Science.gov

Sample records for important wood species

  1. Wood specific gravity variation among five important hardwood species of Kashmir Himalaya.

    PubMed

    Wani, Bilal Ahmad; Bodha, R H; Khan, Amina

    2014-02-01

    Wood Specific Gravity (SG) is a measure of the amount of structural material a tree species allocates to support and strength. In the present study, specific gravity varied among the five different woods at three different sites from 0.40 in Populus nigra at site III (Shopian) to 0.80 in Parrotiopsis jacquemontiana at site II (Surasyar). Among the three different sites, specific gravity varied from 0.73 to 0.80 in Parroptiosis jacquemontiana; in Robinia pseudoacacia it varied from 0.71 to 0.79; in Salix alba, it varied from 0.42 to 0.48; In Populus nigra it varied from 0.40 to 0.48 and in Juglans regia it varied from 0.59 to 0.66. On the basis of the specific gravity variation patterns these woods were categorized as light (Salix alba, Populus nigra) moderately heavy (Juglans regia) and moderately heavy to heavy (Robinia pseudoacacia, Parrotiopsis jacquemontiana) which predicts their properties like strength, dimensional stability with moisture content change, ability to retain paint, fiber yield per unit volume, suitability for making particleboard and related wood composite materials and suitability as a raw material for making paper.

  2. The Importance of Measuring Mercury in Wood

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Yanai, R. D.; Driscoll, C. T.; Montesdeoca, M.

    2014-12-01

    Forests are important receptors of Hg deposition, and biological Hg hotspots occur mainly in forested regions, but few efforts have been made to determine the Hg content of trees. Mercury concentrations in stem tissue are lower than the foliage and bark, so low that they have often been below detection limits, especially in hardwood species. However, because wood is the largest component of forest biomass, it can be a larger Hg pool than the foliage, and thus quantifying concentrations in wood is important to Hg budgets in forests. The objective of our study was to determine the methods necessary to detect Hg in bole wood of four tree species, including two hardwoods and two conifers. We also evaluated the effect of air-drying and oven-drying samples on Hg recovery, compared to freeze-drying samples prior to analysis, which is the standard procedure. Many archived wood samples that were air-dried or oven-dried could be appropriate for Hg analysis if these methods could be validated; few are freeze-dried. We analyzed samples for total Hg using thermal decomposition, catalytic conversion, amalgamation, and atomic absorption spectrophotometry (Method 7473, USEPA 1998). The result of the method detection limit study was 1.27 ng g-1, based on apple leaf standards (NIST 1515, 44 ± 4 ng/g). Concentrations in the hardwood species were 1.48 ± 0.23 ng g-1 for sugar maple and 1.75 ± 0.14 ng g-1 for American beech. Concentrations were higher in red spruce and balsam fir. Samples that were analyzed fresh, freeze-dried, or oven-dried at 65 ˚C were in close agreement, after correcting for moisture content. However, Hg concentrations were 34 to 45% too high in the air-dry samples, presumably reflecting absorption from the atmosphere, and they were 44 to 66% too low in the samples oven-dried at 103 ˚C, presumably due to volatilization. We recommend that samples be freeze-dried or oven-dried at 65 ˚C for analysis of Hg in wood; archived samples that have been oven-dried at

  3. Wood Specific Gravity Variations and Biomass of Central African Tree Species: The Simple Choice of the Outer Wood

    PubMed Central

    Bastin, Jean-François; Fayolle, Adeline; Tarelkin, Yegor; Van den Bulcke, Jan; de Haulleville, Thales; Mortier, Frederic; Beeckman, Hans; Van Acker, Joris; Serckx, Adeline; Bogaert, Jan; De Cannière, Charles

    2015-01-01

    Context Wood specific gravity is a key element in tropical forest ecology. It integrates many aspects of tree mechanical properties and functioning and is an important predictor of tree biomass. Wood specific gravity varies widely among and within species and also within individual trees. Notably, contrasted patterns of radial variation of wood specific gravity have been demonstrated and related to regeneration guilds (light demanding vs. shade-bearing). However, although being repeatedly invoked as a potential source of error when estimating the biomass of trees, both intraspecific and radial variations remain little studied. In this study we characterized detailed pith-to-bark wood specific gravity profiles among contrasted species prominently contributing to the biomass of the forest, i.e., the dominant species, and we quantified the consequences of such variations on the biomass. Methods Radial profiles of wood density at 8% moisture content were compiled for 14 dominant species in the Democratic Republic of Congo, adapting a unique 3D X-ray scanning technique at very high spatial resolution on core samples. Mean wood density estimates were validated by water displacement measurements. Wood density profiles were converted to wood specific gravity and linear mixed models were used to decompose the radial variance. Potential errors in biomass estimation were assessed by comparing the biomass estimated from the wood specific gravity measured from pith-to-bark profiles, from global repositories, and from partial information (outer wood or inner wood). Results Wood specific gravity profiles from pith-to-bark presented positive, neutral and negative trends. Positive trends mainly characterized light-demanding species, increasing up to 1.8 g.cm-3 per meter for Piptadeniastrum africanum, and negative trends characterized shade-bearing species, decreasing up to 1 g.cm-3 per meter for Strombosia pustulata. The linear mixed model showed the greater part of wood specific

  4. Assemblage composition of fungal wood-decay species has major influence on how climate and wood quality modify decomposition.

    PubMed

    Venugopal, Parvathy; Junninen, Kaisa; Edman, Mattias; Kouki, Jari

    2017-01-10

    The interactions among saprotrophic fungal species, as well as their interactions with environmental factors, may have a major influence on wood decay and carbon release in ecosystems. We studied the effects that decomposer diversity (species richness and assemblage composition) have on wood decomposition when the climatic variables and substrate quality vary simultaneously. We used two temperature (16 and 21(°)C) and two humidity (70% and 90%) levels at two wood qualities (wood from managed and old-growth forests) of Pinus sylvestris In a nine-month experiment, the effects of fungal diversity were tested using four wood-decaying fungi (Antrodia xantha, Dichomitus squalens, Fomitopsis pinicola and Gloeophyllum protractum) at assemblage levels one, two and four species. Wood quality and assemblage composition affected the influence of climatic factors on decomposition rates. Fungal assemblage composition was found to be more important than fungal species richness, indicating that species-specific fungal traits are of paramount importance in driving decomposition. We conclude that models containing fungal wood-decay species (and wood-based carbon) need to take into account species - and assemblage composition - specific properties to improve predictive capacity in regard to decomposition related carbon dynamics.

  5. The trait contribution to wood decomposition rates of 15 Neotropical tree species.

    PubMed

    van Geffen, Koert G; Poorter, Lourens; Sass-Klaassen, Ute; van Logtestijn, Richard S P; Cornelissen, Johannes H C

    2010-12-01

    The decomposition of dead wood is a critical uncertainty in models of the global carbon cycle. Despite this, relatively few studies have focused on dead wood decomposition, with a strong bias to higher latitudes. Especially the effect of interspecific variation in species traits on differences in wood decomposition rates remains unknown. In order to fill these gaps, we applied a novel method to study long-term wood decomposition of 15 tree species in a Bolivian semi-evergreen tropical moist forest. We hypothesized that interspecific differences in species traits are important drivers of variation in wood decomposition rates. Wood decomposition rates (fractional mass loss) varied between 0.01 and 0.31 yr(-1). We measured 10 different chemical, anatomical, and morphological traits for all species. The species' average traits were useful predictors of wood decomposition rates, particularly the average diameter (dbh) of the tree species (R2 = 0.41). Lignin concentration further increased the proportion of explained inter-specific variation in wood decomposition (both negative relations, cumulative R2 = 0.55), although it did not significantly explain variation in wood decomposition rates if considered alone. When dbh values of the actual dead trees sampled for decomposition rate determination were used as a predictor variable, the final model (including dead tree dbh and lignin concentration) explained even more variation in wood decomposition rates (R2 = 0.71), underlining the importance of dbh in wood decomposition. Other traits, including wood density, wood anatomical traits, macronutrient concentrations, and the amount of phenolic extractives could not significantly explain the variation in wood decomposition rates. The surprising results of this multi-species study, in which for the first time a large set of traits is explicitly linked to wood decomposition rates, merits further testing in other forest ecosystems.

  6. EFFECTS OF BURN RATE, WOOD SPECIES, MOISTURE CONTENT AND WEIGHT OF WOOD LOADED ON WOODSTOVE EMISSIONS

    EPA Science Inventory

    The report gives results of tests of four woodstove operating parameters (burn rate, wood moisture, wood load, and wood species) at two levels each using a half factorial experimental test design to determine statistically significant effects on the emission components CO, CO2, p...

  7. Penetration and Effectiveness of Micronized Copper in Refractory Wood Species

    PubMed Central

    Civardi, Chiara; Van den Bulcke, Jan; Schubert, Mark; Michel, Elisabeth; Butron, Maria Isabel; Boone, Matthieu N.; Dierick, Manuel; Van Acker, Joris; Wick, Peter; Schwarze, Francis W. M. R.

    2016-01-01

    The North American wood decking market mostly relies on easily treatable Southern yellow pine (SYP), which is being impregnated with micronized copper (MC) wood preservatives since 2006. These formulations are composed of copper (Cu) carbonate particles (CuCO3·Cu(OH)2), with sizes ranging from 1 nm to 250 μm, according to manufacturers. MC-treated SYP wood is protected against decay by solubilized Cu2+ ions and unreacted CuCO3·Cu(OH)2 particles that successively release Cu2+ ions (reservoir effect). The wood species used for the European wood decking market differ from the North American SYP. One of the most common species is Norway spruce wood, which is poorly treatable i.e. refractory due to the anatomical properties, like pore size and structure, and chemical composition, like pit membrane components or presence of wood extractives. Therefore, MC formulations may not suitable for refractory wood species common in the European market, despite their good performance in SYP. We evaluated the penetration effectiveness of MC azole (MCA) in easily treatable Scots pine and in refractory Norway spruce wood. We assessed the effectiveness against the Cu-tolerant wood-destroying fungus Rhodonia placenta. Our findings show that MCA cannot easily penetrate refractory wood species and could not confirm the presence of a reservoir effect. PMID:27649315

  8. Penetration and Effectiveness of Micronized Copper in Refractory Wood Species.

    PubMed

    Civardi, Chiara; Van den Bulcke, Jan; Schubert, Mark; Michel, Elisabeth; Butron, Maria Isabel; Boone, Matthieu N; Dierick, Manuel; Van Acker, Joris; Wick, Peter; Schwarze, Francis W M R

    2016-01-01

    The North American wood decking market mostly relies on easily treatable Southern yellow pine (SYP), which is being impregnated with micronized copper (MC) wood preservatives since 2006. These formulations are composed of copper (Cu) carbonate particles (CuCO3·Cu(OH)2), with sizes ranging from 1 nm to 250 μm, according to manufacturers. MC-treated SYP wood is protected against decay by solubilized Cu2+ ions and unreacted CuCO3·Cu(OH)2 particles that successively release Cu2+ ions (reservoir effect). The wood species used for the European wood decking market differ from the North American SYP. One of the most common species is Norway spruce wood, which is poorly treatable i.e. refractory due to the anatomical properties, like pore size and structure, and chemical composition, like pit membrane components or presence of wood extractives. Therefore, MC formulations may not suitable for refractory wood species common in the European market, despite their good performance in SYP. We evaluated the penetration effectiveness of MC azole (MCA) in easily treatable Scots pine and in refractory Norway spruce wood. We assessed the effectiveness against the Cu-tolerant wood-destroying fungus Rhodonia placenta. Our findings show that MCA cannot easily penetrate refractory wood species and could not confirm the presence of a reservoir effect.

  9. Wood Chemical Composition in Species of Cactaceae: The Relationship between Lignification and Stem Morphology

    PubMed Central

    Canché-Escamilla, Gonzalo; Soto-Hernández, Marcos

    2015-01-01

    In Cactaceae, wood anatomy is related to stem morphology in terms of the conferred support. In species of cacti with dimorphic wood, a unique process occurs in which the cambium stops producing wide-band tracheids (WBTs) and produces fibers; this is associated with the aging of individuals and increases in size. Stem support and lignification have only been studied in fibrous tree-like species, and studies in species with WBTs or dimorphic wood are lacking. In this study, we approach this process with a chemical focus, emphasizing the role of wood lignification. We hypothesized that the degree of wood lignification in Cactaceae increases with height of the species and that its chemical composition varies with wood anatomy. To test this, we studied the chemical composition (cellulose, hemicellulose, and lignin content) in 13 species (2 WBTs wood, 3 dimorphic, and 8 fibrous) with contrasting growth forms. We also analyzed lignification in dimorphic and fibrous species to determine the chemical features of WBTs and fibers and their relationship with stem support. The lignin contents were characterized by Fourier transform infrared spectroscopy and high performance liquid chromatography. We found that 11 species have a higher percentage (>35%) of lignin in their wood than other angiosperms or gymnosperms. The lignin chemical composition in fibrous species is similar to that of other dicots, but it is markedly heterogeneous in non-fibrous species where WBTs are abundant. The lignification in WBTs is associated with the resistance to high water pressure within cells rather than the contribution to mechanical support. Dimorphic wood species are usually richer in syringyl lignin, and tree-like species with lignified rays have more guaiacyl lignin. The results suggest that wood anatomy and lignin distribution play an important role in the chemical composition of wood, and further research is needed at the cellular level. PMID:25880223

  10. Wood chemical composition in species of Cactaceae: the relationship between lignification and stem morphology.

    PubMed

    Reyes-Rivera, Jorge; Canché-Escamilla, Gonzalo; Soto-Hernández, Marcos; Terrazas, Teresa

    2015-01-01

    In Cactaceae, wood anatomy is related to stem morphology in terms of the conferred support. In species of cacti with dimorphic wood, a unique process occurs in which the cambium stops producing wide-band tracheids (WBTs) and produces fibers; this is associated with the aging of individuals and increases in size. Stem support and lignification have only been studied in fibrous tree-like species, and studies in species with WBTs or dimorphic wood are lacking. In this study, we approach this process with a chemical focus, emphasizing the role of wood lignification. We hypothesized that the degree of wood lignification in Cactaceae increases with height of the species and that its chemical composition varies with wood anatomy. To test this, we studied the chemical composition (cellulose, hemicellulose, and lignin content) in 13 species (2 WBTs wood, 3 dimorphic, and 8 fibrous) with contrasting growth forms. We also analyzed lignification in dimorphic and fibrous species to determine the chemical features of WBTs and fibers and their relationship with stem support. The lignin contents were characterized by Fourier transform infrared spectroscopy and high performance liquid chromatography. We found that 11 species have a higher percentage (>35%) of lignin in their wood than other angiosperms or gymnosperms. The lignin chemical composition in fibrous species is similar to that of other dicots, but it is markedly heterogeneous in non-fibrous species where WBTs are abundant. The lignification in WBTs is associated with the resistance to high water pressure within cells rather than the contribution to mechanical support. Dimorphic wood species are usually richer in syringyl lignin, and tree-like species with lignified rays have more guaiacyl lignin. The results suggest that wood anatomy and lignin distribution play an important role in the chemical composition of wood, and further research is needed at the cellular level.

  11. Survival and feeding responses of Anacanthotermes ochraceus (Hodotermitidae: Isoptera) to local and imported wood.

    PubMed

    Kaakeh, Walid

    2005-12-01

    Forty-six local and imported wood were tested for resistance to feeding damage by the termite Anacanthotermes ochraceus (Burmeister), the most dominant species in the United Arab Emirates and the Arab Gulf region. Wood was used for construction, wall paneling, and furniture. Wood was evaluated in a 4-wk forced feeding bioassay. Each wood block was graded by the amount of termite damage by using a damage rating index (DRI) of 0 to 5 and wood rating index from very resistant to very susceptible wood. Local wood was mostly susceptible to feeding of termites; imported wood varied in resistance to feeding damage. Wood was placed in groups according to the percentages of weight loss (WL), termite survival (TS), and DRI. Wood was classified as very resistant (%WL from 0.0 to 0.3, %TS from 0.01 to 0.5, and DRI of 0.01), resistant (%WL from 1.1 to 4.9, %TS from 0.8 to 4.8, and DRI of 1.0), moderately resistant (%WL from 6.6 to 9.3, %TS from 6.3 to 8.3, and DRI of 2.0-2.3), slightly resistant (%WL from 10.1 to 19.9, %TS from 9.5 to 28.0, and DRI of 2.5-3.5), susceptible (%WL from 21.5 to 48.6, %TS from 37.3 to 64.8, and DRI of 4.0-4.3) and very susceptible (%WL from 50.0 to 59.8, %TS from 72.8 to 79.0, and DRI of 4.5-5.0). The characterization of the extracts of resistant wood may prove of economic value and lead to the development of new chemicals (repellents or antifeedants) for termite control.

  12. Physical and Chemical Properties of Some Imported Woods and their Degradation by Termites

    PubMed Central

    Shanbhag, Rashmi R.; Sundararaj, R.

    2013-01-01

    The influence of physical and chemical properties of 20 species of imported wood on degradation of the wood by termites under field conditions was studied. The wood species studied were: Sycamore maple, Acer pseudoplatanus L. (Sapindales: Sapindaceae) (from two countries), Camphor, Dryobalanops aromatic C.F.Gaertner (Malvales: Dipterocarpaceae), Beech, Fagus grandifolia Ehrhart (Fagales: Fagaceae), F. sylvatica L. (from two countries), Oak, Quercus robur L., Ash, Fraxinus angustifolia Vahl (Lamiales: Oleaceae), F. excelsior L., Padauk, Pterocarpus soyauxii Taubert (Fabales: Fabaceae), (from two countries), Jamba, Xylia dolabrifiormis Roxburgh, Shorea laevis Ridley (Malvales: Dipterocarpaceae), S. macoptera Dyer, S. robusta Roth, Teak, Tectona grandis L.f. (Lamiales: Lamiaceae) (from five countries), and rubber tree, Hevea brasiliensis Müller Argoviensis (Malpighiales: Euphorbiaceae) from India. The termites present were: Odontotermes horni (Wasmann) (Isoptera: Termitidae), O. feae, O. wallonensis, and O. obeus (Rambur). A significant conelation was found between density, cellulose, lignin, and total phenolic contents of the wood and degradation by termites. The higher the density of the wood, the lower the degradation. Similarly, higher amount of lignin and total phenolic contents ensured higher resistance, whereas cellulose drives the termites towards the wood. PMID:23906349

  13. Physical and chemical properties of some imported woods and their degradation by termites.

    PubMed

    Shanbhag, Rashmi R; Sundararaj, R

    2013-01-01

    The influence of physical and chemical properties of 20 species of imported wood on degradation of the wood by termites under field conditions was studied. The wood species studied were: Sycamore maple, Acer pseudoplatanus L. (Sapindales: Sapindaceae) (from two countries), Camphor, Dryobalanops aromatic C.F.Gaertner (Malvales: Dipterocarpaceae), Beech, Fagus grandifolia Ehrhart (Fagales: Fagaceae), F. sylvatica L. (from two countries), Oak, Quercus robur L., Ash, Fraxinus angustifolia Vahl (Lamiales: Oleaceae), F. excelsior L., Padauk, Pterocarpus soyauxii Taubert (Fabales: Fabaceae), (from two countries), Jamba, Xylia dolabrifiormis Roxburgh, Shorea laevis Ridley (Malvales: Dipterocarpaceae), S. macoptera Dyer, S. robusta Roth, Teak, Tectona grandis L.f. (Lamiales: Lamiaceae) (from five countries), and rubber tree, Hevea brasiliensis Müller Argoviensis (Malpighiales: Euphorbiaceae) from India. The termites present were: Odontotermes horni (Wasmann) (Isoptera: Termitidae), O. feae, O. wallonensis, and O. obeus (Rambur). A significant conelation was found between density, cellulose, lignin, and total phenolic contents of the wood and degradation by termites. The higher the density of the wood, the lower the degradation. Similarly, higher amount of lignin and total phenolic contents ensured higher resistance, whereas cellulose drives the termites towards the wood.

  14. Wood litter consumption by three species of Nasutitermes termites in an area of the Atlantic Coastal Forest in northeastern Brazil.

    PubMed

    Vasconcellos, Alexandre; Moura, Flávia Maria da Silva

    2010-01-01

    Termites constitute a considerable fraction of the animal biomass in tropical forest, but little quantitative data are available that indicates their importance in the processes of wood decomposition. This study evaluated the participation of Nasutitermes corniger (Motschulsky) (Isoptera: Termitidae), N. ephratae (Holmgren), and N. macrocephalus (Silvestri) in the consumption of the wood litter in a remnant area of Atlantic Coastal Forest in northeastern Brazil. The populations of this species were quantified in nests and in decomposing tree trunks, while the rate of wood consumption was determined in the laboratory using wood test-blocks of Clitoria fairchildiana Howard (Fabales: Fabaceae), Cecropia sp. (Urticales: Cecropiaceae), and Protium heptaphyllum (Aublet) Marchand (Sapindales: Burseraceae). The abundance of the three species of termites varied from 40.8 to 462.2 individuals/m(2). The average dry wood consumption for the three species was 9.4 mg/g of termites (fresh weight)/day, with N. macrocephalus demonstrating the greatest consumption (12.1 mg/g of termite (fresh weight)/day). Wood consumption by the three species of Nasutitermes was estimated to be 66.9 kg of dry wood /ha/year, corresponding to approximately 2.9% of the annual production of wood-litter in the study area. This consumption, together with that of the other 18 exclusively wood-feeders termite species known to occur in the area, indicates the important participation of termites in removing wood-litter within the Atlantic Coastal Forest domain.

  15. Wood Litter Consumption by three Species of Nasutitermes Termites in an Area of the Atlantic Coastal Forest in Northeastern Brazil

    PubMed Central

    Vasconcellos, Alexandre; Moura, Flávia Maria da Silva

    2010-01-01

    Termites constitute a considerable fraction of the animal biomass in tropical forest, but little quantitative data are available that indicates their importance in the processes of wood decomposition. This study evaluated the participation of Nasutitermes corniger (Motschulsky) (Isoptera: Termitidae), N. ephratae (Holmgren), and N. macrocephalus (Silvestri) in the consumption of the wood litter in a remnant area of Atlantic Coastal Forest in northeastern Brazil. The populations of this species were quantified in nests and in decomposing tree trunks, while the rate of wood consumption was determined in the laboratory using wood test-blocks of Clitoria fairchildiana Howard (Fabales: Fabaceae), Cecropia sp. (Urticales: Cecropiaceae), and Protium heptaphyllum (Aublet) Marchand (Sapindales: Burseraceae). The abundance of the three species of termites varied from 40.8 to 462.2 individuals/m2. The average dry wood consumption for the three species was 9.4 mg/g of termites (fresh weight)/day, with N. macrocephalus demonstrating the greatest consumption (12.1 mg/g of termite (fresh weight)/day). Wood consumption by the three species of Nasutitermes was estimated to be 66.9 kg of dry wood /ha/year, corresponding to approximately 2.9% of the annual production of wood-litter in the study area. This consumption, together with that of the other 18 exclusively wood-feeders termite species known to occur in the area, indicates the important participation of termites in removing wood-litter within the Atlantic Coastal Forest domain. PMID:20673190

  16. Study of microbial adhesion on some wood species: theoretical prediction.

    PubMed

    Soumya, El abed; Mohamed, Mostakim; Fatimazahra, Berguadi; Hassan, Latrache; Abdellah, Houari; Fatima, Hamadi; Saad, Ibnsouda koraichi

    2011-01-01

    The initial interaction between microorganisms and substrata is mediated by physicochemical forces, which in turn originate from the physicochemical surface properties of both interacting phases. In this context, we have determined the physicochemical proprieties of all microorganisms isolated from cedar wood decay in an old monument at the Medina of Fez-Morocco. The cedar wood was also assayed in terms of hydrophobicity and electron dono-r-electron acceptor (acid-base) properties. Investigations of these two aspects were performed by contact angles measurements via sessile drop technique. Except Bacillus subtilis strain (deltaGiwi < 0), all strains studied showed positive values of the degree ofhydrophobicity (deltaGiwi > 0) and can therefore be considered as hydrophilic while cedar wood revealed a hydrophobic character (deltaGiwi = -58.81 mi m(-2)). All microbial strains were predominantly electron donor. The results show also that all strains were weak electron acceptors. Cedar wood exhibits a weak electron donor/acceptor character. Based on the thermodynamic approach, the Lifshitz-van der Waals interaction free energy, the acid-basic interactions free energy, the total interaction free energy between the microbial cells and six different wood species (cedar, oak, beech, ash, pine and teak) in aqueous media was calculated and used to predict which microbial strains have a higher ability to adhere to wooden surfaces. Except of weak wood, for all the situations studied, generalizations concerning the adhesion of the microbiata on wood species cannot be made and the microbial adhesion on wooden substrata was dependent on wood species and microorganismstested.

  17. Subabul: A wood species for electricity generation

    SciTech Connect

    Kumar, M.; Gupta, R.C.

    1996-10-01

    In view of energy and environmental considerations, efforts have been made in this article to suggest the use of biomass as a renewable and nonpolluting source of energy for power generation. This article presents the results of the proximate analyses and energy contents of various components of the Subabul tree and their impact on land requirements to generate necessary biomass for small-scale electricity generation units. The results have shown that for the Subabul-wood-based thermal power plant, approximately 400 ha of land are required to generate 2,000 kWh/d.

  18. 75 FR 75157 - Importation of Wood Packaging Material From Canada

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-02

    ... of Wood Packaging Material From Canada AGENCY: Animal and Plant Health Inspection Service, USDA... unmanufactured wood articles to remove the exemption that allows wood packaging material from Canada to enter the... to wood packaging material from all other countries. This action is necessary in order to prevent...

  19. Potential arsenic exposures in 25 species of zoo animals living in CCA-wood enclosures.

    PubMed

    Gress, J; da Silva, E B; de Oliveira, L M; Zhao, Di; Anderson, G; Heard, D; Stuchal, L D; Ma, L Q

    2016-05-01

    Animal enclosures are often constructed from wood treated with the pesticide chromated copper arsenate (CCA), which leaches arsenic (As) into adjacent soil during normal weathering. This study evaluated potential pathways of As exposure in 25 species of zoo animals living in CCA-wood enclosures. We analyzed As speciation in complete animal foods, dislodgeable As from CCA-wood, and As levels in enclosure soils, as well as As levels in biomarkers of 9 species of crocodilians (eggs), 4 species of birds (feathers), 1 primate species (hair), and 1 porcupine species (quills). Elevated soil As in samples from 17 enclosures was observed at 1.0-110mg/kg, and enclosures housing threatened and endangered species had As levels higher than USEPA's risk-based Eco-SSL for birds and mammals of 43 and 46mg/kg. Wipe samples of CCA-wood on which primates sit had dislodgeable As residues of 4.6-111μg/100cm(2), typical of unsealed CCA-wood. Inorganic As doses from animal foods were estimated at 0.22-7.8μg/kg bw/d. Some As levels in bird feathers and crocodilian eggs were higher than prior studies on wild species. However, hair from marmosets had 6.37mg/kg As, 30-fold greater than the reference value, possibly due to their inability to methylate inorganic As. Our data suggested that elevated As in soils and dislodgeable As from CCA-wood could be important sources of As exposure for zoo animals.

  20. Evaluation of morphological and chemical aspects of different wood species by spectroscopy and thermal methods

    NASA Astrophysics Data System (ADS)

    Popescu, Maria-Cristina; Popescu, Carmen-Mihaela; Lisa, Gabriela; Sakata, Yusaku

    2011-03-01

    The aim of this study is to find the most convenient procedure to make an easy differentiation between various kinds of wood. The wood samples used were: fir (Acer alba), poplar (Populus tremula), lime (Tillia cordata), sycamore (Acer pseudoplatanus), sweet cherry (Prunus avium), hornbeam (Carpinus betulus), walnut (Juglans regia), beech (Fagus sylvatica), oak (Quercus robur). The methods of investigation used were FT-IR spectroscopy, X-ray diffraction and thermogravimetry. By FT-IR spectroscopy, was observed that the ratio values of lignin/carbohydrate IR bands for wood decreases with increasing the average wood density, showing a decrease in lignin content. Also, the calculated values of lignin percentage from the FT-IR spectra are in very good correlation with the values from literature. Following the deconvolution process of the X-ray diffraction patterns, it was found that the degree of crystallinity, the apparent lateral crystallite size, the proportion of crystallite interior chains and cellulose fraction tend to increase with increasing of the wood density. Thermal analysis is able to give information about degradation temperatures for the principal components of different wood samples. The shape of DTG curves depends on the wood species that cause the enlargement of the peaks or the maxima of the decomposition step varies at larger or smaller temperatures ranges. The temperatures and weight loss percentage are particular for each kind of wood. This study showed that analytical methods used have the potential to be important sources of information for a quick evaluation of the chemical composition of wood samples.

  1. [Wood anatomy and uses of 7 tropical tree species from Mexico].

    PubMed

    Rebollar, S; Quintanar, A

    2000-01-01

    The wood anatomy of Coccoloba cozumelensis Hemsl., Coccoloba spicata Lundell, Gymnanthes lucida Sw., Blomia cupanioides Miranda, Canella winterana (L.) Gaertn., Aspidosperma megalocarpon Müell Arg. and Ehretia tinifolia L., is described. One tree per species was collected in the tropical rain forest of Quintana Roo, Mexico. Their wood has important traditional uses in furniture, tools, rural buildings, posts, fences, railroads and firewood. Macroscopic and microscopic characteristics were described and measured in wood samples, permanent slides and macerated material. These species have diffuse porosity, alternate vessel pits, simple perforation plates, numerous and small rays; libriform fibres are common, as well as ergastic material in gum forms, calcium carbonate and silica crystals. These characteristics explain aesthetical, weight, hardness and resistance (to mechanical and biological damage) characters that fit traditional use by the Maya.

  2. Natural resistance of exotic wood species to the formosan subterranean termite (Isoptera: Rhinotermitidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The purpose of this study was to evaluate survival and wood consumption of the Formosan subterranean termite, Coptotermes formosanus Shiraki, on ten different species of wood used as commercial lumber. Six of the wood species had natural resistance to termites and caused an average of >75% mortalit...

  3. Do species traits determine patterns of wood production in Amazonian forests?

    NASA Astrophysics Data System (ADS)

    Baker, T. R.; Phillips, O. L.; Laurance, W. F.; Pitman, N. C. A.; Almeida, S.; Arroyo, L.; Difiore, A.; Erwin, T.; Higuchi, N.; Killeen, T. J.; Laurance, S. G.; Nascimento, H.; Monteagudo, A.; Neill, D. A.; Silva, J. N. M.; Malhi, Y.; López Gonzalez, G.; Peacock, J.; Quesada, C. A.; Lewis, S. L.; Lloyd, J.

    2009-02-01

    Understanding the relationships between plant traits and ecosystem properties at large spatial scales is important for predicting how compositional change will affect carbon cycling in tropical forests. In this study, we examine the relationships between species wood density, maximum height and above-ground, coarse wood production of trees ≥10 cm diameter (CWP) for 60 Amazonian forest plots. Average species maximum height and wood density are lower in Western than Eastern Amazonia and are negatively correlated with CWP. To test the hypothesis that variation in these traits causes the variation in CWP, we generate plot-level estimates of CWP by resampling the full distribution of tree biomass growth rates whilst maintaining the appropriate tree-diameter and functional-trait distributions for each plot. These estimates are then compared with the observed values. Overall, the estimates do not predict the observed, regional-scale pattern of CWP, suggesting that the variation in community-level trait values does not determine variation in coarse wood productivity in Amazonian forests. Instead, the regional gradient in CWP is caused by higher biomass growth rates across all tree types in Western Amazonia. Therefore, the regional gradient in CWP is driven primarily by environmental factors, rather than the particular functional composition of each stand. These results contrast with previous findings for forest biomass, where variation in wood density, associated with variation in species composition, is an important driver of regional-scale patterns in above-ground biomass. Therefore, in tropical forests, above-ground wood productivity may be less sensitive than biomass to compositional change that alters community-level averages of these plant traits.

  4. Browsing affects intra-ring carbon allocation in species with contrasting wood anatomy.

    PubMed

    Palacio, S; Paterson, E; Sim, A; Hester, A J; Millard, P

    2011-02-01

    Current knowledge on tree carbon (C) allocation to wood is particularly scarce in plants subjected to disturbance factors, such as browsing, which affects forest regeneration worldwide and has an impact on the C balance of trees. Furthermore, quantifying the degree to which tree rings are formed from freshly assimilated vs. stored carbohydrates is highly relevant for our understanding of tree C allocation. We used (13)C labelling to quantify seasonal allocation of stored C to wood formation in two species with contrasting wood anatomy: Betula pubescens Ehrh. (diffuse-porous) and Quercus petraea [Matt.] Liebl. (ring-porous). Clipping treatments (66% shoot removal, and unclipped) were applied to analyse the effect of browsing on C allocation into tree rings, plus the effects on tree growth, architecture, ring width and non-structural carbohydrates (NSCs). The relative contribution of stored C to wood formation was greater in the ring-porous (55-70%) than in the diffuse-porous species (35-60%), although each species followed different seasonal trends. Clipping did not cause a significant depletion of C stores in either species. Nonetheless, a significant increase in the proportion of stored C allocated to earlywood growth was observed in clipped birches, and this could be explained through changes in tree architecture after clipping. The size of C pools across tree species seems to be important in determining the variability of seasonal C allocation patterns to wood and their sensibility to disturbances such as browsing. Our results indicate that the observed changes in C allocation to earlywood in birch were not related to variations in the amount or concentration of NSC stores, but to changes in the seasonal availability of recently assimilated C caused by modifications in tree architecture after browsing.

  5. Patterns and determinants of wood physical and mechanical properties across major tree species in China.

    PubMed

    Zhu, JiangLing; Shi, Yue; Fang, LeQi; Liu, XingE; Ji, ChengJun

    2015-06-01

    The physical and mechanical properties of wood affect the growth and development of trees, and also act as the main criteria when determining wood usage. Our understanding on patterns and controls of wood physical and mechanical properties could provide benefits for forestry management and bases for wood application and forest tree breeding. However, current studies on wood properties mainly focus on wood density and ignore other wood physical properties. In this study, we established a comprehensive database of wood physical properties across major tree species in China. Based on this database, we explored spatial patterns and driving factors of wood properties across major tree species in China. Our results showed that (i) compared with wood density, air-dried density, tangential shrinkage coefficient and resilience provide more accuracy and higher explanation power when used as the evaluation index of wood physical properties. (ii) Among life form, climatic and edaphic variables, life form is the dominant factor shaping spatial patterns of wood physical properties, climatic factors the next, and edaphic factors have the least effects, suggesting that the effects of climatic factors on spatial variations of wood properties are indirectly induced by their effects on species distribution.

  6. Importance of landscape heterogeneity to wood storks in Florida Everglades

    NASA Astrophysics Data System (ADS)

    Fleming, D. Martin; Wolff, Wilfried F.; Deangelis, Donald L.

    1994-09-01

    Declines in populations of and reproductive success of wood storks and other wading birds have occurred in the Florida Everglades over the past several decades. These declines have been concurrent with major changes in the Everglades’ landscape characteristics. Among the plausible hypotheses that relate to landscape change are the following: (1) general loss of habitat; (2) heavy loss of specific habitat, namely, short-hydroperiod wetlands that provide high prey availability early in the breeding season; and (3) an increase in frequency of major drying out of the central slough areas, which can affect prey availability late in the breeding season. These three hypotheses were compared using an individual-based model of wood stork ( Mycteria americana) reproduction. This model simulated the behavior and energetics of each individual wood stork in a breeding colony on 15-min time intervals. Changes in water depth and prey availability occurred on daily time steps. Simulation results showed a threshold response in reproductive success to reduction of wetland heterogeneity. Model comparisons in which (1) only short-hydroperiod wetlands were removed and (2) wetlands of both long and short hydroperiods were removed showed that, for the same loss of total area, the specific habitat removal caused a much greater reduction in wood stork reproduction, indicating hypothesis 2 may be a more likely explanation than hypothesis 1. Reduction of initial prey availability in the central slough areas (simulating frequent drying; hypothesis 3) reduced fledging success by an average of more than 90% in the model.

  7. Assessing Potential Acidification of Marine Archaeological Wood Based on Concentration of Sulfur Species

    SciTech Connect

    Not Available

    2011-06-22

    The presence of sulfur in marine archaeological wood presents a challenge to conservation. Upon exposure to oxygen, sulfur compounds in waterlogged wooden artifacts are being oxidized, producing sulfuric acid. This speeds the degradation of the wood, potentially damaging specimens beyond repair. Sulfur K-edge x-ray absorption spectroscopy was used to identify the species of sulfur present in samples from the timbers of the Mary Rose, a preserved 16th century warship known to undergo degradation through acidification. The results presented here show that sulfur content varied significantly on a local scale. Only certain species of sulfur have the potential to produce sulfuric acid by contact with oxygen and seawater in situ, such as iron sulfides and elemental sulfur. Organic sulfurs, such as the amino acids cysteine and methionine, may produce acid but are integral parts of the wood's structure and may not be released from the organic matrix. The sulfur species contained in the sample reflect the exposure to oxygen while submerged, and this exposure can differ greatly over time and position. A better understanding of the species pathway to acidifications required, along with its location, in order to suggest a more customized and effective preservation strategy. Waterlogged archaeological wood, frequently in the form of shipwrecks, is being excavated for historical purposes in many countries around the world. Even after extensive efforts towards preservation, scientists are discovering that accumulation of sulfate salts results in acidic conditions on the surfaces of the artifacts. Sulfuric acid degrades structural fibers in the wood by acid hydrolysis of cellulose, accelerating the decomposition of the ship timbers. Determining the sulfur content of waterlogged wood is now of great importance in maritime archaeology. Artifact preservation is often more time consuming and expensive than the original excavation; but it is key to the availability of objects for

  8. Molecular database for classifying Shorea species (Dipterocarpaceae) and techniques for checking the legitimacy of timber and wood products.

    PubMed

    Tsumura, Yoshihiko; Kado, Tomoyuki; Yoshida, Kazumasa; Abe, Hisashi; Ohtani, Masato; Taguchi, Yuriko; Fukue, Yoko; Tani, Naoki; Ueno, Saneyoshi; Yoshimura, Kensuke; Kamiya, Koichi; Harada, Ko; Takeuchi, Yayoi; Diway, Bibian; Finkeldey, Reiner; Na'iem, Mohamad; Indrioko, Sapto; Ng, Kevin Kit Siong; Muhammad, Norwati; Lee, Soon Leong

    2011-01-01

    The extent of tropical forest has been declining, due to over-exploitation and illegal logging activities. Large quantities of unlawfully extracted timber and other wood products have been exported, mainly to developed countries. As part of the export monitoring effort, we have developed methods for extracting and analyzing DNA from wood products, such as veneers and sawn timbers made from dipterocarps, in order to identify the species from which they originated. We have also developed a chloroplast DNA database for classifying Shorea species, which are both ecologically and commercially important canopy tree species in the forests of Southeast Asia. We are able to determine the candidate species of wood samples, based on DNA sequences and anatomical data. The methods for analyzing DNA from dipterocarp wood products may have strong deterrent effects on international trade of illegitimate dipterocarp products. However, the method for analyzing DNA from wood is not perfect for all wood products and need for more improvement, especially for plywood sample. Consequently, there may be benefits for the conservation of tropical forests in Southeast Asia.

  9. Regional and phylogenetic variation of wood density across 2456 Neotropical tree species.

    PubMed

    Chave, Jérôme; Muller-Landau, Helene C; Baker, Timothy R; Easdale, Tomás A; ter Steege, Hans; Webb, Campbell O

    2006-12-01

    Wood density is a crucial variable in carbon accounting programs of both secondary and old-growth tropical forests. It also is the best single descriptor of wood: it correlates with numerous morphological, mechanical, physiological, and ecological properties. To explore the extent to which wood density could be estimated for rare or poorly censused taxa, and possible sources of variation in this trait, we analyzed regional, taxonomic, and phylogenetic variation in wood density among 2456 tree species from Central and South America. Wood density varied over more than one order of magnitude across species, with an overall mean of 0.645 g/cm3. Our geographical analysis showed significant decreases in wood density with increasing altitude and significant differences among low-altitude geographical regions: wet forests of Central America and western Amazonia have significantly lower mean wood density than dry forests of Central and South America, eastern and central Amazonian forests, and the Atlantic forests of Brazil; and eastern Amazonian forests have lower wood densities than the dry forests and the Atlantic forest. A nested analysis of variance showed that 74% of the species-level wood density variation was explained at the genus level, 34% at the Angiosperm Phylogeny Group (APG) family level, and 19% at the APG order level. This indicates that genus-level means give reliable approximations of values of species, except in a few hypervariable genera. We also studied which evolutionary shifts in wood density occurred in the phylogeny of seed plants using a composite phylogenetic tree. Major changes were observed at deep nodes (Eurosid 1), and also in more recent divergences (for instance in the Rhamnoids, Simaroubaceae, and Anacardiaceae). Our unprecedented wood density data set yields consistent guidelines for estimating wood densities when species-level information is lacking and should significantly reduce error in Central and South American carbon accounting

  10. Nondestructive wood discrimination: FTIR - Fourier Transform Infrared Spectroscopy in the characterization of different wood species used for artistic objects

    NASA Astrophysics Data System (ADS)

    Buoso, Maria Crista; de Poli, Mario; Matthaes, Peter; Silvestrin, Luca; Zafiropoulos, Demetre

    2016-09-01

    Wooden artifacts represent a significant component of past cultures. Successful conservation of wooden artifacts depends on the knowledge of wood structure and types. It is critical that conservators know the category of wood that they are treating in order to successfully conserve it. Recently, vibrational spectroscopy has been successfully applied to determine the chemical structure of wood and to characterize wood types. FTIR (Fourier Transform Infrared) is a useful nondestructive or micro-destructive analytical technique providing information about chemical bonding and molecular structure. Its application in the discrimination between softwoods (conifers) and hardwoods (broad-leafs) has already been reported. The aim of the present study was to investigate the potential of FTIR as a tool for the discrimination between different wood types belonging to the same genus. Three different hardwood species, namely poplar (Populus spp), lime (Tilia spp) and birch (Betula spp), were investigated by means of FTIR spectroscopy. The woods were first inspected using a light microscope to certify the wood essence types through micrographic and morphoanatomical features. The FTIR spectra in the 4000 cm-1 to 450 cm-1 region were recorded using a Perkin-Elmer Spectrum 100 spectrometer. To enhance the qualitative interpretation of the IR spectra, second derivatives of all spectra were calculated using the Spectrum software to separate superimposed bands and to extract fine spectral details. To obtain a comprehensive characterization, the essences under investigation were also analyzed by means of Raman Spectroscopy. Clear differences were found in the spectra of the three samples confirming FTIR to be a powerful tool for wood type discrimination.

  11. Subterranean Termite Resistance of Polystyrene-Treated Wood from Three Tropical Wood Species.

    PubMed

    Hadi, Yusuf Sudo; Massijaya, Muh Yusram; Arinana, A

    2016-07-21

    The objective of this work was to investigate the resistance of three Indonesian wood species to termite attack. Samples from sengon (Falcataria moluccana), mangium (Acacia mangium), and pine (Pinus merkusii) were treated with polystyrene at loading levels of 26.0%, 8.6%, and 7.7%, respectively. Treated and untreated samples were exposed to environmental conditions in the field for 3 months. Untreated specimens of sengon, mangium, and pine had resistance ratings of 3.0, 4.6, and 2.4, respectively, based on a 10-point scale from 0 (no resistance) to 10 (complete or near-complete resistance). Corresponding resistance values of 7.8, 7.2, and 8.2 were determined for specimens treated with polystyrene. Overall weight loss values of 50.3%, 23.3%, and 66.4% were found for untreated sengon, mangium, and pine samples, respectively; for treated samples, the values were 7.6%, 14.4%, and 5.1%, respectively. Based on the findings in this study, overall resistance to termite attack was higher for treated samples compared to untreated samples.

  12. Subterranean Termite Resistance of Polystyrene-Treated Wood from Three Tropical Wood Species

    PubMed Central

    Hadi, Yusuf Sudo; Massijaya, Muh Yusram; Arinana, A.

    2016-01-01

    The objective of this work was to investigate the resistance of three Indonesian wood species to termite attack. Samples from sengon (Falcataria moluccana), mangium (Acacia mangium), and pine (Pinus merkusii) were treated with polystyrene at loading levels of 26.0%, 8.6%, and 7.7%, respectively. Treated and untreated samples were exposed to environmental conditions in the field for 3 months. Untreated specimens of sengon, mangium, and pine had resistance ratings of 3.0, 4.6, and 2.4, respectively, based on a 10-point scale from 0 (no resistance) to 10 (complete or near-complete resistance). Corresponding resistance values of 7.8, 7.2, and 8.2 were determined for specimens treated with polystyrene. Overall weight loss values of 50.3%, 23.3%, and 66.4% were found for untreated sengon, mangium, and pine samples, respectively; for treated samples, the values were 7.6%, 14.4%, and 5.1%, respectively. Based on the findings in this study, overall resistance to termite attack was higher for treated samples compared to untreated samples. PMID:27455331

  13. Response of Microtermes mycophagus (Isoptera: Termitidae) to twenty one wood species

    PubMed Central

    Saeed, Shafqat

    2015-01-01

    The responses of termite species to bait depend upon the quality of the food used in the stations. Woods are the most common food sources for termites but different termite species behave differently to different wood species and types. The knowledge of the preference status of different wood species to a termite species helps in effective monitoring and baiting program. The current study was carried out to evaluate the preference of 21 wood species to the termite, Microtermes mycophagus in the field by no-choice and choice feeding tests. The results indicated silk cotton tree and sacred fig woods as the most preferred wood species with mean mass losses of 71.21 ± 5.09% and 68.38 ± 7.27% in no-choice test and 95.02 ± 1.65% and 91.69 ± 2.07% in choice tests, respectively. White cedar was the least preferred wood species with mean mass losses of 7.49 ± 1.64% and 13.92 ± 1.89% in no choice and choice feeding tests, respectively. Based on present studies, sapwood of silk cotton tree and sacred fig may be used in effective monitoring and baiting program against M. mycophagus. PMID:26312171

  14. Wood dusts induce the production of reactive oxygen species and caspase-3 activity in human bronchial epithelial cells.

    PubMed

    Pylkkänen, Lea; Stockmann-Juvala, Helene; Alenius, Harri; Husgafvel-Pursiainen, Kirsti; Savolainen, Kai

    2009-08-21

    Wood dusts are associated with several respiratory symptoms, e.g. impaired lung function and asthma, in exposed workers. However, despite the evidence from epidemiological studies, the underlying mechanisms are not well understood. In the present study, we investigated different wood dusts for their capacity to induce cytotoxicity and production of radical oxygen species (ROS) as well as activation of the apoptotic caspase-3 enzyme in human bronchial epithelial cells (BEAS-2B). Dusts from three different tree species widely used in wood industry were studied; birch and oak represented hardwood species, and pine a common softwood species. All the experiments were carried out in three different concentrations (10, 50, and 500 microg/ml) and the analysis was performed after 0.5, 2, 6, and 24h exposure. All wood dusts studied were cytotoxic to human bronchial epithelial cells in a dose-dependent manner after 2 and 6h treatment. Exposure to pine, birch, or oak dust had a significant stimulating effect on the production of ROS. Also an induction in caspase-3 protease activity, one of the central components of the apoptotic cascade, was seen in BEAS-2B cells after 2 and 6h exposure to each of the wood dusts studied. In summary, we demonstrate that dusts from pine, birch and oak are cytotoxic, able to increase the production of ROS and the apoptotic response in human broncho-epithelial cells in vitro. Thus, our current data suggest oxidative stress by ROS as an important mechanism likely to function in wood dust related pulmonary toxicity although details of the cellular targets and cell-particle interactions remain to be solved. It is though tempting to speculate that redox-regulated transcription factors such as NFkappaB or AP-1 may play a role in this wood dust-evoked process leading to apparently induced apoptosis of target cells.

  15. Termite-Susceptible Species of Wood for Inclusion as a Reference in Indonesian Standardized Laboratory Testing.

    PubMed

    Arinana; Tsunoda, Kunio; Herliyana, Elis N; Hadi, Yusuf S

    2012-03-28

    Standardized laboratory testing of wood and wood-based products against subterranean termites in Indonesia (SNI 01.7207-2006) (SNI) has no requirement for the inclusion of a comparative reference species of wood (reference control). This is considered a weakness of the Indonesian standard. Consequently, a study was undertaken to identify a suitable Indonesian species of community wood that could be used as a reference control. Four candidate species of community woods: Acacia mangium, Hevea brasiliensis, Paraserianthes falcataria and Pinus merkusii were selected for testing their susceptibility to feeding by Coptotermes formosanus. Two testing methods (SNI and the Japanese standard method JIS K 1571-2004) were used to compare the susceptibility of each species of wood. Included in the study was Cryptomeria japonica, the reference control specified in the Japanese standard. The results of the study indicated that P. merkusii is a suitable reference species of wood for inclusion in laboratory tests against subterranean termites, conducted in accordance with the Indonesian standard (SNI 01.7207-2006).

  16. Factors controlling bark decomposition and its role in wood decomposition in five tropical tree species.

    PubMed

    Dossa, Gbadamassi G O; Paudel, Ekananda; Cao, Kunfang; Schaefer, Douglas; Harrison, Rhett D

    2016-10-04

    Organic matter decomposition represents a vital ecosystem process by which nutrients are made available for plant uptake and is a major flux in the global carbon cycle. Previous studies have investigated decomposition of different plant parts, but few considered bark decomposition or its role in decomposition of wood. However, bark can comprise a large fraction of tree biomass. We used a common litter-bed approach to investigate factors affecting bark decomposition and its role in wood decomposition for five tree species in a secondary seasonal tropical rain forest in SW China. For bark, we implemented a litter bag experiment over 12 mo, using different mesh sizes to investigate effects of litter meso- and macro-fauna. For wood, we compared the decomposition of branches with and without bark over 24 mo. Bark in coarse mesh bags decomposed 1.11-1.76 times faster than bark in fine mesh bags. For wood decomposition, responses to bark removal were species dependent. Three species with slow wood decomposition rates showed significant negative effects of bark-removal, but there was no significant effect in the other two species. Future research should also separately examine bark and wood decomposition, and consider bark-removal experiments to better understand roles of bark in wood decomposition.

  17. Factors controlling bark decomposition and its role in wood decomposition in five tropical tree species

    PubMed Central

    Dossa, Gbadamassi G. O.; Paudel, Ekananda; Cao, Kunfang; Schaefer, Douglas; Harrison, Rhett D.

    2016-01-01

    Organic matter decomposition represents a vital ecosystem process by which nutrients are made available for plant uptake and is a major flux in the global carbon cycle. Previous studies have investigated decomposition of different plant parts, but few considered bark decomposition or its role in decomposition of wood. However, bark can comprise a large fraction of tree biomass. We used a common litter-bed approach to investigate factors affecting bark decomposition and its role in wood decomposition for five tree species in a secondary seasonal tropical rain forest in SW China. For bark, we implemented a litter bag experiment over 12 mo, using different mesh sizes to investigate effects of litter meso- and macro-fauna. For wood, we compared the decomposition of branches with and without bark over 24 mo. Bark in coarse mesh bags decomposed 1.11–1.76 times faster than bark in fine mesh bags. For wood decomposition, responses to bark removal were species dependent. Three species with slow wood decomposition rates showed significant negative effects of bark-removal, but there was no significant effect in the other two species. Future research should also separately examine bark and wood decomposition, and consider bark-removal experiments to better understand roles of bark in wood decomposition. PMID:27698461

  18. Host preference and species richness of wood-inhabiting aphyllophoraceous fungi in a cool temperate area of Japan.

    PubMed

    Yamashita, Satoshi; Hattori, Tsutomu; Abe, Hisashi

    2010-01-01

    We examined the species richness and host utilization patterns of wood-inhabiting aphyllophoraceous fungi (polypores and related fungi) in an old-growth beech and oak forest in a cool, temperate area of Japan. Coarse woody debris (CWD) > or = 20 cm diam within a 6 ha plot was surveyed in Sep 2002. Tree genus, diameter, decay class and tree part of CWD samples were recorded. Fruiting bodies of aphyllophoraceous fungi that arose from the CWD were surveyed three times and identified to species. In total 256 CWD samples from 12 tree genera were surveyed with Quercus being the most frequent followed by Castanea and Fagus. From 196 CWD samples we recorded 436 wood-inhabiting fungi belonging to 63 species. Fifteen fungal species had at least 10 records, with Hymenochaete rubiginosa, Daedalea dickinsii, Xylobolus frustulatus, Rigidoporus cinereus and the small form of Fomes fomentarius being the most frequent. The number of fungal species that appeared on Fagus was significantly larger than that on Castanea, when the number of fruiting bodies collected was at least 50. The occurrences of the 15 dominant fungal species, except Trametes versicolor, were related to traits of the CWD. Tree genus was a predictor variable that affected the appearance of 11 of the 15 species of wood-inhabiting fungi. Only the tree part was selected for the models of Rigidoporus eminens, Schizopora flavipora and Stereum ostrea. Our results suggest that tree genus and tree part are important factors determining fungal community structure because these were selected as complementary predictor variables. Both oak and beech appear to be the most important tree genera for maintaining wood-inhabiting fungal species richness because the fungal flora formed on oak CWD is nearly complementary to those on chestnut, with low fungal species richness.

  19. [Book review] Lichens of the north woods: a field guide to 111 northern species, by Joe Walewski

    USGS Publications Warehouse

    Bennett, J.

    2007-01-01

    Review of: LICHENS OF THE NORTH WOODS, A FIELD GUIDE TO 111 NORTHERN SPECIES. Joe Walewski. 2007. North Woods Naturalist Series, Kollath & Stensaas Publishing, Duluth, Minnesota. 152 pp, softcover. ISBN: 0-9673793-50. $18.95.

  20. Wood species affect the degradation of crude oil in beach sand.

    PubMed

    Jandl, Gerald; Rodríguez Arranz, Alberto; Baum, Christel; Leinweber, Peter

    2015-01-01

    The addition of wood chips as a co-substrate can promote the degradation of oil in soil. Therefore, in the present study, the tree species-specific impact of wood chips of Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies L.) and Western balsam poplar (Populus trichocarpa L.) on the degradation of crude oil was tested in beach sand in a 4-week incubation experiment. The CO2-C release increased in the order of control without wood chips < +spruce < +pine < +poplar. Initial and final hydrocarbon concentrations (C10 to C40), as indicators for the oil degradation, were determined with gas chromatography-flame ionization detection (GC-FID). The degradation increased for the light fraction (C10 to C22), the heavy fraction (C23 to C40) as well as the whole range (C10 to C40) in the order of control without wood chips (f(degrad.) = 23% vs. 0% vs. 12%) < +poplar (f(degrad.) = 49% vs. 19% vs. 36%) < +spruce (f(degrad.) = 55% vs. 34% vs. 46%) < +pine (f(degrad.) = 60% vs. 44% vs. 53%), whereas the heavy fraction was less degraded in comparison to the light fraction. It can be concluded, that the tree species-specific wood quality is a significant control of the impact on the degradation of hydrocarbons, and pine wood chips might be promising, possibly caused by their lower decomposability and lower substrate replacement than the other wood species.

  1. Hydraulic architecture of two species differing in wood density: opposing strategies in co-occurring tropical pioneer trees.

    PubMed

    McCulloh, Katherine A; Johnson, Daniel M; Meinzer, Frederick C; Voelker, Steven L; Lachenbruch, Barbara; Domec, Jean-Christophe

    2012-01-01

    Co-occurring species often have different strategies for tolerating daily cycles of water stress. One underlying parameter that can link together the suite of traits that enables a given strategy is wood density. Here we compare hydraulic traits of two pioneer species from a tropical forest in Panama that differ in wood density: Miconia argentea and Anacardium excelsum. As hypothesized, the higher wood density of Miconia was associated with smaller diameter vessels and fibres, more water stress-resistant leaves and stems, and roughly half the capacitance of the lower wood density Anacardium. However, the scaling of hydraulic parameters such as the increases in leaf area and measures of hydraulic conductivity with stem diameter was remarkably similar between the two species. The collection of traits exhibited by Miconia allowed it to tolerate more water stress than Anacardium, which relied more heavily on its capacitance to buffer daily water potential fluctuations. This work demonstrates the importance of examining a range of hydraulic traits throughout the plant and highlights the spectrum of possible strategies for coping with daily and seasonal water stress cycles.

  2. Characterization of the Oxygen Transmission Rate of Oak Wood Species Used in Cooperage.

    PubMed

    Del Alamo-Sanza, María; Cárcel, Luis Miguel; Nevares, Ignacio

    2017-01-25

    The oxygen that wine receives while aged in barrels is of interest because it defines the reactions that occur during aging and, therefore, the final properties of the wine. This study is intended to make up for the lack of information concerning the oxygen permeability of eight different woods of Quercus alba L. and Quercus petraea (Matt.) Liebl. commonly used. In addition, it shows how oxygen transfer evolves with the liquid contact time during testing under similar aging conditions to those in wine barrels. French oak woods permitted a higher oxygenation rate than American ones in all cases. A decrease in the oxygen entry caused by impregnation of the wood during the process was observed in all of the species studied. This process is determined by the thickness of the flooded wood layer containing free water, although differently in the two species, possibly due to the anatomical structure and the logging process for each.

  3. Gamma-radiation-induced wood-plastic composites from Syrian tree species

    NASA Astrophysics Data System (ADS)

    Bakraji, Elias Hanna; Salman, Numan; Al-kassiri, Haroun

    2001-05-01

    Wood-plastic composites (WPC) have been prepared with five low-grade woods, native to Syria, using three monomer systems; acrylamide, butylmethacrylate, and styrene, with methanol as the swelling solvent. Polymerization was induced at various radiation doses (10, 20, and 30 kGy) at a dose rate of 3.5 kGy/h using a 60Co gamma radiation source. Some physical properties of WPC, namely polymer loading and compression strength have been measured. The polymer loading decreases approximately with increasing density of the wood species used.

  4. Remote sensing of endangered species foraging habitats: a wood stork example

    SciTech Connect

    Jensen, J.R.; Hodgson, M.E.; Mackey, H.E. Jr.; Coulter, M.

    1986-03-01

    Potential foraging sites for an endangered species, the wood stork, were identified using thematic mapper data for May 1984, for a section of north-central Georgia. This was accomplished using innovative clustering techniques applied to known wood stork foraging sites around the Birdsville Colony in Georgia. The signatures for known sites were then geographically extended to a 1,520-square-kilometer region surrounding the Birdsville Colony. Thematic maps were produced, and foraging area acreages computed providing a regional assessment of existing and potential wood stork foraging sits. 16 refs., 6 figs.

  5. Potential for Converting Wood into Plastics: Chemicals from wood may regain importance as the cost of petroleum continues to rise.

    PubMed

    Goldstein, I S

    1975-09-12

    The conversion of wood into chemicals for the production of most of our synthetic plastics, fibers, and rubbers is technically feasible. With refinements in technology a large integrated plant utilizing all components of the wood for production of ethanol (to be further processed to ethylene and butadiene), phenols and furfural would be approaching economic feasibility as well at current petrochemical prices. If crude oil prices continue to climb at a faster rate than wood costs, the economic feasibility of chemicals for polymers from wood would become certain. Although technical feasibility has not been established, synthetic oils from liquefaction of wood might serve as feedstocks for cracking to chemicals in the same way that crude oil is presently used. The fulfillment of all our polymer needs from wood as a raw material should not place an impossible burden on our wood supply, but might actually improve the availability of wood for lumber, plywood and pulp by providing a use for less valuable wood which would allow reforestation and improved forest management.

  6. Submarine canyons as the preferred habitat for wood-boring species of Xylophaga (Mollusca, Bivalvia)

    NASA Astrophysics Data System (ADS)

    Romano, C.; Voight, J. R.; Company, J. B.; Plyuscheva, M.; Martin, D.

    2013-11-01

    Submarine canyons are often viewed as natural “debris concentrators” on the seafloor. Organic substrates may be more abundant inside than outside canyon walls. To determine the effects of the presence these substrates in the Blanes submarine canyon (NW Mediterranean) and its adjacent western open slope, we deployed wood to study colonizing organisms. Three replicate pine and oak cubes (i.e. most common trees inland) were moored at 900, 1200, 1500 and 1800 m depth and collected after 3, 9 and 12 months. Wood from inside the canyon was significantly more heavily colonized by the five morphotypes of wood-boring bivalves than was wood on the adjacent open slope. Xylophaga sp. A dominated all wood types and locations, with peak abundance at 900 and 1200 m depth. Its growth rate was highest (0.070 mm d-1) during the first three months and was faster (or it recruits earlier) in pine than in oak. Size distribution showed that several recruitment events may have occurred from summer to winter. Xylophaga sp. B, appeared first after 9 months and clearly preferred pine over oak. As the immersion time was the same, this strongly supported a specific association between recruiters and type of substrate. Three morphotypes, pooled as Xylophaga spp. C, were rare and seemed to colonize preferentially oak inside the canyon and pine in the adjacent open slope. Individuals of Xylophaga were more abundant inside the canyon than in nearby off-canyon locations. Blanes Canyon may serve as a long-term concentrator of land-derived vegetal fragments and as a consequence sustain more animals. Are the species richness and abundance of wood-boring bivalves higher inside the canyon than on the adjacent open slope? Do the composition and density of the wood-boring bivalves change with deployment time and depth, as well as on the type of the sunken wood? What is the growth rate of the dominant wood-boring species?

  7. Nutritional ecology of the formosan subterranean termite (Isoptera: Rhinotermitidae): feeding response to commercial wood species.

    PubMed

    Morales-Ramos, J A; Rojas, M G

    2001-04-01

    The feeding preferences of the Formosan subterranean termite, Coptotermes formosanus Shiraki, were tested in three separate experiments on 28 different wood species. Experiment 1 was a multiple-choice test designed to test relative preferences among 24 wood species commercially available in New Orleans, LA. Experiment 2 was a similar study designed to test relative preferences among 21 wood species shown or reported to be unpalatable to the Formosan subterranean termite. Experiment 3 was a no-choice test to examine the feeding deterrence of the 10 least preferred wood species. Preference was determined by consumption rates. Birch (Betula alleghaniensis Britton), red gum (Liquidambar styraciflua L.), Parana pine [Araucaria angustifolia (Bert.) 1, sugar maple (Acer saccharum Marsh.), pecan (Carya illinoensis Wangenh.), and northern red oak (Quercus rubra L.) were the most preferred species by C. formosanus in order of consumption rate. All of these species were significantly more preferred than southern yellow pine (Pinus taeda L.), widely used for monitoring. Sinker cypress [ = old growth bald cypress, Taxodium distichum (L.)], western red cedar (Thuja plicata Donn), Alaskan yellow cedar (Chamaecyparis nootkatensis D. Don), eastern red cedar (Juniperus virginiana L.), sassafras [Sassafras albidum (Nutt.)], Spanish cedar (Cedrella odorata L.), Honduras mahogany (Swietenia macrophyla King), Indian rosewood (Dalbergia latifolia Roxb.), Honduras rosewood (D. stevensonii Standl.), and morado (Machaerium sp.) induced significant feeding deterrence and mortality to C. formosanus. The last eight species produced 100% mortality after 3 mo.

  8. Chemical composition of particles from traditional burning of Pakistani wood species

    NASA Astrophysics Data System (ADS)

    Shahid, Imran; Kistler, Magdalena; Mukhtar, Azam; Ramirez-Santa Cruz, Carlos; Bauer, Heidi; Puxbaum, Hans

    2015-11-01

    Total particulate matter (TPM) emitted during burning of three types of Pakistani wood (eucalyptus camaldulensis, local name Safeeda; acacia nilotica, local name Kikar, Babul; dalbergia sissoo, Shisham, Tali) in a traditional brick stove were collected and analyzed for anhydrosugars, sugar alcohols, trace metals, soluble ions and carbonaceous species. This is a first study reporting anhydrosugars in wood smoke particles emitted during traditional burning of common wood types in Pakistan. Carbonaceous species showed the highest contribution to the particulate matter. Although the total carbon (TC) contribution was similar for all burnings (64.8-70.2%), the EC/OC ratio varied significantly, from 0.2 to 0.3 for Accacia and Dalbergia to 0.7-0.8 for Eucalyptus and Wood-mix. Among inorganic constituents potassium chloride and silicon were found at levels higher than 1%. The levoglucosan concentrations ranged from 3.0 to 6.6% (average 5.6%) with the highest value for Accacia and lowest value for the wood-mix. The high levoglucosan/mannosan ratios of 20-28 were typical for hardwood. The ratio between levoglucosan and galactosan varied stronger and was found to be around 13-20 for Accacia, Eucalyptus and Wood mix, and 43 for Dalbergia. The determined levoglucosan concentrations allowed assessing the conversion factor for calculation of biomass smoke contribution to ambient particulate matter levels in Pakistan.

  9. Argentinean native wood species: Physical and mechanical characterization of some Prosopis species and Acacia aroma (Leguminosae; Mimosoideae).

    PubMed

    Pometti, Carolina L; Pizzo, Benedetto; Brunetti, Michele; Macchioni, Nicola; Ewens, Mauricio; Saidman, Beatriz O

    2009-03-01

    One of the problems in marketing the wood of Prosopis and Acacia is the lack of standardization of its qualities. The aim of this paper was to obtain a preliminary detection of some properties of the wood of four species of the genus Prosopis and one species from Acacia grown in Argentina. To accomplish this objective, the content of extractives and some physical and mechanical characteristics were analyzed. The density rho(12) of all the species indicates that these woods range from heavy to very heavy (>or=0.69g/cm(3)). The total volumetric shrinkage values are low, less than 10%, for all species. The parallel compression strength and the shear strength for all the species indicate a very resistant wood (>or=46.93MPa and >or=18.35MPa, respectively). Brinell hardness was higher than 5kg/mm(2) in all cases. The species with less content of extractives is P. ruscifolia (approximately 9% of anhydrous mass) whereas A. aroma was the one with the greatest content (approximately 25% of anhydrous mass in the heartwood).

  10. Identification of endangered or threatened Costa Rican tree species by wood anatomy and fluorescence activity.

    PubMed

    Moya, Róger; Wiemann, Michael C; Olivares, Carlos

    2013-09-01

    A total of 45 native Costa Rican tree species are threatened or in danger of extinction, but the Convention on International Trade Endangered Species (CITES) includes only eight of these in its Appendices. However, the identification of other species based on their wood anatomy is limited. The present study objective was to describe and to compare wood anatomy and fluorescence activity in some endangered or threatened species of Costa Rica. A total of 45 (22 endangered and 23 threatened with extinction) wood samples of these species, from the xylaria of the Instituto Tecnológico de Costa Rica and the Forest Products Laboratory in Madison, Wisconsin, were examined. Surface fluorescence was positive in eight species, water extract fluorescence was positive in six species and ethanol extract fluorescence was positive in 24 species. Almost all species were diffuse porous except for occasional (Cedrela odorata, C. fissilis, Cordia gerascanthus) or regular (C. salvadorensis and C. tonduzii) semi-ring porosity. A dendritic vessel arrangement was found in Sideroxylon capari, and pores were solitary in Guaiacum sanctum and Vantanea barbourii. Vessel element length was shortest in Guaiacum sanctum and longest in Humiriastrum guianensis, Minquartia guianensis and Vantanea barbourii. Finally, anatomical information and fluorescence activity were utilized to construct an identification key of species, in which fluorescence is a feature used in identification.

  11. Relative importance of breakage and decay as processes depleting large wood from streams

    NASA Astrophysics Data System (ADS)

    Merten, Eric C.; Vaz, Pedro G.; Decker-Fritz, Jo A.; Finlay, Jacques C.; Stefan, Heinz G.

    2013-05-01

    Large wood pieces affect virtually every physical, chemical, and biological process in fluvial systems, including hydraulics, transport of materials, algal biomass accrual, nutrient uptake, and trophic interactions. The processes that deplete wood are thus of broad importance to stream ecosystems. We assessed the relative contributions for breakage-induced mobilization (where pieces are more prone to transport as a result of breakage into shorter parts) and gradual biochemical decay to wood depletion rates in a field study on 12 northern Minnesota, USA, streams. Wood pieces > 0.05 m in diameter for a portion > 1 m in length were individually tagged (n = 651), measured, and remeasured a year later. Pieces showed significant reductions in density and branching complexity (i.e., branches and twigs) and 22% of pieces broke (i.e., lost 10% or more of length). Processes related to breakage and decay were examined using Bayesian structural equation modeling and multiple regression. Breakage was more likely for pieces that were thin in diameter, long, deeply submerged, braced, buried, and traveled long distances. Pieces lost more density if they were initially dense, traveled a long distance, were not deeply submerged, lacked bark, were thin in diameter, were steeply pitched, were long, and were not buried. Pieces lost more branching complexity if they were complex with little gap between them and the streambed. Actual mass losses related to breakage and decay were 7.3% and 1.9% (respectively), both less than the 36% observed for total fluvial export. In contrast to the associations of breakage and decay with structural properties of the wood pieces and their position, hydraulic and geomorphic variables (stream power, slope, velocity, width) had little effect.

  12. Effect of thermal treatments on technological properties of wood from two Eucalyptus species.

    PubMed

    Cademartori, Pedro Henrique G; Missio, André L; Mattos, Bruno D; Gatto, Darci A

    2015-03-01

    The effect of thermal treatments on physical and mechanical properties of rose gum and Sydney blue gum wood was evaluated. Wood samples were thermally modified in a combination: pre-treatment in an autoclave (127°C - 1h) and treatment in an oven (180-240°C - 4h); and only treatment in an oven at 180-240°C for 4h. Chemical changes in the structure of woods were evaluated through infrared spectroscopy. Evaluation of physical properties was performed through mass loss, specific gravity, equilibrium moisture content and dimensional stability tests. Surface changes were analyzed through apparent contact angle technique and static bending tests were carried out to evaluate the mechanical behavior. Use of pre-treatment in autoclave affected the properties analyzed, however oven, resulted in the highest changes on wood from both species. Chemical changes were related to the degradation of hemicelluloses. Moreover, a significant decrease of hygroscopicity and mechanical strength of thermally modified woods was observed, while specific gravity did not significantly change for either of the species studied. The best results of decrease of wettability were found in low temperatures, while dimensional stability increased as a function of temperature of exposure in oven. The highest loss of mechanical strength was observed at 240°C for both species.

  13. Salt stress induces the formation of a novel type of 'pressure wood' in two Populus species.

    PubMed

    Janz, Dennis; Lautner, Silke; Wildhagen, Henning; Behnke, Katja; Schnitzler, Jörg-Peter; Rennenberg, Heinz; Fromm, Jörg; Polle, Andrea

    2012-04-01

    • Salinity causes osmotic stress and limits biomass production of plants. The goal of this study was to investigate mechanisms underlying hydraulic adaptation to salinity. • Anatomical, ecophysiological and transcriptional responses to salinity were investigated in the xylem of a salt-sensitive (Populus × canescens) and a salt-tolerant species (Populus euphratica). • Moderate salt stress, which suppressed but did not abolish photosynthesis and radial growth in P. × canescens, resulted in hydraulic adaptation by increased vessel frequencies and decreased vessel lumina. Transcript abundances of a suite of genes (FLA, COB-like, BAM, XET, etc.) previously shown to be activated during tension wood formation, were collectively suppressed in developing xylem, whereas those for stress and defense-related genes increased. A subset of cell wall-related genes was also suppressed in salt-exposed P. euphratica, although this species largely excluded sodium and showed no anatomical alterations. Salt exposure influenced cell wall composition involving increases in the lignin : carbohydrate ratio in both species. • In conclusion, hydraulic stress adaptation involves cell wall modifications reciprocal to tension wood formation that result in the formation of a novel type of reaction wood in upright stems named 'pressure wood'. Our data suggest that transcriptional co-regulation of a core set of genes determines reaction wood composition.

  14. Fuel wood properties of some oak tree species of Manipur, India.

    PubMed

    Meetei, Shougrakpam Bijen; Singh, E J; Das, Ashesh Kumar

    2015-07-01

    Five indigenous oak tree species, i.e., Castanopsis indica (Roxb. ex Lindl.) A.DC., Lithocarpus fenestratus (Roxb.) Rehder, Lithocarpus pachyphyllus (Kurz) Rehder, Lithocarpus polystachyus (Wall. ex A.DC.) Rehder and Quercus serrata Murray were estimated for their wood properties such as calorific value, density, moisture content and ash content from a sub-tropical forest of Haraothel hill, Senapati District, Manipur. Wood biomass components were found to have higher calorific value (kJ g(-)) than bark components. The calorific values for tree species were found highest in L. pachyphyllus (17.99 kJ g(-1)) followed by C. indica (17.98 kJ g1), L. fenestratus (17.96 kJ g"), L. polystachyus (17.80 kJ g(-1)) and Q. serrata (17.49 kJ g(-1)). Calorific values for bole bark, bole wood and branch bark were found significantly different (F > 3.48 at p = 0.05) in five oak tree species. Percentage of ash on dry weight basis was found to be highest in Q. serrata (4.73%) and lowest in C. indica (2.19%). Ash content of tree components gives a singnificant factor in determining fuelwood value index (FVI). Of all the five oak tree species, Q. serrata exhibited highest value of wood density (0.78 g cm-) and lowest was observed in C. indica (0.63 g cm(-3)). There was significant correlation between wood density (p<0.05), ash content (p<0.01) with calorific value in oak tree species. Fuelwood value index (FVI) was in the following order: C. indica (1109.70) > L. pachyphyllus (898.41)> L. polystachyus (879.02)> L. fenestratus (824.61)> Q. serrata (792.50). Thus, the present study suggests that C. indica may be considered as a fuelwood oak tree species in Manipur.

  15. Diversity of Diaporthe species associated with wood cankers of fruit and nut crops in northern California

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diaporthe ampelina, causal agent of Phomopsis cane and leaf spot of grapevine (Vitis vinifera L.), is also frequently isolated from grapevine wood, causing Phomopsis dieback. In California, Diaporthe species cause a wide range of symptoms not only on grape, but also other fruit and nut crops. To bet...

  16. Influence of geographical origin and botanical species on the content of extractives in American, French, and East European oak woods.

    PubMed

    Prida, Andrei; Puech, Jean-Louis

    2006-10-18

    The chemical composition of East European (Republic of Moldova, Ukraine, and Romania) oaks was investigated profoundly for the first time in the present study and compared with American and French counterparts. Taking into account the high natural variability of oak extractives contents, the wide-ranging sampling was performed for all oak origins: 276 French oaks, 102 East European oaks of both species (Quercus robur L. and Quercus petraea Liebl.), and 56 American oaks (Quercus alba). These oaks were compared with great attention paid to the extractives, which are most important for sensorial impact in wine or spirit maturation, such as ellagitannins and principal odorant substances (aromatic aldehydes, lactones and phenols). The substances in question were studied by application of HPLC and GC-MS techniques. The pattern of all studied extractive contents allowed adequate separation of oak samples according to their geographical origin or botanical species. The highest separation rate was for American and French oaks, whereas East European samples could be partially misclassified in two sets mentioned above. The most important variables for species discrimination were whiskey lactone related variables and ellagitannins, whereas the most important features for distinguishing the origin were eugenol, 2-phenylethanol, vanillin, and syringaldehyde. These substances allowed the distinction of French and East European woods of the same species. With regard to chemical composition, East European wood held the intermediary place between American and French oaks according to their ellagitannin and whiskey lactone levels; nevertheless, it was characterized by specific high values of eugenol, aromatic aldehydes, and 2-phenylethanol.

  17. Associations between regional moisture gradient, tree species dominance, and downed wood abundance

    NASA Astrophysics Data System (ADS)

    Johnson, A. C.; Mills, J.

    2007-12-01

    Downed wood functions as a source of nurse logs, physical structure in streams, food, and carbon. Because downed wood is important in upland and aquatic habitats, an understanding of wood recruitment along a continuum from wet to dry landscapes is critical for both preservation of biodiversity and restoration of natural ecosystem structure and function. We assessed downed wood in public and private forests of Washington and Oregon by using a subset of the Forest Inventory and Analysis (FIA) database including 15,842 sampled conditions. Multivariate regression trees, ANOVA, and t-tests were used to discern environmental conditions most closely associated with abundance of woody debris. Of the 16 parameters included in the analysis, rainfall, forest ownership, number of damaged standing trees, and forest elevation were most indicative of woody debris abundance. The Hemlock/spruce Group, including hemlock, spruce, cedar, and white pine, most associated with wetter soils, had significantly more downed wood than 12 other forest groups. The Ponderosa Pine Group, indicative of drier sites with higher fire frequencies, included ponderosa pine, sugar pine, and incense cedar, and had significantly less downed wood volume. Overall, the amount of woody debris in either the Spruce/hemlock Group or the Ponderosa Pine Group did not change significantly as tree age increased from 5 to 350 years. Plots within the Hemlock/spruce with greater standing tree volume also had significantly greater downed wood volume. In contrast, greater downed wood volume was not associated with greater standing tree volume in the Ponderosa Pine Group. Knowledge of linkages among environmental variables and stand characteristics are useful in development of regional forest models aimed at understanding the effects of climate change and disturbance on forest succession.

  18. Comparative evaluation of three lignin isolation protocols for various wood species.

    PubMed

    Guerra, Anderson; Filpponen, Ilari; Lucia, Lucian A; Argyropoulos, Dimitris S

    2006-12-27

    Milled wood lignin (MWL), cellulolytic enzyme lignin (CEL), and enzymatic mild acidolysis lignin (EMAL) were isolated from different wood species and characterized by various techniques. The EMAL protocol offered gravimetric lignin yields 2-5 times greater than those of the corresponding MWL and CEL. The purities of the EMALs were 3.75-10.6% higher than those of their corresponding CELs, depending upon the wood species from which they were isolated. Molecular weight analyses showed that the EMAL protocol isolates lignin fractions that are not accessed by the other procedures evaluated, while 31P NMR spectroscopy revealed that MWL is more condensed and bears more phenolic hydroxyl groups than EMAL and CEL. The yields and purities of EMAL, MWL, and CEL from hardwood were greater than those obtained for the examined softwoods. Structural details obtained by DFRC (derivatization followed by reductive cleavage)/31P NMR revealed different contents of condensed and uncondensed beta-O-aryl ether structures, dibenzodioxocins, and condensed and uncondensed phenolic hydroxyl and carboxylic acid groups within lignins isolated from different wood species.

  19. Health effects of residential wood smoke particles: the importance of combustion conditions and physicochemical particle properties

    PubMed Central

    Kocbach Bølling, Anette; Pagels, Joakim; Yttri, Karl Espen; Barregard, Lars; Sallsten, Gerd; Schwarze, Per E; Boman, Christoffer

    2009-01-01

    Background Residential wood combustion is now recognized as a major particle source in many developed countries, and the number of studies investigating the negative health effects associated with wood smoke exposure is currently increasing. The combustion appliances in use today provide highly variable combustion conditions resulting in large variations in the physicochemical characteristics of the emitted particles. These differences in physicochemical properties are likely to influence the biological effects induced by the wood smoke particles. Outline The focus of this review is to discuss the present knowledge on physicochemical properties of wood smoke particles from different combustion conditions in relation to wood smoke-induced health effects. In addition, the human wood smoke exposure in developed countries is explored in order to identify the particle characteristics that are relevant for experimental studies of wood smoke-induced health effects. Finally, recent experimental studies regarding wood smoke exposure are discussed with respect to the applied combustion conditions and particle properties. Conclusion Overall, the reviewed literature regarding the physicochemical properties of wood smoke particles provides a relatively clear picture of how these properties vary with the combustion conditions, whereas particle emissions from specific classes of combustion appliances are less well characterised. The major gaps in knowledge concern; (i) characterisation of the atmospheric transformations of wood smoke particles, (ii) characterisation of the physicochemical properties of wood smoke particles in ambient and indoor environments, and (iii) identification of the physicochemical properties that influence the biological effects of wood smoke particles. PMID:19891791

  20. Lignification and tension wood.

    PubMed

    Pilate, Gilles; Chabbert, Brigitte; Cathala, Bernard; Yoshinaga, Arata; Leplé, Jean-Charles; Laurans, Françoise; Lapierre, Catherine; Ruel, Katia

    2004-01-01

    Hardwood trees are able to reorient their axes owing to tension wood differentiation. Tension wood is characterised by important ultrastructural modifications, such as the occurrence in a number of species, of an extra secondary wall layer, named gelatinous layer or G-layer, mainly constituted of cellulose microfibrils oriented nearly parallel to the fibre axis. This G-layer appears directly involved in the definition of tension wood mechanical properties. This review gathers the data available in the literature about lignification during tension wood formation. Potential roles for lignin in tension wood formation are inferred from biochemical, anatomical and mechanical studies, from the hypotheses proposed to describe tension wood function and from data coming from new research areas such as functional genomics.

  1. Chemical composition and fuel wood characteristics of fast growing tree species in India

    NASA Astrophysics Data System (ADS)

    Chauhan, S. K.; Soni, R.

    2012-04-01

    India is one of the growing economy in the world and energy is a critical input to sustain the growth of development. Country aims at security and efficiency of energy. Though fossil fuel will continue to play a dominant role in energy scenario but country is committed to global environmental well being thus stressing on environment friendly technologies. Concerns of energy security in this changing climatic situation have led to increasing support for the development of new renewable source of energy. Government though is determined to facilitate bio-energy and many projects have been established but initial after-affects more specifically on the domestic fuelwood are evident. Even the biomass power generating units are facing biomass crisis and accordingly the prices are going up. The CDM projects are supporting the viability of these units resultantly the Indian basket has a large number of biomass projects (144 out of total 506 with 28 per cent CERs). The use for fuelwood as a primary source of energy for domestic purpose by the poor people (approx. 80 per cent) and establishment of bio-energy plants may lead to deforestation to a great extent and only solution to this dilemma is to shift the wood harvest from the natural forests to energy plantations. However, there is conspicuous lack of knowledge with regards to the fuelwood characteristics of fast growing tree species for their selection for energy plantations. The calorific value of the species is important criteria for selection for fuel but it is affected by the proportions of biochemical constituents present in them. The aim of the present work was to study the biomass production, calorific value and chemical composition of different short rotation tree species. The study was done from the perspective of using the fast growing tree species for energy production at short rotation and the study concluded that short rotation tree species like Gmelina arborea, Eucalyptus tereticornis, Pongamia pinnata

  2. Wood decay at sea

    NASA Astrophysics Data System (ADS)

    Charles, François; Coston-Guarini, Jennifer; Guarini, Jean-Marc; Fanfard, Sandrine

    2016-08-01

    The oceans and seas receive coarse woody debris since the Devonian, but the kinetics of wood degradation remains one of many unanswered questions about the fate of driftwood in the marine environment. A simple gravimetric experiment was carried out at a monitoring station located at the exit of a steep, forested Mediterranean watershed in the Eastern Pyrenees. The objective was to describe and quantify, with standardized logs (in shape, structure and constitution), natural degradation of wood in the sea. Results show that the mass decrease of wood logs over time can be described by a sigmoidal curve. The primary process of wood decay observed at the monitoring station was due to the arrival and installation of wood-boring species that consumed more than half of the total wood mass in six months. Surprisingly, in a region where there is little remaining wood marine infrastructure, "shipworms", i.e. xylophagous bivalves, are responsible for an important part of this wood decay. This suggests that these communities are maintained probably by a frequent supply of a large quantity of riparian wood entering the marine environment adjacent to the watershed. By exploring this direct link between terrestrial and marine ecosystems, our long term objective is to determine how these supplies of terrestrial organic carbon can sustain wood-based marine communities as it is observed in the Mediterranean Sea.

  3. Anaplasma species of veterinary importance in Japan

    PubMed Central

    Ybañez, Adrian Patalinghug; Inokuma, Hisashi

    2016-01-01

    Anaplasma species of the family Anaplasmataceae, order Rickettsiales are tick-borne organisms that can cause disease in animals and humans. In Japan, all recognized species of Anaplasma (except for Anaplasma ovis) and a potentially novel Anaplasma sp. closely related to Anaplasma phagocytophilum have been reported. Most of these detected tick-borne pathogens are believed to be lowly pathogenic in animals in Japan although the zoonotic A. phagocytophilum has recently been reported to cause clinical signs in a dog and in humans. This review documents the studies and reports about Anaplasma spp. in Japan. PMID:27956767

  4. Nutritional ecology of the Formosan subterranean termite (Isoptera: Rhinotermitidae): growth and survival of incipient colonies feeding on preferred wood species.

    PubMed

    Morales-Ramos, Juan A; Rojas, M Guadalupe

    2003-02-01

    The wood of 11 plant species was evaluated as a food source significantly impacting the growth and survival of incipient colonies of the Formosan subterranean termite, Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae). Colonies of C. formosanus feeding on pecan, Carya illinoensis (Wangenh.), and red gum, Liquidambar styraciflua L., produced significantly more progeny than colonies feeding on other wood species tested. Progeny of colonies feeding on pecan and American ash, Fraxinus americana L., had significantly greater survival than progeny of colonies feeding on other wood species. Colonies feeding on a nutritionally supplemented cellulose based matrix showed similar fitness characteristics as colonies feeding on the best wood treatments. These results indicate that differences observed in colony fitness can be partially explained by nutritional value of the food treatment, raising the possibility that wood from different tree species have different nutritional values to the Formosan subterranean termites. Colonies feeding on loblolly pine, Pinus taeda L., and ponderosa pine, Pinus ponderosa Laws., had significantly lower survival and produced significantly fewer workers and soldiers than colonies feeding on other wood species. Colony survival from 90 to 180 d of age and from 90 to 360 d of age was significantly correlated with the number of workers present at 90 d of colony age, indicating that colony survival depends on the presence of workers. Wood consumption in a multiple-choice study was significantly correlated with colony fitness value. This suggests that feeding preference of C. formosanus is at least partially influenced by the nutritional value of the food source.

  5. Analysis of the dielectric properties of trunk wood in dominant conifer species from New England and Siberia

    NASA Technical Reports Server (NTRS)

    Ranson, K. J.; Rock, B. N.; Salas, W. A.; Smith, K.; Williams, D. L.

    1992-01-01

    Data were collected for dominant conifer species. Dielectric properties of trunk wood were measured using a C-band dielectric probe. For certain specimens, electrical resistance was also measured using a shigometer. The water status of the trees studies was determined either by use of a Scholander pressure chamber on branch samples collected simultaneously with dielectric measurements or by fresh-weight/dry-weight assessment of wood core samples extracted and analyzed with the dielectric probe and shigometer. Diurnal delectric properties and xylem water column tension are inversely correlated such that real and imaginary dielectric values drop as tension increases. The dielectric properties were positively correlated with wood core moisture content while electrical resistance was poorly correlated with wood core moisture content in one species studied. Results support the view that dielectric properties are strongly correlated with moisture status in trunk wood, and possibly ion concentrations associated with decay processes in damaged specimens.

  6. Allergic contact dermatitis from exotic woods: importance of patch-testing with patient-provided samples.

    PubMed

    Podjasek, Joshua O; Cook-Norris, Robert H; Richardson, Donna M; Drage, Lisa A; Davis, Mark D P

    2011-01-01

    Exotic woods from tropical and subtropical regions (eg, from South America, south Asia, and Africa) frequently are used occupationally and recreationally by woodworkers and hobbyists. These exotic woods more commonly provoke irritant contact dermatitis reactions, but they also can provoke allergic contact dermatitis reactions. We report three patients seen at Mayo Clinic (Rochester, MN) with allergic contact dermatitis reactions to exotic woods. Patch testing was performed and included patient-provided wood samples. Avoidance of identified allergens was recommended. For all patients, the dermatitis cleared or improved after avoidance of the identified allergens. Clinicians must be aware of the potential for allergic contact dermatitis reactions to compounds in exotic woods. Patch testing should be performed with suspected woods for diagnostic confirmation and allowance of subsequent avoidance of the allergens.

  7. Cadophora species associated with wood-decay of grapevine in North America.

    PubMed

    Travadon, Renaud; Lawrence, Daniel P; Rooney-Latham, Suzanne; Gubler, Walter D; Wilcox, Wayne F; Rolshausen, Philippe E; Baumgartner, Kendra

    2015-01-01

    Cadophora species are reported from grapevine (Vitis vinifera L.) in California, South Africa, Spain, Uruguay, and Canada. Frequent isolation from vines co-infected with the Esca pathogens (Togninia minima and Phaeomoniella chlamydospora), and confirmation of its ability to cause wood lesions/discoloration in pathogenicity tests, suggest that C. luteo-olivacea is part of the trunk pathogen complex. In North America, little is known regarding the diversity, geographic distribution, and roles of Cadophora species as trunk pathogens. Accordingly, we characterized 37 Cadophora isolates from ten US states and two Canadian provinces, based on molecular and morphological comparisons, and pathogenicity. Phylogenetic analysis of three loci (ITS, translation elongation factor 1-alpha (TEF1-α) and beta-tubulin (BT)) distinguished two known species (C. luteo-olivacea and Cadophora melinii) and three newly-described species (Cadophora orientoamericana, Cadophora novi-eboraci, and Cadophora spadicis). C. orientoamericana, C. novi-eboraci, and C. spadicis were restricted to the northeastern US, whereas C. luteo-olivacea was only recovered from California. C. melinii was present in California and Ontario, Canada. Morphological characterization was less informative, due to significant overlap in dimensions of conidia, hyphae, conidiophores, and conidiogenous cells. Pathogenicity tests confirmed the presence of wood lesions after 24 m, suggesting that Cadophora species may have a role as grapevine trunk pathogens.

  8. Wood specific gravity and anatomy of branches and roots in 113 Amazonian rainforest tree species across environmental gradients.

    PubMed

    Fortunel, Claire; Ruelle, Julien; Beauchêne, Jacques; Fine, Paul V A; Baraloto, Christopher

    2014-04-01

    Wood specific gravity (WSG) is a strong predictor of tree performance across environmental gradients. Yet it remains unclear how anatomical elements linked to different wood functions contribute to variation in WSG in branches and roots across tropical forests. We examined WSG and wood anatomy in white sand, clay terra firme and seasonally flooded forests in French Guiana, spanning broad environmental gradients found throughout Amazonia. We measured 15 traits relating to branches and small woody roots in 113 species representing the 15 most abundant species in each habitat and representative species from seven monophyletic lineages occurring in all habitats. Fiber traits appear to be major determinants of WSG, independent of vessel traits, in branches and roots. Fiber traits and branch and root WSG increased from seasonally flooded species to clay terra firme species and lastly to white sand species. Branch and root wood traits were strongly phylogenetically constrained. Lineages differed in wood design, but exhibited similar variation in wood structure across habitats. We conclude that tropical trees can invest differently in support and transport to respond to environmental conditions. Wind disturbance and drought stress represent significant filters driving tree distribution of Amazonian forests; hence we suggest that biophysical explanations should receive more attention.

  9. Biochemical, genetic and physiological characterization of venom components from two species of scorpions: Centruroides exilicauda Wood and Centruroides sculpturatus Ewing.

    PubMed

    Valdez-Cruz, Norma A; Dávila, Sonia; Licea, Alexei; Corona, Miguel; Zamudio, Fernando Z; García-Valdes, Jesús; Boyer, Leslie; Possani, Lourival D

    2004-06-01

    Current literature concerning the taxonomic names of two possibly distinct species of scorpions from the genus Centruroides (sculpturatus and/or exilicauda) is controversial. This communication reports the results of biochemical, genetic and electrophysiological experiments conducted with C. exilicauda Wood of Baja California (Mexico) and C. sculpturatus Ewing of Arizona (USA). The chromatographic profile fractionation of the soluble venom from both species of scorpions is different. The N-terminal amino acid sequence for nine toxins of C. exilicauda was determined and compared with those from C. sculpturatus. Lethality tests conducted in mice support the idea that C. exilicauda venom should be expected to be medically less important than C. sculpturatus. Thirteen genes from the venomous glands of the scorpion C. exilicauda were obtained and compared with previously published sequences from genes of the species C. sculpturatus. Genes coding for cytochrome oxidase I and II of both species were also sequenced. A phylogenetic tree was generated with this information showing important differences between them. Additionally, the results of electrophysiological assays conducted with the venom from both species on the Ca(2+)-dependent K(+)-channels, showed significant differences. These results strongly support the conclusion that C. exilicauda and C. sculpturatus are in fact two distinct species of scorpions.

  10. Spencermartinsiella silvicola sp. nov., a yeast species isolated from rotting wood.

    PubMed

    Morais, Camila G; Lara, Carla A; Oliveira, Evelyn S; Peter, Gábor; Dlauchy, Dénes; Rosa, Carlos A

    2015-11-10

    Three strains of a new xylanase-producing yeast species were isolated from rotting wood samples collected in the Atlantic Rain Forest of Brazil. The sequences of the ITS region and D1/D2 domains of the large subunit of the rRNA gene showed that this new yeast species belongs to the genus Spencermartinsiella, and its closest relatives among the recognized species are S. europaea and S. ligniputridi. The novel species Spencermartinsiella silvicola sp. nov. is proposed to accommodate these isolates. The type strain is UFMG-CM-Y274T (= CBS 13490T). The MycoBank number is MB 813053. In addition, Candida cellulosicola is reassigned to the genus Spencermartinsiella as a new combination.

  11. Patterns in hydraulic architecture from roots to branches in six tropical tree species from cacao agroforestry and their relation to wood density and stem growth

    PubMed Central

    Kotowska, Martyna M.; Hertel, Dietrich; Rajab, Yasmin Abou; Barus, Henry; Schuldt, Bernhard

    2015-01-01

    For decades it has been assumed that the largest vessels are generally found in roots and that vessel size and corresponding sapwood area-specific hydraulic conductivity are acropetally decreasing toward the distal twigs. However, recent studies from the perhumid tropics revealed a hump-shaped vessel size distribution. Worldwide tropical perhumid forests are extensively replaced by agroforestry systems often using introduced species of various biogeographical and climatic origins. Nonetheless, it is unknown so far what kind of hydraulic architectural patterns are developed in those agroforestry tree species and which impact this exerts regarding important tree functional traits, such as stem growth, hydraulic efficiency and wood density (WD). We investigated wood anatomical and hydraulic properties of the root, stem and branch wood in Theobroma cacao and five common shade tree species in agroforestry systems on Sulawesi (Indonesia); three of these were strictly perhumid tree species, and the other three tree species are tolerating seasonal drought. The overall goal of our study was to relate these properties to stem growth and other tree functional traits such as foliar nitrogen content and sapwood to leaf area ratio. Our results confirmed a hump-shaped vessel size distribution in nearly all species. Drought-adapted species showed divergent patterns of hydraulic conductivity, vessel density, and relative vessel lumen area between root, stem and branch wood compared to wet forest species. Confirming findings from natural old-growth forests in the same region, WD showed no relationship to specific conductivity. Overall, aboveground growth performance was better predicted by specific hydraulic conductivity than by foliar traits and WD. Our study results suggest that future research on conceptual trade-offs of tree hydraulic architecture should consider biogeographical patterns underlining the importance of anatomical adaptation mechanisms to environment. PMID:25873922

  12. Patterns in hydraulic architecture from roots to branches in six tropical tree species from cacao agroforestry and their relation to wood density and stem growth.

    PubMed

    Kotowska, Martyna M; Hertel, Dietrich; Rajab, Yasmin Abou; Barus, Henry; Schuldt, Bernhard

    2015-01-01

    For decades it has been assumed that the largest vessels are generally found in roots and that vessel size and corresponding sapwood area-specific hydraulic conductivity are acropetally decreasing toward the distal twigs. However, recent studies from the perhumid tropics revealed a hump-shaped vessel size distribution. Worldwide tropical perhumid forests are extensively replaced by agroforestry systems often using introduced species of various biogeographical and climatic origins. Nonetheless, it is unknown so far what kind of hydraulic architectural patterns are developed in those agroforestry tree species and which impact this exerts regarding important tree functional traits, such as stem growth, hydraulic efficiency and wood density (WD). We investigated wood anatomical and hydraulic properties of the root, stem and branch wood in Theobroma cacao and five common shade tree species in agroforestry systems on Sulawesi (Indonesia); three of these were strictly perhumid tree species, and the other three tree species are tolerating seasonal drought. The overall goal of our study was to relate these properties to stem growth and other tree functional traits such as foliar nitrogen content and sapwood to leaf area ratio. Our results confirmed a hump-shaped vessel size distribution in nearly all species. Drought-adapted species showed divergent patterns of hydraulic conductivity, vessel density, and relative vessel lumen area between root, stem and branch wood compared to wet forest species. Confirming findings from natural old-growth forests in the same region, WD showed no relationship to specific conductivity. Overall, aboveground growth performance was better predicted by specific hydraulic conductivity than by foliar traits and WD. Our study results suggest that future research on conceptual trade-offs of tree hydraulic architecture should consider biogeographical patterns underlining the importance of anatomical adaptation mechanisms to environment.

  13. Framework for Modelling Economic Impacts of Invasive Species, Applied to Pine Wood Nematode in Europe

    PubMed Central

    Soliman, Tarek; Mourits, Monique C. M.; van der Werf, Wopke; Hengeveld, Geerten M.; Robinet, Christelle; Lansink, Alfons G. J. M. Oude

    2012-01-01

    Background Economic impact assessment of invasive species requires integration of information on pest entry, establishment and spread, valuation of assets at risk and market consequences at large spatial scales. Here we develop such a framework and demonstrate its application to the pinewood nematode, Bursaphelenchus xylophilus, which threatens the European forestry industry. The effect of spatial resolution on the assessment result is analysed. Methodology/Principal Findings Direct economic impacts resulting from wood loss are computed using partial budgeting at regional scale, while impacts on social welfare are computed by a partial equilibrium analysis of the round wood market at EU scale. Substantial impacts in terms of infested stock are expected in Portugal, Spain, Southern France, and North West Italy but not elsewhere in EU in the near future. The cumulative value of lost forestry stock over a period of 22 years (2008–2030), assuming no regulatory control measures, is estimated at €22 billion. The greatest yearly loss of stock is expected to occur in the period 2014–2019, with a peak of three billion euros in 2016, but stabilizing afterwards at 300–800 million euros/year. The reduction in social welfare follows the loss of stock with considerable delay because the yearly harvest from the forest is only 1.8%. The reduction in social welfare for the downstream round wood market is estimated at €218 million in 2030, whereby consumers incur a welfare loss of €357 million, while producers experience a €139 million increase, due to higher wood prices. The societal impact is expected to extend to well beyond the time horizon of the analysis, and long after the invasion has stopped. Conclusions/Significance Pinewood nematode has large economic consequences for the conifer forestry industry in the EU. A change in spatial resolution affected the calculated directed losses by 24%, but did not critically affect conclusions. PMID:23029059

  14. Competitive outcomes between wood-decaying fungi are altered in burnt wood.

    PubMed

    Edman, Mattias; Eriksson, Anna-Maria

    2016-06-01

    Fire is an important disturbance agent in boreal forests where it creates a wide variety of charred and other types of heat-modified dead wood substrates, yet how these substrates affect fungal community structure and development within wood is poorly understood. We allowed six species of wood-decaying basidiomycetes to compete in pairs in wood-discs that were experimentally burnt before fungal inoculation. The outcomes of interactions in burnt wood differed from those in unburnt control wood for two species:Antrodia sinuosanever lost on burnt wood and won over its competitor in 67% of the trials compared to 40% losses and 20% wins on unburnt wood. In contrast, Ischnoderma benzoinumwon all interactions on unburnt wood compared to 33% on burnt wood. However, the responses differed depending on the identity of the competing species, suggesting an interaction between competitor and substrate type. The observed shift in competitive balance between fungal species probably results from chemical changes in burnt wood, but the underlying mechanism needs further investigation. Nevertheless, the results indicate that forest fires indirectly structure fungal communities by modifying dead wood, and highlight the importance of fire-affected dead wood substrates in boreal forests.

  15. The leaf, wood and bark oils of three species of Myodocarpus (Myodocarpaceae) endemic to New Caledonia.

    PubMed

    Lebouvier, Nicolas; Lawes, Douglas; Hnawia, Edouard; Page, Michael; Brophy, Joseph; Nour, Mohammed

    2014-09-01

    The leaf, wood and bark oils of three species of Myodocarpus, M. viellardii Brongn. & Gris, M. fraxinifolius Brongn. & Gris and M. lanceolatus Dubard & R. Viguier have been examined. From the wood oil of M. viellardii the major components were α-pinene (22.4%) and a monoterpene methyl ester, methyl myodocarpate (methyl 3,7-dimethylbicyclo [4,1,0]hept-3-ene-7-carboxylate) (61%), based on the δ-3-carene skeleton. Also present in lesser amounts was the corresponding acid, myodocarpic acid (3,7-dimethylbicyclo[4,1,0]hept-3-ene-7-carboxilic acid) and the corresponding alcohol, myodocarpol (3,7- dimethylbicyclo[4,1,0]hept-3-en-7-yl) methanol), in lesser (< 3%) amounts. The bark oil contained β-caryophyllene (13.8%) and a series of long chain fatty alcohols, dodecanol, tetradecanol, hexadecanol, octadecanol and octadec-9-en-1-ol in amounts of 1.4-15% (all but octadecanol > 11%). The leaf oil of this species produced a sesquiterpenic oil with the principal components being β-caryophyllene (36%), α-humulene (11.1%) and bicyclogermacrene (10.6%). In M. fraxinifolius, both the wood and bark oils contained a series of long chain alcohols, tetradecanol (30-38%), hexadecanol (23-29%) and octadec-9-en-1-ol (12%) as principal components. In the leaf oil of this species the principal component was β-caryophyllene (63%), with lesser amounts of humulene oxide II (2.9%), isocomene (2.8%) and viridiflorol (1.4%). In M. lanceolatus, the leaf oil was dominated by the monoterpene hydrocarbons α-pinene (22.9%) and δ-3-carene (32.6%). In the wood oil of this species the principal components were geraniol (7.4%), citronellol (4.7%), germacrene-B (7.1%), zingiberine (6.8%) and linalool (6.7%), while in the bark oil they were geraniol (12.4%), citronellol (2.6%), germacrene-B (5.8%), and linalool (6.5%).

  16. Comparative interrogation of the developing xylem transcriptomes of two wood-forming species: Populus trichocarpa and Eucalyptus grandis.

    PubMed

    Hefer, Charles A; Mizrachi, Eshchar; Myburg, Alexander A; Douglas, Carl J; Mansfield, Shawn D

    2015-06-01

    Wood formation is a complex developmental process governed by genetic and environmental stimuli. Populus and Eucalyptus are fast-growing, high-yielding tree genera that represent ecologically and economically important species suitable for generating significant lignocellulosic biomass. Comparative analysis of the developing xylem and leaf transcriptomes of Populus trichocarpa and Eucalyptus grandis together with phylogenetic analyses identified clusters of homologous genes preferentially expressed during xylem formation in both species. A conserved set of 336 single gene pairs showed highly similar xylem preferential expression patterns, as well as evidence of high functional constraint. Individual members of multi-gene orthologous clusters known to be involved in secondary cell wall biosynthesis also showed conserved xylem expression profiles. However, species-specific expression as well as opposite (xylem versus leaf) expression patterns observed for a subset of genes suggest subtle differences in the transcriptional regulation important for xylem development in each species. Using sequence similarity and gene expression status, we identified functional homologs likely to be involved in xylem developmental and biosynthetic processes in Populus and Eucalyptus. Our study suggests that, while genes involved in secondary cell wall biosynthesis show high levels of gene expression conservation, differential regulation of some xylem development genes may give rise to unique xylem properties.

  17. Role of charred wood, heat-shock and light in germination of postfire phrygana species from the eastern Mediterranean Basin

    USGS Publications Warehouse

    Keeley, Jon E.; Babr-Keeley, Melanie

    1999-01-01

    Seeds of 22 species collected from recently burned phrygana were tested for their response to fire-type cues of charred wood and heat-shock. All Cistus species were stimulated by brief heat-shock, as shown in previous studies; however, none responded to charred wood. Only one of the 22 species was stimulated by charred wood, and only in dark-inhibited seeds, and this response did not occur in the light. The lack of charred-wood-induced germination is in contrast to the substantial proportion of species with this germination response reported for mediterranean-type vegetation in California, the Cape region of South Africa, and Western Australia. Phrygana has many species with heat-shock-stimulated germination, primarily in the Fabaceae and Cistaceae. This germination cue is widespread in these two families, thus, the presence of heat-shock-stimulated germination is a result of homologous, rather than covergent, adaptations in mediterranean-climate ecosystems. Germination response to light was not randomly distributed with respect to fire-type response. Heat-shock-stimulated species were almost uniformly light neutral, in contrast to more opportunistic colonizing species with non-refractory seeds, in which half of the species responded positively or negatively to light.

  18. Seven wood-inhabiting new species of the genus Trichoderma (Fungi, Ascomycota) in Viride clade

    PubMed Central

    Qin, Wen-Tao; Zhuang, Wen-Ying

    2016-01-01

    More than 200 recent collections of Trichoderma from China were examined and 16 species belonging to the Viride clade were identified based on integrated studies of phenotypic and molecular data. Among them, seven wood-inhabiting new species, T. albofulvopsis, T. densum, T. laevisporum, T. sinokoningii, T. sparsum, T. sphaerosporum and T. subviride, are found. They form trichoderma- to verticillium-like conidiophores, lageniform to subulate phialides and globose to ellipsoidal conidia, but vary greatly in colony features, growth rates, and sizes of phialides and conidia. To explore their taxonomic positions, the phylogenetic tree including all the known species of the Viride clade is constructed based on sequence analyses of the combined RNA polymerase II subunit b and translation elongation factor 1 alpha exon genes. Our results indicated that the seven new species were well-located in the Koningii, Rogersonii and Neorufum subclades as well as a few independent terminal branches. They are clearly distinguishable from any existing species. Morphological distinctions and sequence divergences between the new species and their close relatives were discussed. PMID:27245694

  19. Importance of intraspecifically gregarious species in a tropical bird community.

    PubMed

    Sridhar, Hari; Shanker, Kartik

    2014-11-01

    In both single- and mixed-species social groups, certain participants are known to play important roles in providing benefits. Identifying these participants is critical for understanding group dynamics, but is often difficult with large roving social groups in the wild. Here, we develop a new approach to characterize roles in social groups and apply it to mixed-species bird flocks (flocks hereafter) in an Indian tropical evergreen forest. Two types of species, namely intraspecifically gregarious and sallying species, are thought to play important roles in flocks because studies have shown they attract other flock participants. However, it is unclear why these types are attractive and whether they are essential for flock formation. We address these questions by focusing on the composition of the subset of flocks containing only two species each. In two-species flocks, it is reasonable to assume that at least one species obtains some kind of benefit. Therefore, only those species combinations that result in benefit to at least one species should occur as two-species flocks. Using data from 540 flocks overall, of which 158 were two-species flocks, we find that intraspecifically gregarious species are disproportionately represented in two-species flocks and always lead flocks when present, and that flocks containing them are joined significantly more by other species. Our results suggest that intraspecifically gregarious species are likely to be the primary benefit providers in flocks and are important for tropical flock formation. Our study also provides a new approach to understanding importance in other mixed-species and single-species social groups.

  20. Variation in foliar respiration and wood CO2 efflux rates among species and canopy layers in a wet tropical forest.

    PubMed

    Asao, Shinichi; Bedoya-Arrieta, Ricardo; Ryan, Michael G

    2015-02-01

    As tropical forests respond to environmental change, autotrophic respiration may consume a greater proportion of carbon fixed in photosynthesis at the expense of growth, potentially turning the forests into a carbon source. Predicting such a response requires that we measure and place autotrophic respiration in a complete carbon budget, but extrapolating measurements of autotrophic respiration from chambers to ecosystem remains a challenge. High plant species diversity and complex canopy structure may cause respiration rates to vary and measurements that do not account for this complexity may introduce bias in extrapolation more detrimental than uncertainty. Using experimental plantations of four native tree species with two canopy layers, we examined whether species and canopy layers vary in foliar respiration and wood CO2 efflux and whether the variation relates to commonly used scalars of mass, nitrogen (N), photosynthetic capacity and wood size. Foliar respiration rate varied threefold between canopy layers, ∼0.74 μmol m(-2) s(-1) in the overstory and ∼0.25 μmol m(-2) s(-1) in the understory, but little among species. Leaf mass per area, N and photosynthetic capacity explained some of the variation, but height explained more. Chamber measurements of foliar respiration thus can be extrapolated to the canopy with rates and leaf area specific to each canopy layer or height class. If area-based rates are sampled across canopy layers, the area-based rate may be regressed against leaf mass per area to derive the slope (per mass rate) to extrapolate to the canopy using the total leaf mass. Wood CO2 efflux varied 1.0-1.6 μmol m(-2) s(-1) for overstory trees and 0.6-0.9 μmol m(-2) s(-1) for understory species. The variation in wood CO2 efflux rate was mostly related to wood size, and little to species, canopy layer or height. Mean wood CO2 efflux rate per surface area, derived by regressing CO2 efflux per mass against the ratio of surface

  1. A multi-species comparison of delta13C from whole wood, extractive-free wood and holocellulose.

    PubMed

    Harlow, B A; Marshall, J D; Robinson, A P

    2006-06-01

    The stable carbon (C) isotope composition (delta13C) of tree rings is a powerful metric for reconstructing past physiological responses to climate variation. However, accurate measurement and interpretation are complicated by diagenesis and the translocation of compounds with distinct isotopic signatures. Isolation and analysis of cellulose minimizes these complications by eliminating variation due to biosynthetic pathways; however, isolation of cellulose is time-consuming and has no clear endpoint. A faster and better-defined analytical method is desirable. Our objectives were to determine if there is a direct relationship between the isotopic compositions of whole wood (WW), whole wood treated with solvents to remove mobile extractives (extractive-free wood; EF) and holocellulose (HC) isolated by extractive removal and subsequent bleaching. We also determined if total C concentration could explain the isotopic composition and variation among these three wood components of each sample. A set of wood samples of diverse phylogeny, anatomy and chemical composition, was examined. The mean offset or difference between HC and EF delta13C was 1.07 +/- 0.09 per thousand and the offset between HC and WW was 1.32 +/- 0.10 per thousand. Equivalence tests (with alpha = 0.05) indicated that the relationship between EF delta13C and HC delta13C had a slope significantly similar to 1 +/- 5.5%, whereas for the WW delta13C: HC delta13C relationship, the slope was significantly similar to 1 +/- 10.08%. A regression model using EF delta13C to predict HC delta13C had a slope of 0.97, which was not significantly different from unity (P = 0.264), whereas the regression for WW had a slope of 0.92 which was significantly different from unity (P = 0.0098). Carbon concentration was correlated with HC:WW offset and cellulose:EF offset (P = 0.0501 and 0.007, respectively), but neither relationship explained much of the variation (r2 = 0.12 and 0.14, respectively). We suggest that HC

  2. The Importance of Child Development in Education: A Conservation with James Comer and Chip Wood. [Videotape].

    ERIC Educational Resources Information Center

    Comer, James; Wood, Chip

    Taped before an audience of teachers from around the country, this 65-minute videotape presents a discussion between James Comer and Chip Wood, noted experts in child development and education, in which they converse and respond to questions about critical issues confronting educators today. During the first part of the video, Comer and Wood…

  3. Selected environmental aspects of the introduction into the polish market of exotic wood species on the example of caviuna (Machaerium scleroxylon Tul.).

    PubMed

    Krauss, Andrzej; Krauss, Hanna; Waliszewska, Bogusława; Piątek, Jacek

    2011-01-01

    The chemical and elemental composition of caviuna wood was determined. The elemental composition of the examined wood was similar to the elemental composition of the deciduous tree species of the temperate zone except that it did not contain sulphur. The examined wood was found to comprise a very high content of extractive substances which could contain toxic substances, as well as a considerably higher proportion than in other palisander species mineral compounds determining tool dulling. Numerous cases of diseases were recorded among people who came into contact with the examined wood. An elevated level of eosinophils was found in these people. It was confirmed that Caviuna wood, following its introduction into the trade turnover of exotic wood species, posed many threats in the working environment.

  4. Trichoderma species occurring on wood with decay symptoms in mountain forests in Central Europe: genetic and enzymatic characterization.

    PubMed

    Błaszczyk, Lidia; Strakowska, Judyta; Chełkowski, Jerzy; Gąbka-Buszek, Agnieszka; Kaczmarek, Joanna

    2016-08-01

    The aim of this study was to explore the species diversity of Trichoderma obtained from samples of wood collected in the forests of the Gorce Mountains (location A), Karkonosze Mountains (location B) and Tatra Mountains (location C) in Central Europe and to examine the cellulolytic and xylanolytic activity of these species as an expression of their probable role in wood decay processes. The present study has led to the identification of the following species and species complex: Trichoderma atroviride P. Karst., Trichoderma citrinoviride Bissett, Trichoderma cremeum P. Chaverri & Samuels, Trichoderma gamsii Samuels & Druzhin., Trichoderma harzianum complex, Trichoderma koningii Oudem., Trichoderma koningiopsis Samuels, C. Suárez & H.C. Evans, Trichoderma longibrachiatum Rifai, Trichoderma longipile Bissett, Trichoderma sp. (Hypocrea parapilulifera B.S. Lu, Druzhin. & Samuels), Trichoderma viride Schumach. and Trichoderma viridescens complex. Among them, T. viride was observed as the most abundant species (53 % of all isolates) in all the investigated locations. The Shannon's biodiversity index (H), evenness (E), and the Simpson's biodiversity index (D) calculations for each location showed that the highest species diversity and evenness were recorded for location A-Gorce Mountains (H' = 1.71, E = 0.82, D = 0.79). The preliminary screening of 119 Trichoderma strains for cellulolytic and xylanolytic activity showed the real potential of all Trichoderma species originating from wood with decay symptoms to produce cellulases and xylanases-the key enzymes in plant cell wall degradation.

  5. The nuclear question: rethinking species importance in multi-species animal groups.

    PubMed

    Srinivasan, Umesh; Raza, Rashid Hasnain; Quader, Suhel

    2010-09-01

    1. Animals group for various benefits, and may form either simple single-species groups, or more complex multi-species associations. Multi-species groups are thought to provide anti-predator and foraging benefits to participant individuals. 2. Despite detailed studies on multi-species animal groups, the importance of species in group initiation and maintenance is still rated qualitatively as 'nuclear' (maintaining groups) or 'attendant' (species following nuclear species) based on species-specific traits. This overly simplifies and limits understanding of inherently complex associations, and is biologically unrealistic, because species roles in multi-species groups are: (i) likely to be context-specific and not simply a fixed species property, and (ii) much more variable than this dichotomy indicates. 3. We propose a new view of species importance (measured as number of inter-species associations), along a continuum from 'most nuclear' to 'least nuclear'. Using mixed-species bird flocks from a tropical rainforest in India as an example, we derive inter-species association measures from randomizations on bird species abundance data (which takes into account species 'availability') and data on 86 mixed-species flocks from two different flock types. Our results show that the number and average strength of inter-species associations covary positively, and we argue that species with many, strong associations are the most nuclear. 4. From our data, group size and foraging method are ecological and behavioural traits of species that best explain nuclearity in mixed-species bird flocks. Parallels have been observed in multi-species fish shoals, in which group size and foraging method, as well as diet, have been shown to correlate with nuclearity. Further, the context in which multi-species groups occur, in conjunction with species-specific traits, influences the role played by a species in a multi-species group, and this highlights the importance of extrinsic factors in

  6. Controlling the release of wood extractives into water bodies by selecting suitable eucalyptus species

    NASA Astrophysics Data System (ADS)

    Kilulya, K. F.; Msagati, T. A. M.; Mamba, B. B.; Ngila, J. C.; Bush, T.

    Pulping industries are increasing worldwide as a result of the increase in the demand for pulp for cellulose derivatives and paper manufacturing. Due to the activities involved in pulping processes, different chemicals from raw materials (wood) and bleaching agents are released in pulp-mill effluent streams discharged into the environment and find their way into water bodies. Large quantities of water and chemicals used in pulping result in large amounts of wastewater with high concentrations of extractives such as unsaturated fatty acids, which are known to be toxic, and plant sterols which affect the development, growth and reproduction of aquatic organisms. This study was aimed at assessing the composition of extractives in two eucalyptus species used for pulp production in South Africa, in order to identify the suitable species with regard to extractive content. Samples from two eucalyptus plant species (Eucalyptus grandis and Eucalyptus dunnii) were collected from three sites and analysed for extractives by first extracting with water, followed by Soxhlet extraction using acetone. Compounds were identified and quantified using gas chromatography-mass spectrometry (GC-MS). Major classes of extractives identified were fatty acids (mainly hexadecanoic acid, 9,12-octadecadienoic, 9-octadecenoic and octadecanoic acids) and sterols (mainly β-sitosterol and stigmastanol). E. dunnii was found to contain higher amounts of the compounds compared to those found in E. grandis in all sampled sites. Principal component analysis (PCA) was performed and explained 92.9% of the total variation using three principal components. It was revealed that the percentage of fatty acids, which has a negative influence on both principal components 2 and 3, was responsible for the difference between the species. E. grandis, which was found to contain low amounts of extractives, was therefore found suitable for pulping with regard to minimal water usage and environment pollution.

  7. Significant Alteration of Gene Expression in Wood Decay Fungi Postia placenta and Phanerochaete chrysosporium by Plant Species ▿ †

    PubMed Central

    Vanden Wymelenberg, Amber; Gaskell, Jill; Mozuch, Michael; Splinter BonDurant, Sandra; Sabat, Grzegorz; Ralph, John; Skyba, Oleksandr; Mansfield, Shawn D.; Blanchette, Robert A.; Grigoriev, Igor V.; Kersten, Philip J.; Cullen, Dan

    2011-01-01

    Identification of specific genes and enzymes involved in conversion of lignocellulosics from an expanding number of potential feedstocks is of growing interest to bioenergy process development. The basidiomycetous wood decay fungi Phanerochaete chrysosporium and Postia placenta are promising in this regard because they are able to utilize a wide range of simple and complex carbon compounds. However, systematic comparative studies with different woody substrates have not been reported. To address this issue, we examined gene expression of these fungi colonizing aspen (Populus grandidentata) and pine (Pinus strobus). Transcript levels of genes encoding extracellular glycoside hydrolases, thought to be important for hydrolytic cleavage of hemicelluloses and cellulose, showed little difference for P. placenta colonizing pine versus aspen as the sole carbon source. However, 164 genes exhibited significant differences in transcript accumulation for these substrates. Among these, 15 cytochrome P450s were upregulated in pine relative to aspen. Of 72 P. placenta extracellular proteins identified unambiguously by mass spectrometry, 52 were detected while colonizing both substrates and 10 were identified in pine but not aspen cultures. Most of the 178 P. chrysosporium glycoside hydrolase genes showed similar transcript levels on both substrates, but 13 accumulated >2-fold higher levels on aspen than on pine. Of 118 confidently identified proteins, 31 were identified in both substrates and 57 were identified in pine but not aspen cultures. Thus, P. placenta and P. chrysosporium gene expression patterns are influenced substantially by wood species. Such adaptations to the carbon source may also reflect fundamental differences in the mechanisms by which these fungi attack plant cell walls. PMID:21551287

  8. Biodiversity of Aspergillus species in some important agricultural products.

    PubMed

    Perrone, G; Susca, A; Cozzi, G; Ehrlich, K; Varga, J; Frisvad, J C; Meijer, M; Noonim, P; Mahakarnchanakul, W; Samson, R A

    2007-01-01

    The genus Aspergillus is one of the most important filamentous fungal genera. Aspergillus species are used in the fermentation industry, but they are also responsible of various plant and food secondary rot, with the consequence of possible accumulation of mycotoxins. The aflatoxin producing A. flavus and A. parasiticus, and ochratoxinogenic A. niger, A. ochraceus and A. carbonarius species are frequently encountered in agricultural products. Studies on the biodiversity of toxigenic Aspergillus species is useful to clarify molecular, ecological and biochemical characteristics of the different species in relation to their different adaptation to environmental and geographical conditions, and to their potential toxigenicity. Here we analyzed the biodiversity of ochratoxin producing species occurring on two important crops: grapes and coffee, and the genetic diversity of A. flavus populations occurring in agricultural fields. Altogether nine different black Aspergillus species can be found on grapes which are often difficult to identify with classical methods. The polyphasic approach used in our studies led to the identification of three new species occurring on grapes: A. brasiliensis, A. ibericus, and A. uvarum. Similar studies on the Aspergillus species occurring on coffee beans have evidenced in the last five years that A. carbonarius is an important source of ochratoxin A in coffee. Four new species within the black aspergilli were also identified in coffee beans: A. sclerotioniger, A. lacticoffeatus, A. sclerotiicarbonarius, and A. aculeatinus. The genetic diversity within A. flavus populations has been widely studied in relation to their potential aflatoxigenicity and morphological variants L- and S-strains. Within A. flavus and other Aspergillus species capable of aflatoxin production, considerable diversity is found. We summarise the main recent achievements in the diversity of the aflatoxin gene cluster in A. flavus populations, A. parasiticus and the non

  9. Development of microsatellite markers in Gonystylus bancanus (Ramin) useful for tracing and tracking of wood of this protected species.

    PubMed

    Smulders, M J M; VAN 't Westende, W P C; Diway, B; Esselink, G D; VAN DER Meer, P J; Koopman, W J M

    2008-01-01

    Ten polymorphic microsatellite markers have been developed for Gonystylus bancanus (Ramin), a protected tree species of peat swamp forests in Malaysia and Indonesia. Eight markers were also shown to be polymorphic in other Gonystylus species. The markers will enable assessing the amount of genetic variation within and among populations and the degree of population differentiation, such that donor populations can be selected for reforestation projects. They may be used for tracing and tracking of wood in the production chain, so that legal trade in this Convention on International Trade in Endangered Species of Wild Fauna and Flora-protected timber species, derived from specifically described origins, can be distinguished from illegally logged timber.

  10. Heavy metals accumulation in wood tissues of the forest-forming species growed in the Steppe technogenic landscapes in Ukraine

    NASA Astrophysics Data System (ADS)

    Lovinska, Viktoriia; Wiche, Oliver

    2016-04-01

    Territory of Steppe in Ukraine is affected by significant anthropogenic impact caused with mining, metallurgical, chemicalplants and heat power stations. The priority pollutants of the region emissions of these enterprises are presented such heavy metals as Cd, Pb, Cu, Zn, Ni, Mn. The regional forest ecosystems can be considered as potential concentrators of pollutants borned with different technogenic impact. It is necessary to study an ability of forests wood to accumulate heavy metals because accumulated toxins are eliminated from biogeochemical cycle in forest ecosystem for a long time. This study goal is to determine the accumulation properties of forest-forming species - Pinus sylvestris (Scots pine) and Robinia pseudoacacia (black locust) difference age group in relation to heavy metals. It was considerable also to assess the heavy metal distribution in the wood tissue of referred species.Heavy metals content were determined with atomic absorption spectrophotometer using. Scots pine and black locust are the main forest-forming species of natural and artificial forests within Northern Steppe.They can be seen as transformers of the heavy metals cycle and selective concentrators of toxic elements, under the conditions of their excessive concentrations in the environment.It was established that wood tissue of Scots pine and black locust accumulated cadmium in high concentrations according to the age in both species. Indexes of zinc accumulation in the wood of Scots pine exceeded the maximal value in the wood tissue of black locust. The results of our research demonstrated antagonistic interaction of cadmium and zinc. The highest copper concentrations was found for the trees at the age of 45 years. Lead has been identified in wood sample of all ages. Accumulation maximum was fixed in the oldest samples. The trend of concentration increasing of metal didn't find for both species. As for nickel there was established the opposite tendention for both studied species

  11. Effect of debarking water from Norway spruce (Picea abies) on the growth of five species of wood-decaying fungi.

    PubMed

    Edfeldt, Amelie Fagerlund; Hedenström, Erik; Edman, Mattias; Jonsson, Bengt Gunnar

    2014-01-01

    Norway spruce (Picea abies) debarking water is an aqueous extract obtained as waste from the debarking of logs at paper mills. The debarking water contains a mixture of natural compounds that can exhibit diverse biological activities, potentially including fungicidal activity on some species of wood-decaying fungi. Thus, we investigated the growth rates of such fungi on agar plates to which debarking water extracts had been added. The experiment included five wood-decaying fungi, viz. Gloeophyllum sepiarium, Oligoporus lateritius, Ischnoderma benzoinum, Junghuhnia luteoalba, and Phlebia sp. Growth reduction was observed for all species at the highest tested concentrations of freeze-dried and ethanol-extracted debarking water, the ethyl acetate-soluble fraction and the diethyl ether-soluble fraction. However, the magnitude of the effect varied between different species and strains of individual species. The brown-rot fungi G. sepiarium and O. lateritius were generally the most sensitive species, with the growth of all tested strains being completely inhibited by the ethyl acetate-soluble fraction. These results indicate that development of antifungal wood-protecting agents from debarking water could potentially be a way to make use of a low-value industrial waste.

  12. New species, hyper-diversity and potential importance of Calonectria spp. from Eucalyptus in South China

    PubMed Central

    Lombard, L.; Chen, S.F.; Mou, X.; Zhou, X.D.; Crous, P.W.; Wingfield, M.J.

    2015-01-01

    Plantation forestry is expanding rapidly in China to meet an increasing demand for wood and pulp products globally. Fungal pathogens including species of Calonectria represent a serious threat to the growth and sustainability of this industry. Surveys were conducted in the Guangdong, Guangxi and Hainan Provinces of South China, where Eucalyptus trees in plantations or cuttings in nurseries displayed symptoms of leaf blight. Isolations from symptomatic leaves and soils collected close to infected trees resulted in a large collection of Calonectria isolates. These isolates were identified using the Consolidated Species Concept, employing morphological characters and DNA sequence comparisons for the β-tubulin, calmodulin, histone H3 and translation elongation factor 1-alpha gene regions. Twenty-one Calonectria species were identified of which 18 represented novel taxa. Of these, 12 novel taxa belonged to Sphaero-Naviculate Group and the remaining six to the Prolate Group. Southeast Asia appears to represent a centre of biodiversity for the Sphaero-Naviculate Group and this fact could be one of the important constraints to Eucalyptus forestry in China. The remarkable diversity of Calonectria species in a relatively small area of China and associated with a single tree species is surprising. PMID:26955194

  13. Measuring wood specific gravity...Correctly.

    PubMed

    Williamson, G Bruce; Wiemann, Michael C

    2010-03-01

    The specific gravity (SG) of wood is a measure of the amount of structural material a tree species allocates to support and strength. In recent years, wood specific gravity, traditionally a forester's variable, has become the domain of ecologists exploring the universality of plant functional traits and conservationists estimating global carbon stocks. While these developments have expanded our knowledge and sample of woods, the methodologies employed to measure wood SG have not received as much scrutiny as SG's ecological importance. Here, we reiterate some of the basic principles and methods for measuring the SG of wood to clarify past practices of foresters and ecologists and to identify some of the prominent errors in recent studies and their consequences. In particular, we identify errors in (1) extracting wood samples that are not representative of tree wood, (2) differentiating wood specific gravity from wood density, (3) drying wood samples at temperatures below 100°C and the resulting moisture content complications, and (4) improperly measuring wood volumes. In addition, we introduce a new experimental technique, using applied calculus, for estimating SG when the form of radial variation is known, a method that significantly reduces the effort required to sample a tree's wood.

  14. Laboratory Evaluations of Durability of Southern Pine Pressure Treated With Extractives From Durable Wood Species.

    PubMed

    Kirker, G T; Bishell, A B; Lebow, P K

    2016-02-01

    Extracts from sawdust of four naturally durable wood species [Alaskan yellow cedar, AYC, Cupressus nootkanansis D. Don 1824; eastern red cedar, ERC, Juniperus virginiana L.; honey mesquite, HM, Prosopis glandulosa Torr.; and black locust, BL, Robinia pseudoacacia L.] were used to treat southern pine, Pt, Pinus taeda L. sapwood blocks. Extractive treated blocks were evaluated for decay resistance in standard soil bottle fungal assays challenged with brown and white rot decay fungi. Results showed that extractives did impart some improvement to decay resistance of Pt blocks. BL- and HM-treated Pt blocks were also used in choice and no-choice assays to determine feeding preference and damage by eastern subterranean termites (Reticulitermes flavipes) Kollar. Minimal feeding on treated blocks was seen in both choice and no-choice assays. In choice assays, there was similar mortality between HM and BL arenas; however, in no-choice assays, complete mortality was recorded for HM-treated Pt and high mortality was seen with BL-treated Pt. Subsequent dose mortality termite assays showed HM to be effective in killing R. flavipes at low concentrations. Both HM and BL show promise as deterrents or termiticidal protectants and will be further evaluated in field studies.

  15. Biodiversity of Aspergillus Species in Some Important Agricultural Products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genus Aspergillus is one of the most important filamentous fungal genera. Aspergillus species are used in the fermentation industry, but they are also responsible of various plant and food secondary rot, with the consequence of possible accumulation of mycotoxins. The aflatoxin-producing A. fl...

  16. Significance of wood extractives for wood bonding.

    PubMed

    Roffael, Edmone

    2016-02-01

    Wood contains primary extractives, which are present in all woods, and secondary extractives, which are confined in certain wood species. Extractives in wood play a major role in wood-bonding processes, as they can contribute to or determine the bonding relevant properties of wood such as acidity and wettability. Therefore, extractives play an immanent role in bonding of wood chips and wood fibres with common synthetic adhesives such as urea-formaldehyde-resins (UF-resins) and phenol-formaldehyde-resins (PF-resins). Extractives of high acidity accelerate the curing of acid curing UF-resins and decelerate bonding with alkaline hardening PF-resins. Water-soluble extractives like free sugars are detrimental for bonding of wood with cement. Polyphenolic extractives (tannins) can be used as a binder in the wood-based industry. Additionally, extractives in wood can react with formaldehyde and reduce the formaldehyde emission of wood-based panels. Moreover, some wood extractives are volatile organic compounds (VOC) and insofar also relevant to the emission of VOC from wood and wood-based panels.

  17. Global Establishment Risk of Economically Important Fruit Fly Species (Tephritidae)

    PubMed Central

    Qin, Yujia; Paini, Dean R.; Wang, Cong; Fang, Yan; Li, Zhihong

    2015-01-01

    The global invasion of Tephritidae (fruit flies) attracts a great deal of attention in the field of plant quarantine and invasion biology because of their economic importance. Predicting which one in hundreds of potential invasive fruit fly species is most likely to establish in a region presents a significant challenge, but can be facilitated using a self organising map (SOM), which is able to analyse species associations to rank large numbers of species simultaneously with an index of establishment. A global presence/absence dataset including 180 economically significant fruit fly species in 118 countries was analysed using a SOM. We compare and contrast ranked lists from six countries selected from each continent, and also show that those countries geographically close were clustered together by the SOM analysis because they have similar fruit fly assemblages. These closely clustered countries therefore represent greater threats to each other as sources of invasive fruit fly species. Finally, we indicate how this SOM method could be utilized as an initial screen to support prioritizing fruit fly species for further research into their potential to invade a region. PMID:25588025

  18. Global establishment risk of economically important fruit fly species (Tephritidae).

    PubMed

    Qin, Yujia; Paini, Dean R; Wang, Cong; Fang, Yan; Li, Zhihong

    2015-01-01

    The global invasion of Tephritidae (fruit flies) attracts a great deal of attention in the field of plant quarantine and invasion biology because of their economic importance. Predicting which one in hundreds of potential invasive fruit fly species is most likely to establish in a region presents a significant challenge, but can be facilitated using a self organising map (SOM), which is able to analyse species associations to rank large numbers of species simultaneously with an index of establishment. A global presence/absence dataset including 180 economically significant fruit fly species in 118 countries was analysed using a SOM. We compare and contrast ranked lists from six countries selected from each continent, and also show that those countries geographically close were clustered together by the SOM analysis because they have similar fruit fly assemblages. These closely clustered countries therefore represent greater threats to each other as sources of invasive fruit fly species. Finally, we indicate how this SOM method could be utilized as an initial screen to support prioritizing fruit fly species for further research into their potential to invade a region.

  19. Comparative demography of commercially important parrotfish species from Micronesia.

    PubMed

    Taylor, B M; Choat, J H

    2014-02-01

    Fishery-independent sampling was used to determine growth patterns, life span, mortality rates and timing of maturation and sex change in 12 common parrotfishes (Labridae: tribe Scarinae) from five genera (Calotomus, Cetoscarus, Chlorurus, Hipposcarus and Scarus) in Micronesia. Interspecific variation in life-history traits was explored using multivariate analysis. All species displayed strong sex-specific patterns of length-at-age among which males reached larger asymptotic lengths. There was a high level of correlation among life-history traits across species. Relationships between length-based and age-based variables were weakest, with a tenuous link between maximum body size and life span. Cluster analysis based on similarities among life-history traits demonstrated that species were significantly grouped at two major levels. The first grouping was driven by length-based variables (lengths at maturity and sex change and maximum length) and separated the small- and large-bodied species. Within these, species were grouped by age-based variables (age at maturity, mortality and life span). Groupings based on demographic and life-history features were independent of phylogenetic relationships at the given taxonomic level. The results reiterate that body size is an important characteristic differentiating species, but interspecific variation in age-based traits complicates its use as a life-history proxy. Detailed life-history metrics should facilitate future quantitative assessments of vulnerability to overexploitation in multispecies fisheries.

  20. Allergens/Antigens, toxins and polyketides of important Aspergillus species.

    PubMed

    Bhetariya, Preetida J; Madan, Taruna; Basir, Seemi Farhat; Varma, Anupam; Usha, Sarma P

    2011-04-01

    The medical, agricultural and biotechnological importance of the primitive eukaryotic microorganisms, the Fungi was recognized way back in 1920. Among various groups of fungi, the Aspergillus species are studied in great detail using advances in genomics and proteomics to unravel biological and molecular mechanisms in these fungi. Aspergillus fumigatus, Aspergillus flavus, Aspergillus niger, Aspergillus parasiticus, Aspergillus nidulans and Aspergillus terreus are some of the important species relevant to human, agricultural and biotechnological applications. The potential of Aspergillus species to produce highly diversified complex biomolecules such as multifunctional proteins (allergens, antigens, enzymes) and polyketides is fascinating and demands greater insight into the understanding of these fungal species for application to human health. Recently a regulator gene for secondary metabolites, LaeA has been identified. Gene mining based on LaeA has facilitated new metabolites with antimicrobial activity such as emericellamides and antitumor activity such as terrequinone A from A. nidulans. Immunoproteomic approach was reported for identification of few novel allergens for A. fumigatus. In this context, the review is focused on recent developments in allergens, antigens, structural and functional diversity of the polyketide synthases that produce polyketides of pharmaceutical and biological importance. Possible antifungal drug targets for development of effective antifungal drugs and new strategies for development of molecular diagnostics are considered.

  1. Effects of wood chip amendments on the revegetation performance of plant species on eroded marly terrains in a Mediterranean mountainous climate (Southern Alps, France)

    NASA Astrophysics Data System (ADS)

    Breton, Vincent; Crosaz, Yves; Rey, Freddy

    2016-04-01

    The establishment of plant species can limit soil erosion dynamics in degraded lands. In marly areas in the Southern French Alps, both harsh water erosion and drought conditions in summer due to the Mediterranean mountainous climate prevent the natural implementation and regeneration of vegetation. Soil fertility improvement is sometimes necessary. With the purpose of revegetating such areas, we aimed to evaluate the effects of wood chip amendments on the revegetation performance of different native or sub-spontaneous plant species. We conducted two experiments on steep slopes over three growing seasons (2012-2014). The first consisted of planting seedlings (10 species), and the second consisted of seeding (nine species including six used in the first experiment). First we noted that wood chips were able to remain in place even in steep slope conditions. The planting of seedlings showed both an impact of wood chip amendment and differences between species. A positive effect of wood chips was shown with overall improvement of plant survival (increasing by 11 % on average, by up to 50 % for some species). In the seeding experiment, no plants survived after three growing seasons. However, intermediate results for the first and second years showed a positive effect of wood chips on seedling emergence: seeds of four species only sprouted on wood chips, and for the five other species the average emergence rate increased by 50 %.

  2. Cymbopogon species; ethnopharmacology, phytochemistry and the pharmacological importance.

    PubMed

    Avoseh, Opeyemi; Oyedeji, Opeoluwa; Rungqu, Pamela; Nkeh-Chungag, Benedicta; Oyedeji, Adebola

    2015-04-23

    Cymbopogon genus is a member of the family of Gramineae which are herbs known worldwide for their high essential oil content. They are widely distributed across all continents where they are used for various purposes. The commercial and medicinal uses of the various species of Cymbopogon are well documented. Ethnopharmacology evidence shows that they possess a wide array of properties that justifies their use for pest control, in cosmetics and as anti-inflammation agents. These plants may also hold promise as potent anti-tumor and chemopreventive drugs. The chemo-types from this genus have been used as biomarkers for their identification and classification. Pharmacological applications of Cymbopogon citratus are well exploited, though studies show that other species may also useful pharmaceutically. Hence this literature review intends to discuss these species and explore their potential economic importance.

  3. Modern taxonomy of biotechnologically important Aspergillus and Penicillium species.

    PubMed

    Houbraken, Jos; de Vries, Ronald P; Samson, Robert A

    2014-01-01

    Taxonomy is a dynamic discipline and name changes of fungi with biotechnological, industrial, or medical importance are often difficult to understand for researchers in the applied field. Species belonging to the genera Aspergillus and Penicillium are commonly used or isolated, and inadequate taxonomy or uncertain nomenclature of these genera can therefore lead to tremendous confusion. Misidentification of strains used in biotechnology can be traced back to (1) recent changes in nomenclature, (2) new taxonomic insights, including description of new species, and/or (3) incorrect identifications. Changes in the recent published International Code of Nomenclature for Algae, Fungi and Plants will lead to numerous name changes of existing Aspergillus and Penicillium species and an overview of the current names of biotechnological important species is given. Furthermore, in (biotechnological) literature old and invalid names are still used, such as Aspergillus awamori, A. foetidus, A. kawachii, Talaromyces emersonii, Acremonium cellulolyticus, and Penicillium funiculosum. An overview of these and other species with their correct names is presented. Furthermore, the biotechnologically important species Talaromyces thermophilus is here combined in Thermomyces as Th. dupontii. The importance of Aspergillus, Penicillium, and related genera is also illustrated by the high number of undertaken genome sequencing projects. A number of these strains are incorrectly identified or atypical strains are selected for these projects. Recommendations for correct strain selection are given here. Phylogenetic analysis shows a close relationship between the genome-sequenced strains of Aspergillus, Penicillium, and Monascus. Talaromyces stipitatus and T. marneffei (syn. Penicillium marneffei) are closely related to Thermomyces lanuginosus and Th. dupontii (syn. Talaromyces thermophilus), and these species appear to be distantly related to Aspergillus and Penicillium. In the last part of

  4. Are all species necessary to reveal ecologically important patterns?

    PubMed

    Pos, Edwin; Guevara Andino, Juan Ernesto; Sabatier, Daniel; Molino, Jean-François; Pitman, Nigel; Mogollón, Hugo; Neill, David; Cerón, Carlos; Rivas, Gonzalo; Di Fiore, Anthony; Thomas, Raquel; Tirado, Milton; Young, Kenneth R; Wang, Ophelia; Sierra, Rodrigo; García-Villacorta, Roosevelt; Zagt, Roderick; Palacios, Walter; Aulestia, Milton; Ter Steege, Hans

    2014-12-01

    While studying ecological patterns at large scales, ecologists are often unable to identify all collections, forcing them to either omit these unidentified records entirely, without knowing the effect of this, or pursue very costly and time-consuming efforts for identifying them. These "indets" may be of critical importance, but as yet, their impact on the reliability of ecological analyses is poorly known. We investigated the consequence of omitting the unidentified records and provide an explanation for the results. We used three large-scale independent datasets, (Guyana/ Suriname, French Guiana, Ecuador) each consisting of records having been identified to a valid species name (identified morpho-species - IMS) and a number of unidentified records (unidentified morpho-species - UMS). A subset was created for each dataset containing only the IMS, which was compared with the complete dataset containing all morpho-species (AMS: = IMS + UMS) for the following analyses: species diversity (Fisher's alpha), similarity of species composition, Mantel test and ordination (NMDS). In addition, we also simulated an even larger number of unidentified records for all three datasets and analyzed the agreement between similarities again with these simulated datasets. For all analyses, results were extremely similar when using the complete datasets or the truncated subsets. IMS predicted ≥91% of the variation in AMS in all tests/analyses. Even when simulating a larger fraction of UMS, IMS predicted the results for AMS rather well. Using only IMS also out-performed using higher taxon data (genus-level identification) for similarity analyses. Finding a high congruence for all analyses when using IMS rather than AMS suggests that patterns of similarity and composition are very robust. In other words, having a large number of unidentified species in a dataset may not affect our conclusions as much as is often thought.

  5. The Importance of Species Name Synonyms in Literature Searches

    PubMed Central

    2016-01-01

    The synonyms of biological species names are shown to be an important component in comprehensive searches of electronic scientific literature databases but they are not well leveraged within the major literature databases examined. For accepted or valid species names in the Integrated Taxonomic Information System (ITIS) which have synonyms in the system, and which are found in citations within PLoS, PMC, PubMed or Scopus, both the percentage of species for which citations will not be found if synonyms are not used, and the percentage increase in number of citations found by including synonyms are very often substantial. However, there is no correlation between the number of synonyms per species and the magnitude of the effect. Further, the number of citations found does not generally increase proportionally to the number of synonyms available. Users looking for literature on specific species across all of the resources investigated here are often missing large numbers of citations if they are not manually augmenting their searches with synonyms. Of course, missing citations can have serious consequences by effectively hiding critical information. Literature searches should include synonym relationships and a new web service in ITIS, with examples of how to apply it to this issue, was developed as a result of this study, and is here announced, to aide in this. PMID:27627118

  6. The importance of species name synonyms in literature searches

    USGS Publications Warehouse

    Guala, Gerald

    2016-01-01

    The synonyms of biological species names are shown to be an important component in comprehensive searches of electronic scientific literature databases but they are not well leveraged within the major literature databases examined. For accepted or valid species names in the Integrated Taxonomic Information System (ITIS) which have synonyms in the system, and which are found in citations within PLoS, PMC, PubMed or Scopus, both the percentage of species for which citations will not be found if synonyms are not used, and the percentage increase in number of citations found by including synonyms are very often substantial. However, there is no correlation between the number of synonyms per species and the magnitude of the effect. Further, the number of citations found does not generally increase proportionally to the number of synonyms available. Users looking for literature on specific species across all of the resources investigated here are often missing large numbers of citations if they are not manually augmenting their searches with synonyms. Of course, missing citations can have serious consequences by effectively hiding critical information. Literature searches should include synonym relationships and a new web service in ITIS, with examples of how to apply it to this issue, was developed as a result of this study, and is here announced, to aide in this.

  7. [A new cestode species Paranoplocephala gubanovi sp.n. (Cyclophyllidea: Anoplocephalidae) from the wood lemming Myopus schisticolor of eastern Siberia].

    PubMed

    Guliaev, V D; Krivolapov, A V

    2003-01-01

    A new species of anoplocephalid cestode, Paranoplocephala gubanovi sp. n. (Cyclophyllidea, Anoplocephalidae), from wood lemmings of Eastern Siberia (Myopus schisticolor) is described. The new species differs from other known species of Paranoplocephala associated with Holarctic lemmings by having unique combination of characters as follows: a few-segmented strobila, superficial suckers sticking out of the scolex, ovary covering practically the whole middle part of the segment, relatively little number of testicles situated in the aporal part of the segment, cirrus bursa crossing the poral excretory vessels, and subspherical spermatheca situated in the middle part of the segment. Comparison of P. gubanovi sp. n. and several closest species, P. fellmani Haukisaimi et Henttonen, 2001, P. serrata Haukisaimi et Henttonen, 2000, and P. arctica (Rausch, 1952) has been carried out. Features distinguishing the new species from Aprostatandrya macrocephala and A. microti have also been studied.

  8. Distinction of three wood species by Fourier transform infrared spectroscopy and two-dimensional correlation IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Huang, Anmin; Zhou, Qun; Liu, Junliang; Fei, Benhua; Sun, Suqin

    2008-07-01

    Dalbergia odorifera T. Chen, Pterocarpus santalinus L.F. and Pterocarpus soyauxii are three kinds of the most valuable wood species, which are hard to distinguish. In this paper, differentiation of D. odorifera, P. santalinus and P. soyauxii was carried out by using Fourier transform infrared spectroscopy (FT-IR), second derivative IR spectra and two-dimensional correlation infrared (2D-IR) spectroscopy. The three woods have their characteristic peaks in conventional IR spectra. For example, D. odorifera has obvious absorption peaks at 1640 and 1612 cm -1; P. santalinus has only one peak at 1614 cm -1; and P. soyauxii has one peak at 1619 cm -1 and one shoulder peak at 1597 cm -1. To enhance spectrum resolution and amplify the differences between the IR spectra of different woods, the second derivative technology was adopted to examine the three wood samples. More differences could be observed in the region of 800-1700 cm -1. Then, the thermal perturbation is applied to distinguish different wood samples in an easier way, because of the spectral resolution being enhanced by the 2D correlation spectroscopy. In the region of 1300-1800 cm -1, D. odorifera has five auto-peaks at 1518, 1575, 1594, 1620 and 1667 cm -1; P. santalinus has four auto-peaks at 1469, 1518, 1627 and 1639 cm -1 and P. soyauxii has only two auto-peaks at 1627 and 1639 cm -1. It is proved that the 2D correlation IR spectroscopy can be a new method to distinguish D. odorifera, P. santalinus and P. soyauxii.

  9. Aspen SUCROSE TRANSPORTER3 allocates carbon into wood fibers.

    PubMed

    Mahboubi, Amir; Ratke, Christine; Gorzsás, András; Kumar, Manoj; Mellerowicz, Ewa J; Niittylä, Totte

    2013-12-01

    Wood formation in trees requires carbon import from the photosynthetic tissues. In several tree species, including Populus species, the majority of this carbon is derived from sucrose (Suc) transported in the phloem. The mechanism of radial Suc transport from phloem to developing wood is not well understood. We investigated the role of active Suc transport during secondary cell wall formation in hybrid aspen (Populus tremula × Populus tremuloides). We show that RNA interference-mediated reduction of PttSUT3 (for Suc/H(+) symporter) during secondary cell wall formation in developing wood caused thinner wood fiber walls accompanied by a reduction in cellulose and an increase in lignin. Suc content in the phloem and developing wood was not significantly changed. However, after (13)CO2 assimilation, the SUT3RNAi lines contained more (13)C than the wild type in the Suc-containing extract of developing wood. Hence, Suc was transported into developing wood, but the Suc-derived carbon was not efficiently incorporated to wood fiber walls. A yellow fluorescent protein:PttSUT3 fusion localized to plasma membrane, suggesting that reduced Suc import into developing wood fibers was the cause of the observed cell wall phenotype. The results show the importance of active Suc transport for wood formation in a symplasmically phloem-loading tree species and identify PttSUT3 as a principal transporter for carbon delivery into secondary cell wall-forming wood fibers.

  10. The importance of wood nutrient storage in tropical forest nitrogen and phosphorus cycles: Insights from a sapling defoliation experiment in Panama

    NASA Astrophysics Data System (ADS)

    Heineman, K.; Dalling, J. W.

    2015-12-01

    The availability of soil nutrients limits productivity and influences tree species distribution in tropical forests. Given the scarcity of soil resources, trees in tropical forests should be under selection to store nutrients for periods when nutrient demand exceeds supply. However, little is known about the capacity of trees to remobilize nutrients from long-lived woody biomass in tropical forests, despite wood sequestering a large proportion of bioavailable nutrients in tropical ecosystems. We evaluated nitrogen (N) and phosphorus (P) remobilization from woody biomass via experimental defoliation of saplings from four widely distributed genera of tropical trees in Panama. Focal saplings were sampled in high and low fertility habitats in both montane and lowland forests to maximize contrast in the availability and identity of limiting nutrients. N and P concentrations of stem wood were measured before defoliation and after subsequent re-foliation response to calculate wood remobilization efficiency. Initial wood P concentrations differed significantly within taxa between low and high fertility habitats, whereas initial wood N differed significantly within taxa between lowland and montane forests, but not among soil fertility habitats. In three of four genera studied, wood P concentrations declined after refoliation at both elevations, and the proportion of wood P remobilized was greater on low fertility compared to high fertility sites. In contrast, significant N remobilization was restricted to the low fertility montane site, where nitrogen is most likely to limit plant growth. These findings provide evidence that a significant fraction of N and P in woody biomass is can be remobilized in response to asymmetry in nutrient supply and demand, as opposed consisting primarily of recalcitrant structural material. Furthermore, variation in remobilization responses of species to defoliation provides additional evidence that multiple nutrient-limitation in tropical

  11. New Insights on Wood Dimensional Stability Influenced by Secondary Metabolites: The Case of a Fast-Growing Tropical Species Bagassa guianensis Aubl.

    PubMed Central

    Bossu, Julie; Beauchêne, Jacques; Estevez, Yannick

    2016-01-01

    Challenging evaluation of tropical forest biodiversity requires the reporting of taxonomic diversity but also the systematic characterization of wood properties in order to discover new promising species for timber industry. Among wood properties, the dimensional stability is regarded as a major technological characteristic to validate whether a wood species is adapted to commercial uses. Cell structure and organization are known to influence the drying shrinkage making wood density and microfibrils angle markers of choice to predict wood dimensional stability. On the contrary the role of wood extractive content remains unclear. This work focuses on the fast-growing tropical species Bagassa guianensis and we report herein a correlation between heartwood drying shrinkage and extractive content. Chemical extractions and shrinkage experiments were performed on separate wood twin samples to better evaluate correctly how secondary metabolites influence the wood shrinkage behaviour. Extractive content were qualitatively and quantitatively analysed using HPLC and NMR spectroscopy. We found that B guianensis heartwood has a homogeneous low shrinkage along its radius that could not be explained only by its basic density. In fact the low drying shrinkage is correlated to the high extractive content and a corrected model to improve the prediction of wood dimensional stability is presented. Additionally NMR experiments conducted on sapwood and heartwood extracts demonstrate that secondary metabolites biosynthesis occurs in sapwood thus revealing B. guianensis as a Juglans-Type heartwood formation. This work demonstrates that B. guianensis, a fast-growing species associated with high durability and high dimensional stability, is a good candidate for lumber production and commercial purposes. PMID:27007687

  12. New Insights on Wood Dimensional Stability Influenced by Secondary Metabolites: The Case of a Fast-Growing Tropical Species Bagassa guianensis Aubl.

    PubMed

    Bossu, Julie; Beauchêne, Jacques; Estevez, Yannick; Duplais, Christophe; Clair, Bruno

    2016-01-01

    Challenging evaluation of tropical forest biodiversity requires the reporting of taxonomic diversity but also the systematic characterization of wood properties in order to discover new promising species for timber industry. Among wood properties, the dimensional stability is regarded as a major technological characteristic to validate whether a wood species is adapted to commercial uses. Cell structure and organization are known to influence the drying shrinkage making wood density and microfibrils angle markers of choice to predict wood dimensional stability. On the contrary the role of wood extractive content remains unclear. This work focuses on the fast-growing tropical species Bagassa guianensis and we report herein a correlation between heartwood drying shrinkage and extractive content. Chemical extractions and shrinkage experiments were performed on separate wood twin samples to better evaluate correctly how secondary metabolites influence the wood shrinkage behaviour. Extractive content were qualitatively and quantitatively analysed using HPLC and NMR spectroscopy. We found that B guianensis heartwood has a homogeneous low shrinkage along its radius that could not be explained only by its basic density. In fact the low drying shrinkage is correlated to the high extractive content and a corrected model to improve the prediction of wood dimensional stability is presented. Additionally NMR experiments conducted on sapwood and heartwood extracts demonstrate that secondary metabolites biosynthesis occurs in sapwood thus revealing B. guianensis as a Juglans-Type heartwood formation. This work demonstrates that B. guianensis, a fast-growing species associated with high durability and high dimensional stability, is a good candidate for lumber production and commercial purposes.

  13. EFFECTS OF BURNRATE, WOOD SPECIES, ALTITUDE, AND STOVE TYPE ON WOODSTOVE EMISSIONS

    EPA Science Inventory

    During the winter of 1986-87, the U.S. Environmental Protection Agency (EPA) conducted an emission measurement program in Boise, ID, as part of the Integrated Air Cancer Project (IACP). This program was designed to identify the potential mutagenic impact of residential wood burni...

  14. Rapid Identification of Candida Species and Other Clinically Important Yeast Species by Flow Cytometry†

    PubMed Central

    Page, Brent T.; Kurtzman, Cletus P.

    2005-01-01

    Two rapid diagnostic assays, utilizing two different Luminex flow cytometry methods, were developed for identification of clinically important ascomycetous yeast species. Direct hybridization and allele-specific primer extension methods were both successful in establishing a DNA-based assay that can rapidly and accurately identify Candida albicans, Candida krusei, Candida parapsilosis, Candida glabrata, and Candida tropicalis as well as other clinical species. The direct hybridization assay was designed to identify a total of 19 ascomycetous yeast species, and the allele-specific primer extension assay was designed to identify a total of 34 species. Probes were validated against 438 strains representing 303 species. From culture to identification, the allele-specific primer extension method takes 8 h and the direct hybridization method takes less than 5 h to complete. These assays represent comprehensive, rapid tests that are well suited for the clinical laboratory. PMID:16145099

  15. Diurnal changes in embolism rate in nine dry forest trees: relationships with species-specific xylem vulnerability, hydraulic strategy and wood traits.

    PubMed

    Trifilò, Patrizia; Nardini, Andrea; Lo Gullo, Maria A; Barbera, Piera M; Savi, Tadeja; Raimondo, Fabio

    2015-07-01

    Recent studies have reported correlations between stem sapwood capacitance (C(wood)) and xylem vulnerability to embolism, but it is unclear how C(wood) relates to the eventual ability of plants to reverse embolism. We investigated possible functional links between embolism reversal efficiency, C(wood), wood density (WD), vulnerability to xylem embolism and hydraulic safety margins in nine woody species native to dry sclerophyllous forests with different degrees of iso versus anisohydry. Substantial inter-specific differences in terms of seasonal/diurnal changes of xylem and leaf water potential, maximum diurnal values of transpiration rate and xylem vulnerability to embolism formation were recorded. Significant diurnal changes in percentage loss of hydraulic conductivity (PLC) were recorded for five species. Significant correlations were recorded between diurnal PLC changes and P50 and P88 values (i.e., xylem pressure inducing 50 and 88% PLC, respectively) as well as between diurnal PLC changes and safety margins referenced to P50 and P88. WD was linearly correlated with minimum diurnal leaf water potential, diurnal PLC changes and wood capacitance across all species. In contrast, significant relationships between P50, safety margin values referenced to P50 and WD were recorded only for the isohydric species. Functional links between diurnal changes in PLC, hydraulic strategies and WD and C(wood) are discussed.

  16. Evidence of the late lignification of the G-layer in Simarouba tension wood, to assist understanding how non-G-layer species produce tensile stress.

    PubMed

    Roussel, Jean-Romain; Clair, Bruno

    2015-12-01

    To recover verticality after disturbance, angiosperm trees produce 'tension wood' allowing them to bend actively. The driving force of the tension has been shown to take place in the G-layer, a specific unlignified layer of the cell wall observed in most temperate species. However, in tropical rain forests, the G-layer is often absent and the mechanism generating the forces to reorient trees remains unclear. A study was carried out on tilted seedlings, saplings and adult Simarouba amara Aubl. trees-a species known to not produce a G-layer. Microscopic observations were done on sections of normal and tension wood after staining or observed under UV light to assess the presence/absence of lignin. We showed that S. amara produces a cell-wall layer with all of the characteristics typical of G-layers, but that this G-layer can be observed only as a temporary stage of the cell-wall development because it is masked by a late lignification. Being thin and lignified, tension wood fibres cannot be distinguished from normal wood fibres in the mature wood of adult trees. These observations indicate that the mechanism generating the high tensile stress in tension wood is likely to be the same as that in species with a typical G-layer and also in species where the G-layer cannot be observed in mature cells.

  17. COMPARATIVE PHARMACOGNOSY OF MEDICINALLY IMPORTANT INDIAN VITEX SPECIES

    PubMed Central

    Rao, R. V Krishna; Satyanarayana, T.; Jena, Ranjit

    1996-01-01

    Vitex genera is reputed for their medicinal properties. Of the 12 species reported to be present in Indian only 8 species are medicinally useful. Of these six species were colled and their pharmacognostic characters were studied and described. PMID:22556769

  18. Evaluation of carbohydrates and lignocellulosic biomass from different wood species as raw material for the synthesis of 5-bromomethyfurfural.

    PubMed

    Bredihhin, Aleksei; Mäeorg, Uno; Vares, Lauri

    2013-06-28

    The influence of different parameters on the conversion of carbohydrates and biomass into the potential biofuel intermediate 5-bromomethylfurfural (BMF) has been studied. Our optimized conditions avoid the use of lithium salt additives, making this method cheaper and environmentally more benign compared to previously reported methods. Different wood species and their potential as a raw material in BMF and furfural production have also been evaluated. In addition, we report a very simple and efficient procedure for conversion of 5-hydroxymethylfurfural (HMF) into BMF or 5-chloromethylfurfural (CMF).

  19. Growing evidence for facultative biotrophy in saprotrophic fungi: data from microcosm tests with 201 species of wood-decay basidiomycetes.

    PubMed

    Smith, Gabriel R; Finlay, Roger D; Stenlid, Jan; Vasaitis, Rimvydas; Menkis, Audrius

    2017-04-06

    Ectomycorrhizal (ECM) symbioses have evolved a minimum of 78 times independently from saprotrophic lineages, indicating the potential for functional overlap between ECM and saprotrophic fungi. ECM fungi have the capacity to decompose organic matter, and although there is increasing evidence that some saprotrophic fungi exhibit the capacity to enter into facultative biotrophic relationships with plant roots without causing disease symptoms, this subject is still not well studied. In order to determine the extent of biotrophic capacity in saprotrophic wood-decay fungi and which systems may be useful models, we investigated the colonization of conifer seedling roots in vitro using an array of 201 basidiomycete wood-decay fungi. Microtome sectioning, differential staining and fluorescence microscopy were used to visualize patterns of root colonization in microcosm systems containing Picea abies or Pinus sylvestris seedlings and each saprotrophic fungus. Thirty-four (16.9%) of the tested fungal species colonized the roots of at least one tree species. Two fungal species showed formation of a mantle and one showed Hartig net-like structures. These features suggest the possibility of an active functional symbiosis between fungus and plant. The data indicate that the capacity for facultative biotrophic relationships in free-living saprotrophic basidiomycetes may be greater than previously supposed.

  20. DNA Microarray Detection of 18 Important Human Blood Protozoan Species

    PubMed Central

    Chen, Jun-Hu; Feng, Xin-Yu; Chen, Shao-Hong; Cai, Yu-Chun; Lu, Yan; Zhou, Xiao-Nong; Chen, Jia-Xu; Hu, Wei

    2016-01-01

    Background Accurate detection of blood protozoa from clinical samples is important for diagnosis, treatment and control of related diseases. In this preliminary study, a novel DNA microarray system was assessed for the detection of Plasmodium, Leishmania, Trypanosoma, Toxoplasma gondii and Babesia in humans, animals, and vectors, in comparison with microscopy and PCR data. Developing a rapid, simple, and convenient detection method for protozoan detection is an urgent need. Methodology/Principal Findings The microarray assay simultaneously identified 18 species of common blood protozoa based on the differences in respective target genes. A total of 20 specific primer pairs and 107 microarray probes were selected according to conserved regions which were designed to identify 18 species in 5 blood protozoan genera. The positive detection rate of the microarray assay was 91.78% (402/438). Sensitivity and specificity for blood protozoan detection ranged from 82.4% (95%CI: 65.9% ~ 98.8%) to 100.0% and 95.1% (95%CI: 93.2% ~ 97.0%) to 100.0%, respectively. Positive predictive value (PPV) and negative predictive value (NPV) ranged from 20.0% (95%CI: 2.5% ~ 37.5%) to 100.0% and 96.8% (95%CI: 95.0% ~ 98.6%) to 100.0%, respectively. Youden index varied from 0.82 to 0.98. The detection limit of the DNA microarrays ranged from 200 to 500 copies/reaction, similar to PCR findings. The concordance rate between microarray data and DNA sequencing results was 100%. Conclusions/Significance Overall, the newly developed microarray platform provides a convenient, highly accurate, and reliable clinical assay for the determination of blood protozoan species. PMID:27911895

  1. Fragmented habitats of traditional fruit orchards are important for dead wood-dependent beetles associated with open canopy deciduous woodlands

    NASA Astrophysics Data System (ADS)

    Horak, Jakub

    2014-06-01

    The conservation of traditional fruit orchards might be considered to be a fashion, and many people might find it difficult to accept that these artificial habitats can be significant for overall biodiversity. The main aim of this study was to identify possible roles of traditional fruit orchards for dead wood-dependent (saproxylic) beetles. The study was performed in the Central European landscape in the Czech Republic, which was historically covered by lowland sparse deciduous woodlands. Window traps were used to catch saproxylic beetles in 25 traditional fruit orchards. The species richness, as one of the best indicators of biodiversity, was positively driven by very high canopy openness and the rising proportion of deciduous woodlands in the matrix of the surrounding landscape. Due to the disappearance of natural and semi-natural habitats (i.e., sparse deciduous woodlands) of saproxylic beetles, orchards might complement the functions of suitable habitat fragments as the last biotic islands in the matrix of the cultural Central European landscape.

  2. Fragmented habitats of traditional fruit orchards are important for dead wood-dependent beetles associated with open canopy deciduous woodlands.

    PubMed

    Horak, Jakub

    2014-06-01

    The conservation of traditional fruit orchards might be considered to be a fashion, and many people might find it difficult to accept that these artificial habitats can be significant for overall biodiversity. The main aim of this study was to identify possible roles of traditional fruit orchards for dead wood-dependent (saproxylic) beetles. The study was performed in the Central European landscape in the Czech Republic, which was historically covered by lowland sparse deciduous woodlands. Window traps were used to catch saproxylic beetles in 25 traditional fruit orchards. The species richness, as one of the best indicators of biodiversity, was positively driven by very high canopy openness and the rising proportion of deciduous woodlands in the matrix of the surrounding landscape. Due to the disappearance of natural and semi-natural habitats (i.e., sparse deciduous woodlands) of saproxylic beetles, orchards might complement the functions of suitable habitat fragments as the last biotic islands in the matrix of the cultural Central European landscape.

  3. Divergences in hydraulic architecture form an important basis for niche differentiation between diploid and polyploid Betula species in NE China.

    PubMed

    Zhang, Wei-Wei; Song, Jia; Wang, Miao; Liu, Yan-Yan; Li, Na; Zhang, Yong-Jiang; Holbrook, N Michele; Hao, Guang-You

    2017-02-13

    Habitat differentiation between polyploid and diploid plants are frequently observed, with polyploids usually occupying more stressed environments. In woody plants, polyploidization can greatly affect wood characteristics but knowledge of its influences on xylem hydraulics is scarce. The four Betula species in NE China, representing two diploids and two polyploids with obvious habitat differentiation, provide an exceptional study system for investigating the impact of polyploidization on environmental adaptation of trees from the point view of xylem hydraulics. To test the hypothesis that changes in hydraulic architecture play an important role in determining their niche differentiation, we measured wood structural traits at both the tissue and pit levels and quantified xylem water transport efficiency and safety in these species. The two polyploids had significantly larger hydraulic weighted mean vessel diameters than the two diploids (45.1 and 45.5 vs 25.9 and 24.5 μm) although the polyploids are occupying more stressed environments. As indicated by more negative water potentials corresponding to 50% loss of stem hydraulic conductivities, the two polyploids exhibited significantly higher resistance to drought-induced embolism than the two diploids (-5.23 and -5.05 vs -3.86 and -3.13 MPa) despite their larger vessel diameters. This seeming discrepancy is reconciled by distinct characteristics favoring greater embolism resistance at the pit level in the two polyploid species. Our results showed clearly that the two polyploid species have remarkably different pit-level anatomical traits favoring greater hydraulic safety than their congeneric diploid species, which have likely contributed to the abundance of polyploid birches in more stressed habitats; however, less porous inter-conduit pits together with a reduced leaf to sapwood area may have compromised their competitiveness under more favorable conditions. Contrasts in hydraulic architecture between diploid and

  4. Differential Growth Responses to Water Balance of Coexisting Deciduous Tree Species Are Linked to Wood Density in a Bolivian Tropical Dry Forest

    PubMed Central

    Mendivelso, Hooz A.; Camarero, J. Julio; Royo Obregón, Oriol; Gutiérrez, Emilia; Toledo, Marisol

    2013-01-01

    A seasonal period of water deficit characterizes tropical dry forests (TDFs). There, sympatric tree species exhibit a diversity of growth rates, functional traits, and responses to drought, suggesting that each species may possess different strategies to grow under different conditions of water availability. The evaluation of the long-term growth responses to changes in the soil water balance should provide an understanding of how and when coexisting tree species respond to water deficit in TDFs. Furthermore, such differential growth responses may be linked to functional traits related to water storage and conductance. We used dendrochronology and climate data to retrospectively assess how the radial growth of seven coexisting deciduous tree species responded to the seasonal soil water balance in a Bolivian TDF. Linear mixed-effects models were used to quantify the relationships between basal area increment and seasonal water balance. We related these relationships with wood density and sapwood production to assess if they affect the growth responses to climate. The growth of all species responded positively to water balance during the wet season, but such responses differed among species as a function of their wood density. For instance, species with a strong growth response to water availability averaged a low wood density which may facilitate the storage of water in the stem. By contrast, species with very dense wood were those whose growth was less sensitive to water availability. Coexisting tree species thus show differential growth responses to changes in soil water balance during the wet season. Our findings also provide a link between wood density, a trait related to the ability of trees to store water in the stem, and wood formation in response to water availability. PMID:24116001

  5. Differential growth responses to water balance of coexisting deciduous tree species are linked to wood density in a Bolivian tropical dry forest.

    PubMed

    Mendivelso, Hooz A; Camarero, J Julio; Royo Obregón, Oriol; Gutiérrez, Emilia; Toledo, Marisol

    2013-01-01

    A seasonal period of water deficit characterizes tropical dry forests (TDFs). There, sympatric tree species exhibit a diversity of growth rates, functional traits, and responses to drought, suggesting that each species may possess different strategies to grow under different conditions of water availability. The evaluation of the long-term growth responses to changes in the soil water balance should provide an understanding of how and when coexisting tree species respond to water deficit in TDFs. Furthermore, such differential growth responses may be linked to functional traits related to water storage and conductance. We used dendrochronology and climate data to retrospectively assess how the radial growth of seven coexisting deciduous tree species responded to the seasonal soil water balance in a Bolivian TDF. Linear mixed-effects models were used to quantify the relationships between basal area increment and seasonal water balance. We related these relationships with wood density and sapwood production to assess if they affect the growth responses to climate. The growth of all species responded positively to water balance during the wet season, but such responses differed among species as a function of their wood density. For instance, species with a strong growth response to water availability averaged a low wood density which may facilitate the storage of water in the stem. By contrast, species with very dense wood were those whose growth was less sensitive to water availability. Coexisting tree species thus show differential growth responses to changes in soil water balance during the wet season. Our findings also provide a link between wood density, a trait related to the ability of trees to store water in the stem, and wood formation in response to water availability.

  6. Influence of wood species on properties of injection mould natural flour-HDPE composites

    NASA Astrophysics Data System (ADS)

    Ratanawilai, Thanate; Leeyoa, Massalan; Tiptong, Yoawanat

    2016-05-01

    Four combinations of wood flour, HDPE, and maleic anhydride (MA) include; (1) rubberwood:HDPE (30:70), (2) rubberwood: HDPE:MA (30:67:3), (3) palm oil:HDPE (30:70), and (4) palm oil:HDPE:MA (30:67:3) were studied. The injection moulding machine was used to produce wood plastic composites (WPCs). Maleic anhydride is an ingredient in bonding agents used to manufacture wood plastic composites. Extrusion molding process was conducted to prefabricate WPCs. Consequently, the effect of temperature and pressure ranging from 180, 190, 200°C and 2300, 2400, 2500 bar on injection molding was evaluated. Mechanical properties were tested including flexural testing and tensile testing according to ASTM D790 and D638, respectively. Hardness testing according to ASTM D2240 and scanning electron microscope (SEM) were also performed. Five replications were done on each test. The result showed that rubberwood:HDPE (30:70) gave a highest strength. The values of ultimate tensile strength, flexural strength, and hardness are 24.9 MPa, 33.3 MPa and 67.2 shore D, respectively. Finally, the uniform distribution of particle in WPCs, examined through SEM was achieved.

  7. Regulatory phenotyping reveals important diversity within the species Lactococcus lactis.

    PubMed

    Bachmann, Herwig; Starrenburg, Marjo J C; Dijkstra, Annereinou; Molenaar, Douwe; Kleerebezem, Michiel; Rademaker, Jan L W; van Hylckama Vlieg, Johan E T

    2009-09-01

    The diversity in regulatory phenotypes among a collection of 84 Lactococcus lactis strains isolated from dairy and nondairy origin was explored. The specific activities of five enzymes were assessed in cell extracts of all strains grown in two different media, a nutritionally rich broth and a relatively poor chemically defined medium. The five investigated enzymes, branched chain aminotransferase (BcaT), aminopeptidase N (PepN), X-prolyl dipeptidyl peptidase (PepX), alpha-hydroxyisocaproic acid dehydrogenase (HicDH), and esterase, are involved in nitrogen and fatty acid metabolism and catalyze key steps in the production of important dairy flavor compounds. The investigated cultures comprise 75 L. lactis subsp. lactis isolates (including 7 L. lactis subsp. lactis biovar diacetylactis isolates) and 9 L. lactis subsp. cremoris isolates. All L. lactis subsp. cremoris and 22 L. lactis subsp. lactis (including 6 L. lactis subsp. lactis biovar diacetylactis) cultures originated from a dairy environment. All other cultures originated from (fermented) plant materials and were isolated at different geographic locations. Correlation analysis of specific enzyme activities revealed significantly different regulatory phenotypes for dairy and nondairy isolates. The enzyme activities in the two investigated media were in general poorly correlated and revealed a high degree of regulatory diversity within this collection of closely related strains. To the best of our knowledge, these results represent the most extensive diversity analysis of regulatory phenotypes within a single bacterial species to date. The presented findings underline the importance of the availability of screening procedures for, e.g., industrially relevant enzyme activities in models closely mimicking application conditions. Moreover, they corroborate the notion that regulatory changes are important drivers of evolution.

  8. Wood nitrogen concentrations in tropical trees: phylogenetic patterns and ecological correlates.

    PubMed

    Martin, Adam R; Erickson, David L; Kress, W John; Thomas, Sean C

    2014-11-01

    In tropical and temperate trees, wood chemical traits are hypothesized to covary with species' life-history strategy along a 'wood economics spectrum' (WES), but evidence supporting these expected patterns remains scarce. Due to its role in nutrient storage, we hypothesize that wood nitrogen (N) concentration will covary along the WES, being higher in slow-growing species with high wood density (WD), and lower in fast-growing species with low WD. In order to test this hypothesis we quantified wood N concentrations in 59 Panamanian hardwood species, and used this dataset to examine ecological correlates and phylogenetic patterns of wood N. Wood N varied > 14-fold among species between 0.04 and 0.59%; closely related species were more similar in wood N than expected by chance. Wood N was positively correlated with WD, and negatively correlated with log-transformed relative growth rates, although these relationships were relatively weak. We found evidence for co-evolution between wood N and both WD and log-transformed mortality rates. Our study provides evidence that wood N covaries with tree life-history parameters, and that these patterns consistently co-evolve in tropical hardwoods. These results provide some support for the hypothesized WES, and suggest that wood is an increasingly important N pool through tropical forest succession.

  9. Seasonal and Inter-annual Variation in Wood Production in Tropical Trees on Barro Colorado Island, Panama, is Related to Local Climate and Species Functional Traits

    NASA Astrophysics Data System (ADS)

    Cushman, K.; Muller-Landau, H. C.; Kellner, J. R.; Wright, S. J.; Condit, R.; Detto, M.; Tribble, C. M.

    2015-12-01

    Tropical forest carbon budgets play a major role in global carbon dynamics, but the responses of tropical forests to current and future inter-annual climatic variation remains highly uncertain. Better predictions of future tropical forest carbon fluxes require an improved understanding of how different species of tropical trees respond to changes in climate at seasonal and inter-annual temporal scales. We installed dendrometer bands on a size-stratified sample of 2000 trees in old growth forest on Barro Colorado Island, Panama, a moist lowland forest that experiences an annual dry season of approximately four months. Tree diameters were measured at the beginning and end of the rainy season since 2008. Additionally, we recorded the canopy illumination level, canopy intactness, and liana coverage of all trees during each census. We used linear mixed-effects models to evaluate how tree growth was related to seasonal and interannual variation in local climate, tree condition, and species identity, and how species identity effects related to tree functional traits. Climatic variables considered included precipitation, solar radiation, soil moisture, and climatological water deficit, and were all calculated from high-quality on-site measurements. Functional traits considered included wood density, maximum adult stature, deciduousness, and drought tolerance. We found that annual wood production was positively related to water availability, with higher growth in wetter years. Species varied in their response to seasonal water availability, with some species showing more pronounced reduction of growth during the dry season when water availability is limited. Interspecific variation in seasonal and interannual growth patterns was related to life-history strategies and species functional traits. The finding of higher growth in wetter years is consistent with previous tree ring studies conducted on a small subset of species with reliable annual rings. Together with previous

  10. Effects of tree species and wood particle size on the properties of cement-bonded particleboard manufacturing from tree prunings.

    PubMed

    Nasser, Ramadan A; Al-Mefarrej, H A; Abdel-Aal, M A; Alshahrani, T S

    2014-09-01

    This study investigated the possibility of using the prunings of six locally grown tree species in Saudi Arabia for cement-bonded particleboard (CBP) production. Panels were made using four different wood particle sizes and a constant wood/cement ratio (1/3 by weight) and target density (1200 kg/m3). The mechanical properties and dimensional stability of the produced panels were determined. The interfacial area and distribution of the wood particles in cement matrix were also investigated by scanning electron microscopy. The results revealed that the panels produced from these pruning materials at a target density of 1200 kg m(-3) meet the strength and dimensional stability requirements of the commercial CBP panels. The mean moduli of rupture and elasticity (MOR and MOE) ranged from 9.68 to 11.78 N mm2 and from 3952 to 5667 N mm2, respectively. The mean percent water absorption for twenty four hours (WA24) ranged from 12.93% to 23.39%. Thickness swelling values ranged from 0.62% to 1.53%. For CBP panels with high mechanical properties and good dimensional stability, mixed-size or coarse particles should be used. Using the tree prunings for CBPs production may help to solve the problem of getting rid of these residues by reducing their negative effects on environment, which are caused by poor disposal of such materials through direct combustion process and appearance of black cloud and then the impact on human health or the random accumulation and its indirect effects on the environment.

  11. Description of Scheffersomyces henanensis sp. nov., a New D-Xylose-Fermenting Yeast Species Isolated from Rotten Wood

    PubMed Central

    Ren, Yongcheng; Chen, Liang; Niu, Qiuhong; Hui, Fengli

    2014-01-01

    Two strains of a D-xylose-fermenting yeast species were isolated from rotten wood samples collected from the Baotianman Nature Reserve in Henan Province, central China. These strains formed hat-shaped ascospores in conjugated and deliquescent asci. Multilocus phylogenetic analysis that included the nearly complete small subunit (SSU), the internal transcribed spacer (ITS) region and the D1/D2 domain of the large subunit (LSU) rRNA genes, as well as RNA polymerase II largest subunit (RPB1) gene demonstrated that the two strains represent a novel yeast species closely related to Scheffersomyces segobiensis. A sequence comparison of xylose reductase (XYL1) gene, which was recently recommended for rapid identification of cryptic species in the Scheffersomyces clade, revealed a significant sequence divergence of 25 nucleotides between the novel strains and their closest relative S. segobiensis, supporting their classification as a distinct species. Furthermore, these new strains can be clearly distinguished from S. segobiensis by a number of morphological and physiological characteristics. Therefore, a novel yeast species, Scheffersomyces henanensis sp. nov., is proposed to accommodate these strains. The type strain is BY-41T ( =  CICC 1974T  =  CBS 12475T). PMID:24647466

  12. Description of Scheffersomyces henanensis sp. nov., a new D-xylose-fermenting yeast species isolated from rotten wood.

    PubMed

    Ren, Yongcheng; Chen, Liang; Niu, Qiuhong; Hui, Fengli

    2014-01-01

    Two strains of a D-xylose-fermenting yeast species were isolated from rotten wood samples collected from the Baotianman Nature Reserve in Henan Province, central China. These strains formed hat-shaped ascospores in conjugated and deliquescent asci. Multilocus phylogenetic analysis that included the nearly complete small subunit (SSU), the internal transcribed spacer (ITS) region and the D1/D2 domain of the large subunit (LSU) rRNA genes, as well as RNA polymerase II largest subunit (RPB1) gene demonstrated that the two strains represent a novel yeast species closely related to Scheffersomyces segobiensis. A sequence comparison of xylose reductase (XYL1) gene, which was recently recommended for rapid identification of cryptic species in the Scheffersomyces clade, revealed a significant sequence divergence of 25 nucleotides between the novel strains and their closest relative S. segobiensis, supporting their classification as a distinct species. Furthermore, these new strains can be clearly distinguished from S. segobiensis by a number of morphological and physiological characteristics. Therefore, a novel yeast species, Scheffersomyces henanensis sp. nov., is proposed to accommodate these strains. The type strain is BY-41T ( =  CICC 1974T  =  CBS 12475T).

  13. Univariate and multivariate analysis of tannin-impregnated wood species using vibrational spectroscopy.

    PubMed

    Schnabel, Thomas; Musso, Maurizio; Tondi, Gianluca

    2014-01-01

    Vibrational spectroscopy is one of the most powerful tools in polymer science. Three main techniques--Fourier transform infrared spectroscopy (FT-IR), FT-Raman spectroscopy, and FT near-infrared (NIR) spectroscopy--can also be applied to wood science. Here, these three techniques were used to investigate the chemical modification occurring in wood after impregnation with tannin-hexamine preservatives. These spectroscopic techniques have the capacity to detect the externally added tannin. FT-IR has very strong sensitivity to the aromatic peak at around 1610 cm(-1) in the tannin-treated samples, whereas FT-Raman reflects the peak at around 1600 cm(-1) for the externally added tannin. This high efficacy in distinguishing chemical features was demonstrated in univariate analysis and confirmed via cluster analysis. Conversely, the results of the NIR measurements show noticeable sensitivity for small differences. For this technique, multivariate analysis is required and with this chemometric tool, it is also possible to predict the concentration of tannin on the surface.

  14. Sensitivity to zinc of Mediterranean woody species important for restoration.

    PubMed

    Disante, Karen B; Fuentes, David; Cortina, Jordi

    2010-04-15

    Heavy metals have increased in natural woodlands and shrublands over the last several decades as a consequence of anthropogenic activities. However, our knowledge of the effects of these elements on woody species is scarce. In this study, we examined the responses of six Mediterranean woody species to increasing levels of zinc in hydroponic culture and discussed the possible implications for the restoration of contaminated sites. The species used, Pinus pinea L., Pinus pinaster Ait., Pinus halepensis Mill., Tetraclinis articulata (Vahl) Mast., Rhamnus alaternus L. and Quercus suber L. represent a climatic gradient from dry sub-humid to semi-arid conditions. Zinc concentrations in shoots ranged from 53 microg g(-1) in Q. suber to 382 microg g(-1) in T. articulata and were well below the levels found in roots. Zinc inhibited root elongation and root biomass and changed the root length distribution per diameter class, but the magnitude of the effects was species-specific. Only P. halepensis and Q. suber showed toxicity symptoms in aboveground parts. Species more characteristic from xeric environments (T. articulata, R. alaternus and P. halepensis) were more sensitive to zinc than species from mesic environments (Q. suber, P. pinaster and P. pinea). According to the Zn responses and bioaccumulation, Q. suber P. pinea and P. halepensis are the best candidates for field trials to test the value of woody species to restore contaminated sites. None of the species tested seemed suitable for phytoremediation.

  15. Water storage dynamics in the main stem of subtropical tree species differing in wood density, growth rate and life history traits.

    PubMed

    Oliva Carrasco, Laureano; Bucci, Sandra J; Di Francescantonio, Débora; Lezcano, Oscar A; Campanello, Paula I; Scholz, Fabián G; Rodríguez, Sabrina; Madanes, N; Cristiano, Piedad M; Hao, Guang-You; Holbrook, N Michele; Goldstein, Guillermo

    2015-04-01

    Wood biophysical properties and the dynamics of water storage discharge and refilling were studied in the trunk of canopy tree species with diverse life history and functional traits in subtropical forests of northeast Argentina. Multiple techniques assessing capacitance and storage capacity were used simultaneously to improve our understanding of the functional significance of internal water sources in trunks of large trees. Sapwood capacitances of 10 tree species were characterized using pressure-volume relationships of sapwood samples obtained from the trunk. Frequency domain reflectometry was used to continuously monitor the volumetric water content in the main stems. Simultaneous sap flow measurements on branches and at the base of the tree trunk, as well as diurnal variations in trunk contraction and expansion, were used as additional measures of stem water storage use and refilling dynamics. All evidence indicates that tree trunk internal water storage contributes from 6 to 28% of the daily water budget of large trees depending on the species. The contribution of stored water in stems of trees to total daily transpiration was greater for deciduous species, which exhibited higher capacitance and lower sapwood density. A linear relationship across species was observed between wood density and growth rates with the higher wood density species (mostly evergreen) associated with lower growth rates and the lower wood density species (mostly deciduous) associated with higher growth rates. The large sapwood capacitance in deciduous species may help to avoid catastrophic embolism in xylem conduits. This may be a low-cost adaptation to avoid water deficits during peak water use at midday and under temporary drought periods and will contribute to higher growth rates in deciduous tree species compared with evergreen ones. Large capacitance appears to have a central role in the rapid growth patterns of deciduous species facilitating rapid canopy access as these species

  16. Characteristics of heat-treated Turkish pine and fir wood after ThermoWood processing.

    PubMed

    Kol, Hamiyet Sahin

    2010-11-01

    The Finnish wood heat treatment technology ThermoWood, was recently introduced to Turkey. Data about the mechanical and physical properties of Turkish wood species are important for industry and academia. In this study two industrially important Turkish wood species, pine (Pinus nigraArnold.) and fir (Abies bornmülleriana Matf.) were heat-treated using the ThermoWood process. Pine and fir samples were thermally modified for 2 hr at 212 and 190 degrees C, respectively. The modulus of rupture (MOR), modulus of elasticity in bending (MOE), impact bending strength (IBS), and compression strength (CS), in addition to swelling (Sw) and shrinkage (Sh) of thermally-modified wood were examined. The results indicate that the heat treatment method clearly decreased the MOR, MOE and lBS of pine and fir. However, a small increase was observed for CS values of heat treated wood species. The most affected mechanical properties were MOR and lBS for both pine and fir. The reduction in MOE was smaller than that in MOR and lBS. Volumetric shrinkage and swelling of these species were also improved by approximately half. In Addition, the changes in the mechanical and physical properties studied in pine were larger than that of fir.

  17. Tree-ring growth and wood chemistry response to manipulated precipitation variation for two temperate Quercus species

    SciTech Connect

    Wagner, Rebekah J.; Kaye, Margot W.; Abrams, Marc D.; Hanson, Paul J; Martin, Madhavi Z

    2012-01-01

    We examined the relationship among ambient and manipulated precipitation, wood chemistry, and their relationship with radial growth for two oak species in eastern Tennessee. The study took place on the Walker Branch Throughfall Displacement Experiment (TDE) site, located at the Oak Ridge National Laboratory in Oak Ridge, TN. Two dominant species, white oak (Quercus alba) and chestnut oak (Quercus prinus), were selected for study from a 13-year experiment of whole-stand precipitation manipulation (wet, ambient and dry). The relationships between tree-ring width and climate were compared for both species to determine the impact of precipitation manipulations on ring width index. This study used experimental spectroscopy techniques to measure the sensitivity of tree-ring responses to directional changes in precipitation over 13 years, and the results suggest that oaks at this study site are resilient to imposed changes, but sensitive to inter-annual variations in climate. Laser-induced breakdown spectroscopy (LIBS) allowed us to measure nutrient intensities (similar to element concentrations) at 0.5-1.0 mm spacing along the radial growth axis of trees growing in the wet, ambient, and dry treatment sites. A difference in stemwood nutrient levels was observed between the two oak species and among the three treatments. Significant variation in element intensity was observed across treatments for some elements (Ca, K, Mg, Na, N and P) suggesting the potential for long-term impacts on growth under a changing climate regimes for southeastern oaks.

  18. Organic compounds in biomass smoke from residential wood combustion: Emissions characterization at a continental scale

    NASA Astrophysics Data System (ADS)

    Fine, Philip M.; Cass, Glen R.; Simoneit, Bernd R. T.

    2002-11-01

    Wood smoke in the atmosphere often accounts for 20-30% of the ambient fine-particle concentrations. In communities where wood is burned for home heating, wood smoke can at times contribute the majority of the atmospheric fine-particle burden. Chemical mass balance receptor models that use organic compounds as tracers can be used to determine the contributions of different emission sources, including wood smoke, to atmospheric fine-particle samples. In order for organic chemical tracer techniques to be applied to communities across the United States, differences in wood smoke composition that arise from differences in the type of wood burned in various regions must be understood. A continental-scale accounting of particulate organic compound emissions from residential wood combustion has been constructed which helps to quantify the regional differences in wood smoke composition that exist between different parts of the United States. Data from a series of source tests conducted on 22 North American wood species have been used to assemble a national inventory of emissions for more than 250 individual organic compounds that are released from wood combustion in fireplaces and wood stoves in the United States. The emission rates of important wood smoke markers, such as levoglucosan, certain substituted syringols and guaiacols, and phytosterols vary greatly with wood type and combustor type. These differences at the level of individual wood type and combustion conditions translate into regional differences in the aggregate composition of ambient wood smoke. By weighting the source test results in proportion to the availability of firewood from specific tree species and the quantities of wood burned in each locale, it is possible to investigate systematic differences that exist between wood smokes from different regions of North America. The relative abundance of 10 major wood smoke components averaged over the emissions inventory in different regions of the United States

  19. Supplies and production of aircraft wood

    NASA Technical Reports Server (NTRS)

    Sparhawk, W N

    1920-01-01

    The purpose of this report is to present in brief form such information as is available regarding the supplies of the kinds of wood that have been used or seem likely to become important in the construction of airplanes, and the amount of lumber of each species normally put on the market each year. A general statement is given of the uses to which each kind of wood is or may be put.

  20. Effect of smoke, charred wood, and nitrogenous compounds on seed germination of ten species from woodland in central-western Spain.

    PubMed

    Pérez-Fernández, M A; Rodríguez-Echeverría, S

    2003-01-01

    The effect of smoke, charred wood, and nitrogenous compounds on germination was tested on 10 species of the Cistaceae, Poaceae, Fabaceae, and Asteraceae, from fire-prone, shrubby woodlands in central-western Spain. Dry seeds were exposed to smoke, by watering with distilled water-charred wood suspensions, or NaNO2, KNO3, NH4Cl, and NH4NO3. Smoke enhanced germination in 9 of 10 of the species. In species of Poaceae, germination was stimulated by 20 min of smoke exposure. In Asteraceae and Fabaceae species, 10 min of smoke exposure was the most effective treatment for enhancing germination. Three species--Cistus ladanifer, Cistus crispus, and Cistus monspeliensis--had a positive response to 20 min of smoke exposure; germination of Cistus salviifolius L. was also enhanced after 10 min. The effect of charred wood was variable, with no consistent germination pattern within the families. Trifolium angustifolium and Retama sphaerocarpa showed no stimulation of germination under most of the charred wood concentrations. Similarly, germination of Senecio jacobea under the charred wood treatment did not surpass that of the control. NaNO2 promoted seed germination in Dactylis glomerata (10 mM), Cistus ladanifer (1, 10, and 25 mM), and Cistus crispus (1 and 10 mM). KNO3 enhanced germination in Dactylis glomerata (1 and 25 mM), Dittrichia viscosa (10 and 25 mM), C. ladanifer (1, 10, and 25 mM), Cistus crispus (1 and 25 mM), and C. salviifolius aud C. monspeliensis (25 mM). NH4Cl induced germination of Dactylis glomerata and Dittrichia viscosa (1 mM), and Cistus species germinated best in 25 mM of this salt. NH4NO3 induced germination only in Cistus species. Holcus lanatus had the highest level of germination regardless of treatment.

  1. Can we relate respiration rates of bark and wood with tissue nitrogen concentrations and branch-level CO2 fluxes across woody species?

    NASA Astrophysics Data System (ADS)

    Eller, A. S.; Wright, I.; Cernusak, L. A.

    2013-12-01

    Respiration from above-ground woody tissue is generally responsible for 5-15% of ecosystem respiration (~ 30% of total above-ground respiration). The CO2 respired by branches comes from both the sapwood and the living layers within the bark, but because there is considerable movement of respired CO2 within woody tissues (e.g. in the transpiration stream), and because the bark can present a considerable barrier to CO2 diffusion, it can be difficult to interpret measured CO2 efflux from intact branches in relation to the respiration rates of the component tissues, and to relative mass allocation to each. In this study we investigated these issues in 15 evergreen tree and shrub species native to the Sydney area in eastern Australia. We measured CO2 efflux and light-dependent refixation of respired CO2 in photosynthetic bark from the exterior surfaces of branches (0.5-1.5 cm in diameter), and measured the tissue-specific respiration rates of the bark and wood from those same branches. We also measured the nitrogen content and tissue density of the wood and bark to determine: 1) Among species, what is the relationship between %N and tissue respiration? 2) How is photosynthetic refixation of CO2 related to respiration and %N in the bark and underlying wood? and 3) What is the relationship between branch CO2 efflux and the respiration rates of the underlying wood and bark that make up the branch? Across the 15 species %N was a better predictor of respiration in wood than in bark. CO2 efflux measured from the exterior of the stem in the dark was positively correlated with photosynthetic refixation and explained ~40% of the variation in rates of refixation. Refixation rates were not strongly related to bark or wood %N. Differences among species in CO2 efflux rates were not well explained by differences in bark or wood %N and there was a stronger relationship between bark respiration and CO2 efflux than between wood respiration and CO2 efflux. These results suggest that the

  2. Comparative phylogeography and demographic history of the wood lemming (Myopus schisticolor): implications for late Quaternary history of the taiga species in Eurasia.

    PubMed

    Fedorov, V B; Goropashnaya, A V; Boeskorov, G G; Cook, J A

    2008-01-01

    The association between demographic history, genealogy and geographical distribution of mitochondrial DNA cytochrome b haplotypes was studied in the wood lemming (Myopus schisticolor), a species that is closely associated with the boreal forest of the Eurasian taiga zone from Scandinavia to the Pacific coast. Except for a major phylogeographic discontinuity (0.9% nucleotide divergence) in southeastern Siberia, only shallow regional genetic structure was detected across northern Eurasia. Genetic signs of demographic expansions imply that successive range contractions and expansions on different spatial scales represented the primary historical events that shaped geographical patterns of genetic variation. Comparison of phylogeographic structure across a taxonomically diverse array of other species that are ecologically associated with the taiga forest revealed similar patterns and identified two general aspects. First, the major south-north phylogeographic discontinuity observed in five out of six species studied in southeastern Siberia and the Far East implies vicariant separation in two different refugial areas. The limited distribution range of the southeastern lineages provides no evidence of the importance of the putative southeastern refugial area for postglacial colonization of northern Eurasia by boreal forest species. Second, the lack of phylogeographic structure associated with significant reciprocal monophyly and genetic signatures of demographic expansion in all nine boreal forest animal species studied to date across most of northern Eurasia imply contraction of each species to a single refugial area during the late Pleistocene followed by range expansion on a continental scale. Similar phylogeographic patterns observed in this taxonomically diverse set of organisms with different life histories and dispersal potentials reflect the historical dynamics of their shared environment, the taiga forest in northern Eurasia.

  3. Comparison of the protection effectiveness of acrylic polyurethane coatings containing bark extracts on three heat-treated North American wood species: Surface degradation

    NASA Astrophysics Data System (ADS)

    Kocaefe, Duygu; Saha, Sudeshna

    2012-04-01

    High temperature heat-treatment of wood is a very valuable technique which improves many properties (biological durability, dimensional stability, thermal insulating characteristics) of natural wood. Also, it changes the natural color of wood to a very attractive dark brown color. Unfortunately, this color is not stable if left unprotected in external environment and turns to gray or white depending on the wood species. To overcome this problem, acrylic polyurethane coatings are applied on heat-treated wood to delay surface degradations (color change, loss of gloss, and chemical modifications) during aging. The acrylic polyurethane coatings which have high resistance against aging are further modified by adding bark extracts and/or lignin stabilizer to enhance their effectiveness in preventing the wood aging behavior. The aging characteristic of this coating is compared with acrylic polyurethane combined with commercially available organic UV stabilizers. In this study, their performance on three heat-treated North American wood species (jack pine, quaking aspen and white birch) are compared under accelerated aging conditions. Both the color change data and visual assessment indicate improvement in protective characteristic of acrylic polyurethane when bark extracts and lignin stabilizer are used in place of commercially available UV stabilizer. The results showed that although acrylic polyurethane with bark extracts and lignin stabilizer was more efficient compared to acrylic polyurethane with organic UV stabilizers in protecting heat-treated jack pine, it failed to protect heat-treated aspen and birch effectively after 672 h of accelerated aging. This degradation was not due to the coating adhesion loss or coating degradation during accelerated aging; rather, it was due to the significant degradation of heat-treated aspen and birch surface beneath this coating. The XPS results revealed formation of carbonyl photoproducts after aging on the coated surfaces and

  4. Assessment of local wood species used for the manufacture of cookware and the perception of chemical benefits and chemical hazards associated with their use in Kumasi, Ghana

    PubMed Central

    2012-01-01

    Background Historical proven wood species have no reported adverse health effect associated with its past use. Different historical proven species have traditionally been used to manufacture different wooden food contact items. This study uses survey questionnaires to assess suppliers’, manufacturers’, retailers’ and consumers’ (end-users’) preferences for specific wood species, to examine the considerations that inform these preferences and to investigate the extent of awareness of the chemical benefits and chemical hazards associated with wooden food contact material use. Methods Through the combined use of a cross sectional approach and a case study design, 25 suppliers, 25 manufacturers, 25 retailers and 125 consumers (end-users) of wooden food contact materials in four suburbs in Kumasi Metropolitan Area (Anloga junction, Ahinsan Bus Stop, Ahwia-Pankrono and Race Course) and Ashanti Akyim Agogo in the Ashanti Akyim North District of the Ashanti Region were administered with closed ended questionnaires. The questionnaires were prepared in English, but local language, Twi, was used to translate and communicate the content of the questionnaire where necessary. Results Suppliers’, manufacturers’ and retailers’ preferences for specific wood species for most wooden cookware differed from that of consumers (end-users). But all respondent groups failed to indicate any awareness of chemical benefits or chemical hazards associated with either the choice of specific wood species for specific wooden cookware or with the general use of wooden food contact materials. The lack of appreciation of chemical benefits or hazards associated with active principles of wooden cookware led to heavy reliance of consumers (end-users) on the wood density, price, attractive grain pattern and colour or on the judgement of retailers in their choice of specific species for a wooden cookware. Conclusion This study contributes some practical suggestions to guide national policy

  5. Characterization of Cytospora isolates from wood cankers of declining grapevine in North America, with the descriptions of two new Cytospora species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cytospora species are ubiquitous pathogens of woody plants, causing dieback and wood cankers in numerous perennial hosts, including agronomic crops (e.g., Prunus), timber trees (e.g., Eucalyptus), and riparian hosts (e.g., Salix). Cytospora chrysosperma, C. cincta, and C. leucostoma have been report...

  6. Relations between water balance, wood traits and phenological behavior of tree species from a tropical dry forest in Costa Rica--a multifactorial study.

    PubMed

    Worbes, Martin; Blanchart, Sofie; Fichtler, Esther

    2013-05-01

    Drought tolerance is a key factor for the establishment and survival of tree species in tropical ecosystems. Specific mechanisms of drought resistance can be grouped into four functional ecotypes based on differences in leaf fall behavior: deciduous, brevi-deciduous, stem succulent and evergreen. To identify the key factors influencing phenology and cambial activity and thus drought tolerance, we tested the stomatal conductance, leaf water potential and stable carbon isotopes in the leaves and wood of 12 species from a tropical dry forest in Costa Rica. With wood anatomical techniques, we further studied seasonal cambial activity and a suite of wood traits related to water transport for each of the functional ecotypes. Using a principal component analysis, we identified two groups of variables that can be related to (i) hydraulic conductivity and (ii) control of transpiration and water loss. Hydraulic conductivity is controlled by vessel size as the limiting variable, water potential as the driving force and wood density as the stabilizing factor of the anatomical structure of an effective water transport system. Stomatal control plays a major role in terms of water loss or saving and is the dominant factor for differences in phenological behavior. Stem succulent species in particular developed a rarely identified but highly effective strategy against drought stress, which makes it a successful pioneer species in tropical dry forests.

  7. Effects of nanosilver on sound absorption coefficients in solid wood species.

    PubMed

    Taghiyari, Hamid Reza; Esmailpour, Ayoub; Zolfaghari, Habib

    2016-06-01

    Sound absorption coefficients (ACs) were determined in five solid woods (poplar, beech, walnut, mulberry, and fir) in the longitudinal and tangential directions at four different frequencies of 800, 1000, 2000, and 4000 Hz. The length of the longitudinal and tangential specimens was 50-mm and 10-mm, respectively. Separate sets of specimens were impregnated with either nanosilver suspension or water. The size range of nanoparticles was 30-80 nm. Results showed that sound ACs were lower in longitudinal specimens because sound waves could penetrate the open ends of vessels more easily, being trapped and damped there. Impregnation with both nanosilver suspension and water resulted in a significant decrease in the sound ACs. The decrease in the ACs was due to the collapsing and accumulation of perforation plates and cell parts, blocking the way through which waves could pass through the vessels. This caused higher damping due to a phenomenon called vibration decay. Correlation between gas permeability versus sound AC is significantly dependant on the porous structure of individual specimens.

  8. Pichia dushanensis sp. nov. and Hyphopichia paragotoi sp. nov., two sexual yeast species associated with insects and rotten wood.

    PubMed

    Ren, Yong-Cheng; Liu, Si-Tong; Li, Ying; Hui, Feng-Li

    2015-09-01

    Seven yeast strains were isolated from the gut of insect larvae and decayed wood, which were collected from three localities near Nanyang, Henan Province, China. These strains were identified as two novel species through comparison of sequences in the D1/D2 domains of the large subunit (LSU) rRNA gene and other taxonomic characteristics. Pichia dushanensis sp. nov. was closely related to species in the Pichia clade and produced one to four spheroid ascospores in a deliquescent ascus. The D1/D2 sequence of P. dushanensis sp. nov. differed from its closest relative, Issatchenkia (Pichia) sp. NRRL Y-12824, by 3.6% sequence divergence (16 substitutions and 4 gaps). The species also differed from its four closest known species, Candida rugopelliculosa, Pichia occidentalis, Pichia exigua and Candida phayaonensis, by 4.1-4.4% sequence divergence (22-24 substitutions and 0-2 gaps) in the D1/D2 sequences. Hyphopichia paragotoi sp. nov. belonged to the Hyphopichia clade, and its nearest phylogenetic neighbours were Candida gotoi, Candida pseudorhagii, Candida rhagii and Hyphopichia heimii with 3.2-4.2% sequence divergence (16-21 substitutions and 1 gap) in the D1/D2 sequences. In comparison with previously established species, H. paragotoi sp. nov. formed one hat-shaped ascospore in a persistent ascus. The type strain of P. dushanensis sp. nov. is NYNU 14658(T) ( = CICC 33049(T) = CBS 13912(T)), and the type strain of H. paragotoi sp. nov. is NYNU 14666(T) ( = CICC 33048(T) = CBS 13913(T)).

  9. Molecular systematics of the wood-inhabiting, lichen-forming genus Xylographa (Baeomycetales, Ostropomycetidae) with eight new species

    PubMed Central

    Spribille, Toby; Resl, Philipp; Ahti, Teuvo; Pérez-Ortega, Sergio; Tønsberg, Tor; Mayrhofer, Helmut; Lumbsch, H. Thorsten

    2016-01-01

    The ascomycete genus Xylographa includes some of the most abundant species of wood-inhabiting lichenized fungi in boreal and temperate regions. It has never been monographed and little is known of its species diversity and evolutionary relationships. Based on a morphological and secondary metabolite-based assessment of material from North and South America, Europe and Asia, we generated a three-locus phylogeny based on sequences of the internal transcribed spacer, 28S nuclear rDNA and mitochondrial small subunit rDNA. We analyzed the data within the context of putatively related genera in the order Baeomycetales. Xylographa is a strongly supported monophyletic group closely related to Lithographa and Ptychographa, as well as rock-dwelling and lichenicolous species of Rimularia s.lat. The evolution of linearized ascomata in Xylographa appears to have enabled ascomata to grow laterally, and patterns of lateral growth are diagnostic. We recognize twenty species in Xylographa and provide a thorough revision of nomenclature. The following eight species are new: Xylographa bjoerkii T. Sprib., X. constricta T. Sprib., X. erratica T. Sprib., X. lagoi T. Sprib. & Pérez-Ortega, X. schofieldii T. Sprib., X. septentrionalis T. Sprib., X. stenospora T. Sprib. & Resl and X. vermicularis T. Sprib. The combinations Lambiella insularis (Nyl.) T. Sprib. and Xylographa carneopallida (Räsänen) T. Sprib. are newly proposed. Xylographa constricta from southern South America represents the first known case of secondary de-lichenization in the Baeomycetales. Xylographa parallela s.str. is confirmed as bipolar on the basis of sequenced collections from both southern Chile and the northern Hemisphere. PMID:26953522

  10. Molecular systematics of the wood-inhabiting, lichen-forming genus Xylographa (Baeomycetales, Ostropomycetidae) with eight new species.

    PubMed

    Spribille, Toby; Resl, Philipp; Ahti, Teuvo; Pérez-Ortega, Sergio; Tønsberg, Tor; Mayrhofer, Helmut; Lumbsch, H Thorsten

    The ascomycete genus Xylographa includes some of the most abundant species of wood-inhabiting lichenized fungi in boreal and temperate regions. It has never been monographed and little is known of its species diversity and evolutionary relationships. Based on a morphological and secondary metabolite-based assessment of material from North and South America, Europe and Asia, we generated a three-locus phylogeny based on sequences of the internal transcribed spacer, 28S nuclear rDNA and mitochondrial small subunit rDNA. We analyzed the data within the context of putatively related genera in the order Baeomycetales. Xylographa is a strongly supported monophyletic group closely related to Lithographa and Ptychographa, as well as rock-dwelling and lichenicolous species of Rimularia s.lat. The evolution of linearized ascomata in Xylographa appears to have enabled ascomata to grow laterally, and patterns of lateral growth are diagnostic. We recognize twenty species in Xylographa and provide a thorough revision of nomenclature. The following eight species are new: Xylographa bjoerkii T. Sprib., X. constricta T. Sprib., X. erratica T. Sprib., X. lagoi T. Sprib. & Pérez-Ortega, X. schofieldii T. Sprib., X. septentrionalis T. Sprib., X. stenospora T. Sprib. & Resl and X. vermicularis T. Sprib. The combinations Lambiella insularis (Nyl.) T. Sprib. and Xylographa carneopallida (Räsänen) T. Sprib. are newly proposed. Xylographa constricta from southern South America represents the first known case of secondary de-lichenization in the Baeomycetales. Xylographa parallela s.str. is confirmed as bipolar on the basis of sequenced collections from both southern Chile and the northern Hemisphere.

  11. Downed wood in Micronesian mangrove forests

    USGS Publications Warehouse

    Allen, J.A.; Ewel, K.C.; Keeland, B.D.; Tara, T.; Smith, T. J.

    2000-01-01

    Dead, downed wood is an important component of upland forest and aquatic ecosystems, but its role in wetland ecosystems, including mangroves, is poorly understood. We measured downed wood in ten sites on the western Pacific islands of Kosrae, Pohnpei, and Yap, all located within the Federated States of Micronesia. Our goals were to examine patterns of variability in the quantity of downed wood in these mangrove ecosystems, provide a general characterization of downed wood in a region with no previously published accounts, and investigate the relationship between harvesting practices and the amount of downed wood. The overall mean volume of downed wood at our study sites was estimated to be 60.8 m3 ha-1 (20.9 t ha-1), which is greater than most published data for forested wetlands. There were significant differences among islands, with the sites on Kosrae (104.2 m3 ha-1) having a much greater mean volume of downed wood than those on Pohnpei (43.1 m3 ha-1) or Yap (35.1 m3 ha-1). Part of the difference among islands may be attributable to differences in stand age and structure, but the most important factor seems to be the greater amount of wood harvesting on Kosrae, coupled with a low efficiency of use of cut trees. Of a total of 45 cut trees examined on Kosrae, no wood had been removed from 18 (40%); these are believed to be trees cut down because other, more valuable, trees were caught on them as they were felled. Of the other 27 trees, only 24 to 42% of the stem volume (to a 10 cm top) was removed from the forest, the amount varying by species. The impacts of current harvesting practices are unknown but may include important effects on tree regeneration and the abundance and species composition of crab populations.

  12. How to Make a Beetle Out of Wood: Multi-Elemental Stoichiometry of Wood Decay, Xylophagy and Fungivory

    PubMed Central

    Filipiak, Michał; Weiner, January

    2014-01-01

    The majority of terrestrial biomass is wood, but the elemental composition of its potential consumers, xylophages, differs hugely from that of wood. This causes a severe nutritional imbalance. We studied the stoichiometric relationships of 11 elements (C, N, P, K, Ca, Mg, Fe, Zn, Mn, Cu, Na) in three species of pine-xylem-feeding insects, Stictoleptura rubra, Arhopalus rusticus (Coleoptera, Cerambycidae) and Chalcophora mariana (Coleoptera, Buprestidae), to elucidate their mechanisms of tissue growth and to match their life histories to their dietary constraints. These beetles do not differ from other Coleoptera in their absolute elemental compositions, which are approximately 1000 (N), 100 (P, Cu) and 50 (K, Na) times higher than in dead but undecayed pine wood. This discrepancy diminishes along the wood decay gradient, but the elemental concentrations remain higher by an order of magnitude in beetles than in highly decayed wood. Numerical simulation of the life history of S. rubra shows that feeding on nutrient-poor undecayed wood would extend its development time to implausible values, whereas feeding on highly decomposed wood (heavily infected with fungi) would barely balance its nutritional budget during the long development period of this species. The changes in stoichiometry indicate that the relative change in the nutrient levels in decaying wood cannot be attributed solely to carbon loss resulting from decomposer respiration: the action of fungi substantially enriches the decaying wood with nutritional elements imported from the outside of the system, making it a suitable food for wood-eating invertebrates. PMID:25536334

  13. Fracture tolerance of reaction wood (yew and spruce wood in the TR crack propagation system).

    PubMed

    Stanzl-Tschegg, Stefanie E; Keunecke, Daniel; Tschegg, Elmar K

    2011-07-01

    The fracture properties of spruce and yew were studied by in-situ loading in an environmental scanning microscope (ESEM). Loading was performed with a micro-wedge splitting device in the TR-crack propagation direction. The emphasis was laid on investigating the main mechanisms responsible for a fracture tolerant behavior with a focus on the reaction wood. The fracture mechanical results were correlated with the features of the surface structure observed by the ESEM technique, which allows loading and observation in a humid environment. Some important differences between the reaction wood and normal wood were found for both investigated wood species (spruce and yew), including the formation of cracks before loading (ascribed to residual stresses) and the change of fracture mode during crack propagation in the reaction wood. The higher crack propagation resistance was attributed mainly to the different cell (i.e. fiber) geometries (shape, cell wall thickness) and fiber angle to the load axis of the reaction wood, as basic structural features are responsible for more pronounced crack deflection and branching, thus leading to crack growth retardation. Fiber bridging was recognized as another crack growth retarding mechanism, which is effective in both wood species and especially pronounced in yew wood.

  14. Barcode identifiers as a practical tool for reliable species assignment of medically important black yeast species.

    PubMed

    Heinrichs, Guido; de Hoog, G Sybren; Haase, Gerhard

    2012-09-01

    Herpotrichiellaceous black yeasts and relatives comprise severe pathogens flanked by nonpathogenic environmental siblings. Reliable identification by conventional methods is notoriously difficult. Molecular identification is hampered by the sequence variability in the internal transcribed spacer (ITS) domain caused by difficult-to-sequence homopolymeric regions and by poor taxonomic attribution of sequences deposited in GenBank. Here, we present a potential solution using short barcode identifiers (27 to 50 bp) based on ITS2 ribosomal DNA (rDNA), which allows unambiguous definition of species-specific fragments. Starting from proven sequences of ex-type and authentic strains, we were able to describe 103 identifiers. Multiple BLAST searches of these proposed barcode identifiers in GenBank revealed uniqueness for 100 taxonomic entities, whereas the three remaining identifiers each matched with two entities, but the species of these identifiers could easily be discriminated by differences in the remaining ITS regions. Using the proposed barcode identifiers, a 4.1-fold increase of 100% matches in GenBank was achieved in comparison to the classical approach using the complete ITS sequences. The proposed barcode identifiers will be made accessible for the diagnostic laboratory in a permanently updated online database, thereby providing a highly practical, reliable, and cost-effective tool for identification of clinically important black yeasts and relatives.

  15. Morphological and Genetic Diversity of the Wood-Boring Xylophaga (Mollusca, Bivalvia): New Species and Records from Deep-Sea Iberian Canyons

    PubMed Central

    Romano, Chiara; Voight, Janet Ruth; Pérez-Portela, Rocío; Martin, Daniel

    2014-01-01

    Deep-sea bivalves of the Xylophagaidae, a poorly known group, are obligate wood-borers. Deployment of wood in three submarine canyons off the Iberian coast, the Blanes and La Fonera Canyons (Mediterranean Sea) and the Avilés Canyon (Cantabric Sea, Bay of Biscay), lead to the discovery of four xylophagaid species in our samples. Xylophaga dorsalis (the dominant species), X. atlantica, X. cf. anselli and the new species X. brava, were identified on the basis of morphological data, and supported by a phylogenetic reconstruction based on the nuclear genes 18S rDNA and 28S rDNA and including several genus of Xylophagaidae. Genetic divergence between species of Xylophaga varied between genes, ranging from 0.5 to 4.0% for the 18SrDNA and from 4.1 to 16.6% for the 28SrDNA. Xylophaga brava sp. nov. appeared to be restricted to the Mediterranean and morphologically resembled the closely related X. cf. anselli from the Cantabrian Sea. However, they clearly diverged in two well-supported clades. Low levels of intraspecific variability and higher interspecific divergence between species also supported the existence of these two different species. Morphologically they differ in the number of cirri at the siphon openings, in the shape of the posterior shell and in the size of prodissoconch II. The new species is characterized by having weak, poorly mineralized mesoplax and siphons united throughout, covered by a periostracal, non-calcified tube; distinct proximal and distal siphons, the former translucent and soft, the latter muscular, with concentric rings. Xylophaga atlantica, previously known only from the western Atlantic, is reported for the first time in the Mediterranean Sea. Whether its presence in the Mediterranean indicates its natural distribution or reflects its recent introduction is unknown. Although xylophagaids have been previously reported to recruit heavily to wood deposited on the seabed, these four species colonized wood suspended 30 m above the seafloor

  16. Morphological and genetic diversity of the wood-boring Xylophaga (Mollusca, Bivalvia): new species and records from deep-sea Iberian canyons.

    PubMed

    Romano, Chiara; Voight, Janet Ruth; Pérez-Portela, Rocío; Martin, Daniel

    2014-01-01

    Deep-sea bivalves of the Xylophagaidae, a poorly known group, are obligate wood-borers. Deployment of wood in three submarine canyons off the Iberian coast, the Blanes and La Fonera Canyons (Mediterranean Sea) and the Avilés Canyon (Cantabric Sea, Bay of Biscay), lead to the discovery of four xylophagaid species in our samples. Xylophaga dorsalis (the dominant species), X. atlantica, X. cf. anselli and the new species X. brava, were identified on the basis of morphological data, and supported by a phylogenetic reconstruction based on the nuclear genes 18S rDNA and 28S rDNA and including several genus of Xylophagaidae. Genetic divergence between species of Xylophaga varied between genes, ranging from 0.5 to 4.0% for the 18SrDNA and from 4.1 to 16.6% for the 28SrDNA. Xylophaga brava sp. nov. appeared to be restricted to the Mediterranean and morphologically resembled the closely related X. cf. anselli from the Cantabrian Sea. However, they clearly diverged in two well-supported clades. Low levels of intraspecific variability and higher interspecific divergence between species also supported the existence of these two different species. Morphologically they differ in the number of cirri at the siphon openings, in the shape of the posterior shell and in the size of prodissoconch II. The new species is characterized by having weak, poorly mineralized mesoplax and siphons united throughout, covered by a periostracal, non-calcified tube; distinct proximal and distal siphons, the former translucent and soft, the latter muscular, with concentric rings. Xylophaga atlantica, previously known only from the western Atlantic, is reported for the first time in the Mediterranean Sea. Whether its presence in the Mediterranean indicates its natural distribution or reflects its recent introduction is unknown. Although xylophagaids have been previously reported to recruit heavily to wood deposited on the seabed, these four species colonized wood suspended 30 m above the seafloor.

  17. Molecular control of wood formation in trees.

    PubMed

    Ye, Zheng-Hua; Zhong, Ruiqin

    2015-07-01

    Wood (also termed secondary xylem) is the most abundant biomass produced by plants, and is one of the most important sinks for atmospheric carbon dioxide. The development of wood begins with the differentiation of the lateral meristem, vascular cambium, into secondary xylem mother cells followed by cell expansion, secondary wall deposition, programmed cell death, and finally heartwood formation. Significant progress has been made in the past decade in uncovering the molecular players involved in various developmental stages of wood formation in tree species. Hormonal signalling has been shown to play critical roles in vascular cambium cell proliferation and a peptide-receptor-transcription factor regulatory mechanism similar to that controlling the activity of apical meristems is proposed to be involved in the maintenance of vascular cambium activity. It has been demonstrated that the differentiation of vascular cambium into xylem mother cells is regulated by plant hormones and HD-ZIP III transcription factors, and the coordinated activation of secondary wall biosynthesis genes during wood formation is mediated by a transcription network encompassing secondary wall NAC and MYB master switches and their downstream transcription factors. Most genes encoding the biosynthesis enzymes for wood components (cellulose, xylan, glucomannan, and lignin) have been identified in poplar and a number of them have been functionally characterized. With the availability of genome sequences of tree species from both gymnosperms and angiosperms, and the identification of a suite of wood-associated genes, it is expected that our understanding of the molecular control of wood formation in trees will be greatly accelerated.

  18. Wood and Wood Products

    NASA Astrophysics Data System (ADS)

    Young, Raymond A.

    Wood has been utilized by humans since antiquity. Trees provided a source of many products required by early humans such as food, medicine, fuel, and tools. For example, the bark of the willow tree, when chewed, was used as a painkiller in early Greece and was the precursor of the present-day aspirin. Wood served as the primary fuel in the United States until about the turn of the 19th century, and even today over one-half of the wood now harvested in the world is used for heating fuel.

  19. Environmental controls of wood entrapment in upper Midwestern streams

    USGS Publications Warehouse

    Merten, Eric C.; Finlay, J.; Johnson, L.; Newman, R.; Stefan, H.; Vondracek, B.

    2011-01-01

    Wood deposited in streams provides a wide variety of ecosystem functions, including enhancing habitat for key species in stream food webs, increasing geomorphic and hydraulic heterogeneity and retaining organic matter. Given the strong role that wood plays in streams, factors that influence wood inputs, retention and transport are critical to stream ecology. Wood entrapment, the process of wood coming to rest after being swept downstream at least 10 m, is poorly understood, yet important for predicting stream function and success of restoration efforts. Data on entrapment were collected for a wide range of natural wood pieces (n = 344), stream geomorphology and hydraulic conditions in nine streams along the north shore of Lake Superior in Minnesota. Locations of pieces were determined in summer 2007 and again following an overbank stormflow event in fall 2007. The ratio of piece length to effective stream width (length ratio) and the weight of the piece were important in a multiple logistic regression model that explained 25% of the variance in wood entrapment. Entrapment remains difficult to predict in natural streams, and often may simply occur wherever wood pieces are located when high water recedes. However, this study can inform stream modifications to discourage entrapment at road crossings or other infrastructure by applying the model formula to estimate the effective width required to pass particular wood pieces. Conversely, these results could also be used to determine conditions (e.g. pre-existing large, stable pieces) that encourage entrapment where wood is valued for ecological functions. Copyright ?? 2010 John Wiley & Sons, Ltd.

  20. Cadophora species as trunk pathogens and wood-infecting fungi of grapevine in North America

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cadophora species, in particular Cadophora luteo-olivacea, are reported from grapevine (Vitis vinifera L.) in California, South Africa, Spain, Uruguay, and Canada. Frequent isolation from vines co-infected with the Esca pathogens (Togninia minima, Phaeomoniella chlamydospora), and confirmation of it...

  1. Gas-phase reactions of halogen species of atmospheric importance

    NASA Astrophysics Data System (ADS)

    Heard, Anne C.

    A low-pressure discharge-flow technique, with various optical detection methods, has been used to determine bimolecular rate coefficients for a number of reactions in the gas-phase between OH radicals and organic halogen-containing molecules and between NO3 radicals and the iodine species I2 and I. These experiments have shown that: (1) the reaction of methyl iodide with OH accounts for approximately 2 percent of the removal of CH3I from the troposphere as compared with photolysis; (2) abstraction of I-atoms from a C-I bond by OH is probable in the gas-phase; (3) the halogen-containing anaesthetic substances halothane CF3CClBrH, enflurane CF2HOCF2CFClH, isoflurane CF2HOCClHCF3 and sevoflurane (CF3)2CHOCFH2 have significantly shorter tropospheric lifetimes than the fully halogenated CFCs and halons because of reaction with the OH radical and are thus unlikely to be transported up to the stratosphere where they could contribute to the depletion of ozone. Data obtained for reactions between OH and some 'CFC alternatives' along with measurements of the integrated absorption cross-sections of the compounds in the spectral region 800-1200 cm(exp -1) were used to calculate ozone depletion potentials (ODP) and greenhouse warming potentials relative to CFCl3 for each compound. The study of the reactions between OH and CF3CFBrH and CF2BrH was used to provide a useful first estimate of the environmental acceptability of these compounds in the context of their possible use as replacements for the conventional CFCs. A method was developed to provide a first estimate of the ODP of a halogenated alkane without use of a complicated (and expensive) computer modeling scheme. A reaction between molecular iodine and the nitrate radical in the gas-phase was discovered and the kinetics of this reaction have been studied. No temperature or pressure dependence was observed for the rate of reaction, the rate constant of which was found to be (1.5 +/- 0.5) x 10(exp -12)/cu cm

  2. Durability of five native Argentine wood species of the genera Prosopis and Acacia decayed by rot fungi and its relationship with extractive content.

    PubMed

    Pometti, Carolina L; Palanti, Sabrina; Pizzo, Benedetto; Charpentier, Jean-Paul; Boizot, Nathalie; Resio, Claudio; Saidman, Beatriz O

    2010-09-01

    The natural durability of four Argentinean species of Prosopis and one of Acacia was evaluated in laboratory tests, according to European standards, using three brown rot and one white rot fungi. These tests were complemented by assessing the wood chemical composition. All the species were from moderately slightly durable to very durable (classes 4-1), and in all cases the heartwood was the most resistant to fungal attack. Chemical extractives content (organic, aqueous, tannic and phenolic) was higher in the heartwood. However, species durability was not related to extractive contents nor with wood density. Instead, it is possible that extractives could contribute to natural durability in different ways, including the effects related to the antioxidant properties of some of them.

  3. Wood staining fungi revealed taxonomic novelties in Pezizomycotina: New order Superstratomycetales and new species Cyanodermella oleoligni.

    PubMed

    van Nieuwenhuijzen, E J; Miadlikowska, J M; Houbraken, J A M P; Adan, O C G; Lutzoni, F M; Samson, R A

    2016-09-01

    A culture-based survey of staining fungi on oil-treated timber after outdoor exposure in Australia and the Netherlands uncovered new taxa in Pezizomycotina. Their taxonomic novelty was confirmed by phylogenetic analyses of multi-locus sequences (ITS, nrSSU, nrLSU, mitSSU, RPB1, RPB2, and EF-1α) using multiple reference data sets. These previously unknown taxa are recognised as part of a new order (Superstratomycetales) potentially closely related to Trypetheliales (Dothideomycetes), and as a new species of Cyanodermella, C. oleoligni in Stictidaceae (Ostropales) part of the mostly lichenised class Lecanoromycetes. Within Superstratomycetales a single genus named Superstratomyces with three putative species: S. flavomucosus, S. atroviridis, and S. albomucosus are formally described. Monophyly of each circumscribed Superstratomyces species was highly supported and the intraspecific genetic variation was substantially lower than interspecific differences detected among species based on the ITS, nrLSU, and EF-1α loci. Ribosomal loci for all members of Superstratomyces were noticeably different from all fungal sequences available in GenBank. All strains from this genus grow slowly in culture, have darkly pigmented mycelia and produce pycnidia. The strains of C. oleoligni form green colonies with slimy masses and develop green pycnidia on oatmeal agar. These new taxa could not be classified reliably at the class and lower taxonomic ranks by sequencing from the substrate directly or based solely on culture-dependent morphological investigations. Coupling phenotypic observations with multi-locus sequencing of fungi isolated in culture enabled these taxonomic discoveries. Outdoor situated timber provides a great potential for culturable undescribed fungal taxa, including higher rank lineages as revealed by this study, and therefore, should be further explored.

  4. Gas-Phase Reactions of Halogen Species of Atmospheric Importance.

    NASA Astrophysics Data System (ADS)

    Heard, Anne C.

    Available from UMI in association with The British Library. Requires signed TDF. A low-pressure discharge-flow technique, with various optical detection methods, has been used to determine bimolecular rate coefficients for a number of reactions in the gas-phase between OH radicals and organic halogen -containing molecules and between NO_3 radicals and the iodine species I_2 and I. These experiments have shown that: (i) the reaction of methyl iodide with OH accounts for approximately 2% of the removal of CH_3I from the troposphere as compared with photolysis; (ii) abstraction of I-atoms from a C-I bond by OH is probable in the gas -phase; (iii) the halogen-containing anaesthetic substances halothane CF_3CCl BrH, enflurane CF_2HOCF _2CFClH, isoflurane CF_2HOCClHCF _3 and sevoflurane (CF_3) _2CHOCFH_2 have significantly shorter tropospheric lifetimes than the fully halogenated CFCs and halons because of reaction with the OH radical and are thus unlikely to be transported up to the stratosphere where they could contribute to the depletion of ozone. Data obtained for reactions between OH and some 'CFC alternatives' along with measurements of the integrated absorption cross -sections of the compounds in the spectral region 800-1200 cm^{-1} were used to calculate ozone depletion potentials (ODP) and greenhouse warming potentials relative to CFCl_3 for each compound. The study of the reactions between OH and CF_3CFBrH and CF _2BrH was used to provide a useful first estimate of the environmental acceptability of these compounds in the context of their possible use as replacements for the conventional CFCs. A method was developed to provide a first estimate of the ODP of a halogenated alkane without use of a complicated (and expensive) computer modeling scheme. A reaction between molecular iodine and the nitrate radical in the gas-phase was discovered and the kinetics of this reaction have been studied. No temperature or pressure dependence was observed for the rate of

  5. Wood formation in Angiosperms.

    PubMed

    Déjardin, Annabelle; Laurans, Françoise; Arnaud, Dominique; Breton, Christian; Pilate, Gilles; Leplé, Jean-Charles

    2010-04-01

    Wood formation is a complex biological process, involving five major developmental steps, including (1) cell division from a secondary meristem called the vascular cambium, (2) cell expansion (cell elongation and radial enlargement), (3) secondary cell wall deposition, (4) programmed cell death, and (5) heartwood formation. Thanks to the development of genomic studies in woody species, as well as genetic engineering, recent progress has been made in the understanding of the molecular mechanisms underlying wood formation. In this review, we will focus on two different aspects, the lignification process and the control of microfibril angle in the cell wall of wood fibres, as they are both key features of wood material properties.

  6. The dynamic of the annual carbon allocation to wood in European tree species is consistent with a combined source-sink limitation of growth: implications for modelling

    NASA Astrophysics Data System (ADS)

    Guillemot, J.; Martin-StPaul, N. K.; Dufrene, E.; Francois, C.; Soudani, K.; Ourcival, J. M.; Delpierre, N.

    2015-05-01

    The extent to which wood growth is limited by carbon (C) supply (i.e. source control) or by cambial activity (i.e. sink control) will strongly determine the responses of trees to global changes. Nevertheless, the physiological processes that are responsible for limiting forest growth are still a matter of debate. The aim of this study was to evaluate the key determinants of the annual C allocation to wood along large soil and climate regional gradients over France. The study was conducted for five tree species representative of the main European forest biomes (Fagus sylvatica, Quercus petraea, Quercus ilex, Quercus robur and Picea abies). The drivers of stand biomass growth were assessed on both inter-site and inter-annual scales. Our data set comprised field measurements performed at 49 sites (931 site-years) that included biometric measurements and a variety of stand characteristics (e.g. soil water holding capacity, leaf area index). It was complemented with process-based simulations when possible explanatory variables could not be directly measured (e.g. annual and seasonal tree C balance, bioclimatic water stress indices). Specifically, the relative influences of tree C balance (source control), direct environmental control (water and temperature controls of sink activity) and allocation adjustments related to age, past climate conditions, competition intensity and soil nutrient availability on growth were quantified. The inter-site variability in the stand C allocation to wood was predominantly driven by age-related decline. The direct effects of temperature and water stress on sink activity (i.e. effects independent from their effects on the C supply) exerted a strong influence on the annual stand wood growth in all of the species considered, including deciduous temperate species. The lagged effect of the past environmental conditions (e.g. the previous year's water stress and low C uptake) significantly affected the annual C allocation to wood. The C supply

  7. Properties of Seven Colombian Woods.

    DTIC Science & Technology

    1981-01-01

    the botanical name about 4 feet long at the Potlatch range outlook suggests greater followed by "spp." indicates that the laboratory. Thirty sticks of...the un- was collected by Potlatch Forests, species were received, each represen- tapped timber resources of the world. Inc. (now Potlatch Corporation...Sample material was being pro- Six sticks 2-1/2 inches square and 5 of these woods important to their ef- cessed at the Potlatch A & D feet long were cut

  8. Creosote accumulation as a function of moisture content, wood species, and fire intensity in an airtight stove, and chimney fire experiments

    SciTech Connect

    Shelton, J.W.

    1981-11-01

    Two basic aspects of creosote investigated were: creosote accumulation as a function of moisture content, wood species, and stove power output; and creosote combustion - that is, chimney fires. For the creosote accumulation studies, six identical stove systems were operated simultaneously for four months, during which power output, fuel species and fuel moisture content were systematically varied. Chimneys were weighed before and after each test series to determine creosote accumulation. For the simulated fireplace series, where the stove doors were left wide open, the conventional wisdom holds true - creosote accumulation increased with increasing moisture content. For closed combustion systems (airtight stoves), however, green wood produced less creosote than dry or medium wood under medium and high power conditions. Under low power conditions there was no significant effect of moisture content on creosote accumulation. How an appliance is operated can have a larger effect on creosote than either the fuel species or moisture content; up to 48 times more creosote was observed with a smoldering fire than a brightly burning fire. The chimney fires, induced in heavily creosoted chimneys in the laboratory, resulted in a maximum flue gas temperature of 1125/sup 0/C, as measured with unshielded thermocouples. The creosote fires typically lasted 3 to 15 minutes. Noncreosote chimney fires were also observed.

  9. Assessment and Management of Dead-Wood Habitat

    USGS Publications Warehouse

    Hagar, Joan

    2007-01-01

    Introduction The Bureau of Land Management (BLM) is in the process of revising its resource management plans for six districts in western and southern Oregon as the result of the settlement of a lawsuit brought by the American Forest Resource Council. A range of management alternatives is being considered and evaluated including at least one that will minimize reserves on O&C lands. In order to develop the bases for evaluating management alternatives, the agency needs to derive a reasonable range of objectives for key issues and resources. Dead-wood habitat for wildlife has been identified as a key resource for which decision-making tools and techniques need to be refined and clarified. Under the Northwest Forest Plan, reserves were to play an important role in providing habitat for species associated with dead wood (U.S. Department of Agriculture Forest Service and U.S. Department of the Interior Bureau of Land Management, 1994). Thus, the BLM needs to: 1) address the question of how dead wood will be provided if reserves are not included as a management strategy in the revised Resource Management Plan, and 2) be able to evaluate the effects of alternative land management approaches. Dead wood has become an increasingly important conservation issue in managed forests, as awareness of its function in providing wildlife habitat and in basic ecological processes has dramatically increased over the last several decades (Laudenslayer et al., 2002). A major concern of forest managers is providing dead wood habitat for terrestrial wildlife. Wildlife in Pacific Northwest forests have evolved with disturbances that create large amounts of dead wood; so, it is not surprising that many species are closely associated with standing (snags) or down, dead wood. In general, the occurrence or abundance of one-quarter to one-third of forest-dwelling vertebrate wildlife species, is strongly associated with availability of suitable dead-wood habitat (Bunnell et al., 1999; Rose et al

  10. A comparison of the hydraulic efficiency of a palm species (Iriartea deltoidea) with other wood types.

    PubMed

    Renninger, Heidi J; McCulloh, Katherine A; Phillips, Nathan

    2013-02-01

    Palms are an important component of tropical ecosystems, living alongside dicotyledonous trees, even though they have a very different growth pattern and vascular system. As monocots, vessels in palms are located within vascular bundles and, without a vascular cambium that many dicotyledonous trees possess, palms cannot add additional vessels to their vascular system as they get older and taller. This means that hydraulic architecture in palms is more predetermined, which may require a highly efficient hydraulic system. This preset nature, along with the decoupling of hydraulic and mechanical functioning to different cell types, may allow palms to have a more efficient hydraulic system than dicotyledonous trees. Therefore, this study seeks to determine the efficiency of the hydraulic system in the palm Iriartea deltoidea (Ruiz & Pav.) and compare this efficiency with other tree forms. We measured cross-sectional areas of roots, stems and fronds as well as leaf areas of I. deltoidea saplings. Likewise, cross-sections were made and vessel diameters and frequencies measured. This allowed for the calculation of theoretical specific conductivity (K(S,calc)), theoretical leaf-specific conductivity (K(L,calc)), and vessel diameter and vessel number ratios between distal and proximal locations in the palms. Iriartea deltoidea palms were found to have the largest, least frequent vessels that diverged most from the square packing limit (maximum number of vessels that fit into a given area) compared with other major tree forms, and they therefore invested the least space and carbon into water transport structures. Likewise, conduits tapered by ∼1/3 between ranks (root, bole and petiole), which represents an efficient ratio with regard to the trade-offs between safety and efficiency of the conducting system. Conduits also exhibited a high conservation of the sum of the conduit radii cubed (Σr(3)) across ranks, thereby approximating Murray's law patterning. Therefore, our

  11. Relationships between dead wood and arthropods in the Southeastern United States.

    SciTech Connect

    Ulyshen, Michael, Darragh

    2009-05-01

    The importance of dead wood to maintaining forest diversity is now widely recognized. However, the habitat associations and sensitivities of many species associated with dead wood remain unknown, making it difficult to develop conservation plans for managed forests. The purpose of this research, conducted on the upper coastal plain of South Carolina, was to better understand the relationships between dead wood and arthropods in the southeastern United States. In a comparison of forest types, more beetle species emerged from logs collected in upland pine-dominated stands than in bottomland hardwood forests. This difference was most pronounced for Quercus nigra L., a species of tree uncommon in upland forests. In a comparison of wood postures, more beetle species emerged from logs than from snags, but a number of species appear to be dependent on snags including several canopy specialists. In a study of saproxylic beetle succession, species richness peaked within the first year of death and declined steadily thereafter. However, a number of species appear to be dependent on highly decayed logs, underscoring the importance of protecting wood at all stages of decay. In a study comparing litter-dwelling arthropod abundance at different distances from dead wood, arthropods were more abundant near dead wood than away from it. In another study, grounddwelling arthropods and saproxylic beetles were little affected by large-scale manipulations of dead wood in upland pine-dominated forests, possibly due to the suitability of the forests surrounding the plots.

  12. Assessment of oil content and fatty acid composition variability in two economically important Hibiscus species.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Hibiscus genus encompasses more than 300 species, but kenaf (H. cannabinus L.) and roselle (H. sabdariffa L.) are the two most economically important species within the genus. Seeds from these two Hibiscus species contain a relatively high amount of oil with two unusual fatty acids: dihydrosterc...

  13. Importance of two consecutive methionines at the N-terminus of a cellulose synthase (PtdCesA8A) for normal wood cellulose synthesis in aspen.

    PubMed

    Liu, Yunxia; Xu, Fuyu; Gou, Jiqing; Al-Haddad, Jameel; Telewski, Frank W; Bae, Hyeun-Jong; Joshi, Chandrashekhar P

    2012-11-01

    All known orthologs of a secondary wall-associated cellulose synthase (CesA) gene from Arabidopsis, AtCesA8, encode CesA proteins with two consecutive methionines at their N-termini (MM or 2M). Here, we report that these 2Ms in an aspen ortholog of AtCesA8, PtdCesA8A, are important for maintaining normal wood cellulose biosynthesis in aspen trees. Overexpression of an altered PtdCesA8A cDNA encoding a PtdCesA8A protein missing one methionine at the N-terminus (1M) in aspen resulted in substantial decrease in cellulose content and caused negative effects on wood strength, suggesting that both methionines are essential for proper CesA expression and function in developing xylem tissues. Transcripts from a pair of paralogous native PtdCesA8 genes, as well as introduced PtdCesA8A:1M transgenes were significantly reduced in developing xylem tissues of transgenic aspen plants, suggestive of a co-suppression event. Overexpression of a native PtdCesA8A cDNA encoding a CesA protein with 2Ms at the N-terminus did not cause any such phenotypic changes. These results suggest the importance of 2Ms present at the N-terminus of PtdCesA8A protein during cellulose synthesis in aspen.

  14. Effect of wood hardness and secondary compounds on feeding preference of Odontotermes formosanus (Isoptera: Termitidae).

    PubMed

    Kasseney, Boris Dodji; Deng, Tianfu; Mo, Jianchu

    2011-06-01

    Odontotermes formosanus (Shiraki) (Isoptera: Termitidae) is one of the most destructive plant pests in China, which control relies mainly on baits strategies. Baits made from the wood of eight different tree species were used to study the feeding preference of this termite, and conversely wood protection strategies of the tree species. Three bait types were used to identify wood protection strategies: solid wood (physical and chemical protection), crude flour (chemical protection) made from ground wood, and extracted flour (no protection) made by extracting crude flour with ethanol and toluene. Feeding preference was influenced by wood species and bait type. For solid wood, Magnolia denudata Desr (75%) and Elaeocarpus glabripetalus Merr (41%) were most preferred; for crude flour, E. glabripetalus (97%) and Quercus variabilis Blume (92%) were most preferred; and for extracted flour, there were no significant differences between wood species, demonstrating the influence of chemical defense. The greatest contrast between bait types was for Platanus orientalis L, the least preferred as solid wood and crude flour, suggesting that chemical defense compounds are particularly important in this species. Solid wood consumption was inversely correlated with wood density. Extracted flour consumption was positively correlated with glucose concentration. There was no direct effect of holocellulose and other components tested. O. formosanus preferred to fed on soft wood with low chemical protection (M. denudata); conversely trees protected their wood either physically [e.g., E. glabripetalus, Q. variabilis, Cinnamomum camphora (L.) Presl, and Ligustrum lucidum Aiton] or chemically (Populus bonati Levl) or a combination of both strategies (Liquidamba formosana Hance and P. orientalis).

  15. Wood decomposition as influenced by invertebrates.

    PubMed

    Ulyshen, Michael D

    2016-02-01

    The diversity and habitat requirements of invertebrates associated with dead wood have been the subjects of hundreds of studies in recent years but we still know very little about the ecological or economic importance of these organisms. The purpose of this review is to examine whether, how and to what extent invertebrates affect wood decomposition in terrestrial ecosystems. Three broad conclusions can be reached from the available literature. First, wood decomposition is largely driven by microbial activity but invertebrates also play a significant role in both temperate and tropical environments. Primary mechanisms include enzymatic digestion (involving both endogenous enzymes and those produced by endo- and ectosymbionts), substrate alteration (tunnelling and fragmentation), biotic interactions and nitrogen fertilization (i.e. promoting nitrogen fixation by endosymbiotic and free-living bacteria). Second, the effects of individual invertebrate taxa or functional groups can be accelerative or inhibitory but the cumulative effect of the entire community is generally to accelerate wood decomposition, at least during the early stages of the process (most studies are limited to the first 2-3 years). Although methodological differences and design limitations preclude meta-analysis, studies aimed at quantifying the contributions of invertebrates to wood decomposition commonly attribute 10-20% of wood loss to these organisms. Finally, some taxa appear to be particularly influential with respect to promoting wood decomposition. These include large wood-boring beetles (Coleoptera) and termites (Termitoidae), especially fungus-farming macrotermitines. The presence or absence of these species may be more consequential than species richness and the influence of invertebrates is likely to vary biogeographically.

  16. Variation in wood nutrients along a tropical soil fertility gradient.

    PubMed

    Heineman, Katherine D; Turner, Benjamin L; Dalling, James W

    2016-07-01

    Wood contains the majority of the nutrients in tropical trees, yet controls over wood nutrient concentrations and their function are poorly understood. We measured wood nutrient concentrations in 106 tree species in 10 forest plots spanning a regional fertility gradient in Panama. For a subset of species, we quantified foliar nutrients and wood density to test whether wood nutrients scale with foliar nutrients at the species level, or wood nutrient storage increases with wood density as predicted by the wood economics spectrum. Wood nutrient concentrations varied enormously among species from fourfold in nitrogen (N) to > 30-fold in calcium (Ca), potassium (K), magnesium (Mg) and phosphorus (P). Community-weighted mean wood nutrient concentrations correlated positively with soil Ca, K, Mg and P concentrations. Wood nutrients scaled positively with leaf nutrients, supporting the hypothesis that nutrient allocation is conserved across plant organs. Wood P was most sensitive to variation in soil nutrient availability, and significant radial declines in wood P indicated that tropical trees retranslocate P as sapwood transitions to heartwood. Wood P decreased with increasing wood density, suggesting that low wood P and dense wood are traits associated with tree species persistence on low fertility soils. Substantial variation among species and communities in wood nutrient concentrations suggests that allocation of nutrients to wood, especially P, influences species distributions and nutrient dynamics in tropical forests.

  17. Wood Smoke

    EPA Pesticide Factsheets

    Smoke is made up of a complex mixture of gases and fine, microscopic particles produced when wood and other organic matter burn. The biggest health threat from wood smoke comes from fine particles (also called particulate matter).

  18. Nursery use patterns of commercially important marine fish species in estuarine systems along the Portuguese coast

    NASA Astrophysics Data System (ADS)

    Vasconcelos, R. P.; Reis-Santos, P.; Maia, A.; Fonseca, V.; França, S.; Wouters, N.; Costa, M. J.; Cabral, H. N.

    2010-03-01

    Analysing the estuarine use patterns of juveniles of marine migrant fish species is vital for identifying important sites for juveniles as well as the basic environmental features that characterize these sites for different species. This is a key aspect towards understanding nursery function. Various estuarine systems along the Portuguese coast (Minho, Douro, Ria de Aveiro, Mondego, Tejo, Sado, Mira, Ria Formosa and Guadiana) were sampled during Spring and Summer 2005 and 2006. Juveniles of commercially important marine fish species Solea solea, Solea senegalensis, Platichthys flesus, Diplodus vulgaris and Dicentrarchus labrax, predominantly 0-group individuals, were amongst the most abundant species and had distinct patterns of estuarine use as well as conspicuous associations with several environmental features. Juvenile occurrence and density varied amongst estuaries and sites within them, and differed with species. Sites with consistently high juvenile densities were identified as important juvenile sites (i.e. putative nursery grounds). Through generalized linear models (GLM), intra-estuarine variation in occurrence and density of each of the individual species was largely explained by environmental variables (temperature; salinity; depth; percentage of mud in the sediment; presence of seagrass; importance of intertidal areas; relative distance to estuary mouth; macrozoobenthos densities; and latitude). Decisive environmental factors defining important sites for juveniles varied depending on the system as a result of different environmental gradients, though there were common dominant features for each species regardless of the estuary considered. Analysed environmental variables in the GLM also accounted for inter-estuarine variation in species' occurrence and density. In several estuaries, the identified important juvenile sites were used by many of these species simultaneously and may be of increased value to both management and conservation. Overall, the

  19. PHYTOALEXIN DEFICIENT 4 affects reactive oxygen species metabolism, cell wall and wood properties in hybrid aspen (Populus tremula L. × tremuloides).

    PubMed

    Ślesak, Ireneusz; Szechyńska-Hebda, Magdalena; Fedak, Halina; Sidoruk, Natalia; Dąbrowska-Bronk, Joanna; Witoń, Damian; Rusaczonek, Anna; Antczak, Andrzej; Drożdżek, Michał; Karpińska, Barbara; Karpiński, Stanisław

    2015-07-01

    The phytoalexin deficient 4 (PAD4) gene in Arabidopsis thaliana (AtPAD4) is involved in the regulation of plant--pathogen interactions. The role of PAD4 in woody plants is not known; therefore, we characterized its function in hybrid aspen and its role in reactive oxygen species (ROS)-dependent signalling and wood development. Three independent transgenic lines with different suppression levels of poplar PAD expression were generated. All these lines displayed deregulated ROS metabolism, which was manifested by an increased H2O2 level in the leaves and shoots, and higher activities of manganese superoxide dismutase (MnSOD) and catalase (CAT) in the leaves in comparison to the wild-type plants. However, no changes in non-photochemical quenching (NPQ) between the transgenic lines and wild type were observed in the leaves. Moreover, changes in the ROS metabolism in the pad4 transgenic lines positively correlated with wood formation. A higher rate of cell division, decreased tracheid average size and numbers, and increased cell wall thickness were observed. The results presented here suggest that the Populus tremula × tremuloides PAD gene might be involved in the regulation of cellular ROS homeostasis and in the cell division--cell death balance that is associated with wood development.

  20. Assessment and management of dead-wood habitat

    USGS Publications Warehouse

    Hagar, Joan

    2007-01-01

    The Bureau of Land Management (BLM) is in the process of revising its resource management plans for six districts in western and southern Oregon as the result of the settlement of a lawsuit brought by the American Forest Resource Council. A range of management alternatives is being considered and evaluated including at least one that will minimize reserves on O&C lands. In order to develop the bases for evaluating management alternatives, the agency needs to derive a reasonable range of objectives for key issues and resources. Dead-wood habitat for wildlife has been identified as a key resource for which decision-making tools and techniques need to be refined and clarified. Under the Northwest Forest Plan, reserves were to play an important role in providing habitat for species associated with dead wood (U.S. Department of Agriculture Forest Service and U.S. Department of the Interior Bureau of Land Management, 1994). Thus, the BLM needs to: 1) address the question of how dead wood will be provided if reserves are not included as a management strategy in the revised Resource Management Plan, and 2) be able to evaluate the effects of alternative land management approaches. Dead wood has become an increasingly important conservation issue in managed forests, as awareness of its function in providing wildlife habitat and in basic ecological processes has dramatically increased over the last several decades (Laudenslayer et al., 2002). A major concern of forest managers is providing dead wood habitat for terrestrial wildlife. Wildlife in Pacific Northwest forests have evolved with disturbances that create large amounts of dead wood; so, it is not surprising that many species are closely associated with standing (snags) or down, dead wood. In general, the occurrence or abundance of one-quarter to one-third of forest-dwelling vertebrate wildlife species, is strongly associated with availability of suitable dead-wood habitat (Bunnell et al., 1999; Rose et al., 2001). In

  1. N-fertilization has different effects on the growth, carbon and nitrogen physiology, and wood properties of slow- and fast-growing Populus species.

    PubMed

    Li, Hong; Li, Mengchun; Luo, Jie; Cao, Xu; Qu, Long; Gai, Ying; Jiang, Xiangning; Liu, Tongxian; Bai, Hua; Janz, Dennis; Polle, Andrea; Peng, Changhui; Luo, Zhi-Bin

    2012-10-01

    To investigate how N-fertilization affects the growth, carbon and nitrogen (N) physiology, and wood properties of poplars with contrasting growth characteristics, slow-growing (Populus popularis, Pp) and fast-growing (P. alba×P. glandulosa, Pg) poplar saplings were exposed to different N levels. Above-ground biomass, leaf area, photosynthetic rates (A), instantaneous photosynthetic nitrogen use efficiency (PNUE (i)), chlorophyll and foliar sugar concentrations were higher in Pg than in Pp. Foliar nitrate reductase (NR) activities and root glutamate synthase (GOGAT) activities were higher in Pg than in Pp as were the N amount and NUE of new shoots. Lignin contents and calorific values of Pg wood were less than that of Pp wood. N-fertilization reduced root biomass of Pg more than of Pp, but increased leaf biomass, leaf area, A, and PNUE(i) of Pg more than of Pp. Among 13 genes involved in the transport of ammonium or nitrate or in N assimilation, transcripts showed more pronounced changes to N-fertilization in Pg than in Pp. Increases in NR activities and N contents due to N-fertilization were larger in Pg than in Pp. In both species, N-fertilization resulted in lower calorific values as well as shorter and wider vessel elements/fibres. These results suggest that growth, carbon and N physiology, and wood properties are more sensitive to increasing N availability in fast-growing poplars than in slow-growing ones, which is probably due to prioritized resource allocation to the leaves and accelerated N physiological processes in fast-growing poplars under higher N levels.

  2. Wood for sound.

    PubMed

    Wegst, Ulrike G K

    2006-10-01

    The unique mechanical and acoustical properties of wood and its aesthetic appeal still make it the material of choice for musical instruments and the interior of concert halls. Worldwide, several hundred wood species are available for making wind, string, or percussion instruments. Over generations, first by trial and error and more recently by scientific approach, the most appropriate species were found for each instrument and application. Using material property charts on which acoustic properties such as the speed of sound, the characteristic impedance, the sound radiation coefficient, and the loss coefficient are plotted against one another for woods. We analyze and explain why spruce is the preferred choice for soundboards, why tropical species are favored for xylophone bars and woodwind instruments, why violinists still prefer pernambuco over other species as a bow material, and why hornbeam and birch are used in piano actions.

  3. The Relationship between Canopy Cover and Colony Size of the Wood Ant Formica lugubris - Implications for the Thermal Effects on a Keystone Ant Species

    PubMed Central

    Chen, Yi-Huei; Robinson, Elva J. H.

    2014-01-01

    Climate change may affect ecosystems and biodiversity through the impacts of rising temperature on species’ body size. In terms of physiology and genetics, the colony is the unit of selection for ants so colony size can be considered the body size of a colony. For polydomous ant species, a colony is spread across several nests. This study aims to clarify how climate change may influence an ecologically significant ant species group by investigating thermal effects on wood ant colony size. The strong link between canopy cover and the local temperatures of wood ant’s nesting location provides a feasible approach for our study. Our results showed that nests were larger in shadier areas where the thermal environment was colder and more stable compared to open areas. Colonies (sum of nests in a polydomous colony) also tended to be larger in shadier areas than in open areas. In addition to temperature, our results supported that food resource availability may be an additional factor mediating the relationship between canopy cover and nest size. The effects of canopy cover on total colony size may act at the nest level because of the positive relationship between total colony size and mean nest size, rather than at the colony level due to lack of link between canopy cover and number of nests per colony. Causal relationships between the environment and the life-history characteristics may suggest possible future impacts of climate change on these species. PMID:25551636

  4. Microbiology of wetwood: importance of pectin degradation and Clostridium species in living trees. [Eastern Cottonwood; Block Poplar; American Elm

    SciTech Connect

    Schink, B.; Ward, J.C.; Zeikus, J.G.

    1981-09-01

    Wetwood samples from standing trees of eastern cottonwood (Populus deltoides), black poplar (Populus nigra), and American elm (Ulmus americana) contained high numbers of aerobic and anaerobic pectin-degrading bacteria (10 to the power of 4 to 10 to the power of 6 cells per g of wood). High activity of polygalacturonate lyase (is less than or equal to 0.5 U/ml) was also detected in the fetid liquid that spurted from wetwood zones in the lower trunk when the trees were bored. A prevalent pectin-degrading obligately anaerobic bacterium isolated from these wetwoods was identified as Clostridium butyricum. Pectin decomposition by Clostridium butyricum strain 4P1 was associated with an inducible polygalacturonate lyase and pectin methylesterase, the same types of pectinolytic activity expressed in the wetwood of these trees. The pH optimum of the extracellular polygalacturonate lyase was alkaline (near pH 8.5). In vitro tests with sapwood samples from a conifer (Douglas fir, Pseudotsuga menziesii) showed that tori in membranes of bordered pits are degraded by pure cultures of strain 4P1, polygalacturonate lyase enzyme preparations of strain 4P1, and mixed methanogenic cultures from the tree samples of wetwood. These results provide evidence that pectin in xylem tissue is actively degraded by Clostridium butyricum strain 4P1 via polygalacturonate lyase activity. The importance of pectin degradation by bacteria, including Clostridium species, appears paramount in the formation and maintenance of the wetwood syndrome in certain living trees. (Refs. 38).

  5. A new species of Rhabdias from lungs of the wood frog, Rana sylvatica, in North America: the last sibling of Rhabdias ranae?

    PubMed

    Tkach, Vasyl V; Kuzmin, Yuriy; Pulis, Eric E

    2006-06-01

    Rhabdias bakeri n. sp. is described from specimens found in lungs of the wood frog, Rana sylvatica, from North Dakota. The new species has previously been mistakenly identified as Rhabdias ranae Walton, 1929, a common parasite of the leopard frog, Rana pipiens. The new species differs from R. ranae and Rhabdias joaquinensis Ingles, 1935 by the shape and size of pseudolabia, shape and size of buccal capsule, and wider esophageal bulb. Molecular analysis based on the partial sequences of nuclear 18S rDNA gene, complete sequences of internal transcribed spacer region, and partial sequences of 28S gene demonstrates clear differences between Rhabdias from Ra. sylvatica and Ra. pipiens, and supports the status of R. bakeri as a new species.

  6. A new member of the Pteropine Orthoreovirus species isolated from fruit bats imported to Italy.

    PubMed

    Lorusso, Alessio; Teodori, Liana; Leone, Alessandra; Marcacci, Maurilia; Mangone, Iolanda; Orsini, Massimiliano; Capobianco-Dondona, Andrea; Camma', Cesare; Monaco, Federica; Savini, Giovanni

    2015-03-01

    A novel member of the Pteropine Orthoreovirus species has been isolated and sequenced for the whole genome from flying foxes (Pteropus vampyrus) imported to Italy from Indonesia. The new isolate named Indonesia/2010 is genetically similar to Melaka virus which has been the first virus of this species to be shown to be responsible for human respiratory disease. Our findings highlight the importance of flying foxes as vectors of potentially zoonotic viruses and the biological hazard that lies in the import of animals from geographical areas that are ecologically diverse from Europe.

  7. Wood colors and their coloring matters: a review.

    PubMed

    Yazaki, Yoshikazu

    2015-03-01

    A number of colored specialty woods, such as ebony, rosewood, mahogany and amboyna, and commercially important woods, such as morus, logwood, Brazilwood, Japanese yellowwood, blackwood, kwila, red beech and myrtle beech, exhibit a wide range of colors from black, violet, dark red, reddish brown, to pale yellow. These colors are not only due to colored pigments contained in extractives from those woods but also to insoluble polymers. Wood and bark from many species of both hardwood and softwood trees contain many types of flavonoid compounds. Research on flavonoids has been conducted mainly from two points of view. The first is chemotaxonomy with flavonoid compounds as taxonomic markers, and the second relates to the utilization of woods for pulp and paper and the use of tannins from bark for wood adhesives. Most chemotaxonomic studies have been conducted on flavonoids in the extracts from softwoods such as Podocarpus, Pinus, Pseudotsuga, Larix, Taxus, Libocedrus, Tsuja, Taxodium, Sequoia, Cedrus, Tsuga, Abies and Picea. Hardwood chemotaxonomic studies include those on Prunus and Eucalyptus species. Studies on flavonoids in pulp and paper production were conducted on Eucalyptus woods in Australia and woods from Douglas fir in the USA and larch in Japan. Flavonoids as tannin resources from black wattle tannin and quebracho tannin have been used commercially as wood adhesives. Flavonoids in the bark from radiata pine and southern pine, from western and eastern hemlock, southern red oak and Quercus dentata are also discussed. In addition, the distribution of flavonoids among tree species is described, as is the first isolation of rare procyanidin glycosides in nature.

  8. Papuadocus blodiwai gen. nov., sp. nov. (Crustacea: Amphipoda: Maeridae), a new bathyal species associated with sunken wood in the Bismarck Sea (Papua New Guinea).

    PubMed

    Corbari, Laure; Sorbe, Jean Claude

    2015-01-29

    A new species belonging to a new genus of Maeridae, Papuadocus blodiwai gen. nov., sp. nov., is described from bathyal bottoms of the Bismarck Sea (Papua New Guinea). This genus/species can be distinguished from most other known maerids by right and left maxillas 1 with asymmetrical palps and by gnathopod 2 not sexually dimorphic. Its closest relative is the genus Bathyceradocus also characterized by asymmetrical maxillas 1, but differing by the presence of gill on coxae 7. These observations lead to the conclusion that the diagnosis of the family Maeridae has to be amended to receive both Bathyceradocus and Papuadocus genera. All the collected specimens lived in association with sunken wood, at 500-580 m depth.

  9. Importance of hybridization between indigenous and nonindigenous freshwater species: an overlooked threat to North American biodiversity.

    PubMed

    Perry, William L; Lodge, David M; Feder, Jeffrey L

    2002-04-01

    Biodiversity of North American freshwaters is among the greatest in the world. However, due to extensive habitat degradation, pollution, and introductions of nonindigenous species, this biodiversity is also among the most endangered. Unlike habitat degradation and pollution, nonindigenous species represent a permanent loss of biodiversity because their removal or control is often impossible. Most species introduced into nonnative North American ranges, however, are not from Eurasia but have been introduced from geographically isolated regions within North America. Although the ecological effects of introduced species have been widely documented, the effects of hybridization, especially between closely related species, represents an equally serious mechanism of extinction but is much less studied. Identification of which species are likely to hybridize after contact is of critical importance to prevent the further loss of native species. Molecular phylogenetics serves as a powerful tool to identify freshwater species at risk of introgression, if we can assume that genetic distance is a good predictor of the potential for hybridization. Although not a thorough review of all cases of hybridization, this article documents the extent and effects of hybridization in fishes, crayfishes, mussels, and other invertebrates in light of the currently accepted phylogenetic relationships. We suggest this approach may be the first step in addressing the potential threat of hybridization between many of the closely related species in North American fresh waters.

  10. Cryptic diversity and habitat partitioning in an economically important aphid species complex.

    PubMed

    Savory, F R; Ramakrishnan, U

    2015-03-01

    Cardamom Bushy Dwarf Virus (CBDV) is an aphid-borne nanovirus which infects large cardamom, Amomum subulatum (Zingiberaceae family), in the Himalayan foothills of Northeast India, Nepal and Bhutan. Two aphid species have been reported to transmit CBDV, including Pentalonia nigronervosa and Micromyzus kalimpongensis (also described as Pentalonia kalimpongensis). However, P. nigronervosa was recently split into two species which exhibit different host plant affiliations. Whilst P. nigronervosa primarily feeds on banana plants, Pentaloniacaladii (previously considered a 'form' of P. nigronervosa) typically feeds on plants belonging to the Araceae, Heliconiaceae and Zingiberaceae families. This raises the possibility that CBDV vectors that were originally described as P. nigronervosa correspond to P. caladii. Accurate identification of vector species is important for understanding disease dynamics and for implementing management strategies. However, closely related species can be difficult to distinguish based on morphological characteristics. In this study, we used molecular markers (two mitochondrial loci and one nuclear locus) and Bayesian phylogenetic analyses to identify aphid specimens collected from 148 CBDV infected plants at a range of locations and elevations throughout Sikkim and the Darjeeling district of West Bengal (Northeast India). Our results revealed the presence of a diversity of lineages, comprising up to six distinct species in at least two related genera. These included the three species mentioned above, an unidentified Pentalonia species and two lineages belonging to an unknown genus. Surprisingly, P. caladii was only detected on a single infected plant, indicating that this species may not play an important role in CBDV transmission dynamics. Distinct elevation distributions were observed for the different species, demonstrating that the community composition of aphids which feed on large cardamom plants changes across an elevation gradient

  11. Googling Food Webs: Can an Eigenvector Measure Species' Importance for Coextinctions?

    PubMed Central

    Allesina, Stefano; Pascual, Mercedes

    2009-01-01

    A major challenge in ecology is forecasting the effects of species' extinctions, a pressing problem given current human impacts on the planet. Consequences of species losses such as secondary extinctions are difficult to forecast because species are not isolated, but interact instead in a complex network of ecological relationships. Because of their mutual dependence, the loss of a single species can cascade in multiple coextinctions. Here we show that an algorithm adapted from the one Google uses to rank web-pages can order species according to their importance for coextinctions, providing the sequence of losses that results in the fastest collapse of the network. Moreover, we use the algorithm to bridge the gap between qualitative (who eats whom) and quantitative (at what rate) descriptions of food webs. We show that our simple algorithm finds the best possible solution for the problem of assigning importance from the perspective of secondary extinctions in all analyzed networks. Our approach relies on network structure, but applies regardless of the specific dynamical model of species' interactions, because it identifies the subset of coextinctions common to all possible models, those that will happen with certainty given the complete loss of prey of a given predator. Results show that previous measures of importance based on the concept of “hubs” or number of connections, as well as centrality measures, do not identify the most effective extinction sequence. The proposed algorithm provides a basis for further developments in the analysis of extinction risk in ecosystems. PMID:19730676

  12. Montane and coastal species diversification in the economically important Mexican grasshopper genus Sphenarium (Orthoptera: Pyrgomorphidae).

    PubMed

    Pedraza-Lara, Carlos; Barrientos-Lozano, Ludivina; Rocha-Sánchez, Aurora Y; Zaldívar-Riverón, Alejandro

    2015-03-01

    The genus Sphenarium (Pyrgomorphidae) is a small group of grasshoppers endemic to México and Guatemala that are economically and culturally important both as a food source and as agricultural pests. However, its taxonomy has been largely neglected mainly due to its conserved interspecific external morphology and the considerable intraspecific variation in colour pattern of some taxa. Here we examined morphological as well as mitochondrial and nuclear DNA sequence data to assess the species boundaries and evolutionary history in Sphenarium. Our morphological identification and DNA sequence-based species delimitation, carried out with three different approaches (DNA barcoding, general mixed Yule-coalescent model, Bayesian species delimitation), all recovered a higher number of putative species of Sphenarium than previously recognised. We unambiguously delimit seven species, and between five and ten additional species depending on the data/method analysed. Phylogenetic relationships within the genus strongly support two main clades, one exclusively montane, the other coastal. Divergence time estimates suggest late Miocene to Pliocene ages for the origin and most of the early diversification events in the genus, which were probably influenced by the formation of the Trans-Mexican Volcanic Belt. A series of Pleistocene events could have led to the current species diversification in both montane and coastal regions. This study not only reveals an overlooked species richness for the most popular edible insect in Mexico, but also highlights the influence of the dynamic geological and climatic history of the region in shaping its current diversity.

  13. Are Photosynthetic Characteristics and Energetic Cost Important Invasive Traits for Alien Sonneratia Species in South China?

    PubMed Central

    Li, Feng-Lan; Zan, Qi-Jie; Hu, Zheng-Yu; Shin, Paul-K. S.; Cheung, Siu-Gin; Wong, Yuk-Shan; Tam, Nora Fung-Yee; Lei, An-Ping

    2016-01-01

    A higher photosynthesis and lower energetic cost are recognized as important characteristics for invasive species, but whether these traits are also important for the ability of alien mangrove species to become invasive has seldom been reported. A microcosm study was conducted to compare the photosynthetic characteristics, energetic cost indices and other growth traits between two alien species (Sonneratia apetala and S. caseolaris) and four native mangrove species over four seasons in a subtropical mangrove nature reserve in Shenzhen, South China. The aim of the study was to evaluate the invasive potential of Sonneratia based on these physiological responses. The annual average net photosynthetic rate (Pn), stomatal conductance (Gs) and total carbon assimilation per unit leaf area (Atotal) of the two alien Sonneratia species were significantly higher than the values of the native mangroves. In contrast, the opposite results were obtained for the leaf construction cost (CC) per unit dry mass (CCM) and CC per unit area (CCA) values. The higher Atotal and lower CC values resulted in a 72% higher photosynthetic energy-use efficiency (PEUE) for Sonneratia compared to native mangroves, leading to a higher relative growth rate (RGR) of the biomass and height of Sonneratia with the respective values being 51% and 119% higher than those of the native species. Higher photosynthetic indices for Sonneratia compared to native species were found in all seasons except winter, whereas lower CC values were found in all four seasons. The present findings reveal that alien Sonneratia species may adapt well and become invasive in subtropical mangrove wetlands in Shenzhen due to their higher photosynthetic characteristics coupled with lower costs in energy use, leading to a higher PEUE. The comparison of these physiological responses between S. apetala and S. caseolaris reveal that the former species is more invasive than the latter one, thus requiring more attention in future. PMID

  14. Are Photosynthetic Characteristics and Energetic Cost Important Invasive Traits for Alien Sonneratia Species in South China?

    PubMed

    Li, Feng-Lan; Zan, Qi-Jie; Hu, Zheng-Yu; Shin, Paul-K S; Cheung, Siu-Gin; Wong, Yuk-Shan; Tam, Nora Fung-Yee; Lei, An-Ping

    2016-01-01

    A higher photosynthesis and lower energetic cost are recognized as important characteristics for invasive species, but whether these traits are also important for the ability of alien mangrove species to become invasive has seldom been reported. A microcosm study was conducted to compare the photosynthetic characteristics, energetic cost indices and other growth traits between two alien species (Sonneratia apetala and S. caseolaris) and four native mangrove species over four seasons in a subtropical mangrove nature reserve in Shenzhen, South China. The aim of the study was to evaluate the invasive potential of Sonneratia based on these physiological responses. The annual average net photosynthetic rate (Pn), stomatal conductance (Gs) and total carbon assimilation per unit leaf area (Atotal) of the two alien Sonneratia species were significantly higher than the values of the native mangroves. In contrast, the opposite results were obtained for the leaf construction cost (CC) per unit dry mass (CCM) and CC per unit area (CCA) values. The higher Atotal and lower CC values resulted in a 72% higher photosynthetic energy-use efficiency (PEUE) for Sonneratia compared to native mangroves, leading to a higher relative growth rate (RGR) of the biomass and height of Sonneratia with the respective values being 51% and 119% higher than those of the native species. Higher photosynthetic indices for Sonneratia compared to native species were found in all seasons except winter, whereas lower CC values were found in all four seasons. The present findings reveal that alien Sonneratia species may adapt well and become invasive in subtropical mangrove wetlands in Shenzhen due to their higher photosynthetic characteristics coupled with lower costs in energy use, leading to a higher PEUE. The comparison of these physiological responses between S. apetala and S. caseolaris reveal that the former species is more invasive than the latter one, thus requiring more attention in future.

  15. Occurrence and Diversity of Clinically Important Vibrio Species in the Aquatic Environment of Georgia

    PubMed Central

    Kokashvili, Tamar; Whitehouse, Chris A.; Tskhvediani, Ana; Grim, Christopher J.; Elbakidze, Tinatin; Mitaishvili, Nino; Janelidze, Nino; Jaiani, Ekaterine; Haley, Bradd J.; Lashkhi, Nino; Huq, Anwar; Colwell, Rita R.; Tediashvili, Marina

    2015-01-01

    Among the more than 70 different Vibrio species inhabiting marine, estuarine, and freshwater ecosystems, 12 are recognized as human pathogens. The warm subtropical climate of the Black Sea coastal area and inland regions of Georgia likely provides a favorable environment for various Vibrio species. From 2006 to 2009, the abundance, ecology, and diversity of clinically important Vibrio species were studied in different locations in Georgia and across seasons. Over a 33-month period, 1,595 presumptive Vibrio isolates were collected from the Black Sea (n = 657) and freshwater lakes around Tbilisi (n = 938). Screening of a subset of 440 concentrated and enriched water samples by PCR-electrospray ionization/mass spectrometry (PCR-ESI/MS) detected the presence of DNA from eight clinically important Vibrio species: V. cholerae, V. parahaemolyticus, V. vulnificus, V. mimicus, V. alginolyticus, V. harveyi, V. metschnikovii, and V. cincinnatiensis. Almost 90% of PCR/ESI-MS samples positive for Vibrio species were collected from June through November. Three important human-pathogenic Vibrio species (V. cholerae, V. parahaemolyticus, and V. vulnificus) were detected in 62.8, 37.8, and 21.4% of samples testing positive for Vibrios, respectively. The results of these activities suggest that natural reservoirs for human-pathogenic Vibrios exist in Georgian aquatic environments. Water temperature at all sampling sites was positively correlated with the abundance of clinically important Vibrio spp. (except V. metschnikovii), and salinity was correlated with species composition at particular Black Sea sites as well as inland reservoirs. PMID:26528464

  16. The influence of wind direction on the capture of the wood warbler (Phylloscopus sibilatrix), an uncommon migratory species in the western Mediterranean.

    PubMed

    Barriocanal, Carles; Montserrat, David; Robson, David

    2011-11-01

    The wood warbler (Phylloscopus sibilatrix) is a migratory species in the western Mediterranean wintering in the Gulf of Guinea region, West Africa. In autumn and spring, this species, along with the populations breeding in Ireland and Britain, uses the Italian peninsula as its main axis of migration. From the data of captured birds at several ringing stations in the western Mediterranean (Balearic Islands and coastal Iberian Peninsula), we analyzed capture rates of the species during spring migration from 1993 to 2007. Based on the selection of days with a significant number of captures and those without captures, we analyzed the effect of wind direction over the western Mediterranean to determine a relationship between winds and the number of captures. From a total of 663 wood warblers captured between 1993 and 2007, a total of 31 days have been selected as significant days with a high number of captures, and 31 days have been selected as no-capture days. On days of maximum captures, winds coming from an easterly direction, i.e. Algeria and Tunisia, were dominant, indicating days with a clear eastern component. Contrary to expected results, captures were also made on days when the wind direction was predominantly from a northerly direction. Analysis of the origin of the winds in north eastern Spain (western Mediterranean) revealed that the majority of northerly winds originated from Africa and not from Europe as is usual for this region. Days or periods selected as no-capture days were characterized by winds coming from a northerly (European origin) or westerly direction.

  17. Geographic distribution, evolution, and disease importance of species within the Neotropical Anopheles albitarsis Group (Diptera, Culicidae)

    PubMed Central

    Linton, Yvonne-Marie; Ruiz-Lopez, J. Freddy; Conn, Jan E.; Sallum, Maria Anice M.; Póvoa, Marinete M.; Bergo, Eduardo S.; Oliveira, Tatiane M. P.; Sucupira, Izis; Wilkerson, Richard C.

    2015-01-01

    The Anopheles albitarsis group of mosquitoes comprises eight recognized species and one mitochondrial lineage. Our knowledge of malaria vectorial importance and the distribution and evolution of these taxa is incomplete. We constructed ecological niche models (ENMs) for these taxa and used hypothesized phylogenetic relationships and ENMs to investigate environmental and ecological divergence associated with speciation events. Two major clades were identified, one north (Clade 1) and one south (Clade 2) of the Amazon River that likely is or was a barrier to mosquito movement. Clade 1 species occur more often in higher average temperature locations than Clade 2 species, and taxon splits within Clade 1 corresponded with a greater divergence of variables related to precipitation than was the case within Clade 2. Comparison of the ecological profiles of sympatric species and sister species support the idea that phylogenetic proximity is related to ecological similarity. Anopheles albitarsis I, An. janconnae, and An. marajoara ENMs had the highest percentage of their predicted suitable habitat overlapping distribution models of Plasmodium falciparum and P. vivax, and warrant additional studies of the transmission potential of these species. Phylogenetic proximity may be related to malaria vectorial importance within the Albitarsis Group. PMID:24820570

  18. Sound quality assessment of wood for xylophone bars.

    PubMed

    Aramaki, Mitsuko; Baillères, Henri; Brancheriau, Loïc; Kronland-Martinet, Richard; Ystad, Sølvi

    2007-04-01

    Xylophone sounds produced by striking wooden bars with a mallet are strongly influenced by the mechanical properties of the wood species chosen by the xylophone maker. In this paper, we address the relationship between the sound quality based on the timbre attribute of impacted wooden bars and the physical parameters characterizing wood species. For this, a methodology is proposed that associates an analysis-synthesis process and a perceptual classification test. Sounds generated by impacting 59 wooden bars of different species but with the same geometry were recorded and classified by a renowned instrument maker. The sounds were further digitally processed and adjusted to the same pitch before being once again classified. The processing is based on a physical model ensuring the main characteristics of the wood are preserved during the sound transformation. Statistical analysis of both classifications showed the influence of the pitch in the xylophone maker judgement and pointed out the importance of two timbre descriptors: the frequency-dependent damping and the spectral bandwidth. These descriptors are linked with physical and anatomical characteristics of wood species, providing new clues in the choice of attractive wood species from a musical point of view.

  19. Effectiveness of an innovative prototype subtracted diversity array (SDA) for fingerprinting plant species of medicinal importance.

    PubMed

    Jayasinghe, Ruchira; Hai Niu, Lin; Coram, Tristan E; Kong, Stephan; Kaganovitch, Janna; Xue, Charlie C L; Li, Chun G; Pang, Edwin C K

    2009-08-01

    The accurate identification of medicinal plants is becoming increasingly important due to reported concerns about purity, quality and safety. The previously developed prototype subtracted diversity array (SDA) had been validated for the ability to distinguish clade-level targets in a phylogenetically accurate manner. This study represents the rigorous investigation of the SDA for genotyping capabilities, including the genotyping of plant species not included during the construction of the SDA, as well as to lower classification levels including family and species. The results show that the SDA, in its current form, has the ability to accurately genotype species not included during SDA development to clade level. Additionally, for those species that were included during SDA development, genotyping is successful to the family level, and to the species level with minor exceptions. Twenty polymorphic SDA features were sequenced in a first attempt to characterize the polymorphic DNA between species, which showed that transposon-like sequences may be valuable as polymorphic features to differentiate angiosperm families and species. Future refinements of the SDA to allow more sensitive genotyping are discussed with the overall goal of accurate medicinal plant identification in mind.

  20. Larval morphology of Atherigona orientalis (Schiner) (Diptera: Muscidae) -a species of sanitary and forensic importance.

    PubMed

    Grzywacz, Andrzej; Pape, Thomas

    2014-09-01

    Larval morphology is documented using both light and scanning electron microscopy for all three instars of the muscid fly Atherigona orientalis (Schiner), which is a species of known sanitary and forensic importance found in tropical and subtropical areas of all biogeographic regions. The unpaired sclerite in a form of a spicule is reported herein in the second and the third instar larvae. Occurrence of this sclerite was hitherto unknown in the second instar larvae of Muscidae and was only known from the third instar of several species, however not in a form of a spicule. Our study is the first report of the occurrence of the "sensory organ X" in all three larval instars of a species representing the family Muscidae. The bubble membrane, previously known only from third instar cyclorrhaphan larvae, is reported herein for the first time in the second instar. Characters allowing for discrimination of A. orientalis larvae from other forensically important Muscidae are summarised.

  1. The Importance of Landscape Elements for Bat Activity and Species Richness in Agricultural Areas

    PubMed Central

    Heim, Olga; Treitler, Julia T.; Tschapka, Marco; Knörnschild, Mirjam; Jung, Kirsten

    2015-01-01

    Landscape heterogeneity is regarded as a key factor for maintaining biodiversity and ecosystem function in production landscapes. We investigated whether grassland sites at close vicinity to forested areas are more frequently used by bats. Considering that bats are important consumers of herbivorous insects, including agricultural pest, this is important for sustainable land management. Bat activity and species richness were assessed using repeated monitoring from May to September in 2010 with acoustic monitoring surveys on 50 grassland sites in the Biosphere Reserve Schorfheide-Chorin (North-East Germany). Using spatial analysis (GIS), we measured the closest distance of each grassland site to potentially connecting landscape elements (e.g., trees, linear vegetation, groves, running and standing water). In addition, we assessed the distance to and the percent land cover of forest remnants and urban areas in a 200 m buffer around the recording sites to address differences in the local landscape setting. Species richness and bat activity increased significantly with higher forest land cover in the 200 m buffer and at smaller distance to forested areas. Moreover, species richness increased in proximity to tree groves. Larger amount of forest land cover and smaller distance to forest also resulted in a higher activity of bats on grassland sites in the beginning of the year during May, June and July. Landscape elements near grassland sites also influenced species composition of bats and species richness of functional groups (open, edge and narrow space foragers). Our results highlight the importance of forested areas, and suggest that agricultural grasslands that are closer to forest remnants might be better buffered against outbreaks of agricultural pest insects due to higher species richness and higher bat activity. Furthermore, our data reveals that even for highly mobile species such as bats, a very dense network of connecting elements within the landscape is

  2. The Importance of Landscape Elements for Bat Activity and Species Richness in Agricultural Areas.

    PubMed

    Heim, Olga; Treitler, Julia T; Tschapka, Marco; Knörnschild, Mirjam; Jung, Kirsten

    2015-01-01

    Landscape heterogeneity is regarded as a key factor for maintaining biodiversity and ecosystem function in production landscapes. We investigated whether grassland sites at close vicinity to forested areas are more frequently used by bats. Considering that bats are important consumers of herbivorous insects, including agricultural pest, this is important for sustainable land management. Bat activity and species richness were assessed using repeated monitoring from May to September in 2010 with acoustic monitoring surveys on 50 grassland sites in the Biosphere Reserve Schorfheide-Chorin (North-East Germany). Using spatial analysis (GIS), we measured the closest distance of each grassland site to potentially connecting landscape elements (e.g., trees, linear vegetation, groves, running and standing water). In addition, we assessed the distance to and the percent land cover of forest remnants and urban areas in a 200 m buffer around the recording sites to address differences in the local landscape setting. Species richness and bat activity increased significantly with higher forest land cover in the 200 m buffer and at smaller distance to forested areas. Moreover, species richness increased in proximity to tree groves. Larger amount of forest land cover and smaller distance to forest also resulted in a higher activity of bats on grassland sites in the beginning of the year during May, June and July. Landscape elements near grassland sites also influenced species composition of bats and species richness of functional groups (open, edge and narrow space foragers). Our results highlight the importance of forested areas, and suggest that agricultural grasslands that are closer to forest remnants might be better buffered against outbreaks of agricultural pest insects due to higher species richness and higher bat activity. Furthermore, our data reveals that even for highly mobile species such as bats, a very dense network of connecting elements within the landscape is

  3. Multiple Genome Sequences of the Important Beer-Spoiling Species Lactobacillus backii

    PubMed Central

    Geissler, Andreas J.; Vogel, Rudi F.

    2016-01-01

    Lactobacillus backii is an important beer-spoiling species. Five strains isolated from four different breweries were sequenced using single-molecule real-time sequencing. Five complete genomes were generated, which will help to understand niche adaptation to beer and provide the basis for consecutive analyses. PMID:27563041

  4. Organic compounds in PM 2.5 emitted from fireplace and woodstove combustion of typical Portuguese wood species

    NASA Astrophysics Data System (ADS)

    Gonçalves, Cátia; Alves, Célia; Fernandes, Ana Patrícia; Monteiro, Cristina; Tarelho, Luís; Evtyugina, Margarita; Pio, Casimiro

    2011-09-01

    The aim of this study is the further characterisation of PM 2.5 emissions from the residential wood combustion of common woods grown in Portugal. This new research extends to eight the number of biomass fuels studied and tries to understand the differences that the burning appliance (fireplace versus woodstove) and the combustion temperature (cold and hot start) have on emissions. Pinus pinaster (Maritime pine), Eucalyptus globulus (eucalypt), Quercus suber (cork oak), Acacia longifolia (Golden wattle), Quercus faginea (Portuguese oak), Olea europea (Olive), Quercus ilex rotundifolia (Holm oak) and briquettes produced from forest biomass waste were used in the combustion tests. Determinations included fine particle emission factors, carbonaceous content (OC and EC) by a thermal-optical transmission technique and detailed identification and quantification of organic compounds by gas chromatography-mass spectrometry. Fine particle emission factors from the woodstove were lower than those from the fireplace. For both combustion appliances, the OC/EC ratio was higher in "cold start" tests (1.56 ± 0.95 for woodstove and 2.03 ± 1.34 for fireplace). These "cold start" OC/EC values were, respectively, for the woodstove and the fireplace, 51% and 69% higher than those obtained in "hot start" experiments. The chromatographically resolved organics included n-alkanes, n-alkenes, PAHs, n-alkanals, ketones, n-alkanols, terpenoids, triterpenoids, phenolic compounds, phytosterols, alcohols, n-alkanoic acids, n-di-acids, unsaturated acids and alkyl esters of acids. The smoke emission rate and composition varied widely depending on fuel type, burning appliance and combustion temperature.

  5. Importance of Providencia species as a major cause of travellers' diarrhoea.

    PubMed

    Yoh, Myonsun; Matsuyama, Junko; Ohnishi, Motoki; Takagi, Kazuhiro; Miyagi, Hirozane; Mori, Kazuhiro; Park, Kwon-Sam; Ono, Takahiro; Honda, Takeshi

    2005-11-01

    In this study the importance of Providencia species as a cause of travellers' diarrhoea was examined using a selective medium developed by the authors. Providencia species could easily be distinguished from other enteric pathogens by the colour of the colonies obtained. Nine strains of Providencia alcalifaciens, nine of Providencia rettgeri and five of Providencia stuartii were isolated from 130 specimens, representing a surprisingly high incidence of infection compared with other pathogens isolated on SS agar and TCBS agar. Patients infected with P. rettgeri complained of abdominal pain, as for other Providencia species, but also of vomiting, which is rather characteristic of P. rettgeri infection. To analyse the pathogenicity of these isolates, their invasiveness was examined using Caco-2 cells. Most of the P. rettgeri strains invaded Caco-2 cells. Random amplified polymorphic DNA (RAPD) fingerprinting showed the same profile for two P. rettgeri isolates from individuals travelling in the same tour group. The results show that Providencia species, especially P. rettgeri, might cause diarrhoea, and that these species are important pathogens.

  6. Pollen Deposition Is More Important than Species Richness for Seed Set in Luffa Gourd.

    PubMed

    Ali, M; Saeed, S; Sajjad, A

    2016-10-01

    In the context of global biodiversity decline, it is imperative to understand the different aspects of bee communities for sustaining the vital ecosystem service of pollination. Bee species can be assigned to functional groups (average difference among species in functionally related traits) on the basis of complementarity (trait variations exhibited by individual organisms) in their behavior but is not yet known which functional group trait is most important for seed set. In this study, first, the functional groups of bees were made based on their five selected traits (pollen deposition, visitation rate, stay time, visiting time of the day, body size) and then related to the seed set of obligate cross-pollinated Luffa gourd (Luffa aegyptiaca). We found that bee diversity and abundance differed significantly among the studied plots, but only the bee species richness was positively related to the seed set. Functional group diversity in terms of pollen deposition explained even more of the variance in seed set (r (2) = 0.74) than did the species richness (r (2) = 0.53) making it the most important trait of bee species for predicting the crop reproductive success.

  7. A report on identification of sequence polymorphism in barcode region of six commercially important Cymbopogon species.

    PubMed

    Bishoyi, Ashok Kumar; Kavane, Aarti; Sharma, Anjali; Geetha, K A

    2017-02-01

    CYMBOPOGON: is an important member of grass family Poaceae, cultivated for essential oils which have greater medicinal and industrial value. Taxonomic identification of Cymbopogon species is determined mainly by morphological markers, odour of essential oils and concentration of bioactive compounds present in the oil matrices which are highly influenced by environment. Authenticated molecular marker based taxonomical identification is also lacking in the genus; hence effort was made to evaluate potential DNA barcode loci in six commercially important Cymbopogon species for their individual discrimination and authentication at the species level. Four widely used DNA barcoding regions viz., ITS 1 & ITS 2 spacers, matK, psbA-trnH and rbcL were taken for the study. Gene sequences of the same or related genera of the concerned loci were mined from NCBI domain and primers were designed and validated for barcode loci amplification. Out of the four loci studied, sequences from matK and ITS spacer loci revealed 0.46% and 5.64% nucleotide sequence diversity, respectively whereas the other two loci i.e., psbA-trnH and rbcL showed 100% sequence homology. The newly developed primers can be used for barcode loci amplification in the genus Cymbopogon. The identified Single Nucleotide Polymorphisms from the studied sequences may be used as barcodes for the six Cymbopogon species. The information generated can also be utilized for barcode development of the genus by including more number of Cymbopgon species in future.

  8. Bacterial endophyte communities of three agricultural important grass species differ in their response towards management regimes.

    PubMed

    Wemheuer, Franziska; Kaiser, Kristin; Karlovsky, Petr; Daniel, Rolf; Vidal, Stefan; Wemheuer, Bernd

    2017-01-19

    Endophytic bacteria are critical for plant growth and health. However, compositional and functional responses of bacterial endophyte communities towards agricultural practices are still poorly understood. Hence, we analyzed the influence of fertilizer application and mowing frequency on bacterial endophytes in three agriculturally important grass species. For this purpose, we examined bacterial endophytic communities in aerial plant parts of Dactylis glomerata L., Festuca rubra L., and Lolium perenne L. by pyrotag sequencing of bacterial 16S rRNA genes over two consecutive years. Although management regimes influenced endophyte communities, observed responses were grass species-specific. This might be attributed to several bacteria specifically associated with a single grass species. We further predicted functional profiles from obtained 16S rRNA data. These profiles revealed that predicted abundances of genes involved in plant growth promotion or nitrogen metabolism differed between grass species and between management regimes. Moreover, structural and functional community patterns showed no correlation to each other indicating that plant species-specific selection of endophytes is driven by functional rather than phylogenetic traits. The unique combination of 16S rRNA data and functional profiles provided a holistic picture of compositional and functional responses of bacterial endophytes in agricultural relevant grass species towards management practices.

  9. Bacterial endophyte communities of three agricultural important grass species differ in their response towards management regimes

    NASA Astrophysics Data System (ADS)

    Wemheuer, Franziska; Kaiser, Kristin; Karlovsky, Petr; Daniel, Rolf; Vidal, Stefan; Wemheuer, Bernd

    2017-01-01

    Endophytic bacteria are critical for plant growth and health. However, compositional and functional responses of bacterial endophyte communities towards agricultural practices are still poorly understood. Hence, we analyzed the influence of fertilizer application and mowing frequency on bacterial endophytes in three agriculturally important grass species. For this purpose, we examined bacterial endophytic communities in aerial plant parts of Dactylis glomerata L., Festuca rubra L., and Lolium perenne L. by pyrotag sequencing of bacterial 16S rRNA genes over two consecutive years. Although management regimes influenced endophyte communities, observed responses were grass species-specific. This might be attributed to several bacteria specifically associated with a single grass species. We further predicted functional profiles from obtained 16S rRNA data. These profiles revealed that predicted abundances of genes involved in plant growth promotion or nitrogen metabolism differed between grass species and between management regimes. Moreover, structural and functional community patterns showed no correlation to each other indicating that plant species-specific selection of endophytes is driven by functional rather than phylogenetic traits. The unique combination of 16S rRNA data and functional profiles provided a holistic picture of compositional and functional responses of bacterial endophytes in agricultural relevant grass species towards management practices.

  10. Bacterial endophyte communities of three agricultural important grass species differ in their response towards management regimes

    PubMed Central

    Wemheuer, Franziska; Kaiser, Kristin; Karlovsky, Petr; Daniel, Rolf; Vidal, Stefan; Wemheuer, Bernd

    2017-01-01

    Endophytic bacteria are critical for plant growth and health. However, compositional and functional responses of bacterial endophyte communities towards agricultural practices are still poorly understood. Hence, we analyzed the influence of fertilizer application and mowing frequency on bacterial endophytes in three agriculturally important grass species. For this purpose, we examined bacterial endophytic communities in aerial plant parts of Dactylis glomerata L., Festuca rubra L., and Lolium perenne L. by pyrotag sequencing of bacterial 16S rRNA genes over two consecutive years. Although management regimes influenced endophyte communities, observed responses were grass species-specific. This might be attributed to several bacteria specifically associated with a single grass species. We further predicted functional profiles from obtained 16S rRNA data. These profiles revealed that predicted abundances of genes involved in plant growth promotion or nitrogen metabolism differed between grass species and between management regimes. Moreover, structural and functional community patterns showed no correlation to each other indicating that plant species-specific selection of endophytes is driven by functional rather than phylogenetic traits. The unique combination of 16S rRNA data and functional profiles provided a holistic picture of compositional and functional responses of bacterial endophytes in agricultural relevant grass species towards management practices. PMID:28102323

  11. Honeybees Increase Fruit Set in Native Plant Species Important for Wildlife Conservation

    NASA Astrophysics Data System (ADS)

    Cayuela, Luis; Ruiz-Arriaga, Sarah; Ozers, Christian P.

    2011-11-01

    Honeybee colonies are declining in some parts of the world. This may have important consequences for the pollination of crops and native plant species. In Spain, as in other parts of Europe, land abandonment has led to a decrease in the number of non professional beekeepers, which aggravates the problem of honeybee decline as a result of bee diseases In this study, we investigated the effects of honeybees on the pollination of three native plant species in northern Spain, namely wildcherry Prunus avium L., hawthorn Crataegus monogyna Jacq., and bilberry Vaccinium myrtillus L. We quantified fruit set of individuals from the target species along transects established from an apiary outwards. Half the samples were bagged in a nylon mesh to avoid insect pollination. Mixed-effects models were used to test the effect of distance to the apiary on fruit set in non-bagged samples. The results showed a negative significant effect of distance from the apiary on fruit set for hawthorn and bilberry, but no significant effects were detected for wildcherry. This suggests that the use of honeybees under traditional farming practices might be a good instrument to increase fruit production of some native plants. This may have important consequences for wildlife conservation, since fruits, and bilberries in particular, constitute an important feeding resource for endangered species, such as the brown bear Ursus arctos L. or the capercaillie Tetrao urogallus cantabricus L.

  12. Honeybees increase fruit set in native plant species important for wildlife conservation.

    PubMed

    Cayuela, Luis; Ruiz-Arriaga, Sarah; Ozers, Christian P

    2011-11-01

    Honeybee colonies are declining in some parts of the world. This may have important consequences for the pollination of crops and native plant species. In Spain, as in other parts of Europe, land abandonment has led to a decrease in the number of non professional beekeepers, which aggravates the problem of honeybee decline as a result of bee diseases In this study, we investigated the effects of honeybees on the pollination of three native plant species in northern Spain, namely wildcherry Prunus avium L., hawthorn Crataegus monogyna Jacq., and bilberry Vaccinium myrtillus L. We quantified fruit set of individuals from the target species along transects established from an apiary outwards. Half the samples were bagged in a nylon mesh to avoid insect pollination. Mixed-effects models were used to test the effect of distance to the apiary on fruit set in non-bagged samples. The results showed a negative significant effect of distance from the apiary on fruit set for hawthorn and bilberry, but no significant effects were detected for wild cherry. This suggests that the use of honeybees under traditional farming practices might be a good instrument to increase fruit production of some native plants. This may have important consequences for wildlife conservation, since fruits, and bilberries in particular, constitute an important feeding resource for endangered species, such as the brown bear Ursus arctos L. or the capercaillie Tetrao urogallus cantabricus L.

  13. Wood stains

    MedlinePlus

    The harmful substances in wood stains are hydrocarbons, or substances that contain only carbon and hydrogen. Other harmful ingredients may include: Alcohol Alkanes Cyclo alkanes Glycol ether Corrosives, such as sodium ...

  14. Intron-mediated alternative splicing of WOOD-ASSOCIATED NAC TRANSCRIPTION FACTOR1B regulates cell wall thickening during fiber development in Populus species.

    PubMed

    Zhao, Yunjun; Sun, Jiayan; Xu, Peng; Zhang, Rui; Li, Laigeng

    2014-02-01

    Alternative splicing is an important mechanism involved in regulating the development of multicellular organisms. Although many genes in plants undergo alternative splicing, little is understood of its significance in regulating plant growth and development. In this study, alternative splicing of black cottonwood (Populus trichocarpa) wood-associated NAC domain transcription factor (PtrWNDs), PtrWND1B, is shown to occur exclusively in secondary xylem fiber cells. PtrWND1B is expressed with a normal short-transcript PtrWND1B-s as well as its alternative long-transcript PtrWND1B-l. The intron 2 structure of the PtrWND1B gene was identified as a critical sequence that causes PtrWND1B alternative splicing. Suppression of PtrWND1B expression specifically inhibited fiber cell wall thickening. The two PtrWND1B isoforms play antagonistic roles in regulating cell wall thickening during fiber cell differentiation in Populus spp. PtrWND1B-s overexpression enhanced fiber cell wall thickening, while overexpression of PtrWND1B-l repressed fiber cell wall thickening. Alternative splicing may enable more specific regulation of processes such as fiber cell wall thickening during wood formation.

  15. Microbial effects on the development of forensically important blow fly species.

    PubMed

    Crooks, Esther R; Bulling, Mark T; Barnes, Kate M

    2016-09-01

    Colonisation times and development rates of specific blow fly species are used to estimate the minimum Post Mortem Interval (mPMI). The presence or absence of bacteria on a corpse can potentially affect the development and survival of blow fly larvae. Therefore an understanding of microbial-insect interactions is important for improving the interpretation of mPMI estimations. In this study, the effect of two bacteria (Escherichia coli and Staphylococcus aureus) on the growth rate and survival of three forensically important blow fly species (Lucilia sericata, Calliphora vicina and Calliphora vomitoria) was investigated. Sterile larvae were raised in a controlled environment (16:8h day: night light cycle, 23:21°C day: night temperature cycle and a constant 35% relative humidity) on four artificial diets prepared with 100μl of 10(5) CFU bacterial solutions as follows: (1) E. coli, (2) S. aureus, (3) a 50:50 E. coli:S. aureus mix and (4) a sterile bacteria-free control diet. Daily measurements (length, width and weight) were taken from first instar larvae through to the emergence of adult flies. Survival rates were also determined at pupation and adult emergence. Results indicate that bacteria were not essential for the development of any of the blow fly species. However, larval growth rates were affected by bacterial diet, with effects differing between blow fly species. Peak larval weights also varied according to species-diet combination; C. vomitoria had the largest weight on E. coli and mixed diets, C. vicina had the largest weight on S. aureus diets, and treatment had no significant effect on the peak larval weight of L. sericata. These results indicate the potential for the bacteria that larvae are exposed to during development on a corpse to alter both developmental rates and larval weight in some blow fly species.

  16. Effects of host species and life stage on the helminth communities of sympatric northern leopard frogs (Lithobates pipiens) and wood frogs (Lithobates sylvaticus) in the Sheyenne National Grasslands, North Dakota.

    PubMed

    Gustafson, Kyle D; Newman, Robert A; Tkach, Vasyl V

    2013-08-01

    We studied helminth communities in sympatric populations of leopard frogs (Lithobates pipiens) and wood frogs (Lithobates sylvaticus) and assessed the effects of host species and life stage on helminth community composition and helminth species richness. We examined 328 amphibians including 218 northern leopard frogs and 110 wood frogs collected between April and August of 2009 and 2010 in the Sheyenne National Grasslands of southeastern North Dakota. Echinostomatid metacercariae were the most common helminths found, with the highest prevalence in metamorphic wood frogs. Host species significantly influenced helminth community composition, and host life stage significantly influenced the component community composition of leopard frogs. In these sympatric populations, leopard frogs were common hosts for adult trematodes whereas wood frogs exhibited a higher prevalence of nematodes with direct life cycles. Metamorphic frogs were commonly infected with echinostomatid metacercariae and other larval trematodes whereas juvenile and adult frogs were most-frequently infected with directly transmitted nematodes and trophically transmitted trematodes. Accordingly, helminth species richness increased with the developmental life stage of the host.

  17. An Overview of Important Ethnomedicinal Herbs of Phyllanthus Species: Present Status and Future Prospects

    PubMed Central

    Sarin, Bharti; Martín, Juan Pedro; Mohanty, Aparajita

    2014-01-01

    The genus Phyllanthus consists of more than 1000 species, of which many are used as traditional medicines. The plant extracts have been used since ancient times, for treating hypertension, diabetes, hepatic, urinary, and sexual disorders, and other common ailments. Modern day scientific investigations have now confirmed pharmacognostic properties of Phyllanthus herbs. The phytochemicals attributing these medicinal properties have been identified in many of the Phyllanthus herbs. The morphologically similar herbs of Phyllanthus grow together and admixture of species during collection for manufacture of herbal medicines is quite common. Hence, along with pharmacognostic and phytochemical studies, appropriate protocols for correct identification of species are also important. As the use of these herbs as green medicines is becoming more popular, it is imperative to assess its genetic diversity and phylogenetic relatedness for future conservation strategies. This review is an attempt to present an overview of the existing studies on pharmacognostics, phytochemistry, species identification, and genetic diversity of Phyllanthus herbs and consequently (i) highlight areas where further research is needed and (ii) draw attention towards extending similar studies in underutilized but potentially important herbs such as P. maderaspatensis, P. kozhikodianus, P. rheedii, P. scabrifolius, and P. rotundifolius. PMID:24672382

  18. An overview of important ethnomedicinal herbs of Phyllanthus species: present status and future prospects.

    PubMed

    Sarin, Bharti; Verma, Nidhi; Martín, Juan Pedro; Mohanty, Aparajita

    2014-01-01

    The genus Phyllanthus consists of more than 1000 species, of which many are used as traditional medicines. The plant extracts have been used since ancient times, for treating hypertension, diabetes, hepatic, urinary, and sexual disorders, and other common ailments. Modern day scientific investigations have now confirmed pharmacognostic properties of Phyllanthus herbs. The phytochemicals attributing these medicinal properties have been identified in many of the Phyllanthus herbs. The morphologically similar herbs of Phyllanthus grow together and admixture of species during collection for manufacture of herbal medicines is quite common. Hence, along with pharmacognostic and phytochemical studies, appropriate protocols for correct identification of species are also important. As the use of these herbs as green medicines is becoming more popular, it is imperative to assess its genetic diversity and phylogenetic relatedness for future conservation strategies. This review is an attempt to present an overview of the existing studies on pharmacognostics, phytochemistry, species identification, and genetic diversity of Phyllanthus herbs and consequently (i) highlight areas where further research is needed and (ii) draw attention towards extending similar studies in underutilized but potentially important herbs such as P. maderaspatensis, P. kozhikodianus, P. rheedii, P. scabrifolius, and P. rotundifolius.

  19. Importance of riparian remnants for frog species diversity in a highly fragmented rainforest

    PubMed Central

    Rodríguez-Mendoza, Clara; Pineda, Eduardo

    2010-01-01

    Tropical forests undergo continuous transformation to other land uses, resulting in landscapes typified by forest fragments surrounded by anthropogenic habitats. Small forest fragments, specifically strip-shaped remnants flanking streams (referred to as riparian remnants), can be particularly important for the maintenance and conservation of biodiversity within highly fragmented forests. We compared frog species diversity between riparian remnants, other forest fragments and cattle pastures in a tropical landscape in Los Tuxtlas, Mexico. We found similar species richness in the three habitats studied and a similar assemblage structure between riparian remnants and forest fragments, although species composition differed by 50 per cent. Frog abundance was halved in riparian remnants compared with forest fragments, but was twice that found in pastures. Our results suggest that riparian remnants play an important role in maintaining a portion of frog species diversity in a highly fragmented forest, particularly during environmentally stressful (hot and dry) periods. In this regard, however, the role of riparian remnants is complementary, rather than substitutive, with respect to the function of other forest fragments within the fragmented forest. PMID:20554561

  20. Meeting the Vitamin A Requirement: The Efficacy and Importance of β-Carotene in Animal Species

    PubMed Central

    2016-01-01

    Vitamin A is essential for life in all vertebrate animals. Vitamin A requirement can be met from dietary preformed vitamin A or provitamin A carotenoids, the most important of which is β-carotene. The metabolism of β-carotene, including its intestinal absorption, accumulation in tissues, and conversion to vitamin A, varies widely across animal species and determines the role that β-carotene plays in meeting vitamin A requirement. This review begins with a brief discussion of vitamin A, with an emphasis on species differences in metabolism. A more detailed discussion of β-carotene follows, with a focus on factors impacting bioavailability and its conversion to vitamin A. Finally, the literature on how animals utilize β-carotene is reviewed individually for several species and classes of animals. We conclude that β-carotene conversion to vitamin A is variable and dependent on a number of factors, which are important to consider in the formulation and assessment of diets. Omnivores and herbivores are more efficient at converting β-carotene to vitamin A than carnivores. Absorption and accumulation of β-carotene in tissues vary with species and are poorly understood. More comparative and mechanistic studies are required in this area to improve the understanding of β-carotene metabolism. PMID:27833936

  1. Distinguishing the importance between habitat specialization and dispersal limitation on species turnover.

    PubMed

    Wang, Shixiong; Wang, Xiaoan; Guo, Hua; Fan, Weiyi; Lv, Haiying; Duan, Renyan

    2013-09-01

    Understanding what governs community assembly and the maintenance of biodiversity is a central issue in ecology, but has been a continuing debate. A key question is the relative importance of habitat specialization (niche assembly) and dispersal limitation (dispersal assembly). In the middle of the Loess Plateau, northwestern China, we examined how species turnover in Liaodong oak (Quercus wutaishanica) forests differed between observed and randomized assemblies, and how this difference was affected by habitat specialization and dispersal limitation using variation partitioning. Results showed that expected species turnover based on individual randomization was significantly lower than the observed value (P < 0.01). The turnover deviation significantly depended on the environmental and geographical distances (P < 0.05). Environmental and spatial variables significantly explained approximately 40% of the species composition variation at all the three layers (P < 0.05). However, their contributions varied among forest layers; the herb and shrub layers were dominated by environmental factors, whereas the canopy layer was dominated by spatial factors. Our results underscore the importance of synthetic models that integrate effects of both dispersal and niche assembly for understanding the community assembly. However, habitat specialization (niche assembly) may not always be the dominant process in community assembly, even under harsh environments. Community assembly may be in a trait-dependent manner (e.g., forest layers in this study). Thus, taking more species traits into account would strengthen our confidence in the inferred assembly mechanisms.

  2. Distinguishing the importance between habitat specialization and dispersal limitation on species turnover

    PubMed Central

    Wang, Shixiong; Wang, Xiaoan; Guo, Hua; Fan, Weiyi; Lv, Haiying; Duan, Renyan

    2013-01-01

    Understanding what governs community assembly and the maintenance of biodiversity is a central issue in ecology, but has been a continuing debate. A key question is the relative importance of habitat specialization (niche assembly) and dispersal limitation (dispersal assembly). In the middle of the Loess Plateau, northwestern China, we examined how species turnover in Liaodong oak (Quercus wutaishanica) forests differed between observed and randomized assemblies, and how this difference was affected by habitat specialization and dispersal limitation using variation partitioning. Results showed that expected species turnover based on individual randomization was significantly lower than the observed value (P < 0.01). The turnover deviation significantly depended on the environmental and geographical distances (P < 0.05). Environmental and spatial variables significantly explained approximately 40% of the species composition variation at all the three layers (P < 0.05). However, their contributions varied among forest layers; the herb and shrub layers were dominated by environmental factors, whereas the canopy layer was dominated by spatial factors. Our results underscore the importance of synthetic models that integrate effects of both dispersal and niche assembly for understanding the community assembly. However, habitat specialization (niche assembly) may not always be the dominant process in community assembly, even under harsh environments. Community assembly may be in a trait-dependent manner (e.g., forest layers in this study). Thus, taking more species traits into account would strengthen our confidence in the inferred assembly mechanisms. PMID:24223289

  3. Assessment of oil content and fatty acid composition variability in two economically important Hibiscus species.

    PubMed

    Wang, Ming Li; Morris, Brad; Tonnis, Brandon; Davis, Jerry; Pederson, Gary A

    2012-07-04

    The Hibiscus genus encompasses more than 300 species, but kenaf (Hibiscus cannabinus L.) and roselle (Hibiscus sabdariffa L.) are the two most economically important species within the genus. Seeds from these two Hibiscus species contain a relatively high amount of oil with two unusual fatty acids: dihydrosterculic and vernolic acids. The fatty acid composition in the oil can directly affect oil quality and its utilization. However, the variability in oil content and fatty acid composition for these two species is unclear. For these two species, 329 available accessions were acquired from the USDA germplasm collection. Their oil content and fatty acid composition were determined by nuclear magnetic resonance (NMR) and gas chromatography (GC), respectively. Using NMR and GC analyses, we found that Hibiscus seeds on average contained 18% oil and seed oil was composed of six major fatty acids (each >1%) and seven minor fatty acids (each <1%). Hibiscus cannabinus seeds contained significantly higher amounts of oil (18.14%), palmitic (20.75%), oleic (28.91%), vernolic acids (VA, 4.16%), and significantly lower amounts of stearic (3.96%), linoleic (39.49%), and dihydrosterculic acids (DHSA, 1.08%) than H. sabdariffa seeds (17.35%, 18.52%, 25.16%, 3.52%, 4.31%, 44.72%, and 1.57%, respectively). For edible oils, a higher oleic/linoleic (O/L) ratio and lower level of DHSA are preferred, and for industrial oils a high level of VA is preferred. Our results indicate that seeds from H. cannabinus may be of higher quality than H. sabdariffa seeds for these reasons. Significant variability in oil content and major fatty acids was also detected within both species. The variability in oil content and fatty acid composition revealed from this study will be useful for exploring seed utilization and developing new cultivars in these Hibiscus species.

  4. Insects associated with hospital environment in Egypt with special reference to the medically important species.

    PubMed

    Kenawy, Mohamed A; Amer, Hanan S; Lotfy, Nadia M; Khamis, Nagwa; Abdel-Hamid, Yousrya M

    2014-12-01

    A study was planned to examine the insect fauna associated with two hospitals: urban (A) in Cairo and rural (B) in Banha, Egypt with varying hygienic levels and their adjacent residential areas (AC) and (BC), respectively and to investigate the effect of hygienic level on species composition and relative abundance. A total of 22 species belonging to 7 orders and 15 families were reported in the four study areas of which, Dipterous flies were the most common (8/22, 36.36% species). A total of 5257 adults were collected of which Dipterous flies were the abundant (3800, 72.28% insect) and Musca domestica was the most abundant species (3535, 67.24% insect) which was present in all areas where it was more common / predominant species (21.94%-90.91% insect). Moreover, higher densities of M domestica were in (B) and BC than in (A) or (AC). The heavily infested area was AC (54.55% species) followed by (A), (BC) and (B) however, the total number of the collected insects was higher in (BC) and (B) than in (AC) and (A). This was confirmed by finding maximum diversity indices in (AC) and minimum ones in B. In all areas, means of M domestica was more common during summer/autumn and spring than in the winter. Periplaneta americana collected oily during autumn in AC and was more common in autumn in (BC) while Blatella germanica collected only during summer in (AC) and was more common in autumn in (B). The prevalence and higher abundance of the medically important species mainly M domestica, P. americana and B. germanica in rural hospital than in urban one attribute mainly to the lower hygienic level of rural hospital This require a control program based mainly on sanitation supplemented by other measures to overcome the risk of disease transmission by such insects

  5. Diversity of the Neglected and Underutilized Crop Species of Importance in Benin

    PubMed Central

    Dansi, A.; Vodouhè, R.; Azokpota, P.; Yedomonhan, H.; Assogba, P.; Adjatin, A.; Loko, Y. L.; Dossou-Aminon, I.; Akpagana, K.

    2012-01-01

    Many of the plant species that are cultivated for food across the world are neglected and underutilized. To assess their diversity in Benin and identify the priority species and establish their research needs, a survey was conducted in 50 villages distributed throughout the country. The study revealed 41 neglected and underutilized crop species (NUCS) among which 19 were identified as of priority base on 10 criteria among which included their extent and degree of consumption. Reasons for neglect vary with the producers and the agricultural technicians. Market surveys revealed that NUCS are important source of household incomes and substantially contribute to poverty reduction. Review of the literature available revealed that most of the species are rich in nutrients and have some proven medicinal values and the promotion of their use would help in combating malnutrition and improving the health status of the local populations. The knowledge gaps and research needs are immense on most of the species identified as no concrete scientific data is nationally available. In terms of research, almost all has to be done starting from basic ethnobotanical investigation. The results will help the scientists and students willing to conduct research on NUCS in Benin to better orient their research programs. PMID:22593712

  6. Diversity of the neglected and underutilized crop species of importance in Benin.

    PubMed

    Dansi, A; Vodouhè, R; Azokpota, P; Yedomonhan, H; Assogba, P; Adjatin, A; Loko, Y L; Dossou-Aminon, I; Akpagana, K

    2012-01-01

    Many of the plant species that are cultivated for food across the world are neglected and underutilized. To assess their diversity in Benin and identify the priority species and establish their research needs, a survey was conducted in 50 villages distributed throughout the country. The study revealed 41 neglected and underutilized crop species (NUCS) among which 19 were identified as of priority base on 10 criteria among which included their extent and degree of consumption. Reasons for neglect vary with the producers and the agricultural technicians. Market surveys revealed that NUCS are important source of household incomes and substantially contribute to poverty reduction. Review of the literature available revealed that most of the species are rich in nutrients and have some proven medicinal values and the promotion of their use would help in combating malnutrition and improving the health status of the local populations. The knowledge gaps and research needs are immense on most of the species identified as no concrete scientific data is nationally available. In terms of research, almost all has to be done starting from basic ethnobotanical investigation. The results will help the scientists and students willing to conduct research on NUCS in Benin to better orient their research programs.

  7. Diversity of Wood-Inhabiting Polyporoid and Corticioid Fungi in Odaesan National Park, Korea

    PubMed Central

    Jang, Yeongseon; Jang, Seokyoon; Lee, Jaejung; Lee, Hanbyul; Lim, Young Woon; Kim, Changmu

    2016-01-01

    Polyporoid and corticioid fungi are among the most important wood-decay fungi. Not only do they contribute to nutrient cycling by decomposing wood debris, but they are also valuable sources for natural products. Polyporoid and corticioid wood-inhabiting fungi were investigated in Odaesan National Park. Fruit bodies were collected and identified based on morphological and molecular analyses using 28S and internal transcribed spacer regions of DNA sequences. As a result, a total of 149 species, 69 genera, 22 families, and 11 orders were recognized. Half (74 species) of the species were polypores, and the other half (75 species) were corticioid fungi. Most of the species belonged to Polyporales (92 species) followed by Hymenochaetales (33 species) and Russulales (11 species). At the genus level, a high number of species was observed from Steccherinum, Hyphodontia, Phanerochaete, Postia, and Trametes. Concerning distribution, almost all the species could be found below 1,000 m, and only 20% of the species were observed from above 1,000 m. Stereum subtomentosum, Trametes versicolor, T. hirsuta, T. pubescens, Bjerkandera adusta, and Ganoderma applanatum had wide distribution areas. Deciduous wood was the preferred substrate for the collected species. Sixty-three species were new to this region, and 21 species were new to Korea, of which 17 species were described and illustrated. PMID:28154480

  8. The importance of range edges for an irruptive species during extreme weather events

    USGS Publications Warehouse

    Bateman, Brooke L.; Pidgeon, Anna M.; Radeloff, Volker C.; Allstadt, Andrew J.; Akçakaya, H. Resit; Thogmartin, Wayne E.; Vavrus, Stephen J.; Heglund, Patricia J.

    2015-01-01

    In a changing climate where more frequent extreme weather may be more common, conservation strategies for weather-sensitive species may require consideration of habitat in the edges of species’ ranges, even though non-core areas may be unoccupied in ‘normal’ years. Our results highlight the conservation importance of range edges in providing refuge from extreme events, such as drought, and climate change.

  9. Biotechnology in the wood industry.

    PubMed

    Mai, C; Kües, U; Militz, H

    2004-02-01

    Wood is a natural, biodegradable and renewable raw material, used in construction and as a feedstock in the paper and wood product industries and in fuel production. Traditionally, biotechnology found little attention in the wood product industries, apart from in paper manufacture. Now, due to growing environmental concern and increasing scientific knowledge, legal restrictions to conventional processes have altered the situation. Biotechnological approaches in the area of wood protection aim at enhancing the treatability of wood with preservatives and replacing chemicals with biological control agents. The substitution of conventional chemical glues in the manufacturing of board materials is achieved through the application of fungal cultures and isolated fungal enzymes. Moreover, biotechnology plays an important role in the waste remediation of preservative-treated waste wood.

  10. Conditions Promoting Mycorrhizal Parasitism Are of Minor Importance for Competitive Interactions in Two Differentially Mycotrophic Species

    PubMed Central

    Friede, Martina; Unger, Stephan; Hellmann, Christine; Beyschlag, Wolfram

    2016-01-01

    Interactions of plants with arbuscular mycorrhizal fungi (AMF) may range along a broad continuum from strong mutualism to parasitism, with mycorrhizal benefits received by the plant being determined by climatic and edaphic conditions affecting the balance between carbon costs vs. nutritional benefits. Thus, environmental conditions promoting either parasitism or mutualism can influence the mycorrhizal growth dependency (MGD) of a plant and in consequence may play an important role in plant-plant interactions. In a multifactorial field experiment we aimed at disentangling the effects of environmental and edaphic conditions, namely the availability of light, phosphorus and nitrogen, and the implications for competitive interactions between Hieracium pilosella and Corynephorus canescens for the outcome of the AMF symbiosis. Both species were planted in single, intraspecific and interspecific combinations using a target-neighbor approach with six treatments distributed along a gradient simulating conditions for the interaction between plants and AMF ranking from mutualistic to parasitic. Across all treatments we found mycorrhizal association of H. pilosella being consistently mutualistic, while pronounced parasitism was observed in C. canescens, indicating that environmental and edaphic conditions did not markedly affect the cost:benefit ratio of the mycorrhizal symbiosis in both species. Competitive interactions between both species were strongly affected by AMF, with the impact of AMF on competition being modulated by colonization. Biomass in both species was lowest when grown in interspecific competition, with colonization being increased in the less mycotrophic C. canescens, while decreased in the obligate mycotrophic H. pilosella. Although parasitism-promoting conditions negatively affected MGD in C. canescens, these effects were small as compared to growth decreases related to increased colonization levels in this species. Thus, the lack of plant control over

  11. Conditions Promoting Mycorrhizal Parasitism Are of Minor Importance for Competitive Interactions in Two Differentially Mycotrophic Species.

    PubMed

    Friede, Martina; Unger, Stephan; Hellmann, Christine; Beyschlag, Wolfram

    2016-01-01

    Interactions of plants with arbuscular mycorrhizal fungi (AMF) may range along a broad continuum from strong mutualism to parasitism, with mycorrhizal benefits received by the plant being determined by climatic and edaphic conditions affecting the balance between carbon costs vs. nutritional benefits. Thus, environmental conditions promoting either parasitism or mutualism can influence the mycorrhizal growth dependency (MGD) of a plant and in consequence may play an important role in plant-plant interactions. In a multifactorial field experiment we aimed at disentangling the effects of environmental and edaphic conditions, namely the availability of light, phosphorus and nitrogen, and the implications for competitive interactions between Hieracium pilosella and Corynephorus canescens for the outcome of the AMF symbiosis. Both species were planted in single, intraspecific and interspecific combinations using a target-neighbor approach with six treatments distributed along a gradient simulating conditions for the interaction between plants and AMF ranking from mutualistic to parasitic. Across all treatments we found mycorrhizal association of H. pilosella being consistently mutualistic, while pronounced parasitism was observed in C. canescens, indicating that environmental and edaphic conditions did not markedly affect the cost:benefit ratio of the mycorrhizal symbiosis in both species. Competitive interactions between both species were strongly affected by AMF, with the impact of AMF on competition being modulated by colonization. Biomass in both species was lowest when grown in interspecific competition, with colonization being increased in the less mycotrophic C. canescens, while decreased in the obligate mycotrophic H. pilosella. Although parasitism-promoting conditions negatively affected MGD in C. canescens, these effects were small as compared to growth decreases related to increased colonization levels in this species. Thus, the lack of plant control over

  12. Phenological adjustment in arctic bird species: relative importance of snow melt and ecological factors

    USGS Publications Warehouse

    Liebezeit, Joseph R.; Gurney, K. E. B.; Budde, Michael E.; Zack, Steve; Ward, David H.

    2014-01-01

    Previous studies have documented advancement in clutch initiation dates (CIDs) in response to climate change, most notably for temperate-breeding passerines. Despite accelerated climate change in the Arctic, few studies have examined nest phenology shifts in arctic breeding species. We investigated whether CIDs have advanced for the most abundant breeding shorebird and passerine species at a long-term monitoring site in arctic Alaska. We pooled data from three additional nearby sites to determine the explanatory power of snow melt and ecological variables (predator abundance, green-up) on changes in breeding phenology. As predicted, all species (semipalmated sandpiper, Calidris pusilla, pectoral sandpiper, Calidris melanotos, red-necked phalarope, Phalaropus lobatus, red phalarope, Phalaropus fulicarius, Lapland longspur, Calcarius lapponicus) exhibited advanced CIDs ranging from 0.40 to 0.80 days/year over 9 years. Timing of snow melt was the most important variable in explaining clutch initiation advancement (“climate/snow hypothesis”) for four of the five species, while green-up was a much less important explanatory factor. We found no evidence that high predator abundances led to earlier laying dates (“predator/re-nest hypothesis”). Our results support previous arctic studies in that climate change in the cryosphere will have a strong impact on nesting phenology although factors explaining changes in nest phenology are not necessarily uniform across the entire Arctic. Our results suggest some arctic-breeding shorebird and passerine species are altering their breeding phenology to initiate nesting earlier enabling them to, at least temporarily, avoid the negative consequences of a trophic mismatch.

  13. Hidden biodiversity in an ecologically important freshwater amphipod: differences in genetic structure between two cryptic species.

    PubMed

    Westram, Anja Marie; Jokela, Jukka; Keller, Irene

    2013-01-01

    Cryptic species, i.e. species that are morphologically hard to distinguish, have been detected repeatedly in various taxa and ecosystems. In order to evaluate the importance of this finding, we have to know in how far cryptic species differ in various aspects of their biology. The amphipod Gammarus fossarum is a key invertebrate in freshwater streams and contains several cryptic species. We examined the population genetic structure, genetic diversity and demographic history of two of them (type A and type B) using microsatellite markers and asked whether they show significant differences. We present results of population genetic analyses based on a total of 37 populations from the headwaters of two major European drainages, Rhine and Rhone. We found that, in both species, genetic diversity was geographically structured among and within drainages. For type A in the Rhine and type B in the Rhone, we detected significant patterns of isolation by distance. The increase of genetic differentiation with geographical distance, however, was much higher in type A than in type B. This result indicates substantial interspecific differences in population history and/or the extent of current gene flow between populations. In the Rhine, type B does not show evidence of isolation by distance, and population differentiation is relatively low across hundreds of kilometres. The majority of these populations also show signatures of recent bottlenecks. These patterns are consistent with a recent expansion of type B into the Rhine drainage. In summary, our results suggest considerable and previously unrecognized interspecific differences in the genetic structure of these cryptic keystone species.

  14. Hidden Biodiversity in an Ecologically Important Freshwater Amphipod: Differences in Genetic Structure between Two Cryptic Species

    PubMed Central

    Westram, Anja Marie; Jokela, Jukka; Keller, Irene

    2013-01-01

    Cryptic species, i.e. species that are morphologically hard to distinguish, have been detected repeatedly in various taxa and ecosystems. In order to evaluate the importance of this finding, we have to know in how far cryptic species differ in various aspects of their biology. The amphipod Gammarus fossarum is a key invertebrate in freshwater streams and contains several cryptic species. We examined the population genetic structure, genetic diversity and demographic history of two of them (type A and type B) using microsatellite markers and asked whether they show significant differences. We present results of population genetic analyses based on a total of 37 populations from the headwaters of two major European drainages, Rhine and Rhone. We found that, in both species, genetic diversity was geographically structured among and within drainages. For type A in the Rhine and type B in the Rhone, we detected significant patterns of isolation by distance. The increase of genetic differentiation with geographical distance, however, was much higher in type A than in type B. This result indicates substantial interspecific differences in population history and/or the extent of current gene flow between populations. In the Rhine, type B does not show evidence of isolation by distance, and population differentiation is relatively low across hundreds of kilometres. The majority of these populations also show signatures of recent bottlenecks. These patterns are consistent with a recent expansion of type B into the Rhine drainage. In summary, our results suggest considerable and previously unrecognized interspecific differences in the genetic structure of these cryptic keystone species. PMID:23967060

  15. Identification of Medically Important Yeast Species by Sequence Analysis of the Internal Transcribed Spacer Regions

    PubMed Central

    Leaw, Shiang Ning; Chang, Hsien Chang; Sun, Hsiao Fang; Barton, Richard; Bouchara, Jean-Philippe; Chang, Tsung Chain

    2006-01-01

    Infections caused by yeasts have increased in previous decades due primarily to the increasing population of immunocompromised patients. In addition, infections caused by less common species such as Pichia, Rhodotorula, Trichosporon, and Saccharomyces spp. have been widely reported. This study extensively evaluated the feasibility of sequence analysis of the rRNA gene internal transcribed spacer (ITS) regions for the identification of yeasts of clinical relevance. Both the ITS1 and ITS2 regions of 373 strains (86 species), including 299 reference strains and 74 clinical isolates, were amplified by PCR and sequenced. The sequences were compared to reference data available at the GenBank database by using BLAST (basic local alignment search tool) to determine if species identification was possible by ITS sequencing. Since the GenBank database currently lacks ITS sequence entries for some yeasts, the ITS sequences of type (or reference) strains of 15 species were submitted to GenBank to facilitate identification of these species. Strains producing discrepant identifications between the conventional methods and ITS sequence analysis were further analyzed by sequencing of the D1-D2 domain of the large-subunit rRNA gene for species clarification. The rates of correct identification by ITS1 and ITS2 sequence analysis were 96.8% (361/373) and 99.7% (372/373), respectively. Of the 373 strains tested, only 1 strain (Rhodotorula glutinis BCRC 20576) could not be identified by ITS2 sequence analysis. In conclusion, identification of medically important yeasts by ITS sequencing, especially using the ITS2 region, is reliable and can be used as an accurate alternative to conventional identification methods. PMID:16517841

  16. Species Sorting of Benthic Invertebrates in a Salinity Gradient – Importance of Dispersal Limitation

    PubMed Central

    Josefson, Alf B.

    2016-01-01

    The relative importance of environment and dispersal related processes for community assembly has attracted great interest over recent decades, but few empirical studies from the marine/estuarine realm have examined the possible effects of these two types of factors in the same system. Importance of these processes was investigated in a hypothetical metacommunity of benthic invertebrates in 16 micro-tidal estuaries connected to the same open sea area. The estuaries differed in size and connectivity to the open sea and represented a salinity gradient across the estuaries. The Elements of Metacommunity Structure (EMS) approach on estuary scale was complemented with a mechanistic variance partitioning approach on sample scale to disentangle effects of factors affecting assembly of three trait groups of species with different dispersivity. A quasi-Clementsian pattern was observed for all three traits, a likely response to some latent gradient. The primary axis in the pattern was most strongly related to gradients in estuary salinity and estuary entrance width and correlation with richness indicated nestedness only in the matrix of the most dispersive trait group. In the variance partitioning approach measures of turnover and nestedness between paired samples each from different estuaries were related to environmental distance in different gradients. Distance between estuaries was unimportant suggesting importance of factors characterizing the estuaries. While the high dispersive species mainly were sorted in the salinity gradient, apparently according to their tolerance ranges towards salinity, the two less dispersive traits were additionally affected by estuary entrance width and possibly also area. The results exemplify a mechanism of community assembly in the marine realm where the niche factor salinity in conjunction with differential dispersal structure invertebrates in a metacommunity of connected estuaries, and support the idea that dispersive species are more

  17. 46 CFR 148.325 - Wood chips; wood pellets; wood pulp pellets.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Wood chips; wood pellets; wood pulp pellets. 148.325... § 148.325 Wood chips; wood pellets; wood pulp pellets. (a) This part applies to wood chips and wood pulp... cargo hold. (b) No person may enter a cargo hold containing wood chips, wood pellets, or wood...

  18. 46 CFR 148.325 - Wood chips; wood pellets; wood pulp pellets.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Wood chips; wood pellets; wood pulp pellets. 148.325... § 148.325 Wood chips; wood pellets; wood pulp pellets. (a) This part applies to wood chips and wood pulp... cargo hold. (b) No person may enter a cargo hold containing wood chips, wood pellets, or wood...

  19. 46 CFR 148.325 - Wood chips; wood pellets; wood pulp pellets.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Wood chips; wood pellets; wood pulp pellets. 148.325... § 148.325 Wood chips; wood pellets; wood pulp pellets. (a) This part applies to wood chips and wood pulp... cargo hold. (b) No person may enter a cargo hold containing wood chips, wood pellets, or wood...

  20. 46 CFR 148.325 - Wood chips; wood pellets; wood pulp pellets.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Wood chips; wood pellets; wood pulp pellets. 148.325... § 148.325 Wood chips; wood pellets; wood pulp pellets. (a) This part applies to wood chips and wood pulp... cargo hold. (b) No person may enter a cargo hold containing wood chips, wood pellets, or wood...

  1. Tracing nitrogen accumulation in decaying wood and examining its impact on wood decomposition rate

    NASA Astrophysics Data System (ADS)

    Rinne, Katja T.; Rajala, Tiina; Peltoniemi, Krista; Chen, Janet; Smolander, Aino; Mäkipää, Raisa

    2016-04-01

    Decomposition of dead wood, which is controlled primarily by fungi is important for ecosystem carbon cycle and has potentially a significant role in nitrogen fixation via diazotrophs. Nitrogen content has been found to increase with advancing wood decay in several studies; however, the importance of this increase to decay rate and the sources of external nitrogen remain unclear. Improved knowledge of the temporal dynamics of wood decomposition rate and nitrogen accumulation in wood as well as the drivers of the two processes would be important for carbon and nitrogen models dealing with ecosystem responses to climate change. To tackle these questions we applied several analytical methods on Norway spruce logs from Lapinjärvi, Finland. We incubated wood samples (density classes from I to V, n=49) in different temperatures (from 8.5oC to 41oC, n=7). After a common seven day pre-incubation period at 14.5oC, the bottles were incubated six days in their designated temperature prior to CO2 flux measurements with GC to determine the decomposition rate. N2 fixation was measured with acetylene reduction assay after further 48 hour incubation. In addition, fungal DNA, (MiSeq Illumina) δ15N and N% composition of wood for samples incubated at 14.5oC were determined. Radiocarbon method was applied to obtain age distribution for the density classes. The asymbiotic N2 fixation rate was clearly dependent on the stage of wood decay and increased from stage I to stage IV but was substantially reduced in stage V. CO2 production was highest in the intermediate decay stage (classes II-IV). Both N2 fixation and CO2 production were highly temperature sensitive having optima in temperature 25oC and 31oC, respectively. We calculated the variation of annual levels of respiration and N2 fixation per hectare for the study site, and used the latter data together with the 14C results to determine the amount of N2 accumulated in wood in time. The proportion of total nitrogen in wood

  2. Plastid genomics in horticultural species: importance and applications for plant population genetics, evolution, and biotechnology.

    PubMed

    Rogalski, Marcelo; do Nascimento Vieira, Leila; Fraga, Hugo P; Guerra, Miguel P

    2015-01-01

    During the evolution of the eukaryotic cell, plastids, and mitochondria arose from an endosymbiotic process, which determined the presence of three genetic compartments into the incipient plant cell. After that, these three genetic materials from host and symbiont suffered several rearrangements, bringing on a complex interaction between nuclear and organellar gene products. Nowadays, plastids harbor a small genome with ∼130 genes in a 100-220 kb sequence in higher plants. Plastid genes are mostly highly conserved between plant species, being useful for phylogenetic analysis in higher taxa. However, intergenic spacers have a relatively higher mutation rate and are important markers to phylogeographical and plant population genetics analyses. The predominant uniparental inheritance of plastids is like a highly desirable feature for phylogeny studies. Moreover, the gene content and genome rearrangements are efficient tools to capture and understand evolutionary events between different plant species. Currently, genetic engineering of the plastid genome (plastome) offers a number of attractive advantages as high-level of foreign protein expression, marker gene excision, gene expression in operon and transgene containment because of maternal inheritance of plastid genome in most crops. Therefore, plastid genome can be used for adding new characteristics related to synthesis of metabolic compounds, biopharmaceutical, and tolerance to biotic and abiotic stresses. Here, we describe the importance and applications of plastid genome as tools for genetic and evolutionary studies, and plastid transformation focusing on increasing the performance of horticultural species in the field.

  3. The importance of species sorting differs between habitat generalists and specialists in bacterial communities.

    PubMed

    Székely, Anna J; Langenheder, Silke

    2014-01-01

    Recent studies have shown that the spatial turnover of bacterial communities, that is, beta-diversity, is determined by a combination of different assembly mechanisms, such as species sorting, that is, environmental filtering, and dispersal-related mechanisms. However, it is currently unclear to what extent the importance of the different mechanisms depends on community traits. Here, we implemented a study using a rock pool metacommunity to test whether habitat specialization of bacterial taxa and groups or their phylogenetic identity influenced by which mechanisms communities were assembled. In general, our results show that species sorting was the most important assembly mechanism. However, we found that a larger fraction of the variation in bacterial community composition between pools could be explained by environmental factors in case of habitat generalists, that is, taxa that were widespread and abundant in the metacommunity, compared with habitat specialists, that is, taxa that had a more restricted distribution range and tended to be rare. Differences in assembly mechanisms were observed between different major phyla and classes. However, also here, a larger fraction of the variation in community composition among pools could be explained for taxonomic groups that contained on average more habitat generalists. In summary, our results show that species sorting is stronger for the most common taxa, indicating that beta-diversity along environmental gradients can be adequately described without considering rare taxa.

  4. Plastid genomics in horticultural species: importance and applications for plant population genetics, evolution, and biotechnology

    PubMed Central

    Rogalski, Marcelo; do Nascimento Vieira, Leila; Fraga, Hugo P.; Guerra, Miguel P.

    2015-01-01

    During the evolution of the eukaryotic cell, plastids, and mitochondria arose from an endosymbiotic process, which determined the presence of three genetic compartments into the incipient plant cell. After that, these three genetic materials from host and symbiont suffered several rearrangements, bringing on a complex interaction between nuclear and organellar gene products. Nowadays, plastids harbor a small genome with ∼130 genes in a 100–220 kb sequence in higher plants. Plastid genes are mostly highly conserved between plant species, being useful for phylogenetic analysis in higher taxa. However, intergenic spacers have a relatively higher mutation rate and are important markers to phylogeographical and plant population genetics analyses. The predominant uniparental inheritance of plastids is like a highly desirable feature for phylogeny studies. Moreover, the gene content and genome rearrangements are efficient tools to capture and understand evolutionary events between different plant species. Currently, genetic engineering of the plastid genome (plastome) offers a number of attractive advantages as high-level of foreign protein expression, marker gene excision, gene expression in operon and transgene containment because of maternal inheritance of plastid genome in most crops. Therefore, plastid genome can be used for adding new characteristics related to synthesis of metabolic compounds, biopharmaceutical, and tolerance to biotic and abiotic stresses. Here, we describe the importance and applications of plastid genome as tools for genetic and evolutionary studies, and plastid transformation focusing on increasing the performance of horticultural species in the field. PMID:26284102

  5. Spectral Data Captures Important Variability Between and Among Species and Functional Types

    NASA Astrophysics Data System (ADS)

    Townsend, P. A.; Serbin, S. P.; Kingdon, C.; Singh, A.; Couture, J. J.; Gamon, J. A.

    2013-12-01

    Narrowband spectral data in the visible, near and shortwave infrared (400-2500 nm) are being used increasingly in plant ecology to characterize the biochemical, physiological and water status of vegetation, as well as community composition. In particular, spectroscopic data have recently received considerable attention for their capacity to discriminate plants according to functional properties or 'optical types.' Such measurements can be acquired from airborne/satellite remote sensing imagery or field spectrometers and are commonly used to directly estimate or infer properties important to photosynthesis, carbon and water fluxes, nutrient dynamics, phenology, and disturbance. Spectral data therefore represent proxies for measurements that are otherwise time consuming or expensive to make, and - more importantly - provide the opportunity to characterize the spatial and temporal variability of taxonomic or functional groups. We have found that spectral variation within species and functional types can in fact exceed the variation between types. As such, we recommend that the traditional quantification of characteristics defining species and/or functional types must be modified to include the range of variability in those properties. We provide four examples of the importance of spectral data for describing within-species/functional type variation. First, within temperate forests, the spectral properties of foliage vary considerably with canopy position. This variability is strongly related to differences in specific leaf area between shade- and sun-lit leaves, and the resulting differences among leaves in strategies for light harvesting, photosynthesis, and leaf longevity. These results point to the need to better characterize leaf optical properties throughout a canopy, rather than basing the characterization of ecosystem functioning on only the sunlit portion of the canopy crown. Second, we show considerable differences in optical properties of foliage from

  6. A new species and key to species of the agriculturally important sharpshooter genus Sonesimia Young (Hemiptera: Cicadellidae: Cicadellini).

    PubMed

    Felix, Márcio; Lima, Douglas Felipe Dos Santos; Mejdalani, Gabriel; Cavichioli, Rodney R

    2013-01-17

    The new sharpshooter species Sonesimia nessimiani is described from Bolivia based on specimens collected on sugar cane. An identification key to males and females of all known species of the genus is given. In addition to the external morphology, color pattern, and male genitalia, female genital structures are also described and illustrated. Notes comparing the new species with the remaining six Sonesimia species are provided.

  7. Robust detection of rare species using environmental DNA: the importance of primer specificity.

    PubMed

    Wilcox, Taylor M; McKelvey, Kevin S; Young, Michael K; Jane, Stephen F; Lowe, Winsor H; Whiteley, Andrew R; Schwartz, Michael K

    2013-01-01

    Environmental DNA (eDNA) is being rapidly adopted as a tool to detect rare animals. Quantitative PCR (qPCR) using probe-based chemistries may represent a particularly powerful tool because of the method's sensitivity, specificity, and potential to quantify target DNA. However, there has been little work understanding the performance of these assays in the presence of closely related, sympatric taxa. If related species cause any cross-amplification or interference, false positives and negatives may be generated. These errors can be disastrous if false positives lead to overestimate the abundance of an endangered species or if false negatives prevent detection of an invasive species. In this study we test factors that influence the specificity and sensitivity of TaqMan MGB assays using co-occurring, closely related brook trout (Salvelinus fontinalis) and bull trout (S. confluentus) as a case study. We found qPCR to be substantially more sensitive than traditional PCR, with a high probability of detection at concentrations as low as 0.5 target copies/µl. We also found that number and placement of base pair mismatches between the Taqman MGB assay and non-target templates was important to target specificity, and that specificity was most influenced by base pair mismatches in the primers, rather than in the probe. We found that insufficient specificity can result in both false positive and false negative results, particularly in the presence of abundant related species. Our results highlight the utility of qPCR as a highly sensitive eDNA tool, and underscore the importance of careful assay design.

  8. Robust Detection of Rare Species Using Environmental DNA: The Importance of Primer Specificity

    PubMed Central

    Wilcox, Taylor M.; McKelvey, Kevin S.; Young, Michael K.; Jane, Stephen F.; Lowe, Winsor H.; Whiteley, Andrew R.; Schwartz, Michael K.

    2013-01-01

    Environmental DNA (eDNA) is being rapidly adopted as a tool to detect rare animals. Quantitative PCR (qPCR) using probe-based chemistries may represent a particularly powerful tool because of the method’s sensitivity, specificity, and potential to quantify target DNA. However, there has been little work understanding the performance of these assays in the presence of closely related, sympatric taxa. If related species cause any cross-amplification or interference, false positives and negatives may be generated. These errors can be disastrous if false positives lead to overestimate the abundance of an endangered species or if false negatives prevent detection of an invasive species. In this study we test factors that influence the specificity and sensitivity of TaqMan MGB assays using co-occurring, closely related brook trout (Salvelinus fontinalis) and bull trout (S. confluentus) as a case study. We found qPCR to be substantially more sensitive than traditional PCR, with a high probability of detection at concentrations as low as 0.5 target copies/µl. We also found that number and placement of base pair mismatches between the Taqman MGB assay and non-target templates was important to target specificity, and that specificity was most influenced by base pair mismatches in the primers, rather than in the probe. We found that insufficient specificity can result in both false positive and false negative results, particularly in the presence of abundant related species. Our results highlight the utility of qPCR as a highly sensitive eDNA tool, and underscore the importance of careful assay design. PMID:23555689

  9. Pollinators of Richardia grandiflora (Rubiaceae): an Important Ruderal Species for Bees.

    PubMed

    Cruz, R M; Martins, C F

    2015-02-01

    Ruderal species may provide pollen and nectar to maintain the pollinators of crops in periods of floral resource shortage. The knowledge about the floral biology of these plant species and their interaction with insects is important for management strategies of agricultural systems. The study was carried out at an experimental research station in two different periods (August 2010-April 2011 and August 2012-January 2013). Floral biology was studied, and the reproductive system and reproductive efficacy (RE) were analyzed using controlled pollination experiments. Furthermore, floral visitors and pollination were identified and quantified. Reproductive success obtained in the open pollination and cross-pollination experiments was higher than those obtained in spontaneous self, hand self, and wind pollination. Richardia grandiflora bloomed throughout the experimental period, and flowers were visited by Coleoptera, Diptera, Hymenoptera, and Lepidoptera, which were observed foraging for pollen and/or nectar. Among the floral visitors, bees were the richest and most frequent group and often contacted anthers and stigmas during visits. Africanized honeybees touched the floral reproductive structures in all visits, and their frequency may be related to changes in the reproductive efficacy between the study periods. Pollinator species of crops cultivated at the experimental research station were frequent bee visitors of R. grandiflora. We demonstrated that R. grandiflora requires cross-pollination and biotic pollen vectors. Among floral visitors, bees are the main pollinators, especially the Africanized honeybees. R. grandiflora can be considered an important ruderal species for maintaining bee pollinator populations at the study site, providing resources during the period that crops are not blooming.

  10. Salt effects on functional traits in model and in economically important Lotus species.

    PubMed

    Uchiya, P; Escaray, F J; Bilenca, D; Pieckenstain, F; Ruiz, O A; Menéndez, A B

    2016-07-01

    A common stress on plants is NaCl-derived soil salinity. Genus Lotus comprises model and economically important species, which have been studied regarding physiological responses to salinity. Leaf area ratio (LAR), root length ratio (RLR) and their components, specific leaf area (SLA) and leaf mass fraction (LMF) and specific root length (SRL) and root mass fraction (RMF) might be affected by high soil salinity. We characterised L. tenuis, L. corniculatus, L. filicaulis, L. creticus, L. burtii and L. japonicus grown under different salt concentrations (0, 50, 100 and 150 mm NaCl) on the basis of SLA, LMF, SRL and RMF using PCA. We also assessed effects of different salt concentrations on LAR and RLR in each species, and explored whether changes in these traits provide fitness benefit. Salinity (150 mm NaCl) increased LAR in L. burtii and L. corniculatus, but not in the remaining species. The highest salt concentration caused a decrease of RLR in L. japonicus Gifu, but not in the remaining species. Changes in LAR and RLR would not be adaptive, according to adaptiveness analysis, with the exception of SLA changes in L. corniculatus. PCA revealed that under favourable conditions plants optimise surfaces for light and nutrient acquisition (SLA and SRL), whereas at higher salt concentrations they favour carbon allocation to leaves and roots (LMF and RMF) in detriment to their surfaces. PCA also showed that L. creticus subjected to saline treatment was distinguished from the remaining Lotus species. We suggest that augmented carbon partitioning to leaves and roots could constitute a salt-alleviating mechanism through toxic ion dilution.

  11. BOREAL FOREST CARBON STOCKS AND WOOD SUPPLY: PAST, PRESENT AND FUTURE RESPONSES TO CHANGING CLIMATE, AGRICULTURE AND SPECIES AVAILABILITY

    EPA Science Inventory

    The paper assesses the role in boreal forest growth played by environment. It examines past changes in climate coupled with glaciation, and future changes in climate coupled with agricultural land use and tree species availability. The objective was to define and evaluate potenti...

  12. Physical and chemical characterization of biochars produced from coppiced wood of thirteen tree species for use in horticultural substrates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seven-year-old coppiced shoots from thirteen species of native and non-native trees and shrubs were harvested, dried, and were pyrolyzed to produce biochars for potential use in horticultural substrates. Several chemical and physical characteristics of the biochars were determined. There were slight...

  13. Characteristics of Imported Malaria and Species of Plasmodium Involved in Shandong Province, China (2012-2014)

    PubMed Central

    Xu, Chao; Wei, Qing-Kuan; Li, Jin; Xiao, Ting; Yin, Kun; Zhao, Chang-Lei; Wang, Yong-Bin; Kong, Xiang-Li; Zhao, Gui-Hua; Sun, Hui; Liu, Xin; Huang, Bing-Cheng

    2016-01-01

    Malaria remains a serious public health problem in Shandong Province, China; therefore, it is important to explore the characteristics of the current malaria prevalence situation in the province. In this study, data of malaria cases reported in Shandong during 2012-2014 were analyzed, and Plasmodium species were confirmed by smear microscopy and nested-PCR. A total of 374 malaria cases were reported, 80.8% of which were reported from 6 prefectures. Of all cases, P. falciparum was dominant (81.3%), followed by P. vivax (11.8%); P. ovale and P. malariae together accounted for 6.4% of cases. Notably, for the first time since 2012, no indigenous case had been reported in Shandong Province, a situation that continued through 2014. Total 95.2% of cases were imported from Africa. The ratio of male/female was 92.5:1, and 96.8% of cases occurred in people 20-54 years of age. Farmers or laborers represented 77.5% of cases. No significant trends of monthly pattern were found in the reported cases. All patients were in good condition after treatment, except for 3 who died. These results indicate that imported malaria has increased significantly since 2012 in Shandong Province, especially for P. falciparum, and there is an emergence of species diversity. PMID:27658591

  14. Characteristics of Imported Malaria and Species of Plasmodium Involved in Shandong Province, China (2012-2014).

    PubMed

    Xu, Chao; Wei, Qing-Kuan; Li, Jin; Xiao, Ting; Yin, Kun; Zhao, Chang-Lei; Wang, Yong-Bin; Kong, Xiang-Li; Zhao, Gui-Hua; Sun, Hui; Liu, Xin; Huang, Bing-Cheng

    2016-08-01

    Malaria remains a serious public health problem in Shandong Province, China; therefore, it is important to explore the characteristics of the current malaria prevalence situation in the province. In this study, data of malaria cases reported in Shandong during 2012-2014 were analyzed, and Plasmodium species were confirmed by smear microscopy and nested-PCR. A total of 374 malaria cases were reported, 80.8% of which were reported from 6 prefectures. Of all cases, P. falciparum was dominant (81.3%), followed by P. vivax (11.8%); P. ovale and P. malariae together accounted for 6.4% of cases. Notably, for the first time since 2012, no indigenous case had been reported in Shandong Province, a situation that continued through 2014. Total 95.2% of cases were imported from Africa. The ratio of male/female was 92.5:1, and 96.8% of cases occurred in people 20-54 years of age. Farmers or laborers represented 77.5% of cases. No significant trends of monthly pattern were found in the reported cases. All patients were in good condition after treatment, except for 3 who died. These results indicate that imported malaria has increased significantly since 2012 in Shandong Province, especially for P. falciparum, and there is an emergence of species diversity.

  15. Observations on morphology of immature Lucilia porphyrina (Diptera: Calliphoridae), a fly species of forensic importance.

    PubMed

    Klong-Klaew, Tunwadee; Sukontason, Kom; Sribanditmongkol, Pongruk; Moophayak, Kittikhun; Sanit, Sangob; Sukontason, Kabkaew L

    2012-11-01

    Lucilia porphyrina (Walker) is a blow fly of forensic importance, and shares its geographical distribution with a related forensically important species, Lucilia cuprina (Wiedemann). The immature stages of both species are similar in general appearance; therefore, correct identification should be given special consideration. This study highlighted the main features of L. porphyrina larvae, as observed under light microscopy and scanning electron microscopy. Particular attention is given to the anterior and posterior spiracles, cephalopharyngeal skeleton, and characteristics of the dorsal spines between the prothorax and mesothorax. In the third instar specifically, morphological information on L. porphyrina showed several features that are shared by L. cuprina, and therefore need certain identification to distinguish between them. Such key features are (1) greater posterior spiracle, (2) apparent inner projection between the middle and lower slits of the posterior spiracle, and (3) strongly sclerotized peritreme. The number of papillae on the anterior spiracle may be a supplement, five to nine and three to six in L. porphyrina and L. cuprina, respectively. The key for identifying third instar of forensically important flies in Thailand has been updated to include L. porphyrina.

  16. Marine fronts are important fishing areas for demersal species at the Argentine Sea (Southwest Atlantic Ocean)

    NASA Astrophysics Data System (ADS)

    Alemany, Daniela; Acha, Eduardo M.; Iribarne, Oscar O.

    2014-03-01

    The high primary and secondary production associated with frontal systems attract a diversity of organisms due to high prey availability; this is why a strong relationship between fronts and pelagic fisheries has been shown worldwide. In the Argentine Sea, demersal resources are the most important, both in economical and in ecological sense; so we hypothesize that fronts are also preferred fishing areas for demersal resources. We evaluated the relationship between spatial distribution of fishing effort and oceanographic fronts, analyzing three of the most important frontal systems located in the Argentine Sea: the shelf-break front, the southern Patagonia front and the mid-shelf front. Individual vessel satellite monitoring system data (VMS; grouped by fleet type: ice-trawlers, freezer-trawlers and jigging fleet) were studied and fishing events were identified. Fishing events per area were used as a proxy of fishing effort and its spatial distribution by fleet type was visualized and analyzed with Geographic Information Systems. Oceanographic fronts were defined using polygons based on satellite chlorophyll amplitude values, and the percentage of fishing events within each polygon was calculated. Results showed a positive association between fronts and fishing activities of the different fleets, which suggests the aggregation of target species in these zones. The coupling of the freezer-trawler and jigging fleets (that operate on lower trophic level species; Macruronus magellanicus and Illex argentinus respectively) with fronts was higher than the ice-trawler fleet, targeting species of higher trophic level (Merluccius hubbsi). Marine fronts represent important fishing areas, even for demersal resources, as the distribution of fishing fleets and fishing effort are positively associated with frontal zones.

  17. Temporal and Spatial Variations of Bacterial and Faunal Communities Associated with Deep-Sea Wood Falls.

    PubMed

    Pop Ristova, Petra; Bienhold, Christina; Wenzhöfer, Frank; Rossel, Pamela E; Boetius, Antje

    2017-01-01

    Sinking of large organic food falls i.e. kelp, wood and whale carcasses to the oligotrophic deep-sea floor promotes the establishment of locally highly productive and diverse ecosystems, often with specifically adapted benthic communities. However, the fragmented spatial distribution and small area poses challenges for the dispersal of their microbial and faunal communities. Our study focused on the temporal dynamics and spatial distributions of sunken wood bacterial communities, which were deployed in the vicinity of different cold seeps in the Eastern Mediterranean and the Norwegian deep-seas. By combining fingerprinting of bacterial communities by ARISA and 454 sequencing with in situ and ex situ biogeochemical measurements, we show that sunken wood logs have a locally confined long-term impact (> 3y) on the sediment geochemistry and community structure. We confirm previous hypotheses of different successional stages in wood degradation including a sulphophilic one, attracting chemosynthetic fauna from nearby seep systems. Wood experiments deployed at similar water depths (1100-1700 m), but in hydrographically different oceanic regions harbored different wood-boring bivalves, opportunistic faunal communities, and chemosynthetic species. Similarly, bacterial communities on sunken wood logs were more similar within one geographic region than between different seas. Diverse sulphate-reducing bacteria of the Deltaproteobacteria, the sulphide-oxidizing bacteria Sulfurovum as well as members of the Acidimicrobiia and Bacteroidia dominated the wood falls in the Eastern Mediterranean, while Alphaproteobacteria and Flavobacteriia colonized the Norwegian Sea wood logs. Fauna and bacterial wood-associated communities changed between 1 to 3 years of immersion, with sulphate-reducers and sulphide-oxidizers increasing in proportion, and putative cellulose degraders decreasing with time. Only 6% of all bacterial genera, comprising the core community, were found at any time on

  18. The importance of rare species: a trait-based assessment of rare species contributions to functional diversity and possible ecosystem function in tall-grass prairies

    PubMed Central

    Jain, Meha; Flynn, Dan FB; Prager, Case M; Hart, Georgia M; DeVan, Caroline M; Ahrestani, Farshid S; Palmer, Matthew I; Bunker, Daniel E; Knops, Johannes MH; Jouseau, Claire F; Naeem, Shahid

    2014-01-01

    The majority of species in ecosystems are rare, but the ecosystem consequences of losing rare species are poorly known. To understand how rare species may influence ecosystem functioning, this study quantifies the contribution of species based on their relative level of rarity to community functional diversity using a trait-based approach. Given that rarity can be defined in several different ways, we use four different definitions of rarity: abundance (mean and maximum), geographic range, and habitat specificity. We find that rarer species contribute to functional diversity when rarity is defined by maximum abundance, geographic range, and habitat specificity. However, rarer species are functionally redundant when rarity is defined by mean abundance. Furthermore, when using abundance-weighted analyses, we find that rare species typically contribute significantly less to functional diversity than common species due to their low abundances. These results suggest that rare species have the potential to play an important role in ecosystem functioning, either by offering novel contributions to functional diversity or via functional redundancy depending on how rare species are defined. Yet, these contributions are likely to be greatest if the abundance of rare species increases due to environmental change. We argue that given the paucity of data on rare species, understanding the contribution of rare species to community functional diversity is an important first step to understanding the potential role of rare species in ecosystem functioning. PMID:24455165

  19. The importance of rare species: a trait-based assessment of rare species contributions to functional diversity and possible ecosystem function in tall-grass prairies.

    PubMed

    Jain, Meha; Flynn, Dan Fb; Prager, Case M; Hart, Georgia M; Devan, Caroline M; Ahrestani, Farshid S; Palmer, Matthew I; Bunker, Daniel E; Knops, Johannes Mh; Jouseau, Claire F; Naeem, Shahid

    2014-01-01

    The majority of species in ecosystems are rare, but the ecosystem consequences of losing rare species are poorly known. To understand how rare species may influence ecosystem functioning, this study quantifies the contribution of species based on their relative level of rarity to community functional diversity using a trait-based approach. Given that rarity can be defined in several different ways, we use four different definitions of rarity: abundance (mean and maximum), geographic range, and habitat specificity. We find that rarer species contribute to functional diversity when rarity is defined by maximum abundance, geographic range, and habitat specificity. However, rarer species are functionally redundant when rarity is defined by mean abundance. Furthermore, when using abundance-weighted analyses, we find that rare species typically contribute significantly less to functional diversity than common species due to their low abundances. These results suggest that rare species have the potential to play an important role in ecosystem functioning, either by offering novel contributions to functional diversity or via functional redundancy depending on how rare species are defined. Yet, these contributions are likely to be greatest if the abundance of rare species increases due to environmental change. We argue that given the paucity of data on rare species, understanding the contribution of rare species to community functional diversity is an important first step to understanding the potential role of rare species in ecosystem functioning.

  20. Phylogeny of economically important insect pests that infesting several crops species in Malaysia

    NASA Astrophysics Data System (ADS)

    Ghazali, Siti Zafirah; Zain, Badrul Munir Md.; Yaakop, Salmah

    2014-09-01

    This paper reported molecular data on insect pests of commercial crops in Peninsular Malaysia. Fifteen insect pests (Metisa plana, Calliteara horsefeldii, Cotesia vestalis, Bactrocera papayae, Bactrocera carambolae, Bactrocera latifrons, Conopomorpha cramella, Sesamia inferens, Chilo polychrysa, Rhynchophorus vulneratus, and Rhynchophorus ferrugineus) of nine crops were sampled (oil palm, coconut, paddy, cocoa, starfruit, angled loofah, guava, chili and mustard) and also four species that belong to the fern's pest (Herpetogramma platycapna) and storage and rice pests (Tribolium castaneum, Oryzaephilus surinamensis and Cadra cautella). The presented phylogeny summarized the initial phylogenetic hypothesis, which concerning by implementation of the economically important insect pests. In this paper, phylogenetic relationships among 39 individuals of 15 species that belonging to three orders under 12 genera were inferred from DNA sequences of mitochondrial marker, cytochrome oxidase subunit I (COI) and nuclear marker, ribosomal DNA 28S D2 region. The phylogenies resulted from the phylogenetic analyses of both genes are relatively similar, but differ in the sequence of evolution. Interestingly, this most recent molecular data of COI sequences data by using Bayesian Inference analysis resulted a more-resolved phylogeny that corroborated with traditional hypotheses of holometabolan relationships based on traditional hypotheses of holometabolan relationships and most of recently molecular study compared to 28S sequences. This finding provides the information on relationships of pests species, which infested several crops in Malaysia and also estimation on Holometabola's order relationships. The identification of the larval stages of insect pests could be done accurately, without waiting the emergence of adults and supported by the phylogenetic tree.

  1. Improved Wood Properties Through Genetic Manipulation: Engineering of Syringyl Lignin in Softwood Species Through Xylem-Specific Expression of Hardwood Syringyl Monolignol Pathway Genes

    SciTech Connect

    Chandrashekhar P. Joshi; Vincent L. Chiang

    2009-01-29

    Project Objective: Our long-term goal is to genetically engineer higher value raw materials with desirable wood properties to promote energy efficiency, international competitiveness, and environmental responsiveness of the U.S. forest products industry. The immediate goal of this project was to produce the first higher value softwood raw materials engineered with a wide range of syringyl lignin quantities. Summary: The most important wood property affecting directly the levels of energy, chemical and bleaching requirements for kraft pulp production is lignin. Softwoods contain almost exclusively chemically resistant guaiacyl (G) lignin, whereas hardwoods have more reactive or easily degradable lignins of the guaiacyl (G)-syringyl (S) type. It is also well established that the reactive S lignin component is the key factor that permits much lower effective alkali and temperature, shorter pulping time and less bleaching stages for processing hardwoods than for softwoods. Furthermore, our pulping kinetic study explicitly demonstrated that every increase in one unit of the lignin S/G ratio would roughly double the rate of lignin removal. These are clear evidence that softwoods genetically engineered with S lignin are keys to revolutionizing the energy efficiency and enhancing the environmental performance of this industry. Softwoods and hardwoods share the same genetic mechanisms for the biosynthesis of G lignin. However, in hardwoods, three additional genes branch out from the G-lignin pathway and become specifically engaged in regulating S lignin biosynthesis. In this research, we simultaneously transferred aspen S-specific genes into a model softwood, black spruce, to engineer S lignin.

  2. CHROMagar Candida, a new differential isolation medium for presumptive identification of clinically important Candida species.

    PubMed Central

    Odds, F C; Bernaerts, R

    1994-01-01

    CHROMagar Candida is a novel, differential culture medium that is claimed to facilitate the isolation and presumptive identification of some clinically important yeast species. We evaluated the use of this medium with 726 yeast isolates, including 82 isolated directly on the medium from clinical material. After 2 days of incubation at 37 degrees C, 285 C. albicans isolates gave distinctive green colonies that were not seen with any of 441 other yeast isolates representing 21 different species. A total of 54 C. tropicalis isolates also developed distinctive dark blue-gray colonies with a halo of dark brownish purple in the surrounding agar. C. krusei isolates (n = 43) also formed highly characteristic rough, spreading colonies with pale pink centers and a white edge that was otherwise encountered only rarely with isolates of C. norvegensis. Trichosporon spp. (n = 34) formed small, pale colonies that became larger and characteristically rough with prolonged incubation. Most of the other 310 yeasts studied formed colonies with a color that ranged from white to pink to purple with a brownish tint. The only exceptions were found among isolates identified as Geotrichum sp. or Pichia sp., some of which formed colonies with a gray to blue color and which in two instances formed a green pigment or a dark halo in the agar. The specificity and sensitivity of the new medium for the presumptive identification of C. albicans, C. krusei, and C. tropicalis exceeded 99% for all three species. A blinded reading test involving four personnel and 57 yeast isolates representing nine clinically important species confirmed that colonial appearance after 48 h of incubation on CHROMagar Candida afforded the correct presumptive recognition of C. albicans, C. tropicalis, C, krusei, and Trichosporon spp. None of nine bacterial isolates grew on CHROMagar Candida within 72 h, and bacteria (Escherichia coli) grew from only 4 of 104 vaginal, 100 oral, and 99 anorectal swabs. The new medium

  3. Effects of environmental temperature on oviposition behavior in three blow fly species of forensic importance.

    PubMed

    Ody, Helen; Bulling, Mark T; Barnes, Kate M

    2017-03-14

    A number of factors are known to affect blow fly behavior with respect to oviposition. Current research indicates that temperature is the most significant factor. However temperature thresholds for oviposition in forensically important blow flies have not been well studied. Here, the oviposition behavior of three species of forensically important blow fly species (Calliphora vicina, Calliphora vomitoria and Lucilia sericata,) was studied under controlled laboratory conditions over a range of temperatures (10-40°C). Lower temperature thresholds for oviposition of 16°C and 17.5°C were established for C. vomitoria and L. sericata respectively, whilst C. vicina continued to lay eggs at 10°C. C. vomitoria and L. sericata both continued to lay eggs at 40°C, whilst the highest temperature at which oviposition occurred in C. vicina was 35°C. Within these thresholds there was considerable variation in the number of surviving pupae, with a general pattern of a single peak within the range of temperatures at which eggs were laid, but with the pattern being much less distinct for L. sericata.

  4. Vulnerability assessment of New Jersey's food supply to invasive species: the New Jersey IMPORT project.

    PubMed

    Gregory, Petros; Hamilton, George; Borjan, Marija; Robson, Mark

    2006-01-01

    The United States' environment and economy have been severely impacted by unintentionally introduced biological organisms for the last 100 years. Our ecosystems and biological reserves of conservation importance are regularly invaded by non-indigenous species. To help prevent future invaders from entering the ports, this project undertaken at the Port of Elizabeth proposed to: 1. Catalog the different vegetable and fruit crops entering this country; 2. Evaluate the potential risk to New Jersey crops that an introduced exotic pest might pose; and 3. Evaluate the potential that imported crops entering the U.S. have for harboring exotic pests. The New Jersey IMPORT report, or Invasive Management Promoting Open and Responsible Trade project, details a newly designed ecological risk assessment tool to evaluate entry potential of invasive pests at the Port of Elizabeth. Risk designations were assigned to shipments of four fruits; seven vegetables; and two field/forage crops based on: i) Country of origin; ii) Amounts of commodities imported; and iii) Endemic pests present in exporting countries. Between 5,000 and 180,000 tons of crops were imported into the Port of Elizabeth from October 2001 to 2003. Pest risk analyses were drafted for twenty-five intercepted insects taken from the Port Information Network. In addition, eighteen pest risk analyses were drafted for invasive fungi, bacteria, and viruses of global concern as alerted by ProMed Digest. It was concluded that three crops imported remain at high risk: apples, peppers, and tomatoes. Peaches, soybeans, lettuce, sweet corn, potatoes, squash, and eggplant imported were considered moderate risk. Blueberries, cranberries, and alfalfa were considered low risk.

  5. Evaluating Functional Diversity: Missing Trait Data and the Importance of Species Abundance Structure and Data Transformation

    PubMed Central

    Bryndová, Michala; Kasari, Liis; Norberg, Anna; Weiss, Matthias; Bishop, Tom R.; Luke, Sarah H.; Sam, Katerina; Le Bagousse-Pinguet, Yoann; Lepš, Jan; Götzenberger, Lars; de Bello, Francesco

    2016-01-01

    Functional diversity (FD) is an important component of biodiversity that quantifies the difference in functional traits between organisms. However, FD studies are often limited by the availability of trait data and FD indices are sensitive to data gaps. The distribution of species abundance and trait data, and its transformation, may further affect the accuracy of indices when data is incomplete. Using an existing approach, we simulated the effects of missing trait data by gradually removing data from a plant, an ant and a bird community dataset (12, 59, and 8 plots containing 62, 297 and 238 species respectively). We ranked plots by FD values calculated from full datasets and then from our increasingly incomplete datasets and compared the ranking between the original and virtually reduced datasets to assess the accuracy of FD indices when used on datasets with increasingly missing data. Finally, we tested the accuracy of FD indices with and without data transformation, and the effect of missing trait data per plot or per the whole pool of species. FD indices became less accurate as the amount of missing data increased, with the loss of accuracy depending on the index. But, where transformation improved the normality of the trait data, FD values from incomplete datasets were more accurate than before transformation. The distribution of data and its transformation are therefore as important as data completeness and can even mitigate the effect of missing data. Since the effect of missing trait values pool-wise or plot-wise depends on the data distribution, the method should be decided case by case. Data distribution and data transformation should be given more careful consideration when designing, analysing and interpreting FD studies, especially where trait data are missing. To this end, we provide the R package “traitor” to facilitate assessments of missing trait data. PMID:26881747

  6. Evaluating Functional Diversity: Missing Trait Data and the Importance of Species Abundance Structure and Data Transformation.

    PubMed

    Májeková, Maria; Paal, Taavi; Plowman, Nichola S; Bryndová, Michala; Kasari, Liis; Norberg, Anna; Weiss, Matthias; Bishop, Tom R; Luke, Sarah H; Sam, Katerina; Le Bagousse-Pinguet, Yoann; Lepš, Jan; Götzenberger, Lars; de Bello, Francesco

    2016-01-01

    Functional diversity (FD) is an important component of biodiversity that quantifies the difference in functional traits between organisms. However, FD studies are often limited by the availability of trait data and FD indices are sensitive to data gaps. The distribution of species abundance and trait data, and its transformation, may further affect the accuracy of indices when data is incomplete. Using an existing approach, we simulated the effects of missing trait data by gradually removing data from a plant, an ant and a bird community dataset (12, 59, and 8 plots containing 62, 297 and 238 species respectively). We ranked plots by FD values calculated from full datasets and then from our increasingly incomplete datasets and compared the ranking between the original and virtually reduced datasets to assess the accuracy of FD indices when used on datasets with increasingly missing data. Finally, we tested the accuracy of FD indices with and without data transformation, and the effect of missing trait data per plot or per the whole pool of species. FD indices became less accurate as the amount of missing data increased, with the loss of accuracy depending on the index. But, where transformation improved the normality of the trait data, FD values from incomplete datasets were more accurate than before transformation. The distribution of data and its transformation are therefore as important as data completeness and can even mitigate the effect of missing data. Since the effect of missing trait values pool-wise or plot-wise depends on the data distribution, the method should be decided case by case. Data distribution and data transformation should be given more careful consideration when designing, analysing and interpreting FD studies, especially where trait data are missing. To this end, we provide the R package "traitor" to facilitate assessments of missing trait data.

  7. 9 CFR 93.911 - Ports designated for the importation of live VHS-regulated fish species.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Ports designated for the importation of live VHS-regulated fish species. 93.911 Section 93.911 Animals and Animal Products ANIMAL AND... Animal Species General Provisions for Vhs-Regulated Fish Species § 93.911 Ports designated for...

  8. 9 CFR 93.911 - Ports designated for the importation of live VHS-regulated fish species.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Ports designated for the importation of live VHS-regulated fish species. 93.911 Section 93.911 Animals and Animal Products ANIMAL AND... Animal Species General Provisions for Vhs-Regulated Fish Species § 93.911 Ports designated for...

  9. 9 CFR 93.911 - Ports designated for the importation of live VHS-regulated fish species.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Ports designated for the importation of live VHS-regulated fish species. 93.911 Section 93.911 Animals and Animal Products ANIMAL AND... Animal Species General Provisions for Vhs-Regulated Fish Species § 93.911 Ports designated for...

  10. 9 CFR 93.911 - Ports designated for the importation of live VHS-regulated fish species.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... of live VHS-regulated fish species. 93.911 Section 93.911 Animals and Animal Products ANIMAL AND... (INCLUDING POULTRY) AND ANIMAL PRODUCTS IMPORTATION OF CERTAIN ANIMALS, BIRDS, FISH, AND POULTRY, AND CERTAIN... Animal Species General Provisions for Vhs-Regulated Fish Species § 93.911 Ports designated for...

  11. Unifying bacteria from decaying wood with various ubiquitous Gibbsiella species as G. acetica sp. nov. based on nucleotide sequence similarities and their acetic acid secretion.

    PubMed

    Geider, Klaus; Gernold, Marina; Jock, Susanne; Wensing, Annette; Völksch, Beate; Gross, Jürgen; Spiteller, Dieter

    2015-12-01

    Bacteria were isolated from necrotic apple and pear tree tissue and from dead wood in Germany and Austria as well as from pear tree exudate in China. They were selected for growth at 37 °C, screened for levan production and then characterized as Gram-negative, facultatively anaerobic rods. Nucleotide sequences from 16S rRNA genes, the housekeeping genes dnaJ, gyrB, recA and rpoB alignments, BLAST searches and phenotypic data confirmed by MALDI-TOF analysis showed that these bacteria belong to the genus Gibbsiella and resembled strains isolated from diseased oaks in Britain and Spain. Gibbsiella-specific PCR primers were designed from the proline isomerase and the levansucrase genes. Acid secretion was investigated by screening for halo formation on calcium carbonate agar and the compound identified by NMR as acetic acid. Its production by Gibbsiella spp. strains was also determined in culture supernatants by GC/MS analysis after derivatization with pentafluorobenzyl bromide. Some strains were differentiated by the PFGE patterns of SpeI digests and by sequence analyses of the lsc and the ppiD genes, and the Chinese Gibbsiella strain was most divergent. The newly investigated bacteria as well as Gibbsiella querinecans, Gibbsiella dentisursi and Gibbsiella papilionis, isolated in Britain, Spain, Korea and Japan, are taxonomically related Enterobacteriaceae, tolerate and secrete acetic acid. We therefore propose to unify them in the species Gibbsiella acetica sp. nov.

  12. 76 FR 37316 - Multilayered Wood Flooring From the People's Republic of China: Notice of Amended Preliminary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-27

    ... back ply, thickness of core, and thickness of inner plies; width; and length); wood species used for... Timber Co., Ltd 6.78 Shanghai Lairunde Wood Co., Ltd Shanghai Lairunde Wood Co., Ltd 6.78 Shanghai New Sihe Wood Co., Ltd Shanghai New Sihe Wood Co., Ltd 6.78 Shanghai Shenlin Corporation Shanghai...

  13. 76 FR 76690 - Multilayered Wood Flooring From the People's Republic of China: Amended Final Determination of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-08

    ..., thickness of back ply, thickness of core, and thickness of inner plies; width; and length); wood species.... Shanghai Lairunde Wood Co., Shanghai Lairunde Wood 3.30 Ltd. Co., Ltd. Shanghai New Sihe Wood Co., Shanghai New Sihe Wood 3.30 Ltd. Co., Ltd. Shanghai Shenlin Corporation.. Shanghai Shenlin 3.30...

  14. Is tree species diversity or tree species identity the most important driver of European forest soil carbon stocks?

    NASA Astrophysics Data System (ADS)

    Vesterdal, Lars; Muhie Dawud, Seid; Raulund-Rasmussen, Karsten; Finér, Leena; Domisch, Timo

    2016-04-01

    Land management includes the selection of specific tree species and tree species mixtures for European forests. Studies of functional species diversity effects have reported positive effects for aboveground carbon (C) sequestration, but the question remains whether higher soil C stocks could also result from belowground niche differentiation including more efficient root exploitation of soils. We studied topsoil C stocks in tree species diversity gradients established within the FunDivEurope project to explore biodiversity-ecosystem functioning relationships in six European forest types in Finland, Poland, Germany, Romania, Spain and Italy. In the Polish forest type we extended the sampling to also include subsoils. We found consistent but modest effects of species diversity on total soil C stocks (forest floor and 0-20 cm) across the six European forest types. Carbon stocks in the forest floor alone and in the combined forest floor and mineral soil layers increased with increasing tree species diversity. In contrast, there was a strong effect of species identity (broadleaf vs. conifer) and its interaction with site-related factors. Within the Polish forest type we sampled soils down to 40 cm and found that species identity was again the main factor explaining total soil C stock. However, species diversity increased soil C stocks in deeper soil layers (20-40 cm), while species identity influenced C stocks significantly within forest floors and the 0-10 cm layer. Root biomass increased with diversity in 30-40 cm depth, and a positive relationship between C stocks and root biomass in the 30-40 cm layer suggested that belowground niche complementarity could be a driving mechanism for higher root carbon input and in turn a deeper distribution of C in diverse forests. We conclude that total C stocks are mainly driven by tree species identity. However, modest positive diversity effects were detected at the European scale, and stronger positive effects on subsoil C stocks

  15. The role of wood hardness in limiting nest site selection in avian cavity excavators.

    PubMed

    Lorenz, Teresa J; Vierling, Kerri T; Johnson, Timothy R; Fischer, Philip C

    2015-06-01

    Woodpeckers and other primary cavity excavators (PCEs) are important worldwide for excavating cavities in trees, and a large number of studies have examined their nesting preferences. However, quantitative measures of wood hardness have been omitted from most studies, and ecologists have focused on the effects of external tree- and habitat-level features on nesting. Moreover, information is lacking on the role of wood hardness in limiting nesting opportunities for this important guild. Here, we used an information theoretic approach to examine the role of wood hardness in multi-scale nest site selection and in limiting nesting opportunities for six species of North American PCEs. We found that interior wood hardness at nests (n = 259) differed from that at random sites, and all six species of PCE had nests with significantly softer interior wood than random trees (F1,517 = 106.15, P < 0.0001). Accordingly, interior wood hardness was the most influential factor in our models of nest site selection at both spatial scales that we examined: in the selection of trees within territories and in the selection of nest locations on trees. Moreover, regardless of hypothesized excavation abilities, all the species in our study appeared constrained by interior wood hardness, and only 4-14% of random sites were actually suitable for nesting. Our findings suggest that past studies that did not measure wood hardness counted many sites as available to PCEs when they were actually unsuitable, potentially biasing results. Moreover, by not accounting for nest site limitations in PCEs, managers may overestimate the amount of suitable habitat. We therefore urge ecologists to incorporate quantitative measures of wood hardness into PCE nest site selection studies, and to consider the limitations faced by avian cavity excavators in forest management decisions.

  16. The importance of incorporating functional habitats into conservation planning for highly mobile species in dynamic systems.

    PubMed

    Webb, Matthew H; Terauds, Aleks; Tulloch, Ayesha; Bell, Phil; Stojanovic, Dejan; Heinsohn, Robert

    2017-01-28

    The distribution of mobile species in dynamic systems can vary greatly over time and space. Estimating their population size and geographic range can be problematic, with serious implications for conservation assessments. Scarce data on mobile species and the resources they need can also limit the type of analytical approaches available to derive such estimates. Here we quantify dynamic change in availability and use of key ecological resources required for breeding (i.e. food and nesting sites) for a critically endangered nomadic habitat specialist, the swift parrot (Lathamus discolor). We compare estimates of occupied habitat (km(2) ) derived from dynamic presence-background data climatic models to those derived from dynamic occupancy models that include a direct measure of food availability. We also compare estimates that incorporate fine resolution information on key ecological resources (i.e functional habitats) into distribution maps with more common approaches that typically focus on broader climatic suitability. For all models, both the extent and spatial location of occupied areas varied dramatically over the study period. The occupancy models produced significantly smaller (up to an order of magnitude) and more spatially discrete estimates of occupied habitat than climate-based models. Estimates accounting for the area of functional habitats were also significantly smaller than estimates based only on occupied habitat. Importantly, an increase (or decrease) in one functional habitat did not necessarily correspond to changes in the other, with consequences for overall habitat functionality. We argue that these patterns are typical for mobile resource specialists, but currently go unnoticed due to limited data on (1) species' presence/absence and (2) availability of key resources. Understanding changes in the relative availability of functional habitats is crucial to informing conservation planning and accurately assessing extinction risk for mobile

  17. Organ and Tissue-specific Sucrose Transporters. Important Hubs in Gene and Metabolite Networks Regulating Carbon Use in Wood-forming Tissues of Populus

    SciTech Connect

    Harding, Scott A.; Tsai, Chung-Jui

    2016-01-04

    The overall project objective was to probe the relationship between sucrose transporters and plant productivity in the biomass for biofuels woody perennial, Populus. At the time the proposal was written, sucrose transporters had already been investigated in many plant model systems, primarily with respect to the export of photosynthate sucrose from source leaves, and the uptake of sucrose in storage organs and seeds. Preliminary findings by the PI found that in Populus, sucrose transporter genes (SUTs) were well expressed in wood-forming tissues that comprise the feedstock for biofuels production. Because sucrose comprises by far the predominant form in which photosynthate is delivered from source organs to sink organs like roots and wood-forming tissues, SUTs control a gate that nominally at least could impact the allocation or partitioning of sucrose for potentially competing end uses like growth (stem biomass) and storage. In addition, water use might be conditioned by the way in which sucrose is distributed throughout the plant, and/or by the way in which sucrose is partitioned intracellularly. Several dozen transgenic lines were produced in year 1 of the project to perturb the expression ratio of multiple plasma membrane (PM) SUTs (intercellular trafficking), versus the single tonoplast membrane (TM) sucrose transporter that effectively regulates intracellular trafficking of sucrose. It was possible to obtain transgenic lines with dual SUT gene knockdown using the 35S promoter, but not the wood-specific TUA1 promoter. By the end of project year 2, a decision was made to work with the 35S plants while archiving the TUA1 plants. The PhD candidate charged with producing the transgenic lines abandoned the project during its second year, substantially contributing to the decision to operate with just the 35S lines. That student’s interests ranged more toward evolutionary topics, and a report on SUT gene evolution was published (Peng et al 2014).

  18. Relationships within balsaminoid Ericales: a wood anatomical approach.

    PubMed

    Lens, Frederic; Dressler, Stefan; Jansen, Steven; van Evelghem, Liesbeth; Smets, Erik

    2005-06-01

    Wood samples of 49 specimens representing 31 species and 11 genera of woody balsaminoids, i.e., Balsaminaceae, Marcgraviaceae, Pellicieraceae, and Tetrameristaceae, were investigated using light microscopy and scanning electron microscopy. The wood structure of Marcgraviaceae, Pellicieraceae, and Tetrameristaceae is characterized by radial vessel multiples with simple perforation plates, alternate vessel pitting, apotracheal and paratracheal parenchyma, septate libriform fibers, and the presence of raphides in ray cells. Tetrameristaceae and Pellicieraceae are found to be closely related based on the occurrence of unilaterally compound vessel-ray pitting and multiseriate rays with long uniseriate ends. The narrow rays in Pelliciera are characteristic of this genus, but a broader concept of Tetrameristaceae including Pelliciera is favored. Within Marcgraviaceae, wide rays (more than five-seriate) are typical of the genus Marcgravia. Furthermore, there is evidence that the impact of altitude and habit plays an important role in the wood structure of this family. The wood structure of Balsaminaceae cannot be compared systematically with other balsaminoids because of their secondary woodiness. Balsaminaceae wood strongly differs due to the presence of exclusively upright ray cells in Impatiens niamniamensis, the absence of rays in Impatiens arguta, and the occurrence of several additional paedomorphic features in both species.

  19. Intra- and inter-species interactions within biofilms of important foodborne bacterial pathogens

    PubMed Central

    Giaouris, Efstathios; Heir, Even; Desvaux, Mickaël; Hébraud, Michel; Møretrø, Trond; Langsrud, Solveig; Doulgeraki, Agapi; Nychas, George-John; Kačániová, Miroslava; Czaczyk, Katarzyna; Ölmez, Hülya; Simões, Manuel

    2015-01-01

    A community-based sessile life style is the normal mode of growth and survival for many bacterial species. Under such conditions, cell-to-cell interactions are inevitable and ultimately lead to the establishment of dense, complex and highly structured biofilm populations encapsulated in a self-produced extracellular matrix and capable of coordinated and collective behavior. Remarkably, in food processing environments, a variety of different bacteria may attach to surfaces, survive, grow, and form biofilms. Salmonella enterica, Listeria monocytogenes, Escherichia coli, and Staphylococcus aureus are important bacterial pathogens commonly implicated in outbreaks of foodborne diseases, while all are known to be able to create biofilms on both abiotic and biotic surfaces. Particularly challenging is the attempt to understand the complexity of inter-bacterial interactions that can be encountered in such unwanted consortia, such as competitive and cooperative ones, together with their impact on the final outcome of these communities (e.g., maturation, physiology, antimicrobial resistance, virulence, dispersal). In this review, up-to-date data on both the intra- and inter-species interactions encountered in biofilms of these pathogens are presented. A better understanding of these interactions, both at molecular and biophysical levels, could lead to novel intervention strategies for controlling pathogenic biofilm formation in food processing environments and thus improve food safety. PMID:26347727

  20. Secondary metabolites of Capsicum species and their importance in the human diet.

    PubMed

    Wahyuni, Yuni; Ballester, Ana-Rosa; Sudarmonowati, Enny; Bino, Raoul J; Bovy, Arnaud G

    2013-04-26

    The genus Capsicum (pepper) comprises a large number of wild and cultivated species. The plants are grown all over the world, primarily in tropical and subtropical countries. The fruits are an excellent source of health-related compounds, such as ascorbic acid (vitamin C), carotenoids (provitamin A), tocopherols (vitamin E), flavonoids, and capsaicinoids. Pepper fruits have been used for fresh and cooked consumption, as well as for medicinal purposes, such as treatment of asthma, coughs, sore throats, and toothache. Depending on its uses, there are several main characters important for product quality; pungency, bright attractive colors, highly concentrated extracts, and a small number of seeds are the main characters on which quality is based and priced. Herein, a general overview of biochemical composition, medical properties of these compounds, and characteristics of quality attributes of pepper fruits is presented.

  1. Transcriptome sequencing in an ecologically important tree species: assembly, annotation, and marker discovery

    PubMed Central

    2010-01-01

    Background Massively parallel sequencing of cDNA is now an efficient route for generating enormous sequence collections that represent expressed genes. This approach provides a valuable starting point for characterizing functional genetic variation in non-model organisms, especially where whole genome sequencing efforts are currently cost and time prohibitive. The large and complex genomes of pines (Pinus spp.) have hindered the development of genomic resources, despite the ecological and economical importance of the group. While most genomic studies have focused on a single species (P. taeda), genomic level resources for other pines are insufficiently developed to facilitate ecological genomic research. Lodgepole pine (P. contorta) is an ecologically important foundation species of montane forest ecosystems and exhibits substantial adaptive variation across its range in western North America. Here we describe a sequencing study of expressed genes from P. contorta, including their assembly and annotation, and their potential for molecular marker development to support population and association genetic studies. Results We obtained 586,732 sequencing reads from a 454 GS XLR70 Titanium pyrosequencer (mean length: 306 base pairs). A combination of reference-based and de novo assemblies yielded 63,657 contigs, with 239,793 reads remaining as singletons. Based on sequence similarity with known proteins, these sequences represent approximately 17,000 unique genes, many of which are well covered by contig sequences. This sequence collection also included a surprisingly large number of retrotransposon sequences, suggesting that they are highly transcriptionally active in the tissues we sampled. We located and characterized thousands of simple sequence repeats and single nucleotide polymorphisms as potential molecular markers in our assembled and annotated sequences. High quality PCR primers were designed for a substantial number of the SSR loci, and a large number of these

  2. Dynamics of wood fall colonization in relation to sulfide concentration in a mangrove swamp.

    PubMed

    Laurent, Mélina C Z; Le Bris, Nadine; Gaill, Françoise; Gros, Olivier

    2013-01-01

    Wood debris are an important component of mangrove marine environments. Current knowledge of the ecological role of wood falls is limited by the absence of information on metazoan colonization processes over time. The aim of this study was to provide insights to their temporal dynamics of wood eukaryotic colonization from a shallow water experiment in a mangrove swamp. Combined in situ chemical monitoring and biological surveys revealed that the succession of colonizers in the mangrove swamp relates with the rapid evolution of sulfide concentration on the wood surface. Sulfide-tolerant species are among the first colonizers and dominate over several weeks when the sulfide content is at its maximum, followed by less tolerant opportunistic species when sulfide decreases. This study supports the idea that woody debris can sustain chemosynthetic symbioses over short time-scale in tropical shallow waters.

  3. Occurrence and Intensity of Anisakid Nematode Larvae in Some Commercially Important Fish Species in Persian Gulf

    PubMed Central

    DADAR, Maryam; ALBORZI, Alireza; PEYGHAN, Rahim; ADEL, Milad

    2016-01-01

    Background: Anisakid nematodes are common parasites of fish, mammals, fish-eating birds, and reptiles with a worldwide distribution, causing diseases in human, fish and important economic losses. Methods: A preliminary epidemiological study was carried out on Anisakid nematodes larvae in some commercially important fish species to evaluate the anisakid nematode larvae from greater lizardfish, (Saurida tumbil), Japanese thread fin bream (Nemipterus japonicus), crocodile longtom (Tylosurus crocodilus crocodiles) and longfin trevally (Carangoides armatus) from the Persian Gulf of Iran. Results: The collected larvae were identified mainly as the third larval stage (L3) of Hysterothylacium larval type A, B and C, Anisakis sp., Raphidascaris sp., Pseudoterranova sp. and Philometra sp. (Nematoda: Philometridae). The prevalence of Anisakid larvae infection of examined fishes was 97.2% in N. japonicus, 90.3% in S. tumbil, 20.5% in crocodile longtom and 5.5% in longfin trevally. Anisakis type III for the first time was different from Anisakis type I and Anisakis type II. Discussion: Zoonotic anisakids by high prevalence in edible fish could be a health hazard for people. So health practices should be considered in these areas. PMID:28096859

  4. Photoinactivation of Eight Health-Relevant Bacterial Species: Determining the Importance of the Exogenous Indirect Mechanism.

    PubMed

    Maraccini, Peter A; Wenk, Jannis; Boehm, Alexandria B

    2016-05-17

    It is presently unknown to what extent the endogenous direct, endogenous indirect, and exogenous indirect mechanisms contribute to bacterial photoinactivation in natural surface waters. In this study, we investigated the importance of the exogenous indirect mechanism by conducting photoinactivation experiments with eight health-relevant bacterial species (Bacteroides thetaiotaomicron, Campylobacter jejuni, Enterococcus faecalis, Escherichia coli K12, E. coli O157:H7, Salmonella enterica serovar Typhimurium LT2, Staphylococcus aureus, and Streptococcus bovis). We used three synthetic photosensitizers (methylene blue, rose bengal, and nitrite) and two model natural photosensitizers (Suwannee River natural organic matter and dissolved organic matter isolated from a wastewater treatment wetland) that generated singlet oxygen and hydroxyl radical. B. thetaiotaomicron had larger first order rate constants than all other organisms under all conditions tested. The presence of the synthetic photosensitizers generally enhanced photoinactivation of Gram-positive facultative anaerobes (Ent. faecalis, Staph. aureus, and Strep. bovis). Among Gram-negative bacteria, only methylene blue with E. coli K12 and rose bengal with C. jejuni showed an enhancing effect. The presence of model natural photosensitizers either reduced or did not affect photoinactivation rate constants. Our findings highlight the importance of the cellular membrane and photosensitizer properties in modulating the contribution of the exogenous indirect mechanism to the overall bacterial photoinactivation.

  5. Establishment of ectomycorrhizal fungal community on isolated Nothofagus cunninghamii seedlings regenerating on dead wood in Australian wet temperate forests: does fruit-body type matter?

    PubMed

    Tedersoo, Leho; Gates, Genevieve; Dunk, Chris W; Lebel, Teresa; May, Tom W; Kõljalg, Urmas; Jairus, Teele

    2009-08-01

    Decaying wood provides an important habitat for animals and forms a seed bed for many shade-intolerant, small-seeded plants, particularly Nothofagus. Using morphotyping and rDNA sequence analysis, we compared the ectomycorrhizal fungal community of isolated N. cunninghamii seedlings regenerating in decayed wood against that of mature tree roots in the forest floor soil. The /cortinarius, /russula-lactarius, and /laccaria were the most species-rich and abundant lineages in forest floor soil in Australian sites at Yarra, Victoria and Warra, Tasmania. On root tips of seedlings in dead wood, a subset of the forest floor taxa were prevalent among them species of /laccaria, /tomentella-thelephora, and /descolea, but other forest floor dominants were rare. Statistical analyses suggested that the fungal community differs between forest floor soil and dead wood at the level of both species and phylogenetic lineage. The fungal species colonizing isolated seedlings on decayed wood in austral forests were taxonomically dissimilar to the species dominating in similar habitats in Europe. We conclude that formation of a resupinate fruit body type on the underside of decayed wood is not necessarily related to preferential root colonization in decayed wood. Rather, biogeographic factors as well as differential dispersal and competitive abilities of fungal taxa are likely to play a key role in structuring the ectomycorrhizal fungal community on isolated seedlings in decaying wood.

  6. Nordic-Baltic Student Teachers' Identification of and Interest in Plant and Animal Species: The Importance of Species Identification and Biodiversity for Sustainable Development

    NASA Astrophysics Data System (ADS)

    Palmberg, Irmeli; Berg, Ida; Jeronen, Eila; Kärkkäinen, Sirpa; Norrgård-Sillanpää, Pia; Persson, Christel; Vilkonis, Rytis; Yli-Panula, Eija

    2015-10-01

    Knowledge of species, interest in nature, and nature experiences are the factors that best promote interest in and understanding of environmental issues, biodiversity and sustainable life. The aim of this study is to investigate how well student teachers identify common local species, their interest in and ideas about species identification, and their perceptions of the importance of species identification and biodiversity for sustainable development. Totally 456 student teachers for primary schools were tested using an identification test and a questionnaire consisting of fixed and open questions. A combination of quantitative and qualitative methods was used to get a more holistic view of students' level of knowledge and their preferred learning methods. The student teachers' ability to identify very common species was low, and only 3 % were able to identify most of the tested species. Experiential learning outdoors was suggested by the majority of students as the most efficient learning method, followed by experiential learning indoors, project work and experimental learning. They looked upon the identification of plants and animals as `important' or `very important' for citizens today and for sustainable development. Likewise, they looked upon biodiversity as `important' or `very important' for sustainable development. Our conclusion is that teaching and learning methods for identification and knowledge of species and for education of biodiversity and sustainable development should always include experiential and project-based methods in authentic environments.

  7. [Biological effect of wood dust].

    PubMed

    Maciejewska, A; Wojtczak, J; Bielichowska-Cybula, G; Domańska, A; Dutkiewicz, J; Mołocznik, A

    1993-01-01

    The biological effect of exposure to wood dust depends on its composition and the content of microorganisms which are an inherent element of the dust. The irritant and allergic effects of wood dust have been recognised for a long time. The allergic effect is caused by the wood dust of subtropical trees, e.g. western red cedar (Thuja plicata), redwood (Sequoia sempervirens), obeche (Triplochiton scleroxylon), cocabolla (Dalbergia retusa) and others. Trees growing in the European climate such as: larch (Larix), walnut (Juglans regia), oak (Quercus), beech (Fagus), pine (Pinus) cause a little less pronounced allergic effect. Occupational exposure to irritative or allergic wood dust may lead to bronchial asthma, rhinitis, alveolitis allergica, DDTS (Organic dust toxic syndrome), bronchitis, allergic dermatitis, conjunctivitis. An increased risk of adenocarcinoma of the sinonasal cavity is an important and serious problem associated with occupational exposure to wood dust. Adenocarcinoma constitutes about half of the total number of cancers induced by wood dust. An increased incidence of the squamous cell cancers can also be observed. The highest risk of cancer applies to workers of the furniture industry, particularly those dealing with machine wood processing, cabinet making and carpentry. The cancer of the upper respiratory tract develops after exposure to many kinds of wood dust. However, the wood dust of oak and beech seems to be most carcinogenic. It is assumed that exposure to wood dust can cause an increased incidence of other cancers, especially lung cancer and Hodgkin's disease. The adverse effects of microorganisms, mainly mould fungi and their metabolic products are manifested by alveolitis allergica and ODTS. These microorganisms can induce aspergillomycosis, bronchial asthma, rhinitis and allergic dermatitis.

  8. Size-dependent changes in wood chemical traits: a comparison of neotropical saplings and large trees

    PubMed Central

    Martin, Adam R.; Thomas, Sean C.; Zhao, Yong

    2013-01-01

    Wood anatomical traits are important correlates of life-history strategies among tree species, yet little is known about wood chemical traits. Additionally, size-dependent changes in wood chemical traits have been rarely examined, although these changes may represent an important aspect of tree ontogeny. Owing to selection for pathogen resistance and biomechanical stability, we predicted that saplings would show higher lignin (L) and wood carbon (Cconv), and lower holocellulose (H) concentrations, compared with conspecific large trees. To test these expectations, we quantified H, L and Cconv in co-occurring Panamanian tree species at the large tree vs. sapling size classes. We also examined inter- and intraspecific patterns using multivariate and phylogenetic analyses. In 15 of 16 species, sapling L concentration was higher than that in conspecific large trees, and in all 16 species, sapling H was lower than that in conspecific large trees. In 16 of 24 species, Cconv was higher in saplings than conspecific large trees. All large-tree traits were unrelated to sapling values and were unrelated to four life-history variables. Wood chemical traits did not show a phylogenetic signal in saplings, instead showing similar values across distantly related taxa; in large trees, only H showed a significant phylogenetic signal. Size-dependent changes in wood chemistry show consistent and predictable patterns, suggesting that ontogenetic changes in wood chemical traits are an important aspect of tree functional biology. Our results are consistent with the hypothesis that at early ontogenetic stages, trees are selected for greater L to defend against cellulose-decaying pathogens, or possibly to confer biomechanical stability.

  9. Development of a pathway model to assess the exposure of European pine trees to pine wood nematode via the trade of wood.

    PubMed

    Douma, J C; van der Werf, W; Hemerik, L; Magnusson, C; Robinet, C

    2017-04-01

    Pine wood nematode (PWN), Bursaphelenchus xylophilus, is a threat for pine species (Pinus spp.) throughout the world. The nematode is native to North America, and invaded Japan, China, Korea, and Taiwan, and more recently Portugal and Spain. PWN enters new areas through trade in wood products. Once established, eradication is not practically feasible. Therefore, preventing entry of PWN into new areas is crucial. Entry risk analysis can assist in targeting management to reduce the probability of entry. Assessing the entry of PWN is challenging due to the complexity of the wood trade and the wood processing chain. In this paper, we develop a pathway model that describes the wood trade and wood processing chain to determine the structure of the entry process. We consider entry of PWN through imported coniferous wood from China, a possible origin of Portuguese populations, to Europe. We show that exposure increased over years due to an increase in imports of sawn wood. From 2000 to 2012, Europe received an estimated 84 PWN propagules from China, 88% of which arose from imported sawn wood and 12% from round wood. The region in Portugal where the PWN was first reported is among those with the highest PWN transfer per unit of imported wood due to a high host cover and vector activity. An estimated 62% of PWN is expected to enter in countries where PWN is not expected to cause the wilt of pine trees because of low summer temperatures (e.g., Belgium, Sweden, Norway). In these countries, PWN is not easily detected, and such countries can thus serve as potential reservoirs of PWN. The model identifies ports and regions with high exposure, which helps targeting monitoring and surveillance, even in areas where wilt disease is not expected to occur. In addition, we show that exposure is most efficiently reduced by additional treatments in the country of origin, and/or import wood from PWN-free zones. Pathway modelling assists plant health managers in analyzing risks along the

  10. Development and Validation of Marker-Aided Selection Methods for Wood Property Traits in Loblolly Pine and Hybrid Poplar

    SciTech Connect

    Tuskan, G.A.

    2001-06-20

    Wood properties influence pulp and paper quality. Certainly, overall pulp yields are directly related to the cellulose content, changes in hemicellulose content are associated with changes in pulp cohesiveness, and pulping efficiency is related to lignin content. Despite the importance of wood properties on product quality, little progress has been made in improving such traits because current methods of assessing wood and fiber characteristics are time-consuming, expensive, and often imprecise. Genetic improvement of wood and fiber properties has been further hampered by the large size of trees, delayed reproductive maturity and long harvest cycles. Recent developments in molecular genetics will help overcome the physical, economic and biological constraints in assessing and improving wood properties. Genetic maps consisting of numerous molecular markers are now available for loblolly pine and hybrid poplar. Such markers/maps may be used as part of a marker-aided selection and breeding effort or to expedite the isolation and characterization of genes and/or promoters that directly control wood properties. The objectives of this project are: (1) to apply new and rapid analytical techniques for assessing component wood properties to segregating F2 progeny populations of loblolly pine and hybrid poplar, (2) to map quantitative trait loci and identify molecular markers associated with wood properties in each of the above species and (3) to validate marker-aided selection methods for wood properties in loblolly pine and hybrid poplar.

  11. Supplementary calcium ameliorates ammonium toxicity by improving water status in agriculturally important species.

    PubMed

    Hernández-Gómez, Elvia; Valdez-Aguilar, Luis A; Cartmill, Donita L; Cartmill, Andrew D; Alia-Tajacal, Irán

    2015-09-02

    Fertilization of agricultural plants with ammonium [Formula: see text] is often desirable because it is less susceptible to leaching than nitrate [Formula: see text] reducing environmental pollution, risk to human health and economic loss. However, a number of important agricultural species exhibit a reduction in growth when fertilized with [Formula: see text] and increasing the tolerance to [Formula: see text] may be of importance for the establishment of sustainable agricultural systems. The present study explored the feasibility of using calcium (Ca) to increase the tolerance of bell pepper (Capsicum annuum) to [Formula: see text] fertilization. Although [Formula: see text] at proportions ≥25 % of total nitrogen (N) decreased leaf dry mass (DM), supplementary Ca ameliorated this decrease. Increasing [Formula: see text] resulted in decreased root hydraulic conductance (Lo) and root water content (RWC), suggesting that water uptake by roots was impaired. The [Formula: see text]-induced reductions in Lo and RWC were mitigated by supplementary Ca. Ammonium induced increased damage to the cell membranes through lipid peroxidation, causing increased electrolyte leakage; Ca did not reduce lipid peroxidation and resulted in increased electrolyte leakage, suggesting that the beneficial effects of Ca on the tolerance to [Formula: see text] may be more of a reflection on its effect on the water status of the plant. Bell pepper plants that received [Formula: see text] had a low concentration of [Formula: see text] in the roots but a high concentration in the leaves, probably due to the high nitrate reductase activity observed. Ammonium nutrition depressed the uptake of potassium, Ca and magnesium, while increasing that of phosphorus. The results obtained in the present study indicate that [Formula: see text] caused growth reduction, nutrient imbalance, membrane integrity impairment, increased activity of antioxidant enzymes and affected water relations. Supplementary Ca

  12. Supplementary calcium ameliorates ammonium toxicity by improving water status in agriculturally important species

    PubMed Central

    Hernández-Gómez, Elvia; Valdez-Aguilar, Luis A.; Cartmill, Donita L.; Cartmill, Andrew D.; Alia-Tajacal, Irán

    2015-01-01

    Fertilization of agricultural plants with ammonium (NH4+) is often desirable because it is less susceptible to leaching than nitrate (NO3−), reducing environmental pollution, risk to human health and economic loss. However, a number of important agricultural species exhibit a reduction in growth when fertilized with NH4+, and increasing the tolerance to NH4+ may be of importance for the establishment of sustainable agricultural systems. The present study explored the feasibility of using calcium (Ca) to increase the tolerance of bell pepper (Capsicum annuum) to NH4+ fertilization. Although NH4+ at proportions ≥25 % of total nitrogen (N) decreased leaf dry mass (DM), supplementary Ca ameliorated this decrease. Increasing NH4+ resulted in decreased root hydraulic conductance (Lo) and root water content (RWC), suggesting that water uptake by roots was impaired. The NH4+-induced reductions in Lo and RWC were mitigated by supplementary Ca. Ammonium induced increased damage to the cell membranes through lipid peroxidation, causing increased electrolyte leakage; Ca did not reduce lipid peroxidation and resulted in increased electrolyte leakage, suggesting that the beneficial effects of Ca on the tolerance to NH4+ may be more of a reflection on its effect on the water status of the plant. Bell pepper plants that received NO3−N had a low concentration of NH4+ in the roots but a high concentration in the leaves, probably due to the high nitrate reductase activity observed. Ammonium nutrition depressed the uptake of potassium, Ca and magnesium, while increasing that of phosphorus. The results obtained in the present study indicate that NH4+ caused growth reduction, nutrient imbalance, membrane integrity impairment, increased activity of antioxidant enzymes and affected water relations. Supplementary Ca partially restored growth of leaves by improving root Lo and water relations, and our results suggest that it may be used as a tool to increase the tolerance to NH4

  13. Potential environmental contaminant risks to avian species at important bird areas in the northeastern United States

    USGS Publications Warehouse

    Rattner, B.A.; Ackerson, B.K.

    2008-01-01

    Environmental contaminants can have profound effects on birds, acting from the molecular through population levels of biological organization. An analysis of potential contaminant threats was undertaken at 52 Important Bird Areas (IBAs) within the northeastern Atlantic coast drainage. Using geographic information system methodology, data layers describing or integrating contamination (impaired waters, fish or wildlife consumption advisories, toxic release inventory sites, and estimates of pesticide use) were overlaid on buffered IBA boundaries, and the relative threat at each site was ranked. The most threatened sites include Jefferson National Forest (NF), Stewart B. McKinney National Wildlife Refuge (NWR), Great Dismal Swamp NWR, Blue Ridge Parkway, Shenandoah National Park (NP), Adirondack Park, Edwin B. Forsythe NWR, George Washington NF, Green Mountain NF, Long Island Piping Plover Beaches, and Merrymeeting Bay. These sites exhibited moderate to high percentages of impaired waters and had fish consumption advisories related to mercury and polychlorinated biphenyls, and were located in counties with substantial pesticide use. Endangered, threatened and Watch List bird species are present at these sites. The Contaminant Exposure and Effects--Terrestrial Vertebrates database was searched within buffered IBA boundaries, and for a moderate number of sites there was concordance between the perceived risk and contaminant exposure. Several of the IBAs with apparently substantial contaminant threats had no avian ecotoxicological data (e.g., George Washington NF, Shenandoah NP). Based upon this screening level risk assessment, contaminant biomonitoring is warranted at such sites, and data generated from these efforts should foster natural resource management activities.

  14. Semi-volatile inorganic species: importance for atmospheric chemical composition on diurnal and seasonal timescales

    NASA Astrophysics Data System (ADS)

    Pearce, Hana; Mann, Graham; Arnold, Stephen; O'Connor, Fiona; Benduhn, Francois; Rumbold, Steven; Pringle, Kirsty

    2016-04-01

    Nitrate aerosol has become an important driver of reduced European air quality and climate forcing, following reductions in sulphate precursor emissions since the 1980s, and is expected to be more influential in future decades. Measurements from the European Integrated Project on Aerosol and Cloud Climate Air Quality Interactions (EUCAARI) field campaign have shown that semi-volatile aerosol species such as ammonium nitrate can comprise a major component of the sub-micron particulate matter, particularly in high pollution episodes. This presentation will assess the contribution of semi-volatile inorganic aerosol to diurnal and seasonal cycles in atmospheric chemical composition over Europe. We use the UM-UKCA composition-climate model, including the GLOMAP interactive aerosol microphysics module and a recently developed 'hybrid' dissolution solver (HyDis) to accurately represent size-resolved partitioning of ammonia and nitric acid to the particle phase. In particular, we evaluate simulated size-resolved composition variations over Europe through the diurnal cycle, comparing hourly model output to Aerosol Mass Spectrometer observations at several sites during 2008. We will present the results of this composition analysis, in addition to model evaluation from comparisons with European Monitoring for Environmental Protection (EMEP) network and EUCAARI field campaign observations.

  15. Pulsed light for the inactivation of fungal biofilms of clinically important pathogenic Candida species.

    PubMed

    Garvey, Mary; Andrade Fernandes, Joao Paulo; Rowan, Neil

    2015-07-01

    Microorganisms are naturally found as biofilm communities more than planktonic free-floating cells; however, planktonic culture remains the current model for microbiological studies, such as disinfection techniques. The presence of fungal biofilms in the clinical setting has a negative impact on patient mortality, as Candida biofilms have proved to be resistant to biocides in numerous in vitro studies; however, there is limited information on the effect of pulsed light on sessile communities. Here we report on the use of pulsed UV light for the effective inactivation of clinically relevant Candida species. Fungal biofilms were grown by use of a CDC reactor on clinically relevant surfaces. Following a maximal 72 h formation period, the densely populated biofilms were exposed to pulsed light at varying fluences to determine biofilm sensitivity to pulsed-light inactivation. The results were then compared to planktonic cell inactivation. High levels of inactivation of C. albicans and C. parapsilosis biofilms were achieved with pulsed light for both 48 and 72 h biofilm structures. The findings suggest that pulsed light has the potential to provide a means of surface decontamination, subsequently reducing the risk of infection to patients. The research described herein deals with an important aspect of disease prevention and public health.

  16. Transposons play an important role in the evolution and diversification of centromeres among closely related species.

    PubMed

    Gao, Dongying; Jiang, Ning; Wing, Rod A; Jiang, Jiming; Jackson, Scott A

    2015-01-01

    Centromeres are important chromosomal regions necessary for eukaryotic cell segregation and replication. Due to high amounts of tandem repeats and transposons, centromeres have been difficult to sequence in most multicellular organisms, thus their sequence structure and evolution are poorly understood. In this study, we analyzed transposons in the centromere 8 (Cen8) from the African cultivated rice (O. glaberrima) and two subspecies of the Asian cultivated rice (O. sativa), indica and japonica. We detected much higher transposon contents (>69%) in centromere regions than in the whole genomes of O. sativa ssp. japonica and O. glaberrima (~35%). We compared the three Cen8s and identified numerous recent insertions of transposons that were frequently organized into multiple-layer nested blocks, similar to nested transposons in maize. Except for the Hopi retrotransposon, all LTR retrotransposons were shared but exhibit different abundances amongst the three Cen8s. Even though a majority of the transposons were located in intergenic regions, some gene-related transposons were found and may be involved in gene diversification. Chromatin immunoprecipitated (ChIP) data analysis revealed that 165 families from both Class I and Class II transposons were found in CENH3-associated chromatin sequences. These results indicate essential roles for transposons in centromeres and that the rapid divergence of the Cen8 sequences between the two cultivated rice species was primarily caused by recent transposon insertions.

  17. THERM: a computer code for estimating thermodynamic properties for species important to combustion and reaction modeling.

    PubMed

    Ritter, E R

    1991-08-01

    A computer package has been developed called THERM, an acronym for THermodynamic property Estimation for Radicals and Molecules. THERM is a versatile computer code designed to automate the estimation of ideal gas phase thermodynamic properties for radicals and molecules important to combustion and reaction-modeling studies. Thermodynamic properties calculated include heat of formation and entropies at 298 K and heat capacities from 300 to 1500 K. Heat capacity estimates are then extrapolated to above 5000 K, and NASA format polynomial thermodynamic property representations valid from 298 to 5000 K are generated. This code is written in Microsoft Fortran version 5.0 for use on machines running under MSDOS. THERM uses group additivity principles of Benson and current best values for bond strengths, changes in entropy, and loss of vibrational degrees of freedom to estimate properties for radical species from parent molecules. This ensemble of computer programs can be used to input literature data, estimate data when not available, and review, update, and revise entries to reflect improvements and modifications to the group contribution and bond dissociation databases. All input and output files are ASCII so that they can be easily edited, updated, or expanded. In addition, heats of reaction, entropy changes, Gibbs free-energy changes, and equilibrium constants can be calculated as functions of temperature from a NASA format polynomial database.

  18. Detection of four important Eimeria species by multiplex PCR in a single assay.

    PubMed

    You, Myung-Jo

    2014-06-01

    The oocysts of some of the recognized species of chicken coccidiosis are difficult to distinguish morphologically. Diagnostic laboratories are increasingly utilizing DNA-based technologies for the specific identification of Eimeria species. This study reports a multiplex polymerase chain reaction (PCR) assay based on internal transcribed spacer-1 (ITS-1) for the simultaneous diagnosis of the Eimeria tenella, Eimeria acervulina, Eimeria maxima, and Eimeria necatrix species, which infect domestic fowl. Primer pairs specific to each species were designed in order to generate a ladder of amplification products ranging from 20 to 25 bp, and a common optimum annealing temperature for these species was determined to be 52.5 °C. Sensitivity tests were performed for each species, showing a detection threshold of 1-5 pg. All the species were amplified homogeneously, and a homogenous band ladder was observed, indicating that the assay permitted the simultaneous detection of all the species in a single-tube reaction. In the phylogenic study, there was a clear species clustering, which was irrespective of geographical location, for all the ITS-1 sequences used. This multiplex PCR assay represents a rapid and potential cost-effective diagnostic method for the detection of some key Eimeria species that infect domestic fowl.

  19. Near-infrared spectroscopic monitoring of the diffusion process of deuterium-labeled molecules in wood. Part II: hardwood.

    PubMed

    Tsuchikawa, Satoru; Siesler, H W

    2003-06-01

    Fourier transform near-infrared (FT-NIR) transmission spectroscopy was applied to monitor the diffusion process of deuterium-labeled molecules in hardwood (Beech). The results are compared with previous data obtained on softwood (Sitka spruce) in order to consistently understand the state of order in cellulose of wood. The saturation accessibility and diffusion rate varied characteristically with the OH groups in different states of order in the wood substance, the diffusants, and the wood species, respectively. The variation of saturation accessibility should be associated with the fundamental difference of the fine structure such as the microfibrils in the wood substance. The effect of the anatomical cellular structure on the accessibility was reflected in the variation of the diffusion rate with the wood species. The size effect of the diffusants also played an important role for the diffusion process in wood. Since the volumetric percentage of wood fibers and wood rays is relatively similar, the dichroic effects due to the anisotropy of the cellulose chains were apparently diminished. Finally, we proposed a new interpretation of the fine structure of the microfibrils in the cell wall by comparing a series of results from hardwood and softwood. Each elementary fibril in the hardwood has a more homogeneous arrangement in the microfibrils compared to that in the softwood.

  20. [Wood dust as inhalative noxious agent].

    PubMed

    Kirsten, D; Liebetrau, G; Meister, W

    1985-01-01

    Wood dust is known as a cause of asthma and chronic bronchitis. From 1979 to 1983 we observed 115 patients with chronic lung diseases, who were exposed to wood dust during many years. We found an irritative pathogenesis in 101 patients with asthma or bronchitis. Twenty nine patients had got a positive skin test, especially with makoré, beech, koto, ash, pine. The inhalation test was positive in 7 of them. The occupational etiology was verified in 5 patients. Besides wood dust itself chemicals for wood protection or wood adhesives can have importance in the pathogenesis of these diseases. Fourteen patients had got alveolitis or lung fibrosis after wood-dust exposition. In each case we found precipitating antibodies against moulds, which could be cultivated from wood dust to which the patients were exposed.

  1. Wood identification of Dalbergia nigra (CITES Appendix I) using quantitative wood anatomy, principal components analysis and naïve Bayes classification

    PubMed Central

    Gasson, Peter; Miller, Regis; Stekel, Dov J.; Whinder, Frances; Ziemińska, Kasia

    2010-01-01

    Background and Aims Dalbergia nigra is one of the most valuable timber species of its genus, having been traded for over 300 years. Due to over-exploitation it is facing extinction and trade has been banned under CITES Appendix I since 1992. Current methods, primarily comparative wood anatomy, are inadequate for conclusive species identification. This study aims to find a set of anatomical characters that distinguish the wood of D. nigra from other commercially important species of Dalbergia from Latin America. Methods Qualitative and quantitative wood anatomy, principal components analysis and naïve Bayes classification were conducted on 43 specimens of Dalbergia, eight D. nigra and 35 from six other Latin American species. Key Results Dalbergia cearensis and D. miscolobium can be distinguished from D. nigra on the basis of vessel frequency for the former, and ray frequency for the latter. Principal components analysis was unable to provide any further basis for separating the species. Naïve Bayes classification using the four characters: minimum vessel diameter; frequency of solitary vessels; mean ray width; and frequency of axially fused rays, classified all eight D. nigra correctly with no false negatives, but there was a false positive rate of 36·36 %. Conclusions Wood anatomy alone cannot distinguish D. nigra from all other commercially important Dalbergia species likely to be encountered by customs officials, but can be used to reduce the number of specimens that would need further study. PMID:19884155

  2. Likeability of Garden Birds: Importance of Species Knowledge & Richness in Connecting People to Nature

    PubMed Central

    Cox, Daniel T. C.; Gaston, Kevin J.

    2015-01-01

    Interacting with nature is widely recognised as providing many health and well-being benefits. As people live increasingly urbanised lifestyles, the provision of food for garden birds may create a vital link for connecting people to nature and enabling them to access these benefits. However, it is not clear which factors determine the pleasure that people receive from watching birds at their feeders. These may be dependent on the species that are present, the abundance of individuals and the species richness of birds around the feeders. We quantitatively surveyed urban households from towns in southern England to determine the factors that influence the likeability of 14 common garden bird species, and to assess whether people prefer to see a greater abundance of individuals or increased species richness at their feeders. There was substantial variation in likeability across species, with songbirds being preferred over non-songbirds. Species likeability increased for people who fed birds regularly and who could name the species. We found a strong correlation between the number of species that a person could correctly identify and how connected to nature they felt when they watched garden birds. Species richness was preferred over a greater number of individuals of the same species. Although we do not show causation this study suggests that it is possible to increase the well-being benefits that people gain from watching birds at their feeders. This could be done first through a human to bird approach by encouraging regular interactions between people and their garden birds, such as through learning the species names and providing food. Second, it could be achieved through a bird to human approach by increasing garden songbird diversity because the pleasure that a person receives from watching an individual bird at a feeder is dependent not only on its species but also on the diversity of birds at the feeder. PMID:26560968

  3. Likeability of Garden Birds: Importance of Species Knowledge & Richness in Connecting People to Nature.

    PubMed

    Cox, Daniel T C; Gaston, Kevin J

    2015-01-01

    Interacting with nature is widely recognised as providing many health and well-being benefits. As people live increasingly urbanised lifestyles, the provision of food for garden birds may create a vital link for connecting people to nature and enabling them to access these benefits. However, it is not clear which factors determine the pleasure that people receive from watching birds at their feeders. These may be dependent on the species that are present, the abundance of individuals and the species richness of birds around the feeders. We quantitatively surveyed urban households from towns in southern England to determine the factors that influence the likeability of 14 common garden bird species, and to assess whether people prefer to see a greater abundance of individuals or increased species richness at their feeders. There was substantial variation in likeability across species, with songbirds being preferred over non-songbirds. Species likeability increased for people who fed birds regularly and who could name the species. We found a strong correlation between the number of species that a person could correctly identify and how connected to nature they felt when they watched garden birds. Species richness was preferred over a greater number of individuals of the same species. Although we do not show causation this study suggests that it is possible to increase the well-being benefits that people gain from watching birds at their feeders. This could be done first through a human to bird approach by encouraging regular interactions between people and their garden birds, such as through learning the species names and providing food. Second, it could be achieved through a bird to human approach by increasing garden songbird diversity because the pleasure that a person receives from watching an individual bird at a feeder is dependent not only on its species but also on the diversity of birds at the feeder.

  4. Wood consumption by Geoffroyi's spider monkeys and its role in mineral supplementation.

    PubMed

    Chaves, Oscar M; Stoner, Kathryn E; Angeles-Campos, Sergio; Arroyo-Rodríguez, Víctor

    2011-01-01

    Wood consumption is a rare behavior in frugivorous primates; however, it can be necessary for nutritional balancing as it may provide macro and/or micronutrients that are scarce in the most frequently eaten items (fruits). We tested this hypothesis in six spider monkey (Ateles geoffroyi) communities inhabiting continuous and fragmented rainforests in Lacandona, Mexico. We investigated the importance of both live and decayed wood in the diet of the monkeys, and assessed if wood consumption is related to the nutritional composition of these items. In general, wood consumption was focused on trees of Licania platypus (Chrysobalanaceae) and Ficus spp. (Moraceae), and was similar in continuous forest and in fragments (mean ± SD; 24±20% vs 18±16% of total feeding time, respectively), but marginally higher in females than in males (16±14% vs 5±4%, respectively). Live and decayed wood were both poorer in lipids, proteins, total nonstructural carbohydrates, and total digestible nutrients compared to mature and immature fruits. Moreover, decayed wood of L. platypus showed consistently higher levels of sodium and calcium compared to fruits. In conclusion, our findings suggest that wood from decaying trees of L. platypus and Ficus spp. and young branch piths of L. platypus represents an important source of sodium and/or calcium in the diet of spider monkeys, particularly in the case of females. The protection of decaying trees within forests and fragments is therefore necessary for the appropriate management and conservation of this endangered primate species.

  5. Wood Consumption by Geoffroyi’s Spider Monkeys and Its Role in Mineral Supplementation

    PubMed Central

    Chaves, Oscar M.; Stoner, Kathryn E.; Ángeles-Campos, Sergio; Arroyo-Rodríguez, Víctor

    2011-01-01

    Wood consumption is a rare behavior in frugivorous primates; however, it can be necessary for nutritional balancing as it may provide macro and/or micronutrients that are scarce in the most frequently eaten items (fruits). We tested this hypothesis in six spider monkey (Ateles geoffroyi) communities inhabiting continuous and fragmented rainforests in Lacandona, Mexico. We investigated the importance of both live and decayed wood in the diet of the monkeys, and assessed if wood consumption is related to the nutritional composition of these items. In general, wood consumption was focused on trees of Licania platypus (Chrysobalanaceae) and Ficus spp. (Moraceae), and was similar in continuous forest and in fragments (mean ± SD; 24±20% vs 18±16% of total feeding time, respectively), but marginally higher in females than in males (16±14% vs 5±4%, respectively). Live and decayed wood were both poorer in lipids, proteins, total nonstructural carbohydrates, and total digestible nutrients compared to mature and immature fruits. Moreover, decayed wood of L. platypus showed consistently higher levels of sodium and calcium compared to fruits. In conclusion, our findings suggest that wood from decaying trees of L. platypus and Ficus spp. and young branch piths of L. platypus represents an important source of sodium and/or calcium in the diet of spider monkeys, particularly in the case of females. The protection of decaying trees within forests and fragments is therefore necessary for the appropriate management and conservation of this endangered primate species. PMID:21969868

  6. Stoichiometry of wood liquefaction

    SciTech Connect

    Davis, H.G.

    1980-10-01

    The overall chemistry of Douglas Fir liquefaction as evidenced by Rust Engineering Company's Test Run 8 at Albany, Oregon has been examined. It is concluded that the true total yield of non-gaseous product (oil + water solubles + char) is higher than was measured - probably as high as 52 to 55% of dry wood feed. Wood decomposes to give water and carbon dioxide, and carbon monoxide in the gas feed reacts with water to give carbon dioxide and hydrogen. However, there is a substantial net reaction of synthesis gas (CO + H/sub 2/) during the process. This indicates that the reaction CO + (wood product) = CO/sub 2/ + (reduced wood product) is important in formation of low oxygen product oil. Overall stoichiometry (approximate) is: 100 lbs wood + 0.5 Mol CO ..-->.. 1.1 Mol CO/sub 2/ + 0.5 Mol H/sub 2/O + 55 lbs non-vapor product. Consumption of synthesis gas in the process is (very approximately) 1300 SCF/bbl product. The product oil has a hydrogen/carbon atom ratio of 1.2 and is highly aromatic. This analysis of the reaction applies specifically to the particular mode of operation used at Albany; i.e., to the so-called PERC process with a very high recycle of product oil. However, it is shown that the total yield of non-gaseous products is quite insensitive to the average analysis of the product. Thus we would expect total yields in the 50s with alternate processes - such as the LBL water slurry process. What will be different and must be determined is the distribution among water insoluble oil, water solubles and char and the degree of reduction of oxygen content by reaction with carbon monoxide.

  7. Aircraft woods: their properties, selection, and characteristics

    NASA Technical Reports Server (NTRS)

    Markwardt, L J

    1931-01-01

    Strength values of various woods for aircraft design for a 15 per cent moisture condition of material and a 3-second duration of stress are presented, and also a discussion of the various factors affecting the values. The toughness-test method of selecting wood is discussed, and a table of acceptance values for several species is given.

  8. The changing biodiversity of Alabama Drosophila: important impacts of seasonal variation, urbanization, and invasive species.

    PubMed

    Bombin, Andrei; Reed, Laura K

    2016-10-01

    Global warming and anthropogenic disturbances significantly influence the biosphere, tremendously increasing species extinction rates. In Central Alabama, we analyzed Drosophilidae species composition change nearly 100 years after the previous survey. We found ten Drosophilid species that were not reported during the last major biodiversity studies, two of which are invasive pests. In addition, we analyzed the influence of seasonal environmental variables characteristic of the subtropical climate zone on Drosophila abundance and biodiversity. We found a significant correlation between temperature and abundance of total Drosophila as well as for six of the seven most represented species individually, with a maximum abundance at intermediate temperatures (18-26°C). In addition, temperature was positively correlated with biodiversity of Drosophila. Precipitation produced a significant effect on the abundance of five species of Drosophila, with different optima for each species, but did not affect overall biodiversity. We concluded that in the subtropical climate zone of Central Alabama, seasonal temperature and precipitation changes produce a significant effect on Drosophila abundance and biodiversity, while local land use also impacts fly abundance, contributing to an apparent shift in species composition over the last century. We expect global climate change and other anthropogenic factors to further impact Drosophila species composition in the subtropical climate zone into the future.

  9. Choosing Wood Burning Appliances

    EPA Pesticide Factsheets

    Information to assist consumers in choosing a wood burning appliance, including types of appliances, the differences between certified and non-certified appliances, and alternative wood heating options.

  10. Potential environmental contaminant risks to avian species at important bird areas in the northeastern United States

    USGS Publications Warehouse

    Rattner, B.A.; Ackerson, B.K.

    2007-01-01

    Environmental contaminants, acting at molecular through population levels of biological organization, can have profound effects upon birds. A screening level risk assessment was conducted that examined potential contaminant threats at 52 Important Bird Areas (IBAs) in the northeastern Atlantic coast drainage. Using geographic information system methodology, data layers describing or integrating pollutant hazards (impaired waters, fish or wildlife consumption advisories, toxic release inventory data, estimated pesticide use and hazard) were overlaid on buffered IBA boundaries, and the relative contaminant threat for each site was ranked. The 10 sites identified as having the greatest contaminant threats included Jefferson National Forest, Stewart B. McKinney National Wildlife Refuge, Great Dismal Swamp National Wildlife Refuge, Blue Ridge Parkway, Shenandoah National Park, Adirondack Park, Edwin B. Forsythe National Wildlife Refuge, George Washington National Forest, Green Mountain National Forest, and Long Island Piping Plover Beaches. These sites accounted for over 50% of the entire study area, and in general had moderate to high percentages of impaired waters, fish consumption advisories related to mercury and PCBs, and were located in counties with substantial application rates of pesticides known to be toxic to birds. Avian species at these IBAs include Federally endangered Roseate terns (Sterna dougallii), threatened piping plovers (Charadrius melodus), neotropical migrants, Bicknell?s thrush (Catharus bicknelli), Swainson?s warbler (Limnothlypis swainsonii) and wintering brant geese (Branta bernicla). Extant data for free-ranging birds from the Contaminant Exposure and Effects--Terrestrial Vertebrates database were examined within the buffered boundaries of each IBA, and for a moderate number of sites there was qualitative concordance between the perceived risk and actual contaminant exposure data. However, several of the IBAs with substantial contaminant

  11. Killer activity of yeasts isolated from natural environments against some medically important Candida species.

    PubMed

    Vadkertiová, Renata; Sláviková, Elena

    2007-01-01

    Twenty-five yeast cultures, mainly of human origin, belonging to four pathogenic yeast species--Candida albicans, Candida krusei, Candida parapsilosis, and Candida tropicalis were tested for their sensitivity to ten basidiomycetous and eleven ascomycetous yeast species isolated from the water and soil environments and from tree leaves. The best killer activity among basidiomycetous species was exhibited by Rhodotorula glutinis, and R. mucilaginosa. The other carotenoid producing species Cystofilobasidium capitatum, Sporobolomyces salmonicolor, and S. roseus were active only against about 40% of the tested strains and exhibited weak activity. The broadest killer activity among ascomycetous yeasts was shown by the strains Pichia anomala and Metschnikowia pulcherrima. The species Debaryomyces castellii, Debaryomyces hansenii, Hanseniaspora guilliermondii, Pichia membranifaciens, and Williopsis californica did not show any killer activity. The best killer activity exhibited the strains isolated from leafy material. The lowest activity pattern was found among strains originating from soil environment.

  12. Are ecologically important tree species the most useful? A case study from indigenous people in the Bolivian Amazon.

    PubMed

    Guèze, Maximilien; Luz, Ana Catarina; Paneque-Gálvez, Jaime; Macía, Manuel J; Orta-Martínez, Martí; Pino, Joan; Reyes-García, Victoria

    2014-03-01

    Researchers have argued that indigenous peoples preferably use the most apparent plant species, particularly for medicinal uses. However, the association between the ecological importance of a species and its usefulness remains unclear. In this paper we quantify such association for six use categories (firewood, construction, materials, food, medicines and other uses). We collected data on the uses of 58 tree species, as reported by 93 informants in 22 villages in the Tsimane' territory (Bolivian Amazon). We calculated the ecological importance of the same species by deriving their importance value index (IVI) in 48 0.1-ha old-growth forest plots. Matching both data sets, we found a positive relation between the IVI of a species and its overall use value (UV) as well as with its UV for construction and materials. We found a negative relation between IVI and UV for species that were reportedly used for medicine and food uses, and no clear pattern for the other categories. We hypothesize that species used for construction or crafting purposes because of their physical properties are more easily substitutable than species used for medicinal or edible purposes because of their chemical properties.

  13. Are ecologically important tree species the most useful? A case study from indigenous people in the Bolivian Amazon

    PubMed Central

    Guèze, Maximilien; Luz, Ana Catarina; Paneque-Gálvez, Jaime; Macía, Manuel J.; Orta-Martínez, Martí; Pino, Joan; Reyes-García, Victoria

    2015-01-01

    Researchers have argued that indigenous peoples preferably use the most apparent plant species, particularly for medicinal uses. However, the association between the ecological importance of a species and its usefulness remains unclear. In this paper we quantify such association for six use categories (firewood, construction, materials, food, medicines and other uses). We collected data on the uses of 58 tree species, as reported by 93 informants in 22 villages in the Tsimane’ territory (Bolivian Amazon). We calculated the ecological importance of the same species by deriving their importance value index (IVI) in 48 0.1-ha old-growth forest plots. Matching both data sets, we found a positive relation between the IVI of a species and its overall use value (UV) as well as with its UV for construction and materials. We found a negative relation between IVI and UV for species that were reportedly used for medicine and food uses, and no clear pattern for the other categories. We hypothesize that species used for construction or crafting purposes because of their physical properties are more easily substitutable than species used for medicinal or edible purposes because of their chemical properties. PMID:26097243

  14. Importance of individual and environmental variation for invasive species spread: a spatial integral projection model.

    PubMed

    Jongejans, Eelke; Shea, Katriona; Skarpaas, Olav; Kelly, Dave; Ellner, Stephen P

    2011-01-01

    Plant survival, growth, and flowering are size dependent in many plant populations but also vary among individuals of the same size. This individual variation, along with variation in dispersal caused by differences in, e.g., seed release height, seed characteristics, and wind speed, is a key determinant of the spread rate of species through homogeneous landscapes. Here we develop spatial integral projection models (SIPMs) that include both demography and dispersal with continuous state variables. The advantage of this novel approach over discrete-stage spread models is that the effect of variation in plant size and size-dependent vital rates can be studied at much higher resolution. Comparing Neubert-Caswell matrix models to SIPMs allowed us to assess the importance of including individual variation in the models. As a test case we parameterized a SIPM with previously published data on the invasive monocarpic thistle Carduus nutans in New Zealand. Spread rate (c*) estimates were 34% lower than for standard spatial matrix models and stabilized with as few as seven evenly distributed size classes. The SIPM allowed us to calculate spread rate elasticities over the range of plant sizes, showing the size range of seedlings that contributed most to c* through their survival, growth and reproduction. The annual transitions of these seedlings were also the most important ones for local population growth (lambda). However, seedlings that reproduced within a year contributed relatively more to c* than to lambda. In contrast, plants that grow over several years to reach a large size and produce many more seeds, contributed relatively more to lambda than to c*. We show that matrix models pick up some of these details, while other details disappear within wide size classes. Our results show that SIPMs integrate various sources of variation much better than discrete-stage matrix models. Simpler, heuristic models, however, remain very valuable in studies where the main goal is

  15. Copper toxicity thresholds for important restoration grass species of the Western United States.

    PubMed

    Paschke, Mark W; Redente, Edward F

    2002-12-01

    Copper toxicity thresholds for plant species that are used in restoration activities in western North America have not been established. As a result, ecological risk assessments must rely on toxicity thresholds established for agronomic species, which usually differ from those of species used in restoration. Thus, risk assessors have the potential for classifying sites as phytotoxic to perennial, nonagronomic species and calling for intensive remediation activities that may not be necessary. The objective of this study was to provide a better estimate of Cu toxicity thresholds for five grass species that are commonly used in restoration efforts in the western United States. We used a greenhouse screening study where seedlings of introduced redtop (Agrostis gigantea Roth.), the native species slender wheatgrass (Elymus trachycaulus [Link] Gould ex Shinners var. Pryor), tufted hairgrass (Deschampsia caespitosa [L.] Beauvois), big bluegrass (Poa secunda J. Presl var. Sherman), and basin wildrye (Leymus cinereus [Scribner & Merrill] A. Love var. Magnar) and the agricultural species common wheat (Triticum aestivum L.) were grown in sand culture and exposed to supplemental concentrations of soluble Cu of 0 (control), 50, 100, 150, 200, 250, and 300 mg/L. We determined six measures of toxicity: the 60-d mean lethal concentration (LC50), 60-d mean effective concentration (EC50)-plant, 60-d EC50-shoot, 60-d EC50-root, phytotoxicity threshold (PT50)-shoot, and the PT50-root. Results suggest that these restoration grass species generally have higher Cu tolerance than agronomic species reported in the past. Of the species tested, redtop appeared to be especially tolerant of high levels of substrate and tissue Cu. Values of EC50-plant for restoration grasses were between 283 and 710 mg Cu/L compared to 120 mg Cu/L for common wheat. Measured PT50-shoot values were between 737 and 10,792 mg Cu/L. These reported thresholds should be more useful for risk assessors than those

  16. Vertical variations in wood CO2 efflux for live emergent trees in a Bornean tropical rainforest.

    PubMed

    Katayama, Ayumi; Kume, Tomonori; Komatsu, Hikaru; Ohashi, Mizue; Matsumoto, Kazuho; Ichihashi, Ryuji; Kumagai, Tomo'omi; Otsuki, Kyoichi

    2014-05-01

    Difficult access to 40-m-tall emergent trees in tropical rainforests has resulted in a lack of data related to vertical variations in wood CO2 efflux, even though significant variations in wood CO2 efflux are an important source of errors when estimating whole-tree total wood CO2 efflux. This study aimed to clarify vertical variations in wood CO2 efflux for emergent trees and to document the impact of the variations on the whole-tree estimates of stem and branch CO2 efflux. First, we measured wood CO2 efflux and factors related to tree morphology and environment for seven live emergent trees of two dipterocarp species at four to seven heights of up to ∼ 40 m for each tree using ladders and a crane. No systematic tendencies in vertical variations were observed for all the trees. Wood CO2 efflux was not affected by stem and air temperature, stem diameter, stem height or stem growth. The ratios of wood CO2 efflux at the treetop to that at breast height were larger in emergent trees with relatively smaller diameters at breast height. Second, we compared whole-tree stem CO2 efflux estimates using vertical measurements with those based on solely breast height measurements. We found similar whole-tree stem CO2 efflux estimates regardless of the patterns of vertical variations in CO2 efflux because the surface area in the canopy, where wood CO2 efflux often differed from that at breast height, was very small compared with that at low stem heights, resulting in little effect of the vertical variations on the estimate. Additionally, whole-tree branch CO2 efflux estimates using measured wood CO2 efflux in the canopy were considerably different from those measured using only breast height measurements. Uncertainties in wood CO2 efflux in the canopy did not cause any bias in stem CO2 efflux scaling, but affected branch CO2 efflux.

  17. The importance of scaling for detecting community patterns: success and failure in assemblages of introduced species

    USGS Publications Warehouse

    Allen, Craig R.; Angeler, David G.; Moulton, Michael P.; Holling, Crawford S.

    2015-01-01

    Community saturation can help to explain why biological invasions fail. However, previous research has documented inconsistent relationships between failed invasions (i.e., an invasive species colonizes but goes extinct) and the number of species present in the invaded community. We use data from bird communities of the Hawaiian island of Oahu, which supports a community of 38 successfully established introduced birds and where 37 species were introduced but went extinct (failed invasions). We develop a modified approach to evaluate the effects of community saturation on invasion failure. Our method accounts (1) for the number of species present (NSP) when the species goes extinct rather than during its introduction; and (2) scaling patterns in bird body mass distributions that accounts for the hierarchical organization of ecosystems and the fact that interaction strength amongst species varies with scale. We found that when using NSP at the time of extinction, NSP was higher for failed introductions as compared to successful introductions, supporting the idea that increasing species richness and putative community saturation mediate invasion resistance. Accounting for scale-specific patterns in body size distributions further improved the relationship between NSP and introduction failure. Results show that a better understanding of invasion outcomes can be obtained when scale-specific community structure is accounted for in the analysis.

  18. Relative effects of disturbance on red imported fire ants and native ant species in a longleaf pine ecosystem.

    PubMed

    Stuble, Katharine L; Kirkman, L Katherine; Carroll, C Ronald; Sanders, Nathan J

    2011-06-01

    The degree to which changes in community composition mediate the probability of colonization and spread of non-native species is not well understood, especially in animal communities. High species richness may hinder the establishment of non-native species. Distinguishing between this scenario and cases in which non-native species become established in intact (lacking extensive anthropogenic soil disturbance) communities and subsequently diminish the abundance and richness of native species is challenging on the basis of observation alone. The red imported fire ant (Solenopsis invicta), an invasive species that occurs throughout much of the southeastern United States, is such an example. Rather than competitively displacing native species, fire ants may become established only in disturbed areas in which native species richness and abundance are already reduced. We used insecticide to reduce the abundance of native ants and fire ants in four experimental plots. We then observed the reassembly and reestablishment of the ants in these plots for 1 year after treatment. The abundance of fire ants in treated plots did not differ from abundance in control plots 1 year after treatment. Likewise, the abundance of native ants increased to levels comparable to those in control plots after 1 year. Our findings suggest that factors other than large reductions in ant abundance and species density (number of species per unit area) may affect the establishment of fire ants and that the response of native ants and fire ants to disturbance can be comparable.

  19. Out of the woods.

    PubMed

    Jacobson, J L

    1992-01-01

    Throughout Africa, Asia and Latin America women are pushed out of forests and from their maintenance by governments and private interests for cash crop development disregarding the role of women in conserving forests. In developing countries forests are a source of wood for fuel; 60-80% of women gather wood for family needs in America. Fruits, vegetables, and nuts gathered in woods enhance their diet. Indonesian women pick bananas, mangos, guavas, and avocados from trees around their homes; in Senegal shea-nut butter is made from a local tree fruit to be sold for cash. Women provide labor also in logging, wood processing, and tree nurseries. They make charcoal and grow seedlings for sale. In India 40% of forest income and 75% of forest products export earnings are derived from nonwood resources. Poor, rural women make items out of bamboo, rattan, and rope to sell: 48% of women in an Egyptian province make a living through such activities. In India 600,000 women harvest tendu leaves for use as wrappings for cigarettes. The expansion of commercial tree plantations replacing once communal natural forests has forced poor households to spend up to 4-% of their income on fuel that they used to find in forests. Tribal women in India know the medicinal uses of 300 forest species, and women in Sierra Leone could name 31 products they obtained or made from trees and bushes, while men named only 8 items. Only 1 forestry project appraised by the World Bank during 1984-97 named women as beneficiaries, and only 1 out of 33 rural development programs funded by the World Bank did. Women provide food, fuel, and water for their families in subsistence economies, they know sustainable methods of forestry, yet they are not included in development programs whose success or failure could hinge on more attention to women's contribution and on more equity.

  20. Heavy metals in molluscan, crustacean, and other commercially important Chilean marine coastal water species

    SciTech Connect

    Ober, A.G.; Gonzalez, M.; Santa Maria, I.

    1987-03-01

    The work reported here is part of a general program to monitor the marine chemical pollution along the Chilean coast. The present investigation was designated to provide information on the nature and levels of the heavy metals present in the marine species commonly consumed by the population, and to learn whether these levels may constitute a hazard to consumers. The authors report here the typical contents of 10 heavy metals in 12 commercially significant marine species from the Chilean coastal waters (Valparaiso, Concepcion and Puerto Montt). The analyzed species included 7 molluscs, 3 curstacea, and 2 other shellfish species of wide consumption. The metals chosen for analysis were copper, zinc, cadmium, lead, mercury, nickel, antimony, selenium, iron and chromium.

  1. Species identification of Middle Eastern blowflies (Diptera: Calliphoridae) of forensic importance.

    PubMed

    Akbarzadeh, Kamran; Wallman, James F; Sulakova, Hana; Szpila, Krzysztof

    2015-04-01

    The lack of reliable tools for species identification of necrophagous blowflies of the Middle East is a serious obstacle to the development of forensic entomology in the majority of countries of this region. Adding to the complexity of diagnosing the regional fauna is that species representing three different zoogeographical elements exist in sympatry. In response to this situation, a high-quality key to the adults of all species of forensically relevant blowflies of the Middle East has been prepared. Thanks to the modern technique of image-stack stereomicroscopy and high-quality entomological materials, this new key can be easily applied by investigators inexperienced in the taxonomy of blowflies. The major technical problems relating to the species identification of necrophagous blowflies of the Middle East are also discussed.

  2. Why is the choice of future climate scenarios for species distribution modelling important?

    PubMed

    Beaumont, Linda J; Hughes, Lesley; Pitman, A J

    2008-11-01

    Species distribution models (SDMs) are common tools for assessing the potential impact of climate change on species ranges. Uncertainty in SDM output occurs due to differences among alternate models, species characteristics and scenarios of future climate. While considerable effort is being devoted to identifying and quantifying the first two sources of variation, a greater understanding of climate scenarios and how they affect SDM output is also needed. Climate models are complex tools: variability occurs among alternate simulations, and no single 'best' model exists. The selection of climate scenarios for impacts assessments should not be undertaken arbitrarily - strengths and weakness of different climate models should be considered. In this paper, we provide bioclimatic modellers with an overview of emissions scenarios and climate models, discuss uncertainty surrounding projections of future climate and suggest steps that can be taken to reduce and communicate climate scenario-related uncertainty in assessments of future species responses to climate change.

  3. Cold atmospheric pressure plasma elimination of clinically important single- and mixed-species biofilms.

    PubMed

    Modic, Martina; McLeod, Neil P; Sutton, J Mark; Walsh, James L

    2017-03-01

    Mixed-species biofilms reflect the natural environment of many pathogens in clinical settings and are highly resistant to disinfection methods. An indirect cold atmospheric-pressure air-plasma system was evaluated under two different discharge conditions for its ability to kill representative Gram-positive (Staphylococcus aureus) and Gram-negative (Pseudomonas aeruginosa) pathogens. Plasma treatment of individual 24-h-old biofilms and mixed-species biofilms that contained additional species (Enterococcus faecalis and Klebsiella pneumoniae) was considered. Under plasma conditions that favoured the production of reactive nitrogen species (RNS), individual P. aeruginosa biofilms containing ca. 5.0 × 10(6) CFU were killed extremely rapidly, with no bacterial survival detected at 15 s of exposure. Staphylococcus aureus survived longer under these conditions, with no detectable growth after 60 s of exposure. In mixed-species biofilms, P. aeruginosa survived longer but all species were killed with no detectable growth at 60 s. Under plasma conditions that favoured the production of reactive oxygen species (ROS), P. aeruginosa showed increased survival, with the lower limit of detection reached by 120 s, and S. aureus was killed in a similar time frame. In the mixed-species model, bacterial kill was biphasic but all pathogens showed viable cells after 240 s of exposure, with P. aeruginosa showing significant survival (ca. 3.6 ± 0.6 × 10(6) CFU). Overall, this study shows the potential of indirect air plasma treatment to achieve significant bacterial kill, but highlights aspects that might affect performance against key pathogens, especially in real-life settings within mixed populations.

  4. DNA barcoding of commercially important Grouper species (Perciformes, Serranidae) in the Philippines.

    PubMed

    Alcantara, Simon G; Yambot, Apolinario V

    2016-11-01

    Fish identification is generally challenging because of their unpronounced and overlapping morphological characters which is true in grouper species. In the Philippines, an updated, reliable and accurate inventory of this high value commercial groupers has not been carried out previously. Using molecular tools in the identification and inventory of fish species in the country is confined to few laboratories and experts in the country. In this study, 27 species of the Serranidae family were identified from the grouper samples collected from major fish landing sites and markets in the Philippines. The grouper species were molecularly identified using the cytochrome c oxidase I (COI) sequences for DNA barcoding. The accuracy of the inferred species-level taxonomy based on COI is supported with high similarity search (98-100%) both in BOLD and BLAST, well-distributed genetic distance values and cohesive clustering in the Neighbor-Joining Tree. Aside from reinforcing the classical methodology of grouper identification in the country, this pioneering study on molecular identification of Philippine groupers constitutes a significant contribution to the DNA barcode library of Philippine marine fishes and to the global barcode entries in general, which can be used when dealing with grouper taxonomy, biodiversity, stock assessment and trade. The results reveal the different localities where the grouper species can be possibly sourced out in the country for trade and aquaculture purposes. Several of the grouper species are included in the IUCN Red List of Threatened Species. As a tool for conservation ecology, this study signals the implementation of sustainable fisheries management regulation to protect in particular those which are listed under the IUCN.

  5. Sampling Plant Diversity and Rarity at Landscape Scales: Importance of Sampling Time in Species Detectability

    PubMed Central

    Zhang, Jian; Nielsen, Scott E.; Grainger, Tess N.; Kohler, Monica; Chipchar, Tim; Farr, Daniel R.

    2014-01-01

    Documenting and estimating species richness at regional or landscape scales has been a major emphasis for conservation efforts, as well as for the development and testing of evolutionary and ecological theory. Rarely, however, are sampling efforts assessed on how they affect detection and estimates of species richness and rarity. In this study, vascular plant richness was sampled in 356 quarter hectare time-unlimited survey plots in the boreal region of northeast Alberta. These surveys consisted of 15,856 observations of 499 vascular plant species (97 considered to be regionally rare) collected by 12 observers over a 2 year period. Average survey time for each quarter-hectare plot was 82 minutes, ranging from 20 to 194 minutes, with a positive relationship between total survey time and total plant richness. When survey time was limited to a 20-minute search, as in other Alberta biodiversity methods, 61 species were missed. Extending the survey time to 60 minutes, reduced the number of missed species to 20, while a 90-minute cut-off time resulted in the loss of 8 species. When surveys were separated by habitat type, 60 minutes of search effort sampled nearly 90% of total observed richness for all habitats. Relative to rare species, time-unlimited surveys had ∼65% higher rare plant detections post-20 minutes than during the first 20 minutes of the survey. Although exhaustive sampling was attempted, observer bias was noted among observers when a subsample of plots was re-surveyed by different observers. Our findings suggest that sampling time, combined with sample size and observer effects, should be considered in landscape-scale plant biodiversity surveys. PMID:24740179

  6. Sampling plant diversity and rarity at landscape scales: importance of sampling time in species detectability.

    PubMed

    Zhang, Jian; Nielsen, Scott E; Grainger, Tess N; Kohler, Monica; Chipchar, Tim; Farr, Daniel R

    2014-01-01

    Documenting and estimating species richness at regional or landscape scales has been a major emphasis for conservation efforts, as well as for the development and testing of evolutionary and ecological theory. Rarely, however, are sampling efforts assessed on how they affect detection and estimates of species richness and rarity. In this study, vascular plant richness was sampled in 356 quarter hectare time-unlimited survey plots in the boreal region of northeast Alberta. These surveys consisted of 15,856 observations of 499 vascular plant species (97 considered to be regionally rare) collected by 12 observers over a 2 year period. Average survey time for each quarter-hectare plot was 82 minutes, ranging from 20 to 194 minutes, with a positive relationship between total survey time and total plant richness. When survey time was limited to a 20-minute search, as in other Alberta biodiversity methods, 61 species were missed. Extending the survey time to 60 minutes, reduced the number of missed species to 20, while a 90-minute cut-off time resulted in the loss of 8 species. When surveys were separated by habitat type, 60 minutes of search effort sampled nearly 90% of total observed richness for all habitats. Relative to rare species, time-unlimited surveys had ∼ 65% higher rare plant detections post-20 minutes than during the first 20 minutes of the survey. Although exhaustive sampling was attempted, observer bias was noted among observers when a subsample of plots was re-surveyed by different observers. Our findings suggest that sampling time, combined with sample size and observer effects, should be considered in landscape-scale plant biodiversity surveys.

  7. True metabolizable energy for wood ducks from acorns compared to other waterfowl foods

    USGS Publications Warehouse

    Kaminski, R.M.; Davis, J.B.; Essig, H.W.; Gerard, P.D.; Reinecke, K.J.

    2003-01-01

    Acorns of bottomland red oaks (Quercus spp.) are an important food of North American wood ducks (Aix sponsa). Barras et al. (1996) demonstrated that female wood ducks selected willow oak ( Q. phetlos) acorns over other species. We measured true metabolizable energy (TME) derived by captive, wild-strain, adult female wood ducks from acorns of willow oak, water oak (Q. nigra), cherrybark oak (Q. pagoda), and pin oak (Q. patustris) to determine whether female wood ducks' preference for willow oak acorns was related to TME. Estimates of TME within acorn species were relatively precise, yet we did not detect variation in TME among acorn species (P= 0.31 ); hence, we estimated TME across species (2.76 + 0.033 [SE] kcal/g dry mass; n = 34). We concluded that TME apparently did not explain female wood ducks' preference for willow oak acorns and hypothesized that morphological characteristics of willow oak acorns may be proximate cues related to selection by wood ducks. We also summarized known TME estimates for acorns fed to wood ducks and mallards (Anas platyrhynchos), and natural and agricultural foods fed to mallards, northern pintails (A. acura), blue-winged teal (A. discors), and Canada geese (Branta canadensis). We found that acorns and moist-soil plant seeds and tubers provided, on average, about 76% of the TME in agricultural seeds. Thus, bottomland-hardwood and moist-soil habitats have potential to provide significant amounts of dietary energy, as well as greater diversity of foods and nutrients than croplands. Researchers should continue to determine TME of common foods (plant and animal) of waterfowl, and use TME in estimating waterfowl habitat carrying capacity (e.g., Reinecke et al. 1989). Additionally, large-scale, reliable estimates of plant and animal food availability in bottomland-hardwood and moist-soil habitats are needed to evaluate carrying capacity of landscapes important to waterfowl, such as the Mississippi Alluvial Valley (MAV).

  8. Evaluation of candidate DNA barcoding loci for economically important timber species of the mahogany family (Meliaceae).

    PubMed

    Muellner, A N; Schaefer, H; Lahaye, R

    2011-05-01

    There has been considerable debate regarding locus choice for DNA barcoding land plants. This is partly attributable to a shortage of comparable data from proposed candidate loci on a common set of samples. In this study, we evaluated main candidate plastid regions (rpoC1, rpoB, accD) and additional plastid markers (psbB, psbN, psbT exons and the trnS-trnG spacer) as well as the nuclear ribosomal spacer region (ITS1-5.8S-ITS2) in a group of land plants belonging to the mahogany family, Meliaceae. Across these samples, only ITS showed high levels of resolvability. Interspecific sharing of sequences from individual plastid loci was common. The combination of multiple loci did not improve performance. DNA barcoding with ITS alone revealed cryptic species and proved useful in identifying species listed in Convention on International Trade of Endangered Species appendixes.

  9. Primer design for identifying economically important Liriomyza species (Diptera: Agromyzidae) by multiplex PCR.

    PubMed

    Nakamura, Shigeo; Masuda, Toshio; Mochizuki, Atsushi; Konishi, Kazuhiko; Tokumaru, Susumu; Ueno, Keiichiro; Yamaguchi, Takuhiro

    2013-01-01

    Leafminer flies, especially, Liriomyza huidobrensis, Liriomyza sativae and Liriomyza trifolii, are quarantine species in many countries. Their morphological similarity makes identification difficult. To develop a rapid, reliable, sensitive and simple molecular identification method using multiplex PCR, we newly sequenced the mitochondrial cytochrome oxidase I (COI) genes of Liriomyza bryoniae, Liriomyza chinensis, L. huidobrensis, L. sativae, L. trifolii, Chromatomyia horticola and four parasitoid species. We aligned them with all the COI sequences of the leafminer flies found in the international DNA nucleotide sequence databases (DDBJ/EMBL/GenBank). We then designed species-specific primers to allow us to differentiate between L. bryoniae, L. chinensis, L. huidobrensis, L. sativae, and L. trifolii.

  10. A survey of mosquitoes breeding in used tires in Spain for the detection of imported potential vector species.

    PubMed

    Roiz, D; Eritja, R; Escosa, R; Lucientes, J; Marquès, E; Melero-Alcíbar, R; Ruiz, S; Molina, R

    2007-06-01

    The used tire trade has facilitated the introduction, spread, and establishment of the Asian tiger mosquito, Aedes albopictus, and other mosquito species in several countries of America, Africa, Oceania, and Europe. A strategy for detecting these imported mosquito vectors was developed in Spain during 2003-2004 by EVITAR (multidisciplinary network for the study of viruses transmitted by arthropods and rodents). A survey in 45 locations found no invasive species. Eight autochthonous species of mosquitoes were detected in used tires, including Culex pipiens, Cx. hortensis, Cx. modestus, Anopheles atroparvus, An. claviger, Culiseta longiareolata, Cs. annulata, and Aedes caspius. Dominant species were Cx. pipiens and Cs. longiareolata. Aedes caspius was found in only once, near its natural breeding habitat. Considering the recent discovery of an established population of Ae. albopictus in Catalonia, the increasing commerce of used tires in Spain for recycling, storage, and recapping might greatly contribute to the rapid spread of this species across the Iberian Peninsula.

  11. 76 FR 38620 - International Fisheries; Atlantic Highly Migratory Species; Bluefin Tuna Import, Export, Re-Export

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-01

    ...; Bluefin Tuna Import, Export, Re-Export AGENCY: National Marine Fisheries Service (NMFS), National Oceanic... of importation into the United States and conduct of other transactions (such as export and...

  12. Rapid Differentiation of Aspergillus Species from Other Medically Important Opportunistic Molds and Yeasts by PCR-Enzyme Immunoassay

    PubMed Central

    de Aguirre, Liliana; Hurst, Steven F.; Choi, Jong Soo; Shin, Jong Hee; Hinrikson, Hans Peter; Morrison, Christine J.

    2004-01-01

    We developed a PCR-based assay to differentiate medically important species of Aspergillus from one another and from other opportunistic molds and yeasts by employing universal, fungus-specific primers and DNA probes in an enzyme immunoassay format (PCR-EIA). Oligonucleotide probes, directed to the internal transcribed spacer 2 region of ribosomal DNA from Aspergillus flavus, Aspergillus fumigatus, Aspergillus nidulans, Aspergillus niger, Aspergillus terreus, Aspergillus ustus, and Aspergillus versicolor, differentiated 41 isolates (3 to 9 each of the respective species; P < 0.001) in a PCR-EIA detection matrix and gave no false-positive reactions with 33 species of Acremonium, Exophiala, Candida, Fusarium, Mucor, Paecilomyces, Penicillium, Rhizopus, Scedosporium, Sporothrix, or other aspergilli tested. A single DNA probe to detect all seven of the most medically important Aspergillus species (A. flavus, A. fumigatus, A. nidulans, A. niger, A. terreus, A. ustus, and A. versicolor) was also designed. Identification of Aspergillus species was accomplished within a single day by the PCR-EIA, and as little as 0.5 pg of fungal DNA could be detected by this system. In addition, fungal DNA extracted from tissues of experimentally infected rabbits was successfully amplified and identified using the PCR-EIA system. This method is simple, rapid, and sensitive for the identification of medically important Aspergillus species and for their differentiation from other opportunistic fungi. PMID:15297489

  13. Interspecific shared collective decision-making in two forensically important species

    PubMed Central

    Deneubourg, Jean-Louis; Hédouin, Valéry

    2016-01-01

    To date, the study of collective behaviour has mainly focused on intraspecific situations: the collective decision-making of mixed-species groups involving interspecific aggregation–segregation has received little attention. Here, we show that, in both conspecific and heterospecific groups, the larvae of two species (Lucilia sericata and Calliphora vomitoria, calliphorid carrion-feeding flies) were able to make a collective choice. In all groups, the choice was made within a few minutes and persisted throughout the period of the experiment. The monitoring of a focal individual within a group showed that these aggregations were governed by attractive and retentive effects of the group. Furthermore, the similarity observed between the conspecific and heterospecific groups suggested the existence of shared aggregation signals. The group size was found to have a stronger influence than the species of necrophagous larvae. These results should be viewed in relation to the well-known correlation between group size and heat generation. This study provides the first experimental examination of the dynamics of collective decision-making in mixed-species groups of invertebrates, contributing to our understanding of the cooperation–competition phenomenon in animal social groups. PMID:26865296

  14. High resolution melting analysis for identification of commercially-important Mytilus species.

    PubMed

    Jilberto, Felipe; Araneda, Cristián; Larraín, María Angélica

    2017-08-15

    Mytilus are edible mussels, including commercially-significant species such as M. chilensis, M. galloprovincialis and M. edulis. The scientific name of the species must be indicated on commercial products to satisfy labelling and traceability requirements. Species identification using morphological criteria is difficult due the plasticity of these characteristics and the absence of shells in processed products, and conventional PCR-based methods are laborious and time-intensive. As alternative, we propose high resolution melting (HRM) analysis as a simple tool to detect and identify SNP (single nucleotide polymorphisms) and length polymorphisms in Mytilus spp. We designed HRM-specific primers for the Mytilus genus to identify M. chilensis, M. galloprovincialis, M. edulis and their hybrids through clearly-distinguishable melting curves. HRM analysis showed high sensitivity (0.9639), specificity (1.0000) and precision (1.0000) compared to a conventional PCR-RFLP test. HRM is a fast and low cost method, being a reliable tool for species identification within the Mytilus genus.

  15. Larvae of five horticulturally important species of Chrysopodes (Neuroptera, Chrysopidae): shared generic features, descriptions and keys

    PubMed Central

    Silva, Patrícia S.; Tauber, Catherine A.; Albuquerque, Gilberto S.; Tauber, Maurice J.

    2013-01-01

    Abstract An expanded list of generic level larval characteristics is presented for Chrysopodes; it includes a reinterpretation of the mesothoracic and metathoracic structure and setation. Keys, descriptions and images of Semaphoront A (first instar) and Semaphoront B (second and third instars) are offered for identifying five species of Chrysopodes (Chrysopodes) that are commonly reported from horticultural habitats in the Neotropical region. PMID:23653514

  16. The ecological importance of the Staphylococcus sciuri species group as a reservoir for resistance and virulence genes.

    PubMed

    Nemeghaire, Stéphanie; Argudín, M Angeles; Feßler, Andrea T; Hauschild, Tomasz; Schwarz, Stefan; Butaye, Patrick

    2014-07-16

    The Staphylococcus sciuri species group includes five species that are most often presented as commensal animal-associated bacteria. The species of this group are Staphylococcus sciuri (with three subspecies), Staphylococcus lentus, Staphylococcus vitulinus, Staphylococcus fleurettii and Staphylococcus stepanovicii. Members of these group are commonly found in a broad range of habitats including animals, humans and the environment. However, those species have been isolated also from infections, both in veterinary and human medicine. Members of this group have been shown to be pathogenic, though infections caused by these species are infrequent. Furthermore, members of the S. sciuri species group have also been found to carry multiple virulence and resistance genes. Indeed, genes implicated in biofilm formation or coding for toxins responsible of toxic shock syndrome and multi-resistance, similar to those carried by Staphylococcus aureus, were detected. This group may thereby represent a reservoir for other bacteria. Despite its recognized abundance as commensal bacteria and its possible role as reservoir of virulence and resistance genes for other staphylococci, the S. sciuri species group is often considered harmless and, as such, not as well documented as, for example, S. aureus. More investigation into the role of the S. sciuri species group as commensal and pathogenic bacteria is required to fully assess its medical and veterinary importance.

  17. Atlas of Relations Between Climatic Parameters and Distributions of Important Trees and Shrubs in North America - Alaska Species and Ecoregions

    USGS Publications Warehouse

    Thompson, Robert S.; Anderson, Katherine H.; Strickland, Laura E.; Shafer, Sarah L.; Pelltier, Richard T.; Bartlein, Patrick J.

    2006-01-01

    Climate is the primary factor in controlling the continental-scale distribution of plant species, although the relations between climatic parameters and species' ranges is only now beginning to be quantified. Preceding volumes of this atlas explored the continental-scale relations between climatic parameters and the distributions of woody plant species across all of the continent of North America. This volume presents similar information for important woody species, groups of species, and ecoregions in more detail for the State of Alaska. For these analyses, we constructed a 25-kilometer equal-area grid of modern climatic and bioclimatic parameters for North America from instrumental weather records. We obtained a digital representation of the geographic distribution of each species or ecoregion, either from a published source or by digitizing the published distributions ourselves. The presence or absence of each species or ecoregion was then determined for each point on the 25-kilometer grid, thus providing a basis for comparison of the climatic data with the geographic distribution of each species or ecoregion. The relations between climate and these distributions are presented in graphical and tabular form.

  18. Volatile compounds in acacia, chestnut, cherry, ash, and oak woods, with a view to their use in cooperage.

    PubMed

    de Simón, Brígida Fernández; Esteruelas, Enrique; Muñoz, Angel M; Cadahía, Estrella; Sanz, Miriam

    2009-04-22

    Extracts of wood from acacia, European ash, American ash, chestnut, cherry, and three oak species (Quercus pyrenaica, Quercus alba and Quercus petraea) before and after toasting in cooperage were studied by GC-MS. 110 compounds were detected, and 97 of them were identified. In general, all studied woods showed more lignin derivatives than lipid and carbohydrate derivatives, with a higher variety of compounds detected and abundance of them. The toasting led to an increase in the concentrations of most of these compounds, and this increase is especially important in acacia, chestnut and ash woods. The cis and trans isomers of beta-methyl-gamma-octalactone and isobutyrovanillone were only detected in oak wood, 3,4-dimethoxyphenol and 2,4-dihydroxybenzaldehyde only in acacia wood, and p-anisaldehyde and benzylsalicylate only in cherry wood, before and after toasting, and these compounds could be considered chemical markers for each one of these woods. Moreover, each wood has a characteristic volatile composition, from a quantitative point of view, and therefore we can expect a characteristic sensorial profile. The oak wood turned out to be the most balanced, since although it provides a lot of volatile compounds to the aroma and flavor of aged wine, it can do so without masking their primary and secondary aroma. On the whole, toasted acacia and chestnut woods showed a very high richness of studied compounds, as lignin as lipid and carbohydrate derivatives, while cherry and ash were much richer than toasted oak wood in lignin derivatives, but much poorer in lipid and carbohydrate derivatives.

  19. Bacteria in decomposing wood and their interactions with wood-decay fungi.

    PubMed

    Johnston, Sarah R; Boddy, Lynne; Weightman, Andrew J

    2016-11-01

    The fungal community within dead wood has received considerable study, but far less attention has been paid to bacteria in the same habitat. Bacteria have long been known to inhabit decomposing wood, but much remains underexplored about their identity and ecology. Bacteria within the dead wood environment must interact with wood-decay fungi, but again, very little is known about the form this takes; there are indications of both antagonistic and beneficial interactions within this fungal microbiome. Fungi are hypothesised to play an important role in shaping bacterial communities in wood, and conversely, bacteria may affect wood-decay fungi in a variety of ways. This minireview considers what is currently known about bacteria in wood and their interactions with fungi, and proposes possible associations based on examples from other habitats. It aims to identify key knowledge gaps and pressing questions for future research.

  20. [Description and key to the main species of Calliphoridae (Diptera) larvae of forensic importance from Colombia].

    PubMed

    Florez, Eliana; Wolff, Marta

    2009-01-01

    Larvae of 13 blowfly species from Colombia are described and an illustrated key for all them is presented. All larval instars of Calliphora nigribasis Macquart, Cochliomyia macellaria (Fabricius), Chrysomya albiceps (Wiedemann), Chrysomya megacephala (Fabricius), Hemilucilia segmentaria (Fabricius), Hemilucilia semidiaphana (Rondani), Lucilia eximia (Weidemann) are described, but the second and third instars of Compsomyiops verena (Walter), and only the third instar of Calliphora vicina Robineau-Desvoidy, Cochliomyia hominivorax (Coquerel), Lucilia peruviana Robineau-Desvoidy, Lucilia sericata (Meigen) and Sarconesiopsis magellanica (Le Guillou).

  1. Global tropospheric chemistry models for radiatively important trace species: Design and research recommendations

    SciTech Connect

    Barchet, W.R.; Brothers, A.J.; Berkowitz, C.M.; Easter, R.C.; Ghan, S.J.; Saylor, R.D.

    1993-12-01

    Changes in the Earth`s climate could significantly affect regional and global concentrations of trace species that are criteria pollutants regulated by the US Environmental Protection Agency (EPA). The policy community also needs to know how changes in global natural and anthropogenic emissions of greenhouse gases, particulate aerosols, and aerosol precursors will affect the distribution and concentration of these pollutants. This report maps out one path for obtaining this information.

  2. Community turnover of wood-inhabiting fungi across hierarchical spatial scales.

    PubMed

    Abrego, Nerea; García-Baquero, Gonzalo; Halme, Panu; Ovaskainen, Otso; Salcedo, Isabel

    2014-01-01

    For efficient use of conservation resources it is important to determine how species diversity changes across spatial scales. In many poorly known species groups little is known about at which spatial scales the conservation efforts should be focused. Here we examined how the community turnover of wood-inhabiting fungi is realised at three hierarchical levels, and how much of community variation is explained by variation in resource composition and spatial proximity. The hierarchical study design consisted of management type (fixed factor), forest site (random factor, nested within management type) and study plots (randomly placed plots within each study site). To examine how species richness varied across the three hierarchical scales, randomized species accumulation curves and additive partitioning of species richness were applied. To analyse variation in wood-inhabiting species and dead wood composition at each scale, linear and Permanova modelling approaches were used. Wood-inhabiting fungal communities were dominated by rare and infrequent species. The similarity of fungal communities was higher within sites and within management categories than among sites or between the two management categories, and it decreased with increasing distance among the sampling plots and with decreasing similarity of dead wood resources. However, only a small part of community variation could be explained by these factors. The species present in managed forests were in a large extent a subset of those species present in natural forests. Our results suggest that in particular the protection of rare species requires a large total area. As managed forests have only little additional value complementing the diversity of natural forests, the conservation of natural forests is the key to ecologically effective conservation. As the dissimilarity of fungal communities increases with distance, the conserved natural forest sites should be broadly distributed in space, yet the individual

  3. Screening of different Trichoderma species against agriculturally important foliar plant pathogens.

    PubMed

    Prabhakaran, Narayanasamy; Prameeladevi, Thokala; Sathiyabama, Muthukrishnan; Kamil, Deeba

    2015-01-01

    Different isolates of Trichoderma were isolated from soil samples which were collected from different part of India. These isolates were grouped into four Trichoderma species viz., Trichoderma asperellum (Ta), T. harzianum (Th), T. pseudokoningii (Tp) and T. longibrachiatum (Tl) based on their morphological characters. Identification of the above isolates was also confirmed through ITS region analysis. These Trichoderma isolates were tested for in vitro biological control of Alternaria solani, Bipolaris oryzae, Pyricularia oryzae and Sclerotinia scierotiorum which cause serious diseases like early blight (target spot) of tomato and potato, brown leaf spot disease in rice, rice blast disease, and white mold disease in different plants. Under in vitro conditions, all the four species of Trichoderma (10 isolates) proved 100% potential inhibition against rice blast pathogen Pyracularia oryzae. T. harzianum (Th-01) and T. asperellum (Ta-10) were effective with 86.6% and 97.7%, growth inhibition of B. oryzae, respectively. Among others, T. pseudokoningii (Tp-08) and T. Iongibrachiatum (Tl-09) species were particularly efficient in inhibiting growth of S. sclerotiorum by 97.8% and 93.3%. T. Iongibrachiatum (TI-06 and TI-07) inhibited maximum mycelial growth of A. solani by 87.6% and 84.75. However, all the T. harzianum isolates showed significantly higher inhibition against S. sclerotiorum (CD value 9.430), causing white mold disease. This study led to the selection of potential Trichoderma isolates against rice blast, early blight, brown leaf spot in rice and white mold disease in different crops.

  4. The Relationships of Wood-, Gas- and Water Fractions of Tree Stems to Performance and Life History Variation in Tropical Trees

    PubMed Central

    Poorter, Lourens

    2008-01-01

    Background and Aims The volume of tree stems is made up of three components: solid wood, gas and water. These components have important consequences for the construction costs, strength and stability of trees. Here, the importance of stem components for sapling growth and survival in the field was investigated, and then these stem components were related to two important life history axes of variation: the light requirements for regeneration and the adult stature of the species. Methods Stem fractions of wood, gas and water were determined for saplings and adults of respectively 30 and 58 Bolivian tropical moist-forest species. Sapling height growth and survival were monitored for 2 years in the field as indicators of sapling performance. Key Results Sapling stems consisted of 26 % wood (range 7–36 % for species), 59 % water (range 49–88 %), and 15 % gas (range 0–38 %) per unit volume. The wood fraction was the only determinant of sapling performance and was correlated with increased survival and decreased growth rate across species. The wood fraction decreased with light requirements of the species, probably because a high wood fraction protects shade-tolerant species against pathogens and falling debris. The gas fraction increased with the light requirements and adult stature of the species; probably as an aid in realizing a rapid height growth and accessing the canopy in the case of light-demanding species, and for rapidly attaining stability and a large reproductive size in the case of tall species. The water fraction was not correlated with the life history variation of tree species, probably because it leads to increased stem loading and decreased stability. Conclusions The wood fraction might partially explain the growth–survival trade-off that has been found across tropical tree species. The wood and gas fractions are closely related to the regeneration light requirements of the species. Tall species have a high gas fraction, probably not only

  5. Assembly history dictates ecosystem functioning: evidence from wood decomposer communities.

    PubMed

    Fukami, Tadashi; Dickie, Ian A; Paula Wilkie, J; Paulus, Barbara C; Park, Duckchul; Roberts, Andrea; Buchanan, Peter K; Allen, Robert B

    2010-06-01

    Community assembly history is increasingly recognized as a fundamental determinant of community structure. However, little is known as to how assembly history may affect ecosystem functioning via its effect on community structure. Using wood-decaying fungi as a model system, we provide experimental evidence that large differences in ecosystem functioning can be caused by small differences in species immigration history during community assembly. Direct manipulation of early immigration history resulted in three-fold differences in fungal species richness and composition and, as a consequence, differences of the same magnitude in the rate of decomposition and carbon release from wood. These effects - which were attributable to the history-dependent outcome of competitive and facilitative interactions - were significant across a range of nitrogen availabilities observed in natural forests. Our results highlight the importance of considering assembly history in explaining ecosystem functioning.

  6. Optimal allocation of conservation effort among subpopulations of a threatened species: how important is patch quality?

    PubMed

    Chauvenet, Aliénor L M; Baxter, Peter W J; McDonald-Madden, Eve; Possingham, Hugh P

    2010-04-01

    Money is often a limiting factor in conservation, and attempting to conserve endangered species can be costly. Consequently, a framework for optimizing fiscally constrained conservation decisions for a single species is needed. In this paper we find the optimal budget allocation among isolated subpopulations of a threatened species to minimize local extinction probability. We solve the problem using stochastic dynamic programming, derive a useful and simple alternative guideline for allocating funds, and test its performance using forward simulation. The model considers subpopulations that persist in habitat patches of differing quality, which in our model is reflected in different relationships between money invested and extinction risk. We discover that, in most cases, subpopulations that are less efficient to manage should receive more money than those that are more efficient to manage, due to higher investment needed to reduce extinction risk. Our simple investment guideline performs almost as well as the exact optimal strategy. We illustrate our approach with a case study of the management of the Sumatran tiger, Panthera tigris sumatrae, in Kerinci Seblat National Park (KSNP), Indonesia. We find that different budgets should be allocated to the separate tiger subpopulations in KSNP. The subpopulation that is not at risk of extinction does not require any management investment. Based on the combination of risks of extinction and habitat quality, the optimal allocation for these particular tiger subpopulations is an unusual case: subpopulations that occur in higher-quality habitat (more efficient to manage) should receive more funds than the remaining subpopulation that is in lower-quality habitat. Because the yearly budget allocated to the KSNP for tiger conservation is small, to guarantee the persistence of all the subpopulations that are currently under threat we need to prioritize those that are easier to save. When allocating resources among subpopulations

  7. The Change of a Medically Important Genus: Worldwide Occurrence of Genetically Diverse Novel Brucella Species in Exotic Frogs.

    PubMed

    Scholz, Holger C; Mühldorfer, Kristin; Shilton, Cathy; Benedict, Suresh; Whatmore, Adrian M; Blom, Jochen; Eisenberg, Tobias

    2016-01-01

    The genus Brucella comprises various species of both veterinary and human medical importance. All species are genetically highly related to each other, sharing intra-species average nucleotide identities (ANI) of > 99%. Infections occur among various warm-blooded animal species, marine mammals, and humans. Until recently, amphibians had not been recognized as a host for Brucella. In this study, however, we show that novel Brucella species are distributed among exotic frogs worldwide. Comparative recA gene analysis of 36 frog isolates from various continents and different frog species revealed an unexpected high genetic diversity, not observed among classical Brucella species. In phylogenetic reconstructions the isolates consequently formed various clusters and grouped together with atypical more distantly related brucellae, like B. inopinata, strain BO2, and Australian isolates from rodents, some of which were isolated as human pathogens. Of one frog isolate (10RB9215) the genome sequence was determined. Comparative genome analysis of this isolate and the classical Brucella species revealed additional genetic material, absent from classical Brucella species but present in Ochrobactrum, the closest genetic neighbor of Brucella, and in other soil associated genera of the Alphaproteobacteria. The presence of gene clusters encoding for additional metabolic functions, flanked by tRNAs and mobile genetic elements, as well as by bacteriophages is suggestive for a different ecology compared to classical Brucella species. Furthermore it suggests that amphibian isolates may represent a link between free living soil saprophytes and the pathogenic Brucella with a preferred intracellular habitat. We therefore assume that brucellae from frogs have a reservoir in soil and, in contrast to classical brucellae, undergo extensive horizontal gene transfer.

  8. The Change of a Medically Important Genus: Worldwide Occurrence of Genetically Diverse Novel Brucella Species in Exotic Frogs

    PubMed Central

    Scholz, Holger C.; Mühldorfer, Kristin; Shilton, Cathy; Benedict, Suresh; Whatmore, Adrian M.; Blom, Jochen; Eisenberg, Tobias

    2016-01-01

    The genus Brucella comprises various species of both veterinary and human medical importance. All species are genetically highly related to each other, sharing intra-species average nucleotide identities (ANI) of > 99%. Infections occur among various warm-blooded animal species, marine mammals, and humans. Until recently, amphibians had not been recognized as a host for Brucella. In this study, however, we show that novel Brucella species are distributed among exotic frogs worldwide. Comparative recA gene analysis of 36 frog isolates from various continents and different frog species revealed an unexpected high genetic diversity, not observed among classical Brucella species. In phylogenetic reconstructions the isolates consequently formed various clusters and grouped together with atypical more distantly related brucellae, like B. inopinata, strain BO2, and Australian isolates from rodents, some of which were isolated as human pathogens. Of one frog isolate (10RB9215) the genome sequence was determined. Comparative genome analysis of this isolate and the classical Brucella species revealed additional genetic material, absent from classical Brucella species but present in Ochrobactrum, the closest genetic neighbor of Brucella, and in other soil associated genera of the Alphaproteobacteria. The presence of gene clusters encoding for additional metabolic functions, flanked by tRNAs and mobile genetic elements, as well as by bacteriophages is suggestive for a different ecology compared to classical Brucella species. Furthermore it suggests that amphibian isolates may represent a link between free living soil saprophytes and the pathogenic Brucella with a preferred intracellular habitat. We therefore assume that brucellae from frogs have a reservoir in soil and, in contrast to classical brucellae, undergo extensive horizontal gene transfer. PMID:28036367

  9. Molecular phylogeny of commercially important lobster species from Indian coast inferred from mitochondrial and nuclear DNA sequences.

    PubMed

    Jeena, N S; Gopalakrishnan, A; Radhakrishnan, E V; Kizhakudan, Joe K; Basheer, V S; Asokan, P K; Jena, J K

    2016-07-01

    Lobsters constitute low-volume high-value crustacean fishery resource along Indian coast. For the conservation and management of this declining resource, accurate identification of species and larvae is essential. The objectives of this work were to generate species-specific molecular signatures of 11 commercially important species of lobsters of families Palinuridae and Scyllaridae and to reconstruct a phylogeny to clarify the evolutionary relationships among genera and species included in this study. Partial sequences were generated for all the candidate species from sampling sites along the Indian coast using markers like Cytochrome oxidase I (COI), 16SrRNA, 12SrRNA, and 18SrRNA genes, and analyzed. The genetic identities of widely distributed Thenus species along the Indian coast to be Thenus unimaculatus and the sub-species of Panulirus homarus to be P. homarus homarus were confirmed. Phylogeny reconstruction using the individual gene and concatenated mtDNA data set were carried out. The overall results suggested independent monophyly of Scyllaridae and Stridentes of Palinuridae. The interspecific divergence was found to be highest for the 12SrRNA compared with other genes. Significant incongruence between mtDNA and nuclear 18SrRNA gene tree topologies was observed. The results hinted an earlier origin for Palinuridae compared with Scyllaridae. The DNA sequence data generated from this study will aid in the correct identification of lobster larvae and will find application in research related to larval transport and distribution.

  10. Life history and habitat associations of the broad wood cockroach, Parcoblatta lata (Blattaria: Blattellidae) and other native cockroaches in the Coastal Plain of South Carolina.

    SciTech Connect

    Horn, Scott; Hanula, James, L.

    2002-06-18

    Wood cockroaches are an important prey of the red-cockaded woodpecker, Picoides borealis, an endangered species inhabiting pine forests in the southern United States. These woodpeckers forage on the boles of live pine trees, but their prey consists of a high proportion of wood cockroaches, Parcoblatta spp., that are more commonly associated with dead plant material. Cockroach population density samples were conducted on live pine trees, dead snags and coarse woody debris on the ground. The studies showed that snags and logs are also important habitats of wood cockroaches in pine forests.

  11. Environmental Drivers of Culicoides Phenology: How Important Is Species-Specific Variation When Determining Disease Policy?

    PubMed Central

    Searle, Kate R.; Barber, James; Stubbins, Francesca; Labuschagne, Karien; Carpenter, Simon; Butler, Adam; Denison, Eric; Sanders, Christopher; Mellor, Philip S.; Wilson, Anthony; Nelson, Noel; Gubbins, Simon; Purse, Bethan V.

    2014-01-01

    Since 2006, arboviruses transmitted by Culicoides biting midges (Diptera: Ceratopogonidae) have caused significant disruption to ruminant production in northern Europe. The most serious incursions involved strains of bluetongue virus (BTV), which cause bluetongue (BT) disease. To control spread of BTV, movement of susceptible livestock is restricted with economic and animal welfare impacts. The timing of BTV transmission in temperate regions is partly determined by the seasonal presence of adult Culicoides females. Legislative measures therefore allow for the relaxation of ruminant movement restrictions during winter, when nightly light-suction trap catches of Culicoides fall below a threshold (the ‘seasonally vector free period’: SVFP). We analysed five years of time-series surveillance data from light-suction trapping in the UK to investigate whether significant inter-specific and yearly variation in adult phenology exists, and whether the SVFP is predictable from environmental factors. Because female vector Culicoides are not easily morphologically separated, inter-specific comparisons in phenology were drawn from male populations. We demonstrate significant inter-specific differences in Culicoides adult phenology with the season of Culicoides scoticus approximately eight weeks shorter than Culicoides obsoletus. Species-specific differences in the length of the SVFP were related to host density and local variation in landscape habitat. When the Avaritia Culicoides females were modelled as a group (as utilised in the SFVP), we were unable to detect links between environmental drivers and phenological metrics. We conclude that the current treatment of Avaritia Culicoides as a single group inhibits understanding of environmentally-driven spatial variation in species phenology and hinders the development of models for predicting the SVFP from environmental factors. Culicoides surveillance methods should be adapted to focus on concentrated assessments of species

  12. Ectoparasites of commensal rodents in Sulawesi Utara, Indonesia, with notes on species of medical importance.

    PubMed

    Durden, L A; Page, B F

    1991-01-01

    Ectoparasite records are presented for four species of commensal murid rodents (Rattus rattus palelae Miller & Hollister, R. argentiventer (Robinson & Kloss), R. exulans (Peale) and Mus musculus castaneus Waterhouse) in Sulawesi Utara, with particular reference to the potential for these arthropods to bite and transmit pathogens to humans. The flea, Xenopsylla cheopis (Rothschild), was most common on R.r. palelae and is capable of transmitting plague and other pathogens to humans although no current foci for these diseases are known in Sulawesi. Hoplopleura pacifica Ewing and Polyplax spinulosa (Burmeister) sucking lice parasitized all three Rattus species although H. pacifica was mainly associated with R. exulans and P. spinulosa with R.r. palelae. These lice do not bite humans but may be intramurid vectors of murine typhus and other zoonoses. The mites Laelaps echidnina Berlese and L. nuttalli Hirst were both collected; the latter was recorded from all four murid species, mainly R. exulans. The mite Ornithonyssus bacoti Hirst was rare. Only one chigger mite, Walchiella oudemansi (Walch), was retrieved from murids (from R. exulans) and a single Leptotrombidium deliense (Walch) chigger was taken from a human subject. Although L. deliense is a significant vector of scrub typhus, a disease known from Sulawesi, the L. deliense-R. argentiventer relationship frequently noted in the ecology of this rickettsial disease, was not evident in this survey. Other ectoparasites collected from murids were the ticks, Ixodes granulatus Supino (first record for Sulawesi), Haemaphysalis sp. and Dermacentor sp., the mites Myocoptes musculinus (Koch) and Listrophoroides cucullatus (Trouessart), acarids and a uropodid.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Environmental drivers of Culicoides phenology: how important is species-specific variation when determining disease policy?

    PubMed

    Searle, Kate R; Barber, James; Stubbins, Francesca; Labuschagne, Karien; Carpenter, Simon; Butler, Adam; Denison, Eric; Sanders, Christopher; Mellor, Philip S; Wilson, Anthony; Nelson, Noel; Gubbins, Simon; Purse, Bethan V

    2014-01-01

    Since 2006, arboviruses transmitted by Culicoides biting midges (Diptera: Ceratopogonidae) have caused significant disruption to ruminant production in northern Europe. The most serious incursions involved strains of bluetongue virus (BTV), which cause bluetongue (BT) disease. To control spread of BTV, movement of susceptible livestock is restricted with economic and animal welfare impacts. The timing of BTV transmission in temperate regions is partly determined by the seasonal presence of adult Culicoides females. Legislative measures therefore allow for the relaxation of ruminant movement restrictions during winter, when nightly light-suction trap catches of Culicoides fall below a threshold (the 'seasonally vector free period': SVFP). We analysed five years of time-series surveillance data from light-suction trapping in the UK to investigate whether significant inter-specific and yearly variation in adult phenology exists, and whether the SVFP is predictable from environmental factors. Because female vector Culicoides are not easily morphologically separated, inter-specific comparisons in phenology were drawn from male populations. We demonstrate significant inter-specific differences in Culicoides adult phenology with the season of Culicoides scoticus approximately eight weeks shorter than Culicoides obsoletus. Species-specific differences in the length of the SVFP were related to host density and local variation in landscape habitat. When the Avaritia Culicoides females were modelled as a group (as utilised in the SFVP), we were unable to detect links between environmental drivers and phenological metrics. We conclude that the current treatment of Avaritia Culicoides as a single group inhibits understanding of environmentally-driven spatial variation in species phenology and hinders the development of models for predicting the SVFP from environmental factors. Culicoides surveillance methods should be adapted to focus on concentrated assessments of species

  14. The relative importance of respiratory water loss in scorpions is correlated with species habitat type and activity pattern.

    PubMed

    Gefen, Eran

    2011-01-01

    Scorpions exhibit some of the lowest recorded water loss rates compared with those of other terrestrial arthropods of similar body size. Evaporative water loss (EWL) includes cuticular transpiration and respiratory water loss (RWL) from gas exchange surfaces, that is, book lung lamellae. Estimated fractions of cuticular and respiratory losses currently available from the literature show considerable variation, at least partly as a result of differences in methodology. This study reports RWL rates and their relative importance in scorpions from two families (Buthidae and Scorpionidae), including both xeric and mesic species (or subspecies). Two of the included Buthidae were surface-dwelling species, and another inhabits empty burrows of other terrestrial arthropods. This experimental design enabled correlating RWL importance with scorpion phylogeny, habitat type, and/or homing behavior. Buthidae species exhibited significantly lower EWL rates compared with those of Scorpionidae, whereas effects of habitat type and homing behavior were not significant. Resting RWL rates were not significantly affected by scorpion phylogeny, but rates for the xeric species (totaling ~10% of EWL rates at 30°C) were significantly lower compared with those of mesic species. These lower RWL values were correlated with significantly lower H(2)O/CO(2) emission rates in xeric species. The experimental setup and ~24-h duration of each individual recording allowed estimating the effect of interspecific variation in activity on RWL proportions. The high respiratory losses in active hydrated Scorpio maurus fuscus, totaling 30% of EWL, suggest that behavioral discretion in this species is a more likely mechanism for body water conservation under stressful conditions when compared with the responses of other studied species.

  15. DNA barcoding and NMR spectroscopy-based assessment of species adulteration in the raw herbal trade of Saraca asoca (Roxb.) Willd, an important medicinal plant.

    PubMed

    Urumarudappa, Santhosh Kumar Jayanthinagar; Gogna, Navdeep; Newmaster, Steven G; Venkatarangaiah, Krishna; Subramanyam, Ragupathy; Saroja, Seethapathy Gopalakrishnan; Gudasalamani, Ravikanth; Dorai, Kavita; Ramanan, Uma Shaanker

    2016-11-01

    Saraca asoca (Roxb.) Willd, commonly known as "Asoka" or "Ashoka," is one of the most important medicinal plants used in raw herbal trade in India. The bark extracts of the tree are used in the treatment of leucorrhea and other uterine disorders besides also having anti-inflammatory, anti-bacterial, anti-pyretic, anti-helminthic, and analgesic activity. The indiscriminate and rampant extraction of the wood to meet the ever-increasing market demand has led to a sharp decline in naturally occurring populations of the species in the country. Consequently, the species has recently been classified as "vulnerable" by the International Union for Conservation of Nature (IUCN). Increasing deforestation and increasing demand for this medicinal plant have resulted in a limited supply and suspected widespread adulteration of the species in the raw herbal trade market. Adulteration is a serious concern due to: (i) reduction in the efficacy of this traditional medicine, (ii) considerable health risk to consumers, and (iii) fraudulent product substitution that impacts the economy for the Natural Health Product (NHP) Industry and consumers. In this paper, we provide the first attempt to assess the extent of adulteration in the raw herbal trade of S. asoca using DNA barcoding validated by NMR spectroscopic techniques. Analyzing market samples drawn from 25 shops, mostly from peninsular India, we show that more than 80 % of the samples were spurious, representing plant material from at least 7 different families. This is the first comprehensive and large-scale study to demonstrate the widespread adulteration of market samples of S. asoca in India. These results pose grave implications for the use of raw herbal drugs, such as that of S. asoca, on consumer health and safety. Based on these findings, we argue for a strong and robust regulatory framework to be put in place, which would ensure the quality of raw herbal trade products and reassure consumer confidence in indigenous

  16. Impact of larval pathogen infection on conspecific oviposition preference of three medically important mosquito species of Florida.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oviposition responses of three medically important mosquito species were evaluated in two-choice bioassays to determine if larval pathogen infection affected oviposition site choice. Both Aedes aegypti and Ae. albopictus laid significantly fewer eggs in cups containing infected larvae, however, Cule...

  17. In vitro susceptibility patterns of clinically important Trichophyton and Epidermophyton species against nine antifungal drugs.

    PubMed

    Badali, Hamid; Mohammadi, Rasoul; Mashedi, Olga; de Hoog, G Sybren; Meis, Jacques F

    2015-05-01

    Despite the common, worldwide, occurrence of dermatophytes, little information is available regarding susceptibility profiles against currently available and novel antifungal agents. A collection of sixty-eight clinical Trichophyton species and Epidermophyton floccosum were previously identified and verified to the species level by sequencing the internal transcribed spacer (ITS) regions of rDNA. MICs of amphotericin B, fluconazole, itraconazole, voriconazole, posaconazole, isavuconazole, terbinafine and MECs of caspofungin and anidulafungin were performed based on CLSI M38-A2. The resulting MIC90 s of all strains were, in increasing order, as follows: terbinafine (0.063 mg l(-1) ); posaconazole (1 mg l(-1) ); isavuconazole and anidulafungin (2 mg l(-1) ); itraconazole, voriconazole, amphotericin B, and caspofungin (4 mg l(-1) ) and fluconazole (>64 mg l(-1) ). These results confirm that terbinafine is an excellent agent for treatment of dermatophytosis due to T. rubrum, T. mentagrophytes, T. verrucosum, T. schoenleinii and E. floccosum. In addition, the new azoles POS and ISA are potentially useful antifungals to treat dermatophytosis. However, the clinical effectiveness of these novel antifungals remains to be determined.

  18. Are fungi important for breaking seed dormancy in desert species? Experimental evidence in Opuntia streptacantha (Cactaceae).

    PubMed

    Delgado-Sánchez, P; Ortega-Amaro, M A; Jiménez-Bremont, J F; Flores, J

    2011-01-01

    Seeds of Opuntia spp. have physiological dormancy; they need a period of after-ripening to break dormancy, and the embryos have low growth potential. We evaluated the combined effects of seed age and presence of fungi on the testa on germination of Opuntia streptacantha, an abundant species in the Chihuahuan Desert (Mexico), assuming that older seeds have broken seed dormancy and fungi can reduce mechanical resistance to germination. In a preliminary experiment, we found no germination of 9-year-old (1998) and freshly collected (2007) seeds. However, we obtained 67% and 27% germination from 9-year-old and fresh non-sterilized seeds, respectively, and found fungi growing on the testa of all germinated seeds. Two fungal strains were isolated and identified using ribosomal internal transcribed spacer (ITS) sequence analysis: Penicillium chrysogenum and Phoma sp. In a second experiment, we inoculated seeds with strains of P. chrysogenum and Phoma sp., as well as Trichoderma koningii and binucleate Rhizoctonia (Gto17S2), to evaluate their ability to break seed dormancy. Seeds inoculated with P. chrysogenum, Phoma sp. and T. koningii had higher germination than controls for both seed ages, but germination was higher in older seeds. Scanning electron microscopy showed that these fungi eroded the funiculus, reducing its resistance. Binucleate Rhizoctonia did not lead to germination and controls had almost no germination. Our results strongly indicate that fungi are involved in breaking seed dormancy of O. streptacantha, and that the effect of fungi on seeds is species-specific.

  19. Species of the toxic Pfiesteria complex, and the importance of functional type in data interpretation.

    PubMed

    Burkholder, J M; Glasgow, H B; Deamer-Melia, N J; Springer, J; Parrow, M W; Zhang, C; Cancellieri, P J

    2001-10-01

    We describe the two species of the toxic Pfiesteria complex to date (Pfiesteria piscicida and Pfiesteria shumwayae), their complex life cycles, and the characteristics required for inclusion within this complex. These species resemble P. piscicida Steidinger & Burkholder and also have a) strong attraction to fresh fish tissues and excreta, b) toxic activity stimulated by live fish, and c) production of toxin that can cause fish death and disease. Amoeboid stages were verified in 1992-1997 by our laboratory (various stages from toxic cultures) and that of K. Steidinger and co-workers (filose amoebae in nontoxic cultures), and in 2000 by H. Marshall and co-workers (various stages from toxic cultures), from clonal Pfiesteria spp. cultures, using species-specific polymerase chain reaction-based molecular probes with cross-confirmation by an independent specialist. Data were provided from tests of the hypothesis that Pfiesteriastrains differ in response to fresh fish mucus and excreta, algal prey, and inorganic nutrient (N, P) enrichment, depending on functional type or toxicity status. There are three functional types: TOX-A, in actively toxic, fish-killing mode; TOX-B, temporarily nontoxic, without access to live fish for days to weeks, but capable of toxic activity if fish are added; and NON-IND, noninducible with negligible toxicity in the presence of live fish. NON-IND Pfiesteria attained highest zoospore production on algal prey without or without inorganic nitrogen or inorganic phosphorus enrichment. TOX-B Pfiesteria was intermediate and TOX-A was lowest in zoospore production on algal prey with or without nutrients. TOX-A Pfiesteria spp. showed strong behavioral attraction to fresh fish mucus and excreta in short-term trials, with intermediate attraction of TOX-B zoospores and relatively low attraction of NON-IND cultures when normalized for cell density. The data for these clones indicated a potentially common predatory behavioral response, although differing

  20. Species of the toxic Pfiesteria complex, and the importance of functional type in data interpretation.

    PubMed Central

    Burkholder, J M; Glasgow, H B; Deamer-Melia, N J; Springer, J; Parrow, M W; Zhang, C; Cancellieri, P J

    2001-01-01

    We describe the two species of the toxic Pfiesteria complex to date (Pfiesteria piscicida and Pfiesteria shumwayae), their complex life cycles, and the characteristics required for inclusion within this complex. These species resemble P. piscicida Steidinger & Burkholder and also have a) strong attraction to fresh fish tissues and excreta, b) toxic activity stimulated by live fish, and c) production of toxin that can cause fish death and disease. Amoeboid stages were verified in 1992-1997 by our laboratory (various stages from toxic cultures) and that of K. Steidinger and co-workers (filose amoebae in nontoxic cultures), and in 2000 by H. Marshall and co-workers (various stages from toxic cultures), from clonal Pfiesteria spp. cultures, using species-specific polymerase chain reaction-based molecular probes with cross-confirmation by an independent specialist. Data were provided from tests of the hypothesis that Pfiesteriastrains differ in response to fresh fish mucus and excreta, algal prey, and inorganic nutrient (N, P) enrichment, depending on functional type or toxicity status. There are three functional types: TOX-A, in actively toxic, fish-killing mode; TOX-B, temporarily nontoxic, without access to live fish for days to weeks, but capable of toxic activity if fish are added; and NON-IND, noninducible with negligible toxicity in the presence of live fish. NON-IND Pfiesteria attained highest zoospore production on algal prey without or without inorganic nitrogen or inorganic phosphorus enrichment. TOX-B Pfiesteria was intermediate and TOX-A was lowest in zoospore production on algal prey with or without nutrients. TOX-A Pfiesteria spp. showed strong behavioral attraction to fresh fish mucus and excreta in short-term trials, with intermediate attraction of TOX-B zoospores and relatively low attraction of NON-IND cultures when normalized for cell density. The data for these clones indicated a potentially common predatory behavioral response, although differing

  1. Analysis of Protein Thermostability Enhancing Factors in Industrially Important Thermus Bacteria Species

    PubMed Central

    Kumwenda, Benjamin; Litthauer, Derek; Bishop, Özlem Tastan; Reva, Oleg

    2013-01-01

    Elucidation of evolutionary factors that enhance protein thermostability is a critical problem and was the focus of this work on Thermus species. Pairs of orthologous sequences of T. scotoductus SA-01 and T. thermophilus HB27, with the largest negative minimum folding energy (MFE) as predicted by the UNAFold algorithm, were statistically analyzed. Favored substitutions of amino acids residues and their properties were determined. Substitutions were analyzed in modeled protein structures to determine their locations and contribution to energy differences using PyMOL and FoldX programs respectively. Dominant trends in amino acid substitutions consistent with differences in thermostability between orthologous sequences were observed. T. thermophilus thermophilic proteins showed an increase in non-polar, tiny, and charged amino acids. An abundance of alanine substituted by serine and threonine, as well as arginine substituted by glutamine and lysine was observed in T. thermophilus HB27. Structural comparison showed that stabilizing mutations occurred on surfaces and loops in protein structures. PMID:24023508

  2. Generation of reactive oxygen species via NOXa is important for development and pathogenicity of mycosphaerella graminicola

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ascomycete fungus Mycosphaerella graminicola is an important pathogen of wheat causing economically significant losses. The primary nutritional mode of this fungus is thought to be hemibiotrophic. This pathogenic lifestyle is associated with an early biotrophic stage of nutrient uptake followed ...

  3. Characteristics of bacterial strains inhabiting the wood of coniferous trees.

    PubMed

    Gajewska, Julitta; Miszczyk, Anita; Markiewicz, Zdzisław

    2004-01-01

    The presented studies embraced samples of wood chips from coniferous trees which contained layers of duramen, alburnum and bark. Microbiological analysis involved qualitative and quantitative determination of bacterial flora inhabiting the studied wood material. The wood chips were found to contain primarily species belonging to the genera Bacillus and Pseudomonas. The presence of the potentially pathogenic species Bacillus cereus 1, Sphingomonas paucimobilis, Aeromonas salmonicida and Chryseomonas luteola was also demonstrated.

  4. Enzymatic hydrolysis of biomass from wood.

    PubMed

    Álvarez, Consolación; Reyes-Sosa, Francisco Manuel; Díez, Bruno

    2016-03-01

    Current research and development in cellulosic ethanol production has been focused mainly on agricultural residues and dedicated energy crops such as corn stover and switchgrass; however, woody biomass remains a very important feedstock for ethanol production. The precise composition of hemicellulose in the wood is strongly dependent on the plant species, therefore different types of enzymes are needed based on hemicellulose complexity and type of pretreatment. In general, hardwood species have much lower recalcitrance to enzymes than softwood. For hardwood, xylanases, beta-xylosidases and xyloglucanases are the main hemicellulases involved in degradation of the hemicellulose backbone, while for softwood the effect of mannanases and beta-mannosidases is more relevant. Furthermore, there are different key accessory enzymes involved in removing the hemicellulosic fraction and increasing accessibility of cellulases to the cellulose fibres improving the hydrolysis process. A diversity of enzymatic cocktails has been tested using from low to high densities of biomass (2-20% total solids) and a broad range of results has been obtained. The performance of recently developed commercial cocktails on hardwoods and softwoods will enable a further step for the commercialization of fuel ethanol from wood.

  5. Changes in mass and nutrient content of wood during decomposition in a south Florida mangrove forest

    USGS Publications Warehouse

    Romero, L.M.; Smith, T. J.; Fourqurean, J.W.

    2005-01-01

    1 Large pools of dead wood in mangrove forests following disturbances such as hurricanes may influence nutrient fluxes. We hypothesized that decomposition of wood of mangroves from Florida, USA (Avicennia germinans, Laguncularia racemosa and Rhizophora mangle), and the consequent nutrient dynamics, would depend on species, location in the forest relative to freshwater and marine influences and whether the wood was standing, lying on the sediment surface or buried. 2 Wood disks (8-10 cm diameter, 1 cm thick) from each species were set to decompose at sites along the Shark River, either buried in the sediment, on the soil surface or in the air (above both the soil surface and high tide elevation). 3 A simple exponential model described the decay of wood in the air, and neither species nor site had any effect on the decay coefficient during the first 13 months of decomposition. 4 Over 28 months of decomposition, buried and surface disks decomposed following a two-component model, with labile and refractory components. Avicennia germinans had the largest labile component (18 ?? 2% of dry weight), while Laguncularia racemosa had the lowest (10 ?? 2%). Labile components decayed at rates of 0.37-23.71% month -1, while refractory components decayed at rates of 0.001-0.033% month-1. Disks decomposing on the soil surface had higher decay rates than buried disks, but both were higher than disks in the air. All species had similar decay rates of the labile and refractory components, but A. germinans exhibited faster overall decay because of a higher proportion of labile components. 5 Nitrogen content generally increased in buried and surface disks, but there was little change in N content of disks in the air over the 2-year study. Between 17% and 68% of total phosphorus in wood leached out during the first 2 months of decomposition, with buried disks having the greater losses, P remaining constant or increasing slightly thereafter. 6 Newly deposited wood from living trees was

  6. Reactive oxygen species are important mediators of taurine release from skeletal muscle cells.

    PubMed

    Ørtenblad, Niels; Young, Jette Feveile; Oksbjerg, Niels; Nielsen, Jacob Holm; Lambert, Ian Henry

    2003-06-01

    The present study illustrates elements of the signal cascades involved in the activation of taurine efflux pathways in myotubes derived from skeletal muscle cells. Exposing primary skeletal muscle cells, loaded with (14)C-taurine, to 1) hypotonic media, 2) the phospholipase A(2) (PLA(2)) activator melittin, 3) anoxia, or 4) lysophosphatidyl choline (LPC) causes an increase in (14)C-taurine release and a concomitant production of reactive oxygen species (ROS). The antioxidants butulated hydroxy toluene and vitamin E inhibit the taurine efflux after cell swelling, anoxia, and addition of LPC. The muscle cells possess two separate taurine efflux pathways, i.e., a swelling- and melittin-induced pathway that requires 5-lipoxygenase activity for activation and a LPC-induced pathway. The two pathways are distinguished by their opposing sensitivity toward the anion channel blocker DIDS and cholesterol. These data provide evidence for PLA(2) products and ROS as key mediators of the signal cascade leading to taurine efflux in muscle.

  7. Colonisation in social species: the importance of breeding experience for dispersal in overcoming information barriers

    PubMed Central

    Payo-Payo, A.; Genovart, M.; Sanz-Aguilar, A.; Greño, J. L.; García-Tarrasón, M.; Bertolero, A.; Piccardo, J.; Oro, D.

    2017-01-01

    Studying colonisation is crucial to understand metapopulations, evolutionary ecology and species resilience to global change. Unfortunately, few empirical data are available because field monitoring that includes empty patches at large spatiotemporal scales is required. We examine the colonisation dynamics of a long-lived seabird over 34 years in the western Mediterranean by comparing population and individual data from both source colony and the newly-formed colonies. Since social information is not available, we hypothesize that colonisation should follow particular dispersal dynamics and personal information must be crucial in decision making. We test if adverse breeding conditions trigger colonisation events, if personal information plays a role in colonisation and if colonisers experience greater fitness. Our results show a temporal mismatch between colonisation events and both density-dependence and perturbations at the source colony, probably because colonisers needed a longer prospecting period to compensate for the lack of public information. Colonisers were mostly experienced individuals gaining higher breeding success in the new colony. Our results highlight the demographic value that experienced individuals can have on metapopulation dynamics of social long-lived organisms. PMID:28211483

  8. A rigorous detection of interstellar CH3NCO: An important missing species in astrochemical networks.

    PubMed

    Cernicharo, J; Kisiel, Z; Tercero, B; Kolesniková, L; Medvedev, I R; López, A; Fortman, S; Winnewisser, M; de Lucia, F C; Alonso, J L; Guillemin, J-C

    2016-03-01

    The recent analysis of the composition of the frozen surface of comet 67P/Churyumov-Gerasimenko has revealed a significant number of complex organic molecules. Methyl isocyanate (CH3NCO) is one of the more abundant species detected on the comet surface. In this work we report extensive characterization of its rotational spectrum resulting in a list of 1269 confidently assigned laboratory lines and its detection in space towards the Orion clouds where 399 lines of the molecule have been unambiguously identified. We find that the limited mm-wave laboratory data reported prior to our work require some revision. The abundance of CH3NCO in Orion is only a factor of ten below those of HNCO and CH3CN. Unlike the molecular abundances in the coma of comets, which correlate with those of warm molecular clouds, molecular abundances in the gas phase in Orion are only weakly correlated with those measured on the comet surface. We also compare our abundances with those derived recently for this molecule towards Sgr B2 (Halfen et al. 2015). A more accurate abundance of CH3NCO is provided for this cloud based on our extensive laboratory work.

  9. Colonisation in social species: the importance of breeding experience for dispersal in overcoming information barriers

    NASA Astrophysics Data System (ADS)

    Payo-Payo, A.; Genovart, M.; Sanz-Aguilar, A.; Greño, J. L.; García-Tarrasón, M.; Bertolero, A.; Piccardo, J.; Oro, D.

    2017-02-01

    Studying colonisation is crucial to understand metapopulations, evolutionary ecology and species resilience to global change. Unfortunately, few empirical data are available because field monitoring that includes empty patches at large spatiotemporal scales is required. We examine the colonisation dynamics of a long-lived seabird over 34 years in the western Mediterranean by comparing population and individual data from both source colony and the newly-formed colonies. Since social information is not available, we hypothesize that colonisation should follow particular dispersal dynamics and personal information must be crucial in decision making. We test if adverse breeding conditions trigger colonisation events, if personal information plays a role in colonisation and if colonisers experience greater fitness. Our results show a temporal mismatch between colonisation events and both density-dependence and perturbations at the source colony, probably because colonisers needed a longer prospecting period to compensate for the lack of public information. Colonisers were mostly experienced individuals gaining higher breeding success in the new colony. Our results highlight the demographic value that experienced individuals can have on metapopulation dynamics of social long-lived organisms.

  10. Species sorting and patch dynamics in harlequin metacommunities affect the relative importance of environment and space.

    PubMed

    Leibold, Mathew A; Loeuille, Nicolas

    2015-12-01

    Metacommunity theory indicates that variation in local community structure can be partitioned into components including those related to local environmental conditions vs. spatial effects and that these can be quantified using statistical methods based on variation partitioning. It has been hypothesized that joint associations of community composition with environment and space could be due to patch dynamics involving colonization-extinction processes in environmentally heterogeneous landscapes but this has yet to be theoretically shown. We develop a two-patch, type-two, species competition model in such a "harlequin" landscape (where different patches have different environments) to evaluate how composition is related to environmental and spatial effects as a function of background extinction rate. Using spatially implicit analytical models, we find that the environmental association of community composition declines with extinction rate as expected. Using spatially explicit simulation models, we further find that there is an increase in the spatial structure with extinction due to spatial patterning into clusters that are not related to environmental conditions but that this increase is limited. Natural metacommunities often show both environment and spatial determination even under conditions of relatively high isolation and these could be more easily explained by our model than alternative metacommunity models.

  11. Nutritional evaluation of commercially important fish species of Lakshadweep archipelago, India.

    PubMed

    Dhaneesh, Kottila Veettil; Noushad, Kunnamgalam Mohammed; Kumar, Thipramalai Thankappan Ajith

    2012-01-01

    Estimation of nutrition profile of edible fishes is essential and thus a bio-monitoring study was carried out to find out the nutritional composition of commonly available fishes in Agatti Island water of Lakshadweep Sea. Protein, carbohydrate, lipid, ash, vitamin, amino acid and fatty acid composition in the muscle of ten edible fish species were studied. Proximate analysis revealed that the protein, carbohydrate, lipid and ash contents were high in Thunnus albacares (13.69%), Parupeneus bifasciatus (6.12%), Hyporhamphus dussumieri (6.97%) and T. albacares (1.65%), respectively. Major amino acids were lysine, leucine and methionine, registering 2.84-4.56%, 2.67-4.18% and 2.64-3.91%, respectively. Fatty acid compositions ranged from 31.63% to 38.97% saturated (SFA), 21.99-26.30% monounsaturated (MUFAs), 30.32-35.11% polyunsaturated acids (PUFAs) and 2.86-7.79% branched fatty acids of the total fatty acids. The ω-3 and ω-6 PUFAs were ranged 13.05-21.14% and 6.88-9.82% of the total fatty acids, respectively. Hence, the fishes of Lakshadweep Sea are highly recommended for consumption, since these fishes are highly enriched with nutrition. The results can be used as a baseline data for comparing the various nutritional profiles of fishes in future.

  12. Electrohydrodynamic effects on two species of insects with economic importance to stored food products

    NASA Astrophysics Data System (ADS)

    Shayesteh, N.; Barthakur, N. N.

    1996-09-01

    An electrohydrodynamic (EHD) system which generated air ions within a strong electric field was used to study responses of stored-product insects Tribolium confusum (du Val) and Plodia interpunctella (Hübner). Larval mortality of both species generally increased with increased exposure time to ions of either polarity. The larvae and pupae of T. confusum suffered a higher mortality rate than the adults. The insects initially exhibited distinct avoiding motions away from regions of high towards low fluxes of air ions of both polarity. Insects moved vigorously, tumbled, flipped, curled up, and aggregated when the EHD system was turned on. The control insects not exposed to air ions survived and showed a total absence of such behaviour. For bipolar exposures, the insects occupied the neutral zone where the effects were minimal due to cancellation of the fields. Prolonged exposures of more than 20 min produced a quiescent state. EHD-enhanced mass transfer of the liquid component from physical objects established in fluid mechanics was invoked as a possible cause for insect mortality and avoiding behaviour to ions. Body fluid losses increased linearly with time of exposure ( R 2≥0.97) for all biological stages of insect growth. The larvae and pupae of T. confusum lost 12 and 15% of their body fluids, respectively, after 80 min of exposure to negative air ions. Fluid losses of such a magnitude are likely to have contributed to insect fatality.

  13. Long-term dynamics of adaptive evolution in a globally important phytoplankton species to ocean acidification.

    PubMed

    Schlüter, Lothar; Lohbeck, Kai T; Gröger, Joachim P; Riebesell, Ulf; Reusch, Thorsten B H

    2016-07-01

    Marine phytoplankton may adapt to ocean change, such as acidification or warming, because of their large population sizes and short generation times. Long-term adaptation to novel environments is a dynamic process, and phenotypic change can take place thousands of generations after exposure to novel conditions. We conducted a long-term evolution experiment (4 years = 2100 generations), starting with a single clone of the abundant and widespread coccolithophore Emiliania huxleyi exposed to three different CO2 levels simulating ocean acidification (OA). Growth rates as a proxy for Darwinian fitness increased only moderately under both levels of OA [+3.4% and +4.8%, respectively, at 1100 and 2200 μatm partial pressure of CO2 (Pco2)] relative to control treatments (ambient CO2, 400 μatm). Long-term adaptation to OA was complex, and initial phenotypic responses of ecologically important traits were later reverted. The biogeochemically important trait of calcification, in particular, that had initially been restored within the first year of evolution was later reduced to levels lower than the performance of nonadapted populations under OA. Calcification was not constitutively lost but returned to control treatment levels when high CO2-adapted isolates were transferred back to present-day control CO2 conditions. Selection under elevated CO2 exacerbated a general decrease of cell sizes under long-term laboratory evolution. Our results show that phytoplankton may evolve complex phenotypic plasticity that can affect biogeochemically important traits, such as calcification. Adaptive evolution may play out over longer time scales (>1 year) in an unforeseen way under future ocean conditions that cannot be predicted from initial adaptation responses.

  14. Long-term dynamics of adaptive evolution in a globally important phytoplankton species to ocean acidification

    PubMed Central

    Schlüter, Lothar; Lohbeck, Kai T.; Gröger, Joachim P.; Riebesell, Ulf; Reusch, Thorsten B. H.

    2016-01-01

    Marine phytoplankton may adapt to ocean change, such as acidification or warming, because of their large population sizes and short generation times. Long-term adaptation to novel environments is a dynamic process, and phenotypic change can take place thousands of generations after exposure to novel conditions. We conducted a long-term evolution experiment (4 years = 2100 generations), starting with a single clone of the abundant and widespread coccolithophore Emiliania huxleyi exposed to three different CO2 levels simulating ocean acidification (OA). Growth rates as a proxy for Darwinian fitness increased only moderately under both levels of OA [+3.4% and +4.8%, respectively, at 1100 and 2200 μatm partial pressure of CO2 (Pco2)] relative to control treatments (ambient CO2, 400 μatm). Long-term adaptation to OA was complex, and initial phenotypic responses of ecologically important traits were later reverted. The biogeochemically important trait of calcification, in particular, that had initially been restored within the first year of evolution was later reduced to levels lower than the performance of nonadapted populations under OA. Calcification was not constitutively lost but returned to control treatment levels when high CO2–adapted isolates were transferred back to present-day control CO2 conditions. Selection under elevated CO2 exacerbated a general decrease of cell sizes under long-term laboratory evolution. Our results show that phytoplankton may evolve complex phenotypic plasticity that can affect biogeochemically important traits, such as calcification. Adaptive evolution may play out over longer time scales (>1 year) in an unforeseen way under future ocean conditions that cannot be predicted from initial adaptation responses. PMID:27419227

  15. Robert Wood Johnson Foundation

    MedlinePlus

    Robert Wood Johnson Foundation Search How We Work Our Focus Areas About RWJF Search Menu How We Work Grants and Grant ... message For Grantees and Grantseekers The Robert Wood Johnson Foundation funds a wide array of programs which ...

  16. Wood's lamp examination

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003386.htm Wood's lamp examination To use the sharing features on this page, please enable JavaScript. A Wood's lamp examination is a test that uses ultraviolet ( ...

  17. Wood's lamp illumination (image)

    MedlinePlus

    A Wood's lamp emits ultraviolet light and can be a diagnostic aid in determining if someone has a fungal ... is an infection on the area where the Wood's lamp is illuminating, the area will fluoresce. Normally ...

  18. Taxonomic Revision of Lipoptilocnema (Diptera: Sarcophagidae), With Notes on Natural History and Forensic Importance of Its Species.

    PubMed

    Mulieri, Pablo Ricardo; Mello-Patiu, C A; Aballay, Fernando H

    2017-01-01

    Lipoptilocnema Townsend is a small genus of Neotropical Sarcophaginae with a distinctive genitalic morphology. This genus is revised based on the examination of the type series and large numbers of specimens of the seven previously known species, plus three new ones herein described, one from Argentina (L. delfinado Mulieri and Mello-Patiu, sp. nov.), and two from Brazil (L. savana Mulieri and Mello-Patiu, sp. nov. and L. tibanae Mulieri and Mello-Patiu, sp. nov.). All species are described or redescribed and illustrated. Distribution maps and a key for male identification are provided. The taxonomic position of this genus is reviewed and the interpretation of phallic structures is discussed. Notes on the natural history of Lipoptilocnema species are provided, and their potential importance as PMI indicators is highlighted, including the first record of Lipoptilocnema reared from a dead human body.

  19. Evaluation of a high throughput starch analysis optimised for wood.

    PubMed

    Bellasio, Chandra; Fini, Alessio; Ferrini, Francesco

    2014-01-01

    Starch is the most important long-term reserve in trees, and the analysis of starch is therefore useful source of physiological information. Currently published protocols for wood starch analysis impose several limitations, such as long procedures and a neutralization step. The high-throughput standard protocols for starch analysis in food and feed represent a valuable alternative. However, they have not been optimised or tested with woody samples. These have particular chemical and structural characteristics, including the presence of interfering secondary metabolites, low reactivity of starch, and low starch content. In this study, a standard method for starch analysis used for food and feed (AOAC standard method 996.11) was optimised to improve precision and accuracy for the analysis of starch in wood. Key modifications were introduced in the digestion conditions and in the glucose assay. The optimised protocol was then evaluated through 430 starch analyses of standards at known starch content, matrix polysaccharides, and wood collected from three organs (roots, twigs, mature wood) of four species (coniferous and flowering plants). The optimised protocol proved to be remarkably precise and accurate (3%), suitable for a high throughput routine analysis (35 samples a day) of specimens with a starch content between 40 mg and 21 µg. Samples may include lignified organs of coniferous and flowering plants and non-lignified organs, such as leaves, fruits and rhizomes.

  20. Immigration Rates in Fragmented Landscapes – Empirical Evidence for the Importance of Habitat Amount for Species Persistence

    PubMed Central

    Püttker, Thomas; Bueno, Adriana A.; dos Santos de Barros, Camila; Sommer, Simone; Pardini, Renata

    2011-01-01

    Background The total amount of native vegetation is an important property of fragmented landscapes and is known to exert a strong influence on population and metapopulation dynamics. As the relationship between habitat loss and local patch and gap characteristics is strongly non-linear, theoretical models predict that immigration rates should decrease dramatically at low levels of remaining native vegetation cover, leading to patch-area effects and the existence of species extinction thresholds across fragmented landscapes with different proportions of remaining native vegetation. Although empirical patterns of species distribution and richness give support to these models, direct measurements of immigration rates across fragmented landscapes are still lacking. Methodology/Principal Findings Using the Brazilian Atlantic forest marsupial Gray Slender Mouse Opossum (Marmosops incanus) as a model species and estimating demographic parameters of populations in patches situated in three landscapes differing in the total amount of remaining forest, we tested the hypotheses that patch-area effects on population density are apparent only at intermediate levels of forest cover, and that immigration rates into forest patches are defined primarily by landscape context surrounding patches. As expected, we observed a positive patch-area effect on M. incanus density only within the landscape with intermediate forest cover. Density was independent of patch size in the most forested landscape and the species was absent from the most deforested landscape. Specifically, the mean estimated numbers of immigrants into small patches were lower in the landscape with intermediate forest cover compared to the most forested landscape. Conclusions/Significance Our results reveal the crucial importance of the total amount of remaining native vegetation for species persistence in fragmented landscapes, and specifically as to the role of variable immigration rates in providing the underlying

  1. Isolation of wood-inhabiting fungi from Canadian hardwood logs.

    PubMed

    Yang, Dian-Qing

    2005-01-01

    Wood-inhabiting fungi include many molds, wood-staining fungi, and decay fungi. Most of these fungal species can result in economic losses to wood users. Studies on molds, staining fungi, and decay fungi are necessary to be able to control their growth on wood and wood products. In this study, wood-inhabiting fungi were isolated from logs of 3 major Canadian hardwood species: sugar maple, white birch, and yellow birch. Two media were used for isolation. From these 3 wood species, a total of 1198 fungal cultures were obtained from summer- and winter-harvested logs in dry storage and under water sprinkling. The results showed that most fungal species were not host specific and affected all of the wood species tested. Frequently isolated molds were Alternaria alternata, Trichoderma species, and Mucor/Rhizopus (Zygomycota) species, frequently isolated staining fungi were Ophiostoma piceae and Ophiostoma piliferum, a frequently isolated bark saprophyte was Nectria cinnabarina, and frequently isolated decay fungi were taxa of the phylum Basidiomycota. More fungal species were isolated from summer-harvested logs than from winter-harvested logs. Fewer fungal cultures, especially decay fungi, were isolated from logs in early storage than from logs in late storage.

  2. A rapid identification guide for larvae of the most common North American container-inhabiting Aedes species of medical importance.

    PubMed

    Farajollahi, Ary; Price, Dana C

    2013-09-01

    Mosquitoes are the single most important taxon of arthropods affecting human health globally, and container-inhabiting Aedes are important vectors of arthropod-borne viruses. Desiccation-resistant eggs of container Aedes have facilitated their invasion into new areas, primarily through transportation via the international trade in used tires. The public health threat from an introduced exotic species into a new area is imminent, and proactive measures are needed to identify significant vectors before onset of epidemic disease. In many cases, vector control is the only means to combat exotic diseases. Accurate identification of vectors is crucial to initiate aggressive control measures; however, many vector control personnel are not properly trained to identify introduced species in new geographic areas. We provide updated geographical ranges and a rapid identification guide with detailed larval photographs of the most common container-inhabiting Aedes in North America. Our key includes 5 native species (Aedes atropalpus, Ae. epactius, Ae. hendersoni, Ae. sierrensis, Ae. triseriatus) and 3 invasive species (Ae. aegypti, Ae. albopictus, Ae. japonicus).

  3. Gimme shelter: The importance of crevices to some fish species inhabiting a deeper-water rocky outcrop in Southern California

    USGS Publications Warehouse

    Love, M.S.; Schroeder, D.M.; Lenarz, B.; Cochrane, G.R.

    2006-01-01

    Federal law governing fisheries management recognizes the role habitat plays in structuring fish assemblages and achieving sustainable fisheries. However, in most instances it is not known which aspects of habitat are important to the lives of fish species. In 2004, we examined the importance of sheltering sites (crevices) to fishes living along low ledges in deeper waters off Anacapa Island, southern California. We found that patterns of fish-habitat relationships varied among the eight most abundant species. Three species, bocaccio (Sebastes paucispinis), vermilion (S. miniatus), and flag (S. rubrivinctus) rockfishes, had densities one to three orders of magnitude greater in the deep crevice habitat compared to low relief rock or shallow crevice habitats. Density and mean size of the two most abundant fishes, halfbanded (S. semicinctus) and squarespot (S. hopkinsi) rockfishes, generally increased as complexity of rock habitat increased. Not all species had the highest densities in deep crevice habitat. Greenspotted rockfish (S. chlorostictus) and blackeye goby (Rhinogobiops nicholsii) showed no significant difference in density among rock habitats. Pink seaperch (Zalembius rosaceus) were absent in the deep crevice habitat and abundant only in low relief rock habitats. Our study implies that it is not sufficient to distinguish only between soft and hard bottom types when using habitat to guide fisheries management strategies. Finer-scale investigations of fish-habitat relationships, paired with habitat mapping and groundtruthing, aid in the design and positioning of Marine Park Areas (MPAs) and are necessary to facilitate understanding of how a particular MPA may contribute to fisheries management.

  4. Identification of aphid (Hemiptera: Aphididae) species of economic importance in Kenya using DNA barcodes and PCR-RFLP-based approach.

    PubMed

    Kinyanjui, G; Khamis, F M; Mohamed, S; Ombura, L O; Warigia, M; Ekesi, S

    2016-02-01

    Aphids are among pests of economic importance throughout the world. Together with transmitting plant viruses, aphids are capable of inflicting severe crop production losses. They also excrete honeydew that favours the growth of sooty mold which reduces the quality of vegetables and fruits and hence their market values. Rapid and accurate identification of aphids to the species level is a critical component in effective pest management and plant quarantine systems. Even though morphological taxonomy has made a tremendous impact on species-level identifications, polymorphism, morphological plasticity and immature stages are among the many challenges to accurate identification. In addition, their small size, presence of cryptic species and damaged specimens dictate the need for a strategy that will ensure timely and accurate identification. In this study, polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP)-based on mitochondrial cytochrome c oxidase subunit I gene and DNA barcoding were applied to identify different aphid species collected from different agro-ecological zones of Kenya. Three restriction enzymes RsaI, AluI and Hinf1 produced patterns that allowed unambiguous identification of the species except Aphis craccivora and Aphis fabae. Analyses of the barcode region indicated intraspecific and interspecific sequence divergences of 0.08 and 6.63%, respectively. DNA barcoding identified all species, including the morphologically indistinguishable A. craccivora and A. fabae and separated two subspecies of A. fabae. Based on these results, both PCR-RFLPs and DNA barcoding could provide quick and accurate tools for identification of aphid species within Aphididae subsequently aiding in effective pest management programmes and enhance plant quarantine systems.

  5. DNA-based identification of forensically important species of Sarcophagidae (Insecta: Diptera) from Rio de Janeiro, Brazil.

    PubMed

    Napoleão, K S; Mello-Patiu, C A; Oliveira-Costa, J; Takiya, D M; Silva, R; Moura-Neto, R S

    2016-05-06

    Sarcophagidae, or flesh flies, are of great importance in forensic entomology, but their effective application requires precise taxonomic identification, which relies almost exclusively on characteristics of the male genitalia. Given that female flies and larvae are most abundant in animal carcasses or on corpses, precise morphological identification can be difficult; therefore, DNA sequencing can be an additional tool for use in taxonomic identification. This paper analyzes part of the mitochondrial cytochrome c oxidase subunit I (COI) gene from three Sarcophagidae species of forensic importance in the City of Rio de Janeiro: Oxysarcodexia fluminensis, Peckia chrysostoma, and Peckia intermutans. COI fragments of 400 bp from 36 specimens of these three species were sequenced. No intraspecific differences were found among specimens of O. fluminensis, but P. chrysostoma and P. intermutans each had two haplotypes, ranging from 0 to 0.7%. The interspecific divergence was 8.5-11.6%, corroborating previously reported findings.

  6. Temporal and Spatial Variations of Bacterial and Faunal Communities Associated with Deep-Sea Wood Falls

    PubMed Central

    Bienhold, Christina; Wenzhöfer, Frank; Rossel, Pamela E.; Boetius, Antje

    2017-01-01

    Sinking of large organic food falls i.e. kelp, wood and whale carcasses to the oligotrophic deep-sea floor promotes the establishment of locally highly productive and diverse ecosystems, often with specifically adapted benthic communities. However, the fragmented spatial distribution and small area poses challenges for the dispersal of their microbial and faunal communities. Our study focused on the temporal dynamics and spatial distributions of sunken wood bacterial communities, which were deployed in the vicinity of different cold seeps in the Eastern Mediterranean and the Norwegian deep-seas. By combining fingerprinting of bacterial communities by ARISA and 454 sequencing with in situ and ex situ biogeochemical measurements, we show that sunken wood logs have a locally confined long-term impact (> 3y) on the sediment geochemistry and community structure. We confirm previous hypotheses of different successional stages in wood degradation including a sulphophilic one, attracting chemosynthetic fauna from nearby seep systems. Wood experiments deployed at similar water depths (1100–1700 m), but in hydrographically different oceanic regions harbored different wood-boring bivalves, opportunistic faunal communities, and chemosynthetic species. Similarly, bacterial communities on sunken wood logs were more similar within one geographic region than between different seas. Diverse sulphate-reducing bacteria of the Deltaproteobacteria, the sulphide-oxidizing bacteria Sulfurovum as well as members of the Acidimicrobiia and Bacteroidia dominated the wood falls in the Eastern Mediterranean, while Alphaproteobacteria and Flavobacteriia colonized the Norwegian Sea wood logs. Fauna and bacterial wood-associated communities changed between 1 to 3 years of immersion, with sulphate-reducers and sulphide-oxidizers increasing in proportion, and putative cellulose degraders decreasing with time. Only 6% of all bacterial genera, comprising the core community, were found at any time

  7. Evolution of ellagitannins in Spanish, French, and American oak woods during natural seasoning and toasting.

    PubMed

    Cadahía, E; Varea, S; Muñoz, L; Fernández De Simón, B; García-Vallejo, M C

    2001-08-01

    The evolution of tannins in Spanish oak heartwood of Quercus robur L., Quercus petraea Liebl.,Quercus pyrenaica Wild., and Quercus faginea Lam. was studied in relation to the processing of wood in barrel cooperage. Their evolution was compared with that of French oak of Q. robur (Limousin, France) and Q. petraea (Allier, France) and American oak of Quercus alba L. (Missouri), which are habitually used in cooperage. Two stages of process were researched: the seasoning of woods during 3 years in natural conditions and toasting. Total phenol and total ellagitannin contents and optical density at 420 nm of wood extracts were determined. The ellagitannins roburins A-E, grandinin, vescalagin, and castalagin were identified and quantified by HPLC, and the molecular weight distribution of ellagitannins was calculated by GPC. During the seasoning process the different ellagitannin concentrations decreased according to the duration of this process and in the same way as those in French and American woods. The toasting process also had an important influence on the ellagitannin composition of wood. Roburins A-E, grandinin, vescalagin, and castalagin decreased during this process in the Spanish wood species, in the same proportion as in the French and American ones. Also, the seasoning and toasting processes lead to qualitative variations in the structure of ellagitannins, especially in the molecular weight distribution, as was evidenced by GPC analysis of their acetylated derivatives.

  8. A multi-analytical study of degradation of lignin in archaeological waterlogged wood.

    PubMed

    Colombini, Maria P; Lucejko, Jeannette J; Modugno, Francesca; Orlandi, Marco; Tolppa, Eeva-Liisa; Zoia, Luca

    2009-11-15

    Historical or archaeological wooden objects are generally better conserved in wet environments than in other contexts. Nevertheless, anaerobic erosion bacteria can slowly degrade waterlogged wood, causing a loss of cellulose and hemicellulose and leading to the formation of water-filled cavities. During this process, lignin can also be altered. The result is a porous and fragile structure, poor in polysaccharides and mainly composed of residual lignin, which can easily collapse during drying and needs specific consolidation treatments. For this reason, the chemical characterization of archaeological lignin is of primary importance in the diagnosis and conservation of waterlogged wood artifacts. Current knowledge of the lignin degradation processes in historical and archaeological wood is extremely inadequate. In this study lignin extracted from archaeological waterlogged wood was examined using both Py-GC/MS, NMR spectroscopy and GPC analysis. The samples were collected from the Site of the Ancient Ships of San Rossore (Pisa, Italy), where since 1998 31 shipwrecks, dating from 2nd century BC to 5th century AD, have been discovered. The results, integrated by GPC analysis, highlight the depolymerization of lignin with cleavage of ether bonds, leading to an higher amount of free phenol units in the lignin from archaeological waterlogged wood, compared to sound lignin from reference wood of the same species.

  9. BOWOOSS: bionic optimized wood shells with sustainability

    NASA Astrophysics Data System (ADS)

    Pohl, Göran

    2011-04-01

    In architecture, shell construction is used for the most efficient, large spatial structures. Until now the use of wood rather played a marginal role, implementing those examples of architecture, although this material offers manifold advantages, especially against the background of accelerating shortage of resources and increasing requirements concerning the energy balance. Regarding the implementation of shells, nature offers a wide range of suggestions. The focus of the examinations is on the shells of marine plankton, especially of diatoms, whose richness in species promises the discovery of entirely new construction principles. The project is targeting at transferring advantageous features of these organisms on industrial produced, modular wood shell structures. Currently a transfer of these structures in CAD - models is taking place, helping to perform stress analysis by computational methods. Micro as well as macro structures are the subject of diverse consideration, allowing to draw the necessary conclusions for an architectural design. The insights of these tests are the basis for the development of physical models on different scales, which are used to verify the different approaches. Another important aim which is promoted in the project is to enhance the competitiveness of timber construction. Downsizing of the prefabricated structural elements leads to considerable lower transportation costs as abnormal loads can be avoided as far as possible and means of transportation can be loaded with higher efficiency so that an important contribution to the sustainability in the field of architecture can also be made.

  10. Enhanced longevity by ibuprofen, conserved in multiple species, occurs in yeast through inhibition of tryptophan import.

    PubMed

    He, Chong; Tsuchiyama, Scott K; Nguyen, Quynh T; Plyusnina, Ekaterina N; Terrill, Samuel R; Sahibzada, Sarah; Patel, Bhumil; Faulkner, Alena R; Shaposhnikov, Mikhail V; Tian, Ruilin; Tsuchiya, Mitsuhiro; Kaeberlein, Matt; Moskalev, Alexey A; Kennedy, Brian K; Polymenis, Michael

    2014-12-01

    The common non-steroidal anti-inflammatory drug ibuprofen has been associated with a reduced risk of some age-related pathologies. However, a general pro-longevity role for ibuprofen and its mechanistic basis remains unclear. Here we show that ibuprofen increased the lifespan of Saccharomyces cerevisiae, Caenorhabditis elegans and Drosophila melanogaster, indicative of conserved eukaryotic longevity effects. Studies in yeast indicate that ibuprofen destabilizes the Tat2p permease and inhibits tryptophan uptake. Loss of Tat2p increased replicative lifespan (RLS), but ibuprofen did not increase RLS when Tat2p was stabilized or in an already long-lived strain background impaired for aromatic amino acid uptake. Concomitant with lifespan extension, ibuprofen moderately reduced cell size at birth, leading to a delay in the G1 phase of the cell cycle. Similar changes in cell cycle progression were evident in a large dataset of replicatively long-lived yeast deletion strains. These results point to fundamental cell cycle signatures linked with longevity, implicate aromatic amino acid import in aging and identify a largely safe drug that extends lifespan across different kingdoms of life.

  11. Comparative antigenic studies of species of Basidiobolus and other medically important fungi.

    PubMed Central

    Yangco, B G; Nettlow, A; Okafor, J I; Park, J; Te Strake, D

    1986-01-01

    An immunodiffusion technique was used to evaluate the antigenic relationship of various pathogenic and saprobic Basidiobolus spp., Conidiobolus spp., isolates of the order Mucorales, and several other medically important nonzygomycetous fungi. The antiserum to Basidiobolus haptosporus shared two lines of identity, designated inner (N) and outer (Y), when tested against exoantigens of known strains of B. haptosporus and Basidiobolus ranarum as well as exoantigens of a human Nigerian isolate and several wild isolates tentatively identified in B. ranarum. Both bands were heat stable at 56 degrees C for 30 min. Exoantigens of strains of Basidiobolus meristosporus, Basidiobolus microsporus, Conidiobolus incongruus, Conidiobolus coronatus, and other wild isolates of Basidiobolus spp. tested formed only the N immunoprecipitin band. Exoantigens of 10 isolates from other taxa did not produce any cross-reactive precipitin line. B. meristosporus antiserum that was tested against exoantigens of Basidiobolus spp. and of Conidiobolus spp. developed only an N band without a Y band. These data suggest that B. haptosporus and B. ranarum are antigenically similar to each other and distinct from B. meristosporus. Basidiobolus spp. and Conidiobolus spp. share a common N immunoprecipitin band, which implies a taxonomic relationship between these two genera. The absence of lines of identity between Basidiobolus spp. and other fungi tested suggests that, antigenically, Basidiobolus is a distinct genus. Images PMID:3084553

  12. Wood anatomy and wood density in shrubs: Responses to varying aridity along transcontinental transects.

    PubMed

    Martínez-Cabrera, Hugo I; Jones, Cynthia S; Espino, Susana; Schenk, H Jochen

    2009-08-01

    Wood density plays a key role in ecological strategies and life history variation in woody plants, but little is known about its anatomical basis in shrubs. We quantified the relationships between wood density, anatomy, and climate in 61 shrub species from eight field sites along latitudinal belts between 31° and 35° in North and South America. Measurements included cell dimensions, transverse areas of each xylem cell type and percentage contact between different cell types and vessels. Wood density was more significantly correlated with precipitation and aridity than with temperature. High wood density was achieved through reductions in cell size and increases in the proportion of wall relative to lumen. Wood density was independent of vessel traits, suggesting that this trait does not impose conduction limitations in shrubs. The proportion of fibers in direct contact with vessels decreased with and was independent of wood density, indicating that the number of fiber-vessel contacts does not explain the previously observed correlation between wood density and implosion resistance. Axial and radial parenchyma each had a significant but opposite association with wood density. Fiber size and wall thickness link wood density, life history, and ecological strategies by controlling the proportion of carbon invested per unit stem volume.

  13. Melicope balgooyi Appelhans, W.L. Wagner & K.R. Wood, a new species and new record in Melicope section Melicope (Rutaceae) for the Austral Islands

    PubMed Central

    Appelhans, Marc S.; Wagner, Warren L.; Wood, Kenneth R.

    2014-01-01

    Abstract Melicope balgooyi, a new species of Melicope (Rutaceae) is described. It is known only from the Austral Islands in the South Pacific (French Polynesia). However, it is not closely related to the other two species previously known from the Austral Islands, which are part of Melicope section Vitiflorae. The new species belongs to Melicope section Melicope and is most closely related to species from New Zealand, the Kermadec Islands, and the Society Islands. The new species has alternate to sub-opposite leaves, which is a very rare arrangement in Melicope and has only been described for two other species of the genus so far. PMID:25197227

  14. Identification of wood-boring beetles (Cerambycidae and Buprestidae) intercepted in trade-associated solid wood packaging material using DNA barcoding and morphology

    PubMed Central

    Wu, Yunke; Trepanowski, Nevada F.; Molongoski, John J.; Reagel, Peter F.; Lingafelter, Steven W.; Nadel, Hannah; Myers, Scott W.; Ray, Ann M.

    2017-01-01

    Global trade facilitates the inadvertent movement of insect pests and subsequent establishment of populations outside their native ranges. Despite phytosanitary measures, nonnative insects arrive at United States (U.S.) ports of entry as larvae in solid wood packaging material (SWPM). Identification of wood-boring larval insects is important for pest risk analysis and management, but is difficult beyond family level due to highly conserved morphology. Therefore, we integrated DNA barcoding and rearing of larvae to identify wood-boring insects in SWPM. From 2012 to 2015, we obtained larvae of 338 longhorned beetles (Cerambycidae) and 38 metallic wood boring beetles (Buprestidae) intercepted in SWPM associated with imported products at six U.S. ports. We identified 265 specimens to species or genus using DNA barcodes. Ninety-three larvae were reared to adults and identified morphologically. No conflict was found between the two approaches, which together identified 275 cerambycids (23 genera) and 16 buprestids (4 genera). Our integrated approach confirmed novel DNA barcodes for seven species (10 specimens) of woodborers not in public databases. This study demonstrates the utility of DNA barcoding as a tool for regulatory agencies. We provide important documentation of potential beetle pests that may cross country borders through the SWPM pathway. PMID:28091577

  15. Identification of wood-boring beetles (Cerambycidae and Buprestidae) intercepted in trade-associated solid wood packaging material using DNA barcoding and morphology.

    PubMed

    Wu, Yunke; Trepanowski, Nevada F; Molongoski, John J; Reagel, Peter F; Lingafelter, Steven W; Nadel, Hannah; Myers, Scott W; Ray, Ann M

    2017-01-16

    Global trade facilitates the inadvertent movement of insect pests and subsequent establishment of populations outside their native ranges. Despite phytosanitary measures, nonnative insects arrive at United States (U.S.) ports of entry as larvae in solid wood packaging material (SWPM). Identification of wood-boring larval insects is important for pest risk analysis and management, but is difficult beyond family level due to highly conserved morphology. Therefore, we integrated DNA barcoding and rearing of larvae to identify wood-boring insects in SWPM. From 2012 to 2015, we obtained larvae of 338 longhorned beetles (Cerambycidae) and 38 metallic wood boring beetles (Buprestidae) intercepted in SWPM associated with imported products at six U.S. ports. We identified 265 specimens to species or genus using DNA barcodes. Ninety-three larvae were reared to adults and identified morphologically. No conflict was found between the two approaches, which together identified 275 cerambycids (23 genera) and 16 buprestids (4 genera). Our integrated approach confirmed novel DNA barcodes for seven species (10 specimens) of woodborers not in public databases. This study demonstrates the utility of DNA barcoding as a tool for regulatory agencies. We provide important documentation of potential beetle pests that may cross country borders through the SWPM pathway.

  16. Mesostigmatid mites in four classes of wood decay.

    PubMed

    Gwiazdowicz, Dariusz J; Kamczyc, Jacek; Rakowski, Radosław

    2011-10-01

    We studied the mesostigmatid mite community in four classes of wood decay in mixed (pine-oak) forest stands in the Wielkopolska region, Cental-West Poland. A total of 80 samples, including bark, phloem and rotten wood of coniferous and deciduous species logs, were taken in August 2006 and 2007. Decay classes were a qualitative, categorical index based on visual assessment of decomposition in coarse woody debris. A total of 3621 mesostigmatid mites were counted and identified to 91 species. In general the total number of species was diverse in the decay classes and ranged from 35 (classes I and II) to 58 (class IV). The average number of species did not differ significantly among wood decay classes. Also the abundance of mesostigmatids did not differ significantly among wood decay classes, but the highest abundance was observed in the last class (IV). Cluster analysis of the species identity index showed that the microhabitats were divided into two main clusters: relatively undecayed wood and decayed wood. Species accumulation curves showed that relatively decayed wood (class IV) had a greater rate of species accumulation than undecayed wood from the class I decomposition.

  17. The importance of comparative phylogeography in diagnosing introduced species: a lesson from the seal salamander, Desmognathus monticola

    PubMed Central

    Bonett, Ronald M; Kozak, Kenneth H; Vieites, David R; Bare, Alison; Wooten, Jessica A; Trauth, Stanley E

    2007-01-01

    a major undertaking. Our study demonstrates the importance of considering comparative phylogeographic information for locating critical haplotypes when distinguishing native from introduced species. PMID:17825102

  18. Fall food habits of wood ducks from Lake Marion, South Carolina

    USGS Publications Warehouse

    McGilvrey, F.B.

    1966-01-01

    A total of 108 stomachs of wood ducks (Aix sponsa) collected from hunters on the upper end of Lake Marion, South Carolina, between November 29 and December 6, 1961, were examined for information on food habits. Six plants made up over 98 percent of the total volume. Five were tree fruits: water and pin oak (Quercus nigra and Q. palustris), baldcypress (Taxodium distichum), sweetgum (Liquidambar styraciflua), and water hickory (Carya aquatica). The sixth important food was corn (Zea mays). In areas being managed for wood ducks and timber, therefore, these tree species should not be removed.

  19. Threshold for ion movements in wood cell walls below fiber saturation observed by X-ray fluorescence microscopy (XFM)

    SciTech Connect

    Zelinka, Samuel L.; Gleber, Sophie-Charlotte; Vogt, Stefan; Rodriguez Lopez, Gabriela M.; Jakes, Joseph E.

    2015-05-01

    Diffusion of chemicals and ions through the wood cell wall plays an important role in wood damage mechanisms. In the present work, free diffusion of ions through wood secondary walls and middle lamellae has been investigated as a function of moisture content (MC) and anatomical direction. Various ions (K, Cl, Zn, Cu) were injected into selected regions of 2 mu m thick wood sections with a microinjector and then the ion distribution was mapped by means of X-ray fluorescence microscopy with submicron spatial resolution. The MC of the wood was controlled in situ by means of climatic chamber with controlled relative humidity (RH). For all ions investigated, there was a threshold RH below which the concentration profiles did not change. The threshold RH depended upon ionic species, cell wall layer, and wood anatomical orientation. Above the threshold RH, differences in mobility among ions were observed and the mobility depended upon anatomical direction and cell wall layer. These observations support a recently proposed percolation model of electrical conduction in wood. The results contribute to understanding the mechanisms of fungal decay and fastener corrosion that occur below the fiber saturation point.

  20. Higher fungal diversity is correlated with lower CO2 emissions from dead wood in a natural forest

    PubMed Central

    Yang, Chunyan; Schaefer, Douglas A.; Liu, Weijie; Popescu, Viorel D.; Yang, Chenxue; Wang, Xiaoyang; Wu, Chunying; Yu, Douglas W.

    2016-01-01

    Wood decomposition releases almost as much CO2 to the atmosphere as does fossil-fuel combustion, so the factors regulating wood decomposition can affect global carbon cycling. We used metabarcoding to estimate the fungal species diversities of naturally colonized decomposing wood in subtropical China and, for the first time, compared them to concurrent measures of CO2 emissions. Wood hosting more diverse fungal communities emitted less CO2, with Shannon diversity explaining 26 to 44% of emissions variation. Community analysis supports a ‘pure diversity’ effect of fungi on decomposition rates and thus suggests that interference competition is an underlying mechanism. Our findings extend the results of published experiments using low-diversity, laboratory-inoculated wood to a high-diversity, natural system. We hypothesize that high levels of saprotrophic fungal biodiversity could be providing globally important ecosystem services by maintaining dead-wood habitats and by slowing the atmospheric contribution of CO2 from the world’s stock of decomposing wood. However, large-scale surveys and controlled experimental tests in natural settings will be needed to test this hypothesis. PMID:27553882

  1. Insights into the development of Ixodes scapularis: a resource for research on a medically important tick species.

    PubMed

    Kocan, Katherine M; de la Fuente, José; Coburn, Lisa A

    2015-11-14

    Ticks (Acari: Ixodida) are arthropod ectoparasites dependent on a bloodmeal from a vertebrate host at each developmental stage for completion of their life cycle. This tick feeding cycle impacts animal health by causing damage to hides, secondary infections, immune reactions and diseases caused by transmission of pathogens. The genus Ixodes includes several medically important species that vector diseases, including granulocytic anaplasmosis and Lyme disease. I. scapularis, commonly called the black-legged or deer tick, is a medically-important tick species in North America and therefore was the first tick genome to be sequenced, thus serving as an important resource for tick research. This Primer focuses on the normal developmental cycle and laboratory rearing of I. scapularis. Definition of normal morphology, along with a consistent source of laboratory-reared I. scapularis, are fundamental for all aspects of future research, especially the effects of genetic manipulation and the evaluation of tick vaccine efficacy. Recent research important for the advancement of tick research, namely the development of tick cell culture systems for study of ticks and tick-borne pathogens, RNA interference for genetic manipulation of ticks and discovery of candidate antigens for development of tick vaccines, are briefly presented along with areas to target for future research.

  2. Functional Characterization of Poplar Wood-Associated NAC Domain Transcription Factors1[C][OA

    PubMed Central

    Zhong, Ruiqin; Lee, Chanhui; Ye, Zheng-Hua

    2010-01-01

    Wood is the most abundant biomass produced by land plants. Dissection of the molecular mechanisms underlying the transcriptional regulation of wood formation is a fundamental issue in plant biology and has important implications in tree biotechnology. Although a number of transcription factors in tree species have been shown to be associated with wood formation and some of them are implicated in lignin biosynthesis, none of them have been demonstrated to be key regulators of the biosynthesis of all three major components of wood. In this report, we have identified a group of NAC domain transcription factors, PtrWNDs, that are preferentially expressed in developing wood of poplar (Populus trichocarpa). Expression of PtrWNDs in the Arabidopsis (Arabidopsis thaliana) snd1 nst1 double mutant effectively complemented the secondary wall defects in fibers, indicating that PtrWNDs are capable of activating the entire secondary wall biosynthetic program. Overexpression of PtrWND2B and PtrWND6B in Arabidopsis induced the expression of secondary wall-associated transcription factors and secondary wall biosynthetic genes and, concomitantly, the ectopic deposition of cellulose, xylan, and lignin. Furthermore, PtrWND2B and PtrWND6B were able to activate the promoter activities of a number of poplar wood-associated transcription factors and wood biosynthetic genes. Together, these results demonstrate that PtrWNDs are functional orthologs of SND1 and suggest that PtrWNDs together with their downstream transcription factors form a transcriptional network involved in the regulation of wood formation in poplar. PMID:19965968

  3. Conversion of Japanese red pine wood (Pinus densiflora) into valuable chemicals under subcritical water conditions.

    PubMed

    Asghari, Feridoun Salak; Yoshida, Hiroyuki

    2010-01-11

    A comparative study on the decomposition of Japanese red pine wood under subcritical water conditions in the presence and absence of phosphate buffer was investigated in a batch-type reaction vessel. Since cellulose makes up more than 40-45% of the components found in most wood species, a series of experiments were also carried out using pure cellulose as a model for woody biomass. Several parameters such as temperature and residence time, as well as pH effects, were investigated in detail. The best temperature for decomposition and hydrolysis of pure cellulose was found around 270 degrees C. The effects of the initial pH of the solution which ranged from 1.5 to 6.5 were studied. It was found that the pH has a considerable effect on the hydrolysis and decomposition of the cellulose. Several products in the aqueous phase were identified and quantified. The conditions obtained from the subcritical water treatment of pure cellulose were applied for the Japanese red pine wood chips. As a result, even in the absence of acid catalyst, a large amount of wood sample was hydrolyzed in water; however, by using phosphate buffer at pH 2, there was an increase in the hydrolysis and dissolution of the wood chips. In addition to the water-soluble phase, acetone-soluble and water-acetone-insoluble phases were also isolated after subcritical water treatment (which can be attributed mainly to the degraded lignin, tar, and unreacted wood chips, respectively). The initial wood:acid ratio in the case of reactions catalyzed by phosphate buffer was also investigated. The results showed that this weight ratio can be as high as 3:1 without changing the catalytic activity. The size of the wood chips as one of the most important experimental parameters was also investigated.

  4. Species composition of forensically important blow flies (Diptera: Calliphoridae) and flesh flies (Diptera: Sarcophagidae) through space and time.

    PubMed

    Fremdt, Heike; Amendt, Jens

    2014-03-01

    Weekly monitoring of forensically important flight-active blow flies (Diptera: Calliphoridae) and flesh flies (Diptera: Sarcophagidae) was performed using small baited traps. Sampling took place in two rural, one suburban and two urban habitats in and around Frankfurt (Main), Germany, lasting two years and eight months. Highest values for species richness and Chao-Shen entropy estimator for Shannon's index in both families were found at the urban sites, peaking during summer. Space-time interaction was tested and found to be significant, demonstrating the value of a statistical approach recently developed for community surveys in ecology. K-means partitioning and analysis of indicator species gave significant temporal and habitat associations of particular taxa. Calliphora vicina was an indicator species for lower temperatures without being associated with a particular habitat. Lucilia sericata was an indicator for urban sites, whereas Lucilia ampullacea and Lucilia caesar were indicators for rural sites, supplemented by the less frequent species Calliphora vomitoria. Sarcophagidae were observed during a clearly shorter period of year. Sarcophaga subvicina+Sarcophaga variegata was found to be an indicator for urban habitats during summer as well as Sarcophaga albiceps for rural habitats. A significant association of Sarcophaga caerulescens to rural habitats as well as one of Sarcophaga similis to urban habitats was observed.

  5. The impact of past introductions on an iconic and economically important species, the red deer of Scotland.

    PubMed

    Pérez-Espona, Sílvia; Hall, Richard J; Pérez-Barbería, F Javier; Glass, Belinda C; Ward, Jamie F; Pemberton, Josephine M

    2013-01-01

    The red deer (Cervus elaphus) is an iconic species in Scotland and, due to its value as a game species, an important element of the Scottish rural economy. The native status of this species is sometimes questioned because of many recorded introductions of nonnative deer in the past that were an attempt to improve trophy size. In this study, we assessed the impact of past introductions on the genetic makeup of Scottish red deer by genotyping at 15 microsatellite loci a large number of samples (n = 1152), including mainland and island Scottish red deer and individuals from several putative external source populations used in introductions to improve trophy size. Population structure and introgression assessment analyses revealed that the impact of introductions was weak in Highland red deer populations but more prominent on the islands, especially on those where current red deer populations are mostly or entirely derived from introductions (Harris & Lewis, Arran, and Rum). Frequent imports of Central-Eastern European red deer into English deer parks were reflected in the higher genetic introgression values found in some of the individuals collected in parks.

  6. The Effect of Kiln Drying on the Strength of Airplane Woods

    NASA Technical Reports Server (NTRS)

    Wilson, T R C

    1920-01-01

    This report is a very complete treatise on the comparative strength of air and kiln dried wood. The series of tests includes 26 species of wood, approximately 100 kiln runs, and over 10,000 mechanical tests.

  7. Resurrection of Scolopendra longipes Wood and Scolopendra cubensis Saussure from synonymy with Scolopendra alternans Leach (Chilopoda, Scolopendromorpha, Scolopendridae): an enigmatic species-group needing phylogeographic analysis, with an overview on the origin and distribution of centipedes in the Caribbean region.

    PubMed

    Mercurio, Randy J

    2016-05-12

    Resurrection of Scolopendra longipes Wood, 1862, and Scolopendra cubensis Saussure, 1860, from junior synonymy with Scolopendra alternans Leach, 1815, is proposed. A neotype specimen of Scolopendra longipes is designated. Scolopendra longipes has a restricted range from the Dry Tortugas up through the Florida Keys of Monroe County into the mainland Florida counties of Collier and Dade southeast to the Bahamas, while Scolopendra cubensis is endemic to Cuba. Characters distinguishing S. longipes, and S. cubensis from S. alternans are illustrated and compared using digital photography, micrography and morphometric data. It is suggested that what has been considered Scolopendra alternans from southern Florida through the Caribbean and into northern South America is probably an evolving species-group that has undergone major diversification sometime during the Paleocene and early Eocene ~65.5-50 million years ago (Ma), mainly due to geographic isolation caused by a combination of plate tectonics and 100,000 year cycles of glaciation/deglaciation.

  8. Commercially important species associated with horse mussel (Modiolus modiolus) biogenic reefs: A priority habitat for nature conservation and fisheries benefits.

    PubMed

    Kent, Flora E A; Mair, James M; Newton, Jason; Lindenbaum, Charles; Porter, Joanne S; Sanderson, William G

    2017-02-17

    Horse mussel reefs (Modiolus modiolus) are biodiversity hotspots afforded protection by Marine Protected Areas (MPAs) in the NE Atlantic. In this study, horse mussel reefs, cobble habitats and sandy habitats were assessed using underwater visual census and drop-down video techniques in three UK regions. Megafauna were enumerated, differences in community composition and individual species abundances were analysed. Samples of conspicuous megafauna were also collected from horse mussel reefs in Orkney for stable isotope analysis. Communities of conspicuous megafauna were different between horse mussel habitats and other habitats throughout their range. Three commercially important species: whelks (Buccinum undatum), queen scallops (Aequipecten opercularis) and spider crabs (Maja brachydactyla) were significantly more abundant (by as much as 20 times) on horse mussel reefs than elsewhere. Isotopic analysis provided insights into their trophic relationship with the horse mussel reef. Protection of M. modiolus habitat can achieve biodiversity conservation objectives whilst benefiting fisheries also.

  9. Towards a worldwide wood economics spectrum.

    PubMed

    Chave, Jerome; Coomes, David; Jansen, Steven; Lewis, Simon L; Swenson, Nathan G; Zanne, Amy E

    2009-04-01

    Wood performs several essential functions in plants, including mechanically supporting aboveground tissue, storing water and other resources, and transporting sap. Woody tissues are likely to face physiological, structural and defensive trade-offs. How a plant optimizes among these competing functions can have major ecological implications, which have been under-appreciated by ecologists compared to the focus they have given to leaf function. To draw together our current understanding of wood function, we identify and collate data on the major wood functional traits, including the largest wood density database to date (8412 taxa), mechanical strength measures and anatomical features, as well as clade-specific features such as secondary chemistry. We then show how wood traits are related to one another, highlighting functional trade-offs, and to ecological and demographic plant features (growth form, growth rate, latitude, ecological setting). We suggest that, similar to the manifold that tree species leaf traits cluster around the 'leaf economics spectrum', a similar 'wood economics spectrum' may be defined. We then discuss the biogeography, evolution and biogeochemistry of the spectrum, and conclude by pointing out the major gaps in our current knowledge of wood functional traits.

  10. Mitigating environmental impacts through the energetic use of wood: Regional displacement factors generated by means of substituting non-wood heating systems.

    PubMed

    Wolf, Christian; Klein, Daniel; Richter, Klaus; Weber-Blaschke, Gabriele

    2016-11-01

    Wood biomass, especially when applied for heating, plays an important role for mitigating environmental impacts such as climate change and the transition towards higher shares of renewable energy in today's energy mix. However, the magnitude of mitigation benefits and burdens associated with wood use can vary greatly depending on regional parameters such as the displaced fossil reference or heating mix. Therefore, regionalized displacement factors, considering region-specific production conditions and substituted products are required when assessing the precise contribution of wood biomass towards the mitigation of environmental impacts. We carried out Life Cycle Assessments of wood heating systems for typical Bavarian conditions and substitute energy carriers with a focus on climate change and particulate matter emissions. In order to showcase regional effects, we created weighted displacement factors for the region of Bavaria, based on installed capacities of individual wood heating systems and the harvested tree species distribution. The study reveals that GHG displacements between -57gCO2-eq.∗MJ(-1) of useful energy through the substitution of natural gas with a 15kW spruce pellets heating system and -165gCO2-eq.∗MJ(-1) through the substitution of power utilized for heating with a modern 6kW beech split log heating system can be achieved. It was shown that the GHG mitigation potentials of wood utilization are overestimated through the common use of light fuel oil as the only reference system. We further propose a methodology for the calculation of displacement factors which is adaptable to other regions worldwide. Based on our approach it is possible to generate displacement factors for wood heating systems which enable accurate decision-making for project planning in households, heating plants, communities and also for entire regions.

  11. Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white-rot/brown-rot paradigm for wood decay fungi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fungi of the phylum Basidiomycota (basidiomycetes) make up some 37% of the described fungi and are important in forestry, agriculture, medicine, and bioenergy. This diverse phylum includes symbionts, pathogens, and saprotrophs including the majority of wood decaying and ectomycorrhizal species. To b...

  12. Bacterial Community Succession in Pine-Wood Decomposition

    PubMed Central

    Kielak, Anna M.; Scheublin, Tanja R.; Mendes, Lucas W.; van Veen, Johannes A.; Kuramae, Eiko E.

    2016-01-01

    Though bacteria and fungi are common inhabitants of decaying wood, little is known about the relationship between bacterial and fungal community dynamics during natural wood decay. Based on previous studies involving inoculated wood blocks, strong fungal selection on bacteria abundance and community composition was expected to occur during natural wood decay. Here, we focused on bacterial and fungal community compositions in pine wood samples collected from dead trees in different stages of decomposition. We showed that bacterial communities undergo less drastic changes than fungal communities during wood decay. Furthermore, we found that bacterial community assembly was a stochastic process at initial stage of wood decay and became more deterministic in later stages, likely due to environmental factors. Moreover, composition of bacterial communities did not respond to the changes in the major fungal species present in the wood but rather to the stage of decay reflected by the wood density. We concluded that the shifts in the bacterial communities were a result of the changes in wood properties during decomposition and largely independent of the composition of the wood-decaying fungal communities. PMID:26973611

  13. Wood Anatomy of the Neotropical Sapotaceae. XXV. Ragala

    DTIC Science & Technology

    1981-05-01

    Sapoticeas da Amazonia . Acta Amazonica 4(3):15-16. 7.1C TAB f• icatio By-- - Table 1.--Ragala: Specimens examined and their selected parameters-I Wood Species... WOOD ANATOMY OF THE NEOTROPICAL SAPOTACEAE / XXV. RAGALA RESEARCH PAPER FPL 396 FOREST PRODUCTS LABORATORY FOREST SERVICE U.S. DEPARTMENT OF... wood anatomy supports the separation of Ecclinusa and Rmagala as well as their removal from Chrysophyllum. Ragala is a silica-accumulating genus

  14. Assessing the importance of four sandfly species (Diptera: Psychodidae) as vectors of Leishmania mexicana in Campeche, Mexico.

    PubMed

    Pech-May, A; Peraza-Herrera, G; Moo-Llanes, D A; Escobedo-Ortegón, J; Berzunza-Cruz, M; Becker-Fauser, I; Montes DE Oca-Aguilar, A C; Rebollar-Téllez, E A

    2016-09-01

    Localized cutaneous leishmaniasis represents a public health problem in many areas of Mexico, especially in the Yucatan Peninsula. An understanding of vector ecology and bionomics is of great importance in evaluations of the transmission dynamics of Leishmania parasites. A field study was conducted in the county of Calakmul, state of Campeche, during the period from November 2006 to March 2007. Phlebotomine sandfly vectors were sampled using Centers for Disease Control light traps, baited Disney traps and Shannon traps. A total of 3374 specimens were captured in the two villages of Once de Mayo (93.8%) and Arroyo Negro (6.1%). In Once de Mayo, the most abundant species were Psathyromyia shannoni, Lutzomyia cruciata, Bichromomyia olmeca olmeca and Psychodopygus panamensis (all: Diptera: Psychodidae). The Shannon trap was by far the most efficient method of collection. The infection rate, as determined by Leishmania mexicana-specific polymerase chain reaction, was 0.3% in Once de Mayo and infected sandflies included Psy. panamensis, B. o. olmeca and Psa. shannoni. There were significant differences in human biting rates across sandfly species and month of sampling. Ecological niche modelling analyses showed an overall overlap of 39.1% for the four species in the whole state of Campeche. In addition, the finding of nine vector-reservoir pairs indicates a potential interaction. The roles of the various sandfly vectors in Calakmul are discussed.

  15. Life-history traits and effective population size in species with overlapping generations revisited: the importance of adult mortality.

    PubMed

    Waples, R S

    2016-10-01

    The relationship between life-history traits and the key eco-evolutionary parameters effective population size (Ne) and Ne/N is revisited for iteroparous species with overlapping generations, with a focus on the annual rate of adult mortality (d). Analytical methods based on populations with arbitrarily long adult lifespans are used to evaluate the influence of d on Ne, Ne/N and the factors that determine these parameters: adult abundance (N), generation length (T), age at maturity (α), the ratio of variance to mean reproductive success in one season by individuals of the same age (φ) and lifetime variance in reproductive success of individuals in a cohort (Vk•). Although the resulting estimators of N, T and Vk• are upwardly biased for species with short adult lifespans, the estimate of Ne/N is largely unbiased because biases in T are compensated for by biases in Vk• and N. For the first time, the contrasting effects of T and Vk• on Ne and Ne/N are jointly considered with respect to d and φ. A simple function of d and α based on the assumption of constant vital rates is shown to be a robust predictor (R(2)=0.78) of Ne/N in an empirical data set of life tables for 63 animal and plant species with diverse life histories. Results presented here should provide important context for interpreting the surge of genetically based estimates of Ne that has been fueled by the genomics revolution.

  16. Wood and foliar respiration of tropical wet forest environment

    NASA Astrophysics Data System (ADS)

    Asao, S.; Bedoya Arrieta, R.; Ryan, M. G.

    2011-12-01

    Wood and foliar respiration from tropical forests constitute major components of ecosystem respiration that may control their productivity and carbon storage. However, few estimates on tropical forests vary greatly. Furthermore, the trees in these forests respire great amounts of carbon, but impacts of individual tree species on respiration is not well known. We examined wood and foliar respiration in this environment in relation to individual tree species. The objectives of this study were to: 1) identify how respiration rates relate to scaling variables for wood and foliage, 2) examine the effects of individual tree species on these relationships, 3) extrapolate the rates to the annual fluxes of the whole stands, and 4) determine if tree species differed in these fluxes. Established on an abandoned pasture in 1988 at La Selva Biological Station in Costa Rica, the monodominant stands contained four native species in a complete randomized block design. Respiration rates based on tissue surface area ranged among dominant tree species from 0.6 to 1.0 μg C m^-2 s^-1 for small diameter wood (<10cm), 1.0 to 1.8 μg C m^-2 s^-1 for large diameter wood, and 0.7 to 0.8 μg C m^-2 s^-1 for foliage. Understory species had similar wood respiration rates, but foliage respiration rates were about half of those for canopy leaves. Among surface area, volume, or biomass, respiration rates scaled best with surface area for wood with small diameter, volume or biomass for large diameter wood, and leaf area for foliage. These relationships differed slightly among tree species and between canopy trees and understory species. Foliar respiration rate was generally related to leaf nitrogen content, and this relationship differed among dominant tree species. Temperature response of foliar respiration also differed among tree species and canopy class. However, daily and annual temperature fluctuations had less than 3% effect on annual flux. Annual respiratory fluxes from wood and foliage

  17. Diatoms can be an important exception to temperature-size rules at species and community levels of organization.

    PubMed

    Adams, Georgina L; Pichler, Doris E; Cox, Eileen J; O'Gorman, Eoin J; Seeney, Alex; Woodward, Guy; Reuman, Daniel C

    2013-11-01

    Climate warming has been linked to an apparent general decrease in body sizes of ectotherms, both across and within taxa, especially in aquatic systems. Smaller body size in warmer geographical regions has also been widely observed. Since body size is a fundamental determinant of many biological attributes, climate-warming-related changes in size could ripple across multiple levels of ecological organization. Some recent studies have questioned the ubiquity of temperature-size rules, however, and certain widespread and abundant taxa, such as diatoms, may be important exceptions. We tested the hypothesis that diatoms are smaller at warmer temperatures using a system of geothermally heated streams. There was no consistent relationship between size and temperature at either the population or community level. These field data provide important counterexamples to both James' and Bergmann's temperature-size rules, respectively, undermining the widely held assumption that warming favours the small. This study provides compelling new evidence that diatoms are an important exception to temperature-size rules for three reasons: (i) we use many more species than prior work; (ii) we examine both community and species levels of organization simultaneously; (iii) we work in a natural system with a wide temperature gradient but minimal variation in other factors, to achieve robust tests of hypotheses without relying on laboratory setups, which have limited realism. In addition, we show that interspecific effects were a bigger contributor to whole-community size differences, and are probably more ecologically important than more commonly studied intraspecific effects. These findings highlight the need for multispecies approaches in future studies of climate warming and body size.

  18. Diatoms can be an important exception to temperature–size rules at species and community levels of organization

    PubMed Central

    Adams, Georgina L; Pichler, Doris E; Cox, Eileen J; O'Gorman, Eoin J; Seeney, Alex; Woodward, Guy; Reuman, Daniel C

    2013-01-01

    Climate warming has been linked to an apparent general decrease in body sizes of ectotherms, both across and within taxa, especially in aquatic systems. Smaller body size in warmer geographical regions has also been widely observed. Since body size is a fundamental determinant of many biological attributes, climate-warming-related changes in size could ripple across multiple levels of ecological organization. Some recent studies have questioned the ubiquity of temperature–size rules, however, and certain widespread and abundant taxa, such as diatoms, may be important exceptions. We tested the hypothesis that diatoms are smaller at warmer temperatures using a system of geothermally heated streams. There was no consistent relationship between size and temperature at either the population or community level. These field data provide important counterexamples to both James’ and Bergmann's temperature–size rules, respectively, undermining the widely held assumption that warming favours the small. This study provides compelling new evidence that diatoms are an important exception to temperature–size rules for three reasons: (i) we use many more species than prior work; (ii) we examine both community and species levels of organization simultaneously; (iii) we work in a natural system with a wide temperature gradient but minimal variation in other factors, to achieve robust tests of hypotheses without relying on laboratory setups, which have limited realism. In addition, we show that interspecific effects were a bigger contributor to whole-community size differences, and are probably more ecologically important than more commonly studied intraspecific effects. These findings highlight the need for multispecies approaches in future studies of climate warming and body size. PMID:23749600

  19. Fertility, segregation at a herbicide-resistance locus, and genome structure in BC hybrids from two important weedy Amaranthus species.

    PubMed

    Trucco, F; Tatum, T; Rayburn, A L; Tranel, P J

    2005-08-01

    Field studies have established high potential for hybridization between two important and often coexisting weedy species, Amaranthus hybridus and Amaranthus tuberculatus. Prezygotic reproductive barriers between these species are believed to be limited to pollen competition and availability. A greenhouse study showed that a herbicide-resistance gene (ALS) from A. hybridus could be introgressed into an advanced A. tuberculatus background (BC2). However, evidence is lacking in support of such transfer in nature. Postzygotic reproductive barriers may minimize, if not preclude, natural introgression. Indeed, A. hybridus xA. tuberculatus hybrids are characterized by reduced fertility and even floral neuterism. The purpose of this study was to assess hybrid fertility in the BC1 generation and its relationship with genome structure and segregation at ALS. Fertility was assessed by measuring seed output and by pollen evaluation, and segregation at ALS was determined via a molecular marker system. The two parental species have the same ploidy (2n = 32) but differ in DNA content (2C) values, with A. tuberculatus chromosomes being on average 29% greater than those of A. hybridus. Given that most (98%) BC(1)s were homoploid, 2C values were used as indicators of relative genomic constitution. Fertility in the BC1 generation was greater than that of F1s, and 3% of BC1s had seed output similar to that of the parental species. Fertility in the BC1 did not correlate (in a strict way) with reconstitution of parental genomes. Hybrid sterility appeared to be controlled by relatively few loci. Heterozygosity at ALS was negatively correlated with fertility. Also, the A. tuberculatus ALS allele was not observed in the A. hybridus sexual condition, monoecism. Linkage of ALS to a locus associated (directly or via epistasis) with hybrid sterility may explain the fertility penalty observed with ALS introgression. Moreover, this linkage might explain why sequenced herbicide-resistance ALS

  20. A design-constraint trade-off underpins the diversity in ecologically important traits in species Escherichia coli.

    PubMed

    Phan, Katherine; Ferenci, Thomas

    2013-10-01

    Bacterial species are internally diverse in genomic and multi-locus gene comparisons. The ecological causes of phenotypic and genotypic diversity within species are far less well understood. Here, we focus on the competitive fitness for growth on nutrients within Escherichia coli, an internally rich species. Competition experiments in nutrient-limited chemostats revealed that members of the ECOR collection exhibited a wide continuum of competitive abilities, with some fitter and some less fit than the lab strain MG1655. We observed an inverse relationship between competitiveness and the resistance of strains to detergent and antibiotic, consistent with the notion that membrane permeability and competitive fitness are linked by a trade-off between self-preservation and nutritional competence (SPANC); high permeability has a postulated cost in antibacterial sensitivity whereas a low permeability has a cost in nutrient affinity. Isolates moved along the markedly nonlinear trade-off curve by mutational adaptation; an ECOR strain sensitive to antibacterials and a good competitor was easily converted by mutation into a mutant with higher resistance but poorer competition in the presence of low antibiotic concentrations. Conversely, a resistant ECOR strain changed into a better competitor after a short period of selection under nutrient limitation. In both directions, mutations can affect porin proteins and outer membrane permeability, as indicated by protein analysis, gene sequencing and an independent assay of outer membrane permeability. The extensive, species-wide diversity of E. coli in ecologically important traits can thus be explained as an evolutionary consequence of a SPANC trade-off driven by antagonistic pleiotropy.

  1. Relative importance of habitat filtering and limiting similarity on species assemblages of alpine and subalpine plant communities.

    PubMed

    Takahashi, Koichi; Tanaka, Saeka

    2016-11-01

    This study examined how habitat filtering and limiting similarity affect species assemblages of alpine and subalpine plant communities along a slope gradient on Mt. Norikura in central Japan. Plant traits (plant height, individual leaf area, specific leaf area (SLA), leaf linearity, leaf nitrogen and chlorophyll concentrations) and abiotic environmental factors (elevation, slope inclination, ground surface texture, soil water, soil pH, soil nutrient concentrations of NH4-N and NO3-N) were examined. The metrics of variance, range, kurtosis and the standard deviation of neighbor distance divided by the range of traits present (SDNDr) were calculated for each plant trait to measure trait distribution patterns. Limiting similarity was detected only for chlorophyll concentration. By contrast, habitat filtering was detected for individual leaf area, SLA, leaf linearity, chlorophyll concentration. Abiotic environmental factors were summarized by the principal component analysis (PCA). The first PCA axis positively correlated with elevation and soil pH, and negatively correlated with sand cover, soil water, NH4-N and NO3-N concentrations. High values of the first PCA axis represent the wind-exposed upper slope with lower soil moisture and nutrient availabilities. Plant traits changed along the first PCA axis. Leaf area, SLA and chlorophyll concentration decreased, and leaf linearity increased with the first PCA axis. This study showed that the species assemblage of alpine and subalpine plants was determined mainly by habitat filtering, indicating that abiotic environmental factors are more important for species assemblage than interspecific competition. Therefore, only species adapting to abiotic environments can distribute to these environments.

  2. Inside the guts of wood-eating catfishes: can they digest wood?

    PubMed

    German, Donovan P

    2009-11-01

    To better understand the structure and function of the gastrointestinal (GI) tracts of wood-eating catfishes, the gross morphology, length, and microvilli surface area (MVSA) of the intestines of wild-caught Panaque nocturnus, P. cf. nigrolineatus "Marañon", and Hypostomus pyrineusi were measured, and contrasted against these same metrics of a closely related detritivore, Pterygoplichthys disjunctivus. All four species had anatomically unspecialized intestines with no kinks, valves, or ceca of any kind. The wood-eating catfishes had body size-corrected intestinal lengths that were 35% shorter than the detritivore. The MVSA of all four species decreased distally in the intestine, indicating that nutrient absorption preferentially takes place in the proximal and mid-intestine, consistent with digestive enzyme activity and luminal carbohydrate profiles for these same species. Wild-caught Pt. disjunctivus, and P. nigrolineatus obtained via the aquarium trade, poorly digested wood cellulose (<33% digestibility) in laboratory feeding trials, lost weight when consuming wood, and passed stained wood through their digestive tracts in less than 4 h. Furthermore, no selective retention of small particles was observed in either species in any region of the gut. Collectively, these results corroborate digestive enzyme activity profiles and gastrointestinal fermentation levels in the fishes' GI tracts, suggesting that the wood-eating catfishes are not true xylivores such as beavers and termites, but rather, are detritivores like so many other fishes from the family Loricariidae.

  3. Ultramorphological characteristics of mature larvae of Nitidula carnaria (Schaller 1783) (Coleoptera: Nitidulidae), a beetle species of forensic importance.

    PubMed

    Ortloff, Alexander; Zanetti, Noelia; Centeno, Néstor; Silva, Ricardo; Bustamante, Felipe; Olave, Alvaro

    2014-06-01

    Beetles of the genus Nitidula Fabricius are forensically important, and their adults and larvae have been found associated with human corpses and animal carcasses in many places of the world. The external morphology of the larvae of Nitidula carnaria (Schaller 1783) was examined by scanning electron microscopy (SEM) to provide a description enabling identification of this forensically important species. The ultrastructure of the head was examined, antennae, mandibles, epipharynx, maxillary and labial palpi, spiracles, thorax, legs, and abdominal segments (especially segments 9 and 10); the tegument was also emphasised in this examination. Several types of sensilla were observed on the maxillary and labial palpi, including sensilla basiconica, sensilla styloconica, and perhaps a different type of sensilla digitiformia. In abdominal segment 10, a sensilla campaniformia was observed. Two types of plates were noticed in the abdominal tegument. The characteristics described here can be used to identify this species. No other study of the ultrastructure of Nitidulidae larvae is available for comparison. This is the first report of N. carnaria in carcasses in Chile.

  4. [Seasonal variation of proximate composition in three commercially important species in the Gulf of Nicoya, Puntarenas, Costa Rica].

    PubMed

    Rodríguez, Cristian Fonseca; Solera, Fabián Chavarriá; Mejía-Arana, Fernando

    2013-03-01

    Nutritional value of seafood for human consumption is worldwide recognized. Some information have been generated in other countries, nevertheless, there is limited information describing the chemical composition of some fishery important species caught in the Gulf of Nicoya. For this reason, we studied the levels of proximal components of the edible parts (fresh) of three commercially important species. The meat samples of snook Centropomus unionesis, the shrimp Trachypenaeus byrdi and the bivalve Polymesoda radiata, were collected from the Puntarenas local fish market during the fishing season of February 2009 to January 2010. Proximate composition analysis was determined according to AOAC methodology, and evaluated the moisture content, and protein and lipid composition of shellfish meats. The results indicated that the moisture content ranged from 74.6-80.6g/100g for snook 76.9-80.0g/100g for shrimp and 77.9-89.5g/100g for green mussel. After the moisture, the protein was the most abundant chemical fraction (6.8 to 21g/100g) showing the highest values in February for the shrimp and green mussel, and December for snook. The largest fluctuations in the lipid content were found in the snook, ranging from 0.7g/100g to 5.6g/100g; the highest values in this fraction were found in shrimp, green mussel and snook, for July, February and April samples respectively. Considering these results, we concluded that fish and shrimp species studied are a good alternative for human consumption as a source of protein and low lipid content.

  5. Superior wood for violins--wood decay fungi as a substitute for cold climate.

    PubMed

    Schwarze, Francis W M R; Spycher, Melanie; Fink, Siegfried

    2008-01-01

    Violins produced by Antonio Stradivari during the late 17th and early 18th centuries are reputed to have superior tonal qualities. Dendrochronological studies show that Stradivari used Norway spruce that had grown mostly during the Maunder Minimum, a period of reduced solar activity when relatively low temperatures caused trees to lay down wood with narrow annual rings, resulting in a high modulus of elasticity and low density. The main objective was to determine whether wood can be processed using selected decay fungi so that it becomes acoustically similar to the wood of trees that have grown in a cold climate (i.e. reduced density and unchanged modulus of elasticity). This was investigated by incubating resonance wood specimens of Norway spruce (Picea abies) and sycamore (Acer pseudoplatanus) with fungal species that can reduce wood density, but lack the ability to degrade the compound middle lamellae, at least in the earlier stages of decay. Microscopic assessment of the incubated specimens and measurement of five physical properties (density, modulus of elasticity, speed of sound, radiation ratio, and the damping factor) using resonance frequency revealed that in the wood of both species there was a reduction in density, accompanied by relatively little change in the speed of sound. Thus, radiation ratio was increased from 'poor' to 'good', on a par with 'superior' resonance wood grown in a cold climate.

  6. Cary Woods Elementary School.

    ERIC Educational Resources Information Center

    Havens, Glenda

    1994-01-01

    Describes the school reading program at Cary Woods Elementary School (in Auburn, Alabama), one of several school reading programs designated by the International Reading Association as exemplary. (SR)

  7. Radiocesium contaminations of 20 wood species and the corresponding gamma-ray dose rates around the canopies at 5 months after the Fukushima nuclear power plant accident.

    PubMed

    Yoshihara, Toshihiro; Matsumura, Hideyuki; Hashida, Shin-nosuke; Nagaoka, Toru

    2013-01-01

    Radiocesium ((134)Cs + (137)Cs) deposition from the Fukushima nuclear power plant accident was measured in 20 woody plants (12 evergreen and 8 deciduous species) grown in Abiko (approximately 200 km SSW from the NPP). Leaves (needles) and twigs were sampled from each of three foliar positions (top, middle, and bottom) in the plant canopy in early August 2011. At the time, soils around the plants were also sampled, and gamma radiation dose rates were measured at each sampling position. The average radiocesium activity in the observed leaves of the evergreen species was 7.7 times that in the leaves of the deciduous species. Among the observed evergreen coniferous species, the activity in pre-fallout-expanded leaves was 2.4 times that in the post-fallout-expanded leaves. Notably, a distinct variation in the activity among the evergreen coniferous species could be observed for the post-fallout-expanded leaves but not for the pre-fallout-expanded leaves. Although these differences depend on whether the leaves had expanded at the time of the fallout, it is probable that a considerable amount of radiocesium was translocated to newly developed leaves at a species-specific rate. In addition, it was demonstrated that dose rates around woody plants were not consistent with the prevailing prediction that general dose rates correspondingly decrease with monitoring height from the ground. Thus, the dose rates in the top foliar layer of the deciduous species decreased more than predicted, whereas those in the top foliar layer of the coniferous species did not decrease. This may be due to differences in the balance between the attenuation resulting from a shielding effect of the plant bodies and the higher radiocesium accumulation in the leaves.

  8. Macroinvertebrate community assembly on deep-sea wood falls in Monterey Bay is strongly influenced by wood type.

    PubMed

    Judge, Jenna; Barry, James P

    2016-11-01

    Environmental filtering, including the influence of environmental constraints and biological interactions on species' survival, is known to significantly affect patterns of community assembly in terrestrial ecosystems. However, its role in regulating patterns and processes of community assembly in deep-sea environments is poorly studied. Here we investigated the role of wood characteristics in the assembly of deep-sea wood fall communities. Ten different wood species (substrata) that varied in structural complexity were sunk to a depth of 3,100 m near Monterey Bay, CA. In total, 28 wood parcels were deployed on the deep-sea bed. After 2 yr, the wood parcels were recovered with over 7,000 attached or colonizing macroinvertebrates. All macroinvertebrates were identified to the lowest taxonomic level possible, and included several undescribed species. Diversity indices and multivariate analyses of variance detected significant variation in the colonizing community assemblages among different wood substrata. Structural complexity seemed to be the primary factor altering community composition between wood substrata. For example, wood-boring clams were most abundant on solid logs, while small arthropods and limpets were more abundant on bundles of branches that provided more surface area and small, protected spaces to occupy. Other factors such as chemical defenses, the presence of bark, and wood hardness likely also played a role. Our finding that characteristics of woody debris entering the marine realm can have significant effects on community assembly supports the notion of ecological and perhaps evolutionarily significant links between land and sea.

  9. Controlling biological deterioration of wood with volatile chemicals. Final report

    SciTech Connect

    Graham, R.D.; Corden, M.E.

    1980-08-01

    Volatile fungicides placed in holes in pressure-treated Douglas-fir transmission poles with internal decay diffuse as vapors for about 2.4 m above and below the groundline to control decay for at least 10 y. The presence of fungitoxic vapors of chloropicrin (trichloronitromethane) in these poles suggests added years of control. Vapam (sodium N-methyldithiocarbamate) was less effective, but both of these chemicals are used nationwide. Methylisotiocyanate (MS), which appears especially promising in both laboratory wood-block screening tests and in poles 2 years after treatment, may prove outstanding as a control for internal decay of poles. Successfully formulated as a solid, MS could increase the safety and versatility of fumigant use. A comparison of devices for inspecting Douglas-fir poles for decay emphasized the importance of having well-trained inspectors who know the limitations of the tools and methods they use. A manual for the maintenance of Douglas-fir and western redcedar poles was published to aid inspectors and managers of wood pole systems. Fumigants varied in their residual protection against invasion by decay fungi with chloropicrin having the highest residual fungitoxicity. Fumigants had no adverse effect on vegetation around poles, nor on the strength properties of wood. Of the 8 decay fungi isolated from over 15,600 pressure-treated Douglas-fir poles, Poria carbonica and Poria placenta were by far the most prevalent. Of the five most prevalent nondecay fungi isolated from these poles, a Scytalidium species can produce an environment unsuitable for reinvasion of the wood by decay fungi. The resistance of the Scytalidium species to chloropicrin raises the possibility of a combined chemical-biological control of internal decay.

  10. Relative importance of phenotypic trait matching and species' abundances in determining plant-avian seed dispersal interactions in a small insular community.

    PubMed

    González-Castro, Aarón; Yang, Suann; Nogales, Manuel; Carlo, Tomás A

    2015-03-05

    Network theory has provided a general way to understand mutualistic plant-animal interactions at the community level. However, the mechanisms responsible for interaction patterns remain controversial. In this study we use a combination of statistical models and probability matrices to evaluate the relative importance of species morphological and nutritional (phenotypic) traits and species abundance in determining interactions between fleshy-fruited plants and birds that disperse their seeds. The models included variables associated with species abundance, a suite of variables associated with phenotypic traits (fruit diameter, bird bill width, fruit nutrient compounds), and the species identity of the avian disperser. Results show that both phenotypic traits and species abundance are important determinants of pairwise interactions. However, when considered separately, fruit diameter and bill width were more important in determining seed dispersal interactions. The effect of fruit compounds was less substantial and only important when considered together with abundance-related variables and/or the factor 'animal species'.

  11. Inspecting wood surface roughness using computer vision

    NASA Astrophysics Data System (ADS)

    Zhao, Xuezeng

    1995-01-01

    Wood surface roughness is one of the important indexes of manufactured wood products. This paper presents an attempt to develop a new method to evaluate manufactured wood surface roughness through the utilization of imaging processing and pattern recognition techniques. In this paper a collimated plane of light or a laser is directed onto the inspected wood surface at a sharp angle of incidence. An optics system that consists of lens focuses the image of the surface onto the objective of a CCD camera, the CCD camera captures the image of the surface and using a CA6300 board digitizes the image. The digitized image is transmitted into a microcomputer. Through the use of the methodology presented in this paper, the computer filters the noise and wood anatomical grain and gives an evaluation of the nature of the manufactured wood surface. The preliminary results indicated that the method has the advantages of non-contact, 3D, high-speed. This method can be used in classification and in- time measurement of manufactured wood products.

  12. Prevalence of SGHV among tsetse species of economic importance in Tanzania and their implication for SIT application.

    PubMed

    Malele, Imna I; Manangwa, Oliver; Nyingilili, Hamisi H; Kitwika, Winston A; Lyaruu, Eugene A; Msangi, Atway R; Ouma, Johnson O; Nkwangulila, Gamba; Abd-Alla, Adly M M

    2013-03-01

    Sterile Insect technique is an important component in area-wide integrated tsetse control. The presence of the salivary glands hypertrophy virus (SGHV) in the wild tsetse, which are the seeds for colony adaptations in the laboratory has become a stumbling block in establishing and maintaining colonies in the laboratory. The virus is transmitted both vertically (in the wild) and horizontally (in the laboratory). However, its prevalence is magnified in the laboratory as a result of the use of in vitro membrane feeding regimen. Fly species of Glossina fuscipes fuscipes, G. pallidipes, G. morsitans and G. swynnertoni were collected from the coastal and inland areas of Tanzania and virus infection rates were assessed microscopically and by PCR. The data showed that in a period of 4years, the virus was present in all species tested irrespective of their ages, sex, and season of the year. However, infection levels differed among species and from one location to another. Symptomatic infection determined by dissection was 1.2% (25/2164) from the coast as compared to 0.4% (6/1725) for inland collected flies. PCR analysis indicated a higher infection rate of 19.81% (104/525) of asymptomatic flies. From these observations, we conclude that care should be taken when planning to initiate tsetse laboratory colonies for use in SIT eradication program. All efforts should be made to select non-infected flies when initiating laboratory colonies and to try to minimize the infection with SGHV. Also management of SGHV infection in the established colony should be applied.

  13. Diel flight behaviour and dispersal patterns of aquatic Coleoptera and Heteroptera species with special emphasis on the importance of seasons.

    PubMed

    Csabai, Zoltán; Kálmán, Zoltán; Szivák, Ildikó; Boda, Pál

    2012-09-01

    Dispersal flight is the most important and almost the only way for primary aquatic insects to find new water habitats. During a 30-week-long project, we monitored the flight dispersal behaviour of aquatic beetles and bugs with using highly and horizontally polarizing agricultural black plastic sheets laid onto the ground. Based on the flight data of more than 45,000 individuals and 92 species, we explored and described eight different diel flight activity patterns. We found that seven of eight dispersal patterns are consistent with the previous knowledge, while three conspicuous mass dispersal periods can be identified as in the mid morning and/or around noon and/or at nightfall. As an exception, we found a 'daytime' pattern occurred exclusively in spring, in which mass dispersal can be seen from mid morning to late afternoon. In contrast to previous studies, we emphasize here that the seasonality has to be considered in evaluation of the diurnal flight activity. According to the seasons, a 'three code sign' was proposed to indicate the diel dispersal flight behaviour of a species for a year. Most of the species utilize different diel activity patterns in different seasons. In spring, the daytime pattern was the preferred type, but in summer and autumn, the evening types were the most popular patterns. We stated that the seasonal change of air temperature has a crucial role in that a pattern could be manifested in a given season or not and brings a need to change the diel dispersal pattern among seasons.