and oxidative damage among birds naturally infested with coccidians or medicated against these parasites. We found significant variation in 10 of 12 traits over the year. However, we found little support for parasite-mediated change in immune function and oxidative status in captive house sparrows. Of the 12 measures, only one was slightly affected by parasite treatment. In support of the absence of any effect of coccidians on the annual profile of the condition and physiological traits, we found no consistent relationships between the intensity of infestation and these response variables over the year. Our results show that chronic coccidian infections have limited effect on the seasonal changing of physiological traits and that the patterns of these measures are probably more affected by acute infection and/or virulent parasite strains.
Reintrepreting the cardiovascular system as a mechanical model
NASA Astrophysics Data System (ADS)
Lemos, Diogo; Machado, José; Minas, Graça; Soares, Filomena; Barros, Carla; Leão, Celina Pinto
2013-10-01
The simulation of the different physiological systems is very useful as a pedagogical tool, allowing a better understanding of the mechanisms and the functions of the processes. The observation of the physiological phenomena through mechanical simulators represents a great asset. Furthermore, the development of these simulators allows reinterpreting physiological systems, with the advantage of using the same transducers and sensors that are commonly used in diagnostic and therapeutic cardiovascular procedures for the monitoring of system' parameters. The cardiovascular system is one of the most important systems of the human body and has been the target of several biomedical studies. The present work describes a mechanical simulation of the cardiovascular system, in particularly, the systemic circulation, which can be described in terms of its hemodynamic variables. From the mechanical process and parameters, physiological system's behavior was reproduced, as accurately as possible.
Stress, fighting and neuroendocrine function.
NASA Technical Reports Server (NTRS)
Conner, R. L.; Levine, S.; Vernikos-Danellis, J.
1971-01-01
Plasma concentrations of pituitary adrenocorticotrophic hormone (ACTH) and adrenocortical steroids in rats after testing in the shock-induced fighting paradigm were examined. The investigations provide data consistent with the view that psychological aspects of the stressful situation are important in determining the effects of shock on physiological function. The data indicate that the pituitary-adrenal response can be attenuated by the expression of an organized pattern of behavior.
Left atrial function: evaluation by strain analysis
Gan, Gary C. H.; Ferkh, Aaisha; Boyd, Anita
2018-01-01
The left atrium has an important role in modulating left ventricular filling and is an important biomarker of cardiovascular disease and adverse cardiovascular outcomes. While previously left atrial (LA) size was utilised, the role of LA function as a biomarker is increasingly being evaluated, both independently and also in combination with LA size. Strain analysis has been utilised for evaluation of LA function and can be measured throughout the cardiac cycle, thereby enabling the evaluation of LA reservoir, conduit and contractile function. Strain evaluates myocardial deformation while strain rate examines the rate of change in strain. This review will focus on the various types of strain analysis for evaluation of LA function, alterations in LA strain in physiological and pathologic states that alter LA function and finally evaluate its utility as a prognostic marker. PMID:29541609
Yang, Kai; Jackson, Michael F.; MacDonald, John F.
2014-01-01
G Protein Coupled Receptors (GPCRs) are the largest family of receptors whose ligands constitute nearly a third of prescription drugs in the market. They are widely involved in diverse physiological functions including learning and memory. NMDA receptors (NMDARs), which belong to the ionotropic glutamate receptor family, are likewise ubiquitously expressed in the central nervous system (CNS) and play a pivotal role in learning and memory. Despite its critical contribution to physiological and pathophysiological processes, few pharmacological interventions aimed directly at regulating NMDAR function have been developed to date. However, it is well established that NMDAR function is precisely regulated by cellular signalling cascades recruited downstream of G protein coupled receptor (GPCR) stimulation. Accordingly, the downstream regulation of NMDARs likely represents an important determinant of outcome following treatment with neuropsychiatric agents that target selected GPCRs. Importantly, the functional consequence of such regulation on NMDAR function varies, based not only on the identity of the GPCR, but also on the cell type in which relevant receptors are expressed. Indeed, the mechanisms responsible for regulating NMDARs by GPCRs involve numerous intracellular signalling molecules and regulatory proteins that vary from one cell type to another. In the present article, we highlight recent findings from studies that have uncovered novel mechanisms by which selected GPCRs regulate NMDAR function and consequently NMDAR-dependent plasticity. PMID:24562329
Marine carotenoids: Bioactivities and potential benefits to human health.
Chuyen, Hoang Van; Eun, Jong-Bang
2017-08-13
Among natural pigments, carotenoids play important roles in physiological functions. The characteristics of carotenoids and their effects on human health have been reported for a long time, but most studies have focused on carotenoids from vegetables, fruits, and other parts of higher plants. Few reports are available on carotenoids from marine sources, such as seaweeds, microalgae, and marine animals, which have attracted attention in recent decades. Hundreds of carotenoids have been identified and isolated from marine organisms and their beneficial physiological functions, such as anticancer, antiobesity, antidiabetic, anti-inflammatory, and cardioprotective activities have been reported. The purpose of this review is to discuss the literature on the beneficial bioactivities of some of the most abundant marine carotenoids, including fucoxanthin, astaxanthin, cantaxanthin, peridinin, fucoxanthinol, and halocynthiaxanthin.
Maternal choline supplementation: a nutritional approach for improving offspring health?
Jiang, Xinyin; West, Allyson A; Caudill, Marie A
2014-05-01
The modulatory role of choline on the fetal epigenome and the impact of in utero choline supply on fetal programming and health are of great interest. Studies in animals and/or humans suggest that maternal choline supplementation during pregnancy benefits important physiologic systems such as offspring cognitive function, response to stress, and cerebral inhibition. Because alterations in offspring phenotype frequently coincide with epigenetic modifications and changes in gene expression, maternal choline supplementation may be a nutritional strategy to improve lifelong health of the child. Future studies are warranted to elucidate further the effect of choline on the fetal epigenome and to determine the level of maternal choline intake required for optimal offspring physiologic function. Copyright © 2014 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Optimizing rumen microbial ecosystem output is essential towards improved ruminant agriculture. Ruminal infusion or intake of propionate, one of the predominant volatile fatty acids, has important implications for host physiology. However, how the rumen microbiota responds to propionate administrat...
Proteomic analysis of lung tissue by DIGE
USDA-ARS?s Scientific Manuscript database
Lungs perform an essential physiological function, mediated by a complex series of events that involve the coordination of multiple cell types to support not only gaseous exchange, but homeostasis and protection from infection. Guinea pigs are an important animal disease model for a number of infect...
The thyroid hormone (TH) system is involved in several important physiological processes, including regulation of energy metabolism, growth and differentiation, development and maintenance of brain function, thermo-regulation, osmo-regulation, and axis of regulation of other endo...
Reilly, Patrick T; Yu, Yun; Hamiche, Ali; Wang, Lishun
2014-01-01
The acidic (leucine-rich) nuclear phosphoprotein 32 kDa (ANP32) family is composed of small, evolutionarily conserved proteins characterized by an N-terminal leucine-rich repeat domain and a C-terminal low-complexity acidic region. The mammalian family members (ANP32A, ANP32B, and ANP32E) are ascribed physiologically diverse functions including chromatin modification and remodelling, apoptotic caspase modulation, protein phosphatase inhibition, as well as regulation of intracellular transport. In addition to reviewing the widespread literature on the topic, we present a concept of the ANP32s as having a whip-like structure. We also present hypotheses that ANP32C and other intronless sequences should not currently be considered bona fide family members, that their disparate necessity in development may be due to compensatory mechanisms, that their contrasting roles in cancer are likely context-dependent, along with an underlying hypothesis that ANP32s represent an important node of physiological regulation by virtue of their diverse biochemical activities. PMID:25156960
Cardiac damage in athlete's heart: When the "supernormal" heart fails!
Carbone, Andreina; D'Andrea, Antonello; Riegler, Lucia; Scarafile, Raffaella; Pezzullo, Enrica; Martone, Francesca; America, Raffaella; Liccardo, Biagio; Galderisi, Maurizio; Bossone, Eduardo; Calabrò, Raffaele
2017-06-26
Intense exercise may cause heart remodeling to compensate increases in blood pressure or volume by increasing muscle mass. Cardiac changes do not involve only the left ventricle, but all heart chambers. Physiological cardiac modeling in athletes is associated with normal or enhanced cardiac function, but recent studies have documented decrements in left ventricular function during intense exercise and the release of cardiac markers of necrosis in athlete's blood of uncertain significance. Furthermore, cardiac remodeling may predispose athletes to heart disease and result in electrical remodeling, responsible for arrhythmias. Athlete's heart is a physiological condition and does not require a specific treatment. In some conditions, it is important to differentiate the physiological adaptations from pathological conditions, such as hypertrophic cardiomyopathy, arrhythmogenic dysplasia of the right ventricle, and non-compaction myocardium, for the greater risk of sudden cardiac death of these conditions. Moreover, some drugs and performance-enhancing drugs can cause structural alterations and arrhythmias, therefore, their use should be excluded.
Henry, Raymond P.; Lucu, Čedomil; Onken, Horst; Weihrauch, Dirk
2012-01-01
The crustacean gill is a multi-functional organ, and it is the site of a number of physiological processes, including ion transport, which is the basis for hemolymph osmoregulation; acid-base balance; and ammonia excretion. The gill is also the site by which many toxic metals are taken up by aquatic crustaceans, and thus it plays an important role in the toxicology of these species. This review provides a comprehensive overview of the ecology, physiology, biochemistry, and molecular biology of the mechanisms of osmotic and ionic regulation performed by the gill. The current concepts of the mechanisms of ion transport, the structural, biochemical, and molecular bases of systemic physiology, and the history of their development are discussed. The relationship between branchial ion transport and hemolymph acid-base regulation is also treated. In addition, the mechanisms of ammonia transport and excretion across the gill are discussed. And finally, the toxicology of heavy metal accumulation via the gill is reviewed in detail. PMID:23162474
Cardiac damage in athlete’s heart: When the “supernormal” heart fails!
Carbone, Andreina; D’Andrea, Antonello; Riegler, Lucia; Scarafile, Raffaella; Pezzullo, Enrica; Martone, Francesca; America, Raffaella; Liccardo, Biagio; Galderisi, Maurizio; Bossone, Eduardo; Calabrò, Raffaele
2017-01-01
Intense exercise may cause heart remodeling to compensate increases in blood pressure or volume by increasing muscle mass. Cardiac changes do not involve only the left ventricle, but all heart chambers. Physiological cardiac modeling in athletes is associated with normal or enhanced cardiac function, but recent studies have documented decrements in left ventricular function during intense exercise and the release of cardiac markers of necrosis in athlete’s blood of uncertain significance. Furthermore, cardiac remodeling may predispose athletes to heart disease and result in electrical remodeling, responsible for arrhythmias. Athlete’s heart is a physiological condition and does not require a specific treatment. In some conditions, it is important to differentiate the physiological adaptations from pathological conditions, such as hypertrophic cardiomyopathy, arrhythmogenic dysplasia of the right ventricle, and non-compaction myocardium, for the greater risk of sudden cardiac death of these conditions. Moreover, some drugs and performance-enhancing drugs can cause structural alterations and arrhythmias, therefore, their use should be excluded. PMID:28706583
Hoff, Max; Balfanz, Sabine; Ehling, Petra; Gensch, Thomas; Baumann, Arnd
2011-01-01
Rhythmic activity of cells and cellular networks plays an important role in physiology. In the nervous system oscillations of electrical activity and/or second messenger concentrations are important to synchronize neuronal activity. At the molecular level, rhythmic activity can be initiated by different routes. We have recently shown that an octopamine-activated G-protein-coupled receptor (GPCR; DmOctα1Rb, CG3856) from Drosophila initiates Ca2+ oscillations. Here, we have unraveled the molecular basis of cellular Ca2+ signaling controlled by the DmOctα1Rb receptor using a combination of pharmacological intervention, site-directed mutagenesis, and functional cellular Ca2+ imaging on heterologously expressed receptors. Phosphorylation of a single amino acid residue in the third intracellular loop of the GPCR by PKC is necessary and sufficient to desensitize the receptor. From its desensitized state, DmOctα1Rb is resensitized by dephosphorylation, and a new Ca2+ signal occurs on octopamine stimulation. Our findings show that transient changes of the receptor's surface profile have a strong effect on its physiological signaling properties. We expect that the detailed knowledge of DmOctα1Rb-dependent signal transduction fosters the identification of specific drugs that can be used for GPCR-mediated pest control, since octopamine serves important physiological and behavioral functions in arthropods.—Hoff M., Balfanz, S., Ehling, P., Gensch, T., Baumann, A. A single amino acid residue controls Ca2+ signaling by an octopamine receptor from Drosophila melanogaster. PMID:21478261
The relationship between health and mating success in humans
Rhodes, Gillian
2017-01-01
Health has been claimed to play an important role in human sexual selection, especially in terms of mate choice. Our preferences for attractive individuals are said to represent evolved adaptations for finding high-quality, healthy mates. If this is true, then we expect health to predict mating success in humans. We tested this hypothesis using several important physiological indicators of health, including immune function, oxidative stress and semen quality, and self-reported measures of sexual behaviour that contribute to mating success. In contrast to our hypothesis, we did not find a relationship between the physiological measures of health and sexual behaviour. Our results provide little support for claims that health, at least the health measures we used, increases mating success in relatively healthy humans. PMID:28280558
Transcription termination factor Rho: a hub linking diverse physiological processes in bacteria.
Grylak-Mielnicka, Aleksandra; Bidnenko, Vladimir; Bardowski, Jacek; Bidnenko, Elena
2016-03-01
Factor-dependent termination of transcription in bacteria relies on the activity of a specific RNA helicase, the termination factor Rho. Rho is nearly ubiquitous in bacteria, but the extent to which its physiological functions are conserved throughout the different phyla remains unknown. Most of our current knowledge concerning the mechanism of Rho's activity and its physiological roles comes from the model micro-organism Escherichia coli, where Rho is essential and involved in the control of several important biological processes. However, the rather comprehensive knowledge about the general mechanisms of action and activities of Rho based on the E. coli paradigm cannot be directly extrapolated to other bacteria. Recent studies performed in different species favour the view that Rho-dependent termination plays a significant role even in bacteria where Rho is not essential. Here, we summarize the current state of the ever-increasing knowledge about the various aspects of the physiological functions of Rho, such as limitation of deleterious foreign DNA expression, control of gene expression, suppression of pervasive transcription, prevention of R-loops and maintenance of chromosome integrity, focusing on similarities and differences of the activities of Rho in various bacterial species.
3Mo: A Model for Music-Based Biofeedback
Maes, Pieter-Jan; Buhmann, Jeska; Leman, Marc
2016-01-01
In the domain of sports and motor rehabilitation, it is of major importance to regulate and control physiological processes and physical motion in most optimal ways. For that purpose, real-time auditory feedback of physiological and physical information based on sound signals, often termed “sonification,” has been proven particularly useful. However, the use of music in biofeedback systems has been much less explored. In the current article, we assert that the use of music, and musical principles, can have a major added value, on top of mere sound signals, to the benefit of psychological and physical optimization of sports and motor rehabilitation tasks. In this article, we present the 3Mo model to describe three main functions of music that contribute to these benefits. These functions relate the power of music to Motivate, and to Monitor and Modify physiological and physical processes. The model brings together concepts and theories related to human sensorimotor interaction with music, and specifies the underlying psychological and physiological principles. This 3Mo model is intended to provide a conceptual framework that guides future research on musical biofeedback systems in the domain of sports and motor rehabilitation. PMID:27994535
NASA Astrophysics Data System (ADS)
Grassi, Bruno; Quaresima, Valentina
2016-09-01
In most daily activities related to work or leisure, the energy for muscle work substantially comes from oxidative metabolism. Functional limitations or impairments of this metabolism can significantly affect exercise tolerance and performance. As a method for the functional evaluation of skeletal muscle oxidative metabolism, near-infrared spectroscopy (NIRS) has important strengths but also several limitations, some of which have been overcome by recent technological developments. Skeletal muscle fractional O2 extraction, the main variable which can be noninvasively evaluated by NIRS, is the result of the dynamic balance between O2 utilization and O2 delivery; it can yield relevant information on key physiological and pathophysiological mechanisms, relevant in the evaluation of exercise performance and exercise tolerance in healthy subjects (in normal and in altered environmental conditions) and in patients. In the right hands, NIRS can offer insights into the physiological and pathophysiological adaptations to conditions of increased O2 needs that involve, in an integrated manner, different organs and systems of the body. In terms of patient evaluation, NIRS allows determination of the evolution of the functional impairments, to identify their correlations with clinical symptoms, to evaluate the effects of therapeutic or rehabilitative interventions, and to gain pathophysiological and diagnostic insights.
Grassi, Bruno; Quaresima, Valentina
2016-09-01
In most daily activities related to work or leisure, the energy for muscle work substantially comes from oxidative metabolism. Functional limitations or impairments of this metabolism can significantly affect exercise tolerance and performance. As a method for the functional evaluation of skeletal muscle oxidative metabolism, near-infrared spectroscopy (NIRS) has important strengths but also several limitations, some of which have been overcome by recent technological developments. Skeletal muscle fractional O2 extraction, the main variable which can be noninvasively evaluated by NIRS, is the result of the dynamic balance between O2 utilization and O2 delivery; it can yield relevant information on key physiological and pathophysiological mechanisms, relevant in the evaluation of exercise performance and exercise tolerance in healthy subjects (in normal and in altered environmental conditions) and in patients. In the right hands, NIRS can offer insights into the physiological and pathophysiological adaptations to conditions of increased O2 needs that involve, in an integrated manner, different organs and systems of the body. In terms of patient evaluation, NIRS allows determination of the evolution of the functional impairments, to identify their correlations with clinical symptoms, to evaluate the effects of therapeutic or rehabilitative interventions, and to gain pathophysiological and diagnostic insights.
Melatonin, mitochondria and hypertension.
Baltatu, Ovidiu C; Amaral, Fernanda G; Campos, Luciana A; Cipolla-Neto, Jose
2017-11-01
Melatonin, due to its multiple means and mechanisms of action, plays a fundamental role in the regulation of the organismal physiology by fine tunning several functions. The cardiovascular system is an important site of action as melatonin regulates blood pressure both by central and peripheral interventions, in addition to its relation with the renin-angiotensin system. Besides, the systemic management of several processes, melatonin acts on mitochondria regulation to maintain a healthy cardiovascular system. Hypertension affects target organs in different ways and cellular energy metabolism is frequently involved due to mitochondrial alterations that include a rise in reactive oxygen species production and an ATP synthesis decrease. The discussion that follows shows the role played by melatonin in the regulation of mitochondrial physiology in several levels of the cardiovascular system, including brain, heart, kidney, blood vessels and, particularly, regulating the renin-angiotensin system. This discussion shows the putative importance of using melatonin as a therapeutic tool involving its antioxidant potential and its action on mitochondrial physiology in the cardiovascular system.
SREBP-regulated lipid metabolism: convergent physiology - divergent pathophysiology.
Shimano, Hitoshi; Sato, Ryuichiro
2017-12-01
Cellular lipid metabolism and homeostasis are controlled by sterol regulatory-element binding proteins (SREBPs). In addition to performing canonical functions in the transcriptional regulation of genes involved in the biosynthesis and uptake of lipids, genome-wide system analyses have revealed that these versatile transcription factors act as important nodes of convergence and divergence within biological signalling networks. Thus, they are involved in myriad physiological and pathophysiological processes, highlighting the importance of lipid metabolism in biology. Changes in cell metabolism and growth are reciprocally linked through SREBPs. Anabolic and growth signalling pathways branch off and connect to multiple steps of SREBP activation and form complex regulatory networks. In addition, SREBPs are implicated in numerous pathogenic processes such as endoplasmic reticulum stress, inflammation, autophagy and apoptosis, and in this way, they contribute to obesity, dyslipidaemia, diabetes mellitus, nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, chronic kidney disease, neurodegenerative diseases and cancers. This Review aims to provide a comprehensive understanding of the role of SREBPs in physiology and pathophysiology at the cell, organ and organism levels.
Schou, Mads F; Kristensen, Torsten N; Pedersen, Anders; Karlsson, B Göran; Loeschcke, Volker; Malmendal, Anders
2017-02-01
The ability of ectotherms to respond to changes in their thermal environment through plastic mechanisms is central to their adaptive capability. However, we still lack knowledge on the physiological and functional responses by which ectotherms acclimate to temperatures during development, and in particular, how physiological stress at extreme temperatures may counteract beneficial acclimation responses at benign temperatures. We exposed Drosophila melanogaster to 10 developmental temperatures covering their entire permissible temperature range. We obtained metabolic profiles and reaction norms for several functional traits: egg-to-adult viability, developmental time, and heat and cold tolerance. Females were more heat tolerant than males, whereas no sexual dimorphism was found in cold tolerance. A group of metabolites, mainly free amino acids, had linear reaction norms. Several energy-carrying molecules, as well as some sugars, showed distinct inverted U-shaped norms of reaction across the thermal range, resulting in a positive correlation between metabolite intensities and egg-to-adult viability. At extreme temperatures, low levels of these metabolites were interpreted as a response characteristic of costs of homeostatic perturbations. Our results provide novel insights into a range of metabolites reported to be central for the acclimation response and suggest several new candidate metabolites. Low and high temperatures result in different adaptive physiological responses, but they also have commonalities likely to be a result of the failure to compensate for the physiological stress. We suggest that the regulation of metabolites that are tightly connected to the performance curve is important for the ability of ectotherms to cope with variation in temperature. Copyright © 2017 the American Physiological Society.
Personal reflections on a galvanizing trail.
O'Dell, B L
1998-01-01
This article encompasses my perception of, and experience in, an exciting segment of the trace element era in nutrition research: the role of zinc in the nutrition of animals and humans. Zinc has been a major player on the stage of trace element research, and it has left a trail that galvanized the attention of many researchers, including myself. It is ubiquitous in biological systems, and it plays a multitude of physiologic and biochemical functions. A brief historical overview is followed by a discussion of the contributions the work done in my laboratory has made toward understanding the physiological and biochemical functions of zinc. The effort of 40 years has led to the belief that one of zinc's major roles, and perhaps its first limiting role, is to preserve plasma-membrane function as regards ion channels and signal transduction. Although substantial knowledge has been gained relating to the importance of zinc in nutrition, much remains to be discovered.
Shi, Yuguang; Cheng, Dong
2009-07-01
Monoacyglycerol acyltransferases (MGATs) and diacylglycerol acyltransferases (DGATs) catalyze two consecutive steps of enzyme reactions in the synthesis of triacylglycerols (TAGs). The metabolic complexity of TAG synthesis is reflected by the presence of multiple isoforms of MGAT and DGAT enzymes that differ in catalytic properties, subcellular localization, tissue distribution, and physiological functions. MGAT and DGAT enzymes play fundamental roles in the metabolism of monoacylglycerol (MAG), diacylglycerol (DAG), and triacylglycerol (TAG) that are involved in many aspects of physiological functions, such as intestinal fat absorption, lipoprotein assembly, adipose tissue formation, signal transduction, satiety, and lactation. The recent progress in the phenotypic characterization of mice deficient in MGAT and DGAT enzymes and the development of chemical inhibitors have revealed important roles of these enzymes in the regulation of energy homeostasis and insulin sensitivity. Consequently, selective inhibition of MGAT or DGAT enzymes by synthetic compounds may provide novel treatment for obesity and its related metabolic complications.
Cell death at the intestinal epithelial front line.
Delgado, Maria Eugenia; Grabinger, Thomas; Brunner, Thomas
2016-07-01
The intestinal epithelium represents the largest epithelial surface in our body. This single-cell-layer epithelium mediates important functions in the absorption of nutrients and in the maintenance of barrier function, preventing luminal microorganisms from invading the body. Due to its constant regeneration the intestinal epithelium is a tissue not only with very high proliferation rates but also with very prominent physiological and pathophysiological cell death induction. The normal physiological differentiation and maturation of intestinal epithelial cells leads to their shedding and apoptotic cell death within a few days, without disturbing the epithelial barrier integrity. In contrast excessive intestinal epithelial cell death induced by irradiation, drugs and inflammation severely impairs the vital functions of this tissue. In this review we discuss cell death processes in the intestinal epithelium in health and disease, with special emphasis on cell death triggered by the tumour necrosis factor receptor family. © 2015 FEBS.
Interspecies chemical communication in bacterial development.
Straight, Paul D; Kolter, Roberto
2009-01-01
Our view of bacteria, from the earliest observations through the heyday of antibiotic discovery, has shifted dramatically. We recognize communities of bacteria as integral and functionally important components of diverse habitats, ranging from soil collectives to the human microbiome. To function as productive communities, bacteria coordinate metabolic functions, often requiring shifts in growth and development. The hallmark of cellular development, which we characterize as physiological change in response to environmental stimuli, is a defining feature of many bacterial interspecies interactions. Bacterial communities rely on chemical exchanges to provide the cues for developmental change. Traditional methods in microbiology focus on isolation and characterization of bacteria in monoculture, separating the organisms from the surroundings in which interspecies chemical communication has relevance. Developing multispecies experimental systems that incorporate knowledge of bacterial physiology and metabolism with insights from biodiversity and metagenomics shows great promise for understanding interspecies chemical communication in the microbial world.
Jung, Julia Jeannine; Husse, Britta; Rimmbach, Christian; Krebs, Stefan; Stieber, Juliane; Steinhoff, Gustav; Dendorfer, Andreas; Franz, Wolfgang-Michael; David, Robert
2014-01-01
Summary Therapeutic approaches for “sick sinus syndrome” rely on electrical pacemakers, which lack hormone responsiveness and bear hazards such as infection and battery failure. These issues may be overcome via “biological pacemakers” derived from pluripotent stem cells (PSCs). Here, we show that forward programming of PSCs with the nodal cell inducer TBX3 plus an additional Myh6-promoter-based antibiotic selection leads to cardiomyocyte aggregates consisting of >80% physiologically and pharmacologically functional pacemaker cells. These induced sinoatrial bodies (iSABs) exhibited highly increased beating rates (300–400 bpm), coming close to those found in mouse hearts, and were able to robustly pace myocardium ex vivo. Our study introduces iSABs as highly pure, functional nodal tissue that is derived from PSCs and may be important for future cell therapies and drug testing in vitro. PMID:24936448
Glutathione, Glutaredoxins, and Iron.
Berndt, Carsten; Lillig, Christopher Horst
2017-11-20
Glutathione (GSH) is the most abundant cellular low-molecular-weight thiol in the majority of organisms in all kingdoms of life. Therefore, functions of GSH and disturbed regulation of its concentration are associated with numerous physiological and pathological situations. Recent Advances: The function of GSH as redox buffer or antioxidant is increasingly being questioned. New functions, especially functions connected to the cellular iron homeostasis, were elucidated. Via the formation of iron complexes, GSH is an important player in all aspects of iron metabolism: sensing and regulation of iron levels, iron trafficking, and biosynthesis of iron cofactors. The variety of GSH coordinated iron complexes and their functions with a special focus on FeS-glutaredoxins are summarized in this review. Interestingly, GSH analogues that function as major low-molecular-weight thiols in organisms lacking GSH resemble the functions in iron homeostasis. Since these iron-related functions are most likely also connected to thiol redox chemistry, it is difficult to distinguish between mechanisms related to either redox or iron metabolisms. The ability of GSH to coordinate iron in different complexes with or without proteins needs further investigation. The discovery of new Fe-GSH complexes and their physiological functions will significantly advance our understanding of cellular iron homeostasis. Antioxid. Redox Signal. 27, 1235-1251.
Lee, In-Seon; Preissl, Hubert; Giel, Katrin; Schag, Kathrin; Enck, Paul
2018-01-23
The food-related behavior of functional dyspepsia has been attracting more interest of late. This pilot study aims to provide evidence of the physiological, emotional, and attentional aspects of food processing in functional dyspepsia patients. The study was performed in 15 functional dyspepsia patients and 17 healthy controls after a standard breakfast. We measured autonomic nervous system activity using skin conductance response and heart rate variability, emotional response using facial electromyography, and visual attention using eyetracking during the visual stimuli of food/non-food images. In comparison to healthy controls, functional dyspepsia patients showed a greater craving for food, a decreased intake of food, more dyspeptic symptoms, lower pleasantness rating of food images (particularly of high fat), decreased low frequency/high frequency ratio of heart rate variability, and suppressed total processing time of food images. There were no significant differences of skin conductance response and facial electromyography data between groups. The results suggest that high level cognitive functions rather than autonomic and emotional mechanisms are more liable to function differently in functional dyspepsia patients. Abnormal dietary behavior, reduced subjective rating of pleasantness and visual attention to food should be considered as important pathophysiological characteristics in functional dyspepsia.
Meslin, Camille; Plakke, Melissa S.; Deutsch, Aaron B.; Small, Brandon S.; Morehouse, Nathan I.; Clark, Nathan L.
2015-01-01
Persistent adaptive challenges are often met with the evolution of novel physiological traits. Although there are specific examples of single genes providing new physiological functions, studies on the origin of complex organ functions are lacking. One such derived set of complex functions is found in the Lepidopteran bursa copulatrix, an organ within the female reproductive tract that digests nutrients from the male ejaculate or spermatophore. Here, we characterized bursa physiology and the evolutionary mechanisms by which it was equipped with digestive and absorptive functionality. By studying the transcriptome of the bursa and eight other tissues, we revealed a suite of highly expressed and secreted gene products providing the bursa with a combination of stomach-like traits for mechanical and enzymatic digestion of the male spermatophore. By subsequently placing these bursa genes in an evolutionary framework, we found that the vast majority of their novel digestive functions were co-opted by borrowing genes that continue to be expressed in nonreproductive tissues. However, a number of bursa-specific genes have also arisen, some of which represent unique gene families restricted to Lepidoptera and may provide novel bursa-specific functions. This pattern of promiscuous gene borrowing and relatively infrequent evolution of tissue-specific duplicates stands in contrast to studies of the evolution of novelty via single gene co-option. Our results suggest that the evolution of complex organ-level phenotypes may often be enabled (and subsequently constrained) by changes in tissue specificity that allow expression of existing genes in novel contexts, such as reproduction. The extent to which the selective pressures encountered in these novel roles require resolution via duplication and sub/neofunctionalization is likely to be determined by the need for specialized reproductive functionality. Thus, complex physiological phenotypes such as that found in the bursa offer important opportunities for understanding the relative role of pleiotropy and specialization in adaptive evolution. PMID:25725432
NASA Technical Reports Server (NTRS)
Winget, C. M.; Deroshia, C. W.; Markley, C. L.; Holley, D. C.
1984-01-01
This review discusses the effects, in the aerospace environment, of alterations in approximately 24-h periodicities (circadian rhythms) upon physiological and psychological functions and possible therapies for desynchronosis induced by such alterations. The consequences of circadian rhythm alteration resulting from shift work, transmeridian flight, or altered day lengths are known as desynchronosis, dysrhythmia, dyschrony, jet lag, or jet syndrome. Considerable attention is focused on the ability to operate jet aircraft and manned space vehicles. The importance of environmental cues, such as light-dark cycles, which influence physiological and psychological rhythms is discussed. A section on mathematical models is presented to enable selection and verification of appropriate preventive and corrective measures and to better understand the problem of dysrhythmia.
[Definition of surgical degree of freedom by functional anatomy in liver resection surgery].
Kraus, T W; Golling, M; Klar, E
2001-07-01
Liver resections have developed to very complex and differentiated operations, clearly adapted to individual anatomical and physiological conditions. In parallel, perioperative morbidity has been dramatically reduced. Intraoperative strict consideration of various details of hepatic anatomy, particularly of functional liver anatomy, has proved to be of particular importance when liver surgery reaches indication and technical limits. The term "functional anatomy" stands for a form of hepatic substructurization, which is primarily based on the existence of hemodynamically independent regions of liver parenchyma. A selection of some of the most important details and facts of functional liver anatomy and secondary derived guidelines for surgical strategy and technique is presented in an overview, with special focus on liver resection.
ERIC Educational Resources Information Center
Sylwester, Robert
1982-01-01
This article, the last in a series about the human brain, focuses on the skin and its importance for the brain. Physiological functions of the skin, concerning touch and body protection, are explained, as well as its social role in nonverbal communication. Suggestions for student discussions are given. (PP)
The mass-specific energy cost of human walking is set by stature
USDA-ARS?s Scientific Manuscript database
The metabolic and mechanical requirements of walking are considered to be of fundamental importance to the health, physiological function and even the evolution of modern humans. Although walking energy expenditure and gait mechanics are clearly linked, a direct quantitative relationship has not eme...
Employee subjective well-being and physiological functioning: An integrative model.
Kuykendall, Lauren; Tay, Louis
2015-01-01
Research shows that worker subjective well-being influences physiological functioning-an early signal of poor health outcomes. While several theoretical perspectives provide insights on this relationship, the literature lacks an integrative framework explaining the relationship. We develop a conceptual model explaining the link between subjective well-being and physiological functioning in the context of work. Integrating positive psychology and occupational stress perspectives, our model explains the relationship between subjective well-being and physiological functioning as a result of the direct influence of subjective well-being on physiological functioning and of their common relationships with work stress and personal resources, both of which are influenced by job conditions.
Integrating multi-scale data to create a virtual physiological mouse heart.
Land, Sander; Niederer, Steven A; Louch, William E; Sejersted, Ole M; Smith, Nicolas P
2013-04-06
While the virtual physiological human (VPH) project has made great advances in human modelling, many of the tools and insights developed as part of this initiative are also applicable for facilitating mechanistic understanding of the physiology of a range of other species. This process, in turn, has the potential to provide human relevant insights via a different scientific path. Specifically, the increasing use of mice in experimental research, not yet fully complemented by a similar increase in computational modelling, is currently missing an important opportunity for using and interpreting this growing body of experimental data to improve our understanding of cardiac function. This overview describes our work to address this issue by creating a virtual physiological mouse model of the heart. We describe the similarities between human- and mouse-focused modelling, including the reuse of VPH tools, and the development of methods for investigating parameter sensitivity that are applicable across species. We show how previous results using this approach have already provided important biological insights, and how these can also be used to advance VPH heart models. Finally, we show an example application of this approach to test competing multi-scale hypotheses by investigating variations in length-dependent properties of cardiac muscle.
Integrating multi-scale data to create a virtual physiological mouse heart
Land, Sander; Niederer, Steven A.; Louch, William E.; Sejersted, Ole M.; Smith, Nicolas P.
2013-01-01
While the virtual physiological human (VPH) project has made great advances in human modelling, many of the tools and insights developed as part of this initiative are also applicable for facilitating mechanistic understanding of the physiology of a range of other species. This process, in turn, has the potential to provide human relevant insights via a different scientific path. Specifically, the increasing use of mice in experimental research, not yet fully complemented by a similar increase in computational modelling, is currently missing an important opportunity for using and interpreting this growing body of experimental data to improve our understanding of cardiac function. This overview describes our work to address this issue by creating a virtual physiological mouse model of the heart. We describe the similarities between human- and mouse-focused modelling, including the reuse of VPH tools, and the development of methods for investigating parameter sensitivity that are applicable across species. We show how previous results using this approach have already provided important biological insights, and how these can also be used to advance VPH heart models. Finally, we show an example application of this approach to test competing multi-scale hypotheses by investigating variations in length-dependent properties of cardiac muscle. PMID:24427525
Grandón, Angélica S; Espinosa, B Miguel; Ríos, Darcy L; Sánchez, O Manuel; Sáez, C Katia; Hernández, S Víctor; Becerra, A José
2013-12-01
Quillaja saponaria (Quillay), an evergreen tree found in Chile, is one of the main sources of saponins. Quillaja saponins have hypocholesterolaemic, anticarcinogenic, antioxidant and pesticidal properties, and are used as adjuvants for vaccines. Samples of Quillay growing at three zones in O'Higgins Region, Chile (Coastal, Central and Mountain zones) were analyzed for content of saponins and physiological status. The results revealed differences in the content of saponins depending on the zone of sample collection. The highest contents were found in samples from the Mountain zone, where the highest saponin contents were accompanied by the lowest foliar nitrogen contents, the highest antioxidant activity and the highest carotenoid contents. The results suggest a physiological and adaptive mechanism of saponins in plants to survive under unfavourable environmental conditions. The results have important implications for a theoretical basis for the design of a reasonable harvest, to avoid the cost of poor quality material, and also to provide a sustainable use and conservation of this important species. Further research on the effects of stress will improve our understanding of the saponins production and their physiological functions in plants, whereas they have generally been studied for their biological and chemical applications.
Therapeutic potential of metabotropic glutamate receptor modulators.
Hovelsø, N; Sotty, F; Montezinho, L P; Pinheiro, P S; Herrik, K F; Mørk, A
2012-03-01
Glutamate is the main excitatory neurotransmitter in the central nervous system (CNS) and is a major player in complex brain functions. Glutamatergic transmission is primarily mediated by ionotropic glutamate receptors, which include NMDA, AMPA and kainate receptors. However, glutamate exerts modulatory actions through a family of metabotropic G-protein-coupled glutamate receptors (mGluRs). Dysfunctions of glutamatergic neurotransmission have been implicated in the etiology of several diseases. Therefore, pharmacological modulation of ionotropic glutamate receptors has been widely investigated as a potential therapeutic strategy for the treatment of several disorders associated with glutamatergic dysfunction. However, blockade of ionotropic glutamate receptors might be accompanied by severe side effects due to their vital role in many important physiological functions. A different strategy aimed at pharmacologically interfering with mGluR function has recently gained interest. Many subtype selective agonists and antagonists have been identified and widely used in preclinical studies as an attempt to elucidate the role of specific mGluRs subtypes in glutamatergic transmission. These studies have allowed linkage between specific subtypes and various physiological functions and more importantly to pathological states. This article reviews the currently available knowledge regarding the therapeutic potential of targeting mGluRs in the treatment of several CNS disorders, including schizophrenia, addiction, major depressive disorder and anxiety, Fragile X Syndrome, Parkinson's disease, Alzheimer's disease and pain.
Computer support for physiological cell modelling using an ontology on cell physiology.
Takao, Shimayoshi; Kazuhiro, Komurasaki; Akira, Amano; Takeshi, Iwashita; Masanori, Kanazawa; Tetsuya, Matsuda
2006-01-01
The development of electrophysiological whole cell models to support the understanding of biological mechanisms is increasing rapidly. Due to the complexity of biological systems, comprehensive cell models, which are composed of many imported sub-models of functional elements, can get quite complicated as well, making computer modification difficult. Here, we propose a computer support to enhance structural changes of cell models, employing the markup languages CellML and our original PMSML (physiological model structure markup language), in addition to a new ontology for cell physiological modelling. In particular, a method to make references from CellML files to the ontology and a method to assist manipulation of model structures using markup languages together with the ontology are reported. Using these methods three software utilities, including a graphical model editor, are implemented. Experimental results proved that these methods are effective for the modification of electrophysiological models.
Incorporating Research Findings into Standards and Requirements for Space Medicine
NASA Technical Reports Server (NTRS)
Duncan, J. Michael
2006-01-01
The Vision for Exploration has been the catalyst for NASA to refocus its life sciences research. In the future, life sciences research funded by NASA will be focused on answering questions that directly impact setting physiological standards and developing effective countermeasures to the undesirable physiological and psychological effects of spaceflight for maintaining the health of the human system. This, in turn, will contribute to the success of exploration class missions. We will show how research will impact setting physiologic standards, such as exposure limits, outcome limits, and accepted performance ranges. We will give examples of how a physiologic standard can eventually be translated into an operational requirement, then a functional requirement, and eventually spaceflight hardware or procedures. This knowledge will be important to the space medicine community as well as to vehicle contractors who, for the first time, must now consider the human system in developing and constructing a vehicle that can achieve the goal of success.
Functional importance of blood flow dynamics and partial oxygen pressure in the anterior pituitary.
Schaeffer, Marie; Hodson, David J; Lafont, Chrystel; Mollard, Patrice
2010-12-01
The pulsatile release of hormone is obligatory for the control of a range of important body homeostatic functions. To generate these pulses, endocrine organs have developed finely regulated mechanisms to modulate blood flow both to meet the metabolic demand associated with intense endocrine cell activity and to ensure the temporally precise uptake of secreted hormone into the bloodstream. With a particular focus on the pituitary gland as a model system, we review here the importance of the interplay between blood flow regulation and oxygen tensions in the functioning of endocrine systems, and the known regulatory signals involved in the modification of flow patterns under both normal physiological and pathological conditions. © 2010 The Authors. European Journal of Neuroscience © 2010 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
Brain aromatase: roles in reproduction and neuroprotection.
Roselli, Charles F
2007-01-01
It is well established that aromatization constitutes an essential part of testosterone's signaling pathway in brain and that estrogen metabolites, often together with testosterone, organize and activate masculine neural circuits. This paper summarizes the current understanding regarding the distribution, regulation and function of brain aromatase in mammals. Data from our laboratory are presented that highlight the important function of aromatase in the regulation of androgen feedback sensitivity in non-human primates and the possible role that aromatase plays in determining the brain structure and sexual partner preferences of rams. In addition, new data is presented indicating that the capacity for aromatization in cortical astrocytes is associated with cell survival and may be important for neuroprotection. It is anticipated that a better appreciation of the physiological and pathophysiological functions of aromatase will lead to important clinical insights.
Physiological genomics of response to soil drying in diverse Arabidopsis accessions.
Des Marais, David L; McKay, John K; Richards, James H; Sen, Saunak; Wayne, Tierney; Juenger, Thomas E
2012-03-01
Arabidopsis thaliana, like many species, is characterized by abundant genetic variation. This variation is rapidly being cataloged at the sequence level, but careful dissection of genetic variation in whole-organism responses to stresses encountered in the natural environment are lacking; this functional variation can be exploited as a natural mutant screen to determine gene function. Here, we document physiological and transcriptomic response to soil drying in 17 natural accessions of Arabidopsis. By imposing ecologically realistic stress conditions, we found that acclimation in Arabidopsis involved a strong signature of increased investment in photosynthesis, carbohydrate turnover, and root growth. Our results extend previous work in the Columbia accession suggesting that abscisic acid signaling pathways play an important role in drought stress response. We also identified several mechanisms, including an increase in leaf nitrogen concentration and upregulation of two-component signaling relays, that were common to most natural accessions but had not been identified in studies using only the Columbia accession. Principal component analysis reveals strong correlations between suites of genes and specific physiological responses to stress. The functional variants we identified may represent adaptive mutations in natural habitats and useful variants for agronomic improvement of crop species.
Putative roles of neuropeptides in vagal afferent signaling
de Lartigue, Guillaume
2014-01-01
The vagus nerve is a major pathway by which information is communicated between the brain and peripheral organs. Sensory neurons of the vagus are located in the nodose ganglia. These vagal afferent neurons innervate the heart, the lung and the gastrointestinal tract, and convey information about peripheral signals to the brain important in the control of cardiovascular tone, respiratory tone, and satiation, respectively. Glutamate is thought to be the primary neurotransmitter involved in conveying all of this information to the brain. It remains unclear how a single neurotransmitter can regulate such an extensive list of physiological functions from a wide range of visceral sites. Many neurotransmitters have been identified in vagal afferent neurons and have been suggested to modulate the physiological functions of glutamate. Specifically, the anorectic peptide transmitters, cocaine and amphetamine regulated transcript (CART) and the orexigenic peptide transmitters, melanin concentrating hormone (MCH) are differentially regulated in vagal afferent neurons and have opposing effects on food intake. Using these two peptides as a model, this review will discuss the potential role of peptide transmitters in providing a more precise and refined modulatory control of the broad physiological functions of glutamate, especially in relation to the control of feeding. PMID:24650553
Physiological Genomics of Response to Soil Drying in Diverse Arabidopsis Accessions[W][OA
Des Marais, David L.; McKay, John K.; Richards, James H.; Sen, Saunak; Wayne, Tierney; Juenger, Thomas E.
2012-01-01
Arabidopsis thaliana, like many species, is characterized by abundant genetic variation. This variation is rapidly being cataloged at the sequence level, but careful dissection of genetic variation in whole-organism responses to stresses encountered in the natural environment are lacking; this functional variation can be exploited as a natural mutant screen to determine gene function. Here, we document physiological and transcriptomic response to soil drying in 17 natural accessions of Arabidopsis. By imposing ecologically realistic stress conditions, we found that acclimation in Arabidopsis involved a strong signature of increased investment in photosynthesis, carbohydrate turnover, and root growth. Our results extend previous work in the Columbia accession suggesting that abscisic acid signaling pathways play an important role in drought stress response. We also identified several mechanisms, including an increase in leaf nitrogen concentration and upregulation of two-component signaling relays, that were common to most natural accessions but had not been identified in studies using only the Columbia accession. Principal component analysis reveals strong correlations between suites of genes and specific physiological responses to stress. The functional variants we identified may represent adaptive mutations in natural habitats and useful variants for agronomic improvement of crop species. PMID:22408074
Mackenzie, Kimberly D; Lim, Yoon; Duffield, Michael D; Chataway, Timothy; Zhou, Xin-Fu; Keating, Damien J
2017-07-01
Huntingtin-associated protein 1 (HAP1) was initially identified as a binding partner of huntingtin, mutations in which underlie Huntington's disease. Subcellular localization and protein interaction data indicate that HAP1 may be important in vesicle trafficking, cell signalling and receptor internalization. In this study, a proteomics approach was used for the identification of novel HAP1-interacting partners to attempt to shed light on the physiological function of HAP1. Using affinity chromatography with HAP1-GST protein fragments bound to Sepharose columns, this study identified a number of trafficking-related proteins that bind to HAP1. Interestingly, many of the proteins that were identified by mass spectrometry have trafficking-related functions and include the clathrin light chain B and Sec23A, an ER to Golgi trafficking vesicle coat component. Using co-immunoprecipitation and GST-binding assays the association between HAP1 and clathrin light chain B has been validated in vitro. This study also finds that HAP1 co-localizes with clathrin light chain B. In line with a physiological function of the HAP1-clathrin interaction this study detected a dramatic reduction in vesicle retrieval and endocytosis in adrenal chromaffin cells. Furthermore, through examination of transferrin endocytosis in HAP1 -/- cortical neurons, this study has determined that HAP1 regulates neuronal endocytosis. In this study, the interaction between HAP1 and Sec23A was also validated through endogenous co-immunoprecipitation in rat brain homogenate. Through the identification of novel HAP1 binding partners, many of which have putative trafficking roles, this study provides us with new insights into the mechanisms underlying the important physiological function of HAP1 as an intracellular trafficking protein through its protein-protein interactions. Copyright © 2017 Elsevier Inc. All rights reserved.
Sarewicz, Marcin; Osyczka, Artur
2015-01-01
Mitochondrial respiration, an important bioenergetic process, relies on operation of four membranous enzymatic complexes linked functionally by mobile, freely diffusible elements: quinone molecules in the membrane and water-soluble cytochromes c in the intermembrane space. One of the mitochondrial complexes, complex III (cytochrome bc1 or ubiquinol:cytochrome c oxidoreductase), provides an electronic connection between these two diffusible redox pools linking in a fully reversible manner two-electron quinone oxidation/reduction with one-electron cytochrome c reduction/oxidation. Several features of this homodimeric enzyme implicate that in addition to its well-defined function of contributing to generation of proton-motive force, cytochrome bc1 may be a physiologically important point of regulation of electron flow acting as a sensor of the redox state of mitochondria that actively responds to changes in bioenergetic conditions. These features include the following: the opposing redox reactions at quinone catalytic sites located on the opposite sides of the membrane, the inter-monomer electronic connection that functionally links four quinone binding sites of a dimer into an H-shaped electron transfer system, as well as the potential to generate superoxide and release it to the intermembrane space where it can be engaged in redox signaling pathways. Here we highlight recent advances in understanding how cytochrome bc1 may accomplish this regulatory physiological function, what is known and remains unknown about catalytic and side reactions within the quinone binding sites and electron transfers through the cofactor chains connecting those sites with the substrate redox pools. We also discuss the developed molecular mechanisms in the context of physiology of mitochondria. PMID:25540143
Cao, Wujing; Yu, Hongliu; Zhao, Weiliang; Li, Jin; Wei, Xiaodong
2018-01-01
Prosthetic knee is the most important component of lower limb prosthesis. Speed adaptive for prosthetic knee during swing flexion is the key method to realize physiological gait. This study aims to discuss the target of physiological gait, propose a speed adaptive control method during swing flexion and research the damping adjustment law of intelligent hydraulic prosthetic knee. According to the physiological gait trials of healthy people, the control target during swing flexion is defined. A new prosthetic knee with fuzzy logical control during swing flexion is designed to realize the damping adjustment automatically. The function simulation and evaluation system of intelligent knee prosthesis is provided. Speed adaptive control test of the intelligent prosthetic knee in different velocities are researched. The maximum swing flexion of the knee angle is set between sixty degree and seventy degree as the target of physiological gait. Preliminary experimental results demonstrate that the prosthetic knee with fuzzy logical control is able to realize physiological gait under different speeds. The faster the walking, the bigger the valve closure percentage of the hydraulic prosthetic knee. The proposed fuzzy logical control strategy and intelligent hydraulic prosthetic knee are effective for the amputee to achieve physiological gait.
NASA Technical Reports Server (NTRS)
Parks, Kelsey
2010-01-01
Astronauts experience changes in multiple physiological systems due to exposure to the microgravity conditions of space flight. To understand how changes in physiological function influence functional performance, a testing procedure has been developed that evaluates both astronaut postflight functional performance and related physiological changes. Astronauts complete seven functional and physiological tests. The objective of this project is to use motion tracking and digitizing software to visually display the postflight decrement in the functional performance of the astronauts. The motion analysis software will be used to digitize astronaut data videos into stick figure videos to represent the astronauts as they perform the Functional Tasks Tests. This project will benefit NASA by allowing NASA scientists to present data of their neurological studies without revealing the identities of the astronauts.
Microglia promote learning-dependent synapse formation through BDNF
Parkhurst, Christopher N.; Yang, Guang; Ninan, Ipe; Savas, Jeffrey N.; Yates, John R.; Lafaille, Juan J.; Hempstead, Barbara L.; Littman, Dan R.; Gan, Wen-Biao
2014-01-01
SUMMARY Microglia are the resident macrophages of the central nervous system and their functions have been extensively studied in various brain pathologies. The physiological roles of microglia in brain plasticity and function, however, remain unclear. To address this question, we generated CX3CR1CreER mice expressing tamoxifen-inducible Cre recombinase that allow for specific manipulation of gene function in microglia. Using CX3CR1CreER to drive diphtheria toxin receptor expression in microglia, we found that microglia could be specifically depleted from the brain upon diphtheria toxin administration. Mice depleted of microglia show deficits in multiple learning tasks and a significant reduction in motor learning-dependent synapse formation. Furthermore, Cre-dependent removal of brain-derived neurotrophic factor (BDNF) from microglia largely recapitulated the effects of microglia depletion. Microglial BDNF increases neuronal TrkB phosphorylation, a key mediator of synaptic plasticity. Together, our findings reveal important physiological functions of microglia in learning and memory by promoting learning-related synapse formation through BDNF signaling. PMID:24360280
Mechanical compaction directly modulates the dynamics of bile canaliculi formation.
Wang, Yan; Toh, Yi-Chin; Li, Qiushi; Nugraha, Bramasta; Zheng, Baixue; Lu, Thong Beng; Gao, Yi; Ng, Mary Mah Lee; Yu, Hanry
2013-02-01
Homeostatic pressure-driven compaction is a ubiquitous mechanical force in multicellular organisms and is proposed to be important in the maintenance of multicellular tissue integrity and function. Previous cell-free biochemical models have demonstrated that there are cross-talks between compaction forces and tissue structural functions, such as cell-cell adhesion. However, its involvement in physiological tissue function has yet to be directly demonstrated. Here, we use the bile canaliculus (BC) as a physiological example of a multicellular functional structure in the liver, and employ a novel 3D microfluidic hepatocyte culture system to provide an unprecedented opportunity to experimentally modulate the compaction states of primary hepatocyte aggregates in a 3D physiological-mimicking environment. Mechanical compaction alters the physical attributes of the hepatocyte aggregates, including cell shape, cell packing density and cell-cell contact area, but does not impair the hepatocytes' remodeling and functional capabilities. Characterization of structural and functional polarity shows that BC formation in compact hepatocyte aggregates is accelerated to as early as 12 hours post-seeding; whereas non-compact control requires 48 hours for functional BC formation. Further dynamic immunofluorescence imaging and gene expression profiling reveal that compaction accelerated BC formation is accompanied by changes in actin cytoskeleton remodeling dynamics and transcriptional levels of hepatic nuclear factor 4α and Annexin A2. Our report not only provides a novel strategy of modeling BC formation for in vitro hepatology research, but also shows a first instance that homeostatic pressure-driven compaction force is directly coupled to the higher-order multicellular functions.
Poverty, Stress, and Brain Development: New Directions for Prevention and Intervention.
Blair, Clancy; Raver, C Cybele
2016-04-01
We review some of the growing evidence of the costs of poverty to children's neuroendocrine function, early brain development, and cognitive ability. We underscore the importance of addressing the negative consequences of poverty-related adversity early in children's lives, given evidence supporting the plasticity of executive functions and associated physiologic processes in response to early intervention and the importance of higher order cognitive functions for success in school and in life. Finally, we highlight some new directions for prevention and intervention that are rapidly emerging at the intersection of developmental science, pediatrics, child psychology and psychiatry, and public policy. Copyright © 2016 Academic Pediatric Association. Published by Elsevier Inc. All rights reserved.
[P21-activated kinases and their role in the nervous system].
Qin, Yuan; Ding, Yue-Min; Xia, Qiang
2012-12-25
P21-activated kinases (PAK) participate in a variety of important cellular activities, such as cytoskeleton remodeling, cell migration, cell cycle regulation, and apoptosis or survival. PAK also has an important impact on brain development, neuronal differentiation, and regulation of synaptic plasticity in the nervous system. PAK abnormalities result in diseases including cancer, Parkinson's disease (PD), Alzheimer's disease (AD) and neural retardation. Therefore, it is of vital physiological significance to investigate the neuronal function of PAK. In this paper we review the advancement of research on the neuronal biological function and the underlying mechanisms of PAK.
Blood-brain barrier and its function during inflammation and autoimmunity.
Sonar, Sandip Ashok; Lal, Girdhari
2018-05-01
The blood-brain barrier (BBB) is an important physiologic barrier that separates CNS from soluble inflammatory mediators and effector immune cells from peripheral circulation. The optimum function of the BBB is necessary for the homeostasis, maintenance, and proper neuronal function. The clinical and experimental findings have shown that BBB dysfunction is an early hallmark of various neurologic disorders ranging from inflammatory autoimmune, neurodegenerative, and traumatic diseases to neuroinvasive infections. Significant progress has been made in the understanding of the regulation of BBB function under homeostatic and neuroinflammatory conditions. Several neurologic disease-modifying drugs have shown to improve the BBB function. However, they have a broad-acting immunomodulatory function and can increase the risk of life-threatening infections. The recent development of in vitro multicomponent 3-dimensional BBB models coupled with fluidics chamber as well as a cell-type specific reporter and knockout mice gave a new boost to our understanding of the dynamics of the BBB. In the review, we discuss the current understanding of BBB composition and recent findings that illustrate the critical regulatory elements of the BBB function under physiologic and inflammatory conditions, and also suggested the strategies to control BBB structure and function. ©2018 Society for Leukocyte Biology.
Fanson, Kerry V; Parrott, Marissa L
2015-11-01
This article is part of a Special Issue "SBN 2014". Chronic stress is known to inhibit female reproductive function. Consequently, it is often assumed that glucocorticoid (GC) concentrations should be negatively correlated with reproductive success because of the role they play in stress physiology. In contrast, a growing body of evidence indicates that GCs play an active role in promoting reproductive function. It is precisely because GCs are so integral to the entire process that disruptions to adrenal activity have negative consequences for reproduction. The goal of this paper is to draw attention to the increasing evidence showing that increases in adrenal activity are important for healthy female reproduction. Furthermore, we outline several hypotheses about the functional role(s) that GCs may play in mediating reproduction and argue that comparative studies between eutherian and marsupial mammals, which exhibit some pronounced differences in reproductive physiology, may be particularly useful for testing different hypotheses about the functional role of GCs in reproduction. Much of our current thinking about GCs and reproduction comes from research involving stress-induced levels of GCs and has led to broad assumptions about the effects of GCs on reproduction. Unfortunately, this has left a gaping hole in our knowledge about basal GC levels and how they may influence reproductive function, thereby preventing a broader understanding of adrenal physiology and obscuring potential solutions for reproductive dysfunction. Copyright © 2015 Elsevier Inc. All rights reserved.
beta-Cell function and insulin sensitivity in adolescents from an OGTT
USDA-ARS?s Scientific Manuscript database
Given the increase in the incidence of insulin resistance, obesity, and type 2 diabetes in children and adolescents, it would be of paramount importance to assess quantitative indices of insulin secretion and action during a physiological perturbation, such as a meal or an oral glucose-tolerance tes...
USDA-ARS?s Scientific Manuscript database
The mitochondrion is the organelle responsible for generation of most usable energy in a cell. It also plays an important role in a series of physiological processes such as apoptosis and proliferation. Although previous studies have demonstrated that nicotine modulates the morphology and function ...
USDA-ARS?s Scientific Manuscript database
Arbuscular mycorrhizal (AM) fungi are known for colonizing plant roots, transporting water and nutrients from the soil to the plant. Therefore, environmental conditions set mainly by soil water and nutrient levels are important determinants of AM function and host plant response. Mechanisms of nitro...
Light, Colour & Air Quality: Important Elements of the Learning Environment?
ERIC Educational Resources Information Center
Hathaway, Warren E.
1987-01-01
Reviews and evaluates studies of the effects of light, color, and air quality on the learning environment. Concludes that studies suggest a role for light in establishing and maintaining physiological functions and balances and a need for improved air quality in airtight, energy efficient buildings. (JHZ)
Regulation of Intestinal Epithelial Cells Properties and Functions by Amino Acids.
Kong, Shanshan; Zhang, Yanhui H; Zhang, Weiqiang
2018-01-01
Intestinal epithelial cells (IECs) line the surface of intestinal epithelium, where they play important roles in the digestion of food, absorption of nutrients, and protection of the human body from microbial infections, and others. Dysfunction of IECs can cause diseases. The development, maintenance, and functions of IECs are strongly influenced by external nutrition, such as amino acids. Amino acids play important roles in regulating the properties and functions of IECs. In this article, we briefly reviewed the current understanding of the roles of amino acids in the regulation of IECs' properties and functions in physiological state, including in IECs homeostasis (differentiation, proliferation, and renewal), in intestinal epithelial barrier structure and functions, and in immune responses. We also summarized some important findings on the effects of amino acids supplementation (e.g., glutamine and arginine) in restoring IECs' and intestine functions in some diseased states. These findings will further our understanding of the important roles of amino acids in the homeostasis of IECs and could potentially help identify novel targets and reagents for the therapeutic interventions of diseases associated with dysfunctional IECs.
Coen, S J
2011-06-01
Functional neuroimaging has been used extensively in conjunction with gastric balloon distension in an attempt to unravel the relationship between the brain, regulation of hunger, satiety, and food intake tolerance. A number of researchers have also adopted a more physiological approach using intra-gastric administration of a liquid meal which has revealed different brain responses to gastric balloon distension. These differences are important as they question the utility and relevance of non-physiological models such as gastric balloon distension, especially when investigating mechanisms of feeding behavior such as satiety. However, an assessment of the relevance of physiological versus non-physiological gastric distension has been problematic due to differences in distension volumes between studies. In this issue of Neurogastroenterology and Motility, Geeraerts et al. compare brain activity during volume matched nutrient gastric distension and balloon distension in healthy volunteers. Gastric balloon distension activated the 'visceral pain neuromatrix'. This network of brain regions was deactivated during nutrient infusion, supporting the notion that brain activity during physiological versus non-physiological distension is indeed different. The authors suggest deactivation of the pain neuromatrix during nutrient infusion serves as a prerequisite for tolerance of normal meal volumes in health. © 2011 Blackwell Publishing Ltd.
Positron Emission Tomography of the Heart
DOE R&D Accomplishments Database
Schelbert, H. R.; Phelps, M. E.; Kuhl, D. E.
1979-01-01
Positron emission computed tomography (PCT) represents an important new tool for the noninvasive evaluation and, more importantly, quantification of myocardial performance. Most currently available techniques permit assessment of only one aspect of cardiac function, i.e., myocardial perfusion by gamma scintillation camera imaging with Thallium-201 or left ventricular function by echocardiography or radionuclide angiocardiography. With PCT it may become possible to study all three major segments of myocardial performance, i.e., regional blood flow, mechanical function and, most importantly, myocardial metabolism. Each of these segments can either be evaluated separately or in combination. This report briefly describes the principles and technological advantages of the imaging device, reviews currently available radioactive tracers and how they can be employed for the assessment of flow, function and metabolism; and, lastly, discusses possible applications of PCT for the study of cardiac physiology or its potential role in the diagnosis of cardiac disease.
Nitric oxide: a physiologic messenger.
Lowenstein, C J; Dinerman, J L; Snyder, S H
1994-02-01
To review the physiologic role of nitric oxide, an unusual messenger molecule that mediates blood vessel relaxation, neurotransmission, and pathogen suppression. A MEDLINE search of articles published from 1987 to 1993 that addressed nitric oxide and the enzyme that synthesizes it, nitric oxide synthase. Animal and human studies were selected from 3044 articles to analyze the clinical importance of nitric oxide. Descriptions of the structure and function of nitric oxide synthase were selected to show how nitric oxide acts as a biological messenger molecule. Biochemical and physiologic studies were analyzed if the same results were found by three or more independent observers. Two major classes of nitric oxide synthase enzymes produce nitric oxide. The constitutive isoforms found in endothelial cells and neurons release small amounts of nitric oxide for brief periods to signal adjacent cells, whereas the inducible isoform found in macrophages releases large amounts of nitric oxide continuously to eliminate bacteria and parasites. By diffusing into adjacent cells and binding to enzymes that contain iron, nitric oxide plays many important physiologic roles. It regulates blood pressure, transmits signals between neurons, and suppresses pathogens. Excess amounts, however, can damage host cells, causing neurotoxicity during strokes and causing the hypotension associated with sepsis. Nitric oxide is a simple molecule with many physiologic roles in the cardiovascular, neurologic, and immune systems. Although the general principles of nitric oxide synthesis are known, further research is necessary to determine what role it plays in causing disease.
Characterization of Hippo Pathway Components by Gene Inactivation.
Plouffe, Steven W; Meng, Zhipeng; Lin, Kimberly C; Lin, Brian; Hong, Audrey W; Chun, Justin V; Guan, Kun-Liang
2016-12-01
The Hippo pathway is important for regulating tissue homeostasis, and its dysregulation has been implicated in human cancer. However, it is not well understood how the Hippo pathway becomes dysregulated because few mutations in core Hippo pathway components have been identified. Therefore, much work in the Hippo field has focused on identifying upstream regulators, and a complex Hippo interactome has been identified. Nevertheless, it is not always clear which components are the most physiologically relevant in regulating YAP/TAZ. To provide an overview of important Hippo pathway components, we created knockout cell lines for many of these components and compared their relative contributions to YAP/TAZ regulation in response to a wide range of physiological signals. By this approach, we provide an overview of the functional importance of many Hippo pathway components and demonstrate NF2 and RHOA as important regulators of YAP/TAZ and TAOK1/3 as direct kinases for LATS1/2. Copyright © 2016 Elsevier Inc. All rights reserved.
Functional Task Test: Data Review
NASA Technical Reports Server (NTRS)
Cromwell, Ronita
2014-01-01
After space flight there are changes in multiple physiological systems including: Cardiovascular function; Sensorimotor function; and Muscle function. How do changes in these physiological system impact astronaut functional performance?
The importance of trace element speciation in biomedical science.
Templeton, Douglas M
2003-04-01
According to IUPAC terminology, trace element speciation reflects differences in chemical composition at multiple levels from nuclear and electronic structure to macromolecular complexation. In the medical sciences, all levels of composition are important in various circumstances, and each can affect the bioavailability, distribution, physiological function, toxicity, diagnostic utility, and therapeutic potential of an element. Here we discuss, with specific examples, three biological principles in the intimate relation between speciation and biological behavior: i) the kinetics of interconversion of species determines distribution within the organism, ii) speciation governs transport across various biological barriers, and iii) speciation can limit potentially undesirable interactions between physiologically essential elements. We will also describe differences in the speciation of iron in states of iron overload, to illustrate how speciation analysis can provide insight into cellular processes in human disease.
Two-Pore Channels: Lessons from Mutant Mouse Models
Ruas, Margarida; Galione, Antony; Parrington, John
2016-01-01
Recent interest in two-pore channels (TPCs) has resulted in a variety of studies dealing with the functional role and mechanism of action of these endo-lysosomal proteins in diverse physiological processes. With the availability of mouse lines harbouring mutant alleles for Tpcnl and/or Tpcn2 genes, several studies have made use of them to validate, consolidate and discover new roles for these channels not only at the cellular level but, importantly, also at the level of the whole organism. The different mutant mouse lines that have been used were derived from distinct genetic manipulation strategies, with the aim of knocking out expression of TPC proteins. However, the expression of different residual TPC sequences predicted to occur in these mutant mouse lines, together with the varied degree to which the effects on Tpcn expression have been studied, makes it important to assess the true knockout status of some of the lines. In this review we summarize these Tpcn mutant mouse lines with regard to their predicted effect on Tpcn expression and the extent to which they have been characterized. Additionally, we discuss how results derived from studies using these Tpcn mutant mouse lines have consolidated previously proposed roles for TPCs, such as mediators of NAADP signalling, endo-lysosomal functions, and pancreatic β cell physiology. We will also review how they have been instrumental in the assignment of new physiological roles for these cation channels in processes such as membrane electrical excitability, neoangiogenesis, viral infection and brown adipose tissue and heart function, revealing, in some cases, a specific contribution of a particular TPC isoform. PMID:27330869
Sickness-induced changes in physiology do not affect fecundity or same-sex behavior.
Sylvia, Kristyn E; Báez Ramos, Patricia; Demas, Gregory E
2018-02-01
Previous work in our lab has shown that early-life infection affects female reproductive physiology and function (i.e., smaller ovaries, abnormal estrous cycles) and alters investigation and aggression towards male conspecifics in a reproductive context. Although many studies have investigated the effects of postnatal immune challenge on physiological and behavioral development, fewer studies have examined whether these changes have ultimate effects on reproduction. In the current study, we paired Siberian hamsters (Phodopus sungorus) and simulated a bacterial infection in early life by administering lipopolysaccharide (LPS) to male and female pups on pnd3 and pnd5. In adulthood, hamsters were paired with novel individuals of the same sex, and we scored an array of social behaviors (e.g., investigation, aggression). We then paired animals with individuals of the opposite sex for 5 consecutive nights, providing them with the opportunity to mate. We found that females exhibited impaired reproductive physiology and function in adulthood (i.e., smaller ovaries and abnormal estrous cycles), similar to our previous work. However, both LPS-treated males and females exhibited similar same-sex social behavior when compared with saline-treated controls, they successfully mated, and there were no significant changes in fecundity. These data suggest that the physiological changes in response to neonatal immune challenge may not have long-term effects on reproductive success in a controlled environment. Collectively, the results of this study are particularly important when investigating the relationships between physiology and behavior within an ultimate context. Animals exposed to early-life stress may in fact be capable of compensating for changes in physiology in order to survive and reproduce in some contexts. Copyright © 2017 Elsevier Inc. All rights reserved.
Employee subjective well-being and physiological functioning: An integrative model
Tay, Louis
2015-01-01
Research shows that worker subjective well-being influences physiological functioning—an early signal of poor health outcomes. While several theoretical perspectives provide insights on this relationship, the literature lacks an integrative framework explaining the relationship. We develop a conceptual model explaining the link between subjective well-being and physiological functioning in the context of work. Integrating positive psychology and occupational stress perspectives, our model explains the relationship between subjective well-being and physiological functioning as a result of the direct influence of subjective well-being on physiological functioning and of their common relationships with work stress and personal resources, both of which are influenced by job conditions. PMID:28070359
Type 2 responses at the interface between immunity and fat metabolism.
Odegaard, Justin I; Chawla, Ajay
2015-10-01
Adipose tissue resident leukocytes are often cast solely as the effectors of obesity and its attendant pathologies; however, recent observations have demonstrated that these cells support and effect 'healthy' physiologic function as well as pathologic dysfunction. Importantly, these two disparate outcomes are underpinned by similarly disparate immune programs; type 2 responses instruct and promote metabolic normalcy, while type 1 responses drive tissue dysfunction. In this Review, we summarize the literature regarding type 2 immunity's role in adipose tissue physiology and allude to its potential therapeutic implications. Copyright © 2015 Elsevier Ltd. All rights reserved.
Acid-sensing ion channels in pain and disease
Wemmie, John A.; Taugher, Rebecca J.; Kreple, Collin J.
2015-01-01
Why do neurons sense extracellular acid? In large part, this question has driven increasing investigation on acid-sensing ion channels (ASICs) in the CNS and the peripheral nervous system for the past two decades. Significant progress has been made in understanding the structure and function of ASICs at the molecular level. Studies aimed at clarifying their physiological importance have suggested roles for ASICs in pain, neurological and psychiatric disease. This Review highlights recent findings linking these channels to physiology and disease. In addition, it discusses some of the implications for therapy and points out questions that remain unanswered. PMID:23783197
Acid-sensing ion channels in pain and disease.
Wemmie, John A; Taugher, Rebecca J; Kreple, Collin J
2013-07-01
Why do neurons sense extracellular acid? In large part, this question has driven increasing investigation on acid-sensing ion channels (ASICs) in the CNS and the peripheral nervous system for the past two decades. Significant progress has been made in understanding the structure and function of ASICs at the molecular level. Studies aimed at clarifying their physiological importance have suggested roles for ASICs in pain, neurological and psychiatric disease. This Review highlights recent findings linking these channels to physiology and disease. In addition, it discusses some of the implications for therapy and points out questions that remain unanswered.
Yar, Sumeyye; Chowdhury, Shamim A K; Davis, Robert T; Kobayashi, Minae; Monasky, Michelle M; Rajan, Sudarsan; Wolska, Beata M; Gaponenko, Vadim; Kobayashi, Tomoyoshi; Wieczorek, David F; Solaro, R John
2013-06-07
α-Tropomyosin (α-TM) has a conserved, charged Asp-137 residue located in the hydrophobic core of its coiled-coil structure, which is unusual in that the residue is found at a position typically occupied by a hydrophobic residue. Asp-137 is thought to destabilize the coiled-coil and so impart structural flexibility to the molecule, which is believed to be crucial for its function in the heart. A previous in vitro study indicated that the conversion of Asp-137 to a more typical canonical Leu alters flexibility of TM and affects its in vitro regulatory functions. However, the physiological importance of the residue Asp-137 and altered TM flexibility is unknown. In this study, we further analyzed structural properties of the α-TM-D137L variant and addressed the physiological importance of TM flexibility in cardiac function in studies with a novel transgenic mouse model expressing α-TM-D137L in the heart. Our NMR spectroscopy data indicated that the presence of D137L introduced long range rearrangements in TM structure. Differential scanning calorimetry measurements demonstrated that α-TM-D137L has higher thermal stability compared with α-TM, which correlated with decreased flexibility. Hearts of transgenic mice expressing α-TM-D137L showed systolic and diastolic dysfunction with decreased myofilament Ca(2+) sensitivity and cardiomyocyte contractility without changes in intracellular Ca(2+) transients or post-translational modifications of major myofilament proteins. We conclude that conversion of the highly conserved Asp-137 to Leu results in loss of flexibility of TM that is important for its regulatory functions in mouse hearts. Thus, our results provide insight into the link between flexibility of TM and its function in ejecting hearts.
Yar, Sumeyye; Chowdhury, Shamim A. K.; Davis, Robert T.; Kobayashi, Minae; Monasky, Michelle M.; Rajan, Sudarsan; Wolska, Beata M.; Gaponenko, Vadim; Kobayashi, Tomoyoshi; Wieczorek, David F.; Solaro, R. John
2013-01-01
α-Tropomyosin (α-TM) has a conserved, charged Asp-137 residue located in the hydrophobic core of its coiled-coil structure, which is unusual in that the residue is found at a position typically occupied by a hydrophobic residue. Asp-137 is thought to destabilize the coiled-coil and so impart structural flexibility to the molecule, which is believed to be crucial for its function in the heart. A previous in vitro study indicated that the conversion of Asp-137 to a more typical canonical Leu alters flexibility of TM and affects its in vitro regulatory functions. However, the physiological importance of the residue Asp-137 and altered TM flexibility is unknown. In this study, we further analyzed structural properties of the α-TM-D137L variant and addressed the physiological importance of TM flexibility in cardiac function in studies with a novel transgenic mouse model expressing α-TM-D137L in the heart. Our NMR spectroscopy data indicated that the presence of D137L introduced long range rearrangements in TM structure. Differential scanning calorimetry measurements demonstrated that α-TM-D137L has higher thermal stability compared with α-TM, which correlated with decreased flexibility. Hearts of transgenic mice expressing α-TM-D137L showed systolic and diastolic dysfunction with decreased myofilament Ca2+ sensitivity and cardiomyocyte contractility without changes in intracellular Ca2+ transients or post-translational modifications of major myofilament proteins. We conclude that conversion of the highly conserved Asp-137 to Leu results in loss of flexibility of TM that is important for its regulatory functions in mouse hearts. Thus, our results provide insight into the link between flexibility of TM and its function in ejecting hearts. PMID:23609439
Periodontal Ligament Entheses and their Adaptive Role in the Context of Dentoalveolar Joint Function
Lin, Jeremy D.; Jang, Andrew T.; Kurylo, Michael P.; Hurng, Jonathan; Yang, Feifei; Yang, Lynn; Pal, Arvin; Chen, Ling; Ho, Sunita P.
2017-01-01
Objectives The dynamic bone-periodontal ligament (PDL)-tooth fibrous joint consists of two adaptive functionally graded interfaces (FGI), the PDL-bone and PDL-cementum that respond to mechanical strain transmitted during mastication. In general, from a materials and mechanics perspective, FGI prevent catastrophic failure during prolonged cyclic loading. This review is a discourse of results gathered from literature to illustrate the dynamic adaptive nature of the fibrous joint in response to physiologic and pathologic simulated functions, and experimental tooth movement. Methods Historically, studies have investigated soft to hard tissue transitions through analytical techniques that provided insights into structural, biochemical, and mechanical characterization methods. Experimental approaches included two dimensional to three dimensional advanced in situ imaging and analytical techniques. These techniques allowed mapping and correlation of deformations to physicochemical and mechanobiological changes within volumes of the complex subjected to concentric and eccentric loading regimes respectively. Results Tooth movement is facilitated by mechanobiological activity at the interfaces of the fibrous joint and generates elastic discontinuities at these interfaces in response to eccentric loading. Both concentric and eccentric loads mediated cellular responses to strains, and prompted self-regulating mineral forming and resorbing zones that in turn altered the functional space of the joint. Significance A multiscale biomechanics and mechanobiology approach is important for correlating joint function to tissue-level strain-adaptive properties with overall effects on joint form as related to physiologic and pathologic functions. Elucidating the shift in localization of biomolecules specifically at interfaces during development, function, and therapeutic loading of the joint is critical for developing “functional regeneration and adaptation” strategies with an emphasis on restoring physiologic joint function. PMID:28476202
Physiological Importance of Hydrogen Sulfide: Emerging Potent Neuroprotector and Neuromodulator
Chung, Hyung-Joo
2016-01-01
Hydrogen sulfide (H2S) is an emerging neuromodulator that is considered to be a gasotransmitter similar to nitrogen oxide (NO) and carbon monoxide (CO). H2S exerts universal cytoprotective effects and acts as a defense mechanism in organisms ranging from bacteria to mammals. It is produced by the enzymes cystathionine β-synthase (CBS), cystathionine ϒ-lyase (CSE), 3-mercaptopyruvate sulfurtransferase (MST), and D-amino acid oxidase (DAO), which are also involved in tissue-specific biochemical pathways for H2S production in the human body. H2S exerts a wide range of pathological and physiological functions in the human body, from endocrine system and cellular longevity to hepatic protection and kidney function. Previous studies have shown that H2S plays important roles in peripheral nerve regeneration and degeneration and has significant value during Schwann cell dedifferentiation and proliferation but it is also associated with axonal degradation and the remyelination of Schwann cells. To date, physiological and toxic levels of H2S in the human body remain unclear and most of the mechanisms of action underlying the effects of H2S have yet to be fully elucidated. The primary purpose of this review was to provide an overview of the role of H2S in the human body and to describe its beneficial effects. PMID:27413423
[Development of opened instrument for generating and measuring physiological signal].
Chen, Longcong; Hu, Guohu; Gao, Bin
2004-12-01
An opened instrument with liquid crystal display (LCD) for generating and measuring physiological signal is introduced in this paper. Based on a single-chip microcomputer. the instrument uses the technique of LCD screen to display signal wave and information, and it realizes man-machine interaction by keyboard. This instrument can produce not only defined signal in common use by utilizing important saved data and relevant arithmetic, but also user-defined signal. Therefore, it is open to produce signal. In addition, this instrument has strong extension because of its modularized design as computer, which has much function such as displaying, measuring and saving physiological signal, and many features such as low power consumption, small volume, low cost and portability. Hence this instrument is convenient for experiment teaching, clinic examining, maintaining of medical instrument.
Analog integrated circuits design for processing physiological signals.
Li, Yan; Poon, Carmen C Y; Zhang, Yuan-Ting
2010-01-01
Analog integrated circuits (ICs) designed for processing physiological signals are important building blocks of wearable and implantable medical devices used for health monitoring or restoring lost body functions. Due to the nature of physiological signals and the corresponding application scenarios, the ICs designed for these applications should have low power consumption, low cutoff frequency, and low input-referred noise. In this paper, techniques for designing the analog front-end circuits with these three characteristics will be reviewed, including subthreshold circuits, bulk-driven MOSFETs, floating gate MOSFETs, and log-domain circuits to reduce power consumption; methods for designing fully integrated low cutoff frequency circuits; as well as chopper stabilization (CHS) and other techniques that can be used to achieve a high signal-to-noise performance. Novel applications using these techniques will also be discussed.
Physiological changes in neurodegeneration - mechanistic insights and clinical utility.
Ahmed, Rebekah M; Ke, Yazi D; Vucic, Steve; Ittner, Lars M; Seeley, William; Hodges, John R; Piguet, Olivier; Halliday, Glenda; Kiernan, Matthew C
2018-05-01
The effects of neurodegenerative syndromes extend beyond cognitive function to involve key physiological processes, including eating and metabolism, autonomic nervous system function, sleep, and motor function. Changes in these physiological processes are present in several conditions, including frontotemporal dementia, amyotrophic lateral sclerosis, Alzheimer disease and the parkinsonian plus conditions. Key neural structures that mediate physiological changes across these conditions include neuroendocrine and hypothalamic pathways, reward pathways, motor systems and the autonomic nervous system. In this Review, we highlight the key changes in physiological processing in neurodegenerative syndromes and the similarities in these changes between different progressive neurodegenerative brain conditions. The changes and similarities between disorders might provide novel insights into the human neural correlates of physiological functioning. Given the evidence that physiological changes can arise early in the neurodegenerative process, these changes could provide biomarkers to aid in the early diagnosis of neurodegenerative diseases and in treatment trials.
Kaji, Izumi; Karaki, Shin-ichiro; Fukami, Yasuyuki; Terasaki, Masaki; Kuwahara, Atsukazu
2009-05-01
Taste transduction molecules, such as Galpha(gust), and taste receptor families for bitter [taste receptor type 2 (T2R)], sweet, and umami, have previously been identified in taste buds and the gastrointestinal (GI) tract; however, their physiological functions in GI tissues are still unclear. Here, we investigated the physiological function and expression of T2R in human and rat large intestine using various physiological and molecular biological techniques. To study the physiological function of T2R, the effect of a bitter compound, 6-n-propyl-2-thiouracil (6-PTU), on transepithelial ion transport was investigated using the Ussing chamber technique. In mucosal-submucosal preparations, mucosal 6-PTU evoked Cl(-) and HCO(3)(-) secretions in a concentration-dependent manner. In rat middle colon, levels of 6-PTU-evoked anion secretion were higher than in distal colon, but there was no such difference in human large intestine. The response to 6-PTU was greatly reduced by piroxicam, but not by tetrodotoxin. Additionally, prostaglandin E(2) concentration-dependently potentiated the response to 6-PTU. Transcripts of multiple T2Rs (putative 6-PTU receptors) were detected in both human and rat colonic mucosa by RT-PCR. In conclusion, these results suggest that the T2R ligand, 6-PTU, evokes anion secretion, and such response is regulated by prostaglandins. This luminal bitter sensing mechanism may be important for host defense in the GI tract.
Sex differences in the physiology of eating
Asarian, Lori
2013-01-01
Hypothalamic-pituitary-gonadal (HPG) axis function fundamentally affects the physiology of eating. We review sex differences in the physiological and pathophysiological controls of amounts eaten in rats, mice, monkeys, and humans. These controls result from interactions among genetic effects, organizational effects of reproductive hormones (i.e., permanent early developmental effects), and activational effects of these hormones (i.e., effects dependent on hormone levels). Male-female sex differences in the physiology of eating involve both organizational and activational effects of androgens and estrogens. An activational effect of estrogens decreases eating 1) during the periovulatory period of the ovarian cycle in rats, mice, monkeys, and women and 2) tonically between puberty and reproductive senescence or ovariectomy in rats and monkeys, sometimes in mice, and possibly in women. Estrogens acting on estrogen receptor-α (ERα) in the caudal medial nucleus of the solitary tract appear to mediate these effects in rats. Androgens, prolactin, and other reproductive hormones also affect eating in rats. Sex differences in eating are mediated by alterations in orosensory capacity and hedonics, gastric mechanoreception, ghrelin, CCK, glucagon-like peptide-1 (GLP-1), glucagon, insulin, amylin, apolipoprotein A-IV, fatty-acid oxidation, and leptin. The control of eating by central neurochemical signaling via serotonin, MSH, neuropeptide Y, Agouti-related peptide (AgRP), melanin-concentrating hormone, and dopamine is modulated by HPG function. Finally, sex differences in the physiology of eating may contribute to human obesity, anorexia nervosa, and binge eating. The variety and physiological importance of what has been learned so far warrant intensifying basic, translational, and clinical research on sex differences in eating. PMID:23904103
Structure-Function Relations in Physiology Education: Where's the Mechanism?
ERIC Educational Resources Information Center
Lira, Matthew E.; Gardner, Stephanie M.
2017-01-01
Physiology demands systems thinking: reasoning within and between levels of biological organization and across different organ systems. Many physiological mechanisms explain how structures and their properties interact at one level of organization to produce emergent functions at a higher level of organization. Current physiology principles, such…
Pituitary adenylate cyclase-activating polypeptide: a novel peptide with protean implications.
Pisegna, Joseph R; Oh, David S
2007-02-01
The purpose of this review is to highlight the importance of pituitary adenylate cyclase-activating polypeptide in physiological processes and to describe how this peptide is becoming increasingly recognized as having a major role in the body. Since its discovery in 1989, investigators have sought to determine the site of biological activity and the function of pituitary adenylate cyclase-activating polypeptide in maintaining homeostasis. Since its discovery, pituitary adenylate cyclase-activating polypeptide appears to play an important role in the regulation of processes within the central nervous system and gastrointestinal tract, as well in reproductive biology. Pituitary adenylate cyclase-activating polypeptide has been shown to regulate tumor cell growth and to regulate immune function through its effects on T lympocytes. These discoveries suggest the importance of pituitary adenylate cyclase-activating polypeptide in neuronal development, neuronal function, gastrointestinal tract function and reproduction. Future studies will examine more closely the role of pituitary adenylate cyclase-activating polypeptide in regulation of malignantly transformed cells, as well as in regulation of immune function.
Regulation of Mammalian Physiology by Interconnected Circadian and Feeding Rhythms
Atger, Florian; Mauvoisin, Daniel; Weger, Benjamin; Gobet, Cédric; Gachon, Frédéric
2017-01-01
Circadian clocks are endogenous timekeeping systems that adapt in an anticipatory fashion the physiology and behavior of most living organisms. In mammals, the master pacemaker resides in the suprachiasmatic nucleus and entrains peripheral clocks using a wide range of signals that differentially schedule physiology and gene expression in a tissue-specific manner. The peripheral clocks, such as those found in the liver, are particularly sensitive to rhythmic external cues like feeding behavior, which modulate the phase and amplitude of rhythmic gene expression. Consequently, the liver clock temporally tunes the expression of many genes involved in metabolism and physiology. However, the circadian modulation of cellular functions also relies on multiple layers of posttranscriptional and posttranslational regulation. Strikingly, these additional regulatory events may happen independently of any transcriptional oscillations, showing that complex regulatory networks ultimately drive circadian output functions. These rhythmic events also integrate feeding-related cues and adapt various metabolic processes to food availability schedules. The importance of such temporal regulation of metabolism is illustrated by metabolic dysfunctions and diseases resulting from circadian clock disruption or inappropriate feeding patterns. Therefore, the study of circadian clocks and rhythmic feeding behavior should be of interest to further advance our understanding of the prevention and therapy of metabolic diseases. PMID:28337174
Steroids in teleost fishes: A functional point of view.
Tokarz, Janina; Möller, Gabriele; Hrabě de Angelis, Martin; Adamski, Jerzy
2015-11-01
Steroid hormones are involved in the regulation of a variety of processes like embryonic development, sex differentiation, metabolism, immune responses, circadian rhythms, stress response, and reproduction in vertebrates. Teleost fishes and humans show a remarkable conservation in many developmental and physiological aspects, including the endocrine system in general and the steroid hormone related processes in particular. This review provides an overview of the current knowledge about steroid hormone biosynthesis and the steroid hormone receptors in teleost fishes and compares the findings to the human system. The impact of the duplicated genome in teleost fishes on steroid hormone biosynthesis and perception is addressed. Additionally, important processes in fish physiology regulated by steroid hormones, which are most dissimilar to humans, are described. We also give a short overview on the influence of anthropogenic endocrine disrupting compounds on steroid hormone signaling and the resulting adverse physiological effects for teleost fishes. By this approach, we show that the steroidogenesis, hormone receptors, and function of the steroid hormones are reasonably well understood when summarizing the available data of all teleost species analyzed to date. However, on the level of a single species or a certain fish-specific aspect of physiology, further research is needed. Copyright © 2015 Elsevier Inc. All rights reserved.
Modulation of Intestinal Paracellular Transport by Bacterial Pathogens.
Roxas, Jennifer Lising; Viswanathan, V K
2018-03-25
The passive and regulated movement of ions, solutes, and water via spaces between cells of the epithelial monolayer plays a critical role in the normal intestinal functioning. This paracellular pathway displays a high level of structural and functional specialization, with the membrane-spanning complexes of the tight junctions, adherens junctions, and desmosomes ensuring its integrity. Tight junction proteins, like occludin, tricellulin, and the claudin family isoforms, play prominent roles as barriers to unrestricted paracellular transport. The past decade has witnessed major advances in our understanding of the architecture and function of epithelial tight junctions. While it has been long appreciated that microbes, notably bacterial and viral pathogens, target and disrupt junctional complexes and alter paracellular permeability, the precise mechanisms remain to be defined. Notably, renewed efforts will be required to interpret the available data on pathogen-mediated barrier disruption in the context of the most recent findings on tight junction structure and function. While much of the focus has been on pathogen-induced dysregulation of junctional complexes, commensal microbiota and their products may influence paracellular permeability and contribute to the normal physiology of the gut. Finally, microbes and their products have become important tools in exploring host systems, including the junctional properties of epithelial cells. © 2018 American Physiological Society. Compr Physiol 8:823-842, 2018. Copyright © 2018 American Physiological Society. All rights reserved.
Biological roles of fungal carotenoids.
Avalos, Javier; Carmen Limón, M
2015-08-01
Carotenoids are terpenoid pigments widespread in nature, produced by bacteria, fungi, algae and plants. They are also found in animals, which usually obtain them through the diet. Carotenoids in plants provide striking yellow, orange or red colors to fruits and flowers, and play important metabolic and physiological functions, especially relevant in photosynthesis. Their functions are less clear in non-photosynthetic microorganisms. Different fungi produce diverse carotenoids, but the mutants unable to produce them do not exhibit phenotypic alterations in the laboratory, apart of lack of pigmentation. This review summarizes the current knowledge on the functional basis for carotenoid production in fungi. Different lines of evidence support a protective role of carotenoids against oxidative stress and exposure to visible light or UV irradiation. In addition, the carotenoids are intermediary products in the biosynthesis of physiologically active apocarotenoids or derived compounds. This is the case of retinal, obtained from the symmetrical oxidative cleavage of β-carotene. Retinal is the light-absorbing prosthetic group of the rhodopsins, membrane-bound photoreceptors present also in many fungal species. In Mucorales, β-carotene is an intermediary in the synthesis of trisporoids, apocarotenoid derivatives that include the sexual hormones the trisporic acids, and they are also presumably used in the synthesis of sporopollenin polymers. In conclusion, fungi have adapted their ability to produce carotenoids for different non-essential functions, related with stress tolerance or with the synthesis of physiologically active by-products.
Shibasaki, Koji; Suzuki, Makoto; Mizuno, Atsuko; Tominaga, Makoto
2007-02-14
Physiological body temperature is an important determinant for neural functions, and it is well established that changes in temperature have dynamic influences on hippocampal neural activities. However, the detailed molecular mechanisms have never been clarified. Here, we show that hippocampal neurons express functional transient receptor potential vanilloid 4 (TRPV4), one of the thermosensitive TRP (transient receptor potential) channels, and that TRPV4 is constitutively active at physiological temperature. Activation of TRPV4 at 37 degrees C depolarized the resting membrane potential in hippocampal neurons by allowing cation influx, which was observed in wild-type (WT) neurons, but not in TRPV4-deficient (TRPV4KO) cells, although dendritic morphology, synaptic marker clustering, and synaptic currents were indistinguishable between the two genotypes. Furthermore, current injection studies revealed that TRPV4KO neurons required larger depolarization to evoke firing, equivalent to WT neurons, indicating that TRPV4 is a key regulator for hippocampal neural excitabilities. We conclude that TRPV4 is activated by physiological temperature in hippocampal neurons and thereby controls their excitability.
USDA-ARS?s Scientific Manuscript database
The gut microbiome of insects plays an important role in their ecology and evolution, participating in nutrient acquisition, immunity, and behavior. Microbial community structure within the gut is heavily influenced by differences among gut regions in morphology and physiology, which determine the n...
AMPK Agonist AICAR Improves Cognition and Motor Coordination in Young and Aged Mice
ERIC Educational Resources Information Center
Kobilo, Tali; Guerrieri, Davide; Zhang, Yongqing; Collica, Sarah C.; Becker, Kevin G.; van Praag, Henriette
2014-01-01
Normal aging can result in a decline of memory and muscle function. Exercise may prevent or delay these changes. However, aging-associated frailty can preclude physical activity. In young sedentary animals, pharmacological activation of AMP-activated protein kinase (AMPK), a transcriptional regulator important for muscle physiology, enhanced…
USDA-ARS?s Scientific Manuscript database
The Middle East-Asia Minor 1 (MEAM1) whitefly, Bemisia tabaci (Gennadius) is an economically important pest of food, fiber, and ornamental crops. This pest has evolved a number of adaptations to overcome physiological challenges, including 1) the ability to regulate osmotic stress between gut lumen ...
ERIC Educational Resources Information Center
Koss, Kalsea J.; George, Melissa R. W.; Davies, Patrick T.; Cicchetti, Dante; Cummings, E. Mark; Sturge-Apple, Melissa L.
2013-01-01
Examining children's physiological functioning is an important direction for understanding the links between interparental conflict and child adjustment. Utilizing growth mixture modeling, the present study examined children's cortisol reactivity patterns in response to a marital dispute. Analyses revealed three different patterns of cortisol…
Deeg, Cornelia A; Amann, Barbara; Lutz, Konstantin; Hirmer, Sieglinde; Lutterberg, Karina; Kremmer, Elisabeth; Hauck, Stefanie M
2016-04-23
Müller glial cells are important regulators of physiological function of retina. In a model disease of retinal inflammation and spontaneous recurrent uveitis in horses (ERU), we could show that retinal Müller glial cells significantly change potassium and water channel protein expression during autoimmune pathogenesis. The most significantly changed channel protein in neuroinflammatory ERU was aquaporin 11 (AQP11). Aquaporins (AQP, 13 members) are important regulators of water and small solute transport through membranes. AQP11 is an unorthodox member of this family and was assigned to a third group of AQPs because of its difference in amino acid sequence (conserved sequence is only 11 %) and especially its largely unknown function. In order to gain insight into the distribution, localization, and function of AQP11 in the retina, we first developed a novel monoclonal antibody for AQP11 enabling quantification, localization, and functional studies. In the horse retina, AQP11 was exclusively expressed at Müller glial cell membranes. In uveitic condition, AQP11 disappeared from gliotic Müller cells concomitant with glutamine synthase. Since function of AQP11 is still under debate, we assessed the impact of AQP11 channel on cell volume regulation of primary Müller glial cells under different osmotic conditions. We conclude a concomitant role for AQP11 with AQP4 in water efflux from these glial cells, which is disturbed in ERU. This could probably contribute to swelling and subsequent severe complication of retinal edema through impaired intracellular fluid regulation. Therefore, AQP11 is important for physiological Müller glia function and the expression pattern and function of this water channel seems to have distinct functions in central nervous system. The significant reduction in neuroinflammation points to a crucial role in pathogenesis of autoimmune uveitis.
Stretch-activated TRPV2 channels: Role in mediating cardiopathies.
Aguettaz, Elizabeth; Bois, Patrick; Cognard, Christian; Sebille, Stéphane
2017-11-01
Transient receptor potential vanilloid type 2, TRPV2, is a calcium-permeable cation channel belonging to the TRPV channel family. Although this channel has been first characterized as a noxious heat sensor, its mechanosensor property recently gained importance in various physiological functions. TRPV2 has been described as a stretch-mediated channel and a regulator of calcium homeostasis in several cell types and has been shown to be involved in the stretch-dependent responses in cardiomyocytes. Hence, several studies in the last years support the idea that TRPV2 play a key role in the function and structure of the heart, being involved in the cardiac compensatory mechanisms in response to pathologic or exercise-induced stress. We present here an overview of the current literature and concepts of TRPV2 channels involvement (i) in the mechanical coupling mechanisms in heart and (ii) in the mechanisms that lead to cardiomyopathies. All these studies lead us to think that TRPV2 may also be an important cardiac drug target based on its major physiological roles in heart. Copyright © 2017 Elsevier Ltd. All rights reserved.
Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Ludtmann, Marthe H.R.; Angelova, Plamena R.; Ninkina, Natalia N.; Gandhi, Sonia
2016-01-01
Misfolded α-synuclein is a key factor in the pathogenesis of Parkinson's disease (PD). However, knowledge about a physiological role for the native, unfolded α-synuclein is limited. Using brains of mice lacking α-, β-, and γ-synuclein, we report that extracellular monomeric α-synuclein enters neurons and localizes to mitochondria, interacts with ATP synthase subunit α, and modulates ATP synthase function. Using a combination of biochemical, live-cell imaging and mitochondrial respiration analysis, we found that brain mitochondria of α-, β-, and γ-synuclein knock-out mice are uncoupled, as characterized by increased mitochondrial respiration and reduced mitochondrial membrane potential. Furthermore, synuclein deficiency results in reduced ATP synthase efficiency and lower ATP levels. Exogenous application of low unfolded α-synuclein concentrations is able to increase the ATP synthase activity that rescues the mitochondrial phenotypes observed in synuclein deficiency. Overall, the data suggest that α-synuclein is a previously unrecognized physiological regulator of mitochondrial bioenergetics through its ability to interact with ATP synthase and increase its efficiency. This may be of particular importance in times of stress or PD mutations leading to energy depletion and neuronal cell toxicity. SIGNIFICANCE STATEMENT Misfolded α-synuclein aggregations in the form of Lewy bodies have been shown to be a pathological hallmark in histological staining of Parkinson's disease (PD) patient brains. It is known that misfolded α-synuclein is a key driver in PD pathogenesis, but the physiological role of unfolded monomeric α-synuclein remains unclear. Using neuronal cocultures and isolated brain mitochondria of α-, β-, and γ-synuclein knock-out mice and monomeric α-synuclein, this current study shows that α-synuclein in its unfolded monomeric form improves ATP synthase efficiency and mitochondrial function. The ability of monomeric α-synuclein to enhance ATP synthase efficiency under physiological conditions may be of importance when α-synuclein undergoes the misfolding and aggregation reported in PD. PMID:27733604
Paim, Rafaela M M; Araujo, Ricardo N; Leis, Miguel; Sant'anna, Mauricio R V; Gontijo, Nelder F; Lazzari, Claudio R; Pereira, Marcos H
2016-10-01
Blood-sucking vectors must overcome thermal stress caused by intake of proportionally large amounts of warm blood from their hosts. In response to this, Heat Shock Proteins (HSPs) such as the widely studied HSP70 family (the inducible HSP70 and the cognate form HSC70, known for their role in preserving essential cellular functions) are rapidly up-regulated in their tissues. The triatomine Rhodnius prolixus is an important vector of Trypanosoma cruzi, the causative pathogen of Chagas' disease, and is also a model organism for studying insect biology and physiology. In this work, we observed that the expression of Rhodnius prolixus HSP70 was rapidly up-regulated in response to thermal shocks (0 °C and 40 °C) and also during the first hours after feeding on blood. HSP70/HSC70 RNAi knockdown elicited important alterations in R. prolixus physiological responses triggered by blood meal and starvation. HSP70/HSC70 knockdown insects showed lower resistance to prolonged starvation in comparison to appropriate controls, dying between 32 and 40 days after dsRNA injection. After blood feeding, the physiological effects of HSP70/HSC70 knockdown were more prominent and the insects died even earlier, within 14-20 days after feeding (21-27 days after dsRNA injection). These bugs showed impaired blood processing and digestion, reduced energetic metabolism and the midgut immune responses were compromised. Our findings suggest that HSP70/HSC70 depletion affected R. prolixus in starvation or fed conditions. After feeding, the arrival of blood in the digestive tract of knockdown insects fails to activate essential signaling pathways involved in blood processing, producing several alterations in their physiological processes enough to generate a premature death. Copyright © 2016 Elsevier Ltd. All rights reserved.
[Construction of a physiological aging scale for healthy people based on a modified Delphi method].
Long, Yao; Zhou, Xuan; Deng, Pengfei; Liao, Xiong; Wu, Lei; Zhou, Jianming; Huang, Helang
2016-04-01
To build a physiological aging scale for healthy people. We collected age-related physiologic items through literature screening and expert interview. Two rounds of Delphi were implemented. The importance, feasibility and the degree of authority for the physiological index system were graded. Using analytic hierarchy process, we determined the weight of dimensions and items. Using Delphy mothod, 17 physiological and other professional experts offered the results as follow: coefficient of expert authorities Cr was 0.86±0.03, coordination coefficients for the first and second round were 0.264(χ2=229.691, P<0.001) and 0.293(χ2=228.474,P<0.001), respectively. The consistency was good. The aging scale for healthy people included 3 dimensions, namely physical form, feeling movement and functional status. Each dimension had 8 items. The weight coefficients for the 3 dimensions were 0.54, 0.16, and 0.30, respectively. The Cronbach's α coefficient of the scale was 0.893, the reliability was 0.796, and the variance of the common factor was 58.17%. The improved Delphi method or physiological aging scale is satisfied, which can provide reference for the evaluation of aging.
Measuring Dynamic Kidney Function in an Undergraduate Physiology Laboratory
ERIC Educational Resources Information Center
Medler, Scott; Harrington, Frederick
2013-01-01
Most undergraduate physiology laboratories are very limited in how they treat renal physiology. It is common to find teaching laboratories equipped with the capability for high-resolution digital recordings of physiological functions (muscle twitches, ECG, action potentials, respiratory responses, etc.), but most urinary laboratories still rely on…
Importance of exercise immunology in health promotion.
Neto, J C Rosa; Lira, F S; de Mello, M T; Santos, Ronaldo Vagner T
2011-11-01
Chronic physical exercise with adequate intensity and volume associated with sufficient recovery promotes adaptations in several physiological systems. While intense and exhaustive exercise is considered an important immunosuppressor agent and increases the incidence of upper respiratory tract infections (URTI), moderate regular exercise has been associated with significant disease protection and is a complementary treatment of many chronic diseases. The effects of chronic exercise occur because physical training can induce several physiological, biochemical and psychological adaptations. More recently, the effect of acute exercise and training on the immunological system has been discussed, and many studies suggest the importance of the immune system in prevention and partial recovery in pathophysiological situations. Currently, there are two important hypotheses that may explain the effects of exercise and training on the immune system. These hypotheses including (1) the effect of exercise upon hormones and cytokines (2) because exercise can modulate glutamine concentration. In this review, we discuss the hypothesis that exercise may modulate immune functions and the importance of exercise immunology in respect to chronic illnesses, chronic heart failure, malnutrition and inflammation.
Arousal, working memory capacity, and sexual decision-making in men.
Spokes, Tara; Hine, Donald W; Marks, Anthony D G; Quain, Peter; Lykins, Amy D
2014-08-01
This study investigated whether working memory capacity (WMC) moderated the relationship between physiological arousal and sexual decision making. A total of 59 men viewed 20 consensual and 20 non-consensual images of heterosexual interaction while their physiological arousal levels were recorded using skin conductance response. Participants also completed an assessment of WMC and a date-rape analogue task for which they had to identify the point at which an average Australian male would cease all sexual advances in response to verbal and/or physical resistance from a female partner. Participants who were more physiologically aroused by and spent more time viewing the non-consensual sexual imagery nominated significantly later stopping points on the date-rape analogue task. Consistent with our predictions, the relationship between physiological arousal and nominated stopping point was strongest for participants with lower levels of WMC. For participants with high WMC, physiological arousal was unrelated to nominated stopping point. Thus, executive functioning ability (and WMC in particular) appears to play an important role in moderating men's decision making with regard to sexually aggressive behavior.
Cuperus, Tryntsje; Coorens, Maarten; van Dijk, Albert; Haagsman, Henk P
2013-11-01
Host defense peptides (HDPs) are important effector molecules of the innate immune system of vertebrates. These antimicrobial peptides are also present in invertebrates, plants and fungi. HDPs display broad-spectrum antimicrobial activities and fulfill an important role in the first line of defense of many organisms. It is becoming increasingly clear that in the animal kingdom the functions of HDPs are not confined to direct antimicrobial actions. Research in mammals has indicated that HDPs have many immunomodulatory functions and are also involved in other physiological processes ranging from development to wound healing. During the past five years our knowledge about avian HDPs has increased considerably. This review addresses our current knowledge on the evolution, regulation and biological functions of HDPs of birds. Copyright © 2013 Elsevier Ltd. All rights reserved.
Dynamic physiological modeling for functional diffuse optical tomography
Diamond, Solomon Gilbert; Huppert, Theodore J.; Kolehmainen, Ville; Franceschini, Maria Angela; Kaipio, Jari P.; Arridge, Simon R.; Boas, David A.
2009-01-01
Diffuse optical tomography (DOT) is a noninvasive imaging technology that is sensitive to local concentration changes in oxy- and deoxyhemoglobin. When applied to functional neuroimaging, DOT measures hemodynamics in the scalp and brain that reflect competing metabolic demands and cardiovascular dynamics. The diffuse nature of near-infrared photon migration in tissue and the multitude of physiological systems that affect hemodynamics motivate the use of anatomical and physiological models to improve estimates of the functional hemodynamic response. In this paper, we present a linear state-space model for DOT analysis that models the physiological fluctuations present in the data with either static or dynamic estimation. We demonstrate the approach by using auxiliary measurements of blood pressure variability and heart rate variability as inputs to model the background physiology in DOT data. We evaluate the improvements accorded by modeling this physiology on ten human subjects with simulated functional hemodynamic responses added to the baseline physiology. Adding physiological modeling with a static estimator significantly improved estimates of the simulated functional response, and further significant improvements were achieved with a dynamic Kalman filter estimator (paired t tests, n = 10, P < 0.05). These results suggest that physiological modeling can improve DOT analysis. The further improvement with the Kalman filter encourages continued research into dynamic linear modeling of the physiology present in DOT. Cardiovascular dynamics also affect the blood-oxygen-dependent (BOLD) signal in functional magnetic resonance imaging (fMRI). This state-space approach to DOT analysis could be extended to BOLD fMRI analysis, multimodal studies and real-time analysis. PMID:16242967
Microbial stress-response physiology and its implications for ecosystem function.
Schimel, Joshua; Balser, Teri C; Wallenstein, Matthew
2007-06-01
Microorganisms have a variety of evolutionary adaptations and physiological acclimation mechanisms that allow them to survive and remain active in the face of environmental stress. Physiological responses to stress have costs at the organismal level that can result in altered ecosystem-level C, energy, and nutrient flows. These large-scale impacts result from direct effects on active microbes' physiology and by controlling the composition of the active microbial community. We first consider some general aspects of how microbes experience environmental stresses and how they respond to them. We then discuss the impacts of two important ecosystem-level stressors, drought and freezing, on microbial physiology and community composition. Even when microbial community response to stress is limited, the physiological costs imposed on soil microbes are large enough that they may cause large shifts in the allocation and fate of C and N. For example, for microbes to synthesize the osmolytes they need to survive a single drought episode they may consume up to 5% of total annual net primary production in grassland ecosystems, while acclimating to freezing conditions switches Arctic tundra soils from immobilizing N during the growing season to mineralizing it during the winter. We suggest that more effectively integrating microbial ecology into ecosystem ecology will require a more complete integration of microbial physiological ecology, population biology, and process ecology.
Mammalian Polyamine Metabolism and Function
Pegg, Anthony E.
2009-01-01
Summary Polyamines are ubiquitous small basic molecules that play multiple essential roles in mammalian physiology. Their cellular content is highly regulated and there is convincing evidence that altered metabolism is involvement in many disease states. Drugs altering polyamine levels may therefore have a variety of important targets. This review will summarize the current state of understanding of polyamine metabolism and function, the regulation of polyamine content, and heritable pathological conditions that may be derived from altered polyamine metabolism. PMID:19603518
Arch-Tirado, Emilio; Lino-González, Ana Luisa; Alfaro-Rodríguez, Alfonso
2013-01-01
This paper aims to discuss and analyze the role of mathematics in neurodevelopment, for which discusses the historical, ontogenetic and physiological bases involved. The methodology of this paper is a deductive analysis, describing the use of mathematics in ancient cultures to the specialization of brain regions. Sensory perceptions are useful for the acquisition and development of cortical functions thus sensory stimulations is essential for the maturation of specialized neurologic functions.
Multi-scale Functional and Molecular Photoacoustic Tomography
Yao, Junjie; Xia, Jun; Wang, Lihong V.
2015-01-01
Photoacoustic tomography (PAT) combines rich optical absorption contrast with the high spatial resolution of ultrasound at depths in tissue. The high scalability of PAT has enabled anatomical imaging of biological structures ranging from organelles to organs. The inherent functional and molecular imaging capabilities of PAT have further allowed it to measure important physiological parameters and track critical cellular activities. Integration of PAT with other imaging technologies provides complementary capabilities and can potentially accelerate the clinical translation of PAT. PMID:25933617
Therapeutic Potential of Metabotropic Glutamate Receptor Modulators
Hovelsø, N; Sotty, F; Montezinho, L.P; Pinheiro, P.S; Herrik, K.F; Mørk, A
2012-01-01
Glutamate is the main excitatory neurotransmitter in the central nervous system (CNS) and is a major player in complex brain functions. Glutamatergic transmission is primarily mediated by ionotropic glutamate receptors, which include NMDA, AMPA and kainate receptors. However, glutamate exerts modulatory actions through a family of metabotropic G-protein-coupled glutamate receptors (mGluRs). Dysfunctions of glutamatergic neurotransmission have been implicated in the etiology of several diseases. Therefore, pharmacological modulation of ionotropic glutamate receptors has been widely investigated as a potential therapeutic strategy for the treatment of several disorders associated with glutamatergic dysfunction. However, blockade of ionotropic glutamate receptors might be accompanied by severe side effects due to their vital role in many important physiological functions. A different strategy aimed at pharmacologically interfering with mGluR function has recently gained interest. Many subtype selective agonists and antagonists have been identified and widely used in preclinical studies as an attempt to elucidate the role of specific mGluRs subtypes in glutamatergic transmission. These studies have allowed linkage between specific subtypes and various physiological functions and more importantly to pathological states. This article reviews the currently available knowledge regarding the therapeutic potential of targeting mGluRs in the treatment of several CNS disorders, including schizophrenia, addiction, major depressive disorder and anxiety, Fragile X Syndrome, Parkinson’s disease, Alzheimer’s disease and pain. PMID:22942876
Inoue, Koichi; O'Bryant, Zaven; Xiong, Zhi-Gang
2015-01-01
Zinc (Zn2+) is one of the most important trace metals in the body. It is necessary for the normal function of a large number of proteins including enzymes and transcription factors. While extracellular fluid may contain up to micromolar Zn2+, intracellular Zn2+ concentration is generally maintained at a subnanomolar level; this steep gradient across the cell membrane is primarily attributable to Zn2+ extrusion by Zn2+ transporting systems. Interestingly, systematic investigation has revealed that activities, previously believed to be dependent on calcium (Ca2+), may be partially mediated by Zn2+. This is also supported by new findings that some Ca2+-permeable channels such as voltage-dependent calcium channels (VDCCs), N-methyl-D-aspartate receptors (NMDA), and amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors (AMPA-Rs) are also permeable to Zn2+. Thus, the importance of Zn2+ in physiological and pathophysiological processes is now more widely appreciated. In this review, we describe Zn2+-permeable membrane molecules, especially Zn2+-permeable ion channels, in intracellular Zn2+dynamics and Zn2+ mediated physiology/pathophysiology. PMID:25666796
Led by the nose: Olfaction in primate feeding ecology
Nevo, Omer; Heymann, Eckhard W
2015-01-01
Olfaction, the sense of smell, was a latecomer to the systematic investigation of primate sensory ecology after long years in which it was considered to be of minor importance.1 This view shifted with the growing understanding of its role in social behavior2 and the accumulation of physiological studies demonstrating that the olfactory abilities of some primates are on a par with those of olfactory-dependent mammals such as dogs and rodents.3,4 Recent years have seen a proliferation of physiological, behavioral, anatomical, and genetic investigations of primate olfaction. These investigations have begun to shed light on the importance of olfaction in the process of food acquisition. However, integration of these works has been limited. It is therefore still difficult to pinpoint large-scale evolutionary scenarios, namely the functions that the sense of smell fulfills in primates’ feeding ecology and the ecological niches that favor heavier reliance on olfaction. Here, we review available behavioral and physiological studies of primates in the field or captivity and try to elucidate how and when the sense of smell can help them acquire food. PMID:26267435
Systematic Review of Prenatal Cocaine Exposure and Adolescent Development
Buckingham-Howes, Stacy; Berger, Sarah Shafer; Scaletti, Laura A.
2013-01-01
BACKGROUND AND OBJECTIVE: Previous research found that prenatal cocaine exposure (PCE) may increase children's vulnerability to behavior and cognition problems. Maturational changes in brain and social development make adolescence an ideal time to reexamine associations. The objective was to conduct a systematic review of published studies examining associations between PCE and adolescent development (behavior, cognition/school outcomes, physiologic responses, and brain morphology/functioning). METHODS: Articles were obtained from PubMed, PsycInfo, Web of Science, and CINAHL databases through July 2012 with search terms: prenatal drug, substance, or cocaine exposure; adolescence/adolescent; and in utero substance/drug exposure. Criteria for inclusion were nonexposed comparison group, human adolescents aged 11 to 19, peer-reviewed, English-language, and adolescent outcomes. RESULTS: Twenty-seven studies representing 9 cohorts met the criteria. Four outcome categories were identified: behavior, cognition/school performance, brain structure/function, and physiologic responses. Eleven examined behavior; 7 found small but significant differences favoring nonexposed adolescents, with small effect sizes. Eight examined cognition/school performance; 6 reported significantly lower scores on language and memory tasks among adolescents with PCE, with varying effect sizes varied. Eight examined brain structure/function and reported morphologic differences with few functional differences. Three examined physiologic responses with discordant findings. Most studies controlled for other prenatal exposures, caregiving environment, and violence exposure; few examined mechanisms. CONCLUSIONS: Consistent with findings among younger children, PCE increases the risk for small but significantly less favorable adolescent functioning. Although the clinical importance of differences is often unknown, the caregiving environment and violence exposure pose additional threats. Future research should investigate mechanisms linking PCE with adolescent functioning. PMID:23713107
Lymphatic drainage system of the brain: A novel target for intervention of neurological diseases.
Sun, Bao-Liang; Wang, Li-Hua; Yang, Tuo; Sun, Jing-Yi; Mao, Lei-Lei; Yang, Ming-Feng; Yuan, Hui; Colvin, Robert A; Yang, Xiao-Yi
2017-09-10
The belief that the vertebrate brain functions normally without classical lymphatic drainage vessels has been held for many decades. On the contrary, new findings show that functional lymphatic drainage does exist in the brain. The brain lymphatic drainage system is composed of basement membrane-based perivascular pathway, a brain-wide glymphatic pathway, and cerebrospinal fluid (CSF) drainage routes including sinus-associated meningeal lymphatic vessels and olfactory/cervical lymphatic routes. The brain lymphatic systems function physiological as a route of drainage for interstitial fluid (ISF) from brain parenchyma to nearby lymph nodes. Brain lymphatic drainage helps maintain water and ion balance of the ISF, waste clearance, and reabsorption of macromolecular solutes. A second physiological function includes communication with the immune system modulating immune surveillance and responses of the brain. These physiological functions are influenced by aging, genetic phenotypes, sleep-wake cycle, and body posture. The impairment and dysfunction of the brain lymphatic system has crucial roles in age-related changes of brain function and the pathogenesis of neurovascular, neurodegenerative, and neuroinflammatory diseases, as well as brain injury and tumors. In this review, we summarize the key component elements (regions, cells, and water transporters) of the brain lymphatic system and their regulators as potential therapeutic targets in the treatment of neurologic diseases and their resulting complications. Finally, we highlight the clinical importance of ependymal route-based targeted gene therapy and intranasal drug administration in the brain by taking advantage of the unique role played by brain lymphatic pathways in the regulation of CSF flow and ISF/CSF exchange. Copyright © 2017. Published by Elsevier Ltd.
Hydrogen sulfide: role in ion channel and transporter modulation in the eye
Njie-Mbye, Ya F.; Opere, Catherine A.; Chitnis, Madhura; Ohia, Sunny E.
2012-01-01
Hydrogen sulfide (H2S), a colorless gas with a characteristic smell of rotten eggs, has been portrayed for decades as a toxic environmental pollutant. Since evidence of its basal production in mammalian tissues a decade ago, H2S has attracted substantial interest as a potential inorganic gaseous mediator with biological importance in cellular functions. Current research suggests that, next to its counterparts nitric oxide and carbon monoxide, H2S is an important multifunctional signaling molecule with pivotal regulatory roles in various physiological and pathophysiological processes as diverse as learning and memory, modulation of synaptic activities, cell survival, inflammation, and maintenance of vascular tone in the central nervous and cardiovascular systems. In contrast, there are few reports of a regulatory role of H2S in the eye. Accumulating reports on the pharmacological role of H2S in ocular tissues indicate the existence of a functional trans-sulfuration pathway and a potential physiological role for H2S as a gaseous neuromodulator in the eye. Thus, understanding the role of H2S in vision-related processes is imperative to our expanding knowledge of this molecule as a gaseous mediator in ocular tissues. This review aims to provide a comprehensive and current understanding of the potential role of H2S as a signaling molecule in the eye. This objective is achieved by discussing the involvement of H2S in the regulation of (1) ion channels such as calcium (L-type, T-type, and intracellular stores), potassium (KATP and small conductance channels) and chloride channels, (2) glutamate transporters such as EAAT1/GLAST and the L-cystine/glutamate antiporter. The role of H2S as an important mediator in cellular functions and physiological processes that are triggered by its interaction with ion channels/transporters in the eye will also be discussed. PMID:22934046
Impact of phytoplankton community structure and function on marine particulate optical properties
NASA Astrophysics Data System (ADS)
McFarland, Malcolm Neil
Phytoplankton are an ecologically important and diverse group of organisms whose distribution, abundance, and population dynamics vary significantly over small spatial (cm) and temporal (minutes) scales in the coastal ocean. Our inability to observe phytoplankton community structure and function at these small scales has severely limited our understanding of the fundamental ecological and evolutionary mechanisms that drive phytoplankton growth, mortality, adaptation and speciation. The goal of this dissertation was to enhance our understanding of phytoplankton ecology by improving in situ observational techniques based on the optical properties of cells, colonies, populations, and communities. Field and laboratory studies were used to determine the effects of phytoplankton species composition, morphology, and physiology on the inherent optical properties of communities and to explore the adaptive significance of bio-optically important cellular characteristics. Initial field studies found a strong association between species composition and the relative magnitude and shape of particulate absorption, scattering, and attenuation coefficient spectra. Subsequent field studies using scanning flow cytometry to directly measure optically important phytoplankton and non-algal particle characteristics demonstrated that the size and pigment content of large (>20 microm) phytoplankton cells and colonies vary significantly with the slope of particulate attenuation and absorption spectra, and with the ratio of particulate scattering to absorption. These relationships enabled visualization of phytoplankton community composition and mortality over small spatial and temporal scales derived from high resolution optical measurements acquired with an autonomous profiling system. Laboratory studies with diverse uni-algal cultures showed that morphological and physiological characteristics of cells and colonies can account for ˜30% of the optical variation observed in natural communities and that complex morphologies and low intracellular pigment concentrations minimize pigment self-shading that could otherwise limit bio-optical fitness. These results demonstrate that optical properties reveal detailed information about the distribution, abundance, morphology, and physiology of phytoplankton that can help explain their ecological dynamics over small spatial scales and the bio-optical function of diverse forms in the ocean.
Ong, Frank S.; Blackwell, Wendell-Lamar B.; Shah, Kandarp H.; Giani, Jorge F.; Gonzalez-Villalobos, Romer A.; Shen, Xiao Z.; Fuchs, Sebastien
2013-01-01
Angiotensin-converting enzyme (ACE) is a zinc-dependent peptidase responsible for converting angiotensin I into the vasoconstrictor angiotensin II. However, ACE is a relatively nonspecific peptidase that is capable of cleaving a wide range of substrates. Because of this, ACE and its peptide substrates and products affect many physiologic processes, including blood pressure control, hematopoiesis, reproduction, renal development, renal function, and the immune response. The defining feature of ACE is that it is composed of two homologous and independently catalytic domains, the result of an ancient gene duplication, and ACE-like genes are widely distributed in nature. The two ACE catalytic domains contribute to the wide substrate diversity of ACE and, by extension, the physiologic impact of the enzyme. Several studies suggest that the two catalytic domains have different biologic functions. Recently, the X-ray crystal structure of ACE has elucidated some of the structural differences between the two ACE domains. This is important now that ACE domain-specific inhibitors have been synthesized and characterized. Once widely available, these reagents will undoubtedly be powerful tools for probing the physiologic actions of each ACE domain. In turn, this knowledge should allow clinicians to envision new therapies for diseases not currently treated with ACE inhibitors. PMID:23257181
Kageyama, Ikuo; Yoshimura, Ken; Satoh, Yoshihide; Nanayakkara, Chinthani D; Pallegama, Ranjith W; Iwasaki, Shin-Ichi
2016-07-01
We coordinated anatomy and physiology lectures and practicals to facilitate an integrated understanding of morphology and function in a basic medical science program for dental students and to reduce the time spent on basic science education. This method is a means to provide the essential information and skills in less time. The overall impression was that the practice of joint central nervous system lectures and practicals was an efficient method for students, which suggests that joint lectures might also be useful for clinical subjects. About two-thirds of students felt that the joint anatomy and physiology lecture on the central nervous system was useful and necessary in understanding the relationship between morphology and function, at least for this subject. One-third of students were neutral on the effectiveness of this method. However, the survey results suggest that improvements are needed in the method and timing of joint lectures and practicals. The present teaching approach can be further improved by conducting combined lectures in which the form and function of anatomic structures are presented by the relevant departments during the same lecture. Finally, joint lecturers and practicals offer an opportunity to increase student understanding of the importance of new research findings by the present authors and other researchers.
A strategy for in-flight measurements of physiology of pilots of high-performance fighter aircraft.
West, John B
2013-07-01
Some pilots flying modern high-performance fighter aircraft develop "hypoxia-like" incidents characterized by short periods of confusion and cognitive impairment. The problem is serious and recently led to the grounding of a fleet of aircraft. Extensive discussions of the incidents have taken place but some people believe that there is inadequate data to determine the cause. There is a tremendous disconnect between what is known about the function of the aircraft and the function of the pilot. This paper describes a plan for measuring the inspired and expired Po2 and Pco2 in the pilot's mask, the inspiratory flow rate, and pressure in the mask. A critically important requirement is that the interference with the function of the pilot is minimal. Although extensive physiological measurements were previously made on pilots in ground-based experiments such as rapid decompression in an altitude chamber and increased acceleration on a centrifuge, in-flight measurements of gas exchange have not been possible until now primarily because of the lack of suitable equipment. The present paper shows how the recent availability of small, rapidly responding oxygen and carbon dioxide analyzers make sophisticated in-flight measurements feasible. The added information has the potential of greatly improving our knowledge of pilot physiology, which could lead to an explanation for the incidents.
Bilal, Muhammad; Iqbal, Hafiz M N; Hu, Hongbo; Wang, Wei; Zhang, Xuehong
2017-06-29
Biomolecules like rare sugars and their derivatives are referred to as monosaccharides particularly uncommon in nature. Remarkably, many of them have various known physiological functions and biotechnological applications in cosmetics, nutrition, and pharmaceutical industries. Also, they can be exploited as starting materials for synthesizing fascinating natural bioproducts with significant biological activities. Regrettably, most of the rare sugars are quite expensive, and their synthetic chemical routes are both limited and economically unfeasible due to expensive raw materials. On the other hand, their production by enzymatic means often suffers from low space-time yields and high catalyst costs due to hasty enzyme denaturation/degradation. In this context, biosynthesis of rare sugars with industrial importance is receiving renowned scientific attention, across the globe. Moreover, the utilization of renewable resources as energy sources via microbial fermentation or microbial metabolic engineering has appeared a new tool. This article presents a comprehensive review of physiological functions and biotechnological applications of rare ketohexoses and aldohexoses, including D-psicose, D-tagatose, L-tagatose, D-sorbose, L-fructose, D-allose, L-glucose, D-gulose, L-talose, L-galactose, and L-fucose. Novel in-vivo recombination pathways based on aldolase and phosphatase for the biosynthesis of rare sugars, particularly D-psicose and D-sorbose using robust microbial strains are also deliberated.
Czuba, Ewelina; Steliga, Aleksandra; Lietzau, Grażyna; Kowiański, Przemysław
2017-08-01
The brain, demanding constant level of cholesterol, precisely controls its synthesis and homeostasis. The brain cholesterol pool is almost completely separated from the rest of the body by the functional blood-brain barrier (BBB). Only a part of cholesterol pool can be exchanged with the blood circulation in the form of the oxysterol metabolites such, as 27-hydroxycholesterol (27-OHC) and 24S-hydroxycholesterol (24S-OHC). Not only neurons but also blood vessels and neuroglia, constituting neurovascular unit (NVU), are crucial for the brain cholesterol metabolism and undergo precise regulation by numerous modulators, metabolites and signal molecules. In physiological conditions maintaining the optimal cholesterol concentration is important for the energetic metabolism, composition of cell membranes and myelination. However, a growing body of evidence indicates the consequences of the cholesterol homeostasis dysregulation in several pathophysiological processes. There is a causal relationship between hypercholesterolemia and 1) development of type 2 diabetes due to long-term high-fat diet consumption, 2) significance of the oxidative stress consequences for cerebral amyloid angiopathy and neurodegenerative diseases, 3) insulin resistance on progression of the neurodegenerative brain diseases. In this review, we summarize the current state of knowledge concerning the cholesterol influence upon functioning of the NVU under physiological and pathological conditions.
Yang, Xiaoxia; Duan, John; Fisher, Jeffrey
2016-01-01
A previously presented physiologically-based pharmacokinetic model for immediate release (IR) methylphenidate (MPH) was extended to characterize the pharmacokinetic behaviors of oral extended release (ER) MPH formulations in adults for the first time. Information on the anatomy and physiology of the gastrointestinal (GI) tract, together with the biopharmaceutical properties of MPH, was integrated into the original model, with model parameters representing hepatic metabolism and intestinal non-specific loss recalibrated against in vitro and in vivo kinetic data sets with IR MPH. A Weibull function was implemented to describe the dissolution of different ER formulations. A variety of mathematical functions can be utilized to account for the engineered release/dissolution technologies to achieve better model performance. The physiological absorption model tracked well the plasma concentration profiles in adults receiving a multilayer-release MPH formulation or Metadate CD, while some degree of discrepancy was observed between predicted and observed plasma concentration profiles for Ritalin LA and Medikinet Retard. A local sensitivity analysis demonstrated that model parameters associated with the GI tract significantly influenced model predicted plasma MPH concentrations, albeit to varying degrees, suggesting the importance of better understanding the GI tract physiology, along with the intestinal non-specific loss of MPH. The model provides a quantitative tool to predict the biphasic plasma time course data for ER MPH, helping elucidate factors responsible for the diverse plasma MPH concentration profiles following oral dosing of different ER formulations. PMID:27723791
The SLIT/ROBO pathway: a regulator of cell function with implications for the reproductive system
Dickinson, Rachel E; Duncan, W Colin
2010-01-01
The secreted SLIT glycoproteins and their Roundabout (ROBO) receptors were originally identified as important axon guidance molecules. They function as a repulsive cue with an evolutionarily conserved role in preventing axons from migrating to inappropriate locations during the assembly of the nervous system. In addition the SLIT-ROBO interaction is involved in the regulation of cell migration, cell death and angiogenesis and, as such, has a pivotal role during the development of other tissues such as the lung, kidney, liver and breast. The cellular functions that the SLIT/ROBO pathway controls during tissue morphogenesis are processes that are dysregulated during cancer development. Therefore inactivation of certain SLITs and ROBOs is associated with advanced tumour formation and progression in disparate tissues. Recent research has indicated that the SLIT/ROBO pathway could also have important functions in the reproductive system. The fetal ovary expresses most members of the SLIT and ROBO families. The SLITs and ROBOs also appear to be regulated by steroid hormones and regulate physiological cell functions in adult reproductive tissues such as the ovary and endometrium. Furthermore several SLITs and ROBOs are aberrantly expressed during the development of ovarian, endometrial, cervical and prostate cancer. This review will examine the roles this pathway could have in the development, physiology and pathology of the reproductive system and highlight areas for future research that could further dissect the influence of the SLIT/ROBO pathway in reproduction. PMID:20100881
The SLIT-ROBO pathway: a regulator of cell function with implications for the reproductive system.
Dickinson, Rachel E; Duncan, W Colin
2010-04-01
The secreted SLIT glycoproteins and their Roundabout (ROBO) receptors were originally identified as important axon guidance molecules. They function as a repulsive cue with an evolutionarily conserved role in preventing axons from migrating to inappropriate locations during the assembly of the nervous system. In addition the SLIT-ROBO interaction is involved in the regulation of cell migration, cell death and angiogenesis and, as such, has a pivotal role during the development of other tissues such as the lung, kidney, liver and breast. The cellular functions that the SLIT/ROBO pathway controls during tissue morphogenesis are processes that are dysregulated during cancer development. Therefore inactivation of certain SLITs and ROBOs is associated with advanced tumour formation and progression in disparate tissues. Recent research has indicated that the SLIT/ROBO pathway could also have important functions in the reproductive system. The fetal ovary expresses most members of the SLIT and ROBO families. The SLITs and ROBOs also appear to be regulated by steroid hormones and regulate physiological cell functions in adult reproductive tissues such as the ovary and endometrium. Furthermore several SLITs and ROBOs are aberrantly expressed during the development of ovarian, endometrial, cervical and prostate cancer. This review will examine the roles this pathway could have in the development, physiology and pathology of the reproductive system and highlight areas for future research that could further dissect the influence of the SLIT/ROBO pathway in reproduction.
A proposed panel of biomarkers of healthy ageing.
Lara, Jose; Cooper, Rachel; Nissan, Jack; Ginty, Annie T; Khaw, Kay-Tee; Deary, Ian J; Lord, Janet M; Kuh, Diana; Mathers, John C
2015-09-15
There is no criterion reference for assessing healthy ageing and this creates difficulties when conducting and comparing research on ageing across studies. A cardinal feature of ageing is loss of function which translates into wide-ranging consequences for the individual and for family, carers and society. We undertook comprehensive reviews of the literature searching for biomarkers of ageing on five ageing-related domains including physical capability and cognitive, physiological and musculoskeletal, endocrine and immune functions. Where available, we used existing systematic reviews, meta-analyses and other authoritative reports such as the recently launched NIH Toolbox for assessment of neurological and behavioural function, which includes test batteries for cognitive and motor function (the latter described here as physical capability). We invited international experts to comment on our draft recommendations. In addition, we hosted an experts workshop in Newcastle, UK, on 22-23 October 2012, aiming to help capture the state-of-the-art in this complex area and to provide an opportunity for the wider ageing research community to critique the proposed panel of biomarkers. Here we have identified important biomarkers of healthy ageing classified as subdomains of the main areas proposed. Cardiovascular and lung function, glucose metabolism and musculoskeletal function are key subdomains of physiological function. Strength, locomotion, balance and dexterity are key physical capability subdomains. Memory, processing speed and executive function emerged as key subdomains of cognitive function. Markers of the HPA-axis, sex hormones and growth hormones were important biomarkers of endocrine function. Finally, inflammatory factors were identified as important biomarkers of immune function. We present recommendations for a panel of biomarkers that address these major areas of function which decline during ageing. This biomarker panel may have utility in epidemiological studies of human ageing, in health surveys of older people and as outcomes in intervention studies that aim to promote healthy ageing. Further, the inclusion of the same common panel of measures of healthy ageing in diverse study designs and populations may enhance the value of those studies by allowing the harmonisation of surrogate endpoints or outcome measures, thus facilitating less equivocal comparisons between studies and the pooling of data across studies.
2011-01-01
can have a significant impact on normal physiological functioning if precipitous increases in core temperature are not adequately controlled with...anterior hypothalamusIntroduction Thermal stress can have a significant impact on normal physiological functioning if precipitous increases in core...fat and skin). The regulation of a relatively constant internal temperature is critical for normal physiological functioning of tissues and cells, as
Shi, Yuguang; Cheng, Dong
2009-01-01
Monoacyglycerol acyltransferases (MGATs) and diacylglycerol acyltransferases (DGATs) catalyze two consecutive steps of enzyme reactions in the synthesis of triacylglycerols (TAGs). The metabolic complexity of TAG synthesis is reflected by the presence of multiple isoforms of MGAT and DGAT enzymes that differ in catalytic properties, subcellular localization, tissue distribution, and physiological functions. MGAT and DGAT enzymes play fundamental roles in the metabolism of monoacylglycerol (MAG), diacylglycerol (DAG), and triacylglycerol (TAG) that are involved in many aspects of physiological functions, such as intestinal fat absorption, lipoprotein assembly, adipose tissue formation, signal transduction, satiety, and lactation. The recent progress in the phenotypic characterization of mice deficient in MGAT and DGAT enzymes and the development of chemical inhibitors have revealed important roles of these enzymes in the regulation of energy homeostasis and insulin sensitivity. Consequently, selective inhibition of MGAT or DGAT enzymes by synthetic compounds may provide novel treatment for obesity and its related metabolic complications. PMID:19116371
The function of yeast CAP family proteins in lipid export, mating, and pathogen defense.
Darwiche, Rabih; El Atab, Ola; Cottier, Stéphanie; Schneiter, Roger
2018-04-01
In their natural habitat, yeast cells are constantly challenged by changing environmental conditions and a fierce competition for limiting resources. To thrive under such conditions, cells need to adapt and divide quickly, and be able to neutralize the toxic compounds secreted by their neighbors. Proteins like the pathogen-related yeast, Pry proteins, which belong to the large CAP/SCP/TAPS superfamily, may have an important role in this function. CAP proteins are conserved from yeast to man and are characterized by a unique αβα sandwich fold. They are mostly secreted glycoproteins and have been implicated in many different physiological processes including pathogen defense, virulence, venom toxicity, and sperm maturation. Yeast members of this family bind and export sterols as well as fatty acids, and they render cells resistant to eugenol, an antimicrobial compound present in clove oil. CAP family members might thus exert their various physiological functions through binding, sequestration, and neutralization of such small hydrophobic compounds. © 2017 Federation of European Biochemical Societies.
Nutritional Signaling via Free Fatty Acid Receptors
Miyamoto, Junki; Hasegawa, Sae; Kasubuchi, Mayu; Ichimura, Atsuhiko; Nakajima, Akira; Kimura, Ikuo
2016-01-01
Excess energy is stored primarily as triglycerides, which are mobilized when demand for energy arises. Dysfunction of energy balance by excess food intake leads to metabolic diseases, such as obesity and diabetes. Free fatty acids (FFAs) provided by dietary fat are not only important nutrients, but also contribute key physiological functions via FFA receptor (FFAR)-mediated signaling molecules, which depend on FFAs’ carbon chain length and the ligand specificity of the receptors. Functional analyses have revealed that FFARs are critical for metabolic functions, such as peptide hormone secretion and inflammation, and contribute to energy homeostasis. In particular, recent studies have shown that the administration of selective agonists of G protein-coupled receptor (GPR) 40 and GPR120 improved glucose metabolism and systemic metabolic disorders. Furthermore, the anti-inflammation and energy metabolism effects of short chain FAs have been linked to the activation of GPR41 and GPR43. In this review, we summarize recent progress in research on FFAs and their physiological roles in the regulation of energy metabolism. PMID:27023530
Biosynthesis and function of plant lipids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomson, W.W.; Mudd, J.B.; Gibbs, M.
The Sixth Annual Symposium in Botany and Plant Physiology was held January 13-15, 1983, at the University of California, Riverside. This volume comprises the papers that were presented. Subjects discussed at the symposium covered a wide range in the field of plant lipids. Biosynthesis of lipids occupied an important fraction of the presentations at the symposium. Subjects included detailed studies of the enzymes of fatty acid synthesis, several discussions of the incorporation of fatty acids into glycerolipids and the further modification of the fatty acids, and the synthesis of glycerolipids and desaturation of fatty acids in both maturing oilseeds andmore » chloroplasts. The physicochemical studies of glycerolipids and sterols in artificial membranes have led to distinct conclusions about their behaviour which must be relevant in the biological membrane. Results on the functional consequences of modifying the galactolipid composition in the chloroplast were an encouraging sign of progress in the attempts to relate membrane lipid composition to physiological function.« less
[Identification of mouse brain neuropeptides by high throughput mass spectrometry].
Shao, Xianfeng; Ma, Min; Chen, Ruibing; Jia, Chenxi
2018-04-25
Neuropeptides play an important role in the physiological functions of the human body. The physiological activities such as pain, sleep, mood, learning and memory are affected by neuropeptides. Neuropeptides mainly exist in the nerve tissue of the body, and a small amount of them are distributed in body fluid and organs. At present, analysis of large-scale identification of neuropeptides in whole brain tissue is still challenging. Therefore, high-throughput detection of these neuropeptides is greatly significant to understand the composition and function of neuropeptides. In this study, 1 830 endogenous peptides and 99 novel putative neuropeptides were identified by extraction of endogenous peptides from whole brain tissue of mice by liquid phase tandem mass spectrometry (LC-MS / MS). The identification of these endogenous peptides provides not only a reference value in the treatment and mechanism studies of diseases and the development of drugs, but also the basis for the study of a new neuropeptides and their functions.
Sleep Duration and Diabetes Risk: Population Trends and Potential Mechanisms.
Grandner, Michael A; Seixas, Azizi; Shetty, Safal; Shenoy, Sundeep
2016-11-01
Sleep is important for regulating many physiologic functions that relate to metabolism. Because of this, there is substantial evidence to suggest that sleep habits and sleep disorders are related to diabetes risk. In specific, insufficient sleep duration and/or sleep restriction in the laboratory, poor sleep quality, and sleep disorders such as insomnia and sleep apnea have all been associated with diabetes risk. This research spans epidemiologic and laboratory studies. Both physiologic mechanisms such as insulin resistance, decreased leptin, and increased ghrelin and inflammation and behavioral mechanisms such as increased food intake, impaired decision-making, and increased likelihood of other behavioral risk factors such as smoking, sedentary behavior, and alcohol use predispose to both diabetes and obesity, which itself is an important diabetes risk factor. This review describes the evidence linking sleep and diabetes risk at the population and laboratory levels.
Reactive Oxygen Species and NOX Enzymes Are Emerging as Key Players in Cutaneous Wound Repair
Modarressi, Ali; Pittet-Cuénod, Brigitte
2017-01-01
Our understanding of the role of oxygen in cell physiology has evolved from its long-recognized importance as an essential factor in oxidative metabolism to its recognition as an important player in cell signaling. With regard to the latter, oxygen is needed for the generation of reactive oxygen species (ROS), which regulate a number of different cellular functions including differentiation, proliferation, apoptosis, migration, and contraction. Data specifically concerning the role of ROS-dependent signaling in cutaneous wound repair are very limited, especially regarding wound contraction. In this review we provide an overview of the current literature on the role of molecular and reactive oxygen in the physiology of wound repair as well as in the pathophysiology and therapy of chronic wounds, especially under ischemic and hyperglycemic conditions. PMID:29036938
Bacterial membrane proteomics.
Poetsch, Ansgar; Wolters, Dirk
2008-10-01
About one quarter to one third of all bacterial genes encode proteins of the inner or outer bacterial membrane. These proteins perform essential physiological functions, such as the import or export of metabolites, the homeostasis of metal ions, the extrusion of toxic substances or antibiotics, and the generation or conversion of energy. The last years have witnessed completion of a plethora of whole-genome sequences of bacteria important for biotechnology or medicine, which is the foundation for proteome and other functional genome analyses. In this review, we discuss the challenges in membrane proteome analysis, starting from sample preparation and leading to MS-data analysis and quantification. The current state of available proteomics technologies as well as their advantages and disadvantages will be described with a focus on shotgun proteomics. Then, we will briefly introduce the most abundant proteins and protein families present in bacterial membranes before bacterial membrane proteomics studies of the last years will be presented. It will be shown how these works enlarged our knowledge about the physiological adaptations that take place in bacteria during fine chemical production, bioremediation, protein overexpression, and during infections. Furthermore, several examples from literature demonstrate the suitability of membrane proteomics for the identification of antigens and different pathogenic strains, as well as the elucidation of membrane protein structure and function.
Caudal autotomy and regeneration in lizards.
Clause, Amanda R; Capaldi, Elizabeth A
2006-12-01
Caudal autotomy, or the voluntary self-amputation of the tail, is an anti-predation strategy in lizards that depends on a complex array of environmental, individual, and species-specific characteristics. These factors affect both when and how often caudal autotomy is employed, as well as its overall rate of success. The potential costs of autotomy must be weighed against the benefits of this strategy. Many species have evolved specialized behavioral and physiological adaptations to minimize or compensate for any negative consequences. One of the most important steps following a successful autotomous escape involves regeneration of the lost limb. In some species, regeneration occurs rapidly; such swift regeneration illustrates the importance of an intact, functional tail in everyday experience. In lizards and other vertebrates, regeneration is a highly ordered process utilizing initial developmental programs as well as regeneration-specific mechanisms to produce the correct types and pattern of cells required to sufficiently restore the structure and function of the sacrificed tail. In this review, we discuss the behavioral and physiological features of self-amputation, with particular reference to the costs and benefits of autotomy and the basic mechanisms of regeneration. In the process, we identify how these behaviors could be used to explore the neural regulation of complex behavioral responses within a functional context. Copyright 2006 Wiley-Liss, Inc.
Respiratory physiology and pathological anxiety.
Gorman, J M; Uy, J
1987-11-01
There has been comparatively little attention paid to the respiratory derangements in anxiety disorders. Some authorities contend, however, that indices of respiratory function may be the best objective marker of anxiety state. Furthermore, an understanding of the ventilatory status of patients with anxiety disorder has shed light on the basic pathophysiology of abnormal anxiety. For example, it is now clear that patients with a wide variety of anxiety disorders hyperventilate both chronically and acutely. Therefore, we present an explanation of the physiological changes produced by hyperventilation. In order to further study ventilatory physiology in patients with anxiety disorder, our group and others have used the carbon dioxide challenge test. The data from these experiments suggest that patients with panic disorder are hypersensitive to carbon dioxide and that carbon dioxide inhalation induces panic attacks in susceptible patients. Hyperventilation appears to be a secondary, but pathophysiologically important, event in the generation of acute panic. The implications of work in respiratory physiology for clinical management of patients with anxiety disorder are discussed.
From functional architecture to functional connectomics.
Reid, R Clay
2012-07-26
"Receptive Fields, Binocular Interaction and Functional Architecture in the Cat's Visual Cortex" by Hubel and Wiesel (1962) reported several important discoveries: orientation columns, the distinct structures of simple and complex receptive fields, and binocular integration. But perhaps the paper's greatest influence came from the concept of functional architecture (the complex relationship between in vivo physiology and the spatial arrangement of neurons) and several models of functionally specific connectivity. They thus identified two distinct concepts, topographic specificity and functional specificity, which together with cell-type specificity constitute the major determinants of nonrandom cortical connectivity. Orientation columns are iconic examples of topographic specificity, whereby axons within a column connect with cells of a single orientation preference. Hubel and Wiesel also saw the need for functional specificity at a finer scale in their model of thalamic inputs to simple cells, verified in the 1990s. The difficult but potentially more important question of functional specificity between cortical neurons is only now becoming tractable with new experimental techniques. Copyright © 2012 Elsevier Inc. All rights reserved.
Handy, Ariel B; Stanton, Amelia M; Pulverman, Carey S; Meston, Cindy M
2018-01-01
Many sexual psychophysiologic studies have failed to find differences in physiologic genital arousal between women with and those without sexual dysfunction. However, differences in self-reported (ie, perceived) measures of genital responses between these 2 groups of women have been noted. To determine whether women with and without sexual dysfunction differ on measures of physiologic and perceived genital arousal based on type of analytic technique used, to explore differences in perceived genital arousal, and to assess the relation between physiologic and perceived genital arousal. Data from 5 studies (N = 214) were used in this analysis. Women were categorized into 3 groups: women with arousal-specific sexual dysfunction (n = 40), women with decreased sexual function (n = 72), and women who were sexually functional (n = 102). Women viewed an erotic film while their physiologic genital arousal was measured using a vaginal photoplethysmograph. After watching the film, women completed a self-report measure of perceived genital arousal. There were differences in vaginal pulse amplitude (VPA) levels and association of VPA with perceived genital sensations based on level of sexual function. Commonly used methods of analysis failed to identify significant differences in VPA among these groups of women. When VPA data were analyzed with hierarchical linear modeling, significant differences emerged. Notably, women with arousal-specific dysfunction exhibited lower VPA than sexually functional women at the beginning of the assessment. As the erotic film progressed, women with arousal-specific dysfunction became aroused at a faster rate than sexually functional women, and these 2 groups ultimately reached a similar level of VPA. Sexually functional women reported the highest levels of perceived genital responses among the 3 groups of women. No significant relation between VPA and perceived genital arousal emerged. Women's perception of their genital responses could play a role in women's experience of sexual dysfunction and might be more clinically relevant for women with sexual dysfunction than genital blood flow. This study's large sample is unique in sexual psychophysiology, and it strengthens the credibility of the findings. However, this study is limited in that arousal-specific dysfunction was determined with self-report measures, not by a clinician-administered assessment. These findings suggest distinct response trajectories in women with and without sexual dysfunction, and although perceived genital responses are important for women who are experiencing problems with arousal, they do not seem to be related to objective measures of physiologic arousal. Handy AB, Stanton AM, Pulverman CS, Meston CM. Differences in Perceived and Physiologic Genital Arousal Between Women With and Without Sexual Dysfunction. J Sex Med 2018;15:52-63. Copyright © 2017 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.
Physiological Aging: Links Among Adipose Tissue Dysfunction, Diabetes, and Frailty
Stout, Michael B.; Justice, Jamie N.; Nicklas, Barbara J.; Kirkland, James L.
2016-01-01
Advancing age is associated with progressive declines in physiological function that lead to overt chronic disease, frailty, and eventual mortality. Importantly, age-related physiological changes occur in cellularity, insulin-responsiveness, secretory profiles, and inflammatory status of adipose tissue, leading to adipose tissue dysfunction. Although the mechanisms underlying adipose tissue dysfunction are multifactorial, the consequences result in secretion of proinflammatory cytokines and chemokines, immune cell infiltration, an accumulation of senescent cells, and an increase in senescence-associated secretory phenotype (SASP). These processes synergistically promote chronic sterile inflammation, insulin resistance, and lipid redistribution away from subcutaneous adipose tissue. Without intervention, these effects contribute to age-related systemic metabolic dysfunction, physical limitations, and frailty. Thus adipose tissue dysfunction may be a fundamental contributor to the elevated risk of chronic disease, disability, and adverse health outcomes with advancing age. PMID:27927801
The physiological basis and clinical significance of lung volume measurements.
Lutfi, Mohamed Faisal
2017-01-01
From a physiological standpoint, the lung volumes are either dynamic or static. Both subclasses are measured at different degrees of inspiration or expiration; however, dynamic lung volumes are characteristically dependent on the rate of air flow. The static lung volumes/capacities are further subdivided into four standard volumes (tidal, inspiratory reserve, expiratory reserve, and residual volumes) and four standard capacities (inspiratory, functional residual, vital and total lung capacities). The dynamic lung volumes are mostly derived from vital capacity. While dynamic lung volumes are essential for diagnosis and follow up of obstructive lung diseases, static lung volumes are equally important for evaluation of obstructive as well as restrictive ventilatory defects. This review intends to update the reader with the physiological basis, clinical significance and interpretative approaches of the standard static lung volumes and capacities.
Das, Mainak; Bhargava, Neelima; Bhalkikar, Abhijeet; Kang, Jung Fong; Hickman, James J
2008-01-01
The ability to culture functional adult mammalian spinal-cord neurons represents an important step in the understanding and treatment of a spectrum of neurological disorders including spinal cord injury. Previously, the limited functional recovery of these cells, as characterized by a diminished ability to initiate action potentials and to exhibit repetitive firing patterns, has arisen as a major impediment to their physiological relevance. In this report we demonstrate that single temporal doses of the neurotransmitters serotonin, glutamate (N-acetyl-DL-glutamic acid) and acetylcholine-chloride leads to the full electrophysiological functional recovery of adult mammalian spinal-cord neurons, when they are cultured under defined serum-free conditions. Approximately 60% of the neurons treated regained their electrophysiological signature, often firing single, double and, most importantly, multiple action potentials. PMID:18005959
Gersick, Andrew S; Rubenstein, Daniel I
2017-08-19
Though morphologically very similar, equids across the extant species occupy ecological niches that are surprisingly non-overlapping. Occupancy of these distinct niches appears related to subtle physiological and behavioural adaptations which, in turn, correspond to significant differences in the social behaviours and emergent social systems characterizing the different species. Although instances of intraspecific behavioural variation in equids demonstrate that the same body plan can support a range of social structures, each of these morphologically similar species generally shows robust fidelity to its evolved social system. The pattern suggests a subtle relationship between physiological phenotypes and behavioural flexibility. While environmental conditions can vary widely within relatively short temporal or spatial scales, physiological changes and changes to the behaviours that regulate physiological processes, are constrained to longer cycles of adaptation. Physiology is then the limiting variable in the interaction between ecological variation and behavioural and socio-structural flexibility. Behavioural and socio-structural flexibility, in turn, will generate important feedbacks that will govern physiological function, thus creating a coupled web of interactions that can lead to changes in individual and collective behaviour. Longitudinal studies of equid and other large-bodied ungulate populations under environmental stress, such as those discussed here, may offer the best opportunities for researchers to examine, in real time, the interplay between individual behavioural plasticity, socio-structural flexibility, and the physiological and genetic changes that together produce adaptive change.This article is part of the themed issue 'Physiological determinants of social behaviour in animals'. © 2017 The Author(s).
Functional microorganisms for functional food quality.
Gobbetti, M; Cagno, R Di; De Angelis, M
2010-09-01
Functional microorganisms and health benefits represent a binomial with great potential for fermented functional foods. The health benefits of fermented functional foods are expressed either directly through the interactions of ingested live microorganisms with the host (probiotic effect) or indirectly as the result of the ingestion of microbial metabolites synthesized during fermentation (biogenic effect). Since the importance of high viability for probiotic effect, two major options are currently pursued for improving it--to enhance bacterial stress response and to use alternative products for incorporating probiotics (e.g., ice cream, cheeses, cereals, fruit juices, vegetables, and soy beans). Further, it seems that quorum sensing signal molecules released by probiotics may interact with human epithelial cells from intestine thus modulating several physiological functions. Under optimal processing conditions, functional microorganisms contribute to food functionality through their enzyme portfolio and the release of metabolites. Overproduction of free amino acids and vitamins are two classical examples. Besides, bioactive compounds (e.g., peptides, γ-amino butyric acid, and conjugated linoleic acid) may be released during food processing above the physiological threshold and they may exert various in vivo health benefits. Functional microorganisms are even more used in novel strategies for decreasing phenomenon of food intolerance (e.g., gluten intolerance) and allergy. By a critical approach, this review will aim at showing the potential of functional microorganisms for the quality of functional foods.
Metabolic, Reproductive, and Neurologic Abnormalities in Agpat1-Null Mice.
Agarwal, Anil K; Tunison, Katie; Dalal, Jasbir S; Nagamma, Sneha S; Hamra, F Kent; Sankella, Shireesha; Shao, Xinli; Auchus, Richard J; Garg, Abhimanyu
2017-11-01
Defects in the biosynthesis of phospholipids and neutral lipids are associated with cell membrane dysfunction, disrupted energy metabolism, and diseases including lipodystrophy. In these pathways, the 1-acylglycerol-3-phosphate O-acyltransferase (AGPAT) enzymes transfer a fatty acid to the sn-2 carbon of sn-1-acylglycerol-3-phosphate (lysophosphatidic acid) to form sn-1, 2-acylglycerol-3-phosphate [phosphatidic acid (PA)]. PA is a precursor for key phospholipids and diacylglycerol. AGPAT1 and AGPAT2 are highly homologous isoenzymes that are both expressed in adipocytes. Genetic defects in AGPAT2 cause congenital generalized lipodystrophy, indicating that AGPAT1 cannot compensate for loss of AGPAT2 in adipocytes. To further explore the physiology of AGPAT1, we characterized a loss-of-function mouse model (Agpat1-/-). The majority of Agpat1-/- mice died before weaning and had low body weight and low plasma glucose levels, independent of plasma insulin and glucagon levels, with reduced percentage of body fat but not generalized lipodystrophy. These mice also had decreased hepatic messenger RNA expression of Igf-1 and Foxo1, suggesting a decrease in gluconeogenesis. In male mice, sperm development was impaired, with a late meiotic arrest near the onset of round spermatid production, and gonadotropins were elevated. Female mice showed oligoanovulation yet retained responsiveness to gonadotropins. Agpat1-/- mice also demonstrated abnormal hippocampal neuron development and developed audiogenic seizures. In summary, Agpat1-/- mice developed widespread disturbances of metabolism, sperm development, and neurologic function resulting from disrupted phospholipid homeostasis. AGPAT1 appears to serve important functions in the physiology of multiple organ systems. The Agpat1-deficient mouse provides an important model in which to study the contribution of phospholipid and triacylglycerol synthesis to physiology and diseases. Copyright © 2017 Endocrine Society.
Mitochondrial activity and dynamics changes regarding metabolism in ageing and obesity.
López-Lluch, Guillermo
2017-03-01
Mitochondria play an essential role in ageing and longevity. During ageing, a general deregulation of metabolism occurs, affecting molecular, cellular and physiological activities in the organism. Dysfunction of mitochondria has been associated with ageing and age-related diseases indicating their importance in the maintenance of cell homeostasis. Three major nutritional sensors, mTOR, AMPK and Sirtuins are involved in the control of mitochondrial physiology. These nutritional sensors control mitochondrial biogenesis, dynamics by regulating fusion and fission processes, and turnover through mito- and autophagy. Apart of the known factors involved in fusion, OPA1 and mitofusins, and fission, DRP1 and FIS1, emerging factors such as prohibitins and sestrins can play important functions in mitochondrial dynamics regulation. Mitochondria is also affected by sexual hormones that suffer drastic changes during ageing. The recent literature demonstrates the complex interaction between nutritional sensors and mitochondrial homeostasis in the physiology of adipose tissue and in the accumulation of fat in other organs such as muscle and liver. In this article, the role of mitochondrial homeostasis in ageing and age-dependent fat accumulation is revised. This review highlights the importance of mitochondria in the accumulation of fat during ageing and related diseases such as obesity, metabolic syndrome or type 2 diabetes mellitus. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Structure-function relations in physiology education: Where's the mechanism?
Lira, Matthew E; Gardner, Stephanie M
2017-06-01
Physiology demands systems thinking: reasoning within and between levels of biological organization and across different organ systems. Many physiological mechanisms explain how structures and their properties interact at one level of organization to produce emergent functions at a higher level of organization. Current physiology principles, such as structure-function relations, selectively neglect mechanisms by not mentioning this term explicitly. We explored how students characterized mechanisms and functions to shed light on how students make sense of these terms. Students characterized mechanisms as 1 ) processes that occur at levels of organization lower than that of functions; and 2 ) as detailed events with many steps involved. We also found that students produced more variability in how they characterized functions compared with mechanisms: students characterized functions in relation to multiple levels of organization and multiple definitions. We interpret these results as evidence that students see mechanisms as holding a more narrow definition than used in the biological sciences, and that students struggle to coordinate and distinguish mechanisms from functions due to cognitive processes germane to learning in many domains. We offer the instructional suggestion that we scaffold student learning by affording students opportunities to relate and also distinguish between these terms so central to understanding physiology. Copyright © 2017 the American Physiological Society.
Stöhr, Eric J; Stembridge, Mike; Esformes, Joseph I
2015-04-20
What is the central question of this study? Regulation of cardiac function is typically achieved by changes in heart rate (HR) and cardiac shortening velocity (strain rate; SR), but their interdependence in vivo remains poorly understood. What is the main finding and its importance? Using resistance exercise to increase heart rate and arterial resistance physiologically in humans and measuring regional cardiac SR (at the base and apex), we found that HR and SR were not strictly coupled because SR at the base and apex responded differently, despite the same HR. Importantly, our data show that the region-averaged 'longitudinal' SR, which is currently popular in the clinical setting, markedly underestimates the contribution of the apex. The fundamental importance of cardiac shortening and lengthening velocity (i.e. strain rate; SR) has been demonstrated in vitro. Currently, the interdependence between in vivo SR and HR is poorly understood because studies have typically assessed region-averaged 'longitudinal' strain rate, which is likely to underestimate the apical contribution, and have used non-physiological interventions that may also have been influenced by multicollinearity caused by concomitant reductions in arterial resistance. Resistance exercise acutely raises HR, blood pressure and arterial resistance and transiently disassociates these cardiovascular factors following exercise. Therefore, we measured SR, HR, blood pressure and arterial resistance in nine healthy men (aged 20 ± 1 years) immediately before, during and after double-leg-press exercise at 30 and 60% of maximal strength. Resistance exercise caused a disproportionate SR response at the left ventricular base and apex (interaction effect, P < 0.05). Consequently, associations between HR and regional peak SR were inconsistent and mostly very weak (r(2) = 0.0004-0.24). Likewise, the areas under the curve for systolic and diastolic SR and their relationship with systolic and diastolic duration were variable and weak. Importantly, region-averaged 'longitudinal' SR was identical to basal SR, thus, markedly underestimating the apical contribution. In conclusion, in vivo HR and SR are not strictly coupled in healthy humans, which is explained by the region-specific responses of SR that are not captured by 'longitudinal SR'. This novel observation emphasizes the independent role of in vivo SR in overall cardiac function during stress and may cause a 'revival' of SR as a marker of regional left ventricular (dys)function. © 2015 The Authors. Experimental Physiology © 2015 The Physiological Society.
Melatonin effects on hard tissues: bone and tooth.
Liu, Jie; Huang, Fang; He, Hong-Wen
2013-05-10
Melatonin is an endogenous hormone rhythmically produced in the pineal gland under the control of the suprachiasmatic nucleus (SCN) and the light/dark cycle. This indole plays an important role in many physiological processes including circadian entrainment, blood pressure regulation, seasonal reproduction, ovarian physiology, immune function, etc. Recently, the investigation and applications of melatonin in the hard tissues bone and tooth have received great attention. Melatonin has been investigated relative to bone remolding, osteoporosis, osseointegration of dental implants and dentine formation. In the present review, we discuss the large body of published evidence and review data of melatonin effects on hard tissues, specifically, bone and tooth.
Physiology and immunology of the cholinergic antiinflammatory pathway
Tracey, Kevin J.
2007-01-01
Cytokine production by the immune system contributes importantly to both health and disease. The nervous system, via an inflammatory reflex of the vagus nerve, can inhibit cytokine release and thereby prevent tissue injury and death. The efferent neural signaling pathway is termed the cholinergic antiinflammatory pathway. Cholinergic agonists inhibit cytokine synthesis and protect against cytokine-mediated diseases. Stimulation of the vagus nerve prevents the damaging effects of cytokine release in experimental sepsis, endotoxemia, ischemia/reperfusion injury, hemorrhagic shock, arthritis, and other inflammatory syndromes. Herein is a review of this physiological, functional anatomical mechanism for neurological regulation of cytokine-dependent disease that begins to define an immunological homunculus. PMID:17273548
Pulp-dentin biology in restorative dentistry. Part 1: normal structure and physiology.
Mjör, I A; Sveen, O B; Heyeraas, K J
2001-06-01
Considerable knowledge has accumulated over the years on the structure and function of the dental pulp and dentin. Some of this knowledge has important clinical implications. This review, which is the first of seven articles, will be limited to those parts of the normal structure and physiology of the pulp and dentin that have been shown to result in, or are likely lead to, tissue reactions associated with the clinical treatment of these tissues. Although certain normal structures will be highlighted in some detail, a basic knowledge of pulpal and dentinal development and structure is a prerequisite for an understanding of this text.
Fractal mechanisms in the electrophysiology of the heart
NASA Technical Reports Server (NTRS)
Goldberger, A. L.
1992-01-01
The mathematical concept of fractals provides insights into complex anatomic branching structures that lack a characteristic (single) length scale, and certain complex physiologic processes, such as heart rate regulation, that lack a single time scale. Heart rate control is perturbed by alterations in neuro-autonomic function in a number of important clinical syndromes, including sudden cardiac death, congestive failure, cocaine intoxication, fetal distress, space sickness and physiologic aging. These conditions are associated with a loss of the normal fractal complexity of interbeat interval dynamics. Such changes, which may not be detectable using conventional statistics, can be quantified using new methods derived from "chaos theory.".
NUCLEAR FACTOR-Y: still complex after all these years?
Myers, Zachary A; Holt, Ben F
2018-06-11
The NUCLEAR FACTOR-Y (NF-Y) families of transcription factors are important regulators of plant development and physiology. Though NF-Y regulatory roles have recently been suggested for numerous aspects of plant biology, their roles in flowering time, early seedling development, stress responses, hormone signaling, and nodulation are the best characterized. The past few years have also seen significant advances in our understanding of the mechanistic function of the NF-Y, and as such, increasingly complex and interesting questions are now more approachable. This review will primarily focus on these developmental, physiological, and mechanistic roles of the NF-Y in recent research. Copyright © 2018 Elsevier Ltd. All rights reserved.
Hedgehogs and sugar gliders: respiratory anatomy, physiology, and disease.
Johnson, Dan H
2011-05-01
This article discusses the respiratory anatomy, physiology, and disease of African pygmy hedgehogs (Atelerix albiventris) and sugar gliders (Petaurus breviceps), two species commonly seen in exotic animal practice. Where appropriate, information from closely related species is mentioned because cross-susceptibility is likely and because these additional species may also be encountered in practice. Other body systems and processes are discussed insofar as they relate to or affect respiratory function. Although some topics, such as special senses, hibernation, or vocalization, may seem out of place, in each case the information relates back to respiration in some important way. Copyright © 2011 Elsevier Inc. All rights reserved.
Small peptide signaling pathways modulating macronutrient utilization in plants.
de Bang, Thomas C; Lay, Katerina S; Scheible, Wolf-Rüdiger; Takahashi, Hideki
2017-10-01
Root system architecture (RSA) and physiological functions define macronutrient uptake efficiency. Small signaling peptides (SSPs), that act in manners similar to hormones, and their cognate receptors transmit signals both locally and systemically. Several SSPs controlling morphological and physiological traits of roots have been identified to be associated with macronutrient uptake. Recent development in plant genome research has provided an avenue toward systems-based identification and prediction of additional SSPs. This review highlights recent studies on SSP pathways important for optimization of macronutrient uptake and provides new insights into the diversity of SSPs regulated in response to changes in macronutrient availabilities. Copyright © 2017 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Dirks-Naylor, Amie J.
2016-01-01
Renal transport is a central mechanism underlying electrolyte homeostasis, acid base balance and other essential functions of the kidneys in human physiology. Thus, knowledge of the anatomy and physiology of the nephron is essential for the understanding of kidney function in health and disease. However, students find this content difficult to…
A Crash Course in Calcium Channels.
Zamponi, Gerald W
2017-12-20
Much progress has been made in understanding the molecular physiology and pharmacology of calcium channels. Recently, there have been tremendous advances in learning about calcium channel structure and function through crystallography and cryo-electron microscopy studies. Here, I will give an overview of our knowledge about calcium channels, and highlight two recent studies that give important insights into calcium channel structure.
USDA-ARS?s Scientific Manuscript database
Juvenile hormone (JH) is an important regulator of development and physiology in insects. While in many insect species, including bumble bees, JH function as gonadotropin in adults, in some highly eusocial insects its role has shifted to regulate social behavior including division of labor, dominanc...
[Scars, physiology, classification and assessment].
Roques, Claude
2013-01-01
A skin scar is the sign of tissue repair following damage to the skin. Once formed, it follows a process of maturation which, after several months, results in a mature scar. This can be pathological with functional and/or aesthetic consequences. It is important to assess the scar as it matures in order to adapt the treatment to its evolution.
Organ fusion and defective cuticle function in a lacs1 lacs2 double mutant of Arabidopsis
USDA-ARS?s Scientific Manuscript database
As the outermost layer on aerial tissues of the primary plant body, the cuticle plays important roles in plant development and physiology. The major components of the cuticle are cutin and cuticular wax, both of which are composed primarily of fatty acid derivatives synthesized in the epidermal cell...
Carbon allocation to root and shoot systems of woody plants
Mark D. Coleman; J.G. Isebrands
1994-01-01
Carbon allocation to roots is of widespread and increasing interest due to a growing appreciation of the importance of root processes to whole-plant physiology and plant productivity. Carbon (C) allocation commonly refers to the distribution of C among plant organs (e.g., leaves, stems, roots); however, the term also applies to functional categories within organs such...
What have we learned about GPER function in physiology and disease from knockout mice?
Prossnitz, Eric R; Hathaway, Helen J
2015-09-01
Estrogens, predominantly 17β-estradiol, exert diverse effects throughout the body in both normal and pathophysiology, during development and in reproductive, metabolic, endocrine, cardiovascular, nervous, musculoskeletal and immune systems. Estrogen and its receptors also play important roles in carcinogenesis and therapy, particularly for breast cancer. In addition to the classical nuclear estrogen receptors (ERα and ERβ) that traditionally mediate predominantly genomic signaling, the G protein-coupled estrogen receptor GPER has become recognized as a critical mediator of rapid signaling in response to estrogen. Mouse models, and in particular knockout (KO) mice, represent an important approach to understand the functions of receptors in normal physiology and disease. Whereas ERα KO mice display multiple significant defects in reproduction and mammary gland development, ERβ KO phenotypes are more limited, and GPER KO exhibit no reproductive deficits. However, the study of GPER KO mice over the last six years has revealed that GPER deficiency results in multiple physiological alterations including obesity, cardiovascular dysfunction, insulin resistance and glucose intolerance. In addition, the lack of estrogen-mediated effects in numerous tissues of GPER KO mice, studied in vivo or ex vivo, including those of the cardiovascular, endocrine, nervous and immune systems, reveals GPER as a genuine mediator of estrogen action. Importantly, GPER KO mice have also demonstrated roles for GPER in breast carcinogenesis and metastasis. In combination with the supporting effects of GPER-selective ligands and GPER knockdown approaches, GPER KO mice demonstrate the therapeutic potential of targeting GPER activity in diseases as diverse as obesity, diabetes, multiple sclerosis, hypertension, atherosclerosis, myocardial infarction, stroke and cancer. Copyright © 2015. Published by Elsevier Ltd.
Mortazavi, M M; Adeeb, N; Griessenauer, C J; Sheikh, H; Shahidi, S; Tubbs, R I; Tubbs, R S
2014-01-01
The cerebral ventricles have been recognized since ancient medical history. Their true function started to be realized more than a thousand years later. Their anatomy and function are extremely important in the neurosurgical panorama. The literature was searched for articles and textbooks of different topics related to the history, anatomy, physiology, histology, embryology and surgical considerations of the brain ventricles. Herein, we summarize the literature about the cerebral ventricular system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, B.; Sugiman-Marangos, S; Junop, M
2009-01-01
The Actinobacteria phylum represents one of the largest and most diverse groups of bacteria, encompassing many important and well-characterized organisms including Streptomyces, Bifidobacterium, Corynebacterium and Mycobacterium. Members of this phylum are remarkably diverse in terms of life cycle, morphology, physiology and ecology. Recent comparative genomic analysis of 19 actinobacterial species determined that only 5 genes of unknown function uniquely define this large phylum [1]. The cellular functions of these actinobacteria-specific proteins (ASP) are not known.
Incontinence and sexuality in later life.
Garrett, Dawne; Tomlin, Karen
2015-07-01
This article explores the interrelated aspects of incontinence and sexuality in older age. It describes the physiological changes that may have an effect on sexual function and the genitourinary system as people age. The enduring importance of sexual intimacy is discussed. Treatments for incontinence and to improve sexual function are explored. The authors conclude that nurses, particularly those involved in continence management, have a role in ensuring sensitive assessment and access to treatment, which can support many older people to maintain fulfilling sexual activity.
The thermolysin family (M4) of enzymes: therapeutic and biotechnological potential.
Adekoya, Olayiwola A; Sylte, Ingebrigt
2009-01-01
Zinc containing peptidases are widely distributed in nature and have important roles in many physiological processes. M4 family comprises numerous zinc-dependent metallopeptidases that hydrolyze peptide bonds. A large number of these enzymes are implicated as virulence factors of the microorganisms that produce them and are therefore potential drug targets. Some enzymes of the family are able to function at the extremes of temperatures, and some function in organic solvents. Thereby enzymes of the thermolysin family have an innovative potential for biotechnological applications.
Yang, Yunqiang; Yang, Shihai; Sun, Xudong; Yang, Yongping
2015-01-01
Cadmium (Cd) pollution is an environmental problem worldwide. Phytoremediation is a convenient method of removing Cd from both soil and water, but its efficiency is still low, especially in aquatic environments. Scientists have been trying to improve the ability of plants to absorb and accumulate Cd based on interactions between plants and Cd, especially the mechanism by which plants resist Cd. Eichhornia crassipes and Pistia stratiotes are aquatic plants commonly used in the phytoremediation of heavy metals. In the present study, we conducted physiological and biochemical analyses to compare the resistance of these two species to Cd stress at 100 mg/L. E. crassipes showed stronger resistance and was therefore used for subsequent comparative proteomics to explore the potential mechanism of E. crassipes tolerance to Cd stress at the protein level. The expression patterns of proteins in different functional categories revealed that the physiological activities and metabolic processes of E. crassipes were affected by exposure to Cd stress. However, when some proteins related to these processes were negatively inhibited, some analogous proteins were induced to compensate for the corresponding functions. As a result, E. crassipes could maintain more stable physiological parameters than P. stratiotes. Many stress-resistance substances and proteins, such as proline and heat shock proteins (HSPs) and post translational modifications, were found to be involved in the protection and repair of functional proteins. In addition, antioxidant enzymes played important roles in ROS detoxification. These findings will facilitate further understanding of the potential mechanism of plant response to Cd stress at the protein level. PMID:25886466
Increasing fetal ovine number per gestation alters fetal plasma clinical chemistry values.
Zywicki, Micaela; Blohowiak, Sharon E; Magness, Ronald R; Segar, Jeffrey L; Kling, Pamela J
2016-08-01
Intrauterine growth restriction (IUGR) is interconnected with developmental programming of lifelong pathophysiology. IUGR is seen in human multifetal pregnancies, with stepwise rises in fetal numbers interfering with placental nutrient delivery. It remains unknown whether fetal blood analyses would reflect fetal nutrition, liver, and excretory function in the last trimester of human or ovine IUGR In an ovine model, we hypothesized that fetal plasma biochemical values would reflect progressive placental, fetal liver, and fetal kidney dysfunction as the number of fetuses per gestation rose. To determine fetal plasma biochemical values in singleton, twin, triplet, and quadruplet/quintuplet ovine gestation, we investigated morphometric measures and comprehensive metabolic panels with nutritional measures, liver enzymes, and placental and fetal kidney excretory measures at gestational day (GD) 130 (90% gestation). As anticipated, placental dysfunction was supported by a stepwise fall in fetal weight, fetal plasma glucose, and triglyceride levels as fetal number per ewe rose. Fetal glucose and triglycerides were directly related to fetal weight. Plasma creatinine, reflecting fetal renal excretory function, and plasma cholesterol, reflecting placental excretory function, were inversely correlated with fetal weight. Progressive biochemical disturbances and growth restriction accompanied the rise in fetal number. Understanding the compensatory and adaptive responses of growth-restricted fetuses at the biochemical level may help explain how metabolic pathways in growth restriction can be predetermined at birth. This physiological understanding is important for clinical care and generating interventional strategies to prevent altered developmental programming in multifetal gestation. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.
Fullagar, Hugh H K; Skorski, Sabrina; Duffield, Rob; Hammes, Daniel; Coutts, Aaron J; Meyer, Tim
2015-02-01
Although its true function remains unclear, sleep is considered critical to human physiological and cognitive function. Equally, since sleep loss is a common occurrence prior to competition in athletes, this could significantly impact upon their athletic performance. Much of the previous research has reported that exercise performance is negatively affected following sleep loss; however, conflicting findings mean that the extent, influence, and mechanisms of sleep loss affecting exercise performance remain uncertain. For instance, research indicates some maximal physical efforts and gross motor performances can be maintained. In comparison, the few published studies investigating the effect of sleep loss on performance in athletes report a reduction in sport-specific performance. The effects of sleep loss on physiological responses to exercise also remain equivocal; however, it appears a reduction in sleep quality and quantity could result in an autonomic nervous system imbalance, simulating symptoms of the overtraining syndrome. Additionally, increases in pro-inflammatory cytokines following sleep loss could promote immune system dysfunction. Of further concern, numerous studies investigating the effects of sleep loss on cognitive function report slower and less accurate cognitive performance. Based on this context, this review aims to evaluate the importance and prevalence of sleep in athletes and summarises the effects of sleep loss (restriction and deprivation) on exercise performance, and physiological and cognitive responses to exercise. Given the equivocal understanding of sleep and athletic performance outcomes, further research and consideration is required to obtain a greater knowledge of the interaction between sleep and performance.
Voyvodic, James T.; Glover, Gary H.; Greve, Douglas; Gadde, Syam
2011-01-01
Functional magnetic resonance imaging (fMRI) is based on correlating blood oxygen-level dependent (BOLD) signal fluctuations in the brain with other time-varying signals. Although the most common reference for correlation is the timing of a behavioral task performed during the scan, many other behavioral and physiological variables can also influence fMRI signals. Variations in cardiac and respiratory functions in particular are known to contribute significant BOLD signal fluctuations. Variables such as skin conduction, eye movements, and other measures that may be relevant to task performance can also be correlated with BOLD signals and can therefore be used in image analysis to differentiate multiple components in complex brain activity signals. Combining real-time recording and data management of multiple behavioral and physiological signals in a way that can be routinely used with any task stimulus paradigm is a non-trivial software design problem. Here we discuss software methods that allow users control of paradigm-specific audio–visual or other task stimuli combined with automated simultaneous recording of multi-channel behavioral and physiological response variables, all synchronized with sub-millisecond temporal accuracy. We also discuss the implementation and importance of real-time display feedback to ensure data quality of all recorded variables. Finally, we discuss standards and formats for storage of temporal covariate data and its integration into fMRI image analysis. These neuroinformatics methods have been adopted for behavioral task control at all sites in the Functional Biomedical Informatics Research Network (FBIRN) multi-center fMRI study. PMID:22232596
The hippocampal formation: morphological changes induced by thyroid, gonadal and adrenal hormones.
Gould, E; Woolley, C S; McEwen, B S
1991-01-01
The hippocampal formation is of considerable interest due to its proposed role in a number of important functions, including learning and memory processes. Manipulations of thyroid, gonadal and adrenal hormones have been shown to influence hippocampal physiology as well as learning and memory. The cellular events which underlie these hormone-induced functional changes are largely unexplored. However, studies suggest that hormonal manipulations during development and in adulthood result in dramatic morphological changes within the hippocampal formation. Because neuronal physiology has been suggested to depend upon neuronal morphology, we have been determining the morphologic sensitivity of hippocampal neurons to thyroid and steroid hormones in an effort to elucidate possible structural mechanisms to account for differences in hippocampal function. In this review, hormone-induced structural changes in the developing and adult hippocampal formation are discussed, with particular emphasis on their functional relevance. Sex differences, as well as the developmental effects of thyroid hormone and glucocorticoids, are described. Moreover, the effects of ovarian steroids, thyroid hormone and glucocorticoids on neuronal morphology in the hippocampal formation of the adult rat are reviewed. These hormone-induced structural changes may account, at least in part, for previously reported hormone-induced changes in hippocampal function.
Cyclin D2 is a critical mediator of exercise-induced cardiac hypertrophy.
Luckey, Stephen W; Haines, Chris D; Konhilas, John P; Luczak, Elizabeth D; Messmer-Kratzsch, Antke; Leinwand, Leslie A
2017-12-01
A number of signaling pathways underlying pathological cardiac hypertrophy have been identified. However, few studies have probed the functional significance of these signaling pathways in the context of exercise or physiological pathways. Exercise studies were performed on females from six different genetic mouse models that have been shown to exhibit alterations in pathological cardiac adaptation and hypertrophy. These include mice expressing constitutively active glycogen synthase kinase-3β (GSK-3βS9A), an inhibitor of CaMK II (AC3-I), both GSK-3βS9A and AC3-I (GSK-3βS9A/AC3-I), constitutively active Akt (myrAkt), mice deficient in MAPK/ERK kinase kinase-1 (MEKK1 -/- ), and mice deficient in cyclin D2 (cyclin D2 -/- ). Voluntary wheel running performance was similar to NTG littermates for five of the mouse lines. Exercise induced significant cardiac growth in all mouse models except the cyclin D2 -/- mice. Cardiac function was not impacted in the cyclin D2 -/- mice and studies using a phospho-antibody array identified six proteins with increased phosphorylation (greater than 150%) and nine proteins with decreased phosphorylation (greater than 33% decrease) in the hearts of exercised cyclin D2 -/- mice compared to exercised NTG littermate controls. Our results demonstrate that unlike the other hypertrophic signaling molecules tested here, cyclin D2 is an important regulator of both pathologic and physiological hypertrophy. Impact statement This research is relevant as the hypertrophic signaling pathways tested here have only been characterized for their role in pathological hypertrophy, and not in the context of exercise or physiological hypertrophy. By using the same transgenic mouse lines utilized in previous studies, our findings provide a novel and important understanding for the role of these signaling pathways in physiological hypertrophy. We found that alterations in the signaling pathways tested here had no impact on exercise performance. Exercise induced cardiac growth in all of the transgenic mice except for the mice deficient in cyclin D2. In the cyclin D2 null mice, cardiac function was not impacted even though the hypertrophic response was blunted and a number of signaling pathways are differentially regulated by exercise. These data provide the field with an understanding that cyclin D2 is a key mediator of physiological hypertrophy.
Physiologic Dysfunction Scores and Cognitive Function Test Performance in United States Adults
Kobrosly, Roni W; Seplaki, Christopher L; Jones, Courtney M; van Wijngaarden, Edwin
2013-01-01
Objective To investigate the relationship between a measure of cumulative physiologic dysfunction and specific domains of cognitive function. Methods We examined a summary score measuring physiological dysfunction, a multisystem measure of the body’s ability to effectively adapt to physical and psychological demands, in relation to cognitive function deficits in a population of 4511 adults aged 20 to 59 who participated in the third National Health and Nutrition Examination Survey (1988–1994). Measures of cognitive function comprised three domains: working memory, visuomotor speed, and perceptual-motor speed. ‘Physiologic dysfunction’ scores summarizing measures of cardiovascular, immunologic, kidney, and liver function were explored. We used multiple linear regression models to estimate associations between cognitive function measures and physiological dysfunction scores, adjusting for socioeconomic factors, test conditions, and self-reported health factors. Results We noted a dose-response relationship between physiologic dysfunction and working memory (coefficient = 0.207, 95% CI = (0.066, 0.348), p < 0.0001) that persisted after adjustment for all covariates (p = 0.03). We did not observe any significant relationships between dysfunction scores and visuomotor (p = 0.37) or perceptual-motor ability (p = 0.33). Conclusions Our findings suggest that multisystem physiologic dysfunction is associated with working memory. Future longitudinal studies are needed to clarify the underlying mechanisms and explore the persistency of this association into later life. We suggest that such studies should incorporate physiologic data, neuroendocrine parameters, and a wide range of specific cognitive domains. PMID:22155941
Regulation, Signaling, and Physiological Functions of G-Proteins.
Syrovatkina, Viktoriya; Alegre, Kamela O; Dey, Raja; Huang, Xin-Yun
2016-09-25
Heterotrimeric guanine-nucleotide-binding regulatory proteins (G-proteins) mainly relay the information from G-protein-coupled receptors (GPCRs) on the plasma membrane to the inside of cells to regulate various biochemical functions. Depending on the targeted cell types, tissues, and organs, these signals modulate diverse physiological functions. The basic schemes of heterotrimeric G-proteins have been outlined. In this review, we briefly summarize what is known about the regulation, signaling, and physiological functions of G-proteins. We then focus on a few less explored areas such as the regulation of G-proteins by non-GPCRs and the physiological functions of G-proteins that cannot be easily explained by the known G-protein signaling pathways. There are new signaling pathways and physiological functions for G-proteins to be discovered and further interrogated. With the advancements in structural and computational biological techniques, we are closer to having a better understanding of how G-proteins are regulated and of the specificity of G-protein interactions with their regulators. Copyright © 2016 Elsevier Ltd. All rights reserved.
Functional Groups Based on Leaf Physiology: Are they Spatially and Temporally Robust?
NASA Technical Reports Server (NTRS)
Foster, Tammy E.; Brooks, J. Renee
2004-01-01
The functional grouping hypothesis, which suggests that complexity in ecosystem function can be simplified by grouping species with similar responses, was tested in the Florida scrub habitat. Functional groups were identified based on how species in fire maintained Florida scrub regulate exchange of carbon and water with the atmosphere as indicated by both instantaneous gas exchange measurements and integrated measures of function (%N, delta C-13, delta N-15, C-N ratio). Using cluster analysis, five distinct physiologically-based functional groups were identified in the fire maintained scrub. These functional groups were tested to determine if they were robust spatially, temporally, and with management regime. Analysis of Similarities (ANOSIM), a non-parametric multivariate analysis, indicated that these five physiologically-based groupings were not altered by plot differences (R = -0.115, p = 0.893) or by the three different management regimes; prescribed burn, mechanically treated and burn, and fire-suppressed (R = 0.018, p = 0.349). The physiological groupings also remained robust between the two climatically different years 1999 and 2000 (R = -0.027, p = 0.725). Easy-to-measure morphological characteristics indicating functional groups would be more practical for scaling and modeling ecosystem processes than detailed gas-exchange measurements, therefore we tested a variety of morphological characteristics as functional indicators. A combination of non-parametric multivariate techniques (Hierarchical cluster analysis, non-metric Multi-Dimensional Scaling, and ANOSIM) were used to compare the ability of life form, leaf thickness, and specific leaf area classifications to identify the physiologically-based functional groups. Life form classifications (ANOSIM; R = 0.629, p 0.001) were able to depict the physiological groupings more adequately than either specific leaf area (ANOSIM; R = 0.426, p = 0.001) or leaf thickness (ANOSIM; R 0.344, p 0.001). The ability of life forms to depict the physiological groupings was improved by separating the parasitic Ximenia americana from the shrub category (ANOSIM; R = 0.794, p = 0.001). Therefore, a life form classification including parasites was determined to be a good indicator of the physiological processes of scrub species, and would be a useful method of grouping for scaling physiological processes to the ecosystem level.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prince, R.C.; Gailer, J.; Gunson, D.E.
2009-06-04
Selenium in the form of selenocysteine plays an essential role in a number of proteins, but its role in non-enzymatic biochemistry is also important. In this short review we discuss the interactions between inorganic selenium, arsenic and mercury under physiological conditions, especially in the presence of glutathione. This chemistry is obviously important in making the arsenic and mercury unavailable for more toxic interactions, but in the process it suggests that a side-effect of chronic arsenic and/or mercury exposure is likely to be functional selenium deficiency.
Dong, Qian; Ernst, Sarah E.; Ostedgaard, Lynda S.; Shah, Viral S.; Ver Heul, Amanda R.; Welsh, Michael J.; Randak, Christoph O.
2015-01-01
The ATP-binding cassette (ABC) transporter cystic fibrosis transmembrane conductance regulator (CFTR) and two other non-membrane-bound ABC proteins, Rad50 and a structural maintenance of chromosome (SMC) protein, exhibit adenylate kinase activity in the presence of physiologic concentrations of ATP and AMP or ADP (ATP + AMP ⇆ 2 ADP). The crystal structure of the nucleotide-binding domain of an SMC protein in complex with the adenylate kinase bisubstrate inhibitor P1,P5-di(adenosine-5′) pentaphosphate (Ap5A) suggests that AMP binds to the conserved Q-loop glutamine during the adenylate kinase reaction. Therefore, we hypothesized that mutating the corresponding residue in CFTR, Gln-1291, selectively disrupts adenylate kinase-dependent channel gating at physiologic nucleotide concentrations. We found that substituting Gln-1291 with bulky side-chain amino acids abolished the effects of Ap5A, AMP, and adenosine 5′-monophosphoramidate on CFTR channel function. 8-Azidoadenosine 5′-monophosphate photolabeling of the AMP-binding site and adenylate kinase activity were disrupted in Q1291F CFTR. The Gln-1291 mutations did not alter the potency of ATP at stimulating current or ATP-dependent gating when ATP was the only nucleotide present. However, when physiologic concentrations of ADP and AMP were added, adenylate kinase-deficient Q1291F channels opened significantly less than wild type. Consistent with this result, we found that Q1291F CFTR displayed significantly reduced Cl− channel function in well differentiated primary human airway epithelia. These results indicate that a highly conserved residue of an ABC transporter plays an important role in adenylate kinase-dependent CFTR gating. Furthermore, the results suggest that adenylate kinase activity is important for normal CFTR channel function in airway epithelia. PMID:25887396
Dong, Qian; Ernst, Sarah E; Ostedgaard, Lynda S; Shah, Viral S; Ver Heul, Amanda R; Welsh, Michael J; Randak, Christoph O
2015-05-29
The ATP-binding cassette (ABC) transporter cystic fibrosis transmembrane conductance regulator (CFTR) and two other non-membrane-bound ABC proteins, Rad50 and a structural maintenance of chromosome (SMC) protein, exhibit adenylate kinase activity in the presence of physiologic concentrations of ATP and AMP or ADP (ATP + AMP ⇆ 2 ADP). The crystal structure of the nucleotide-binding domain of an SMC protein in complex with the adenylate kinase bisubstrate inhibitor P(1),P(5)-di(adenosine-5') pentaphosphate (Ap5A) suggests that AMP binds to the conserved Q-loop glutamine during the adenylate kinase reaction. Therefore, we hypothesized that mutating the corresponding residue in CFTR, Gln-1291, selectively disrupts adenylate kinase-dependent channel gating at physiologic nucleotide concentrations. We found that substituting Gln-1291 with bulky side-chain amino acids abolished the effects of Ap5A, AMP, and adenosine 5'-monophosphoramidate on CFTR channel function. 8-Azidoadenosine 5'-monophosphate photolabeling of the AMP-binding site and adenylate kinase activity were disrupted in Q1291F CFTR. The Gln-1291 mutations did not alter the potency of ATP at stimulating current or ATP-dependent gating when ATP was the only nucleotide present. However, when physiologic concentrations of ADP and AMP were added, adenylate kinase-deficient Q1291F channels opened significantly less than wild type. Consistent with this result, we found that Q1291F CFTR displayed significantly reduced Cl(-) channel function in well differentiated primary human airway epithelia. These results indicate that a highly conserved residue of an ABC transporter plays an important role in adenylate kinase-dependent CFTR gating. Furthermore, the results suggest that adenylate kinase activity is important for normal CFTR channel function in airway epithelia. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
The aryl hydrocarbon receptor: multitasking in the immune system.
Stockinger, Brigitta; Di Meglio, Paola; Gialitakis, Manolis; Duarte, João H
2014-01-01
The aryl hydrocarbon receptor (AhR), for many years almost exclusively studied by the pharmacology/toxicology field for its role in mediating the toxicity of xenobiotics such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), has more recently attracted the attention of immunologists. The evolutionary conservation of this transcription factor and its widespread expression in the immune system point to important physiological functions that are slowly being unraveled. In particular, the emphasis is now shifting from the role of AhR in the xenobiotic pathway toward its mode of action in response to physiological ligands. In this article, we review the current understanding of the molecular interactions and functions of AhR in the immune system in steady state and in the presence of infection and inflammation, with a focus on barrier organs such as the skin, the gut, and the lung.
Biologic consequences of Stat1-independent IFN signaling
Gil, M. Pilar; Bohn, Erwin; O'Guin, Andrew K.; Ramana, Chilakamarti V.; Levine, Beth; Stark, George R.; Virgin, Herbert W.; Schreiber, Robert D.
2001-01-01
Although Stat1 is required for many IFN-dependent responses, recent work has shown that IFNγ functions independently of Stat1 to affect the growth of tumor cells or immortalized fibroblasts. We now demonstrate that both IFNγ and IFNα/β regulate proliferative responses in cells of the mononuclear phagocyte lineage derived from Stat1-null mice. Using both representational difference analysis and gene arrays, we show that IFNγ exerts its Stat1-independent actions on mononuclear phagocytes by regulating the expression of many genes. This result was confirmed by monitoring changes in expression and function of the corresponding gene products. Regulation of the expression of these genes requires the IFNγ receptor and Jak1. The physiologic relevance of IFN-dependent, Stat1-independent signaling was demonstrated by monitoring antiviral responses in Stat1-null mice. Thus, the IFN receptors engage alternative Stat1-independent signaling pathways that have important physiological consequences. PMID:11390995
PANCREATITIS AND CARCINOMA OF THE PANCREAS—Some Aspects of the Pathologic Physiology
Edmondson, Hugh A.
1952-01-01
The physiological phenomena accompanying pancreatic disease in adults are related to the local and generalized reaction of the body to the blockage and/or leakage of the three enzymes—amylase, lipase and trypsin. The measurements of amylase and lipase in the serum are the most reliable criteria in the diagnosis of acute disease. Related changes may include hypocalcemia, hypopotassemia, hyperlipemia, hyperglycemia and decreased renal function. In chronic pancreatitis, there is less fluctuation in the amounts of the enzymes in the blood. The presence of diabetes mellitus, demonstration of calculi by x-ray, and examination of the stools for excess fat and meat fibers are more important diagnostic guides. In cancer of the pancreas, function tests using secretin stimulation of the gland followed by an examination of the external secretion or determination of the serum amylase have been used with some success. PMID:12988052
Pancreatitis and carcinoma of the pancreas; some aspects of the pathologic physiology.
EDMONDSON, H A
1952-09-01
The physiological phenomena accompanying pancreatic disease in adults are related to the local and generalized reaction of the body to the blockage and/or leakage of the three enzymes-amylase, lipase and trypsin. The measurements of amylase and lipase in the serum are the most reliable criteria in the diagnosis of acute disease. Related changes may include hypocalcemia, hypopotassemia, hyperlipemia, hyperglycemia and decreased renal function. In chronic pancreatitis, there is less fluctuation in the amounts of the enzymes in the blood. The presence of diabetes mellitus, demonstration of calculi by x-ray, and examination of the stools for excess fat and meat fibers are more important diagnostic guides. In cancer of the pancreas, function tests using secretin stimulation of the gland followed by an examination of the external secretion or determination of the serum amylase have been used with some success.
Physiological adaptation of the growth-restricted fetus.
Maršál, Karel
2018-05-01
The growth-restricted fetus in utero is exposed to a hostile environment and suffers undernutrition and hypoxia. To cope with the stress, the fetus changes its physiological functions. These adaptive changes aid intrauterine survival; however, they can lead to permanent functional and structural changes that can contribute to the development of serious chronic diseases later in life. Epigenetic mechanisms are an important part of the pathophysiological processes behind this "developmental origin of adult diseases." The dominant cardiovascular adaptive change is the redistribution of blood flow in hypoxic fetuses, with preferential supply of blood to the fetal brain, myocardium, and adrenal glands. The proportion of blood from the umbilical vein to the ductus venosus and foramen ovale increases, which increases the cardiac output of the left heart ventricle. The increased perfusion of fetal brain can be followed with Doppler ultrasound as increased diastolic velocities and decreased pulsatility index in the middle cerebral artery. Copyright © 2018. Published by Elsevier Ltd.
Structure of the Get3 targeting factor in complex with its membrane protein cargo
Mateja, Agnieszka; Paduch, Marcin; Chang, Hsin-Yang; ...
2015-03-06
Tail-anchored (TA) proteins are a physiologically important class of membrane proteins targeted to the endoplasmic reticulum by the conserved guided-entry of TA proteins (GET) pathway. During transit, their hydrophobic transmembrane domains (TMDs) are chaperoned by the cytosolic targeting factor Get3, but the molecular nature of the functional Get3-TA protein targeting complex remains unknown. In this paper, we reconstituted the physiologic assembly pathway for a functional targeting complex and showed that it comprises a TA protein bound to a Get3 homodimer. Crystal structures of Get3 bound to different TA proteins showed an α-helical TMD occupying a hydrophobic groove that spans themore » Get3 homodimer. Finally, our data elucidate the mechanism of TA protein recognition and shielding by Get3 and suggest general principles of hydrophobic domain chaperoning by cellular targeting factors.« less
Mammalian lipoxygenases and their biological relevance
Kuhn, Hartmut; Banthiya, Swathi; van Leyen, Klaus
2015-01-01
Lipoxygenases (LOXs) form a heterogeneous class of lipid peroxidizing enzymes, which have been implicated in cell proliferation and differentiation but also in the pathogenesis of various diseases with major public health relevance. As other fatty acid dioxygenases LOX oxidize polyunsaturated fatty acids to their corresponding hydroperoxy derivatives, which are further transformed to bioactive lipid mediators (eicosanoids and related substances). On the other hand, lipoxygenases are key players in regulation of the cellular redox homeostasis, which is an important element in gene expression regulation. Although the first mammalian lipoxygenases were discovered 40 years ago and although the enzymes have been well characterized with respect to their structural and functional properties the biological roles of the different lipoxygenase isoforms are not completely understood. This review is aimed at summarizing the current knowledge on the physiological roles of different mammalian LOX-isoforms and their patho-physiological function in inflammatory, metabolic, hyperproliferative, neurodegenerative and infectious disorders. PMID:25316652
Intercellular Ca2+ Waves: Mechanisms and Function
Sanderson, Michael J.
2012-01-01
Intercellular calcium (Ca2+) waves (ICWs) represent the propagation of increases in intracellular Ca2+ through a syncytium of cells and appear to be a fundamental mechanism for coordinating multicellular responses. ICWs occur in a wide diversity of cells and have been extensively studied in vitro. More recent studies focus on ICWs in vivo. ICWs are triggered by a variety of stimuli and involve the release of Ca2+ from internal stores. The propagation of ICWs predominately involves cell communication with internal messengers moving via gap junctions or extracellular messengers mediating paracrine signaling. ICWs appear to be important in both normal physiology as well as pathophysiological processes in a variety of organs and tissues including brain, liver, retina, cochlea, and vascular tissue. We review here the mechanisms of initiation and propagation of ICWs, the key intra- and extracellular messengers (inositol 1,4,5-trisphosphate and ATP) mediating ICWs, and the proposed physiological functions of ICWs. PMID:22811430
A Simple fMRI Compatible Robotic Stimulator to Study the Neural Mechanisms of Touch and Pain.
Riillo, F; Bagnato, C; Allievi, A G; Takagi, A; Fabrizi, L; Saggio, G; Arichi, T; Burdet, E
2016-08-01
This paper presents a simple device for the investigation of the human somatosensory system with functional magnetic imaging (fMRI). PC-controlled pneumatic actuation is employed to produce innocuous or noxious mechanical stimulation of the skin. Stimulation patterns are synchronized with fMRI and other relevant physiological measurements like electroencephalographic activity and vital physiological parameters. The system allows adjustable regulation of stimulation parameters and provides consistent patterns of stimulation. A validation experiment demonstrates that the system safely and reliably identifies clusters of functional activity in brain regions involved in the processing of pain. This new device is inexpensive, portable, easy-to-assemble and customizable to suit different experimental requirements. It provides robust and consistent somatosensory stimulation, which is of crucial importance to investigating the mechanisms of pain and its strong connection with the sense of touch.
Calcium accelerates SNARE-mediated lipid mixing through modulating α-synuclein membrane interaction.
Zhang, Zeting; Jiang, Xin; Xu, Danrui; Zheng, Wenwen; Liu, Maili; Li, Conggang
2018-04-04
α-Synuclein is involved in Parkinson's disease, and its interaction with cell membrane is vital to its pathological and physiological functions. We have shown that Ca 2+ can regulate α-synuclein membrane interaction, but the physiological role of Ca 2+ in modulating α-synuclein membrane interaction is still unexplored. Based on the previous findings that α-synuclein inhibits membrane fusion and its inhibitory effect is highly related to its membrane binding, here we employed solution state Nuclear Magnetic Resonance (NMR) spectroscopy and the ensemble fluorescence fusion assay to show that Ca 2+ can modulate the inhibitory effect of α-synuclein on SNARE-mediated membrane fusion through disrupting α-synuclein membrane interaction, resulting in acceleration of SNARE-mediated membrane fusion. These results suggest a modulatory effect of Ca 2+ on membrane mediated normal function of α-synuclein, which of importance for the study of the Parkinson's disease. Copyright © 2018 Elsevier B.V. All rights reserved.
Koss, Kalsea J.; George, Melissa R. W.; Davies, Patrick T.; Cicchetti, Dante; Cummings, E. Mark; Sturge-Apple, Melissa L.
2013-01-01
Examining children’s physiological functioning is an important direction for understanding the links between interparental conflict and child adjustment. Utilizing growth mixture modeling, the present study examined children’s cortisol reactivity patterns in response to a marital dispute. Analyses revealed three different patterns of cortisol responses, consistent with both a sensitization and an attenuation hypothesis. Child-rearing disagreements and perceived threat were associated with children exhibiting a rising cortisol pattern whereas destructive conflict was related to children displaying a flat pattern. Physiologically rising patterns were also linked with emotional insecurity and internalizing and externalizing behaviors. Results supported a sensitization pattern of responses as maladaptive for children in response to marital conflict with evidence also linking an attenuation pattern with risk. The present study supports children’s adrenocortical functioning as one mechanism through which interparental conflict is related to children’s coping responses and psychological adjustment. PMID:22545835
Exosomes: an emerging factor in stress-induced immunomodulation.
Beninson, Lida A; Fleshner, Monika
2014-10-01
Cells constitutively release small (40-100 nm) vesicles known as exosomes, but their composition and function changes in response to a variety of physiological challenges, such as injury, infection, and disease. Advances in our understanding of the immunological relevance of exosomes have been made, however, few studies have explored their role in stress physiology. Exposure to a variety of acute stressors facilitates the efficacy of innate immune responses, but the mechanisms for these effects are not fully understood. Since exosomes are emerging as important inflammatory mediators, they likely exhibit a similar role when an organism is exposed to an acute stressor. Here, we review our current knowledge of the basic properties and immunological functions of exosomes and provide emerging data supporting the role of stress-modified exosomes in regulating the innate immune response, potentially enabling long-distance cellular communication and obviating the need for direct cell-to-cell contact. Copyright © 2013 Elsevier Ltd. All rights reserved.
Targeted knockout in Physcomitrella reveals direct actions of phytochrome in the cytoplasm.
Mittmann, Franz; Brücker, Gerhard; Zeidler, Mathias; Repp, Alexander; Abts, Thomas; Hartmann, Elmar; Hughes, Jon
2004-09-21
The plant photoreceptor phytochrome plays an important role in the nucleus as a regulator of transcription. Numerous studies imply, however, that phytochromes in both higher and lower plants mediate physiological reactions within the cytoplasm. In particular, the tip cells of moss protonemal filaments use phytochrome to sense light direction, requiring a signaling system that transmits the directional information directly to the microfilaments that direct tip growth. In this work we describe four canonical phytochrome genes in the model moss species Physcomitrella patens, each of which was successfully targeted via homologous recombination and the distinct physiological functions of each gene product thereby identified. One homolog in particular mediates positive phototropism, polarotropism, and chloroplast movement in polarized light. This photoreceptor thus interacts with a cytoplasmic signal/response system. This is our first step in elucidating the cytoplasmic signaling function of phytochrome at the molecular level.
Avian genomics lends insights into endocrine function in birds.
Mello, C V; Lovell, P V
2018-01-15
The genomics era has brought along the completed sequencing of a large number of bird genomes that cover a broad range of the avian phylogenetic tree (>30 orders), leading to major novel insights into avian biology and evolution. Among recent findings, the discovery that birds lack a large number of protein coding genes that are organized in highly conserved syntenic clusters in other vertebrates is very intriguing, given the physiological importance of many of these genes. A considerable number of them play prominent endocrine roles, suggesting that birds evolved compensatory genetic or physiological mechanisms that allowed them to survive and thrive in spite of these losses. While further studies are needed to establish the exact extent of avian gene losses, these findings point to birds as potentially highly relevant model organisms for exploring the genetic basis and possible therapeutic approaches for a wide range of endocrine functions and disorders. Copyright © 2017 Elsevier Inc. All rights reserved.
Thoma, M V; Scholz, U; Ehlert, U; Nater, U M
2012-01-01
Music listening has been suggested to have short-term beneficial effects. The aim of this study was to investigate the association and potential mediating mechanisms between various aspects of habitual music-listening behaviour and physiological and psychological functioning. An internet-based survey was conducted in university students, measuring habitual music-listening behaviour, emotion regulation, stress reactivity, as well as physiological and psychological functioning. A total of 1230 individuals (mean = 24.89 ± 5.34 years, 55.3% women) completed the questionnaire. Quantitative aspects of habitual music-listening behaviour, i.e. average duration of music listening and subjective relevance of music, were not associated with physiological and psychological functioning. In contrast, qualitative aspects, i.e. reasons for listening (especially 'reducing loneliness and aggression', and 'arousing or intensifying specific emotions') were significantly related to physiological and psychological functioning (all p = 0.001). These direct effects were mediated by distress-augmenting emotion regulation and individual stress reactivity. The habitual music-listening behaviour appears to be a multifaceted behaviour that is further influenced by dispositions that are usually not related to music listening. Consequently, habitual music-listening behaviour is not obviously linked to physiological and psychological functioning.
Functional Groups Based on Leaf Physiology: Are they Spatially and Temporally Robust?
NASA Technical Reports Server (NTRS)
Foster, Tammy E.; Brooks, J. Renee; Quincy, Charles (Technical Monitor)
2002-01-01
The functional grouping hypothesis, which suggests that complexity in function can be simplified by grouping species with similar responses, was tested in the Florida scrub habitat. Functional groups were identified based on how species in fire maintained FL scrub function in terms of carbon, water and nitrogen dynamics. The suite of physiologic parameters measured to determine function included both instantaneous gas exchange measurements obtained from photosynthetic light response curves and integrated measures of function. Using cluster analysis, five distinct physiologically-based functional groups were identified. Using non-parametric multivariate analyses, it was determined that these five groupings were not altered by plot differences or by the three different management regimes; prescribed burn, mechanically treated and burn, and fire-suppressed. The physiological groupings also remained robust between the two years 1999 and 2000. In order for these groupings to be of use for scaling ecosystem processes, there needs to be an easy-to-measure morphological indicator of function. Life form classifications were able to depict the physiological groupings more adequately than either specific leaf area or leaf thickness. THe ability of life forms to depict the groupings was improved by separating the parasitic Ximenia americana from the shrub category.
2013-01-01
Background We describe the genome of the western painted turtle, Chrysemys picta bellii, one of the most widespread, abundant, and well-studied turtles. We place the genome into a comparative evolutionary context, and focus on genomic features associated with tooth loss, immune function, longevity, sex differentiation and determination, and the species' physiological capacities to withstand extreme anoxia and tissue freezing. Results Our phylogenetic analyses confirm that turtles are the sister group to living archosaurs, and demonstrate an extraordinarily slow rate of sequence evolution in the painted turtle. The ability of the painted turtle to withstand complete anoxia and partial freezing appears to be associated with common vertebrate gene networks, and we identify candidate genes for future functional analyses. Tooth loss shares a common pattern of pseudogenization and degradation of tooth-specific genes with birds, although the rate of accumulation of mutations is much slower in the painted turtle. Genes associated with sex differentiation generally reflect phylogeny rather than convergence in sex determination functionality. Among gene families that demonstrate exceptional expansions or show signatures of strong natural selection, immune function and musculoskeletal patterning genes are consistently over-represented. Conclusions Our comparative genomic analyses indicate that common vertebrate regulatory networks, some of which have analogs in human diseases, are often involved in the western painted turtle's extraordinary physiological capacities. As these regulatory pathways are analyzed at the functional level, the painted turtle may offer important insights into the management of a number of human health disorders. PMID:23537068
Toledano, Adolfo; Álvarez, María-Isabel; Toledano-Díaz, Adolfo; Merino, José-Joaquín; Rodríguez, José Julio
2016-01-01
From birth to death, neurons are dynamically accompanied by neuroglial cells in a very close morphological and functional relationship. Three families have been classically considered within the CNS: astroglia, oligodendroglia and microglia. Many types/subtypes (including NGR2+ cells), with a wide variety of physiological and pathological effects on neurons, have been described using morphological and immunocytochemical criteria. Glio-glial, glio-neuronal and neuro-glial cell signaling and gliotransmission are phenomena that are essential to support brain functions. Morphofunctional changes resulting from the plasticity of all the glial cell types parallel the plastic neuronal changes that optimize the functionality of neuronal circuits. Moreover, neuroglia possesses the ability to adopt a reactive status (gliosis) in which, generally, new functions arise to improve and restore if needed the neural functionality. All these features make neuroglial cells elements of paramount importance when attempting to explain any physiological or pathological processes in the CNS, because they are involved in both, neuroprotection/neurorepair and neurodegeneration. There exist diverse and profound, regional and local, neuroglial changes in all involutive processes (physiological and pathological aging; neurodegenerative disorders, including Alzheimer ´s disease -AD-), but today, the exact meaning of such modifications (the modifications of the different neuroglial types, in time and place), is not well understood. In this review we consider the different neuroglial cells and their responses in order to understand the possible role they fulfill in pathogenesis, diagnosis and treatment (preventive or palliative) of AD. The existence of differentiated and/or concurrent pathogenic and neuro-protective/neuro-restorative astroglial and microglial responses is highlighted.
Komisarczuk, Anna Z; Kongshaug, Heidi; Nilsen, Frank
2018-02-01
Na + /K + -ATPase has a key function in a variety of physiological processes including membrane excitability, osmoregulation, regulation of cell volume, and transport of nutrients. While knowledge about Na + /K + -ATPase function in osmoregulation in crustaceans is extensive, the role of this enzyme in other physiological and developmental processes is scarce. Here, we report characterization, transcriptional distribution and likely functions of the newly identified L. salmonis Na + /K + -ATPase (LsalNa + /K + -ATPase) α subunit in various developmental stages. The complete mRNA sequence was identified, with 3003 bp open reading frame encoding a putative protein of 1001 amino acids. Putative protein sequence of LsalNa + /K + -ATPase revealed all typical features of Na + /K + -ATPase and demonstrated high sequence identity to other invertebrate and vertebrate species. Quantitative RT-PCR analysis revealed higher LsalNa + /K + -ATPase transcript level in free-living stages in comparison to parasitic stages. In situ hybridization analysis of copepodids and adult lice revealed LsalNa + /K + -ATPase transcript localization in a wide variety of tissues such as nervous system, intestine, reproductive system, and subcuticular and glandular tissue. RNAi mediated knock-down of LsalNa + /K + -ATPase caused locomotion impairment, and affected reproduction and feeding. Morphological analysis of dsRNA treated animals revealed muscle degeneration in larval stages, severe changes in the oocyte formation and maturation in females and abnormalities in tegmental glands. Thus, the study represents an important foundation for further functional investigation and identification of physiological pathways in which Na + /K + -ATPase is directly or indirectly involved. Copyright © 2018 Elsevier Inc. All rights reserved.
Important Functional Roles of Basigin in Thymocyte Development and T cell Activation
Yao, Hui; Teng, Yan; Sun, Qian; Xu, Jing; Chen, Ya-Tong; Hou, Ning; Cheng, Xuan; Yang, Xiao; Chen, Zhi-Nan
2014-01-01
Basigin is a highly glycosylated transmembrane protein that is expressed in a broad range of tissues and is involved in a number of physiological and pathological processes. However, the in vivo role of basigin remains unknown. To better understand the physiological and pathological functions of basigin in vivo, we generated a conditional null allele by introducing two loxP sites flanking exons 2 and 7 of the basigin gene (Bsg). Bsgfl/fl mice were born at the expected Mendelian ratio and showed a similar growth rate compared with wildtype mice. After crossing these mice with Lck-Cre transgenic mice, basigin expression was specifically inactivated in T cells in the resulting Lck-Cre; Bsgfl/fl mice. Although the birth and growth rate of Lck-Cre; Bsgfl/fl mice were similar to control mice, thymus development was partially arrested in Lck-Cre; Bsgfl/fl mice, specifically at the CD4+CD8+ double-positive (DP) and CD4 single-positive (CD4+CD8-, CD4SP) stages. In addition, CD4+ T cell activation was enhanced upon Concanavalin A (Con A) or anti-CD3/anti-CD28 stimulation but not upon PMA/Ionomycin stimulation in the absence of basigin. Overall, this study provided the first in vivo evidence for the function of basigin in thymus development. Moreover, the successful generation of the conditional null basigin allele provides a useful tool for the study of distinct physiological or pathological functions of basigin in different tissues at different development stages. PMID:24391450
Meluzín, J; Podroužková, H; Gregorová, Z; Panovský, R
2013-05-01
The purpose of this summary paper is to discuss the current knowledge of the impact of age on diastolic function of the left ventricle. Data from the literature: Reports published till this time have convincingly demonstrated a significant relationship of age to diastolic function of the left ventricle. Ageing is a physiological process accompanied by structural changes in both myocardium and arterial bed resulting in worsening of parameters characterizing the left ventricular diastolic function. This "physiological" diastolic dysfunction in the elderly subjects can be explained by the deterioration of passive left ventricular filling properties and by worsening of left ventricular relaxation. The detailed analysis of published reports shows problems in distiguishing this "physiological" diastolic dysfunction resulting from physiological tissue ageing from "pathological" diastolic dysfunction reflecting a disease of cardiovascular system. To interprete correctly values of parameters quantifying diastolic function of the left ventricle, one should take into account the age of subjects under the examination. Further studies are necessary to distinguish exactly "physiological" deterioration of diastolic function associated with ageing from really "pathological" diastolic dysfunction in the elderly subjects.
Ogai, K; Matsumoto, M; Aoki, M; Ota, R; Hashimoto, K; Wada, R; Kobayashi, M; Sugama, J
2017-11-01
Presently, skin-cleaning agents that claim to be removed by water or wiping alone are commercially available and have been used for the purpose of bed baths. However, there is a lack of knowledge on how water washing and wiping differently affect skin physiological functions or ceramide content. The aim of this study was to compare the effects of water washing and wiping on skin physiological functions and ceramide content. Three kinds of the cleaning agents with different removal techniques (ie, water washing and wiping) were used in this study. Skin physiological functions (ie, transepidermal water loss, skin hydration, and skin pH) and skin ceramide content were measured before and after seven consecutive days of the application of each cleaning agent. No significant differences in skin physiological functions or ceramide content were observed between water washing and wiping. Cleaning agents that claim to be removed by water washing or wiping do not affect skin physiological functions or ceramide content by either removal method. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Genetic ablation of P65 subunit of NF-κB in mdx mice to improve muscle physiological function.
Yin, Xi; Tang, Ying; Li, Jian; Dzuricky, Anna T; Pu, Chuanqiang; Fu, Freddie; Wang, Bing
2017-10-01
Duchenne muscular dystrophy (DMD) is a genetic muscle disease characterized by dystrophin deficiency. Beyond gene replacement, the question of whether ablation of the p65 gene of nuclear factor-kappa B (NF-κB) in DMD can improve muscle physiology function is unknown. In this study, we investigated muscle physiological improvement in mdx mice (DMD model) with a genetic reduction of NF-κB. Muscle physiological function and histology were studied in 2-month-old mdx/p65 +/- , wild-type, mdx, and human minidystrophin gene transgenic mdx (TghΔDys/mdx) mice. Improved muscle physiological function was found in mdx/p65 +/- mice when compared with mdx mice; however, it was similar to TghΔDys/mdx mice. The results indicate that genetic reduction of p65 levels diminished chronic inflammation in dystrophic muscle, thus leading to amelioration of muscle pathology and improved muscle physiological function. The results show that inhibition of NF-κB may be a promising therapy when combined with gene therapy for DMD. Muscle Nerve 56: 759-767, 2017. © 2016 Wiley Periodicals, Inc.
Taming the Sphinx: Mechanisms of Cellular Sphingolipid Homeostasis
Olson, D. K.; Fröhlich, F.; Farese, R; Walther, T. C.
2016-01-01
Sphingolipids are important structural membrane components of eukaryotic cells, and potent signaling molecules. As such, their levels must be maintained to optimize cellular functions in different cellular membranes. Here, we review the current knowledge of homeostatic sphingolipid regulation. We describe recent studies in Saccharomyces cerevisiae that have provided insights into how cells sense changes in sphingolipid levels in the plasma membrane and acutely regulate sphingolipid biosynthesis by altering signaling pathways. We also discuss how cellular trafficking has emerged as an important determinant of sphingolipid homeostasis. Finally, we highlight areas where work is still needed to elucidate the mechanisms of sphingolipid regulation and the physiological functions of such regulatory networks, especially in mammalian cells. PMID:26747648
Yarandi, Shadi S.; Hebbar, Gautam; Sauer, Cary G.; Cole, Conrad R.; Ziegler, Thomas R.
2011-01-01
Objective Leptin was discovered in 1994 as a hormone produced by adipose tissue with a modulatory effect on feeding behavior and weight control. Recently, the stomach has been identified as an important source of leptin and growing evidence has shown diverse functions for leptin in the gastrointestinal tract. Methods Using leptin as a keyword in PubMed, more than 17 000 articles were identified, of which more than 500 articles were related to the role of leptin in the gastrointestinal tract. Available abstracts were reviewed and more than 200 original articles were reviewed in detail. Results The available literature demonstrated that leptin can modulate several important functions of the gastrointestinal tract. Leptin interacts with the vagus nerve and cholecystokinin to delay gastric emptying and has a complex effect on motility of the small bowel. Leptin modulates absorption of macronutrients in the gastrointestinal tract differentially in physiologic and pathologic states. In physiologic states, exogenous leptin has been shown to decrease carbohydrate absorption and to increase the absorption of small peptides by the PepT1 di-/tripeptide transporter. In certain pathologic states, leptin has been shown to increase absorption of carbohydrates, proteins, and fat. Leptin has been shown to be upregulated in the colonic mucosa in patients with inflammatory bowel disease. Leptin stimulates gut mucosal cell proliferation and inhibits apoptosis. These functions have led to speculation about the role of leptin in tumorigenesis in the gastrointestinal tract, which is complicated by the multiple immunoregulatory effects of leptin. Conclusion Leptin is an important modulator of major aspects of gastrointestinal tract functions, independent of its more well-described roles in appetite regulation and obesity. PMID:20947298
The Effects of Environment and Physiological Cyclicity on the Immune System of Viperinae
Kobolkuti, Lorand; Cadar, Daniel; Czirjak, Gabor; Niculae, Mihaela; Kiss, Timea; Sandru, Carmen; Spinu, Marina
2012-01-01
One of the important aspects of species' survival is connected with global climate changes, which also conditions the epidemiology of infectious diseases. Poikilotherms are exposed, as other species, to climatic influence, especially due to their physiological peculiarities such as important stages of their life cycle: hibernation, shedding, and active phase. The immune system serves as an accurate indicator of the health status and stress levels in these species. This study aimed to monitor the changes of innate (leukocyte subpopulations and total immune globulins) and adaptive immunity (in vitro leukocyte blast transformation) of two viper species, V. berus berus and V. ammodytes ammodytes, endemic in Europe and spread in different regions of Romania during their three major life cycles, hibernation, shedding, and active phase. The results indicated that seasonal variance and cycle rather than species and regional distribution influence the functionality of the immune system. PMID:22547989
Refeeding in the ICU: an adult and pediatric problem.
Byrnes, Matthew C; Stangenes, Jessica
2011-03-01
To describe the etiology and complications of the refeeding syndrome. Complications of the refeeding syndrome can include electrolyte abnormalities, heart failure, respiratory failure, and death. This syndrome is of particular importance to critically ill patients, who can be moved from the starved state to the fed state rapidly via enteral or parenteral nutrition. There are a variety of risk factors for the development of the refeeding syndrome. All of these risk factors are tied together by starvation physiology. Case reports and case series continue to be reported, suggesting that this entity continues to exist in critically ill patients. Initiation of enteral nutrition to patients with starvation physiology should be gradual and careful monitoring of electrolytes and organ function is critical during the early stages of refeeding. The refeeding syndrome remains a significant issue in critically ill patients. Knowledge of the risk factors and the clinical signs of the refeeding syndrome is important to optimize outcomes.
Sleep Duration and Diabetes Risk: Population Trends and Potential Mechanisms
Grandner, Michael A.; Seixas, Azizi; Shetty, Safal; Shenoy, Sundeep
2016-01-01
Sleep is important for regulating many physiologic functions that relate to metabolism. Because of this, there is substantial evidence to suggest that sleep habits and sleep disorders are related to diabetes risk. In specific, insufficient sleep duration and/or sleep restriction in the laboratory, poor sleep quality, and sleep disorders such as insomnia and sleep apnea have all been associated with diabetes risk. This research spans epidemiologic and laboratory studies. Both physiologic mechanisms such as insulin resistance, decreased leptin, and increased ghrelin and inflammation and behavioral mechanisms such as increased food intake, impaired decision-making, and increased likelihood of other behavioral risk factors such as smoking, sedentary behavior, and alcohol use predispose to both diabetes and obesity, which itself is an important diabetes risk factor. This review describes the evidence linking sleep and diabetes risk at the population and laboratory levels. PMID:27664039
[Sonographic imaging of physiological ovaries in the dog].
Conze, Theresa; Wehrend, Axel
2018-06-01
Ultrasonography of the canine ovary is a non-invasive examination procedure, which is an important part of the gynaecological examination. For the correct visualisation of the canine ovary, practical experience as well as the correct equipment are important. This article describes the technical requirements, the examination procedure and the appearance of the physiological ovary. The examination can be performed on both a recumbent and standing dog. To find the ovaries, the kidneys can be used as a reference point. The exact size of the ovaries is dependent on the body mass of the dog and the oestrous cycle stage. Particularly in the follicle phase, the detection of the ovaries is facilitated by the functional bodies. Follicles appear as anechoic round structures, which reach a maximum diameter of 6-9 mm. Corpora lutea appear hypoechogenic and protrude over the ovarian surface. In anoestrus, the ovaries are small and of medium echogenicity. Schattauer GmbH.
Hamdi, M M; Mutungi, G
2010-02-01
It is generally believed that steroid hormones have both genomic and non-genomic (rapid) actions. Although the latter form an important component of the physiological response of these hormones, little is known about the cellular signalling pathway(s) mediating these effects and their physiological functions in adult mammalian skeletal muscle fibres. Therefore, the primary aim of this study was to investigate the non-genomic actions of dihydrotestosterone (DHT) and their physiological role in isolated intact mammalian skeletal muscle fibre bundles. Our results show that treating the fibre bundles with physiological concentrations of DHT increases both twitch and tetanic contractions in fast twitch fibres. However, it decreases them in slow twitch fibres. These changes in force are accompanied by an increase in the phosphorylation of MAPK/ERK1/2 in both fibre types and that of regulatory myosin light chains in fast twitch fibres. Both effects were insensitive to inhibitors of Src kinase, androgen receptor, insulin-like growth factor 1 receptor and platelet-derived growth factor receptor. However, they were abolished by the MAPK/ERK1/2 kinase inhibitor PD98059 and the epidermal growth factor (EGF) receptor inhibitor tyrphostin AG 1478. In contrast, testosterone had no effect on force and increased the phosphorylation of ERK1/2 in slow twitch fibres only. From these results we conclude that sex steroids have non-genomic actions in isolated intact mammalian skeletal muscle fibres. These are mediated through the EGF receptor and one of their main physiological functions is the enhancement of force production in fast twitch skeletal muscle fibres.
Ueno, Takayuki; Kawasaki, Kiyoshi; Kubo, Takeo
2016-09-06
Honeybee workers are engaged in various tasks related to maintaining colony activity. The tasks of the workers change according to their age (age-related division of labor). Young workers are engaged in nursing the brood (nurse bees), while older workers are engaged in foraging for nectar and pollen (foragers). The physiology of the workers changes in association with this role shift. For example, the main function of the hypopharyngeal glands (HPGs) changes from the secretion of major royal jelly proteins (MRJPs) to the secretion of carbohydrate-metabolizing enzymes. Because worker tasks change as the workers age in typical colonies, it is difficult to discriminate the physiological changes that occur with aging from those that occur with the role shift. To study the physiological changes in worker tissues, including the HPGs, in association with the role shift, it would be useful to manipulate the honeybee colony population by preparing single-cohort colonies in which workers of almost the same age perform different tasks. Here we describe a detailed protocol for preparing single-cohort colonies for this analysis. Six to eight days after single-cohort colony preparation, precocious foragers that perform foraging tasks earlier than usual appear in the colony. Representative results indicated role-associated changes in HPG gene expression, suggesting role-associated HPG function. In addition to manipulating the colony population, analysis of the endocrine system is important for investigating role-associated physiology. Here, we also describe a detailed protocol for treating workers with 20-hydroxyecdysone (20E), an active form of ecdysone, and methoprene, a juvenile hormone analogue. The survival rate of treated bees was sufficient to examine gene expression in the HPGs. Gene expression changes were observed in response to 20E- and/or methoprene-treatment, suggesting that hormone treatments induce physiological changes of the HPGs. The protocol for hormone treatment described here is appropriate for examining hormonal effects on worker physiology.
The first 1000 cultured species of the human gastrointestinal microbiota
Rajilić-Stojanović, Mirjana; de Vos, Willem M
2014-01-01
The microorganisms that inhabit the human gastrointestinal tract comprise a complex ecosystem with functions that significantly contribute to our systemic metabolism and have an impact on health and disease. In line with its importance, the human gastrointestinal microbiota has been extensively studied. Despite the fact that a significant part of the intestinal microorganisms has not yet been cultured, presently over 1000 different microbial species that can reside in the human gastrointestinal tract have been identified. This review provides a systematic overview and detailed references of the total of 1057 intestinal species of Eukarya (92), Archaea (8) and Bacteria (957), based on the phylogenetic framework of their small subunit ribosomal RNA gene sequences. Moreover, it unifies knowledge about the prevalence, abundance, stability, physiology, genetics and the association with human health of these gastrointestinal microorganisms, which is currently scattered over a vast amount of literature published in the last 150 years. This detailed physiological and genetic information is expected to be instrumental in advancing our knowledge of the gastrointestinal microbiota. Moreover, it opens avenues for future comparative and functional metagenomic and other high-throughput approaches that need a systematic and physiological basis to have an impact. PMID:24861948
Dietary inorganic nitrate: From villain to hero in metabolic disease?
McNally, Ben; Griffin, Julian L.
2015-01-01
Historically, inorganic nitrate was believed to be an inert by‐product of nitric oxide (NO) metabolism that was readily excreted by the body. Studies utilising doses of nitrate far in excess of dietary and physiological sources reported potentially toxic and carcinogenic effects of the anion. However, nitrate is a significant component of our diets, with the majority of the anion coming from green leafy vegetables, which have been consistently shown to offer protection against obesity, type 2 diabetes and metabolic diseases. The discovery of a metabolic pathway in mammals, in which nitrate is reduced to NO, via nitrite, has warranted a re‐examination of the physiological role of this small molecule. Obesity, type 2 diabetes and the metabolic syndrome are associated with a decrease in NO bioavailability. Recent research suggests that the nitrate‐nitrite‐NO pathway may be harnessed as a therapeutic to supplement circulating NO concentrations, with both anti‐obesity and anti‐diabetic effects, as well as improving vascular function. In this review, we examine the key studies that have led to the re‐evaluation of the physiological function of inorganic nitrate, from toxic and carcinogenic metabolite, to a potentially important and beneficial agent in the treatment of metabolic disease. PMID:26227946
Physiological effects on fishes in a high-CO2 world
NASA Astrophysics Data System (ADS)
Ishimatsu, Atsushi; Hayashi, Masahiro; Lee, Kyoung-Seon; Kikkawa, Takashi; Kita, Jun
2005-09-01
Fish are important members of both freshwater and marine ecosystems and constitute a major protein source in many countries. Thus potential reduction of fish resources by high-CO2 conditions due to the diffusion of atmospheric CO2 into the surface waters or direct CO2 injection into the deep sea can be considered as another potential threat to the future world population. Fish, and other water-breathing animals, are more susceptible to a rise in environmental CO2 than terrestrial animals because the difference in CO2 partial pressure (PCO2) of the body fluid of water-breathing animals and ambient medium is much smaller (only a few torr (1 torr = 0.1333 kPa = 1316 μatm)) than in terrestrial animals (typically 30-40 torr). A survey of the literature revealed that hypercapnia acutely affects vital physiological functions such as respiration, circulation, and metabolism, and changes in these functions are likely to reduce growth rate and population size through reproduction failure and change the distribution pattern due to avoidance of high-CO2 waters or reduced swimming activities. This paper reviews the acute and chronic effects of CO2 on fish physiology and tries to clarify necessary areas of future research.
Changes in hypothalamic staining for c-Fos following 2G exposure in rats
NASA Technical Reports Server (NTRS)
Fuller, C. A.; Murakami, D. M.; Hoban-Higgins, T. M.; Tang, I. H.
1994-01-01
The static gravitational field of the earth has been an important selective pressure that has shaped the evolution of biological organisms. This is illustrated by the evolution of tetrapods from a water environment where gravitational force was partially negated to a terrestrial environment where gravity is of greater consequence. Terrestrial invasion resulted in a series of new structural, physiological, and behavioral features. Therefore, it is not surprising that alterations in the gravitational field can cause widespread effects in many physiological systems and behaviors. Our previous studies have demonstrated that both exposure to hyperdynamic fields and the microgravity condition of space flight have significant effects on body temperature, heartrate, activity, feeding, drinking, and circadian rhythms. However, it has not been determined whether these physiological adaptations are associated with changes in neural activity within the hypothalamic nuclei that regulate these functions. This study examined the changes in body temperature, activity, body weight and food and water intake in rats caused by exposure to a hyperdynamic field. In addition, the immediate early gene activation marker, c-Fos, was used to examine potential protein synthesis changes in the hypothalamic nuclei that regulate these functions.
O’Connell, Timothy D.; Jensen, Brian C.; Baker, Anthony J.
2014-01-01
Adrenergic receptors (AR) are G-protein-coupled receptors (GPCRs) that have a crucial role in cardiac physiology in health and disease. Alpha1-ARs signal through Gαq, and signaling through Gq, for example, by endothelin and angiotensin receptors, is thought to be detrimental to the heart. In contrast, cardiac alpha1-ARs mediate important protective and adaptive functions in the heart, although alpha1-ARs are only a minor fraction of total cardiac ARs. Cardiac alpha1-ARs activate pleiotropic downstream signaling to prevent pathologic remodeling in heart failure. Mechanisms defined in animal and cell models include activation of adaptive hypertrophy, prevention of cardiac myocyte death, augmentation of contractility, and induction of ischemic preconditioning. Surprisingly, at the molecular level, alpha1-ARs localize to and signal at the nucleus in cardiac myocytes, and, unlike most GPCRs, activate “inside-out” signaling to cause cardioprotection. Contrary to past opinion, human cardiac alpha1-AR expression is similar to that in the mouse, where alpha1-AR effects are seen most convincingly in knockout models. Human clinical studies show that alpha1-blockade worsens heart failure in hypertension and does not improve outcomes in heart failure, implying a cardioprotective role for human alpha1-ARs. In summary, these findings identify novel functional and mechanistic aspects of cardiac alpha1-AR function and suggest that activation of cardiac alpha1-AR might be a viable therapeutic strategy in heart failure. PMID:24368739
Honjo, Osami; Mertens, Luc; Van Arsdell, Glen S
2011-01-01
Significant atrioventricular (AV) valve insufficiency in patient with single ventricle-physiology is strongly associated with poor survival. Herein we discuss the etiology and mechanism of development of significant AV valve insufficiency in patients with single-ventricle physiology, surgical indication and repair techniques, and clinical outcomes along with our 10-year surgical experience. Our recent clinical series and literature review indicate that it is of prime importance to appreciate the high incidence and clinical effect of the structural abnormalities of AV valve. Valve repair at stage II palliation may minimize the period of volume overload, thereby potentially preserving post-repair ventricular function. Since 85% of the AV valve insufficiency was associated with structural abnormalities, inspection of an AV valve that has more than mild to moderate insufficiency is recommended because they are not likely to be successfully treated with volume unloading surgery alone. Copyright © 2011 Elsevier Inc. All rights reserved.
Physiological roles of claudins in kidney tubule paracellular transport.
Muto, Shigeaki
2017-01-01
The paracellular pathways in renal tubular epithelia such as the proximal tubules, which reabsorb the largest fraction of filtered solutes and water and are leaky epithelia, are important routes for transepithelial transport of solutes and water. Movement occurs passively via an extracellular route through the tight junction between cells. The characteristics of paracellular transport vary among different nephron segments with leaky or tighter epithelia. Claudins expressed at tight junctions form pores and barriers for paracellular transport. Claudins are from a multigene family, comprising at least 27 members in mammals. Multiple claudins are expressed at tight junctions of individual nephron segments in a nephron segment-specific manner. Over the last decade, there have been advances in our understanding of the structure and functions of claudins. This paper is a review of our current knowledge of claudins, with special emphasis on their physiological roles in proximal tubule paracellular solute and water transport. Copyright © 2017 the American Physiological Society.
Physiological Aging: Links Among Adipose Tissue Dysfunction, Diabetes, and Frailty.
Stout, Michael B; Justice, Jamie N; Nicklas, Barbara J; Kirkland, James L
2017-01-01
Advancing age is associated with progressive declines in physiological function that lead to overt chronic disease, frailty, and eventual mortality. Importantly, age-related physiological changes occur in cellularity, insulin-responsiveness, secretory profiles, and inflammatory status of adipose tissue, leading to adipose tissue dysfunction. Although the mechanisms underlying adipose tissue dysfunction are multifactorial, the consequences result in secretion of proinflammatory cytokines and chemokines, immune cell infiltration, an accumulation of senescent cells, and an increase in senescence-associated secretory phenotype (SASP). These processes synergistically promote chronic sterile inflammation, insulin resistance, and lipid redistribution away from subcutaneous adipose tissue. Without intervention, these effects contribute to age-related systemic metabolic dysfunction, physical limitations, and frailty. Thus adipose tissue dysfunction may be a fundamental contributor to the elevated risk of chronic disease, disability, and adverse health outcomes with advancing age. ©2017 Int. Union Physiol. Sci./Am. Physiol. Soc.
A tunable artificial circadian clock in clock-defective mice
D'Alessandro, Matthew; Beesley, Stephen; Kim, Jae Kyoung; Chen, Rongmin; Abich, Estela; Cheng, Wayne; Yi, Paul; Takahashi, Joseph S.; Lee, Choogon
2015-01-01
Self-sustaining oscillations are essential for diverse physiological functions such as the cell cycle, insulin secretion and circadian rhythms. Synthetic oscillators using biochemical feedback circuits have been generated in cell culture. These synthetic systems provide important insight into design principles for biological oscillators, but have limited similarity to physiological pathways. Here we report the generation of an artificial, mammalian circadian clock in vivo, capable of generating robust, tunable circadian rhythms. In mice deficient in Per1 and Per2 genes (thus lacking circadian rhythms), we artificially generate PER2 rhythms and restore circadian sleep/wake cycles with an inducible Per2 transgene. Our artificial clock is tunable as the period and phase of the rhythms can be modulated predictably. This feature, and other design principles of our work, might enhance the study and treatment of circadian dysfunction and broader aspects of physiology involving biological oscillators. PMID:26617050
Role of sugars under abiotic stress.
Sami, Fareen; Yusuf, Mohammad; Faizan, Mohammad; Faraz, Ahmad; Hayat, Shamsul
2016-12-01
Sugars are the most important regulators that facilitate many physiological processes, such as photosynthesis, seed germination, flowering, senescence, and many more under various abiotic stresses. Exogenous application of sugars in low concentration promote seed germination, up regulates photosynthesis, promotes flowering, delayed senescence under various unfavorable environmental conditions. However, high concentration of sugars reverses all these physiological process in a concentration dependent manner. Thus, this review focuses the correlation between sugars and their protective functions in several physiological processes against various abiotic stresses. Keeping in mind the multifaceted role of sugars, an attempt has been made to cover the role of sugar-regulated genes associated with photosynthesis, seed germination and senescence. The concentration of sugars determines the expression of these sugar-regulated genes. This review also enlightens the interaction of sugars with several phytohormones, such as abscisic acid, ethylene, cytokinins and gibberellins and its effect on their biosynthesis under abiotic stress conditions. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Lee, Siu Sylvia
2004-05-05
Aging is a complex process that involves the gradual functional decline of many different tissues and cells. Gene expression microarray analysis provides a comprehensive view of the gene expression signature associated with age and is particularly valuable for understanding the molecular mechanisms that contribute to the aging process. However, because of the stochastic nature of the aging process, animals of the same chronological age often manifest great physiological differences. Therefore, profiling the gene expression pattern of a large population of aging animals risks either exaggerating or masking the changes in gene expression that correspond to physiological aging. In a recent paper, Golden and Melov surveyed the gene expression profiles of individual aging Caenorhabditis elegans, hoping to circumvent the problem of variability among worms of the same chronological age. This initial analysis of age-dependent gene expression in individual aging worms is an important step toward deciphering the molecular basis of physiological aging.
Adefegha, Stephen Adeniyi
2017-12-27
Functional foods describe the importance of foods in promoting health and preventing diseases aside their primary role of providing the body with the required amount of essential nutrients such as proteins, carbohydrates, vitamins, fats, and oils needed for its healthy survival. This review explains the interaction of functional food bioactive compounds including polyphenols (phenolic acids [hydroxybenzoic acids and hydroxycinnamic acids], flavonoids [flavonols, flavones, flavanols, flavanones, isoflavones, proanthocyanidins], stilbenes, and lignans), terpenoids, carotenoids, alkaloids, omega-3 and polyunsaturated fatty acids, among others with critical enzymes (α- amylase, α- glucosidase, angiotensin-I converting enzyme [ACE], acetylcholinesterase [AChE], and arginase) linked to some degenerative diseases (type-2 diabetes, cardiovascular diseases [hypertension], neurodegenerative diseases [Alzheimer's disease] and erectile dysfunction). Different functional food bioactive compounds may synergistically/additively confer an overwhelming protection against these degenerative diseases by modulating/altering the activities of these critical enzymes of physiological importance.
Aquaporin structure-function relationships: water flow through plant living cells.
Zhao, Chang-Xing; Shao, Hong-Bo; Chu, Li-Ye
2008-04-01
Plant aquaporins play an important role in water uptake and movement-an aquaporin that opens and closes a gate that regulates water movement in and out of cells. Some plant aquaporins also play an important role in response to water stress. Since their discovery, advancing knowledge of their structures and properties led to an understanding of the basic features of the water transport mechanism and increased illumination to water relations. Meanwhile, molecular and functional characterization of aquaporins has revealed the significance of their regulation in response to the adverse environments such as salinity and drought. This paper reviews the structure, species diversity, physiology function, regulation of plant aquaporins, and the relations between environmental factors and plant aquaporins. Complete understanding of aquaporin function and regulation is to integrate those mechanisms in time and space and to well regulate the permeation of water across biological membranes under changing environmental and developmental conditions.
The effects of ageing on respiratory muscle function and performance in older adults.
Watsford, Mark L; Murphy, Aron J; Pine, Matthew J
2007-02-01
The reduced physiological capacity evident with ageing may affect the ability to perform many tasks, potentially affecting quality of life. Previous research has clearly demonstrated the reduced capacity of the respiratory system with ageing and described the effect that habitual physical activity has upon this decline. This research aimed to examine the influence of age on respiratory muscle (RM) function and the relationship between RM function and physical performance within the Australian population. Seventy-two healthy older adults (50-79 years) were divided into males (n=36) and females (n=36) and examined for pulmonary function, RM strength, inspiratory muscle endurance (IME) and 1.6 km walking performance. There were no significant age by gender effects for any variables; however, ageing was significantly related to reduced RM function and walking capacity within each gender. Furthermore, regression analysis showed that the RM strength could be predicted from age. Partial correlations controlling for age indicated that expiratory muscle strength was significantly related to walking performance in males (p=0.04), whilst IME contributed significantly to walking performance in all participants. These within-gender effects and relationships indicate that RM strength is an important physiological variable to maintain in the older population, as it may be related to functional ability.
John K. Jackson; Dylan N. Dillaway; Michael C. Tyree; Mary Anne Sword Sayer
2015-01-01
Fire is a natural and important environmental disturbance influencing the structure, function, and composition of longleaf pine (Pinus palustris Mill.) ecosystems. However, recovery of young pines to leaf scorch may involve changes in leaf physiology, which could influence leaf water-use efficiency (WUE). This work is part of a larger seasonal...
Tansley Review No. 104, Calcium Physiology and Terrestrial Ecosystem Processes
S.B. McLaughlin; R. Wimmer
1999-01-01
Calcium occupies a unique position among plant nutrients both chemically and functionally. Its chemical properties allow it to exist in a wide range of binding states and to serve in both structural and messenger roles. Despite its importance in many plant processes, Ca mobility is low, making Ca uptake and distribution rate a limiting process for many key plant...
IL-1 as a target in inflammation.
Ito, Yuki; Kaneko, Naoe; Iwasaki, Tomoyuki; Morikawa, Shinnosuke; Kaneko, Kentaro; Masumoto, Junya
2015-03-16
Inflammation is a protective response to eliminate cytotoxic agents and pathogens. Various factors are thought to be involved in the pathological changes in tissues caused by inflammation. Interleukin 1, an inflammatory cytokine, is thought to have diverse physiological functions and to play an important role in inflammatory disease. In this review, we discuss interleukin-1 as a target of inflammatory disease.
IL-1 as a target in inflammation.
Ito, Yuki; Kaneko, Naoe; Iwasaki, Tomoyuki; Morikawa, Shinnosuke; Kaneko, Kentaro; Masumoto, Junya
2015-01-01
Inflammation is a protective response to eliminate cytotoxic agents and pathogens. Various factors are thought to be involved in the pathological changes in tissues caused by inflammation. Interleukin 1, an inflammatory cytokine, is thought to have diverse physiological functions and to play an important role in inflammatory disease. In this review, we discuss interleukin-1 as a target of inflammatory disease.
The Graphical Representation of the Digital Astronaut Physiology Backbone
NASA Technical Reports Server (NTRS)
Briers, Demarcus
2010-01-01
This report summarizes my internship project with the NASA Digital Astronaut Project to analyze the Digital Astronaut (DA) physiology backbone model. The Digital Astronaut Project (DAP) applies integrated physiology models to support space biomedical operations, and to assist NASA researchers in closing knowledge gaps related to human physiologic responses to space flight. The DA physiology backbone is a set of integrated physiological equations and functions that model the interacting systems of the human body. The current release of the model is HumMod (Human Model) version 1.5 and was developed over forty years at the University of Mississippi Medical Center (UMMC). The physiology equations and functions are scripted in an XML schema specifically designed for physiology modeling by Dr. Thomas G. Coleman at UMMC. Currently it is difficult to examine the physiology backbone without being knowledgeable of the XML schema. While investigating and documenting the tags and algorithms used in the XML schema, I proposed a standard methodology for a graphical representation. This standard methodology may be used to transcribe graphical representations from the DA physiology backbone. In turn, the graphical representations can allow examination of the physiological functions and equations without the need to be familiar with the computer programming languages or markup languages used by DA modeling software.
NASA Technical Reports Server (NTRS)
Cowings, Patricia; Toscano, William; Kanis, Dionisios; Gebreyesus, Fiyore
2013-01-01
Susceptibility of healthy astronauts to orthostatic hypotension and presyncope is exacerbated upon return from spaceflight. Hypo-volemia is suspected to play an important role in cardiovascular deconditioning following exposure to spaceflight, which may lead to increased peripheral resistance, attenuated arterial baroreflex, and changes in cardiac function. The effect of altered gravity during space flight and planetary transition on human cardiovascular function is of critical importance to maintenance of astronaut health and safety. A promising countermeasure for post-flight orthostatic intolerance is fluid loading used to restore loss fluid volume by giving crew salt tablets and water prior to re-entry. Eight men and eight women will be tested during two, 6-hour exposures to 6o HDT: 1) fluid loading, 2) no fluid loading. Before and immediately after each HDT, subjects will perform a stand test to assess their orthostatic tolerance. Physiological measures (e.g., ECG, blood pressure, peripheral blood volume) will be continuously monitored while echocardiography measures are recorded at 30-minute intervals during HDT and stand tests. Preliminary results (N=4) clearly show individual differences in responses to this countermeasure and the time course of physiological changes induced by HDT.
Gever, Joel R; Cockayne, Debra A; Dillon, Michael P; Burnstock, Geoffrey; Ford, Anthony P D W
2006-08-01
Significant progress in understanding the pharmacological characteristics and physiological importance of homomeric and heteromeric P2X channels has been achieved in recent years. P2X channels, gated by ATP and most likely trimerically assembled from seven known P2X subunits, are present in a broad distribution of tissues and are thought to play an important role in a variety of physiological functions, including peripheral and central neuronal transmission, smooth muscle contraction, and inflammation. The known homomeric and heteromeric P2X channels can be distinguished from each other on the basis of pharmacological differences when expressed recombinantly in cell lines, but whether this pharmacological classification holds true in native cells and in vivo is less well-established. Nevertheless, several potent and selective P2X antagonists have been discovered in recent years and shown to be efficacious in various animal models including those for visceral organ function, chronic inflammatory and neuropathic pain, and inflammation. The recent advancement of drug candidates targeting P2X channels into human trials, confirms the medicinal exploitability of this novel target family and provides hope that safe and effective medicines for the treatment of disorders involving P2X channels may be identified in the near future.
Cortes, Mar; Black-Schaffer, Randie M; Edwards, Dylan J
2012-01-01
Rationale An improved understanding of motor dysfunction and recovery after stroke has important clinical implications that may lead to the design of more effective rehabilitation strategies for patients with hemiparesis. Scope Transcranial magnetic stimulation (TMS) is a safe and painless tool that has been used in conjunction with other existing diagnostic tools to investigate motor pathophysiology in stroke patients. Since TMS emerged over two decades ago, its application in clinical and basic neuroscience has expanded worldwide. TMS can quantify the corticomotor excitability properties of clinically affected and unaffected muscles, and probe local cortical networks, as well as remote but functionally related areas. This provides novel insight into the physiology of neural circuits underlying motor dysfunction, and brain reorganization during the motor recovery process. This important tool needs to be used with caution by clinical investigators, its limitations need to be understood and the results should be interpreted along with clinical evaluation in this patient population. Summary In this review, we provide an overview of the rationale, implementation and limitations of TMS to study stroke motor physiology. This knowledge may be useful to guide future rehabilitation treatments by assessing and promoting functional plasticity. PMID:22624621
Scott, J E
1975-07-17
Connective tissue cells exist in a meshwork of insoluble fibres, the interstices of which are filled with soluble, high molecular mass, anionic material of a predominantly carbohydrate nature. The interactions of fibres with the interfibrillar material are central to the discussion of connective tissue physiology. As with all soluble polymers, the interfibrillar polyanion tends to "swell' and the tangled mass of chains offers considerable resistance to penetration by the large insoluble fibres. The consequent pressure to "inflate' the fibrous network is important in giving elasticity to cartilage, transparency to cornea, etc. Branched structures (of proteoglycans) and straight-chain forms (of hyaluronate) are compared for their ability to fulfil these functions. Apart from their physical ("non-specific') roles proteoglycans and glycosaminoglycans are able to interact physicochemically with, for example, collagen in ways which show considerable specificity, and which presumably are important in the laying down of the fibrous network as well as in maintaining its mechanical integrity. It is proposed that the role played by radiation, particularly as mediated via the hydrated electron (eaq) was dominant in the pre- and post-biotic evolution of pericellular environments.
Aprison, Erin Z.; Ruvinsky, Ilya
2015-01-01
Pheromones are secreted molecules that mediate animal communications. These olfactory signals can have substantial effects on physiology and likely play important roles in organismal survival in natural habitats. Here we show that a blend of two ascaroside pheromones produced by C. elegans males primes the female reproductive system in part by improving sperm guidance toward oocytes. Worms have different physiological responses to different ratios of the same two molecules, revealing an efficient mechanism for increasing coding potential of a limited repertoire of molecular signals. The endogenous function of the male sex pheromones has an important side benefit. It substantially ameliorates the detrimental effects of prolonged heat stress on hermaphrodite reproduction because it increases the effectiveness with which surviving gametes are used following stress. Hermaphroditic species are expected to lose female-specific traits in the course of evolution. Our results suggest that some of these traits could have serendipitous utility due to their ability to counter the effects of stress. We propose that this is a general mechanism by which some mating-related functions could be retained in hermaphroditic species, despite their expected decay. PMID:26645097
Villageliu, Daniel N; Lyte, Mark
2017-08-01
The union of microbiology and neurobiology has led to a revolution in the way we view the microbiome. Now recognized as important symbionts, the microorganisms which inhabit multiple niches in mammalian and avian (chicken) hosts, such as the intestinal tract and skin, serve and influence many important physiological functions. The realization that the gut microbiome serves as a kind of "microbial organ" has important implications for many areas of biology. In this paper advances in the field of microbial endocrinology which may hold relevance for the poultry industry are examined. © 2017 Poultry Science Association Inc.
Physiology in perspective: The Wisdom of the Body. Neural control of the kidney.
DiBona, Gerald F
2005-09-01
Cannon equated the fluid matrix of the body with Bernard's concept of the internal environment and emphasized the importance of "the safe-guarding of an effective fluid matrix." He further emphasized the important role of the autonomic nervous system in the establishment and maintenance of homeostasis in the internal environment. This year's Cannon Lecture discusses the important role of the renal sympathetic nerves to regulate various aspects of overall renal function and to serve as one of the major "self-regulatory agencies which operate to preserve the constancy of the fluid matrix."
Integrated imaging of cardiac anatomy, physiology, and viability.
Arrighi, James A
2009-03-01
Technologic developments in imaging will have a significant impact on cardiac imaging over the next decade. These advances will permit more detailed assessment of cardiac anatomy, complex assessment of cardiac physiology, and integration of anatomic and physiologic data. The distinction between anatomic and physiologic imaging is important. For assessing patients with known or suspected coronary artery disease, physiologic and anatomic imaging data are complementary. The strength of anatomic imaging rests in its ability to detect the presence of disease, whereas physiologic imaging techniques assess the impact of disease, such as whether a coronary atherosclerotic lesion limits myocardial blood flow. Research indicates that physiologic data are more prognostically important than anatomic data, but both may be important in patient management decisions. Integrated cardiac imaging is an evolving field, with many potential indications. These include assessment of coronary stenosis, myocardial viability, anatomic and physiologic characterization of atherosclerotic plaque, and advanced molecular imaging.
Calebiro, Davide; Godbole, Amod
2018-04-01
G protein-coupled receptors (GPCRs) are the largest family of membrane receptors and mediate the effects of numerous hormones and neurotransmitters. The nearly 1000 GPCRs encoded by the human genome regulate virtually all physiological functions and are implicated in the pathogenesis of prevalent human diseases such as thyroid disorders, hypertension or Parkinson's disease. As a result, 30-50% of all currently prescribed drugs are targeting these receptors. Once activated, GPCRs induce signals at the cell surface. This is often followed by internalization, a process that results in the transfer of receptors from the plasma membrane to membranes of the endosomal compartment. Internalization was initially thought to be mainly implicated in signal desensitization, a mechanism of adaptation to prolonged receptor stimulation. However, several unexpected functions have subsequently emerged. Most notably, accumulating evidence indicates that internalization can induce prolonged receptor signaling on intracellular membranes, which is apparently required for at least some biological effects of hormones like TSH, LH and adrenaline. These findings reveal an even stronger connection between receptor internalization and signaling than previously thought. Whereas new studies are just beginning to reveal an important physiological role for GPCR signaling after internalization and ways to exploit it for therapeutic purposes, future investigations will be required to explore its involvement in human disease. Copyright © 2018 Elsevier Ltd. All rights reserved.
Effects of Exercise on Physiological and Psychological Variables in Cancer Survivors.
ERIC Educational Resources Information Center
Burnham, Timothy; Wilcox, Anthony
2002-01-01
Investigated the effect of aerobic exercise on physiological and psychological function in people rehabilitating from cancer treatment. Data on people participating in control, moderate-intensity exercise, and low-intensity exercise groups indicated that both exercise programs were equally effective in improving physiological function,…
Physiological geroscience: targeting function to increase healthspan and achieve optimal longevity
Justice, Jamie N.; LaRocca, Thomas J.
2015-01-01
Abstract Most nations of the world are undergoing rapid and dramatic population ageing, which presents great socio‐economic challenges, as well as opportunities, for individuals, families, governments and societies. The prevailing biomedical strategy for reducing the healthcare impact of population ageing has been ‘compression of morbidity’ and, more recently, to increase healthspan, both of which seek to extend the healthy period of life and delay the development of chronic diseases and disability until a brief period at the end of life. Indeed, a recently established field within biological ageing research, ‘geroscience’, is focused on healthspan extension. Superimposed on this background are new attitudes and demand for ‘optimal longevity’ – living long, but with good health and quality of life. A key obstacle to achieving optimal longevity is the progressive decline in physiological function that occurs with ageing, which causes functional limitations (e.g. reduced mobility) and increases the risk of chronic diseases, disability and mortality. Current efforts to increase healthspan centre on slowing the fundamental biological processes of ageing such as inflammation/oxidative stress, increased senescence, mitochondrial dysfunction, impaired proteostasis and reduced stress resistance. We propose that optimization of physiological function throughout the lifespan should be a major emphasis of any contemporary biomedical policy addressing global ageing. Effective strategies should delay, reduce in magnitude or abolish reductions in function with ageing (primary prevention) and/or improve function or slow further declines in older adults with already impaired function (secondary prevention). Healthy lifestyle practices featuring regular physical activity and ideal energy intake/diet composition represent first‐line function‐preserving strategies, with pharmacological agents, including existing and new pharmaceuticals and novel ‘nutraceutical’ compounds, serving as potential complementary approaches. Future research efforts should focus on defining the temporal patterns of functional declines with ageing, identifying the underlying mechanisms and modulatory factors involved, and establishing the most effective lifestyle practices and pharmacological options for maintaining function. Continuing development of effective behavioural approaches for enhancing adherence to healthy ageing practices in diverse populations, and ongoing analysis of the socio‐economic costs and benefits of healthspan extension will be important supporting goals. To meet the demands created by rapid population ageing, a new emphasis in physiological geroscience is needed, which will require the collaborative, interdisciplinary efforts of investigators working throughout the translational research continuum from basic science to public health. PMID:25639909
Daramola, J O; Adeloye, A A
2009-10-01
West African Dwarf (WAD) goats are widely distributed in the subhumid and humid zones of Africa but are particularly associated with less favourable environments. Adaptive features such as feeding behaviour, efficiency of feed use and disease tolerance enable WAD goats to thrive on natural resources left untouched by other domestic ruminants. In marginal environments this goat remains the only domestic species that is able to survive. Among its physiological features small body size and low metabolic requirements are important traits that enable the animal to minimize its requirements in area or season where food sources are limited in quality and quantity. Specialized feeding behaviour and an efficient digestive system enable the animal to maximize food intake. Coat colour plays an important role in the evolved adaptation of this goat type. Reproductive fitness as manifested by prolific breeding is a major factor of adaptation. Defence mechanisms against infectious agents enable this type to thrive well in the hot humid tropics. The mechanisms involved in the regulation of these physiological functions of WAD goat are discussed. An understanding of these mechanisms could result in the development of improved techniques for enhancing goat productivity in humid environments.
Dai, Min; Nuttall, Alfred; Yang, Yue; Shi, Xiaorui
2009-08-01
Pericytes, mural cells located on microvessels, are considered to play an important role in the formation of the vasculature and the regulation of local blood flow in some organs. Little is known about the physiology of cochlear pericytes. In order to investigate the function of cochlear pericytes, we developed a method to visualize cochlear pericytes using diaminofluorescein-2 diacetate (DAF-2DA) and intravital fluorescence microscopy. This method can permit the study of the effect of vasoactive agents on pericytes under the in vivo and normal physiological condition. The specificity of the labeling method was verified by the immunofluorescence labeling of pericyte maker proteins such as desmin, neural proteoglycan (NG2), and thymocyte differentiation antigen 1 (Thy-1). Superfused K(+) and Ca(2+) to the cochlear lateral wall resulted in localized constriction of capillaries at pericyte locations both in vivo and in vitro, while there was no obvious change in cochlear capillary diameters with application of the adrenergic neurotransmitter noradrenaline. The method could be an effective way to visualize cochlear pericytes and microvessels and study lateral wall vascular physiology. Moreover, we demonstrate for the first time that cochlear pericytes have contractility, which may be important for regulation of cochlear blood flow.
Led by the nose: Olfaction in primate feeding ecology.
Nevo, Omer; Heymann, Eckhard W
2015-01-01
Olfaction, the sense of smell, was a latecomer to the systematic investigation of primate sensory ecology after long years in which it was considered to be of minor importance. This view shifted with the growing understanding of its role in social behavior and the accumulation of physiological studies demonstrating that the olfactory abilities of some primates are on a par with those of olfactory-dependent mammals such as dogs and rodents. Recent years have seen a proliferation of physiological, behavioral, anatomical, and genetic investigations of primate olfaction. These investigations have begun to shed light on the importance of olfaction in the process of food acquisition. However, integration of these works has been limited. It is therefore still difficult to pinpoint large-scale evolutionary scenarios, namely the functions that the sense of smell fulfills in primates' feeding ecology and the ecological niches that favor heavier reliance on olfaction. Here, we review available behavioral and physiological studies of primates in the field or captivity and try to elucidate how and when the sense of smell can help them acquire food. © 2015 The Authors Evolutionary Anthropology: Issues, News, and Reviews Published by Wiley Periodicals, Inc.
Crum, Alia J.; Phillips, Damon J.; Goyer, J. Parker; Akinola, Modupe; Higgins, E. Tory
2016-01-01
This paper investigates how social influence can alter physiological, psychological, and functional responses to a placebo product and how such responses influence the ultimate endorsement of the product. Participants consumed a product, “AquaCharge Energy Water,” falsely-labeled as containing 200 mg of caffeine but which was actually plain spring water, in one of three conditions: a no social influence condition, a disconfirming social influence condition, and a confirming social influence condition. Results demonstrated that the effect of the product labeling on physiological alertness (systolic blood pressure), psychological alertness (self-reported alertness), functional alertness (cognitive interference), and product endorsement was moderated by social influence: participants experienced more subjective, physiological and functional alertness and stronger product endorsement when they consumed the product in the confirming social influence condition than when they consumed the product in the disconfirming social influence condition. These results suggest that social influence can alter subjective, physiological, and functional responses to a faux product, in this case transforming the effects of plain water. PMID:27875567
Crum, Alia J; Phillips, Damon J; Goyer, J Parker; Akinola, Modupe; Higgins, E Tory
2016-01-01
This paper investigates how social influence can alter physiological, psychological, and functional responses to a placebo product and how such responses influence the ultimate endorsement of the product. Participants consumed a product, "AquaCharge Energy Water," falsely-labeled as containing 200 mg of caffeine but which was actually plain spring water, in one of three conditions: a no social influence condition, a disconfirming social influence condition, and a confirming social influence condition. Results demonstrated that the effect of the product labeling on physiological alertness (systolic blood pressure), psychological alertness (self-reported alertness), functional alertness (cognitive interference), and product endorsement was moderated by social influence: participants experienced more subjective, physiological and functional alertness and stronger product endorsement when they consumed the product in the confirming social influence condition than when they consumed the product in the disconfirming social influence condition. These results suggest that social influence can alter subjective, physiological, and functional responses to a faux product, in this case transforming the effects of plain water.
Experimental Approaches for Solution X-Ray Scattering and Fiber Diffraction
Irving, T. C.
2008-01-01
X-ray scattering and diffraction from non-crystalline systems have gained renewed interest in recent years, as focus shifts from the structural chemistry information gained by high-resolution studies to the context of structural physiology at larger length scales. Such techniques permit the study of isolated macromolecules as well as highly organized macromolecular assemblies as a whole under near-physiological conditions. Time-resolved approaches, made possible by advanced synchrotron instrumentation, add a critical dimension to many of these investigations. This article reviews experimental approaches in non-crystalline x-ray scattering and diffraction that may be used to illuminate important scientific questions such as protein/nucleic acid folding and structure-function relationships in large macromolecular assemblies. PMID:18801437
Uncoupling proteins of invertebrates: A review.
Slocinska, Malgorzata; Barylski, Jakub; Jarmuszkiewicz, Wieslawa
2016-09-01
Uncoupling proteins (UCPs) mediate inducible proton conductance in the mitochondrial inner membrane. Herein, we summarize our knowledge regarding UCPs in invertebrates. Since 2001, the presence of UCPs has been demonstrated in nematodes, mollusks, amphioxi, and insects. We discuss the following important issues concerning invertebrate UCPs: their evolutionary relationships, molecular and functional properties, and physiological impact. Evolutionary analysis indicates that the branch of vertebrate and invertebrate UCP4-5 diverged early in the evolutionary process prior to the divergence of the animal groups. Several proposed physiological roles of invertebrate UCPs are energy control, metabolic balance, and preventive action against oxidative stress. © 2016 IUBMB Life, 68(9):691-699, 2016. © 2016 International Union of Biochemistry and Molecular Biology.
Anaerobic threshold, is it a magic number to determine fitness for surgery?
Older, Paul
2013-02-21
The use of cardiopulmonary exercise testing (CPET) to evaluate cardiac and respiratory function was pioneered as part of preoperative assessment in the mid 1990s. Surgical procedures have changed since then. The patient population may have aged; however, the physiology has remained the same. The use of an accurate physiological evaluation remains as germane today as it was then. Certainly no 'magic' is involved. The author recognizes that not everyone accepts the classical theories of the anaerobic threshold (AT) and that there is some discussion around lactate and exercise. The article looks at aerobic capacity as an important predictor of perioperative mortality and also looks at some aspects of CPET relative to surgical risk evaluation.
Ishii, Kento; Fujitani, Hirotsugu; Soh, Kentaro; Nakagawa, Tatsunori; Takahashi, Reiji
2017-01-01
ABSTRACT Nitrite-oxidizing bacteria (NOB) are responsible for the second step of nitrification in natural and engineered ecosystems. The recently discovered genus Nitrotoga belongs to the Betaproteobacteria and potentially has high environmental importance. Although environmental clones affiliated with Nitrotoga are widely distributed, the limited number of cultivated Nitrotoga spp. results in a poor understanding of their ecophysiological features. In this study, we successfully enriched the nonmarine cold-adapted Nitrotoga sp. strain AM1 from coastal sand in an eelgrass zone and investigated its physiological characteristics. Multistep-enrichment approaches led to an increase in the abundance of AM1 to approximately 80% of the total bacterial population. AM1 was the only detectable NOB in the bacterial community. The 16S rRNA gene sequence of AM1 was 99.6% identical to that of “Candidatus Nitrotoga arctica,” which was enriched from permafrost-affected soil. The highest nitrogen oxidation rate of AM1 was observed at 16°C. The half-saturation constant (Km) and the generation time were determined to be 25 μM NO2− and 54 h, respectively. The nitrite oxidation rate of AM1 was stimulated at concentrations of <30 mM NH4Cl but completely inhibited at 50 mM NH4Cl. AM1 can grow well under specific environmental conditions, such as low temperature and in the presence of a relatively high concentration of free ammonia. These results help improve our comprehension of the functional importance of Nitrotoga. IMPORTANCE Nitrite-oxidizing bacteria (NOB) are key players in the second step of nitrification, which is an important process of the nitrogen cycle. Recent studies have suggested that the organisms of the novel NOB genus Nitrotoga were widely distributed and played a functional role in natural and engineered ecosystems. However, only a few Nitrotoga enrichments have been obtained, and little is known about their ecology and physiology. In this study, we successfully enriched a Nitrotoga sp. from sand in a shallow coastal marine ecosystem and undertook a physiological characterization. The laboratory experiments showed that the Nitrotoga enrichment culture could adapt not only to low temperature but also to relatively high concentrations of free ammonia. The determination of as-yet-unknown unique characteristics of Nitrotoga contributes to the improvement of our insights into the microbiology of nitrification. PMID:28500038
Ishii, Kento; Fujitani, Hirotsugu; Soh, Kentaro; Nakagawa, Tatsunori; Takahashi, Reiji; Tsuneda, Satoshi
2017-07-15
Nitrite-oxidizing bacteria (NOB) are responsible for the second step of nitrification in natural and engineered ecosystems. The recently discovered genus Nitrotoga belongs to the Betaproteobacteria and potentially has high environmental importance. Although environmental clones affiliated with Nitrotoga are widely distributed, the limited number of cultivated Nitrotoga spp. results in a poor understanding of their ecophysiological features. In this study, we successfully enriched the nonmarine cold-adapted Nitrotoga sp. strain AM1 from coastal sand in an eelgrass zone and investigated its physiological characteristics. Multistep-enrichment approaches led to an increase in the abundance of AM1 to approximately 80% of the total bacterial population. AM1 was the only detectable NOB in the bacterial community. The 16S rRNA gene sequence of AM1 was 99.6% identical to that of " Candidatus Nitrotoga arctica," which was enriched from permafrost-affected soil. The highest nitrogen oxidation rate of AM1 was observed at 16°C. The half-saturation constant ( K m ) and the generation time were determined to be 25 μM NO 2 - and 54 h, respectively. The nitrite oxidation rate of AM1 was stimulated at concentrations of <30 mM NH 4 Cl but completely inhibited at 50 mM NH 4 Cl. AM1 can grow well under specific environmental conditions, such as low temperature and in the presence of a relatively high concentration of free ammonia. These results help improve our comprehension of the functional importance of Nitrotoga IMPORTANCE Nitrite-oxidizing bacteria (NOB) are key players in the second step of nitrification, which is an important process of the nitrogen cycle. Recent studies have suggested that the organisms of the novel NOB genus Nitrotoga were widely distributed and played a functional role in natural and engineered ecosystems. However, only a few Nitrotoga enrichments have been obtained, and little is known about their ecology and physiology. In this study, we successfully enriched a Nitrotoga sp. from sand in a shallow coastal marine ecosystem and undertook a physiological characterization. The laboratory experiments showed that the Nitrotoga enrichment culture could adapt not only to low temperature but also to relatively high concentrations of free ammonia. The determination of as-yet-unknown unique characteristics of Nitrotoga contributes to the improvement of our insights into the microbiology of nitrification. Copyright © 2017 American Society for Microbiology.
The utility of transcriptomics in fish conservation.
Connon, Richard E; Jeffries, Ken M; Komoroske, Lisa M; Todgham, Anne E; Fangue, Nann A
2018-01-29
There is growing recognition of the need to understand the mechanisms underlying organismal resilience (i.e. tolerance, acclimatization) to environmental change to support the conservation management of sensitive and economically important species. Here, we discuss how functional genomics can be used in conservation biology to provide a cellular-level understanding of organismal responses to environmental conditions. In particular, the integration of transcriptomics with physiological and ecological research is increasingly playing an important role in identifying functional physiological thresholds predictive of compensatory responses and detrimental outcomes, transforming the way we can study issues in conservation biology. Notably, with technological advances in RNA sequencing, transcriptome-wide approaches can now be applied to species where no prior genomic sequence information is available to develop species-specific tools and investigate sublethal impacts that can contribute to population declines over generations and undermine prospects for long-term conservation success. Here, we examine the use of transcriptomics as a means of determining organismal responses to environmental stressors and use key study examples of conservation concern in fishes to highlight the added value of transcriptome-wide data to the identification of functional response pathways. Finally, we discuss the gaps between the core science and policy frameworks and how thresholds identified through transcriptomic evaluations provide evidence that can be more readily used by resource managers. © 2018. Published by The Company of Biologists Ltd.
Carbohydrates--the renewable raw materials of high biotechnological value.
Ramesh, Honnavally P F; Tharanathan, Rudrapatnam N
2003-01-01
Carbohydrates are the potential biomolecules derived from nature. Their molecular diversity has led to a bewildering variety of species, structures and characteristics all performing a large array of functions of great significance. Biologically they are vital as message (immunological) carriers, physiologically they are useful as energy (nutritional) reserves, and technologically they are needed for altering the texture and consistency (functional) of foods. Recent advances in glycobiology have opened up a new understanding of the role of sugars in biology and medicine. Noncellulosic beta-(1-3)-linked D-glucans, a group of polysaccharides found as constituents of fungi, algae, and higher plants, exhibit many interesting properties, depending on their molecular conformation. They are excellent 'biological response modifiers' and show significant immunomodulatory activities. They elicit a variety of host defense biological responses, for example, potent antitumor activity. On the other hand, the mixed-linkage ((1-3/1-4)-beta-linked) glucans are important constituents of cereal cell walls, where they perform properties of physiological importance, such as water holding capacity, porosity, and plasticity, which are useful at different stages of growth/development of plants. Of late, carbohydrate-based therapeutics are becoming the promise against many chronic diseases of today and tomorrow. Some of the characteristic features, structural attributes, functional significance, and applications of a selected few carbohydrate species are the subject matter of this review.
Periplasmic Proteins of the Extremophile Acidithiobacillus ferrooxidans
Chi, An; Valenzuela, Lissette; Beard, Simon; Mackey, Aaron J.; Shabanowitz, Jeffrey; Hunt, Donald F.; Jerez, Carlos A.
2015-01-01
Acidithiobacillus ferrooxidans is a chemolithoautotrophic acidophile capable of obtaining energy by oxidizing ferrous iron or sulfur compounds such as metal sulfides. Some of the proteins involved in these oxidations have been described as forming part of the periplasm of this extremophile. The detailed study of the periplasmic components constitutes an important area to understand the physiology and environmental interactions of microorganisms. Proteomics analysis of the periplasmic fraction of A. ferrooxidans ATCC 23270 was performed by using high resolution linear ion trap-FT MS. We identified a total of 131 proteins in the periplasm of the microorganism grown in thiosulfate. When possible, functional categories were assigned to the proteins: 13.8% were transport and binding proteins, 14.6% were several kinds of cell envelope proteins, 10.8% were involved in energy metabolism, 10% were related to protein fate and folding, 10% were proteins with unknown functions, and 26.1% were proteins without homologues in databases. These last proteins are most likely characteristic of A. ferrooxidans and may have important roles yet to be assigned. The majority of the periplasmic proteins from A. ferrooxidans were very basic compared with those of neutrophilic microorganisms such as Escherichia coli, suggesting a special adaptation of the chemolithoautotrophic bacterium to its very acidic environment. The high throughput proteomics approach used here not only helps to understand the physiology of this extreme acidophile but also offers an important contribution to the functional annotation for the available genomes of biomining microorganisms such as A. ferrooxidans for which no efficient genetic systems are available to disrupt genes by procedures such as homologous recombination. PMID:17911085
Heme oxygenase/carbon monoxide in the female reproductive system: an overlooked signalling pathway
Němeček, David; Dvořáková, Markéta; Sedmíková, Markéta
2017-01-01
For a long time, carbon monoxide (CO) was known for its toxic effect on organisms. But there are still many things left to discover on that molecule. CO is formed directly in the body by the enzymatic activity of heme oxygenase (HO). CO plays an important role in many physiological processes, such as cell protections (against various stress factors), and the regulation of metabolic processes. Recent research proves that CO also operates in the female reproductive system. At the centre of interest is the importance of CO for gestation. During the gestation period, CO is an important element affecting the proper function of the feto-placental unit and generally affects fetal survivability rates. Gestation is one of the most important processes of successful reproduction, although there are more relevant processes that need to be researched. While already proven that CO influences steroidogenesis and the corpus luteum survivability rate, our knowledge concerning the function and importance of CO in the reproductive system is still relatively limited. As an example, our knowledge of CO function in an oocyte, the most important cell for reproduction, is almost non-existent. The aim of this review is to summarize our current knowledge concerning the function of CO in the female reproductive system. PMID:28123837
Exercise-Induced Changes in Glucose Metabolism Promote Physiological Cardiac Growth
Gibb, Andrew A.; Epstein, Paul N.; Uchida, Shizuka; Zheng, Yuting; McNally, Lindsey A.; Obal, Detlef; Katragadda, Kartik; Trainor, Patrick; Conklin, Daniel J.; Brittian, Kenneth R.; Tseng, Michael T.; Wang, Jianxun; Jones, Steven P.; Bhatnagar, Aruni
2017-01-01
Background: Exercise promotes metabolic remodeling in the heart, which is associated with physiological cardiac growth; however, it is not known whether or how physical activity–induced changes in cardiac metabolism cause myocardial remodeling. In this study, we tested whether exercise-mediated changes in cardiomyocyte glucose metabolism are important for physiological cardiac growth. Methods: We used radiometric, immunologic, metabolomic, and biochemical assays to measure changes in myocardial glucose metabolism in mice subjected to acute and chronic treadmill exercise. To assess the relevance of changes in glycolytic activity, we determined how cardiac-specific expression of mutant forms of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase affect cardiac structure, function, metabolism, and gene programs relevant to cardiac remodeling. Metabolomic and transcriptomic screenings were used to identify metabolic pathways and gene sets regulated by glycolytic activity in the heart. Results: Exercise acutely decreased glucose utilization via glycolysis by modulating circulating substrates and reducing phosphofructokinase activity; however, in the recovered state following exercise adaptation, there was an increase in myocardial phosphofructokinase activity and glycolysis. In mice, cardiac-specific expression of a kinase-deficient 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase transgene (GlycoLo mice) lowered glycolytic rate and regulated the expression of genes known to promote cardiac growth. Hearts of GlycoLo mice had larger myocytes, enhanced cardiac function, and higher capillary-to-myocyte ratios. Expression of phosphatase-deficient 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase in the heart (GlycoHi mice) increased glucose utilization and promoted a more pathological form of hypertrophy devoid of transcriptional activation of the physiological cardiac growth program. Modulation of phosphofructokinase activity was sufficient to regulate the glucose–fatty acid cycle in the heart; however, metabolic inflexibility caused by invariantly low or high phosphofructokinase activity caused modest mitochondrial damage. Transcriptomic analyses showed that glycolysis regulates the expression of key genes involved in cardiac metabolism and remodeling. Conclusions: Exercise-induced decreases in glycolytic activity stimulate physiological cardiac remodeling, and metabolic flexibility is important for maintaining mitochondrial health in the heart. PMID:28860122
Physiologically mediated self/non-self discrimination in roots
Gruntman, Michal; Novoplansky, Ariel
2004-01-01
Recent evidence suggests that self/non-self discrimination exists among roots; its mechanisms, however, are still unclear. We compared the growth of Buchloe dactyloides cuttings that were grown in the presence of neighbors that belonged to the same physiological individual, were separated from each other for variable periods, or originated from adjacent or remote tillers on the same clone. The results demonstrate that B. dactyloides plants are able to differentiate between self and non-self neighbors and develop fewer and shorter roots in the presence of other roots of the same individual. Furthermore, once cuttings that originate from the very same node are separated, they become progressively alienated from each other and eventually relate to each other as genetically alien plants. The results suggest that the observed self/non-self discrimination is mediated by physiological coordination among roots that developed on the same plant rather than allogenetic recognition. The observed physiological coordination is based on an as yet unknown mechanism and has important ecological implications, because it allows the avoidance of competition with self and the allocation of greater resources to alternative functions. PMID:15004281
The cell as the mechanistic basis for evolution.
Torday, J S
2015-01-01
The First Principles for Physiology originated in and emanate from the unicellular state of life. Viewing physiology as a continuum from unicellular to multicellular organisms provides fundamental insight to ontogeny and phylogeny as a functionally integral whole. Such mechanisms are most evident under conditions of physiologic stress; all of the molecular pathways that evolved in service to the vertebrate water-land transition aided and abetted the evolution of the vertebrate lung, for example. Reduction of evolution to cell biology has an important scientific feature—it is predictive. One implication of this perspective on evolution is the likelihood that it is the unicellular state that is actually the object of selection. By looking at the process of evolution from its unicellular origins, the causal relationships between genotype and phenotype are revealed, as are many other aspects of physiology and medicine that have remained anecdotal and counter-intuitive. Evolutionary development can best be considered as a cyclical, epigenetic, reiterative environmental assessment process, originating from the unicellular state, both forward and backward, to sustain and perpetuate unicellular homeostasis. © 2015 Wiley Periodicals, Inc.
Sommer, Felix; Bäckhed, Fredrik
2016-05-01
Interactions between the host and its associated microbiota differ spatially and the local cross talk determines organ function and physiology. Animals and their organs are not uniform but contain several functional and cellular compartments and gradients. In the intestinal tract, different parts of the gut carry out different functions, tissue structure varies accordingly, epithelial cells are differentially distributed and gradients exist for several physicochemical parameters such as nutrients, pH, or oxygen. Consequently, the microbiota composition also differs along the length of the gut, but also between lumen and mucosa of the same intestinal segment, and even along the crypt-villus axis in the epithelium. Thus, host-microbiota interactions are highly site-specific and the local cross talk determines intestinal function and physiology. Here we review recent advances in our understanding of site-specific host-microbiota interactions and discuss their functional relevance for host physiology. © 2016 WILEY Periodicals, Inc.
Davies, Patrick T; Sturge-Apple, Melissa L; Cicchetti, Dante; Manning, Liviah G; Zale, Emily
2009-11-01
This paper examined children's fearful, sad, and angry reactivity to interparental conflict as mediators of associations between their exposure to interparental aggression and physiological functioning. Participants included 200 toddlers and their mothers. Assessments of interparental aggression and children's emotional reactivity were derived from maternal surveys and a semi-structured interview. Cortisol levels and cardiac indices of sympathetic nervous system (SNS) and parasympathetic nervous system (PNS) activity were used to assess toddler physiological functioning. Results indicated that toddler exposure to interparental aggression was associated with greater cortisol levels and PNS activity and diminished SNS activity. Toddler angry emotional reactivity mediated associations between interparental aggression and cortisol and PNS functioning. Fearful emotional reactivity was a mediator of the link between interparental aggression and SNS functioning. The results are interpreted within conceptualizations of how exposure and reactivity to family risk organize individual differences in physiological functioning.
Pollock, Ross D; Carter, Scott; Velloso, Cristiana P; Duggal, Niharika A; Lord, Janet M; Lazarus, Norman R; Harridge, Stephen D R
2015-02-01
The relationship between age and physiological function remains poorly defined and there are no physiological markers that can be used to reliably predict the age of an individual. This could be due to a variety of confounding genetic and lifestyle factors, and in particular to ill-defined and low levels of physical activity. This study assessed the relationship between age and a diverse range of physiological functions in a cohort of highly active older individuals (cyclists) aged 55-79 years in whom the effects of lifestyle factors would be ameliorated. Significant associations between age and function were observed for many functions. V̇O2max was most closely associated with age, but even here the variance in age for any given level was high, precluding the clear identification of the age of any individual. The data suggest that the relationship between human ageing and physiological function is highly individualistic and modified by inactivity. Despite extensive research, the relationship between age and physiological function remains poorly characterised and there are currently no reliable markers of human ageing. This is probably due to a number of confounding factors, particularly in studies of a cross-sectional nature. These include inter-subject genetic variation, as well as inter-generational differences in nutrition, healthcare and insufficient levels of physical activity as well as other environmental factors. We have studied a cohort of highly and homogeneously active older male (n = 84) and female (n = 41) cyclists aged 55-79 years who it is proposed represent a model for the study of human ageing free from the majority of confounding factors, especially inactivity. The aim of the study was to identify physiological markers of ageing by assessing the relationship between function and age across a wide range of indices. Each participant underwent a detailed physiological profiling which included measures of cardiovascular, respiratory, neuromuscular, metabolic, endocrine and cognitive functions, bone strength, and health and well-being. Significant associations between age and function were observed for many functions. The maximal rate of oxygen consumption (V̇O2max) showed the closest association with age (r = -0.443 to -0.664; P < 0.001), but even here the variance in age for any given level was high, precluding the clear identification of the age of any individual. The results of this cross-sectional study suggest that even when many confounding variables are removed the relationship between function and healthy ageing is complex and likely to be highly individualistic and that physical activity levels must be taken into account in ageing studies. © 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.
Ridgel, Angela L.; Abdar, Hassan Mohammadi; Alberts, Jay L.; Discenzo, Fred M.; Loparo, Kenneth A.
2014-01-01
Variability in severity and progression of Parkinson’s disease symptoms makes it challenging to design therapy interventions that provide maximal benefit. Previous studies showed that forced cycling, at greater pedaling rates, results in greater improvements in motor function than voluntary cycling. The precise mechanism for differences in function following exercise is unknown. We examined the complexity of biomechanical and physiological features of forced and voluntary cycling and correlated these features to improvements in motor function as measured by the Unified Parkinson’s Disease Rating Scale (UPDRS). Heart rate, cadence, and power were analyzed using entropy signal processing techniques. Pattern variability in heart rate and power were greater in the voluntary group when compared to forced group. In contrast, variability in cadence was higher during forced cycling. UPDRS Motor III scores predicted from the pattern variability data were highly correlated to measured scores in the forced group. This study shows how time series analysis methods of biomechanical and physiological parameters of exercise can be used to predict improvements in motor function. This knowledge will be important in the development of optimal exercise-based rehabilitation programs for Parkinson’s disease. PMID:23144045
Functional neuroanatomy of the central noradrenergic system.
Szabadi, Elemer
2013-08-01
The central noradrenergic neurone, like the peripheral sympathetic neurone, is characterized by a diffusely arborizing terminal axonal network. The central neurones aggregate in distinct brainstem nuclei, of which the locus coeruleus (LC) is the most prominent. LC neurones project widely to most areas of the neuraxis, where they mediate dual effects: neuronal excitation by α₁-adrenoceptors and inhibition by α₂-adrenoceptors. The LC plays an important role in physiological regulatory networks. In the sleep/arousal network the LC promotes wakefulness, via excitatory projections to the cerebral cortex and other wakefulness-promoting nuclei, and inhibitory projections to sleep-promoting nuclei. The LC, together with other pontine noradrenergic nuclei, modulates autonomic functions by excitatory projections to preganglionic sympathetic, and inhibitory projections to preganglionic parasympathetic neurones. The LC also modulates the acute effects of light on physiological functions ('photomodulation'): stimulation of arousal and sympathetic activity by light via the LC opposes the inhibitory effects of light mediated by the ventrolateral preoptic nucleus on arousal and by the paraventricular nucleus on sympathetic activity. Photostimulation of arousal by light via the LC may enable diurnal animals to function during daytime. LC neurones degenerate early and progressively in Parkinson's disease and Alzheimer's disease, leading to cognitive impairment, depression and sleep disturbance.
Psychophysical spectro-temporal receptive fields in an auditory task.
Shub, Daniel E; Richards, Virginia M
2009-05-01
Psychophysical relative weighting functions, which provide information about the importance of different regions of a stimulus in forming decisions, are traditionally estimated using trial-based procedures, where a single stimulus is presented and a single response is recorded. Everyday listening is much more "free-running" in that we often must detect randomly occurring signals in the presence of a continuous background. Psychophysical relative weighting functions have not been measured with free-running paradigms. Here, we combine a free-running paradigm with the reverse correlation technique used to estimate physiological spectro-temporal receptive fields (STRFs) to generate psychophysical relative weighting functions that are analogous to physiological STRFs. The psychophysical task required the detection of a fixed target signal (a sequence of spectro-temporally coherent tone pips with a known frequency) in the presence of a continuously presented informational masker (spectro-temporally random tone pips). A comparison of psychophysical relative weighting functions estimated with the current free-running paradigm and trial-based paradigms, suggests that in informational-masking tasks subjects' decision strategies are similar in both free-running and trial-based paradigms. For more cognitively challenging tasks there may be differences in the decision strategies with free-running and trial-based paradigms.
Expression of LRRC8/VRAC Currents in Xenopus Oocytes: Advantages and Caveats.
Gaitán-Peñas, Héctor; Pusch, Michael; Estévez, Raúl
2018-03-02
Volume-regulated anion channels (VRACs) play a role in controlling cell volume by opening upon cell swelling. Apart from controlling cell volume, their function is important in many other physiological processes, such as transport of metabolites or drugs, and extracellular signal transduction. VRACs are formed by heteromers of the pannexin homologous protein LRRC8A (also named Swell1) with other LRRC8 members (B, C, D, and E). LRRC8 proteins are difficult to study, since they are expressed in all cells of our body, and the channel stoichiometry can be changed by overexpression, resulting in non-functional heteromers. Two different strategies have been developed to overcome this issue: complementation by transient transfection of LRRC8 genome-edited cell lines, and reconstitution in lipid bilayers. Alternatively, we have used Xenopus oocytes as a simple system to study LRRC8 proteins. Here, we have reviewed all previous experiments that have been performed with VRAC and LRRC8 proteins in Xenopus oocytes. We also discuss future strategies that may be used to perform structure-function analysis of the VRAC in oocytes and other systems, in order to understand its role in controlling multiple physiological functions.
Update on the slow delayed rectifier potassium current (I(Ks)): role in modulating cardiac function.
Liu, Zhenzhen; Du, Lupei; Li, Minyong
2012-01-01
The slow delayed rectifier current (I(Ks)) is the slow component of cardiac delayed rectifier current and is critical for the late phase repolarization of cardiac action potential. This current is also an important target for Sympathetic Nervous System (SNS) to regulate the cardiac electivity to accommodate to heart rate alterations in response to exercise or emotional stress and can be up-regulated by β- adrenergic or other signal molecules. I(Ks) channel is originated by the co-assembly of pore-forming KCNQ1 α-subunit and accessory KCNE1 β-subunit. Mutations in any subunit can bring about severe long QT syndrome (LQT-1, LQT-5) as characterized by deliquium, seizures and sudden death. This review summarizes the normal physiological functions and molecular basis of I(Ks) channels, as well as illustrates up-to-date development on its blockers and activators. Therefore, the current extensive survey should generate fundamental understanding of the role of I(Ks) channel in modulating cardiac function and donate some instructions to the progression of I(Ks) blockers and activators as potential antiarrhythmic agents or pharmacological tools to determine the physiological and pathological function of I(Ks).
Meng, Fanjuan; Luo, Qiuxiang; Wang, Qiuyu; Zhang, Xiuli; Qi, Zhenhua; Xu, Fuling; Lei, Xue; Cao, Yuan; Chow, Wah Soon; Sun, Guangyu
2016-01-01
Salinity is an important abiotic stressor that negatively affects plant growth. In this study, we investigated the physiological and molecular mechanisms underlying moderate and high salt tolerance in diploid (2×) and tetraploid (4×) Robinia pseudoacacia L. Our results showed greater H2O2 accumulation and higher levels of important antioxidative enzymes and non-enzymatic antioxidants in 4× plants compared with 2× plants under salt stress. In addition, 4× leaves maintained a relatively intact structure compared to 2× leaves under a corresponding condition. NaCl treatment didn’t significantly affect the photosynthetic rate, stomatal conductance or leaf intercellular CO2 concentrations in 4× leaves. Moreover, proteins from control and salt treated 2× and 4× leaf chloroplast samples were extracted and separated by two-dimensional gel electrophoresis. A total of 61 spots in 2× (24) and 4× (27) leaves exhibited reproducible and significant changes under salt stress. In addition, 10 proteins overlapped between 2× and 4× plants under salt stress. These identified proteins were grouped into the following 7 functional categories: photosynthetic Calvin-Benson Cycle (26), photosynthetic electron transfer (7), regulation/defense (5), chaperone (3), energy and metabolism (12), redox homeostasis (1) and unknown function (8). This study provides important information of use in the improvement of salt tolerance in plants. PMID:26975701
Regulators of Slc4 bicarbonate transporter activity
Thornell, Ian M.; Bevensee, Mark O.
2015-01-01
The Slc4 family of transporters is comprised of anion exchangers (AE1-4), Na+-coupled bicarbonate transporters (NCBTs) including electrogenic Na/bicarbonate cotransporters (NBCe1 and NBCe2), electroneutral Na/bicarbonate cotransporters (NBCn1 and NBCn2), and the electroneutral Na-driven Cl-bicarbonate exchanger (NDCBE), as well as a borate transporter (BTR1). These transporters regulate intracellular pH (pHi) and contribute to steady-state pHi, but are also involved in other physiological processes including CO2 carriage by red blood cells and solute secretion/reabsorption across epithelia. Acid-base transporters function as either acid extruders or acid loaders, with the Slc4 proteins moving HCO−3 either into or out of cells. According to results from both molecular and functional studies, multiple Slc4 proteins and/or associated splice variants with similar expected effects on pHi are often found in the same tissue or cell. Such apparent redundancy is likely to be physiologically important. In addition to regulating pHi, a HCO−3 transporter contributes to a cell's ability to fine tune the intracellular regulation of the cotransported/exchanged ion(s) (e.g., Na+ or Cl−). In addition, functionally similar transporters or splice variants with different regulatory profiles will optimize pH physiology and solute transport under various conditions or within subcellular domains. Such optimization will depend on activated signaling pathways and transporter expression profiles. In this review, we will summarize and discuss both well-known and more recently identified regulators of the Slc4 proteins. Some of these regulators include traditional second messengers, lipids, binding proteins, autoregulatory domains, and less conventional regulators. The material presented will provide insight into the diversity and physiological significance of multiple members within the Slc4 gene family. PMID:26124722
Regulators of Slc4 bicarbonate transporter activity.
Thornell, Ian M; Bevensee, Mark O
2015-01-01
The Slc4 family of transporters is comprised of anion exchangers (AE1-4), Na(+)-coupled bicarbonate transporters (NCBTs) including electrogenic Na/bicarbonate cotransporters (NBCe1 and NBCe2), electroneutral Na/bicarbonate cotransporters (NBCn1 and NBCn2), and the electroneutral Na-driven Cl-bicarbonate exchanger (NDCBE), as well as a borate transporter (BTR1). These transporters regulate intracellular pH (pHi) and contribute to steady-state pHi, but are also involved in other physiological processes including CO2 carriage by red blood cells and solute secretion/reabsorption across epithelia. Acid-base transporters function as either acid extruders or acid loaders, with the Slc4 proteins moving HCO(-) 3 either into or out of cells. According to results from both molecular and functional studies, multiple Slc4 proteins and/or associated splice variants with similar expected effects on pHi are often found in the same tissue or cell. Such apparent redundancy is likely to be physiologically important. In addition to regulating pHi, a HCO(-) 3 transporter contributes to a cell's ability to fine tune the intracellular regulation of the cotransported/exchanged ion(s) (e.g., Na(+) or Cl(-)). In addition, functionally similar transporters or splice variants with different regulatory profiles will optimize pH physiology and solute transport under various conditions or within subcellular domains. Such optimization will depend on activated signaling pathways and transporter expression profiles. In this review, we will summarize and discuss both well-known and more recently identified regulators of the Slc4 proteins. Some of these regulators include traditional second messengers, lipids, binding proteins, autoregulatory domains, and less conventional regulators. The material presented will provide insight into the diversity and physiological significance of multiple members within the Slc4 gene family.
Xiao, Wenjin; Shinohara, Marie; Komori, Kikuo; Sakai, Yasuyuki; Matsui, Hitoshi; Osada, Tomoharu
2014-01-01
Oxygen supply is a critical issue in the optimization of in vitro hepatocyte microenvironments. Although several strategies have been developed to balance complex oxygen requirements, these techniques are not able to accurately meet the cellular oxygen demand. Indeed, neither the actual oxygen concentration encountered by cells nor the cellular oxygen consumption rates (OCR) was assessed. The aim of this study is to define appropriate oxygen conditions at the cell level that could accurately match the OCR and allow hepatocytes to maintain liver specific functions in a normoxic environment. Matrigel overlaid rat hepatocytes were cultured on the polydimethylsiloxane (PDMS) membranes under either atmospheric oxygen concentration [20%-O2 (+)] or physiological oxygen concentrations [10%-O2 (+), 5%-O2 (+)], respectively, to investigate the effects of various oxygen concentrations on the efficient functioning of hepatocytes. In parallel, the gas-impermeable cultures (polystyrene) with PDMS membrane inserts were used as the control groups [PS-O2 (-)]. The results indicated that the hepatocytes under 10%-O2 (+) exhibited improved survival and maintenance of metabolic activities and functional polarization. The dramatic elevation of cellular OCR up to the in vivo liver rate proposed a normoxic environment for hepatocytes, especially when comparing with PS-O2 (-) cultures, in which the cells generally tolerated hypoxia. Additionally, the expression levels of 84 drug-metabolism genes were the closest to physiological levels. In conclusion, this study clearly shows the benefit of long-term culture of hepatocytes at physiological oxygen concentration, and indicates on an oxygen-permeable membrane system to provide a simple method for in vitro studies. © 2014 American Institute of Chemical Engineers.
RING-type E3 ligases: Master manipulators of E2 ubiquitin-conjugating enzymes and ubiquitination
Metzger, Meredith B.; Pruneda, Jonathan N.; Klevit, Rachel E.; Weissman, Allan M.
2013-01-01
RING finger domain and RING finger-like ubiquitin ligases (E3s), such as U-box proteins, constitute the vast majority of known E3s. RING-type E3s function together with ubiquitin-conjugating enzymes (E2s) to mediate ubiquitination and are implicated in numerous cellular processes. In part because of their importance in human physiology and disease, these proteins and their cellular functions represent an intense area of study. Here we review recent advances in RING-type E3 recognition of substrates, their cellular regulation, and their varied architecture. Additionally, recent structural insights into RING-type E3 function, with a focus on important interactions with E2s and ubiquitin, are reviewed. This article is part of a Special Issue entitled: Ubiquitin-Proteasome System. PMID:23747565
Breaking into the epithelial apical–junctional complex — news from pathogen hackers
Vogelmann, Roger; Amieva, Manuel R; Falkow, Stanley; Nelson, W James
2012-01-01
The epithelial apical–junctional complex is a key regulator of cellular functions. In addition, it is an important target for microbial pathogens that manipulate the cell to survive, proliferate and sometimes persist within a host. Out of a myriad of potential molecular targets, some bacterial and viral pathogens have selected a subset of protein targets at the apical–junctional complex of epithelial cells. Studying how microbes use these targets also teaches us about the inherent physiological properties of host molecules in the context of normal junctional structure and function. Thus, we have learned that three recently uncovered components of the apical–junctional complex of the Ig superfamily — junctional adhesion molecule, Nectin and the coxsackievirus and adenovirus receptor — are important regulators of junction structure and function and represent critical targets of microbial virulence gene products. PMID:15037310
Breaking into the epithelial apical-junctional complex--news from pathogen hackers.
Vogelmann, Roger; Amieva, Manuel R; Falkow, Stanley; Nelson, W James
2004-02-01
The epithelial apical-junctional complex is a key regulator of cellular functions. In addition, it is an important target for microbial pathogens that manipulate the cell to survive, proliferate and sometimes persist within a host. Out of a myriad of potential molecular targets, some bacterial and viral pathogens have selected a subset of protein targets at the apical-junctional complex of epithelial cells. Studying how microbes use these targets also teaches us about the inherent physiological properties of host molecules in the context of normal junctional structure and function. Thus, we have learned that three recently uncovered components of the apical-junctional complex of the Ig superfamily--junctional adhesion molecule, Nectin and the coxsackievirus and adenovirus receptor--are important regulators of junction structure and function and represent critical targets of microbial virulence gene products.
Prossnitz, Eric R; Barton, Matthias
2009-09-01
GPR30, now named GPER1 (G protein-coupled estrogen receptor1) or GPER here, was first identified as an orphan 7-transmembrane G protein-coupled receptor by multiple laboratories using either homology cloning or differential expression and subsequently shown to be required for estrogen-mediated signaling in certain cancer cells. The actions of estrogen are extensive in the body and are thought to be mediated predominantly by classical nuclear estrogen receptors that act as transcription factors/regulators. Nevertheless, certain aspects of estrogen function remain incompatible with the generally accepted mechanisms of classical estrogen receptor action. Many recent studies have revealed that GPER contributes to some of the actions of estrogen, including rapid signaling events and rapid transcriptional activation. With the introduction of GPER-selective ligands and GPER knockout mice, the functions of GPER are becoming more clearly defined. In many cases, there appears to be a complex interplay between the two receptor systems, suggesting that estrogen-mediated physiological responses may be mediated by either receptor or a combination of both receptor types, with important medical implications.
The critical role of catalase in prooxidant and antioxidant function of p53
Kang, M Y; Kim, H-B; Piao, C; Lee, K H; Hyun, J W; Chang, I-Y; You, H J
2013-01-01
The tumor suppressor p53 is an important regulator of intracellular reactive oxygen species (ROS) levels, although downstream mediators of p53 remain to be elucidated. Here, we show that p53 and its downstream targets, p53-inducible ribonucleotide reductase (p53R2) and p53-inducible gene 3 (PIG3), physically and functionally interact with catalase for efficient regulation of intracellular ROS, depending on stress intensity. Under physiological conditions, the antioxidant functions of p53 are mediated by p53R2, which maintains increased catalase activity and thereby protects against endogenous ROS. After genotoxic stress, high levels of p53 and PIG3 cooperate to inhibit catalase activity, leading to a shift in the oxidant/antioxidant balance toward an oxidative status, which could augment apoptotic cell death. These results highlight the essential role of catalase in p53-mediated ROS regulation and suggest that the p53/p53R2–catalase and p53/PIG3–catalase pathways are critically involved in intracellular ROS regulation under physiological conditions and during the response to DNA damage, respectively. PMID:22918438
Urban ecosystem services: tree diversity and stability of tropospheric ozone removal.
Manes, Fausto; Incerti, Guido; Salvatori, Elisabetta; Vitale, Marcello; Ricotta, Carlo; Costanza, Robert
2012-01-01
Urban forests provide important ecosystem services, such as urban air quality improvement by removing pollutants. While robust evidence exists that plant physiology, abundance, and distribution within cities are basic parameters affecting the magnitude and efficiency of air pollution removal, little is known about effects of plant diversity on the stability of this ecosystem service. Here, by means of a spatial analysis integrating system dynamic modeling and geostatistics, we assessed the effects of tree diversity on the removal of tropospheric ozone (O3) in Rome, Italy, in two years (2003 and 2004) that were very different for climatic conditions and ozone levels. Different tree functional groups showed complementary uptake patterns, related to tree physiology and phenology, maintaining a stable community function across different climatic conditions. Our results, although depending on the city-specific conditions of the studied area, suggest a higher function stability at increasing diversity levels in urban ecosystems. In Rome, such ecosystem services, based on published unitary costs of externalities and of mortality associated with O3, can be prudently valued to roughly US$2 and $3 million/year, respectively.
Cardiovascular and Hemostatic Disorders: Role of STIM and Orai Proteins in Vascular Disorders.
Tanwar, Jyoti; Trebak, Mohamed; Motiani, Rajender K
2017-01-01
Store-operated Ca 2+ entry (SOCE) mediated by STIM and Orai proteins is a highly regulated and ubiquitous signaling pathway that plays an important role in various cellular and physiological functions. Endoplasmic reticulum (ER) serves as the major site for intracellular Ca 2+ storage. Stromal Interaction Molecule 1/2 (STIM1/2) sense decrease in ER Ca 2+ levels and transmits the message to plasma membrane Ca 2+ channels constituted by Orai family members (Orai1/2/3) resulting in Ca 2+ influx into the cells. This increase in cytosolic Ca 2+ in turn activates a variety of signaling cascades to regulate a plethora of cellular functions. Evidence from the literature suggests that SOCE dysregulation is associated with several pathophysiologies, including vascular disorders. Interestingly, recent studies have suggested that STIM proteins may also regulate vascular functions independent of their contribution to SOCE. In this updated book chapter, we will focus on the physiological role of STIM and Orai proteins in the vasculature (endothelial cells and vascular smooth muscle cells). We will further retrospect the literature implicating a critical role for these proteins in vascular disease.
Lipid Raft Redox Signaling: Molecular Mechanisms in Health and Disease
Zhou, Fan; Katirai, Foad
2011-01-01
Abstract Lipid rafts, the sphingolipid and cholesterol-enriched membrane microdomains, are able to form different membrane macrodomains or platforms upon stimulations, including redox signaling platforms, which serve as a critical signaling mechanism to mediate or regulate cellular activities or functions. In particular, this raft platform formation provides an important driving force for the assembling of NADPH oxidase subunits and the recruitment of other related receptors, effectors, and regulatory components, resulting, in turn, in the activation of NADPH oxidase and downstream redox regulation of cell functions. This comprehensive review attempts to summarize all basic and advanced information about the formation, regulation, and functions of lipid raft redox signaling platforms as well as their physiological and pathophysiological relevance. Several molecular mechanisms involving the formation of lipid raft redox signaling platforms and the related therapeutic strategies targeting them are discussed. It is hoped that all information and thoughts included in this review could provide more comprehensive insights into the understanding of lipid raft redox signaling, in particular, of their molecular mechanisms, spatial-temporal regulations, and physiological, pathophysiological relevances to human health and diseases. Antioxid. Redox Signal. 15, 1043–1083. PMID:21294649
Posttranscriptional control of neuronal development by microRNA networks.
Gao, Fen-Biao
2008-01-01
The proper development of the nervous system requires precise spatial and temporal control of gene expression at both the transcriptional and translational levels. In different experimental model systems, microRNAs (miRNAs) - a class of small, endogenous, noncoding RNAs that control the translation and stability of many mRNAs - are emerging as important regulators of various aspects of neuronal development. Further dissection of the in vivo physiological functions of individual miRNAs promises to offer novel mechanistic insights into the gene regulatory networks that ensure the precise assembly of a functional nervous system.
Hainsworth, Atticus H; Randall, Andrew D; Stefani, Alessandro
2005-01-01
Voltage-sensitive Ca(2+) channels (VSCC) play a central role in an extensive array of physiological processes. Their importance in cellular function arises from their ability both to sense membrane voltage and to conduct Ca(2+) ions, two facets that couple membrane excitability to a key intracellular second messenger. Through this relationship, activation of VSCCs is tightly coupled to the gamut of cellular functions dependent on intracellular Ca(2+), including muscle contraction, energy metabolism, gene expression, and exocytotic/endocytotic cycling.
Trends in sensorimotor research and countermeasures for exploration-class space flights.
Shelhamer, Mark
2015-01-01
Research in the area of sensorimotor and neurovestibular function has played an important role in enabling human space flight. This role, however, is changing. One of the key aspects of sensorimotor function relevant to this role will build on its widespread connections with other physiological and psychological systems in the body. The firm knowledge base in this area can provide a strong platform to explore these interactions, which can also provide for the development of effective and efficient countermeasures to the deleterious effects of space flight.
Neuro-immune modulation of the thymus microenvironment (review).
Mignini, Fiorenzo; Sabbatini, Maurizio; Mattioli, Laura; Cosenza, Monica; Artico, Marco; Cavallotti, Carlo
2014-06-01
The thymus is the primary site for T-cell lympho-poiesis. Its function includes the maturation and selection of antigen specific T cells and selective release of these cells to the periphery. These highly complex processes require precise parenchymal organization and compartmentation where a plethora of signalling pathways occur, performing strict control on the maturation and selection processes of T lymphocytes. In this review, the main morphological characteristics of the thymus microenvironment, with particular emphasis on nerve fibers and neuropeptides were assessed, as both are responsible for neuro-immune‑modulation functions. Among several neurotransmitters that affect thymus function, we highlight the dopaminergic system as only recently has its importance on thymus function and lymphocyte physiology come to light.
Cholinergic modulation of the hippocampal region and memory function.
Haam, Juhee; Yakel, Jerrel L
2017-08-01
Acetylcholine (ACh) plays an important role in memory function and has been implicated in aging-related dementia, in which the impairment of hippocampus-dependent learning strongly manifests. Cholinergic neurons densely innervate the hippocampus, mediating the formation of episodic as well as semantic memory. Here, we will review recent findings on acetylcholine's modulation of memory function, with a particular focus on hippocampus-dependent learning, and the circuits involved. In addition, we will discuss the complexity of ACh actions in memory function to better understand the physiological role of ACh in memory. This is an article for the special issue XVth International Symposium on Cholinergic Mechanisms. © 2017 International Society for Neurochemistry.
SUMOylation in Neurological Diseases.
Liu, F-Y; Liu, Y-F; Yang, Y; Luo, Z-W; Xiang, J-W; Chen, Z-G; Qi, R-L; Yang, T-H; Xiao, Y; Qing, W-J; Li, D W-C
2017-01-01
Since the discovery of SUMOs (small ubiquitin-like modifiers) over 20 years ago, sumoylation has recently emerged as an important posttranslational modification involved in almost all aspects of cellular physiology. In neurons, sumoylation dynamically modulates protein function and consequently plays an important role in neuronal maturation, synapse formation and plasticity. Thus, the dysfunction of sumoylation pathway is associated with many different neurological disorders. Hundreds of different proteins implicated in the pathogenesis of neurological disorders are SUMO-modified, indicating the importance of sumoylation involved in the neurological diseases. In this review, we summarize the growing findings on protein sumoylation in neuronal function and dysfunction. It is essential to have a thorough understanding on the mechanism how sumoylation contributes to neurological diseases in developing efficient therapy for these diseases. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Pigmentation in Xiphophorus: an emerging system in ecological and evolutionary genetics.
Culumber, Zachary W
2014-02-01
The genus Xiphophorus has great potential to contribute to the study of vertebrate pigmentation and elucidating the relative influence of ecology, physiology, and behavior on evolution at the molecular level. More importantly, the association between pigmentation and a functional oncogene offers the potential to understand the evolution and maintenance of cancer-causing genetic elements. Using criteria laid out recently in the literature, I demonstrate the power of the Xiphophorus system for studying pigment evolution through integrative organismal biology. Using the most recent phylogeny, the phylogenetic distribution of several important pigmentation loci are reevaluated. I then review support for existing hypotheses of the functional importance of pigmentation. Finally, new observations and hypotheses regarding some of the characteristics of pigment patterns in natural populations and open questions and future directions in the study of the evolution of these traits are discussed.
Functions and Mechanisms of Sleep
Zielinski, Mark R.; McKenna, James T.; McCarley, Robert W.
2017-01-01
Sleep is a complex physiological process that is regulated globally, regionally, and locally by both cellular and molecular mechanisms. It occurs to some extent in all animals, although sleep expression in lower animals may be co-extensive with rest. Sleep regulation plays an intrinsic part in many behavioral and physiological functions. Currently, all researchers agree there is no single physiological role sleep serves. Nevertheless, it is quite evident that sleep is essential for many vital functions including development, energy conservation, brain waste clearance, modulation of immune responses, cognition, performance, vigilance, disease, and psychological state. This review details the physiological processes involved in sleep regulation and the possible functions that sleep may serve. This description of the brain circuitry, cell types, and molecules involved in sleep regulation is intended to further the reader’s understanding of the functions of sleep. PMID:28413828
Bishop, Karl D.; Rawson, Paul D.
2017-01-01
Blue mussels (Mytilus edulis) are ecologically and economically important marine invertebrates whose populations are at risk from climate change-associated variation in their environment, such as decreased coastal salinity. Blue mussels are osmoconfomers and use components of the metabolome (free amino acids) to help maintain osmotic balance and cellular function during low salinity exposure. However, little is known about the capacity of blue mussels during the planktonic larval stages to regulate metabolites during osmotic stress. Metabolite studies in species such as blue mussels can help improve our understanding of the species’ physiology, as well as their capacity to respond to environmental stress. We used 1D 1H nuclear magnetic resonance (NMR) and 2D total correlation spectroscopy (TOCSY) experiments to describe baseline metabolite pools in larval (veliger and pediveliger stages) and juvenile blue mussels (gill, mantle, and adductor tissues) under ambient conditions and to quantify changes in the abundance of common osmolytes in these stages during low salinity exposure. We found evidence for stage- and tissue-specific differences in the baseline metabolic profiles of blue mussels, which reflect variation in the function and morphology of each larval stage or tissue type of juveniles. These differences impacted the utilization of osmolytes during low salinity exposure, likely stemming from innate physiological variation. This study highlights the importance of foundational metabolomic studies that include multiple tissue types and developmental stages to adequately evaluate organismal responses to stress and better place these findings in a broader physiological context. PMID:28684716
Geng, J; Zhao, Q; Zhang, T; Xiao, B
2017-01-01
Mechanotransduction, the conversion of mechanical forces into biological signals, plays critical roles in various physiological and pathophysiological processes in mammals, such as conscious sensing of touch, pain, and sound, as well as unconscious sensing of blood flow-associated shear stress, urine flow, and bladder distention. Among the various molecules involved in mechanotransduction, mechanosensitive (MS) cation channels have long been postulated to represent one critical class of mechanotransducers that directly and rapidly converts mechanical force into electrochemical signals. Despite the awareness of their functional significance, the molecular identities of MS cation channels in mammals had remained elusive for decades till the groundbreaking finding that the Piezo family of genes, including Piezo1 and Piezo2, constitutes their essential components. Since their identification about 6years ago, tremendous progress has been made in understanding their physiological and pathophysiological importance in mechanotransduction and their structure-function relationships of being the prototypic class of mammalian MS cation channels. On the one hand, Piezo proteins have been demonstrated to serve as physiologically and pathophysiologically important mechanotransducers for most, if not all, mechanotransduction processes. On the other hand, they have been shown to form a remarkable three-bladed, propeller-shaped homotrimeric channel complex comprising a separable ion-conducting pore module and mechanotransduction modules. In this chapter, we review the major advancements, with a particular focus on the structural and biophysical features that enable Piezo proteins to serve as sophisticated MS cation channels for force sensing, transduction, and ion conduction. Copyright © 2017 Elsevier Inc. All rights reserved.
Rico, Laura; Herrera, Concha
2012-01-01
In November of 2011, the Committee for Advanced Therapies (CAT) of the European Medicines Agency (EMA) published two scientific recommendations regarding the classification of autologous bone marrow-derived mononuclear cells (BM-MNCs) and autologous bone marrow-derived CD133+ cells as advanced therapy medicinal products (ATMPs), specifically tissue-engineered products, when intended for regeneration in ischemic heart tissue on the basis that they are not used for the same essential function (hematological restoration) that they fulfill in the donor. In vitro and in vivo evidence demonstrates that bone marrow cells are physiologically involved in adult neovascularization and tissue repair, making their therapeutic use for these purposes a simple exploitation of their own essential functions. Therefore, from a scientific/legal point of view, nonsubstantially manipulated BM-MNCs and CD133+ cells are not an ATMP, because they have a physiological role in the processes of postnatal neovascularization and, when used therapeutically for vascular restoration in ischemic tissues, they are carrying out one of their essential physiological functions (the legal definition recognizes that cells can have several essential functions). The consequences of classifying BM-MNCs and CD133+ cells as medicinal products instead of cellular transplantation, like bone marrow transplantation, in terms of costs and time for these products to be introduced into clinical practice, make this an issue of crucial importance. Therefore, the recommendations of EMA/CAT could be reviewed in collaboration with scientific societies, in light of organizational and economic consequences as well as scientific knowledge recently acquired about the mechanisms of postnatal neovascularization and the function of bone marrow in the regeneration of remote tissues. PMID:23197819
Alejandre-García, Tzitzitlini; Peña-Del Castillo, Johanna G; Hernández-Cruz, Arturo
2018-01-01
The role of gamma-aminobutyric acid (GABA) in adrenal medulla chromaffin cell (CC) function is just beginning to unfold. GABA is stored in catecholamine (CA)-containing dense core granules and is presumably released together with CA, ATP, and opioids in response to physiological stimuli, playing an autocrine-paracrine role on CCs. The reported paradoxical "dual action" of GABA A -R activation (enhancement of CA secretion and inhibition of synaptically evoked CA release) is only one aspect of GABA's multifaceted actions. In this review, we discuss recent physiological experiments on rat CCs in situ which suggest that GABA regulation of CC function may depend on the physiological context: During non-stressful conditions, GABA A -R activation by endogenous GABA tonically inhibits acetylcholine release from splanchnic nerve terminals and decreases spontaneous Ca 2+ fluctuations in CCs, preventing unwanted CA secretion. During intense stress, splanchnic nerve terminals release acetylcholine, which depolarizes CCs and allows the Ca 2+ influx that triggers the release of CA and GABA. With time, CA secretion declines, due to voltage-independent inhibition of Ca 2+ channels and desensitization of cholinergic nicotinic receptors. Nonetheless, acute activation of GABA A -R is depolarizing in about 50% of CCs, and thus GABA, acting as an autocrine/paracrine mediator, could help to maintain CA exocytosis under stress. GABA A -R activation is not excitatory in about half of CCs' population because it hyperpolarizes them or elicits no response. This percentage possibly varies, depending on functional demands, since GABA A -R-mediated actions are determined by the intracellular chloride concentration ([Cl - ] i ) and therefore on the activity of cation-chloride co transporters, which is functionally regulated. These findings underscore a potential importance of a novel and complex GABA-mediated regulation of CC function and of CA secretion.
Physiology and pathophysiology of ClC-K/barttin channels.
Fahlke, Christoph; Fischer, Martin
2010-01-01
ClC-K channels form a subgroup of anion channels within the ClC family of anion transport proteins. They are expressed predominantly in the kidney and in the inner ear, and are necessary for NaCl resorption in the loop of Henle and for K+ secretion by the stria vascularis. Subcellular distribution as well as the function of these channels are tightly regulated by an accessory subunit, barttin. Barttin improves the stability of ClC-K channel protein, stimulates the exit from the endoplasmic reticulum and insertion into the plasma membrane and changes its function by modifying voltage-dependent gating processes. The importance of ClC-K/barttin channels is highlighted by several genetic diseases. Dysfunctions of ClC-K channels result in Bartter syndrome, an inherited human condition characterized by impaired urinary concentration. Mutations in the gene encoding barttin, BSND, affect the urinary concentration as well as the sensory function of the inner ear. Surprisingly, there is one BSND mutation that causes deafness without affecting renal function, indicating that kidney function tolerates a reduction of anion channel activity that is not sufficient to support normal signal transduction in inner hair cells. This review summarizes recent work on molecular mechanisms, physiology, and pathophysiology of ClC-K/barttin channels.
ERIC Educational Resources Information Center
National Evaluation Systems, Inc., Amherst, MA.
This instructional modular unit wlth instructor's guide provides materials on important aspects of one of the major systems of the human body--the digestive system. Its purpose is to introduce the student to the structures and functions of the human digestive system--and the interrelationships of the two--and to familiarize the student with some…
Retinal Biochemistry, Physiology and Cell Biology.
Smith, Ricardo Luiz; Sivaprasad, Sobha; Chong, Victor
2016-01-01
The vitreous, the vasculature of the retina, macular pigments, phototransduction, retinal pigment epithelium, Bruch's membrane and the extracellular matrix, all play an important role in the normal function of the retina as well as in diseases. Understanding the pathophysiology allows us to target treatment. As ocular angiogenesis, immunity and inflammation are covered elsewhere, those subjects will not be discussed in this chapter. © 2016 S. Karger AG, Basel.
ERIC Educational Resources Information Center
Snow, Wanda M.; Cadonic, Chris; Cortes-Perez, Claudia; Chowdhury, Subir K. Roy; Djordjevic, Jelena; Thomson, Ella; Bernstein, Michael J.; Suh, Miyoung; Fernyhough, Paul; Albensi, Benedict C.
2018-01-01
The brain has a high demand for energy, of which creatine (Cr) is an important regulator. Studies document neurocognitive benefits of oral Cr in mammals, yet little is known regarding their physiological basis. This study investigated the effects of Cr supplementation (3%, w/w) on hippocampal function in male C57BL/6 mice, including spatial…
The use of alvimopan for postoperative ileus in small and large bowel resections.
Brady, Justin T; Dosokey, Eslam M G; Crawshaw, Benjamin P; Steele, Scott R; Delaney, Conor P
2015-01-01
Transient ileus is a normal physiologic process after surgery. When prolonged, it is an important contributor to postoperative complications, increased length of stay and increased healthcare costs. Efforts have been made to prevent and manage postoperative ileus; alvimopan is an oral, peripheral μ-opioid receptor antagonist, and the only currently US FDA-approved medication to accelerate the return of gastrointestinal function postoperatively.
Taxonomy and remote sensing of leaf mass per area (LMA) in humid tropical forests
Gregory P. Asner; Roberta E. Martin; Raul Tupayachi; Ruth Emerson; Paola Martinez; Felipe Sinca; George V.N. Powell; S. Joseph Wright; Ariel E. Lugo
2011-01-01
Leaf mass per area (LMA) is a trait of central importance to plant physiology and ecosystem function, but LMA patterns in the upper canopies of humid tropical forests have proved elusive due to tall species and high diversity. We collected top-of-canopy leaf samples from 2873 individuals in 57 sites spread across the Neotropics, Australasia, and Caribbean and Pacific...
The soil microbiome — from metagenomics to metaphenomics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jansson, Janet K.; Hofmockel, Kirsten S.
Soil microorganisms carry out important processes, including support of plant growth and cycling of carbon and other nutrients. However, the majority of soil microbes have not yet been isolated and their functions are largely unknown. Although metagenomic sequencing reveals microbial identities and functional gene information, it includes DNA from microbes with vastly varying physiological states. Therefore, metagenomics is only predictive of community functional potential. We posit that the next frontier lies in understanding the metaphenome, the product of the combined genetic potential of the microbiome and available resources. Here in this paper we describe examples of opportunities towards gaining understandingmore » of the soil metaphenome.« less
Exosomes released by keratinocytes modulate melanocyte pigmentation
Cicero, Alessandra Lo; Delevoye, Cédric; Gilles-Marsens, Floriane; Loew, Damarys; Dingli, Florent; Guéré, Christelle; André, Nathalie; Vié, Katell; van Niel, Guillaume; Raposo, Graça
2015-01-01
Cells secrete extracellular vesicles (EVs), exosomes and microvesicles, which transfer proteins, lipids and RNAs to regulate recipient cell functions. Skin pigmentation relies on a tight dialogue between keratinocytes and melanocytes in the epidermis. Here we report that exosomes secreted by keratinocytes enhance melanin synthesis by increasing both the expression and activity of melanosomal proteins. Furthermore, we show that the function of keratinocyte-derived exosomes is phototype-dependent and is modulated by ultraviolet B. In sum, this study uncovers an important physiological function for exosomes in human pigmentation and opens new avenues in our understanding of how pigmentation is regulated by intercellular communication in both healthy and diseased states. PMID:26103923
The soil microbiome — from metagenomics to metaphenomics
Jansson, Janet K.; Hofmockel, Kirsten S.
2018-02-15
Soil microorganisms carry out important processes, including support of plant growth and cycling of carbon and other nutrients. However, the majority of soil microbes have not yet been isolated and their functions are largely unknown. Although metagenomic sequencing reveals microbial identities and functional gene information, it includes DNA from microbes with vastly varying physiological states. Therefore, metagenomics is only predictive of community functional potential. We posit that the next frontier lies in understanding the metaphenome, the product of the combined genetic potential of the microbiome and available resources. Here in this paper we describe examples of opportunities towards gaining understandingmore » of the soil metaphenome.« less
RNA interference: learning gene knock-down from cell physiology
Mocellin, Simone; Provenzano, Maurizio
2004-01-01
Over the past decade RNA interference (RNAi) has emerged as a natural mechanism for silencing gene expression. This ancient cellular antiviral response can be exploited to allow specific inhibition of the function of any chosen target gene. RNAi is proving to be an invaluable research tool, allowing much more rapid characterization of the function of known genes. More importantly, RNAi technology considerably bolsters functional genomics to aid in the identification of novel genes involved in disease processes. This review briefly describes the molecular principles underlying the biology of RNAi phenomenon and discuss the main technical issues regarding optimization of RNAi experimental design. PMID:15555080
TAM Receptor Signaling in Immune Homeostasis
Rothlin, Carla V.; Carrera-Silva, Eugenio A.; Bosurgi, Lidia; Ghosh, Sourav
2015-01-01
The TAM receptor tyrosine kinases (RTKs)—TYRO3, AXL, and MERTK—together with their cognate agonists GAS6 and PROS1 play an essential role in the resolution of inflammation. Deficiencies in TAM signaling have been associated with chronic inflammatory and autoimmune diseases. Three processes regulated by TAM signaling may contribute, either independently or collectively, to immune homeostasis: the negative regulation of the innate immune response, the phagocytosis of apoptotic cells, and the restoration of vascular integrity. Recent studies have also revealed the function of TAMs in infectious diseases and cancer. Here, we review the important milestones in the discovery of these RTKs and their ligands and the studies that underscore the functional importance of this signaling pathway in physiological immune settings and disease. PMID:25594431
Teaching resources. Protein phosphatases.
Salton, Stephen R
2005-03-01
This Teaching Resource provides lecture notes and slides for a class covering the structure and function of protein phosphatases and is part of the course "Cell Signaling Systems: A Course for Graduate Students." The lecture begins with a discussion of the importance of phosphatases in physiology, recognized by the award of a Nobel Prize in 1992, and then proceeds to describe the two types of protein phosphatases: serine/threonine and tyrosine phosphatases. The information covered includes the structure, regulation, and substrate specificity of protein phosphatases, with an emphasis on their importance in disease and clinical settings.
Orphan Nuclear Receptors as Targets for Drug Development
Mukherjee, Subhajit
2012-01-01
Orphan nuclear receptors regulate diverse biological processes. These important molecules are ligand-activated transcription factors that act as natural sensors for a wide range of steroid hormones and xenobiotic ligands. Because of their importance in regulating various novel signaling pathways, recent research has focused on identifying xenobiotics targeting these receptors for the treatment of multiple human diseases. In this review, we will highlight these receptors in several physiologic and pathophysiologic actions and demonstrate how their functions can be exploited for the successful development of newer drugs. PMID:20372994
Condition-dependent chemosignals in reproductive behavior of lizards.
Martín, José; López, Pilar
2015-02-01
This article is part of a Special Issue "Chemosignals and Reproduction". Many lizards have diverse glands that produce chemosignals used in intraspecific communication and that can have reproductive consequences. For example, information in chemosignals of male lizards can be used in intrasexual competition to identify and assess the fighting potential or dominance status of rival males either indirectly through territorial scent-marks or during agonistic encounters. Moreover, females of several lizard species "prefer" to establish or spend more time on areas scent-marked by males with compounds signaling a better health or body condition or a higher genetic compatibility, which can have consequences for their mating success and inter-sexual selection processes. We review here recent studies that suggest that the information content of chemosignals of lizards may be reliable because several physiological and endocrine processes would regulate the proportions of chemical compounds available for gland secretions. Because chemosignals are produced by the organism or come from the diet, they should reflect physiological changes, such as different hormonal levels (e.g. testosterone or corticosterone) or different health states (e.g. parasitic infections, immune response), and reflect the quality of the diet of an individual. More importantly, some compounds that may function as chemosignals also have other important functions in the organism (e.g. as antioxidants or regulating the immune system), so there could be trade-offs between allocating these compounds to attending physiological needs or to produce costly sexual "chemical ornaments". All these factors may contribute to maintain chemosignals as condition-dependent sexual signals, which can inform conspecifics on the characteristics and state of the sender and allow making behavioral decisions with reproductive consequences. To understand the evolution of chemical secretions of lizards as sexual signals and their relevance in reproduction, future studies should examine what information the signals are carrying, the physiological processes that can maintain the reliability of the message and how diverse behavioral responses to chemosignals may influence reproductive success. Copyright © 2014 Elsevier Inc. All rights reserved.
Jeng, Yow-Jiun; Watson, Cheryl S.
2011-01-01
Background Estrogens are potent nongenomic phospho-activators of extracellular-signal–regulated kinases (ERKs). A major concern about the toxicity of xenoestrogens (XEs) is potential alteration of responses to physiologic estrogens when XEs are present simultaneously. Objectives We examined estrogen-induced ERK activation, comparing the abilities of structurally related XEs (alkylphenols and bisphenol A) to alter ERK responses induced by physiologic concentrations (1 nM) of estradiol (E2), estrone (E1), and estriol (E3). Methods We quantified hormone/mimetic-induced ERK phosphorylations in the GH3/B6/F10 rat pituitary cell line using a plate immunoassay, comparing effects with those on cell proliferation and by estrogen receptor subtype-selective ligands. Results Alone, these structurally related XEs activate ERKs in an oscillating temporal pattern similar (but not identical) to that with physiologic estrogens. The potency of all estrogens was similar (active between femtomolar and nanomolar concentrations). XEs potently disrupted physiologic estrogen signaling at low, environmentally relevant concentrations. Generally, XEs potentiated (at the lowest, subpicomolar concentrations) and attenuated (at the highest, picomolar to 100 nM concentrations) the actions of the physiologic estrogens. Some XEs showed pronounced nonmonotonic responses/inhibitions. The phosphorylated ERK and proliferative responses to receptor-selective ligands were only partially correlated. Conclusions XEs are both imperfect potent estrogens and endocrine disruptors; the more efficacious an XE, the more it disrupts actions of physiologic estrogens. This ability to disrupt physiologic estrogen signaling suggests that XEs may disturb normal functioning at life stages where actions of particular estrogens are important (e.g., development, reproductive cycling, pregnancy, menopause). PMID:20870566
Thomey, Michell L; Collins, Scott L; Friggens, Michael T; Brown, Renee F; Pockman, William T
2014-11-01
For the southwestern United States, climate models project an increase in extreme precipitation events and prolonged dry periods. While most studies emphasize plant functional type response to precipitation variability, it is also important to understand the physiological characteristics of dominant plant species that define plant community composition and, in part, regulate ecosystem response to climate change. We utilized rainout shelters to alter the magnitude and frequency of rainfall and measured the physiological response of the dominant C4 grasses, Bouteloua eriopoda and Bouteloua gracilis. We hypothesized that: (1) the more drought-adapted B. eriopoda would exhibit faster recovery and higher rates of leaf-level photosynthesis (A(net)) than B. gracilis, (2) A(net) would be greater under the higher average soil water content in plots receiving 30-mm rainfall events, (3) co-dominance of B. eriopoda and B. gracilis in the ecotone would lead to intra-specific differences from the performance of each species at the site where it was dominant. Throughout the study, soil moisture explained 40-70% of the variation in A(net). Consequently, differences in rainfall treatments were not evident from intra-specific physiological function without sufficient divergence in soil moisture. Under low frequency, larger rainfall events B. gracilis exhibited improved water status and longer periods of C gain than B. eriopoda. Results from this study indicate that less frequent and larger rainfall events could provide a competitive advantage to B. gracilis and influence species composition across this arid-semiarid grassland ecotone.
Physiological Effects of Nature Therapy: A Review of the Research in Japan.
Song, Chorong; Ikei, Harumi; Miyazaki, Yoshifumi
2016-08-03
Humans have evolved into what they are today after the passage of 6-7 million years. If we define the beginning of urbanization as the rise of the industrial revolution, less than 0.01% of our species' history has been spent in modern surroundings. Humans have spent over 99.99% of their time living in the natural environment. The gap between the natural setting, for which our physiological functions are adapted, and the highly urbanized and artificial setting that we inhabit is a contributing cause of the "stress state" in modern people. In recent years, scientific evidence supporting the physiological effects of relaxation caused by natural stimuli has accumulated. This review aimed to objectively demonstrate the physiological effects of nature therapy. We have reviewed research in Japan related to the following: (1) the physiological effects of nature therapy, including those of forests, urban green space, plants, and wooden material and (2) the analyses of individual differences that arise therein. The search was conducted in the PubMed database using various keywords. We applied our inclusion/exclusion criteria and reviewed 52 articles. Scientific data assessing physiological indicators, such as brain activity, autonomic nervous activity, endocrine activity, and immune activity, are accumulating from field and laboratory experiments. We believe that nature therapy will play an increasingly important role in preventive medicine in the future.
Browaldh, Nanna; Bautista, Tara G; Dutschmann, Mathias; Berkowitz, Robert G
2016-11-01
To review the scientific literature on the relationship between Kölliker-Fuse nucleus (KF) and cranial nerve function in animal models, with view to evaluating the potential role of KF maturation in explaining age-related normal physiologic parameters and developmental and acquired impairment of cranial nerve function in humans. Medical databases (Medline and PubMed). Studies investigating evidence of KF activity responsible for a specific cranial nerve function that were based on manipulation of KF activity or the use of neural markers were included. Twenty studies were identified that involved the trigeminal (6 studies), vagus (9), and hypoglossal nerves (5). These pertained specifically to a role of the KF in mediating the dive reflex, laryngeal adductor control, swallowing function and upper airway tone. The KF acts as a mediator of a number of important functions that relate primarily to laryngeal closure, upper airway tone and swallowing. These areas are characterized by a variety of disorders that may present to the otolaryngologist, and hence the importance of understanding the role played by the KF in maintaining normal function.
Pegos, Vanessa R.; Medrano, Francisco Javier; Balan, Andrea
2014-01-01
Xanthomonas axonopodis pv. citri (X. citri) is an important bacterium that causes citrus canker disease in plants in Brazil and around the world, leading to significant economic losses. Determination of the physiology and mechanisms of pathogenesis of this bacterium is an important step in the development of strategies for its containment. Phosphate is an essential ion in all microrganisms owing its importance during the synthesis of macromolecules and in gene and protein regulation. Interestingly, X. citri has been identified to present two periplasmic binding proteins that have not been further characterized: PstS, from an ATP-binding cassette for high-affinity uptake and transport of phosphate, and PhoX, which is encoded by an operon that also contains a putative porin for the transport of phosphate. Here, the expression, purification and crystallization of the phosphate-binding protein PhoX and X-ray data collection at 3.0 Å resolution are described. Biochemical, biophysical and structural data for this protein will be helpful in the elucidation of its function in phosphate uptake and the physiology of the bacterium. PMID:25484207
McGrattan, Katlyn Elizabeth; McGhee, Heather; DeToma, Allan; Hill, Elizabeth G.; Zyblewski, Sinai C.; Lefton-Greif, Maureen; Halstead, Lucinda; Bradley, Scott M.; Martin-Harris, Bonnie
2017-01-01
Background Deficits in swallowing physiology are a leading morbidity for infants with functional single ventricles and systemic outflow tract obstruction following stage 1 palliation. Despite the high prevalence of this condition, the underlying deficits that cause this post-operative impairment remain poorly understood. Objective Identify the physiologic correlates of dysphagia in infants with functional single ventricles and systemic outflow tract obstruction following stage 1 palliative surgery. Methods Postoperative fiberoptic laryngoscopies and videofluoroscopic swallow studies (VFSS) were conducted sequentially on infants with functional single ventricles following stage 1 palliative surgery. Infants were dichotomized as having normal or impaired laryngeal function based on laryngoscopy findings. VFSS were evaluated frame-by-frame using a scale that quantifies performance within 11 components of swallowing physiology. Physiologic attributes within each component were categorized as high functioning or low functioning based on their ability to support milk ingestion without bolus airway entry. Results Thirty-six infants (25 male) were included in the investigation. Twenty-four underwent the Norwood procedure and twelve underwent the Hybrid procedure. Low function physiologic patterns were observed within multiple swallowing components during the ingestion of thin barium as characterized by ≥ 4 sucks per swallow (36%), initiation of pharyngeal swallow below the level of the valleculae (83%), and incomplete late laryngeal vestibular closure (56%) at the height of the swallow. Swallowing deficits contributed to aspiration in 50% of infants. Although nectar thick liquids reduced the rate of aspiration (p=0.006), aspiration rates remained high (27%). No differences in rates of penetration or aspiration were observed between infants with normal and impaired laryngeal function. Conclusions Deficits in swallowing physiology contribute to penetration and aspiration following stage 1 palliation among infants with normal and impaired laryngeal function. Although thickened liquids may improve airway protection for select infants, they may inhibit their ability to extract the bolus and meet nutritional needs. PMID:28244680
McGrattan, Katlyn Elizabeth; McGhee, Heather; DeToma, Allan; Hill, Elizabeth G; Zyblewski, Sinai C; Lefton-Greif, Maureen; Halstead, Lucinda; Bradley, Scott M; Martin-Harris, Bonnie
2017-05-01
Deficits in swallowing physiology are a leading morbidity for infants with functional single ventricles and systemic outflow tract obstruction following stage 1 palliation. Despite the high prevalence of this condition, the underlying deficits that cause this post-operative impairment remain poorly understood. Identify the physiologic correlates of dysphagia in infants with functional single ventricles and systemic outflow tract obstruction following stage 1 palliative surgery. Postoperative fiberoptic laryngoscopies and videofluoroscopic swallow studies (VFSS) were conducted sequentially on infants with functional single ventricles following stage 1 palliative surgery. Infants were dichotomized as having normal or impaired laryngeal function based on laryngoscopy findings. VFSS were evaluated frame-by-frame using a scale that quantifies performance within 11 components of swallowing physiology. Physiologic attributes within each component were categorized as high functioning or low functioning based on their ability to support milk ingestion without bolus airway entry. Thirty-six infants (25 male) were included in the investigation. Twenty-four underwent the Norwood procedure and twelve underwent the Hybrid procedure. Low function physiologic patterns were observed within multiple swallowing components during the ingestion of thin barium as characterized by ≥4 sucks per swallow (36%), initiation of pharyngeal swallow below the level of the valleculae (83%), and incomplete late laryngeal vestibular closure (56%) at the height of the swallow. Swallowing deficits contributed to aspiration in 50% of infants. Although nectar thick liquids reduced the rate of aspiration (P = .006), aspiration rates remained high (27%). No differences in rates of penetration or aspiration were observed between infants with normal and impaired laryngeal function. Deficits in swallowing physiology contribute to penetration and aspiration following stage 1 palliation among infants with normal and impaired laryngeal function. Although thickened liquids may improve airway protection for select infants, they may inhibit their ability to extract the bolus and meet nutritional needs. © 2017 Wiley Periodicals, Inc.
Secca, T; Sciaccaluga, M; Marra, A; Barberini, L; Bicchierai, M C
2011-04-01
In insect renal physiology, cGMP and cAMP have important regulatory roles. In Drosophila melanogaster, considered a good model for molecular physiology studies, and in other insects, cGMP and cAMP act as signalling molecules in the Malpighian tubules (MTs). However, many questions related to cyclic nucleotide functions are unsolved in principal cells (PC) and stellate cells (SC), the two cell types that compose the MT. In PC, despite the large body of information available on soluble guanylate cyclase (sGC) in the cGMP pathway, the functional circuit of particulate guanylate cyclase (pGC) remains obscure. In SC, on the other side, the synthesis and physiological role of the cGMP are still unknown. Our biochemical data regarding the presence of cyclic nucleotides in the MTs of Rhyacophila dorsalis acutidens revealed a cGMP level above the 50%, in comparison with the cAMP. The specific activity values for the membrane-bound guanylate cyclase were also recorded, implying that, besides the sGC, pGC is a physiologically relevant source of cGMP in MTs. Cytochemical studies showed ultrastructurally that there was a great deal of pGC on the basolateral membranes of both the principal and stellate cells. In addition, pGC was also detected in the contact zone between the two cell types and in the apical microvillar region of the stellate cells bordering the tubule lumen. The pGC signal is so well represented in PC and, unexpectedly in SC of MTs, that it is possible to hypothesize the existence of still uncharacterized physiological processes regulated by the pGC-cGMP system. Copyright © 2011 Elsevier Ltd. All rights reserved.
Neuroticism and stress: the role of displacement behavior.
Mohiyeddini, Changiz; Bauer, Stephanie; Semple, Stuart
2015-01-01
Neuroticism is linked with an impaired ability to cope with stress and is an important risk factor for stress-related disorders. Hence, there is interest in exploring the behavioral correlates of neuroticism and how such behaviors may moderate the link between neuroticism and the response to stress. Displacement behavior - activity such as face touching and scratching - is important to investigate in this respect, as recent studies indicate that such behavior is linked to negative emotional states and has an important stress coping function. Here, we explored the relationship between neuroticism, displacement behavior, and stress in a healthy population of men. This was a cross-sectional, quasiexperimentally controlled study. We assessed participants' levels of neuroticism, and then during a Trier Social Stress Test quantified displacement behavior, physiological, and cognitive indices of the stress response; after the test we measured the self-reported experience of stress. Displacement behavior was negatively correlated with self-reported experience, physiological, and cognitive measures of stress and moderated the relationships between neuroticism, self-reported experience, and cognitive index of stress. Our results suggest displacement behavior plays an important role in shaping the link between neuroticism and the response to stress.
Renal Transport of Uric Acid: Evolving Concepts and Uncertainties
Bobulescu, Ion Alexandru; Moe, Orson W.
2013-01-01
In addition to its role as a metabolic waste product, uric acid has been proposed to be an important molecule with multiple functions in human physiology and pathophysiology and may be linked to human diseases beyond nephrolithiasis and gout. Uric acid homeostasis is determined by the balance between production, intestinal secretion, and renal excretion. The kidney is an important regulator of circulating uric acid levels, by reabsorbing around 90% of filtered urate, while being responsible for 60–70% of total body uric acid excretion. Defective renal handling of urate is a frequent pathophysiologic factor underpinning hyperuricemia and gout. In spite of tremendous advances over the past decade, the molecular mechanisms of renal urate transport are still incompletely understood. Many transport proteins are candidate participants in urate handling, with URAT1 and GLUT9 being the best characterized to date. Understanding these transporters is increasingly important for the practicing clinician as new research unveils their physiology, importance in drug action, and genetic association with uric acid levels in human populations. The future may see the introduction of new drugs that specifically act on individual renal urate transporters for the treatment of hyperuricemia and gout. PMID:23089270
Chen, Chih-Chen
2016-01-01
[Purpose] The increase in the Taiwanese older population is associated with age-related inconveniences. Finding adequate and simple physical activities to help the older people maintaining their physiological function and preventing them from falls has become an urgent social issue. [Subjects and Methods] This study aimed to design a virtual exercise training game suitable for Taiwanese older people. This system will allow for the maintenance of the physiological function and standing stability through physical exercise, while using a virtual reality game. The participants can easily exercise in a carefree, interactive environment. This study will use Kinect for Windows for physical movement detection and Unity software for virtual world development. [Results] Group A and B subjects were involved in the exercise training method of Kinect interactive multimedia for 12 weeks. The results showed that the functional reach test and the unipedal stance test improved significantly. [Conclusion] The physiological function and standing stability of the group A subjects were examined at six weeks post training. The results showed that these parameters remained constant. This proved that the proposed system provide substantial support toward the preservation of the Taiwanese older people’ physiological function and standing stability. PMID:27190480
Chen, Chih-Chen
2016-04-01
[Purpose] The increase in the Taiwanese older population is associated with age-related inconveniences. Finding adequate and simple physical activities to help the older people maintaining their physiological function and preventing them from falls has become an urgent social issue. [Subjects and Methods] This study aimed to design a virtual exercise training game suitable for Taiwanese older people. This system will allow for the maintenance of the physiological function and standing stability through physical exercise, while using a virtual reality game. The participants can easily exercise in a carefree, interactive environment. This study will use Kinect for Windows for physical movement detection and Unity software for virtual world development. [Results] Group A and B subjects were involved in the exercise training method of Kinect interactive multimedia for 12 weeks. The results showed that the functional reach test and the unipedal stance test improved significantly. [Conclusion] The physiological function and standing stability of the group A subjects were examined at six weeks post training. The results showed that these parameters remained constant. This proved that the proposed system provide substantial support toward the preservation of the Taiwanese older people' physiological function and standing stability.
Preservation of cardiac function by prolonged action potentials in mice deficient of KChIP2.
Grubb, Søren; Aistrup, Gary L; Koivumäki, Jussi T; Speerschneider, Tobias; Gottlieb, Lisa A; Mutsaers, Nancy A M; Olesen, Søren-Peter; Calloe, Kirstine; Thomsen, Morten B
2015-08-01
Inherited ion channelopathies and electrical remodeling in heart disease alter the cardiac action potential with important consequences for excitation-contraction coupling. Potassium channel-interacting protein 2 (KChIP2) is reduced in heart failure and interacts under physiological conditions with both Kv4 to conduct the fast-recovering transient outward K(+) current (Ito,f) and with CaV1.2 to mediate the inward L-type Ca(2+) current (ICa,L). Anesthetized KChIP2(-/-) mice have normal cardiac contraction despite the lower ICa,L, and we hypothesized that the delayed repolarization could contribute to the preservation of contractile function. Detailed analysis of current kinetics shows that only ICa,L density is reduced, and immunoblots demonstrate unaltered CaV1.2 and CaVβ₂ protein levels. Computer modeling suggests that delayed repolarization would prolong the period of Ca(2+) entry into the cell, thereby augmenting Ca(2+)-induced Ca(2+) release. Ca(2+) transients in disaggregated KChIP2(-/-) cardiomyocytes are indeed comparable to wild-type transients, corroborating the preserved contractile function and suggesting that the compensatory mechanism lies in the Ca(2+)-induced Ca(2+) release event. We next functionally probed dyad structure, ryanodine receptor Ca(2+) sensitivity, and sarcoplasmic reticulum Ca(2+) load and found that increased temporal synchronicity of the Ca(2+) release in KChIP2(-/-) cardiomyocytes may reflect improved dyad structure aiding the compensatory mechanisms in preserving cardiac contractile force. Thus the bimodal effect of KChIP2 on Ito,f and ICa,L constitutes an important regulatory effect of KChIP2 on cardiac contractility, and we conclude that delayed repolarization and improved dyad structure function together to preserve cardiac contraction in KChIP2(-/-) mice. Copyright © 2015 the American Physiological Society.
Soil microbial community structure and function responses to successive planting of Eucalyptus.
Chen, Falin; Zheng, Hua; Zhang, Kai; Ouyang, Zhiyun; Li, Huailin; Wu, Bing; Shi, Qian
2013-10-01
Many studies have shown soil degradation after the conversion of native forests to exotic Eucalyptus plantations. However, few studies have investigated the long-term impacts of short-rotation forestry practices on soil microorganisms. The impacts of Eucalyptus successive rotations on soil microbial communities were evaluated by comparing phospholipid fatty acid (PLFA) abundances, compositions, and enzyme activities of native Pinus massoniana plantations and adjacent 1st, 2nd, 3rd, 4th generation Eucalyptus plantations. The conversion from P. massoniana to Eucalyptus plantations significantly decreased soil microbial community size and enzyme activities, and increased microbial physiological stress. However, the PLFA abundances formed "u" shaped quadratic functions with Eucalyptus plantation age. Alternatively, physiological stress biomarkers, the ratios of monounsaturated to saturated fatty acid and Gram+ to Gram- bacteria, formed "n"' shaped quadratic functions, and the ratio of cy17:0 to 16:1omega7c decreased with plantation age. The activities of phenol oxidase, peroxidase, and acid phosphatase increased with Eucalyptus plantation age, while the cellobiohydrolase activity formed "u" shaped quadratic functions. Soil N:P, alkaline hydrolytic nitrogen, soil organic carbon, and understory cover largely explained the variation in PLFA profiles while soil N:P, alkaline hydrolytic nitrogen, and understory cover explained most of the variability in enzyme activity. In conclusion, soil microbial structure and function under Eucalyptus plantations were strongly impacted by plantation age. Most of the changes could be explained by altered soil resource availability and understory cover associated with successive planting of Eucalyptus. Our results highlight the importance of plantation age for assessing the impacts of plantation conversion as well as the importance of reducing disturbance for plantation management.
Evolution and physiology of neural oxygen sensing
Costa, Kauê M.; Accorsi-Mendonça, Daniela; Moraes, Davi J. A.; Machado, Benedito H.
2014-01-01
Major evolutionary trends in animal physiology have been heavily influenced by atmospheric O2 levels. Amongst other important factors, the increase in atmospheric O2 which occurred in the Pre-Cambrian and the development of aerobic respiration beckoned the evolution of animal organ systems that were dedicated to the absorption and transportation of O2, e.g., the respiratory and cardiovascular systems of vertebrates. Global variations of O2 levels in post-Cambrian periods have also been correlated with evolutionary changes in animal physiology, especially cardiorespiratory function. Oxygen transportation systems are, in our view, ultimately controlled by the brain related mechanisms, which senses changes in O2 availability and regulates autonomic and respiratory responses that ensure the survival of the organism in the face of hypoxic challenges. In vertebrates, the major sensorial system for oxygen sensing and responding to hypoxia is the peripheral chemoreflex neuronal pathways, which includes the oxygen chemosensitive glomus cells and several brainstem regions involved in the autonomic regulation of the cardiovascular system and respiratory control. In this review we discuss the concept that regulating O2 homeostasis was one of the primordial roles of the nervous system. We also review the physiology of the peripheral chemoreflex, focusing on the integrative repercussions of chemoreflex activation and the evolutionary importance of this system, which is essential for the survival of complex organisms such as vertebrates. The contribution of hypoxia and peripheral chemoreflex for the development of diseases associated to the cardiovascular and respiratory systems is also discussed in an evolutionary context. PMID:25161625
Role of Ergothioneine in Microbial Physiology and Pathogenesis.
Cumming, Bridgette M; Chinta, Krishna C; Reddy, Vineel P; Steyn, Adrie J C
2018-02-20
L-ergothioneine is synthesized in actinomycetes, cyanobacteria, methylobacteria, and some fungi. In contrast to other low-molecular-weight redox buffers, glutathione and mycothiol, ergothioneine is primarily present as a thione rather than a thiol at physiological pH, which makes it resistant to autoxidation. Ergothioneine regulates microbial physiology and enables the survival of microbes under stressful conditions encountered in their natural environments. In particular, ergothioneine enables pathogenic microbes, such as Mycobacterium tuberculosis (Mtb), to withstand hostile environments within the host to establish infection. Recent Advances: Ergothioneine has been reported to maintain bioenergetic homeostasis in Mtb and protect Mtb against oxidative stresses, thereby enhancing the virulence of Mtb in a mouse model. Furthermore, ergothioneine augments the resistance of Mtb to current frontline anti-TB drugs. Recently, an opportunistic fungus, Aspergillus fumigatus, which infects immunocompromised individuals, has been found to produce ergothioneine, which is important in conidial health and germination, and contributes to the fungal resistance against redox stresses. The molecular mechanisms of the functions of ergothioneine in microbial physiology and pathogenesis are poorly understood. It is currently not known if ergothioneine is used in detoxification or antioxidant enzymatic pathways. As ergothioneine is involved in bioenergetic and redox homeostasis and antibiotic susceptibility of Mtb, it is of utmost importance to advance our understanding of these mechanisms. A clear understanding of the role of ergothioneine in microbes will advance our knowledge of how this thione enhances microbial virulence and resistance to the host's defense mechanisms to avoid complete eradication. Antioxid. Redox Signal. 28, 431-444.
Skin blotting: a noninvasive technique for evaluating physiological skin status.
Minematsu, Takeo; Horii, Motoko; Oe, Makoto; Sugama, Junko; Mugita, Yuko; Huang, Lijuan; Nakagami, Gojiro; Sanada, Hiromi
2014-06-01
The skin performs important structural and physiological functions, and skin assessment represents an important step in identifying skin problems. Although noninvasive techniques for assessing skin status exist, no such techniques for monitoring its physiological status are available. This study aimed to develop a novel skin-assessment technique known as skin blotting, based on the leakage of secreted proteins from inside the skin following overhydration in mice. The applicability of this technique was further investigated in a clinical setting. Skin blotting involves 2 steps: collecting proteins by attaching a damp nitrocellulose membrane to the surface of the skin, and immunostaining the collected proteins. The authors implanted fluorescein-conjugated dextran (F-DEX)-containing agarose gels into mice and detected the tissue distribution of F-DEX under different blotting conditions. They also analyzed the correlations between inflammatory cytokine secretion and leakage following ultraviolet irradiation in mice and in relation to body mass index in humans. The F-DEX in mice was distributed in the deeper and shallower layers of skin and leaked through the transfollicular and transepidermal routes, respectively. Ultraviolet irradiation induced tumor necrosis factor secretion in the epidermis in mice, which was detected by skin blotting, whereas follicular tumor necrosis factor was associated with body mass index in obese human subjects. These results support the applicability of skin blotting for skin assessment. Skin blotting represents a noninvasive technique for assessing skin physiology and has potential as a predictive and diagnostic tool for skin disorders.
NASA Technical Reports Server (NTRS)
Bloomberg, J. J.; Lawrence, E. L.; Arzeno, N. M.; Buxton, R. E.; Feiveson, A. H.; Kofman, I. S.; Lee, S. M. C.; Mulavara, A. P.; Peters, B. T.; Platts. S. H.;
2011-01-01
Exposure to space flight causes adaptations in multiple physiological systems including changes in sensorimotor, cardiovascular, and neuromuscular systems. These changes may affect a crewmember s ability to perform critical mission tasks immediately after landing on a planetary surface. The overall goal of this project is to determine the effects of space flight on functional tests that are representative of high priority exploration mission tasks and to identify the key underlying physiological factors that contribute to decrements in performance. To achieve this goal we developed an interdisciplinary testing protocol (Functional Task Test, FTT) that evaluates both astronaut functional performance and related physiological changes. Functional tests include ladder climbing, hatch opening, jump down, manual manipulation of objects and tool use, seat egress and obstacle avoidance, recovery from a fall and object translation tasks. Physiological measures include assessments of postural and gait control, dynamic visual acuity, fine motor control, plasma volume, orthostatic intolerance, upper- and lower-body muscle strength, power, endurance, control, and neuromuscular drive. Crewmembers perform this integrated test protocol before and after short (Shuttle) and long-duration (ISS) space flight. Data are collected on two sessions before flight, on landing day (Shuttle only) and 1, 6 and 30 days after landing. Preliminary results from both Shuttle and ISS crewmembers indicate decrement in performance of the functional tasks after both short and long-duration space flight. On-going data collection continues to improve the statistical power required to map changes in functional task performance to alterations in physiological systems. The information obtained from this study will be used to design and implement countermeasures that specifically target the physiological systems most responsible for the altered functional performance associated with space flight.
What are the origins and relevance of spontaneous bladder contractions? ICI-RS 2017.
Drake, Marcus J; Fry, Christopher H; Hashitani, Hikaru; Kirschner-Hermanns, Ruth; Rahnama'i, Mohammad S; Speich, John E; Tomoe, Hikaru; Kanai, Anthony J; McCloskey, Karen D
2018-01-23
Storage phase bladder activity is a counter-intuitive observation of spontaneous contractions. They are potentially an intrinsic feature of the smooth muscle, but interstitial cells in the mucosa and the detrusor itself, as well as other muscular elements in the mucosa may substantially influence them. They are identified in several models explaining lower urinary tract dysfunction. A consensus meeting at the International Consultation on Incontinence Research Society (ICI-RS) 2017 congress considered the origins and relevance of spontaneous bladder contractions by debating which cell type(s) modulate bladder spontaneous activity, whether the methodologies are sufficiently robust, and implications for healthy and abnormal lower urinary tract function. The identified research priorities reflect a wide range of unknown aspects. Cellular contributions to spontaneous contractions in detrusor smooth muscle are still uncertain. Accordingly, insight into the cellular physiology of the bladder wall, particularly smooth muscle cells, interstitial cells, and urothelium, remains important. Upstream influences, such as innervation, endocrine, and paracrine factors, are particularly important. The cellular interactions represent the key understanding to derive the integrative physiology of organ function, notably the nature of signalling between mucosa and detrusor layers. Indeed, it is still not clear to what extent spontaneous contractions generated in isolated preparations mirror their normal and pathological counterparts in the intact bladder. Improved models of how spontaneous contractions influence pressure generation and sensory nerve function are also needed. Deriving approaches to robust evaluation of spontaneous contractions and their influences for experimental and clinical use could yield considerable progress in functional urology. © 2018 Wiley Periodicals, Inc.
Overview of the Anatomy, Physiology, and Pharmacology of the Autonomic Nervous System.
Wehrwein, Erica A; Orer, Hakan S; Barman, Susan M
2016-06-13
Comprised of the sympathetic nervous system, parasympathetic nervous system, and enteric nervous system, the autonomic nervous system (ANS) provides the neural control of all parts of the body except for skeletal muscles. The ANS has the major responsibility to ensure that the physiological integrity of cells, tissues, and organs throughout the entire body is maintained (homeostasis) in the face of perturbations exerted by both the external and internal environments. Many commonly prescribed drugs, over-the-counter drugs, toxins, and toxicants function by altering transmission within the ANS. Autonomic dysfunction is a signature of many neurological diseases or disorders. Despite the physiological relevance of the ANS, most neuroscience textbooks offer very limited coverage of this portion of the nervous system. This review article provides both historical and current information about the anatomy, physiology, and pharmacology of the sympathetic and parasympathetic divisions of the ANS. The ultimate aim is for this article to be a valuable resource for those interested in learning the basics of these two components of the ANS and to appreciate its importance in both health and disease. Other resources should be consulted for a thorough understanding of the third division of the ANS, the enteric nervous system. © 2016 American Physiological Society. Compr Physiol 6:1239-1278, 2016. Copyright © 2016 John Wiley & Sons, Inc.
Armbruster, Diana; Kirschbaum, Clemens; Strobel, Alexander
2017-08-01
Combined oral contraceptives (COC) are used by millions of women worldwide. Although findings are not entirely consistent, COC have been found to impact on brain function and, thus, to modulate affective processes. Here, we investigated electro-physiological responses to emotional stimuli in free cycling women in both the early follicular and late luteal phase as well as in COC users. Skin conductance response (SCR), startle reflex, corrugator and zygomaticus activity were assessed. COC users showed reduced overall startle magnitude and SCR amplitude, but heightened overall zygomaticus activity, although effect sizes were small. Thus, COC users displayed reduced physiological reactions indicating negative affect and enhanced physiological responses signifying positive affect. In free cycling women, endogenous 17β-estradiol levels were associated with fear potentiated startle in both cycle phases as well as with SCR and zygomaticus activity during the follicular phase. Testosterone was associated with corrugator and zygomaticus activity during the luteal phase, while progesterone levels correlated with corrugator activity in the follicular phase. To the contrary, in COC users, endogenous hormones were not associated with electro-physiological measures. The results further underscore the importance of considering COC use in psychophysiological studies on emotional processing. Copyright © 2017 Elsevier Inc. All rights reserved.
Optoacoustic Monitoring of Physiologic Variables
Esenaliev, Rinat O.
2017-01-01
Optoacoustic (photoacoustic) technique is a novel diagnostic platform that can be used for noninvasive measurements of physiologic variables, functional imaging, and hemodynamic monitoring. This technique is based on generation and time-resolved detection of optoacoustic (thermoelastic) waves generated in tissue by short optical pulses. This provides probing of tissues and individual blood vessels with high optical contrast and ultrasound spatial resolution. Because the optoacoustic waves carry information on tissue optical and thermophysical properties, detection, and analysis of the optoacoustic waves allow for measurements of physiologic variables with high accuracy and specificity. We proposed to use the optoacoustic technique for monitoring of a number of important physiologic variables including temperature, thermal coagulation, freezing, concentration of molecular dyes, nanoparticles, oxygenation, and hemoglobin concentration. In this review we present origin of contrast and high spatial resolution in these measurements performed with optoacoustic systems developed and built by our group. We summarize data obtained in vitro, in experimental animals, and in humans on monitoring of these physiologic variables. Our data indicate that the optoacoustic technology may be used for monitoring of cerebral blood oxygenation in patients with traumatic brain injury and in neonatal patients, central venous oxygenation monitoring, total hemoglobin concentration monitoring, hematoma detection and characterization, monitoring of temperature, and coagulation and freezing boundaries during thermotherapy. PMID:29311964
Optoacoustic Monitoring of Physiologic Variables.
Esenaliev, Rinat O
2017-01-01
Optoacoustic (photoacoustic) technique is a novel diagnostic platform that can be used for noninvasive measurements of physiologic variables, functional imaging, and hemodynamic monitoring. This technique is based on generation and time-resolved detection of optoacoustic (thermoelastic) waves generated in tissue by short optical pulses. This provides probing of tissues and individual blood vessels with high optical contrast and ultrasound spatial resolution. Because the optoacoustic waves carry information on tissue optical and thermophysical properties, detection, and analysis of the optoacoustic waves allow for measurements of physiologic variables with high accuracy and specificity. We proposed to use the optoacoustic technique for monitoring of a number of important physiologic variables including temperature, thermal coagulation, freezing, concentration of molecular dyes, nanoparticles, oxygenation, and hemoglobin concentration. In this review we present origin of contrast and high spatial resolution in these measurements performed with optoacoustic systems developed and built by our group. We summarize data obtained in vitro , in experimental animals, and in humans on monitoring of these physiologic variables. Our data indicate that the optoacoustic technology may be used for monitoring of cerebral blood oxygenation in patients with traumatic brain injury and in neonatal patients, central venous oxygenation monitoring, total hemoglobin concentration monitoring, hematoma detection and characterization, monitoring of temperature, and coagulation and freezing boundaries during thermotherapy.
Vital signs in older patients: age-related changes.
Chester, Jennifer Gonik; Rudolph, James L
2011-06-01
Vital signs are objective measures of physiological function that are used to monitor acute and chronic disease and thus serve as a basic communication tool about patient status. The purpose of this analysis was to review age-related changes of traditional vital signs (blood pressure, pulse, respiratory rate, and temperature) with a focus on age-related molecular changes, organ system changes, systemic changes, and altered compensation to stressors. The review found that numerous physiological and pathological changes may occur with age and alter vital signs. These changes tend to reduce the ability of organ systems to adapt to physiological stressors, particularly in frail older patients. Because of the diversity of age-related physiological changes and comorbidities in an individual, single-point measurements of vital signs have less sensitivity in detecting disease processes. However, serial vital sign assessments may have increased sensitivity, especially when viewed in the context of individualized reference ranges. Vital sign change with age may be subtle because of reduced physiological ranges. However, change from an individual reference range may indicate important warning signs and thus may require additional evaluation to understand potential underlying pathological processes. As a result, individualized reference ranges may provide improved sensitivity in frail, older patients. Copyright © 2011 American Medical Directors Association. Published by Elsevier Inc. All rights reserved.
Grubbs, Kirk J; Bleich, Rachel M; Santa Maria, Kevin C; Allen, Scott E; Farag, Sherif; Shank, Elizabeth A; Bowers, Albert A
2017-01-01
Bacteria possess an amazing capacity to synthesize a diverse range of structurally complex, bioactive natural products known as specialized (or secondary) metabolites. Many of these specialized metabolites are used as clinical therapeutics, while others have important ecological roles in microbial communities. The biosynthetic gene clusters (BGCs) that generate these metabolites can be identified in bacterial genome sequences using their highly conserved genetic features. We analyzed an unprecedented 1,566 bacterial genomes from Bacillus species and identified nearly 20,000 BGCs. By comparing these BGCs to one another as well as a curated set of known specialized metabolite BGCs, we discovered that the majority of Bacillus natural products are comprised of a small set of highly conserved, well-distributed, known natural product compounds. Most of these metabolites have important roles influencing the physiology and development of Bacillus species. We identified, in addition to these characterized compounds, many unique, weakly conserved BGCs scattered across the genus that are predicted to encode unknown natural products. Many of these "singleton" BGCs appear to have been acquired via horizontal gene transfer. Based on this large-scale characterization of metabolite production in the Bacilli , we go on to connect the alkylpyrones, natural products that are highly conserved but previously biologically uncharacterized, to a role in Bacillus physiology: inhibiting spore development. IMPORTANCE Bacilli are capable of producing a diverse array of specialized metabolites, many of which have gained attention for their roles as signals that affect bacterial physiology and development. Up to this point, however, the Bacillus genus's metabolic capacity has been underexplored. We undertook a deep genomic analysis of 1,566 Bacillus genomes to understand the full spectrum of metabolites that this bacterial group can make. We discovered that the majority of the specialized metabolites produced by Bacillus species are highly conserved, known compounds with important signaling roles in the physiology and development of this bacterium. Additionally, there is significant unique biosynthetic machinery distributed across the genus that might lead to new, unknown metabolites with diverse biological functions. Inspired by the findings of our genomic analysis, we speculate that the highly conserved alkylpyrones might have an important biological activity within this genus. We go on to validate this prediction by demonstrating that these natural products are developmental signals in Bacillus and act by inhibiting sporulation.
Zhang, Rui Xue; Li, Jason; Zhang, Tian; Amini, Mohammad A; He, Chunsheng; Lu, Brian; Ahmed, Taksim; Lip, HoYin; Rauth, Andrew M; Wu, Xiao Yu
2018-05-01
Nanotechnology has been applied extensively in drug delivery to improve the therapeutic outcomes of various diseases. Tremendous efforts have been focused on the development of novel nanoparticles and delineation of the physicochemical properties of nanoparticles in relation to their biological fate and functions. However, in the design and evaluation of these nanotechnology-based drug delivery systems, the pharmacology of delivered drugs and the (patho-)physiology of the host have received less attention. In this review, we discuss important pharmacological mechanisms, physiological characteristics, and pathological factors that have been integrated into the design of nanotechnology-enabled drug delivery systems and therapies. Firsthand examples are presented to illustrate the principles and advantages of such integrative design strategies for cancer treatment by exploiting 1) intracellular synergistic interactions of drug-drug and drug-nanomaterial combinations to overcome multidrug-resistant cancer, 2) the blood flow direction of the circulatory system to maximize drug delivery to the tumor neovasculature and cells overexpressing integrin receptors for lung metastases, 3) endogenous lipoproteins to decorate nanocarriers and transport them across the blood-brain barrier for brain metastases, and 4) distinct pathological factors in the tumor microenvironment to develop pH- and oxidative stress-responsive hybrid manganese dioxide nanoparticles for enhanced radiotherapy. Regarding the application in diabetes management, a nanotechnology-enabled closed-loop insulin delivery system was devised to provide dynamic insulin release at a physiologically relevant time scale and glucose levels. These examples, together with other research results, suggest that utilization of the interplay of pharmacology, (patho-)physiology and nanotechnology is a facile approach to develop innovative drug delivery systems and therapies with high efficiency and translational potential.