Observers' cognitive states modulate how visual inputs relate to gaze control.
Kardan, Omid; Henderson, John M; Yourganov, Grigori; Berman, Marc G
2016-09-01
Previous research has shown that eye-movements change depending on both the visual features of our environment, and the viewer's top-down knowledge. One important question that is unclear is the degree to which the visual goals of the viewer modulate how visual features of scenes guide eye-movements. Here, we propose a systematic framework to investigate this question. In our study, participants performed 3 different visual tasks on 135 scenes: search, memorization, and aesthetic judgment, while their eye-movements were tracked. Canonical correlation analyses showed that eye-movements were reliably more related to low-level visual features at fixations during the visual search task compared to the aesthetic judgment and scene memorization tasks. Different visual features also had different relevance to eye-movements between tasks. This modulation of the relationship between visual features and eye-movements by task was also demonstrated with classification analyses, where classifiers were trained to predict the viewing task based on eye movements and visual features at fixations. Feature loadings showed that the visual features at fixations could signal task differences independent of temporal and spatial properties of eye-movements. When classifying across participants, edge density and saliency at fixations were as important as eye-movements in the successful prediction of task, with entropy and hue also being significant, but with smaller effect sizes. When classifying within participants, brightness and saturation were also significant contributors. Canonical correlation and classification results, together with a test of moderation versus mediation, suggest that the cognitive state of the observer moderates the relationship between stimulus-driven visual features and eye-movements. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
The development of organized visual search
Woods, Adam J.; Goksun, Tilbe; Chatterjee, Anjan; Zelonis, Sarah; Mehta, Anika; Smith, Sabrina E.
2013-01-01
Visual search plays an important role in guiding behavior. Children have more difficulty performing conjunction search tasks than adults. The present research evaluates whether developmental differences in children's ability to organize serial visual search (i.e., search organization skills) contribute to performance limitations in a typical conjunction search task. We evaluated 134 children between the ages of 2 and 17 on separate tasks measuring search for targets defined by a conjunction of features or by distinct features. Our results demonstrated that children organize their visual search better as they get older. As children's skills at organizing visual search improve they become more accurate at locating targets with conjunction of features amongst distractors, but not for targets with distinct features. Developmental limitations in children's abilities to organize their visual search of the environment are an important component of poor conjunction search in young children. In addition, our findings provide preliminary evidence that, like other visuospatial tasks, exposure to reading may influence children's spatial orientation to the visual environment when performing a visual search. PMID:23584560
News video story segmentation method using fusion of audio-visual features
NASA Astrophysics Data System (ADS)
Wen, Jun; Wu, Ling-da; Zeng, Pu; Luan, Xi-dao; Xie, Yu-xiang
2007-11-01
News story segmentation is an important aspect for news video analysis. This paper presents a method for news video story segmentation. Different form prior works, which base on visual features transform, the proposed technique uses audio features as baseline and fuses visual features with it to refine the results. At first, it selects silence clips as audio features candidate points, and selects shot boundaries and anchor shots as two kinds of visual features candidate points. Then this paper selects audio feature candidates as cues and develops different fusion method, which effectively using diverse type visual candidates to refine audio candidates, to get story boundaries. Experiment results show that this method has high efficiency and adaptability to different kinds of news video.
Parts-based stereoscopic image assessment by learning binocular manifold color visual properties
NASA Astrophysics Data System (ADS)
Xu, Haiyong; Yu, Mei; Luo, Ting; Zhang, Yun; Jiang, Gangyi
2016-11-01
Existing stereoscopic image quality assessment (SIQA) methods are mostly based on the luminance information, in which color information is not sufficiently considered. Actually, color is part of the important factors that affect human visual perception, and nonnegative matrix factorization (NMF) and manifold learning are in line with human visual perception. We propose an SIQA method based on learning binocular manifold color visual properties. To be more specific, in the training phase, a feature detector is created based on NMF with manifold regularization by considering color information, which not only allows parts-based manifold representation of an image, but also manifests localized color visual properties. In the quality estimation phase, visually important regions are selected by considering different human visual attention, and feature vectors are extracted by using the feature detector. Then the feature similarity index is calculated and the parts-based manifold color feature energy (PMCFE) for each view is defined based on the color feature vectors. The final quality score is obtained by considering a binocular combination based on PMCFE. The experimental results on LIVE I and LIVE Π 3-D IQA databases demonstrate that the proposed method can achieve much higher consistency with subjective evaluations than the state-of-the-art SIQA methods.
Liu, B; Meng, X; Wu, G; Huang, Y
2012-05-17
In this article, we aimed to study whether feature precedence existed in the cognitive processing of multifeature visual information in the human brain. In our experiment, we paid attention to two important visual features as follows: color and shape. In order to avoid the presence of semantic constraints between them and the resulting impact, pure color and simple geometric shape were chosen as the color feature and shape feature of visual stimulus, respectively. We adopted an "old/new" paradigm to study the cognitive processing of color feature, shape feature and the combination of color feature and shape feature, respectively. The experiment consisted of three tasks as follows: Color task, Shape task and Color-Shape task. The results showed that the feature-based pattern would be activated in the human brain in processing multifeature visual information without semantic association between features. Furthermore, shape feature was processed earlier than color feature, and the cognitive processing of color feature was more difficult than that of shape feature. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Wenlan; Luo, Ting; Jiang, Gangyi; Jiang, Qiuping; Ying, Hongwei; Lu, Jing
2016-06-01
Visual comfort assessment (VCA) for stereoscopic images is a particularly significant yet challenging task in 3D quality of experience research field. Although the subjective assessment given by human observers is known as the most reliable way to evaluate the experienced visual discomfort, it is time-consuming and non-systematic. Therefore, it is of great importance to develop objective VCA approaches that can faithfully predict the degree of visual discomfort as human beings do. In this paper, a novel two-stage objective VCA framework is proposed. The main contribution of this study is that the important visual attention mechanism of human visual system is incorporated for visual comfort-aware feature extraction. Specifically, in the first stage, we first construct an adaptive 3D visual saliency detection model to derive saliency map of a stereoscopic image, and then a set of saliency-weighted disparity statistics are computed and combined to form a single feature vector to represent a stereoscopic image in terms of visual comfort. In the second stage, a high dimensional feature vector is fused into a single visual comfort score by performing random forest algorithm. Experimental results on two benchmark databases confirm the superior performance of the proposed approach.
NASA Astrophysics Data System (ADS)
Zhao, Yiqun; Wang, Zhihui
2015-12-01
The Internet of things (IOT) is a kind of intelligent networks which can be used to locate, track, identify and supervise people and objects. One of important core technologies of intelligent visual internet of things ( IVIOT) is the intelligent visual tag system. In this paper, a research is done into visual feature extraction and establishment of visual tags of the human face based on ORL face database. Firstly, we use the principal component analysis (PCA) algorithm for face feature extraction, then adopt the support vector machine (SVM) for classifying and face recognition, finally establish a visual tag for face which is already classified. We conducted a experiment focused on a group of people face images, the result show that the proposed algorithm have good performance, and can show the visual tag of objects conveniently.
Sherman, Aleksandra; Grabowecky, Marcia; Suzuki, Satoru
2015-08-01
What shapes art appreciation? Much research has focused on the importance of visual features themselves (e.g., symmetry, natural scene statistics) and of the viewer's experience and expertise with specific artworks. However, even after taking these factors into account, there are considerable individual differences in art preferences. Our new result suggests that art preference is also influenced by the compatibility between visual properties and the characteristics of the viewer's visual system. Specifically, we have demonstrated, using 120 artworks from diverse periods, cultures, genres, and styles, that art appreciation is increased when the level of visual complexity within an artwork is compatible with the viewer's visual working memory capacity. The result highlights the importance of the interaction between visual features and the beholder's general visual capacity in shaping art appreciation. (c) 2015 APA, all rights reserved).
Visual search for feature and conjunction targets with an attention deficit.
Arguin, M; Joanette, Y; Cavanagh, P
1993-01-01
Abstract Brain-damaged subjects who had previously been identified as suffering from a visual attention deficit for contralesional stimulation were tested on a series of visual search tasks. The experiments examined the hypothesis that the processing of single features is preattentive but that feature integration, necessary for the correct perception of conjunctions of features, requires attention (Treisman & Gelade, 1980 Treisman & Sato, 1990). Subjects searched for a feature target (orientation or color) or for a conjunction target (orientation and color) in unilateral displays in which the number of items presented was variable. Ocular fixation was controlled so that trials on which eye movements occurred were cancelled. While brain-damaged subjects with a visual attention disorder (VAD subjects) performed similarly to normal controls in feature search tasks, they showed a marked deficit in conjunction search. Specifically, VAD subjects exhibited an important reduction of their serial search rates for a conjunction target with contralesional displays. In support of Treisman's feature integration theory, a visual attention deficit leads to a marked impairment in feature integration whereas it does not appear to affect feature encoding.
Botly, Leigh C P; De Rosa, Eve
2012-10-01
The visual search task established the feature integration theory of attention in humans and measures visuospatial attentional contributions to feature binding. We recently demonstrated that the neuromodulator acetylcholine (ACh), from the nucleus basalis magnocellularis (NBM), supports the attentional processes required for feature binding using a rat digging-based task. Additional research has demonstrated cholinergic contributions from the NBM to visuospatial attention in rats. Here, we combined these lines of evidence and employed visual search in rats to examine whether cortical cholinergic input supports visuospatial attention specifically for feature binding. We trained 18 male Long-Evans rats to perform visual search using touch screen-equipped operant chambers. Sessions comprised Feature Search (no feature binding required) and Conjunctive Search (feature binding required) trials using multiple stimulus set sizes. Following acquisition of visual search, 8 rats received bilateral NBM lesions using 192 IgG-saporin to selectively reduce cholinergic afferentation of the neocortex, which we hypothesized would selectively disrupt the visuospatial attentional processes needed for efficient conjunctive visual search. As expected, relative to sham-lesioned rats, ACh-NBM-lesioned rats took significantly longer to locate the target stimulus on Conjunctive Search, but not Feature Search trials, thus demonstrating that cholinergic contributions to visuospatial attention are important for feature binding in rats.
ERIC Educational Resources Information Center
Takaya, Kentei
2016-01-01
Visual literacy is an important skill for students to have in order to interpret embedded messages on signs and in advertisements successfully. As advertisements today tend to feature iconic people or events that shaped the modern world, it is crucial to develop students' visual literacy skills so they can comprehend the intended messages. This…
Ip, Ifan Betina; Bridge, Holly; Parker, Andrew J.
2014-01-01
An important advance in the study of visual attention has been the identification of a non-spatial component of attention that enhances the response to similar features or objects across the visual field. Here we test whether this non-spatial component can co-select individual features that are perceptually bound into a coherent object. We combined human psychophysics and functional magnetic resonance imaging (fMRI) to demonstrate the ability to co-select individual features from perceptually coherent objects. Our study used binocular disparity and visual motion to define disparity structure-from-motion (dSFM) stimuli. Although the spatial attention system induced strong modulations of the fMRI response in visual regions, the non-spatial system’s ability to co-select features of the dSFM stimulus was less pronounced and variable across subjects. Our results demonstrate that feature and global feature attention effects are variable across participants, suggesting that the feature attention system may be limited in its ability to automatically select features within the attended object. Careful comparison of the task design suggests that even minor differences in the perceptual task may be critical in revealing the presence of global feature attention. PMID:24936974
Phenomenological reliving and visual imagery during autobiographical recall in Alzheimer’s disease
El Haj, Mohamad; Kapogiannis, Dimitrios; Antoine, Pascal
2016-01-01
Multiple studies have shown compromise of autobiographical memory and phenomenological reliving in Alzheimer’s disease (AD). We investigated various phenomenological features of autobiographical memory to determine their relative vulnerability in AD. To this aim, participants with early AD and cognitively normal older adult controls were asked to retrieve an autobiographical event and rate on a 5-point scale metacognitive judgments (i.e., reliving, back in time, remembering, and realness), component processes (i.e., visual imagery, auditory imagery, language, and emotion), narrative properties (i.e., rehearsal and importance), and spatiotemporal specificity (i.e., spatial details and temporal details). AD participants showed lower general autobiographical recall than controls, and poorer reliving, travel in time, remembering, realness, visual imagery, auditory imagery, language, rehearsal, and spatial detail – a decrease that was especially pronounced for visual imagery. Yet, AD participants showed high rating for emotion and importance. Early AD seems to compromise many phenomenological features, especially visual imagery, but also seems to preserve some other features. PMID:27003216
Phenomenological Reliving and Visual Imagery During Autobiographical Recall in Alzheimer's Disease.
El Haj, Mohamad; Kapogiannis, Dimitrios; Antoine, Pascal
2016-03-16
Multiple studies have shown compromise of autobiographical memory and phenomenological reliving in Alzheimer's disease (AD). We investigated various phenomenological features of autobiographical memory to determine their relative vulnerability in AD. To this aim, participants with early AD and cognitively normal older adult controls were asked to retrieve an autobiographical event and rate on a five-point scale metacognitive judgments (i.e., reliving, back in time, remembering, and realness), component processes (i.e., visual imagery, auditory imagery, language, and emotion), narrative properties (i.e., rehearsal and importance), and spatiotemporal specificity (i.e., spatial details and temporal details). AD participants showed lower general autobiographical recall than controls, and poorer reliving, travel in time, remembering, realness, visual imagery, auditory imagery, language, rehearsal, and spatial detail-a decrease that was especially pronounced for visual imagery. Yet, AD participants showed high rating for emotion and importance. Early AD seems to compromise many phenomenological features, especially visual imagery, but also seems to preserve some other features.
Yang, Yan-Li; Deng, Hong-Xia; Xing, Gui-Yang; Xia, Xiao-Luan; Li, Hai-Fang
2015-02-01
It is not clear whether the method used in functional brain-network related research can be applied to explore the feature binding mechanism of visual perception. In this study, we investigated feature binding of color and shape in visual perception. Functional magnetic resonance imaging data were collected from 38 healthy volunteers at rest and while performing a visual perception task to construct brain networks active during resting and task states. Results showed that brain regions involved in visual information processing were obviously activated during the task. The components were partitioned using a greedy algorithm, indicating the visual network existed during the resting state. Z-values in the vision-related brain regions were calculated, confirming the dynamic balance of the brain network. Connectivity between brain regions was determined, and the result showed that occipital and lingual gyri were stable brain regions in the visual system network, the parietal lobe played a very important role in the binding process of color features and shape features, and the fusiform and inferior temporal gyri were crucial for processing color and shape information. Experimental findings indicate that understanding visual feature binding and cognitive processes will help establish computational models of vision, improve image recognition technology, and provide a new theoretical mechanism for feature binding in visual perception.
Visual Pattern Analysis in Histopathology Images Using Bag of Features
NASA Astrophysics Data System (ADS)
Cruz-Roa, Angel; Caicedo, Juan C.; González, Fabio A.
This paper presents a framework to analyse visual patterns in a collection of medical images in a two stage procedure. First, a set of representative visual patterns from the image collection is obtained by constructing a visual-word dictionary under a bag-of-features approach. Second, an analysis of the relationships between visual patterns and semantic concepts in the image collection is performed. The most important visual patterns for each semantic concept are identified using correlation analysis. A matrix visualization of the structure and organization of the image collection is generated using a cluster analysis. The experimental evaluation was conducted on a histopathology image collection and results showed clear relationships between visual patterns and semantic concepts, that in addition, are of easy interpretation and understanding.
NASA Astrophysics Data System (ADS)
Kimpe, Tom; Rostang, Johan; Avanaki, Ali; Espig, Kathryn; Xthona, Albert; Cocuranu, Ioan; Parwani, Anil V.; Pantanowitz, Liron
2014-03-01
Digital pathology systems typically consist of a slide scanner, processing software, visualization software, and finally a workstation with display for visualization of the digital slide images. This paper studies whether digital pathology images can look different when presenting them on different display systems, and whether these visual differences can result in different perceived contrast of clinically relevant features. By analyzing a set of four digital pathology images of different subspecialties on three different display systems, it was concluded that pathology images look different when visualized on different display systems. The importance of these visual differences is elucidated when they are located in areas of the digital slide that contain clinically relevant features. Based on a calculation of dE2000 differences between background and clinically relevant features, it was clear that perceived contrast of clinically relevant features is influenced by the choice of display system. Furthermore, it seems that the specific calibration target chosen for the display system has an important effect on the perceived contrast of clinically relevant features. Preliminary results suggest that calibrating to DICOM GSDF calibration performed slightly worse than sRGB, while a new experimental calibration target CSDF performed better than both DICOM GSDF and sRGB. This result is promising as it suggests that further research work could lead to better definition of an optimized calibration target for digital pathology images resulting in a positive effect on clinical performance.
NASA Technical Reports Server (NTRS)
Ellis, Stephen R.; Liston, Dorion B.
2011-01-01
Visual motion and other visual cues are used by tower controllers to provide important support for their control tasks at and near airports. These cues are particularly important for anticipated separation. Some of them, which we call visual features, have been identified from structured interviews and discussions with 24 active air traffic controllers or supervisors. The visual information that these features provide has been analyzed with respect to possible ways it could be presented at a remote tower that does not allow a direct view of the airport. Two types of remote towers are possible. One could be based on a plan-view, map-like computer-generated display of the airport and its immediate surroundings. An alternative would present a composite perspective view of the airport and its surroundings, possibly provided by an array of radially mounted cameras positioned at the airport in lieu of a tower. An initial more detailed analyses of one of the specific landing cues identified by the controllers, landing deceleration, is provided as a basis for evaluating how controllers might detect and use it. Understanding other such cues will help identify the information that may be degraded or lost in a remote or virtual tower not located at the airport. Some initial suggestions how some of the lost visual information may be presented in displays are mentioned. Many of the cues considered involve visual motion, though some important static cues are also discussed.
A neural theory of visual attention and short-term memory (NTVA).
Bundesen, Claus; Habekost, Thomas; Kyllingsbæk, Søren
2011-05-01
The neural theory of visual attention and short-term memory (NTVA) proposed by Bundesen, Habekost, and Kyllingsbæk (2005) is reviewed. In NTVA, filtering (selection of objects) changes the number of cortical neurons in which an object is represented so that this number increases with the behavioural importance of the object. Another mechanism of selection, pigeonholing (selection of features), scales the level of activation in neurons coding for a particular feature. By these mechanisms, behaviourally important objects and features are likely to win the competition to become encoded into visual short-term memory (VSTM). The VSTM system is conceived as a feedback mechanism that sustains activity in the neurons that have won the attentional competition. NTVA accounts both for a wide range of attentional effects in human performance (reaction times and error rates) and a wide range of effects observed in firing rates of single cells in the primate visual system. Copyright © 2010 Elsevier Ltd. All rights reserved.
Feature diagnosticity and task context shape activity in human scene-selective cortex.
Lowe, Matthew X; Gallivan, Jason P; Ferber, Susanne; Cant, Jonathan S
2016-01-15
Scenes are constructed from multiple visual features, yet previous research investigating scene processing has often focused on the contributions of single features in isolation. In the real world, features rarely exist independently of one another and likely converge to inform scene identity in unique ways. Here, we utilize fMRI and pattern classification techniques to examine the interactions between task context (i.e., attend to diagnostic global scene features; texture or layout) and high-level scene attributes (content and spatial boundary) to test the novel hypothesis that scene-selective cortex represents multiple visual features, the importance of which varies according to their diagnostic relevance across scene categories and task demands. Our results show for the first time that scene representations are driven by interactions between multiple visual features and high-level scene attributes. Specifically, univariate analysis of scene-selective cortex revealed that task context and feature diagnosticity shape activity differentially across scene categories. Examination using multivariate decoding methods revealed results consistent with univariate findings, but also evidence for an interaction between high-level scene attributes and diagnostic visual features within scene categories. Critically, these findings suggest visual feature representations are not distributed uniformly across scene categories but are shaped by task context and feature diagnosticity. Thus, we propose that scene-selective cortex constructs a flexible representation of the environment by integrating multiple diagnostically relevant visual features, the nature of which varies according to the particular scene being perceived and the goals of the observer. Copyright © 2015 Elsevier Inc. All rights reserved.
Distortions of Subjective Time Perception Within and Across Senses
van Wassenhove, Virginie; Buonomano, Dean V.; Shimojo, Shinsuke; Shams, Ladan
2008-01-01
Background The ability to estimate the passage of time is of fundamental importance for perceptual and cognitive processes. One experience of time is the perception of duration, which is not isomorphic to physical duration and can be distorted by a number of factors. Yet, the critical features generating these perceptual shifts in subjective duration are not understood. Methodology/Findings We used prospective duration judgments within and across sensory modalities to examine the effect of stimulus predictability and feature change on the perception of duration. First, we found robust distortions of perceived duration in auditory, visual and auditory-visual presentations despite the predictability of the feature changes in the stimuli. For example, a looming disc embedded in a series of steady discs led to time dilation, whereas a steady disc embedded in a series of looming discs led to time compression. Second, we addressed whether visual (auditory) inputs could alter the perception of duration of auditory (visual) inputs. When participants were presented with incongruent audio-visual stimuli, the perceived duration of auditory events could be shortened or lengthened by the presence of conflicting visual information; however, the perceived duration of visual events was seldom distorted by the presence of auditory information and was never perceived shorter than their actual durations. Conclusions/Significance These results support the existence of multisensory interactions in the perception of duration and, importantly, suggest that vision can modify auditory temporal perception in a pure timing task. Insofar as distortions in subjective duration can neither be accounted for by the unpredictability of an auditory, visual or auditory-visual event, we propose that it is the intrinsic features of the stimulus that critically affect subjective time distortions. PMID:18197248
Automatic topics segmentation for TV news video
NASA Astrophysics Data System (ADS)
Hmayda, Mounira; Ejbali, Ridha; Zaied, Mourad
2017-03-01
Automatic identification of television programs in the TV stream is an important task for operating archives. This article proposes a new spatio-temporal approach to identify the programs in TV stream into two main steps: First, a reference catalogue for video features visual jingles built. We operate the features that characterize the instances of the same program type to identify the different types of programs in the flow of television. The role of video features is to represent the visual invariants for each visual jingle using appropriate automatic descriptors for each television program. On the other hand, programs in television streams are identified by examining the similarity of the video signal for visual grammars in the catalogue. The main idea of the identification process is to compare the visual similarity of the video signal features in the flow of television to the catalogue. After presenting the proposed approach, the paper overviews encouraging experimental results on several streams extracted from different channels and compounds of several programs.
Crowding by a single bar: probing pattern recognition mechanisms in the visual periphery.
Põder, Endel
2014-11-06
Whereas visual crowding does not greatly affect the detection of the presence of simple visual features, it heavily inhibits combining them into recognizable objects. Still, crowding effects have rarely been directly related to general pattern recognition mechanisms. In this study, pattern recognition mechanisms in visual periphery were probed using a single crowding feature. Observers had to identify the orientation of a rotated T presented briefly in a peripheral location. Adjacent to the target, a single bar was presented. The bar was either horizontal or vertical and located in a random direction from the target. It appears that such a crowding bar has very strong and regular effects on the identification of the target orientation. The observer's responses are determined by approximate relative positions of basic visual features; exact image-based similarity to the target is not important. A version of the "standard model" of object recognition with second-order features explains the main regularities of the data. © 2014 ARVO.
Feature and Region Selection for Visual Learning.
Zhao, Ji; Wang, Liantao; Cabral, Ricardo; De la Torre, Fernando
2016-03-01
Visual learning problems, such as object classification and action recognition, are typically approached using extensions of the popular bag-of-words (BoWs) model. Despite its great success, it is unclear what visual features the BoW model is learning. Which regions in the image or video are used to discriminate among classes? Which are the most discriminative visual words? Answering these questions is fundamental for understanding existing BoW models and inspiring better models for visual recognition. To answer these questions, this paper presents a method for feature selection and region selection in the visual BoW model. This allows for an intermediate visualization of the features and regions that are important for visual learning. The main idea is to assign latent weights to the features or regions, and jointly optimize these latent variables with the parameters of a classifier (e.g., support vector machine). There are four main benefits of our approach: 1) our approach accommodates non-linear additive kernels, such as the popular χ(2) and intersection kernel; 2) our approach is able to handle both regions in images and spatio-temporal regions in videos in a unified way; 3) the feature selection problem is convex, and both problems can be solved using a scalable reduced gradient method; and 4) we point out strong connections with multiple kernel learning and multiple instance learning approaches. Experimental results in the PASCAL VOC 2007, MSR Action Dataset II and YouTube illustrate the benefits of our approach.
A novel visual saliency analysis model based on dynamic multiple feature combination strategy
NASA Astrophysics Data System (ADS)
Lv, Jing; Ye, Qi; Lv, Wen; Zhang, Libao
2017-06-01
The human visual system can quickly focus on a small number of salient objects. This process was known as visual saliency analysis and these salient objects are called focus of attention (FOA). The visual saliency analysis mechanism can be used to extract the salient regions and analyze saliency of object in an image, which is time-saving and can avoid unnecessary costs of computing resources. In this paper, a novel visual saliency analysis model based on dynamic multiple feature combination strategy is introduced. In the proposed model, we first generate multi-scale feature maps of intensity, color and orientation features using Gaussian pyramids and the center-surround difference. Then, we evaluate the contribution of all feature maps to the saliency map according to the area of salient regions and their average intensity, and attach different weights to different features according to their importance. Finally, we choose the largest salient region generated by the region growing method to perform the evaluation. Experimental results show that the proposed model cannot only achieve higher accuracy in saliency map computation compared with other traditional saliency analysis models, but also extract salient regions with arbitrary shapes, which is of great value for the image analysis and understanding.
Fuzzy Classification of High Resolution Remote Sensing Scenes Using Visual Attention Features.
Li, Linyi; Xu, Tingbao; Chen, Yun
2017-01-01
In recent years the spatial resolutions of remote sensing images have been improved greatly. However, a higher spatial resolution image does not always lead to a better result of automatic scene classification. Visual attention is an important characteristic of the human visual system, which can effectively help to classify remote sensing scenes. In this study, a novel visual attention feature extraction algorithm was proposed, which extracted visual attention features through a multiscale process. And a fuzzy classification method using visual attention features (FC-VAF) was developed to perform high resolution remote sensing scene classification. FC-VAF was evaluated by using remote sensing scenes from widely used high resolution remote sensing images, including IKONOS, QuickBird, and ZY-3 images. FC-VAF achieved more accurate classification results than the others according to the quantitative accuracy evaluation indices. We also discussed the role and impacts of different decomposition levels and different wavelets on the classification accuracy. FC-VAF improves the accuracy of high resolution scene classification and therefore advances the research of digital image analysis and the applications of high resolution remote sensing images.
Fuzzy Classification of High Resolution Remote Sensing Scenes Using Visual Attention Features
Xu, Tingbao; Chen, Yun
2017-01-01
In recent years the spatial resolutions of remote sensing images have been improved greatly. However, a higher spatial resolution image does not always lead to a better result of automatic scene classification. Visual attention is an important characteristic of the human visual system, which can effectively help to classify remote sensing scenes. In this study, a novel visual attention feature extraction algorithm was proposed, which extracted visual attention features through a multiscale process. And a fuzzy classification method using visual attention features (FC-VAF) was developed to perform high resolution remote sensing scene classification. FC-VAF was evaluated by using remote sensing scenes from widely used high resolution remote sensing images, including IKONOS, QuickBird, and ZY-3 images. FC-VAF achieved more accurate classification results than the others according to the quantitative accuracy evaluation indices. We also discussed the role and impacts of different decomposition levels and different wavelets on the classification accuracy. FC-VAF improves the accuracy of high resolution scene classification and therefore advances the research of digital image analysis and the applications of high resolution remote sensing images. PMID:28761440
Peel, Hayden J.; Sperandio, Irene; Laycock, Robin; Chouinard, Philippe A.
2018-01-01
Our understanding of how form, orientation and size are processed within and outside of awareness is limited and requires further investigation. Therefore, we investigated whether or not the visual discrimination of basic object features can be influenced by subliminal processing of stimuli presented beforehand. Visual masking was used to render stimuli perceptually invisible. Three experiments examined if visible and invisible primes could facilitate the subsequent feature discrimination of visible targets. The experiments differed in the kind of perceptual discrimination that participants had to make. Namely, participants were asked to discriminate visual stimuli on the basis of their form, orientation, or size. In all three experiments, we demonstrated reliable priming effects when the primes were visible but not when the primes were made invisible. Our findings underscore the importance of conscious awareness in facilitating the perceptual discrimination of basic object features. PMID:29725292
Peel, Hayden J; Sperandio, Irene; Laycock, Robin; Chouinard, Philippe A
2018-01-01
Our understanding of how form, orientation and size are processed within and outside of awareness is limited and requires further investigation. Therefore, we investigated whether or not the visual discrimination of basic object features can be influenced by subliminal processing of stimuli presented beforehand. Visual masking was used to render stimuli perceptually invisible. Three experiments examined if visible and invisible primes could facilitate the subsequent feature discrimination of visible targets. The experiments differed in the kind of perceptual discrimination that participants had to make. Namely, participants were asked to discriminate visual stimuli on the basis of their form, orientation, or size. In all three experiments, we demonstrated reliable priming effects when the primes were visible but not when the primes were made invisible. Our findings underscore the importance of conscious awareness in facilitating the perceptual discrimination of basic object features.
Arif, Muhammad
2012-06-01
In pattern classification problems, feature extraction is an important step. Quality of features in discriminating different classes plays an important role in pattern classification problems. In real life, pattern classification may require high dimensional feature space and it is impossible to visualize the feature space if the dimension of feature space is greater than four. In this paper, we have proposed a Similarity-Dissimilarity plot which can project high dimensional space to a two dimensional space while retaining important characteristics required to assess the discrimination quality of the features. Similarity-dissimilarity plot can reveal information about the amount of overlap of features of different classes. Separable data points of different classes will also be visible on the plot which can be classified correctly using appropriate classifier. Hence, approximate classification accuracy can be predicted. Moreover, it is possible to know about whom class the misclassified data points will be confused by the classifier. Outlier data points can also be located on the similarity-dissimilarity plot. Various examples of synthetic data are used to highlight important characteristics of the proposed plot. Some real life examples from biomedical data are also used for the analysis. The proposed plot is independent of number of dimensions of the feature space.
Deep Multimodal Distance Metric Learning Using Click Constraints for Image Ranking.
Yu, Jun; Yang, Xiaokang; Gao, Fei; Tao, Dacheng
2017-12-01
How do we retrieve images accurately? Also, how do we rank a group of images precisely and efficiently for specific queries? These problems are critical for researchers and engineers to generate a novel image searching engine. First, it is important to obtain an appropriate description that effectively represent the images. In this paper, multimodal features are considered for describing images. The images unique properties are reflected by visual features, which are correlated to each other. However, semantic gaps always exist between images visual features and semantics. Therefore, we utilize click feature to reduce the semantic gap. The second key issue is learning an appropriate distance metric to combine these multimodal features. This paper develops a novel deep multimodal distance metric learning (Deep-MDML) method. A structured ranking model is adopted to utilize both visual and click features in distance metric learning (DML). Specifically, images and their related ranking results are first collected to form the training set. Multimodal features, including click and visual features, are collected with these images. Next, a group of autoencoders is applied to obtain initially a distance metric in different visual spaces, and an MDML method is used to assign optimal weights for different modalities. Next, we conduct alternating optimization to train the ranking model, which is used for the ranking of new queries with click features. Compared with existing image ranking methods, the proposed method adopts a new ranking model to use multimodal features, including click features and visual features in DML. We operated experiments to analyze the proposed Deep-MDML in two benchmark data sets, and the results validate the effects of the method.
ERIC Educational Resources Information Center
Squire, Larry R.; Levy, Daniel A.; Shrager, Yael
2005-01-01
The perirhinal cortex is known to be important for memory, but there has recently been interest in the possibility that it might also be involved in visual perceptual functions. In four experiments, we assessed visual discrimination ability and visual discrimination learning in severely amnesic patients with large medial temporal lobe lesions that…
Eyes Matched to the Prize: The State of Matched Filters in Insect Visual Circuits.
Kohn, Jessica R; Heath, Sarah L; Behnia, Rudy
2018-01-01
Confronted with an ever-changing visual landscape, animals must be able to detect relevant stimuli and translate this information into behavioral output. A visual scene contains an abundance of information: to interpret the entirety of it would be uneconomical. To optimally perform this task, neural mechanisms exist to enhance the detection of important features of the sensory environment while simultaneously filtering out irrelevant information. This can be accomplished by using a circuit design that implements specific "matched filters" that are tuned to relevant stimuli. Following this rule, the well-characterized visual systems of insects have evolved to streamline feature extraction on both a structural and functional level. Here, we review examples of specialized visual microcircuits for vital behaviors across insect species, including feature detection, escape, and estimation of self-motion. Additionally, we discuss how these microcircuits are modulated to weigh relevant input with respect to different internal and behavioral states.
Working memory resources are shared across sensory modalities.
Salmela, V R; Moisala, M; Alho, K
2014-10-01
A common assumption in the working memory literature is that the visual and auditory modalities have separate and independent memory stores. Recent evidence on visual working memory has suggested that resources are shared between representations, and that the precision of representations sets the limit for memory performance. We tested whether memory resources are also shared across sensory modalities. Memory precision for two visual (spatial frequency and orientation) and two auditory (pitch and tone duration) features was measured separately for each feature and for all possible feature combinations. Thus, only the memory load was varied, from one to four features, while keeping the stimuli similar. In Experiment 1, two gratings and two tones-both containing two varying features-were presented simultaneously. In Experiment 2, two gratings and two tones-each containing only one varying feature-were presented sequentially. The memory precision (delayed discrimination threshold) for a single feature was close to the perceptual threshold. However, as the number of features to be remembered was increased, the discrimination thresholds increased more than twofold. Importantly, the decrease in memory precision did not depend on the modality of the other feature(s), or on whether the features were in the same or in separate objects. Hence, simultaneously storing one visual and one auditory feature had an effect on memory precision equal to those of simultaneously storing two visual or two auditory features. The results show that working memory is limited by the precision of the stored representations, and that working memory can be described as a resource pool that is shared across modalities.
Feature extraction inspired by V1 in visual cortex
NASA Astrophysics Data System (ADS)
Lv, Chao; Xu, Yuelei; Zhang, Xulei; Ma, Shiping; Li, Shuai; Xin, Peng; Zhu, Mingning; Ma, Hongqiang
2018-04-01
Target feature extraction plays an important role in pattern recognition. It is the most complicated activity in the brain mechanism of biological vision. Inspired by high properties of primary visual cortex (V1) in extracting dynamic and static features, a visual perception model was raised. Firstly, 28 spatial-temporal filters with different orientations, half-squaring operation and divisive normalization were adopted to obtain the responses of V1 simple cells; then, an adjustable parameter was added to the output weight so that the response of complex cells was got. Experimental results indicate that the proposed V1 model can perceive motion information well. Besides, it has a good edge detection capability. The model inspired by V1 has good performance in feature extraction and effectively combines brain-inspired intelligence with computer vision.
Wakui, Takashi; Matsumoto, Tsuyoshi; Matsubara, Kenta; Kawasaki, Tomoyuki; Yamaguchi, Hiroshi; Akutsu, Hidenori
2017-10-01
We propose an image analysis method for quality evaluation of human pluripotent stem cells based on biologically interpretable features. It is important to maintain the undifferentiated state of induced pluripotent stem cells (iPSCs) while culturing the cells during propagation. Cell culture experts visually select good quality cells exhibiting the morphological features characteristic of undifferentiated cells. Experts have empirically determined that these features comprise prominent and abundant nucleoli, less intercellular spacing, and fewer differentiating cellular nuclei. We quantified these features based on experts' visual inspection of phase contrast images of iPSCs and found that these features are effective for evaluating iPSC quality. We then developed an iPSC quality evaluation method using an image analysis technique. The method allowed accurate classification, equivalent to visual inspection by experts, of three iPSC cell lines.
User-assisted video segmentation system for visual communication
NASA Astrophysics Data System (ADS)
Wu, Zhengping; Chen, Chun
2002-01-01
Video segmentation plays an important role for efficient storage and transmission in visual communication. In this paper, we introduce a novel video segmentation system using point tracking and contour formation techniques. Inspired by the results from the study of the human visual system, we intend to solve the video segmentation problem into three separate phases: user-assisted feature points selection, feature points' automatic tracking, and contour formation. This splitting relieves the computer of ill-posed automatic segmentation problems, and allows a higher level of flexibility of the method. First, the precise feature points can be found using a combination of user assistance and an eigenvalue-based adjustment. Second, the feature points in the remaining frames are obtained using motion estimation and point refinement. At last, contour formation is used to extract the object, and plus a point insertion process to provide the feature points for next frame's tracking.
Amsel, Ben D
2011-04-01
Empirically derived semantic feature norms categorized into different types of knowledge (e.g., visual, functional, auditory) can be summed to create number-of-feature counts per knowledge type. Initial evidence suggests several such knowledge types may be recruited during language comprehension. The present study provides a more detailed understanding of the timecourse and intensity of influence of several such knowledge types on real-time neural activity. A linear mixed-effects model was applied to single trial event-related potentials for 207 visually presented concrete words measured on total number of features (semantic richness), imageability, and number of visual motion, color, visual form, smell, taste, sound, and function features. Significant influences of multiple feature types occurred before 200ms, suggesting parallel neural computation of word form and conceptual knowledge during language comprehension. Function and visual motion features most prominently influenced neural activity, underscoring the importance of action-related knowledge in computing word meaning. The dynamic time courses and topographies of these effects are most consistent with a flexible conceptual system wherein temporally dynamic recruitment of representations in modal and supramodal cortex are a crucial element of the constellation of processes constituting word meaning computation in the brain. Copyright © 2011 Elsevier Ltd. All rights reserved.
iview: an interactive WebGL visualizer for protein-ligand complex.
Li, Hongjian; Leung, Kwong-Sak; Nakane, Takanori; Wong, Man-Hon
2014-02-25
Visualization of protein-ligand complex plays an important role in elaborating protein-ligand interactions and aiding novel drug design. Most existing web visualizers either rely on slow software rendering, or lack virtual reality support. The vital feature of macromolecular surface construction is also unavailable. We have developed iview, an easy-to-use interactive WebGL visualizer of protein-ligand complex. It exploits hardware acceleration rather than software rendering. It features three special effects in virtual reality settings, namely anaglyph, parallax barrier and oculus rift, resulting in visually appealing identification of intermolecular interactions. It supports four surface representations including Van der Waals surface, solvent excluded surface, solvent accessible surface and molecular surface. Moreover, based on the feature-rich version of iview, we have also developed a neat and tailor-made version specifically for our istar web platform for protein-ligand docking purpose. This demonstrates the excellent portability of iview. Using innovative 3D techniques, we provide a user friendly visualizer that is not intended to compete with professional visualizers, but to enable easy accessibility and platform independence.
Feature-based attention elicits surround suppression in feature space.
Störmer, Viola S; Alvarez, George A
2014-09-08
It is known that focusing attention on a particular feature (e.g., the color red) facilitates the processing of all objects in the visual field containing that feature [1-7]. Here, we show that such feature-based attention not only facilitates processing but also actively inhibits processing of similar, but not identical, features globally across the visual field. We combined behavior and electrophysiological recordings of frequency-tagged potentials in human observers to measure this inhibitory surround in feature space. We found that sensory signals of an attended color (e.g., red) were enhanced, whereas sensory signals of colors similar to the target color (e.g., orange) were suppressed relative to colors more distinct from the target color (e.g., yellow). Importantly, this inhibitory effect spreads globally across the visual field, thus operating independently of location. These findings suggest that feature-based attention comprises an excitatory peak surrounded by a narrow inhibitory zone in color space to attenuate the most distracting and potentially confusable stimuli during visual perception. This selection profile is akin to what has been reported for location-based attention [8-10] and thus suggests that such center-surround mechanisms are an overarching principle of attention across different domains in the human brain. Copyright © 2014 Elsevier Ltd. All rights reserved.
Feature-Specific Organization of Feedback Pathways in Mouse Visual Cortex.
Huh, Carey Y L; Peach, John P; Bennett, Corbett; Vega, Roxana M; Hestrin, Shaul
2018-01-08
Higher and lower cortical areas in the visual hierarchy are reciprocally connected [1]. Although much is known about how feedforward pathways shape receptive field properties of visual neurons, relatively little is known about the role of feedback pathways in visual processing. Feedback pathways are thought to carry top-down signals, including information about context (e.g., figure-ground segmentation and surround suppression) [2-5], and feedback has been demonstrated to sharpen orientation tuning of neurons in the primary visual cortex (V1) [6, 7]. However, the response characteristics of feedback neurons themselves and how feedback shapes V1 neurons' tuning for other features, such as spatial frequency (SF), remain largely unknown. Here, using a retrograde virus, targeted electrophysiological recordings, and optogenetic manipulations, we show that putatively feedback neurons in layer 5 (hereafter "L5 feedback") in higher visual areas, AL (anterolateral area) and PM (posteromedial area), display distinct visual properties in awake head-fixed mice. AL L5 feedback neurons prefer significantly lower SF (mean: 0.04 cycles per degree [cpd]) compared to PM L5 feedback neurons (0.15 cpd). Importantly, silencing AL L5 feedback reduced visual responses of V1 neurons preferring low SF (mean change in firing rate: -8.0%), whereas silencing PM L5 feedback suppressed responses of high-SF-preferring V1 neurons (-20.4%). These findings suggest that feedback connections from higher visual areas convey distinctly tuned visual inputs to V1 that serve to boost V1 neurons' responses to SF. Such like-to-like functional organization may represent an important feature of feedback pathways in sensory systems and in the nervous system in general. Copyright © 2017 Elsevier Ltd. All rights reserved.
Störmer, Viola S; Li, Shu-Chen; Heekeren, Hauke R; Lindenberger, Ulman
2011-02-01
The ability to attend to multiple objects that move in the visual field is important for many aspects of daily functioning. The attentional capacity for such dynamic tracking, however, is highly limited and undergoes age-related decline. Several aspects of the tracking process can influence performance. Here, we investigated effects of feature-based interference from distractor objects that appear in unattended regions of the visual field with a hemifield-tracking task. Younger and older participants performed an attentional tracking task in one hemifield while distractor objects were concurrently presented in the unattended hemifield. Feature similarity between objects in the attended and unattended hemifields as well as motion speed and the number of to-be-tracked objects were parametrically manipulated. The results show that increasing feature overlap leads to greater interference from the unattended visual field. This effect of feature-based interference was only present in the slow speed condition, indicating that the interference is mainly modulated by perceptual demands. High-performing older adults showed a similar interference effect as younger adults, whereas low-performing adults showed poor tracking performance overall.
Commonalities between Perception and Cognition.
Tacca, Michela C
2011-01-01
Perception and cognition are highly interrelated. Given the influence that these systems exert on one another, it is important to explain how perceptual representations and cognitive representations interact. In this paper, I analyze the similarities between visual perceptual representations and cognitive representations in terms of their structural properties and content. Specifically, I argue that the spatial structure underlying visual object representation displays systematicity - a property that is considered to be characteristic of propositional cognitive representations. To this end, I propose a logical characterization of visual feature binding as described by Treisman's Feature Integration Theory and argue that systematicity is not only a property of language-like representations, but also of spatially organized visual representations. Furthermore, I argue that if systematicity is taken to be a criterion to distinguish between conceptual and non-conceptual representations, then visual representations, that display systematicity, might count as an early type of conceptual representations. Showing these analogies between visual perception and cognition is an important step toward understanding the interface between the two systems. The ideas here presented might also set the stage for new empirical studies that directly compare binding (and other relational operations) in visual perception and higher cognition.
Commonalities between Perception and Cognition
Tacca, Michela C.
2011-01-01
Perception and cognition are highly interrelated. Given the influence that these systems exert on one another, it is important to explain how perceptual representations and cognitive representations interact. In this paper, I analyze the similarities between visual perceptual representations and cognitive representations in terms of their structural properties and content. Specifically, I argue that the spatial structure underlying visual object representation displays systematicity – a property that is considered to be characteristic of propositional cognitive representations. To this end, I propose a logical characterization of visual feature binding as described by Treisman’s Feature Integration Theory and argue that systematicity is not only a property of language-like representations, but also of spatially organized visual representations. Furthermore, I argue that if systematicity is taken to be a criterion to distinguish between conceptual and non-conceptual representations, then visual representations, that display systematicity, might count as an early type of conceptual representations. Showing these analogies between visual perception and cognition is an important step toward understanding the interface between the two systems. The ideas here presented might also set the stage for new empirical studies that directly compare binding (and other relational operations) in visual perception and higher cognition. PMID:22144974
Classification of visual and linguistic tasks using eye-movement features.
Coco, Moreno I; Keller, Frank
2014-03-07
The role of the task has received special attention in visual-cognition research because it can provide causal explanations of goal-directed eye-movement responses. The dependency between visual attention and task suggests that eye movements can be used to classify the task being performed. A recent study by Greene, Liu, and Wolfe (2012), however, fails to achieve accurate classification of visual tasks based on eye-movement features. In the present study, we hypothesize that tasks can be successfully classified when they differ with respect to the involvement of other cognitive domains, such as language processing. We extract the eye-movement features used by Greene et al. as well as additional features from the data of three different tasks: visual search, object naming, and scene description. First, we demonstrated that eye-movement responses make it possible to characterize the goals of these tasks. Then, we trained three different types of classifiers and predicted the task participants performed with an accuracy well above chance (a maximum of 88% for visual search). An analysis of the relative importance of features for classification accuracy reveals that just one feature, i.e., initiation time, is sufficient for above-chance performance (a maximum of 79% accuracy in object naming). Crucially, this feature is independent of task duration, which differs systematically across the three tasks we investigated. Overall, the best task classification performance was obtained with a set of seven features that included both spatial information (e.g., entropy of attention allocation) and temporal components (e.g., total fixation on objects) of the eye-movement record. This result confirms the task-dependent allocation of visual attention and extends previous work by showing that task classification is possible when tasks differ in the cognitive processes involved (purely visual tasks such as search vs. communicative tasks such as scene description).
ERIC Educational Resources Information Center
Eidels, Ami; Townsend, James T.; Pomerantz, James R.
2008-01-01
People are especially efficient in processing certain visual stimuli such as human faces or good configurations. It has been suggested that topology and geometry play important roles in configural perception. Visual search is one area in which configurality seems to matter. When either of 2 target features leads to a correct response and the…
LRRTM1 underlies synaptic convergence in visual thalamus
Monavarfeshani, Aboozar; Stanton, Gail; Van Name, Jonathan; Su, Kaiwen; Mills, William A; Swilling, Kenya; Kerr, Alicia; Huebschman, Natalie A; Su, Jianmin
2018-01-01
It has long been thought that the mammalian visual system is organized into parallel pathways, with incoming visual signals being parsed in the retina based on feature (e.g. color, contrast and motion) and then transmitted to the brain in unmixed, feature-specific channels. To faithfully convey feature-specific information from retina to cortex, thalamic relay cells must receive inputs from only a small number of functionally similar retinal ganglion cells. However, recent studies challenged this by revealing substantial levels of retinal convergence onto relay cells. Here, we sought to identify mechanisms responsible for the assembly of such convergence. Using an unbiased transcriptomics approach and targeted mutant mice, we discovered a critical role for the synaptic adhesion molecule Leucine Rich Repeat Transmembrane Neuronal 1 (LRRTM1) in the emergence of retinothalamic convergence. Importantly, LRRTM1 mutant mice display impairment in visual behaviors, suggesting a functional role of retinothalamic convergence in vision. PMID:29424692
Visual feature discrimination versus compression ratio for polygonal shape descriptors
NASA Astrophysics Data System (ADS)
Heuer, Joerg; Sanahuja, Francesc; Kaup, Andre
2000-10-01
In the last decade several methods for low level indexing of visual features appeared. Most often these were evaluated with respect to their discrimination power using measures like precision and recall. Accordingly, the targeted application was indexing of visual data within databases. During the standardization process of MPEG-7 the view on indexing of visual data changed, taking also communication aspects into account where coding efficiency is important. Even if the descriptors used for indexing are small compared to the size of images, it is recognized that there can be several descriptors linked to an image, characterizing different features and regions. Beside the importance of a small memory footprint for the transmission of the descriptor and the memory footprint in a database, eventually the search and filtering can be sped up by reducing the dimensionality of the descriptor if the metric of the matching can be adjusted. Based on a polygon shape descriptor presented for MPEG-7 this paper compares the discrimination power versus memory consumption of the descriptor. Different methods based on quantization are presented and their effect on the retrieval performance are measured. Finally an optimized computation of the descriptor is presented.
Region of interest extraction based on multiscale visual saliency analysis for remote sensing images
NASA Astrophysics Data System (ADS)
Zhang, Yinggang; Zhang, Libao; Yu, Xianchuan
2015-01-01
Region of interest (ROI) extraction is an important component of remote sensing image processing. However, traditional ROI extraction methods are usually prior knowledge-based and depend on classification, segmentation, and a global searching solution, which are time-consuming and computationally complex. We propose a more efficient ROI extraction model for remote sensing images based on multiscale visual saliency analysis (MVS), implemented in the CIE L*a*b* color space, which is similar to visual perception of the human eye. We first extract the intensity, orientation, and color feature of the image using different methods: the visual attention mechanism is used to eliminate the intensity feature using a difference of Gaussian template; the integer wavelet transform is used to extract the orientation feature; and color information content analysis is used to obtain the color feature. Then, a new feature-competition method is proposed that addresses the different contributions of each feature map to calculate the weight of each feature image for combining them into the final saliency map. Qualitative and quantitative experimental results of the MVS model as compared with those of other models show that it is more effective and provides more accurate ROI extraction results with fewer holes inside the ROI.
Modeling the role of parallel processing in visual search.
Cave, K R; Wolfe, J M
1990-04-01
Treisman's Feature Integration Theory and Julesz's Texton Theory explain many aspects of visual search. However, these theories require that parallel processing mechanisms not be used in many visual searches for which they would be useful, and they imply that visual processing should be much slower than it is. Most importantly, they cannot account for recent data showing that some subjects can perform some conjunction searches very efficiently. Feature Integration Theory can be modified so that it accounts for these data and helps to answer these questions. In this new theory, which we call Guided Search, the parallel stage guides the serial stage as it chooses display elements to process. A computer simulation of Guided Search produces the same general patterns as human subjects in a number of different types of visual search.
Hamker, Fred H
2008-07-15
Feature inheritance provides evidence that properties of an invisible target stimulus can be attached to a following mask. We apply a systemslevel model of attention and decision making to explore the influence of memory and feedback connections in feature inheritance. We find that the presence of feedback loops alone is sufficient to account for feature inheritance. Although our simulations do not cover all experimental variations and focus only on the general principle, our result appears of specific interest since the model was designed for a completely different purpose than to explain feature inheritance. We suggest that feedback is an important property in visual perception and provide a description of its mechanism and its role in perception.
Assessing clutter reduction in parallel coordinates using image processing techniques
NASA Astrophysics Data System (ADS)
Alhamaydh, Heba; Alzoubi, Hussein; Almasaeid, Hisham
2018-01-01
Information visualization has appeared as an important research field for multidimensional data and correlation analysis in recent years. Parallel coordinates (PCs) are one of the popular techniques to visual high-dimensional data. A problem with the PCs technique is that it suffers from crowding, a clutter which hides important data and obfuscates the information. Earlier research has been conducted to reduce clutter without loss in data content. We introduce the use of image processing techniques as an approach for assessing the performance of clutter reduction techniques in PC. We use histogram analysis as our first measure, where the mean feature of the color histograms of the possible alternative orderings of coordinates for the PC images is calculated and compared. The second measure is the extracted contrast feature from the texture of PC images based on gray-level co-occurrence matrices. The results show that the best PC image is the one that has the minimal mean value of the color histogram feature and the maximal contrast value of the texture feature. In addition to its simplicity, the proposed assessment method has the advantage of objectively assessing alternative ordering of PC visualization.
Experience improves feature extraction in Drosophila.
Peng, Yueqing; Xi, Wang; Zhang, Wei; Zhang, Ke; Guo, Aike
2007-05-09
Previous exposure to a pattern in the visual scene can enhance subsequent recognition of that pattern in many species from honeybees to humans. However, whether previous experience with a visual feature of an object, such as color or shape, can also facilitate later recognition of that particular feature from multiple visual features is largely unknown. Visual feature extraction is the ability to select the key component from multiple visual features. Using a visual flight simulator, we designed a novel protocol for visual feature extraction to investigate the effects of previous experience on visual reinforcement learning in Drosophila. We found that, after conditioning with a visual feature of objects among combinatorial shape-color features, wild-type flies exhibited poor ability to extract the correct visual feature. However, the ability for visual feature extraction was greatly enhanced in flies trained previously with that visual feature alone. Moreover, we demonstrated that flies might possess the ability to extract the abstract category of "shape" but not a particular shape. Finally, this experience-dependent feature extraction is absent in flies with defective MBs, one of the central brain structures in Drosophila. Our results indicate that previous experience can enhance visual feature extraction in Drosophila and that MBs are required for this experience-dependent visual cognition.
Hierarchical streamline bundles.
Yu, Hongfeng; Wang, Chaoli; Shene, Ching-Kuang; Chen, Jacqueline H
2012-08-01
Effective 3D streamline placement and visualization play an essential role in many science and engineering disciplines. The main challenge for effective streamline visualization lies in seed placement, i.e., where to drop seeds and how many seeds should be placed. Seeding too many or too few streamlines may not reveal flow features and patterns either because it easily leads to visual clutter in rendering or it conveys little information about the flow field. Not only does the number of streamlines placed matter, their spatial relationships also play a key role in understanding the flow field. Therefore, effective flow visualization requires the streamlines to be placed in the right place and in the right amount. This paper introduces hierarchical streamline bundles, a novel approach to simplifying and visualizing 3D flow fields defined on regular grids. By placing seeds and generating streamlines according to flow saliency, we produce a set of streamlines that captures important flow features near critical points without enforcing the dense seeding condition. We group spatially neighboring and geometrically similar streamlines to construct a hierarchy from which we extract streamline bundles at different levels of detail. Streamline bundles highlight multiscale flow features and patterns through clustered yet not cluttered display. This selective visualization strategy effectively reduces visual clutter while accentuating visual foci, and therefore is able to convey the desired insight into the flow data.
Graewe, Britta; De Weerd, Peter; Farivar, Reza; Castelo-Branco, Miguel
2012-01-01
Many studies have linked the processing of different object categories to specific event-related potentials (ERPs) such as the face-specific N170. Despite reports showing that object-related ERPs are influenced by visual stimulus features, there is consensus that these components primarily reflect categorical aspects of the stimuli. Here, we re-investigated this idea by systematically measuring the effects of visual feature manipulations on ERP responses elicited by both structure-from-motion (SFM)-defined and luminance-defined object stimuli. SFM objects elicited a novel component at 200–250 ms (N250) over parietal and posterior temporal sites. We found, however, that the N250 amplitude was unaffected by restructuring SFM stimuli into meaningless objects based on identical visual cues. This suggests that this N250 peak was not uniquely linked to categorical aspects of the objects, but is strongly determined by visual stimulus features. We provide strong support for this hypothesis by parametrically manipulating the depth range of both SFM- and luminance-defined object stimuli and showing that the N250 evoked by SFM stimuli as well as the well-known N170 to static faces were sensitive to this manipulation. Importantly, this effect could not be attributed to compromised object categorization in low depth stimuli, confirming a strong impact of visual stimulus features on object-related ERP signals. As ERP components linked with visual categorical object perception are likely determined by multiple stimulus features, this creates an interesting inverse problem when deriving specific perceptual processes from variations in ERP components. PMID:22363479
Graewe, Britta; De Weerd, Peter; Farivar, Reza; Castelo-Branco, Miguel
2012-01-01
Many studies have linked the processing of different object categories to specific event-related potentials (ERPs) such as the face-specific N170. Despite reports showing that object-related ERPs are influenced by visual stimulus features, there is consensus that these components primarily reflect categorical aspects of the stimuli. Here, we re-investigated this idea by systematically measuring the effects of visual feature manipulations on ERP responses elicited by both structure-from-motion (SFM)-defined and luminance-defined object stimuli. SFM objects elicited a novel component at 200-250 ms (N250) over parietal and posterior temporal sites. We found, however, that the N250 amplitude was unaffected by restructuring SFM stimuli into meaningless objects based on identical visual cues. This suggests that this N250 peak was not uniquely linked to categorical aspects of the objects, but is strongly determined by visual stimulus features. We provide strong support for this hypothesis by parametrically manipulating the depth range of both SFM- and luminance-defined object stimuli and showing that the N250 evoked by SFM stimuli as well as the well-known N170 to static faces were sensitive to this manipulation. Importantly, this effect could not be attributed to compromised object categorization in low depth stimuli, confirming a strong impact of visual stimulus features on object-related ERP signals. As ERP components linked with visual categorical object perception are likely determined by multiple stimulus features, this creates an interesting inverse problem when deriving specific perceptual processes from variations in ERP components.
Rolls, Edmund T; Mills, W Patrick C
2018-05-01
When objects transform into different views, some properties are maintained, such as whether the edges are convex or concave, and these non-accidental properties are likely to be important in view-invariant object recognition. The metric properties, such as the degree of curvature, may change with different views, and are less likely to be useful in object recognition. It is shown that in a model of invariant visual object recognition in the ventral visual stream, VisNet, non-accidental properties are encoded much more than metric properties by neurons. Moreover, it is shown how with the temporal trace rule training in VisNet, non-accidental properties of objects become encoded by neurons, and how metric properties are treated invariantly. We also show how VisNet can generalize between different objects if they have the same non-accidental property, because the metric properties are likely to overlap. VisNet is a 4-layer unsupervised model of visual object recognition trained by competitive learning that utilizes a temporal trace learning rule to implement the learning of invariance using views that occur close together in time. A second crucial property of this model of object recognition is, when neurons in the level corresponding to the inferior temporal visual cortex respond selectively to objects, whether neurons in the intermediate layers can respond to combinations of features that may be parts of two or more objects. In an investigation using the four sides of a square presented in every possible combination, it was shown that even though different layer 4 neurons are tuned to encode each feature or feature combination orthogonally, neurons in the intermediate layers can respond to features or feature combinations present is several objects. This property is an important part of the way in which high capacity can be achieved in the four-layer ventral visual cortical pathway. These findings concerning non-accidental properties and the use of neurons in intermediate layers of the hierarchy help to emphasise fundamental underlying principles of the computations that may be implemented in the ventral cortical visual stream used in object recognition. Copyright © 2018 Elsevier Inc. All rights reserved.
Sockeye: A 3D Environment for Comparative Genomics
Montgomery, Stephen B.; Astakhova, Tamara; Bilenky, Mikhail; Birney, Ewan; Fu, Tony; Hassel, Maik; Melsopp, Craig; Rak, Marcin; Robertson, A. Gordon; Sleumer, Monica; Siddiqui, Asim S.; Jones, Steven J.M.
2004-01-01
Comparative genomics techniques are used in bioinformatics analyses to identify the structural and functional properties of DNA sequences. As the amount of available sequence data steadily increases, the ability to perform large-scale comparative analyses has become increasingly relevant. In addition, the growing complexity of genomic feature annotation means that new approaches to genomic visualization need to be explored. We have developed a Java-based application called Sockeye that uses three-dimensional (3D) graphics technology to facilitate the visualization of annotation and conservation across multiple sequences. This software uses the Ensembl database project to import sequence and annotation information from several eukaryotic species. A user can additionally import their own custom sequence and annotation data. Individual annotation objects are displayed in Sockeye by using custom 3D models. Ensembl-derived and imported sequences can be analyzed by using a suite of multiple and pair-wise alignment algorithms. The results of these comparative analyses are also displayed in the 3D environment of Sockeye. By using the Java3D API to visualize genomic data in a 3D environment, we are able to compactly display cross-sequence comparisons. This provides the user with a novel platform for visualizing and comparing genomic feature organization. PMID:15123592
The two-visual-systems hypothesis and the perspectival features of visual experience.
Foley, Robert T; Whitwell, Robert L; Goodale, Melvyn A
2015-09-01
Some critics of the two-visual-systems hypothesis (TVSH) argue that it is incompatible with the fundamentally egocentric nature of visual experience (what we call the 'perspectival account'). The TVSH proposes that the ventral stream, which delivers up our visual experience of the world, works in an allocentric frame of reference, whereas the dorsal stream, which mediates the visual control of action, uses egocentric frames of reference. Given that the TVSH is also committed to the claim that dorsal-stream processing does not contribute to the contents of visual experience, it has been argued that the TVSH cannot account for the egocentric features of our visual experience. This argument, however, rests on a misunderstanding about how the operations mediating action and the operations mediating perception are specified in the TVSH. In this article, we emphasize the importance of the 'outputs' of the two-systems to the specification of their respective operations. We argue that once this point is appreciated, it becomes evident that the TVSH is entirely compatible with a perspectival account of visual experience. Copyright © 2015 Elsevier Inc. All rights reserved.
The Role of Attention in Item-Item Binding in Visual Working Memory
ERIC Educational Resources Information Center
Peterson, Dwight J.; Naveh-Benjamin, Moshe
2017-01-01
An important yet unresolved question regarding visual working memory (VWM) relates to whether or not binding processes within VWM require additional attentional resources compared with processing solely the individual components comprising these bindings. Previous findings indicate that binding of surface features (e.g., colored shapes) within VWM…
NASA Astrophysics Data System (ADS)
Yang, Wei; Zhang, Su; Li, Wenying; Chen, Yaqing; Lu, Hongtao; Chen, Wufan; Chen, Yazhu
2010-04-01
Various computerized features extracted from breast ultrasound images are useful in assessing the malignancy of breast tumors. However, the underlying relationship between the computerized features and tumor malignancy may not be linear in nature. We use the decision tree ensemble trained by the cost-sensitive boosting algorithm to approximate the target function for malignancy assessment and to reflect this relationship qualitatively. Partial dependence plots are employed to explore and visualize the effect of features on the output of the decision tree ensemble. In the experiments, 31 image features are extracted to quantify the sonographic characteristics of breast tumors. Patient age is used as an external feature because of its high clinical importance. The area under the receiver-operating characteristic curve of the tree ensembles can reach 0.95 with sensitivity of 0.95 (61/64) at the associated specificity 0.74 (77/104). The partial dependence plots of the four most important features are demonstrated to show the influence of the features on malignancy, and they are in accord with the empirical observations. The results can provide visual and qualitative references on the computerized image features for physicians, and can be useful for enhancing the interpretability of computer-aided diagnosis systems for breast ultrasound.
Stuart, Samuel; Lord, Sue; Galna, Brook; Rochester, Lynn
2018-04-01
Gait impairment is a core feature of Parkinson's disease (PD) with implications for falls risk. Visual cues improve gait in PD, but the underlying mechanisms are unclear. Evidence suggests that attention and vision play an important role; however, the relative contribution from each is unclear. Measurement of visual exploration (specifically saccade frequency) during gait allows for real-time measurement of attention and vision. Understanding how visual cues influence visual exploration may allow inferences of the underlying mechanisms to response which could help to develop effective therapeutics. This study aimed to examine saccade frequency during gait in response to a visual cue in PD and older adults and investigate the roles of attention and vision in visual cue response in PD. A mobile eye-tracker measured saccade frequency during gait in 55 people with PD and 32 age-matched controls. Participants walked in a straight line with and without a visual cue (50 cm transverse lines) presented under single task and dual-task (concurrent digit span recall). Saccade frequency was reduced when walking in PD compared to controls; however, visual cues ameliorated saccadic deficit. Visual cues significantly increased saccade frequency in both PD and controls under both single task and dual-task. Attention rather than visual function was central to saccade frequency and gait response to visual cues in PD. In conclusion, this study highlights the impact of visual cues on visual exploration when walking and the important role of attention in PD. Understanding these complex features will help inform intervention development. © 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Rolke, Bettina; Festl, Freya; Seibold, Verena C
2016-11-01
We used ERPs to investigate whether temporal attention interacts with spatial attention and feature-based attention to enhance visual processing. We presented a visual search display containing one singleton stimulus among a set of homogenous distractors. Participants were asked to respond only to target singletons of a particular color and shape that were presented in an attended spatial position. We manipulated temporal attention by presenting a warning signal before each search display and varying the foreperiod (FP) between the warning signal and the search display in a blocked manner. We observed distinctive ERP effects of both spatial and temporal attention. The amplitudes for the N2pc, SPCN, and P3 were enhanced by spatial attention indicating a processing benefit of relevant stimulus features at the attended side. Temporal attention accelerated stimulus processing; this was indexed by an earlier onset of the N2pc component and a reduction in reaction times to targets. Most importantly, temporal attention did not interact with spatial attention or stimulus features to influence visual processing. Taken together, the results suggest that temporal attention fosters visual perceptual processing in a visual search task independently from spatial attention and feature-based attention; this provides support for the nonspecific enhancement hypothesis of temporal attention. © 2016 Society for Psychophysiological Research.
Age-related declines of stability in visual perceptual learning.
Chang, Li-Hung; Shibata, Kazuhisa; Andersen, George J; Sasaki, Yuka; Watanabe, Takeo
2014-12-15
One of the biggest questions in learning is how a system can resolve the plasticity and stability dilemma. Specifically, the learning system needs to have not only a high capability of learning new items (plasticity) but also a high stability to retain important items or processing in the system by preventing unimportant or irrelevant information from being learned. This dilemma should hold true for visual perceptual learning (VPL), which is defined as a long-term increase in performance on a visual task as a result of visual experience. Although it is well known that aging influences learning, the effect of aging on the stability and plasticity of the visual system is unclear. To address the question, we asked older and younger adults to perform a task while a task-irrelevant feature was merely exposed. We found that older individuals learned the task-irrelevant features that younger individuals did not learn, both the features that were sufficiently strong for younger individuals to suppress and the features that were too weak for younger individuals to learn. At the same time, there was no plasticity reduction in older individuals within the task tested. These results suggest that the older visual system is less stable to unimportant information than the younger visual system. A learning problem with older individuals may be due to a decrease in stability rather than a decrease in plasticity, at least in VPL. Copyright © 2014 Elsevier Ltd. All rights reserved.
Enhanced HMAX model with feedforward feature learning for multiclass categorization.
Li, Yinlin; Wu, Wei; Zhang, Bo; Li, Fengfu
2015-01-01
In recent years, the interdisciplinary research between neuroscience and computer vision has promoted the development in both fields. Many biologically inspired visual models are proposed, and among them, the Hierarchical Max-pooling model (HMAX) is a feedforward model mimicking the structures and functions of V1 to posterior inferotemporal (PIT) layer of the primate visual cortex, which could generate a series of position- and scale- invariant features. However, it could be improved with attention modulation and memory processing, which are two important properties of the primate visual cortex. Thus, in this paper, based on recent biological research on the primate visual cortex, we still mimic the first 100-150 ms of visual cognition to enhance the HMAX model, which mainly focuses on the unsupervised feedforward feature learning process. The main modifications are as follows: (1) To mimic the attention modulation mechanism of V1 layer, a bottom-up saliency map is computed in the S1 layer of the HMAX model, which can support the initial feature extraction for memory processing; (2) To mimic the learning, clustering and short-term memory to long-term memory conversion abilities of V2 and IT, an unsupervised iterative clustering method is used to learn clusters with multiscale middle level patches, which are taken as long-term memory; (3) Inspired by the multiple feature encoding mode of the primate visual cortex, information including color, orientation, and spatial position are encoded in different layers of the HMAX model progressively. By adding a softmax layer at the top of the model, multiclass categorization experiments can be conducted, and the results on Caltech101 show that the enhanced model with a smaller memory size exhibits higher accuracy than the original HMAX model, and could also achieve better accuracy than other unsupervised feature learning methods in multiclass categorization task.
Where's Wally: the influence of visual salience on referring expression generation.
Clarke, Alasdair D F; Elsner, Micha; Rohde, Hannah
2013-01-01
REFERRING EXPRESSION GENERATION (REG) PRESENTS THE CONVERSE PROBLEM TO VISUAL SEARCH: given a scene and a specified target, how does one generate a description which would allow somebody else to quickly and accurately locate the target?Previous work in psycholinguistics and natural language processing has failed to find an important and integrated role for vision in this task. That previous work, which relies largely on simple scenes, tends to treat vision as a pre-process for extracting feature categories that are relevant to disambiguation. However, the visual search literature suggests that some descriptions are better than others at enabling listeners to search efficiently within complex stimuli. This paper presents a study testing whether participants are sensitive to visual features that allow them to compose such "good" descriptions. Our results show that visual properties (salience, clutter, area, and distance) influence REG for targets embedded in images from the Where's Wally? books. Referring expressions for large targets are shorter than those for smaller targets, and expressions about targets in highly cluttered scenes use more words. We also find that participants are more likely to mention non-target landmarks that are large, salient, and in close proximity to the target. These findings identify a key role for visual salience in language production decisions and highlight the importance of scene complexity for REG.
Robust Video Stabilization Using Particle Keypoint Update and l1-Optimized Camera Path
Jeon, Semi; Yoon, Inhye; Jang, Jinbeum; Yang, Seungji; Kim, Jisung; Paik, Joonki
2017-01-01
Acquisition of stabilized video is an important issue for various type of digital cameras. This paper presents an adaptive camera path estimation method using robust feature detection to remove shaky artifacts in a video. The proposed algorithm consists of three steps: (i) robust feature detection using particle keypoints between adjacent frames; (ii) camera path estimation and smoothing; and (iii) rendering to reconstruct a stabilized video. As a result, the proposed algorithm can estimate the optimal homography by redefining important feature points in the flat region using particle keypoints. In addition, stabilized frames with less holes can be generated from the optimal, adaptive camera path that minimizes a temporal total variation (TV). The proposed video stabilization method is suitable for enhancing the visual quality for various portable cameras and can be applied to robot vision, driving assistant systems, and visual surveillance systems. PMID:28208622
Effects of facial emotion recognition remediation on visual scanning of novel face stimuli.
Marsh, Pamela J; Luckett, Gemma; Russell, Tamara; Coltheart, Max; Green, Melissa J
2012-11-01
Previous research shows that emotion recognition in schizophrenia can be improved with targeted remediation that draws attention to important facial features (eyes, nose, mouth). Moreover, the effects of training have been shown to last for up to one month after training. The aim of this study was to investigate whether improved emotion recognition of novel faces is associated with concomitant changes in visual scanning of these same novel facial expressions. Thirty-nine participants with schizophrenia received emotion recognition training using Ekman's Micro-Expression Training Tool (METT), with emotion recognition and visual scanpath (VSP) recordings to face stimuli collected simultaneously. Baseline ratings of interpersonal and cognitive functioning were also collected from all participants. Post-METT training, participants showed changes in foveal attention to the features of facial expressions of emotion not used in METT training, which were generally consistent with the information about important features from the METT. In particular, there were changes in how participants looked at the features of facial expressions of emotion surprise, disgust, fear, happiness, and neutral, demonstrating that improved emotion recognition is paralleled by changes in the way participants with schizophrenia viewed novel facial expressions of emotion. However, there were overall decreases in foveal attention to sad and neutral faces that indicate more intensive instruction might be needed for these faces during training. Most importantly, the evidence shows that participant gender may affect training outcomes. Copyright © 2012 Elsevier B.V. All rights reserved.
Discovering and visualizing indirect associations between biomedical concepts
Tsuruoka, Yoshimasa; Miwa, Makoto; Hamamoto, Kaisei; Tsujii, Jun'ichi; Ananiadou, Sophia
2011-01-01
Motivation: Discovering useful associations between biomedical concepts has been one of the main goals in biomedical text-mining, and understanding their biomedical contexts is crucial in the discovery process. Hence, we need a text-mining system that helps users explore various types of (possibly hidden) associations in an easy and comprehensible manner. Results: This article describes FACTA+, a real-time text-mining system for finding and visualizing indirect associations between biomedical concepts from MEDLINE abstracts. The system can be used as a text search engine like PubMed with additional features to help users discover and visualize indirect associations between important biomedical concepts such as genes, diseases and chemical compounds. FACTA+ inherits all functionality from its predecessor, FACTA, and extends it by incorporating three new features: (i) detecting biomolecular events in text using a machine learning model, (ii) discovering hidden associations using co-occurrence statistics between concepts, and (iii) visualizing associations to improve the interpretability of the output. To the best of our knowledge, FACTA+ is the first real-time web application that offers the functionality of finding concepts involving biomolecular events and visualizing indirect associations of concepts with both their categories and importance. Availability: FACTA+ is available as a web application at http://refine1-nactem.mc.man.ac.uk/facta/, and its visualizer is available at http://refine1-nactem.mc.man.ac.uk/facta-visualizer/. Contact: tsuruoka@jaist.ac.jp PMID:21685059
Visual Communication in PowerPoint Presentations in Applied Linguistics
ERIC Educational Resources Information Center
Kmalvand, Ayad
2014-01-01
PowerPoint knowledge presentation as a digital genre has established itself as the main software by which the findings of theses are disseminated in the academic settings. Although the importance of PowerPoint presentations is typically realized in academic settings like lectures, conferences, and seminars, the study of the visual features of…
Crowding with conjunctions of simple features.
Põder, Endel; Wagemans, Johan
2007-11-20
Several recent studies have related crowding with the feature integration stage in visual processing. In order to understand the mechanisms involved in this stage, it is important to use stimuli that have several features to integrate, and these features should be clearly defined and measurable. In this study, Gabor patches were used as target and distractor stimuli. The stimuli differed in three dimensions: spatial frequency, orientation, and color. A group of 3, 5, or 7 objects was presented briefly at 4 deg eccentricity of the visual field. The observers' task was to identify the object located in the center of the group. A strong effect of the number of distractors was observed, consistent with various spatial pooling models. The analysis of incorrect responses revealed that these were a mix of feature errors and mislocalizations of the target object. Feature errors were not purely random, but biased by the features of distractors. We propose a simple feature integration model that predicts most of the observed regularities.
Pictures Speak Louder than Words in ESP, Too!
ERIC Educational Resources Information Center
Erfani, Seyyed Mahdi
2012-01-01
While integrating visual features can be among the most important characteristics of English language textbooks, reviewing the current locally-produced English for Specific Purposes (ESP) ones reveals that they lack such a feature. Enjoying a rich theoretical background including Paivio's dual coding theory as well as Sert's educational semiotics,…
Why It Is Important to Encourage Practicing Professionals to become Authors
ERIC Educational Resources Information Center
Erin, Jane N.
2016-01-01
In February of 2009, the "Journal of Visual Impairment & Blindness" ("JVIB") published the first articles under the heading of Practice Perspectives. These articles featured work by three professionals who described how they taught reading to children or adults. The feature reflects the commitment of the American Foundation…
Amano, Kaoru; Shibata, Kazuhisa; Kawato, Mitsuo; Sasaki, Yuka; Watanabe, Takeo
2016-01-01
Summary Associative learning is an essential brain process where the contingency of different items increases after training. Associative learning has been found to occur in many brain regions [1-4]. However, there is no clear evidence that associative learning of visual features occurs in early visual areas, although a number of studies have indicated that learning of a single visual feature (perceptual learning) involves early visual areas [5-8]. Here, via decoded functional magnetic resonance imaging (fMRI) neurofeedback, termed “DecNef” [9], we tested whether associative learning of color and orientation can be created in early visual areas. During three days' training, DecNef induced fMRI signal patterns that corresponded to a specific target color (red) mostly in early visual areas while a vertical achromatic grating was physically presented to participants. As a result, participants came to perceive “red” significantly more frequently than “green” in an achromatic vertical grating. This effect was also observed 3 to 5 months after the training. These results suggest that long-term associative learning of the two different visual features such as color and orientation was created most likely in early visual areas. This newly extended technique that induces associative learning is called “A(ssociative)-DecNef” and may be used as an important tool for understanding and modifying brain functions, since associations are fundamental and ubiquitous functions in the brain. PMID:27374335
Amano, Kaoru; Shibata, Kazuhisa; Kawato, Mitsuo; Sasaki, Yuka; Watanabe, Takeo
2016-07-25
Associative learning is an essential brain process where the contingency of different items increases after training. Associative learning has been found to occur in many brain regions [1-4]. However, there is no clear evidence that associative learning of visual features occurs in early visual areas, although a number of studies have indicated that learning of a single visual feature (perceptual learning) involves early visual areas [5-8]. Here, via decoded fMRI neurofeedback termed "DecNef" [9], we tested whether associative learning of orientation and color can be created in early visual areas. During 3 days of training, DecNef induced fMRI signal patterns that corresponded to a specific target color (red) mostly in early visual areas while a vertical achromatic grating was physically presented to participants. As a result, participants came to perceive "red" significantly more frequently than "green" in an achromatic vertical grating. This effect was also observed 3-5 months after the training. These results suggest that long-term associative learning of two different visual features such as orientation and color was created, most likely in early visual areas. This newly extended technique that induces associative learning is called "A-DecNef," and it may be used as an important tool for understanding and modifying brain functions because associations are fundamental and ubiquitous functions in the brain. Copyright © 2016 Elsevier Ltd. All rights reserved.
Visual observations over oceans
NASA Technical Reports Server (NTRS)
Terry, R. D.
1979-01-01
Important factors in locating, identifying, describing, and photographing ocean features from space are presented. On the basis of crew comments and other findings, the following recommendations can be made for Earth observations on Space Shuttle missions: (1) flyover exercises must include observations and photography of both temperate and tropical/subtropical waters; (2) sunglint must be included during some observations of ocean features; (3) imaging remote sensors should be used together with conventional photographic systems to document visual observations; (4) greater consideration must be given to scheduling earth observation targets likely to be obscured by clouds; and (5) an annotated photographic compilation of ocean features can be used as a training aid before the mission and as a reference book during space flight.
Tiled vector data model for the geographical features of symbolized maps.
Li, Lin; Hu, Wei; Zhu, Haihong; Li, You; Zhang, Hang
2017-01-01
Electronic maps (E-maps) provide people with convenience in real-world space. Although web map services can display maps on screens, a more important function is their ability to access geographical features. An E-map that is based on raster tiles is inferior to vector tiles in terms of interactive ability because vector maps provide a convenient and effective method to access and manipulate web map features. However, the critical issue regarding rendering tiled vector maps is that geographical features that are rendered in the form of map symbols via vector tiles may cause visual discontinuities, such as graphic conflicts and losses of data around the borders of tiles, which likely represent the main obstacles to exploring vector map tiles on the web. This paper proposes a tiled vector data model for geographical features in symbolized maps that considers the relationships among geographical features, symbol representations and map renderings. This model presents a method to tailor geographical features in terms of map symbols and 'addition' (join) operations on the following two levels: geographical features and map features. Thus, these maps can resolve the visual discontinuity problem based on the proposed model without weakening the interactivity of vector maps. The proposed model is validated by two map data sets, and the results demonstrate that the rendered (symbolized) web maps present smooth visual continuity.
Differentiating Emotional Processing and Attention in Psychopathy with Functional Neuroimaging
Anderson, Nathaniel E.; Steele, Vaughn R.; Maurer, J. Michael; Rao, Vikram; Koenigs, Michael R.; Decety, Jean; Kosson, David; Calhoun, Vince; Kiehl, Kent A.
2017-01-01
Psychopathic individuals are often characterized by emotional processing deficits, and recent research has examined the specific contexts and cognitive mechanisms that underlie these abnormalities. Some evidence suggests that abnormal features of attention are fundamental to psychopaths’ emotional deficits, but few studies have demonstrated the neural underpinnings responsible for such effects. Here, we use functional neuroimaging to examine attention-emotion interactions among incarcerated individuals (n=120) evaluated for psychopathic traits using the Hare Psychopathy Checklist – Revised (PCL-R). Using a task designed to manipulate attention to emotional features of visual stimuli, we demonstrate effects representing implicit emotional processing, explicit emotional processing, attention-facilitated emotional processing, and vigilance for emotional content. Results confirm the importance of considering mechanisms of attention when evaluating emotional processing differences related to psychopathic traits. The affective-interpersonal features of psychopathy (PCL-R Factor 1) were associated with relatively lower emotion-dependent augmentation of activity in visual processing areas during implicit emotional processing while antisocial-lifestyle features (PCL-R Factor 2) were associated with elevated activity in the amygdala and related salience-network regions. During explicit emotional processing psychopathic traits were associated with upregulation in the medial prefrontal cortex, insula, and superior frontal regions. Isolating the impact of explicit attention to emotional content, only Factor 1 was related to upregulation of activity in the visual processing stream, which was accompanied by increased activity in the angular gyrus. These effects highlight some important mechanisms underlying abnormal features of attention and emotional processing that accompany psychopathic traits. PMID:28092055
Differentiating emotional processing and attention in psychopathy with functional neuroimaging.
Anderson, Nathaniel E; Steele, Vaughn R; Maurer, J Michael; Rao, Vikram; Koenigs, Michael R; Decety, Jean; Kosson, David S; Calhoun, Vince D; Kiehl, Kent A
2017-06-01
Individuals with psychopathy are often characterized by emotional processing deficits, and recent research has examined the specific contexts and cognitive mechanisms that underlie these abnormalities. Some evidence suggests that abnormal features of attention are fundamental to emotional deficits in persons with psychopathy, but few studies have demonstrated the neural underpinnings responsible for such effects. Here, we use functional neuroimaging to examine attention-emotion interactions among incarcerated individuals (n = 120) evaluated for psychopathic traits using the Hare Psychopathy Checklist-Revised (PCL-R). Using a task designed to manipulate attention to emotional features of visual stimuli, we demonstrate effects representing implicit emotional processing, explicit emotional processing, attention-facilitated emotional processing, and vigilance for emotional content. Results confirm the importance of considering mechanisms of attention when evaluating emotional processing differences related to psychopathic traits. The affective-interpersonal features of psychopathy (PCL-R Factor 1) were associated with relatively lower emotion-dependent augmentation of activity in visual processing areas during implicit emotional processing, while antisocial-lifestyle features (PCL-R Factor 2) were associated with elevated activity in the amygdala and related salience network regions. During explicit emotional processing, psychopathic traits were associated with upregulation in the medial prefrontal cortex, insula, and superior frontal regions. Isolating the impact of explicit attention to emotional content, only Factor 1 was related to upregulation of activity in the visual processing stream, which was accompanied by increased activity in the angular gyrus. These effects highlight some important mechanisms underlying abnormal features of attention and emotional processing that accompany psychopathic traits.
Research progress on Drosophila visual cognition in China.
Guo, AiKe; Zhang, Ke; Peng, YueQin; Xi, Wang
2010-03-01
Visual cognition, as one of the fundamental aspects of cognitive neuroscience, is generally associated with high-order brain functions in animals and human. Drosophila, as a model organism, shares certain features of visual cognition in common with mammals at the genetic, molecular, cellular, and even higher behavioral levels. From learning and memory to decision making, Drosophila covers a broad spectrum of higher cognitive behaviors beyond what we had expected. Armed with powerful tools of genetic manipulation in Drosophila, an increasing number of studies have been conducted in order to elucidate the neural circuit mechanisms underlying these cognitive behaviors from a genes-brain-behavior perspective. The goal of this review is to integrate the most important studies on visual cognition in Drosophila carried out in mainland China during the last decade into a body of knowledge encompassing both the basic neural operations and circuitry of higher brain function in Drosophila. Here, we consider a series of the higher cognitive behaviors beyond learning and memory, such as visual pattern recognition, feature and context generalization, different feature memory traces, salience-based decision, attention-like behavior, and cross-modal leaning and memory. We discuss the possible general gain-gating mechanism implementing by dopamine - mushroom body circuit in fly's visual cognition. We hope that our brief review on this aspect will inspire further study on visual cognition in flies, or even beyond.
Emerging category representation in the visual forebrain hierarchy of pigeons (Columba livia).
Azizi, Amir Hossein; Pusch, Roland; Koenen, Charlotte; Klatt, Sebastian; Bröcker, Franziska; Thiele, Samuel; Kellermann, Janosch; Güntürkün, Onur; Cheng, Sen
2018-06-06
Recognizing and categorizing visual stimuli are cognitive functions vital for survival, and an important feature of visual systems in primates as well as in birds. Visual stimuli are processed along the ventral visual pathway. At every stage in the hierarchy, neurons respond selectively to more complex features, transforming the population representation of the stimuli. It is therefore easier to read-out category information in higher visual areas. While explicit category representations have been observed in the primate brain, less is known on equivalent processes in the avian brain. Even though their brain anatomies are radically different, it has been hypothesized that visual object representations are comparable across mammals and birds. In the present study, we investigated category representations in the pigeon visual forebrain using recordings from single cells responding to photographs of real-world objects. Using a linear classifier, we found that the population activity in the visual associative area mesopallium ventrolaterale (MVL) distinguishes between animate and inanimate objects, although this distinction is not required by the task. By contrast, a population of cells in the entopallium, a region that is lower in the hierarchy of visual areas and that is related to the primate extrastriate cortex, lacked this information. A model that pools responses of simple cells, which function as edge detectors, can account for the animate vs. inanimate categorization in the MVL, but performance in the model is based on different features than in MVL. Therefore, processing in MVL cells is very likely more abstract than simple computations on the output of edge detectors. Copyright © 2018. Published by Elsevier B.V.
Can Dynamic Visualizations with Variable Control Enhance the Acquisition of Intuitive Knowledge?
ERIC Educational Resources Information Center
Wichmann, Astrid; Timpe, Sebastian
2015-01-01
An important feature of inquiry learning is to take part in science practices including exploring variables and testing hypotheses. Computer-based dynamic visualizations have the potential to open up various exploration possibilities depending on the level of learner control. It is assumed that variable control, e.g., by changing parameters of a…
Neuronal Representation of Ultraviolet Visual Stimuli in Mouse Primary Visual Cortex
Tan, Zhongchao; Sun, Wenzhi; Chen, Tsai-Wen; Kim, Douglas; Ji, Na
2015-01-01
The mouse has become an important model for understanding the neural basis of visual perception. Although it has long been known that mouse lens transmits ultraviolet (UV) light and mouse opsins have absorption in the UV band, little is known about how UV visual information is processed in the mouse brain. Using a custom UV stimulation system and in vivo calcium imaging, we characterized the feature selectivity of layer 2/3 neurons in mouse primary visual cortex (V1). In adult mice, a comparable percentage of the neuronal population responds to UV and visible stimuli, with similar pattern selectivity and receptive field properties. In young mice, the orientation selectivity for UV stimuli increased steadily during development, but not direction selectivity. Our results suggest that, by expanding the spectral window through which the mouse can acquire visual information, UV sensitivity provides an important component for mouse vision. PMID:26219604
Functional MRI evidence for the importance of visual short-term memory in logographic reading.
Koyama, Maki S; Stein, John F; Stoodley, Catherine J; Hansen, Peter C
2011-02-01
Logographic symbols are visually complex, and thus children's abilities for visual short-term memory (VSTM) predict their reading competence in logographic systems. In the present study, we investigated the importance of VSTM in logographic reading in adults, both behaviorally and by means of fMRI. Outside the scanner, VSTM predicted logographic Kanji reading in native Japanese adults (n=45), a finding consistent with previous observations in Japanese children. In the scanner, participants (n=15) were asked to perform a visual one-back task. For this fMRI experiment, we took advantage of the unique linguistic characteristic of the Japanese writing system, whereby syllabic Kana and logographic Kanji can share the same sound and meaning, but differ only in the complexity of their visual features. Kanji elicited greater activation than Kana in the cerebellum and two regions associated with VSTM, the lateral occipital complex and the superior intraparietal sulcus, bilaterally. The same regions elicited the highest activation during the control condition (an unfamiliar, unpronounceable script to the participants), presumably due to the increased VSTM demands for processing the control script. In addition, individual differences in VSTM performance (outside the scanner) significantly predicted blood oxygen level-dependent signal changes in the identified VSTM regions, during the Kanji and control conditions, but not during the Kana condition. VSTM appears to play an important role in reading logographic words, even in skilled adults, as evidenced at the behavioral and neural level, most likely due to the increased VSTM/visual attention demands necessary for processing complex visual features inherent in logographic symbols. European Journal of Neuroscience © 2010 Federation of European Neuroscience Societies and Blackwell Publishing Ltd. No claim to original US government works.
NASA Astrophysics Data System (ADS)
Jin, Xin; Jiang, Qian; Yao, Shaowen; Zhou, Dongming; Nie, Rencan; Lee, Shin-Jye; He, Kangjian
2018-01-01
In order to promote the performance of infrared and visual image fusion and provide better visual effects, this paper proposes a hybrid fusion method for infrared and visual image by the combination of discrete stationary wavelet transform (DSWT), discrete cosine transform (DCT) and local spatial frequency (LSF). The proposed method has three key processing steps. Firstly, DSWT is employed to decompose the important features of the source image into a series of sub-images with different levels and spatial frequencies. Secondly, DCT is used to separate the significant details of the sub-images according to the energy of different frequencies. Thirdly, LSF is applied to enhance the regional features of DCT coefficients, and it can be helpful and useful for image feature extraction. Some frequently-used image fusion methods and evaluation metrics are employed to evaluate the validity of the proposed method. The experiments indicate that the proposed method can achieve good fusion effect, and it is more efficient than other conventional image fusion methods.
Potts, Geoffrey F; Wood, Susan M; Kothmann, Delia; Martin, Laura E
2008-10-21
Attention directs limited-capacity information processing resources to a subset of available perceptual representations. The mechanisms by which attention selects task-relevant representations for preferential processing are not fully known. Triesman and Gelade's [Triesman, A., Gelade, G., 1980. A feature integration theory of attention. Cognit. Psychol. 12, 97-136.] influential attention model posits that simple features are processed preattentively, in parallel, but that attention is required to serially conjoin multiple features into an object representation. Event-related potentials have provided evidence for this model showing parallel processing of perceptual features in the posterior Selection Negativity (SN) and serial, hierarchic processing of feature conjunctions in the Frontal Selection Positivity (FSP). Most prior studies have been done on conjunctions within one sensory modality while many real-world objects have multimodal features. It is not known if the same neural systems of posterior parallel processing of simple features and frontal serial processing of feature conjunctions seen within a sensory modality also operate on conjunctions between modalities. The current study used ERPs and simultaneously presented auditory and visual stimuli in three task conditions: Attend Auditory (auditory feature determines the target, visual features are irrelevant), Attend Visual (visual features relevant, auditory irrelevant), and Attend Conjunction (target defined by the co-occurrence of an auditory and a visual feature). In the Attend Conjunction condition when the auditory but not the visual feature was a target there was an SN over auditory cortex, when the visual but not auditory stimulus was a target there was an SN over visual cortex, and when both auditory and visual stimuli were targets (i.e. conjunction target) there were SNs over both auditory and visual cortex, indicating parallel processing of the simple features within each modality. In contrast, an FSP was present when either the visual only or both auditory and visual features were targets, but not when only the auditory stimulus was a target, indicating that the conjunction target determination was evaluated serially and hierarchically with visual information taking precedence. This indicates that the detection of a target defined by audio-visual conjunction is achieved via the same mechanism as within a single perceptual modality, through separate, parallel processing of the auditory and visual features and serial processing of the feature conjunction elements, rather than by evaluation of a fused multimodal percept.
Feature-Selective Attentional Modulations in Human Frontoparietal Cortex.
Ester, Edward F; Sutterer, David W; Serences, John T; Awh, Edward
2016-08-03
Control over visual selection has long been framed in terms of a dichotomy between "source" and "site," where top-down feedback signals originating in frontoparietal cortical areas modulate or bias sensory processing in posterior visual areas. This distinction is motivated in part by observations that frontoparietal cortical areas encode task-level variables (e.g., what stimulus is currently relevant or what motor outputs are appropriate), while posterior sensory areas encode continuous or analog feature representations. Here, we present evidence that challenges this distinction. We used fMRI, a roving searchlight analysis, and an inverted encoding model to examine representations of an elementary feature property (orientation) across the entire human cortical sheet while participants attended either the orientation or luminance of a peripheral grating. Orientation-selective representations were present in a multitude of visual, parietal, and prefrontal cortical areas, including portions of the medial occipital cortex, the lateral parietal cortex, and the superior precentral sulcus (thought to contain the human homolog of the macaque frontal eye fields). Additionally, representations in many-but not all-of these regions were stronger when participants were instructed to attend orientation relative to luminance. Collectively, these findings challenge models that posit a strict segregation between sources and sites of attentional control on the basis of representational properties by demonstrating that simple feature values are encoded by cortical regions throughout the visual processing hierarchy, and that representations in many of these areas are modulated by attention. Influential models of visual attention posit a distinction between top-down control and bottom-up sensory processing networks. These models are motivated in part by demonstrations showing that frontoparietal cortical areas associated with top-down control represent abstract or categorical stimulus information, while visual areas encode parametric feature information. Here, we show that multivariate activity in human visual, parietal, and frontal cortical areas encode representations of a simple feature property (orientation). Moreover, representations in several (though not all) of these areas were modulated by feature-based attention in a similar fashion. These results provide an important challenge to models that posit dissociable top-down control and sensory processing networks on the basis of representational properties. Copyright © 2016 the authors 0270-6474/16/368188-12$15.00/0.
Visual Cortical Entrainment to Motion and Categorical Speech Features during Silent Lipreading
O’Sullivan, Aisling E.; Crosse, Michael J.; Di Liberto, Giovanni M.; Lalor, Edmund C.
2017-01-01
Speech is a multisensory percept, comprising an auditory and visual component. While the content and processing pathways of audio speech have been well characterized, the visual component is less well understood. In this work, we expand current methodologies using system identification to introduce a framework that facilitates the study of visual speech in its natural, continuous form. Specifically, we use models based on the unheard acoustic envelope (E), the motion signal (M) and categorical visual speech features (V) to predict EEG activity during silent lipreading. Our results show that each of these models performs similarly at predicting EEG in visual regions and that respective combinations of the individual models (EV, MV, EM and EMV) provide an improved prediction of the neural activity over their constituent models. In comparing these different combinations, we find that the model incorporating all three types of features (EMV) outperforms the individual models, as well as both the EV and MV models, while it performs similarly to the EM model. Importantly, EM does not outperform EV and MV, which, considering the higher dimensionality of the V model, suggests that more data is needed to clarify this finding. Nevertheless, the performance of EMV, and comparisons of the subject performances for the three individual models, provides further evidence to suggest that visual regions are involved in both low-level processing of stimulus dynamics and categorical speech perception. This framework may prove useful for investigating modality-specific processing of visual speech under naturalistic conditions. PMID:28123363
The OpenEarth Framework (OEF) for the 3D Visualization of Integrated Earth Science Data
NASA Astrophysics Data System (ADS)
Nadeau, David; Moreland, John; Baru, Chaitan; Crosby, Chris
2010-05-01
Data integration is increasingly important as we strive to combine data from disparate sources and assemble better models of the complex processes operating at the Earth's surface and within its interior. These data are often large, multi-dimensional, and subject to differing conventions for data structures, file formats, coordinate spaces, and units of measure. When visualized, these data require differing, and sometimes conflicting, conventions for visual representations, dimensionality, symbology, and interaction. All of this makes the visualization of integrated Earth science data particularly difficult. The OpenEarth Framework (OEF) is an open-source data integration and visualization suite of applications and libraries being developed by the GEON project at the University of California, San Diego, USA. Funded by the NSF, the project is leveraging virtual globe technology from NASA's WorldWind to create interactive 3D visualization tools that combine and layer data from a wide variety of sources to create a holistic view of features at, above, and beneath the Earth's surface. The OEF architecture is open, cross-platform, modular, and based upon Java. The OEF's modular approach to software architecture yields an array of mix-and-match software components for assembling custom applications. Available modules support file format handling, web service communications, data management, user interaction, and 3D visualization. File parsers handle a variety of formal and de facto standard file formats used in the field. Each one imports data into a general-purpose common data model supporting multidimensional regular and irregular grids, topography, feature geometry, and more. Data within these data models may be manipulated, combined, reprojected, and visualized. The OEF's visualization features support a variety of conventional and new visualization techniques for looking at topography, tomography, point clouds, imagery, maps, and feature geometry. 3D data such as seismic tomography may be sliced by multiple oriented cutting planes and isosurfaced to create 3D skins that trace feature boundaries within the data. Topography may be overlaid with satellite imagery, maps, and data such as gravity and magnetics measurements. Multiple data sets may be visualized simultaneously using overlapping layers within a common 3D coordinate space. Data management within the OEF handles and hides the inevitable quirks of differing file formats, web protocols, storage structures, coordinate spaces, and metadata representations. Heuristics are used to extract necessary metadata used to guide data and visual operations. Derived data representations are computed to better support fluid interaction and visualization while the original data is left unchanged in its original form. Data is cached for better memory and network efficiency, and all visualization makes use of 3D graphics hardware support found on today's computers. The OpenEarth Framework project is currently prototyping the software for use in the visualization, and integration of continental scale geophysical data being produced by EarthScope-related research in the Western US. The OEF is providing researchers with new ways to display and interrogate their data and is anticipated to be a valuable tool for future EarthScope-related research.
Electrophysiological evidence for biased competition in V1 for fear expressions.
West, Greg L; Anderson, Adam A K; Ferber, Susanne; Pratt, Jay
2011-11-01
When multiple stimuli are concurrently displayed in the visual field, they must compete for neural representation at the processing expense of their contemporaries. This biased competition is thought to begin as early as primary visual cortex, and can be driven by salient low-level stimulus features. Stimuli important for an organism's survival, such as facial expressions signaling environmental threat, might be similarly prioritized at this early stage of visual processing. In the present study, we used ERP recordings from striate cortex to examine whether fear expressions can bias the competition for neural representation at the earliest stage of retinotopic visuo-cortical processing when in direct competition with concurrently presented visual information of neutral valence. We found that within 50 msec after stimulus onset, information processing in primary visual cortex is biased in favor of perceptual representations of fear at the expense of competing visual information (Experiment 1). Additional experiments confirmed that the facial display's emotional content rather than low-level features is responsible for this prioritization in V1 (Experiment 2), and that this competition is reliant on a face's upright canonical orientation (Experiment 3). These results suggest that complex stimuli important for an organism's survival can indeed be prioritized at the earliest stage of cortical processing at the expense of competing information, with competition possibly beginning before encoding in V1.
Genome U-Plot: a whole genome visualization.
Gaitatzes, Athanasios; Johnson, Sarah H; Smadbeck, James B; Vasmatzis, George
2018-05-15
The ability to produce and analyze whole genome sequencing (WGS) data from samples with structural variations (SV) generated the need to visualize such abnormalities in simplified plots. Conventional two-dimensional representations of WGS data frequently use either circular or linear layouts. There are several diverse advantages regarding both these representations, but their major disadvantage is that they do not use the two-dimensional space very efficiently. We propose a layout, termed the Genome U-Plot, which spreads the chromosomes on a two-dimensional surface and essentially quadruples the spatial resolution. We present the Genome U-Plot for producing clear and intuitive graphs that allows researchers to generate novel insights and hypotheses by visualizing SVs such as deletions, amplifications, and chromoanagenesis events. The main features of the Genome U-Plot are its layered layout, its high spatial resolution and its improved aesthetic qualities. We compare conventional visualization schemas with the Genome U-Plot using visualization metrics such as number of line crossings and crossing angle resolution measures. Based on our metrics, we improve the readability of the resulting graph by at least 2-fold, making apparent important features and making it easy to identify important genomic changes. A whole genome visualization tool with high spatial resolution and improved aesthetic qualities. An implementation and documentation of the Genome U-Plot is publicly available at https://github.com/gaitat/GenomeUPlot. vasmatzis.george@mayo.edu. Supplementary data are available at Bioinformatics online.
[Three-dimensional morphological modeling and visualization of wheat root system].
Tan, Feng; Tang, Liang; Hu, Jun-Cheng; Jiang, Hai-Yan; Cao, Wei-Xing; Zhu, Yan
2011-01-01
Crop three-dimensional (3D) morphological modeling and visualization is an important part of digital plant study. This paper aimed to develop a 3D morphological model of wheat root system based on the parameters of wheat root morphological features, and to realize the visualization of wheat root growth. According to the framework of visualization technology for wheat root growth, a 3D visualization model of wheat root axis, including root axis growth model, branch geometric model, and root axis curve model, was developed firstly. Then, by integrating root topology, the corresponding pixel was determined, and the whole wheat root system was three-dimensionally re-constructed by using the morphological feature parameters in the root morphological model. Finally, based on the platform of OpenGL, and by integrating the technologies of texture mapping, lighting rendering, and collision detection, the 3D visualization of wheat root growth was realized. The 3D output of wheat root system from the model was vivid, which could realize the 3D root system visualization of different wheat cultivars under different water regimes and nitrogen application rates. This study could lay a technical foundation for further development of an integral visualization system of wheat plant.
Hout, Michael C; Goldinger, Stephen D
2015-01-01
When people look for things in the environment, they use target templates-mental representations of the objects they are attempting to locate-to guide attention and to assess incoming visual input as potential targets. However, unlike laboratory participants, searchers in the real world rarely have perfect knowledge regarding the potential appearance of targets. In seven experiments, we examined how the precision of target templates affects the ability to conduct visual search. Specifically, we degraded template precision in two ways: 1) by contaminating searchers' templates with inaccurate features, and 2) by introducing extraneous features to the template that were unhelpful. We recorded eye movements to allow inferences regarding the relative extents to which attentional guidance and decision-making are hindered by template imprecision. Our findings support a dual-function theory of the target template and highlight the importance of examining template precision in visual search.
Hout, Michael C.; Goldinger, Stephen D.
2014-01-01
When people look for things in the environment, they use target templates—mental representations of the objects they are attempting to locate—to guide attention and to assess incoming visual input as potential targets. However, unlike laboratory participants, searchers in the real world rarely have perfect knowledge regarding the potential appearance of targets. In seven experiments, we examined how the precision of target templates affects the ability to conduct visual search. Specifically, we degraded template precision in two ways: 1) by contaminating searchers’ templates with inaccurate features, and 2) by introducing extraneous features to the template that were unhelpful. We recorded eye movements to allow inferences regarding the relative extents to which attentional guidance and decision-making are hindered by template imprecision. Our findings support a dual-function theory of the target template and highlight the importance of examining template precision in visual search. PMID:25214306
Igloo-Plot: a tool for visualization of multidimensional datasets.
Kuntal, Bhusan K; Ghosh, Tarini Shankar; Mande, Sharmila S
2014-01-01
Advances in science and technology have resulted in an exponential growth of multivariate (or multi-dimensional) datasets which are being generated from various research areas especially in the domain of biological sciences. Visualization and analysis of such data (with the objective of uncovering the hidden patterns therein) is an important and challenging task. We present a tool, called Igloo-Plot, for efficient visualization of multidimensional datasets. The tool addresses some of the key limitations of contemporary multivariate visualization and analysis tools. The visualization layout, not only facilitates an easy identification of clusters of data-points having similar feature compositions, but also the 'marker features' specific to each of these clusters. The applicability of the various functionalities implemented herein is demonstrated using several well studied multi-dimensional datasets. Igloo-Plot is expected to be a valuable resource for researchers working in multivariate data mining studies. Igloo-Plot is available for download from: http://metagenomics.atc.tcs.com/IglooPlot/. Copyright © 2014 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rao, D.V.; Zhong, Z.; Akatsuka, T.
Images of the cork used for wine and other bottles are visualized with the use of diffraction-enhanced imaging (DEI) technique. Present experimental studies allowed us to identify the cracks, holes, porosity, and importance of soft-matter (soft-material) and associated biology by visualization of the embedded internal complex features of the biological material such as cork and its microstructure. Highlighted the contrast mechanisms above and below the K-absorption edge of iodine and studied the attenuation through a combination of weakly and strongly attenuating materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donepudi, R.; Cesareo, R; Brunetti, A
Images of the cork used for wine and other bottles are visualized with the use of diffraction-enhanced imaging (DEI) technique. Present experimental studies allowed us to identify the cracks, holes, porosity, and importance of soft-matter (soft-material) and associated biology by visualization of the embedded internal complex features of the biological material such as cork and its microstructure. Highlighted the contrast mechanisms above and below the K-absorption edge of iodine and studied the attenuation through a combination of weakly and strongly attenuating materials.
Taylor, Kirsten I.; Devereux, Barry J.; Acres, Kadia; Randall, Billi; Tyler, Lorraine K.
2013-01-01
Conceptual representations are at the heart of our mental lives, involved in every aspect of cognitive functioning. Despite their centrality, a long-standing debate persists as to how the meanings of concepts are represented and processed. Many accounts agree that the meanings of concrete concepts are represented by their individual features, but disagree about the importance of different feature-based variables: some views stress the importance of the information carried by distinctive features in conceptual processing, others the features which are shared over many concepts, and still others the extent to which features co-occur. We suggest that previously disparate theoretical positions and experimental findings can be unified by an account which claims that task demands determine how concepts are processed in addition to the effects of feature distinctiveness and co-occurrence. We tested these predictions in a basic-level naming task which relies on distinctive feature information (Experiment 1) and a domain decision task which relies on shared feature information (Experiment 2). Both used large-scale regression designs with the same visual objects, and mixed-effects models incorporating participant, session, stimulus-related and feature statistic variables to model the performance. We found that concepts with relatively more distinctive and more highly correlated distinctive relative to shared features facilitated basic-level naming latencies, while concepts with relatively more shared and more highly correlated shared relative to distinctive features speeded domain decisions. These findings demonstrate that the feature statistics of distinctiveness (shared vs. distinctive) and correlational strength, as well as the task demands, determine how concept meaning is processed in the conceptual system. PMID:22137770
Lahnakoski, Juha M; Salmi, Juha; Jääskeläinen, Iiro P; Lampinen, Jouko; Glerean, Enrico; Tikka, Pia; Sams, Mikko
2012-01-01
Understanding how the brain processes stimuli in a rich natural environment is a fundamental goal of neuroscience. Here, we showed a feature film to 10 healthy volunteers during functional magnetic resonance imaging (fMRI) of hemodynamic brain activity. We then annotated auditory and visual features of the motion picture to inform analysis of the hemodynamic data. The annotations were fitted to both voxel-wise data and brain network time courses extracted by independent component analysis (ICA). Auditory annotations correlated with two independent components (IC) disclosing two functional networks, one responding to variety of auditory stimulation and another responding preferentially to speech but parts of the network also responding to non-verbal communication. Visual feature annotations correlated with four ICs delineating visual areas according to their sensitivity to different visual stimulus features. In comparison, a separate voxel-wise general linear model based analysis disclosed brain areas preferentially responding to sound energy, speech, music, visual contrast edges, body motion and hand motion which largely overlapped the results revealed by ICA. Differences between the results of IC- and voxel-based analyses demonstrate that thorough analysis of voxel time courses is important for understanding the activity of specific sub-areas of the functional networks, while ICA is a valuable tool for revealing novel information about functional connectivity which need not be explained by the predefined model. Our results encourage the use of naturalistic stimuli and tasks in cognitive neuroimaging to study how the brain processes stimuli in rich natural environments.
Lahnakoski, Juha M.; Salmi, Juha; Jääskeläinen, Iiro P.; Lampinen, Jouko; Glerean, Enrico; Tikka, Pia; Sams, Mikko
2012-01-01
Understanding how the brain processes stimuli in a rich natural environment is a fundamental goal of neuroscience. Here, we showed a feature film to 10 healthy volunteers during functional magnetic resonance imaging (fMRI) of hemodynamic brain activity. We then annotated auditory and visual features of the motion picture to inform analysis of the hemodynamic data. The annotations were fitted to both voxel-wise data and brain network time courses extracted by independent component analysis (ICA). Auditory annotations correlated with two independent components (IC) disclosing two functional networks, one responding to variety of auditory stimulation and another responding preferentially to speech but parts of the network also responding to non-verbal communication. Visual feature annotations correlated with four ICs delineating visual areas according to their sensitivity to different visual stimulus features. In comparison, a separate voxel-wise general linear model based analysis disclosed brain areas preferentially responding to sound energy, speech, music, visual contrast edges, body motion and hand motion which largely overlapped the results revealed by ICA. Differences between the results of IC- and voxel-based analyses demonstrate that thorough analysis of voxel time courses is important for understanding the activity of specific sub-areas of the functional networks, while ICA is a valuable tool for revealing novel information about functional connectivity which need not be explained by the predefined model. Our results encourage the use of naturalistic stimuli and tasks in cognitive neuroimaging to study how the brain processes stimuli in rich natural environments. PMID:22496909
Dogrusoz, U; Erson, E Z; Giral, E; Demir, E; Babur, O; Cetintas, A; Colak, R
2006-02-01
Patikaweb provides a Web interface for retrieving and analyzing biological pathways in the Patika database, which contains data integrated from various prominent public pathway databases. It features a user-friendly interface, dynamic visualization and automated layout, advanced graph-theoretic queries for extracting biologically important phenomena, local persistence capability and exporting facilities to various pathway exchange formats.
Visual texture perception via graph-based semi-supervised learning
NASA Astrophysics Data System (ADS)
Zhang, Qin; Dong, Junyu; Zhong, Guoqiang
2018-04-01
Perceptual features, for example direction, contrast and repetitiveness, are important visual factors for human to perceive a texture. However, it needs to perform psychophysical experiment to quantify these perceptual features' scale, which requires a large amount of human labor and time. This paper focuses on the task of obtaining perceptual features' scale of textures by small number of textures with perceptual scales through a rating psychophysical experiment (what we call labeled textures) and a mass of unlabeled textures. This is the scenario that the semi-supervised learning is naturally suitable for. This is meaningful for texture perception research, and really helpful for the perceptual texture database expansion. A graph-based semi-supervised learning method called random multi-graphs, RMG for short, is proposed to deal with this task. We evaluate different kinds of features including LBP, Gabor, and a kind of unsupervised deep features extracted by a PCA-based deep network. The experimental results show that our method can achieve satisfactory effects no matter what kind of texture features are used.
Key-Node-Separated Graph Clustering and Layouts for Human Relationship Graph Visualization.
Itoh, Takayuki; Klein, Karsten
2015-01-01
Many graph-drawing methods apply node-clustering techniques based on the density of edges to find tightly connected subgraphs and then hierarchically visualize the clustered graphs. However, users may want to focus on important nodes and their connections to groups of other nodes for some applications. For this purpose, it is effective to separately visualize the key nodes detected based on adjacency and attributes of the nodes. This article presents a graph visualization technique for attribute-embedded graphs that applies a graph-clustering algorithm that accounts for the combination of connections and attributes. The graph clustering step divides the nodes according to the commonality of connected nodes and similarity of feature value vectors. It then calculates the distances between arbitrary pairs of clusters according to the number of connecting edges and the similarity of feature value vectors and finally places the clusters based on the distances. Consequently, the technique separates important nodes that have connections to multiple large clusters and improves the visibility of such nodes' connections. To test this technique, this article presents examples with human relationship graph datasets, including a coauthorship and Twitter communication network dataset.
Attention is required for maintenance of feature binding in visual working memory
Heider, Maike; Husain, Masud
2013-01-01
Working memory and attention are intimately connected. However, understanding the relationship between the two is challenging. Currently, there is an important controversy about whether objects in working memory are maintained automatically or require resources that are also deployed for visual or auditory attention. Here we investigated the effects of loading attention resources on precision of visual working memory, specifically on correct maintenance of feature-bound objects, using a dual-task paradigm. Participants were presented with a memory array and were asked to remember either direction of motion of random dot kinematograms of different colour, or orientation of coloured bars. During the maintenance period, they performed a secondary visual or auditory task, with varying levels of load. Following a retention period, they adjusted a coloured probe to match either the motion direction or orientation of stimuli with the same colour in the memory array. This allowed us to examine the effects of an attention-demanding task performed during maintenance on precision of recall on the concurrent working memory task. Systematic increase in attention load during maintenance resulted in a significant decrease in overall working memory performance. Changes in overall performance were specifically accompanied by an increase in feature misbinding errors: erroneous reporting of nontarget motion or orientation. Thus in trials where attention resources were taxed, participants were more likely to respond with nontarget values rather than simply making random responses. Our findings suggest that resources used during attention-demanding visual or auditory tasks also contribute to maintaining feature-bound representations in visual working memory—but not necessarily other aspects of working memory. PMID:24266343
Attention is required for maintenance of feature binding in visual working memory.
Zokaei, Nahid; Heider, Maike; Husain, Masud
2014-01-01
Working memory and attention are intimately connected. However, understanding the relationship between the two is challenging. Currently, there is an important controversy about whether objects in working memory are maintained automatically or require resources that are also deployed for visual or auditory attention. Here we investigated the effects of loading attention resources on precision of visual working memory, specifically on correct maintenance of feature-bound objects, using a dual-task paradigm. Participants were presented with a memory array and were asked to remember either direction of motion of random dot kinematograms of different colour, or orientation of coloured bars. During the maintenance period, they performed a secondary visual or auditory task, with varying levels of load. Following a retention period, they adjusted a coloured probe to match either the motion direction or orientation of stimuli with the same colour in the memory array. This allowed us to examine the effects of an attention-demanding task performed during maintenance on precision of recall on the concurrent working memory task. Systematic increase in attention load during maintenance resulted in a significant decrease in overall working memory performance. Changes in overall performance were specifically accompanied by an increase in feature misbinding errors: erroneous reporting of nontarget motion or orientation. Thus in trials where attention resources were taxed, participants were more likely to respond with nontarget values rather than simply making random responses. Our findings suggest that resources used during attention-demanding visual or auditory tasks also contribute to maintaining feature-bound representations in visual working memory-but not necessarily other aspects of working memory.
Diffusion accessibility as a method for visualizing macromolecular surface geometry.
Tsai, Yingssu; Holton, Thomas; Yeates, Todd O
2015-10-01
Important three-dimensional spatial features such as depth and surface concavity can be difficult to convey clearly in the context of two-dimensional images. In the area of macromolecular visualization, the computer graphics technique of ray-tracing can be helpful, but further techniques for emphasizing surface concavity can give clearer perceptions of depth. The notion of diffusion accessibility is well-suited for emphasizing such features of macromolecular surfaces, but a method for calculating diffusion accessibility has not been made widely available. Here we make available a web-based platform that performs the necessary calculation by solving the Laplace equation for steady state diffusion, and produces scripts for visualization that emphasize surface depth by coloring according to diffusion accessibility. The URL is http://services.mbi.ucla.edu/DiffAcc/. © 2015 The Protein Society.
Measuring and Predicting Tag Importance for Image Retrieval.
Li, Shangwen; Purushotham, Sanjay; Chen, Chen; Ren, Yuzhuo; Kuo, C-C Jay
2017-12-01
Textual data such as tags, sentence descriptions are combined with visual cues to reduce the semantic gap for image retrieval applications in today's Multimodal Image Retrieval (MIR) systems. However, all tags are treated as equally important in these systems, which may result in misalignment between visual and textual modalities during MIR training. This will further lead to degenerated retrieval performance at query time. To address this issue, we investigate the problem of tag importance prediction, where the goal is to automatically predict the tag importance and use it in image retrieval. To achieve this, we first propose a method to measure the relative importance of object and scene tags from image sentence descriptions. Using this as the ground truth, we present a tag importance prediction model to jointly exploit visual, semantic and context cues. The Structural Support Vector Machine (SSVM) formulation is adopted to ensure efficient training of the prediction model. Then, the Canonical Correlation Analysis (CCA) is employed to learn the relation between the image visual feature and tag importance to obtain robust retrieval performance. Experimental results on three real-world datasets show a significant performance improvement of the proposed MIR with Tag Importance Prediction (MIR/TIP) system over other MIR systems.
ERIC Educational Resources Information Center
Bartko, Susan J.; Winters, Boyer D.; Cowell, Rosemary A.; Saksida, Lisa M.; Bussey, Timothy J.
2007-01-01
The perirhinal cortex (PRh) has a well-established role in object recognition memory. More recent studies suggest that PRh is also important for two-choice visual discrimination tasks. Specifically, it has been suggested that PRh contains conjunctive representations that help resolve feature ambiguity, which occurs when a task cannot easily be…
[Associative Learning between Orientation and Color in Early Visual Areas].
Amano, Kaoru; Shibata, Kazuhisa; Kawato, Mitsuo; Sasaki, Yuka; Watanabe, Takeo
2017-08-01
Associative learning is an essential neural phenomenon where the contingency of different items increases after training. Although associative learning has been found to occur in many brain regions, there is no clear evidence that associative learning of visual features occurs in early visual areas. Here, we developed an associative decoded functional magnetic resonance imaging (fMRI) neurofeedback (A-DecNef) to determine whether associative learning of color and orientation can be induced in early visual areas. During the three days' training, A-DecNef induced fMRI signal patterns that corresponded to a specific target color (red) mostly in early visual areas while a vertical achromatic grating was simultaneously, physically presented to participants. Consequently, participants' perception of "red" was significantly more frequently than that of "green" in an achromatic vertical grating. This effect was also observed 3 to 5 months after training. These results suggest that long-term associative learning of two different visual features such as color and orientation, was induced most likely in early visual areas. This newly extended technique that induces associative learning may be used as an important tool for understanding and modifying brain function, since associations are fundamental and ubiquitous with respect to brain function.
Lin, I-Mei; Fan, Sheng-Yu; Huang, Tiao-Lai; Wu, Wan-Ting; Li, Shi-Ming
2013-12-01
Visual search is an important attention process that precedes the information processing. Visual search also mediates the relationship between cognition function (attention) and social cognition (such as facial expression identification). However, the association between visual attention and social cognition in patients with schizophrenia remains unknown. The purposes of this study were to examine the differences in visual search performance and facial expression identification between patients with schizophrenia and normal controls, and to explore the relationship between visual search performance and facial expression identification in patients with schizophrenia. Fourteen patients with schizophrenia (mean age=46.36±6.74) and 15 normal controls (mean age=40.87±9.33) participated this study. The visual search task, including feature search and conjunction search, and Japanese and Caucasian Facial Expression of Emotion were administered. Patients with schizophrenia had worse visual search performance both in feature search and conjunction search than normal controls, as well as had worse facial expression identification, especially in surprised and sadness. In addition, there were negative associations between visual search performance and facial expression identification in patients with schizophrenia, especially in surprised and sadness. However, this phenomenon was not showed in normal controls. Patients with schizophrenia who had visual search deficits had the impairment on facial expression identification. Increasing ability of visual search and facial expression identification may improve their social function and interpersonal relationship.
Brief Report: Autism-like Traits are Associated With Enhanced Ability to Disembed Visual Forms.
Sabatino DiCriscio, Antoinette; Troiani, Vanessa
2017-05-01
Atypical visual perceptual skills are thought to underlie unusual visual attention in autism spectrum disorders. We assessed whether individual differences in visual processing skills scaled with quantitative traits associated with the broader autism phenotype (BAP). Visual perception was assessed using the Figure-ground subtest of the Test of visual perceptual skills-3rd Edition (TVPS). In a large adult cohort (n = 209), TVPS-Figure Ground scores were positively correlated with autistic-like social features as assessed by the Broader autism phenotype questionnaire. This relationship was gender-specific, with males showing a correspondence between visual perceptual skills and autistic-like traits. This work supports the link between atypical visual perception and autism and highlights the importance in characterizing meaningful individual differences in clinically relevant behavioral phenotypes.
A proto-architecture for innate directionally selective visual maps.
Adams, Samantha V; Harris, Chris M
2014-01-01
Self-organizing artificial neural networks are a popular tool for studying visual system development, in particular the cortical feature maps present in real systems that represent properties such as ocular dominance (OD), orientation-selectivity (OR) and direction selectivity (DS). They are also potentially useful in artificial systems, for example robotics, where the ability to extract and learn features from the environment in an unsupervised way is important. In this computational study we explore a DS map that is already latent in a simple artificial network. This latent selectivity arises purely from the cortical architecture without any explicit coding for DS and prior to any self-organising process facilitated by spontaneous activity or training. We find DS maps with local patchy regions that exhibit features similar to maps derived experimentally and from previous modeling studies. We explore the consequences of changes to the afferent and lateral connectivity to establish the key features of this proto-architecture that support DS.
Data Fusion and Visualization with the OpenEarth Framework (OEF)
NASA Astrophysics Data System (ADS)
Nadeau, D. R.; Baru, C.; Fouch, M. J.; Crosby, C. J.
2010-12-01
Data fusion is an increasingly important problem to solve as we strive to integrate data from multiple sources and build better models of the complex processes operating at the Earth’s surface and its interior. These data are often large, multi-dimensional, and subject to differing conventions for file formats, data structures, coordinate spaces, units of measure, and metadata organization. When visualized, these data require differing, and often conflicting, conventions for visual representations, dimensionality, icons, color schemes, labeling, and interaction. These issues make the visualization of fused Earth science data particularly difficult. The OpenEarth Framework (OEF) is an open-source data fusion and visualization suite of software being developed at the Supercomputer Center at the University of California, San Diego. Funded by the NSF, the project is leveraging virtual globe technology from NASA’s WorldWind to create interactive 3D visualization tools that combine layered data from a variety of sources to create a holistic view of features at, above, and beneath the Earth’s surface. The OEF architecture is cross-platform, multi-threaded, modular, and based upon Java. The OEF’s modular approach yields a collection of compatible mix-and-match components for assembling custom applications. Available modules support file format handling, web service communications, data management, data filtering, user interaction, and 3D visualization. File parsers handle a variety of formal and de facto standard file formats. Each one imports data into a general-purpose data representation that supports multidimensional grids, topography, points, lines, polygons, images, and more. From there these data then may be manipulated, merged, filtered, reprojected, and visualized. Visualization features support conventional and new visualization techniques for looking at topography, tomography, maps, and feature geometry. 3D grid data such as seismic tomography may be sliced by multiple oriented cutting planes and isosurfaced to create 3D skins that trace feature boundaries within the data. Topography may be overlaid with satellite imagery along with data such as gravity and magnetics measurements. Multiple data sets may be visualized simultaneously using overlapping layers and a common 3D+time coordinate space. Data management within the OEF handles and hides the quirks of differing file formats, web protocols, storage structures, coordinate spaces, and metadata representations. Derived data are computed automatically to support interaction and visualization while the original data is left unchanged in its original form. Data is cached for better memory and network efficiency, and all visualization is accelerated by 3D graphics hardware found on today’s computers. The OpenEarth Framework project is currently prototyping the software for use in the visualization, and integration of continental scale geophysical data being produced by EarthScope-related research in the Western US. The OEF is providing researchers with new ways to display and interrogate their data and is anticipated to be a valuable tool for future EarthScope-related research.
The role of aging in intra-item and item-context binding processes in visual working memory.
Peterson, Dwight J; Naveh-Benjamin, Moshe
2016-11-01
Aging is accompanied by declines in both working memory and long-term episodic memory processes. Specifically, important age-related memory deficits are characterized by performance impairments exhibited by older relative to younger adults when binding distinct components into a single integrated representation, despite relatively intact memory for the individual components. While robust patterns of age-related binding deficits are prevalent in studies of long-term episodic memory, observations of such deficits in visual working memory (VWM) may depend on the specific type of binding process being examined. For instance, a number of studies indicate that processes involved in item-context binding of items to occupied spatial locations within visual working memory are impaired in older relative to younger adults. Other findings suggest that intra-item binding of visual surface features (e.g., color, shape), compared to memory for single features, within visual working memory, remains relatively intact. Here, we examined each of these binding processes in younger and older adults under both optimal conditions (i.e., no concurrent load) and concurrent load (e.g., articulatory suppression, backward counting). Experiment 1 revealed an age-related intra-item binding deficit for surface features under no concurrent load but not when articulatory suppression was required. In contrast, in Experiments 2 and 3, we observed an age-related item-context binding deficit regardless of the level of concurrent load. These findings reveal that the influence of concurrent load on distinct binding processes within VWM, potentially those supported by rehearsal, is an important factor mediating the presence or absence of age-related binding deficits within VWM. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Taylor, Kirsten I; Devereux, Barry J; Acres, Kadia; Randall, Billi; Tyler, Lorraine K
2012-03-01
Conceptual representations are at the heart of our mental lives, involved in every aspect of cognitive functioning. Despite their centrality, a long-standing debate persists as to how the meanings of concepts are represented and processed. Many accounts agree that the meanings of concrete concepts are represented by their individual features, but disagree about the importance of different feature-based variables: some views stress the importance of the information carried by distinctive features in conceptual processing, others the features which are shared over many concepts, and still others the extent to which features co-occur. We suggest that previously disparate theoretical positions and experimental findings can be unified by an account which claims that task demands determine how concepts are processed in addition to the effects of feature distinctiveness and co-occurrence. We tested these predictions in a basic-level naming task which relies on distinctive feature information (Experiment 1) and a domain decision task which relies on shared feature information (Experiment 2). Both used large-scale regression designs with the same visual objects, and mixed-effects models incorporating participant, session, stimulus-related and feature statistic variables to model the performance. We found that concepts with relatively more distinctive and more highly correlated distinctive relative to shared features facilitated basic-level naming latencies, while concepts with relatively more shared and more highly correlated shared relative to distinctive features speeded domain decisions. These findings demonstrate that the feature statistics of distinctiveness (shared vs. distinctive) and correlational strength, as well as the task demands, determine how concept meaning is processed in the conceptual system. Copyright © 2011 Elsevier B.V. All rights reserved.
Li, Yuanqing; Long, Jinyi; Huang, Biao; Yu, Tianyou; Wu, Wei; Liu, Yongjian; Liang, Changhong; Sun, Pei
2015-02-01
Previous studies have shown that audiovisual integration improves identification performance and enhances neural activity in heteromodal brain areas, for example, the posterior superior temporal sulcus/middle temporal gyrus (pSTS/MTG). Furthermore, it has also been demonstrated that attention plays an important role in crossmodal integration. In this study, we considered crossmodal integration in audiovisual facial perception and explored its effect on the neural representation of features. The audiovisual stimuli in the experiment consisted of facial movie clips that could be classified into 2 gender categories (male vs. female) or 2 emotion categories (crying vs. laughing). The visual/auditory-only stimuli were created from these movie clips by removing the auditory/visual contents. The subjects needed to make a judgment about the gender/emotion category for each movie clip in the audiovisual, visual-only, or auditory-only stimulus condition as functional magnetic resonance imaging (fMRI) signals were recorded. The neural representation of the gender/emotion feature was assessed using the decoding accuracy and the brain pattern-related reproducibility indices, obtained by a multivariate pattern analysis method from the fMRI data. In comparison to the visual-only and auditory-only stimulus conditions, we found that audiovisual integration enhanced the neural representation of task-relevant features and that feature-selective attention might play a role of modulation in the audiovisual integration. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Liu, Jianli; Lughofer, Edwin; Zeng, Xianyi
2015-01-01
Modeling human aesthetic perception of visual textures is important and valuable in numerous industrial domains, such as product design, architectural design, and decoration. Based on results from a semantic differential rating experiment, we modeled the relationship between low-level basic texture features and aesthetic properties involved in human aesthetic texture perception. First, we compute basic texture features from textural images using four classical methods. These features are neutral, objective, and independent of the socio-cultural context of the visual textures. Then, we conduct a semantic differential rating experiment to collect from evaluators their aesthetic perceptions of selected textural stimuli. In semantic differential rating experiment, eights pairs of aesthetic properties are chosen, which are strongly related to the socio-cultural context of the selected textures and to human emotions. They are easily understood and connected to everyday life. We propose a hierarchical feed-forward layer model of aesthetic texture perception and assign 8 pairs of aesthetic properties to different layers. Finally, we describe the generation of multiple linear and non-linear regression models for aesthetic prediction by taking dimensionality-reduced texture features and aesthetic properties of visual textures as dependent and independent variables, respectively. Our experimental results indicate that the relationships between each layer and its neighbors in the hierarchical feed-forward layer model of aesthetic texture perception can be fitted well by linear functions, and the models thus generated can successfully bridge the gap between computational texture features and aesthetic texture properties.
Local coding based matching kernel method for image classification.
Song, Yan; McLoughlin, Ian Vince; Dai, Li-Rong
2014-01-01
This paper mainly focuses on how to effectively and efficiently measure visual similarity for local feature based representation. Among existing methods, metrics based on Bag of Visual Word (BoV) techniques are efficient and conceptually simple, at the expense of effectiveness. By contrast, kernel based metrics are more effective, but at the cost of greater computational complexity and increased storage requirements. We show that a unified visual matching framework can be developed to encompass both BoV and kernel based metrics, in which local kernel plays an important role between feature pairs or between features and their reconstruction. Generally, local kernels are defined using Euclidean distance or its derivatives, based either explicitly or implicitly on an assumption of Gaussian noise. However, local features such as SIFT and HoG often follow a heavy-tailed distribution which tends to undermine the motivation behind Euclidean metrics. Motivated by recent advances in feature coding techniques, a novel efficient local coding based matching kernel (LCMK) method is proposed. This exploits the manifold structures in Hilbert space derived from local kernels. The proposed method combines advantages of both BoV and kernel based metrics, and achieves a linear computational complexity. This enables efficient and scalable visual matching to be performed on large scale image sets. To evaluate the effectiveness of the proposed LCMK method, we conduct extensive experiments with widely used benchmark datasets, including 15-Scenes, Caltech101/256, PASCAL VOC 2007 and 2011 datasets. Experimental results confirm the effectiveness of the relatively efficient LCMK method.
Helioviewer: A Web 2.0 Tool for Visualizing Heterogeneous Heliophysics Data
NASA Astrophysics Data System (ADS)
Hughitt, V. K.; Ireland, J.; Lynch, M. J.; Schmeidel, P.; Dimitoglou, G.; Müeller, D.; Fleck, B.
2008-12-01
Solar physics datasets are becoming larger, richer, more numerous and more distributed. Feature/event catalogs (describing objects of interest in the original data) are becoming important tools in navigating these data. In the wake of this increasing influx of data and catalogs there has been a growing need for highly sophisticated tools for accessing and visualizing this wealth of information. Helioviewer is a novel tool for integrating and visualizing disparate sources of solar and Heliophysics data. Taking advantage of the newly available power of modern web application frameworks, Helioviewer merges image and feature catalog data, and provides for Heliophysics data a familiar interface not unlike Google Maps or MapQuest. In addition to streamlining the process of combining heterogeneous Heliophysics datatypes such as full-disk images and coronagraphs, the inclusion of visual representations of automated and human-annotated features provides the user with an integrated and intuitive view of how different factors may be interacting on the Sun. Currently, Helioviewer offers images from The Extreme ultraviolet Imaging Telescope (EIT), The Large Angle and Spectrometric COronagraph experiment (LASCO) and the Michelson Doppler Imager (MDI) instruments onboard The Solar and Heliospheric Observatory (SOHO), as well as The Transition Region and Coronal Explorer (TRACE). Helioviewer also incorporates feature/event information from the LASCO CME List, NOAA Active Regions, CACTus CME and Type II Radio Bursts feature/event catalogs. The project is undergoing continuous development with many more data sources and additional functionality planned for the near future.
Nagai, Takehiro; Matsushima, Toshiki; Koida, Kowa; Tani, Yusuke; Kitazaki, Michiteru; Nakauchi, Shigeki
2015-10-01
Humans can visually recognize material categories of objects, such as glass, stone, and plastic, easily. However, little is known about the kinds of surface quality features that contribute to such material class recognition. In this paper, we examine the relationship between perceptual surface features and material category discrimination performance for pictures of materials, focusing on temporal aspects, including reaction time and effects of stimulus duration. The stimuli were pictures of objects with an identical shape but made of different materials that could be categorized into seven classes (glass, plastic, metal, stone, wood, leather, and fabric). In a pre-experiment, observers rated the pictures on nine surface features, including visual (e.g., glossiness and transparency) and non-visual features (e.g., heaviness and warmness), on a 7-point scale. In the main experiments, observers judged whether two simultaneously presented pictures were classified as the same or different material category. Reaction times and effects of stimulus duration were measured. The results showed that visual feature ratings were correlated with material discrimination performance for short reaction times or short stimulus durations, while non-visual feature ratings were correlated only with performance for long reaction times or long stimulus durations. These results suggest that the mechanisms underlying visual and non-visual feature processing may differ in terms of processing time, although the cause is unclear. Visual surface features may mainly contribute to material recognition in daily life, while non-visual features may contribute only weakly, if at all. Copyright © 2014 Elsevier Ltd. All rights reserved.
Automatic lip reading by using multimodal visual features
NASA Astrophysics Data System (ADS)
Takahashi, Shohei; Ohya, Jun
2013-12-01
Since long time ago, speech recognition has been researched, though it does not work well in noisy places such as in the car or in the train. In addition, people with hearing-impaired or difficulties in hearing cannot receive benefits from speech recognition. To recognize the speech automatically, visual information is also important. People understand speeches from not only audio information, but also visual information such as temporal changes in the lip shape. A vision based speech recognition method could work well in noisy places, and could be useful also for people with hearing disabilities. In this paper, we propose an automatic lip-reading method for recognizing the speech by using multimodal visual information without using any audio information such as speech recognition. First, the ASM (Active Shape Model) is used to track and detect the face and lip in a video sequence. Second, the shape, optical flow and spatial frequencies of the lip features are extracted from the lip detected by ASM. Next, the extracted multimodal features are ordered chronologically so that Support Vector Machine is performed in order to learn and classify the spoken words. Experiments for classifying several words show promising results of this proposed method.
Yu, Rui-Feng; Yang, Lin-Dong; Wu, Xin
2017-05-01
This study identified the risk factors influencing visual fatigue in baggage X-ray security screeners and estimated the strength of correlations between those factors and visual fatigue using structural equation modelling approach. Two hundred and five X-ray security screeners participated in a questionnaire survey. The result showed that satisfaction with the VDT's physical features and the work environment conditions were negatively correlated with the intensity of visual fatigue, whereas job stress and job burnout had direct positive influences. The path coefficient between the image quality of VDT and visual fatigue was not significant. The total effects of job burnout, job stress, the VDT's physical features and the work environment conditions on visual fatigue were 0.471, 0.469, -0.268 and -0.251 respectively. These findings indicated that both extrinsic factors relating to VDT and workplace environment and psychological factors including job burnout and job stress should be considered in the workplace design and work organisation of security screening tasks to reduce screeners' visual fatigue. Practitioner Summary: This study identified the risk factors influencing visual fatigue in baggage X-ray security screeners and estimated the strength of correlations between those factors and visual fatigue. The findings were of great importance to the workplace design and the work organisation of security screening tasks to reduce screeners' visual fatigue.
Task-dependent modulation of the visual sensory thalamus assists visual-speech recognition.
Díaz, Begoña; Blank, Helen; von Kriegstein, Katharina
2018-05-14
The cerebral cortex modulates early sensory processing via feed-back connections to sensory pathway nuclei. The functions of this top-down modulation for human behavior are poorly understood. Here, we show that top-down modulation of the visual sensory thalamus (the lateral geniculate body, LGN) is involved in visual-speech recognition. In two independent functional magnetic resonance imaging (fMRI) studies, LGN response increased when participants processed fast-varying features of articulatory movements required for visual-speech recognition, as compared to temporally more stable features required for face identification with the same stimulus material. The LGN response during the visual-speech task correlated positively with the visual-speech recognition scores across participants. In addition, the task-dependent modulation was present for speech movements and did not occur for control conditions involving non-speech biological movements. In face-to-face communication, visual speech recognition is used to enhance or even enable understanding what is said. Speech recognition is commonly explained in frameworks focusing on cerebral cortex areas. Our findings suggest that task-dependent modulation at subcortical sensory stages has an important role for communication: Together with similar findings in the auditory modality the findings imply that task-dependent modulation of the sensory thalami is a general mechanism to optimize speech recognition. Copyright © 2018. Published by Elsevier Inc.
On the role of spatial phase and phase correlation in vision, illusion, and cognition
Gladilin, Evgeny; Eils, Roland
2015-01-01
Numerous findings indicate that spatial phase bears an important cognitive information. Distortion of phase affects topology of edge structures and makes images unrecognizable. In turn, appropriately phase-structured patterns give rise to various illusions of virtual image content and apparent motion. Despite a large body of phenomenological evidence not much is known yet about the role of phase information in neural mechanisms of visual perception and cognition. Here, we are concerned with analysis of the role of spatial phase in computational and biological vision, emergence of visual illusions and pattern recognition. We hypothesize that fundamental importance of phase information for invariant retrieval of structural image features and motion detection promoted development of phase-based mechanisms of neural image processing in course of evolution of biological vision. Using an extension of Fourier phase correlation technique, we show that the core functions of visual system such as motion detection and pattern recognition can be facilitated by the same basic mechanism. Our analysis suggests that emergence of visual illusions can be attributed to presence of coherently phase-shifted repetitive patterns as well as the effects of acuity compensation by saccadic eye movements. We speculate that biological vision relies on perceptual mechanisms effectively similar to phase correlation, and predict neural features of visual pattern (dis)similarity that can be used for experimental validation of our hypothesis of “cognition by phase correlation.” PMID:25954190
On the role of spatial phase and phase correlation in vision, illusion, and cognition.
Gladilin, Evgeny; Eils, Roland
2015-01-01
Numerous findings indicate that spatial phase bears an important cognitive information. Distortion of phase affects topology of edge structures and makes images unrecognizable. In turn, appropriately phase-structured patterns give rise to various illusions of virtual image content and apparent motion. Despite a large body of phenomenological evidence not much is known yet about the role of phase information in neural mechanisms of visual perception and cognition. Here, we are concerned with analysis of the role of spatial phase in computational and biological vision, emergence of visual illusions and pattern recognition. We hypothesize that fundamental importance of phase information for invariant retrieval of structural image features and motion detection promoted development of phase-based mechanisms of neural image processing in course of evolution of biological vision. Using an extension of Fourier phase correlation technique, we show that the core functions of visual system such as motion detection and pattern recognition can be facilitated by the same basic mechanism. Our analysis suggests that emergence of visual illusions can be attributed to presence of coherently phase-shifted repetitive patterns as well as the effects of acuity compensation by saccadic eye movements. We speculate that biological vision relies on perceptual mechanisms effectively similar to phase correlation, and predict neural features of visual pattern (dis)similarity that can be used for experimental validation of our hypothesis of "cognition by phase correlation."
Fang, Chunying; Li, Haifeng; Ma, Lin; Zhang, Mancai
2017-01-01
Pathological speech usually refers to speech distortion resulting from illness or other biological insults. The assessment of pathological speech plays an important role in assisting the experts, while automatic evaluation of speech intelligibility is difficult because it is usually nonstationary and mutational. In this paper, we carry out an independent innovation of feature extraction and reduction, and we describe a multigranularity combined feature scheme which is optimized by the hierarchical visual method. A novel method of generating feature set based on S -transform and chaotic analysis is proposed. There are BAFS (430, basic acoustics feature), local spectral characteristics MSCC (84, Mel S -transform cepstrum coefficients), and chaotic features (12). Finally, radar chart and F -score are proposed to optimize the features by the hierarchical visual fusion. The feature set could be optimized from 526 to 96 dimensions based on NKI-CCRT corpus and 104 dimensions based on SVD corpus. The experimental results denote that new features by support vector machine (SVM) have the best performance, with a recognition rate of 84.4% on NKI-CCRT corpus and 78.7% on SVD corpus. The proposed method is thus approved to be effective and reliable for pathological speech intelligibility evaluation.
Visualizing Human Migration Trhough Space and Time
NASA Astrophysics Data System (ADS)
Zambotti, G.; Guan, W.; Gest, J.
2015-07-01
Human migration has been an important activity in human societies since antiquity. Since 1890, approximately three percent of the world's population has lived outside of their country of origin. As globalization intensifies in the modern era, human migration persists even as governments seek to more stringently regulate flows. Understanding this phenomenon, its causes, processes and impacts often starts from measuring and visualizing its spatiotemporal patterns. This study builds a generic online platform for users to interactively visualize human migration through space and time. This entails quickly ingesting human migration data in plain text or tabular format; matching the records with pre-established geographic features such as administrative polygons; symbolizing the migration flow by circular arcs of varying color and weight based on the flow attributes; connecting the centroids of the origin and destination polygons; and allowing the user to select either an origin or a destination feature to display all flows in or out of that feature through time. The method was first developed using ArcGIS Server for world-wide cross-country migration, and later applied to visualizing domestic migration patterns within China between provinces, and between states in the United States, all through multiple years. The technical challenges of this study include simplifying the shapes of features to enhance user interaction, rendering performance and application scalability; enabling the temporal renderers to provide time-based rendering of features and the flow among them; and developing a responsive web design (RWD) application to provide an optimal viewing experience. The platform is available online for the public to use, and the methodology is easily adoptable to visualizing any flow, not only human migration but also the flow of goods, capital, disease, ideology, etc., between multiple origins and destinations across space and time.
Storage of features, conjunctions and objects in visual working memory.
Vogel, E K; Woodman, G F; Luck, S J
2001-02-01
Working memory can be divided into separate subsystems for verbal and visual information. Although the verbal system has been well characterized, the storage capacity of visual working memory has not yet been established for simple features or for conjunctions of features. The authors demonstrate that it is possible to retain information about only 3-4 colors or orientations in visual working memory at one time. Observers are also able to retain both the color and the orientation of 3-4 objects, indicating that visual working memory stores integrated objects rather than individual features. Indeed, objects defined by a conjunction of four features can be retained in working memory just as well as single-feature objects, allowing many individual features to be retained when distributed across a small number of objects. Thus, the capacity of visual working memory must be understood in terms of integrated objects rather than individual features.
Zhang, Yu; Wu, Jianxin; Cai, Jianfei
2016-05-01
In large-scale visual recognition and image retrieval tasks, feature vectors, such as Fisher vector (FV) or the vector of locally aggregated descriptors (VLAD), have achieved state-of-the-art results. However, the combination of the large numbers of examples and high-dimensional vectors necessitates dimensionality reduction, in order to reduce its storage and CPU costs to a reasonable range. In spite of the popularity of various feature compression methods, this paper shows that the feature (dimension) selection is a better choice for high-dimensional FV/VLAD than the feature (dimension) compression methods, e.g., product quantization. We show that strong correlation among the feature dimensions in the FV and the VLAD may not exist, which renders feature selection a natural choice. We also show that, many dimensions in FV/VLAD are noise. Throwing them away using feature selection is better than compressing them and useful dimensions altogether using feature compression methods. To choose features, we propose an efficient importance sorting algorithm considering both the supervised and unsupervised cases, for visual recognition and image retrieval, respectively. Combining with the 1-bit quantization, feature selection has achieved both higher accuracy and less computational cost than feature compression methods, such as product quantization, on the FV and the VLAD image representations.
Joshi, Ashish; de Araujo Novaes, Magdala; Machiavelli, Josiane; Iyengar, Sriram; Vogler, Robert; Johnson, Craig; Zhang, Jiajie; Hsu, Chiehwen E
2012-01-01
Public health data is typically organized by geospatial unit. GeoVisualization (GeoVis) allows users to see information visually on a map. Examine telehealth users' perceptions towards existing public health GeoVis applications and obtains users' feedback about features important for the design and development of Human Centered GeoVis application "the SanaViz". We employed a cross sectional study design using mixed methods approach for this pilot study. Twenty users involved with the NUTES telehealth center at Federal University of Pernambuco (UFPE), Recife, Brazil were enrolled. Open and closed ended questionnaires were used to gather data. We performed audio recording for the interviews. Information gathered included socio-demographics, prior spatial skills and perception towards use of GeoVis to evaluate telehealth services. Card sorting and sketching methods were employed. Univariate analysis was performed for the continuous and categorical variables. Qualitative analysis was performed for open ended questions. Existing Public Health GeoVis applications were difficult to use. Results found interaction features zooming, linking and brushing and representation features Google maps, tables and bar chart as most preferred GeoVis features. Early involvement of users is essential to identify features necessary to be part of the human centered GeoVis application "the SanaViz".
Differential Gaze Patterns on Eyes and Mouth During Audiovisual Speech Segmentation
Lusk, Laina G.; Mitchel, Aaron D.
2016-01-01
Speech is inextricably multisensory: both auditory and visual components provide critical information for all aspects of speech processing, including speech segmentation, the visual components of which have been the target of a growing number of studies. In particular, a recent study (Mitchel and Weiss, 2014) established that adults can utilize facial cues (i.e., visual prosody) to identify word boundaries in fluent speech. The current study expanded upon these results, using an eye tracker to identify highly attended facial features of the audiovisual display used in Mitchel and Weiss (2014). Subjects spent the most time watching the eyes and mouth. A significant trend in gaze durations was found with the longest gaze duration on the mouth, followed by the eyes and then the nose. In addition, eye-gaze patterns changed across familiarization as subjects learned the word boundaries, showing decreased attention to the mouth in later blocks while attention on other facial features remained consistent. These findings highlight the importance of the visual component of speech processing and suggest that the mouth may play a critical role in visual speech segmentation. PMID:26869959
Image Feature Types and Their Predictions of Aesthetic Preference and Naturalness
Ibarra, Frank F.; Kardan, Omid; Hunter, MaryCarol R.; Kotabe, Hiroki P.; Meyer, Francisco A. C.; Berman, Marc G.
2017-01-01
Previous research has investigated ways to quantify visual information of a scene in terms of a visual processing hierarchy, i.e., making sense of visual environment by segmentation and integration of elementary sensory input. Guided by this research, studies have developed categories for low-level visual features (e.g., edges, colors), high-level visual features (scene-level entities that convey semantic information such as objects), and how models of those features predict aesthetic preference and naturalness. For example, in Kardan et al. (2015a), 52 participants provided aesthetic preference and naturalness ratings, which are used in the current study, for 307 images of mixed natural and urban content. Kardan et al. (2015a) then developed a model using low-level features to predict aesthetic preference and naturalness and could do so with high accuracy. What has yet to be explored is the ability of higher-level visual features (e.g., horizon line position relative to viewer, geometry of building distribution relative to visual access) to predict aesthetic preference and naturalness of scenes, and whether higher-level features mediate some of the association between the low-level features and aesthetic preference or naturalness. In this study we investigated these relationships and found that low- and high- level features explain 68.4% of the variance in aesthetic preference ratings and 88.7% of the variance in naturalness ratings. Additionally, several high-level features mediated the relationship between the low-level visual features and aaesthetic preference. In a multiple mediation analysis, the high-level feature mediators accounted for over 50% of the variance in predicting aesthetic preference. These results show that high-level visual features play a prominent role predicting aesthetic preference, but do not completely eliminate the predictive power of the low-level visual features. These strong predictors provide powerful insights for future research relating to landscape and urban design with the aim of maximizing subjective well-being, which could lead to improved health outcomes on a larger scale. PMID:28503158
Research on metallic material defect detection based on bionic sensing of human visual properties
NASA Astrophysics Data System (ADS)
Zhang, Pei Jiang; Cheng, Tao
2018-05-01
Due to the fact that human visual system can quickly lock the areas of interest in complex natural environment and focus on it, this paper proposes an eye-based visual attention mechanism by simulating human visual imaging features based on human visual attention mechanism Bionic Sensing Visual Inspection Model Method to Detect Defects of Metallic Materials in the Mechanical Field. First of all, according to the biologically visually significant low-level features, the mark of defect experience marking is used as the intermediate feature of simulated visual perception. Afterwards, SVM method was used to train the advanced features of visual defects of metal material. According to the weight of each party, the biometrics detection model of metal material defect, which simulates human visual characteristics, is obtained.
ERIC Educational Resources Information Center
Rundgren, Carl-Johan; Tibell, Lena A. E.
2010-01-01
Images, diagrams, and other forms of visualization are playing increasingly important roles in molecular life science teaching and research, both for conveying information and as conceptual tools, transforming the way we think about the events and processes the subject covers. This study examines how upper secondary and tertiary students interpret…
King, Andy J; Jensen, Jakob D; Davis, LaShara A; Carcioppolo, Nick
2014-01-01
There is a paucity of research on the visual images used in health communication messages and campaign materials. Even though many studies suggest further investigation of these visual messages and their features, few studies provide specific constructs or assessment tools for evaluating the characteristics of visual messages in health communication contexts. The authors conducted 2 studies to validate a measure of perceived visual informativeness (PVI), a message construct assessing visual messages presenting statistical or indexical information. In Study 1, a 7-item scale was created that demonstrated good internal reliability (α = .91), as well as convergent and divergent validity with related message constructs such as perceived message quality, perceived informativeness, and perceived attractiveness. PVI also converged with a preference for visual learning but was unrelated to a person's actual vision ability. In addition, PVI exhibited concurrent validity with a number of important constructs including perceived message effectiveness, decisional satisfaction, and three key public health theory behavior predictors: perceived benefits, perceived barriers, and self-efficacy. Study 2 provided more evidence that PVI is an internally reliable measure and demonstrates that PVI is a modifiable message feature that can be tested in future experimental work. PVI provides an initial step to assist in the evaluation and testing of visual messages in campaign and intervention materials promoting informed decision making and behavior change.
Visual affective classification by combining visual and text features.
Liu, Ningning; Wang, Kai; Jin, Xin; Gao, Boyang; Dellandréa, Emmanuel; Chen, Liming
2017-01-01
Affective analysis of images in social networks has drawn much attention, and the texts surrounding images are proven to provide valuable semantic meanings about image content, which can hardly be represented by low-level visual features. In this paper, we propose a novel approach for visual affective classification (VAC) task. This approach combines visual representations along with novel text features through a fusion scheme based on Dempster-Shafer (D-S) Evidence Theory. Specifically, we not only investigate different types of visual features and fusion methods for VAC, but also propose textual features to effectively capture emotional semantics from the short text associated to images based on word similarity. Experiments are conducted on three public available databases: the International Affective Picture System (IAPS), the Artistic Photos and the MirFlickr Affect set. The results demonstrate that the proposed approach combining visual and textual features provides promising results for VAC task.
Visual affective classification by combining visual and text features
Liu, Ningning; Wang, Kai; Jin, Xin; Gao, Boyang; Dellandréa, Emmanuel; Chen, Liming
2017-01-01
Affective analysis of images in social networks has drawn much attention, and the texts surrounding images are proven to provide valuable semantic meanings about image content, which can hardly be represented by low-level visual features. In this paper, we propose a novel approach for visual affective classification (VAC) task. This approach combines visual representations along with novel text features through a fusion scheme based on Dempster-Shafer (D-S) Evidence Theory. Specifically, we not only investigate different types of visual features and fusion methods for VAC, but also propose textual features to effectively capture emotional semantics from the short text associated to images based on word similarity. Experiments are conducted on three public available databases: the International Affective Picture System (IAPS), the Artistic Photos and the MirFlickr Affect set. The results demonstrate that the proposed approach combining visual and textual features provides promising results for VAC task. PMID:28850566
Feature-based attentional modulations in the absence of direct visual stimulation.
Serences, John T; Boynton, Geoffrey M
2007-07-19
When faced with a crowded visual scene, observers must selectively attend to behaviorally relevant objects to avoid sensory overload. Often this selection process is guided by prior knowledge of a target-defining feature (e.g., the color red when looking for an apple), which enhances the firing rate of visual neurons that are selective for the attended feature. Here, we used functional magnetic resonance imaging and a pattern classification algorithm to predict the attentional state of human observers as they monitored a visual feature (one of two directions of motion). We find that feature-specific attention effects spread across the visual field-even to regions of the scene that do not contain a stimulus. This spread of feature-based attention to empty regions of space may facilitate the perception of behaviorally relevant stimuli by increasing sensitivity to attended features at all locations in the visual field.
Tsunoda, Naoko; Hashimoto, Mamoru; Ishikawa, Tomohisa; Fukuhara, Ryuji; Yuki, Seiji; Tanaka, Hibiki; Hatada, Yutaka; Miyagawa, Yusuke; Ikeda, Manabu
2018-05-08
Auditory hallucinations are an important symptom for diagnosing dementia with Lewy bodies (DLB), yet they have received less attention than visual hallucinations. We investigated the clinical features of auditory hallucinations and the possible mechanisms by which they arise in patients with DLB. We recruited 124 consecutive patients with probable DLB (diagnosis based on the DLB International Workshop 2005 criteria; study period: June 2007-January 2015) from the dementia referral center of Kumamoto University Hospital. We used the Neuropsychiatric Inventory to assess the presence of auditory hallucinations, visual hallucinations, and other neuropsychiatric symptoms. We reviewed all available clinical records of patients with auditory hallucinations to assess their clinical features. We performed multiple logistic regression analysis to identify significant independent predictors of auditory hallucinations. Of the 124 patients, 44 (35.5%) had auditory hallucinations and 75 (60.5%) had visual hallucinations. The majority of patients (90.9%) with auditory hallucinations also had visual hallucinations. Auditory hallucinations consisted mostly of human voices, and 90% of patients described them as like hearing a soundtrack of the scene. Multiple logistic regression showed that the presence of auditory hallucinations was significantly associated with female sex (P = .04) and hearing impairment (P = .004). The analysis also revealed independent correlations between the presence of auditory hallucinations and visual hallucinations (P < .001), phantom boarder delusions (P = .001), and depression (P = .038). Auditory hallucinations are common neuropsychiatric symptoms in DLB and usually appear as a background soundtrack accompanying visual hallucinations. Auditory hallucinations in patients with DLB are more likely to occur in women and those with impaired hearing, depression, delusions, or visual hallucinations. © Copyright 2018 Physicians Postgraduate Press, Inc.
StreamExplorer: A Multi-Stage System for Visually Exploring Events in Social Streams.
Wu, Yingcai; Chen, Zhutian; Sun, Guodao; Xie, Xiao; Cao, Nan; Liu, Shixia; Cui, Weiwei
2017-10-18
Analyzing social streams is important for many applications, such as crisis management. However, the considerable diversity, increasing volume, and high dynamics of social streams of large events continue to be significant challenges that must be overcome to ensure effective exploration. We propose a novel framework by which to handle complex social streams on a budget PC. This framework features two components: 1) an online method to detect important time periods (i.e., subevents), and 2) a tailored GPU-assisted Self-Organizing Map (SOM) method, which clusters the tweets of subevents stably and efficiently. Based on the framework, we present StreamExplorer to facilitate the visual analysis, tracking, and comparison of a social stream at three levels. At a macroscopic level, StreamExplorer uses a new glyph-based timeline visualization, which presents a quick multi-faceted overview of the ebb and flow of a social stream. At a mesoscopic level, a map visualization is employed to visually summarize the social stream from either a topical or geographical aspect. At a microscopic level, users can employ interactive lenses to visually examine and explore the social stream from different perspectives. Two case studies and a task-based evaluation are used to demonstrate the effectiveness and usefulness of StreamExplorer.Analyzing social streams is important for many applications, such as crisis management. However, the considerable diversity, increasing volume, and high dynamics of social streams of large events continue to be significant challenges that must be overcome to ensure effective exploration. We propose a novel framework by which to handle complex social streams on a budget PC. This framework features two components: 1) an online method to detect important time periods (i.e., subevents), and 2) a tailored GPU-assisted Self-Organizing Map (SOM) method, which clusters the tweets of subevents stably and efficiently. Based on the framework, we present StreamExplorer to facilitate the visual analysis, tracking, and comparison of a social stream at three levels. At a macroscopic level, StreamExplorer uses a new glyph-based timeline visualization, which presents a quick multi-faceted overview of the ebb and flow of a social stream. At a mesoscopic level, a map visualization is employed to visually summarize the social stream from either a topical or geographical aspect. At a microscopic level, users can employ interactive lenses to visually examine and explore the social stream from different perspectives. Two case studies and a task-based evaluation are used to demonstrate the effectiveness and usefulness of StreamExplorer.
Wu, Yu-Tzu; Nash, Paul; Barnes, Linda E; Minett, Thais; Matthews, Fiona E; Jones, Andy; Brayne, Carol
2014-10-22
An association between depressive symptoms and features of built environment has been reported in the literature. A remaining research challenge is the development of methods to efficiently capture pertinent environmental features in relevant study settings. Visual streetscape images have been used to replace traditional physical audits and directly observe the built environment of communities. The aim of this work is to examine the inter-method reliability of the two audit methods for assessing community environments with a specific focus on physical features related to mental health. Forty-eight postcodes in urban and rural areas of Cambridgeshire, England were randomly selected from an alphabetical list of streets hosted on a UK property website. The assessment was conducted in July and August 2012 by both physical and visual image audits based on the items in Residential Environment Assessment Tool (REAT), an observational instrument targeting the micro-scale environmental features related to mental health in UK postcodes. The assessor used the images of Google Street View and virtually "walked through" the streets to conduct the property and street level assessments. Gwet's AC1 coefficients and Bland-Altman plots were used to compare the concordance of two audits. The results of conducting the REAT by visual image audits generally correspond to direct observations. More variations were found in property level items regarding physical incivilities, with broad limits of agreement which importantly lead to most of the variation in the overall REAT score. Postcodes in urban areas had lower consistency between the two methods than rural areas. Google Street View has the potential to assess environmental features related to mental health with fair reliability and provide a less resource intense method of assessing community environments than physical audits.
NASA Astrophysics Data System (ADS)
Khaustova, Dar'ya; Fournier, Jérôme; Wyckens, Emmanuel; Le Meur, Olivier
2014-02-01
The aim of this research is to understand the difference in visual attention to 2D and 3D content depending on texture and amount of depth. Two experiments were conducted using an eye-tracker and a 3DTV display. Collected fixation data were used to build saliency maps and to analyze the differences between 2D and 3D conditions. In the first experiment 51 observers participated in the test. Using scenes that contained objects with crossed disparity, it was discovered that such objects are the most salient, even if observers experience discomfort due to the high level of disparity. The goal of the second experiment is to decide whether depth is a determinative factor for visual attention. During the experiment, 28 observers watched the scenes that contained objects with crossed and uncrossed disparities. We evaluated features influencing the saliency of the objects in stereoscopic conditions by using contents with low-level visual features. With univariate tests of significance (MANOVA), it was detected that texture is more important than depth for selection of objects. Objects with crossed disparity are significantly more important for selection processes when compared to 2D. However, objects with uncrossed disparity have the same influence on visual attention as 2D objects. Analysis of eyemovements indicated that there is no difference in saccade length. Fixation durations were significantly higher in stereoscopic conditions for low-level stimuli than in 2D. We believe that these experiments can help to refine existing models of visual attention for 3D content.
Caudate nucleus reactivity predicts perceptual learning rate for visual feature conjunctions.
Reavis, Eric A; Frank, Sebastian M; Tse, Peter U
2015-04-15
Useful information in the visual environment is often contained in specific conjunctions of visual features (e.g., color and shape). The ability to quickly and accurately process such conjunctions can be learned. However, the neural mechanisms responsible for such learning remain largely unknown. It has been suggested that some forms of visual learning might involve the dopaminergic neuromodulatory system (Roelfsema et al., 2010; Seitz and Watanabe, 2005), but this hypothesis has not yet been directly tested. Here we test the hypothesis that learning visual feature conjunctions involves the dopaminergic system, using functional neuroimaging, genetic assays, and behavioral testing techniques. We use a correlative approach to evaluate potential associations between individual differences in visual feature conjunction learning rate and individual differences in dopaminergic function as indexed by neuroimaging and genetic markers. We find a significant correlation between activity in the caudate nucleus (a component of the dopaminergic system connected to visual areas of the brain) and visual feature conjunction learning rate. Specifically, individuals who showed a larger difference in activity between positive and negative feedback on an unrelated cognitive task, indicative of a more reactive dopaminergic system, learned visual feature conjunctions more quickly than those who showed a smaller activity difference. This finding supports the hypothesis that the dopaminergic system is involved in visual learning, and suggests that visual feature conjunction learning could be closely related to associative learning. However, no significant, reliable correlations were found between feature conjunction learning and genotype or dopaminergic activity in any other regions of interest. Copyright © 2015 Elsevier Inc. All rights reserved.
Sneve, Markus H; Sreenivasan, Kartik K; Alnæs, Dag; Endestad, Tor; Magnussen, Svein
2015-01-01
Retention of features in visual short-term memory (VSTM) involves maintenance of sensory traces in early visual cortex. However, the mechanism through which this is accomplished is not known. Here, we formulate specific hypotheses derived from studies on feature-based attention to test the prediction that visual cortex is recruited by attentional mechanisms during VSTM of low-level features. Functional magnetic resonance imaging (fMRI) of human visual areas revealed that neural populations coding for task-irrelevant feature information are suppressed during maintenance of detailed spatial frequency memory representations. The narrow spectral extent of this suppression agrees well with known effects of feature-based attention. Additionally, analyses of effective connectivity during maintenance between retinotopic areas in visual cortex show that the observed highlighting of task-relevant parts of the feature spectrum originates in V4, a visual area strongly connected with higher-level control regions and known to convey top-down influence to earlier visual areas during attentional tasks. In line with this property of V4 during attentional operations, we demonstrate that modulations of earlier visual areas during memory maintenance have behavioral consequences, and that these modulations are a result of influences from V4. Copyright © 2014 Elsevier Ltd. All rights reserved.
Visual Prediction Error Spreads Across Object Features in Human Visual Cortex
Summerfield, Christopher; Egner, Tobias
2016-01-01
Visual cognition is thought to rely heavily on contextual expectations. Accordingly, previous studies have revealed distinct neural signatures for expected versus unexpected stimuli in visual cortex. However, it is presently unknown how the brain combines multiple concurrent stimulus expectations such as those we have for different features of a familiar object. To understand how an unexpected object feature affects the simultaneous processing of other expected feature(s), we combined human fMRI with a task that independently manipulated expectations for color and motion features of moving-dot stimuli. Behavioral data and neural signals from visual cortex were then interrogated to adjudicate between three possible ways in which prediction error (surprise) in the processing of one feature might affect the concurrent processing of another, expected feature: (1) feature processing may be independent; (2) surprise might “spread” from the unexpected to the expected feature, rendering the entire object unexpected; or (3) pairing a surprising feature with an expected feature might promote the inference that the two features are not in fact part of the same object. To formalize these rival hypotheses, we implemented them in a simple computational model of multifeature expectations. Across a range of analyses, behavior and visual neural signals consistently supported a model that assumes a mixing of prediction error signals across features: surprise in one object feature spreads to its other feature(s), thus rendering the entire object unexpected. These results reveal neurocomputational principles of multifeature expectations and indicate that objects are the unit of selection for predictive vision. SIGNIFICANCE STATEMENT We address a key question in predictive visual cognition: how does the brain combine multiple concurrent expectations for different features of a single object such as its color and motion trajectory? By combining a behavioral protocol that independently varies expectation of (and attention to) multiple object features with computational modeling and fMRI, we demonstrate that behavior and fMRI activity patterns in visual cortex are best accounted for by a model in which prediction error in one object feature spreads to other object features. These results demonstrate how predictive vision forms object-level expectations out of multiple independent features. PMID:27810936
Object-based attention underlies the rehearsal of feature binding in visual working memory.
Shen, Mowei; Huang, Xiang; Gao, Zaifeng
2015-04-01
Feature binding is a core concept in many research fields, including the study of working memory (WM). Over the past decade, it has been debated whether keeping the feature binding in visual WM consumes more visual attention than the constituent single features. Previous studies have only explored the contribution of domain-general attention or space-based attention in the binding process; no study so far has explored the role of object-based attention in retaining binding in visual WM. We hypothesized that object-based attention underlay the mechanism of rehearsing feature binding in visual WM. Therefore, during the maintenance phase of a visual WM task, we inserted a secondary mental rotation (Experiments 1-3), transparent motion (Experiment 4), or an object-based feature report task (Experiment 5) to consume the object-based attention available for binding. In line with the prediction of the object-based attention hypothesis, Experiments 1-5 revealed a more significant impairment for binding than for constituent single features. However, this selective binding impairment was not observed when inserting a space-based visual search task (Experiment 6). We conclude that object-based attention underlies the rehearsal of binding representation in visual WM. (c) 2015 APA, all rights reserved.
Neural Architecture for Feature Binding in Visual Working Memory.
Schneegans, Sebastian; Bays, Paul M
2017-04-05
Binding refers to the operation that groups different features together into objects. We propose a neural architecture for feature binding in visual working memory that employs populations of neurons with conjunction responses. We tested this model using cued recall tasks, in which subjects had to memorize object arrays composed of simple visual features (color, orientation, and location). After a brief delay, one feature of one item was given as a cue, and the observer had to report, on a continuous scale, one or two other features of the cued item. Binding failure in this task is associated with swap errors, in which observers report an item other than the one indicated by the cue. We observed that the probability of swapping two items strongly correlated with the items' similarity in the cue feature dimension, and found a strong correlation between swap errors occurring in spatial and nonspatial report. The neural model explains both swap errors and response variability as results of decoding noisy neural activity, and can account for the behavioral results in quantitative detail. We then used the model to compare alternative mechanisms for binding nonspatial features. We found the behavioral results fully consistent with a model in which nonspatial features are bound exclusively via their shared location, with no indication of direct binding between color and orientation. These results provide evidence for a special role of location in feature binding, and the model explains how this special role could be realized in the neural system. SIGNIFICANCE STATEMENT The problem of feature binding is of central importance in understanding the mechanisms of working memory. How do we remember not only that we saw a red and a round object, but that these features belong together to a single object rather than to different objects in our environment? Here we present evidence for a neural mechanism for feature binding in working memory, based on encoding of visual information by neurons that respond to the conjunction of features. We find clear evidence that nonspatial features are bound via space: we memorize directly where a color or an orientation appeared, but we memorize which color belonged with which orientation only indirectly by virtue of their shared location. Copyright © 2017 Schneegans and Bays.
Douglas, Danielle; Newsome, Rachel N; Man, Louisa LY
2018-01-01
A significant body of research in cognitive neuroscience is aimed at understanding how object concepts are represented in the human brain. However, it remains unknown whether and where the visual and abstract conceptual features that define an object concept are integrated. We addressed this issue by comparing the neural pattern similarities among object-evoked fMRI responses with behavior-based models that independently captured the visual and conceptual similarities among these stimuli. Our results revealed evidence for distinctive coding of visual features in lateral occipital cortex, and conceptual features in the temporal pole and parahippocampal cortex. By contrast, we found evidence for integrative coding of visual and conceptual object features in perirhinal cortex. The neuroanatomical specificity of this effect was highlighted by results from a searchlight analysis. Taken together, our findings suggest that perirhinal cortex uniquely supports the representation of fully specified object concepts through the integration of their visual and conceptual features. PMID:29393853
Understanding Deep Representations Learned in Modeling Users Likes.
Guntuku, Sharath Chandra; Zhou, Joey Tianyi; Roy, Sujoy; Lin, Weisi; Tsang, Ivor W
2016-08-01
Automatically understanding and discriminating different users' liking for an image is a challenging problem. This is because the relationship between image features (even semantic ones extracted by existing tools, viz., faces, objects, and so on) and users' likes is non-linear, influenced by several subtle factors. This paper presents a deep bi-modal knowledge representation of images based on their visual content and associated tags (text). A mapping step between the different levels of visual and textual representations allows for the transfer of semantic knowledge between the two modalities. Feature selection is applied before learning deep representation to identify the important features for a user to like an image. The proposed representation is shown to be effective in discriminating users based on images they like and also in recommending images that a given user likes, outperforming the state-of-the-art feature representations by ∼ 15 %-20%. Beyond this test-set performance, an attempt is made to qualitatively understand the representations learned by the deep architecture used to model user likes.
Physical Features of Visual Images Affect Macaque Monkey’s Preference for These Images
Funahashi, Shintaro
2016-01-01
Animals exhibit different degrees of preference toward various visual stimuli. In addition, it has been shown that strongly preferred stimuli can often act as a reward. The aim of the present study was to determine what features determine the strength of the preference for visual stimuli in order to examine neural mechanisms of preference judgment. We used 50 color photographs obtained from the Flickr Material Database (FMD) as original stimuli. Four macaque monkeys performed a simple choice task, in which two stimuli selected randomly from among the 50 stimuli were simultaneously presented on a monitor and monkeys were required to choose either stimulus by eye movements. We considered that the monkeys preferred the chosen stimulus if it continued to look at the stimulus for an additional 6 s and calculated a choice ratio for each stimulus. Each monkey exhibited a different choice ratio for each of the original 50 stimuli. They tended to select clear, colorful and in-focus stimuli. Complexity and clarity were stronger determinants of preference than colorfulness. Images that included greater amounts of spatial frequency components were selected more frequently. These results indicate that particular physical features of the stimulus can affect the strength of a monkey’s preference and that the complexity, clarity and colorfulness of the stimulus are important determinants of this preference. Neurophysiological studies would be needed to examine whether these features of visual stimuli produce more activation in neurons that participate in this preference judgment. PMID:27853424
[Clinical feature of chronic compressive optic neuropathy without optic atrophy].
Jiang, Libin; Shi, Jitong; Liu, Wendong; Kang, Jun; Wang, Ningli
2014-12-01
To investigate the clinical feature of the chronic compressive optic neuropathy without optic atrophy. Retrospective cases series study. The clinical data of 25 patients (37 eyes) with chronic compressive optic neuropathy without optic atrophy, treated in Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, from October, 2005 to March, 2014, were collected. Those patients had been showing visual symptoms for 6 months or longer, but missed diagnosed or misdiagnosed as other eye diseases due to their normal or slightly changed fundi. The collected data including visual acuities, visual fields, neuroimaging and/or pathologic diagnosis were analyzed. Among the 25 patients, there were 5 males and 20 females, and their ages range from 9 to 74 years [average (47.5 ± 13.4) years]. All patients suffered progressive impaired vision in single eye or both eyes, without exophthalmos or abnormal eye movements. Except one patient had a headache, other patients did not show systemic symptoms. The corrected visual acuities were between HM to 1.0, and their appearances of optic discs and colors of fundi were normal. After neuroimaging and/or pathological examination, it was proven that 14 patients suffered tuberculum sellae meningiomas, 5 patients with hypophysoma, 3 patient with optic nerve sheath meningioma in orbital apex, 1 patient with cavernous hemangioma, 1 patient with vascular malformation in orbital apex and 1 patient with optic nerve glioma. Among the 19 patients whose suffered occupied lesions of saddle area, 14 patients underwent visual field examinations, and only 4 patients showed classic visual field defects caused by optic chiasmal lesions. Occult progressive visual loss was the most important clinical feature of the disease.
Peter Vogt; Kurt H. Riitters; Marcin Iwanowski; Christine Estreguil; Jacek Kozak; Pierre Soille
2007-01-01
Corridors are important geographic features for biological conservation and biodiversity assessment. The identification and mapping of corridors is usually based on visual interpretations of movement patterns (functional corridors) or habitat maps (structural corridors). We present a method for automated corridor mapping with morphological image processing, and...
Finlayson, Nonie J.; Golomb, Julie D.
2016-01-01
A fundamental aspect of human visual perception is the ability to recognize and locate objects in the environment. Importantly, our environment is predominantly three-dimensional (3D), but while there is considerable research exploring the binding of object features and location, it is unknown how depth information interacts with features in the object binding process. A recent paradigm called the spatial congruency bias demonstrated that 2D location is fundamentally bound to object features (Golomb, Kupitz, & Thiemann, 2014), such that irrelevant location information biases judgments of object features, but irrelevant feature information does not bias judgments of location or other features. Here, using the spatial congruency bias paradigm, we asked whether depth is processed as another type of location, or more like other features. We initially found that depth cued by binocular disparity biased judgments of object color. However, this result seemed to be driven more by the disparity differences than the depth percept: Depth cued by occlusion and size did not bias color judgments, whereas vertical disparity information (with no depth percept) did bias color judgments. Our results suggest that despite the 3D nature of our visual environment, only 2D location information – not position-in-depth – seems to be automatically bound to object features, with depth information processed more similarly to other features than to 2D location. PMID:27468654
Finlayson, Nonie J; Golomb, Julie D
2016-10-01
A fundamental aspect of human visual perception is the ability to recognize and locate objects in the environment. Importantly, our environment is predominantly three-dimensional (3D), but while there is considerable research exploring the binding of object features and location, it is unknown how depth information interacts with features in the object binding process. A recent paradigm called the spatial congruency bias demonstrated that 2D location is fundamentally bound to object features, such that irrelevant location information biases judgments of object features, but irrelevant feature information does not bias judgments of location or other features. Here, using the spatial congruency bias paradigm, we asked whether depth is processed as another type of location, or more like other features. We initially found that depth cued by binocular disparity biased judgments of object color. However, this result seemed to be driven more by the disparity differences than the depth percept: Depth cued by occlusion and size did not bias color judgments, whereas vertical disparity information (with no depth percept) did bias color judgments. Our results suggest that despite the 3D nature of our visual environment, only 2D location information - not position-in-depth - seems to be automatically bound to object features, with depth information processed more similarly to other features than to 2D location. Copyright © 2016 Elsevier Ltd. All rights reserved.
End-to-End Multimodal Emotion Recognition Using Deep Neural Networks
NASA Astrophysics Data System (ADS)
Tzirakis, Panagiotis; Trigeorgis, George; Nicolaou, Mihalis A.; Schuller, Bjorn W.; Zafeiriou, Stefanos
2017-12-01
Automatic affect recognition is a challenging task due to the various modalities emotions can be expressed with. Applications can be found in many domains including multimedia retrieval and human computer interaction. In recent years, deep neural networks have been used with great success in determining emotional states. Inspired by this success, we propose an emotion recognition system using auditory and visual modalities. To capture the emotional content for various styles of speaking, robust features need to be extracted. To this purpose, we utilize a Convolutional Neural Network (CNN) to extract features from the speech, while for the visual modality a deep residual network (ResNet) of 50 layers. In addition to the importance of feature extraction, a machine learning algorithm needs also to be insensitive to outliers while being able to model the context. To tackle this problem, Long Short-Term Memory (LSTM) networks are utilized. The system is then trained in an end-to-end fashion where - by also taking advantage of the correlations of the each of the streams - we manage to significantly outperform the traditional approaches based on auditory and visual handcrafted features for the prediction of spontaneous and natural emotions on the RECOLA database of the AVEC 2016 research challenge on emotion recognition.
Biasing spatial attention with semantic information: an event coding approach.
Amer, Tarek; Gozli, Davood G; Pratt, Jay
2017-04-21
We investigated the influence of conceptual processing on visual attention from the standpoint of Theory of Event Coding (TEC). The theory makes two predictions: first, an important factor in determining the influence of event 1 on processing event 2 is whether features of event 1 are bound into a unified representation (i.e., selection or retrieval of event 1). Second, whether processing the two events facilitates or interferes with each other should depend on the extent to which their constituent features overlap. In two experiments, participants performed a visual-attention cueing task, in which the visual target (event 2) was preceded by a relevant or irrelevant explicit (e.g., "UP") or implicit (e.g., "HAPPY") spatial-conceptual cue (event 1). Consistent with TEC, we found relevant explicit cues (which featurally overlap to a greater extent with the target) and implicit cues (which featurally overlap to a lesser extent), respectively, facilitated and interfered with target processing at compatible locations. Irrelevant explicit and implicit cues, on the other hand, both facilitated target processing, presumably because they were less likely selected or retrieved as an integrated and unified event file. We argue that such effects, often described as "attentional cueing", are better accounted for within the event coding framework.
Vatovec, Christine
2013-01-01
Theory-based research is needed to understand how maps of environmental health risk information influence risk beliefs and protective behavior. Using theoretical concepts from multiple fields of study including visual cognition, semiotics, health behavior, and learning and memory supports a comprehensive assessment of this influence. We report results from thirteen cognitive interviews that provide theory-based insights into how visual features influenced what participants saw and the meaning of what they saw as they viewed three formats of water test results for private wells (choropleth map, dot map, and a table). The unit of perception, color, proximity to hazards, geographic distribution, and visual salience had substantial influences on what participants saw and their resulting risk beliefs. These influences are explained by theoretical factors that shape what is seen, properties of features that shape cognition (pre-attentive, symbolic, visual salience), information processing (top-down and bottom-up), and the strength of concrete compared to abstract information. Personal relevance guided top-down attention to proximal and larger hazards that shaped stronger risk beliefs. Meaning was more local for small perceptual units and global for large units. Three aspects of color were important: pre-attentive “incremental risk” meaning of sequential shading, symbolic safety meaning of stoplight colors, and visual salience that drew attention. The lack of imagery, geographic information, and color diminished interest in table information. Numeracy and prior beliefs influenced comprehension for some participants. Results guided the creation of an integrated conceptual framework for application to future studies. Ethics should guide the selection of map features that support appropriate communication goals. PMID:22715919
Severtson, Dolores J; Vatovec, Christine
2012-08-01
Theory-based research is needed to understand how maps of environmental health risk information influence risk beliefs and protective behavior. Using theoretical concepts from multiple fields of study including visual cognition, semiotics, health behavior, and learning and memory supports a comprehensive assessment of this influence. The authors report results from 13 cognitive interviews that provide theory-based insights into how visual features influenced what participants saw and the meaning of what they saw as they viewed 3 formats of water test results for private wells (choropleth map, dot map, and a table). The unit of perception, color, proximity to hazards, geographic distribution, and visual salience had substantial influences on what participants saw and their resulting risk beliefs. These influences are explained by theoretical factors that shape what is seen, properties of features that shape cognition (preattentive, symbolic, visual salience), information processing (top-down and bottom-up), and the strength of concrete compared with abstract information. Personal relevance guided top-down attention to proximal and larger hazards that shaped stronger risk beliefs. Meaning was more local for small perceptual units and global for large units. Three aspects of color were important: preattentive "incremental risk" meaning of sequential shading, symbolic safety meaning of stoplight colors, and visual salience that drew attention. The lack of imagery, geographic information, and color diminished interest in table information. Numeracy and prior beliefs influenced comprehension for some participants. Results guided the creation of an integrated conceptual framework for application to future studies. Ethics should guide the selection of map features that support appropriate communication goals.
Sarabi, Mitra Taghizadeh; Aoki, Ryuta; Tsumura, Kaho; Keerativittayayut, Ruedeerat; Jimura, Koji; Nakahara, Kiyoshi
2018-01-01
The neural mechanisms underlying visual perceptual learning (VPL) have typically been studied by examining changes in task-related brain activation after training. However, the relationship between post-task "offline" processes and VPL remains unclear. The present study examined this question by obtaining resting-state functional magnetic resonance imaging (fMRI) scans of human brains before and after a task-fMRI session involving visual perceptual training. During the task-fMRI session, participants performed a motion coherence discrimination task in which they judged the direction of moving dots with a coherence level that varied between trials (20, 40, and 80%). We found that stimulus-induced activation increased with motion coherence in the middle temporal cortex (MT+), a feature-specific region representing visual motion. On the other hand, stimulus-induced activation decreased with motion coherence in the dorsal anterior cingulate cortex (dACC) and bilateral insula, regions involved in decision making under perceptual ambiguity. Moreover, by comparing pre-task and post-task rest periods, we revealed that resting-state functional connectivity (rs-FC) with the MT+ was significantly increased after training in widespread cortical regions including the bilateral sensorimotor and temporal cortices. In contrast, rs-FC with the MT+ was significantly decreased in subcortical regions including the thalamus and putamen. Importantly, the training-induced change in rs-FC was observed only with the MT+, but not with the dACC or insula. Thus, our findings suggest that perceptual training induces plastic changes in offline functional connectivity specifically in brain regions representing the trained visual feature, emphasising the distinct roles of feature-representation regions and decision-related regions in VPL.
Visual search, visual streams, and visual architectures.
Green, M
1991-10-01
Most psychological, physiological, and computational models of early vision suggest that retinal information is divided into a parallel set of feature modules. The dominant theories of visual search assume that these modules form a "blackboard" architecture: a set of independent representations that communicate only through a central processor. A review of research shows that blackboard-based theories, such as feature-integration theory, cannot easily explain the existing data. The experimental evidence is more consistent with a "network" architecture, which stresses that: (1) feature modules are directly connected to one another, (2) features and their locations are represented together, (3) feature detection and integration are not distinct processing stages, and (4) no executive control process, such as focal attention, is needed to integrate features. Attention is not a spotlight that synthesizes objects from raw features. Instead, it is better to conceptualize attention as an aperture which masks irrelevant visual information.
View-Dependent Streamline Deformation and Exploration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tong, Xin; Edwards, John; Chen, Chun-Ming
Occlusion presents a major challenge in visualizing 3D flow and tensor fields using streamlines. Displaying too many streamlines creates a dense visualization filled with occluded structures, but displaying too few streams risks losing important features. We propose a new streamline exploration approach by visually manipulating the cluttered streamlines by pulling visible layers apart and revealing the hidden structures underneath. This paper presents a customized view-dependent deformation algorithm and an interactive visualization tool to minimize visual cluttering for visualizing 3D vector and tensor fields. The algorithm is able to maintain the overall integrity of the fields and expose previously hidden structures.more » Our system supports both mouse and direct-touch interactions to manipulate the viewing perspectives and visualize the streamlines in depth. By using a lens metaphor of different shapes to select the transition zone of the targeted area interactively, the users can move their focus and examine the vector or tensor field freely.« less
Diversification of visual media retrieval results using saliency detection
NASA Astrophysics Data System (ADS)
Muratov, Oleg; Boato, Giulia; De Natale, Franesco G. B.
2013-03-01
Diversification of retrieval results allows for better and faster search. Recently there has been proposed different methods for diversification of image retrieval results mainly utilizing text information and techniques imported from natural language processing domain. However, images contain visual information that is impossible to describe in text and the use of visual features is inevitable. Visual saliency is information about the main object of an image implicitly included by humans while creating visual content. For this reason it is naturally to exploit this information for the task of diversification of the content. In this work we study whether visual saliency can be used for the task of diversification and propose a method for re-ranking image retrieval results using saliency. The evaluation has shown that the use of saliency information results in higher diversity of retrieval results.
Perceptual learning in visual search: fast, enduring, but non-specific.
Sireteanu, R; Rettenbach, R
1995-07-01
Visual search has been suggested as a tool for isolating visual primitives. Elementary "features" were proposed to involve parallel search, while serial search is necessary for items without a "feature" status, or, in some cases, for conjunctions of "features". In this study, we investigated the role of practice in visual search tasks. We found that, under some circumstances, initially serial tasks can become parallel after a few hundred trials. Learning in visual search is far less specific than learning of visual discriminations and hyperacuity, suggesting that it takes place at another level in the central visual pathway, involving different neural circuits.
Visual Aversive Learning Compromises Sensory Discrimination.
Shalev, Lee; Paz, Rony; Avidan, Galia
2018-03-14
Aversive learning is thought to modulate perceptual thresholds, which can lead to overgeneralization. However, it remains undetermined whether this modulation is domain specific or a general effect. Moreover, despite the unique role of the visual modality in human perception, it is unclear whether this aspect of aversive learning exists in this modality. The current study was designed to examine the effect of visual aversive outcomes on the perception of basic visual and auditory features. We tested the ability of healthy participants, both males and females, to discriminate between neutral stimuli, before and after visual learning. In each experiment, neutral stimuli were associated with aversive images in an experimental group and with neutral images in a control group. Participants demonstrated a deterioration in discrimination (higher discrimination thresholds) only after aversive learning. This deterioration was measured for both auditory (tone frequency) and visual (orientation and contrast) features. The effect was replicated in five different experiments and lasted for at least 24 h. fMRI neural responses and pupil size were also measured during learning. We showed an increase in neural activations in the anterior cingulate cortex, insula, and amygdala during aversive compared with neutral learning. Interestingly, the early visual cortex showed increased brain activity during aversive compared with neutral context trials, with identical visual information. Our findings imply the existence of a central multimodal mechanism, which modulates early perceptual properties, following exposure to negative situations. Such a mechanism could contribute to abnormal responses that underlie anxiety states, even in new and safe environments. SIGNIFICANCE STATEMENT Using a visual aversive-learning paradigm, we found deteriorated discrimination abilities for visual and auditory stimuli that were associated with visual aversive stimuli. We showed increased neural activations in the anterior cingulate cortex, insula, and amygdala during aversive learning, compared with neutral learning. Importantly, similar findings were also evident in the early visual cortex during trials with aversive/neutral context, but with identical visual information. The demonstration of this phenomenon in the visual modality is important, as it provides support to the notion that aversive learning can influence perception via a central mechanism, independent of input modality. Given the dominance of the visual system in human perception, our findings hold relevance to daily life, as well as imply a potential etiology for anxiety disorders. Copyright © 2018 the authors 0270-6474/18/382766-14$15.00/0.
Perceptual grouping enhances visual plasticity.
Mastropasqua, Tommaso; Turatto, Massimo
2013-01-01
Visual perceptual learning, a manifestation of neural plasticity, refers to improvements in performance on a visual task achieved by training. Attention is known to play an important role in perceptual learning, given that the observer's discriminative ability improves only for those stimulus feature that are attended. However, the distribution of attention can be severely constrained by perceptual grouping, a process whereby the visual system organizes the initial retinal input into candidate objects. Taken together, these two pieces of evidence suggest the interesting possibility that perceptual grouping might also affect perceptual learning, either directly or via attentional mechanisms. To address this issue, we conducted two experiments. During the training phase, participants attended to the contrast of the task-relevant stimulus (oriented grating), while two similar task-irrelevant stimuli were presented in the adjacent positions. One of the two flanking stimuli was perceptually grouped with the attended stimulus as a consequence of its similar orientation (Experiment 1) or because it was part of the same perceptual object (Experiment 2). A test phase followed the training phase at each location. Compared to the task-irrelevant no-grouping stimulus, orientation discrimination improved at the attended location. Critically, a perceptual learning effect equivalent to the one observed for the attended location also emerged for the task-irrelevant grouping stimulus, indicating that perceptual grouping induced a transfer of learning to the stimulus (or feature) being perceptually grouped with the task-relevant one. Our findings indicate that no voluntary effort to direct attention to the grouping stimulus or feature is necessary to enhance visual plasticity.
Using Tablet for visual exploration of second-generation sequencing data.
Milne, Iain; Stephen, Gordon; Bayer, Micha; Cock, Peter J A; Pritchard, Leighton; Cardle, Linda; Shaw, Paul D; Marshall, David
2013-03-01
The advent of second-generation sequencing (2GS) has provided a range of significant new challenges for the visualization of sequence assemblies. These include the large volume of data being generated, short-read lengths and different data types and data formats associated with the diversity of new sequencing technologies. This article illustrates how Tablet-a high-performance graphical viewer for visualization of 2GS assemblies and read mappings-plays an important role in the analysis of these data. We present Tablet, and through a selection of use cases, demonstrate its value in quality assurance and scientific discovery, through features such as whole-reference coverage overviews, variant highlighting, paired-end read mark-up, GFF3-based feature tracks and protein translations. We discuss the computing and visualization techniques utilized to provide a rich and responsive graphical environment that enables users to view a range of file formats with ease. Tablet installers can be freely downloaded from http://bioinf.hutton.ac.uk/tablet in 32 or 64-bit versions for Windows, OS X, Linux or Solaris. For further details on the Tablet, contact tablet@hutton.ac.uk.
Can responses to basic non-numerical visual features explain neural numerosity responses?
Harvey, Ben M; Dumoulin, Serge O
2017-04-01
Humans and many animals can distinguish between stimuli that differ in numerosity, the number of objects in a set. Human and macaque parietal lobes contain neurons that respond to changes in stimulus numerosity. However, basic non-numerical visual features can affect neural responses to and perception of numerosity, and visual features often co-vary with numerosity. Therefore, it is debated whether numerosity or co-varying low-level visual features underlie neural and behavioral responses to numerosity. To test the hypothesis that non-numerical visual features underlie neural numerosity responses in a human parietal numerosity map, we analyze responses to a group of numerosity stimulus configurations that have the same numerosity progression but vary considerably in their non-numerical visual features. Using ultra-high-field (7T) fMRI, we measure responses to these stimulus configurations in an area of posterior parietal cortex whose responses are believed to reflect numerosity-selective activity. We describe an fMRI analysis method to distinguish between alternative models of neural response functions, following a population receptive field (pRF) modeling approach. For each stimulus configuration, we first quantify the relationships between numerosity and several non-numerical visual features that have been proposed to underlie performance in numerosity discrimination tasks. We then determine how well responses to these non-numerical visual features predict the observed fMRI responses, and compare this to the predictions of responses to numerosity. We demonstrate that a numerosity response model predicts observed responses more accurately than models of responses to simple non-numerical visual features. As such, neural responses in cognitive processing need not reflect simpler properties of early sensory inputs. Copyright © 2017 Elsevier Inc. All rights reserved.
Visualization techniques for tongue analysis in traditional Chinese medicine
NASA Astrophysics Data System (ADS)
Pham, Binh L.; Cai, Yang
2004-05-01
Visual inspection of the tongue has been an important diagnostic method of Traditional Chinese Medicine (TCM). Clinic data have shown significant connections between various viscera cancers and abnormalities in the tongue and the tongue coating. Visual inspection of the tongue is simple and inexpensive, but the current practice in TCM is mainly experience-based and the quality of the visual inspection varies between individuals. The computerized inspection method provides quantitative models to evaluate color, texture and surface features on the tongue. In this paper, we investigate visualization techniques and processes to allow interactive data analysis with the aim to merge computerized measurements with human expert's diagnostic variables based on five-scale diagnostic conditions: Healthy (H), History Cancers (HC), History of Polyps (HP), Polyps (P) and Colon Cancer (C).
Jacobs, Richard H A H; Haak, Koen V; Thumfart, Stefan; Renken, Remco; Henson, Brian; Cornelissen, Frans W
2016-01-01
Our world is filled with texture. For the human visual system, this is an important source of information for assessing environmental and material properties. Indeed-and presumably for this reason-the human visual system has regions dedicated to processing textures. Despite their abundance and apparent relevance, only recently the relationships between texture features and high-level judgments have captured the interest of mainstream science, despite long-standing indications for such relationships. In this study, we explore such relationships, as these might be used to predict perceived texture qualities. This is relevant, not only from a psychological/neuroscience perspective, but also for more applied fields such as design, architecture, and the visual arts. In two separate experiments, observers judged various qualities of visual textures such as beauty, roughness, naturalness, elegance, and complexity. Based on factor analysis, we find that in both experiments, ~75% of the variability in the judgments could be explained by a two-dimensional space, with axes that are closely aligned to the beauty and roughness judgments. That a two-dimensional judgment space suffices to capture most of the variability in the perceived texture qualities suggests that observers use a relatively limited set of internal scales on which to base various judgments, including aesthetic ones. Finally, for both of these judgments, we determined the relationship with a large number of texture features computed for each of the texture stimuli. We find that the presence of lower spatial frequencies, oblique orientations, higher intensity variation, higher saturation, and redness correlates with higher beauty ratings. Features that captured image intensity and uniformity correlated with roughness ratings. Therefore, a number of computational texture features are predictive of these judgments. This suggests that perceived texture qualities-including the aesthetic appreciation-are sufficiently universal to be predicted-with reasonable accuracy-based on the computed feature content of the textures.
Jacobs, Richard H. A. H.; Haak, Koen V.; Thumfart, Stefan; Renken, Remco; Henson, Brian; Cornelissen, Frans W.
2016-01-01
Our world is filled with texture. For the human visual system, this is an important source of information for assessing environmental and material properties. Indeed—and presumably for this reason—the human visual system has regions dedicated to processing textures. Despite their abundance and apparent relevance, only recently the relationships between texture features and high-level judgments have captured the interest of mainstream science, despite long-standing indications for such relationships. In this study, we explore such relationships, as these might be used to predict perceived texture qualities. This is relevant, not only from a psychological/neuroscience perspective, but also for more applied fields such as design, architecture, and the visual arts. In two separate experiments, observers judged various qualities of visual textures such as beauty, roughness, naturalness, elegance, and complexity. Based on factor analysis, we find that in both experiments, ~75% of the variability in the judgments could be explained by a two-dimensional space, with axes that are closely aligned to the beauty and roughness judgments. That a two-dimensional judgment space suffices to capture most of the variability in the perceived texture qualities suggests that observers use a relatively limited set of internal scales on which to base various judgments, including aesthetic ones. Finally, for both of these judgments, we determined the relationship with a large number of texture features computed for each of the texture stimuli. We find that the presence of lower spatial frequencies, oblique orientations, higher intensity variation, higher saturation, and redness correlates with higher beauty ratings. Features that captured image intensity and uniformity correlated with roughness ratings. Therefore, a number of computational texture features are predictive of these judgments. This suggests that perceived texture qualities—including the aesthetic appreciation—are sufficiently universal to be predicted—with reasonable accuracy—based on the computed feature content of the textures. PMID:27493628
Heinen, Klaartje; Feredoes, Eva; Weiskopf, Nikolaus; Ruff, Christian C; Driver, Jon
2014-11-01
Voluntary selective attention can prioritize different features in a visual scene. The frontal eye-fields (FEF) are one potential source of such feature-specific top-down signals, but causal evidence for influences on visual cortex (as was shown for "spatial" attention) has remained elusive. Here, we show that transcranial magnetic stimulation (TMS) applied to right FEF increased the blood oxygen level-dependent (BOLD) signals in visual areas processing "target feature" but not in "distracter feature"-processing regions. TMS-induced BOLD signals increase in motion-responsive visual cortex (MT+) when motion was attended in a display with moving dots superimposed on face stimuli, but in face-responsive fusiform area (FFA) when faces were attended to. These TMS effects on BOLD signal in both regions were negatively related to performance (on the motion task), supporting the behavioral relevance of this pathway. Our findings provide new causal evidence for the human FEF in the control of nonspatial "feature"-based attention, mediated by dynamic influences on feature-specific visual cortex that vary with the currently attended property. © The Author 2013. Published by Oxford University Press.
Cross-Modal Retrieval With CNN Visual Features: A New Baseline.
Wei, Yunchao; Zhao, Yao; Lu, Canyi; Wei, Shikui; Liu, Luoqi; Zhu, Zhenfeng; Yan, Shuicheng
2017-02-01
Recently, convolutional neural network (CNN) visual features have demonstrated their powerful ability as a universal representation for various recognition tasks. In this paper, cross-modal retrieval with CNN visual features is implemented with several classic methods. Specifically, off-the-shelf CNN visual features are extracted from the CNN model, which is pretrained on ImageNet with more than one million images from 1000 object categories, as a generic image representation to tackle cross-modal retrieval. To further enhance the representational ability of CNN visual features, based on the pretrained CNN model on ImageNet, a fine-tuning step is performed by using the open source Caffe CNN library for each target data set. Besides, we propose a deep semantic matching method to address the cross-modal retrieval problem with respect to samples which are annotated with one or multiple labels. Extensive experiments on five popular publicly available data sets well demonstrate the superiority of CNN visual features for cross-modal retrieval.
Infrared and Visual Image Fusion through Fuzzy Measure and Alternating Operators
Bai, Xiangzhi
2015-01-01
The crucial problem of infrared and visual image fusion is how to effectively extract the image features, including the image regions and details and combine these features into the final fusion result to produce a clear fused image. To obtain an effective fusion result with clear image details, an algorithm for infrared and visual image fusion through the fuzzy measure and alternating operators is proposed in this paper. Firstly, the alternating operators constructed using the opening and closing based toggle operator are analyzed. Secondly, two types of the constructed alternating operators are used to extract the multi-scale features of the original infrared and visual images for fusion. Thirdly, the extracted multi-scale features are combined through the fuzzy measure-based weight strategy to form the final fusion features. Finally, the final fusion features are incorporated with the original infrared and visual images using the contrast enlargement strategy. All the experimental results indicate that the proposed algorithm is effective for infrared and visual image fusion. PMID:26184229
Infrared and Visual Image Fusion through Fuzzy Measure and Alternating Operators.
Bai, Xiangzhi
2015-07-15
The crucial problem of infrared and visual image fusion is how to effectively extract the image features, including the image regions and details and combine these features into the final fusion result to produce a clear fused image. To obtain an effective fusion result with clear image details, an algorithm for infrared and visual image fusion through the fuzzy measure and alternating operators is proposed in this paper. Firstly, the alternating operators constructed using the opening and closing based toggle operator are analyzed. Secondly, two types of the constructed alternating operators are used to extract the multi-scale features of the original infrared and visual images for fusion. Thirdly, the extracted multi-scale features are combined through the fuzzy measure-based weight strategy to form the final fusion features. Finally, the final fusion features are incorporated with the original infrared and visual images using the contrast enlargement strategy. All the experimental results indicate that the proposed algorithm is effective for infrared and visual image fusion.
Learning to rank using user clicks and visual features for image retrieval.
Yu, Jun; Tao, Dacheng; Wang, Meng; Rui, Yong
2015-04-01
The inconsistency between textual features and visual contents can cause poor image search results. To solve this problem, click features, which are more reliable than textual information in justifying the relevance between a query and clicked images, are adopted in image ranking model. However, the existing ranking model cannot integrate visual features, which are efficient in refining the click-based search results. In this paper, we propose a novel ranking model based on the learning to rank framework. Visual features and click features are simultaneously utilized to obtain the ranking model. Specifically, the proposed approach is based on large margin structured output learning and the visual consistency is integrated with the click features through a hypergraph regularizer term. In accordance with the fast alternating linearization method, we design a novel algorithm to optimize the objective function. This algorithm alternately minimizes two different approximations of the original objective function by keeping one function unchanged and linearizing the other. We conduct experiments on a large-scale dataset collected from the Microsoft Bing image search engine, and the results demonstrate that the proposed learning to rank models based on visual features and user clicks outperforms state-of-the-art algorithms.
Dynamic binding of visual features by neuronal/stimulus synchrony.
Iwabuchi, A
1998-05-01
When people see a visual scene, certain parts of the visual scene are treated as belonging together and we regard them as a perceptual unit, which is called a "figure". People focus on figures, and the remaining parts of the scene are disregarded as "ground". In Gestalt psychology this process is called "figure-ground segregation". According to current perceptual psychology, a figure is formed by binding various visual features in a scene, and developments in neuroscience have revealed that there are many feature-encoding neurons, which respond to such features specifically. It is not known, however, how the brain binds different features of an object into a coherent visual object representation. Recently, the theory of binding by neuronal synchrony, which argues that feature binding is dynamically mediated by neuronal synchrony of feature-encoding neurons, has been proposed. This review article portrays the problem of figure-ground segregation and features binding, summarizes neurophysiological and psychophysical experiments and theory relevant to feature binding by neuronal/stimulus synchrony, and suggests possible directions for future research on this topic.
ERIC Educational Resources Information Center
Packer, Jaclyn; Reuschel, William
2018-01-01
Introduction: Accessibility of Voice over Internet Protocol (VoIP) systems was tested with a hands-on usability study and an online survey of VoIP users who are visually impaired. The survey examined the importance of common VoIP features, and both methods assessed difficulty in using those features. Methods: The usability test included four paid…
Feature Masking in Computer Game Promotes Visual Imagery
ERIC Educational Resources Information Center
Smith, Glenn Gordon; Morey, Jim; Tjoe, Edwin
2007-01-01
Can learning of mental imagery skills for visualizing shapes be accelerated with feature masking? Chemistry, physics fine arts, military tactics, and laparoscopic surgery often depend on mentally visualizing shapes in their absence. Does working with "spatial feature-masks" (skeletal shapes, missing key identifying portions) encourage people to…
Computer-aided Classification of Mammographic Masses Using Visually Sensitive Image Features
Wang, Yunzhi; Aghaei, Faranak; Zarafshani, Ali; Qiu, Yuchen; Qian, Wei; Zheng, Bin
2017-01-01
Purpose To develop a new computer-aided diagnosis (CAD) scheme that computes visually sensitive image features routinely used by radiologists to develop a machine learning classifier and distinguish between the malignant and benign breast masses detected from digital mammograms. Methods An image dataset including 301 breast masses was retrospectively selected. From each segmented mass region, we computed image features that mimic five categories of visually sensitive features routinely used by radiologists in reading mammograms. We then selected five optimal features in the five feature categories and applied logistic regression models for classification. A new CAD interface was also designed to show lesion segmentation, computed feature values and classification score. Results Areas under ROC curves (AUC) were 0.786±0.026 and 0.758±0.027 when to classify mass regions depicting on two view images, respectively. By fusing classification scores computed from two regions, AUC increased to 0.806±0.025. Conclusion This study demonstrated a new approach to develop CAD scheme based on 5 visually sensitive image features. Combining with a “visual aid” interface, CAD results may be much more easily explainable to the observers and increase their confidence to consider CAD generated classification results than using other conventional CAD approaches, which involve many complicated and visually insensitive texture features. PMID:27911353
Fox, Olivia M.; Harel, Assaf; Bennett, Kevin B.
2017-01-01
The perception of a visual stimulus is dependent not only upon local features, but also on the arrangement of those features. When stimulus features are perceptually well organized (e.g., symmetric or parallel), a global configuration with a high degree of salience emerges from the interactions between these features, often referred to as emergent features. Emergent features can be demonstrated in the Configural Superiority Effect (CSE): presenting a stimulus within an organized context relative to its presentation in a disarranged one results in better performance. Prior neuroimaging work on the perception of emergent features regards the CSE as an “all or none” phenomenon, focusing on the contrast between configural and non-configural stimuli. However, it is still not clear how emergent features are processed between these two endpoints. The current study examined the extent to which behavioral and neuroimaging markers of emergent features are responsive to the degree of configurality in visual displays. Subjects were tasked with reporting the anomalous quadrant in a visual search task while being scanned. Degree of configurality was manipulated by incrementally varying the rotational angle of low-level features within the stimulus arrays. Behaviorally, we observed faster response times with increasing levels of configurality. These behavioral changes were accompanied by increases in response magnitude across multiple visual areas in occipito-temporal cortex, primarily early visual cortex and object-selective cortex. Our findings suggest that the neural correlates of emergent features can be observed even in response to stimuli that are not fully configural, and demonstrate that configural information is already present at early stages of the visual hierarchy. PMID:28167924
Internal attention to features in visual short-term memory guides object learning
Fan, Judith E.; Turk-Browne, Nicholas B.
2013-01-01
Attending to objects in the world affects how we perceive and remember them. What are the consequences of attending to an object in mind? In particular, how does reporting the features of a recently seen object guide visual learning? In three experiments, observers were presented with abstract shapes in a particular color, orientation, and location. After viewing each object, observers were cued to report one feature from visual short-term memory (VSTM). In a subsequent test, observers were cued to report features of the same objects from visual long-term memory (VLTM). We tested whether reporting a feature from VSTM: (1) enhances VLTM for just that feature (practice-benefit hypothesis), (2) enhances VLTM for all features (object-based hypothesis), or (3) simultaneously enhances VLTM for that feature and suppresses VLTM for unreported features (feature-competition hypothesis). The results provided support for the feature-competition hypothesis, whereby the representation of an object in VLTM was biased towards features reported from VSTM and away from unreported features (Experiment 1). This bias could not be explained by the amount of sensory exposure or response learning (Experiment 2) and was amplified by the reporting of multiple features (Experiment 3). Taken together, these results suggest that selective internal attention induces competitive dynamics among features during visual learning, flexibly tuning object representations to align with prior mnemonic goals. PMID:23954925
Internal attention to features in visual short-term memory guides object learning.
Fan, Judith E; Turk-Browne, Nicholas B
2013-11-01
Attending to objects in the world affects how we perceive and remember them. What are the consequences of attending to an object in mind? In particular, how does reporting the features of a recently seen object guide visual learning? In three experiments, observers were presented with abstract shapes in a particular color, orientation, and location. After viewing each object, observers were cued to report one feature from visual short-term memory (VSTM). In a subsequent test, observers were cued to report features of the same objects from visual long-term memory (VLTM). We tested whether reporting a feature from VSTM: (1) enhances VLTM for just that feature (practice-benefit hypothesis), (2) enhances VLTM for all features (object-based hypothesis), or (3) simultaneously enhances VLTM for that feature and suppresses VLTM for unreported features (feature-competition hypothesis). The results provided support for the feature-competition hypothesis, whereby the representation of an object in VLTM was biased towards features reported from VSTM and away from unreported features (Experiment 1). This bias could not be explained by the amount of sensory exposure or response learning (Experiment 2) and was amplified by the reporting of multiple features (Experiment 3). Taken together, these results suggest that selective internal attention induces competitive dynamics among features during visual learning, flexibly tuning object representations to align with prior mnemonic goals. Copyright © 2013 Elsevier B.V. All rights reserved.
Multivariate analysis of full-term neonatal polysomnographic data.
Gerla, V; Paul, K; Lhotska, L; Krajca, V
2009-01-01
Polysomnography (PSG) is one of the most important noninvasive methods for studying maturation of the child brain. Sleep in infants is significantly different from sleep in adults. This paper addresses the problem of computer analysis of neonatal polygraphic signals. We applied methods designed for differentiating three important neonatal behavioral states: quiet sleep, active sleep, and wakefulness. The proportion of these states is a significant indicator of the maturity of the newborn brain in clinical practice. In this study, we used data provided by the Institute for Care of Mother and Child, Prague (12 newborn infants of similar postconceptional age). The data were scored by an experienced physician to four states (wake, quiet sleep, active sleep, movement artifact). For accurate classification, it was necessary to determine the most informative features. We used a method based on power spectral density (PSD) applied to each EEG channel. We also used features derived from electrooculogram (EOG), electromyogram (EMG), ECG, and respiration [pneumogram (PNG)] signals. The most informative feature was the measure of regularity of respiration from the PNG signal. We designed an algorithm for interpreting these characteristics. This algorithm was based on Markov models. The results of automatic detection of sleep states were compared to the "sleep profiles" determined visually. We evaluated both the success rate and the true positive rate of the classification, and statistically significant agreement of the two scorings was found. Two variants, for learning and for testing, were applied, namely learning from the data of all 12 newborns and tenfold cross-validation, and learning from the data of 11 newborns and testing on the data from the 12th newborn. We utilized information obtained from several biological signals (EEG, ECG, PNG, EMG, EOG) for our final classification. We reached the final success rate of 82.5%. The true positive rate was 81.8% and the false positive rate was 6.1%. The most important step in the whole process is feature extraction and feature selection. In this process, we used visualization as an additional tool that helped us to decide which features to select. Proper selection of features may significantly influence the success rate of the classification. We made a visual comparison of the computed features with the manual scoring provided by the expert. A hidden Markov model was used for classification. The advantage of this model is that it determines the future behavior of the process by its present state. In this way, it preserves information about temporal development.
A Novel Image Retrieval Based on Visual Words Integration of SIFT and SURF
Ali, Nouman; Bajwa, Khalid Bashir; Sablatnig, Robert; Chatzichristofis, Savvas A.; Iqbal, Zeshan; Rashid, Muhammad; Habib, Hafiz Adnan
2016-01-01
With the recent evolution of technology, the number of image archives has increased exponentially. In Content-Based Image Retrieval (CBIR), high-level visual information is represented in the form of low-level features. The semantic gap between the low-level features and the high-level image concepts is an open research problem. In this paper, we present a novel visual words integration of Scale Invariant Feature Transform (SIFT) and Speeded-Up Robust Features (SURF). The two local features representations are selected for image retrieval because SIFT is more robust to the change in scale and rotation, while SURF is robust to changes in illumination. The visual words integration of SIFT and SURF adds the robustness of both features to image retrieval. The qualitative and quantitative comparisons conducted on Corel-1000, Corel-1500, Corel-2000, Oliva and Torralba and Ground Truth image benchmarks demonstrate the effectiveness of the proposed visual words integration. PMID:27315101
Toward semantic-based retrieval of visual information: a model-based approach
NASA Astrophysics Data System (ADS)
Park, Youngchoon; Golshani, Forouzan; Panchanathan, Sethuraman
2002-07-01
This paper center around the problem of automated visual content classification. To enable classification based image or visual object retrieval, we propose a new image representation scheme called visual context descriptor (VCD) that is a multidimensional vector in which each element represents the frequency of a unique visual property of an image or a region. VCD utilizes the predetermined quality dimensions (i.e., types of features and quantization level) and semantic model templates mined in priori. Not only observed visual cues, but also contextually relevant visual features are proportionally incorporated in VCD. Contextual relevance of a visual cue to a semantic class is determined by using correlation analysis of ground truth samples. Such co-occurrence analysis of visual cues requires transformation of a real-valued visual feature vector (e.g., color histogram, Gabor texture, etc.,) into a discrete event (e.g., terms in text). Good-feature to track, rule of thirds, iterative k-means clustering and TSVQ are involved in transformation of feature vectors into unified symbolic representations called visual terms. Similarity-based visual cue frequency estimation is also proposed and used for ensuring the correctness of model learning and matching since sparseness of sample data causes the unstable results of frequency estimation of visual cues. The proposed method naturally allows integration of heterogeneous visual or temporal or spatial cues in a single classification or matching framework, and can be easily integrated into a semantic knowledge base such as thesaurus, and ontology. Robust semantic visual model template creation and object based image retrieval are demonstrated based on the proposed content description scheme.
Campbell, Dana L M; Hauber, Mark E
2009-08-01
Female zebra finches (Taeniopygia guttata) use visual and acoustic traits for accurate recognition of male conspecifics. Evidence from video playbacks confirms that both sensory modalities are important for conspecific and species discrimination, but experimental evidence of the individual roles of these cue types affecting live conspecific recognition is limited. In a spatial paradigm to test discrimination, the authors used live male zebra finch stimuli of 2 color morphs, wild-type (conspecific) and white with a painted black beak (foreign), producing 1 of 2 vocalization types: songs and calls learned from zebra finch parents (conspecific) or cross-fostered songs and calls learned from Bengalese finch (Lonchura striata vars. domestica) foster parents (foreign). The authors found that female zebra finches consistently preferred males with conspecific visual and acoustic cues over males with foreign cues, but did not discriminate when the conspecific and foreign visual and acoustic cues were mismatched. These results indicate the importance of both visual and acoustic features for female zebra finches when discriminating between live conspecific males. Copyright 2009 APA, all rights reserved.
Foveal analysis and peripheral selection during active visual sampling
Ludwig, Casimir J. H.; Davies, J. Rhys; Eckstein, Miguel P.
2014-01-01
Human vision is an active process in which information is sampled during brief periods of stable fixation in between gaze shifts. Foveal analysis serves to identify the currently fixated object and has to be coordinated with a peripheral selection process of the next fixation location. Models of visual search and scene perception typically focus on the latter, without considering foveal processing requirements. We developed a dual-task noise classification technique that enables identification of the information uptake for foveal analysis and peripheral selection within a single fixation. Human observers had to use foveal vision to extract visual feature information (orientation) from different locations for a psychophysical comparison. The selection of to-be-fixated locations was guided by a different feature (luminance contrast). We inserted noise in both visual features and identified the uptake of information by looking at correlations between the noise at different points in time and behavior. Our data show that foveal analysis and peripheral selection proceeded completely in parallel. Peripheral processing stopped some time before the onset of an eye movement, but foveal analysis continued during this period. Variations in the difficulty of foveal processing did not influence the uptake of peripheral information and the efficacy of peripheral selection, suggesting that foveal analysis and peripheral selection operated independently. These results provide important theoretical constraints on how to model target selection in conjunction with foveal object identification: in parallel and independently. PMID:24385588
Feature selection for examining behavior by pathology laboratories.
Hawkins, S; Williams, G; Baxter, R
2001-08-01
Australia has a universal health insurance scheme called Medicare, which is managed by Australia's Health Insurance Commission. Medicare payments for pathology services generate voluminous transaction data on patients, doctors and pathology laboratories. The Health Insurance Commission (HIC) currently uses predictive models to monitor compliance with regulatory requirements. The HIC commissioned a project to investigate the generation of new features from the data. Feature generation has not appeared as an important step in the knowledge discovery in databases (KDD) literature. New interesting features for use in predictive modeling are generated. These features were summarized, visualized and used as inputs for clustering and outlier detection methods. Data organization and data transformation methods are described for the efficient access and manipulation of these new features.
View-Dependent Streamline Deformation and Exploration
Tong, Xin; Edwards, John; Chen, Chun-Ming; Shen, Han-Wei; Johnson, Chris R.; Wong, Pak Chung
2016-01-01
Occlusion presents a major challenge in visualizing 3D flow and tensor fields using streamlines. Displaying too many streamlines creates a dense visualization filled with occluded structures, but displaying too few streams risks losing important features. We propose a new streamline exploration approach by visually manipulating the cluttered streamlines by pulling visible layers apart and revealing the hidden structures underneath. This paper presents a customized view-dependent deformation algorithm and an interactive visualization tool to minimize visual clutter in 3D vector and tensor fields. The algorithm is able to maintain the overall integrity of the fields and expose previously hidden structures. Our system supports both mouse and direct-touch interactions to manipulate the viewing perspectives and visualize the streamlines in depth. By using a lens metaphor of different shapes to select the transition zone of the targeted area interactively, the users can move their focus and examine the vector or tensor field freely. PMID:26600061
View-Dependent Streamline Deformation and Exploration.
Tong, Xin; Edwards, John; Chen, Chun-Ming; Shen, Han-Wei; Johnson, Chris R; Wong, Pak Chung
2016-07-01
Occlusion presents a major challenge in visualizing 3D flow and tensor fields using streamlines. Displaying too many streamlines creates a dense visualization filled with occluded structures, but displaying too few streams risks losing important features. We propose a new streamline exploration approach by visually manipulating the cluttered streamlines by pulling visible layers apart and revealing the hidden structures underneath. This paper presents a customized view-dependent deformation algorithm and an interactive visualization tool to minimize visual clutter in 3D vector and tensor fields. The algorithm is able to maintain the overall integrity of the fields and expose previously hidden structures. Our system supports both mouse and direct-touch interactions to manipulate the viewing perspectives and visualize the streamlines in depth. By using a lens metaphor of different shapes to select the transition zone of the targeted area interactively, the users can move their focus and examine the vector or tensor field freely.
Austin, John H. M.; Hogg, James C.; Grenier, Philippe A.; Kauczor, Hans-Ulrich; Bankier, Alexander A.; Barr, R. Graham; Colby, Thomas V.; Galvin, Jeffrey R.; Gevenois, Pierre Alain; Coxson, Harvey O.; Hoffman, Eric A.; Newell, John D.; Pistolesi, Massimo; Silverman, Edwin K.; Crapo, James D.
2015-01-01
The purpose of this statement is to describe and define the phenotypic abnormalities that can be identified on visual and quantitative evaluation of computed tomographic (CT) images in subjects with chronic obstructive pulmonary disease (COPD), with the goal of contributing to a personalized approach to the treatment of patients with COPD. Quantitative CT is useful for identifying and sequentially evaluating the extent of emphysematous lung destruction, changes in airway walls, and expiratory air trapping. However, visual assessment of CT scans remains important to describe patterns of altered lung structure in COPD. The classification system proposed and illustrated in this article provides a structured approach to visual and quantitative assessment of COPD. Emphysema is classified as centrilobular (subclassified as trace, mild, moderate, confluent, and advanced destructive emphysema), panlobular, and paraseptal (subclassified as mild or substantial). Additional important visual features include airway wall thickening, inflammatory small airways disease, tracheal abnormalities, interstitial lung abnormalities, pulmonary arterial enlargement, and bronchiectasis. © RSNA, 2015 PMID:25961632
NASA Technical Reports Server (NTRS)
Poulton, C. E.
1975-01-01
Comparative statistics were presented on the capability of LANDSAT-1 and three of the Skylab remote sensing systems (S-190A, S-190B, S-192) for the recognition and inventory of analogous natural vegetations and landscape features important in resource allocation and management. Two analogous regions presenting vegetational zonation from salt desert to alpine conditions above the timberline were observed, emphasizing the visual interpretation mode in the investigation. An hierarchical legend system was used as the basic classification of all land surface features. Comparative tests were run on image identifiability with the different sensor systems, and mapping and interpretation tests were made both in monocular and stereo interpretation with all systems except the S-192. Significant advantage was found in the use of stereo from space when image analysis is by visual or visual-machine-aided interactive systems. Some cost factors in mapping from space are identified. The various image types are compared and an operational system is postulated.
Pathview Web: user friendly pathway visualization and data integration
Pant, Gaurav; Bhavnasi, Yeshvant K.; Blanchard, Steven G.; Brouwer, Cory
2017-01-01
Abstract Pathway analysis is widely used in omics studies. Pathway-based data integration and visualization is a critical component of the analysis. To address this need, we recently developed a novel R package called Pathview. Pathview maps, integrates and renders a large variety of biological data onto molecular pathway graphs. Here we developed the Pathview Web server, as to make pathway visualization and data integration accessible to all scientists, including those without the special computing skills or resources. Pathview Web features an intuitive graphical web interface and a user centered design. The server not only expands the core functions of Pathview, but also provides many useful features not available in the offline R package. Importantly, the server presents a comprehensive workflow for both regular and integrated pathway analysis of multiple omics data. In addition, the server also provides a RESTful API for programmatic access and conveniently integration in third-party software or workflows. Pathview Web is openly and freely accessible at https://pathview.uncc.edu/. PMID:28482075
Linear and Non-Linear Visual Feature Learning in Rat and Humans
Bossens, Christophe; Op de Beeck, Hans P.
2016-01-01
The visual system processes visual input in a hierarchical manner in order to extract relevant features that can be used in tasks such as invariant object recognition. Although typically investigated in primates, recent work has shown that rats can be trained in a variety of visual object and shape recognition tasks. These studies did not pinpoint the complexity of the features used by these animals. Many tasks might be solved by using a combination of relatively simple features which tend to be correlated. Alternatively, rats might extract complex features or feature combinations which are nonlinear with respect to those simple features. In the present study, we address this question by starting from a small stimulus set for which one stimulus-response mapping involves a simple linear feature to solve the task while another mapping needs a well-defined nonlinear combination of simpler features related to shape symmetry. We verified computationally that the nonlinear task cannot be trivially solved by a simple V1-model. We show how rats are able to solve the linear feature task but are unable to acquire the nonlinear feature. In contrast, humans are able to use the nonlinear feature and are even faster in uncovering this solution as compared to the linear feature. The implications for the computational capabilities of the rat visual system are discussed. PMID:28066201
Stimulus information contaminates summation tests of independent neural representations of features
NASA Technical Reports Server (NTRS)
Shimozaki, Steven S.; Eckstein, Miguel P.; Abbey, Craig K.
2002-01-01
Many models of visual processing assume that visual information is analyzed into separable and independent neural codes, or features. A common psychophysical test of independent features is known as a summation study, which measures performance in a detection, discrimination, or visual search task as the number of proposed features increases. Improvement in human performance with increasing number of available features is typically attributed to the summation, or combination, of information across independent neural coding of the features. In many instances, however, increasing the number of available features also increases the stimulus information in the task, as assessed by an optimal observer that does not include the independent neural codes. In a visual search task with spatial frequency and orientation as the component features, a particular set of stimuli were chosen so that all searches had equivalent stimulus information, regardless of the number of features. In this case, human performance did not improve with increasing number of features, implying that the improvement observed with additional features may be due to stimulus information and not the combination across independent features.
Visual short-term memory always requires general attention.
Morey, Candice C; Bieler, Malte
2013-02-01
The role of attention in visual memory remains controversial; while some evidence has suggested that memory for binding between features demands no more attention than does memory for the same features, other evidence has indicated cognitive costs or mnemonic benefits for explicitly attending to bindings. We attempted to reconcile these findings by examining how memory for binding, for features, and for features during binding is affected by a concurrent attention-demanding task. We demonstrated that performing a concurrent task impairs memory for as few as two visual objects, regardless of whether each object includes one or more features. We argue that this pattern of results reflects an essential role for domain-general attention in visual memory, regardless of the simplicity of the to-be-remembered stimuli. We then discuss the implications of these findings for theories of visual working memory.
Bennett, Robert M; Russell, Jon; Cappelleri, Joseph C; Bushmakin, Andrew G; Zlateva, Gergana; Sadosky, Alesia
2010-06-28
The purpose of this study was to determine whether some of the clinical features of fibromyalgia (FM) that patients would like to see improved aggregate into definable clusters. Seven hundred and eighty-eight patients with clinically confirmed FM and baseline pain > or =40 mm on a 100 mm visual analogue scale ranked 5 FM clinical features that the subjects would most like to see improved after treatment (one for each priority quintile) from a list of 20 developed during focus groups. For each subject, clinical features were transformed into vectors with rankings assigned values 1-5 (lowest to highest ranking). Logistic analysis was used to create a distance matrix and hierarchical cluster analysis was applied to identify cluster structure. The frequency of cluster selection was determined, and cluster importance was ranked using cluster scores derived from rankings of the clinical features. Multidimensional scaling was used to visualize and conceptualize cluster relationships. Six clinical features clusters were identified and named based on their key characteristics. In order of selection frequency, the clusters were Pain (90%; 4 clinical features), Fatigue (89%; 4 clinical features), Domestic (42%; 4 clinical features), Impairment (29%; 3 functions), Affective (21%; 3 clinical features), and Social (9%; 2 functional). The "Pain Cluster" was ranked of greatest importance by 54% of subjects, followed by Fatigue, which was given the highest ranking by 28% of subjects. Multidimensional scaling mapped these clusters to two dimensions: Status (bounded by Physical and Emotional domains), and Setting (bounded by Individual and Group interactions). Common clinical features of FM could be grouped into 6 clusters (Pain, Fatigue, Domestic, Impairment, Affective, and Social) based on patient perception of relevance to treatment. Furthermore, these 6 clusters could be charted in the 2 dimensions of Status and Setting, thus providing a unique perspective for interpretation of FM symptomatology.
Svilicić, Niksa; Vidacković, Zlatko
2013-03-01
This paper seeks to explain some of the most important recent production and technological changes that have affected the relationship between television and film, especially in Croatia, from the aspect of the development of visual anthropology. In the production segment, special attention was given to the role of Croatian television stations in the production of movies, "splitting" the movies into mini-series, interrupting movies with commercial breaks, and to television movies turned into feature films. This paper tries to perceive and define the structure of methodical processes of visual anthropology (reactive process). The development of photographic and film technology and the events which led to the rapid development of visual culture also point to the inseparable duality of observing visual anthropology within reactive and proactive processes, which are indirectly closely related to the technical aspects of these processes. Defining the technical aspect of visual anthropology as such "service" necessarily interferes with the author's approach in the domain of the script and direction related procedures during pre-production, on the field and during post-production of the movie. The author's approach is important because in dependence on it, the desired spectrum of information "output", susceptible to subsequent scientific analysis, is achieved. Lastly, another important segment is the "distributive-technological process" because, regardless of the approach to the anthropologically relevant phenomenon which is being dealt with in an audio-visual piece of work, it is essential that the work be presented and viewed adequately.
A feature selection approach towards progressive vector transmission over the Internet
NASA Astrophysics Data System (ADS)
Miao, Ru; Song, Jia; Feng, Min
2017-09-01
WebGIS has been applied for visualizing and sharing geospatial information popularly over the Internet. In order to improve the efficiency of the client applications, the web-based progressive vector transmission approach is proposed. Important features should be selected and transferred firstly, and the methods for measuring the importance of features should be further considered in the progressive transmission. However, studies on progressive transmission for large-volume vector data have mostly focused on map generalization in the field of cartography, but rarely discussed on the selection of geographic features quantitatively. This paper applies information theory for measuring the feature importance of vector maps. A measurement model for the amount of information of vector features is defined based upon the amount of information for dealing with feature selection issues. The measurement model involves geometry factor, spatial distribution factor and thematic attribute factor. Moreover, a real-time transport protocol (RTP)-based progressive transmission method is then presented to improve the transmission of vector data. To clearly demonstrate the essential methodology and key techniques, a prototype for web-based progressive vector transmission is presented, and an experiment of progressive selection and transmission for vector features is conducted. The experimental results indicate that our approach clearly improves the performance and end-user experience of delivering and manipulating large vector data over the Internet.
Töllner, Thomas; Müller, Hermann J; Zehetleitner, Michael
2012-07-01
Visual search for feature singletons is slowed when a task-irrelevant, but more salient distracter singleton is concurrently presented. While there is a consensus that this distracter interference effect can be influenced by internal system settings, it remains controversial at what stage of processing this influence starts to affect visual coding. Advocates of the "stimulus-driven" view maintain that the initial sweep of visual processing is entirely driven by physical stimulus attributes and that top-down settings can bias visual processing only after selection of the most salient item. By contrast, opponents argue that top-down expectancies can alter the initial selection priority, so that focal attention is "not automatically" shifted to the location exhibiting the highest feature contrast. To precisely trace the allocation of focal attention, we analyzed the Posterior-Contralateral-Negativity (PCN) in a task in which the likelihood (expectancy) with which a distracter occurred was systematically varied. Our results show that both high (vs. low) distracter expectancy and experiencing a distracter on the previous trial speed up the timing of the target-elicited PCN. Importantly, there was no distracter-elicited PCN, indicating that participants did not shift attention to the distracter before selecting the target. This pattern unambiguously demonstrates that preattentive vision is top-down modifiable.
Fabric defect detection based on visual saliency using deep feature and low-rank recovery
NASA Astrophysics Data System (ADS)
Liu, Zhoufeng; Wang, Baorui; Li, Chunlei; Li, Bicao; Dong, Yan
2018-04-01
Fabric defect detection plays an important role in improving the quality of fabric product. In this paper, a novel fabric defect detection method based on visual saliency using deep feature and low-rank recovery was proposed. First, unsupervised training is carried out by the initial network parameters based on MNIST large datasets. The supervised fine-tuning of fabric image library based on Convolutional Neural Networks (CNNs) is implemented, and then more accurate deep neural network model is generated. Second, the fabric images are uniformly divided into the image block with the same size, then we extract their multi-layer deep features using the trained deep network. Thereafter, all the extracted features are concentrated into a feature matrix. Third, low-rank matrix recovery is adopted to divide the feature matrix into the low-rank matrix which indicates the background and the sparse matrix which indicates the salient defect. In the end, the iterative optimal threshold segmentation algorithm is utilized to segment the saliency maps generated by the sparse matrix to locate the fabric defect area. Experimental results demonstrate that the feature extracted by CNN is more suitable for characterizing the fabric texture than the traditional LBP, HOG and other hand-crafted features extraction method, and the proposed method can accurately detect the defect regions of various fabric defects, even for the image with complex texture.
Contextual cueing of pop-out visual search: when context guides the deployment of attention.
Geyer, Thomas; Zehetleitner, Michael; Müller, Hermann J
2010-05-01
Visual context information can guide attention in demanding (i.e., inefficient) search tasks. When participants are repeatedly presented with identically arranged ('repeated') displays, reaction times are faster relative to newly composed ('non-repeated') displays. The present article examines whether this 'contextual cueing' effect operates also in simple (i.e., efficient) search tasks and if so, whether there it influences target, rather than response, selection. The results were that singleton-feature targets were detected faster when the search items were presented in repeated, rather than non-repeated, arrangements. Importantly, repeated, relative to novel, displays also led to an increase in signal detection accuracy. Thus, contextual cueing can expedite the selection of pop-out targets, most likely by enhancing feature contrast signals at the overall-salience computation stage.
Perceptual Grouping Enhances Visual Plasticity
Mastropasqua, Tommaso; Turatto, Massimo
2013-01-01
Visual perceptual learning, a manifestation of neural plasticity, refers to improvements in performance on a visual task achieved by training. Attention is known to play an important role in perceptual learning, given that the observer's discriminative ability improves only for those stimulus feature that are attended. However, the distribution of attention can be severely constrained by perceptual grouping, a process whereby the visual system organizes the initial retinal input into candidate objects. Taken together, these two pieces of evidence suggest the interesting possibility that perceptual grouping might also affect perceptual learning, either directly or via attentional mechanisms. To address this issue, we conducted two experiments. During the training phase, participants attended to the contrast of the task-relevant stimulus (oriented grating), while two similar task-irrelevant stimuli were presented in the adjacent positions. One of the two flanking stimuli was perceptually grouped with the attended stimulus as a consequence of its similar orientation (Experiment 1) or because it was part of the same perceptual object (Experiment 2). A test phase followed the training phase at each location. Compared to the task-irrelevant no-grouping stimulus, orientation discrimination improved at the attended location. Critically, a perceptual learning effect equivalent to the one observed for the attended location also emerged for the task-irrelevant grouping stimulus, indicating that perceptual grouping induced a transfer of learning to the stimulus (or feature) being perceptually grouped with the task-relevant one. Our findings indicate that no voluntary effort to direct attention to the grouping stimulus or feature is necessary to enhance visual plasticity. PMID:23301100
Modeling visual clutter perception using proto-object segmentation
Yu, Chen-Ping; Samaras, Dimitris; Zelinsky, Gregory J.
2014-01-01
We introduce the proto-object model of visual clutter perception. This unsupervised model segments an image into superpixels, then merges neighboring superpixels that share a common color cluster to obtain proto-objects—defined here as spatially extended regions of coherent features. Clutter is estimated by simply counting the number of proto-objects. We tested this model using 90 images of realistic scenes that were ranked by observers from least to most cluttered. Comparing this behaviorally obtained ranking to a ranking based on the model clutter estimates, we found a significant correlation between the two (Spearman's ρ = 0.814, p < 0.001). We also found that the proto-object model was highly robust to changes in its parameters and was generalizable to unseen images. We compared the proto-object model to six other models of clutter perception and demonstrated that it outperformed each, in some cases dramatically. Importantly, we also showed that the proto-object model was a better predictor of clutter perception than an actual count of the number of objects in the scenes, suggesting that the set size of a scene may be better described by proto-objects than objects. We conclude that the success of the proto-object model is due in part to its use of an intermediate level of visual representation—one between features and objects—and that this is evidence for the potential importance of a proto-object representation in many common visual percepts and tasks. PMID:24904121
Distractor ratio and grouping processes in visual conjunction search.
Poisson, M E; Wilkinson, F
1992-01-01
According to feature integration theory, conjunction search is conducted via a serial self-terminating search. However, effects attributed to search processes operating on the entire display may actually reflect search restricted to elements defined by a single feature. In experiment 1 this question is addressed in a reaction-time (RT) paradigm by varying distractor ratios within an array of fixed size. For trials in which the target was present in the array, RT functions were roughly symmetric, the shortest RTs being for extreme distractor ratios, and the longest RTs being for arrays in which there were an equal number of each distractor type. This result is superficially consistent with Zohary and Hochstein's interpretation that subjects search for only one distractor type and are able to switch search strategy from trial to trial. However, negative-trial data from experiment 1 case doubt on this interpretation. In experiment 2 the possible role of 'pop out' and of distractor grouping in visual conjunction search is investigated. Results of experiment 2 suggest that grouping may play a more important role than does distractor ratio, and point to the importance of the spatial layout of the target and of the distractor elements in visual conjunction search. Results of experiment 2 also provide clear evidence that groups of spatially adjacent homogeneous elements may be processed as a unit.
Biographer: web-based editing and rendering of SBGN compliant biochemical networks.
Krause, Falko; Schulz, Marvin; Ripkens, Ben; Flöttmann, Max; Krantz, Marcus; Klipp, Edda; Handorf, Thomas
2013-06-01
The rapid accumulation of knowledge in the field of Systems Biology during the past years requires advanced, but simple-to-use, methods for the visualization of information in a structured and easily comprehensible manner. We have developed biographer, a web-based renderer and editor for reaction networks, which can be integrated as a library into tools dealing with network-related information. Our software enables visualizations based on the emerging standard Systems Biology Graphical Notation. It is able to import networks encoded in various formats such as SBML, SBGN-ML and jSBGN, a custom lightweight exchange format. The core package is implemented in HTML5, CSS and JavaScript and can be used within any kind of web-based project. It features interactive graph-editing tools and automatic graph layout algorithms. In addition, we provide a standalone graph editor and a web server, which contains enhanced features like web services for the import and export of models and visualizations in different formats. The biographer tool can be used at and downloaded from the web page http://biographer.biologie.hu-berlin.de/. The different software packages, including a server-independent version as well as a web server for Windows and Linux based systems, are available at http://code.google.com/p/biographer/ under the open-source license LGPL
Humphreys, Glyn W
2016-10-01
The Treisman Bartlett lecture, reported in the Quarterly Journal of Experimental Psychology in 1988, provided a major overview of the feature integration theory of attention. This has continued to be a dominant account of human visual attention to this day. The current paper provides a summary of the work reported in the lecture and an update on critical aspects of the theory as applied to visual object perception. The paper highlights the emergence of findings that pose significant challenges to the theory and which suggest that revisions are required that allow for (a) several rather than a single form of feature integration, (b) some forms of feature integration to operate preattentively, (c) stored knowledge about single objects and interactions between objects to modulate perceptual integration, (d) the application of feature-based inhibition to object files where visual features are specified, which generates feature-based spreading suppression and scene segmentation, and (e) a role for attention in feature confirmation rather than feature integration in visual selection. A feature confirmation account of attention in object perception is outlined.
van Lamsweerde, Amanda E; Beck, Melissa R; Elliott, Emily M
2015-02-01
The ability to remember feature bindings is an important measure of the ability to maintain objects in working memory (WM). In this study, we investigated whether both object- and feature-based representations are maintained in WM. Specifically, we tested the hypotheses that retaining a greater number of feature representations (i.e., both as individual features and bound representations) results in a more robust representation of individual features than of feature bindings, and that retrieving information from long-term memory (LTM) into WM would cause a greater disruption to feature bindings. In four experiments, we examined the effects of retrieving a word from LTM on shape and color-shape binding change detection performance. We found that binding changes were more difficult to detect than individual-feature changes overall, but that the cost of retrieving a word from LTM was the same for both individual-feature and binding changes.
Importing perceived features into false memories.
Lyle, Keith B; Johnson, Marcia K
2006-02-01
False memories sometimes contain specific details, such as location or colour, about events that never occurred. Based on the source-monitoring framework, we investigated one process by which false memories acquire details: the reactivation and misattribution of feature information from memories of similar perceived events. In Experiments 1A and 1B, when imagined objects were falsely remembered as seen, participants often reported that the objects had appeared in locations where visually or conceptually similar objects, respectively, had actually appeared. Experiment 2 indicated that colour and shape features of seen objects were misattributed to false memories of imagined objects. Experiment 3 showed that perceived details were misattributed to false memories of objects that had not been explicitly imagined. False memories that imported perceived features, compared to those that presumably did not, were subjectively more like memories for perceived events. Thus, perception may be even more pernicious than imagination in contributing to false memories.
Separate Capacities for Storing Different Features in Visual Working Memory
ERIC Educational Resources Information Center
Wang, Benchi; Cao, Xiaohua; Theeuwes, Jan; Olivers, Christian N. L.; Wang, Zhiguo
2017-01-01
Recent empirical and theoretical work suggests that visual features such as color and orientation can be stored or retrieved independently in visual working memory (VWM), even in cases when they belong to the same object. Yet it remains unclear whether different feature dimensions have their own capacity limits, or whether they compete for shared…
Hardman, Kyle; Cowan, Nelson
2014-01-01
Visual working memory stores stimuli from our environment as representations that can be accessed by high-level control processes. This study addresses a longstanding debate in the literature about whether storage limits in visual working memory include a limit to the complexity of discrete items. We examined the issue with a number of change-detection experiments that used complex stimuli which possessed multiple features per stimulus item. We manipulated the number of relevant features of the stimulus objects in order to vary feature load. In all of our experiments, we found that increased feature load led to a reduction in change-detection accuracy. However, we found that feature load alone could not account for the results, but that a consideration of the number of relevant objects was also required. This study supports capacity limits for both feature and object storage in visual working memory. PMID:25089739
Visualization of molecular structures using HoloLens-based augmented reality
Hoffman, MA; Provance, JB
2017-01-01
Biological molecules and biologically active small molecules are complex three dimensional structures. Current flat screen monitors are limited in their ability to convey the full three dimensional characteristics of these molecules. Augmented reality devices, including the Microsoft HoloLens, offer an immersive platform to change how we interact with molecular visualizations. We describe a process to incorporate the three dimensional structures of small molecules and complex proteins into the Microsoft HoloLens using aspirin and the human leukocyte antigen (HLA) as examples. Small molecular structures can be introduced into the HoloStudio application, which provides native support for rotating, resizing and performing other interactions with these molecules. Larger molecules can be imported through the Unity gaming development platform and then Microsoft Visual Developer. The processes described here can be modified to import a wide variety of molecular structures into augmented reality systems and improve our comprehension of complex structural features. PMID:28815109
Computers and Young Children. Storyboard Software: Flannel Boards in the Computer Age.
ERIC Educational Resources Information Center
Shade, Daniel D.
1995-01-01
Describes storyboard software as computer programs with which children can build a story using visuals. Notes the importance of such programs from preliterate or nonreading children. Describes a new storyboard program, "Wiggins in Storyland," and its features. Lists recommended storyboard software programs, with publishers and compatible…
Art Activities about Mesopotamia, Egypt and Islam. Hands-On Ancient People.
ERIC Educational Resources Information Center
Merrill, Yvonne Y.
This book features objects of the Mesopotamian, the Egyptian, and Islamic cultures. In exploring important contributions in ancient art, the book presents visuals that are interpretations of authentic artifacts, usually in museum collections, or illustrations from archaeological publications and articles. Historical items (n=55+) have been adapted…
An update on acquired nystagmus.
Rucker, Janet C
2008-01-01
Proper evaluation and treatment of acquired nystagmus requires accurate characterization of nystagmus type and visual effects. This review addresses important historical and examination features of nystagmus and current concepts of pathogenesis and treatment of gaze-evoked nystagmus, nystagmus due to vision loss, acquired pendular nystagmus, peripheral and central vestibular nystagmus, and periodic alternating nystagmus.
Coding Local and Global Binary Visual Features Extracted From Video Sequences.
Baroffio, Luca; Canclini, Antonio; Cesana, Matteo; Redondi, Alessandro; Tagliasacchi, Marco; Tubaro, Stefano
2015-11-01
Binary local features represent an effective alternative to real-valued descriptors, leading to comparable results for many visual analysis tasks while being characterized by significantly lower computational complexity and memory requirements. When dealing with large collections, a more compact representation based on global features is often preferred, which can be obtained from local features by means of, e.g., the bag-of-visual word model. Several applications, including, for example, visual sensor networks and mobile augmented reality, require visual features to be transmitted over a bandwidth-limited network, thus calling for coding techniques that aim at reducing the required bit budget while attaining a target level of efficiency. In this paper, we investigate a coding scheme tailored to both local and global binary features, which aims at exploiting both spatial and temporal redundancy by means of intra- and inter-frame coding. In this respect, the proposed coding scheme can conveniently be adopted to support the analyze-then-compress (ATC) paradigm. That is, visual features are extracted from the acquired content, encoded at remote nodes, and finally transmitted to a central controller that performs the visual analysis. This is in contrast with the traditional approach, in which visual content is acquired at a node, compressed and then sent to a central unit for further processing, according to the compress-then-analyze (CTA) paradigm. In this paper, we experimentally compare the ATC and the CTA by means of rate-efficiency curves in the context of two different visual analysis tasks: 1) homography estimation and 2) content-based retrieval. Our results show that the novel ATC paradigm based on the proposed coding primitives can be competitive with the CTA, especially in bandwidth limited scenarios.
Coding Local and Global Binary Visual Features Extracted From Video Sequences
NASA Astrophysics Data System (ADS)
Baroffio, Luca; Canclini, Antonio; Cesana, Matteo; Redondi, Alessandro; Tagliasacchi, Marco; Tubaro, Stefano
2015-11-01
Binary local features represent an effective alternative to real-valued descriptors, leading to comparable results for many visual analysis tasks, while being characterized by significantly lower computational complexity and memory requirements. When dealing with large collections, a more compact representation based on global features is often preferred, which can be obtained from local features by means of, e.g., the Bag-of-Visual-Word (BoVW) model. Several applications, including for example visual sensor networks and mobile augmented reality, require visual features to be transmitted over a bandwidth-limited network, thus calling for coding techniques that aim at reducing the required bit budget, while attaining a target level of efficiency. In this paper we investigate a coding scheme tailored to both local and global binary features, which aims at exploiting both spatial and temporal redundancy by means of intra- and inter-frame coding. In this respect, the proposed coding scheme can be conveniently adopted to support the Analyze-Then-Compress (ATC) paradigm. That is, visual features are extracted from the acquired content, encoded at remote nodes, and finally transmitted to a central controller that performs visual analysis. This is in contrast with the traditional approach, in which visual content is acquired at a node, compressed and then sent to a central unit for further processing, according to the Compress-Then-Analyze (CTA) paradigm. In this paper we experimentally compare ATC and CTA by means of rate-efficiency curves in the context of two different visual analysis tasks: homography estimation and content-based retrieval. Our results show that the novel ATC paradigm based on the proposed coding primitives can be competitive with CTA, especially in bandwidth limited scenarios.
Brain activity during auditory and visual phonological, spatial and simple discrimination tasks.
Salo, Emma; Rinne, Teemu; Salonen, Oili; Alho, Kimmo
2013-02-16
We used functional magnetic resonance imaging to measure human brain activity during tasks demanding selective attention to auditory or visual stimuli delivered in concurrent streams. Auditory stimuli were syllables spoken by different voices and occurring in central or peripheral space. Visual stimuli were centrally or more peripherally presented letters in darker or lighter fonts. The participants performed a phonological, spatial or "simple" (speaker-gender or font-shade) discrimination task in either modality. Within each modality, we expected a clear distinction between brain activations related to nonspatial and spatial processing, as reported in previous studies. However, within each modality, different tasks activated largely overlapping areas in modality-specific (auditory and visual) cortices, as well as in the parietal and frontal brain regions. These overlaps may be due to effects of attention common for all three tasks within each modality or interaction of processing task-relevant features and varying task-irrelevant features in the attended-modality stimuli. Nevertheless, brain activations caused by auditory and visual phonological tasks overlapped in the left mid-lateral prefrontal cortex, while those caused by the auditory and visual spatial tasks overlapped in the inferior parietal cortex. These overlapping activations reveal areas of multimodal phonological and spatial processing. There was also some evidence for intermodal attention-related interaction. Most importantly, activity in the superior temporal sulcus elicited by unattended speech sounds was attenuated during the visual phonological task in comparison with the other visual tasks. This effect might be related to suppression of processing irrelevant speech presumably distracting the phonological task involving the letters. Copyright © 2012 Elsevier B.V. All rights reserved.
Combining local and global limitations of visual search.
Põder, Endel
2017-04-01
There are different opinions about the roles of local interactions and central processing capacity in visual search. This study attempts to clarify the problem using a new version of relevant set cueing. A central precue indicates two symmetrical segments (that may contain a target object) within a circular array of objects presented briefly around the fixation point. The number of objects in the relevant segments, and density of objects in the array were varied independently. Three types of search experiments were run: (a) search for a simple visual feature (color, size, and orientation); (b) conjunctions of simple features; and (c) spatial configuration of simple features (rotated Ts). For spatial configuration stimuli, the results were consistent with a fixed global processing capacity and standard crowding zones. For simple features and their conjunctions, the results were different, dependent on the features involved. While color search exhibits virtually no capacity limits or crowding, search for an orientation target was limited by both. Results for conjunctions of features can be partly explained by the results from the respective features. This study shows that visual search is limited by both local interference and global capacity, and the limitations are different for different visual features.
History and future of visual anthropology.
Svilicić, Niksa
2011-03-01
Visual recording of communication processes between communities or individuals by means of filming of photographing is of significant importance in anthropology, as it documents on site the specific features of various social communities in their encounter with the researcher. In terms of film industry, it is a sort of ethno-documentary pursuing originality and objectivity in recording the given subject, thus fulfilling the research mission. However, the potential of visual anthropology significantly exceeds the mere audiovisual recording of ethnologic realities. Modern methods of analysing and evaluating the role of visual anthropology suggest that it is a technical research service aimed at documenting the status quo. If the direction of proactive approach were taken, then the term ,visual anthropology' could be changed to ,anthropology of the visual,. This apparently cosmetic change of name is actually significantly more accurate, suggesting the denoted proactive swift in perceiving visual anthropology, where visual methods are employed to ,provoke< the reaction of an individual or of the community. In this way the "anthropology of the visual, is promoted to a new scientific sub-anthropological discipline.
Cruz-Roa, Angel; Díaz, Gloria; Romero, Eduardo; González, Fabio A.
2011-01-01
Histopathological images are an important resource for clinical diagnosis and biomedical research. From an image understanding point of view, the automatic annotation of these images is a challenging problem. This paper presents a new method for automatic histopathological image annotation based on three complementary strategies, first, a part-based image representation, called the bag of features, which takes advantage of the natural redundancy of histopathological images for capturing the fundamental patterns of biological structures, second, a latent topic model, based on non-negative matrix factorization, which captures the high-level visual patterns hidden in the image, and, third, a probabilistic annotation model that links visual appearance of morphological and architectural features associated to 10 histopathological image annotations. The method was evaluated using 1,604 annotated images of skin tissues, which included normal and pathological architectural and morphological features, obtaining a recall of 74% and a precision of 50%, which improved a baseline annotation method based on support vector machines in a 64% and 24%, respectively. PMID:22811960
Rapid Processing of a Global Feature in the ON Visual Pathways of Behaving Monkeys.
Huang, Jun; Yang, Yan; Zhou, Ke; Zhao, Xudong; Zhou, Quan; Zhu, Hong; Yang, Yingshan; Zhang, Chunming; Zhou, Yifeng; Zhou, Wu
2017-01-01
Visual objects are recognized by their features. Whereas, some features are based on simple components (i.e., local features, such as orientation of line segments), some features are based on the whole object (i.e., global features, such as an object having a hole in it). Over the past five decades, behavioral, physiological, anatomical, and computational studies have established a general model of vision, which starts from extracting local features in the lower visual pathways followed by a feature integration process that extracts global features in the higher visual pathways. This local-to-global model is successful in providing a unified account for a vast sets of perception experiments, but it fails to account for a set of experiments showing human visual systems' superior sensitivity to global features. Understanding the neural mechanisms underlying the "global-first" process will offer critical insights into new models of vision. The goal of the present study was to establish a non-human primate model of rapid processing of global features for elucidating the neural mechanisms underlying differential processing of global and local features. Monkeys were trained to make a saccade to a target in the black background, which was different from the distractors (white circle) in color (e.g., red circle target), local features (e.g., white square target), a global feature (e.g., white ring with a hole target) or their combinations (e.g., red square target). Contrary to the predictions of the prevailing local-to-global model, we found that (1) detecting a distinction or a change in the global feature was faster than detecting a distinction or a change in color or local features; (2) detecting a distinction in color was facilitated by a distinction in the global feature, but not in the local features; and (3) detecting the hole was interfered by the local features of the hole (e.g., white ring with a squared hole). These results suggest that monkey ON visual systems have a subsystem that is more sensitive to distinctions in the global feature than local features. They also provide the behavioral constraints for identifying the underlying neural substrates.
NASA Astrophysics Data System (ADS)
Hassanat, Ahmad B. A.; Jassim, Sabah
2010-04-01
In this paper, the automatic lip reading problem is investigated, and an innovative approach to providing solutions to this problem has been proposed. This new VSR approach is dependent on the signature of the word itself, which is obtained from a hybrid feature extraction method dependent on geometric, appearance, and image transform features. The proposed VSR approach is termed "visual words". The visual words approach consists of two main parts, 1) Feature extraction/selection, and 2) Visual speech feature recognition. After localizing face and lips, several visual features for the lips where extracted. Such as the height and width of the mouth, mutual information and the quality measurement between the DWT of the current ROI and the DWT of the previous ROI, the ratio of vertical to horizontal features taken from DWT of ROI, The ratio of vertical edges to horizontal edges of ROI, the appearance of the tongue and the appearance of teeth. Each spoken word is represented by 8 signals, one of each feature. Those signals maintain the dynamic of the spoken word, which contains a good portion of information. The system is then trained on these features using the KNN and DTW. This approach has been evaluated using a large database for different people, and large experiment sets. The evaluation has proved the visual words efficiency, and shown that the VSR is a speaker dependent problem.
Visual learning in drosophila: application on a roving robot and comparisons
NASA Astrophysics Data System (ADS)
Arena, P.; De Fiore, S.; Patané, L.; Termini, P. S.; Strauss, R.
2011-05-01
Visual learning is an important aspect of fly life. Flies are able to extract visual cues from objects, like colors, vertical and horizontal distributedness, and others, that can be used for learning to associate a meaning to specific features (i.e. a reward or a punishment). Interesting biological experiments show trained stationary flying flies avoiding flying towards specific visual objects, appearing on the surrounding environment. Wild-type flies effectively learn to avoid those objects but this is not the case for the learning mutant rutabaga defective in the cyclic AMP dependent pathway for plasticity. A bio-inspired architecture has been proposed to model the fly behavior and experiments on roving robots were performed. Statistical comparisons have been considered and mutant-like effect on the model has been also investigated.
Weighted feature selection criteria for visual servoing of a telerobot
NASA Technical Reports Server (NTRS)
Feddema, John T.; Lee, C. S. G.; Mitchell, O. R.
1989-01-01
Because of the continually changing environment of a space station, visual feedback is a vital element of a telerobotic system. A real time visual servoing system would allow a telerobot to track and manipulate randomly moving objects. Methodologies for the automatic selection of image features to be used to visually control the relative position between an eye-in-hand telerobot and a known object are devised. A weighted criteria function with both image recognition and control components is used to select the combination of image features which provides the best control. Simulation and experimental results of a PUMA robot arm visually tracking a randomly moving carburetor gasket with a visual update time of 70 milliseconds are discussed.
Impact of feature saliency on visual category learning.
Hammer, Rubi
2015-01-01
People have to sort numerous objects into a large number of meaningful categories while operating in varying contexts. This requires identifying the visual features that best predict the 'essence' of objects (e.g., edibility), rather than categorizing objects based on the most salient features in a given context. To gain this capacity, visual category learning (VCL) relies on multiple cognitive processes. These may include unsupervised statistical learning, that requires observing multiple objects for learning the statistics of their features. Other learning processes enable incorporating different sources of supervisory information, alongside the visual features of the categorized objects, from which the categorical relations between few objects can be deduced. These deductions enable inferring that objects from the same category may differ from one another in some high-saliency feature dimensions, whereas lower-saliency feature dimensions can best differentiate objects from distinct categories. Here I illustrate how feature saliency affects VCL, by also discussing kinds of supervisory information enabling reflective categorization. Arguably, principles debated here are often being ignored in categorization studies.
Impact of feature saliency on visual category learning
Hammer, Rubi
2015-01-01
People have to sort numerous objects into a large number of meaningful categories while operating in varying contexts. This requires identifying the visual features that best predict the ‘essence’ of objects (e.g., edibility), rather than categorizing objects based on the most salient features in a given context. To gain this capacity, visual category learning (VCL) relies on multiple cognitive processes. These may include unsupervised statistical learning, that requires observing multiple objects for learning the statistics of their features. Other learning processes enable incorporating different sources of supervisory information, alongside the visual features of the categorized objects, from which the categorical relations between few objects can be deduced. These deductions enable inferring that objects from the same category may differ from one another in some high-saliency feature dimensions, whereas lower-saliency feature dimensions can best differentiate objects from distinct categories. Here I illustrate how feature saliency affects VCL, by also discussing kinds of supervisory information enabling reflective categorization. Arguably, principles debated here are often being ignored in categorization studies. PMID:25954220
A CNN based neurobiology inspired approach for retinal image quality assessment.
Mahapatra, Dwarikanath; Roy, Pallab K; Sedai, Suman; Garnavi, Rahil
2016-08-01
Retinal image quality assessment (IQA) algorithms use different hand crafted features for training classifiers without considering the working of the human visual system (HVS) which plays an important role in IQA. We propose a convolutional neural network (CNN) based approach that determines image quality using the underlying principles behind the working of the HVS. CNNs provide a principled approach to feature learning and hence higher accuracy in decision making. Experimental results demonstrate the superior performance of our proposed algorithm over competing methods.
Automated Extraction of Secondary Flow Features
NASA Technical Reports Server (NTRS)
Dorney, Suzanne M.; Haimes, Robert
2005-01-01
The use of Computational Fluid Dynamics (CFD) has become standard practice in the design and development of the major components used for air and space propulsion. To aid in the post-processing and analysis phase of CFD many researchers now use automated feature extraction utilities. These tools can be used to detect the existence of such features as shocks, vortex cores and separation and re-attachment lines. The existence of secondary flow is another feature of significant importance to CFD engineers. Although the concept of secondary flow is relatively understood there is no commonly accepted mathematical definition for secondary flow. This paper will present a definition for secondary flow and one approach for automatically detecting and visualizing secondary flow.
RiboSketch: Versatile Visualization of Multi-stranded RNA and DNA Secondary Structure.
Lu, Jacob S; Bindewald, Eckart; Kasprzak, Wojciech; Shapiro, Bruce A
2018-06-15
Creating clear, visually pleasing 2D depictions of RNA and DNA strands and their interactions is important to facilitate and communicate insights related to nucleic acid structure. Here we present RiboSketch, a secondary structure image production application that enables the visualization of multistranded structures via layout algorithms, comprehensive editing capabilities, and a multitude of simulation modes. These interactive features allow RiboSketch to create publication quality diagrams for structures with a wide range of composition, size, and complexity. The program may be run in any web browser without the need for installation, or as a standalone Java application. https://binkley2.ncifcrf.gov/users/bindewae/ribosketch_web.
Khaligh-Razavi, Seyed-Mahdi; Henriksson, Linda; Kay, Kendrick; Kriegeskorte, Nikolaus
2017-02-01
Studies of the primate visual system have begun to test a wide range of complex computational object-vision models. Realistic models have many parameters, which in practice cannot be fitted using the limited amounts of brain-activity data typically available. Task performance optimization (e.g. using backpropagation to train neural networks) provides major constraints for fitting parameters and discovering nonlinear representational features appropriate for the task (e.g. object classification). Model representations can be compared to brain representations in terms of the representational dissimilarities they predict for an image set. This method, called representational similarity analysis (RSA), enables us to test the representational feature space as is (fixed RSA) or to fit a linear transformation that mixes the nonlinear model features so as to best explain a cortical area's representational space (mixed RSA). Like voxel/population-receptive-field modelling, mixed RSA uses a training set (different stimuli) to fit one weight per model feature and response channel (voxels here), so as to best predict the response profile across images for each response channel. We analysed response patterns elicited by natural images, which were measured with functional magnetic resonance imaging (fMRI). We found that early visual areas were best accounted for by shallow models, such as a Gabor wavelet pyramid (GWP). The GWP model performed similarly with and without mixing, suggesting that the original features already approximated the representational space, obviating the need for mixing. However, a higher ventral-stream visual representation (lateral occipital region) was best explained by the higher layers of a deep convolutional network and mixing of its feature set was essential for this model to explain the representation. We suspect that mixing was essential because the convolutional network had been trained to discriminate a set of 1000 categories, whose frequencies in the training set did not match their frequencies in natural experience or their behavioural importance. The latter factors might determine the representational prominence of semantic dimensions in higher-level ventral-stream areas. Our results demonstrate the benefits of testing both the specific representational hypothesis expressed by a model's original feature space and the hypothesis space generated by linear transformations of that feature space.
Webb, Tessa M; Beech, John R; Mayall, Kate M; Andrews, Antony S
2006-06-01
The relative importance of internal and external letter features of words in children's developing reading was investigated to clarify further the nature of early featural analysis. In Experiment 1, 72 6-, 8-, and 10-year-olds read aloud words displayed as wholes, external features only (central features missing, thereby preserving word shape information), or internal features only (central features preserved). There was an improvement in the processing of external features compared with internal features as reading experience increased. Experiment 2 examined the processing of the internal and external features of words employing a forward priming paradigm with 60 8-, 10-, and 12-year-olds. Reaction times to internal feature primes were equivalent to a nonprime blank condition, whereas responses to external feature primes were faster than those to the other two prime types. This advantage for the external features of words is discussed in terms of an early and enduring role for processing the external visual features in words during reading development.
Spatial and Feature-Based Attention in a Layered Cortical Microcircuit Model
Wagatsuma, Nobuhiko; Potjans, Tobias C.; Diesmann, Markus; Sakai, Ko; Fukai, Tomoki
2013-01-01
Directing attention to the spatial location or the distinguishing feature of a visual object modulates neuronal responses in the visual cortex and the stimulus discriminability of subjects. However, the spatial and feature-based modes of attention differently influence visual processing by changing the tuning properties of neurons. Intriguingly, neurons' tuning curves are modulated similarly across different visual areas under both these modes of attention. Here, we explored the mechanism underlying the effects of these two modes of visual attention on the orientation selectivity of visual cortical neurons. To do this, we developed a layered microcircuit model. This model describes multiple orientation-specific microcircuits sharing their receptive fields and consisting of layers 2/3, 4, 5, and 6. These microcircuits represent a functional grouping of cortical neurons and mutually interact via lateral inhibition and excitatory connections between groups with similar selectivity. The individual microcircuits receive bottom-up visual stimuli and top-down attention in different layers. A crucial assumption of the model is that feature-based attention activates orientation-specific microcircuits for the relevant feature selectively, whereas spatial attention activates all microcircuits homogeneously, irrespective of their orientation selectivity. Consequently, our model simultaneously accounts for the multiplicative scaling of neuronal responses in spatial attention and the additive modulations of orientation tuning curves in feature-based attention, which have been observed widely in various visual cortical areas. Simulations of the model predict contrasting differences between excitatory and inhibitory neurons in the two modes of attentional modulations. Furthermore, the model replicates the modulation of the psychophysical discriminability of visual stimuli in the presence of external noise. Our layered model with a biologically suggested laminar structure describes the basic circuit mechanism underlying the attention-mode specific modulations of neuronal responses and visual perception. PMID:24324628
Li, Yiqing; Wang, Yu; Zi, Yanyang; Zhang, Mingquan
2015-10-21
The various multi-sensor signal features from a diesel engine constitute a complex high-dimensional dataset. The non-linear dimensionality reduction method, t-distributed stochastic neighbor embedding (t-SNE), provides an effective way to implement data visualization for complex high-dimensional data. However, irrelevant features can deteriorate the performance of data visualization, and thus, should be eliminated a priori. This paper proposes a feature subset score based t-SNE (FSS-t-SNE) data visualization method to deal with the high-dimensional data that are collected from multi-sensor signals. In this method, the optimal feature subset is constructed by a feature subset score criterion. Then the high-dimensional data are visualized in 2-dimension space. According to the UCI dataset test, FSS-t-SNE can effectively improve the classification accuracy. An experiment was performed with a large power marine diesel engine to validate the proposed method for diesel engine malfunction classification. Multi-sensor signals were collected by a cylinder vibration sensor and a cylinder pressure sensor. Compared with other conventional data visualization methods, the proposed method shows good visualization performance and high classification accuracy in multi-malfunction classification of a diesel engine.
Li, Yiqing; Wang, Yu; Zi, Yanyang; Zhang, Mingquan
2015-01-01
The various multi-sensor signal features from a diesel engine constitute a complex high-dimensional dataset. The non-linear dimensionality reduction method, t-distributed stochastic neighbor embedding (t-SNE), provides an effective way to implement data visualization for complex high-dimensional data. However, irrelevant features can deteriorate the performance of data visualization, and thus, should be eliminated a priori. This paper proposes a feature subset score based t-SNE (FSS-t-SNE) data visualization method to deal with the high-dimensional data that are collected from multi-sensor signals. In this method, the optimal feature subset is constructed by a feature subset score criterion. Then the high-dimensional data are visualized in 2-dimension space. According to the UCI dataset test, FSS-t-SNE can effectively improve the classification accuracy. An experiment was performed with a large power marine diesel engine to validate the proposed method for diesel engine malfunction classification. Multi-sensor signals were collected by a cylinder vibration sensor and a cylinder pressure sensor. Compared with other conventional data visualization methods, the proposed method shows good visualization performance and high classification accuracy in multi-malfunction classification of a diesel engine. PMID:26506347
Visual feature integration with an attention deficit.
Arguin, M; Cavanagh, P; Joanette, Y
1994-01-01
Treisman's feature integration theory proposes that the perception of illusory conjunctions of correctly encoded visual features is due to the failure of an attentional process. This hypothesis was examined by studying brain-damaged subjects who had previously been shown to have difficulty in attending to contralesional stimulation. These subjects exhibited a massive feature integration deficit for contralesional stimulation relative to ipsilesional displays. In contrast, both normal age-matched controls and brain-damaged subjects who did not exhibit any evidence of an attention deficit showed comparable feature integration performance with left- and right-hemifield stimulation. These observations indicate the crucial function of attention for visual feature integration in normal perception.
Visualization and Enabling Science at PO.DAAC
NASA Astrophysics Data System (ADS)
Tauer, E.; To, C.
2017-12-01
Facilitating the identification of appropriate data for scientific inquiry is important for efficient progress, but mechanisms for that identification vary, as does the effectiveness of those mechanisms. Appropriately crafted visualizations provide the means to quickly assess science data and scientific features, but providing the right visualization to the right application can present challenges. Even greater is the challenge of generating and/or re-constituting visualizations on the fly, particularly for large datasets. One avenue to mitigate the challenge is to arrive at an optimized intermediate data format that is tuned for rapid processing without sacrificing the provenance trace back to the original source data. This presentation will discuss the results of trading several current approaches towards an intermediate data format, and suggest a list of key attributes that will facilitate rapid visualization, and in the process, facilitate the identification of the right data for a given application.
Different Strokes for Different Folks: Visual Presentation Design between Disciplines
Gomez, Steven R.; Jianu, Radu; Ziemkiewicz, Caroline; Guo, Hua; Laidlaw, David H.
2015-01-01
We present an ethnographic study of design differences in visual presentations between academic disciplines. Characterizing design conventions between users and data domains is an important step in developing hypotheses, tools, and design guidelines for information visualization. In this paper, disciplines are compared at a coarse scale between four groups of fields: social, natural, and formal sciences; and the humanities. Two commonplace presentation types were analyzed: electronic slideshows and whiteboard “chalk talks”. We found design differences in slideshows using two methods – coding and comparing manually-selected features, like charts and diagrams, and an image-based analysis using PCA called eigenslides. In whiteboard talks with controlled topics, we observed design behaviors, including using representations and formalisms from a participant’s own discipline, that suggest authors might benefit from novel assistive tools for designing presentations. Based on these findings, we discuss opportunities for visualization ethnography and human-centered authoring tools for visual information. PMID:26357149
Pop-out in visual search of moving targets in the archer fish.
Ben-Tov, Mor; Donchin, Opher; Ben-Shahar, Ohad; Segev, Ronen
2015-03-10
Pop-out in visual search reflects the capacity of observers to rapidly detect visual targets independent of the number of distracting objects in the background. Although it may be beneficial to most animals, pop-out behaviour has been observed only in mammals, where neural correlates are found in primary visual cortex as contextually modulated neurons that encode aspects of saliency. Here we show that archer fish can also utilize this important search mechanism by exhibiting pop-out of moving targets. We explore neural correlates of this behaviour and report the presence of contextually modulated neurons in the optic tectum that may constitute the neural substrate for a saliency map. Furthermore, we find that both behaving fish and neural responses exhibit additive responses to multiple visual features. These findings suggest that similar neural computations underlie pop-out behaviour in mammals and fish, and that pop-out may be a universal search mechanism across all vertebrates.
Different Strokes for Different Folks: Visual Presentation Design between Disciplines.
Gomez, S R; Jianu, R; Ziemkiewicz, C; Guo, Hua; Laidlaw, D H
2012-12-01
We present an ethnographic study of design differences in visual presentations between academic disciplines. Characterizing design conventions between users and data domains is an important step in developing hypotheses, tools, and design guidelines for information visualization. In this paper, disciplines are compared at a coarse scale between four groups of fields: social, natural, and formal sciences; and the humanities. Two commonplace presentation types were analyzed: electronic slideshows and whiteboard "chalk talks". We found design differences in slideshows using two methods - coding and comparing manually-selected features, like charts and diagrams, and an image-based analysis using PCA called eigenslides. In whiteboard talks with controlled topics, we observed design behaviors, including using representations and formalisms from a participant's own discipline, that suggest authors might benefit from novel assistive tools for designing presentations. Based on these findings, we discuss opportunities for visualization ethnography and human-centered authoring tools for visual information.
Features in visual search combine linearly
Pramod, R. T.; Arun, S. P.
2014-01-01
Single features such as line orientation and length are known to guide visual search, but relatively little is known about how multiple features combine in search. To address this question, we investigated how search for targets differing in multiple features (intensity, length, orientation) from the distracters is related to searches for targets differing in each of the individual features. We tested race models (based on reaction times) and co-activation models (based on reciprocal of reaction times) for their ability to predict multiple feature searches. Multiple feature searches were best accounted for by a co-activation model in which feature information combined linearly (r = 0.95). This result agrees with the classic finding that these features are separable i.e., subjective dissimilarity ratings sum linearly. We then replicated the classical finding that the length and width of a rectangle are integral features—in other words, they combine nonlinearly in visual search. However, to our surprise, upon including aspect ratio as an additional feature, length and width combined linearly and this model outperformed all other models. Thus, length and width of a rectangle became separable when considered together with aspect ratio. This finding predicts that searches involving shapes with identical aspect ratio should be more difficult than searches where shapes differ in aspect ratio. We confirmed this prediction on a variety of shapes. We conclude that features in visual search co-activate linearly and demonstrate for the first time that aspect ratio is a novel feature that guides visual search. PMID:24715328
A Bayesian model for visual space perception
NASA Technical Reports Server (NTRS)
Curry, R. E.
1972-01-01
A model for visual space perception is proposed that contains desirable features in the theories of Gibson and Brunswik. This model is a Bayesian processor of proximal stimuli which contains three important elements: an internal model of the Markov process describing the knowledge of the distal world, the a priori distribution of the state of the Markov process, and an internal model relating state to proximal stimuli. The universality of the model is discussed and it is compared with signal detection theory models. Experimental results of Kinchla are used as a special case.
The feature-weighted receptive field: an interpretable encoding model for complex feature spaces.
St-Yves, Ghislain; Naselaris, Thomas
2017-06-20
We introduce the feature-weighted receptive field (fwRF), an encoding model designed to balance expressiveness, interpretability and scalability. The fwRF is organized around the notion of a feature map-a transformation of visual stimuli into visual features that preserves the topology of visual space (but not necessarily the native resolution of the stimulus). The key assumption of the fwRF model is that activity in each voxel encodes variation in a spatially localized region across multiple feature maps. This region is fixed for all feature maps; however, the contribution of each feature map to voxel activity is weighted. Thus, the model has two separable sets of parameters: "where" parameters that characterize the location and extent of pooling over visual features, and "what" parameters that characterize tuning to visual features. The "where" parameters are analogous to classical receptive fields, while "what" parameters are analogous to classical tuning functions. By treating these as separable parameters, the fwRF model complexity is independent of the resolution of the underlying feature maps. This makes it possible to estimate models with thousands of high-resolution feature maps from relatively small amounts of data. Once a fwRF model has been estimated from data, spatial pooling and feature tuning can be read-off directly with no (or very little) additional post-processing or in-silico experimentation. We describe an optimization algorithm for estimating fwRF models from data acquired during standard visual neuroimaging experiments. We then demonstrate the model's application to two distinct sets of features: Gabor wavelets and features supplied by a deep convolutional neural network. We show that when Gabor feature maps are used, the fwRF model recovers receptive fields and spatial frequency tuning functions consistent with known organizational principles of the visual cortex. We also show that a fwRF model can be used to regress entire deep convolutional networks against brain activity. The ability to use whole networks in a single encoding model yields state-of-the-art prediction accuracy. Our results suggest a wide variety of uses for the feature-weighted receptive field model, from retinotopic mapping with natural scenes, to regressing the activities of whole deep neural networks onto measured brain activity. Copyright © 2017. Published by Elsevier Inc.
Memory guidance in distractor suppression is governed by the availability of cognitive control.
Wen, Wen; Hou, Yin; Li, Sheng
2018-03-26
Information stored in the memory systems can affect visual search. Previous studies have shown that holding the to-be-ignored features of distractors in working memory (WM) could accelerate target selection. However, such facilitation effect was only observed when the cued to-be-ignored features remained unchanged within an experimental block (i.e., the fixed cue condition). No search benefit was obtained if the to-be-ignored features varied from trial to trial (i.e., the varied cue condition). In the present study, we conducted three behavioral experiments to investigate whether the WM and long-term memory (LTM) representations of the to-be-ignored features could facilitate visual search in the fixed cue (Experiment 1) and varied cue (Experiments 2 and 3) conditions. Given the importance of the processing time of cognitive control in distractor suppression, we divided visual search trials into five quintiles based on their reaction times (RTs) and examined the temporal characteristics of the suppression effect. Results showed that both the WM and LTM representations of the to-be-ignored features could facilitate distractor suppression in the fixed cue condition, and the facilitation effects were evident across the quintiles in the RT distribution. However, in the varied cue condition, the RT benefits of the WM-matched distractors occurred only in the trials with the longest RTs, whereas no advantage of the LTM-matched distractors was observed. These results suggest that the effective WM-guided distractor suppression depends on the availability of cognitive control and the LTM-guided suppression occurs only if sufficient WM resource is accessible by LTM reactivation.
Coding visual features extracted from video sequences.
Baroffio, Luca; Cesana, Matteo; Redondi, Alessandro; Tagliasacchi, Marco; Tubaro, Stefano
2014-05-01
Visual features are successfully exploited in several applications (e.g., visual search, object recognition and tracking, etc.) due to their ability to efficiently represent image content. Several visual analysis tasks require features to be transmitted over a bandwidth-limited network, thus calling for coding techniques to reduce the required bit budget, while attaining a target level of efficiency. In this paper, we propose, for the first time, a coding architecture designed for local features (e.g., SIFT, SURF) extracted from video sequences. To achieve high coding efficiency, we exploit both spatial and temporal redundancy by means of intraframe and interframe coding modes. In addition, we propose a coding mode decision based on rate-distortion optimization. The proposed coding scheme can be conveniently adopted to implement the analyze-then-compress (ATC) paradigm in the context of visual sensor networks. That is, sets of visual features are extracted from video frames, encoded at remote nodes, and finally transmitted to a central controller that performs visual analysis. This is in contrast to the traditional compress-then-analyze (CTA) paradigm, in which video sequences acquired at a node are compressed and then sent to a central unit for further processing. In this paper, we compare these coding paradigms using metrics that are routinely adopted to evaluate the suitability of visual features in the context of content-based retrieval, object recognition, and tracking. Experimental results demonstrate that, thanks to the significant coding gains achieved by the proposed coding scheme, ATC outperforms CTA with respect to all evaluation metrics.
Creating visual explanations improves learning.
Bobek, Eliza; Tversky, Barbara
2016-01-01
Many topics in science are notoriously difficult for students to learn. Mechanisms and processes outside student experience present particular challenges. While instruction typically involves visualizations, students usually explain in words. Because visual explanations can show parts and processes of complex systems directly, creating them should have benefits beyond creating verbal explanations. We compared learning from creating visual or verbal explanations for two STEM domains, a mechanical system (bicycle pump) and a chemical system (bonding). Both kinds of explanations were analyzed for content and learning assess by a post-test. For the mechanical system, creating a visual explanation increased understanding particularly for participants of low spatial ability. For the chemical system, creating both visual and verbal explanations improved learning without new teaching. Creating a visual explanation was superior and benefitted participants of both high and low spatial ability. Visual explanations often included crucial yet invisible features. The greater effectiveness of visual explanations appears attributable to the checks they provide for completeness and coherence as well as to their roles as platforms for inference. The benefits should generalize to other domains like the social sciences, history, and archeology where important information can be visualized. Together, the findings provide support for the use of learner-generated visual explanations as a powerful learning tool.
Takahama, Sachiko; Saiki, Jun
2014-01-01
Information on an object's features bound to its location is very important for maintaining object representations in visual working memory. Interactions with dynamic multi-dimensional objects in an external environment require complex cognitive control, including the selective maintenance of feature-location binding. Here, we used event-related functional magnetic resonance imaging to investigate brain activity and functional connectivity related to the maintenance of complex feature-location binding. Participants were required to detect task-relevant changes in feature-location binding between objects defined by color, orientation, and location. We compared a complex binding task requiring complex feature-location binding (color-orientation-location) with a simple binding task in which simple feature-location binding, such as color-location, was task-relevant and the other feature was task-irrelevant. Univariate analyses showed that the dorsolateral prefrontal cortex (DLPFC), hippocampus, and frontoparietal network were activated during the maintenance of complex feature-location binding. Functional connectivity analyses indicated cooperation between the inferior precentral sulcus (infPreCS), DLPFC, and hippocampus during the maintenance of complex feature-location binding. In contrast, the connectivity for the spatial updating of simple feature-location binding determined by reanalyzing the data from Takahama et al. (2010) demonstrated that the superior parietal lobule (SPL) cooperated with the DLPFC and hippocampus. These results suggest that the connectivity for complex feature-location binding does not simply reflect general memory load and that the DLPFC and hippocampus flexibly modulate the dorsal frontoparietal network, depending on the task requirements, with the infPreCS involved in the maintenance of complex feature-location binding and the SPL involved in the spatial updating of simple feature-location binding. PMID:24917833
Takahama, Sachiko; Saiki, Jun
2014-01-01
Information on an object's features bound to its location is very important for maintaining object representations in visual working memory. Interactions with dynamic multi-dimensional objects in an external environment require complex cognitive control, including the selective maintenance of feature-location binding. Here, we used event-related functional magnetic resonance imaging to investigate brain activity and functional connectivity related to the maintenance of complex feature-location binding. Participants were required to detect task-relevant changes in feature-location binding between objects defined by color, orientation, and location. We compared a complex binding task requiring complex feature-location binding (color-orientation-location) with a simple binding task in which simple feature-location binding, such as color-location, was task-relevant and the other feature was task-irrelevant. Univariate analyses showed that the dorsolateral prefrontal cortex (DLPFC), hippocampus, and frontoparietal network were activated during the maintenance of complex feature-location binding. Functional connectivity analyses indicated cooperation between the inferior precentral sulcus (infPreCS), DLPFC, and hippocampus during the maintenance of complex feature-location binding. In contrast, the connectivity for the spatial updating of simple feature-location binding determined by reanalyzing the data from Takahama et al. (2010) demonstrated that the superior parietal lobule (SPL) cooperated with the DLPFC and hippocampus. These results suggest that the connectivity for complex feature-location binding does not simply reflect general memory load and that the DLPFC and hippocampus flexibly modulate the dorsal frontoparietal network, depending on the task requirements, with the infPreCS involved in the maintenance of complex feature-location binding and the SPL involved in the spatial updating of simple feature-location binding.
Cross-Modal Facilitation in Speech Prosody
ERIC Educational Resources Information Center
Foxton, Jessica M.; Riviere, Louis-David; Barone, Pascal
2010-01-01
Speech prosody has traditionally been considered solely in terms of its auditory features, yet correlated visual features exist, such as head and eyebrow movements. This study investigated the extent to which visual prosodic features are able to affect the perception of the auditory features. Participants were presented with videos of a speaker…
Attentive Tracking Disrupts Feature Binding in Visual Working Memory
Fougnie, Daryl; Marois, René
2009-01-01
One of the most influential theories in visual cognition proposes that attention is necessary to bind different visual features into coherent object percepts (Treisman & Gelade, 1980). While considerable evidence supports a role for attention in perceptual feature binding, whether attention plays a similar function in visual working memory (VWM) remains controversial. To test the attentional requirements of VWM feature binding, here we gave participants an attention-demanding multiple object tracking task during the retention interval of a VWM task. Results show that the tracking task disrupted memory for color-shape conjunctions above and beyond any impairment to working memory for object features, and that this impairment was larger when the VWM stimuli were presented at different spatial locations. These results demonstrate that the role of visuospatial attention in feature binding is not unique to perception, but extends to the working memory of these perceptual representations as well. PMID:19609460
Generic decoding of seen and imagined objects using hierarchical visual features.
Horikawa, Tomoyasu; Kamitani, Yukiyasu
2017-05-22
Object recognition is a key function in both human and machine vision. While brain decoding of seen and imagined objects has been achieved, the prediction is limited to training examples. We present a decoding approach for arbitrary objects using the machine vision principle that an object category is represented by a set of features rendered invariant through hierarchical processing. We show that visual features, including those derived from a deep convolutional neural network, can be predicted from fMRI patterns, and that greater accuracy is achieved for low-/high-level features with lower-/higher-level visual areas, respectively. Predicted features are used to identify seen/imagined object categories (extending beyond decoder training) from a set of computed features for numerous object images. Furthermore, decoding of imagined objects reveals progressive recruitment of higher-to-lower visual representations. Our results demonstrate a homology between human and machine vision and its utility for brain-based information retrieval.
Ho-Phuoc, Tien; Guyader, Nathalie; Landragin, Frédéric; Guérin-Dugué, Anne
2012-02-03
Since Treisman's theory, it has been generally accepted that color is an elementary feature that guides eye movements when looking at natural scenes. Hence, most computational models of visual attention predict eye movements using color as an important visual feature. In this paper, using experimental data, we show that color does not affect where observers look when viewing natural scene images. Neither colors nor abnormal colors modify observers' fixation locations when compared to the same scenes in grayscale. In the same way, we did not find any significant difference between the scanpaths under grayscale, color, or abnormal color viewing conditions. However, we observed a decrease in fixation duration for color and abnormal color, and this was particularly true at the beginning of scene exploration. Finally, we found that abnormal color modifies saccade amplitude distribution.
Visual scan-path analysis with feature space transient fixation moments
NASA Astrophysics Data System (ADS)
Dempere-Marco, Laura; Hu, Xiao-Peng; Yang, Guang-Zhong
2003-05-01
The study of eye movements provides useful insight into the cognitive processes underlying visual search tasks. The analysis of the dynamics of eye movements has often been approached from a purely spatial perspective. In many cases, however, it may not be possible to define meaningful or consistent dynamics without considering the features underlying the scan paths. In this paper, the definition of the feature space has been attempted through the concept of visual similarity and non-linear low dimensional embedding, which defines a mapping from the image space into a low dimensional feature manifold that preserves the intrinsic similarity of image patterns. This has enabled the definition of perceptually meaningful features without the use of domain specific knowledge. Based on this, this paper introduces a new concept called Feature Space Transient Fixation Moments (TFM). The approach presented tackles the problem of feature space representation of visual search through the use of TFM. We demonstrate the practical values of this concept for characterizing the dynamics of eye movements in goal directed visual search tasks. We also illustrate how this model can be used to elucidate the fundamental steps involved in skilled search tasks through the evolution of transient fixation moments.
Software complex for geophysical data visualization
NASA Astrophysics Data System (ADS)
Kryukov, Ilya A.; Tyugin, Dmitry Y.; Kurkin, Andrey A.; Kurkina, Oxana E.
2013-04-01
The effectiveness of current research in geophysics is largely determined by the degree of implementation of the procedure of data processing and visualization with the use of modern information technology. Realistic and informative visualization of the results of three-dimensional modeling of geophysical processes contributes significantly into the naturalness of physical modeling and detailed view of the phenomena. The main difficulty in this case is to interpret the results of the calculations: it is necessary to be able to observe the various parameters of the three-dimensional models, build sections on different planes to evaluate certain characteristics and make a rapid assessment. Programs for interpretation and visualization of simulations are spread all over the world, for example, software systems such as ParaView, Golden Software Surfer, Voxler, Flow Vision and others. However, it is not always possible to solve the problem of visualization with the help of a single software package. Preprocessing, data transfer between the packages and setting up a uniform visualization style can turn into a long and routine work. In addition to this, sometimes special display modes for specific data are required and existing products tend to have more common features and are not always fully applicable to certain special cases. Rendering of dynamic data may require scripting languages that does not relieve the user from writing code. Therefore, the task was to develop a new and original software complex for the visualization of simulation results. Let us briefly list of the primary features that are developed. Software complex is a graphical application with a convenient and simple user interface that displays the results of the simulation. Complex is also able to interactively manage the image, resize the image without loss of quality, apply a two-dimensional and three-dimensional regular grid, set the coordinate axes with data labels and perform slice of data. The feature of geophysical data is their size. Detailed maps used in the simulations are large, thus rendering in real time can be difficult task even for powerful modern computers. Therefore, the performance of the software complex is an important aspect of this work. Complex is based on the latest version of graphic API: Microsoft - DirectX 11, which reduces overhead and harness the power of modern hardware. Each geophysical calculation is the adjustment of the mathematical model for a particular case, so the architecture of the complex visualization is created with the scalability and the ability to customize visualization objects, for better visibility and comfort. In the present study, software complex 'GeoVisual' was developed. One of the main features of this research is the use of bleeding-edge techniques of computer graphics in scientific visualization. The research was supported by The Ministry of education and science of Russian Federation, project 14.B37.21.0642.
Visual Saliency Detection Based on Multiscale Deep CNN Features.
Guanbin Li; Yizhou Yu
2016-11-01
Visual saliency is a fundamental problem in both cognitive and computational sciences, including computer vision. In this paper, we discover that a high-quality visual saliency model can be learned from multiscale features extracted using deep convolutional neural networks (CNNs), which have had many successes in visual recognition tasks. For learning such saliency models, we introduce a neural network architecture, which has fully connected layers on top of CNNs responsible for feature extraction at three different scales. The penultimate layer of our neural network has been confirmed to be a discriminative high-level feature vector for saliency detection, which we call deep contrast feature. To generate a more robust feature, we integrate handcrafted low-level features with our deep contrast feature. To promote further research and evaluation of visual saliency models, we also construct a new large database of 4447 challenging images and their pixelwise saliency annotations. Experimental results demonstrate that our proposed method is capable of achieving the state-of-the-art performance on all public benchmarks, improving the F-measure by 6.12% and 10%, respectively, on the DUT-OMRON data set and our new data set (HKU-IS), and lowering the mean absolute error by 9% and 35.3%, respectively, on these two data sets.
Huynh, Duong L; Tripathy, Srimant P; Bedell, Harold E; Ögmen, Haluk
2015-01-01
Human memory is content addressable-i.e., contents of the memory can be accessed using partial information about the bound features of a stored item. In this study, we used a cross-feature cuing technique to examine how the human visual system encodes, binds, and retains information about multiple stimulus features within a set of moving objects. We sought to characterize the roles of three different features (position, color, and direction of motion, the latter two of which are processed preferentially within the ventral and dorsal visual streams, respectively) in the construction and maintenance of object representations. We investigated the extent to which these features are bound together across the following processing stages: during stimulus encoding, sensory (iconic) memory, and visual short-term memory. Whereas all features examined here can serve as cues for addressing content, their effectiveness shows asymmetries and varies according to cue-report pairings and the stage of information processing and storage. Position-based indexing theories predict that position should be more effective as a cue compared to other features. While we found a privileged role for position as a cue at the stimulus-encoding stage, position was not the privileged cue at the sensory and visual short-term memory stages. Instead, the pattern that emerged from our findings is one that mirrors the parallel processing streams in the visual system. This stream-specific binding and cuing effectiveness manifests itself in all three stages of information processing examined here. Finally, we find that the Leaky Flask model proposed in our previous study is applicable to all three features.
Hardman, Kyle O; Cowan, Nelson
2015-03-01
Visual working memory stores stimuli from our environment as representations that can be accessed by high-level control processes. This study addresses a longstanding debate in the literature about whether storage limits in visual working memory include a limit to the complexity of discrete items. We examined the issue with a number of change-detection experiments that used complex stimuli that possessed multiple features per stimulus item. We manipulated the number of relevant features of the stimulus objects in order to vary feature load. In all of our experiments, we found that increased feature load led to a reduction in change-detection accuracy. However, we found that feature load alone could not account for the results but that a consideration of the number of relevant objects was also required. This study supports capacity limits for both feature and object storage in visual working memory. PsycINFO Database Record (c) 2015 APA, all rights reserved.
Temporal Structure and Complexity Affect Audio-Visual Correspondence Detection
Denison, Rachel N.; Driver, Jon; Ruff, Christian C.
2013-01-01
Synchrony between events in different senses has long been considered the critical temporal cue for multisensory integration. Here, using rapid streams of auditory and visual events, we demonstrate how humans can use temporal structure (rather than mere temporal coincidence) to detect multisensory relatedness. We find psychophysically that participants can detect matching auditory and visual streams via shared temporal structure for crossmodal lags of up to 200 ms. Performance on this task reproduced features of past findings based on explicit timing judgments but did not show any special advantage for perfectly synchronous streams. Importantly, the complexity of temporal patterns influences sensitivity to correspondence. Stochastic, irregular streams – with richer temporal pattern information – led to higher audio-visual matching sensitivity than predictable, rhythmic streams. Our results reveal that temporal structure and its complexity are key determinants for human detection of audio-visual correspondence. The distinctive emphasis of our new paradigms on temporal patterning could be useful for studying special populations with suspected abnormalities in audio-visual temporal perception and multisensory integration. PMID:23346067
The Role of Early Visual Attention in Social Development
ERIC Educational Resources Information Center
Wagner, Jennifer B.; Luyster, Rhiannon J.; Yim, Jung Yeon; Tager-Flusberg, Helen; Nelson, Charles A.
2013-01-01
Faces convey important information about the social environment, and even very young infants are preferentially attentive to face-like over non-face stimuli. Eye-tracking studies have allowed researchers to examine which features of faces infants find most salient across development, and the present study examined scanning of familiar (i.e.,…
ERIC Educational Resources Information Center
Calvert, Sandra L.; And Others
Preplays (critical material presented before a televised program) were inserted before three sections of a televised story to determine if they would improve children's attention and comprehension by providing overall plot structure for selecting and integrating important story events. The preplays varied on two orthogonal dimensions: presence or…
Learning to Look: Probabilistic Variation and Noise Guide Infants' Eye Movements
ERIC Educational Resources Information Center
Tummeltshammer, Kristen Swan; Kirkham, Natasha Z.
2013-01-01
Young infants have demonstrated a remarkable sensitivity to probabilistic relations among visual features (Fiser & Aslin, 2002; Kirkham et al., 2002). Previous research has raised important questions regarding the usefulness of statistical learning in an environment filled with variability and noise, such as an infant's natural world. In…
ERIC Educational Resources Information Center
Oss, Stefano; Rosi, Tommaso
2015-01-01
We have developed an app for iOS-based smart-phones/tablets that allows a 3-D, complex phase-based colorful visualization of hydrogen atom wave functions. Several important features of the quantum behavior of atomic orbitals can easily be made evident, thus making this app a useful companion in introductory modern physics classes. There are many…
Contingent capture of involuntary visual attention interferes with detection of auditory stimuli
Kamke, Marc R.; Harris, Jill
2014-01-01
The involuntary capture of attention by salient visual stimuli can be influenced by the behavioral goals of an observer. For example, when searching for a target item, irrelevant items that possess the target-defining characteristic capture attention more strongly than items not possessing that feature. Such contingent capture involves a shift of spatial attention toward the item with the target-defining characteristic. It is not clear, however, if the associated decrements in performance for detecting the target item are entirely due to involuntary orienting of spatial attention. To investigate whether contingent capture also involves a non-spatial interference, adult observers were presented with streams of visual and auditory stimuli and were tasked with simultaneously monitoring for targets in each modality. Visual and auditory targets could be preceded by a lateralized visual distractor that either did, or did not, possess the target-defining feature (a specific color). In agreement with the contingent capture hypothesis, target-colored distractors interfered with visual detection performance (response time and accuracy) more than distractors that did not possess the target color. Importantly, the same pattern of results was obtained for the auditory task: visual target-colored distractors interfered with sound detection. The decrement in auditory performance following a target-colored distractor suggests that contingent capture involves a source of processing interference in addition to that caused by a spatial shift of attention. Specifically, we argue that distractors possessing the target-defining characteristic enter a capacity-limited, serial stage of neural processing, which delays detection of subsequently presented stimuli regardless of the sensory modality. PMID:24920945
Contingent capture of involuntary visual attention interferes with detection of auditory stimuli.
Kamke, Marc R; Harris, Jill
2014-01-01
The involuntary capture of attention by salient visual stimuli can be influenced by the behavioral goals of an observer. For example, when searching for a target item, irrelevant items that possess the target-defining characteristic capture attention more strongly than items not possessing that feature. Such contingent capture involves a shift of spatial attention toward the item with the target-defining characteristic. It is not clear, however, if the associated decrements in performance for detecting the target item are entirely due to involuntary orienting of spatial attention. To investigate whether contingent capture also involves a non-spatial interference, adult observers were presented with streams of visual and auditory stimuli and were tasked with simultaneously monitoring for targets in each modality. Visual and auditory targets could be preceded by a lateralized visual distractor that either did, or did not, possess the target-defining feature (a specific color). In agreement with the contingent capture hypothesis, target-colored distractors interfered with visual detection performance (response time and accuracy) more than distractors that did not possess the target color. Importantly, the same pattern of results was obtained for the auditory task: visual target-colored distractors interfered with sound detection. The decrement in auditory performance following a target-colored distractor suggests that contingent capture involves a source of processing interference in addition to that caused by a spatial shift of attention. Specifically, we argue that distractors possessing the target-defining characteristic enter a capacity-limited, serial stage of neural processing, which delays detection of subsequently presented stimuli regardless of the sensory modality.
The Role of Attention in the Maintenance of Feature Bindings in Visual Short-term Memory
ERIC Educational Resources Information Center
Johnson, Jeffrey S.; Hollingworth, Andrew; Luck, Steven J.
2008-01-01
This study examined the role of attention in maintaining feature bindings in visual short-term memory. In a change-detection paradigm, participants attempted to detect changes in the colors and orientations of multiple objects; the changes consisted of new feature values in a feature-memory condition and changes in how existing feature values were…
Briand, K A; Klein, R M
1987-05-01
In the present study we investigated whether the visually allocated "beam" studied by Posner and others is the same visual attentional resource that performs the role of feature integration in Treisman's model. Subjects were cued to attend to a certain spatial location by a visual cue, and performance at expected and unexpected stimulus locations was compared. Subjects searched for a target letter (R) with distractor letters that either could give rise to illusory conjunctions (PQ) or could not (PB). Results from three separate experiments showed that orienting attention in response to central cues (endogenous orienting) showed similar effects for both conjunction and feature search. However, when attention was oriented with peripheral visual cues (exogenous orienting), conjunction search showed larger effects of attention than did feature search. It is suggested that the attentional systems that are oriented in response to central and peripheral cues may not be the same and that only the latter performs a role in feature integration. Possibilities for future research are discussed.
Unconscious analyses of visual scenes based on feature conjunctions.
Tachibana, Ryosuke; Noguchi, Yasuki
2015-06-01
To efficiently process a cluttered scene, the visual system analyzes statistical properties or regularities of visual elements embedded in the scene. It is controversial, however, whether those scene analyses could also work for stimuli unconsciously perceived. Here we show that our brain performs the unconscious scene analyses not only using a single featural cue (e.g., orientation) but also based on conjunctions of multiple visual features (e.g., combinations of color and orientation information). Subjects foveally viewed a stimulus array (duration: 50 ms) where 4 types of bars (red-horizontal, red-vertical, green-horizontal, and green-vertical) were intermixed. Although a conscious perception of those bars was inhibited by a subsequent mask stimulus, the brain correctly analyzed the information about color, orientation, and color-orientation conjunctions of those invisible bars. The information of those features was then used for the unconscious configuration analysis (statistical processing) of the central bars, which induced a perceptual bias and illusory feature binding in visible stimuli at peripheral locations. While statistical analyses and feature binding are normally 2 key functions of the visual system to construct coherent percepts of visual scenes, our results show that a high-level analysis combining those 2 functions is correctly performed by unconscious computations in the brain. (c) 2015 APA, all rights reserved).
MacLean, Mary H; Giesbrecht, Barry
2015-07-01
Task-relevant and physically salient features influence visual selective attention. In the present study, we investigated the influence of task-irrelevant and physically nonsalient reward-associated features on visual selective attention. Two hypotheses were tested: One predicts that the effects of target-defining task-relevant and task-irrelevant features interact to modulate visual selection; the other predicts that visual selection is determined by the independent combination of relevant and irrelevant feature effects. These alternatives were tested using a visual search task that contained multiple targets, placing a high demand on the need for selectivity, and that was data-limited and required unspeeded responses, emphasizing early perceptual selection processes. One week prior to the visual search task, participants completed a training task in which they learned to associate particular colors with a specific reward value. In the search task, the reward-associated colors were presented surrounding targets and distractors, but were neither physically salient nor task-relevant. In two experiments, the irrelevant reward-associated features influenced performance, but only when they were presented in a task-relevant location. The costs induced by the irrelevant reward-associated features were greater when they oriented attention to a target than to a distractor. In a third experiment, we examined the effects of selection history in the absence of reward history and found that the interaction between task relevance and selection history differed, relative to when the features had previously been associated with reward. The results indicate that under conditions that demand highly efficient perceptual selection, physically nonsalient task-irrelevant and task-relevant factors interact to influence visual selective attention.
A novel visual-inertial monocular SLAM
NASA Astrophysics Data System (ADS)
Yue, Xiaofeng; Zhang, Wenjuan; Xu, Li; Liu, JiangGuo
2018-02-01
With the development of sensors and computer vision research community, cameras, which are accurate, compact, wellunderstood and most importantly cheap and ubiquitous today, have gradually been at the center of robot location. Simultaneous localization and mapping (SLAM) using visual features, which is a system getting motion information from image acquisition equipment and rebuild the structure in unknown environment. We provide an analysis of bioinspired flights in insects, employing a novel technique based on SLAM. Then combining visual and inertial measurements to get high accuracy and robustness. we present a novel tightly-coupled Visual-Inertial Simultaneous Localization and Mapping system which get a new attempt to address two challenges which are the initialization problem and the calibration problem. experimental results and analysis show the proposed approach has a more accurate quantitative simulation of insect navigation, which can reach the positioning accuracy of centimeter level.
Wen, Haiguang; Shi, Junxing; Chen, Wei; Liu, Zhongming
2018-02-28
The brain represents visual objects with topographic cortical patterns. To address how distributed visual representations enable object categorization, we established predictive encoding models based on a deep residual network, and trained them to predict cortical responses to natural movies. Using this predictive model, we mapped human cortical representations to 64,000 visual objects from 80 categories with high throughput and accuracy. Such representations covered both the ventral and dorsal pathways, reflected multiple levels of object features, and preserved semantic relationships between categories. In the entire visual cortex, object representations were organized into three clusters of categories: biological objects, non-biological objects, and background scenes. In a finer scale specific to each cluster, object representations revealed sub-clusters for further categorization. Such hierarchical clustering of category representations was mostly contributed by cortical representations of object features from middle to high levels. In summary, this study demonstrates a useful computational strategy to characterize the cortical organization and representations of visual features for rapid categorization.
Pathview Web: user friendly pathway visualization and data integration.
Luo, Weijun; Pant, Gaurav; Bhavnasi, Yeshvant K; Blanchard, Steven G; Brouwer, Cory
2017-07-03
Pathway analysis is widely used in omics studies. Pathway-based data integration and visualization is a critical component of the analysis. To address this need, we recently developed a novel R package called Pathview. Pathview maps, integrates and renders a large variety of biological data onto molecular pathway graphs. Here we developed the Pathview Web server, as to make pathway visualization and data integration accessible to all scientists, including those without the special computing skills or resources. Pathview Web features an intuitive graphical web interface and a user centered design. The server not only expands the core functions of Pathview, but also provides many useful features not available in the offline R package. Importantly, the server presents a comprehensive workflow for both regular and integrated pathway analysis of multiple omics data. In addition, the server also provides a RESTful API for programmatic access and conveniently integration in third-party software or workflows. Pathview Web is openly and freely accessible at https://pathview.uncc.edu/. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Visual acuity estimation from simulated images
NASA Astrophysics Data System (ADS)
Duncan, William J.
Simulated images can provide insight into the performance of optical systems, especially those with complicated features. Many modern solutions for presbyopia and cataracts feature sophisticated power geometries or diffractive elements. Some intraocular lenses (IOLs) arrive at multifocality through the use of a diffractive surface and multifocal contact lenses have a radially varying power profile. These type of elements induce simultaneous vision as well as affecting vision much differently than a monofocal ophthalmic appliance. With myriad multifocal ophthalmics available on the market it is difficult to compare or assess performance in ways that effect wearers of such appliances. Here we present software and algorithmic metrics that can be used to qualitatively and quantitatively compare ophthalmic element performance, with specific examples of bifocal intraocular lenses (IOLs) and multifocal contact lenses. We anticipate this study, methods, and results to serve as a starting point for more complex models of vision and visual acuity in a setting where modeling is advantageous. Generating simulated images of real- scene scenarios is useful for patients in assessing vision quality with a certain appliance. Visual acuity estimation can serve as an important tool for manufacturing and design of ophthalmic appliances.
NASA Astrophysics Data System (ADS)
Dostal, P.; Krasula, L.; Klima, M.
2012-06-01
Various image processing techniques in multimedia technology are optimized using visual attention feature of the human visual system. Spatial non-uniformity causes that different locations in an image are of different importance in terms of perception of the image. In other words, the perceived image quality depends mainly on the quality of important locations known as regions of interest. The performance of such techniques is measured by subjective evaluation or objective image quality criteria. Many state-of-the-art objective metrics are based on HVS properties; SSIM, MS-SSIM based on image structural information, VIF based on the information that human brain can ideally gain from the reference image or FSIM utilizing the low-level features to assign the different importance to each location in the image. But still none of these objective metrics utilize the analysis of regions of interest. We solve the question if these objective metrics can be used for effective evaluation of images reconstructed by processing techniques based on ROI analysis utilizing high-level features. In this paper authors show that the state-of-the-art objective metrics do not correlate well with subjective evaluation while the demosaicing based on ROI analysis is used for reconstruction. The ROI were computed from "ground truth" visual attention data. The algorithm combining two known demosaicing techniques on the basis of ROI location is proposed to reconstruct the ROI in fine quality while the rest of image is reconstructed with low quality. The color image reconstructed by this ROI approach was compared with selected demosaicing techniques by objective criteria and subjective testing. The qualitative comparison of the objective and subjective results indicates that the state-of-the-art objective metrics are still not suitable for evaluation image processing techniques based on ROI analysis and new criteria is demanded.
Best, Catherine A.; Yim, Hyungwook; Sloutsky, Vladimir M.
2013-01-01
Selective attention plays an important role in category learning. However, immaturities of top-down attentional control during infancy coupled with successful category learning suggest that early category learning is achieved without attending selectively. Research presented here examines this possibility by focusing on category learning in infants (6–8 months old) and adults. Participants were trained on a novel visual category. Halfway through the experiment, unbeknownst to participants, the to-be-learned category switched to another category, where previously relevant features became irrelevant and previously irrelevant features became relevant. If participants attend selectively to the relevant features of the first category, they should incur a cost of selective attention immediately after the unknown category switch. Results revealed that adults demonstrated a cost, as evidenced by a decrease in accuracy and response time on test trials as well as a decrease in visual attention to newly relevant features. In contrast, infants did not demonstrate a similar cost of selective attention as adults despite evidence of learning both to-be-learned categories. Findings are discussed as supporting multiple systems of category learning and as suggesting that learning mechanisms engaged by adults may be different from those engaged by infants. PMID:23773914
Enhanced associative memory for colour (but not shape or location) in synaesthesia.
Pritchard, Jamie; Rothen, Nicolas; Coolbear, Daniel; Ward, Jamie
2013-05-01
People with grapheme-colour synaesthesia have been shown to have enhanced memory on a range of tasks using both stimuli that induce synaesthesia (e.g. words) and, more surprisingly, stimuli that do not (e.g. certain abstract visual stimuli). This study examines the latter by using multi-featured stimuli consisting of shape, colour and location conjunctions (e.g. shape A+colour A+location A; shape B+colour B+location B) presented in a recognition memory paradigm. This enables distractor items to be created in which one of these features is 'unbound' with respect to the others (e.g. shape A+colour B+location A; shape A+colour A+location C). Synaesthetes had higher recognition rates suggesting an enhanced ability to bind certain visual features together into memory. Importantly, synaesthetes' false alarm rates were lower only when colour was the unbound feature, not shape or location. We suggest that synaesthetes are "colour experts" and that enhanced perception can lead to enhanced memory in very specific ways; but, not for instance, an enhanced ability to form associations per se. The results support contemporary models that propose a continuum between perception and memory. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Radun, Jenni E.; Virtanen, Toni; Olives, Jean-Luc; Vaahteranoksa, Mikko; Vuori, Tero; Nyman, Göte
2007-01-01
We present an effective method for comparing subjective audiovisual quality and the features related to the quality changes of different video cameras. Both quantitative estimation of overall quality and qualitative description of critical quality features are achieved by the method. The aim was to combine two image quality evaluation methods, the quantitative Absolute Category Rating (ACR) method with hidden reference removal and the qualitative Interpretation- Based Quality (IBQ) method in order to see how they complement each other in audiovisual quality estimation tasks. 26 observers estimated the audiovisual quality of six different cameras, mainly mobile phone video cameras. In order to achieve an efficient subjective estimation of audiovisual quality, only two contents with different quality requirements were recorded with each camera. The results show that the subjectively important quality features were more related to the overall estimations of cameras' visual video quality than to the features related to sound. The data demonstrated two significant quality dimensions related to visual quality: darkness and sharpness. We conclude that the qualitative methodology can complement quantitative quality estimations also with audiovisual material. The IBQ approach is valuable especially, when the induced quality changes are multidimensional.
Biographer: web-based editing and rendering of SBGN compliant biochemical networks
Krause, Falko; Schulz, Marvin; Ripkens, Ben; Flöttmann, Max; Krantz, Marcus; Klipp, Edda; Handorf, Thomas
2013-01-01
Motivation: The rapid accumulation of knowledge in the field of Systems Biology during the past years requires advanced, but simple-to-use, methods for the visualization of information in a structured and easily comprehensible manner. Results: We have developed biographer, a web-based renderer and editor for reaction networks, which can be integrated as a library into tools dealing with network-related information. Our software enables visualizations based on the emerging standard Systems Biology Graphical Notation. It is able to import networks encoded in various formats such as SBML, SBGN-ML and jSBGN, a custom lightweight exchange format. The core package is implemented in HTML5, CSS and JavaScript and can be used within any kind of web-based project. It features interactive graph-editing tools and automatic graph layout algorithms. In addition, we provide a standalone graph editor and a web server, which contains enhanced features like web services for the import and export of models and visualizations in different formats. Availability: The biographer tool can be used at and downloaded from the web page http://biographer.biologie.hu-berlin.de/. The different software packages, including a server-indepenent version as well as a web server for Windows and Linux based systems, are available at http://code.google.com/p/biographer/ under the open-source license LGPL. Contact: edda.klipp@biologie.hu-berlin.de or handorf@physik.hu-berlin.de PMID:23574737
Determinants of Global Color-Based Selection in Human Visual Cortex.
Bartsch, Mandy V; Boehler, Carsten N; Stoppel, Christian M; Merkel, Christian; Heinze, Hans-Jochen; Schoenfeld, Mircea A; Hopf, Jens-Max
2015-09-01
Feature attention operates in a spatially global way, with attended feature values being prioritized for selection outside the focus of attention. Accounts of global feature attention have emphasized feature competition as a determining factor. Here, we use magnetoencephalographic recordings in humans to test whether competition is critical for global feature selection to arise. Subjects performed a color/shape discrimination task in one visual field (VF), while irrelevant color probes were presented in the other unattended VF. Global effects of color attention were assessed by analyzing the response to the probe as a function of whether or not the probe's color was a target-defining color. We find that global color selection involves a sequence of modulations in extrastriate cortex, with an initial phase in higher tier areas (lateral occipital complex) followed by a later phase in lower tier retinotopic areas (V3/V4). Importantly, these modulations appeared with and without color competition in the focus of attention. Moreover, early parts of the modulation emerged for a task-relevant color not even present in the focus of attention. All modulations, however, were eliminated during simple onset-detection of the colored target. These results indicate that global color-based attention depends on target discrimination independent of feature competition in the focus of attention. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Spatial and temporal coherence in perceptual binding
Blake, Randolph; Yang, Yuede
1997-01-01
Component visual features of objects are registered by distributed patterns of activity among neurons comprising multiple pathways and visual areas. How these distributed patterns of activity give rise to unified representations of objects remains unresolved, although one recent, controversial view posits temporal coherence of neural activity as a binding agent. Motivated by the possible role of temporal coherence in feature binding, we devised a novel psychophysical task that requires the detection of temporal coherence among features comprising complex visual images. Results show that human observers can more easily detect synchronized patterns of temporal contrast modulation within hybrid visual images composed of two components when those components are drawn from the same original picture. Evidently, time-varying changes within spatially coherent features produce more salient neural signals. PMID:9192701
Raudies, Florian; Hasselmo, Michael E.
2015-01-01
Firing fields of grid cells in medial entorhinal cortex show compression or expansion after manipulations of the location of environmental barriers. This compression or expansion could be selective for individual grid cell modules with particular properties of spatial scaling. We present a model for differences in the response of modules to barrier location that arise from different mechanisms for the influence of visual features on the computation of location that drives grid cell firing patterns. These differences could arise from differences in the position of visual features within the visual field. When location was computed from the movement of visual features on the ground plane (optic flow) in the ventral visual field, this resulted in grid cell spatial firing that was not sensitive to barrier location in modules modeled with small spacing between grid cell firing fields. In contrast, when location was computed from static visual features on walls of barriers, i.e. in the more dorsal visual field, this resulted in grid cell spatial firing that compressed or expanded based on the barrier locations in modules modeled with large spacing between grid cell firing fields. This indicates that different grid cell modules might have differential properties for computing location based on visual cues, or the spatial radius of sensitivity to visual cues might differ between modules. PMID:26584432
Olivers, Christian N L; Meijer, Frank; Theeuwes, Jan
2006-10-01
In 7 experiments, the authors explored whether visual attention (the ability to select relevant visual information) and visual working memory (the ability to retain relevant visual information) share the same content representations. The presence of singleton distractors interfered more strongly with a visual search task when it was accompanied by an additional memory task. Singleton distractors interfered even more when they were identical or related to the object held in memory, but only when it was difficult to verbalize the memory content. Furthermore, this content-specific interaction occurred for features that were relevant to the memory task but not for irrelevant features of the same object or for once-remembered objects that could be forgotten. Finally, memory-related distractors attracted more eye movements but did not result in longer fixations. The results demonstrate memory-driven attentional capture on the basis of content-specific representations. Copyright 2006 APA.
Hierarchical acquisition of visual specificity in spatial contextual cueing.
Lie, Kin-Pou
2015-01-01
Spatial contextual cueing refers to visual search performance's being improved when invariant associations between target locations and distractor spatial configurations are learned incidentally. Using the instance theory of automatization and the reverse hierarchy theory of visual perceptual learning, this study explores the acquisition of visual specificity in spatial contextual cueing. Two experiments in which detailed visual features were irrelevant for distinguishing between spatial contexts found that spatial contextual cueing was visually generic in difficult trials when the trials were not preceded by easy trials (Experiment 1) but that spatial contextual cueing progressed to visual specificity when difficult trials were preceded by easy trials (Experiment 2). These findings support reverse hierarchy theory, which predicts that even when detailed visual features are irrelevant for distinguishing between spatial contexts, spatial contextual cueing can progress to visual specificity if the stimuli remain constant, the task is difficult, and difficult trials are preceded by easy trials. However, these findings are inconsistent with instance theory, which predicts that when detailed visual features are irrelevant for distinguishing between spatial contexts, spatial contextual cueing will not progress to visual specificity. This study concludes that the acquisition of visual specificity in spatial contextual cueing is more plausibly hierarchical, rather than instance-based.
Atoms of recognition in human and computer vision.
Ullman, Shimon; Assif, Liav; Fetaya, Ethan; Harari, Daniel
2016-03-08
Discovering the visual features and representations used by the brain to recognize objects is a central problem in the study of vision. Recently, neural network models of visual object recognition, including biological and deep network models, have shown remarkable progress and have begun to rival human performance in some challenging tasks. These models are trained on image examples and learn to extract features and representations and to use them for categorization. It remains unclear, however, whether the representations and learning processes discovered by current models are similar to those used by the human visual system. Here we show, by introducing and using minimal recognizable images, that the human visual system uses features and processes that are not used by current models and that are critical for recognition. We found by psychophysical studies that at the level of minimal recognizable images a minute change in the image can have a drastic effect on recognition, thus identifying features that are critical for the task. Simulations then showed that current models cannot explain this sensitivity to precise feature configurations and, more generally, do not learn to recognize minimal images at a human level. The role of the features shown here is revealed uniquely at the minimal level, where the contribution of each feature is essential. A full understanding of the learning and use of such features will extend our understanding of visual recognition and its cortical mechanisms and will enhance the capacity of computational models to learn from visual experience and to deal with recognition and detailed image interpretation.
Human Occipital and Parietal GABA Selectively Influence Visual Perception of Orientation and Size.
Song, Chen; Sandberg, Kristian; Andersen, Lau Møller; Blicher, Jakob Udby; Rees, Geraint
2017-09-13
GABA is the primary inhibitory neurotransmitter in human brain. The level of GABA varies substantially across individuals, and this variability is associated with interindividual differences in visual perception. However, it remains unclear whether the association between GABA level and visual perception reflects a general influence of visual inhibition or whether the GABA levels of different cortical regions selectively influence perception of different visual features. To address this, we studied how the GABA levels of parietal and occipital cortices related to interindividual differences in size, orientation, and brightness perception. We used visual contextual illusion as a perceptual assay since the illusion dissociates perceptual content from stimulus content and the magnitude of the illusion reflects the effect of visual inhibition. Across individuals, we observed selective correlations between the level of GABA and the magnitude of contextual illusion. Specifically, parietal GABA level correlated with size illusion magnitude but not with orientation or brightness illusion magnitude; in contrast, occipital GABA level correlated with orientation illusion magnitude but not with size or brightness illusion magnitude. Our findings reveal a region- and feature-dependent influence of GABA level on human visual perception. Parietal and occipital cortices contain, respectively, topographic maps of size and orientation preference in which neural responses to stimulus sizes and stimulus orientations are modulated by intraregional lateral connections. We propose that these lateral connections may underlie the selective influence of GABA on visual perception. SIGNIFICANCE STATEMENT GABA, the primary inhibitory neurotransmitter in human visual system, varies substantially across individuals. This interindividual variability in GABA level is linked to interindividual differences in many aspects of visual perception. However, the widespread influence of GABA raises the question of whether interindividual variability in GABA reflects an overall variability in visual inhibition and has a general influence on visual perception or whether the GABA levels of different cortical regions have selective influence on perception of different visual features. Here we report a region- and feature-dependent influence of GABA level on human visual perception. Our findings suggest that GABA level of a cortical region selectively influences perception of visual features that are topographically mapped in this region through intraregional lateral connections. Copyright © 2017 Song, Sandberg et al.
Zhuang, Chengxu; Wang, Yulong; Yamins, Daniel; Hu, Xiaolin
2017-01-01
Visual information in the visual cortex is processed in a hierarchical manner. Recent studies show that higher visual areas, such as V2, V3, and V4, respond more vigorously to images with naturalistic higher-order statistics than to images lacking them. This property is a functional signature of higher areas, as it is much weaker or even absent in the primary visual cortex (V1). However, the mechanism underlying this signature remains elusive. We studied this problem using computational models. In several typical hierarchical visual models including the AlexNet, VggNet, and SHMAX, this signature was found to be prominent in higher layers but much weaker in lower layers. By changing both the model structure and experimental settings, we found that the signature strongly correlated with sparse firing of units in higher layers but not with any other factors, including model structure, training algorithm (supervised or unsupervised), receptive field size, and property of training stimuli. The results suggest an important role of sparse neuronal activity underlying this special feature of higher visual areas.
Zhuang, Chengxu; Wang, Yulong; Yamins, Daniel; Hu, Xiaolin
2017-01-01
Visual information in the visual cortex is processed in a hierarchical manner. Recent studies show that higher visual areas, such as V2, V3, and V4, respond more vigorously to images with naturalistic higher-order statistics than to images lacking them. This property is a functional signature of higher areas, as it is much weaker or even absent in the primary visual cortex (V1). However, the mechanism underlying this signature remains elusive. We studied this problem using computational models. In several typical hierarchical visual models including the AlexNet, VggNet, and SHMAX, this signature was found to be prominent in higher layers but much weaker in lower layers. By changing both the model structure and experimental settings, we found that the signature strongly correlated with sparse firing of units in higher layers but not with any other factors, including model structure, training algorithm (supervised or unsupervised), receptive field size, and property of training stimuli. The results suggest an important role of sparse neuronal activity underlying this special feature of higher visual areas. PMID:29163117
Roldan, Stephanie M
2017-01-01
One of the fundamental goals of object recognition research is to understand how a cognitive representation produced from the output of filtered and transformed sensory information facilitates efficient viewer behavior. Given that mental imagery strongly resembles perceptual processes in both cortical regions and subjective visual qualities, it is reasonable to question whether mental imagery facilitates cognition in a manner similar to that of perceptual viewing: via the detection and recognition of distinguishing features. Categorizing the feature content of mental imagery holds potential as a reverse pathway by which to identify the components of a visual stimulus which are most critical for the creation and retrieval of a visual representation. This review will examine the likelihood that the information represented in visual mental imagery reflects distinctive object features thought to facilitate efficient object categorization and recognition during perceptual viewing. If it is the case that these representational features resemble their sensory counterparts in both spatial and semantic qualities, they may well be accessible through mental imagery as evaluated through current investigative techniques. In this review, methods applied to mental imagery research and their findings are reviewed and evaluated for their efficiency in accessing internal representations, and implications for identifying diagnostic features are discussed. An argument is made for the benefits of combining mental imagery assessment methods with diagnostic feature research to advance the understanding of visual perceptive processes, with suggestions for avenues of future investigation.
Roldan, Stephanie M.
2017-01-01
One of the fundamental goals of object recognition research is to understand how a cognitive representation produced from the output of filtered and transformed sensory information facilitates efficient viewer behavior. Given that mental imagery strongly resembles perceptual processes in both cortical regions and subjective visual qualities, it is reasonable to question whether mental imagery facilitates cognition in a manner similar to that of perceptual viewing: via the detection and recognition of distinguishing features. Categorizing the feature content of mental imagery holds potential as a reverse pathway by which to identify the components of a visual stimulus which are most critical for the creation and retrieval of a visual representation. This review will examine the likelihood that the information represented in visual mental imagery reflects distinctive object features thought to facilitate efficient object categorization and recognition during perceptual viewing. If it is the case that these representational features resemble their sensory counterparts in both spatial and semantic qualities, they may well be accessible through mental imagery as evaluated through current investigative techniques. In this review, methods applied to mental imagery research and their findings are reviewed and evaluated for their efficiency in accessing internal representations, and implications for identifying diagnostic features are discussed. An argument is made for the benefits of combining mental imagery assessment methods with diagnostic feature research to advance the understanding of visual perceptive processes, with suggestions for avenues of future investigation. PMID:28588538
Task-relevant perceptual features can define categories in visual memory too.
Antonelli, Karla B; Williams, Carrick C
2017-11-01
Although Konkle, Brady, Alvarez, and Oliva (2010, Journal of Experimental Psychology: General, 139(3), 558) claim that visual long-term memory (VLTM) is organized on underlying conceptual, not perceptual, information, visual memory results from visual search tasks are not well explained by this theory. We hypothesized that when viewing an object, any task-relevant visual information is critical to the organizational structure of VLTM. In two experiments, we examined the organization of VLTM by measuring the amount of retroactive interference created by objects possessing different combinations of task-relevant features. Based on task instructions, only the conceptual category was task relevant or both the conceptual category and a perceptual object feature were task relevant. Findings indicated that when made task relevant, perceptual object feature information, along with conceptual category information, could affect memory organization for objects in VLTM. However, when perceptual object feature information was task irrelevant, it did not contribute to memory organization; instead, memory defaulted to being organized around conceptual category information. These findings support the theory that a task-defined organizational structure is created in VLTM based on the relevance of particular object features and information.
Collinearity Impairs Local Element Visual Search
ERIC Educational Resources Information Center
Jingling, Li; Tseng, Chia-Huei
2013-01-01
In visual searches, stimuli following the law of good continuity attract attention to the global structure and receive attentional priority. Also, targets that have unique features are of high feature contrast and capture attention in visual search. We report on a salient global structure combined with a high orientation contrast to the…
Interactive Visualization of Assessment Data: The Software Package Mondrian
ERIC Educational Resources Information Center
Unlu, Ali; Sargin, Anatol
2009-01-01
Mondrian is state-of-the-art statistical data visualization software featuring modern interactive visualization techniques for a wide range of data types. This article reviews the capabilities, functionality, and interactive properties of this software package. Key features of Mondrian are illustrated with data from the Programme for International…
NASA Astrophysics Data System (ADS)
Iramina, Keiji; Ge, Sheng; Hyodo, Akira; Hayami, Takehito; Ueno, Shoogo
2009-04-01
In this study, we applied a transcranial magnetic stimulation (TMS) to investigate the temporal aspect for the functional processing of visual attention. Although it has been known that right posterior parietal cortex (PPC) in the brain has a role in certain visual search tasks, there is little knowledge about the temporal aspect of this area. Three visual search tasks that have different difficulties of task execution individually were carried out. These three visual search tasks are the "easy feature task," the "hard feature task," and the "conjunction task." To investigate the temporal aspect of the PPC involved in the visual search, we applied various stimulus onset asynchronies (SOAs) and measured the reaction time of the visual search. The magnetic stimulation was applied on the right PPC or the left PPC by the figure-eight coil. The results show that the reaction times of the hard feature task are longer than those of the easy feature task. When SOA=150 ms, compared with no-TMS condition, there was a significant increase in target-present reaction time when TMS pulses were applied. We considered that the right PPC was involved in the visual search at about SOA=150 ms after visual stimulus presentation. The magnetic stimulation to the right PPC disturbed the processing of the visual search. However, the magnetic stimulation to the left PPC gives no effect on the processing of the visual search.
Feature-based attentional modulation increases with stimulus separation in divided-attention tasks.
Sally, Sharon L; Vidnyánsky, Zoltán; Papathomas, Thomas V
2009-01-01
Attention modifies our visual experience by selecting certain aspects of a scene for further processing. It is therefore important to understand factors that govern the deployment of selective attention over the visual field. Both location and feature-specific mechanisms of attention have been identified and their modulatory effects can interact at a neural level (Treue and Martinez-Trujillo, 1999). The effects of spatial parameters on feature-based attentional modulation were examined for the feature dimensions of orientation, motion and color using three divided-attention tasks. Subjects performed concurrent discriminations of two briefly presented targets (Gabor patches) to the left and right of a central fixation point at eccentricities of +/-2.5 degrees , 5 degrees , 10 degrees and 15 degrees in the horizontal plane. Gabors were size-scaled to maintain consistent single-task performance across eccentricities. For all feature dimensions, the data show a linear increase in the attentional effects with target separation. In a control experiment, Gabors were presented on an isoeccentric viewing arc at 10 degrees and 15 degrees at the closest spatial separation (+/-2.5 degrees ) of the main experiment. Under these conditions, the effects of feature-based attentional effects were largely eliminated. Our results are consistent with the hypothesis that feature-based attention prioritizes the processing of attended features. Feature-based attentional mechanisms may have helped direct the attentional focus to the appropriate target locations at greater separations, whereas similar assistance may not have been necessary at closer target spacings. The results of the present study specify conditions under which dual-task performance benefits from sharing similar target features and may therefore help elucidate the processes by which feature-based attention operates.
NASA Technical Reports Server (NTRS)
Eckstein, M. P.; Thomas, J. P.; Palmer, J.; Shimozaki, S. S.
2000-01-01
Recently, quantitative models based on signal detection theory have been successfully applied to the prediction of human accuracy in visual search for a target that differs from distractors along a single attribute (feature search). The present paper extends these models for visual search accuracy to multidimensional search displays in which the target differs from the distractors along more than one feature dimension (conjunction, disjunction, and triple conjunction displays). The model assumes that each element in the display elicits a noisy representation for each of the relevant feature dimensions. The observer combines the representations across feature dimensions to obtain a single decision variable, and the stimulus with the maximum value determines the response. The model accurately predicts human experimental data on visual search accuracy in conjunctions and disjunctions of contrast and orientation. The model accounts for performance degradation without resorting to a limited-capacity spatially localized and temporally serial mechanism by which to bind information across feature dimensions.
Decontaminate feature for tracking: adaptive tracking via evolutionary feature subset
NASA Astrophysics Data System (ADS)
Liu, Qiaoyuan; Wang, Yuru; Yin, Minghao; Ren, Jinchang; Li, Ruizhi
2017-11-01
Although various visual tracking algorithms have been proposed in the last 2-3 decades, it remains a challenging problem for effective tracking with fast motion, deformation, occlusion, etc. Under complex tracking conditions, most tracking models are not discriminative and adaptive enough. When the combined feature vectors are inputted to the visual models, this may lead to redundancy causing low efficiency and ambiguity causing poor performance. An effective tracking algorithm is proposed to decontaminate features for each video sequence adaptively, where the visual modeling is treated as an optimization problem from the perspective of evolution. Every feature vector is compared to a biological individual and then decontaminated via classical evolutionary algorithms. With the optimized subsets of features, the "curse of dimensionality" has been avoided while the accuracy of the visual model has been improved. The proposed algorithm has been tested on several publicly available datasets with various tracking challenges and benchmarked with a number of state-of-the-art approaches. The comprehensive experiments have demonstrated the efficacy of the proposed methodology.
Perception and Processing of Faces in the Human Brain Is Tuned to Typical Feature Locations
Schwarzkopf, D. Samuel; Alvarez, Ivan; Lawson, Rebecca P.; Henriksson, Linda; Kriegeskorte, Nikolaus; Rees, Geraint
2016-01-01
Faces are salient social stimuli whose features attract a stereotypical pattern of fixations. The implications of this gaze behavior for perception and brain activity are largely unknown. Here, we characterize and quantify a retinotopic bias implied by typical gaze behavior toward faces, which leads to eyes and mouth appearing most often in the upper and lower visual field, respectively. We found that the adult human visual system is tuned to these contingencies. In two recognition experiments, recognition performance for isolated face parts was better when they were presented at typical, rather than reversed, visual field locations. The recognition cost of reversed locations was equal to ∼60% of that for whole face inversion in the same sample. Similarly, an fMRI experiment showed that patterns of activity evoked by eye and mouth stimuli in the right inferior occipital gyrus could be separated with significantly higher accuracy when these features were presented at typical, rather than reversed, visual field locations. Our findings demonstrate that human face perception is determined not only by the local position of features within a face context, but by whether features appear at the typical retinotopic location given normal gaze behavior. Such location sensitivity may reflect fine-tuning of category-specific visual processing to retinal input statistics. Our findings further suggest that retinotopic heterogeneity might play a role for face inversion effects and for the understanding of conditions affecting gaze behavior toward faces, such as autism spectrum disorders and congenital prosopagnosia. SIGNIFICANCE STATEMENT Faces attract our attention and trigger stereotypical patterns of visual fixations, concentrating on inner features, like eyes and mouth. Here we show that the visual system represents face features better when they are shown at retinal positions where they typically fall during natural vision. When facial features were shown at typical (rather than reversed) visual field locations, they were discriminated better by humans and could be decoded with higher accuracy from brain activity patterns in the right occipital face area. This suggests that brain representations of face features do not cover the visual field uniformly. It may help us understand the well-known face-inversion effect and conditions affecting gaze behavior toward faces, such as prosopagnosia and autism spectrum disorders. PMID:27605606
Dynamic Integration of Task-Relevant Visual Features in Posterior Parietal Cortex
Freedman, David J.
2014-01-01
Summary The primate visual system consists of multiple hierarchically organized cortical areas, each specialized for processing distinct aspects of the visual scene. For example, color and form are encoded in ventral pathway areas such as V4 and inferior temporal cortex, while motion is preferentially processed in dorsal pathway areas such as the middle temporal area. Such representations often need to be integrated perceptually to solve tasks which depend on multiple features. We tested the hypothesis that the lateral intraparietal area (LIP) integrates disparate task-relevant visual features by recording from LIP neurons in monkeys trained to identify target stimuli composed of conjunctions of color and motion features. We show that LIP neurons exhibit integrative representations of both color and motion features when they are task relevant, and task-dependent shifts of both direction and color tuning. This suggests that LIP plays a role in flexibly integrating task-relevant sensory signals. PMID:25199703
Combined Feature Based and Shape Based Visual Tracker for Robot Navigation
NASA Technical Reports Server (NTRS)
Deans, J.; Kunz, C.; Sargent, R.; Park, E.; Pedersen, L.
2005-01-01
We have developed a combined feature based and shape based visual tracking system designed to enable a planetary rover to visually track and servo to specific points chosen by a user with centimeter precision. The feature based tracker uses invariant feature detection and matching across a stereo pair, as well as matching pairs before and after robot movement in order to compute an incremental 6-DOF motion at each tracker update. This tracking method is subject to drift over time, which can be compensated by the shape based method. The shape based tracking method consists of 3D model registration, which recovers 6-DOF motion given sufficient shape and proper initialization. By integrating complementary algorithms, the combined tracker leverages the efficiency and robustness of feature based methods with the precision and accuracy of model registration. In this paper, we present the algorithms and their integration into a combined visual tracking system.
Visual Working Memory Is Independent of the Cortical Spacing Between Memoranda.
Harrison, William J; Bays, Paul M
2018-03-21
The sensory recruitment hypothesis states that visual short-term memory is maintained in the same visual cortical areas that initially encode a stimulus' features. Although it is well established that the distance between features in visual cortex determines their visibility, a limitation known as crowding, it is unknown whether short-term memory is similarly constrained by the cortical spacing of memory items. Here, we investigated whether the cortical spacing between sequentially presented memoranda affects the fidelity of memory in humans (of both sexes). In a first experiment, we varied cortical spacing by taking advantage of the log-scaling of visual cortex with eccentricity, presenting memoranda in peripheral vision sequentially along either the radial or tangential visual axis with respect to the fovea. In a second experiment, we presented memoranda sequentially either within or beyond the critical spacing of visual crowding, a distance within which visual features cannot be perceptually distinguished due to their nearby cortical representations. In both experiments and across multiple measures, we found strong evidence that the ability to maintain visual features in memory is unaffected by cortical spacing. These results indicate that the neural architecture underpinning working memory has properties inconsistent with the known behavior of sensory neurons in visual cortex. Instead, the dissociation between perceptual and memory representations supports a role of higher cortical areas such as posterior parietal or prefrontal regions or may involve an as yet unspecified mechanism in visual cortex in which stimulus features are bound to their temporal order. SIGNIFICANCE STATEMENT Although much is known about the resolution with which we can remember visual objects, the cortical representation of items held in short-term memory remains contentious. A popular hypothesis suggests that memory of visual features is maintained via the recruitment of the same neural architecture in sensory cortex that encodes stimuli. We investigated this claim by manipulating the spacing in visual cortex between sequentially presented memoranda such that some items shared cortical representations more than others while preventing perceptual interference between stimuli. We found clear evidence that short-term memory is independent of the intracortical spacing of memoranda, revealing a dissociation between perceptual and memory representations. Our data indicate that working memory relies on different neural mechanisms from sensory perception. Copyright © 2018 Harrison and Bays.
Multi-scale image segmentation method with visual saliency constraints and its application
NASA Astrophysics Data System (ADS)
Chen, Yan; Yu, Jie; Sun, Kaimin
2018-03-01
Object-based image analysis method has many advantages over pixel-based methods, so it is one of the current research hotspots. It is very important to get the image objects by multi-scale image segmentation in order to carry out object-based image analysis. The current popular image segmentation methods mainly share the bottom-up segmentation principle, which is simple to realize and the object boundaries obtained are accurate. However, the macro statistical characteristics of the image areas are difficult to be taken into account, and fragmented segmentation (or over-segmentation) results are difficult to avoid. In addition, when it comes to information extraction, target recognition and other applications, image targets are not equally important, i.e., some specific targets or target groups with particular features worth more attention than the others. To avoid the problem of over-segmentation and highlight the targets of interest, this paper proposes a multi-scale image segmentation method with visually saliency graph constraints. Visual saliency theory and the typical feature extraction method are adopted to obtain the visual saliency information, especially the macroscopic information to be analyzed. The visual saliency information is used as a distribution map of homogeneity weight, where each pixel is given a weight. This weight acts as one of the merging constraints in the multi- scale image segmentation. As a result, pixels that macroscopically belong to the same object but are locally different can be more likely assigned to one same object. In addition, due to the constraint of visual saliency model, the constraint ability over local-macroscopic characteristics can be well controlled during the segmentation process based on different objects. These controls will improve the completeness of visually saliency areas in the segmentation results while diluting the controlling effect for non- saliency background areas. Experiments show that this method works better for texture image segmentation than traditional multi-scale image segmentation methods, and can enable us to give priority control to the saliency objects of interest. This method has been used in image quality evaluation, scattered residential area extraction, sparse forest extraction and other applications to verify its validation. All applications showed good results.
Sweep visually evoked potentials and visual findings in children with West syndrome.
de Freitas Dotto, Patrícia; Cavascan, Nívea Nunes; Berezovsky, Adriana; Sacai, Paula Yuri; Rocha, Daniel Martins; Pereira, Josenilson Martins; Salomão, Solange Rios
2014-03-01
West syndrome (WS) is a type of early childhood epilepsy characterized by progressive neurological development deterioration that includes vision. To demonstrate the clinical importance of grating visual acuity thresholds (GVA) measurement by sweep visually evoked potentials technique (sweep-VEP) as a reliable tool for evaluation of the visual cortex status in WS children. This is a retrospective study of the best-corrected binocular GVA and ophthalmological features of WS children referred for the Laboratory of Clinical Electrophysiology of Vision of UNIFESP from 1998 to 2012 (Committee on Ethics in Research of UNIFESP n° 0349/08). The GVA deficit was calculated by subtracting binocular GVA score (logMAR units) of each patient from the median values of age norms from our own lab and classified as mild (0.1-0.39 logMAR), moderate (0.40-0.80 logMAR) or severe (>0.81 logMAR). Associated ophthalmological features were also described. Data from 30 WS children (age from 6 to 108 months, median = 14.5 months, mean ± SD = 22.0 ± 22.1 months; 19 male) were analyzed. The majority presented severe GVA deficit (0.15-1.44 logMAR; mean ± SD = 0.82 ± 0.32 logMAR; median = 0.82 logMAR), poor visual behavior, high prevalence of strabismus and great variability in ocular positioning. The GVA deficit did not vary according to gender (P = .8022), WS type (P = .908), birth age (P = .2881), perinatal oxygenation (P = .7692), visual behavior (P = .8789), ocular motility (P = .1821), nystagmus (P = .2868), risk of drug-induced retinopathy (P = .4632) and participation in early visual stimulation therapy (P = .9010). The sweep-VEP technique is a reliable tool to classify visual system impairment in WS children, in agreement with the poor visual behavior exhibited by them. Copyright © 2013 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.
Helioviewer.org: Enhanced Solar & Heliospheric Data Visualization
NASA Astrophysics Data System (ADS)
Stys, J. E.; Ireland, J.; Hughitt, V. K.; Mueller, D.
2013-12-01
Helioviewer.org enables the simultaneous exploration of multiple heterogeneous solar data sets. In the latest iteration of this open-source web application, Hinode XRT and Yohkoh SXT join SDO, SOHO, STEREO, and PROBA2 as supported data sources. A newly enhanced user-interface expands the utility of Helioviewer.org by adding annotations backed by data from the Heliospheric Events Knowledgebase (HEK). Helioviewer.org can now overlay solar feature and event data via interactive marker pins, extended regions, data labels, and information panels. An interactive time-line provides enhanced browsing and visualization to image data set coverage and solar events. The addition of a size-of-the-Earth indicator provides a sense of the scale to solar and heliospheric features for education and public outreach purposes. Tight integration with the Virtual Solar Observatory and SDO AIA cutout service enable solar physicists to seamlessly import science data into their SSW/IDL or SunPy/Python data analysis environments.
Mitrea, Delia; Mitrea, Paulina; Nedevschi, Sergiu; Badea, Radu; Lupsor, Monica; Socaciu, Mihai; Golea, Adela; Hagiu, Claudia; Ciobanu, Lidia
2012-01-01
The noninvasive diagnosis of the malignant tumors is an important issue in research nowadays. Our purpose is to elaborate computerized, texture-based methods for performing computer-aided characterization and automatic diagnosis of these tumors, using only the information from ultrasound images. In this paper, we considered some of the most frequent abdominal malignant tumors: the hepatocellular carcinoma and the colonic tumors. We compared these structures with the benign tumors and with other visually similar diseases. Besides the textural features that proved in our previous research to be useful in the characterization and recognition of the malignant tumors, we improved our method by using the grey level cooccurrence matrix and the edge orientation cooccurrence matrix of superior order. As resulted from our experiments, the new textural features increased the malignant tumor classification performance, also revealing visual and physical properties of these structures that emphasized the complex, chaotic structure of the corresponding tissue. PMID:22312411
Visual feature-tolerance in the reading network.
Rauschecker, Andreas M; Bowen, Reno F; Perry, Lee M; Kevan, Alison M; Dougherty, Robert F; Wandell, Brian A
2011-09-08
A century of neurology and neuroscience shows that seeing words depends on ventral occipital-temporal (VOT) circuitry. Typically, reading is learned using high-contrast line-contour words. We explored whether a specific VOT region, the visual word form area (VWFA), learns to see only these words or recognizes words independent of the specific shape-defining visual features. Word forms were created using atypical features (motion-dots, luminance-dots) whose statistical properties control word-visibility. We measured fMRI responses as word form visibility varied, and we used TMS to interfere with neural processing in specific cortical circuits, while subjects performed a lexical decision task. For all features, VWFA responses increased with word-visibility and correlated with performance. TMS applied to motion-specialized area hMT+ disrupted reading performance for motion-dots, but not line-contours or luminance-dots. A quantitative model describes feature-convergence in the VWFA and relates VWFA responses to behavioral performance. These findings suggest how visual feature-tolerance in the reading network arises through signal convergence from feature-specialized cortical areas. Copyright © 2011 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Firat, Mehmet; Kabakci, Isil
2010-01-01
The interactional feature of hypermedia that allows high-level student-control is considered as one of the most important advantages that hypermedia provides for learning and teaching. However, high-level student control in hypermedia might not always lead to high-level learning performance. The learner is likely to experience navigation problems…
Visual search performance among persons with schizophrenia as a function of target eccentricity.
Elahipanah, Ava; Christensen, Bruce K; Reingold, Eyal M
2010-03-01
The current study investigated one possible mechanism of impaired visual attention among patients with schizophrenia: a reduced visual span. Visual span is the region of the visual field from which one can extract information during a single eye fixation. This study hypothesized that schizophrenia-related visual search impairment is mediated, in part, by a smaller visual span. To test this hypothesis, 23 patients with schizophrenia and 22 healthy controls completed a visual search task where the target was pseudorandomly presented at different distances from the center of the display. Response times were analyzed as a function of search condition (feature vs. conjunctive), display size, and target eccentricity. Consistent with previous reports, patient search times were more adversely affected as the number of search items increased in the conjunctive search condition. It was important however, that patients' conjunctive search times were also impacted to a greater degree by target eccentricity. Moreover, a significant impairment in patients' visual search performance was only evident when targets were more eccentric and their performance was more similar to healthy controls when the target was located closer to the center of the search display. These results support the hypothesis that a narrower visual span may underlie impaired visual search performance among patients with schizophrenia. Copyright 2010 APA, all rights reserved
Liu, X; Gorsevski, P V; Yacobucci, M M; Onasch, C M
2016-06-01
Planning of shale gas infrastructure and drilling sites for hydraulic fracturing has important spatial implications. The evaluation of conflicting and competing objectives requires an explicit consideration of multiple criteria as they have important environmental and economic implications. This study presents a web-based multicriteria spatial decision support system (SDSS) prototype with a flexible and user-friendly interface that could provide educational or decision-making capabilities with respect to hydraulic fracturing site selection in eastern Ohio. One of the main features of this SDSS is to emphasize potential trade-offs between important factors of environmental and economic ramifications from hydraulic fracturing activities using a weighted linear combination (WLC) method. In the prototype, the GIS-enabled analytical components allow spontaneous visualization of available alternatives on maps which provide value-added features for decision support processes and derivation of final decision maps. The SDSS prototype also facilitates nonexpert participation capabilities using a mapping module, decision-making tool, group decision module, and social media sharing tools. The logical flow of successively presented forms and standardized criteria maps is used to generate visualization of trade-off scenarios and alternative solutions tailored to individual user's preferences that are graphed for subsequent decision-making.
Recent results in visual servoing
NASA Astrophysics Data System (ADS)
Chaumette, François
2008-06-01
Visual servoing techniques consist in using the data provided by a vision sensor in order to control the motions of a dynamic system. Such systems are usually robot arms, mobile robots, aerial robots,… but can also be virtual robots for applications in computer animation, or even a virtual camera for applications in computer vision and augmented reality. A large variety of positioning tasks, or mobile target tracking, can be implemented by controlling from one to all the degrees of freedom of the system. Whatever the sensor configuration, which can vary from one on-board camera on the robot end-effector to several free-standing cameras, a set of visual features has to be selected at best from the image measurements available, allowing to control the degrees of freedom desired. A control law has also to be designed so that these visual features reach a desired value, defining a correct realization of the task. With a vision sensor providing 2D measurements, potential visual features are numerous, since as well 2D data (coordinates of feature points in the image, moments, …) as 3D data provided by a localization algorithm exploiting the extracted 2D measurements can be considered. It is also possible to combine 2D and 3D visual features to take the advantages of each approach while avoiding their respective drawbacks. From the selected visual features, the behavior of the system will have particular properties as for stability, robustness with respect to noise or to calibration errors, robot 3D trajectory, etc. The talk will present the main basic aspects of visual servoing, as well as technical advances obtained recently in the field inside the Lagadic group at INRIA/INRISA Rennes. Several application results will be also described.
Fagot, J; Kruschke, J K; Dépy, D; Vauclair, J
1998-10-01
We examined attention shifting in baboons and humans during the learning of visual categories. Within a conditional matching-to-sample task, participants of the two species sequentially learned two two-feature categories which shared a common feature. Results showed that humans encoded both features of the initially learned category, but predominantly only the distinctive feature of the subsequently learned category. Although baboons initially encoded both features of the first category, they ultimately retained only the distinctive features of each category. Empirical data from the two species were analyzed with the 1996 ADIT connectionist model of Kruschke. ADIT fits the baboon data when the attentional shift rate is zero, and the human data when the attentional shift rate is not zero. These empirical and modeling results suggest species differences in learned attention to visual features.
Phenomenological Characteristics of Future Thinking in Alzheimer's Disease.
Moustafa, Ahmed A; El Haj, Mohamad
2018-05-11
This study investigates phenomenological reliving of future thinking in Alzheimer's disease (AD) patients and matched controls. All participants were asked to imagine in detail a future event, and afterward, were asked to rate phenomenological characteristics of their future thinking. As compared to controls, AD participants showed poor rating for reliving, travel in time, visual imagery, auditory imagery, language, and spatiotemporal specificity. However, no significant differences were observed between both groups in emotion and importance of future thinking. Results also showed lower rating for visual imagery relative to remaining phenomenological features in AD participants compared to controls; conversely, these participants showed higher ratings for emotion and importance of future thinking. AD seems to compromise some phenomenological characteristics of future thinking, especially, visual imagery; however, other phenomenological characteristics, such as emotion, seem to be relatively preserved in these populations. By highlighting the phenomenological experience of future thinking in AD, our paper opens a unique window into the conscious experience of the future in AD patients.
Twellmann, Thorsten; Meyer-Baese, Anke; Lange, Oliver; Foo, Simon; Nattkemper, Tim W.
2008-01-01
Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has become an important tool in breast cancer diagnosis, but evaluation of multitemporal 3D image data holds new challenges for human observers. To aid the image analysis process, we apply supervised and unsupervised pattern recognition techniques for computing enhanced visualizations of suspicious lesions in breast MRI data. These techniques represent an important component of future sophisticated computer-aided diagnosis (CAD) systems and support the visual exploration of spatial and temporal features of DCE-MRI data stemming from patients with confirmed lesion diagnosis. By taking into account the heterogeneity of cancerous tissue, these techniques reveal signals with malignant, benign and normal kinetics. They also provide a regional subclassification of pathological breast tissue, which is the basis for pseudo-color presentations of the image data. Intelligent medical systems are expected to have substantial implications in healthcare politics by contributing to the diagnosis of indeterminate breast lesions by non-invasive imaging. PMID:19255616
Asymmetries in visual search for conjunctive targets.
Cohen, A
1993-08-01
Asymmetry is demonstrated between conjunctive targets in visual search with no detectable asymmetries between the individual features that compose these targets. Experiment 1 demonstrated this phenomenon for targets composed of color and shape. Experiment 2 and 4 demonstrate this asymmetry for targets composed of size and orientation and for targets composed of contrast level and orientation, respectively. Experiment 3 demonstrates that search rate of individual features cannot predict search rate for conjunctive targets. These results demonstrate the need for 2 levels of representations: one of features and one of conjunction of features. A model related to the modified feature integration theory is proposed to account for these results. The proposed model and other models of visual search are discussed.
Principal component analysis of dynamic fluorescence images for diagnosis of diabetic vasculopathy
NASA Astrophysics Data System (ADS)
Seo, Jihye; An, Yuri; Lee, Jungsul; Ku, Taeyun; Kang, Yujung; Ahn, Chulwoo; Choi, Chulhee
2016-04-01
Indocyanine green (ICG) fluorescence imaging has been clinically used for noninvasive visualizations of vascular structures. We have previously developed a diagnostic system based on dynamic ICG fluorescence imaging for sensitive detection of vascular disorders. However, because high-dimensional raw data were used, the analysis of the ICG dynamics proved difficult. We used principal component analysis (PCA) in this study to extract important elements without significant loss of information. We examined ICG spatiotemporal profiles and identified critical features related to vascular disorders. PCA time courses of the first three components showed a distinct pattern in diabetic patients. Among the major components, the second principal component (PC2) represented arterial-like features. The explained variance of PC2 in diabetic patients was significantly lower than in normal controls. To visualize the spatial pattern of PCs, pixels were mapped with red, green, and blue channels. The PC2 score showed an inverse pattern between normal controls and diabetic patients. We propose that PC2 can be used as a representative bioimaging marker for the screening of vascular diseases. It may also be useful in simple extractions of arterial-like features.
Observation of the development of secondary features in a Richtmyer–Meshkov instability driven flow
Bernard, Tennille; Truman, C. Randall; Vorobieff, Peter; ...
2014-09-10
Richtmyer–Meshkov instability (RMI) has long been the subject of interest for analytical, numerical, and experimental studies. In comparing results of experiment with numerics, it is important to understand the limitations of experimental techniques inherent in the chosen method(s) of data acquisition. We discuss results of an experiment where a laminar, gravity-driven column of heavy gas is injected into surrounding light gas and accelerated by a planar shock. A popular and well-studied method of flow visualization (using glycol droplet tracers) does not produce a flow pattern that matches the numerical model of the same conditions, while revealing the primary feature ofmore » the flow developing after shock acceleration: the pair of counter-rotating vortex columns. However, visualization using fluorescent gaseous tracer confirms the presence of features suggested by the numerics; in particular, a central spike formed due to shock focusing in the heavy-gas column. Furthermore, the streamwise growth rate of the spike appears to exhibit the same scaling with Mach number as that of the counter-rotating vortex pair (CRVP).« less
CheS-Mapper - Chemical Space Mapping and Visualization in 3D.
Gütlein, Martin; Karwath, Andreas; Kramer, Stefan
2012-03-17
Analyzing chemical datasets is a challenging task for scientific researchers in the field of chemoinformatics. It is important, yet difficult to understand the relationship between the structure of chemical compounds, their physico-chemical properties, and biological or toxic effects. To that respect, visualization tools can help to better comprehend the underlying correlations. Our recently developed 3D molecular viewer CheS-Mapper (Chemical Space Mapper) divides large datasets into clusters of similar compounds and consequently arranges them in 3D space, such that their spatial proximity reflects their similarity. The user can indirectly determine similarity, by selecting which features to employ in the process. The tool can use and calculate different kind of features, like structural fragments as well as quantitative chemical descriptors. These features can be highlighted within CheS-Mapper, which aids the chemist to better understand patterns and regularities and relate the observations to established scientific knowledge. As a final function, the tool can also be used to select and export specific subsets of a given dataset for further analysis.
CheS-Mapper - Chemical Space Mapping and Visualization in 3D
2012-01-01
Analyzing chemical datasets is a challenging task for scientific researchers in the field of chemoinformatics. It is important, yet difficult to understand the relationship between the structure of chemical compounds, their physico-chemical properties, and biological or toxic effects. To that respect, visualization tools can help to better comprehend the underlying correlations. Our recently developed 3D molecular viewer CheS-Mapper (Chemical Space Mapper) divides large datasets into clusters of similar compounds and consequently arranges them in 3D space, such that their spatial proximity reflects their similarity. The user can indirectly determine similarity, by selecting which features to employ in the process. The tool can use and calculate different kind of features, like structural fragments as well as quantitative chemical descriptors. These features can be highlighted within CheS-Mapper, which aids the chemist to better understand patterns and regularities and relate the observations to established scientific knowledge. As a final function, the tool can also be used to select and export specific subsets of a given dataset for further analysis. PMID:22424447
Neural Correlates of the Perception for Novel Objects
Zhang, Hao; Liu, Jia; Zhang, Qinglin
2013-01-01
Perception of novel objects is of enormous importance in our lives. People have to perceive or understand novel objects when seeing an original painting, admiring an unconventional construction, and using an inventive device. However, very little is known about neural mechanisms underlying the perception for novel objects. Perception of novel objects relies on the integration of unusual features of novel objects in order to identify what such objects are. In the present study, functional Magnetic Resonance Imaging (MRI) was employed to investigate neural correlates of perception of novel objects. The neuroimaging data on participants engaged in novel object viewing versus ordinary object viewing revealed that perception of novel objects involves significant activation in the left precuneus (Brodmann area 7) and the right visual cortex. The results suggest that the left precuneus is associated with the integration of unusual features of novel objects, while the right visual cortex is sensitive to the detection of such features. Our findings highlight the left precuneus as a crucial component of the neural circuitry underlying perception of novel objects. PMID:23646167
Red to Green or Fast to Slow? Infants' Visual Working Memory for "Just Salient Differences"
ERIC Educational Resources Information Center
Kaldy, Zsuzsa; Blaser, Erik
2013-01-01
In this study, 6-month-old infants' visual working memory for a static feature (color) and a dynamic feature (rotational motion) was compared. Comparing infants' use of different features can only be done properly if experimental manipulations to those features are equally salient (Kaldy & Blaser, 2009; Kaldy, Blaser, & Leslie,…
Implicit integration in a case of integrative visual agnosia.
Aviezer, Hillel; Landau, Ayelet N; Robertson, Lynn C; Peterson, Mary A; Soroker, Nachum; Sacher, Yaron; Bonneh, Yoram; Bentin, Shlomo
2007-05-15
We present a case (SE) with integrative visual agnosia following ischemic stroke affecting the right dorsal and the left ventral pathways of the visual system. Despite his inability to identify global hierarchical letters [Navon, D. (1977). Forest before trees: The precedence of global features in visual perception. Cognitive Psychology, 9, 353-383], and his dense object agnosia, SE showed normal global-to-local interference when responding to local letters in Navon hierarchical stimuli and significant picture-word identity priming in a semantic decision task for words. Since priming was absent if these features were scrambled, it stands to reason that these effects were not due to priming by distinctive features. The contrast between priming effects induced by coherent and scrambled stimuli is consistent with implicit but not explicit integration of features into a unified whole. We went on to show that possible/impossible object decisions were facilitated by words in a word-picture priming task, suggesting that prompts could activate perceptually integrated images in a backward fashion. We conclude that the absence of SE's ability to identify visual objects except through tedious serial construction reflects a deficit in accessing an integrated visual representation through bottom-up visual processing alone. However, top-down generated images can help activate these visual representations through semantic links.
Perceived orientation in free-fall dependson visual, postural, and architectural factors
NASA Technical Reports Server (NTRS)
Lackner, J. R.; Graybiel, A.
1983-01-01
In orbital flight and in the free-fall phase of parabolic flight, feelings of inversion of self and spacecraft, or aircraft, are often experienced. It is shown here that perceived orientation in free-fall is dependent on the position of one's body in relation to the aircraft, the architectural features of the aircraft, and one's visual appreciation of the relative configurations of his body and the aircraft. Compelling changes in the apparent orientation of one's body and of the aircraft can be reliably and systematically induced by manipulating this relationship. Moreover, while free-floating in the absence of visual, touch, and pressure stimulation, all sense of orientation to the surroundings may be lost with only an awareness of the relative configuration of the body preserved. The absences of falling sensations during weightlessness points to the importance of visual and cognitive factors in eliciting such sensations.
Neurons in the monkey amygdala detect eye-contact during naturalistic social interactions
Mosher, Clayton P.; Zimmerman, Prisca E.; Gothard, Katalin M.
2014-01-01
Summary Primates explore the visual world through eye-movement sequences. Saccades bring details of interest into the fovea while fixations stabilize the image [1]. During natural vision, social primates direct their gaze at the eyes of others to communicate their own emotions and intentions and to gather information about the mental states of others [2]. Direct gaze is an integral part of facial expressions that signals cooperation or conflict over resources and social status [3-6]. Despite the great importance of making and breaking eye contact in the behavioral repertoire of primates, little is known about the neural substrates that support these behaviors. Here we show that the monkey amygdala contains neurons that respond selectively to fixations at the eyes of others and to eye contact. These “eye cells” share several features with the canonical, visually responsive neurons in the monkey amygdala, however, they respond to the eyes only when they fall within the fovea of the viewer, either as a result of a deliberate saccade, or as eyes move into the fovea of the viewer during a fixation intended to explore a different feature. The presence of eyes in peripheral vision fails to activate the eye cells. These findings link the primate amygdala to eye-movements involved in the exploration and selection of details in visual scenes that contain socially and emotionally salient features. PMID:25283782
Neurons in the monkey amygdala detect eye contact during naturalistic social interactions.
Mosher, Clayton P; Zimmerman, Prisca E; Gothard, Katalin M
2014-10-20
Primates explore the visual world through eye-movement sequences. Saccades bring details of interest into the fovea, while fixations stabilize the image. During natural vision, social primates direct their gaze at the eyes of others to communicate their own emotions and intentions and to gather information about the mental states of others. Direct gaze is an integral part of facial expressions that signals cooperation or conflict over resources and social status. Despite the great importance of making and breaking eye contact in the behavioral repertoire of primates, little is known about the neural substrates that support these behaviors. Here we show that the monkey amygdala contains neurons that respond selectively to fixations on the eyes of others and to eye contact. These "eye cells" share several features with the canonical, visually responsive neurons in the monkey amygdala; however, they respond to the eyes only when they fall within the fovea of the viewer, either as a result of a deliberate saccade or as eyes move into the fovea of the viewer during a fixation intended to explore a different feature. The presence of eyes in peripheral vision fails to activate the eye cells. These findings link the primate amygdala to eye movements involved in the exploration and selection of details in visual scenes that contain socially and emotionally salient features. Copyright © 2014 Elsevier Ltd. All rights reserved.
Topic Transition in Educational Videos Using Visually Salient Words
ERIC Educational Resources Information Center
Gandhi, Ankit; Biswas, Arijit; Deshmukh, Om
2015-01-01
In this paper, we propose a visual saliency algorithm for automatically finding the topic transition points in an educational video. First, we propose a method for assigning a saliency score to each word extracted from an educational video. We design several mid-level features that are indicative of visual saliency. The optimal feature combination…
van Gemert, Jan C; Veenman, Cor J; Smeulders, Arnold W M; Geusebroek, Jan-Mark
2010-07-01
This paper studies automatic image classification by modeling soft assignment in the popular codebook model. The codebook model describes an image as a bag of discrete visual words selected from a vocabulary, where the frequency distributions of visual words in an image allow classification. One inherent component of the codebook model is the assignment of discrete visual words to continuous image features. Despite the clear mismatch of this hard assignment with the nature of continuous features, the approach has been successfully applied for some years. In this paper, we investigate four types of soft assignment of visual words to image features. We demonstrate that explicitly modeling visual word assignment ambiguity improves classification performance compared to the hard assignment of the traditional codebook model. The traditional codebook model is compared against our method for five well-known data sets: 15 natural scenes, Caltech-101, Caltech-256, and Pascal VOC 2007/2008. We demonstrate that large codebook vocabulary sizes completely deteriorate the performance of the traditional model, whereas the proposed model performs consistently. Moreover, we show that our method profits in high-dimensional feature spaces and reaps higher benefits when increasing the number of image categories.
Threat as a feature in visual semantic object memory.
Calley, Clifford S; Motes, Michael A; Chiang, H-Sheng; Buhl, Virginia; Spence, Jeffrey S; Abdi, Hervé; Anand, Raksha; Maguire, Mandy; Estevez, Leonardo; Briggs, Richard; Freeman, Thomas; Kraut, Michael A; Hart, John
2013-08-01
Threatening stimuli have been found to modulate visual processes related to perception and attention. The present functional magnetic resonance imaging (fMRI) study investigated whether threat modulates visual object recognition of man-made and naturally occurring categories of stimuli. Compared with nonthreatening pictures, threatening pictures of real items elicited larger fMRI BOLD signal changes in medial visual cortices extending inferiorly into the temporo-occipital (TO) "what" pathways. This region elicited greater signal changes for threatening items compared to nonthreatening from both the natural-occurring and man-made stimulus supraordinate categories, demonstrating a featural component to these visual processing areas. Two additional loci of signal changes within more lateral inferior TO areas (bilateral BA18 and 19 as well as the right ventral temporal lobe) were detected for a category-feature interaction, with stronger responses to man-made (category) threatening (feature) stimuli than to natural threats. The findings are discussed in terms of visual recognition of processing efficiently or rapidly groups of items that confer an advantage for survival. Copyright © 2012 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berres, Anne Sabine
This slide presentation describes basic topological concepts, including topological spaces, homeomorphisms, homotopy, betti numbers. Scalar field topology explores finding topological features and scalar field visualization, and vector field topology explores finding topological features and vector field visualization.
Møller, Cecilie; Højlund, Andreas; Bærentsen, Klaus B; Hansen, Niels Chr; Skewes, Joshua C; Vuust, Peter
2018-05-01
Perception is fundamentally a multisensory experience. The principle of inverse effectiveness (PoIE) states how the multisensory gain is maximal when responses to the unisensory constituents of the stimuli are weak. It is one of the basic principles underlying multisensory processing of spatiotemporally corresponding crossmodal stimuli that are well established at behavioral as well as neural levels. It is not yet clear, however, how modality-specific stimulus features influence discrimination of subtle changes in a crossmodally corresponding feature belonging to another modality. Here, we tested the hypothesis that reliance on visual cues to pitch discrimination follow the PoIE at the interindividual level (i.e., varies with varying levels of auditory-only pitch discrimination abilities). Using an oddball pitch discrimination task, we measured the effect of varying visually perceived vertical position in participants exhibiting a wide range of pitch discrimination abilities (i.e., musicians and nonmusicians). Visual cues significantly enhanced pitch discrimination as measured by the sensitivity index d', and more so in the crossmodally congruent than incongruent condition. The magnitude of gain caused by compatible visual cues was associated with individual pitch discrimination thresholds, as predicted by the PoIE. This was not the case for the magnitude of the congruence effect, which was unrelated to individual pitch discrimination thresholds, indicating that the pitch-height association is robust to variations in auditory skills. Our findings shed light on individual differences in multisensory processing by suggesting that relevant multisensory information that crucially aids some perceivers' performance may be of less importance to others, depending on their unisensory abilities.
CTViz: A tool for the visualization of transport in nanocomposites.
Beach, Benjamin; Brown, Joshua; Tarlton, Taylor; Derosa, Pedro A
2016-05-01
A visualization tool (CTViz) for charge transport processes in 3-D hybrid materials (nanocomposites) was developed, inspired by the need for a graphical application to assist in code debugging and data presentation of an existing in-house code. As the simulation code grew, troubleshooting problems grew increasingly difficult without an effective way to visualize 3-D samples and charge transport in those samples. CTViz is able to produce publication and presentation quality visuals of the simulation box, as well as static and animated visuals of the paths of individual carriers through the sample. CTViz was designed to provide a high degree of flexibility in the visualization of the data. A feature that characterizes this tool is the use of shade and transparency levels to highlight important details in the morphology or in the transport paths by hiding or dimming elements of little relevance to the current view. This is fundamental for the visualization of 3-D systems with complex structures. The code presented here provides these required capabilities, but has gone beyond the original design and could be used as is or easily adapted for the visualization of other particulate transport where transport occurs on discrete paths. Copyright © 2016 Elsevier Inc. All rights reserved.
Feature saliency and feedback information interactively impact visual category learning
Hammer, Rubi; Sloutsky, Vladimir; Grill-Spector, Kalanit
2015-01-01
Visual category learning (VCL) involves detecting which features are most relevant for categorization. VCL relies on attentional learning, which enables effectively redirecting attention to object’s features most relevant for categorization, while ‘filtering out’ irrelevant features. When features relevant for categorization are not salient, VCL relies also on perceptual learning, which enables becoming more sensitive to subtle yet important differences between objects. Little is known about how attentional learning and perceptual learning interact when VCL relies on both processes at the same time. Here we tested this interaction. Participants performed VCL tasks in which they learned to categorize novel stimuli by detecting the feature dimension relevant for categorization. Tasks varied both in feature saliency (low-saliency tasks that required perceptual learning vs. high-saliency tasks), and in feedback information (tasks with mid-information, moderately ambiguous feedback that increased attentional load, vs. tasks with high-information non-ambiguous feedback). We found that mid-information and high-information feedback were similarly effective for VCL in high-saliency tasks. This suggests that an increased attentional load, associated with the processing of moderately ambiguous feedback, has little effect on VCL when features are salient. In low-saliency tasks, VCL relied on slower perceptual learning; but when the feedback was highly informative participants were able to ultimately attain the same performance as during the high-saliency VCL tasks. However, VCL was significantly compromised in the low-saliency mid-information feedback task. We suggest that such low-saliency mid-information learning scenarios are characterized by a ‘cognitive loop paradox’ where two interdependent learning processes have to take place simultaneously. PMID:25745404
Exploration of complex visual feature spaces for object perception
Leeds, Daniel D.; Pyles, John A.; Tarr, Michael J.
2014-01-01
The mid- and high-level visual properties supporting object perception in the ventral visual pathway are poorly understood. In the absence of well-specified theory, many groups have adopted a data-driven approach in which they progressively interrogate neural units to establish each unit's selectivity. Such methods are challenging in that they require search through a wide space of feature models and stimuli using a limited number of samples. To more rapidly identify higher-level features underlying human cortical object perception, we implemented a novel functional magnetic resonance imaging method in which visual stimuli are selected in real-time based on BOLD responses to recently shown stimuli. This work was inspired by earlier primate physiology work, in which neural selectivity for mid-level features in IT was characterized using a simple parametric approach (Hung et al., 2012). To extend such work to human neuroimaging, we used natural and synthetic object stimuli embedded in feature spaces constructed on the basis of the complex visual properties of the objects themselves. During fMRI scanning, we employed a real-time search method to control continuous stimulus selection within each image space. This search was designed to maximize neural responses across a pre-determined 1 cm3 brain region within ventral cortex. To assess the value of this method for understanding object encoding, we examined both the behavior of the method itself and the complex visual properties the method identified as reliably activating selected brain regions. We observed: (1) Regions selective for both holistic and component object features and for a variety of surface properties; (2) Object stimulus pairs near one another in feature space that produce responses at the opposite extremes of the measured activity range. Together, these results suggest that real-time fMRI methods may yield more widely informative measures of selectivity within the broad classes of visual features associated with cortical object representation. PMID:25309408
Zhaoping, Li; Zhe, Li
2012-01-01
From a computational theory of V1, we formulate an optimization problem to investigate neural properties in the primary visual cortex (V1) from human reaction times (RTs) in visual search. The theory is the V1 saliency hypothesis that the bottom-up saliency of any visual location is represented by the highest V1 response to it relative to the background responses. The neural properties probed are those associated with the less known V1 neurons tuned simultaneously or conjunctively in two feature dimensions. The visual search is to find a target bar unique in color (C), orientation (O), motion direction (M), or redundantly in combinations of these features (e.g., CO, MO, or CM) among uniform background bars. A feature singleton target is salient because its evoked V1 response largely escapes the iso-feature suppression on responses to the background bars. The responses of the conjunctively tuned cells are manifested in the shortening of the RT for a redundant feature target (e.g., a CO target) from that predicted by a race between the RTs for the two corresponding single feature targets (e.g., C and O targets). Our investigation enables the following testable predictions. Contextual suppression on the response of a CO-tuned or MO-tuned conjunctive cell is weaker when the contextual inputs differ from the direct inputs in both feature dimensions, rather than just one. Additionally, CO-tuned cells and MO-tuned cells are often more active than the single feature tuned cells in response to the redundant feature targets, and this occurs more frequently for the MO-tuned cells such that the MO-tuned cells are no less likely than either the M-tuned or O-tuned neurons to be the most responsive neuron to dictate saliency for an MO target. PMID:22719829
Zhaoping, Li; Zhe, Li
2012-01-01
From a computational theory of V1, we formulate an optimization problem to investigate neural properties in the primary visual cortex (V1) from human reaction times (RTs) in visual search. The theory is the V1 saliency hypothesis that the bottom-up saliency of any visual location is represented by the highest V1 response to it relative to the background responses. The neural properties probed are those associated with the less known V1 neurons tuned simultaneously or conjunctively in two feature dimensions. The visual search is to find a target bar unique in color (C), orientation (O), motion direction (M), or redundantly in combinations of these features (e.g., CO, MO, or CM) among uniform background bars. A feature singleton target is salient because its evoked V1 response largely escapes the iso-feature suppression on responses to the background bars. The responses of the conjunctively tuned cells are manifested in the shortening of the RT for a redundant feature target (e.g., a CO target) from that predicted by a race between the RTs for the two corresponding single feature targets (e.g., C and O targets). Our investigation enables the following testable predictions. Contextual suppression on the response of a CO-tuned or MO-tuned conjunctive cell is weaker when the contextual inputs differ from the direct inputs in both feature dimensions, rather than just one. Additionally, CO-tuned cells and MO-tuned cells are often more active than the single feature tuned cells in response to the redundant feature targets, and this occurs more frequently for the MO-tuned cells such that the MO-tuned cells are no less likely than either the M-tuned or O-tuned neurons to be the most responsive neuron to dictate saliency for an MO target.
Seeing the Song: Left Auditory Structures May Track Auditory-Visual Dynamic Alignment
Mossbridge, Julia A.; Grabowecky, Marcia; Suzuki, Satoru
2013-01-01
Auditory and visual signals generated by a single source tend to be temporally correlated, such as the synchronous sounds of footsteps and the limb movements of a walker. Continuous tracking and comparison of the dynamics of auditory-visual streams is thus useful for the perceptual binding of information arising from a common source. Although language-related mechanisms have been implicated in the tracking of speech-related auditory-visual signals (e.g., speech sounds and lip movements), it is not well known what sensory mechanisms generally track ongoing auditory-visual synchrony for non-speech signals in a complex auditory-visual environment. To begin to address this question, we used music and visual displays that varied in the dynamics of multiple features (e.g., auditory loudness and pitch; visual luminance, color, size, motion, and organization) across multiple time scales. Auditory activity (monitored using auditory steady-state responses, ASSR) was selectively reduced in the left hemisphere when the music and dynamic visual displays were temporally misaligned. Importantly, ASSR was not affected when attentional engagement with the music was reduced, or when visual displays presented dynamics clearly dissimilar to the music. These results appear to suggest that left-lateralized auditory mechanisms are sensitive to auditory-visual temporal alignment, but perhaps only when the dynamics of auditory and visual streams are similar. These mechanisms may contribute to correct auditory-visual binding in a busy sensory environment. PMID:24194873
NASA Astrophysics Data System (ADS)
Mansourian, Leila; Taufik Abdullah, Muhamad; Nurliyana Abdullah, Lili; Azman, Azreen; Mustaffa, Mas Rina
2017-02-01
Pyramid Histogram of Words (PHOW), combined Bag of Visual Words (BoVW) with the spatial pyramid matching (SPM) in order to add location information to extracted features. However, different PHOW extracted from various color spaces, and they did not extract color information individually, that means they discard color information, which is an important characteristic of any image that is motivated by human vision. This article, concatenated PHOW Multi-Scale Dense Scale Invariant Feature Transform (MSDSIFT) histogram and a proposed Color histogram to improve the performance of existing image classification algorithms. Performance evaluation on several datasets proves that the new approach outperforms other existing, state-of-the-art methods.
Specific excitatory connectivity for feature integration in mouse primary visual cortex
Molina-Luna, Patricia; Roth, Morgane M.
2017-01-01
Local excitatory connections in mouse primary visual cortex (V1) are stronger and more prevalent between neurons that share similar functional response features. However, the details of how functional rules for local connectivity shape neuronal responses in V1 remain unknown. We hypothesised that complex responses to visual stimuli may arise as a consequence of rules for selective excitatory connectivity within the local network in the superficial layers of mouse V1. In mouse V1 many neurons respond to overlapping grating stimuli (plaid stimuli) with highly selective and facilitatory responses, which are not simply predicted by responses to single gratings presented alone. This complexity is surprising, since excitatory neurons in V1 are considered to be mainly tuned to single preferred orientations. Here we examined the consequences for visual processing of two alternative connectivity schemes: in the first case, local connections are aligned with visual properties inherited from feedforward input (a ‘like-to-like’ scheme specifically connecting neurons that share similar preferred orientations); in the second case, local connections group neurons into excitatory subnetworks that combine and amplify multiple feedforward visual properties (a ‘feature binding’ scheme). By comparing predictions from large scale computational models with in vivo recordings of visual representations in mouse V1, we found that responses to plaid stimuli were best explained by assuming feature binding connectivity. Unlike under the like-to-like scheme, selective amplification within feature-binding excitatory subnetworks replicated experimentally observed facilitatory responses to plaid stimuli; explained selective plaid responses not predicted by grating selectivity; and was consistent with broad anatomical selectivity observed in mouse V1. Our results show that visual feature binding can occur through local recurrent mechanisms without requiring feedforward convergence, and that such a mechanism is consistent with visual responses and cortical anatomy in mouse V1. PMID:29240769
Repetition Is the Feature Behind the Attentional Bias for Recognizing Threatening Patterns.
Shabbir, Maryam; Zon, Adelynn M Y; Thuppil, Vivek
2018-01-01
Animals attend to what is relevant in order to behave in an effective manner and succeed in their environments. In several nonhuman species, there is an evolved bias for attending to patterns indicative of threats in the natural environment such as dangerous animals. Because skins of many dangerous animals are typically repetitive, we propose that repetition is the key feature enabling recognition of evolutionarily important threats. The current study consists of two experiments where we measured participants' reactions to pictures of male and female models wearing clothing of various repeating (leopard skin, snakeskin, and floral print) and nonrepeating (camouflage, shiny, and plain) patterns. In Experiment 1, when models wearing patterns were presented side by side with total fixation duration as the measure, the repeating floral pattern was the most provocative, with total fixation duration significantly longer than all other patterns. Leopard and snakeskin patterns had total fixation durations that were significantly longer than the plain pattern. In Experiment 2, we employed a visual-search task where participants were required to find models wearing the various patterns in a setting of a crowded airport terminal. Participants detected leopard skin pattern and repetitive floral pattern significantly faster than two of the nonpatterned clothing styles. Our experimental findings support the hypothesis that repetition of specific visual features might facilitate target detection, especially those characterizing evolutionary important threats. Our findings that intricate, but nonthreatening repeating patterns can have similar attention-grabbing properties to animal skin patterns have important implications for the fashion industry and wildlife trade.
Can we measure beauty? Computational evaluation of coral reef aesthetics
Guibert, Marine; Foerschner, Anja; Co, Tim; Calhoun, Sandi; George, Emma; Hatay, Mark; Dinsdale, Elizabeth; Sandin, Stuart A.; Smith, Jennifer E.; Vermeij, Mark J.A.; Felts, Ben; Dustan, Phillip; Salamon, Peter; Rohwer, Forest
2015-01-01
The natural beauty of coral reefs attracts millions of tourists worldwide resulting in substantial revenues for the adjoining economies. Although their visual appearance is a pivotal factor attracting humans to coral reefs current monitoring protocols exclusively target biogeochemical parameters, neglecting changes in their aesthetic appearance. Here we introduce a standardized computational approach to assess coral reef environments based on 109 visual features designed to evaluate the aesthetic appearance of art. The main feature groups include color intensity and diversity of the image, relative size, color, and distribution of discernable objects within the image, and texture. Specific coral reef aesthetic values combining all 109 features were calibrated against an established biogeochemical assessment (NCEAS) using machine learning algorithms. These values were generated for ∼2,100 random photographic images collected from 9 coral reef locations exposed to varying levels of anthropogenic influence across 2 ocean systems. Aesthetic values proved accurate predictors of the NCEAS scores (root mean square error < 5 for N ≥ 3) and significantly correlated to microbial abundance at each site. This shows that mathematical approaches designed to assess the aesthetic appearance of photographic images can be used as an inexpensive monitoring tool for coral reef ecosystems. It further suggests that human perception of aesthetics is not purely subjective but influenced by inherent reactions towards measurable visual cues. By quantifying aesthetic features of coral reef systems this method provides a cost efficient monitoring tool that targets one of the most important socioeconomic values of coral reefs directly tied to revenue for its local population. PMID:26587350
NASA Astrophysics Data System (ADS)
Aghdasi, Nava; Li, Yangming; Berens, Angelique; Moe, Kris S.; Bly, Randall A.; Hannaford, Blake
2015-03-01
Minimally invasive neuroendoscopic surgery provides an alternative to open craniotomy for many skull base lesions. These techniques provides a great benefit to the patient through shorter ICU stays, decreased post-operative pain and quicker return to baseline function. However, density of critical neurovascular structures at the skull base makes planning for these procedures highly complex. Furthermore, additional surgical portals are often used to improve visualization and instrument access, which adds to the complexity of pre-operative planning. Surgical approach planning is currently limited and typically involves review of 2D axial, coronal, and sagittal CT and MRI images. In addition, skull base surgeons manually change the visualization effect to review all possible approaches to the target lesion and achieve an optimal surgical plan. This cumbersome process relies heavily on surgeon experience and it does not allow for 3D visualization. In this paper, we describe a rapid pre-operative planning system for skull base surgery using the following two novel concepts: importance-based highlight and mobile portal. With this innovation, critical areas in the 3D CT model are highlighted based on segmentation results. Mobile portals allow surgeons to review multiple potential entry portals in real-time with improved visualization of critical structures located inside the pathway. To achieve this we used the following methods: (1) novel bone-only atlases were manually generated, (2) orbits and the center of the skull serve as features to quickly pre-align the patient's scan with the atlas, (3) deformable registration technique was used for fine alignment, (4) surgical importance was assigned to each voxel according to a surgical dictionary, and (5) pre-defined transfer function was applied to the processed data to highlight important structures. The proposed idea was fully implemented as independent planning software and additional data are used for verification and validation. The experimental results show: (1) the proposed methods provided greatly improved planning efficiency while optimal surgical plans were successfully achieved, (2) the proposed methods successfully highlighted important structures and facilitated planning, (3) the proposed methods require shorter processing time than classical segmentation algorithms, and (4) these methods can be used to improve surgical safety for surgical robots.
Modulation of neuronal responses during covert search for visual feature conjunctions
Buracas, Giedrius T.; Albright, Thomas D.
2009-01-01
While searching for an object in a visual scene, an observer's attentional focus and eye movements are often guided by information about object features and spatial locations. Both spatial and feature-specific attention are known to modulate neuronal responses in visual cortex, but little is known of the dynamics and interplay of these mechanisms as visual search progresses. To address this issue, we recorded from directionally selective cells in visual area MT of monkeys trained to covertly search for targets defined by a unique conjunction of color and motion features and to signal target detection with an eye movement to the putative target. Two patterns of response modulation were observed. One pattern consisted of enhanced responses to targets presented in the receptive field (RF). These modulations occurred at the end-stage of search and were more potent during correct target identification than during erroneous saccades to a distractor in RF, thus suggesting that this modulation is not a mere presaccadic enhancement. A second pattern of modulation was observed when RF stimuli were nontargets that shared a feature with the target. The latter effect was observed during early stages of search and is consistent with a global feature-specific mechanism. This effect often terminated before target identification, thus suggesting that it interacts with spatial attention. This modulation was exhibited not only for motion but also for color cue, although MT neurons are known to be insensitive to color. Such cue-invariant attentional effects may contribute to a feature binding mechanism acting across visual dimensions. PMID:19805385
Modulation of neuronal responses during covert search for visual feature conjunctions.
Buracas, Giedrius T; Albright, Thomas D
2009-09-29
While searching for an object in a visual scene, an observer's attentional focus and eye movements are often guided by information about object features and spatial locations. Both spatial and feature-specific attention are known to modulate neuronal responses in visual cortex, but little is known of the dynamics and interplay of these mechanisms as visual search progresses. To address this issue, we recorded from directionally selective cells in visual area MT of monkeys trained to covertly search for targets defined by a unique conjunction of color and motion features and to signal target detection with an eye movement to the putative target. Two patterns of response modulation were observed. One pattern consisted of enhanced responses to targets presented in the receptive field (RF). These modulations occurred at the end-stage of search and were more potent during correct target identification than during erroneous saccades to a distractor in RF, thus suggesting that this modulation is not a mere presaccadic enhancement. A second pattern of modulation was observed when RF stimuli were nontargets that shared a feature with the target. The latter effect was observed during early stages of search and is consistent with a global feature-specific mechanism. This effect often terminated before target identification, thus suggesting that it interacts with spatial attention. This modulation was exhibited not only for motion but also for color cue, although MT neurons are known to be insensitive to color. Such cue-invariant attentional effects may contribute to a feature binding mechanism acting across visual dimensions.
Visual selective attention in body dysmorphic disorder, bulimia nervosa and healthy controls.
Kollei, Ines; Horndasch, Stefanie; Erim, Yesim; Martin, Alexandra
2017-01-01
Cognitive behavioral models postulate that selective attention plays an important role in the maintenance of body dysmorphic disorder (BDD). It is suggested that individuals with BDD overfocus on perceived defects in their appearance, which may contribute to the excessive preoccupation with their appearance. The present study used eye tracking to examine visual selective attention in individuals with BDD (n=19), as compared to individuals with bulimia nervosa (BN) (n=21) and healthy controls (HCs) (n=21). Participants completed interviews, questionnaires, rating scales and an eye tracking task: Eye movements were recorded while participants viewed photographs of their own face and attractive as well as unattractive other faces. Eye tracking data showed that BDD and BN participants focused less on their self-rated most attractive facial part than HCs. Scanning patterns in own and other faces showed that BDD and BN participants paid as much attention to attractive as to unattractive features in their own face, whereas they focused more on attractive features in attractive other faces. HCs paid more attention to attractive features in their own face and did the same in attractive other faces. Results indicate an attentional bias in BDD and BN participants manifesting itself in a neglect of positive features compared to HCs. Perceptual retraining may be an important aspect to focus on in therapy in order to overcome the neglect of positive facial aspects. Future research should aim to disentangle attentional processes in BDD by examining the time course of attentional processing. Copyright © 2016 Elsevier Inc. All rights reserved.
Training complexity is not decisive factor for improving adaptation to visual sensory conflict.
Yang, Yang; Pu, Fang; Li, Shuyu; Li, Yan; Li, Deyu; Fan, Yubo
2012-01-01
Ground-based preflight training utilizing unusual visual stimuli is useful for decreasing the susceptibility to space motion sickness (SMS). The effectiveness of the sensorimotor adaptation training is affected by the training tasks, but what kind of task is more effective remains unknown. Whether the complexity is the decisive factor to consider for designing the training and if other factors are more important need to be analyzed. The results from the analysis can help to optimize the preflight training tasks for astronauts. Twenty right-handed subjects were asked to draw the right path of 45° rotated maze before and after 30 min training. Subjects wore an up-down reversing prism spectacle in test and training sessions. Two training tasks were performed: drawing the right path of the horizontal maze (complex task but with different orientation feature) and drawing the L-shape lines (easy task with same orientation feature). The error rate and the executing time were measured during the test. Paired samples t test was used to compare the effects of the two training tasks. After each training, the error rate and the executing time were significantly decreased. However, the training effectiveness of the easy task was better as the test was finished more quickly and accurately. The complexity is not always the decisive factor for designing the adaptation training task, e.g. the orientation feature is more important in this study. In order to accelerate the adaptation and to counter SMS, the task for astronauts preflight adaptation training could be simple activities with the key features.
Coupled binary embedding for large-scale image retrieval.
Zheng, Liang; Wang, Shengjin; Tian, Qi
2014-08-01
Visual matching is a crucial step in image retrieval based on the bag-of-words (BoW) model. In the baseline method, two keypoints are considered as a matching pair if their SIFT descriptors are quantized to the same visual word. However, the SIFT visual word has two limitations. First, it loses most of its discriminative power during quantization. Second, SIFT only describes the local texture feature. Both drawbacks impair the discriminative power of the BoW model and lead to false positive matches. To tackle this problem, this paper proposes to embed multiple binary features at indexing level. To model correlation between features, a multi-IDF scheme is introduced, through which different binary features are coupled into the inverted file. We show that matching verification methods based on binary features, such as Hamming embedding, can be effectively incorporated in our framework. As an extension, we explore the fusion of binary color feature into image retrieval. The joint integration of the SIFT visual word and binary features greatly enhances the precision of visual matching, reducing the impact of false positive matches. Our method is evaluated through extensive experiments on four benchmark datasets (Ukbench, Holidays, DupImage, and MIR Flickr 1M). We show that our method significantly improves the baseline approach. In addition, large-scale experiments indicate that the proposed method requires acceptable memory usage and query time compared with other approaches. Further, when global color feature is integrated, our method yields competitive performance with the state-of-the-arts.
Biometric recognition via texture features of eye movement trajectories in a visual searching task.
Li, Chunyong; Xue, Jiguo; Quan, Cheng; Yue, Jingwei; Zhang, Chenggang
2018-01-01
Biometric recognition technology based on eye-movement dynamics has been in development for more than ten years. Different visual tasks, feature extraction and feature recognition methods are proposed to improve the performance of eye movement biometric system. However, the correct identification and verification rates, especially in long-term experiments, as well as the effects of visual tasks and eye trackers' temporal and spatial resolution are still the foremost considerations in eye movement biometrics. With a focus on these issues, we proposed a new visual searching task for eye movement data collection and a new class of eye movement features for biometric recognition. In order to demonstrate the improvement of this visual searching task being used in eye movement biometrics, three other eye movement feature extraction methods were also tested on our eye movement datasets. Compared with the original results, all three methods yielded better results as expected. In addition, the biometric performance of these four feature extraction methods was also compared using the equal error rate (EER) and Rank-1 identification rate (Rank-1 IR), and the texture features introduced in this paper were ultimately shown to offer some advantages with regard to long-term stability and robustness over time and spatial precision. Finally, the results of different combinations of these methods with a score-level fusion method indicated that multi-biometric methods perform better in most cases.
Biometric recognition via texture features of eye movement trajectories in a visual searching task
Li, Chunyong; Xue, Jiguo; Quan, Cheng; Yue, Jingwei
2018-01-01
Biometric recognition technology based on eye-movement dynamics has been in development for more than ten years. Different visual tasks, feature extraction and feature recognition methods are proposed to improve the performance of eye movement biometric system. However, the correct identification and verification rates, especially in long-term experiments, as well as the effects of visual tasks and eye trackers’ temporal and spatial resolution are still the foremost considerations in eye movement biometrics. With a focus on these issues, we proposed a new visual searching task for eye movement data collection and a new class of eye movement features for biometric recognition. In order to demonstrate the improvement of this visual searching task being used in eye movement biometrics, three other eye movement feature extraction methods were also tested on our eye movement datasets. Compared with the original results, all three methods yielded better results as expected. In addition, the biometric performance of these four feature extraction methods was also compared using the equal error rate (EER) and Rank-1 identification rate (Rank-1 IR), and the texture features introduced in this paper were ultimately shown to offer some advantages with regard to long-term stability and robustness over time and spatial precision. Finally, the results of different combinations of these methods with a score-level fusion method indicated that multi-biometric methods perform better in most cases. PMID:29617383
pV3-Gold Visualization Environment for Computer Simulations
NASA Technical Reports Server (NTRS)
Babrauckas, Theresa L.
1997-01-01
A new visualization environment, pV3-Gold, can be used during and after a computer simulation to extract and visualize the physical features in the results. This environment, which is an extension of the pV3 visualization environment developed at the Massachusetts Institute of Technology with guidance and support by researchers at the NASA Lewis Research Center, features many tools that allow users to display data in various ways.
Residual perception of biological motion in cortical blindness.
Ruffieux, Nicolas; Ramon, Meike; Lao, Junpeng; Colombo, Françoise; Stacchi, Lisa; Borruat, François-Xavier; Accolla, Ettore; Annoni, Jean-Marie; Caldara, Roberto
2016-12-01
From birth, the human visual system shows a remarkable sensitivity for perceiving biological motion. This visual ability relies on a distributed network of brain regions and can be preserved even after damage of high-level ventral visual areas. However, it remains unknown whether this critical biological skill can withstand the loss of vision following bilateral striate damage. To address this question, we tested the categorization of human and animal biological motion in BC, a rare case of cortical blindness after anoxia-induced bilateral striate damage. The severity of his impairment, encompassing various aspects of vision (i.e., color, shape, face, and object recognition) and causing blind-like behavior, contrasts with a residual ability to process motion. We presented BC with static or dynamic point-light displays (PLDs) of human or animal walkers. These stimuli were presented either individually, or in pairs in two alternative forced choice (2AFC) tasks. When confronted with individual PLDs, the patient was unable to categorize the stimuli, irrespective of whether they were static or dynamic. In the 2AFC task, BC exhibited appropriate eye movements towards diagnostic information, but performed at chance level with static PLDs, in stark contrast to his ability to efficiently categorize dynamic biological agents. This striking ability to categorize biological motion provided top-down information is important for at least two reasons. Firstly, it emphasizes the importance of assessing patients' (visual) abilities across a range of task constraints, which can reveal potential residual abilities that may in turn represent a key feature for patient rehabilitation. Finally, our findings reinforce the view that the neural network processing biological motion can efficiently operate despite severely impaired low-level vision, positing our natural predisposition for processing dynamicity in biological agents as a robust feature of human vision. Copyright © 2016 Elsevier Ltd. All rights reserved.
Expectation and Surprise Determine Neural Population Responses in the Ventral Visual Stream
Egner, Tobias; Monti, Jim M.; Summerfield, Christopher
2014-01-01
Visual cortex is traditionally viewed as a hierarchy of neural feature detectors, with neural population responses being driven by bottom-up stimulus features. Conversely, “predictive coding” models propose that each stage of the visual hierarchy harbors two computationally distinct classes of processing unit: representational units that encode the conditional probability of a stimulus and provide predictions to the next lower level; and error units that encode the mismatch between predictions and bottom-up evidence, and forward prediction error to the next higher level. Predictive coding therefore suggests that neural population responses in category-selective visual regions, like the fusiform face area (FFA), reflect a summation of activity related to prediction (“face expectation”) and prediction error (“face surprise”), rather than a homogenous feature detection response. We tested the rival hypotheses of the feature detection and predictive coding models by collecting functional magnetic resonance imaging data from the FFA while independently varying both stimulus features (faces vs houses) and subjects’ perceptual expectations regarding those features (low vs medium vs high face expectation). The effects of stimulus and expectation factors interacted, whereby FFA activity elicited by face and house stimuli was indistinguishable under high face expectation and maximally differentiated under low face expectation. Using computational modeling, we show that these data can be explained by predictive coding but not by feature detection models, even when the latter are augmented with attentional mechanisms. Thus, population responses in the ventral visual stream appear to be determined by feature expectation and surprise rather than by stimulus features per se. PMID:21147999
'You see?' Teaching and learning how to interpret visual cues during surgery.
Cope, Alexandra C; Bezemer, Jeff; Kneebone, Roger; Lingard, Lorelei
2015-11-01
The ability to interpret visual cues is important in many medical specialties, including surgery, in which poor outcomes are largely attributable to errors of perception rather than poor motor skills. However, we know little about how trainee surgeons learn to make judgements in the visual domain. We explored how trainees learn visual cue interpretation in the operating room. A multiple case study design was used. Participants were postgraduate surgical trainees and their trainers. Data included observer field notes, and integrated video- and audio-recordings from 12 cases representing more than 11 hours of observation. A constant comparative methodology was used to identify dominant themes. Visual cue interpretation was a recurrent feature of trainer-trainee interactions and was achieved largely through the pedagogic mechanism of co-construction. Co-construction was a dialogic sequence between trainer and trainee in which they explored what they were looking at together to identify and name structures or pathology. Co-construction took two forms: 'guided co-construction', in which the trainer steered the trainee to see what the trainer was seeing, and 'authentic co-construction', in which neither trainer nor trainee appeared certain of what they were seeing and pieced together the information collaboratively. Whether the co-construction activity was guided or authentic appeared to be influenced by case difficulty and trainee seniority. Co-construction was shown to occur verbally, through discussion, and also through non-verbal exchanges in which gestures made with laparoscopic instruments contributed to the co-construction discourse. In the training setting, learning visual cue interpretation occurs in part through co-construction. Co-construction is a pedagogic phenomenon that is well recognised in the context of learning to interpret verbal information. In articulating the features of co-construction in the visual domain, this work enables the development of explicit pedagogic strategies for maximising trainees' learning of visual cue interpretation. This is relevant to multiple medical specialties in which judgements must be based on visual information. © 2015 John Wiley & Sons Ltd.
Conjunctive Coding of Complex Object Features
Erez, Jonathan; Cusack, Rhodri; Kendall, William; Barense, Morgan D.
2016-01-01
Critical to perceiving an object is the ability to bind its constituent features into a cohesive representation, yet the manner by which the visual system integrates object features to yield a unified percept remains unknown. Here, we present a novel application of multivoxel pattern analysis of neuroimaging data that allows a direct investigation of whether neural representations integrate object features into a whole that is different from the sum of its parts. We found that patterns of activity throughout the ventral visual stream (VVS), extending anteriorly into the perirhinal cortex (PRC), discriminated between the same features combined into different objects. Despite this sensitivity to the unique conjunctions of features comprising objects, activity in regions of the VVS, again extending into the PRC, was invariant to the viewpoints from which the conjunctions were presented. These results suggest that the manner in which our visual system processes complex objects depends on the explicit coding of the conjunctions of features comprising them. PMID:25921583
Bag of Visual Words Model with Deep Spatial Features for Geographical Scene Classification
Wu, Lin
2017-01-01
With the popular use of geotagging images, more and more research efforts have been placed on geographical scene classification. In geographical scene classification, valid spatial feature selection can significantly boost the final performance. Bag of visual words (BoVW) can do well in selecting feature in geographical scene classification; nevertheless, it works effectively only if the provided feature extractor is well-matched. In this paper, we use convolutional neural networks (CNNs) for optimizing proposed feature extractor, so that it can learn more suitable visual vocabularies from the geotagging images. Our approach achieves better performance than BoVW as a tool for geographical scene classification, respectively, in three datasets which contain a variety of scene categories. PMID:28706534
Method for the reduction of image content redundancy in large image databases
Tobin, Kenneth William; Karnowski, Thomas P.
2010-03-02
A method of increasing information content for content-based image retrieval (CBIR) systems includes the steps of providing a CBIR database, the database having an index for a plurality of stored digital images using a plurality of feature vectors, the feature vectors corresponding to distinct descriptive characteristics of the images. A visual similarity parameter value is calculated based on a degree of visual similarity between features vectors of an incoming image being considered for entry into the database and feature vectors associated with a most similar of the stored images. Based on said visual similarity parameter value it is determined whether to store or how long to store the feature vectors associated with the incoming image in the database.
Wang, Xin; Deng, Zhongliang
2017-01-01
In order to recognize indoor scenarios, we extract image features for detecting objects, however, computers can make some unexpected mistakes. After visualizing the histogram of oriented gradient (HOG) features, we find that the world through the eyes of a computer is indeed different from human eyes, which assists researchers to see the reasons that cause a computer to make errors. Additionally, according to the visualization, we notice that the HOG features can obtain rich texture information. However, a large amount of background interference is also introduced. In order to enhance the robustness of the HOG feature, we propose an improved method for suppressing the background interference. On the basis of the original HOG feature, we introduce a principal component analysis (PCA) to extract the principal components of the image colour information. Then, a new hybrid feature descriptor, which is named HOG–PCA (HOGP), is made by deeply fusing these two features. Finally, the HOGP is compared to the state-of-the-art HOG feature descriptor in four scenes under different illumination. In the simulation and experimental tests, the qualitative and quantitative assessments indicate that the visualizing images of the HOGP feature are close to the observation results obtained by human eyes, which is better than the original HOG feature for object detection. Furthermore, the runtime of our proposed algorithm is hardly increased in comparison to the classic HOG feature. PMID:28677635
A Study of Visualization for Mathematics Education
NASA Technical Reports Server (NTRS)
Daugherty, Sarah C.
2008-01-01
Graphical representations such as figures, illustrations, and diagrams play a critical role in mathematics and they are equally important in mathematics education. However, graphical representations in mathematics textbooks are static, Le. they are used to illustrate only a specific example or a limited set. of examples. By using computer software to visualize mathematical principles, virtually there is no limit to the number of specific cases and examples that can be demonstrated. However, we have not seen widespread adoption of visualization software in mathematics education. There are currently a number of software packages that provide visualization of mathematics for research and also software packages specifically developed for mathematics education. We conducted a survey of mathematics visualization software packages, summarized their features and user bases, and analyzed their limitations. In this survey, we focused on evaluating the software packages for their use with mathematical subjects adopted by institutions of secondary education in the United States (middle schools and high schools), including algebra, geometry, trigonometry, and calculus. We found that cost, complexity, and lack of flexibility are the major factors that hinder the widespread use of mathematics visualization software in education.
Visual Features Involving Motion Seen from Airport Control Towers
NASA Technical Reports Server (NTRS)
Ellis, Stephen R.; Liston, Dorion
2010-01-01
Visual motion cues are used by tower controllers to support both visual and anticipated separation. Some of these cues are tabulated as part of the overall set of visual features used in towers to separate aircraft. An initial analyses of one motion cue, landing deceleration, is provided as a basis for evaluating how controllers detect and use it for spacing aircraft on or near the surface. Understanding cues like it will help determine if they can be safely used in a remote/virtual tower in which their presentation may be visually degraded.
Book4All: A Tool to Make an e-Book More Accessible to Students with Vision/Visual-Impairments
NASA Astrophysics Data System (ADS)
Calabrò, Antonello; Contini, Elia; Leporini, Barbara
Empowering people who are blind or otherwise visually impaired includes ensuring that products and electronic materials incorporate a broad range of accessibility features and work well with screen readers and other assistive technology devices. This is particularly important for students with vision impairments. Unfortunately, authors and publishers often do not include specific criteria when preparing the contents. Consequently, e-books can be inadequate for blind and low vision users, especially for students. In this paper we describe a semi-automatic tool developed to support operators who adapt e-documents for visually impaired students. The proposed tool can be used to convert a PDF e-book into a more suitable accessible and usable format readable on desktop computer or on mobile devices.
Detection of Emotional Faces: Salient Physical Features Guide Effective Visual Search
ERIC Educational Resources Information Center
Calvo, Manuel G.; Nummenmaa, Lauri
2008-01-01
In this study, the authors investigated how salient visual features capture attention and facilitate detection of emotional facial expressions. In a visual search task, a target emotional face (happy, disgusted, fearful, angry, sad, or surprised) was presented in an array of neutral faces. Faster detection of happy and, to a lesser extent,…
Multimodal indices to Japanese and French prosodically expressed social affects.
Rilliard, Albert; Shochi, Takaaki; Martin, Jean-Claude; Erickson, Donna; Aubergé, Véronique
2009-01-01
Whereas several studies have explored the expression of emotions, little is known on how the visual and audio channels are combined during production of what we call the more controlled social affects, for example, "attitudinal" expressions. This article presents a perception study of the audovisual expression of 12 Japanese and 6 French attitudes in order to understand the contribution of audio and visual modalities for affective communication. The relative importance of each modality in the perceptual decoding of the expressions of four speakers is analyzed as a first step towards a deeper comprehension of their influence on the expression of social affects. Then, the audovisual productions of two speakers (one for each language) are acoustically (F0, duration and intensity) and visually (in terms of Action Units) analyzed, in order to match the relation between objective parameters and listeners' perception of these social affects. The most pertinent objective features, either acoustic or visual, are then discussed, in a bilingual perspective: for example, the relative influence of fundamental frequency for attitudinal expression in both languages is discussed, and the importance of a certain aspect of the voice quality dimension in Japanese is underlined.
Hollingworth, Andrew; Richard, Ashleigh M; Luck, Steven J
2008-02-01
Visual short-term memory (VSTM) has received intensive study over the past decade, with research focused on VSTM capacity and representational format. Yet, the function of VSTM in human cognition is not well understood. Here, the authors demonstrate that VSTM plays an important role in the control of saccadic eye movements. Intelligent human behavior depends on directing the eyes to goal-relevant objects in the world, yet saccades are very often inaccurate and require correction. The authors hypothesized that VSTM is used to remember the features of the current saccade target so that it can be rapidly reacquired after an errant saccade, a task faced by the visual system thousands of times each day. In 4 experiments, memory-based gaze correction was accurate, fast, automatic, and largely unconscious. In addition, a concurrent VSTM load interfered with memory-based gaze correction, but a verbal short-term memory load did not. These findings demonstrate that VSTM plays a direct role in a fundamentally important aspect of visually guided behavior, and they suggest the existence of previously unknown links between VSTM representations and the occulomotor system. PsycINFO Database Record (c) 2008 APA, all rights reserved.
Babiloni, Claudio; Marzano, Nicola; Soricelli, Andrea; Cordone, Susanna; Millán-Calenti, José Carlos; Del Percio, Claudio; Buján, Ana
2016-01-01
This article reviews three experiments on event-related potentials (ERPs) testing the hypothesis that primary visual consciousness (stimulus self-report) is related to enhanced cortical neural synchronization as a function of stimulus features. ERP peak latency and sources were compared between “seen” trials and “not seen” trials, respectively related and unrelated to the primary visual consciousness. Three salient features of visual stimuli were considered (visuospatial, emotional face expression, and written words). Results showed the typical visual ERP components in both “seen” and “not seen” trials. There was no statistical difference in the ERP peak latencies between the “seen” and “not seen” trials, suggesting a similar timing of the cortical neural synchronization regardless the primary visual consciousness. In contrast, ERP sources showed differences between “seen” and “not seen” trials. For the visuospatial stimuli, the primary consciousness was related to higher activity in dorsal occipital and parietal sources at about 400 ms post-stimulus. For the emotional face expressions, there was greater activity in parietal and frontal sources at about 180 ms post-stimulus. For the written letters, there was higher activity in occipital, parietal and temporal sources at about 230 ms post-stimulus. These results hint that primary visual consciousness is associated with an enhanced cortical neural synchronization having entirely different spatiotemporal characteristics as a function of the features of the visual stimuli and possibly, the relative qualia (i.e., visuospatial, face expression, and words). In this framework, the dorsal visual stream may be synchronized in association with the primary consciousness of visuospatial and emotional face contents. Analogously, both dorsal and ventral visual streams may be synchronized in association with the primary consciousness of linguistic contents. In this line of reasoning, the ensemble of the cortical neural networks underpinning the single visual features would constitute a sort of multi-dimensional palette of colors, shapes, regions of the visual field, movements, emotional face expressions, and words. The synchronization of one or more of these cortical neural networks, each with its peculiar timing, would produce the primary consciousness of one or more of the visual features of the scene. PMID:27445750
Intrinsic and contextual features in object recognition.
Schlangen, Derrick; Barenholtz, Elan
2015-01-28
The context in which an object is found can facilitate its recognition. Yet, it is not known how effective this contextual information is relative to the object's intrinsic visual features, such as color and shape. To address this, we performed four experiments using rendered scenes with novel objects. In each experiment, participants first performed a visual search task, searching for a uniquely shaped target object whose color and location within the scene was experimentally manipulated. We then tested participants' tendency to use their knowledge of the location and color information in an identification task when the objects' images were degraded due to blurring, thus eliminating the shape information. In Experiment 1, we found that, in the absence of any diagnostic intrinsic features, participants identified objects based purely on their locations within the scene. In Experiment 2, we found that participants combined an intrinsic feature, color, with contextual location in order to uniquely specify an object. In Experiment 3, we found that when an object's color and location information were in conflict, participants identified the object using both sources of information equally. Finally, in Experiment 4, we found that participants used whichever source of information-either color or location-was more statistically reliable in order to identify the target object. Overall, these experiments show that the context in which objects are found can play as important a role as intrinsic features in identifying the objects. © 2015 ARVO.
Feature Binding in Visual Working Memory Evaluated by Type Identification Paradigm
ERIC Educational Resources Information Center
Saiki, Jun; Miyatsuji, Hirofumi
2007-01-01
Memory for feature binding comprises a key ingredient in coherent object representations. Previous studies have been equivocal about human capacity for objects in the visual working memory. To evaluate memory for feature binding, a type identification paradigm was devised and used with a multiple-object permanence tracking task. Using objects…
Cong, Lin-Juan; Wang, Ru-Jie; Yu, Cong; Zhang, Jun-Yun
2016-01-01
Visual perceptual learning is known to be specific to the trained retinal location, feature, and task. However, location and feature specificity can be eliminated by double-training or TPE training protocols, in which observers receive additional exposure to the transfer location or feature dimension via an irrelevant task besides the primary learning task Here we tested whether these new training protocols could even make learning transfer across different tasks involving discrimination of basic visual features (e.g., orientation and contrast). Observers practiced a near-threshold orientation (or contrast) discrimination task. Following a TPE training protocol, they also received exposure to the transfer task via performing suprathreshold contrast (or orientation) discrimination in alternating blocks of trials in the same sessions. The results showed no evidence for significant learning transfer to the untrained near-threshold contrast (or orientation) discrimination task after discounting the pretest effects and the suprathreshold practice effects. These results thus do not support a hypothetical task-independent component in perceptual learning of basic visual features. They also set the boundary of the new training protocols in their capability to enable learning transfer.
Facial recognition using multisensor images based on localized kernel eigen spaces.
Gundimada, Satyanadh; Asari, Vijayan K
2009-06-01
A feature selection technique along with an information fusion procedure for improving the recognition accuracy of a visual and thermal image-based facial recognition system is presented in this paper. A novel modular kernel eigenspaces approach is developed and implemented on the phase congruency feature maps extracted from the visual and thermal images individually. Smaller sub-regions from a predefined neighborhood within the phase congruency images of the training samples are merged to obtain a large set of features. These features are then projected into higher dimensional spaces using kernel methods. The proposed localized nonlinear feature selection procedure helps to overcome the bottlenecks of illumination variations, partial occlusions, expression variations and variations due to temperature changes that affect the visual and thermal face recognition techniques. AR and Equinox databases are used for experimentation and evaluation of the proposed technique. The proposed feature selection procedure has greatly improved the recognition accuracy for both the visual and thermal images when compared to conventional techniques. Also, a decision level fusion methodology is presented which along with the feature selection procedure has outperformed various other face recognition techniques in terms of recognition accuracy.
Selection-for-action in visual search.
Hannus, Aave; Cornelissen, Frans W; Lindemann, Oliver; Bekkering, Harold
2005-01-01
Grasping an object rather than pointing to it enhances processing of its orientation but not its color. Apparently, visual discrimination is selectively enhanced for a behaviorally relevant feature. In two experiments we investigated the limitations and targets of this bias. Specifically, in Experiment 1 we were interested to find out whether the effect is capacity demanding, therefore we manipulated the set-size of the display. The results indicated a clear cognitive processing capacity requirement, i.e. the magnitude of the effect decreased for a larger set size. Consequently, in Experiment 2, we investigated if the enhancement effect occurs only at the level of behaviorally relevant feature or at a level common to different features. Therefore we manipulated the discriminability of the behaviorally neutral feature (color). Again, results showed that this manipulation influenced the action enhancement of the behaviorally relevant feature. Particularly, the effect of the color manipulation on the action enhancement suggests that the action effect is more likely to bias the competition between different visual features rather than to enhance the processing of the relevant feature. We offer a theoretical account that integrates the action-intention effect within the biased competition model of visual selective attention.
ERIC Educational Resources Information Center
Song, Yaxiao
2010-01-01
Video surrogates can help people quickly make sense of the content of a video before downloading or seeking more detailed information. Visual and audio features of a video are primary information carriers and might become important components of video retrieval and video sense-making. In the past decades, most research and development efforts on…
Product evaluation based in the association between intuition and tasks.
Almeida e Silva, Caio Márcio; Okimoto, Maria Lúcia L R; Albertazzi, Deise; Calixto, Cyntia; Costa, Humberto
2012-01-01
This paper explores the importance of researching the intuitiveness in the product use. It approaches the intuitiveness influence for users that already had a visual experience of the product. Finally, it is suggested the use of a table that relates the tasks performed while using a product, the features for an intuitive use and the performance metric "task success".
The Effects of Goal Relevance and Perceptual Features on Emotional Items and Associative Memory
Mao, Wei B.; An, Shu; Yang, Xiao F.
2017-01-01
Showing an emotional item in a neutral background scene often leads to enhanced memory for the emotional item and impaired associative memory for background details. Meanwhile, both top–down goal relevance and bottom–up perceptual features played important roles in memory binding. We conducted two experiments and aimed to further examine the effects of goal relevance and perceptual features on emotional items and associative memory. By manipulating goal relevance (asking participants to categorize only each item image as living or non-living or to categorize each whole composite picture consisted of item image and background scene as natural scene or manufactured scene) and perceptual features (controlling visual contrast and visual familiarity) in two experiments, we found that both high goal relevance and salient perceptual features (high salience of items vs. high familiarity of items) could promote emotional item memory, but they had different effects on associative memory for emotional items and neutral backgrounds. Specifically, high goal relevance and high perceptual-salience of items could jointly impair the associative memory for emotional items and neutral backgrounds, while the effect of item familiarity on associative memory for emotional items would be modulated by goal relevance. High familiarity of items could increase associative memory for negative items and neutral backgrounds only in the low goal relevance condition. These findings suggest the effect of emotion on associative memory is not only related to attentional capture elicited by emotion, but also can be affected by goal relevance and perceptual features of stimulus. PMID:28790943
The Effects of Goal Relevance and Perceptual Features on Emotional Items and Associative Memory.
Mao, Wei B; An, Shu; Yang, Xiao F
2017-01-01
Showing an emotional item in a neutral background scene often leads to enhanced memory for the emotional item and impaired associative memory for background details. Meanwhile, both top-down goal relevance and bottom-up perceptual features played important roles in memory binding. We conducted two experiments and aimed to further examine the effects of goal relevance and perceptual features on emotional items and associative memory. By manipulating goal relevance (asking participants to categorize only each item image as living or non-living or to categorize each whole composite picture consisted of item image and background scene as natural scene or manufactured scene) and perceptual features (controlling visual contrast and visual familiarity) in two experiments, we found that both high goal relevance and salient perceptual features (high salience of items vs. high familiarity of items) could promote emotional item memory, but they had different effects on associative memory for emotional items and neutral backgrounds. Specifically, high goal relevance and high perceptual-salience of items could jointly impair the associative memory for emotional items and neutral backgrounds, while the effect of item familiarity on associative memory for emotional items would be modulated by goal relevance. High familiarity of items could increase associative memory for negative items and neutral backgrounds only in the low goal relevance condition. These findings suggest the effect of emotion on associative memory is not only related to attentional capture elicited by emotion, but also can be affected by goal relevance and perceptual features of stimulus.
Short-term and long-term attentional biases to frequently encountered target features.
Sha, Li Z; Remington, Roger W; Jiang, Yuhong V
2017-07-01
It has long been known that frequently occurring targets are attended better than infrequent ones in visual search. But does this frequency-based attentional prioritization reflect momentary or durable changes in attention? Here we observed both short-term and long-term attentional biases for visual features as a function of different types of statistical associations between the targets, distractors, and features. Participants searched for a target, a line oriented horizontally or vertically among diagonal distractors, and reported its length. In one set of experiments we manipulated the target's color probability: Targets were more often in Color 1 than in Color 2. The distractors were in other colors. Participants found Color 1 targets more quickly than Color 2 targets, but this preference disappeared immediately when the target's color became random in the subsequent testing phase. In the other set of experiments, we manipulated the diagnostic values of the two colors: Color 1 was more often a target than a distractor; Color 2 was more often a distractor than a target. Participants found Color 1 targets more quickly than Color 2 targets. Importantly, and in contrast to the first set of experiments, the featural preference was sustained in the testing phase. These results suggest that short-term and long-term attentional biases are products of different statistical information. Finding a target momentarily activates its features, inducing short-term repetition priming. Long-term changes in attention, on the other hand, may rely on learning diagnostic features of the targets.
Bordier, Cecile; Puja, Francesco; Macaluso, Emiliano
2013-01-01
The investigation of brain activity using naturalistic, ecologically-valid stimuli is becoming an important challenge for neuroscience research. Several approaches have been proposed, primarily relying on data-driven methods (e.g. independent component analysis, ICA). However, data-driven methods often require some post-hoc interpretation of the imaging results to draw inferences about the underlying sensory, motor or cognitive functions. Here, we propose using a biologically-plausible computational model to extract (multi-)sensory stimulus statistics that can be used for standard hypothesis-driven analyses (general linear model, GLM). We ran two separate fMRI experiments, which both involved subjects watching an episode of a TV-series. In Exp 1, we manipulated the presentation by switching on-and-off color, motion and/or sound at variable intervals, whereas in Exp 2, the video was played in the original version, with all the consequent continuous changes of the different sensory features intact. Both for vision and audition, we extracted stimulus statistics corresponding to spatial and temporal discontinuities of low-level features, as well as a combined measure related to the overall stimulus saliency. Results showed that activity in occipital visual cortex and the superior temporal auditory cortex co-varied with changes of low-level features. Visual saliency was found to further boost activity in extra-striate visual cortex plus posterior parietal cortex, while auditory saliency was found to enhance activity in the superior temporal cortex. Data-driven ICA analyses of the same datasets also identified “sensory” networks comprising visual and auditory areas, but without providing specific information about the possible underlying processes, e.g., these processes could relate to modality, stimulus features and/or saliency. We conclude that the combination of computational modeling and GLM enables the tracking of the impact of bottom–up signals on brain activity during viewing of complex and dynamic multisensory stimuli, beyond the capability of purely data-driven approaches. PMID:23202431
Neural pathways for visual speech perception
Bernstein, Lynne E.; Liebenthal, Einat
2014-01-01
This paper examines the questions, what levels of speech can be perceived visually, and how is visual speech represented by the brain? Review of the literature leads to the conclusions that every level of psycholinguistic speech structure (i.e., phonetic features, phonemes, syllables, words, and prosody) can be perceived visually, although individuals differ in their abilities to do so; and that there are visual modality-specific representations of speech qua speech in higher-level vision brain areas. That is, the visual system represents the modal patterns of visual speech. The suggestion that the auditory speech pathway receives and represents visual speech is examined in light of neuroimaging evidence on the auditory speech pathways. We outline the generally agreed-upon organization of the visual ventral and dorsal pathways and examine several types of visual processing that might be related to speech through those pathways, specifically, face and body, orthography, and sign language processing. In this context, we examine the visual speech processing literature, which reveals widespread diverse patterns of activity in posterior temporal cortices in response to visual speech stimuli. We outline a model of the visual and auditory speech pathways and make several suggestions: (1) The visual perception of speech relies on visual pathway representations of speech qua speech. (2) A proposed site of these representations, the temporal visual speech area (TVSA) has been demonstrated in posterior temporal cortex, ventral and posterior to multisensory posterior superior temporal sulcus (pSTS). (3) Given that visual speech has dynamic and configural features, its representations in feedforward visual pathways are expected to integrate these features, possibly in TVSA. PMID:25520611
Visual search deficits in amblyopia.
Tsirlin, Inna; Colpa, Linda; Goltz, Herbert C; Wong, Agnes M F
2018-04-01
Amblyopia is a neurodevelopmental disorder defined as a reduction in visual acuity that cannot be corrected by optical means. It has been associated with low-level deficits. However, research has demonstrated a link between amblyopia and visual attention deficits in counting, tracking, and identifying objects. Visual search is a useful tool for assessing visual attention but has not been well studied in amblyopia. Here, we assessed the extent of visual search deficits in amblyopia using feature and conjunction search tasks. We compared the performance of participants with amblyopia (n = 10) to those of controls (n = 12) on both feature and conjunction search tasks using Gabor patch stimuli, varying spatial bandwidth and orientation. To account for the low-level deficits inherent in amblyopia, we measured individual contrast and crowding thresholds and monitored eye movements. The display elements were then presented at suprathreshold levels to ensure that visibility was equalized across groups. There was no performance difference between groups on feature search, indicating that our experimental design controlled successfully for low-level amblyopia deficits. In contrast, during conjunction search, median reaction times and reaction time slopes were significantly larger in participants with amblyopia compared with controls. Amblyopia differentially affects performance on conjunction visual search, a more difficult task that requires feature binding and possibly the involvement of higher-level attention processes. Deficits in visual search may affect day-to-day functioning in people with amblyopia.
Visualization of small scale structures on high resolution DEMs
NASA Astrophysics Data System (ADS)
Kokalj, Žiga; Zakšek, Klemen; Pehani, Peter; Čotar, Klemen; Oštir, Krištof
2015-04-01
Knowledge on the terrain morphology is very important for observation of numerous processes and events and digital elevation models are therefore one of the most important datasets in geographic analyses. Furthermore, recognition of natural and anthropogenic microrelief structures, which can be observed on detailed terrain models derived from aerial laser scanning (lidar) or structure-from-motion photogrammetry, is of paramount importance in many applications. In this paper we thus examine and evaluate methods of raster lidar data visualization for the determination (recognition) of microrelief features and present a series of strategies to assist selecting the preferred visualization of choice for structures of various shapes and sizes, set in varied landscapes. Often the answer is not definite and more frequently a combination of techniques has to be used to map a very diverse landscape. Researchers can only very recently benefit from free software for calculation of advanced visualization techniques. These tools are often difficult to understand, have numerous options that confuse the user, or require and produce non-standard data formats, because they were written for specific purposes. We therefore designed the Relief Visualization Toolbox (RVT) as a free, easy-to-use, standalone application to create visualisations from high-resolution digital elevation data. It is tailored for the very beginners in relief interpretation, but it can also be used by more advanced users in data processing and geographic information systems. It offers a range of techniques, such as simple hillshading and its derivatives, slope gradient, trend removal, positive and negative openness, sky-view factor, and anisotropic sky-view factor. All included methods have been proven to be effective for detection of small scale features and the default settings are optimised to accomplish this task. However, the usability of the tool goes beyond computation for visualization purposes, as sky-view factor, for example, is an essential variable in many fields, e.g. in meteorology. RVT produces two types of results: 1) the original files have a full range of values and are intended for further analyses in geographic information systems, 2) the simplified versions are histogram stretched for visualization purposes and saved as 8-bit GeoTIFF files. This means that they can be explored in non-GIS software, e.g. with simple picture viewers, which is essential when a larger community of non-specialists needs to be considered, e.g. in public collaborative projects. The tool recognizes all frequently used single band raster formats and supports elevation raster file data conversion.
Rajaei, Karim; Khaligh-Razavi, Seyed-Mahdi; Ghodrati, Masoud; Ebrahimpour, Reza; Shiri Ahmad Abadi, Mohammad Ebrahim
2012-01-01
The brain mechanism of extracting visual features for recognizing various objects has consistently been a controversial issue in computational models of object recognition. To extract visual features, we introduce a new, biologically motivated model for facial categorization, which is an extension of the Hubel and Wiesel simple-to-complex cell hierarchy. To address the synaptic stability versus plasticity dilemma, we apply the Adaptive Resonance Theory (ART) for extracting informative intermediate level visual features during the learning process, which also makes this model stable against the destruction of previously learned information while learning new information. Such a mechanism has been suggested to be embedded within known laminar microcircuits of the cerebral cortex. To reveal the strength of the proposed visual feature learning mechanism, we show that when we use this mechanism in the training process of a well-known biologically motivated object recognition model (the HMAX model), it performs better than the HMAX model in face/non-face classification tasks. Furthermore, we demonstrate that our proposed mechanism is capable of following similar trends in performance as humans in a psychophysical experiment using a face versus non-face rapid categorization task.
Detection of emotional faces: salient physical features guide effective visual search.
Calvo, Manuel G; Nummenmaa, Lauri
2008-08-01
In this study, the authors investigated how salient visual features capture attention and facilitate detection of emotional facial expressions. In a visual search task, a target emotional face (happy, disgusted, fearful, angry, sad, or surprised) was presented in an array of neutral faces. Faster detection of happy and, to a lesser extent, surprised and disgusted faces was found both under upright and inverted display conditions. Inversion slowed down the detection of these faces less than that of others (fearful, angry, and sad). Accordingly, the detection advantage involves processing of featural rather than configural information. The facial features responsible for the detection advantage are located in the mouth rather than the eye region. Computationally modeled visual saliency predicted both attentional orienting and detection. Saliency was greatest for the faces (happy) and regions (mouth) that were fixated earlier and detected faster, and there was close correspondence between the onset of the modeled saliency peak and the time at which observers initially fixated the faces. The authors conclude that visual saliency of specific facial features--especially the smiling mouth--is responsible for facilitated initial orienting, which thus shortens detection. (PsycINFO Database Record (c) 2008 APA, all rights reserved).
Shape and color conjunction stimuli are represented as bound objects in visual working memory.
Luria, Roy; Vogel, Edward K
2011-05-01
The integrated object view of visual working memory (WM) argues that objects (rather than features) are the building block of visual WM, so that adding an extra feature to an object does not result in any extra cost to WM capacity. Alternative views have shown that complex objects consume additional WM storage capacity so that it may not be represented as bound objects. Additionally, it was argued that two features from the same dimension (i.e., color-color) do not form an integrated object in visual WM. This led some to argue for a "weak" object view of visual WM. We used the contralateral delay activity (the CDA) as an electrophysiological marker of WM capacity, to test those alternative hypotheses to the integrated object account. In two experiments we presented complex stimuli and color-color conjunction stimuli, and compared performance in displays that had one object but varying degrees of feature complexity. The results supported the integrated object account by showing that the CDA amplitude corresponded to the number of objects regardless of the number of features within each object, even for complex objects or color-color conjunction stimuli. Copyright © 2010 Elsevier Ltd. All rights reserved.
Neural correlates of context-dependent feature conjunction learning in visual search tasks.
Reavis, Eric A; Frank, Sebastian M; Greenlee, Mark W; Tse, Peter U
2016-06-01
Many perceptual learning experiments show that repeated exposure to a basic visual feature such as a specific orientation or spatial frequency can modify perception of that feature, and that those perceptual changes are associated with changes in neural tuning early in visual processing. Such perceptual learning effects thus exert a bottom-up influence on subsequent stimulus processing, independent of task-demands or endogenous influences (e.g., volitional attention). However, it is unclear whether such bottom-up changes in perception can occur as more complex stimuli such as conjunctions of visual features are learned. It is not known whether changes in the efficiency with which people learn to process feature conjunctions in a task (e.g., visual search) reflect true bottom-up perceptual learning versus top-down, task-related learning (e.g., learning better control of endogenous attention). Here we show that feature conjunction learning in visual search leads to bottom-up changes in stimulus processing. First, using fMRI, we demonstrate that conjunction learning in visual search has a distinct neural signature: an increase in target-evoked activity relative to distractor-evoked activity (i.e., a relative increase in target salience). Second, we demonstrate that after learning, this neural signature is still evident even when participants passively view learned stimuli while performing an unrelated, attention-demanding task. This suggests that conjunction learning results in altered bottom-up perceptual processing of the learned conjunction stimuli (i.e., a perceptual change independent of the task). We further show that the acquired change in target-evoked activity is contextually dependent on the presence of distractors, suggesting that search array Gestalts are learned. Hum Brain Mapp 37:2319-2330, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Best, Catherine A; Yim, Hyungwook; Sloutsky, Vladimir M
2013-10-01
Selective attention plays an important role in category learning. However, immaturities of top-down attentional control during infancy coupled with successful category learning suggest that early category learning is achieved without attending selectively. Research presented here examines this possibility by focusing on category learning in infants (6-8months old) and adults. Participants were trained on a novel visual category. Halfway through the experiment, unbeknownst to participants, the to-be-learned category switched to another category, where previously relevant features became irrelevant and previously irrelevant features became relevant. If participants attend selectively to the relevant features of the first category, they should incur a cost of selective attention immediately after the unknown category switch. Results revealed that adults demonstrated a cost, as evidenced by a decrease in accuracy and response time on test trials as well as a decrease in visual attention to newly relevant features. In contrast, infants did not demonstrate a similar cost of selective attention as adults despite evidence of learning both to-be-learned categories. Findings are discussed as supporting multiple systems of category learning and as suggesting that learning mechanisms engaged by adults may be different from those engaged by infants. Copyright © 2013 Elsevier Inc. All rights reserved.
Saliency Detection of Stereoscopic 3D Images with Application to Visual Discomfort Prediction
NASA Astrophysics Data System (ADS)
Li, Hong; Luo, Ting; Xu, Haiyong
2017-06-01
Visual saliency detection is potentially useful for a wide range of applications in image processing and computer vision fields. This paper proposes a novel bottom-up saliency detection approach for stereoscopic 3D (S3D) images based on regional covariance matrix. As for S3D saliency detection, besides the traditional 2D low-level visual features, additional 3D depth features should also be considered. However, only limited efforts have been made to investigate how different features (e.g. 2D and 3D features) contribute to the overall saliency of S3D images. The main contribution of this paper is that we introduce a nonlinear feature integration descriptor, i.e., regional covariance matrix, to fuse both 2D and 3D features for S3D saliency detection. The regional covariance matrix is shown to be effective for nonlinear feature integration by modelling the inter-correlation of different feature dimensions. Experimental results demonstrate that the proposed approach outperforms several existing relevant models including 2D extended and pure 3D saliency models. In addition, we also experimentally verified that the proposed S3D saliency map can significantly improve the prediction accuracy of experienced visual discomfort when viewing S3D images.
Gidlöf, Kerstin; Anikin, Andrey; Lingonblad, Martin; Wallin, Annika
2017-09-01
There is a battle in the supermarket isle, a battle between what the consumer wants and what the retailer and others want her to see, and subsequently to buy. Product packages and displays contain a number of features and attributes tailored to catch consumers' attention. These are what we call external factors comprising the visual saliency, the number of facings, and the placement of each product. But a consumer also brings with her a number of goals and interests related to the products and their attributes. These are important internal factors, including brand preferences, price sensitivity, and dietary inclinations. We fit mobile eye trackers to consumers visiting real-life supermarkets in order to investigate to what extent external and internal factors affect consumers' visual attention and purchases. Both external and internal factors influenced what products consumers looked at, with a strong positive interaction between visual saliency and consumer preferences. Consumers appear to take advantage of visual saliency in their decision making, using their knowledge about products' appearance to guide their visual attention towards those that fit their preferences. When it comes to actual purchases, however, visual attention was by far the most important predictor, even after controlling for all other internal and external factors. In other words, the very act of looking longer or repeatedly at a package, for any reason, makes it more likely that this product will be bought. Visual attention is thus crucial for understanding consumer behaviour, even in the cluttered supermarket environment, but it cannot be captured by measurements of visual saliency alone. Copyright © 2017 Elsevier Ltd. All rights reserved.
Obligatory encoding of task-irrelevant features depletes working memory resources.
Marshall, Louise; Bays, Paul M
2013-02-18
Selective attention is often considered the "gateway" to visual working memory (VWM). However, the extent to which we can voluntarily control which of an object's features enter memory remains subject to debate. Recent research has converged on the concept of VWM as a limited commodity distributed between elements of a visual scene. Consequently, as memory load increases, the fidelity with which each visual feature is stored decreases. Here we used changes in recall precision to probe whether task-irrelevant features were encoded into VWM when individuals were asked to store specific feature dimensions. Recall precision for both color and orientation was significantly enhanced when task-irrelevant features were removed, but knowledge of which features would be probed provided no advantage over having to memorize both features of all items. Next, we assessed the effect an interpolated orientation-or color-matching task had on the resolution with which orientations in a memory array were stored. We found that the presence of orientation information in the second array disrupted memory of the first array. The cost to recall precision was identical whether the interfering features had to be remembered, attended to, or could be ignored. Therefore, it appears that storing, or merely attending to, one feature of an object is sufficient to promote automatic encoding of all its features, depleting VWM resources. However, the precision cost was abolished when the match task preceded the memory array. So, while encoding is automatic, maintenance is voluntary, allowing resources to be reallocated to store new visual information.
The effect of gamma-enhancing binaural beats on the control of feature bindings.
Colzato, Lorenza S; Steenbergen, Laura; Sellaro, Roberta
2017-07-01
Binaural beats represent the auditory experience of an oscillating sound that occurs when two sounds with neighboring frequencies are presented to one's left and right ear separately. Binaural beats have been shown to impact information processing via their putative role in increasing neural synchronization. Recent studies of feature-repetition effects demonstrated interactions between perceptual features and action-related features: repeating only some, but not all features of a perception-action episode hinders performance. These partial-repetition (or binding) costs point to the existence of temporary episodic bindings (event files) that are automatically retrieved by repeating at least one of their features. Given that neural synchronization in the gamma band has been associated with visual feature bindings, we investigated whether the impact of binaural beats extends to the top-down control of feature bindings. Healthy adults listened to gamma-frequency (40 Hz) binaural beats or to a constant tone of 340 Hz (control condition) for ten minutes before and during a feature-repetition task. While the size of visuomotor binding costs (indicating the binding of visual and action features) was unaffected by the binaural beats, the size of visual feature binding costs (which refer to the binding between the two visual features) was considerably smaller during gamma-frequency binaural beats exposure than during the control condition. Our results suggest that binaural beats enhance selectivity in updating episodic memory traces and further strengthen the hypothesis that neural activity in the gamma band is critically associated with the control of feature binding.
Advanced biologically plausible algorithms for low-level image processing
NASA Astrophysics Data System (ADS)
Gusakova, Valentina I.; Podladchikova, Lubov N.; Shaposhnikov, Dmitry G.; Markin, Sergey N.; Golovan, Alexander V.; Lee, Seong-Whan
1999-08-01
At present, in computer vision, the approach based on modeling the biological vision mechanisms is extensively developed. However, up to now, real world image processing has no effective solution in frameworks of both biologically inspired and conventional approaches. Evidently, new algorithms and system architectures based on advanced biological motivation should be developed for solution of computational problems related to this visual task. Basic problems that should be solved for creation of effective artificial visual system to process real world imags are a search for new algorithms of low-level image processing that, in a great extent, determine system performance. In the present paper, the result of psychophysical experiments and several advanced biologically motivated algorithms for low-level processing are presented. These algorithms are based on local space-variant filter, context encoding visual information presented in the center of input window, and automatic detection of perceptually important image fragments. The core of latter algorithm are using local feature conjunctions such as noncolinear oriented segment and composite feature map formation. Developed algorithms were integrated into foveal active vision model, the MARR. It is supposed that proposed algorithms may significantly improve model performance while real world image processing during memorizing, search, and recognition.
Sleep: An Open-Source Python Software for Visualization, Analysis, and Staging of Sleep Data
Combrisson, Etienne; Vallat, Raphael; Eichenlaub, Jean-Baptiste; O'Reilly, Christian; Lajnef, Tarek; Guillot, Aymeric; Ruby, Perrine M.; Jerbi, Karim
2017-01-01
We introduce Sleep, a new Python open-source graphical user interface (GUI) dedicated to visualization, scoring and analyses of sleep data. Among its most prominent features are: (1) Dynamic display of polysomnographic data, spectrogram, hypnogram and topographic maps with several customizable parameters, (2) Implementation of several automatic detection of sleep features such as spindles, K-complexes, slow waves, and rapid eye movements (REM), (3) Implementation of practical signal processing tools such as re-referencing or filtering, and (4) Display of main descriptive statistics including publication-ready tables and figures. The software package supports loading and reading raw EEG data from standard file formats such as European Data Format, in addition to a range of commercial data formats. Most importantly, Sleep is built on top of the VisPy library, which provides GPU-based fast and high-level visualization. As a result, it is capable of efficiently handling and displaying large sleep datasets. Sleep is freely available (http://visbrain.org/sleep) and comes with sample datasets and an extensive documentation. Novel functionalities will continue to be added and open-science community efforts are expected to enhance the capacities of this module. PMID:28983246
Sleep: An Open-Source Python Software for Visualization, Analysis, and Staging of Sleep Data.
Combrisson, Etienne; Vallat, Raphael; Eichenlaub, Jean-Baptiste; O'Reilly, Christian; Lajnef, Tarek; Guillot, Aymeric; Ruby, Perrine M; Jerbi, Karim
2017-01-01
We introduce Sleep, a new Python open-source graphical user interface (GUI) dedicated to visualization, scoring and analyses of sleep data. Among its most prominent features are: (1) Dynamic display of polysomnographic data, spectrogram, hypnogram and topographic maps with several customizable parameters, (2) Implementation of several automatic detection of sleep features such as spindles, K-complexes, slow waves, and rapid eye movements (REM), (3) Implementation of practical signal processing tools such as re-referencing or filtering, and (4) Display of main descriptive statistics including publication-ready tables and figures. The software package supports loading and reading raw EEG data from standard file formats such as European Data Format, in addition to a range of commercial data formats. Most importantly, Sleep is built on top of the VisPy library, which provides GPU-based fast and high-level visualization. As a result, it is capable of efficiently handling and displaying large sleep datasets. Sleep is freely available (http://visbrain.org/sleep) and comes with sample datasets and an extensive documentation. Novel functionalities will continue to be added and open-science community efforts are expected to enhance the capacities of this module.
Analysis and Visualization of ChIP-Seq and RNA-Seq Sequence Alignments Using ngs.plot.
Loh, Yong-Hwee Eddie; Shen, Li
2016-01-01
The continual maturation and increasing applications of next-generation sequencing technology in scientific research have yielded ever-increasing amounts of data that need to be effectively and efficiently analyzed and innovatively mined for new biological insights. We have developed ngs.plot-a quick and easy-to-use bioinformatics tool that performs visualizations of the spatial relationships between sequencing alignment enrichment and specific genomic features or regions. More importantly, ngs.plot is customizable beyond the use of standard genomic feature databases to allow the analysis and visualization of user-specified regions of interest generated by the user's own hypotheses. In this protocol, we demonstrate and explain the use of ngs.plot using command line executions, as well as a web-based workflow on the Galaxy framework. We replicate the underlying commands used in the analysis of a true biological dataset that we had reported and published earlier and demonstrate how ngs.plot can easily generate publication-ready figures. With ngs.plot, users would be able to efficiently and innovatively mine their own datasets without having to be involved in the technical aspects of sequence coverage calculations and genomic databases.
Regional information guidance system based on hypermedia concept
NASA Astrophysics Data System (ADS)
Matoba, Hiroshi; Hara, Yoshinori; Kasahara, Yutako
1990-08-01
A regional information guidance system has been developed on an image workstation. Two main features of this system are hypermedia data structure and friendly visual interface realized by the full-color frame memory system. As the hypermedia data structure manages regional information such as maps, pictures and explanations of points of interest, users can retrieve those information one by one, next to next according to their interest change. For example, users can retrieve explanation of a picture through the link between pictures and text explanations. Users can also traverse from one document to another by using keywords as cross reference indices. The second feature is to utilize a full-color, high resolution and wide space frame memory for visual interface design. This frame memory system enables real-time operation of image data and natural scene representation. The system also provides half tone representing function which enables fade-in/out presentations. This fade-in/out functions used in displaying and erasing menu and image data, makes visual interface soft for human eyes. The system we have developed is a typical example of multimedia applications. We expect the image workstation will play an important role as a platform for multimedia applications.
Comparing object recognition from binary and bipolar edge images for visual prostheses.
Jung, Jae-Hyun; Pu, Tian; Peli, Eli
2016-11-01
Visual prostheses require an effective representation method due to the limited display condition which has only 2 or 3 levels of grayscale in low resolution. Edges derived from abrupt luminance changes in images carry essential information for object recognition. Typical binary (black and white) edge images have been used to represent features to convey essential information. However, in scenes with a complex cluttered background, the recognition rate of the binary edge images by human observers is limited and additional information is required. The polarity of edges and cusps (black or white features on a gray background) carries important additional information; the polarity may provide shape from shading information missing in the binary edge image. This depth information may be restored by using bipolar edges. We compared object recognition rates from 16 binary edge images and bipolar edge images by 26 subjects to determine the possible impact of bipolar filtering in visual prostheses with 3 or more levels of grayscale. Recognition rates were higher with bipolar edge images and the improvement was significant in scenes with complex backgrounds. The results also suggest that erroneous shape from shading interpretation of bipolar edges resulting from pigment rather than boundaries of shape may confound the recognition.
pyAudioAnalysis: An Open-Source Python Library for Audio Signal Analysis.
Giannakopoulos, Theodoros
2015-01-01
Audio information plays a rather important role in the increasing digital content that is available today, resulting in a need for methodologies that automatically analyze such content: audio event recognition for home automations and surveillance systems, speech recognition, music information retrieval, multimodal analysis (e.g. audio-visual analysis of online videos for content-based recommendation), etc. This paper presents pyAudioAnalysis, an open-source Python library that provides a wide range of audio analysis procedures including: feature extraction, classification of audio signals, supervised and unsupervised segmentation and content visualization. pyAudioAnalysis is licensed under the Apache License and is available at GitHub (https://github.com/tyiannak/pyAudioAnalysis/). Here we present the theoretical background behind the wide range of the implemented methodologies, along with evaluation metrics for some of the methods. pyAudioAnalysis has been already used in several audio analysis research applications: smart-home functionalities through audio event detection, speech emotion recognition, depression classification based on audio-visual features, music segmentation, multimodal content-based movie recommendation and health applications (e.g. monitoring eating habits). The feedback provided from all these particular audio applications has led to practical enhancement of the library.
pyAudioAnalysis: An Open-Source Python Library for Audio Signal Analysis
Giannakopoulos, Theodoros
2015-01-01
Audio information plays a rather important role in the increasing digital content that is available today, resulting in a need for methodologies that automatically analyze such content: audio event recognition for home automations and surveillance systems, speech recognition, music information retrieval, multimodal analysis (e.g. audio-visual analysis of online videos for content-based recommendation), etc. This paper presents pyAudioAnalysis, an open-source Python library that provides a wide range of audio analysis procedures including: feature extraction, classification of audio signals, supervised and unsupervised segmentation and content visualization. pyAudioAnalysis is licensed under the Apache License and is available at GitHub (https://github.com/tyiannak/pyAudioAnalysis/). Here we present the theoretical background behind the wide range of the implemented methodologies, along with evaluation metrics for some of the methods. pyAudioAnalysis has been already used in several audio analysis research applications: smart-home functionalities through audio event detection, speech emotion recognition, depression classification based on audio-visual features, music segmentation, multimodal content-based movie recommendation and health applications (e.g. monitoring eating habits). The feedback provided from all these particular audio applications has led to practical enhancement of the library. PMID:26656189
Visual Analytics approach for Lightning data analysis and cell nowcasting
NASA Astrophysics Data System (ADS)
Peters, Stefan; Meng, Liqiu; Betz, Hans-Dieter
2013-04-01
Thunderstorms and their ground effects, such as flash floods, hail, lightning, strong wind and tornadoes, are responsible for most weather damages (Bonelli & Marcacci 2008). Thus to understand, identify, track and predict lightning cells is essential. An important aspect for decision makers is an appropriate visualization of weather analysis results including the representation of dynamic lightning cells. This work focuses on the visual analysis of lightning data and lightning cell nowcasting which aim to detect and understanding spatial-temporal patterns of moving thunderstorms. Lightnings are described by 3D coordinates and the exact occurrence time of lightnings. The three-dimensionally resolved total lightning data used in our experiment are provided by the European lightning detection network LINET (Betz et al. 2009). In all previous works, lightning point data, detected lightning cells and derived cell tracks are visualized in 2D. Lightning cells are either displayed as 2D convex hulls with or without the underlying lightning point data. Due to recent improvements of lightning data detection and accuracy, there is a growing demand on multidimensional and interactive visualization in particular for decision makers. In a first step lightning cells are identified and tracked. Then an interactive graphic user interface (GUI) is developed to investigate the dynamics of the lightning cells: e.g. changes of cell density, location, extension as well as merging and splitting behavior in 3D over time. In particular a space time cube approach is highlighted along with statistical analysis. Furthermore a lightning cell nowcasting is conducted and visualized. The idea thereby is to predict the following cell features for the next 10-60 minutes including location, centre, extension, density, area, volume, lifetime and cell feature probabilities. The main focus will be set to a suitable interactive visualization of the predicted featured within the GUI. The developed visual exploring tool for the purpose of supporting decision making is investigated for two determined user groups: lightning experts and interested lay public. Betz HD, Schmidt K, Oettinger WP (2009) LINET - An International VLF/LF Lightning Detection Network in Europe. In: Betz HD, Schumann U, Laroche P (eds) Lightning: Principles, Instruments and Applications. Springer Netherlands, Dordrecht, pp 115-140 Bonelli P, Marcacci P (2008) Thunderstorm nowcasting by means of lightning and radar data: algorithms and applications in northern Italy. Nat. Hazards Earth Syst. Sci 8(5):1187-1198
Dorsal hippocampus is necessary for visual categorization in rats.
Kim, Jangjin; Castro, Leyre; Wasserman, Edward A; Freeman, John H
2018-02-23
The hippocampus may play a role in categorization because of the need to differentiate stimulus categories (pattern separation) and to recognize category membership of stimuli from partial information (pattern completion). We hypothesized that the hippocampus would be more crucial for categorization of low-density (few relevant features) stimuli-due to the higher demand on pattern separation and pattern completion-than for categorization of high-density (many relevant features) stimuli. Using a touchscreen apparatus, rats were trained to categorize multiple abstract stimuli into two different categories. Each stimulus was a pentagonal configuration of five visual features; some of the visual features were relevant for defining the category whereas others were irrelevant. Two groups of rats were trained with either a high (dense, n = 8) or low (sparse, n = 8) number of category-relevant features. Upon reaching criterion discrimination (≥75% correct, on 2 consecutive days), bilateral cannulas were implanted in the dorsal hippocampus. The rats were then given either vehicle or muscimol infusions into the hippocampus just prior to various testing sessions. They were tested with: the previously trained stimuli (trained), novel stimuli involving new irrelevant features (novel), stimuli involving relocated features (relocation), and a single relevant feature (singleton). In training, the dense group reached criterion faster than the sparse group, indicating that the sparse task was more difficult than the dense task. In testing, accuracy of both groups was equally high for trained and novel stimuli. However, both groups showed impaired accuracy in the relocation and singleton conditions, with a greater deficit in the sparse group. The testing data indicate that rats encode both the relevant features and the spatial locations of the features. Hippocampal inactivation impaired visual categorization regardless of the density of the category-relevant features for the trained, novel, relocation, and singleton stimuli. Hippocampus-mediated pattern completion and pattern separation mechanisms may be necessary for visual categorization involving overlapping irrelevant features. © 2018 Wiley Periodicals, Inc.
LOD map--A visual interface for navigating multiresolution volume visualization.
Wang, Chaoli; Shen, Han-Wei
2006-01-01
In multiresolution volume visualization, a visual representation of level-of-detail (LOD) quality is important for us to examine, compare, and validate different LOD selection algorithms. While traditional methods rely on ultimate images for quality measurement, we introduce the LOD map--an alternative representation of LOD quality and a visual interface for navigating multiresolution data exploration. Our measure for LOD quality is based on the formulation of entropy from information theory. The measure takes into account the distortion and contribution of multiresolution data blocks. A LOD map is generated through the mapping of key LOD ingredients to a treemap representation. The ordered treemap layout is used for relative stable update of the LOD map when the view or LOD changes. This visual interface not only indicates the quality of LODs in an intuitive way, but also provides immediate suggestions for possible LOD improvement through visually-striking features. It also allows us to compare different views and perform rendering budget control. A set of interactive techniques is proposed to make the LOD adjustment a simple and easy task. We demonstrate the effectiveness and efficiency of our approach on large scientific and medical data sets.
Infrared vehicle recognition using unsupervised feature learning based on K-feature
NASA Astrophysics Data System (ADS)
Lin, Jin; Tan, Yihua; Xia, Haijiao; Tian, Jinwen
2018-02-01
Subject to the complex battlefield environment, it is difficult to establish a complete knowledge base in practical application of vehicle recognition algorithms. The infrared vehicle recognition is always difficult and challenging, which plays an important role in remote sensing. In this paper we propose a new unsupervised feature learning method based on K-feature to recognize vehicle in infrared images. First, we use the target detection algorithm which is based on the saliency to detect the initial image. Then, the unsupervised feature learning based on K-feature, which is generated by Kmeans clustering algorithm that extracted features by learning a visual dictionary from a large number of samples without label, is calculated to suppress the false alarm and improve the accuracy. Finally, the vehicle target recognition image is finished by some post-processing. Large numbers of experiments demonstrate that the proposed method has satisfy recognition effectiveness and robustness for vehicle recognition in infrared images under complex backgrounds, and it also improve the reliability of it.
The Role of Target-Distractor Relationships in Guiding Attention and the Eyes in Visual Search
ERIC Educational Resources Information Center
Becker, Stefanie I.
2010-01-01
Current models of visual search assume that visual attention can be guided by tuning attention toward specific feature values (e.g., particular size, color) or by inhibiting the features of the irrelevant nontargets. The present study demonstrates that attention and eye movements can also be guided by a relational specification of how the target…
Characterization of electroencephalography signals for estimating saliency features in videos.
Liang, Zhen; Hamada, Yasuyuki; Oba, Shigeyuki; Ishii, Shin
2018-05-12
Understanding the functions of the visual system has been one of the major targets in neuroscience formany years. However, the relation between spontaneous brain activities and visual saliency in natural stimuli has yet to be elucidated. In this study, we developed an optimized machine learning-based decoding model to explore the possible relationships between the electroencephalography (EEG) characteristics and visual saliency. The optimal features were extracted from the EEG signals and saliency map which was computed according to an unsupervised saliency model ( Tavakoli and Laaksonen, 2017). Subsequently, various unsupervised feature selection/extraction techniques were examined using different supervised regression models. The robustness of the presented model was fully verified by means of ten-fold or nested cross validation procedure, and promising results were achieved in the reconstruction of saliency features based on the selected EEG characteristics. Through the successful demonstration of using EEG characteristics to predict the real-time saliency distribution in natural videos, we suggest the feasibility of quantifying visual content through measuring brain activities (EEG signals) in real environments, which would facilitate the understanding of cortical involvement in the processing of natural visual stimuli and application developments motivated by human visual processing. Copyright © 2018 Elsevier Ltd. All rights reserved.
Sci-Fin: Visual Mining Spatial and Temporal Behavior Features from Social Media
Pu, Jiansu; Teng, Zhiyao; Gong, Rui; Wen, Changjiang; Xu, Yang
2016-01-01
Check-in records are usually available in social services, which offer us the opportunity to capture and analyze users’ spatial and temporal behaviors. Mining such behavior features is essential to social analysis and business intelligence. However, the complexity and incompleteness of check-in records bring challenges to achieve such a task. Different from the previous work on social behavior analysis, in this paper, we present a visual analytics system, Social Check-in Fingerprinting (Sci-Fin), to facilitate the analysis and visualization of social check-in data. We focus on three major components of user check-in data: location, activity, and profile. Visual fingerprints for location, activity, and profile are designed to intuitively represent the high-dimensional attributes. To visually mine and demonstrate the behavior features, we integrate WorldMapper and Voronoi Treemap into our glyph-like designs. Such visual fingerprint designs offer us the opportunity to summarize the interesting features and patterns from different check-in locations, activities and users (groups). We demonstrate the effectiveness and usability of our system by conducting extensive case studies on real check-in data collected from a popular microblogging service. Interesting findings are reported and discussed at last. PMID:27999398
Sci-Fin: Visual Mining Spatial and Temporal Behavior Features from Social Media.
Pu, Jiansu; Teng, Zhiyao; Gong, Rui; Wen, Changjiang; Xu, Yang
2016-12-20
Check-in records are usually available in social services, which offer us the opportunity to capture and analyze users' spatial and temporal behaviors. Mining such behavior features is essential to social analysis and business intelligence. However, the complexity and incompleteness of check-in records bring challenges to achieve such a task. Different from the previous work on social behavior analysis, in this paper, we present a visual analytics system, Social Check-in Fingerprinting (Sci-Fin), to facilitate the analysis and visualization of social check-in data. We focus on three major components of user check-in data: location, activity, and profile. Visual fingerprints for location, activity, and profile are designed to intuitively represent the high-dimensional attributes. To visually mine and demonstrate the behavior features, we integrate WorldMapper and Voronoi Treemap into our glyph-like designs. Such visual fingerprint designs offer us the opportunity to summarize the interesting features and patterns from different check-in locations, activities and users (groups). We demonstrate the effectiveness and usability of our system by conducting extensive case studies on real check-in data collected from a popular microblogging service. Interesting findings are reported and discussed at last.
Visualizing Astronomical Data with Blender
NASA Astrophysics Data System (ADS)
Kent, Brian R.
2014-01-01
We present methods for using the 3D graphics program Blender in the visualization of astronomical data. The software's forte for animating 3D data lends itself well to use in astronomy. The Blender graphical user interface and Python scripting capabilities can be utilized in the generation of models for data cubes, catalogs, simulations, and surface maps. We review methods for data import, 2D and 3D voxel texture applications, animations, camera movement, and composite renders. Rendering times can be improved by using graphic processing units (GPUs). A number of examples are shown using the software features most applicable to various kinds of data paradigms in astronomy.
Bashiri, Azadeh; Shahmoradi, Leila; Beigy, Hamid; Savareh, Behrouz A; Nosratabadi, Masood; N Kalhori, Sharareh R; Ghazisaeedi, Marjan
2018-06-01
Quantitative EEG gives valuable information in the clinical evaluation of psychological disorders. The purpose of the present study is to identify the most prominent features of quantitative electroencephalography (QEEG) that affect attention and response control parameters in children with attention deficit hyperactivity disorder. The QEEG features and the Integrated Visual and Auditory-Continuous Performance Test ( IVA-CPT) of 95 attention deficit hyperactivity disorder subjects were preprocessed by Independent Evaluation Criterion for Binary Classification. Then, the importance of selected features in the classification of desired outputs was evaluated using the artificial neural network. Findings uncovered the highest rank of QEEG features in each IVA-CPT parameters related to attention and response control. Using the designed model could help therapists to determine the existence or absence of defects in attention and response control relying on QEEG.
Learning and Recognition of Clothing Genres From Full-Body Images.
Hidayati, Shintami C; You, Chuang-Wen; Cheng, Wen-Huang; Hua, Kai-Lung
2018-05-01
According to the theory of clothing design, the genres of clothes can be recognized based on a set of visually differentiable style elements, which exhibit salient features of visual appearance and reflect high-level fashion styles for better describing clothing genres. Instead of using less-discriminative low-level features or ambiguous keywords to identify clothing genres, we proposed a novel approach for automatically classifying clothing genres based on the visually differentiable style elements. A set of style elements, that are crucial for recognizing specific visual styles of clothing genres, were identified based on the clothing design theory. In addition, the corresponding salient visual features of each style element were identified and formulated with variables that can be computationally derived with various computer vision algorithms. To evaluate the performance of our algorithm, a dataset containing 3250 full-body shots crawled from popular online stores was built. Recognition results show that our proposed algorithms achieved promising overall precision, recall, and -score of 88.76%, 88.53%, and 88.64% for recognizing upperwear genres, and 88.21%, 88.17%, and 88.19% for recognizing lowerwear genres, respectively. The effectiveness of each style element and its visual features on recognizing clothing genres was demonstrated through a set of experiments involving different sets of style elements or features. In summary, our experimental results demonstrate the effectiveness of the proposed method in clothing genre recognition.
How Object-Specific Are Object Files? Evidence for Integration by Location
ERIC Educational Resources Information Center
van Dam, Wessel O.; Hommel, Bernhard
2010-01-01
Given the distributed representation of visual features in the human brain, binding mechanisms are necessary to integrate visual information about the same perceptual event. It has been assumed that feature codes are bound into object files--pointers to the neural codes of the features of a given event. The present study investigated the…
Visual Typo Correction by Collocative Optimization: A Case Study on Merchandize Images.
Wei, Xiao-Yong; Yang, Zhen-Qun; Ngo, Chong-Wah; Zhang, Wei
2014-02-01
Near-duplicate retrieval (NDR) in merchandize images is of great importance to a lot of online applications on e-Commerce websites. In those applications where the requirement of response time is critical, however, the conventional techniques developed for a general purpose NDR are limited, because expensive post-processing like spatial verification or hashing is usually employed to compromise the quantization errors among the visual words used for the images. In this paper, we argue that most of the errors are introduced because of the quantization process where the visual words are considered individually, which has ignored the contextual relations among words. We propose a "spelling or phrase correction" like process for NDR, which extends the concept of collocations to visual domain for modeling the contextual relations. Binary quadratic programming is used to enforce the contextual consistency of words selected for an image, so that the errors (typos) are eliminated and the quality of the quantization process is improved. The experimental results show that the proposed method can improve the efficiency of NDR by reducing vocabulary size by 1000% times, and under the scenario of merchandize image NDR, the expensive local interest point feature used in conventional approaches can be replaced by color-moment feature, which reduces the time cost by 9202% while maintaining comparable performance to the state-of-the-art methods.
Visual Aggregate Analysis of Eligibility Features of Clinical Trials
He, Zhe; Carini, Simona; Sim, Ida; Weng, Chunhua
2015-01-01
Objective To develop a method for profiling the collective populations targeted for recruitment by multiple clinical studies addressing the same medical condition using one eligibility feature each time. Methods Using a previously published database COMPACT as the backend, we designed a scalable method for visual aggregate analysis of clinical trial eligibility features. This method consists of four modules for eligibility feature frequency analysis, query builder, distribution analysis, and visualization, respectively. This method is capable of analyzing (1) frequently used qualitative and quantitative features for recruiting subjects for a selected medical condition, (2) distribution of study enrollment on consecutive value points or value intervals of each quantitative feature, and (3) distribution of studies on the boundary values, permissible value ranges, and value range widths of each feature. All analysis results were visualized using Google Charts API. Five recruited potential users assessed the usefulness of this method for identifying common patterns in any selected eligibility feature for clinical trial participant selection. Results We implemented this method as a Web-based analytical system called VITTA (Visual Analysis Tool of Clinical Study Target Populations). We illustrated the functionality of VITTA using two sample queries involving quantitative features BMI and HbA1c for conditions “hypertension” and “Type 2 diabetes”, respectively. The recruited potential users rated the user-perceived usefulness of VITTA with an average score of 86.4/100. Conclusions We contributed a novel aggregate analysis method to enable the interrogation of common patterns in quantitative eligibility criteria and the collective target populations of multiple related clinical studies. A larger-scale study is warranted to formally assess the usefulness of VITTA among clinical investigators and sponsors in various therapeutic areas. PMID:25615940
Visual aggregate analysis of eligibility features of clinical trials.
He, Zhe; Carini, Simona; Sim, Ida; Weng, Chunhua
2015-04-01
To develop a method for profiling the collective populations targeted for recruitment by multiple clinical studies addressing the same medical condition using one eligibility feature each time. Using a previously published database COMPACT as the backend, we designed a scalable method for visual aggregate analysis of clinical trial eligibility features. This method consists of four modules for eligibility feature frequency analysis, query builder, distribution analysis, and visualization, respectively. This method is capable of analyzing (1) frequently used qualitative and quantitative features for recruiting subjects for a selected medical condition, (2) distribution of study enrollment on consecutive value points or value intervals of each quantitative feature, and (3) distribution of studies on the boundary values, permissible value ranges, and value range widths of each feature. All analysis results were visualized using Google Charts API. Five recruited potential users assessed the usefulness of this method for identifying common patterns in any selected eligibility feature for clinical trial participant selection. We implemented this method as a Web-based analytical system called VITTA (Visual Analysis Tool of Clinical Study Target Populations). We illustrated the functionality of VITTA using two sample queries involving quantitative features BMI and HbA1c for conditions "hypertension" and "Type 2 diabetes", respectively. The recruited potential users rated the user-perceived usefulness of VITTA with an average score of 86.4/100. We contributed a novel aggregate analysis method to enable the interrogation of common patterns in quantitative eligibility criteria and the collective target populations of multiple related clinical studies. A larger-scale study is warranted to formally assess the usefulness of VITTA among clinical investigators and sponsors in various therapeutic areas. Copyright © 2015 Elsevier Inc. All rights reserved.
Neural evidence reveals the rapid effects of reward history on selective attention.
MacLean, Mary H; Giesbrecht, Barry
2015-05-05
Selective attention is often framed as being primarily driven by two factors: task-relevance and physical salience. However, factors like selection and reward history, which are neither currently task-relevant nor physically salient, can reliably and persistently influence visual selective attention. The current study investigated the nature of the persistent effects of irrelevant, physically non-salient, reward-associated features. These features affected one of the earliest reliable neural indicators of visual selective attention in humans, the P1 event-related potential, measured one week after the reward associations were learned. However, the effects of reward history were moderated by current task demands. The modulation of visually evoked activity supports the hypothesis that reward history influences the innate salience of reward associated features, such that even when no longer relevant, nor physically salient, these features have a rapid, persistent, and robust effect on early visual selective attention. Copyright © 2015 Elsevier B.V. All rights reserved.
A computational visual saliency model based on statistics and machine learning.
Lin, Ru-Je; Lin, Wei-Song
2014-08-01
Identifying the type of stimuli that attracts human visual attention has been an appealing topic for scientists for many years. In particular, marking the salient regions in images is useful for both psychologists and many computer vision applications. In this paper, we propose a computational approach for producing saliency maps using statistics and machine learning methods. Based on four assumptions, three properties (Feature-Prior, Position-Prior, and Feature-Distribution) can be derived and combined by a simple intersection operation to obtain a saliency map. These properties are implemented by a similarity computation, support vector regression (SVR) technique, statistical analysis of training samples, and information theory using low-level features. This technique is able to learn the preferences of human visual behavior while simultaneously considering feature uniqueness. Experimental results show that our approach performs better in predicting human visual attention regions than 12 other models in two test databases. © 2014 ARVO.
Mendoza-Halliday, Diego; Martinez-Trujillo, Julio C.
2017-01-01
The primate lateral prefrontal cortex (LPFC) encodes visual stimulus features while they are perceived and while they are maintained in working memory. However, it remains unclear whether perceived and memorized features are encoded by the same or different neurons and population activity patterns. Here we record LPFC neuronal activity while monkeys perceive the motion direction of a stimulus that remains visually available, or memorize the direction if the stimulus disappears. We find neurons with a wide variety of combinations of coding strength for perceived and memorized directions: some neurons encode both to similar degrees while others preferentially or exclusively encode either one. Reading out the combined activity of all neurons, a machine-learning algorithm reliably decode the motion direction and determine whether it is perceived or memorized. Our results indicate that a functionally diverse population of LPFC neurons provides a substrate for discriminating between perceptual and mnemonic representations of visual features. PMID:28569756
Relationship between visual binding, reentry and awareness.
Koivisto, Mika; Silvanto, Juha
2011-12-01
Visual feature binding has been suggested to depend on reentrant processing. We addressed the relationship between binding, reentry, and visual awareness by asking the participants to discriminate the color and orientation of a colored bar (presented either alone or simultaneously with a white distractor bar) and to report their phenomenal awareness of the target features. The success of reentry was manipulated with object substitution masking and backward masking. The results showed that late reentrant processes are necessary for successful binding but not for phenomenal awareness of the bound features. Binding errors were accompanied by phenomenal awareness of the misbound feature conjunctions, demonstrating that they were experienced as real properties of the stimuli (i.e., illusory conjunctions). Our results suggest that early preattentive binding and local recurrent processing enable features to reach phenomenal awareness, while later attention-related reentrant iterations modulate the way in which the features are bound and experienced in awareness. Copyright © 2011 Elsevier Inc. All rights reserved.
Crack Damage Detection Method via Multiple Visual Features and Efficient Multi-Task Learning Model.
Wang, Baoxian; Zhao, Weigang; Gao, Po; Zhang, Yufeng; Wang, Zhe
2018-06-02
This paper proposes an effective and efficient model for concrete crack detection. The presented work consists of two modules: multi-view image feature extraction and multi-task crack region detection. Specifically, multiple visual features (such as texture, edge, etc.) of image regions are calculated, which can suppress various background noises (such as illumination, pockmark, stripe, blurring, etc.). With the computed multiple visual features, a novel crack region detector is advocated using a multi-task learning framework, which involves restraining the variability for different crack region features and emphasizing the separability between crack region features and complex background ones. Furthermore, the extreme learning machine is utilized to construct this multi-task learning model, thereby leading to high computing efficiency and good generalization. Experimental results of the practical concrete images demonstrate that the developed algorithm can achieve favorable crack detection performance compared with traditional crack detectors.
Preattentive binding of auditory and visual stimulus features.
Winkler, István; Czigler, István; Sussman, Elyse; Horváth, János; Balázs, Lászlo
2005-02-01
We investigated the role of attention in feature binding in the auditory and the visual modality. One auditory and one visual experiment used the mismatch negativity (MMN and vMMN, respectively) event-related potential to index the memory representations created from stimulus sequences, which were either task-relevant and, therefore, attended or task-irrelevant and ignored. In the latter case, the primary task was a continuous demanding within-modality task. The test sequences were composed of two frequently occurring stimuli, which differed from each other in two stimulus features (standard stimuli) and two infrequently occurring stimuli (deviants), which combined one feature from one standard stimulus with the other feature of the other standard stimulus. Deviant stimuli elicited MMN responses of similar parameters across the different attentional conditions. These results suggest that the memory representations involved in the MMN deviance detection response encoded the frequently occurring feature combinations whether or not the test sequences were attended. A possible alternative to the memory-based interpretation of the visual results, the elicitation of the McCollough color-contingent aftereffect, was ruled out by the results of our third experiment. The current results are compared with those supporting the attentive feature integration theory. We conclude that (1) with comparable stimulus paradigms, similar results have been obtained in the two modalities, (2) there exist preattentive processes of feature binding, however, (3) conjoining features within rich arrays of objects under time pressure and/or longterm retention of the feature-conjoined memory representations may require attentive processes.
CheS-Mapper 2.0 for visual validation of (Q)SAR models
2014-01-01
Background Sound statistical validation is important to evaluate and compare the overall performance of (Q)SAR models. However, classical validation does not support the user in better understanding the properties of the model or the underlying data. Even though, a number of visualization tools for analyzing (Q)SAR information in small molecule datasets exist, integrated visualization methods that allow the investigation of model validation results are still lacking. Results We propose visual validation, as an approach for the graphical inspection of (Q)SAR model validation results. The approach applies the 3D viewer CheS-Mapper, an open-source application for the exploration of small molecules in virtual 3D space. The present work describes the new functionalities in CheS-Mapper 2.0, that facilitate the analysis of (Q)SAR information and allows the visual validation of (Q)SAR models. The tool enables the comparison of model predictions to the actual activity in feature space. The approach is generic: It is model-independent and can handle physico-chemical and structural input features as well as quantitative and qualitative endpoints. Conclusions Visual validation with CheS-Mapper enables analyzing (Q)SAR information in the data and indicates how this information is employed by the (Q)SAR model. It reveals, if the endpoint is modeled too specific or too generic and highlights common properties of misclassified compounds. Moreover, the researcher can use CheS-Mapper to inspect how the (Q)SAR model predicts activity cliffs. The CheS-Mapper software is freely available at http://ches-mapper.org. Graphical abstract Comparing actual and predicted activity values with CheS-Mapper.
The role of attention in item-item binding in visual working memory.
Peterson, Dwight J; Naveh-Benjamin, Moshe
2017-09-01
An important yet unresolved question regarding visual working memory (VWM) relates to whether or not binding processes within VWM require additional attentional resources compared with processing solely the individual components comprising these bindings. Previous findings indicate that binding of surface features (e.g., colored shapes) within VWM is not demanding of resources beyond what is required for single features. However, it is possible that other types of binding, such as the binding of complex, distinct items (e.g., faces and scenes), in VWM may require additional resources. In 3 experiments, we examined VWM item-item binding performance under no load, articulatory suppression, and backward counting using a modified change detection task. Binding performance declined to a greater extent than single-item performance under higher compared with lower levels of concurrent load. The findings from each of these experiments indicate that processing item-item bindings within VWM requires a greater amount of attentional resources compared with single items. These findings also highlight an important distinction between the role of attention in item-item binding within VWM and previous studies of long-term memory (LTM) where declines in single-item and binding test performance are similar under divided attention. The current findings provide novel evidence that the specific type of binding is an important determining factor regarding whether or not VWM binding processes require attention. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Contini, Erika W; Wardle, Susan G; Carlson, Thomas A
2017-10-01
Visual object recognition is a complex, dynamic process. Multivariate pattern analysis methods, such as decoding, have begun to reveal how the brain processes complex visual information. Recently, temporal decoding methods for EEG and MEG have offered the potential to evaluate the temporal dynamics of object recognition. Here we review the contribution of M/EEG time-series decoding methods to understanding visual object recognition in the human brain. Consistent with the current understanding of the visual processing hierarchy, low-level visual features dominate decodable object representations early in the time-course, with more abstract representations related to object category emerging later. A key finding is that the time-course of object processing is highly dynamic and rapidly evolving, with limited temporal generalisation of decodable information. Several studies have examined the emergence of object category structure, and we consider to what degree category decoding can be explained by sensitivity to low-level visual features. Finally, we evaluate recent work attempting to link human behaviour to the neural time-course of object processing. Copyright © 2017 Elsevier Ltd. All rights reserved.
Optical security features for plastic card documents
NASA Astrophysics Data System (ADS)
Hossick Schott, Joachim
1998-04-01
Print-on-demand is currently a major trend in the production of paper based documents. This fully digital production philosophy will likely have ramifications also for the secure identification document market. Here, plastic cards increasingly replace traditionally paper based security sensitive documents such as drivers licenses and passports. The information content of plastic cards can be made highly secure by using chip cards. However, printed and other optical security features will continue to play an important role, both for machine readable and visual inspection. Therefore, on-demand high resolution print technologies, laser engraving, luminescent pigments and laminated features such as holograms, kinegrams or phase gratings will have to be considered for the production of secure identification documents. Very important are also basic optical, surface and material durability properties of the laminates as well as the strength and nature of the adhesion between the layers. This presentation will address some of the specific problems encountered when optical security features such as high resolution printing and laser engraving are to be integrated in the on-demand production of secure plastic card identification documents.
Use of a twin dataset to identify AMD-related visual patterns controlled by genetic factors
NASA Astrophysics Data System (ADS)
Quellec, Gwénolé; Abràmoff, Michael D.; Russell, Stephen R.
2010-03-01
The mapping of genotype to the phenotype of age-related macular degeneration (AMD) is expected to improve the diagnosis and treatment of the disease in a near future. In this study, we focused on the first step to discover this mapping: we identified visual patterns related to AMD which seem to be controlled by genetic factors, without explicitly relating them to the genes. For this purpose, we used a dataset of eye fundus photographs from 74 twin pairs, either monozygotic twins, who have the same genotype, or dizygotic twins, whose genes responsible for AMD are less likely to be identical. If we are able to differentiate monozygotic twins from dizygotic twins, based on a given visual pattern, then this pattern is likely to be controlled by genetic factors. The main visible consequence of AMD is the apparition of drusen between the retinal pigment epithelium and Bruch's membrane. We developed two automated drusen detectors based on the wavelet transform: a shape-based detector for hard drusen, and a texture- and color- based detector for soft drusen. Forty visual features were evaluated at the location of the automatically detected drusen. These features characterize the texture, the shape, the color, the spatial distribution, or the amount of drusen. A distance measure between twin pairs was defined for each visual feature; a smaller distance should be measured between monozygotic twins for visual features controlled by genetic factors. The predictions of several visual features (75.7% accuracy) are comparable or better than the predictions of human experts.
Eguchi, Akihiro; Isbister, James B; Ahmad, Nasir; Stringer, Simon
2018-07-01
We present a hierarchical neural network model, in which subpopulations of neurons develop fixed and regularly repeating temporal chains of spikes (polychronization), which respond specifically to randomized Poisson spike trains representing the input training images. The performance is improved by including top-down and lateral synaptic connections, as well as introducing multiple synaptic contacts between each pair of pre- and postsynaptic neurons, with different synaptic contacts having different axonal delays. Spike-timing-dependent plasticity thus allows the model to select the most effective axonal transmission delay between neurons. Furthermore, neurons representing the binding relationship between low-level and high-level visual features emerge through visually guided learning. This begins to provide a way forward to solving the classic feature binding problem in visual neuroscience and leads to a new hypothesis concerning how information about visual features at every spatial scale may be projected upward through successive neuronal layers. We name this hypothetical upward projection of information the "holographic principle." (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Lingley, Alexander J; Bowdridge, Joshua C; Farivar, Reza; Duffy, Kevin R
2018-04-30
A single histological marker applied to a slice of tissue often reveals myriad cytoarchitectonic characteristics that can obscure differences between neuron populations targeted for study. Isolation and measurement of a single feature from the tissue is possible through a variety of approaches, however, visualizing the data numerically or through graphs alone can preclude being able to identify important features and effects that are not obvious from direct observation of the tissue. We demonstrate an efficient, effective, and robust approach to quantify and visualize cytoarchitectural features in histologically prepared brain sections. We demonstrate that this approach is able to reveal small differences between populations of neurons that might otherwise have gone undiscovered. We used stereological methods to record the cross-sectional soma area and in situ position of neurons within sections of the cat, monkey, and human visual system. The two-dimensional coordinate of every measured cell was used to produce a scatter plot that recapitulated the natural spatial distribution of cells, and each point in the plot was color-coded according to its respective soma area. The final graphic display was a multi-dimensional map of neuron soma size that revealed subtle differences across neuron aggregations, permitted delineation of regional boundaries, and identified small differences between populations of neurons modified by a period of sensory deprivation. This approach to collecting and displaying cytoarchitectonic data is simple, efficient, and provides a means of investigating small differences between neuron populations. Copyright © 2018. Published by Elsevier B.V.
Politi, Mary C; Kaphingst, Kimberly A; Liu, Jingxia Esther; Perkins, Hannah; Furtado, Karishma; Kreuter, Matthew W; Shacham, Enbal; McBride, Timothy
2016-10-01
The Affordable Care Act allows uninsured individuals to select health insurance from numerous private plans, a challenging decision-making process. This study examined the effectiveness of strategies to support health insurance decisions among the uninsured. Participants (N = 343) from urban, suburban, and rural areas were randomized to 1 of 3 conditions: 1) a plain language table; 2) a visual condition where participants chose what information to view and in what order; and 3) a narrative condition. We administered measures assessing knowledge (true/false responses about key features of health insurance), confidence in choices (uncertainty subscale of the Decisional Conflict Scale), satisfaction (items from the Health Information National Trends Survey), preferences for insurance features (measured on a Likert scale from not at all important to very important), and plan choice. Although we did not find significant differences in knowledge, confidence in choice, or satisfaction across condition, participants across conditions made value-consistent choices, selecting plans that aligned with their preferences for key insurance features. In addition, those with adequate health literacy skills as measured by the Rapid Estimate of Adult Literacy in Medicine-Short Form (REALM-SF) had higher knowledge overall ([Formula: see text] = 6.1 v. 4.8, P < 0.001) and preferred the plain language table to the visual (P = 0.04) and visual to narrative (P = 0.0002) conditions, while those with inadequate health literacy skills showed no preference for study condition. A similar pattern was seen for those with higher subjective numeracy skills and higher versus lower education with regard to health insurance knowledge. Individuals with higher income felt less confident in their choices ([Formula: see text] = 28.7 v. 10.0, where higher numbers indicate less confidence/more uncertainty; P = 0.004). Those developing materials about the health insurance marketplace to support health insurance decisions might consider starting with plain language tables, presenting health insurance terminology in context, and organizing information according to ways the uninsured might use and value insurance features. Individuals with limited health literacy and numeracy skills and those with lower education face unique challenges selecting health insurance and weighing tradeoffs between cost and coverage. © The Author(s) 2015.
A prototype feature system for feature retrieval using relationships
Choi, J.; Usery, E.L.
2009-01-01
Using a feature data model, geographic phenomena can be represented effectively by integrating space, theme, and time. This paper extends and implements a feature data model that supports query and visualization of geographic features using their non-spatial and temporal relationships. A prototype feature-oriented geographic information system (FOGIS) is then developed and storage of features named Feature Database is designed. Buildings from the U.S. Marine Corps Base, Camp Lejeune, North Carolina and subways in Chicago, Illinois are used to test the developed system. The results of the applications show the strength of the feature data model and the developed system 'FOGIS' when they utilize non-spatial and temporal relationships in order to retrieve and visualize individual features.
Interactive Medical Volume Visualization for Surgical Operations
2001-10-25
the preprocessing and processing stages, related medical brain tissues, which are skull, white matter, gray matter and pathology ( tumor ), are segmented ...from 12 or 16 bit data depths. NMR segmentation plays an important role in our work, because, classifying brain tissues from NMR slices requires an...performing segmentation of brain structures. Our segmentation process uses Self Organizing Feature Maps (SOFM) [12]. In SOM, on the contrary to Feedback
ViA: a perceptual visualization assistant
NASA Astrophysics Data System (ADS)
Healey, Chris G.; St. Amant, Robert; Elhaddad, Mahmoud S.
2000-05-01
This paper describes an automated visualized assistant called ViA. ViA is designed to help users construct perceptually optical visualizations to represent, explore, and analyze large, complex, multidimensional datasets. We have approached this problem by studying what is known about the control of human visual attention. By harnessing the low-level human visual system, we can support our dual goals of rapid and accurate visualization. Perceptual guidelines that we have built using psychophysical experiments form the basis for ViA. ViA uses modified mixed-initiative planning algorithms from artificial intelligence to search of perceptually optical data attribute to visual feature mappings. Our perceptual guidelines are integrated into evaluation engines that provide evaluation weights for a given data-feature mapping, and hints on how that mapping might be improved. ViA begins by asking users a set of simple questions about their dataset and the analysis tasks they want to perform. Answers to these questions are used in combination with the evaluation engines to identify and intelligently pursue promising data-feature mappings. The result is an automatically-generated set of mappings that are perceptually salient, but that also respect the context of the dataset and users' preferences about how they want to visualize their data.
Contextual effects on perceived contrast: figure-ground assignment and orientation contrast.
Self, Matthew W; Mookhoek, Aart; Tjalma, Nienke; Roelfsema, Pieter R
2015-02-02
Figure-ground segregation is an important step in the path leading to object recognition. The visual system segregates objects ('figures') in the visual scene from their backgrounds ('ground'). Electrophysiological studies in awake-behaving monkeys have demonstrated that neurons in early visual areas increase their firing rate when responding to a figure compared to responding to the background. We hypothesized that similar changes in neural firing would take place in early visual areas of the human visual system, leading to changes in the perception of low-level visual features. In this study, we investigated whether contrast perception is affected by figure-ground assignment using stimuli similar to those in the electrophysiological studies in monkeys. We measured contrast discrimination thresholds and perceived contrast for Gabor probes placed on figures or the background and found that the perceived contrast of the probe was increased when it was placed on a figure. Furthermore, we tested how this effect compared with the well-known effect of orientation contrast on perceived contrast. We found that figure-ground assignment and orientation contrast produced changes in perceived contrast of a similar magnitude, and that they interacted. Our results demonstrate that figure-ground assignment influences perceived contrast, consistent with an effect of figure-ground assignment on activity in early visual areas of the human visual system. © 2015 ARVO.
Richman, Nadia I.; Gibbons, James M.; Turvey, Samuel T.; Akamatsu, Tomonari; Ahmed, Benazir; Mahabub, Emile; Smith, Brian D.; Jones, Julia P. G.
2014-01-01
Detection of animals during visual surveys is rarely perfect or constant, and failure to account for imperfect detectability affects the accuracy of abundance estimates. Freshwater cetaceans are among the most threatened group of mammals, and visual surveys are a commonly employed method for estimating population size despite concerns over imperfect and unquantified detectability. We used a combined visual-acoustic survey to estimate detectability of Ganges River dolphins (Platanista gangetica gangetica) in four waterways of southern Bangladesh. The combined visual-acoustic survey resulted in consistently higher detectability than a single observer-team visual survey, thereby improving power to detect trends. Visual detectability was particularly low for dolphins close to meanders where these habitat features temporarily block the view of the preceding river surface. This systematic bias in detectability during visual-only surveys may lead researchers to underestimate the importance of heavily meandering river reaches. Although the benefits of acoustic surveys are increasingly recognised for marine cetaceans, they have not been widely used for monitoring abundance of freshwater cetaceans due to perceived costs and technical skill requirements. We show that acoustic surveys are in fact a relatively cost-effective approach for surveying freshwater cetaceans, once it is acknowledged that methods that do not account for imperfect detectability are of limited value for monitoring. PMID:24805782
Richman, Nadia I; Gibbons, James M; Turvey, Samuel T; Akamatsu, Tomonari; Ahmed, Benazir; Mahabub, Emile; Smith, Brian D; Jones, Julia P G
2014-01-01
Detection of animals during visual surveys is rarely perfect or constant, and failure to account for imperfect detectability affects the accuracy of abundance estimates. Freshwater cetaceans are among the most threatened group of mammals, and visual surveys are a commonly employed method for estimating population size despite concerns over imperfect and unquantified detectability. We used a combined visual-acoustic survey to estimate detectability of Ganges River dolphins (Platanista gangetica gangetica) in four waterways of southern Bangladesh. The combined visual-acoustic survey resulted in consistently higher detectability than a single observer-team visual survey, thereby improving power to detect trends. Visual detectability was particularly low for dolphins close to meanders where these habitat features temporarily block the view of the preceding river surface. This systematic bias in detectability during visual-only surveys may lead researchers to underestimate the importance of heavily meandering river reaches. Although the benefits of acoustic surveys are increasingly recognised for marine cetaceans, they have not been widely used for monitoring abundance of freshwater cetaceans due to perceived costs and technical skill requirements. We show that acoustic surveys are in fact a relatively cost-effective approach for surveying freshwater cetaceans, once it is acknowledged that methods that do not account for imperfect detectability are of limited value for monitoring.
The Benefit of Surface Uniformity for Encoding Boundary Features in Visual Working Memory
ERIC Educational Resources Information Center
Kim, Sung-Ho; Kim, Jung-Oh
2011-01-01
Using a change detection paradigm, the present study examined an object-based encoding benefit in visual working memory (VWM) for two boundary features (two orientations in Experiments 1-2 and two shapes in Experiments 3-4) assigned to a single object. Participants remembered more boundary features when they were conjoined into a single object of…
Visual search in Dementia with Lewy Bodies and Alzheimer's disease.
Landy, Kelly M; Salmon, David P; Filoteo, J Vincent; Heindel, William C; Galasko, Douglas; Hamilton, Joanne M
2015-12-01
Visual search is an aspect of visual cognition that may be more impaired in Dementia with Lewy Bodies (DLB) than Alzheimer's disease (AD). To assess this possibility, the present study compared patients with DLB (n = 17), AD (n = 30), or Parkinson's disease with dementia (PDD; n = 10) to non-demented patients with PD (n = 18) and normal control (NC) participants (n = 13) on single-feature and feature-conjunction visual search tasks. In the single-feature task participants had to determine if a target stimulus (i.e., a black dot) was present among 3, 6, or 12 distractor stimuli (i.e., white dots) that differed in one salient feature. In the feature-conjunction task participants had to determine if a target stimulus (i.e., a black circle) was present among 3, 6, or 12 distractor stimuli (i.e., white dots and black squares) that shared either of the target's salient features. Results showed that target detection time in the single-feature task was not influenced by the number of distractors (i.e., "pop-out" effect) for any of the groups. In contrast, target detection time increased as the number of distractors increased in the feature-conjunction task for all groups, but more so for patients with AD or DLB than for any of the other groups. These results suggest that the single-feature search "pop-out" effect is preserved in DLB and AD patients, whereas ability to perform the feature-conjunction search is impaired. This pattern of preserved single-feature search with impaired feature-conjunction search is consistent with a deficit in feature binding that may be mediated by abnormalities in networks involving the dorsal occipito-parietal cortex. Copyright © 2015 Elsevier Ltd. All rights reserved.
Visual Search in Dementia with Lewy Bodies and Alzheimer’s Disease
Landy, Kelly M.; Salmon, David P.; Filoteo, J. Vincent; Heindel, William C.; Galasko, Douglas; Hamilton, Joanne M.
2016-01-01
Visual search is an aspect of visual cognition that may be more impaired in Dementia with Lewy Bodies (DLB) than Alzheimer’s disease (AD). To assess this possibility, the present study compared patients with DLB (n=17), AD (n=30), or Parkinson’s disease with dementia (PDD; n=10) to non-demented patients with PD (n=18) and normal control (NC) participants (n=13) on single-feature and feature-conjunction visual search tasks. In the single-feature task participants had to determine if a target stimulus (i.e., a black dot) was present among 3, 6, or 12 distractor stimuli (i.e., white dots) that differed in one salient feature. In the feature-conjunction task participants had to determine if a target stimulus (i.e., a black circle) was present among 3, 6, or 12 distractor stimuli (i.e., white dots and black squares) that shared either of the target’s salient features. Results showed that target detection time in the single-feature task was not influenced by the number of distractors (i.e., “pop-out” effect) for any of the groups. In contrast, target detection time increased as the number of distractors increased in the feature-conjunction task for all groups, but more so for patients with AD or DLB than for any of the other groups. These results suggest that the single-feature search “pop-out” effect is preserved in DLB and AD patients, whereas ability to perform the feature-conjunction search is impaired. This pattern of preserved single-feature search with impaired feature-conjunction search is consistent with a deficit in feature binding that may be mediated by abnormalities in networks involving the dorsal occipito-parietal cortex. PMID:26476402
Cong, Lin-Juan; Wang, Ru-Jie; Yu, Cong; Zhang, Jun-Yun
2016-01-01
Visual perceptual learning is known to be specific to the trained retinal location, feature, and task. However, location and feature specificity can be eliminated by double-training or TPE training protocols, in which observers receive additional exposure to the transfer location or feature dimension via an irrelevant task besides the primary learning task Here we tested whether these new training protocols could even make learning transfer across different tasks involving discrimination of basic visual features (e.g., orientation and contrast). Observers practiced a near-threshold orientation (or contrast) discrimination task. Following a TPE training protocol, they also received exposure to the transfer task via performing suprathreshold contrast (or orientation) discrimination in alternating blocks of trials in the same sessions. The results showed no evidence for significant learning transfer to the untrained near-threshold contrast (or orientation) discrimination task after discounting the pretest effects and the suprathreshold practice effects. These results thus do not support a hypothetical task-independent component in perceptual learning of basic visual features. They also set the boundary of the new training protocols in their capability to enable learning transfer. PMID:26873777
Feature-selective attention enhances color signals in early visual areas of the human brain.
Müller, M M; Andersen, S; Trujillo, N J; Valdés-Sosa, P; Malinowski, P; Hillyard, S A
2006-09-19
We used an electrophysiological measure of selective stimulus processing (the steady-state visual evoked potential, SSVEP) to investigate feature-specific attention to color cues. Subjects viewed a display consisting of spatially intermingled red and blue dots that continually shifted their positions at random. The red and blue dots flickered at different frequencies and thereby elicited distinguishable SSVEP signals in the visual cortex. Paying attention selectively to either the red or blue dot population produced an enhanced amplitude of its frequency-tagged SSVEP, which was localized by source modeling to early levels of the visual cortex. A control experiment showed that this selection was based on color rather than flicker frequency cues. This signal amplification of attended color items provides an empirical basis for the rapid identification of feature conjunctions during visual search, as proposed by "guided search" models.
Girman, S V; Lund, R D
2007-07-01
The uppermost layer (stratum griseum superficiale, SGS) of the superior colliculus (SC) provides an important gateway from the retina to the visual extrastriate and visuomotor systems. The majority of attention has been given to the role of this "visual" SC in saccade generation and target selection and it is generally considered to be less important in visual perception. We have found, however, that in the rat SGS1, the most superficial division of the SGS, the neurons perform very sophisticated analysis of visual information. First, in studying their responses with a variety of flashing stimuli we found that the neurons respond not to brightness changes per se, but to the appearance and/or disappearance of visual shapes in their receptive fields (RFs). Contrary to conventional RFs of neurons at the early stages of visual processing, the RFs in SGS1 cannot be described in terms of fixed spatial distribution of excitatory and inhibitory inputs. Second, SGS1 neurons showed robust orientation tuning to drifting gratings and orientation-specific modulation of the center response from surround. These are features previously seen only in visual cortical neurons and are considered to be involved in "contour" perception and figure-ground segregation. Third, responses of SGS1 neurons showed complex dynamics; typically the response tuning became progressively sharpened with repetitive grating periods. We conclude that SGS1 neurons are involved in considerably more complex analysis of retinal input than was previously thought. SGS1 may participate in early stages of figure-ground segregation and have a role in low-resolution nonconscious vision as encountered after visual decortication.
Assessment of visual landscape quality using IKONOS imagery.
Ozkan, Ulas Yunus
2014-07-01
The assessment of visual landscape quality is of importance to the management of urban woodlands. Satellite remote sensing may be used for this purpose as a substitute for traditional survey techniques that are both labour-intensive and time-consuming. This study examines the association between the quality of the perceived visual landscape in urban woodlands and texture measures extracted from IKONOS satellite data, which features 4-m spatial resolution and four spectral bands. The study was conducted in the woodlands of Istanbul (the most important element of urban mosaic) lying along both shores of the Bosporus Strait. The visual quality assessment applied in this study is based on the perceptual approach and was performed via a survey of expressed preferences. For this purpose, representative photographs of real scenery were used to elicit observers' preferences. A slide show comprising 33 images was presented to a group of 153 volunteers (all undergraduate students), and they were asked to rate the visual quality of each on a 10-point scale (1 for very low visual quality, 10 for very high). Average visual quality scores were calculated for landscape. Texture measures were acquired using the two methods: pixel-based and object-based. Pixel-based texture measures were extracted from the first principle component (PC1) image. Object-based texture measures were extracted by using the original four bands. The association between image texture measures and perceived visual landscape quality was tested via Pearson's correlation coefficient. The analysis found a strong linear association between image texture measures and visual quality. The highest correlation coefficient was calculated between standard deviation of gray levels (SDGL) (one of the pixel-based texture measures) and visual quality (r = 0.82, P < 0.05). The results showed that perceived visual quality of urban woodland landscapes can be estimated by using texture measures extracted from satellite data in combination with appropriate modelling techniques.
Snyder, Adam C.; Foxe, John J.
2010-01-01
Retinotopically specific increases in alpha-band (~10 Hz) oscillatory power have been strongly implicated in the suppression of processing for irrelevant parts of the visual field during the deployment of visuospatial attention. Here, we asked whether this alpha suppression mechanism also plays a role in the nonspatial anticipatory biasing of feature-based attention. Visual word cues informed subjects what the task-relevant feature of an upcoming visual stimulus (S2) was, while high-density electroencephalographic recordings were acquired. We examined anticipatory oscillatory activity in the Cue-to-S2 interval (~2 s). Subjects were cued on a trial-by-trial basis to attend to either the color or direction of motion of an upcoming dot field array, and to respond when they detected that a subset of the dots differed from the majority along the target feature dimension. We used the features of color and motion, expressly because they have well known, spatially separated cortical processing areas, to distinguish shifts in alpha power over areas processing each feature. Alpha power from dorsal regions increased when motion was the irrelevant feature (i.e., color was cued), and alpha power from ventral regions increased when color was irrelevant. Thus, alpha-suppression mechanisms appear to operate during feature-based selection in much the same manner as has been shown for space-based attention. PMID:20237273
NASA Astrophysics Data System (ADS)
Cao, Lu; Verbeek, Fons J.
2012-03-01
In computer graphics and visualization, reconstruction of a 3D surface from a point cloud is an important research area. As the surface contains information that can be measured, i.e. expressed in features, the application of surface reconstruction can be potentially important for application in bio-imaging. Opportunities in this application area are the motivation for this study. In the past decade, a number of algorithms for surface reconstruction have been proposed. Generally speaking, these methods can be separated into two categories: i.e., explicit representation and implicit approximation. Most of the aforementioned methods are firmly based in theory; however, so far, no analytical evaluation between these methods has been presented. The straightforward way of evaluation has been by convincing through visual inspection. Through evaluation we search for a method that can precisely preserve the surface characteristics and that is robust in the presence of noise. The outcome will be used to improve reliability in surface reconstruction of biological models. We, therefore, use an analytical approach by selecting features as surface descriptors and measure these features in varying conditions. We selected surface distance, surface area and surface curvature as three major features to compare quality of the surface created by the different algorithms. Our starting point has been ground truth values obtained from analytical shapes such as the sphere and the ellipsoid. In this paper we present four classical surface reconstruction methods from the two categories mentioned above, i.e. the Power Crust, the Robust Cocone, the Fourier-based method and the Poisson reconstruction method. The results obtained from our experiments indicate that Poisson reconstruction method performs the best in the presence of noise.
Label-free visualization of ultrastructural features of artificial synapses via cryo-EM.
Gopalakrishnan, Gopakumar; Yam, Patricia T; Madwar, Carolin; Bostina, Mihnea; Rouiller, Isabelle; Colman, David R; Lennox, R Bruce
2011-12-21
The ultrastructural details of presynapses formed between artificial substrates of submicrometer silica beads and hippocampal neurons are visualized via cryo-electron microscopy (cryo-EM). The silica beads are derivatized by poly-d-lysine or lipid bilayers. Molecular features known to exist at presynapses are clearly present at these artificial synapses, as visualized by cryo-EM. Key synaptic features such as the membrane contact area at synaptic junctions, the presynaptic bouton containing presynaptic vesicles, as well as microtubular structures can be identified. This is the first report of the direct, label-free observation of ultrastructural details of artificial synapses.
An integrative view of storage of low- and high-level visual dimensions in visual short-term memory.
Magen, Hagit
2017-03-01
Efficient performance in an environment filled with complex objects is often achieved through the temporal maintenance of conjunctions of features from multiple dimensions. The most striking finding in the study of binding in visual short-term memory (VSTM) is equal memory performance for single features and for integrated multi-feature objects, a finding that has been central to several theories of VSTM. Nevertheless, research on binding in VSTM focused almost exclusively on low-level features, and little is known about how items from low- and high-level visual dimensions (e.g., colored manmade objects) are maintained simultaneously in VSTM. The present study tested memory for combinations of low-level features and high-level representations. In agreement with previous findings, Experiments 1 and 2 showed decrements in memory performance when non-integrated low- and high-level stimuli were maintained simultaneously compared to maintaining each dimension in isolation. However, contrary to previous findings the results of Experiments 3 and 4 showed decrements in memory performance even when integrated objects of low- and high-level stimuli were maintained in memory, compared to maintaining single-dimension objects. Overall, the results demonstrate that low- and high-level visual dimensions compete for the same limited memory capacity, and offer a more comprehensive view of VSTM.
Wang, Yuan; Bao, Shan; Du, Wenjun; Ye, Zhirui; Sayer, James R
2017-12-01
Visual attention to the driving environment is of great importance for road safety. Eye glance behavior has been used as an indicator of distracted driving. This study examined and quantified drivers' glance patterns and features during distracted driving. Data from an existing naturalistic driving study were used. Entropy rate was calculated and used to assess the randomness associated with drivers' scanning patterns. A glance-transition proportion matrix was defined to quantity visual search patterns transitioning among four main eye glance locations while driving (i.e., forward on-road, phone, mirrors and others). All measurements were calculated within a 5s time window under both cell phone and non-cell phone use conditions. Results of the glance data analyses showed different patterns between distracted and non-distracted driving, featured by a higher entropy rate value and highly biased attention transferring between forward and phone locations during distracted driving. Drivers in general had higher number of glance transitions, and their on-road glance duration was significantly shorter during distracted driving when compared to non-distracted driving. Results suggest that drivers have a higher scanning randomness/disorder level and shift their main attention from surrounding areas towards phone area when engaging in visual-manual tasks. Drivers' visual search patterns during visual-manual distraction with a high scanning randomness and a high proportion of eye glance transitions towards the location of the phone provide insight into driver distraction detection. This will help to inform the design of in-vehicle human-machine interface/systems. Copyright © 2017. Published by Elsevier Ltd.
Feature-based attention: it is all bottom-up priming.
Theeuwes, Jan
2013-10-19
Feature-based attention (FBA) enhances the representation of image characteristics throughout the visual field, a mechanism that is particularly useful when searching for a specific stimulus feature. Even though most theories of visual search implicitly or explicitly assume that FBA is under top-down control, we argue that the role of top-down processing in FBA may be limited. Our review of the literature indicates that all behavioural and neuro-imaging studies investigating FBA suffer from the shortcoming that they cannot rule out an effect of priming. The mere attending to a feature enhances the mandatory processing of that feature across the visual field, an effect that is likely to occur in an automatic, bottom-up way. Studies that have investigated the feasibility of FBA by means of cueing paradigms suggest that the role of top-down processing in FBA is limited (e.g. prepare for red). Instead, the actual processing of the stimulus is needed to cause the mandatory tuning of responses throughout the visual field. We conclude that it is likely that all FBA effects reported previously are the result of bottom-up priming.
Inter-area correlations in the ventral visual pathway reflect feature integration
Freeman, Jeremy; Donner, Tobias H.; Heeger, David J.
2011-01-01
During object perception, the brain integrates simple features into representations of complex objects. A perceptual phenomenon known as visual crowding selectively interferes with this process. Here, we use crowding to characterize a neural correlate of feature integration. Cortical activity was measured with functional magnetic resonance imaging, simultaneously in multiple areas of the ventral visual pathway (V1–V4 and the visual word form area, VWFA, which responds preferentially to familiar letters), while human subjects viewed crowded and uncrowded letters. Temporal correlations between cortical areas were lower for crowded letters than for uncrowded letters, especially between V1 and VWFA. These differences in correlation were retinotopically specific, and persisted when attention was diverted from the letters. But correlation differences were not evident when we substituted the letters with grating patches that were not crowded under our stimulus conditions. We conclude that inter-area correlations reflect feature integration and are disrupted by crowding. We propose that crowding may perturb the transformations between neural representations along the ventral pathway that underlie the integration of features into objects. PMID:21521832
Feature-based attention: it is all bottom-up priming
Theeuwes, Jan
2013-01-01
Feature-based attention (FBA) enhances the representation of image characteristics throughout the visual field, a mechanism that is particularly useful when searching for a specific stimulus feature. Even though most theories of visual search implicitly or explicitly assume that FBA is under top-down control, we argue that the role of top-down processing in FBA may be limited. Our review of the literature indicates that all behavioural and neuro-imaging studies investigating FBA suffer from the shortcoming that they cannot rule out an effect of priming. The mere attending to a feature enhances the mandatory processing of that feature across the visual field, an effect that is likely to occur in an automatic, bottom-up way. Studies that have investigated the feasibility of FBA by means of cueing paradigms suggest that the role of top-down processing in FBA is limited (e.g. prepare for red). Instead, the actual processing of the stimulus is needed to cause the mandatory tuning of responses throughout the visual field. We conclude that it is likely that all FBA effects reported previously are the result of bottom-up priming. PMID:24018717
Caplova, Zuzana; Obertova, Zuzana; Gibelli, Daniele M; De Angelis, Danilo; Mazzarelli, Debora; Sforza, Chiarella; Cattaneo, Cristina
2018-05-01
The use of the physical appearance of the deceased has become more important because the available antemortem information for comparisons may consist only of a physical description and photographs. Twenty-one articles dealing with the identification based on the physiognomic features of the human body were selected for review and were divided into four sections: (i) visual recognition, (ii) specific facial/body areas, (iii) biometrics, and (iv) dental superimposition. While opinions about the reliability of the visual recognition differ, the search showed that it has been used in mass disasters, even without testing its objectivity and reliability. Specific facial areas being explored for the identification of dead; however, their practical use is questioned, similarly to soft biometrics. The emerging dental superimposition seems to be the only standardized and successfully applied method for identification so far. More research is needed into a potential use of the individualizing features, considering that postmortem changes and technical difficulties may affect the identification. © 2017 American Academy of Forensic Sciences.
Decomposition and extraction: a new framework for visual classification.
Fang, Yuqiang; Chen, Qiang; Sun, Lin; Dai, Bin; Yan, Shuicheng
2014-08-01
In this paper, we present a novel framework for visual classification based on hierarchical image decomposition and hybrid midlevel feature extraction. Unlike most midlevel feature learning methods, which focus on the process of coding or pooling, we emphasize that the mechanism of image composition also strongly influences the feature extraction. To effectively explore the image content for the feature extraction, we model a multiplicity feature representation mechanism through meaningful hierarchical image decomposition followed by a fusion step. In particularly, we first propose a new hierarchical image decomposition approach in which each image is decomposed into a series of hierarchical semantical components, i.e, the structure and texture images. Then, different feature extraction schemes can be adopted to match the decomposed structure and texture processes in a dissociative manner. Here, two schemes are explored to produce property related feature representations. One is based on a single-stage network over hand-crafted features and the other is based on a multistage network, which can learn features from raw pixels automatically. Finally, those multiple midlevel features are incorporated by solving a multiple kernel learning task. Extensive experiments are conducted on several challenging data sets for visual classification, and experimental results demonstrate the effectiveness of the proposed method.
Modeling human comprehension of data visualizations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matzen, Laura E.; Haass, Michael Joseph; Divis, Kristin Marie
This project was inspired by two needs. The first is a need for tools to help scientists and engineers to design effective data visualizations for communicating information, whether to the user of a system, an analyst who must make decisions based on complex data, or in the context of a technical report or publication. Most scientists and engineers are not trained in visualization design, and they could benefit from simple metrics to assess how well their visualization's design conveys the intended message. In other words, will the most important information draw the viewer's attention? The second is the need formore » cognition-based metrics for evaluating new types of visualizations created by researchers in the information visualization and visual analytics communities. Evaluating visualizations is difficult even for experts. However, all visualization methods and techniques are intended to exploit the properties of the human visual system to convey information efficiently to a viewer. Thus, developing evaluation methods that are rooted in the scientific knowledge of the human visual system could be a useful approach. In this project, we conducted fundamental research on how humans make sense of abstract data visualizations, and how this process is influenced by their goals and prior experience. We then used that research to develop a new model, the Data Visualization Saliency Model, that can make accurate predictions about which features in an abstract visualization will draw a viewer's attention. The model is an evaluation tool that can address both of the needs described above, supporting both visualization research and Sandia mission needs.« less
ERIC Educational Resources Information Center
Olivers, Christian N. L.; Meijer, Frank; Theeuwes, Jan
2006-01-01
In 7 experiments, the authors explored whether visual attention (the ability to select relevant visual information) and visual working memory (the ability to retain relevant visual information) share the same content representations. The presence of singleton distractors interfered more strongly with a visual search task when it was accompanied by…
A neural measure of precision in visual working memory.
Ester, Edward F; Anderson, David E; Serences, John T; Awh, Edward
2013-05-01
Recent studies suggest that the temporary storage of visual detail in working memory is mediated by sensory recruitment or sustained patterns of stimulus-specific activation within feature-selective regions of visual cortex. According to a strong version of this hypothesis, the relative "quality" of these patterns should determine the clarity of an individual's memory. Here, we provide a direct test of this claim. We used fMRI and a forward encoding model to characterize population-level orientation-selective responses in visual cortex while human participants held an oriented grating in memory. This analysis, which enables a precise quantitative description of multivoxel, population-level activity measured during working memory storage, revealed graded response profiles whose amplitudes were greatest for the remembered orientation and fell monotonically as the angular distance from this orientation increased. Moreover, interparticipant differences in the dispersion-but not the amplitude-of these response profiles were strongly correlated with performance on a concurrent memory recall task. These findings provide important new evidence linking the precision of sustained population-level responses in visual cortex and memory acuity.
NASA Astrophysics Data System (ADS)
Haigang, Sui; Zhina, Song
2016-06-01
Reliably ship detection in optical satellite images has a wide application in both military and civil fields. However, this problem is very difficult in complex backgrounds, such as waves, clouds, and small islands. Aiming at these issues, this paper explores an automatic and robust model for ship detection in large-scale optical satellite images, which relies on detecting statistical signatures of ship targets, in terms of biologically-inspired visual features. This model first selects salient candidate regions across large-scale images by using a mechanism based on biologically-inspired visual features, combined with visual attention model with local binary pattern (CVLBP). Different from traditional studies, the proposed algorithm is high-speed and helpful to focus on the suspected ship areas avoiding the separation step of land and sea. Largearea images are cut into small image chips and analyzed in two complementary ways: Sparse saliency using visual attention model and detail signatures using LBP features, thus accordant with sparseness of ship distribution on images. Then these features are employed to classify each chip as containing ship targets or not, using a support vector machine (SVM). After getting the suspicious areas, there are still some false alarms such as microwaves and small ribbon clouds, thus simple shape and texture analysis are adopted to distinguish between ships and nonships in suspicious areas. Experimental results show the proposed method is insensitive to waves, clouds, illumination and ship size.
Visual search in Alzheimer's disease: a deficiency in processing conjunctions of features.
Tales, A; Butler, S R; Fossey, J; Gilchrist, I D; Jones, R W; Troscianko, T
2002-01-01
Human vision often needs to encode multiple characteristics of many elements of the visual field, for example their lightness and orientation. The paradigm of visual search allows a quantitative assessment of the function of the underlying mechanisms. It measures the ability to detect a target element among a set of distractor elements. We asked whether Alzheimer's disease (AD) patients are particularly affected in one type of search, where the target is defined by a conjunction of features (orientation and lightness) and where performance depends on some shifting of attention. Two non-conjunction control conditions were employed. The first was a pre-attentive, single-feature, "pop-out" task, detecting a vertical target among horizontal distractors. The second was a single-feature, partly attentive task in which the target element was slightly larger than the distractors-a "size" task. This was chosen to have a similar level of attentional load as the conjunction task (for the control group), but lacked the conjunction of two features. In an experiment, 15 AD patients were compared to age-matched controls. The results suggested that AD patients have a particular impairment in the conjunction task but not in the single-feature size or pre-attentive tasks. This may imply that AD particularly affects those mechanisms which compare across more than one feature type, and spares the other systems and is not therefore simply an 'attention-related' impairment. Additionally, these findings show a double dissociation with previous data on visual search in Parkinson's disease (PD), suggesting a different effect of these diseases on the visual pathway.
Attention improves encoding of task-relevant features in the human visual cortex.
Jehee, Janneke F M; Brady, Devin K; Tong, Frank
2011-06-01
When spatial attention is directed toward a particular stimulus, increased activity is commonly observed in corresponding locations of the visual cortex. Does this attentional increase in activity indicate improved processing of all features contained within the attended stimulus, or might spatial attention selectively enhance the features relevant to the observer's task? We used fMRI decoding methods to measure the strength of orientation-selective activity patterns in the human visual cortex while subjects performed either an orientation or contrast discrimination task, involving one of two laterally presented gratings. Greater overall BOLD activation with spatial attention was observed in visual cortical areas V1-V4 for both tasks. However, multivariate pattern analysis revealed that orientation-selective responses were enhanced by attention only when orientation was the task-relevant feature and not when the contrast of the grating had to be attended. In a second experiment, observers discriminated the orientation or color of a specific lateral grating. Here, orientation-selective responses were enhanced in both tasks, but color-selective responses were enhanced only when color was task relevant. In both experiments, task-specific enhancement of feature-selective activity was not confined to the attended stimulus location but instead spread to other locations in the visual field, suggesting the concurrent involvement of a global feature-based attentional mechanism. These results suggest that attention can be remarkably selective in its ability to enhance particular task-relevant features and further reveal that increases in overall BOLD amplitude are not necessarily accompanied by improved processing of stimulus information.
A Spot Reminder System for the Visually Impaired Based on a Smartphone Camera
Takizawa, Hotaka; Orita, Kazunori; Aoyagi, Mayumi; Ezaki, Nobuo; Mizuno, Shinji
2017-01-01
The present paper proposes a smartphone-camera-based system to assist visually impaired users in recalling their memories related to important locations, called spots, that they visited. The memories are recorded as voice memos, which can be played back when the users return to the spots. Spot-to-spot correspondence is determined by image matching based on the scale invariant feature transform. The main contribution of the proposed system is to allow visually impaired users to associate arbitrary voice memos with arbitrary spots. The users do not need any special devices or systems except smartphones and do not need to remember the spots where the voice memos were recorded. In addition, the proposed system can identify spots in environments that are inaccessible to the global positioning system. The proposed system has been evaluated by two experiments: image matching tests and a user study. The experimental results suggested the effectiveness of the system to help visually impaired individuals, including blind individuals, recall information about regularly-visited spots. PMID:28165403
Top-Down Visual Saliency via Joint CRF and Dictionary Learning.
Yang, Jimei; Yang, Ming-Hsuan
2017-03-01
Top-down visual saliency is an important module of visual attention. In this work, we propose a novel top-down saliency model that jointly learns a Conditional Random Field (CRF) and a visual dictionary. The proposed model incorporates a layered structure from top to bottom: CRF, sparse coding and image patches. With sparse coding as an intermediate layer, CRF is learned in a feature-adaptive manner; meanwhile with CRF as the output layer, the dictionary is learned under structured supervision. For efficient and effective joint learning, we develop a max-margin approach via a stochastic gradient descent algorithm. Experimental results on the Graz-02 and PASCAL VOC datasets show that our model performs favorably against state-of-the-art top-down saliency methods for target object localization. In addition, the dictionary update significantly improves the performance of our model. We demonstrate the merits of the proposed top-down saliency model by applying it to prioritizing object proposals for detection and predicting human fixations.
Yuan, Wu-Jie; Dimigen, Olaf; Sommer, Werner; Zhou, Changsong
2013-01-01
Microsaccades during fixation have been suggested to counteract visual fading. Recent experiments have also observed microsaccade-related neural responses from cellular record, scalp electroencephalogram (EEG), and functional magnetic resonance imaging (fMRI). The underlying mechanism, however, is not yet understood and highly debated. It has been proposed that the neural activity of primary visual cortex (V1) is a crucial component for counteracting visual adaptation. In this paper, we use computational modeling to investigate how short-term depression (STD) in thalamocortical synapses might affect the neural responses of V1 in the presence of microsaccades. Our model not only gives a possible synaptic explanation for microsaccades in counteracting visual fading, but also reproduces several features in experimental findings. These modeling results suggest that STD in thalamocortical synapses plays an important role in microsaccade-related neural responses and the model may be useful for further investigation of behavioral properties and functional roles of microsaccades. PMID:23630494
Comparative case study between D3 and highcharts on lustre data visualization
NASA Astrophysics Data System (ADS)
ElTayeby, Omar; John, Dwayne; Patel, Pragnesh; Simmerman, Scott
2013-12-01
One of the challenging tasks in visual analytics is to target clustered time-series data sets, since it is important for data analysts to discover patterns changing over time while keeping their focus on particular subsets. In order to leverage the humans ability to quickly visually perceive these patterns, multivariate features should be implemented according to the attributes available. However, a comparative case study has been done using JavaScript libraries to demonstrate the differences in capabilities of using them. A web-based application to monitor the Lustre file system for the systems administrators and the operation teams has been developed using D3 and Highcharts. Lustre file systems are responsible of managing Remote Procedure Calls (RPCs) which include input output (I/O) requests between clients and Object Storage Targets (OSTs). The objective of this application is to provide time-series visuals of these calls and storage patterns of users on Kraken, a University of Tennessee High Performance Computing (HPC) resource in Oak Ridge National Laboratory (ORNL).
A Spot Reminder System for the Visually Impaired Based on a Smartphone Camera.
Takizawa, Hotaka; Orita, Kazunori; Aoyagi, Mayumi; Ezaki, Nobuo; Mizuno, Shinji
2017-02-04
The present paper proposes a smartphone-camera-based system to assist visually impaired users in recalling their memories related to important locations, called spots, that they visited. The memories are recorded as voice memos, which can be played back when the users return to the spots. Spot-to-spot correspondence is determined by image matching based on the scale invariant feature transform. The main contribution of the proposed system is to allow visually impaired users to associate arbitrary voice memos with arbitrary spots. The users do not need any special devices or systems except smartphones and do not need to remember the spots where the voice memos were recorded. In addition, the proposed system can identify spots in environments that are inaccessible to the global positioning system. The proposed system has been evaluated by two experiments: image matching tests and a user study. The experimental results suggested the effectiveness of the system to help visually impaired individuals, including blind individuals, recall information about regularly-visited spots.
An evaluation of attention models for use in SLAM
NASA Astrophysics Data System (ADS)
Dodge, Samuel; Karam, Lina
2013-12-01
In this paper we study the application of visual saliency models for the simultaneous localization and mapping (SLAM) problem. We consider visual SLAM, where the location of the camera and a map of the environment can be generated using images from a single moving camera. In visual SLAM, the interest point detector is of key importance. This detector must be invariant to certain image transformations so that features can be matched across di erent frames. Recent work has used a model of human visual attention to detect interest points, however it is unclear as to what is the best attention model for this purpose. To this aim, we compare the performance of interest points from four saliency models (Itti, GBVS, RARE, and AWS) with the performance of four traditional interest point detectors (Harris, Shi-Tomasi, SIFT, and FAST). We evaluate these detectors under several di erent types of image transformation and nd that the Itti saliency model, in general, achieves the best performance in terms of keypoint repeatability.
Huang, Liqiang; Mo, Lei; Li, Ying
2012-04-01
A large part of the empirical research in the field of visual attention has focused on various concrete paradigms. However, as yet, there has been no clear demonstration of whether or not these paradigms are indeed measuring the same underlying construct. We collected a very large data set (nearly 1.3 million trials) to address this question. We tested 257 participants on nine paradigms: conjunction search, configuration search, counting, tracking, feature access, spatial pattern, response selection, visual short-term memory, and change blindness. A fairly general attention factor was identified. Some of the participants were also tested on eight other paradigms. This general attention factor was found to be correlated with intelligence, visual marking, task switching, mental rotation, and Stroop task. On the other hand, a few paradigms that are very important in the attention literature (attentional capture, consonance-driven orienting, and inhibition of return) were found to be dissociated from this general attention factor.
Simpson, Claire; Pinkham, Amy E; Kelsven, Skylar; Sasson, Noah J
2013-12-01
Emotion can be expressed by both the voice and face, and previous work suggests that presentation modality may impact emotion recognition performance in individuals with schizophrenia. We investigated the effect of stimulus modality on emotion recognition accuracy and the potential role of visual attention to faces in emotion recognition abilities. Thirty-one patients who met DSM-IV criteria for schizophrenia (n=8) or schizoaffective disorder (n=23) and 30 non-clinical control individuals participated. Both groups identified emotional expressions in three different conditions: audio only, visual only, combined audiovisual. In the visual only and combined conditions, time spent visually fixating salient features of the face were recorded. Patients were significantly less accurate than controls in emotion recognition during both the audio and visual only conditions but did not differ from controls on the combined condition. Analysis of visual scanning behaviors demonstrated that patients attended less than healthy individuals to the mouth in the visual condition but did not differ in visual attention to salient facial features in the combined condition, which may in part explain the absence of a deficit for patients in this condition. Collectively, these findings demonstrate that patients benefit from multimodal stimulus presentations of emotion and support hypotheses that visual attention to salient facial features may serve as a mechanism for accurate emotion identification. © 2013.
Probability mapping of scarred myocardium using texture and intensity features in CMR images
2013-01-01
Background The myocardium exhibits heterogeneous nature due to scarring after Myocardial Infarction (MI). In Cardiac Magnetic Resonance (CMR) imaging, Late Gadolinium (LG) contrast agent enhances the intensity of scarred area in the myocardium. Methods In this paper, we propose a probability mapping technique using Texture and Intensity features to describe heterogeneous nature of the scarred myocardium in Cardiac Magnetic Resonance (CMR) images after Myocardial Infarction (MI). Scarred tissue and non-scarred tissue are represented with high and low probabilities, respectively. Intermediate values possibly indicate areas where the scarred and healthy tissues are interwoven. The probability map of scarred myocardium is calculated by using a probability function based on Bayes rule. Any set of features can be used in the probability function. Results In the present study, we demonstrate the use of two different types of features. One is based on the mean intensity of pixel and the other on underlying texture information of the scarred and non-scarred myocardium. Examples of probability maps computed using the mean intensity of pixel and the underlying texture information are presented. We hypothesize that the probability mapping of myocardium offers alternate visualization, possibly showing the details with physiological significance difficult to detect visually in the original CMR image. Conclusion The probability mapping obtained from the two features provides a way to define different cardiac segments which offer a way to identify areas in the myocardium of diagnostic importance (like core and border areas in scarred myocardium). PMID:24053280
Domingue, Michael J.; Lakhtakia, Akhlesh; Pulsifer, Drew P.; Hall, Loyal P.; Badding, John V.; Bischof, Jesse L.; Martín-Palma, Raúl J.; Imrei, Zoltán; Janik, Gergely; Mastro, Victor C.; Hazen, Missy; Baker, Thomas C.
2014-01-01
Recent advances in nanoscale bioreplication processes present the potential for novel basic and applied research into organismal behavioral processes. Insect behavior potentially could be affected by physical features existing at the nanoscale level. We used nano-bioreplicated visual decoys of female emerald ash borer beetles (Agrilus planipennis) to evoke stereotypical mate-finding behavior, whereby males fly to and alight on the decoys as they would on real females. Using an industrially scalable nanomolding process, we replicated and evaluated the importance of two features of the outer cuticular surface of the beetle’s wings: structural interference coloration of the elytra by multilayering of the epicuticle and fine-scale surface features consisting of spicules and spines that scatter light into intense strands. Two types of decoys that lacked one or both of these elements were fabricated, one type nano-bioreplicated and the other 3D-printed with no bioreplicated surface nanostructural elements. Both types were colored with green paint. The light-scattering properties of the nano-bioreplicated surfaces were verified by shining a white laser on the decoys in a dark room and projecting the scattering pattern onto a white surface. Regardless of the coloration mechanism, the nano-bioreplicated decoys evoked the complete attraction and landing sequence of Agrilus males. In contrast, males made brief flying approaches toward the decoys without nanostructured features, but diverted away before alighting on them. The nano-bioreplicated decoys were also electroconductive, a feature used on traps such that beetles alighting onto them were stunned, killed, and collected. PMID:25225359
Solid object visualization of 3D ultrasound data
NASA Astrophysics Data System (ADS)
Nelson, Thomas R.; Bailey, Michael J.
2000-04-01
Visualization of volumetric medical data is challenging. Rapid-prototyping (RP) equipment producing solid object prototype models of computer generated structures is directly applicable to visualization of medical anatomic data. The purpose of this study was to develop methods for transferring 3D Ultrasound (3DUS) data to RP equipment for visualization of patient anatomy. 3DUS data were acquired using research and clinical scanning systems. Scaling information was preserved and the data were segmented using threshold and local operators to extract features of interest, converted from voxel raster coordinate format to a set of polygons representing an iso-surface and transferred to the RP machine to create a solid 3D object. Fabrication required 30 to 60 minutes depending on object size and complexity. After creation the model could be touched and viewed. A '3D visualization hardcopy device' has advantages for conveying spatial relations compared to visualization using computer display systems. The hardcopy model may be used for teaching or therapy planning. Objects may be produced at the exact dimension of the original object or scaled up (or down) to facilitate matching the viewers reference frame more optimally. RP models represent a useful means of communicating important information in a tangible fashion to patients and physicians.
Sensitivity Profile for Orientation Selectivity in the Visual Cortex of Goggle-Reared Mice
Yoshida, Takamasa; Ozawa, Katsuya; Tanaka, Shigeru
2012-01-01
It has been widely accepted that ocular dominance in the responses of visual cortical neurons can change depending on visual experience in a postnatal period. However, experience-dependent plasticity for orientation selectivity, which is another important response property of visual cortical neurons, is not yet fully understood. To address this issue, using intrinsic signal imaging and two-photon calcium imaging we attempted to observe the alteration of orientation selectivity in the visual cortex of juvenile and adult mice reared with head-mounted goggles, through which animals can experience only the vertical orientation. After one week of goggle rearing, the density of neurons optimally responding to the exposed orientation increased, while that responding to unexposed orientations decreased. These changes can be interpreted as a reallocation of preferred orientations among visually responsive neurons. Our obtained sensitivity profile for orientation selectivity showed a marked peak at 5 weeks and sustained elevation at 12 weeks and later. These features indicate the existence of a critical period between 4 and 7 weeks and residual orientation plasticity in adult mice. The presence of a dip in the sensitivity profile at 10 weeks suggests that different mechanisms are involved in orientation plasticity in childhood and adulthood. PMID:22792390
Hertz, Uri; Amedi, Amir
2015-01-01
The classical view of sensory processing involves independent processing in sensory cortices and multisensory integration in associative areas. This hierarchical structure has been challenged by evidence of multisensory responses in sensory areas, and dynamic weighting of sensory inputs in associative areas, thus far reported independently. Here, we used a visual-to-auditory sensory substitution algorithm (SSA) to manipulate the information conveyed by sensory inputs while keeping the stimuli intact. During scan sessions before and after SSA learning, subjects were presented with visual images and auditory soundscapes. The findings reveal 2 dynamic processes. First, crossmodal attenuation of sensory cortices changed direction after SSA learning from visual attenuations of the auditory cortex to auditory attenuations of the visual cortex. Secondly, associative areas changed their sensory response profile from strongest response for visual to that for auditory. The interaction between these phenomena may play an important role in multisensory processing. Consistent features were also found in the sensory dominance in sensory areas and audiovisual convergence in associative area Middle Temporal Gyrus. These 2 factors allow for both stability and a fast, dynamic tuning of the system when required. PMID:24518756
Hertz, Uri; Amedi, Amir
2015-08-01
The classical view of sensory processing involves independent processing in sensory cortices and multisensory integration in associative areas. This hierarchical structure has been challenged by evidence of multisensory responses in sensory areas, and dynamic weighting of sensory inputs in associative areas, thus far reported independently. Here, we used a visual-to-auditory sensory substitution algorithm (SSA) to manipulate the information conveyed by sensory inputs while keeping the stimuli intact. During scan sessions before and after SSA learning, subjects were presented with visual images and auditory soundscapes. The findings reveal 2 dynamic processes. First, crossmodal attenuation of sensory cortices changed direction after SSA learning from visual attenuations of the auditory cortex to auditory attenuations of the visual cortex. Secondly, associative areas changed their sensory response profile from strongest response for visual to that for auditory. The interaction between these phenomena may play an important role in multisensory processing. Consistent features were also found in the sensory dominance in sensory areas and audiovisual convergence in associative area Middle Temporal Gyrus. These 2 factors allow for both stability and a fast, dynamic tuning of the system when required. © The Author 2014. Published by Oxford University Press.
Bag-of-features based medical image retrieval via multiple assignment and visual words weighting.
Wang, Jingyan; Li, Yongping; Zhang, Ying; Wang, Chao; Xie, Honglan; Chen, Guoling; Gao, Xin
2011-11-01
Bag-of-features based approaches have become prominent for image retrieval and image classification tasks in the past decade. Such methods represent an image as a collection of local features, such as image patches and key points with scale invariant feature transform (SIFT) descriptors. To improve the bag-of-features methods, we first model the assignments of local descriptors as contribution functions, and then propose a novel multiple assignment strategy. Assuming the local features can be reconstructed by their neighboring visual words in a vocabulary, reconstruction weights can be solved by quadratic programming. The weights are then used to build contribution functions, resulting in a novel assignment method, called quadratic programming (QP) assignment. We further propose a novel visual word weighting method. The discriminative power of each visual word is analyzed by the sub-similarity function in the bin that corresponds to the visual word. Each sub-similarity function is then treated as a weak classifier. A strong classifier is learned by boosting methods that combine those weak classifiers. The weighting factors of the visual words are learned accordingly. We evaluate the proposed methods on medical image retrieval tasks. The methods are tested on three well-known data sets, i.e., the ImageCLEFmed data set, the 304 CT Set, and the basal-cell carcinoma image set. Experimental results demonstrate that the proposed QP assignment outperforms the traditional nearest neighbor assignment, the multiple assignment, and the soft assignment, whereas the proposed boosting based weighting strategy outperforms the state-of-the-art weighting methods, such as the term frequency weights and the term frequency-inverse document frequency weights.
NASA Astrophysics Data System (ADS)
Iatsun, Iana; Larabi, Mohamed-Chaker; Fernandez-Maloigne, Christine
2014-03-01
The changing of TV systems from 2D to 3D mode is the next expected step in the telecommunication world. Some works have already been done to perform this progress technically, but interaction of the third dimension with humans is not yet clear. Previously, it was found that any increased load of visual system can create visual fatigue, like prolonged TV watching, computer work or video gaming. But watching S3D can cause another nature of visual fatigue, since all S3D technologies creates illusion of the third dimension based on characteristics of binocular vision. In this work we propose to evaluate and compare the visual fatigue from watching 2D and S3D content. This work shows the difference in accumulation of visual fatigue and its assessment for two types of content. In order to perform this comparison eye-tracking experiments using six commercially available movies were conducted. Healthy naive participants took part into the test and gave their answers feeling the subjective evaluation. It was found that watching stereo 3D content induce stronger feeling of visual fatigue than conventional 2D, and the nature of video has an important effect on its increase. Visual characteristics obtained by using eye-tracking were investigated regarding their relation with visual fatigue.
Buchs, Galit; Maidenbaum, Shachar; Levy-Tzedek, Shelly; Amedi, Amir
2015-01-01
Purpose: To visually perceive our surroundings we constantly move our eyes and focus on particular details, and then integrate them into a combined whole. Current visual rehabilitation methods, both invasive, like bionic-eyes and non-invasive, like Sensory Substitution Devices (SSDs), down-sample visual stimuli into low-resolution images. Zooming-in to sub-parts of the scene could potentially improve detail perception. Can congenitally blind individuals integrate a ‘visual’ scene when offered this information via different sensory modalities, such as audition? Can they integrate visual information –perceived in parts - into larger percepts despite never having had any visual experience? Methods: We explored these questions using a zooming-in functionality embedded in the EyeMusic visual-to-auditory SSD. Eight blind participants were tasked with identifying cartoon faces by integrating their individual components recognized via the EyeMusic’s zooming mechanism. Results: After specialized training of just 6–10 hours, blind participants successfully and actively integrated facial features into cartooned identities in 79±18% of the trials in a highly significant manner, (chance level 10% ; rank-sum P < 1.55E-04). Conclusions: These findings show that even users who lacked any previous visual experience whatsoever can indeed integrate this visual information with increased resolution. This potentially has important practical visual rehabilitation implications for both invasive and non-invasive methods. PMID:26518671
[Features associated with retinal thickness extension in diabetic macular oedema].
Razo Blanco-Hernández, Dulce Milagros; Lima-Gómez, Virgilio; García-Rubio, Yatzul Zuhaila
2015-01-01
Clinically significant macular edema has features that are associated with a major risk of visual loss, with thickening that involves the centre of the macula, field 7 or visual deficiency, although it is unknown if these features are related to retinal thickness extension. An observational, analytical, prospective, cross-sectional and open study was conducted. The sample was divided into initial visual acuity ≥0.5, central field thickness, center point thickness, field 7 and macular volume more than the reported 2 standard deviation mean value in eyes without retinopathy. The extension was determined by the number of the central field area equivalent thickening and these features were compared with by Student's t test for independent samples. A total of 199 eyes were included. In eyes with visual acuity of ≥0.5, the mean extension was 2.88±1.68 and 3.2±1.63 in area equivalent in eyes with visual acuity <0.5 (p=0.12). The mean extension in eyes with less than 2 standard deviation of central field thickness, center point thickness, field 7 and macular volume was significantly lower than in eyes with more than 2 standard deviations (1.9±0.93 vs. 4.07±1.49, 2.44±1.47 vs. 3.94±1.52, 1.79±1.07 vs. 3.61±1.57 and 1.6±0.9 vs. 3.9±1.4, respectively, p<0.001). The extension of retinal thickness is related with the anatomical features reported with a greater risk of visual loss, but is not related to initial visual deficiency. Copyright © 2015 Academia Mexicana de Cirugía A.C. Published by Masson Doyma México S.A. All rights reserved.
Automatic detection of multi-level acetowhite regions in RGB color images of the uterine cervix
NASA Astrophysics Data System (ADS)
Lange, Holger
2005-04-01
Uterine cervical cancer is the second most common cancer among women worldwide. Colposcopy is a diagnostic method used to detect cancer precursors and cancer of the uterine cervix, whereby a physician (colposcopist) visually inspects the metaplastic epithelium on the cervix for certain distinctly abnormal morphologic features. A contrast agent, a 3-5% acetic acid solution, is used, causing abnormal and metaplastic epithelia to turn white. The colposcopist considers diagnostic features such as the acetowhite, blood vessel structure, and lesion margin to derive a clinical diagnosis. STI Medical Systems is developing a Computer-Aided-Diagnosis (CAD) system for colposcopy -- ColpoCAD, a complex image analysis system that at its core assesses the same visual features as used by colposcopists. The acetowhite feature has been identified as one of the most important individual predictors of lesion severity. Here, we present the details and preliminary results of a multi-level acetowhite region detection algorithm for RGB color images of the cervix, including the detection of the anatomic features: cervix, os and columnar region, which are used for the acetowhite region detection. The RGB images are assumed to be glare free, either obtained by cross-polarized image acquisition or glare removal pre-processing. The basic approach of the algorithm is to extract a feature image from the RGB image that provides a good acetowhite to cervix background ratio, to segment the feature image using novel pixel grouping and multi-stage region-growing algorithms that provide region segmentations with different levels of detail, to extract the acetowhite regions from the region segmentations using a novel region selection algorithm, and then finally to extract the multi-levels from the acetowhite regions using multiple thresholds. The performance of the algorithm is demonstrated using human subject data.
Core, Cynthia; Brown, Janean W; Larsen, Michael D; Mahshie, James
2014-01-01
The objectives of this research were to determine whether an adapted version of a Hybrid Visual Habituation procedure could be used to assess speech perception of phonetic and prosodic features of speech (vowel height, lexical stress, and intonation) in individual pre-school-age children who use cochlear implants. Nine children ranging in age from 3;4 to 5;5 participated in this study. Children were prelingually deaf and used cochlear implants and had no other known disabilities. Children received two speech feature tests using an adaptation of a Hybrid Visual Habituation procedure. Seven of the nine children demonstrated perception of at least one speech feature using this procedure using results from a Bayesian linear regression analysis. At least one child demonstrated perception of each speech feature using this assessment procedure. An adapted version of the Hybrid Visual Habituation Procedure with an appropriate statistical analysis provides a way to assess phonetic and prosodicaspects of speech in pre-school-age children who use cochlear implants.
Ince, Robin A. A.; Jaworska, Katarzyna; Gross, Joachim; Panzeri, Stefano; van Rijsbergen, Nicola J.; Rousselet, Guillaume A.; Schyns, Philippe G.
2016-01-01
A key to understanding visual cognition is to determine “where”, “when”, and “how” brain responses reflect the processing of the specific visual features that modulate categorization behavior—the “what”. The N170 is the earliest Event-Related Potential (ERP) that preferentially responds to faces. Here, we demonstrate that a paradigmatic shift is necessary to interpret the N170 as the product of an information processing network that dynamically codes and transfers face features across hemispheres, rather than as a local stimulus-driven event. Reverse-correlation methods coupled with information-theoretic analyses revealed that visibility of the eyes influences face detection behavior. The N170 initially reflects coding of the behaviorally relevant eye contralateral to the sensor, followed by a causal communication of the other eye from the other hemisphere. These findings demonstrate that the deceptively simple N170 ERP hides a complex network information processing mechanism involving initial coding and subsequent cross-hemispheric transfer of visual features. PMID:27550865
Gaze-independent brain-computer interfaces based on covert attention and feature attention
NASA Astrophysics Data System (ADS)
Treder, M. S.; Schmidt, N. M.; Blankertz, B.
2011-10-01
There is evidence that conventional visual brain-computer interfaces (BCIs) based on event-related potentials cannot be operated efficiently when eye movements are not allowed. To overcome this limitation, the aim of this study was to develop a visual speller that does not require eye movements. Three different variants of a two-stage visual speller based on covert spatial attention and non-spatial feature attention (i.e. attention to colour and form) were tested in an online experiment with 13 healthy participants. All participants achieved highly accurate BCI control. They could select one out of thirty symbols (chance level 3.3%) with mean accuracies of 88%-97% for the different spellers. The best results were obtained for a speller that was operated using non-spatial feature attention only. These results show that, using feature attention, it is possible to realize high-accuracy, fast-paced visual spellers that have a large vocabulary and are independent of eye gaze.
Park, Young Joo; Park, Kyu Hyung; Woo, Se Joon
2017-08-01
To report clinical features of patients with retinal and choroidal diseases presenting with acute visual disturbance during pregnancy. In this retrospective case series, patients who developed acute visual loss during pregnancy (including puerperium) and visited a tertiary hospital from July 2007 to June 2015, were recruited by searching electronic medical records. Patients were categorized according to the cause of visual loss. Clinical features and required diagnostic modalities were analyzed in the retinal and choroidal disease group. Acute visual loss occurred in 147 patients; 49 (38.9%) were classified into the retinal and choroidal group. The diagnoses included central serous chorioretinopathy (22.4%), hypertensive retinopathy with or without pre-eclampsia (22.4%), retinal tear with or without retinal detachment (18.4%), diabetic retinopathy progression (10.2%), Vogt-Koyanagi-Harada disease (4.1%), retinal artery occlusion (4.1%), multiple evanescent white dot syndrome (4.1%), and others (14.3%). Visual symptoms first appeared at gestational age 25.9 ± 10.3 weeks. The initial best-corrected visual acuity (BCVA) was 0.27 ± 0.39 logarithm of the minimum angle of resolution (logMAR); the final BCVA after delivery improved to 0.13 ± 0.35 logMAR. Serious visual deterioration (BCVA worth than 20 / 200) developed in two patients. Differential diagnoses were established with characteristic fundus and spectral-domain optical coherence tomography findings in all cases. In pregnant women with acute visual loss, retinal and choroidal diseases are common and could be vision threatening. Physicians should be aware of pregnancy-associated retinal and choroidal diseases and their clinical features. The differential diagnosis can be established with non-invasive techniques. © 2017 The Korean Ophthalmological Society
Capacity for visual features in mental rotation
Xu, Yangqing; Franconeri, Steven L.
2015-01-01
Although mental rotation is a core component of scientific reasoning, we still know little about its underlying mechanism. For instance - how much visual information can we rotate at once? Participants rotated a simple multi-part shape, requiring them to maintain attachments between features and moving parts. The capacity of this aspect of mental rotation was strikingly low – only one feature could remain attached to one part. Behavioral and eyetracking data showed that this single feature remained ‘glued’ via a singular focus of attention, typically on the object’s top. We argue that the architecture of the human visual system is not suited for keeping multiple features attached to multiple parts during mental rotation. Such measurement of the capacity limits may prove to be a critical step in dissecting the suite of visuospatial tools involved in mental rotation, leading to insights for improvement of pedagogy in science education contexts. PMID:26174781
NASA Astrophysics Data System (ADS)
Madokoro, H.; Tsukada, M.; Sato, K.
2013-07-01
This paper presents an unsupervised learning-based object category formation and recognition method for mobile robot vision. Our method has the following features: detection of feature points and description of features using a scale-invariant feature transform (SIFT), selection of target feature points using one class support vector machines (OC-SVMs), generation of visual words using self-organizing maps (SOMs), formation of labels using adaptive resonance theory 2 (ART-2), and creation and classification of categories on a category map of counter propagation networks (CPNs) for visualizing spatial relations between categories. Classification results of dynamic images using time-series images obtained using two different-size robots and according to movements respectively demonstrate that our method can visualize spatial relations of categories while maintaining time-series characteristics. Moreover, we emphasize the effectiveness of our method for category formation of appearance changes of objects.
Capacity for Visual Features in Mental Rotation.
Xu, Yangqing; Franconeri, Steven L
2015-08-01
Although mental rotation is a core component of scientific reasoning, little is known about its underlying mechanisms. For instance, how much visual information can someone rotate at once? We asked participants to rotate a simple multipart shape, requiring them to maintain attachments between features and moving parts. The capacity of this aspect of mental rotation was strikingly low: Only one feature could remain attached to one part. Behavioral and eye-tracking data showed that this single feature remained "glued" via a singular focus of attention, typically on the object's top. We argue that the architecture of the human visual system is not suited for keeping multiple features attached to multiple parts during mental rotation. Such measurement of capacity limits may prove to be a critical step in dissecting the suite of visuospatial tools involved in mental rotation, leading to insights for improvement of pedagogy in science-education contexts. © The Author(s) 2015.
McElree, Brian; Carrasco, Marisa
2012-01-01
Feature and conjunction searches have been argued to delineate parallel and serial operations in visual processing. The authors evaluated this claim by examining the temporal dynamics of the detection of features and conjunctions. The 1st experiment used a reaction time (RT) task to replicate standard mean RT patterns and to examine the shapes of the RT distributions. The 2nd experiment used the response-signal speed–accuracy trade-off (SAT) procedure to measure discrimination (asymptotic detection accuracy) and detection speed (processing dynamics). Set size affected discrimination in both feature and conjunction searches but affected detection speed only in the latter. Fits of models to the SAT data that included a serial component overpredicted the magnitude of the observed dynamics differences. The authors concluded that both features and conjunctions are detected in parallel. Implications for the role of attention in visual processing are discussed. PMID:10641310
Emotion computing using Word Mover's Distance features based on Ren_CECps.
Ren, Fuji; Liu, Ning
2018-01-01
In this paper, we propose an emotion separated method(SeTF·IDF) to assign the emotion labels of sentences with different values, which has a better visual effect compared with the values represented by TF·IDF in the visualization of a multi-label Chinese emotional corpus Ren_CECps. Inspired by the enormous improvement of the visualization map propelled by the changed distances among the sentences, we being the first group utilizes the Word Mover's Distance(WMD) algorithm as a way of feature representation in Chinese text emotion classification. Our experiments show that both in 80% for training, 20% for testing and 50% for training, 50% for testing experiments of Ren_CECps, WMD features get the best f1 scores and have a greater increase compared with the same dimension feature vectors obtained by dimension reduction TF·IDF method. Compared experiments in English corpus also show the efficiency of WMD features in the cross-language field.
Using different classification models in wheat grading utilizing visual features
NASA Astrophysics Data System (ADS)
Basati, Zahra; Rasekh, Mansour; Abbaspour-Gilandeh, Yousef
2018-04-01
Wheat is one of the most important strategic crops in Iran and in the world. The major component that distinguishes wheat from other grains is the gluten section. In Iran, sunn pest is one of the most important factors influencing the characteristics of wheat gluten and in removing it from a balanced state. The existence of bug-damaged grains in wheat will reduce the quality and price of the product. In addition, damaged grains reduce the enrichment of wheat and the quality of bread products. In this study, after preprocessing and segmentation of images, 25 features including 9 colour features, 10 morphological features, and 6 textual statistical features were extracted so as to classify healthy and bug-damaged wheat grains of Azar cultivar of four levels of moisture content (9, 11.5, 14 and 16.5% w.b.) and two lighting colours (yellow light, the composition of yellow and white lights). Using feature selection methods in the WEKA software and the CfsSubsetEval evaluator, 11 features were chosen as inputs of artificial neural network, decision tree and discriment analysis classifiers. The results showed that the decision tree with the J.48 algorithm had the highest classification accuracy of 90.20%. This was followed by artificial neural network classifier with the topology of 11-19-2 and discrimient analysis classifier at 87.46 and 81.81%, respectively
Visualization of suspicious lesions in breast MRI based on intelligent neural systems
NASA Astrophysics Data System (ADS)
Twellmann, Thorsten; Lange, Oliver; Nattkemper, Tim Wilhelm; Meyer-Bäse, Anke
2006-05-01
Intelligent medical systems based on supervised and unsupervised artificial neural networks are applied to the automatic visualization and classification of suspicious lesions in breast MRI. These systems represent an important component of future sophisticated computer-aided diagnosis systems and enable the extraction of spatial and temporal features of dynamic MRI data stemming from patients with confirmed lesion diagnosis. By taking into account the heterogenity of the cancerous tissue, these techniques reveal the malignant, benign and normal kinetic signals and and provide a regional subclassification of pathological breast tissue. Intelligent medical systems are expected to have substantial implications in healthcare politics by contributing to the diagnosis of indeterminate breast lesions by non-invasive imaging.
Computer-aided-diagnosis (CAD) for colposcopy
NASA Astrophysics Data System (ADS)
Lange, Holger; Ferris, Daron G.
2005-04-01
Uterine cervical cancer is the second most common cancer among women worldwide. Colposcopy is a diagnostic method, whereby a physician (colposcopist) visually inspects the lower genital tract (cervix, vulva and vagina), with special emphasis on the subjective appearance of metaplastic epithelium comprising the transformation zone on the cervix. Cervical cancer precursor lesions and invasive cancer exhibit certain distinctly abnormal morphologic features. Lesion characteristics such as margin; color or opacity; blood vessel caliber, intercapillary spacing and distribution; and contour are considered by colposcopists to derive a clinical diagnosis. Clinicians and academia have suggested and shown proof of concept that automated image analysis of cervical imagery can be used for cervical cancer screening and diagnosis, having the potential to have a direct impact on improving women"s health care and reducing associated costs. STI Medical Systems is developing a Computer-Aided-Diagnosis (CAD) system for colposcopy -- ColpoCAD. At the heart of ColpoCAD is a complex multi-sensor, multi-data and multi-feature image analysis system. A functional description is presented of the envisioned ColpoCAD system, broken down into: Modality Data Management System, Image Enhancement, Feature Extraction, Reference Database, and Diagnosis and directed Biopsies. The system design and development process of the image analysis system is outlined. The system design provides a modular and open architecture built on feature based processing. The core feature set includes the visual features used by colposcopists. This feature set can be extended to include new features introduced by new instrument technologies, like fluorescence and impedance, and any other plausible feature that can be extracted from the cervical data. Preliminary results of our research on detecting the three most important features: blood vessel structures, acetowhite regions and lesion margins are shown. As this is a new and very complex field in medical image processing, the hope is that this paper can provide a framework and basis to encourage and facilitate collaboration and discussion between industry, academia, and medical practitioners.
Kim, Dong Yoon; Jo, Jaehyuck; Joe, Soo Geun; Kim, June-Gone; Yoon, Young Hee; Lee, Joo Yong
2017-02-01
To compare the visual prognosis and clinical features of cytomegalovirus (CMV) retinitis between HIV and non-HIV patients. Retrospective cross-sectional study on patients diagnosed with CMV retinitis. Depending on the presence of HIV infection, best-corrected visual acuity (VA) and clinical feature of CMV retinitis were analyzed. The clinical characteristics associated with poor visual prognosis after antiviral treatment were also identified. A total of 78 eyes (58 patients) with CMV retinitis were included in this study: 21 eyes and 57 eyes in HIV and non-HIV patients, respectively. Best-corrected VA was not significantly different between HIV and non-HIV patients. The rate of foveal involvement, retinal detachment, involved zone, and mortality did not significantly differ between the two groups. Visual acuity after antiviral treatment was significantly worse (pretreatment logarithm of the minimal angle of resolution best-corrected VA, 0.54 ± 0.67 [Snellen VA, 20/63]; posttreatment logarithm of the minimal angle of resolution best-corrected VA, 0.77 ± 0.94 [Snellen VA, 20/125]; P = 0.014). Poor visual prognosis was significantly associated with Zone 1 involvement, retinal detachment, and a poor general condition. The overall visual prognosis and the clinical features of CMV retinitis do not differ between HIV and non-HIV patients. The visual prognosis of CMV retinitis still remains quite poor despite advancements in antiviral treatment. This poor prognosis after antiviral treatment is associated with retinal detachment during follow-up, Zone 1 involvement, and the poor general condition of the patient.
Linguistic labels, dynamic visual features, and attention in infant category learning.
Deng, Wei Sophia; Sloutsky, Vladimir M
2015-06-01
How do words affect categorization? According to some accounts, even early in development words are category markers and are different from other features. According to other accounts, early in development words are part of the input and are akin to other features. The current study addressed this issue by examining the role of words and dynamic visual features in category learning in 8- to 12-month-old infants. Infants were familiarized with exemplars from one category in a label-defined or motion-defined condition and then tested with prototypes from the studied category and from a novel contrast category. Eye-tracking results indicated that infants exhibited better category learning in the motion-defined condition than in the label-defined condition, and their attention was more distributed among different features when there was a dynamic visual feature compared with the label-defined condition. These results provide little evidence for the idea that linguistic labels are category markers that facilitate category learning. Copyright © 2015 Elsevier Inc. All rights reserved.
Linguistic Labels, Dynamic Visual Features, and Attention in Infant Category Learning
Deng, Wei (Sophia); Sloutsky, Vladimir M.
2015-01-01
How do words affect categorization? According to some accounts, even early in development, words are category markers and are different from other features. According to other accounts, early in development, words are part of the input and are akin to other features. The current study addressed this issue by examining the role of words and dynamic visual features in category learning in 8- to 12- month infants. Infants were familiarized with exemplars from one category in a label-defined or motion-defined condition and then tested with prototypes from the studied category and from a novel contrast category. Eye tracking results indicated that infants exhibited better category learning in the motion-defined than in the label-defined condition and their attention was more distributed among different features when there was a dynamic visual feature compared to the label-defined condition. These results provide little evidence for the idea that linguistic labels are category markers that facilitate category learning. PMID:25819100
Fast and robust generation of feature maps for region-based visual attention.
Aziz, Muhammad Zaheer; Mertsching, Bärbel
2008-05-01
Visual attention is one of the important phenomena in biological vision which can be followed to achieve more efficiency, intelligence, and robustness in artificial vision systems. This paper investigates a region-based approach that performs pixel clustering prior to the processes of attention in contrast to late clustering as done by contemporary methods. The foundation steps of feature map construction for the region-based attention model are proposed here. The color contrast map is generated based upon the extended findings from the color theory, the symmetry map is constructed using a novel scanning-based method, and a new algorithm is proposed to compute a size contrast map as a formal feature channel. Eccentricity and orientation are computed using the moments of obtained regions and then saliency is evaluated using the rarity criteria. The efficient design of the proposed algorithms allows incorporating five feature channels while maintaining a processing rate of multiple frames per second. Another salient advantage over the existing techniques is the reusability of the salient regions in the high-level machine vision procedures due to preservation of their shapes and precise locations. The results indicate that the proposed model has the potential to efficiently integrate the phenomenon of attention into the main stream of machine vision and systems with restricted computing resources such as mobile robots can benefit from its advantages.
Inano, Rika; Oishi, Naoya; Kunieda, Takeharu; Arakawa, Yoshiki; Kikuchi, Takayuki; Fukuyama, Hidenao; Miyamoto, Susumu
2016-07-26
Preoperative glioma grading is important for therapeutic strategies and influences prognosis. Intratumoral heterogeneity can cause an underestimation of grading because of the sampling error in biopsies. We developed a voxel-based unsupervised clustering method with multiple magnetic resonance imaging (MRI)-derived features using a self-organizing map followed by K-means. This method produced novel magnetic resonance-based clustered images (MRcIs) that enabled the visualization of glioma grades in 36 patients. The 12-class MRcIs revealed the highest classification performance for the prediction of glioma grading (area under the receiver operating characteristic curve = 0.928; 95% confidential interval = 0.920-0.936). Furthermore, we also created 12-class MRcIs in four new patients using the previous data from the 36 patients as training data and obtained tissue sections of the classes 11 and 12, which were significantly higher in high-grade gliomas (HGGs), and those of classes 4, 5 and 9, which were not significantly different between HGGs and low-grade gliomas (LGGs), according to a MRcI-based navigational system. The tissues of classes 11 and 12 showed features of malignant glioma, whereas those of classes 4, 5 and 9 showed LGGs without anaplastic features. These results suggest that the proposed voxel-based clustering method provides new insights into preoperative regional glioma grading.
Spatial resolution in visual memory.
Ben-Shalom, Asaf; Ganel, Tzvi
2015-04-01
Representations in visual short-term memory are considered to contain relatively elaborated information on object structure. Conversely, representations in earlier stages of the visual hierarchy are thought to be dominated by a sensory-based, feed-forward buildup of information. In four experiments, we compared the spatial resolution of different object properties between two points in time along the processing hierarchy in visual short-term memory. Subjects were asked either to estimate the distance between objects or to estimate the size of one of the objects' features under two experimental conditions, of either a short or a long delay period between the presentation of the target stimulus and the probe. When different objects were referred to, similar spatial resolution was found for the two delay periods, suggesting that initial processing stages are sensitive to object-based properties. Conversely, superior resolution was found for the short, as compared with the long, delay when features were referred to. These findings suggest that initial representations in visual memory are hybrid in that they allow fine-grained resolution for object features alongside normal visual sensitivity to the segregation between objects. The findings are also discussed in reference to the distinction made in earlier studies between visual short-term memory and iconic memory.
The effect of visual salience on memory-based choices.
Pooresmaeili, Arezoo; Bach, Dominik R; Dolan, Raymond J
2014-02-01
Deciding whether a stimulus is the "same" or "different" from a previous presented one involves integrating among the incoming sensory information, working memory, and perceptual decision making. Visual selective attention plays a crucial role in selecting the relevant information that informs a subsequent course of action. Previous studies have mainly investigated the role of visual attention during the encoding phase of working memory tasks. In this study, we investigate whether manipulation of bottom-up attention by changing stimulus visual salience impacts on later stages of memory-based decisions. In two experiments, we asked subjects to identify whether a stimulus had either the same or a different feature to that of a memorized sample. We manipulated visual salience of the test stimuli by varying a task-irrelevant feature contrast. Subjects chose a visually salient item more often when they looked for matching features and less often so when they looked for a nonmatch. This pattern of results indicates that salient items are more likely to be identified as a match. We interpret the findings in terms of capacity limitations at a comparison stage where a visually salient item is more likely to exhaust resources leading it to be prematurely parsed as a match.
Hortensius, Ruud; Cross, Emily S
2018-05-11
Understanding the mechanisms and consequences of attributing socialness to artificial agents has important implications for how we can use technology to lead more productive and fulfilling lives. Here, we integrate recent findings on the factors that shape behavioral and brain mechanisms that support social interactions between humans and artificial agents. We review how visual features of an agent, as well as knowledge factors within the human observer, shape attributions across dimensions of socialness. We explore how anthropomorphism and dehumanization further influence how we perceive and interact with artificial agents. Based on these findings, we argue that the cognitive reconstruction within the human observer is likely to be far more crucial in shaping our interactions with artificial agents than previously thought, while the artificial agent's visual features are possibly of lesser importance. We combine these findings to provide an integrative theoretical account based on the "like me" hypothesis, and discuss the key role played by the Theory-of-Mind network, especially the temporal parietal junction, in the shift from mechanistic to social attributions. We conclude by highlighting outstanding questions on the impact of long-term interactions with artificial agents on the behavioral and brain mechanisms of attributing socialness to these agents. © 2018 New York Academy of Sciences.
Computing and visualizing time-varying merge trees for high-dimensional data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oesterling, Patrick; Heine, Christian; Weber, Gunther H.
2017-06-03
We introduce a new method that identifies and tracks features in arbitrary dimensions using the merge tree -- a structure for identifying topological features based on thresholding in scalar fields. This method analyzes the evolution of features of the function by tracking changes in the merge tree and relates features by matching subtrees between consecutive time steps. Using the time-varying merge tree, we present a structural visualization of the changing function that illustrates both features and their temporal evolution. We demonstrate the utility of our approach by applying it to temporal cluster analysis of high-dimensional point clouds.
Retinal and visual system: occupational and environmental toxicology.
Fox, Donald A
2015-01-01
Occupational chemical exposure often results in sensory systems alterations that occur without other clinical signs or symptoms. Approximately 3000 chemicals are toxic to the retina and central visual system. Their dysfunction can have immediate, long-term, and delayed effects on mental health, physical health, and performance and lead to increased occupational injuries. The aims of this chapter are fourfold. First, provide references on retinal/visual system structure, function, and assessment techniques. Second, discuss the retinal features that make it especially vulnerable to toxic chemicals. Third, review the clinical and corresponding experimental data regarding retinal/visual system deficits produced by occupational toxicants: organic solvents (carbon disulfide, trichloroethylene, tetrachloroethylene, styrene, toluene, and mixtures) and metals (inorganic lead, methyl mercury, and mercury vapor). Fourth, discuss occupational and environmental toxicants as risk factors for late-onset retinal diseases and degeneration. Overall, the toxicants altered color vision, rod- and/or cone-mediated electroretinograms, visual fields, spatial contrast sensitivity, and/or retinal thickness. The findings elucidate the importance of conducting multimodal noninvasive clinical, electrophysiologic, imaging and vision testing to monitor toxicant-exposed workers for possible retinal/visual system alterations. Finally, since the retina is a window into the brain, an increased awareness and understanding of retinal/visual system dysfunction should provide additional insight into acquired neurodegenerative disorders. © 2015 Elsevier B.V. All rights reserved.
Reward associations impact both iconic and visual working memory.
Infanti, Elisa; Hickey, Clayton; Turatto, Massimo
2015-02-01
Reward plays a fundamental role in human behavior. A growing number of studies have shown that stimuli associated with reward become salient and attract attention. The aim of the present study was to extend these results into the investigation of iconic memory and visual working memory. In two experiments we asked participants to perform a visual-search task where different colors of the target stimuli were paired with high or low reward. We then tested whether the pre-established feature-reward association affected performance on a subsequent visual memory task, in which no reward was provided. In this test phase participants viewed arrays of 8 objects, one of which had unique color that could match the color associated with reward during the previous visual-search task. A probe appeared at varying intervals after stimulus offset to identify the to-be-reported item. Our results suggest that reward biases the encoding of visual information such that items characterized by a reward-associated feature interfere with mnemonic representations of other items in the test display. These results extend current knowledge regarding the influence of reward on early cognitive processes, suggesting that feature-reward associations automatically interact with the encoding and storage of visual information, both in iconic memory and visual working memory. Copyright © 2014 Elsevier Ltd. All rights reserved.
The sensory components of high-capacity iconic memory and visual working memory.
Bradley, Claire; Pearson, Joel
2012-01-01
EARLY VISUAL MEMORY CAN BE SPLIT INTO TWO PRIMARY COMPONENTS: a high-capacity, short-lived iconic memory followed by a limited-capacity visual working memory that can last many seconds. Whereas a large number of studies have investigated visual working memory for low-level sensory features, much research on iconic memory has used more "high-level" alphanumeric stimuli such as letters or numbers. These two forms of memory are typically examined separately, despite an intrinsic overlap in their characteristics. Here, we used a purely sensory paradigm to examine visual short-term memory for 10 homogeneous items of three different visual features (color, orientation and motion) across a range of durations from 0 to 6 s. We found that the amount of information stored in iconic memory is smaller for motion than for color or orientation. Performance declined exponentially with longer storage durations and reached chance levels after ∼2 s. Further experiments showed that performance for the 10 items at 1 s was contingent on unperturbed attentional resources. In addition, for orientation stimuli, performance was contingent on the location of stimuli in the visual field, especially for short cue delays. Overall, our results suggest a smooth transition between an automatic, high-capacity, feature-specific sensory-iconic memory, and an effortful "lower-capacity" visual working memory.
The role of lightness, hue and saturation in feature-based visual attention.
Stuart, Geoffrey W; Barsdell, Wendy N; Day, Ross H
2014-03-01
Visual attention is used to select part of the visual array for higher-level processing. Visual selection can be based on spatial location, but it has also been demonstrated that multiple locations can be selected simultaneously on the basis of a visual feature such as color. One task that has been used to demonstrate feature-based attention is the judgement of the symmetry of simple four-color displays. In a typical task, when symmetry is violated, four squares on either side of the display do not match. When four colors are involved, symmetry judgements are made more quickly than when only two of the four colors are involved. This indicates that symmetry judgements are made one color at a time. Previous studies have confounded lightness, hue, and saturation when defining the colors used in such displays. In three experiments, symmetry was defined by lightness alone, lightness plus hue, or by hue or saturation alone, with lightness levels randomised. The difference between judgements of two- and four-color asymmetry was maintained, showing that hue and saturation can provide the sole basis for feature-based attentional selection. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.
Objects Classification by Learning-Based Visual Saliency Model and Convolutional Neural Network.
Li, Na; Zhao, Xinbo; Yang, Yongjia; Zou, Xiaochun
2016-01-01
Humans can easily classify different kinds of objects whereas it is quite difficult for computers. As a hot and difficult problem, objects classification has been receiving extensive interests with broad prospects. Inspired by neuroscience, deep learning concept is proposed. Convolutional neural network (CNN) as one of the methods of deep learning can be used to solve classification problem. But most of deep learning methods, including CNN, all ignore the human visual information processing mechanism when a person is classifying objects. Therefore, in this paper, inspiring the completed processing that humans classify different kinds of objects, we bring forth a new classification method which combines visual attention model and CNN. Firstly, we use the visual attention model to simulate the processing of human visual selection mechanism. Secondly, we use CNN to simulate the processing of how humans select features and extract the local features of those selected areas. Finally, not only does our classification method depend on those local features, but also it adds the human semantic features to classify objects. Our classification method has apparently advantages in biology. Experimental results demonstrated that our method made the efficiency of classification improve significantly.
The Comparison of Visual Working Memory Representations with Perceptual Inputs
Hyun, Joo-seok; Woodman, Geoffrey F.; Vogel, Edward K.; Hollingworth, Andrew
2008-01-01
The human visual system can notice differences between memories of previous visual inputs and perceptions of new visual inputs, but the comparison process that detects these differences has not been well characterized. This study tests the hypothesis that differences between the memory of a stimulus array and the perception of a new array are detected in a manner that is analogous to the detection of simple features in visual search tasks. That is, just as the presence of a task-relevant feature in visual search can be detected in parallel, triggering a rapid shift of attention to the object containing the feature, the presence of a memory-percept difference along a task-relevant dimension can be detected in parallel, triggering a rapid shift of attention to the changed object. Supporting evidence was obtained in a series of experiments that examined manual reaction times, saccadic reaction times, and event-related potential latencies. However, these experiments also demonstrated that a slow, limited-capacity process must occur before the observer can make a manual change-detection response. PMID:19653755
Visualization of protein sequence features using JavaScript and SVG with pViz.js.
Mukhyala, Kiran; Masselot, Alexandre
2014-12-01
pViz.js is a visualization library for displaying protein sequence features in a Web browser. By simply providing a sequence and the locations of its features, this lightweight, yet versatile, JavaScript library renders an interactive view of the protein features. Interactive exploration of protein sequence features over the Web is a common need in Bioinformatics. Although many Web sites have developed viewers to display these features, their implementations are usually focused on data from a specific source or use case. Some of these viewers can be adapted to fit other use cases but are not designed to be reusable. pViz makes it easy to display features as boxes aligned to a protein sequence with zooming functionality but also includes predefined renderings for secondary structure and post-translational modifications. The library is designed to further customize this view. We demonstrate such applications of pViz using two examples: a proteomic data visualization tool with an embedded viewer for displaying features on protein structure, and a tool to visualize the results of the variant_effect_predictor tool from Ensembl. pViz.js is a JavaScript library, available on github at https://github.com/Genentech/pviz. This site includes examples and functional applications, installation instructions and usage documentation. A Readme file, which explains how to use pViz with examples, is available as Supplementary Material A. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
ERIC Educational Resources Information Center
Eimer, Martin; Kiss, Monika; Nicholas, Susan
2011-01-01
When target-defining features are specified in advance, attentional target selection in visual search is controlled by preparatory top-down task sets. We used ERP measures to study voluntary target selection in the absence of such feature-specific task sets, and to compare it to selection that is guided by advance knowledge about target features.…
Toward a Unified Theory of Visual Area V4
Roe, Anna W.; Chelazzi, Leonardo; Connor, Charles E.; Conway, Bevil R.; Fujita, Ichiro; Gallant, Jack L.; Lu, Haidong; Vanduffel, Wim
2016-01-01
Visual area V4 is a midtier cortical area in the ventral visual pathway. It is crucial for visual object recognition and has been a focus of many studies on visual attention. However, there is no unifying view of V4’s role in visual processing. Neither is there an understanding of how its role in feature processing interfaces with its role in visual attention. This review captures our current knowledge of V4, largely derived from electrophysiological and imaging studies in the macaque monkey. Based on recent discovery of functionally specific domains in V4, we propose that the unifying function of V4 circuitry is to enable selective extraction of specific functional domain-based networks, whether it be by bottom-up specification of object features or by top-down attentionally driven selection. PMID:22500626
Color priming in pop-out search depends on the relative color of the target
Becker, Stefanie I.; Valuch, Christian; Ansorge, Ulrich
2014-01-01
In visual search for pop-out targets, search times are shorter when the target and non-target colors from the previous trial are repeated than when they change. This priming effect was originally attributed to a feature weighting mechanism that biases attention toward the target features, and away from the non-target features. However, more recent studies have shown that visual selection is strongly context-dependent: according to a relational account of feature priming, the target color is always encoded relative to the non-target color (e.g., as redder or greener). The present study provides a critical test of this hypothesis, by varying the colors of the search items such that either the relative color or the absolute color of the target always remained constant (or both). The results clearly show that color priming depends on the relative color of a target with respect to the non-targets but not on its absolute color value. Moreover, the observed priming effects did not change over the course of the experiment, suggesting that the visual system encodes colors in a relative manner from the start of the experiment. Taken together, these results strongly support a relational account of feature priming in visual search, and are inconsistent with the dominant feature-based views. PMID:24782795
Classification of CT examinations for COPD visual severity analysis
NASA Astrophysics Data System (ADS)
Tan, Jun; Zheng, Bin; Wang, Xingwei; Pu, Jiantao; Gur, David; Sciurba, Frank C.; Leader, J. Ken
2012-03-01
In this study we present a computational method of CT examination classification into visual assessed emphysema severity. The visual severity categories ranged from 0 to 5 and were rated by an experienced radiologist. The six categories were none, trace, mild, moderate, severe and very severe. Lung segmentation was performed for every input image and all image features are extracted from the segmented lung only. We adopted a two-level feature representation method for the classification. Five gray level distribution statistics, six gray level co-occurrence matrix (GLCM), and eleven gray level run-length (GLRL) features were computed for each CT image depicted segment lung. Then we used wavelets decomposition to obtain the low- and high-frequency components of the input image, and again extract from the lung region six GLCM features and eleven GLRL features. Therefore our feature vector length is 56. The CT examinations were classified using the support vector machine (SVM) and k-nearest neighbors (KNN) and the traditional threshold (density mask) approach. The SVM classifier had the highest classification performance of all the methods with an overall sensitivity of 54.4% and a 69.6% sensitivity to discriminate "no" and "trace visually assessed emphysema. We believe this work may lead to an automated, objective method to categorically classify emphysema severity on CT exam.