Sample records for imports basic science

  1. Student- and faculty-reported importance of science prerequisites for osteopathic medical school: a survey-based study.

    PubMed

    Binstock, Judith; Junsanto-Bahri, Tipsuda

    2014-04-01

    The relevance of current standard medical school science prerequisites is being reexamined. (1) To identify which science prerequisites are perceived to best prepare osteopathic medical students for their basic science and osteopathic manipulative medicine (OMM) coursework and (2) to determine whether science prerequisites for osteopathic medical school should be modified. Preclinical osteopathic medical students and their basic science and OMM faculty from 3 colleges of osteopathic medicine were surveyed about the importance of specific science concepts, laboratories, and research techniques to medical school coursework. Participants chose responses on a 5-point scale, with 1 indicating "strongly disagree" or "not important" and 5 indicating "strongly agree" or "extremely important." Participants were also surveryed on possible prerequisite modifications. Student responses (N=264) to the general statement regarding prerequisites were "neutral" for basic science coursework and "disagree" for OMM coursework, with mean (standard deviation [SD]) scores of 3.37 (1.1) and 2.68 (1.2), respectively. Faculty responses (N=49) were similar, with mean (SD) scores of 3.18 (1.1) for basic science coursework and 2.67 (1.2) for OMM coursework. Student mean (SD) scores were highest for general biology for basic science coursework (3.93 [1.1]) and physics for OMM coursework (2.5 [1.1]). Student mean (SD) scores were lowest for physics for basic science coursework (1.79 [1.2]) and organic chemistry for OMM coursework (1.2 [0.7]). Both basic science and OMM faculty rated general biology highest in importance (mean [SD] scores, 3.73 [0.9] and 4.22 [1.0], respectively). Students and faculty rated biochemistry high in importance for basic science coursework (mean [SD] scores of 3.66 [1.2] and 3.32 [1.2], respectively). For basic science coursework, students and faculty rated most laboratories as "important," with the highest mean (SD) ratings for general anatomy (students, 3.66 [1.5]; faculty, 3.72 [1.1]) and physiology (students, 3.56 [1.7]; faculty, 3.61 [1.1]). For their OMM coursework, students rated only general anatomy and physiology laboratories as "important" (mean [SD] scores, 3.22 [1.8] and 2.61 [1.6], respectively), whereas OMM faculty rated all laboratories as "important" (mean scores, >3). Both student and faculty respondents rated research techniques higher in importance for basic science coursework than for OMM coursework. For prerequisite modifications, all respondents indicated "no change" for biology and "reduce content" for organic chemistry and physics. All respondents favored adding physiology and biochemistry as prerequisites. General biology and laboratory were the only standard prerequisites rated as "important." Research techniques were rated as "important" for basic science coursework only. Physiology and biochemistry were identified as possible additions to prerequisites. It may be necessary for colleges of osteopathic medicine to modify science prerequisites to reflect information that is pertinent to their curricula.

  2. Basic science right, not basic science lite: medical education at a crossroad.

    PubMed

    Fincher, Ruth-Marie E; Wallach, Paul M; Richardson, W Scott

    2009-11-01

    This perspective is a counterpoint to Dr. Brass' article, Basic biomedical sciences and the future of medical education: implications for internal medicine. The authors review development of the US medical education system as an introduction to a discussion of Dr. Brass' perspectives. The authors agree that sound scientific foundations and skill in critical thinking are important and that effective educational strategies to improve foundational science education should be implemented. Unfortunately, many students do not perceive the relevance of basic science education to clinical practice.The authors cite areas of disagreement. They believe it is unlikely that the importance of basic sciences will be diminished by contemporary directions in medical education and planned modifications of USMLE. Graduates' diminished interest in internal medicine is unlikely from changes in basic science education.Thoughtful changes in education provide the opportunity to improve understanding of fundamental sciences, the process of scientific inquiry, and translation of that knowledge to clinical practice.

  3. Japanese medical students' interest in basic sciences: a questionnaire survey of a medical school in Japan.

    PubMed

    Yamazaki, Yuka; Uka, Takanori; Shimizu, Haruhiko; Miyahira, Akira; Sakai, Tatsuo; Marui, Eiji

    2013-02-01

    The number of physicians engaged in basic sciences and teaching is sharply decreasing in Japan. To alleviate this shortage, central government has increased the quota of medical students entering the field. This study investigated medical students' interest in basic sciences in efforts to recruit talent. A questionnaire distributed to 501 medical students in years 2 to 6 of Juntendo University School of Medicine inquired about sex, grade, interest in basic sciences, interest in research, career path as a basic science physician, faculties' efforts to encourage students to conduct research, increases in the number of lectures, and practical training sessions on research. Associations between interest in basic sciences and other variables were examined using χ(2) tests. From among the 269 medical students (171 female) who returned the questionnaire (response rate 53.7%), 24.5% of respondents were interested in basic sciences and half of them considered basic sciences as their future career. Obstacles to this career were their original aim to become a clinician and concerns about salary. Medical students who were likely to be interested in basic sciences were fifth- and sixth-year students, were interested in research, considered basic sciences as their future career, considered faculties were making efforts to encourage medical students to conduct research, and wanted more research-related lectures. Improving physicians' salaries in basic sciences is important for securing talent. Moreover, offering continuous opportunities for medical students to experience research and encouraging advanced-year students during and after bedside learning to engage in basic sciences are important for recruiting talent.

  4. Exploring cognitive integration of basic science and its effect on diagnostic reasoning in novices.

    PubMed

    Lisk, Kristina; Agur, Anne M R; Woods, Nicole N

    2016-06-01

    Integration of basic and clinical science knowledge is increasingly being recognized as important for practice in the health professions. The concept of 'cognitive integration' places emphasis on the value of basic science in providing critical connections to clinical signs and symptoms while accounting for the fact that clinicians may not spontaneously articulate their use of basic science knowledge in clinical reasoning. In this study we used a diagnostic justification test to explore the impact of integrated basic science instruction on novices' diagnostic reasoning process. Participants were allocated to an integrated basic science or clinical science training group. The integrated basic science group was taught the clinical features along with the underlying causal mechanisms of four musculoskeletal pathologies while the clinical science group was taught only the clinical features. Participants completed a diagnostic accuracy test immediately after initial learning, and one week later a diagnostic accuracy and justification test. The results showed that novices who learned the integrated causal mechanisms had superior diagnostic accuracy and better understanding of the relative importance of key clinical features. These findings further our understanding of cognitive integration by providing evidence of the specific changes in clinical reasoning when basic and clinical sciences are integrated during learning.

  5. Basic science conferences in residency training: a national survey.

    PubMed

    Cruz, P D; Charley, M R; Bergstresser, P R

    1987-02-01

    Basic science teaching is an important component of dermatology residency training, and the basic science conference is the major tool utilized by departments of dermatology for its implementation. To characterize the role of basic science conferences in dermatology training, a national survey of chief residents was conducted. Although the survey confirmed that a high value is placed on basic science conferences, a surprising finding was a significant level of dissatisfaction among chief residents, particularly those from university-based programs. Results of the survey have been used to redefine our own objectives in basic science teaching and to propose elements of methodology and curriculum.

  6. In defense of basic science funding: today's scientific discovery is tomorrow's medical advance.

    PubMed

    Tessier-Lavigne, Marc

    2013-06-01

    In this address, I will discuss the importance of basic science in tackling our health problems. I will also describe how the funding cuts are damaging our economic competitiveness and turning our young people away from science.

  7. Integration of Basic and Clinical Sciences: Faculty Perspectives at a U.S. Dental School.

    PubMed

    van der Hoeven, Dharini; van der Hoeven, Ransome; Zhu, Liang; Busaidy, Kamal; Quock, Ryan L

    2018-04-01

    Although dental education has traditionally been organized into basic sciences education (first and second years) and clinical education (third and fourth years), there has been growing interest in ways to better integrate the two to more effectively educate students and prepare them for practice. Since 2012, The University of Texas School of Dentistry at Houston (UTSD) has made it a priority to improve integration of basic and clinical sciences, with a focus to this point on integrating the basic sciences. The aim of this study was to determine the perspectives of basic and clinical science faculty members regarding basic and clinical sciences integration and the degree of integration currently occurring. In October 2016, all 227 faculty members (15 basic scientists and 212 clinicians) were invited to participate in an online survey. Of the 212 clinicians, 84 completed the clinician educator survey (response rate 40%). All 15 basic scientists completed the basic science educator survey (response rate 100%). The majority of basic and clinical respondents affirmed the value of integration (93.3%, 97.6%, respectively) and reported regular integration in their teaching (80%, 86.9%). There were no significant differences between basic scientists and clinicians on perceived importance (p=0.457) and comfort with integration (p=0.240), but the basic scientists were more likely to integrate (p=0.039) and collaborate (p=0.021) than the clinicians. There were no significant differences between generalist and specialist clinicians on importance (p=0.474) and degree (p=0.972) of integration in teaching and intent to collaborate (p=0.864), but the specialists reported feeling more comfortable presenting basic science information (p=0.033). Protected faculty time for collaborative efforts and a repository of integrated basic science and clinical examples for use in teaching and faculty development were recommended to improve integration. Although questions might be raised about the respondents' definition of "integration," this study provides a baseline assessment of perceptions at a dental school that is placing a priority on integration.

  8. Characteristics of physicians engaged in basic science: a questionnaire survey of physicians in basic science departments of a medical school in Japan.

    PubMed

    Yamazaki, Yuka; Uka, Takanori; Shimizu, Haruhiko; Miyahira, Akira; Sakai, Tatsuo; Marui, Eiji

    2012-09-01

    The number of physicians engaged in basic science and teaching is sharply decreasing in Japan. To alleviate this shortage, central government has increased the quota of medical students entering the field. This study aimed to determine the characteristics of physicians who are engaged in basic science in efforts to recruit talent. A questionnaire was distributed to all 30 physicians in the basic science departments of Juntendo University School of Medicine. Question items inquired about sex, years since graduation, years between graduation and time entering basic science, clinical experience, recommending the career to medical students, expected obstacles to students entering basic science, efforts to inspire students in research, increased number of lectures and practical training sessions on research, and career choice satisfaction. Correlations between the variables were examined using χ(2) tests. Overall, 26 physicians, including 7 female physicians, returned the questionnaire (response rate 86.7%). Most physicians were satisfied with their career choice. Medical students were deemed not to choose basic science as their future career, because they aimed to become clinicians and because they were concerned about salary. Women physicians in basic science departments were younger than men. Women physicians also considered themselves to make more efforts in inspiring medical students to be interested in research. Moreover, physicians who became basic scientists earlier in their career wanted more research-related lectures in medical education. Improving physicians' salaries in basic science is important to securing talent. In addition, basic science may be a good career path for women physicians to follow.

  9. [Platforms are needed for innovative basic research in ophthalmology].

    PubMed

    Wang, Yi-qiang

    2012-07-01

    Basic research poses the cornerstone of technical innovation in all lines including medical sciences. Currently, there are shortages of professional scientists as well as technical supporting teams and facilities in the field of basic research of ophthalmology and visual science in China. Evaluation system and personnel policies are not supportive for innovative but high-risk-of-failure research projects. Discussion of reasons and possible solutions are given here to address these problems, aiming at promoting buildup of platforms hosting novel and important basic research in eye science in this country.

  10. Physician perceptions of the role and value of basic science knowledge in daily clinical practice.

    PubMed

    Fischer, Jennifer A; Muller-Weeks, Susan

    2012-01-01

    The role of basic science education in a clinical setting remains unclear. Research to understand how academic clinicians perceive and use this part of their education can aid curricular development. To assess physician's attitudes toward the value of science knowledge in their clinical practice. Academic physicians from three medical schools completed a questionnaire about the utility of basic science education in core clinical tasks and in practice-based learning and improvement. A total of 109 clinical faculty returned the survey. Overall, 89% of the respondents indicated that basic science education is valuable to their clinical practice. When asked about the utility of basic science information in relation to direct patient care, greater than 50% of the doctors felt they use this when diagnosing and communicating with patients. This rose to greater than 60% when asked about choosing treatment options for their patients. Individuals also responded that basic science knowledge is valuable when developing evidence-based best practices. Specifically, 89% felt that they draw upon this information when training students/residents and 84% use this information when reading journal articles. This study shows that basic science education is perceived by responding academic physicians to be important to their clinical work.

  11. Integrated Medical Curriculum: Advantages and Disadvantages

    PubMed Central

    Quintero, Gustavo A.; Vergel, John; Arredondo, Martha; Ariza, María-Cristina; Gómez, Paula; Pinzon-Barrios, Ana-Maria

    2016-01-01

    Most curricula for medical education have been integrated horizontally and vertically–-vertically between basic and clinical sciences. The Flexnerian curriculum has disappeared to permit integration between basic sciences and clinical sciences, which are taught throughout the curriculum. We have proposed a different form of integration where the horizontal axis represents the defined learning outcomes and the vertical axis represents the teaching of the sciences throughout the courses. We believe that a mere integration of basic and clinical sciences is not enough because it is necessary to emphasize the importance of humanism as well as health population sciences in medicine. It is necessary to integrate basic and clinical sciences, humanism, and health population in the vertical axis, not only in the early years but also throughout the curriculum, presupposing the use of active teaching methods based on problems or cases in small groups. PMID:29349303

  12. Contextualizing the relevance of basic sciences: small-group simulation with debrief for first- and second-year medical students in an integrated curriculum.

    PubMed

    Ginzburg, Samara B; Brenner, Judith; Cassara, Michael; Kwiatkowski, Thomas; Willey, Joanne M

    2017-01-01

    There has been a call for increased integration of basic and clinical sciences during preclinical years of undergraduate medical education. Despite the recognition that clinical simulation is an effective pedagogical tool, little has been reported on its use to demonstrate the relevance of basic science principles to the practice of clinical medicine. We hypothesized that simulation with an integrated science and clinical debrief used with early learners would illustrate the importance of basic science principles in clinical diagnosis and management of patients. Small groups of first- and second-year medical students were engaged in a high-fidelity simulation followed by a comprehensive debrief facilitated by a basic scientist and clinician. Surveys including anchored and open-ended questions were distributed at the conclusion of each experience. The majority of the students agreed that simulation followed by an integrated debrief illustrated the clinical relevance of basic sciences (mean ± standard deviation: 93.8% ± 2.9% of first-year medical students; 96.7% ± 3.5% of second-year medical students) and its importance in patient care (92.8% of first-year medical students; 90.4% of second-year medical students). In a thematic analysis of open-ended responses, students felt that these experiences provided opportunities for direct application of scientific knowledge to diagnosis and treatment, improving student knowledge, simulating real-world experience, and developing clinical reasoning, all of which specifically helped them understand the clinical relevance of basic sciences. Small-group simulation followed by a debrief that integrates basic and clinical sciences is an effective means of demonstrating the relationship between scientific fundamentals and patient care for early learners. As more medical schools embrace integrated curricula and seek opportunities for integration, our model is a novel approach that can be utilized.

  13. Integrating Basic Science and Clinical Teaching for Third-Year Medical Students.

    ERIC Educational Resources Information Center

    Croen, Lila G.; And Others

    1986-01-01

    A 2-month program for third-year students at Yeshiva's Albert Einstein College of Medicine that provides a model for integrating basic sciences and clinical training is described. It demonstrates the importance of lifelong learning in a field that constantly changes. (Author/MLW)

  14. Translating orthopaedic basic science into clinical relevance.

    PubMed

    Madry, Henning

    2014-12-01

    In orthopaedic and trauma surgery, the rapid evolution of biomedical research has fundamentally changed the perception of the musculoskeletal system. Here, the rigor of basic science and the art of musculoskeletal surgery have come together to create a new discipline -experimental orthopaedics- that holds great promise for the causative cure of many orthopaedic conditions. The Journal of Experimental Orthopaedics intends to bridge the gap between orthopaedic basic science and clinical relevance, to allow for a fruitful clinical translation of excellent and important investigations in the field of the entire musculoskeletal system.

  15. Science Education: A Case for Astronomy

    ERIC Educational Resources Information Center

    Wentzel, Donat G.

    1971-01-01

    Describes astronomy course used as a medium to provide an understanding of how science progresses and how it relates to society. Illustrations are given of how scientific judgment, importance of basic science, humanistic aspects of science, and the priorities among science are presented. (DS)

  16. There was less self-critique among basic than in clinical science articles in three rheumatology journals.

    PubMed

    Yazici, Hasan; Gogus, Feride; Esen, Fehim; Yazici, Yusuf

    2014-06-01

    There is concern that self-critique with authors acknowledging limitations of their work is not given due importance in scientific articles. We had the impression that this was more true for articles in basic compared with clinical science. We thus surveyed for the presence of self-critique in the discussion sections of the original articles in three rheumatology journals with attention to differences between the basic and the clinical science articles. The discussion sections of the original articles in January, May, and September 2012 issues of Annals of the Rheumatic Diseases, Arthritis and Rheumatism, and Rheumatology (Oxford) were surveyed (n = 223) after classifying each article as mainly related to clinical or basic science. The discussion sections were electronically scanned by two observers for the presence of the root word "limit" or its derivatives who also read each discussion section for the presence of any limitations otherwise voiced. A limitation discussion in any form was present in only 19 (20.2%) or 29 (30.1%) of 94 basic science vs. 95 (73.6%) or 107 (82.3%) of 129 clinical science articles (P < 0.0001 for either observer). Self-critique, especially lacking in basic science articles, should be given due attention. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Integration and timing of basic and clinical sciences education.

    PubMed

    Bandiera, Glen; Boucher, Andree; Neville, Alan; Kuper, Ayelet; Hodges, Brian

    2013-05-01

    Medical education has traditionally been compartmentalized into basic and clinical sciences, with the latter being viewed as the skillful application of the former. Over time, the relevance of basic sciences has become defined by their role in supporting clinical problem solving rather than being, of themselves, a defining knowledge base of physicians. As part of the national Future of Medical Education in Canada (FMEC MD) project, a comprehensive empirical environmental scan identified the timing and integration of basic sciences as a key pressing issue for medical education. Using the literature review, key informant interviews, stakeholder meetings, and subsequent consultation forums from the FMEC project, this paper details the empirical basis for focusing on the role of basic science, the evidentiary foundations for current practices, and the implications for medical education. Despite a dearth of definitive relevant studies, opinions about how best to integrate the sciences remain strong. Resource allocation, political power, educational philosophy, and the shift from a knowledge-based to a problem-solving profession all influence the debate. There was little disagreement that both sciences are important, that many traditional models emphasized deep understanding of limited basic science disciplines at the expense of other relevant content such as social sciences, or that teaching the sciences contemporaneously rather than sequentially has theoretical and practical merit. Innovations in integrated curriculum design have occurred internationally. Less clear are the appropriate balance of the sciences, the best integration model, and solutions to the political and practical challenges of integrated curricula. New curricula tend to emphasize integration, development of more diverse physician competencies, and preparation of physicians to adapt to evolving technology and patients' expectations. Refocusing the basic/clinical dichotomy to a foundational/applied model may yield benefits in training widely competent future physicians.

  18. Using Amphibians and Reptiles to Learn the Process of Science

    ERIC Educational Resources Information Center

    Greene, Janice Schnake; Greene, Brian D.

    2005-01-01

    Although every student must take some science courses to graduate, understanding the process of science is important, and some students never seem to really grasp science. The National Science Education Standards stress process as a major component in science instruction. The standards state that scientific inquiry is basic to science education…

  19. Speaking of food: connecting basic and applied plant science.

    PubMed

    Gross, Briana L; Kellogg, Elizabeth A; Miller, Allison J

    2014-10-01

    The Food and Agriculture Organization (FAO) predicts that food production must rise 70% over the next 40 years to meet the demands of a growing population that is expected to reach nine billion by the year 2050. Many facets of basic plant science promoted by the Botanical Society of America are important for agriculture; however, more explicit connections are needed to bridge the gap between basic and applied plant research. This special issue, Speaking of Food: Connecting Basic and Applied Plant Science, was conceived to showcase productive overlaps of basic and applied research to address the challenges posed by feeding billions of people and to stimulate more research, fresh connections, and new paradigms. Contributions to this special issue thus illustrate some interactive areas of study in plant science-historical and modern plant-human interaction, crop and weed origins and evolution, and the effects of natural and artificial selection on crops and their wild relatives. These papers provide examples of how research integrating the basic and applied aspects of plant science benefits the pursuit of knowledge and the translation of that knowledge into actions toward sustainable production of crops and conservation of diversity in a changing climate. © 2014 Botanical Society of America, Inc.

  20. Light Vision Color

    NASA Astrophysics Data System (ADS)

    Valberg, Arne

    2005-04-01

    Light Vision Color takes a well-balanced, interdisciplinary approach to our most important sensory system. The book successfully combines basics in vision sciences with recent developments from different areas such as neuroscience, biophysics, sensory psychology and philosophy. Originally published in 1998 this edition has been extensively revised and updated to include new chapters on clinical problems and eye diseases, low vision rehabilitation and the basic molecular biology and genetics of colour vision. Takes a broad interdisciplinary approach combining basics in vision sciences with the most recent developments in the area Includes an extensive list of technical terms and explanations to encourage student understanding Successfully brings together the most important areas of the subject in to one volume

  1. Three Simple Hands-On Soil Exercises Extension Professionals Can Incorporate into Natural Sciences Curriculum

    ERIC Educational Resources Information Center

    Kleinschmidt, Andy

    2011-01-01

    The importance of healthy soil and of conveying the importance of soils starts by conveying a few basic concepts of soil science cannot be overstated. This article provides three hands-on exercises Extension professionals can add to natural resources or Master Gardener education curricula. These natural sciences exercises are easy to prepare for…

  2. Factors Influencing Student Performance on the Carpal Bone Test as a Preliminary Evaluation of Anatomical Knowledge Retention

    ERIC Educational Resources Information Center

    Meyer, Amanda J.; Armson, Anthony; Losco, C. Dominique; Losco, Barrett; Walker, Bruce F.

    2015-01-01

    It has been demonstrated that a positive correlation exists between clinical knowledge and retained concepts in basic sciences. Studies have demonstrated a modest attrition of anatomy knowledge over time, which may be influenced by students' perceived importance of the basic sciences and the learning styles adopted. The aims of this study were to:…

  3. Spinal cord injury: promising interventions and realistic goals.

    PubMed

    McDonald, John W; Becker, Daniel

    2003-10-01

    Long regarded as impossible, spinal cord repair is approaching the realm of reality as efforts to bridge the gap between bench and bedside point to novel approaches to treatment. It is important to recognize that the research playing field is rapidly changing and that new mechanisms of resource development are required to effectively make the transition from basic science discoveries to effective clinical treatments. This article reviews recent laboratory studies and phase 1 clinical trials in neural and nonneural cell transplantation, stressing that the transition from basic science to clinical applications requires a parallel rather than serial approach, with continuous, two-way feedback to most efficiently translate basic science findings, through evaluation and optimization, to clinical treatments. An example of mobilizing endogenous stem cells for repair is reviewed, with emphasis on the rapid application of basic science to clinical therapy. Successful and efficient transition from basic science to clinical applications requires (1) a parallel rather than a serial approach; (2) development of centers that integrate three spheres of science, translational, transitional, and clinical trials; and (3) development of novel resources to fund the most critically limited step of transitional to clinical trials.

  4. Affective science perspectives on cancer control: Strategically crafting a mutually beneficial research agenda

    PubMed Central

    Ferrer, Rebecca A.; McDonald, Paige Green; Barrett, Lisa Feldman

    2015-01-01

    Cancer control research involves the conduct of basic and applied behavioral and social sciences to reduce cancer incidence, morbidity, and mortality, and improve quality of life. Given the importance of behavior in cancer control, fundamental research is necessary to identify psychological mechanisms underlying cancer risk, prevention, and management behaviors. Cancer prevention, diagnosis, and treatment are often emotionally-laden. As such, affective science research to elucidate questions related to basic phenomenological nature of emotion, stress, and mood is necessary to understand how cancer control can be hindered or facilitated by emotional experiences. To date, the intersection of basic affective science research and cancer control remains largely unexplored. The goal of this paper is to outline key questions in the cancer control research domain that provide an ecologically valid context for new affective science discoveries. We also provide examples of ways in which basic affective discoveries could inform future cancer prevention and control research. These examples are not meant to be exhaustive or prescriptive, but instead are offered to generate creative thought about the promise of a cancer research context for answering basic affective science questions. Together, these examples provide a compelling argument for fostering collaborations between affective and cancer control scientists. PMID:25987511

  5. Special series on "The meaning of behavioral medicine in the psychosomatic field" establishment of a core curriculum for behavioral science in Japan: The importance of such a curriculum from the perspective of psychology.

    PubMed

    Shimazu, Akihito; Nakao, Mutsuhiro

    2016-01-01

    This article discusses the core curriculum for behavioral science, from the perspective of psychology, recommended by the Japanese Society of Behavioral Medicine and seeks to explain how the curriculum can be effectively implemented in medical and health-related departments. First, the content of the core curriculum is reviewed from the perspective of psychology. We show that the curriculum features both basic and applied components and that the basic components are closely related to various aspects of psychology. Next, we emphasize two points to aid the effective delivery of the curriculum: 1) It is necessary to explain the purpose and significance of basic components of behavioral science to improve student motivation; and 2) it is important to encourage student self-efficacy to facilitate application of the acquired knowledge and skills in clinical practice.

  6. Pros and cons of vertical integration between clinical medicine and basic science within a problem-based undergraduate medical curriculum: examples and experiences from Linköping, Sweden.

    PubMed

    Dahle, L O; Brynhildsen, J; Behrbohm Fallsberg, M; Rundquist, I; Hammar, M

    2002-05-01

    Problem-based learning (PBL), combined with early patient contact, multiprofessional education and emphasis on development of communications skills, has become the basis for the medical curriculum at the Faculty of Health Sciences in Linköping (FHS), Sweden, which was started in 1986. Important elements in the curriculum are vertical integration, i.e. integration between the clinical and basic science parts of the curriculum and horizontal integration between different subject areas. This article discusses the importance of vertical integration in an undergraduate medical curriculum, according to experiences from the Faculty of Health Sciences in Linköping, and also give examples on how it has been implemented during the latest 15 years. Results and views put forward in published articles concerning vertical integration within undergraduate medical education are discussed in relation to the experiences in Linköping. Vertical integration between basic sciences and clinical medicine in a PBL setting has been found to stimulate profound rather than superficial learning, and thereby stimulates better understanding of important biomedical principles. Integration probably leads to better retention of knowledge and the ability to apply basic science principles in the appropriate clinical context. Integration throughout the whole curriculum entails a lot of time and work in respect of planning, organization and execution. The teachers have to be deeply involved and enthusiastic and have to cooperate over departmental borders, which may produce positive spin-off effects in teaching and research but also conflicts that have to be resolved. The authors believe vertical integration supports PBL and stimulates deep and lifelong learning.

  7. Bridging the Gap between Research and Practice: Implementation Science

    ERIC Educational Resources Information Center

    Olswang, Lesley B.; Prelock, Patricia A.

    2015-01-01

    Purpose: This article introduces implementation science, which focuses on research methods that promote the systematic application of research findings to practice. Method: The narrative defines implementation science and highlights the importance of moving research along the pipeline from basic science to practice as one way to facilitate…

  8. What Does Culture Have to Do with Teaching Science?

    ERIC Educational Resources Information Center

    Madden, Lauren; Joshi, Arti

    2013-01-01

    In nearly every elementary school, plants are an important part of the science curriculum. Understanding basic ideas about plants prepares children to study more complicated scientific concepts including cell biology, genetics and heredity, complex ecosystem interactions, and evolution. It is especially important that teachers of children at the…

  9. Affective science perspectives on cancer control: strategically crafting a mutually beneficial research agenda.

    PubMed

    Ferrer, Rebecca A; Green, Paige A; Barrett, Lisa Feldman

    2015-05-01

    Cancer control research involves the conduct of basic and applied behavioral and social sciences to reduce cancer incidence, morbidity, and mortality and improve quality of life. Given the importance of behavior in cancer control, fundamental research is necessary to identify psychological mechanisms underlying cancer risk, prevention, and management behaviors. Cancer prevention, diagnosis, and treatment are often emotionally laden. As such, affective science research to elucidate questions related to the basic phenomenological nature of emotion, stress, and mood is necessary to understand how cancer control can be hindered or facilitated by emotional experiences. To date, the intersection of basic affective science research and cancer control remains largely unexplored. The goal of this article is to outline key questions in the cancer control research domain that provide an ecologically valid context for new affective science discoveries. We also provide examples of ways in which basic affective discoveries could inform future cancer prevention and control research. These examples are not meant to be exhaustive or prescriptive but instead are offered to generate creative thought about the promise of a cancer research context for answering basic affective science questions. Together, these examples provide a compelling argument for fostering collaborations between affective and cancer control scientists. © The Author(s) 2015.

  10. Basic sciences agonize in Turkey!

    NASA Astrophysics Data System (ADS)

    Akdemir, Fatma; Araz, Asli; Akman, Ferdi; Durak, Rıdvan

    2016-04-01

    In this study, changes from past to present in the departments of physics, chemistry, biology and mathematics, which are considered as the basic sciences in Turkey, are shown. The importance of basic science for the country emphasized and the status of our country was discussed with a critical perspective. The number of academic staff, the number of students, opened quotas according to years for these four departments at universities were calculated and analysis of the resulting changes were made. In examined graphics changes to these four departments were similar. Especially a significant change was observed in the physics department. Lack of jobs employing young people who have graduated from basic science is also an issue that must be discussed. There are also qualitative results of this study that we have discussed as quantitative. Psychological problems caused by unemployment have become a disease among young people. This study was focused on more quantitative results. We have tried to explain the causes of obtained results and propose solutions.

  11. Conducting correlation seminars in basic sciences at KIST Medical College, Nepal

    PubMed Central

    2011-01-01

    KIST Medical College is a new medical school in Lalitpur, Nepal. In Nepal, six basic science subjects are taught together in an integrated organ system-based manner with early clinical exposure and community medicine. Correlation seminars are conducted at the end of covering each organ system. The topics are decided by the core academic group (consisting of members from each basic science department, the Department of Community Medicine, the academic director, and the clinical and program coordinators) considering the public health importance of the condition and its ability to include learning objectives from a maximum number of subjects. The learning objectives are decided by individual departments and finalized after the meeting of the core group. There are two student coordinators for each seminar and an evaluation group evaluates each seminar and presenter. Correlation seminars help students revise the organ system covered and understand its clinical importance, promote teamwork and organization, and supports active learning. Correlation seminars should be considered as a learning modality by other medical schools. PMID:22066033

  12. Cognition before curriculum: rethinking the integration of basic science and clinical learning.

    PubMed

    Kulasegaram, Kulamakan Mahan; Martimianakis, Maria Athina; Mylopoulos, Maria; Whitehead, Cynthia R; Woods, Nicole N

    2013-10-01

    Integrating basic science and clinical concepts in the undergraduate medical curriculum is an important challenge for medical education. The health professions education literature includes a variety of educational strategies for integrating basic science and clinical concepts at multiple levels of the curriculum. To date, assessment of this literature has been limited. In this critical narrative review, the authors analyzed literature published in the last 30 years (1982-2012) using a previously published integration framework. They included studies that documented approaches to integration at the level of programs, courses, or teaching sessions and that aimed to improve learning outcomes. The authors evaluated these studies for evidence of successful integration and to identify factors that contribute to integration. Several strategies at the program and course level are well described but poorly evaluated. Multiple factors contribute to successful learning, so identifying how interventions at these levels result in successful integration is difficult. Evidence from session-level interventions and experimental studies suggests that integration can be achieved if learning interventions attempt to link basic and clinical science in a causal relationship. These interventions attend to how learners connect different domains of knowledge and suggest that successful integration requires learners to build cognitive associations between basic and clinical science. One way of understanding the integration of basic and clinical science is as a cognitive activity occurring within learners. This perspective suggests that learner-centered, content-focused, and session-level-oriented strategies can achieve cognitive integration.

  13. A study of the academic performance of medical students in the comprehensive examination of the basic sciences according to the indices of emotional intelligence and educational status.

    PubMed

    Moslehi, Mohsen; Samouei, Rahele; Tayebani, Tayebeh; Kolahduz, Sima

    2015-01-01

    Considering the increasing importance of emotional intelligence (EI) in different aspects of life, such as academic achievement, the present survey is aimed to predict academic performance of medical students in the comprehensive examination of the basic sciences, according to the indices of emotional intelligence and educational status. The present survey is a descriptive, analytical, and cross-sectional study performed on the medical students of Isfahan, Tehran, and Mashhad Universities of Medical Sciences. Sampling the universities was performed randomly after which selecting the students was done, taking into consideration the limitation in their numbers. Based on the inclusion criteria, all the medical students, entrance of 2005, who had attended the comprehensive basic sciences examination in 2008, entered the study. The data collection tools included an Emotional Intelligence Questionnaire (standardized in Isfahan), the average score of the first to fifth semesters, total average of each of the five semesters, and the grade of the comprehensive basic sciences examination. The data were analyzed through stepwise regression coefficient by SPSS software version 15. The results indicated that the indicators of independence from an emotional intelligence test and average scores of the first and third academic semesters were significant in predicting the students' academic performance in the comprehensive basic sciences examination. According to the obtained results, the average scores of students, especially in the earlier semesters, as well as the indicators of independence and the self-esteem rate of students can influence their success in the comprehensive basic sciences examination.

  14. Exploring the value and role of integrated supportive science courses in the reformed medical curriculum iMED: a mixed methods study.

    PubMed

    Eisenbarth, Sophie; Tilling, Thomas; Lueerss, Eva; Meyer, Jelka; Sehner, Susanne; Guse, Andreas H; Guse Nee Kurré, Jennifer

    2016-04-29

    Heterogeneous basic science knowledge of medical students is an important challenge for medical education. In this study, the authors aimed at exploring the value and role of integrated supportive science (ISS) courses as a novel approach to address this challenge and to promote learning basic science concepts in medical education. ISS courses were embedded in a reformed medical curriculum. The authors used a mixed methods approach including four focus groups involving ISS course lecturers and students (two each), and five surveys of one student cohort covering the results of regular student evaluations including the ISS courses across one study year. They conducted their study at the University Medical Center Hamburg-Eppendorf between December 2013 and July 2014. Fourteen first-year medical students and thirteen ISS course lecturers participated in the focus groups. The authors identified several themes focused on the temporal integration of ISS courses into the medical curriculum, the integration of ISS course contents into core curriculum contents, the value and role of ISS courses, and the courses' setting and atmosphere. The integrated course concept was positively accepted by both groups, with participants suggesting that it promotes retention of basic science knowledge. Values and roles identified by focus group participants included promotion of basic understanding of science concepts, integration of foundational and applied learning, and maximization of students' engagement and motivation. Building close links between ISS course contents and the core curriculum appeared to be crucial. Survey results confirmed qualitative findings regarding students' satisfaction, with some courses still requiring optimization. Integration of supportive basic science courses, traditionally rather part of premedical education, into the medical curriculum appears to be a feasible strategy to improve medical students' understanding of basic science concepts and to increase their motivation and engagement.

  15. Still More Science Activities. 20 Exciting Activities To Do!

    ERIC Educational Resources Information Center

    Smithsonian Institution, Washington, DC.

    Science and technology affect every facet of human life. By the 21st century, society will demand that all of its citizens possess basic competencies in the fundamentals of science and the use of technology. As science increasingly becomes the dominant subject of the work place, it is important to begin developing within children an understanding…

  16. More Science Activities. 20 Exciting Experiments To Do!

    ERIC Educational Resources Information Center

    Smithsonian Institution, Washington, DC.

    Science and technology affect every facet of human life. By the 21st century, society will demand that all of its citizens possess basic competencies in the fundamentals of science and the use of technology. As science increasingly becomes the dominant subject of the work place, it is important to begin developing within children an understanding…

  17. Global Security, Medical Isotopes, and Nuclear Science

    NASA Astrophysics Data System (ADS)

    Ahle, Larry

    2007-10-01

    Over the past century basic nuclear science research has led to the use of radioactive isotopes into a wide variety of applications that touch our lives everyday. Some are obvious, such as isotopes for medical diagnostics and treatment. Others are less so, such as National/Global security issues. And some we take for granted, like the small amount of 241 Am that is in every smoke detector. At the beginning of this century, we are in a position where the prevalence and importance of some applications of nuclear science are pushing the basic nuclear science community for improved models and nuclear data. Yet, at the same time, the push by the basic nuclear science community to study nuclei that are farther and farther away from stability also offer new opportunities for many applications. This talk will look at several global security applications of nuclear science, summarizing current R&D and need for improved nuclear data It will also look at how applications of nuclear science, such as to medicine, will benefit from the push for more and more powerful radioactive ion beam facilities.

  18. Heuristic and algorithmic processing in English, mathematics, and science education.

    PubMed

    Sharps, Matthew J; Hess, Adam B; Price-Sharps, Jana L; Teh, Jane

    2008-01-01

    Many college students experience difficulties in basic academic skills. Recent research suggests that much of this difficulty may lie in heuristic competency--the ability to use and successfully manage general cognitive strategies. In the present study, the authors evaluated this possibility. They compared participants' performance on a practice California Basic Educational Skills Test and on a series of questions in the natural sciences with heuristic and algorithmic performance on a series of mathematics and reading comprehension exercises. Heuristic competency in mathematics was associated with better scores in science and mathematics. Verbal and algorithmic skills were associated with better reading comprehension. These results indicate the importance of including heuristic training in educational contexts and highlight the importance of a relatively domain-specific approach to questions of cognition in higher education.

  19. Examining Curricular Integration Strategies To Optimize Learning Of The Anatomical Sciences

    NASA Astrophysics Data System (ADS)

    Lisk, Kristina Adriana Ayako

    Background: Integration of basic and clinical science knowledge is essential to clinical practice. Although the importance of these two knowledge domains is well-recognized, successfully supporting the development of learners' integrated basic and clinical science knowledge, remains an educational challenge. In this dissertation, I examine curricular integration strategies to optimize learning of the anatomical sciences. Objectives: The studies were designed to achieve the following research aims: 1) to objectively identify clinically relevant content for an integrated musculoskeletal anatomy curriculum; 2) to examine the value of integrated anatomy and clinical science instruction compared to clinical science instruction alone on novices' diagnostic accuracy and diagnostic reasoning process; 3) to compare the effect of integrating and segregating anatomy and clinical science instruction along with a learning strategy (self-explanation) on novices' diagnostic accuracy. Methods: A modified Delphi was used to objectively select clinically relevant content for an integrated musculoskeletal anatomy curriculum. Two experimental studies were created to compare different instructional strategies to optimize learning of the curricular content. In both of these studies, novice learners were taught the clinical features of musculoskeletal pathologies using different learning approaches. Diagnostic performance was measured immediately after instruction and one-week later. Results: The results show that the Delphi method is an effective strategy to select clinically relevant content for integrated anatomy curricula. The findings also demonstrate that novices who were explicitly taught the clinical features of musculoskeletal diseases using causal basic science descriptions had superior diagnostic accuracy and a better understanding of the relative importance of key clinical features for disease categories. Conclusions: This research demonstrates how integration strategies can be applied at multiple levels of the curriculum. Further, this work shows the value of cognitive integration of anatomy and clinical science and it emphasizes the importance of purposefully linking the anatomical and clinical sciences in day-to-day teaching.

  20. Methods and successes of New York University workshops for science graduate students and post-docs in science writing for general audiences (readers and radio listeners)

    NASA Astrophysics Data System (ADS)

    Hall, S. S.

    2012-12-01

    Scientists and science administrators often stress the importance of communication to the general public, but rarely develop educational infrastructures to achieve this goal. Since 2009, the Arthur L. Carter Journalism Institute at New York University has offered a series of basic and advanced writing workshops for graduate students and post-docs in NYU's eight scientific divisions (neuroscience, psychology, physics, biology, chemistry, mathematics, anthropology, and computer science). The basic methodology of the NYU approach will be described, along with successful examples of both written and radio work by students that have been either published or broadcast by general interest journalism outlets.

  1. Red Seaweed Enzyme-Catalyzed Bromination of Bromophenol Red: An Inquiry-Based Kinetics Laboratory Experiment for Undergraduates

    ERIC Educational Resources Information Center

    Jittam, Piyachat; Boonsiri, Patcharee; Promptmas, Chamras; Sriwattanarothai, Namkang; Archavarungson, Nattinee; Ruenwongsa, Pintip; Panijpan, Bhinyo

    2009-01-01

    Haloperoxidase enzymes are of interest for basic and applied bioscientists because of their increasing importance in pharmaceutical industry and environmental cleanups. In a guided inquiry-based laboratory experiment for life-science, agricultural science, and health science undergraduates, the bromoperoxidase from a red seaweed was used to…

  2. A study of the academic performance of medical students in the comprehensive examination of the basic sciences according to the indices of emotional intelligence and educational status

    PubMed Central

    Moslehi, Mohsen; Samouei, Rahele; Tayebani, Tayebeh; Kolahduz, Sima

    2015-01-01

    Background: Considering the increasing importance of emotional intelligence (EI) in different aspects of life, such as academic achievement, the present survey is aimed to predict academic performance of medical students in the comprehensive examination of the basic sciences, according to the indices of emotional intelligence and educational status. Materials and Methods: The present survey is a descriptive, analytical, and cross-sectional study performed on the medical students of Isfahan, Tehran, and Mashhad Universities of Medical Sciences. Sampling the universities was performed randomly after which selecting the students was done, taking into consideration the limitation in their numbers. Based on the inclusion criteria, all the medical students, entrance of 2005, who had attended the comprehensive basic sciences examination in 2008, entered the study. The data collection tools included an Emotional Intelligence Questionnaire (standardized in Isfahan), the average score of the first to fifth semesters, total average of each of the five semesters, and the grade of the comprehensive basic sciences examination. The data were analyzed through stepwise regression coefficient by SPSS software version 15. Results: The results indicated that the indicators of independence from an emotional intelligence test and average scores of the first and third academic semesters were significant in predicting the students’ academic performance in the comprehensive basic sciences examination. Conclusion: According to the obtained results, the average scores of students, especially in the earlier semesters, as well as the indicators of independence and the self-esteem rate of students can influence their success in the comprehensive basic sciences examination. PMID:26430693

  3. Future of fundamental discovery in US biomedical research

    PubMed Central

    Levitt, Michael; Levitt, Jonathan M.

    2017-01-01

    Young researchers are crucially important for basic science as they make unexpected, fundamental discoveries. Since 1982, we find a steady drop in the number of grant-eligible basic-science faculty [principal investigators (PIs)] younger than 46. This fall occurred over a 32-y period when inflation-corrected congressional funds for NIH almost tripled. During this time, the PI success ratio (fraction of basic-science PIs who are R01 grantees) dropped for younger PIs (below 46) and increased for older PIs (above 55). This age-related bias seems to have caused the steady drop in the number of young basic-science PIs and could reduce future US discoveries in fundamental biomedical science. The NIH recognized this bias in its 2008 early-stage investigator (ESI) policy to fund young PIs at higher rates. We show this policy is working and recommend that it be enhanced by using better data. Together with the National Institute of General Medical Sciences (NIGMS) Maximizing Investigators’ Research Award (MIRA) program to reward senior PIs with research time in exchange for less funding, this may reverse a decades-long trend of more money going to older PIs. To prepare young scientists for increased demand, additional resources should be devoted to transitional postdoctoral fellowships already offered by NIH. PMID:28584129

  4. Analysis of Major Histocompatibility Complex (MHC) Immunopeptidomes Using Mass Spectrometry.

    PubMed

    Caron, Etienne; Kowalewski, Daniel J; Chiek Koh, Ching; Sturm, Theo; Schuster, Heiko; Aebersold, Ruedi

    2015-12-01

    The myriad of peptides presented at the cell surface by class I and class II major histocompatibility complex (MHC) molecules are referred to as the immunopeptidome and are of great importance for basic and translational science. For basic science, the immunopeptidome is a critical component for understanding the immune system; for translational science, exact knowledge of the immunopeptidome can directly fuel and guide the development of next-generation vaccines and immunotherapies against autoimmunity, infectious diseases, and cancers. In this mini-review, we summarize established isolation techniques as well as emerging mass spectrometry-based platforms (i.e. SWATH-MS) to identify and quantify MHC-associated peptides. We also highlight selected biological applications and discuss important current technical limitations that need to be solved to accelerate the development of this field. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Supramolecular inorganic species: An expedition into a fascinating, rather unknown land mesoscopia with interdisciplinary expectations and discoveries

    NASA Astrophysics Data System (ADS)

    Müller, A.

    1994-09-01

    One of the basic problems in science is the understanding of the potentialities of material systems, a topic which is of relevance for disciplines ranging from natural philosophy over topology and/or structural chemistry, and biology ( morphogenesis) to materials science. Information on this problem can be obtained by studying the different types of linking of basic fragments in self-assembly processes, a type of reaction which has proved to be one of the most important in the biological and material world. The outlined problem can be nicely studied in the case of polyoxometalates with reference to basic organizing principles of material systems like conservative self-organization ( self-assembly), host—guest interactions, complementarity, molecular recognition, emergence vs. reduction ( as a dialectic unit), template-direction, exchange-interactions and, in general, the mesoscopic material world with its unusual properties as well as its topological and/or structural diversity. Science will lose in significance as an interdisciplinary unit — as outlined or maybe predicted here — should not more importance be attached to general aspects in the future.

  6. Dentistry in the future--on the role and goal of basic research in oral biology.

    PubMed

    Mäkinen, K K

    1993-01-01

    Examination of the state of affairs of oral biology cannot be endeavoured without considering the mutual interactions and interdependencies of sciences, and without considering the impact human acts will exert on these developments. Oral biology deals with the biochemical, chemical, molecular biologic, general biologic and physical aspects of all processes that take place in the oral cavity, in the masticatory organ, and in tissues and body fluids that are associated with the above processes. Oral biology also reaps the harvest sown by (other) basic sciences. From the methodological point of view, oral biology is indistinguishable from basic sciences; it is the anatomical object that makes it specific. Oral biology cannot be regarded as "big science" (i.e. compared with the human genome project, space research, AIDS research etc.). This fact may preserve the attractiveness of oral biology. Important science--this concerns oral biology as well--still emerges in smaller settings, although there are omens that large research cartels will swallow larger and larger portions of research appropriations. A key to staying competitive is to use new science sources and--in some cases--to join bigger groups. Once upon a time oral biologists--or scientists in general--assumed that a record of solid accomplishments was sufficient to maintain research support. Today, in several countries, politics and public visibility unfortunately determine the funding privileges. Provided that human operations on earth will render future development of sciences possible, the future of oral biology will depend 1) on concomitant development in the above basic fields, and 2) on innovations in the individual psyches. This combination will unravel the structure of genes involved in the development and metabolism of oral processes, clone important salivary and connective tissue proteins, and control most important oral diseases. To achieve these goals, oral biology must attract young talent and funding must be made available. There is no shortcut, however. Individual efforts and persistent labouring at the laboratory bench will still remain prerequisites. Although successful prevention of certain oral diseases, such as dental caries, may be possible in certain regions of the Earth, the prospects are much gloomier globally.

  7. Islamic View of Nature and Values: Could These Be the Answer to Building Bridges between Modern Science and Islamic Science

    ERIC Educational Resources Information Center

    Faruqi, Yasmeen Mahnaz

    2007-01-01

    This paper discusses the basic tenets of Islam and the Islamic view of nature that were influential in the development of science in the so-called "Golden Age of Islam". These findings have been the catalyst for present day Muslim scholars, who have emphasized the importance of Islamic science, as the means of understanding Western…

  8. Basic Confidence Predictors of Career Decision-Making Self-Efficacy

    ERIC Educational Resources Information Center

    Paulsen, Alisa M.; Betz, Nancy E.

    2004-01-01

    The extent to which Basic Confidence Scales predicted career decision-making self-efficacy was studied in a sample of 627 undergraduate students. Six confidence variables accounted for 49% of the variance in career decision-making self-efficacy. Leadership confidence was the most important, but confidence in science, mathematics, writing, using…

  9. Master in Oral Biology Program: A Path to Addressing the Need for Future Dental Educators

    ERIC Educational Resources Information Center

    Jergenson, Margaret A.; Barritt, Laura C.; O'Kane, Barbara J.; Norton, Neil S.

    2017-01-01

    In dental education, the anatomical sciences, which include gross anatomy, histology, embryology, and neuroanatomy, encompass an important component of the basic science curriculum. At Creighton University School of Dentistry, strength in anatomic science education has been coupled with a solid applicant pool to develop a novel Master of Science…

  10. Interprofessional education and the basic sciences: Rationale and outcomes.

    PubMed

    Thistlethwaite, Jill E

    2015-01-01

    Interprofessional education (IPE) aims to improve patient outcomes and the quality of care. Interprofessional learning outcomes and interprofessional competencies are now included in many countries' health and social care professions' accreditation standards. While IPE may take place at any time in health professions curricula it tends to focus on professionalism and clinical topics rather than basic science activities. However generic interprofessional competencies could be included in basic science courses that are offered to at least two different professional groups. In developing interprofessional activities at the preclinical level, it is important to define explicit interprofessional learning outcomes plus the content and process of the learning. Interprofessional education must involve interactive learning processes and integration of theory and practice. This paper provides examples of IPE in anatomy and makes recommendations for course development and evaluation. © 2015 American Association of Anatomists.

  11. The Future of Basic Science in Academic Surgery: Identifying Barriers to Success for Surgeon-scientists.

    PubMed

    Keswani, Sundeep G; Moles, Chad M; Morowitz, Michael; Zeh, Herbert; Kuo, John S; Levine, Matthew H; Cheng, Lily S; Hackam, David J; Ahuja, Nita; Goldstein, Allan M

    2017-06-01

    The aim of this study was to examine the challenges confronting surgeons performing basic science research in today's academic surgery environment. Multiple studies have identified challenges confronting surgeon-scientists and impacting their ability to be successful. Although these threats have been known for decades, the downward trend in the number of successful surgeon-scientists continues. Clinical demands, funding challenges, and other factors play important roles, but a rigorous analysis of academic surgeons and their experiences regarding these issues has not previously been performed. An online survey was distributed to 2504 members of the Association for Academic Surgery and Society of University Surgeons to determine factors impacting success. Survey results were subjected to statistical analyses. We also reviewed publicly available data regarding funding from the National Institutes of Health (NIH). NIH data revealed a 27% decline in the proportion of NIH funding to surgical departments relative to total NIH funding from 2007 to 2014. A total of 1033 (41%) members responded to our survey, making this the largest survey of academic surgeons to date. Surgeons most often cited the following factors as major impediments to pursuing basic investigation: pressure to be clinically productive, excessive administrative responsibilities, difficulty obtaining extramural funding, and desire for work-life balance. Surprisingly, a majority (68%) did not believe surgeons can be successful basic scientists in today's environment, including departmental leadership. We have identified important barriers that confront academic surgeons pursuing basic research and a perception that success in basic science may no longer be achievable. These barriers need to be addressed to ensure the continued development of future surgeon-scientists.

  12. Introduction to Probability, Part 1 - Basic Concepts. Student Text. Revised Edition.

    ERIC Educational Resources Information Center

    Blakeslee, David W.; And Others

    This book is designed to introduce the reader to some fundamental ideas about probability. The mathematical theory of probability plays an increasingly important role in science, government, industry, business, and economics. An understanding of the basic concepts of probability is essential for the study of statistical methods that are widely…

  13. Improving the Teaching of Science through Discipline-Based Education Research: An Example from Physics

    ERIC Educational Resources Information Center

    McDermott, Lillian C.

    2013-01-01

    Research on the learning and teaching of science is an important field for scholarly inquiry by faculty in science departments. Such research has proved to be an efficient means for improving the effectiveness of instruction in physics. A basic topic in introductory physics is used to illustrate how discipline-based education research has helped…

  14. The New Millennium and an Education That Captures the Basic Spirit of Science.

    ERIC Educational Resources Information Center

    Bybee, Rodger W.

    This document discusses reflections of the old and new millennium on education that capture the basic spirit of science. The explanation includes basic scientific ideas in physical sciences, earth systems, solar system and space; living systems; basic scientific thinking; the basic distinction between science and technology; basic connections…

  15. Teaching Cell Anatomy with a Fabric Model

    ERIC Educational Resources Information Center

    Kluka, Michelle

    2005-01-01

    Middle schoolers are often first introduced to detailed cellular anatomy through one-dimensional drawings in basic life science books, fill-in-the blank handouts accompanied by notes from the teacher, or desktop hard-plastic commercial models that resemble giant lollipops. One of the most important, yet difficult, life science concepts for…

  16. Science Journalism

    ERIC Educational Resources Information Center

    Polman, Joseph; Newman, Alan; Farrar, Cathy; Saul, E. Wendy

    2012-01-01

    Much of the National Science Education Standards (NRC 1996), aside from the inquiry and teaching sections, focus on content. The authors' call is instead to build standards that focus on what students need to be scientifically literate in 10 or 15 years. Although a basic understanding of important scientific concepts and an understanding of how…

  17. Drawing out the Artist in Science Students

    ERIC Educational Resources Information Center

    Camacho, Al; Benenson, Gary; Rosas-Colin, Carmen Patricia

    2012-01-01

    Graphics are among the most important forms of communication in science and engineering. They are invaluable for both expressing understanding as well as generating new ideas. Unfortunately, many students do not think they can draw, and therefore fail to take advantage of this means of expression. However, with some basic instruction, nearly…

  18. Funding the Foundation: Basic Science at the Crossroads

    ERIC Educational Resources Information Center

    Hughes, Kent, Ed.; Sha, Lynn, Ed.

    2006-01-01

    These proceedings from a conference with leading experts examines the hugely successful American model of technological and scientific innovation. They stress the critical importance of government funding of physical science for the realms of national security, education, and industry. Kent Hughes and Frederick M. Bush, both of the Woodrow Wilson…

  19. 77 FR 5246 - Basic Energy Sciences Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-02

    ... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Office of Science... of the Basic Energy Sciences Advisory Committee (BESAC). The Federal Advisory Committee Act (Pub. L... FURTHER INFORMATION CONTACT: Katie Perine; Office of Basic Energy Sciences; U.S. Department of Energy...

  20. 76 FR 48147 - Basic Energy Sciences Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-08

    ... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of renewal of the Basic Energy Sciences Advisory Committee. SUMMARY... that the Basic Energy Sciences Advisory Committee will be renewed for a two-year period beginning July...

  1. Subject preferences of first- and second-year medical students for their future specialization at Chitwan Medical College and Teaching Hospital, Chitwan, Nepal - a questionnaire-based study.

    PubMed

    Jha, Rajesh K; Paudel, Keshab R; Shah, Dev K; Sah, Ajit K; Basnet, Sangharshila; Sah, Phoolgen; Adhikari, Sandeep

    2015-01-01

    The selection of a discipline for future specialization may be an important factor for the medical students' future career, and it is influenced by multiple factors. The interest of students in the early stages can be improved in subjects related to public health or of academic importance, as per need. A questionnaire-based study was conducted among 265 first- and second-year medical students of Chitwan Medical College, Nepal to find out their subject of preference for postgraduation and the factors affecting their selection along with their interesting basic science subject. Only the responses from 232 completely filled questionnaires were analyzed. The preference of the students for clinical surgical (50.9%), clinical medical (45.3%), and basic medical (3.9%) sciences for postgraduation were in descending order. The most preferred specialty among male students was clinical surgical sciences (56.3%), and among female students, it was clinical medical sciences (53.6%). Although all the students responded to their preferred specialty, only 178 students specified the subject of their interest. General surgery (23.4%), pediatrics (23.4%), and anatomy (2.4%) were the most favored subjects for postgraduation among clinical surgical, clinical medical, and basic medical sciences specialties, respectively. More common reasons for selection of specific subject for future career were found to be: personal interests, good income, intellectual challenge, and others. Many students preferred clinical surgical sciences for their future specialization. Among the reasons for the selection of the specialty for postgraduation, no significant reason could be elicited from the present study.

  2. The Future of Basic Science in Academic Surgery

    PubMed Central

    Keswani, Sundeep G.; Moles, Chad M.; Morowitz, Michael; Zeh, Herbert; Kuo, John S.; Levine, Matthew H.; Cheng, Lily S.; Hackam, David J.; Ahuja, Nita; Goldstein, Allan M.

    2017-01-01

    Objective The aim of this study was to examine the challenges confronting surgeons performing basic science research in today’s academic surgery environment. Summary of Background Data Multiple studies have identified challenges confronting surgeon-scientists and impacting their ability to be successful. Although these threats have been known for decades, the downward trend in the number of successful surgeon-scientists continues. Clinical demands, funding challenges, and other factors play important roles, but a rigorous analysis of academic surgeons and their experiences regarding these issues has not previously been performed. Methods An online survey was distributed to 2504 members of the Association for Academic Surgery and Society of University Surgeons to determine factors impacting success. Survey results were subjected to statistical analyses. We also reviewed publicly available data regarding funding from the National Institutes of Health (NIH). Results NIH data revealed a 27% decline in the proportion of NIH funding to surgical departments relative to total NIH funding from 2007 to 2014. A total of 1033 (41%) members responded to our survey, making this the largest survey of academic surgeons to date. Surgeons most often cited the following factors as major impediments to pursuing basic investigation: pressure to be clinically productive, excessive administrative responsibilities, difficulty obtaining extramural funding, and desire for work-life balance. Surprisingly, a majority (68%) did not believe surgeons can be successful basic scientists in today’s environment, including departmental leadership. Conclusions We have identified important barriers that confront academic surgeons pursuing basic research and a perception that success in basic science may no longer be achievable. These barriers need to be addressed to ensure the continued development of future surgeon-scientists. PMID:27643928

  3. Art and Science as Related Concepts: An Attempt at Their Comparative Anatomy as Revealed in Various Fields of Human Endeavour.

    ERIC Educational Resources Information Center

    Menuhin, Yehudi

    1987-01-01

    To support the statement that intuitive process is as important as the scientific, two axioms are explored by the violinist: no phenomenon discovered or created by science is possible unless its equivalent has already existed in nature; and the basic revelations of science can be formulated by intuition through meditation. (Author/KM)

  4. Teaching bioethics: the tale of a "soft" science in a hard world.

    PubMed

    Lovy, Andrew; Paskhover, Boris; Trachtman, Howard

    2010-10-01

    Although bioethics is considered essential to the practice of medicine, medical students often view it as a "soft" subject that is secondary in importance to the other courses in their basic science and clinical curriculum. This perspective may be a consequence of the heavy reliance on students' aptitude in the quantitative sciences as a criterion for entry into medical school and as a barometer of academic success after admission. It is exacerbated by the widespread impression that bioethics is imprecise and culturally relativistic. In an effort to redress this imbalance, we propose an approach to teaching bioethics to medical students which emphasizes that the intellectual basis and the degree of certainty of knowledge is comparable in all medical subjects ranging from basic science courses to clinical rotations to bioethics tutorials. Adopting these pedagogical steps may promote greater integration of the various elements-bioethics and clinical science-in the medical school curriculum.

  5. Report of the joint ESOT and TTS basic science meeting 2013: current concepts and discoveries in translational transplantation.

    PubMed

    Ebner, Susanne; Fabritius, Cornelia; Ritschl, Paul; Oberhuber, Rupert; Günther, Julia; Kotsch, Katja

    2014-10-01

    A joint meeting organized by the European (ESOT) and The Transplantation (TTS) Societies for basic science research was organized in Paris, France, on November 7-9, 2013. Focused on new ideas and concepts in translational transplantation, the meeting served as a venue for state-of-the-art developments in basic transplantation immunology, such as the potential for tolerance induction through regulation of T-cell signaling. This meeting report summarizes important insights which were presented in Paris. It not only offers an overview of established aspects, such as the role of Tregs in transplantation, presented by Nobel laureate Rolf Zinkernagel, but also highlights novel facets in the field of transplantation, that is cell-therapy-based immunosuppression or composite tissue transplantation as presented by the emotional story given by Vasyly Rohovyy, who received two hand transplants. The ESOT/TTS joint meeting was an overall productive and enjoyable platform for basic science research in translational transplantation and fulfilled all expectations by giving a promising outlook for the future of research in the field of immunological transplantation research. © 2014 Steunstichting ESOT.

  6. Plant Science. IV-A-1 to IV-F-2. Basic V.A.I.

    ERIC Educational Resources Information Center

    Texas A and M Univ., College Station. Vocational Instructional Services.

    This packet contains six units of informational materials and transparency masters, with accompanying scripts, for teachers to use in a plant science course in vocational agriculture. Designed especially for use in Texas, the first unit introduces the course through the following topics: economic importance of major crops, major areas of…

  7. Sums and Products of Jointly Distributed Random Variables: A Simplified Approach

    ERIC Educational Resources Information Center

    Stein, Sheldon H.

    2005-01-01

    Three basic theorems concerning expected values and variances of sums and products of random variables play an important role in mathematical statistics and its applications in education, business, the social sciences, and the natural sciences. A solid understanding of these theorems requires that students be familiar with the proofs of these…

  8. Students' Approaches to Open-Ended Science Investigation: The Importance of Substantive and Procedural Understanding

    ERIC Educational Resources Information Center

    Roberts, Ros; Gott, Richard; Glaesser, Judith

    2010-01-01

    This paper investigates the respective roles of substantive and procedural understanding with regard to students' ability to carry out an open-ended science investigation. The research is a case study centred on an intervention in which undergraduate initial teacher training students are taught the basic building blocks of procedural…

  9. Learning Environments as Basis for Cognitive Achievements of Students in Basic Science Classrooms in Nigeria

    ERIC Educational Resources Information Center

    Atomatofa, Rachel; Okoye, Nnamdi; Igwebuike, Thomas

    2016-01-01

    The nature of classroom learning environments created by teachers had been considered very important for learning to take place effectively. This study investigated the effect of creating constructivist and transmissive learning environments on achievements of science students of different ability levels. 243 students formed the entire study…

  10. Life-science research within US academic medical centers.

    PubMed

    Zinner, Darren E; Campbell, Eric G

    2009-09-02

    Besides the generic "basic" vs "applied" labels, little information is known about the types of life-science research conducted within academic medical centers (AMCs). To determine the relative proportion, characteristics, funding, and productivity of AMC faculty by the type of research they conduct. Mailed survey conducted in 2007 of 3080 life-science faculty at the 50 universities with medical schools that received the most funding from the National Institutes of Health in 2004. Response rate was 74%. Research faculty affiliated with a medical school or teaching hospital, representing 77% of respondents (n = 1663). Type of research (basic, translational, clinical trials, health services research/clinical epidemiology, multimode, other), total funding, industry funding, publications, professional activities, patenting behavior, and industry relationships. Among AMC research faculty, 33.6% exclusively conducted basic science research as principal investigators compared with translational researchers (9.1%), clinical trial investigators (7.1%), and health services researchers/clinical epidemiologists (9.0%). While principal investigators garnered a mean of $410,755 in total annual research funding, 22.1% of all AMC research faculty were unsponsored, a proportion that ranged from 11.5% for basic science researchers to 46.8% for health services researchers (P < .001). The average AMC faculty member received $33,417 in industry-sponsored funding, with most of this money concentrated among clinical trial ($110,869) and multimode ($59,916) principal investigators. Translational (61.3%), clinical trial (67.3%), and multimode (70.9%) researchers were significantly more likely than basic science researchers (41.9%) to report a relationship with industry and that these relationships contributed to their most important scientific work (P < .05 for all comparisons). The research function of AMCs is active and diverse, incorporating a substantial proportion of faculty who are conducting research and publishing without sponsorship.

  11. Summaries of FY 1979 research in the chemical sciences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-05-01

    The purpose of this report is to help those interested in research supported by the Department of Energy's Division of Chemical Sciences, which is one of six Divisions of the Office of Basic Energy Sciences in the Office of Energy Research. Chemists, physicists, chemical engineers and others who are considering the possibility of proposing research for support by this Division wll find the booklet useful for gauging the scope of the program in basic research, and the relationship of their interests to the overall program. These smmaries are intended to provide a rapid means for becoming acquainted with the Chemicalmore » Sciences program for members of the scientific and technological public, and interested persons in the Legislative and Executive Branches of the Government, in order to indicate the areas of research supported by the Division and energy technologies which may be advanced by use of basic knowledge discovered in this program. Scientific excellence is a major criterion applied in the selection of research supported by Chemical Sciences. Another important consideration is the identifying of chemical, physical and chemical engineering subdisciplines which are advancing in ways which produce new information related to energy, needed data, or new ideas.« less

  12. Can Clinical Scenario Videos Improve Dental Students' Perceptions of the Basic Sciences and Ability to Apply Content Knowledge?

    PubMed

    Miller, Cynthia Jayne; Metz, Michael James

    2015-12-01

    Dental students often have difficulty understanding the importance of basic science classes, such as physiology, for their future careers. To help alleviate this problem, the aim of this study was to create and evaluate a series of video modules using simulated patients and custom-designed animations that showcase medical emergencies in the dental practice. First-year students in a dental physiology course formatively assessed their knowledge using embedded questions in each of the three videos; 108 to 114 of the total 120 first-year students answered the questions, for a 90-95% response rate. These responses indicated that while the students could initially recognize the cause of the medical emergency, they had difficulty in applying their knowledge of physiology to the scenario. In two of the three videos, students drastically improved their ability to answer high-level clinical questions at the conclusion of the video. Additionally, when compared to the previous year of the course, there was a significant improvement in unit exam scores on clinically related questions (6.2% increase). Surveys were administered to the first-year students who participated in the video modules and fourth-year students who had completed the course prior to implementation of any clinical material. The response rate for the first-year students was 96% (115/120) and for the fourth-year students was 57% (68/120). The first-year students indicated a more positive perception of the physiology course and its importance for success on board examinations and their dental career than the fourth-year students. The students perceived that the most positive aspects of the modules were the clear applications of physiology to real-life dental situations, the interactive nature of the videos, and the improved student comprehension of course concepts. These results suggest that online modules may be used successfully to improve students' perceptions of the basic sciences and enhance their ability to apply basic science content to clinically important scenarios.

  13. Learnings from an Entrepreneur: How to Start a Consulting Practice

    NASA Astrophysics Data System (ADS)

    Bowes, Debra

    2013-03-01

    There are important basic learnings I have experienced in starting my own consulting practice over 7 years ago. These learnings will help you maximize your value, reduce competition and build your reputation and business income. I believe these can apply to many fields but certainly for the Life Sciences. A few of the basic I will cover are

  14. Employee Spotlight: Baris Key

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Key, Baris

    2014-05-29

    Baris Key, an employee at Argonne National Laboratory, discusses the importance of national lab researchers and how they merge basic science, analyze and process in a way that the industry can benefit from.

  15. Employee Spotlight: Baris Key

    ScienceCinema

    Key, Baris

    2018-04-16

    Baris Key, an employee at Argonne National Laboratory, discusses the importance of national lab researchers and how they merge basic science, analyze and process in a way that the industry can benefit from.

  16. The Relationship between Immediate Relevant Basic Science Knowledge and Clinical Knowledge: Physiology Knowledge and Transthoracic Echocardiography Image Interpretation

    ERIC Educational Resources Information Center

    Nielsen, Dorte Guldbrand; Gotzsche, Ole; Sonne, Ole; Eika, Berit

    2012-01-01

    Two major views on the relationship between basic science knowledge and clinical knowledge stand out; the Two-world view seeing basic science and clinical science as two separate knowledge bases and the encapsulated knowledge view stating that basic science knowledge plays an overt role being encapsulated in the clinical knowledge. However, resent…

  17. The New Big Science at the NSLS

    NASA Astrophysics Data System (ADS)

    Crease, Robert

    2016-03-01

    The term ``New Big Science'' refers to a phase shift in the kind of large-scale science that was carried out throughout the U.S. National Laboratory system, when large-scale materials science accelerators rather than high-energy physics accelerators became marquee projects at most major basic research laboratories in the post-Cold War era, accompanied by important changes in the character and culture of the research ecosystem at these laboratories. This talk explores some aspects of this phase shift at BNL's National Synchrotron Light Source.

  18. Factors affecting the results of comprehensive pre-internship exam among medical students of Kermanshah University of Medical Sciences.

    PubMed

    Khazaei, Mohammad Rasool; Zarin, Afshin; Rezaei, Mansuor; Khazaei, Mozafar

    2018-06-01

    This study was aimed to evaluate the factors affecting the results of comprehensive pre-internship exam (CPIE) among medicals students of Kermanshah University of Medical Sciences. In this descriptive-analytical study, all students (n=240) participating in CPIE over a 3-year period (2012-2014) were selected. Data were gathered by a questionnaire, including the CPIE results and educational and demographic data. Spearman correlation coefficient, Mann-Whitney U-test, and analysis of variance were used to analyze the association of students' success with study variables. Also, regression analysis was applied to determine the role of independent variables in students' success. The frequency of the failed units in apprenticeship course was one of the most important risk factors associated with failure in CPIE. Average scores of pre-internship course were the most important factors of success in CPIE. The CPIE score had the highest direct relationship with grade point average (GPA) of apprenticeship course, total GPA of all three courses, GPAs of physiopathology and basic sciences courses, and score of comprehensive basic sciences examination, respectively. CPIE showed the highest inverse correlation with the number of failed units in apprenticeship course. The most important factors influencing this exam were failure in apprenticeship course and GPA of previous educational stages.

  19. Subject preferences of first- and second-year medical students for their future specialization at Chitwan Medical College and Teaching Hospital, Chitwan, Nepal – a questionnaire-based study

    PubMed Central

    Jha, Rajesh K; Paudel, Keshab R; Shah, Dev K; Sah, Ajit K; Basnet, Sangharshila; Sah, Phoolgen; Adhikari, Sandeep

    2015-01-01

    Introduction The selection of a discipline for future specialization may be an important factor for the medical students’ future career, and it is influenced by multiple factors. The interest of students in the early stages can be improved in subjects related to public health or of academic importance, as per need. Methods A questionnaire-based study was conducted among 265 first- and second-year medical students of Chitwan Medical College, Nepal to find out their subject of preference for postgraduation and the factors affecting their selection along with their interesting basic science subject. Only the responses from 232 completely filled questionnaires were analyzed. Results The preference of the students for clinical surgical (50.9%), clinical medical (45.3%), and basic medical (3.9%) sciences for postgraduation were in descending order. The most preferred specialty among male students was clinical surgical sciences (56.3%), and among female students, it was clinical medical sciences (53.6%). Although all the students responded to their preferred specialty, only 178 students specified the subject of their interest. General surgery (23.4%), pediatrics (23.4%), and anatomy (2.4%) were the most favored subjects for postgraduation among clinical surgical, clinical medical, and basic medical sciences specialties, respectively. More common reasons for selection of specific subject for future career were found to be: personal interests, good income, intellectual challenge, and others. Conclusion Many students preferred clinical surgical sciences for their future specialization. Among the reasons for the selection of the specialty for postgraduation, no significant reason could be elicited from the present study. PMID:26635491

  20. How Nature Keeps its Balance

    ERIC Educational Resources Information Center

    Chalfant, Arnold R.

    1972-01-01

    The importance of feedback - self-controlling regulatory mechanisms - in the natural world are explained for a better understanding of the science of ecology. Various population controls are discussed accompanied by basic charts. (BL)

  1. Evolution: bats, radar, and science (The Remote Sensing Award Lecture)

    NASA Technical Reports Server (NTRS)

    Atlas, David

    1991-01-01

    A parallel is drawn between the evolution of the bat and the evolution of the science and technology of radar and remote sensing to illustrate the importance of the role of Darwinian processes in the culture and practice of science and technology, and thus in the survival of their vitality. The lecture touches on several themes of interest to the science community, such as the relation between basic and applied science and engineering; research in academia, industry, and government laboratories; elite scientists; and the survival of a scientific institution.

  2. Hands-On Life Science Activities for Middle Schools. Teacher's Edition. First Edition.

    ERIC Educational Resources Information Center

    Newman, Barbara; Kramer, Stephanie

    This book provides 50 enrichment activities for the science curriculum that provide concrete connections with important world events. Each activity is self-contained and provides everything the student needs to gain a basic understanding of a concept or to work through a project. The activities include innovative and traditional projects for both…

  3. Soil Science. III-A-1 to III-D-4. Basic V.A.I.

    ERIC Educational Resources Information Center

    Texas A and M Univ., College Station. Vocational Instructional Services.

    This packet contains four units of informational materials and transparency masters, with accompanying scripts, for teachers to use in a soil science course in vocational agriculture. Designed especially for use in Texas, the first unit discusses the importance of soils. In the second unit, the nature and properties of soils are discussed,…

  4. Biomedical Data Sharing and Reuse: Attitudes and Practices of Clinical and Scientific Research Staff.

    PubMed

    Federer, Lisa M; Lu, Ya-Ling; Joubert, Douglas J; Welsh, Judith; Brandys, Barbara

    2015-01-01

    Significant efforts are underway within the biomedical research community to encourage sharing and reuse of research data in order to enhance research reproducibility and enable scientific discovery. While some technological challenges do exist, many of the barriers to sharing and reuse are social in nature, arising from researchers' concerns about and attitudes toward sharing their data. In addition, clinical and basic science researchers face their own unique sets of challenges to sharing data within their communities. This study investigates these differences in experiences with and perceptions about sharing data, as well as barriers to sharing among clinical and basic science researchers. Clinical and basic science researchers in the Intramural Research Program at the National Institutes of Health were surveyed about their attitudes toward and experiences with sharing and reusing research data. Of 190 respondents to the survey, the 135 respondents who identified themselves as clinical or basic science researchers were included in this analysis. Odds ratio and Fisher's exact tests were the primary methods to examine potential relationships between variables. Worst-case scenario sensitivity tests were conducted when necessary. While most respondents considered data sharing and reuse important to their work, they generally rated their expertise as low. Sharing data directly with other researchers was common, but most respondents did not have experience with uploading data to a repository. A number of significant differences exist between the attitudes and practices of clinical and basic science researchers, including their motivations for sharing, their reasons for not sharing, and the amount of work required to prepare their data. Even within the scope of biomedical research, addressing the unique concerns of diverse research communities is important to encouraging researchers to share and reuse data. Efforts at promoting data sharing and reuse should be aimed at solving not only technological problems, but also addressing researchers' concerns about sharing their data. Given the varied practices of individual researchers and research communities, standardizing data practices like data citation and repository upload could make sharing and reuse easier.

  5. 75 FR 65363 - Basic Behavioral and Social Science Opportunity Network (OppNet)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-22

    ... public meeting to promote and publicize the Basic Behavioral and Social Science Opportunity Network (Opp... . Background: The Basic Behavioral and Social Science Opportunity Network (OppNet) is a trans-NIH initiative to expand the agency's funding of basic behavioral and social sciences research (b-BSSR). OppNet prioritizes...

  6. Medical University admission test: a confirmatory factor analysis of the results.

    PubMed

    Luschin-Ebengreuth, Marion; Dimai, Hans P; Ithaler, Daniel; Neges, Heide M; Reibnegger, Gilbert

    2016-05-01

    The Graz Admission Test has been applied since the academic year 2006/2007. The validity of the Test was demonstrated by a significant improvement of study success and a significant reduction of dropout rate. The purpose of this study was a detailed analysis of the internal correlation structure of the various components of the Graz Admission Test. In particular, the question investigated was whether or not the various test parts constitute a suitable construct which might be designated as "Basic Knowledge in Natural Science." This study is an observational investigation, analyzing the results of the Graz Admission Test for the study of human medicine and dentistry. A total of 4741 applicants were included in the analysis. Principal component factor analysis (PCFA) as well as techniques from structural equation modeling, specifically confirmatory factor analysis (CFA), were employed to detect potential underlying latent variables governing the behavior of the measured variables. PCFA showed good clustering of the science test parts, including also text comprehension. A putative latent variable "Basic Knowledge in Natural Science," investigated by CFA, was indeed shown to govern the response behavior of the applicants in biology, chemistry, physics, and mathematics as well as text comprehension. The analysis of the correlation structure of the various test parts confirmed that the science test parts together with text comprehension constitute a satisfactory instrument for measuring a latent construct variable "Basic Knowledge in Natural Science." The present results suggest the fundamental importance of basic science knowledge for results obtained in the framework of the admission process for medical universities.

  7. A case-based, small-group cooperative learning course in preclinical veterinary science aimed at bridging basic science and clinical literacy.

    PubMed

    Schoeman, J P; van Schoor, M; van der Merwe, L L; Meintjes, R A

    2009-03-01

    In 1999 a dedicated problem-based learning course was introduced into the lecture-based preclinical veterinary curriculum of the University of Pretoria. The Introduction to Clinical Studies Course combines traditional lectures, practical sessions, student self-learning and guided tutorials. The self-directed component of the course utilises case-based, small-group cooperative learning as an educational vehicle to link basic science with clinical medicine. The aim of this article is to describe the objectives and structure of the course and to report the results of the assessment of the students' perceptions on some aspects of the course. Students reacted very positively to the ability of the course to equip them with problem-solving skills. Students indicated positive perceptions about the workload of the course. There were, however, significantly lower scores for the clarity of the course objectives. Although the study guide for the course is very comprehensive, the practice regarding the objectives is still uncertain. It is imperative to set clear objectives in non-traditional, student-centred courses. The objectives have to be explained at the outset and reiterated throughout the course. Tutors should also communicate the rationale behind problem-based learning as a pedagogical method to the students. Further research is needed to verify the effectiveness of this course in bridging the gap between basic science and clinical literacy in veterinary science. Ongoing feedback and assessment of the management and content are important to refine this model for integrating basic science with clinical literacy.

  8. Integration of basic sciences and clinical sciences in oral radiology education for dental students.

    PubMed

    Baghdady, Mariam T; Carnahan, Heather; Lam, Ernest W N; Woods, Nicole N

    2013-06-01

    Educational research suggests that cognitive processing in diagnostic radiology requires a solid foundation in the basic sciences and knowledge of the radiological changes associated with disease. Although it is generally assumed that dental students must acquire both sets of knowledge, little is known about the most effective way to teach them. Currently, the basic and clinical sciences are taught separately. This study was conducted to compare the diagnostic accuracy of students when taught basic sciences segregated or integrated with clinical features. Predoctoral dental students (n=51) were taught four confusable intrabony abnormalities using basic science descriptions integrated with the radiographic features or taught segregated from the radiographic features. The students were tested with diagnostic images, and memory tests were performed immediately after learning and one week later. On immediate and delayed testing, participants in the integrated basic science group outperformed those from the segregated group. A main effect of learning condition was found to be significant (p<0.05). The results of this study support the critical role of integrating biomedical knowledge in diagnostic radiology and shows that teaching basic sciences integrated with clinical features produces higher diagnostic accuracy in novices than teaching basic sciences segregated from clinical features.

  9. Training of physicians for the twenty-first century: role of the basic sciences.

    PubMed

    Grande, Joseph P

    2009-09-01

    Rapid changes in the healthcare environment and public dissatisfaction with the cost and quality of medical care have prompted a critical analysis of how physicians are trained in the United States. Accrediting agencies have catalyzed a transformation from a process based to a competency-based curriculum, both at the undergraduate and the graduate levels. The objective of this overview is to determine how these changes are likely to alter the role of basic science in medical education. Policy statements related to basic science education from the National Board of Medical Examiners (NBME), the Accreditation Council for Graduate Medical Education (ACGME), American Board of Medical Specialties (ABMS), and the Federation of State Medical Boards (FSMB) were reviewed and assessed for common themes. Three primary roles for the basic sciences in medical education are proposed: (1) basic science to support the development of clinical reasoning skills; (2) basic science to support a critical analysis of medical and surgical interventions ("evidence-based medicine"); and (3) basic and translational science to support analysis of processes to improve healthcare ("science of healthcare delivery"). With these roles in mind, several methods to incorporate basic sciences into the curriculum are suggested.

  10. 78 FR 6088 - Basic Energy Sciences Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-29

    ... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Office of Science... Energy Sciences Advisory Committee (BESAC). The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat... INFORMATION CONTACT: Katie Perine, Office of Basic Energy Sciences, U.S. Department of Energy; SC-22...

  11. The relevance of basic sciences in undergraduate medical education.

    PubMed

    Lynch, C; Grant, T; McLoughlin, P; Last, J

    2016-02-01

    Evolving and changing undergraduate medical curricula raise concerns that there will no longer be a place for basic sciences. National and international trends show that 5-year programmes with a pre-requisite for school chemistry are growing more prevalent. National reports in Ireland show a decline in the availability of school chemistry and physics. This observational cohort study considers if the basic sciences of physics, chemistry and biology should be a prerequisite to entering medical school, be part of the core medical curriculum or if they have a place in the practice of medicine. Comparisons of means, correlation and linear regression analysis assessed the degree of association between predictors (school and university basic sciences) and outcomes (year and degree GPA) for entrants to a 6-year Irish medical programme between 2006 and 2009 (n = 352). We found no statistically significant difference in medical programme performance between students with/without prior basic science knowledge. The Irish school exit exam and its components were mainly weak predictors of performance (-0.043 ≥ r ≤ 0.396). Success in year one of medicine, which includes a basic science curriculum, was indicative of later success (0.194 ≥ r (2) ≤ 0.534). University basic sciences were found to be more predictive than school sciences in undergraduate medical performance in our institution. The increasing emphasis of basic sciences in medical practice and the declining availability of school sciences should mandate medical schools in Ireland to consider how removing basic sciences from the curriculum might impact on future applicants.

  12. Anatomical sciences: A foundation for a solid learning experience in dental technology and dental prosthetics.

    PubMed

    Bakr, Mahmoud M; Thompson, C Mark; Massadiq, Magdalena

    2017-07-01

    Basic science courses are extremely important as a foundation for scaffolding knowledge and then applying it in future courses, clinical situations as well as in a professional career. Anatomical sciences, which include tooth morphology, oral histology, oral embryology, and head and neck anatomy form a core part of the preclinical courses in dental technology programs. In this article, the importance and relevance of anatomical sciences to dental personnel with no direct contact with patients (dental technicians) and limited discipline related contact with patients (dental prosthetists) is highlighted. Some light is shed on the role of anatomical sciences in the pedagogical framework and its significance in the educational process and interprofessional learning of dental technicians and prosthetists using oral biology as an example in the dental curriculum. To conclude, anatomical sciences allow dental technicians and prosthetists to a gain a better insight of how tissues function, leading to a better understanding of diagnosis, comprehensive treatment planning and referrals if needed. Patient communication and satisfaction also increases as a result of this deep understanding of oral tissues. Anatomical sciences bridge the gap between basic science, preclinical, and clinical courses, which leads to a holistic approach in patient management. Finally, treatment outcomes are positively affected due to the appreciation of the macro and micro structure of oral tissues. Anat Sci Educ 10: 395-404. © 2016 American Association of Anatomists. © 2016 American Association of Anatomists.

  13. Basic Science Living Skills for Today's World. Teacher's Edition.

    ERIC Educational Resources Information Center

    Zellers (Robert W.) Educational Services, Johnstown, PA.

    This document is a teacher's edition of a basic skills curriculum in science for adult basic education (ABE) students. The course consists of 25 lessons on basic science concepts, designed to give students a good understanding of the biological and physical sciences. Suggested activities and experiments that the student can do are also included.…

  14. Basics of Lasers: History, Physics, and Clinical Applications.

    PubMed

    Franck, Philipp; Henderson, Peter W; Rothaus, Kenneth O

    2016-07-01

    Lasers are increasingly used by plastic surgeons to address issues such as wrinkles and textural changes, skin laxity, hyperpigmentation, vascularity, and excess fat accumulation. A fundamental understanding of the underlying science and physics of laser technology is important for the safe and efficacious use of laser in medical settings. The purpose of this article was to give clinicians with limited exposure to lasers a basic understanding of the underlying science. In that manner, they can confidently make appropriate decisions as to the best device to use on a patient (or the best device to purchase for a practice). Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Engage: The Science Speaker Series - A novel approach to improving science outreach and communication

    NASA Astrophysics Data System (ADS)

    Mitchell, R.; Hilton, E.; Rosenfield, P.

    2011-12-01

    Communicating the results and significance of basic research to the general public is of critical importance. Federal funding and university budgets are under substantial pressure, and taxpayer support of basic research is critical. Public outreach by ecologists is an important vehicle for increasing support and understanding of science in an era of anthropogenic global change. At present, very few programs or courses exist to allow young scientists the opportunity to hone and practice their public outreach skills. Although the need for science outreach and communication is recognized, graduate programs often fail to provide any training in making science accessible. Engage: The Science Speaker Series represents a unique, graduate student-led effort to improve public outreach skills. Founded in 2009, Engage was created by three science graduate students at the University of Washington. The students developed a novel, interdisciplinary curriculum to investigate why science outreach often fails, to improve graduate student communication skills, and to help students create a dynamic, public-friendly talk. The course incorporates elements of story-telling, improvisational arts, and development of analogy, all with a focus on clarity, brevity and accessibility. This course was offered to graduate students and post-doctoral researchers from a wide variety of sciences in the autumn of 2010. Students who participated in the Engage course were then given the opportunity to participate in Engage: The Science Speaker Series. This free, public-friendly speaker series is hosted on the University of Washington campus and has had substantial public attendance and participation. The growing success of Engage illustrates the need for such programs throughout graduate level science curricula. We present the impetus for the development of the program, elements of the curriculum covered in the Engage course, the importance of an interdisciplinary approach, and discuss strategies for implementing similar programs at research institutions nationally.

  16. Engage: The Science Speaker Series - A novel approach to improving science outreach and communication

    NASA Astrophysics Data System (ADS)

    Mitchell, R.; Hilton, E.; Rosenfield, P.

    2012-12-01

    Communicating the results and significance of basic research to the general public is of critical importance. Federal funding and university budgets are under substantial pressure, and taxpayer support of basic research is critical. Public outreach by ecologists is an important vehicle for increasing support and understanding of science in an era of anthropogenic global change. At present, very few programs or courses exist to allow young scientists the opportunity to hone and practice their public outreach skills. Although the need for science outreach and communication is recognized, graduate programs often fail to provide any training in making science accessible. Engage: The Science Speaker Series represents a unique, graduate student-led effort to improve public outreach skills. Founded in 2009, Engage was created by three science graduate students at the University of Washington. The students developed a novel, interdisciplinary curriculum to investigate why science outreach often fails, to improve graduate student communication skills, and to help students create a dynamic, public-friendly talk. The course incorporates elements of story-telling, improvisational arts, and development of analogy, all with a focus on clarity, brevity and accessibility. This course was offered to graduate students and post-doctoral researchers from a wide variety of sciences in the autumn of 2010 and 2011, and will be retaught in 2012. Students who participated in the Engage course were then given the opportunity to participate in Engage: The Science Speaker Series. This free, public-friendly speaker series has been hosted at the University of Washington campus and Seattle Town Hall, and has had substantial public attendance and participation. The growing success of Engage illustrates the need for such programs throughout graduate level science curricula. We present the impetus for the development of the program, elements of the curriculum covered in the Engage course, the importance of an interdisciplinary approach, and discuss strategies for implementing similar programs at research institutions nationally.

  17. A multi-instructor, team-based, active-learning exercise to integrate basic and clinical sciences content.

    PubMed

    Kolluru, Srikanth; Roesch, Darren M; Akhtar de la Fuente, Ayesha

    2012-03-12

    To introduce a multiple-instructor, team-based, active-learning exercise to promote the integration of basic sciences (pathophysiology, pharmacology, and medicinal chemistry) and clinical sciences in a doctor of pharmacy curriculum. A team-based learning activity that involved pre-class reading assignments, individual-and team-answered multiple-choice questions, and evaluation and discussion of a clinical case, was designed, implemented, and moderated by 3 faculty members from the pharmaceutical sciences and pharmacy practice departments. Student performance was assessed using a multiple-choice examination, an individual readiness assurance test (IRAT), a team readiness assurance test (TRAT), and a subjective, objective, assessment, and plan (SOAP) note. Student attitudes were assessed using a pre- and post-exercise survey instrument. Students' understanding of possible correct treatment strategies for depression improved. Students were appreciative of this true integration of basic sciences knowledge in a pharmacotherapy course and to have faculty members from both disciplines present to answer questions. Mean student score on the on depression module for the examination was 80.4%, indicating mastery of the content. An exercise led by multiple instructors improved student perceptions of the importance of team-based teaching. Integrated teaching and learning may be achieved when instructors from multiple disciplines work together in the classroom using proven team-based, active-learning exercises.

  18. Back to the basic sciences: an innovative approach to teaching senior medical students how best to integrate basic science and clinical medicine.

    PubMed

    Spencer, Abby L; Brosenitsch, Teresa; Levine, Arthur S; Kanter, Steven L

    2008-07-01

    Abraham Flexner persuaded the medical establishment of his time that teaching the sciences, from basic to clinical, should be a critical component of the medical student curriculum, thus giving rise to the "preclinical curriculum." However, students' retention of basic science material after the preclinical years is generally poor. The authors believe that revisiting the basic sciences in the fourth year can enhance understanding of clinical medicine and further students' understanding of how the two fields integrate. With this in mind, a return to the basic sciences during the fourth year of medical school may be highly beneficial. The purpose of this article is to (1) discuss efforts to integrate basic science into the clinical years of medical student education throughout the United States and Canada, and (2) describe the highly developed fourth-year basic science integration program at the University of Pittsburgh School of Medicine. In their critical review of medical school curricula of 126 U.S. and 17 Canadian medical schools, the authors found that only 19% of U.S. medical schools and 24% of Canadian medical schools require basic science courses or experiences during the clinical years, a minor increase compared with 1985. Curricular methods ranged from simple lectures to integrated case studies with hands-on laboratory experience. The authors hope to advance the national discussion about the need to more fully integrate basic science teaching throughout all four years of the medical student curriculum by placing a curricular innovation in the context of similar efforts by other U.S. and Canadian medical schools.

  19. Certain Basic Concepts of Teaching Turkish as a Foreign Language

    ERIC Educational Resources Information Center

    Sen, Ülker

    2016-01-01

    Concept that is defined to be the intangible and general designs emerging in a mind that belongs to an object or thought, has become both subject and object of a very large field ranging from philosophy to linguistics, from social sciences to science. Regardless of which field is in question, the unity of concept is important in order to pave the…

  20. Relating the Learned Knowledge and Acquired Skills to Real Life: Function Sample

    ERIC Educational Resources Information Center

    Albayrak, Mustafa; Yazici, Nurullah; Simsek, Mertkan

    2017-01-01

    Considering that Mathematics is a multidimensional problem-solving method that can be effective in all areas of cultural life, it is of great importance because of its contribution to other sciences such as physical and social sciences. It is known that the basic concepts of mathematics, which can also be expressed as a way of life, have helped to…

  1. Integrating writing into an introductory environmental science curriculum: Perspectives from biology and physics

    NASA Astrophysics Data System (ADS)

    Selkin, P. A.; Cline, E. T.; Beaufort, A.

    2008-12-01

    In the University of Washington, Tacoma's Environmental Science program, we are implementing a curriculum-wide, scaffolded strategy to teach scientific writing. Writing in an introductory science course is a powerful means to make students feel part of the scientific community, an important goal in our environmental science curriculum. Writing is already an important component of the UW Tacoma environmental science program at the upper levels: our approach is designed to prepare students for the writing-intensive junior- and senior-level seminars. The approach is currently being tested in introductory biology and physics before it is incorporated in the rest of the introductory environmental science curriculum. The centerpiece of our approach is a set of research and writing assignments woven throughout the biology and physics course sequences. The assignments progress in their degree of complexity and freedom through the sequence of introductory science courses. Each assignment is supported by a number of worksheets and short written exercises designed to teach writing and critical thought skills. The worksheets are focused on skills identified both by research in science writing and the instructors' experience with student writing. Students see the assignments as a way to personalize their understanding of basic science concepts, and to think critically about ideas that interest them. We find that these assignments provide a good way to assess student comprehension of some of the more difficult ideas in the basic sciences, as well as a means to engage students with the challenging concepts of introductory science courses. Our experience designing these courses can inform efforts to integrate writing throughout a geoscience or environmental science curriculum, as opposed to on a course-by-course basis.

  2. Clinical Competencies and the Basic Sciences: An Online Case Tutorial Paradigm for Delivery of Integrated Clinical and Basic Science Content

    ERIC Educational Resources Information Center

    DiLullo, Camille; Morris, Harry J.; Kriebel, Richard M.

    2009-01-01

    Understanding the relevance of basic science knowledge in the determination of patient assessment, diagnosis, and treatment is critical to good medical practice. One method often used to direct students in the fundamental process of integrating basic science and clinical information is problem-based learning (PBL). The faculty facilitated small…

  3. Improved knowledge gain and retention for third-year medical students during surgical journal club using basic science review: A pilot study.

    PubMed

    Williams, Austin D; Mann, Barry D

    2017-02-01

    As they enter the clinical years, medical students face large adjustments in the acquisition of medical knowledge. We hypothesized that basic science review related to the topic of journal club papers would increase the educational benefit for third-year medical students. Students were randomized either to participation in a review session about basic science related to the journal club paper, or to no review. After one day, and after three months, students were given a 10-question quiz encompassing the basic science and the clinical implications of the paper. Twenty-six of 50 students were randomized to basic science review. These students scored better on both sections of the quiz one day after journal club, but only on basic science questions after three months. Students who participated in basic science review had better knowledge gain and retention. Educational activities building upon foundational knowledge improves learning on clinical rotations. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. The use of simulation in teaching the basic sciences.

    PubMed

    Eason, Martin P

    2013-12-01

    To assess the current use of simulation in medical education, specifically, the teaching of the basic sciences to accomplish the goal of improved integration. Simulation is increasingly being used by the institutions to teach the basic sciences. Preliminary data suggest that it is an effective tool with increased retention and learner satisfaction. Medical education is undergoing tremendous change. One of the directions of that change is increasing integration of the basic and clinical sciences to improve the efficiency and quality of medical education, and ultimately to improve the patient care. Integration is thought to improve the understanding of basic science conceptual knowledge and to better prepare the learners for clinical practice. Simulation because of its unique effects on learning is currently being successfully used by many institutions as a means to produce that integration through its use in the teaching of the basic sciences. Preliminary data indicate that simulation is an effective tool for basic science education and garners high learner satisfaction.

  5. The concept of nature in Islamic science teaching

    NASA Astrophysics Data System (ADS)

    Zarman, Wendi

    2016-02-01

    Science teaching is basically value laden activities. One of the values tells that science is not related to any religion. This secular value is reflected to science teaching in many places, including religious country like Indonesia. However, we argue that in Indonesia science teaching should not be secular as in the Western country since one of the basic aim of National Education according to the Indonesian constitution Undang-Undang Dasar 1945, is to inculcate faith and god-fearing to One God Almighty. As we know, Indonesia is a Moslem country and has many Islamic schools in it too. Thus, it is important to design a science teaching framework base on Islamic teaching to fulfill the basic aim of National Education This paper discusses concept of nature, the key term in science, based on Islamic view that may used as a framework to develop Islamic science teaching. In Islam, science has a strong relation to religion since nature reflects the existence of the Creator. This concept is derived from the analysis of several verses from Qur'an as the main source of Islamic teaching. There are several principle can be derived from this analysis. Firstly, visible world is not the only world, but there is also the unseen world. Secondly, the nature is not merely matter that doesn't have any sacred value, but it is the indication or symbol of God existence and His Nature. Thirdly, The Qur'an and the nature are both Books of Allah that contain messages of Him, so they are complementary to each other

  6. Basic science research in urology training.

    PubMed

    Eberli, D; Atala, A

    2009-04-01

    The role of basic science exposure during urology training is a timely topic that is relevant to urologic health and to the training of new physician scientists. Today, researchers are needed for the advancement of this specialty, and involvement in basic research will foster understanding of basic scientific concepts and the development of critical thinking skills, which will, in turn, improve clinical performance. If research education is not included in urology training, future urologists may not be as likely to contribute to scientific discoveries.Currently, only a minority of urologists in training are currently exposed to significant research experience. In addition, the number of physician-scientists in urology has been decreasing over the last two decades, as fewer physicians are willing to undertake a career in academics and perform basic research. However, to ensure that the field of urology is driving forward and bringing novel techniques to patients, it is clear that more research-trained urologists are needed. In this article we will analyse the current status of basic research in urology training and discuss the importance of and obstacles to successful addition of research into the medical training curricula. Further, we will highlight different opportunities for trainees to obtain significant research exposure in urology.

  7. The progress test as a diagnostic tool for a new PBL curriculum.

    PubMed

    Al Alwan, I; Al-Moamary, M; Al-Attas, N; Al Kushi, A; AlBanyan, E; Zamakhshary, M; Al Kadri, H M F; Tamim, H; Magzoub, M; Hajeer, A; Schmidt, H

    2011-12-01

    The College of Medicine at King Saud bin Abdulaziz University for Health Sciences (KSAU-HS) is running a PBL-based curriculum. A progress test was used to evaluate components of the basic medical and clinical sciences curriculum. To evaluate the performance of students at different levels of the college of medicine curriculum through USMLE-based test that focused on basic medical and clinical sciences topics. The USMLE-based basic medical and clinical sciences progress test has been conducted since 2007. It covers nine topics, including: anatomy; physiology; histology; epidemiology; biochemistry; behavioral sciences, pathology, pharmacology and immunology/microbiology. Here we analyzed results of three consecutive years of all students in years 1-4. There was a good correlation between progress test results and students' GPA. Progress test results in the clinical topics were better than basic medical sciences. In basic medical sciences, results of pharmacology, biochemistry, behavioral sciences and histology gave lower results than the other disciplines. Results of our progress test proved to be a useful indicator for both basic medical sciences and clinical sciences curriculum. Results are being utilized to help in modifying our curriculum.

  8. 75 FR 6369 - Basic Energy Sciences Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-09

    ... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Department of Energy, Office... Energy Sciences Advisory Committee (BESAC). Federal Advisory Committee Act (Pub. L. 92- 463, 86 Stat. 770...: Katie Perine; Office of Basic Energy Sciences; U.S. Department of Energy; Germantown Building...

  9. Bradbury science museum: your window to Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deck, Linda Theresa

    The Bradbury Science Museum is the public's window to Los Alamos National Laboratory and supports the Community Program Office's mission to develop community support to accomplish LANL's national security and science mission. It does this by stimulating interest in and increasing basic knowledge of science and technology in northern New Mexico audiences, and increasing public understanding and appreciation of how LANL science and technology solve our global problems. In performing these prime functions, the Museum also preserves the history of scientific accomplishment at the Lab by collecting and preserving artifacts of scientific and historical importance.

  10. 78 FR 38696 - Basic Energy Sciences Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-27

    ... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Department of Energy, Office... Energy Sciences Advisory Committee (BESAC). The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat... INFORMATION CONTACT: Katie Perine; Office of Basic Energy Sciences; U.S. Department of Energy; Germantown...

  11. 76 FR 41234 - Basic Energy Sciences Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-13

    ... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Basic Energy Sciences Advisory Committee (BESAC). Federal Advisory Committee Act (Pub. L. 92- 463, 86 Stat. 770...

  12. 77 FR 41395 - Basic Energy Sciences Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-13

    ... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Basic Energy Sciences Advisory Committee (BESAC). Federal Advisory Committee Act (Pub. L. 92- 463, 86 Stat. 770...

  13. 75 FR 41838 - Basic Energy Sciences Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-19

    ... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of Open Meeting. SUMMARY: This notice announces a meeting of the Basic Energy Sciences Advisory Committee (BESAC). The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat...

  14. 76 FR 8358 - Basic Energy Sciences Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-14

    ... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Basic Energy Sciences Advisory Committee (BESAC). Federal Advisory Committee Act (Pub. L. 92- 463, 86 Stat. 770...

  15. A critical narrative review of transfer of basic science knowledge in health professions education.

    PubMed

    Castillo, Jean-Marie; Park, Yoon Soo; Harris, Ilene; Cheung, Jeffrey J H; Sood, Lonika; Clark, Maureen D; Kulasegaram, Kulamakan; Brydges, Ryan; Norman, Geoffrey; Woods, Nicole

    2018-06-01

    'Transfer' is the application of a previously learned concept to solve a new problem in another context. Transfer is essential for basic science education because, to be valuable, basic science knowledge must be transferred to clinical problem solving. Therefore, better understanding of interventions that enhance the transfer of basic science knowledge to clinical reasoning is essential. This review systematically identifies interventions described in the health professions education (HPE) literature that document the transfer of basic science knowledge to clinical reasoning, and considers teaching and assessment strategies. A systematic search of the literature was conducted. Articles related to basic science teaching at the undergraduate level in HPE were analysed using a 'transfer out'/'transfer in' conceptual framework. 'Transfer out' refers to the application of knowledge developed in one learning situation to the solving of a new problem. 'Transfer in' refers to the use of previously acquired knowledge to learn from new problems or learning situations. Of 9803 articles initially identified, 627 studies were retrieved for full text evaluation; 15 were included in the literature review. A total of 93% explored 'transfer out' to clinical reasoning and 7% (one article) explored 'transfer in'. Measures of 'transfer out' fostered by basic science knowledge included diagnostic accuracy over time and in new clinical cases. Basic science knowledge supported learning - 'transfer in' - of new related content and ultimately the 'transfer out' to diagnostic reasoning. Successful teaching strategies included the making of connections between basic and clinical sciences, the use of commonsense analogies, and the study of multiple clinical problems in multiple contexts. Performance on recall tests did not reflect the transfer of basic science knowledge to clinical reasoning. Transfer of basic science knowledge to clinical reasoning is an essential component of HPE that requires further development for implementation and scholarship. © 2018 John Wiley & Sons Ltd and The Association for the Study of Medical Education.

  16. Developing a complex systems perspective for medical education to facilitate the integration of basic science and clinical medicine.

    PubMed

    Aron, David C

    2017-04-01

    The purpose of medical education is to produce competent and capable professional practitioners who can combine the art and science of medicine. Moreover, this process must prepare individuals to practise in a field in which knowledge is increasing and the contexts in which that knowledge is applied are changing in unpredictable ways. The 'basic sciences' are important in the training of a physician. The goal of basic science training is to learn it in a way that the material can be applied in practice. Much effort has been expended to integrate basic science and clinical training, while adding many other topics to the medical curriculum. This effort has been challenging. The aims of the paper are (1) to propose a unifying conceptual framework that facilitates knowledge integration among all levels of living systems from cell to society and (2) illustrate the organizing principles with two examples of the framework in action - cybernetic systems (with feedback) and distributed robustness. Literature related to hierarchical and holarchical frameworks was reviewed. An organizing framework derived from living systems theory and spanning the range from molecular biology to health systems management was developed. The application of cybernetic systems to three levels (regulation of pancreatic beta cell production of insulin, physician adjustment of medication for glycaemic control and development and action of performance measures for diabetes care) was illustrated. Similarly distributed robustness was illustrated by the DNA damage response system and principles underlying patient safety. Each of the illustrated organizing principles offers a means to facilitate the weaving of basic science and clinical medicine throughout the course of study. The use of such an approach may promote systems thinking, which is a core competency for effective and capable medical practice. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  17. Horizontal integration of the basic sciences in the chiropractic curriculum.

    PubMed

    Ward, Kevin P

    2010-01-01

    Basic science curricula at most chiropractic colleges consist of courses (eg, general anatomy, physiology, biochemistry, etc) that are taught as stand-alone content domains. The lack of integration between basic science disciplines causes difficulties for students who need to understand how the parts function together as an integrated whole and apply this understanding to solving clinical problems. More horizontally integrated basic science curricula could be achieved by several means: integrated Part I National Board of Chiropractic Examiners questions, a broader education for future professors, an increased emphasis on integration within the current model, linked courses, and an integrated, thematic basic science curriculum. Horizontally integrating basic science curricula would require significant efforts from administrators, curriculum committees, and instructional faculty. Once in place this curriculum would promote more clinically relevant learning, improved learning outcomes, and superior vertical integration.

  18. Horizontal Integration of the Basic Sciences in the Chiropractic Curriculum

    PubMed Central

    Ward, Kevin P.

    2010-01-01

    Basic science curricula at most chiropractic colleges consist of courses (eg, general anatomy, physiology, biochemistry, etc) that are taught as stand-alone content domains. The lack of integration between basic science disciplines causes difficulties for students who need to understand how the parts function together as an integrated whole and apply this understanding to solving clinical problems. More horizontally integrated basic science curricula could be achieved by several means: integrated Part I National Board of Chiropractic Examiners questions, a broader education for future professors, an increased emphasis on integration within the current model, linked courses, and an integrated, thematic basic science curriculum. Horizontally integrating basic science curricula would require significant efforts from administrators, curriculum committees, and instructional faculty. Once in place this curriculum would promote more clinically relevant learning, improved learning outcomes, and superior vertical integration. PMID:21048882

  19. 78 FR 47677 - Basic Energy Sciences Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-06

    ... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Office of Science, Department of Energy. ACTION: Notice of renewal. SUMMARY: Pursuant to Section 14(a)(2)(A) of the Federal... hereby given that the Basic Energy Sciences Advisory Committee's (BESAC) charter will be renewed for a...

  20. White Paper on Nuclear Data Needs and Capabilities for Basic Science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batchelder, J.; Kawano, T.; Kelley, J.

    Reliable nuclear structure and reaction data represent the fundamental building blocks of nuclear physics and astrophysics research, and are also of importance in many applications. There is a continuous demand for high-quality updates of the main nuclear physics databases via the prompt compilation and evaluation of the latest experimental and theoretical results. The nuclear physics research community benefits greatly from comprehensive, systematic and up-to-date reviews of the experimentally determined nuclear properties and observables, as well as from the ability to rapidly access these data in user-friendly forms. Such credible databases also act as a bridge between science, technology, and societymore » by making the results of basic nuclear physics research available to a broad audience of users, and hence expand the societal utilization of nuclear science. Compilation and evaluation of nuclear data has deep roots in the history of nuclear science research, as outlined in Appendix 1. They have an enormous impact on many areas of science and applications, as illustrated in Figure 2 for the Evaluated Nuclear Structure Data File (ENSDF) database. The present workshop concentrated on the needs of the basic nuclear science community for data and capabilities. The main role of this community is to generate and use data in order to understand the basic nuclear forces and interactions that are responsible for the existence and the properties of all nuclides and, as a consequence, to gain knowledge about the origins, evolution and structure of the universe. Thus, the experiments designed to measure a wealth of nuclear properties towards these fundamental scientific goals are typically performed from within this community.« less

  1. Thermodynamics and Diffusion Coupling in Alloys—Application-Driven Science

    NASA Astrophysics Data System (ADS)

    Ågren, John

    2012-10-01

    As emphasized by Stokes (1997), the common assumption of a linear progression from basic research (science), via applied research, to technological innovations (engineering) should be questioned. In fact, society would gain much by supporting long-term research that stems from practical problems and has usefulness as a key word. Such research may be fundamental, and often, it cannot be distinguished from "basic" research if it were not for its different motivation. The development of the Calphad method and the more recent development of accompanying kinetic approaches for diffusion serve as excellent examples and are the themes of this symposium. The drivers are, e.g., the development of new materials, processes, and lifetime predictions. Many challenges of the utmost practical importance require long-term fundamental research. This presentation will address some of them, e.g., the effect of various ordering phenomena on activation barriers, and the strength and practical importance of correlation effects.

  2. Electrocatalytic Oxidation of Formate with Nickel Diphosphane Dipeptide Complexes. Effect of Ligands Modified with Amino Acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galan, Brandon R.; Reback, Matthew L.; Jain, Avijita

    2013-09-03

    A series of nickel bis-diphosphine complexes with dipeptides appended to the ligands were investigated for the catalytic oxidation of formate. Typical rates of ~7 s -1 were found, similar to the parent complex (~8 s -1), with amino acid size and positioning contributing very little to rate or operating potential. Hydroxyl functionalities did result in lower rates, which were recovered by protecting the hydroxyl group. The results suggest that the overall dielectric introduced by the dipeptides does not play an important role in catalysis, but free hydroxyl groups do influence activity suggesting contributions from intra- or intermolecular interactions. These observationsmore » are important in developing a fundamental understanding of the affect that an enzyme-like outer coordination sphere can have upon molecular catalysts. This work was funded by the US DOE Basic Energy Sciences, Chemical Sciences, Geoscience and Biosciences Division (BRG, AJ, AMA, WJS), the US DOE Basic Energy Sciences, Physical Bioscience program (MLR). Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.« less

  3. Alternative Methods by Which Basic Science Pharmacy Faculty Can Relate to Clinical Practice.

    ERIC Educational Resources Information Center

    Kabat, Hugh F.; And Others

    1982-01-01

    A panel of pharmacy faculty ranked a broad inventory of basic pharmaceutical science topics in terms of their applicability to clinical pharmacy practice. The panel concluded that basic pharmaceutical sciences are essentially applications of foundation areas in biological, physical, and social sciences. (Author/MLW)

  4. Translational Perspective on the Role of Testosterone in Sexual Function and Dysfunction.

    PubMed

    Podlasek, Carol A; Mulhall, John; Davies, Kelvin; Wingard, Christopher J; Hannan, Johanna L; Bivalacqua, Trinity J; Musicki, Biljana; Khera, Mohit; González-Cadavid, Nestor F; Burnett, Arthur L

    2016-08-01

    The biological importance of testosterone is generally accepted by the medical community; however, controversy focuses on its relevance to sexual function and the sexual response, and our understanding of the extent of its role in this area is evolving. To provide scientific evidence examining the role of testosterone at the cellular and molecular levels as it pertains to normal erectile physiology and the development of erectile dysfunction and to assist in guiding successful therapeutic interventions for androgen-dependent sexual dysfunction. In this White Paper, the Basic Science Committee of the Sexual Medicine Society of North America assessed the current basic science literature examining the role of testosterone in sexual function and dysfunction. Testosterone plays an important role in sexual function through multiple processes: physiologic (stimulates activity of nitric oxide synthase), developmental (establishes and maintains the structural and functional integrity of the penis), neural (development, maintenance, function, and plasticity of the cavernous nerve and pelvic ganglia), therapeutically for dysfunctional regulation (beneficial effect on aging, diabetes, and prostatectomy), and phosphodiesterase type 5 inhibition (testosterone supplement to counteract phosphodiesterase type 5 inhibitor resistance). Despite controversies concerning testosterone with regard to sexual function, basic science studies provide incontrovertible evidence for a significant role of testosterone in sexual function and suggest that properly administered testosterone therapy is potentially advantageous for treating male sexual dysfunction. Published by Elsevier Inc.

  5. Oxygen regulates molecular mechanisms of cancer progression and metastasis.

    PubMed

    Gupta, Kartik; Madan, Esha; Sayyid, Muzzammil; Arias-Pulido, Hugo; Moreno, Eduardo; Kuppusamy, Periannan; Gogna, Rajan

    2014-03-01

    Oxygen is the basic molecule which supports life and it truly is "god's gift to life." Despite its immense importance, research on "oxygen biology" has never received the light of the day and has been limited to physiological and biochemical studies. It seems that in modern day biology, oxygen research is summarized in one word "hypoxia." Scientists have focused on hypoxia-induced transcriptomics and molecular-cellular alterations exclusively in disease models. Interestingly, the potential of oxygen to control the basic principles of biology like homeostatic maintenance, transcription, replication, and protein folding among many others, at the molecular level, has been completely ignored. Here, we present a perspective on the crucial role played by oxygen in regulation of basic biological phenomena. Our conclusion highlights the importance of establishing novel research areas like oxygen biology, as there is great potential in this field for basic science discoveries and clinical benefits to the society.

  6. Why we need more basic biology research, not less.

    PubMed

    Botstein, David

    2012-11-01

    Much of the spectacular progress in biomedical science over the last half-century is the direct consequence of the work of thousands of basic scientists whose primary goal was understanding of the fundamental working of living things. Despite this, many politicians, funders, and even scientists have come to believe that the pace of successful applications to medical diagnosis and therapy is limited by our willingness to focus directly on human health, rather than a continuing deficit of understanding. By this theory, curiosity-driven research, aimed at understanding, is no longer important or even useful. What is advocated instead is "translational" research aimed directly at treating disease. I believe this idea to be deeply mistaken. Recent history suggests instead that what we have learned in the last 50 years is only the beginning. The way forward is to invest more in basic science, not less.

  7. Translational Medicine is developing in China: a new venue for collaboration.

    PubMed

    Wang, Xiangdong; Wang, Ena; Marincola, Francesco M

    2011-01-04

    Translational Medicine is an emerging area comprising multidisciplinary Research from basic sciences to medical applications well summarized by the Bench-to-Beside concept; this entails close collaboration between clinicians and basic scientists across institutes. We further clarified that Translational Medicine should be regarded as a two-way road: Bench-to-Bedside and Bedside-to-Bench, to complement testing of novel therapeutic strategies in humans with feedback understanding of how they respond to them. It is, therefore, critical and important to define and promote Translational Medicine among clinicians, basic Researchers, biotechnologists, politicians, ethicists, sociologists, investors and coordinate these efforts among different Countries, fostering aspects germane only to this type of Research such as, as recently discussed, biotechnology entrepreneurship. Translational Medicine as an inter-disciplinary science is developing rapidly and widely and, in this article, we will place a special emphasis on China.

  8. Glossary of Terms

    MedlinePlus

    ... 2019 Basic and Clinical Science Course, Section 02: Fundamentals and Principles of Ophthalmology 2018-2019 Basic and ... 2019 Basic and Clinical Science Course, Section 02: Fundamentals and Principles of Ophthalmology Print 2018-2019 Basic ...

  9. Bridging the Gap Between Research and Practice: Implementation Science.

    PubMed

    Olswang, Lesley B; Prelock, Patricia A

    2015-12-01

    This article introduces implementation science, which focuses on research methods that promote the systematic application of research findings to practice. The narrative defines implementation science and highlights the importance of moving research along the pipeline from basic science to practice as one way to facilitate evidence-based service delivery. This review identifies challenges in developing and testing interventions in order to achieve widespread adoption in practice settings. A framework for conceptualizing implementation research is provided, including an example to illustrate the application of principles in speech-language pathology. Last, the authors reflect on the status of implementation research in the discipline of communication sciences and disorders. The extant literature highlights the value of implementation science for reducing the gap between research and practice in our discipline. While having unique principles guiding implementation research, many of the challenges and questions are similar to those facing any investigators who are attempting to design valid and reliable studies. This article is intended to invigorate interest in the uniqueness of implementation science among those pursuing both basic and applied research. In this way, it should help ensure the discipline's knowledge base is realized in practice and policy that affects the lives of individuals with communication disorders.

  10. Undergraduate basic science preparation for dental school.

    PubMed

    Humphrey, Sue P; Mathews, Robert E; Kaplan, Alan L; Beeman, Cynthia S

    2002-11-01

    In the Institute of Medicines report Dental Education at the Crossroads, it was suggested that dental schools across the country move toward integrated basic science education for dental and medical students in their curricula. To do so, dental school admission requirements and recommendations must be closely reviewed to ensure that students are adequately prepared for this coursework. The purpose of our study was twofold: 1) to identify student dentists' perceptions of their predental preparation as it relates to course content, and 2) to track student dentists' undergraduate basic science course preparation and relate that to DAT performance, basic science course performance in dental school, and Part I and Part II National Board performance. In the first part of the research, a total of ninety student dentists (forty-five from each class) from the entering classes of 1996 and 1997 were asked to respond to a survey. The survey instrument was distributed to each class of students after each completed the largest basic science class given in their second-year curriculum. The survey investigated the area of undergraduate major, a checklist of courses completed in their undergraduate preparation, the relevance of the undergraduate classes to the block basic science courses, and the strength of requiring or recommending the listed undergraduate courses as a part of admission to dental school. Results of the survey, using frequency analysis, indicate that students felt that the following classes should be required, not recommended, for admission to dental school: Microbiology 70 percent, Biochemistry 54.4 percent, Immunology 57.78 percent, Anatomy 50 percent, Physiology 58.89 percent, and Cell Biology 50 percent. The second part of the research involved anonymously tracking undergraduate basic science preparation of the same students with DAT scores, the grade received in a representative large basic science course, and Part I and Part II National Board performance. Using T-test analysis correlations, results indicate that having completed multiple undergraduate basic science courses (as reported by AADSAS BCP hours) did not significantly (p < .05) enhance student performance in any of these parameters. Based on these results, we conclude that student dentists with undergraduate preparation in science and nonscience majors can successfully negotiate the dental school curriculum, even though the students themselves would increase admission requirements to include more basic science courses than commonly required. Basically, the students' recommendations for required undergraduate basic science courses would replicate the standard basic science coursework found in most dental schools: anatomy, histology, biochemistry, microbiology, physiology, and immunology plus the universal foundation course of biology.

  11. Basic Sciences Fertilizing Clinical Microbiology and Infection Management

    PubMed Central

    2017-01-01

    Abstract Basic sciences constitute the most abundant sources of creativity and innovation, as they are based on the passion of knowing. Basic knowledge, in close and fertile contact with medical and public health needs, produces distinct advancements in applied sciences. Basic sciences play the role of stem cells, providing material and semantics to construct differentiated tissues and organisms and enabling specialized functions and applications. However, eventually processes of “practice deconstruction” might reveal basic questions, as in de-differentiation of tissue cells. Basic sciences, microbiology, infectious diseases, and public health constitute an epistemological gradient that should also be an investigational continuum. The coexistence of all these interests and their cross-fertilization should be favored by interdisciplinary, integrative research organizations working simultaneously in the analytical and synthetic dimensions of scientific knowledge. PMID:28859345

  12. The Reorganization of Basic Science Departments in U.S. Medical Schools, 1980-1999.

    ERIC Educational Resources Information Center

    Mallon, William T.; Biebuyck, Julien F.; Jones, Robert F.

    2003-01-01

    Constructed a longitudinal database to examine how basic science departments have been reorganized at U.S. medical schools. Found that there were fewer basic science departments in the traditional disciplines of anatomy, biochemistry, microbiology, pharmacology, and physiology in 1999 than in 1980. But as biomedical science has developed in an…

  13. Professional fulfillment and parenting work-life balance in female physicians in Basic Sciences and medical research: a nationwide cross-sectional survey of all 80 medical schools in Japan.

    PubMed

    Yamazaki, Yuka; Uka, Takanori; Marui, Eiji

    2017-09-15

    In Japan, the field of Basic Sciences encompasses clinical, academic, and translational research, as well as the teaching of medical sciences, with both an MD and PhD typically required. In this study, it was hypothesized that the characteristics of a Basic Sciences career path could offer the professional advancement and personal fulfillment that many female medical doctors would find advantageous. Moreover, encouraging interest in Basic Sciences could help stem shortages that Japan is experiencing in medical fields, as noted in the three principal contributing factors: premature resignation of female clinicians, an imbalance of female physicians engaged in research, and a shortage of medical doctors in the Basic Sciences. This study examines the professional and personal fulfillment expressed by Japanese female medical doctors who hold positions in Basic Sciences. Topics include career advancement, interest in medical research, and greater flexibility for parenting. A cross-sectional questionnaire survey was distributed at all 80 medical schools in Japan, directed to 228 female medical doctors whose academic rank was assistant professor or higher in departments of Basic Sciences in 2012. Chi-square tests and the binary logistic regression model were used to investigate the impact of parenthood on career satisfaction, academic rank, salary, etc. The survey response rate of female physicians in Basic Sciences was 54.0%. Regardless of parental status, one in three respondents cited research interest as their rationale for entering Basic Sciences, well over twice other motivations. A majority had clinical experience, with clinical duties maintained part-time by about half of respondents and particularly parents. Only one third expressed afterthoughts about relinquishing full-time clinical practice, with physicians who were parents expressing stronger regrets. Parental status had little effect on academic rank and income within the Basic Sciences, CONCLUSION: Scientific curiosity and a desire to improve community health are hallmarks of those choosing a challenging career in medicine. Therefore, it is unsurprising that interest in research is the primary motivation for a female medical doctor to choose a career in Basic Sciences. Additionally, as with many young professionals with families, female doctors seek balance in professional and private lives. Although many expressed afterthoughts relinquishing a full-time clinical practice, mothers generally benefited from greater job flexibility, with little significant effect on career development and income as Basic Scientists.

  14. Accuracy of Press Reports in Astronomy

    NASA Astrophysics Data System (ADS)

    Schaefer, B. E.; Hurley, K.; Nemiroff, R. J.; Branch, D.; Perlmutter, S.; Schaefer, M. W.; Consolmagno, G. J.; McSween, H.; Strom, R.

    1999-12-01

    Most Americans learn about modern science from press reports, while such articles have a bad reputation among scientists. We have performed a study of 403 news articles on three topics (gamma-ray astronomy, supernovae, and Mars) to quantitatively answer the questions 'How accurate are press reports of astronomy?' and 'What fraction of the basic science claims in the press are correct?' We have taken all articles on the topics from five news sources (UPI, NYT, S&T, SN, and 5 newspapers) for one decade (1987-1996). All articles were evaluated for a variety of errors, ranging from the fundamental to the trivial. For 'trivial' errors, S&T and SN were virtually perfect while the various newspapers averaged roughly one trivial error every two articles. For meaningful errors, we found that none of our 403 articles significantly mislead the reader or misrepresented the science. So a major result of our study is that reporters should be rehabilitated into the good graces of astronomers, since they are actually doing a good job. For our second question, we rated each story with the probability that its basic new science claim is correct. We found that the average probability over all stories is 70%, regardless of source, topic, importance, or quoted pundit. How do we reconcile our findings that the press does not make significant errors yet the basic science presented is 30% wrong? The reason is that the nature of news reporting is to present front-line science and the nature of front-line science is that reliable conclusions have not yet been reached. So a second major result of our study is to make the distinction between textbook science (with reliability near 100%) and front-line science which you read in the press (with reliability near 70%).

  15. A DOE Perspective

    NASA Astrophysics Data System (ADS)

    Bennett, Kristin

    2004-03-01

    As one of the lead agencies for nanotechnology research and development, the Department of Energy (DOE) is revolutionizing the way we understand and manipulate materials at the nanoscale. As the Federal government's single largest supporter of basic research in the physical sciences in the United States, and overseeing the Nation's cross-cutting research programs in high-energy physics, nuclear physics, and fusion energy sciences, the DOE guides the grand challenges in nanomaterials research that will have an impact on everything from medicine, to energy production, to manufacturing. Within the DOE's Office of Science, the Office of Basic Energy Sciences (BES) leads research and development at the nanoscale, which supports the Department's missions of national security, energy, science, and the environment. The cornerstone of the program in nanoscience is the establishment and operation of five new Nanoscale Science Research Centers (NSRCs), which are under development at six DOE Laboratories. Throughout its history, DOE's Office of Science has designed, constructed and operated many of the nation's most advanced, large-scale research and development user facilities, of importance to all areas of science. These state-of-the art facilities are shared with the science community worldwide and contain technologies and instruments that are available nowhere else. Like all DOE national user facilities, the new NSRCs are designed to make novel state-of-the-art research tools available to the world, and to accelerate a broad scale national effort in basic nanoscience and nanotechnology. The NSRCs will be sited adjacent to or near existing DOE/BES major user facilities, and are designed to enable national user access to world-class capabilities for the synthesis, processing, fabrication, and analysis of materials at the nanoscale, and to transform the nation's approach to nanomaterials.

  16. Analysis of the basic science section of the orthopaedic in-training examination.

    PubMed

    Sheibani-Rad, Shahin; Arnoczky, Steven Paul; Walter, Norman E

    2012-08-01

    Since 1963, the Orthopaedic In-Training Examination (OITE) has been administered to orthopedic residents to assess residents' knowledge and measure the quality of teaching within individual programs. The OITE currently consists of 275 questions divided among 12 domains. This study analyzed all OITE basic science questions between 2006 and 2010. The following data were recorded: number of questions, question taxonomy, category of question, type of imaging modality, and recommended journal and book references. Between 2006 and 2010, the basic science section constituted 12.2% of the OITE. The assessment of taxonomy classification showed that recall-type questions were the most common, at 81.4%. Imaging modalities typically involved questions on radiographs and constituted 6.2% of the OITE basic science section. The majority of questions were basic science questions (eg, genetics, cell replication, and bone metabolism), with an average of 26.4 questions per year. The Journal of Bone & Joint Surgery (American Volume) and the American Academy of Orthopaedic Surgeons' Orthopaedic Basic Science were the most commonly and consistently cited journal and review book, respectively. This study provides the first review of the question content and recommended references of the OITE basic science section. This information will provide orthopedic trainees, orthopedic residency programs, and the American Academy of Orthopaedic Surgeons Evaluation Committee valuable information related to improving residents' knowledge and performance and optimizing basic science educational curricula. Copyright 2012, SLACK Incorporated.

  17. Driving forces of biomedical science education and research in state-of-the arts academic medical centres: the United States as example.

    PubMed

    John, T A

    2011-06-01

    Basic science departments in academic medical centres are influenced by changes that are commonly directed at medical education and financial gain. Some of such changes may have been detrimental to or may have enhanced basic science education. They may have determined basic science research focus or basic science research methods. However, there is lack of research on the educational process in the basic sciences including training of PhD's while there is ample research on medical education pertaining to training of medical doctors. The author here identifies, from university websites and available literature, some forces that have driven teaching and research focus and methods in state-of-the-arts academic medical centres in recent times with a view of seeing through their possible influences on basic science education and research, using the United States of America as an example. The "forces" are: Changes in medical schools; Medical educational philosophies: problem based learning, evidence based medicine, cyberlearning and self-directed learning; Shifting impressions of the value of basic sciences in medical schools; Research trends in Basic Sciences: role of antivivisectionists, alternative experimentations, explosion of molecular and cell biology; Technological advancements; Commercialization of research; and Funding agencies. The author encourages African leaders in academia to pay attention to such forces as the leadership seeks to raise African Universities as centres of knowledge that have a major role in acquiring, preserving, imparting, and utilizing knowledge.

  18. "Languagizing" Their World: Why Talking, Reading, and Singing Are So Important

    ERIC Educational Resources Information Center

    Hirsh-Pasek, Kathryn; Golinkoff, Roberta Michnick

    2018-01-01

    Language is the single best predictor of later success in school and beyond. Using new findings in the science of learning, this article outlines 6 basic principles that will help parents and caregivers interact with children in ways that grow important language skills. Creating environments that nurture these principles gives every child a chance…

  19. [Kraepelin's basic nosologic postulates. An attempt at a critical evaluation of the later works of Kraepelin].

    PubMed

    Hoff, P

    1988-01-01

    This study discusses three important papers by Emil Kraepelin, published between 1918 and 1920. Kraepelin supports--in accordance with his teacher Wilhelm Wundt--the view of psychophysical parallelism as a basic principle of dealing with the questions of mental illness. Kraepelin is often called a nosologist; but one must not forget that Kraepelins nosology was not a static one, nor did he vote in favor of any kind of dogmatism. Only when Kraepelin's basic positions are reflected in a differentiated way, his enormous influence on very different parts of psychiatry as science can be understood.

  20. First-year Pre-service Teachers in Taiwan—Do they enter the teacher program with satisfactory scientific literacy and attitudes toward science?

    NASA Astrophysics Data System (ADS)

    Chin, Chi-Chin

    2005-10-01

    Scientific literacy and attitudes toward science play an important role in human daily lives. The purpose of this study was to investigate whether first-year pre-service teachers in colleges in Taiwan have a satisfactory level of scientific literacy. The domains of scientific literacy selected in this study include: (1) science content; (2) the interaction between science, technology and society (STS); (3) the nature of science; and (4) attitudes toward science. In this study, the instruments used were Chinese translations of the Test of Basic Scientific Literacy (TBSL) and the Test of Science-related Attitudes. Elementary education majors (n = 141) and science education majors (n = 138) from four teachers’ colleges responded to these instruments. The statistical results from the tests revealed that, in general, the basic scientific literacy of first-year pre-service teachers was at a satisfactory level. Of the six scales covered in this study, the pre-service teachers displayed the highest literacy in health science, STS, and life science. Literacy in the areas of the nature of science and earth science was rated lowest. The results also showed that science education majors scored significantly higher in physical science, life science, nature of science, science content, and the TBSL than elementary science majors. Males performed better than females in earth science, life science, science content, and the TBSL. Next, elementary education majors responded with more “don’t know” responses than science education majors. In general, the pre-service teachers were moderately positive in terms of attitudes toward science while science education majors had more positive attitudes toward science. There was no significant difference in attitudes between genders. Previous experience in science indicated more positive attitudes toward science. The results from stepwise regression revealed that STS, the nature of science, and attitudes toward science could explain 50.6% and 60.2% variance in science content in elementary education and science education majors, respectively. For science education majors, the first three scales—the nature of science, health science and physical science—determined basic scientific literacy. However, for elementary education majors, the top three factors were physical science, life science and the nature of science. Based on these results, several strategies for developing the professional abilities of science teachers have been recommended for inclusion in pre-service programs.

  1. Architectures Toward Reusable Science Data Systems

    NASA Technical Reports Server (NTRS)

    Moses, John Firor

    2014-01-01

    Science Data Systems (SDS) comprise an important class of data processing systems that support product generation from remote sensors and in-situ observations. These systems enable research into new science data products, replication of experiments and verification of results. NASA has been building systems for satellite data processing since the first Earth observing satellites launched and is continuing development of systems to support NASA science research and NOAA's Earth observing satellite operations. The basic data processing workflows and scenarios continue to be valid for remote sensor observations research as well as for the complex multi-instrument operational satellite data systems being built today.

  2. Connecting Science and Society: Basic Research in the Service of Social Objectives

    NASA Astrophysics Data System (ADS)

    Sonnert, Gerhard

    2007-03-01

    A flawed dichotomy of basic versus applied science (or of ``curiosity-driven'' vs. ``mission-oriented'' science) pervades today's thinking about science policy. This talk argues for the addition of a third mode of scientific research, called Jeffersonian science. Whereas basic science, as traditionally understood, is a quest for the unknown regardless of societal needs, and applied science is known science applied to known needs, Jeffersonian science is the quest for the unknown in the service of a known social need. It is research in an identified area of basic scientific ignorance that lies at the heart of a social problem. The talk discusses the conceptual foundations and then provides some case examples of Jeffersonian-type science initiatives, such as the Lewis and Clark Expedition, initiated by Thomas Jefferson (which led us to call this mode of research Jeffersonian), research conducted under the auspices of the National Institutes of Health, and a science policy project by President Jimmy Carter and his Science Adviser, Frank Press, in the late 1970s. Because the concept of Jeffersonian science explicitly ties basic research to the social good, one of the potential benefits of adding a Jeffersonian dimension to our thinking about science is that it might make science careers more attractive to women and underrepresented minorities.

  3. Contributions of Basic Sciences to Science of Education. Studies in Educational Administration.

    ERIC Educational Resources Information Center

    Lall, Bernard M.

    The science of education has been influenced by the basic sciences to the extent that educational research now has been able to modernize its approach by accepting and using the basic scientific methodology and experimental techniques. Using primarily the same steps of scientific investigations, education today holds a place of much greater esteem…

  4. The Effect of Home Related Science Activities on Students' Performance in Basic Science

    ERIC Educational Resources Information Center

    Obomanu, B. J.; Akporehwe, J. N.

    2012-01-01

    Our study investigated the effect of utilizing home related science activities on student's performance in some basic science concepts. The concepts considered were heart energy, ecology and mixtures. The sample consisted of two hundred and forty (240) basic junior secondary two (BJSS11) students drawn from a population of five thousand and…

  5. Toward using games to teach fundamental computer science concepts

    NASA Astrophysics Data System (ADS)

    Edgington, Jeffrey Michael

    Video and computer games have become an important area of study in the field of education. Games have been designed to teach mathematics, physics, raise social awareness, teach history and geography, and train soldiers in the military. Recent work has created computer games for teaching computer programming and understanding basic algorithms. We present an investigation where computer games are used to teach two fundamental computer science concepts: boolean expressions and recursion. The games are intended to teach the concepts and not how to implement them in a programming language. For this investigation, two computer games were created. One is designed to teach basic boolean expressions and operators and the other to teach fundamental concepts of recursion. We describe the design and implementation of both games. We evaluate the effectiveness of these games using before and after surveys. The surveys were designed to ascertain basic understanding, attitudes and beliefs regarding the concepts. The boolean game was evaluated with local high school students and students in a college level introductory computer science course. The recursion game was evaluated with students in a college level introductory computer science course. We present the analysis of the collected survey information for both games. This analysis shows a significant positive change in student attitude towards recursion and modest gains in student learning outcomes for both topics.

  6. The United Nations Basic Space Science Initiative

    NASA Astrophysics Data System (ADS)

    Haubold, H. J.

    2006-08-01

    Pursuant to recommendations of the United Nations Conference on the Exploration and Peaceful Uses of Outer Space (UNISPACE III) and deliberations of the United Nations Committee on the Peaceful Uses of Outer Space (UNCOPUOS), annual UN/ European Space Agency workshops on basic space science have been held around the world since 1991. These workshops contribute to the development of astrophysics and space science, particularly in developing nations. Following a process of prioritization, the workshops identified the following elements as particularly important for international cooperation in the field: (i) operation of astronomical telescope facilities implementing TRIPOD, (ii) virtual observatories, (iii) astrophysical data systems, (iv) concurrent design capabilities for the development of international space missions, and (v) theoretical astrophysics such as applications of nonextensive statistical mechanics. Beginning in 2005, the workshops focus on preparations for the International Heliophysical Year 2007 (IHY2007). The workshops continue to facilitate the establishment of astronomical telescope facilities as pursued by Japan and the development of low-cost, ground-based, world-wide instrument arrays as lead by the IHY secretariat. Wamsteker, W., Albrecht, R. and Haubold, H.J.: Developing Basic Space Science World-Wide: A Decade of UN/ESA Workshops. Kluwer Academic Publishers, Dordrecht 2004. http://ihy2007.org http://www.unoosa.org/oosa/en/SAP/bss/ihy2007/index.html http://www.cbpf.br/GrupPesq/StatisticalPhys/biblio.htm

  7. Paired basic science and clinical problem-based learning faculty teaching side by side: do students evaluate them differently?

    PubMed

    Stevenson, Frazier T; Bowe, Connie M; Gandour-Edwards, Regina; Kumari, Vijaya G

    2005-02-01

    Many studies have evaluated the desirability of expert versus non-expert facilitators in problem-based learning (PBL), but performance differences between basic science and clinical facilitators has been less studied. In a PBL course at our university, pairs of faculty facilitators (1 clinician, 1 basic scientist) were assigned to student groups to maximise integration of basic science with clinical science. This study set out to establish whether students evaluate basic science and clinical faculty members differently when they teach side by side. Online questionnaires were used to survey 188 students about their faculty facilitators immediately after they completed each of 3 serial PBL cases. Overall satisfaction was measured using a scale of 1-7 and yes/no responses were gathered from closed questions describing faculty performance. results: Year 1 students rated basic science and clinical facilitators the same, but Year 2 students rated the clinicians higher overall. Year 1 students rated basic scientists higher in their ability to understand the limits of their own knowledge. Year 2 students rated the clinicians higher in several content expertise-linked areas: preparedness, promotion of in-depth understanding, and ability to focus the group, and down-rated the basic scientists for demonstrating overspecialised knowledge. Students' overall ratings of individual faculty best correlated with the qualities of stimulation, focus and preparedness, but not with overspecialisation, excessive interjection of the faculty member's own opinions, and encouragement of psychosocial issue discussion. When taught by paired basic science and clinical PBL facilitators, students in Year 1 rated basic science and clinical PBL faculty equally, while Year 2 students rated clinicians more highly overall. The Year 2 difference may be explained by perceived differences in content expertise.

  8. Assessment of knowledge and perceptions toward generic medicines among basic science undergraduate medical students at Aruba.

    PubMed

    Shankar, P Ravi; Herz, Burton L; Dubey, Arun K; Hassali, Mohamed A

    2016-10-01

    Use of generic medicines is important to reduce rising health-care costs. Proper knowledge and perception of medical students and doctors toward generic medicines are important. Xavier University School of Medicine in Aruba admits students from the United States, Canada, and other countries to the undergraduate medical (MD) program. The present study was conducted to study the knowledge and perception about generic medicines among basic science MD students. The cross-sectional study was conducted among first to fifth semester students during February 2015. A previously developed instrument was used. Basic demographic information was collected. Respondent's agreement with a set of statements was noted using a Likert-type scale. The calculated total score was compared among subgroups of respondents. One sample Kolmogorov-Smirnov test was used to study the normality of distribution, Independent samples t -test to compare the total score for dichotomous variables, and analysis of variance for others were used for statistical analysis. Fifty-six of the 85 students (65.8%) participated. Around 55% of respondents were between 20 and 25 years of age and of American nationality. Only three respondents (5.3%) provided the correct value of the regulatory bioequivalence limits. The mean total score was 43.41 (maximum 60). There was no significant difference in scores among subgroups. There was a significant knowledge gap with regard to the regulatory bioequivalence limits for generic medicines. Respondents' level of knowledge about other aspects of generic medicines was good but could be improved. Studies among clinical students in the institution and in other Caribbean medical schools are required. Deficiencies were noted and we have strengthened learning about generic medicines during the basic science years.

  9. Do Racial and Gender Disparities Exist in Newer Glaucoma Treatments?

    MedlinePlus

    ... 2019 Basic and Clinical Science Course, Section 02: Fundamentals and Principles of Ophthalmology 2018-2019 Basic and ... 2019 Basic and Clinical Science Course, Section 02: Fundamentals and Principles of Ophthalmology Print 2018-2019 Basic ...

  10. Is basic science disappearing from medicine? The decline of biomedical research in the medical literature.

    PubMed

    Steinberg, Benjamin E; Goldenberg, Neil M; Fairn, Gregory D; Kuebler, Wolfgang M; Slutsky, Arthur S; Lee, Warren L

    2016-02-01

    Explosive growth in our understanding of genomics and molecular biology have fueled calls for the pursuit of personalized medicine, the notion of harnessing biologic variability to provide patient-specific care. This vision will necessitate a deep understanding of the underlying pathophysiology in each patient. Medical journals play a pivotal role in the education of trainees and clinicians, yet we suspected that the amount of basic science in the top medical journals has been in decline. We conducted an automated search strategy in PubMed to identify basic science articles and calculated the proportion of articles dealing with basic science in the highest impact journals for 8 different medical specialties from 1994 to 2013. We observed a steep decline (40-60%) in such articles over time in almost all of the journals examined. This rapid decline in basic science from medical journals is likely to affect practitioners' understanding of and interest in the basic mechanisms of disease and therapy. In this Life Sciences Forum, we discuss why this decline may be occurring and what it means for the future of science and medicine. © FASEB.

  11. Progress in the Utilization of High-Fidelity Simulation in Basic Science Education

    ERIC Educational Resources Information Center

    Helyer, Richard; Dickens, Peter

    2016-01-01

    High-fidelity patient simulators are mainly used to teach clinical skills and remain underutilized in teaching basic sciences. This article summarizes our current views on the use of simulation in basic science education and identifies pitfalls and opportunities for progress.

  12. Editorial Commentary: A Model for Shoulder Rotator Cuff Repair and for Basic Science Investigations.

    PubMed

    Brand, Jefferson C

    2018-04-01

    "Breaking the fourth wall" is a theater convention where the narrator or character speaks directly to the audience. As an Assistant Editor-in-Chief, as I comment on a recent basic science study investigating rotator cuff repair, I break the fourth wall and articulate areas of basic science research excellence that align with the vision that we hold for our journal. Inclusion of a powerful video strengthens the submission. We prefer to publish clinical videos in our companion journal, Arthroscopy Techniques, and encourage basic science video submissions to Arthroscopy. Basic science research requires step-by-tedious-step analogous to climbing a mountain. Establishment of a murine rotator cuff repair model was rigorous and research intensive, biomechanically, radiographically, histologically, and genetically documented, a huge step toward the bone-to-tendon healing research summit. This research results in a model for both rotator cuff repair and the pinnacle of quality, basic science research. Copyright © 2018 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  13. The importance and pitfalls of correlational science in palliative care research.

    PubMed

    Klepstad, Pål; Kaasa, Stein

    2012-12-01

    Correlational science discovers associations between patient characteristics, symptoms and biomarkers. Correlational science using data from cross-sectional studies is the most frequently applied study design in palliative care research. The purpose of this review is to address the importance and potential pitfalls in correlational science. Associations observed in correlational science studies can be the basis for generating hypotheses that can be tested in experimental studies and are the basic data needed to develop classification systems that can predict patient outcomes. Major pitfalls in correlational science are that associations do not equate with causality and that statistical significance does not necessarily equal a correlation that is of clinical interest. Researchers should be aware of the end-points that are clinically relevant, that end-points should be defined before the start of the analyses, and that studies with several end-points should account for multiplicity. Correlational science in palliative care research can identify related clinical factors and biomarkers. Interpretation of identified associations should be done with careful consideration of the limitations underlying correlational analyses.

  14. Bridging the Gap Between Science and Clinical Efficacy: Physiology, Imaging, and Modeling of Aerosols in the Lung.

    PubMed

    Darquenne, Chantal; Fleming, John S; Katz, Ira; Martin, Andrew R; Schroeter, Jeffry; Usmani, Omar S; Venegas, Jose; Schmid, Otmar

    2016-04-01

    Development of a new drug for the treatment of lung disease is a complex and time consuming process involving numerous disciplines of basic and applied sciences. During the 2015 Congress of the International Society for Aerosols in Medicine, a group of experts including aerosol scientists, physiologists, modelers, imagers, and clinicians participated in a workshop aiming at bridging the gap between basic research and clinical efficacy of inhaled drugs. This publication summarizes the current consensus on the topic. It begins with a short description of basic concepts of aerosol transport and a discussion on targeting strategies of inhaled aerosols to the lungs. It is followed by a description of both computational and biological lung models, and the use of imaging techniques to determine aerosol deposition distribution (ADD) in the lung. Finally, the importance of ADD to clinical efficacy is discussed. Several gaps were identified between basic science and clinical efficacy. One gap between scientific research aimed at predicting, controlling, and measuring ADD and the clinical use of inhaled aerosols is the considerable challenge of obtaining, in a single study, accurate information describing the optimal lung regions to be targeted, the effectiveness of targeting determined from ADD, and some measure of the drug's effectiveness. Other identified gaps were the language and methodology barriers that exist among disciplines, along with the significant regulatory hurdles that need to be overcome for novel drugs and/or therapies to reach the marketplace and benefit the patient. Despite these gaps, much progress has been made in recent years to improve clinical efficacy of inhaled drugs. Also, the recent efforts by many funding agencies and industry to support multidisciplinary networks including basic science researchers, R&D scientists, and clinicians will go a long way to further reduce the gap between science and clinical efficacy.

  15. Bridging the Gap Between Science and Clinical Efficacy: Physiology, Imaging, and Modeling of Aerosols in the Lung

    PubMed Central

    Fleming, John S.; Katz, Ira; Martin, Andrew R.; Schroeter, Jeffry; Usmani, Omar S.; Venegas, Jose

    2016-01-01

    Abstract Development of a new drug for the treatment of lung disease is a complex and time consuming process involving numerous disciplines of basic and applied sciences. During the 2015 Congress of the International Society for Aerosols in Medicine, a group of experts including aerosol scientists, physiologists, modelers, imagers, and clinicians participated in a workshop aiming at bridging the gap between basic research and clinical efficacy of inhaled drugs. This publication summarizes the current consensus on the topic. It begins with a short description of basic concepts of aerosol transport and a discussion on targeting strategies of inhaled aerosols to the lungs. It is followed by a description of both computational and biological lung models, and the use of imaging techniques to determine aerosol deposition distribution (ADD) in the lung. Finally, the importance of ADD to clinical efficacy is discussed. Several gaps were identified between basic science and clinical efficacy. One gap between scientific research aimed at predicting, controlling, and measuring ADD and the clinical use of inhaled aerosols is the considerable challenge of obtaining, in a single study, accurate information describing the optimal lung regions to be targeted, the effectiveness of targeting determined from ADD, and some measure of the drug's effectiveness. Other identified gaps were the language and methodology barriers that exist among disciplines, along with the significant regulatory hurdles that need to be overcome for novel drugs and/or therapies to reach the marketplace and benefit the patient. Despite these gaps, much progress has been made in recent years to improve clinical efficacy of inhaled drugs. Also, the recent efforts by many funding agencies and industry to support multidisciplinary networks including basic science researchers, R&D scientists, and clinicians will go a long way to further reduce the gap between science and clinical efficacy. PMID:26829187

  16. Practice of Regulatory Science (Drug Development).

    PubMed

    Kawanishi, Toru

    2017-01-01

    The practice of regulatory science (RS) for drug development is described. In the course material for education in pharmaceutical sciences drafted by the RS Division of the Pharmaceutical Society of Japan, RS for pharmaceuticals is defined as the science of predicting, assessing, and judging the quality, efficacy, and safety of pharmaceutical products throughout their lifespan. RS is also described as an integrated science based on basic and applied biomedical sciences, including analytical chemistry, biochemistry, pharmacology, toxicology, genetics, biostatistics, epidemiology, and clinical trial methodology, and social sciences such as decision science, risk assessment, and communication science. The involvement of RS in drug development generally starts after the optimization of lead compounds. RS plays important roles governing pharmaceuticals during their entire life cycle management phase as well as the drug development phase.

  17. Research in the chemical sciences. Summaries of FY 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-09-01

    This summary book is published annually to provide information on research supported by the Department of Energy`s Division of Chemical Sciences, which is one of four Divisions of the Office of Basic Energy Sciences in the Office of Energy Research. These summaries provide the scientific and technical public, as well as the legislative and executive branches of the Government, information, either generally or in some depth, about the Chemical Sciences program. Scientists interested in proposing research for support will find the publication useful for gauging the scope of the present basic research program and it`s relationship to their interests. Proposalsmore » that expand this scope may also be considered or directed to more appropriate offices. The primary goal of the research summarized here is to add significantly to the knowledge base in which existing and future efficient and safe energy technologies can evolve. As a result, scientific excellence is a major criterion applied in the selection of research supported by the Division of Chemical Sciences, but another important consideration is emphasis on science that is advancing in ways that will produce new information related to energy.« less

  18. Cause and Effect: Testing a Mechanism and Method for the Cognitive Integration of Basic Science.

    PubMed

    Kulasegaram, Kulamakan; Manzone, Julian C; Ku, Cheryl; Skye, Aimee; Wadey, Veronica; Woods, Nicole N

    2015-11-01

    Methods of integrating basic science with clinical knowledge are still debated in medical training. One possibility is increasing the spatial and temporal proximity of clinical content to basic science. An alternative model argues that teaching must purposefully expose relationships between the domains. The authors compared different methods of integrating basic science: causal explanations linking basic science to clinical features, presenting both domains separately but in proximity, and simply presenting clinical features First-year undergraduate health professions students were randomized to four conditions: (1) science-causal explanations (SC), (2) basic science before clinical concepts (BC), (3) clinical concepts before basic science (CB), and (4) clinical features list only (FL). Based on assigned conditions, participants were given explanations for four disorders in neurology or rheumatology followed by a memory quiz and diagnostic test consisting of 12 cases which were repeated after one week. Ninety-four participants completed the study. No difference was found on memory test performance, but on the diagnostic test, a condition by time interaction was found (F[3,88] = 3.05, P < .03, ηp = 0.10). Although all groups had similar immediate performance, the SC group had a minimal decrease in performance on delayed testing; the CB and FL groups had the greatest decreases. These results suggest that creating proximity between basic science and clinical concepts may not guarantee cognitive integration. Although cause-and-effect explanations may not be possible for all domains, making explicit and specific connections between domains will likely facilitate the benefits of integration for learners.

  19. Basic energy sciences: Summary of accomplishments

    NASA Astrophysics Data System (ADS)

    1990-05-01

    For more than four decades, the Department of Energy, including its predecessor agencies, has supported a program of basic research in nuclear- and energy related sciences, known as Basic Energy Sciences. The purpose of the program is to explore fundamental phenomena, create scientific knowledge, and provide unique user facilities necessary for conducting basic research. Its technical interests span the range of scientific disciplines: physical and biological sciences, geological sciences, engineering, mathematics, and computer sciences. Its products and facilities are essential to technology development in many of the more applied areas of the Department's energy, science, and national defense missions. The accomplishments of Basic Energy Sciences research are numerous and significant. Not only have they contributed to Departmental missions, but have aided significantly the development of technologies which now serve modern society daily in business, industry, science, and medicine. In a series of stories, this report highlights 22 accomplishments, selected because of their particularly noteworthy contributions to modern society. A full accounting of all the accomplishments would be voluminous. Detailed documentation of the research results can be found in many thousands of articles published in peer-reviewed technical literature.

  20. Basic Energy Sciences: Summary of Accomplishments

    DOE R&D Accomplishments Database

    1990-05-01

    For more than four decades, the Department of Energy, including its predecessor agencies, has supported a program of basic research in nuclear- and energy-related sciences, known as Basic Energy Sciences. The purpose of the program is to explore fundamental phenomena, create scientific knowledge, and provide unique user'' facilities necessary for conducting basic research. Its technical interests span the range of scientific disciplines: physical and biological sciences, geological sciences, engineering, mathematics, and computer sciences. Its products and facilities are essential to technology development in many of the more applied areas of the Department's energy, science, and national defense missions. The accomplishments of Basic Energy Sciences research are numerous and significant. Not only have they contributed to Departmental missions, but have aided significantly the development of technologies which now serve modern society daily in business, industry, science, and medicine. In a series of stories, this report highlights 22 accomplishments, selected because of their particularly noteworthy contributions to modern society. A full accounting of all the accomplishments would be voluminous. Detailed documentation of the research results can be found in many thousands of articles published in peer-reviewed technical literature.

  1. Basic Sciences Fertilizing Clinical Microbiology and Infection Management.

    PubMed

    Baquero, Fernando

    2017-08-15

    Basic sciences constitute the most abundant sources of creativity and innovation, as they are based on the passion of knowing. Basic knowledge, in close and fertile contact with medical and public health needs, produces distinct advancements in applied sciences. Basic sciences play the role of stem cells, providing material and semantics to construct differentiated tissues and organisms and enabling specialized functions and applications. However, eventually processes of "practice deconstruction" might reveal basic questions, as in de-differentiation of tissue cells. Basic sciences, microbiology, infectious diseases, and public health constitute an epistemological gradient that should also be an investigational continuum. The coexistence of all these interests and their cross-fertilization should be favored by interdisciplinary, integrative research organizations working simultaneously in the analytical and synthetic dimensions of scientific knowledge. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.

  2. Basic Pharmaceutical Sciences Examination as a Predictor of Student Performance during Clinical Training.

    ERIC Educational Resources Information Center

    Fassett, William E.; Campbell, William H.

    1984-01-01

    A comparison of Basic Pharmaceutical Sciences Examination (BPSE) results with student performance evaluations in core clerkships, institutional and community externships, didactic and clinical courses, and related basic science coursework revealed the BPSE does not predict student performance during clinical instruction. (MSE)

  3. A Study on Identifying the Misconceptions of Pre-Service and In-Service Teachers about Basic Astronomy Concepts

    ERIC Educational Resources Information Center

    Kanli, Uygar

    2014-01-01

    Nowadays, the importance given to astronomy teaching in science and physics education has been gradually increasing. At the same time, teachers play an important role in remediating the misconceptions about astronomy concepts held by students. The present study aims to determine the misconceptions of pre-service physics teachers (n = 117),…

  4. "Freedom Is Slavery": A Whiteheadian Interpretation of the Place of the Sciences and Humanities in Today's University

    ERIC Educational Resources Information Center

    Weber, Michel

    2015-01-01

    The Humanities have traditionally held an important place in university's curricula. Their import actually used to make all the difference between a university degree and an institute of technology one. Times have changed. Since the late seventies, Hayek's "Chicago School" of economics has fostered a new agenda that basically has no…

  5. The Museum of Science and Industry Basic List of Children's Science Books, 1986.

    ERIC Educational Resources Information Center

    Richter, Bernice, Comp.; Wenzel, Duane, Comp.

    This first supplement to the Museum of Science and Industry Basic List of Children's Science Books contains books received for the museum's 13th annual children's science book fair. Children's science books are listed under these headings: animals; astronomy; aviation and space; biography; careers; earth sciences; environment/conservation;…

  6. Basic science research and education: a priority for training and capacity building in developing countries.

    PubMed

    Deckelbaum, Richard J; Ntambi, James M; Wolgemuth, Debra J

    2011-09-01

    This article provides evidence that basic science research and education should be key priorities for global health training, capacity building, and practice. Currently, there are tremendous gaps between strong science education and research in developed countries (the North) as compared to developing countries (the South). In addition, science research and education appear as low priorities in many developing countries. The need to stress basic science research beyond the typical investment of infectious disease basic service and research laboratories in developing areas is significant in terms of the benefits, not only to education, but also for economic strengthening and development of human resources. There are some indications that appreciation of basic science research education and training is increasing, but this still needs to be applied more rigorously and strengthened systematically in developing countries. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Basic Science Training Program.

    ERIC Educational Resources Information Center

    Brummel, Clete

    These six learning modules were developed for Lake Michigan College's Basic Science Training Program, a workshop to develop good study skills while reviewing basic science. The first module, which was designed to provide students with the necessary skills to study efficiently, covers the following topics: time management; an overview of a study…

  8. Cystic fibrosis: Beyond the airways. Report on the meeting of the basic science working group in Loutraki, Greece.

    PubMed

    Amaral, Margarida D; Boj, Sylvia F; Shaw, James; Leipziger, Jens; Beekman, Jeffrey M

    2018-06-01

    The European Cystic Fibrosis Society (ECFS) Basic Science Working Group (BSWG) organized a session on the topic "Cystic Fibrosis: Beyond the Airways", within the 15th ECFS Basic Science Conference which gathered around 200 researchers working in the basic science of CF. The session was organized and chaired by Margarida Amaral (BioISI, University of Lisboa, Portugal) and Jeffrey Beekman (University Medical Centre Utrecht, Netherlands) as Chair and Vice-Chair of the BSWG and its purpose was to bring attention of participants of the ECFS Basic Science Conference to "more forgotten" organs in CF disease. In this report we attempt to review and integrate the ideas that emerged at the session. Copyright © 2018 European Cystic Fibrosis Society. All rights reserved.

  9. Enhancing programming logic thinking using analogy mapping

    NASA Astrophysics Data System (ADS)

    Sukamto, R. A.; Megasari, R.

    2018-05-01

    Programming logic thinking is the most important competence for computer science students. However, programming is one of the difficult subject in computer science program. This paper reports our work about enhancing students' programming logic thinking using Analogy Mapping for basic programming subject. Analogy Mapping is a computer application which converts source code into analogies images. This research used time series evaluation and the result showed that Analogy Mapping can enhance students' programming logic thinking.

  10. Continuous Enhancement of Science Teachers' Knowledge and Skills through Scientific Lecturing.

    PubMed

    Azevedo, Maria-Manuel; Duarte, Sofia

    2018-01-01

    Due to their importance in transmitting knowledge, teachers can play a crucial role in students' scientific literacy acquisition and motivation to respond to ongoing and future economic and societal challenges. However, to conduct this task effectively, teachers need to continuously improve their knowledge, and for that, a periodic update is mandatory for actualization of scientific knowledge and skills. This work is based on the outcomes of an educational study implemented with science teachers from Portuguese Basic and Secondary schools. We evaluated the effectiveness of a training activity consisting of lectures covering environmental and health sciences conducted by scientists/academic teachers. The outcomes of this educational study were evaluated using a survey with several questions about environmental and health scientific topics. Responses to the survey were analyzed before and after the implementation of the scientific lectures. Our results showed that Basic and Secondary schools teachers' knowledge was greatly improved after the lectures. The teachers under training felt that these scientific lectures have positively impacted their current knowledge and awareness on several up-to-date scientific topics, as well as their teaching methods. This study emphasizes the importance of continuing teacher education concerning knowledge and awareness about health and environmental education.

  11. Clinical Correlations as a Tool in Basic Science Medical Education

    PubMed Central

    Klement, Brenda J.; Paulsen, Douglas F.; Wineski, Lawrence E.

    2016-01-01

    Clinical correlations are tools to assist students in associating basic science concepts with a medical application or disease. There are many forms of clinical correlations and many ways to use them in the classroom. Five types of clinical correlations that may be embedded within basic science courses have been identified and described. (1) Correlated examples consist of superficial clinical information or stories accompanying basic science concepts to make the information more interesting and relevant. (2) Interactive learning and demonstrations provide hands-on experiences or the demonstration of a clinical topic. (3) Specialized workshops have an application-based focus, are more specialized than typical laboratory sessions, and range in complexity from basic to advanced. (4) Small-group activities require groups of students, guided by faculty, to solve simple problems that relate basic science information to clinical topics. (5) Course-centered problem solving is a more advanced correlation activity than the others and focuses on recognition and treatment of clinical problems to promote clinical reasoning skills. Diverse teaching activities are used in basic science medical education, and those that include clinical relevance promote interest, communication, and collaboration, enhance knowledge retention, and help develop clinical reasoning skills. PMID:29349328

  12. 10 Tips to Reduce Your Chance of Losing Vision from the Most Common Cause of Blindness

    MedlinePlus

    ... 2019 Basic and Clinical Science Course, Section 02: Fundamentals and Principles of Ophthalmology 2018-2019 Basic and ... 2019 Basic and Clinical Science Course, Section 02: Fundamentals and Principles of Ophthalmology Print 2018-2019 Basic ...

  13. I'll Tell You What You Think: An Exercise in Pseudoscience Debunking in an Introductory Astronomy Course

    NASA Astrophysics Data System (ADS)

    Caton, Dan

    2013-11-01

    At Appalachian State University students have to take just two semesters of a physical or biological science to satisfy the general education requirements. Most non-science major students have little time in their crowded schedules to take additional science courses, whether they want to or not, and in fact face a surcharge when taking more courses than needed to graduate. Given this environment, it is essential that we cover more than just the basics of one particular discipline, like astronomy in my case. We should teach something about the overall philosophy of science, the scientific method, and the importance of science in our lives.

  14. Teaching Psychology for Sustainability: The Why and How

    ERIC Educational Resources Information Center

    Koger, Susan M.; Scott, Britain A.

    2016-01-01

    The behavioral sciences can make vital contributions to environmental sustainability efforts, as relevant basic and applied psychological research has grown considerably over the past dozen years. Recently, conservation biologists, environmental policy makers, and other experts have recognized the importance of engaging with experts on human…

  15. Teaching Basic Science Environmentally.

    ERIC Educational Resources Information Center

    Busch, Phyllis S.

    1986-01-01

    Explains why earthworms are fascinating and important animals whose study should be expanded. Describes how to collect earthworms and their castings and how to demonstrate their tunneling activity. Stresses animal's uniqueness and how it is interrelated with other animals, plants, and non-living parts of the world. (NEC)

  16. Trends in Basic Sciences Education in Dental Schools, 1999-2016.

    PubMed

    Lantz, Marilyn S; Shuler, Charles F

    2017-08-01

    The purpose of this study was to examine data published over the past two decades to identify trends in the basic sciences curriculum in dental education, provide an analysis of those trends, and compare them with trends in the basic sciences curriculum in medical education. Data published from the American Dental Association (ADA) Surveys of Dental Education, American Dental Education Association (ADEA) Surveys of Dental School Seniors, and two additional surveys were examined. In large part, survey data collected focused on the structure, content, and instructional strategies used in dental education: what was taught and how. Great variability was noted in the total clock hours of instruction and the clock hours of basic sciences instruction reported by dental schools. Moreover, the participation of medical schools in the basic sciences education of dental students appears to have decreased dramatically over the past decade. Although modest progress has been made in implementing some of the curriculum changes recommended in the 1995 Institute of Medicine report such as integrated basic and clinical sciences curricula, adoption of active learning methods, and closer engagement with medical and other health professions education programs, educational effectiveness studies needed to generate data to support evidence-based approaches to curriculum reform are lacking. Overall, trends in the basic sciences curriculum in medical education were similar to those for dental education. Potential drivers of curriculum change were identified, as was recent work in other fields that should encourage reconsideration of dentistry's approach to basic sciences education. This article was written as part of the project "Advancing Dental Education in the 21st Century."

  17. The articulation of integration of clinical and basic sciences in concept maps: differences between experienced and resident groups.

    PubMed

    Vink, Sylvia; van Tartwijk, Jan; Verloop, Nico; Gosselink, Manon; Driessen, Erik; Bolk, Jan

    2016-08-01

    To determine the content of integrated curricula, clinical concepts and the underlying basic science concepts need to be made explicit. Preconstructed concept maps are recommended for this purpose. They are mainly constructed by experts. However, concept maps constructed by residents are hypothesized to be less complex, to reveal more tacit basic science concepts and these basic science concepts are expected to be used for the organization of the maps. These hypotheses are derived from studies about knowledge development of individuals. However, integrated curricula require a high degree of cooperation between clinicians and basic scientists. This study examined whether there are consistent variations regarding the articulation of integration when groups of experienced clinicians and basic scientists and groups of residents and basic scientists-in-training construct concept maps. Seven groups of three clinicians and basic scientists on experienced level and seven such groups on resident level constructed concept maps illuminating clinical problems. They were guided by instructions that focused them on articulation of integration. The concept maps were analysed by features that described integration. Descriptive statistics showed consistent variations between the two expertise levels. The concept maps of the resident groups exceeded those of the experienced groups in articulated integration. First, they used significantly more links between clinical and basic science concepts. Second, these links connected basic science concepts with a greater variety of clinical concepts than the experienced groups. Third, although residents did not use significantly more basic science concepts, they used them significantly more frequent to organize the clinical concepts. The conclusion was drawn that not all hypotheses could be confirmed and that the resident concept maps were more elaborate than expected. This article discusses the implications for the role that residents and basic scientists-in-training might play in the construction of preconstructed concept maps and the development of integrated curricula.

  18. National Institutes of Health Update: Translating Basic Behavioral Science into New Pediatric Obesity Interventions.

    PubMed

    Czajkowski, Susan M

    2016-06-01

    Pediatric obesity increases the risk of later-life obesity and chronic diseases. Basic research to better understand factors associated with excessive weight gain in early life and studies translating research findings into preventive and therapeutic strategies are essential to our ability to better prevent and treat childhood obesity. This overview describes several National Institutes of Health efforts designed to stimulate basic and translational research in childhood obesity prevention and treatment. These examples demonstrate the value of research in early phase translational pediatric obesity research and highlight some promising directions for this important area of research. Published by Elsevier Inc.

  19. A Simulation for Teaching the Basic and Clinical Science of Fluid Therapy

    ERIC Educational Resources Information Center

    Rawson, Richard E.; Dispensa, Marilyn E.; Goldstein, Richard E.; Nicholson, Kimberley W.; Vidal, Noni Korf

    2009-01-01

    The course "Management of Fluid and Electrolyte Disorders" is an applied physiology course taught using lectures and paper-based cases. The course approaches fluid therapy from both basic science and clinical perspectives. While paper cases provide a basis for application of basic science concepts, they lack key components of genuine clinical…

  20. The Museum of Science and Industry Basic List of Children's Science Books, 1987.

    ERIC Educational Resources Information Center

    Richter, Bernice, Comp.; Wenzel, Duane, Comp.

    Presented is the second annual supplement to the Museum of Science and Industry Basic List of Children's Science Books 1973-1984. In this supplement, children's science books are listed under the headings of animals, astronomy, aviation and space, biography, earth sciences, encyclopedias and reference books, environment and conservation, fiction,…

  1. Forensic psychology and correctional psychology: Distinct but related subfields of psychological science and practice.

    PubMed

    Neal, Tess M S

    2018-02-12

    This article delineates 2 separate but related subfields of psychological science and practice applicable across all major areas of the field (e.g., clinical, counseling, developmental, social, cognitive, community). Forensic and correctional psychology are related by their historical roots, involvement in the justice system, and the shared population of people they study and serve. The practical and ethical contexts of these subfields is distinct from other areas of psychology-and from one another-with important implications for ecologically valid research and ethically sound practice. Forensic psychology is a subfield of psychology in which basic and applied psychological science or scientifically oriented professional practice is applied to the law to help resolve legal, contractual, or administrative matters. Correctional psychology is a subfield of psychology in which basic and applied psychological science or scientifically oriented professional practice is applied to the justice system to inform the classification, treatment, and management of offenders to reduce risk and improve public safety. There has been and continues to be great interest in both subfields-especially the potential for forensic and correctional psychological science to help resolve practical issues and questions in legal and justice settings. This article traces the shared and separate developmental histories of these subfields, outlines their important distinctions and implications, and provides a common understanding and shared language for psychologists interested in applying their knowledge in forensic or correctional contexts. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  2. Biomedical research, development, and engineering at the Johns Hopkins University Applied Physics Laboratory. Annual report 1 October 1978-30 September 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The Medical Institutions of The Johns Hopkins University and The Johns Hopkins University Applied Physics Laboratory have developed a vigorous collaborative program of biomedical research, development, and systems engineering. An important objective of the program is to apply the expertise in engineering, the physical sciences, and systems analysis acquired by APL in defense and space research and development to problems of medical research and health care delivery. This program has grown to include collaboration with many of the clinical and basic science departments of the medical divisions. Active collaborative projects exist in ophthalmology, neurosensory research and instrumentation development, cardiovascular systems,more » patient monitoring, therapeutic and rehabilitation systems, clinical information systems, and clinical engineering. This application of state-of-the-art technology has contributed to advances in many areas of basic medical research and in clinical diagnosis and therapy through improvement of instrumentation, techniques, and basic understanding.« less

  3. The relationship between immediate relevant basic science knowledge and clinical knowledge: physiology knowledge and transthoracic echocardiography image interpretation.

    PubMed

    Nielsen, Dorte Guldbrand; Gotzsche, Ole; Sonne, Ole; Eika, Berit

    2012-10-01

    Two major views on the relationship between basic science knowledge and clinical knowledge stand out; the Two-world view seeing basic science and clinical science as two separate knowledge bases and the encapsulated knowledge view stating that basic science knowledge plays an overt role being encapsulated in the clinical knowledge. However, resent research has implied that a more complex relationship between the two knowledge bases exists. In this study, we explore the relationship between immediate relevant basic science (physiology) and clinical knowledge within a specific domain of medicine (echocardiography). Twenty eight medical students in their 3rd year and 45 physicians (15 interns, 15 cardiology residents and 15 cardiology consultants) took a multiple-choice test of physiology knowledge. The physicians also viewed images of a transthoracic echocardiography (TTE) examination and completed a checklist of possible pathologies found. A total score for each participant was calculated for the physiology test, and for all physicians also for the TTE checklist. Consultants scored significantly higher on the physiology test than did medical students and interns. A significant correlation between physiology test scores and TTE checklist scores was found for the cardiology residents only. Basic science knowledge of immediate relevance for daily clinical work expands with increased work experience within a specific domain. Consultants showed no relationship between physiology knowledge and TTE interpretation indicating that experts do not use basic science knowledge in routine daily practice, but knowledge of immediate relevance remains ready for use.

  4. Attitudes among students and teachers on vertical integration between clinical medicine and basic science within a problem-based undergraduate medical curriculum.

    PubMed

    Brynhildsen, J; Dahle, L O; Behrbohm Fallsberg, M; Rundquist, I; Hammar, M

    2002-05-01

    Important elements in the curriculum at the Faculty of Health Sciences in Linköping are vertical integration, i.e. integration between the clinical and basic science sections of the curriculum, and horizontal integration between different subject areas. Integration throughout the whole curriculum is time-consuming for both teachers and students and hard work is required for planning, organization and execution. The aim was to assess the importance of vertical and horizontal integration in an undergraduate medical curriculum, according to opinions among students and teachers. In a questionnaire 102 faculty teachers and 106 students were asked about the importance of 14 different components of the undergraduate medical curriculum including vertical and horizontal integration. They were asked to assign between one and six points to each component (6 points = extremely important for the quality of the curriculum; 1 point = unimportant). Students as well as teachers appreciated highly both forms of integration. Students scored horizontal integration slightly but significantly higher than the teachers (median 6 vs 5 points; p=0.009, Mann-Whitney U-test), whereas teachers scored vertical integration higher than students (6 vs 5; p=0.019, Mann-Whitney U-test). Both students and teachers considered horizontal and vertical integration to be highly important components of the undergraduate medical programme. We believe both kinds of integration support problem-based learning and stimulate deep and lifelong learning and suggest that integration should always be considered deeply when a new curriculum is planned for undergraduate medical education.

  5. Strengthening capacity building in space science research: A developing country perspective on IHY activities

    NASA Astrophysics Data System (ADS)

    Munyeme, G.

    The economic and social impact of science based technologies has become increasingly dominant in modern world The benefits are a result of combined leading-edge science and technology skills which offers opportunities for new innovations Knowledge in basic sciences has become the cornerstone of sustainable economic growth and national prosperity Unfortunately in many developing countries research and education in basic sciences are inadequate to enable science play its full role in national development For this reason most developing countries have not fully benefited from the opportunities provided by modern technologies The lack of human and financial resources is the main reason for slow transfer of scientific knowledge and technologies to developing countries Developing countries therefore need to develop viable research capabilities and knowledge in basic sciences The advert of the International Heliophysical Year IHY may provide opportunities for strengthening capacity in basic science research in developing countries Among the science goals of the IHY is the fostering of international scientific cooperation in the study of heliophysical phenomena This paper will address and provide an in depth discussion on how basic science research can be enhanced in a developing country using the framework of science goals and objectives of IHY It will further highlight the hurdles and experiences of creating in-country training capacity and research capabilities in space science It will be shown that some of these hurdles can be

  6. Investigating the Relationship between Students' Science Knowledge and Their Reported Sources of Information

    NASA Astrophysics Data System (ADS)

    Buxner, S.; Romine, J.; Impey, C.; Nieberding, M.

    2015-11-01

    Building on a 25 year study of undergraduate students' science literacy, we have been investigating where students report getting information about science. In this study, we investigated the relationship between students' basic science knowledge, responses about studying something scientifically, and where they report gaining information about science. Data for this study was collected through an online survey of astronomy courses during 2014. Responses were collected from a total of 400 students through online surveys. Most survey respondents were non-science majors in the first two years of college who had taken 3 or fewer college science courses. Our results show a relationship between students who report online searches and Wikipedia as reliable sources of information and lower science literacy scores, although there was no relationship between science knowledge and where students report getting information about science. Our results suggest that information literacy is an important component to overall science literacy.

  7. The United Nations Basic Space Science Initiative (UNBSSI): A Historical Introduction

    NASA Astrophysics Data System (ADS)

    Haubold, H. J.

    2006-11-01

    Pursuant to recommendations of the Third United Nations Conference on the Exploration and Peaceful Uses of Outer Space (UNISPACE III) and deliberations of the United Nations Committee on the Peaceful Uses of Outer Space (UNCOPUOS), annual UN/European Space Agency workshops on basic space science have been held around the world since 1991. These workshops contributed to the development of astrophysics and space science, particularly in developing nations. Following a process of prioritization, the workshops identified the following elements as particularly important for international cooperation in the field: (i) operation of astronomical telescope facilities implementing TRIPOD, (ii) virtual observatories, (iii) astrophysical data systems, (iv) con-current design capabilities for the development of international space missions, and (v) theoretical astrophysics such as applications of non-extensive statistical mechanics. Beginning in 2005, the workshops are focusing on preparations for the International Heliophysical Year 2007 (IHY2007). The workshops continue to facilitate the establishment of astronomical telescope facilities as pursued by Japan and the development of low-cost, ground-based, world- wide instrument arrays as led by the IHY secretariat. Wamsteker, W., Albrecht, R. and Haubold, H.J.: Developing Basic Space Science World-Wide: A Decade of UN/ESA Workshops: Kluwer Academic Publishers, Dordrecht 2004. http://ihy2007.org http://www.unoosa.org/oosa/en/SAP/bss/ihy2007/index.html http://www.cbpf.br/GrupPesq/StatisticalPhys/biblio.htm

  8. The United Nations Basic Space Science Initiative

    NASA Astrophysics Data System (ADS)

    Haubold, H. J.

    Pursuant to recommendations of the United Nations Conference on the Exploration and Peaceful Uses of Outer Space UNISPACE III and deliberations of the United Nations Committee on the Peaceful Uses of Outer Space UNCOPUOS annual UN European Space Agency workshops on basic space science have been held around the world since 1991 These workshops contribute to the development of astrophysics and space science particularly in developing nations Following a process of prioritization the workshops identified the following elements as particularly important for international cooperation in the field i operation of astronomical telescope facilities implementing TRIPOD ii virtual observatories iii astrophysical data systems iv concurrent design capabilities for the development of international space missions and v theoretical astrophysics such as applications of nonextensive statistical mechanics Beginning in 2005 the workshops focus on preparations for the International Heliophysical Year 2007 IHY2007 The workshops continue to facilitate the establishment of astronomical telescope facilities as pursued by Japan and the development of low-cost ground-based world-wide instrument arrays as lead by the IHY secretariat Further information Wamsteker W Albrecht R and Haubold H J Developing Basic Space Science World-Wide A Decade of UN ESA Workshops Kluwer Academic Publishers Dordrecht 2004 http ihy2007 org http www oosa unvienna org SAP bss ihy2007 index html http www cbpf br GrupPesq StatisticalPhys biblio htm

  9. ESN (European Science Notes) Information Bulletin Reports on Current European/Middle Eastern Science

    DTIC Science & Technology

    1988-10-01

    about 35 institutes. tion method for technical alcohol, a modified upflow The quality of research carried out at the various fermenter was constructed in...developed for research with this fermenter whereby suc- application. It is beyond the scope of this report to de- rose, glucose, fructose, and...that lactobacilli in Food Research. Among the important aspects of the di- foods such as yogurt , cheese, sausage, and sauerkraut vision’s work on basic

  10. Look! It Is Going to Rain

    ERIC Educational Resources Information Center

    Trundle, Kathy Cabe; Sackes, Mesut

    2010-01-01

    It is important to help young children make connections between events in their lives and science concepts in preschool classrooms, so introducing basic meteorology ideas offer a great opportunity to make weather connections and awaken scientific curiosity (Spiropoulou, Kostopoulos, and Jacovides 1999). Therefore, this article presents a science…

  11. Fundamentals of watershed hydrology

    Treesearch

    Pamela J. Edwards; Karl W.J. Williard; Jon E. Schoonover

    2015-01-01

    This is a primer about hydrology, the science of water. Watersheds are the basic land unit for water resource management and their delineation, importance, and variation are explained and illustrated. The hydrologic cycle and its components (precipitation, evaporation, transpiration, soil water, groundwater, and streamflow) which collectively provide a foundation for...

  12. Privacy Statement for Nova Southeastern University

    Science.gov Websites

    and information sciences, and pharmacy. Professional Programs in high demand fields such as medicine conducted at NSU. Translational Research and Economic Development Information on basic, applied, and privacy and recognizes the importance of your personal information. We are committed to protecting your

  13. On the Teaching of Science, Technology and International Affairs.

    PubMed

    Weiss, Charles

    2012-03-01

    Despite the ubiquity and critical importance of science and technology in international affairs, their role receives insufficient attention in traditional international relations curricula. There is little literature on how the relations between science, technology, economics, politics, law and culture should be taught in an international context. Since it is impossible even for scientists to master all the branches of natural science and engineering that affect public policy, the learning goals of students whose primary training is in the social sciences should be to get some grounding in the natural sciences or engineering, to master basic policy skills, to understand the basic concepts that link science and technology to their broader context, and to gain a respect for the scientific and technological dimensions of the broader issues they are addressing. They also need to cultivate a fearless determination to master what they need to know in order to address policy issues, an open-minded but skeptical attitude towards the views of dueling experts, regardless of whether they agree with their politics, and (for American students) a world-view that goes beyond a strictly U.S. perspective on international events. The Georgetown University program in Science, Technology and International Affairs (STIA) is a unique, multi-disciplinary undergraduate liberal arts program that embodies this approach and could be an example that other institutions of higher learning might adapt to their own requirements.

  14. What is Basic Research? Insights from Historical Semantics.

    PubMed

    Schauz, Désirée

    2014-01-01

    For some years now, the concept of basic research has been under attack. Yet although the significance of the concept is in doubt, basic research continues to be used as an analytical category in science studies. But what exactly is basic research? What is the difference between basic and applied research? This article seeks to answer these questions by applying historical semantics. I argue that the concept of basic research did not arise out of the tradition of pure science. On the contrary, this new concept emerged in the late 19th and early 20th centuries, a time when scientists were being confronted with rising expectations regarding the societal utility of science. Scientists used the concept in order to try to bridge the gap between the promise of utility and the uncertainty of scientific endeavour. Only after 1945, when United States science policy shaped the notion of basic research, did the concept revert to the older ideals of pure science. This revival of the purity discourse was caused by the specific historical situation in the US at that time: the need to reform federal research policy after the Second World War, the new dimension of ethical dilemmas in science and technology during the atomic era, and the tense political climate during the Cold War.

  15. Japanese representation in leading general medicine and basic science journals: a comparison of two decades.

    PubMed

    Fukui, Tsuguya; Takahashi, Osamu; Rahman, Mahbubur

    2013-11-01

    During 1991-2000, Japan contribution to the top general medicine journals was very small although the contribution to the top basic science journals was sizeable. However, it has not been examined whether the contribution to the top general medicine and basic science journals has changed during the last decade (2001-2010). The objective of this study was to compare Japan representation in high-impact general medicine and basic science journals between the years 1991-2000 and 2001-2010. We used PubMed database to examine the frequency of articles originated from Japan and published in 7 high-impact general medicine and 6 high-impact basic science journals. Several Boolean operators were used to connect name of the journal, year of publication and corresponding authors' affiliation in Japan. Compared to the 1991-2000 decade, Japan contribution to the top general medicine journals did not increase over the 2001-2010 period (0.66% vs. 0.74%, P = 0.255). However, compared to the same period, its contribution to the top basic science journals increased during 2001-2010 (2.51% vs. 3.60%, P < 0.001). Japan representation in basic science journals showed an upward trend over the 1991-2000 period (P < 0.001) but remained flat during 2001-2010 (P = 0.177). In contrast, the trend of Japan representation in general medicine journals remained flat both during 1991-2000 (P = 0.273) and 2001-2010 (P = 0.073). Overall, Japan contribution to the top general medicine journals has remained small and unchanged over the last two decades. However, top basic science journals had higher Japan representation during 2001-2010 compared to 1991-2000.

  16. Academic Pre-Orientation Program for Dental Students: Beginning and End of Program Evaluations, 1998-2016.

    PubMed

    D'Silva, Evan R; Woolfolk, Marilyn W; Duff, Renee E; Inglehart, Marita R

    2018-04-01

    Admitting students from non-traditional or disadvantaged backgrounds can increase the diversity of dental school classes. The aims of this study were to analyze how interested non-traditional incoming dental students were at the beginning of an academic pre-orientation program in learning about basic science, dentistry-related topics, and academic skills; how confident they were in doing well in basic science and dentistry-related courses; and how they evaluated the program at the end. The relationships between personal (interest/confidence) and structural factors (program year, number of participants) and program evaluations were also explored. All 360 students in this program at the University of Michigan from 1998 to 2016 were invited to participate in surveys at the beginning and end of the educational intervention. A total of 353 students responded at the beginning (response rate 98%), and 338 responded at the end (response rate 94%). At the beginning, students were more interested in learning about basic science and dentistry-related topics than about academic skills, and they were more confident in their dentistry- related than basic science-related abilities. At the end, students valued basic science and dentistry-related education more positively than academic skills training. Confidence in doing well and interest in basic science and dentistry-related topics were correlated. The more recent the program was, the less confident the students were in their basic science abilities and the more worthwhile they considered the program to be. The more participants the program had, the more confident the students were, and the better they evaluated their basic science and dentistry-related education. Overall, this academic pre-orientation program was positively evaluated by the participants.

  17. Drosophila Genetic Resource and Stock Center; The National BioResource Project.

    PubMed

    Yamamoto, Masa-Toshi

    2010-01-01

    The fruit fly, Drosophila melanogaster, is not categorized as a laboratory animal, but it is recognised as one of the most important model organisms for basic biology, life science, and biomedical research. This tiny fly continues to occupy a core place in genetics and genomic approaches to studies of biology and medicine. The basic principles of genetics, including the variations of phenotypes, mutations, genetic linkage, meiotic chromosome segregation, chromosome aberrations, recombination, and precise mapping of genes by genetic as well as cytological means, were all derived from studies of Drosophila. Recombinant DNA technology was developed in the 1970s and Drosophila DNA was the first among multicellular organisms to be cloned. It provided a detailed characterization of genes in combination of classical cytogenetic data. Drosophila thus became the pioneering model organism for various fields of life science research into multicellular organisms. Here, I briefly describe the history of Drosophila research and provide a few examples of the application of the abundant genetic resources of Drosophila to basic biology and medical investigations. A Japanese national project, the National BioResource Project (NBRP) for collection, maintainance, and provision of Drosophila resources, that is well known and admired by researchers in other countries as an important project, is also briefly described.

  18. Integration of Basic and Clinical Science in the Psychiatry Clerkship.

    PubMed

    Wilkins, Kirsten M; Moore, David; Rohrbaugh, Robert M; Briscoe, Gregory W

    2017-06-01

    Integration of basic and clinical science is a key component of medical education reform, yet best practices have not been identified. The authors compared two methods of basic and clinical science integration in the psychiatry clerkship. Two interventions aimed at integrating basic and clinical science were implemented and compared in a dementia conference: flipped curriculum and coteaching by clinician and physician-scientist. The authors surveyed students following each intervention. Likert-scale responses were compared. Participants in both groups responded favorably to the integration format and would recommend integration be implemented elsewhere in the curriculum. Survey response rates differed significantly between the groups and student engagement with the flipped curriculum video was limited. Flipped curriculum and co-teaching by clinician and physician-scientist are two methods of integrating basic and clinical science in the psychiatry clerkship. Student learning preferences may influence engagement with a particular teaching format.

  19. Learning across the curriculum: connecting the pharmaceutical sciences to practice in the first professional year.

    PubMed

    Brown, Bethanne; Skau, Kenneth; Wall, Andrea

    2009-04-07

    To facilitate the student's ability to make the connection of the core foundational basic science courses to the practice of pharmacy. In 2000, 10 faculty members from basic science and practice courses created and implemented an integrated Patient Care Project for which students chose a volunteer patient and completed 15 different assignments Evidence of student learning, such as grades and reflective comments along with collected evaluative data, indicated an enhancement in students' perceived understanding of the connection between basic science and patient care. The Patient Care Project provided students an opportunity to use knowledge gained in their first-year foundational courses to the care of a patient, solidifying their understanding of the connection between basic science and patient care.

  20. Antiferromagnetism in Bulk Rutile RuO2

    NASA Astrophysics Data System (ADS)

    Berlijn, T.; Snijders, P. C.; Kent, P. R. C.; Maier, T. A.; Zhou, H.-D.; Cao, H.-B.; Delaire, O.; Wang, Y.; Koehler, M.; Weitering, H. H.

    While bulk rutile RuO2 has long been considered to be a Pauli paramagnet, we conclude it to host antiferromagnetism based on our combined theoretical and experimental study. This constitutes an important finding given the large amount of applications of RuO2 in the electrochemical and electronics industry. Furthermore the high onset temperature of the antiferromagnetism around 1000K together with the high electrical conductivity makes RuO2 unique among the ruthenates and among oxide materials in general. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.

  1. Role of Suzanne Mubarak Science Exploration Center in Motivating Physics Learning (abstract)

    NASA Astrophysics Data System (ADS)

    Mohsen, Mona

    2009-04-01

    The role of Science Exploration centers to promote learning ``beyond school walls'' is demonstrated. The Suzane Mubarak Science Exploration Center (www.smsec.com) at Hadaek El Kobba, Cairo, was inaugurated in 1998 with the assistance of Zusane Mubarak, the first lady of Egypt and the minister of education. It was the first interactive science and technology center in Egypt. After 10 years, the number of centers has increased to 33 nationwide. Since its inauguration the center has received over 3 million visitors. Through different facilities, such as the internet, science cities, multimedia, and virtual reality programs, basic principles of science are simplified and their technological applications in our daily lives are explored. These facilities are fully equipped with new media such as video conferencing, videotapes, overhead projectors, data shows, and libraries, as well as demonstration tools for basic science. The main objectives of the science exploration centers are discussed such as: (1) curricula development for on-line learning; (2) integration of e-learning programs into basic science (physics, mathematics, chemistry, and biology) and (3) workshops and organizations for students, teachers, and communities dealing with basic science programs.

  2. Pluto: Planet or "Dwarf Planet"?

    NASA Astrophysics Data System (ADS)

    Voelzke, M. R.; de Araújo, M. S. T.

    2010-09-01

    In August 2006 during the XXVI General Assembly of the International Astronomical Union (IAU), taken place in Prague, Czech Republic, new parameters to define a planet were established. According to this new definition Pluto will be no more the ninth planet of the Solar System but it will be changed to be a "dwarf planet". This reclassification of Pluto by the academic community clearly illustrates how dynamic science is and how knowledge of different areas can be changed and evolves through the time, allowing to perceive Science as a human construction in a constant transformation, subject to political, social and historical contexts. These epistemological characteristics of Science and, in this case, of Astronomy, constitute important elements to be discussed in the lessons, so that this work contributes to enable Science and Physics teachers who perform a basic education to be always up to date on this important astronomical fact and, thereby, carry useful information to their teaching.

  3. Evaluation of Some Approved Basic Science and Technology Textbooks in Use in Junior Secondary Schools in Nigeria

    ERIC Educational Resources Information Center

    Nwafor, C. E.; Umoke, C. C.

    2016-01-01

    This study was designed to evaluate the content adequacy and readability of approved basic science and technology textbooks in use in junior secondary schools in Nigeria. Eight research questions guided the study. The sample of the study consisted of six (6) approved basic science and technology textbooks, 30 Junior Secondary Schools randomly…

  4. Research projects in the Surgeon-Scientist and Clinician-Investigator programs at the University of Toronto (1987-2016): a cohort study.

    PubMed

    Goldenberg, Neil M; Steinberg, Benjamin E; Rutka, James T; Chen, Robert; Cabral, Val; Rosenblum, Norman D; Kapus, Andras; Lee, Warren L

    2016-01-01

    Physicians have traditionally been at the forefront of medical research, bringing clinical questions to the laboratory and returning with ideas for treatment. However, we have anecdotally observed a decline in the popularity of basic science research among trainees. We hypothesized that fewer resident physicians have been pursuing basic science research training over time. We examined records from residents in the Surgeon-Scientist and Clinician-Investigator programs at the University of Toronto (1987-2016). Research by residents was categorized independently by 2 raters as basic science, clinical epidemiology or education-related based on the title of the project, the name of the supervisor and Pubmed searches. The study population was divided into quintiles of time, and the proportion pursuing basic science training in each quintile was calculated. Agreement between the raters was 100%; the categorization of the research topic remained unclear in 9 cases. The proportion of trainees pursuing basic science training dropped by 60% from 1987 to 2016 ( p = 0.005). Significantly fewer residents in the Surgeon-Scientist and Clinician-Investigator Programs at the University of Toronto are pursuing training in the basic sciences as compared with previous years.

  5. Educational Software for First Order Logic Semantics in Introductory Logic Courses

    ERIC Educational Resources Information Center

    Mauco, María Virginia; Ferrante, Enzo; Felice, Laura

    2014-01-01

    Basic courses on logic are common in most computer science curricula. Students often have difficulties in handling formalisms and getting familiar with them. Educational software helps to motivate and improve the teaching-learning processes. Therefore, incorporating these kinds of tools becomes important, because they contribute to gaining…

  6. Evaluation and Assessment in Early Social Science

    ERIC Educational Resources Information Center

    Hus, Vlasta; Matjašic, Jasmina

    2017-01-01

    Authenticity is an important element in the newer models of teaching, evaluation and assessment. Due to the fact that it is quite unclear how authentic evaluation and assessment should be implemented into practice, teachers still cling too much to traditional forms of knowledge evaluation and assessment. First, some basic theoretical facts on…

  7. Nutrition Education in the Medical Curriculum.

    ERIC Educational Resources Information Center

    Cardullo, Alice C.

    1982-01-01

    It is important that nutrition education be made part of the regular and postgraduate curriculum in all medical schools. The medical student should be provided training in nutrition and dietetics, both as part of the basic science syllabus and of the clinical aspects as they apply to disease states. (MSE)

  8. Teaching Embedded System Concepts for Technological Literacy

    ERIC Educational Resources Information Center

    Winzker, M.; Schwandt, A.

    2011-01-01

    A basic understanding of technology is recognized as important knowledge even for students not connected with engineering and computer science. This paper shows that embedded system concepts can be taught in a technological literacy course. An embedded system teaching block that has been used in an electronics module for non-engineers is…

  9. Conflicts in Developing an Elementary STEM Magnet School

    ERIC Educational Resources Information Center

    Sikma, Lynn; Osborne, Margery

    2014-01-01

    Elementary schools in the United States have been the terrain of a highly politicized push for improved reading and mathematics attainment, as well as calls for increased importance to be given to science, technology, engineering, and mathematics (STEM). With priorities placed on basic skills, however, instructional time in subjects such as…

  10. [An analysis of Spanish biomedical journals by the impact factor].

    PubMed

    Baños, J E; Casanovas, L; Guardiola, E; Bosch, F

    1992-06-13

    One of the most frequently used parameters for evaluating scientific publications is that of impact factor (IF) published in the Science Citation Index-Journal Citation Reports (SCI-JCR) which evaluates the number of citations a journal receives on behalf of other journals. The present study analyzed the Spanish biomedical journals included in the SCI-JCR by the IF. The IF were obtained from the SCI-JCR (1980-89). The journals were evaluated by the IF and the weighted impact factor (WIF) calculated according to WIF = (IF/MIF) x 100 in which MIF = maximum IF of the considered area. Nine Spanish biomedical journals were included in the SCI-JCR, four being basic sciences (Histology and Histopathology, Inmunología, Methods and Findings in Experimental and Clinical Pharmacology, Revista Española de Fisiología) and five clinical journals (Allergologia et Immunopathologia, Medicina Clínica, Nefrología, Revista Española de las Enfermedades del Aparato Digestivo, Revista Clínica Española). Their IF were much lower than the most important journals in each area with the mean (+/- standard deviation) being 0.21 +/- 0.22 (range 0.016-0.627). The mean WIF was 2.88 +/- 4.07 (0.16-12.82). The journals of basic sciences had higher IF and WIF than the clinical journals (p less than 0.05). Only the four journals of basic sciences were included in the SCI. Four journals, those of basic sciences, are preferentially or exclusively published in English and other five are published in Spanish. The differences in IF among these groups were not significant (p = 0.06) while those of WIF were significant (p less than 0.05). The number of Spanish biomedical journals in the SCI-JCR has risen from 1 in 1980 to 9 in 1989 with IF which have evolved variably. In mind of impact factor, the contribution of Spanish journals is low, with that of biomedical sciences being higher than that of clinical journals. Language and inclusion in the Science Citation Index may explain, at least in part, the low impact factors obtained.

  11. ‘The physics of life,’ an undergraduate general education biophysics course

    NASA Astrophysics Data System (ADS)

    Parthasarathy, Raghuveer

    2015-05-01

    Improving the scientific literacy of non-scientists is an important aim, both because of the ever-increasing impact of science on our lives and because understanding science enriches our experience of the natural world. One route to improving scientific literacy is via general education undergraduate courses—i.e. courses for students not majoring in the sciences or engineering. Because it encompasses a variety of important scientific concepts, demonstrates connections between basic science and real-world applications and illustrates the creative ways in which scientific insights develop, biophysics is a useful subject with which to promote scientific literacy. I describe here a course on biophysics for non-science-major undergraduates recently developed at the University of Oregon (Eugene, OR, USA), noting its design, which spans both macroscopic and microscopic topics, and the specific content of a few of its modules. I also describe evidence-based pedagogical approaches adopted in teaching the course and aspects of course enrollment and evaluation.

  12. Polydopamine--a nature-inspired polymer coating for biomedical science.

    PubMed

    Lynge, Martin E; van der Westen, Rebecca; Postma, Almar; Städler, Brigitte

    2011-12-01

    Polymer coatings are of central importance for many biomedical applications. In the past few years, poly(dopamine) (PDA) has attracted considerable interest for various types of biomedical applications. This feature article outlines the basic chemistry and material science regarding PDA and discusses its successful application from coatings for interfacing with cells, to drug delivery and biosensing. Although many questions remain open, the primary aim of this feature article is to illustrate the advent of PDA on its way to become a popular polymer for bioengineering purposes.

  13. FWP executive summaries: basic energy sciences materials sciences and engineering program (SNL/NM).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samara, George A.; Simmons, Jerry A.

    2006-07-01

    This report presents an Executive Summary of the various elements of the Materials Sciences and Engineering Program which is funded by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy at Sandia National Laboratories, New Mexico. A general programmatic overview is also presented.

  14. A model for integrating clinical care and basic science research, and pitfalls of performing complex research projects for addressing a clinical challenge.

    PubMed

    Steck, R; Epari, D R; Schuetz, M A

    2010-07-01

    The collaboration of clinicians with basic science researchers is crucial for addressing clinically relevant research questions. In order to initiate such mutually beneficial relationships, we propose a model where early career clinicians spend a designated time embedded in established basic science research groups, in order to pursue a postgraduate qualification. During this time, clinicians become integral members of the research team, fostering long term relationships and opening up opportunities for continuing collaboration. However, for these collaborations to be successful there are pitfalls to be avoided. Limited time and funding can lead to attempts to answer clinical challenges with highly complex research projects characterised by a large number of "clinical" factors being introduced in the hope that the research outcomes will be more clinically relevant. As a result, the complexity of such studies and variability of its outcomes may lead to difficulties in drawing scientifically justified and clinically useful conclusions. Consequently, we stress that it is the basic science researcher and the clinician's obligation to be mindful of the limitations and challenges of such multi-factorial research projects. A systematic step-by-step approach to address clinical research questions with limited, but highly targeted and well defined research projects provides the solid foundation which may lead to the development of a longer term research program for addressing more challenging clinical problems. Ultimately, we believe that it is such models, encouraging the vital collaboration between clinicians and researchers for the work on targeted, well defined research projects, which will result in answers to the important clinical challenges of today. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  15. Alternative Methods by Which Basic Science Pharmacy Faculty Can Relate to Clinical Practice, Executive Summary and Final Report, October 1, 1978 - March 15, 1980.

    ERIC Educational Resources Information Center

    Kabat, Hugh F.; And Others

    The areas of basic science pharmacy instruction and clinical pharmacy practice and their interrelationships were identified in order to help develop didactic and clinical experience alternatives. A 10-member advisory committee ranked basic pharmaceutical science topical areas in terms of their applicability to clinical practice utilizing a Delphi…

  16. Basic Research in the United States.

    ERIC Educational Resources Information Center

    Handler, Philip

    1979-01-01

    Presents a discussion of the development of basic research in the U.S. since World War II. Topics include the creation of the federal agencies, physics and astronomy, chemistry, earth science, life science, the environment, and social science. (BB)

  17. 26 CFR 1.41-5A - Basic research for taxable years beginning before January 1, 1987.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... was for basic research performed in the United States). (2) Research in the social sciences or humanities. Basic research does not include research in the social sciences or humanities, within the meaning...

  18. 26 CFR 1.41-5A - Basic research for taxable years beginning before January 1, 1987.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... was for basic research performed in the United States). (2) Research in the social sciences or humanities. Basic research does not include research in the social sciences or humanities, within the meaning...

  19. 26 CFR 1.41-5A - Basic research for taxable years beginning before January 1, 1987.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... was for basic research performed in the United States). (2) Research in the social sciences or humanities. Basic research does not include research in the social sciences or humanities, within the meaning...

  20. 26 CFR 1.41-5A - Basic research for taxable years beginning before January 1, 1987.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... was for basic research performed in the United States). (2) Research in the social sciences or humanities. Basic research does not include research in the social sciences or humanities, within the meaning...

  1. 26 CFR 1.41-5A - Basic research for taxable years beginning before January 1, 1987.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... was for basic research performed in the United States). (2) Research in the social sciences or humanities. Basic research does not include research in the social sciences or humanities, within the meaning...

  2. Can Basic Research on Children and Families Be Useful for the Policy Process?

    ERIC Educational Resources Information Center

    Moore, Kristin A.

    Based on the assumption that basic science is the crucial building block for technological and biomedical progress, this paper examines the relevance for public policy of basic demographic and behavioral sciences research on children and families. The characteristics of basic research as they apply to policy making are explored. First, basic…

  3. Frequency and Type of Conflicts of Interest in the Peer Review of Basic Biomedical Research Funding Applications: Self-Reporting Versus Manual Detection.

    PubMed

    Gallo, Stephen A; Lemaster, Michael; Glisson, Scott R

    2016-02-01

    Despite the presumed frequency of conflicts of interest in scientific peer review, there is a paucity of data in the literature reporting on the frequency and type of conflicts that occur, particularly with regard to the peer review of basic science applications. To address this gap, the American Institute of Biological Sciences (AIBS) conducted a retrospective analysis of conflict of interest data from the peer review of 282 biomedical research applications via several onsite review panels. The overall conflicted-ness of these panels was significantly lower than that reported for regulatory review. In addition, the majority of identified conflicts were institutional or collaborative in nature. No direct financial conflicts were identified, although this is likely due to the relatively basic science nature of the research. It was also found that 65 % of identified conflicts were manually detected by AIBS staff searching reviewer CVs and application documents, with the remaining 35 % resulting from self-reporting. The lack of self-reporting may be in part attributed to a lack of perceived risk of the conflict. This result indicates that many potential conflicts go unreported in peer review, underscoring the importance of improving detection methods and standardizing the reporting of reviewer and applicant conflict of interest information.

  4. The impact factor of a journal is a poor measure of the clinical relevance of its papers.

    PubMed

    Kodumuri, P; Ollivere, B; Holley, J; Moran, C G

    2014-03-01

    We evaluated the top 13 journals in trauma and orthopaedics by impact factor and looked at the longer-term effect regarding citations of their papers. All 4951 papers published in these journals during 2007 and 2008 were reviewed and categorised by their type, subspecialty and super-specialty. All citations indexed through Google Scholar were reviewed to establish the rate of citation per paper at two, four and five years post-publication. The top five journals published a total of 1986 papers. Only three (0.15%) were on operative orthopaedic surgery and none were on trauma. Most (n = 1084, 54.5%) were about experimental basic science. Surgical papers had a lower rate of citation (2.18) at two years than basic science or clinical medical papers (4.68). However, by four years the rates were similar (26.57 for surgery, 30.35 for basic science/medical), which suggests that there is a considerable time lag before clinical surgical research has an impact. We conclude that high impact journals do not address clinical research in surgery and when they do, there is a delay before such papers are cited. We suggest that a rate of citation at five years post-publication might be a more appropriate indicator of importance for papers in our specialty.

  5. [Basic research during residency in Israel: is change needed?].

    PubMed

    Fishbain, Dana; Shoenfeld, Yehuda; Ashkenazi, Shai

    2013-10-01

    A six-month research period is a mandatory part of the residency training program in most basic specialties in Israel and is named: the "basic science period". This is the only period in an Israeli physician's medical career which is dedicated strictly to research, accentuating the importance of medical research to the quality of training and level of medicine in Israel. From another point of view, one may argue that in an era of shortage of physicians on the one hand and the dizzying rate of growth in medical knowledge on the other hand, every moment spent training in residency is precious, therefore, making the decision of whether to dedicate six months for research becomes ever more relevant. This question is currently raised for discussion once again by the Scientific Council of the Israeli Medical Association. The Scientific Council lately issued a call for comments sent to all Israeli physicians, asking their opinion on several key questions regarding basic science research. Learning the public's opinion will serve as a background for discussion. A total of 380 physicians responded to the call and specified their standpoint on the subject, among them heads of departments, units and clinics, senior physicians and residents. The findings pointed to strong support in maintaining the research period as part of residency training due to its importance to medical training and medicine, although half the respondents supported the use of various alternative formats for research together with the existing format. Those alternative format suggestions will be thoroughly reviewed. A smaller group of respondents supported allowing residents a choice between two tracks--with or without a research period, and only a few were in favor of canceling the research requirement altogether. The writers maintain that the "basic science period" of research during residency training is vital and its contribution to the high level of specialists and high level of medicine requires its conservation. Nevertheless, alternative formats which might be suitable for some residents should be considered, and auxiliary tools to help residents fulfill their potential in research and raise the quality of written research papers should be constructed.

  6. Behavioral and social sciences at the National Institutes of Health: Methods, measures, and data infrastructures as a scientific priority.

    PubMed

    Riley, William T

    2017-01-01

    The National Institutes of Health Office of Behavioral and Social Sciences Research (OBSSR) recently released its strategic plan for 2017-2021. This plan focuses on three equally important strategic priorities: 1) improve the synergy of basic and applied behavioral and social sciences research, 2) enhance and promote the research infrastructure, methods, and measures needed to support a more cumulative and integrated approach to behavioral and social sciences research, and 3) facilitate the adoption of behavioral and social sciences research findings in health research and in practice. This commentary focuses on scientific priority two and future directions in measurement science, technology, data infrastructure, behavioral ontologies, and big data methods and analytics that have the potential to transform the behavioral and social sciences into more cumulative, data rich sciences that more efficiently build on prior research. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  7. Basic Research in the Mission Agencies: Agency Perspectives on the Conduct and Support of Basic Research. Report of the National Science Board, 1978.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC. National Science Board.

    A survey was conducted by the National Science Board of the basic research supported by executive branch agencies of the federal government. Most of the data came from information solicited by the Board from federal agencies involved in science. Fourteen mission agencies and two agencies not so classified and 20 subunits of these responded.…

  8. Examining the effect of self-explanation on cognitive integration of basic and clinical sciences in novices.

    PubMed

    Lisk, Kristina; Agur, Anne M R; Woods, Nicole N

    2017-12-01

    Several studies have shown that cognitive integration of basic and clinical sciences supports diagnostic reasoning in novices; however, there has been limited exploration of the ways in which educators can translate this model of mental activity into sound instructional strategies. The use of self-explanation during learning has the potential to promote and support the development of integrated knowledge by encouraging novices to elaborate on the causal relationship between clinical features and basic science mechanisms. To explore the effect of this strategy, we compared diagnostic efficacy of teaching students (n = 71) the clinical features of four musculoskeletal pathologies using either (1) integrated causal basic science descriptions (BaSci group); (2) integrated causal basic science descriptions combined with self-explanation prompts (SE group); (3) basic science mechanisms segregated from the clinical features (SG group). All participants completed a diagnostic accuracy test immediately after learning and 1-week later. The results showed that the BaSci group performed significantly better compared to the SE (p = 0.019) and SG groups (p = 0.004); however, no difference was observed between the SE and SG groups (p = 0.91). We hypothesize that the structure of the self-explanation task may not have supported the development of a holistic conceptual understanding of each disease. These findings suggest that integration strategies need to be carefully structured and applied in ways that support the holistic story created by integrated basic science instruction in order to foster conceptual coherence and to capitalize on the benefits of cognition integration.

  9. Exploring Attractiveness of the Basic Sciences for Female Physicians.

    PubMed

    Yamazaki, Yuka; Fukushima, Shinji; Kozono, Yuki; Uka, Takanori; Marui, Eiji

    2018-01-01

    In Japan, traditional gender roles of women, especially the role of motherhood, may cause early career resignations in female physicians and a shortage of female researchers. Besides this gender issue, a general physician shortage is affecting basic science fields. Our previous study suggested that female physicians could be good candidates for the basic sciences because such work offers good work-life balance. However, the attractiveness for female physicians of working in the basic sciences, including work-life balance, is not known. In a 2012 nationwide cross-sectional questionnaire survey, female physicians holding tenured positions in the basic sciences at Japan's medical schools were asked an open-ended question about positive aspects of basic sciences that clinical medicine lacks, and we analyzed 58 respondents' comments. Qualitative analysis using the Kawakita Jiro method revealed four positive aspects: research attractiveness, priority on research productivity, a healthy work-life balance, and exemption from clinical duties. The most consistent positive aspect was research attractiveness, which was heightened by medical knowledge and clinical experience. The other aspects were double-edged swords; for example, while the priority on research productivity resulted in less gender segregation, it sometimes created tough competition, and while exemption from clinical duties contributed to a healthy work-life balance, it sometimes lowered motivation as a physician and provided unstable income. Overall, if female physicians lack an intrinsic interest in research and seek good work-life balance, they may drop out of research fields. Respecting and cultivating students' research interest is critical to alleviating the physician shortage in the basic sciences.

  10. Gender, Science, & the Undergraduate Curriculum. Building Two-Way Streets.

    ERIC Educational Resources Information Center

    Musil, Caryn McTighe, Ed.

    In the essays in this book interdisciplinary groups of scholars and teachers explore ways to integrate the feminist science studies scholarship into the teaching of basic science and how to insert more basic science into the teaching of women's studies. The essays of part 1, New Courses and New Intellectual Frameworks: Transforming Courses in…

  11. PROJECT SUCCESS: Marine Science. (Introductory Packet, Basic Marine Science Laboratory Techniques, Oceanographic Instruments, Individual Projects, Bibliography).

    ERIC Educational Resources Information Center

    Demaray, Bryan

    Five packets comprise the marine science component of an enrichment program for gifted elementary students. Considered in the introductory section are identification (pre/post measure) procedures. Remaining packets address the following topics (subtopics in parentheses): basic marine science laboratory techniques (microscope techniques and metric…

  12. Opportunities for joint FPL and VTT research.

    Treesearch

    Theodore Wegner

    2010-01-01

    Openness, collaboration and sharing of information in developing the basic underlying, precompetitive science and technology for areas of emerging importance to the forest products sectors of the US and Finland are expected to provide synergistic benefits and allow for more creative problem solving. There appear to be a number of common interests with respect to...

  13. Driving Discovery | Division of Cancer Prevention

    Cancer.gov

    Progress against cancer depends on many types of research—including basic, translational, and clinical—across different research areas, from the biology of cancer cells to studies of large populations. Regardless of the research type or area, supporting the best science and the best scientists is of paramount importance to NCI. Learn more about driving progress against cancer.

  14. Toward Using Games to Teach Fundamental Computer Science Concepts

    ERIC Educational Resources Information Center

    Edgington, Jeffrey Michael

    2010-01-01

    Video and computer games have become an important area of study in the field of education. Games have been designed to teach mathematics, physics, raise social awareness, teach history and geography, and train soldiers in the military. Recent work has created computer games for teaching computer programming and understanding basic algorithms. …

  15. How Do Siamese Cats Get Their Color?

    ERIC Educational Resources Information Center

    Todd, Amber; Kenyon, Lisa

    2016-01-01

    When asked about protein, students often mention meat, protein bars, and protein's role in building muscles. Many students are not aware of the most basic function of protein: linking genes and traits. Because of its importance in molecular genetics, protein function is included in the life sciences section of the "Next Generation Science…

  16. James Van Allen and His Namesake NASA Mission

    NASA Astrophysics Data System (ADS)

    Baker, D. N.; Hoxie, V. C.; Jaynes, A.; Kale, A.; Kanekal, S. G.; Li, X.; Reeves, G. D.; Spence, H. E.

    2013-12-01

    In many ways, James A. Van Allen defined and "invented" modern space research. His example showed the way for government-university partners to pursue basic research that also served important national and international goals. He was a tireless advocate for space exploration and for the role of space science in the spectrum of national priorities.

  17. Triangles: Shapes in Math, Science and Nature.

    ERIC Educational Resources Information Center

    Ross, Catherine Sheldrick

    This book examines everything having to do with the triangle. It begins with a basic definition of the triangle and continues with discussions on tetrahedrons, triangular prisms, and pyramid shapes. Some ideas addressed include how triangles are used to measure heights and distances, the importance of triangles to builders, Alexander Graham Bell's…

  18. Basic Skills Applications in Career Investigation: Mathematics, Science, Social Studies, Communications, Productive Work Habits. Revised.

    ERIC Educational Resources Information Center

    Hendrix, Mary W.

    These materials allow instructors to provide learning experiences that stress the equal importance of academic and vocational education and the personal and social matters related to the work ethic. Instructional materials are provided in 15 clusters: agribusiness and natural resources; business and office; communications and media; construction;…

  19. Ideas and Activities for Recycling Education for Grades K-12.

    ERIC Educational Resources Information Center

    Ayers, Jerry B., Ed.; Olberding, April H., Ed.

    In June 1997, Tennessee Technological University's Center for Manufacturing Research conducted a one-week program on plastics recycling for science teachers. The purpose of the program was to increase the teachers' basic knowledge about the importance of recycling plastics and to better prepare the teachers for teaching recycling in the classroom.…

  20. Programme Implementation in Social and Emotional Learning: Basic Issues and Research Findings

    ERIC Educational Resources Information Center

    Durlak, Joseph A.

    2016-01-01

    This paper discusses the fundamental importance of achieving quality implementation when assessing the impact of social and emotional learning interventions. Recent findings in implementation science are reviewed that include a definition of implementation, its relation to programme outcomes, current research on the factors that affect…

  1. Mechanisms Influencing Student Understanding on an Outdoor Guided Field Trip

    ERIC Educational Resources Information Center

    Caskey, Nourah Al-Rashid

    2009-01-01

    Field trips are a basic and important, yet often overlooked part of the student experience. They provide the opportunity to integrate real world knowledge with classroom learning and student previous personal experiences. Outdoor guided field trips leave students with an increased understanding, awareness and interest and in science. However, the…

  2. Great Lakes Education Booklet, 1990-1991.

    ERIC Educational Resources Information Center

    Michigan State Dept. of Natural Resources, Lansing.

    This booklet integrates science, history, and environmental education to help students acquire a basic understanding of the importance of the Great Lakes located in the United States. The packet also contains a Great Lakes Basin resource map and a sand dune poster. These materials introduce students to a brief history of the lakes, the diversity…

  3. Niche versus neutrality: a dynamical analysis

    Treesearch

    Michael Kalyuzhny; Efrat Seri; Rachel Chocron; Curtis H. Flather; Ronen Kadmon; Nadav M. Shnerb

    2014-01-01

    Understanding the forces shaping ecological communities is of crucial importance for basic science and conservation. After 50 years in which ecological theory has focused on either stable communities driven by niche-based forces or nonstable “neutral” communities driven by demographic stochasticity, contemporary theories suggest that ecological communities are driven...

  4. Can Computers Be Used Successfully for Teaching College Mathematics?

    ERIC Educational Resources Information Center

    Hatfield, Steven H.

    1976-01-01

    Author states that the use of computers in mathematics courses tends to generate interest in course subject matter and make learning a less passive experience. Computers also introduce students to computer science as a field of study, and provide basic knowledge of computers as an important aspect of today's technology. (Author/RW)

  5. Materials sciences programs: Fiscal year 1994

    NASA Astrophysics Data System (ADS)

    1995-04-01

    The Division of Materials Sciences is located within the DOE in the Office of Basic Energy Sciences. The Division of Materials Sciences is responsible for basic research and research facilities in strategic materials science topics of critical importance to the mission of the Department and its Strategic Plan. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship amongst the synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences sub-fields include physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 458 research programs including 216 at 14 DOE National Laboratories, 242 research grants (233 for universities), and 9 Small Business Innovation Research (SBIR) Grants. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the SBIR Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F contains descriptions of other user facilities; G, a summary of funding levels; and H, indices characterizing research projects.

  6. Materials sciences programs, fiscal year 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-04-01

    The Division of Materials Sciences is located within the DOE in the Office of Basic Energy Sciences. The Division of Materials Sciences is responsible for basic research and research facilities in strategic materials science topics of critical importance to the mission of the Department and its Strategic Plan. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship amongst the synthesis, processing, structure, properties, behavior, performance andmore » other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences sub-fields include physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 458 research programs including 216 at 14 DOE National Laboratories, 242 research grants (233 for universities), and 9 Small Business Innovation Research (SBIR) Grants. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the SBIR Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F contains descriptions of other user facilities; G, a summary of funding levels; and H, indices characterizing research projects.« less

  7. The science of medical librarianship: investing in the future.

    PubMed Central

    Love, E

    1987-01-01

    Information science is changing from an applied service-oriented activity to a basic research discipline. The library profession must earn a central place in this endeavor, and must address a number of important issues. These include ownership and intellectual property rights, a stronger research component for the profession, development of quality assurance systems for health information services, and a conceptual framework for training and career development of health sciences library technicians. The future of medical librarianship as a profession depends on a lasting commitment to research, a clear vision of the profession's fundamental mission and of the library's place in society. PMID:3450341

  8. Optimizing conditions for utilization of an H 2 oxidation catalyst with outer coordination sphere functionalities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dutta, Arnab; Ginovska, Bojana; Raugei, Simone

    2016-01-01

    Hydrogenase enzymes use abundant metals such as nickel and iron to efficiently interconvert H2 and protons. In this work, we demonstrate that a Ni-based catalyst can exceed the rates of enzymes with only slightly higher overpotentials using [Ni(PCy2Narginine2)2]7, containing an amino acid-based outer coordination sphere. Under conditions of high pressure, elevated temperature, and aqueous acidic solutions, conditions similar to those found in fuel cells, this electrocatalyst exhibits the fastest H2 oxidation reported to date for any homogeneous catalyst (TOF 1.1×106 s-1) operating at a moderate overpotential (240 mV). Control experiments demonstrate that both the appended outer coordination sphere and watermore » are important to achieve this impressive catalytic performance. This work was funded by the Office of Science Early Career Research Program through the US Department of Energy, Office of Science, Office of Basic Energy Sciences (AD, WJS), and the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences (JASR) located at Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for the US Department of Energy.« less

  9. Development and Validation of the Life Sciences Assessment: A Measure of Preschool Children's Conceptions of Basic Life Sciences

    ERIC Educational Resources Information Center

    Maherally, Uzma Nooreen

    2014-01-01

    The purpose of this study was to develop and validate a science assessment tool termed the Life Sciences Assessment (LSA) in order to assess preschool children's conceptions of basic life sciences. The hypothesis was that the four sub-constructs, each of which can be measured through a series of questions on the LSA, will make a significant…

  10. Visualizing Culturally Relevant Science Pedagogy Through Photonarratives of Black Middle School Teachers

    NASA Astrophysics Data System (ADS)

    Goldston, M. Jenice; Nichols, Sharon

    2009-04-01

    This study situated in a Southern resegregated Black middle school involved four Black teachers and two White science educators’ use of photonarratives to envision culturally relevant science pedagogy. Two questions guided the study: (1) What community referents are important for conceptualizing culturally relevant practices in Black science classrooms? and (2) How do teachers’ photonarratives serve to open conversations and notions of culturally relevant science practices? The research methodologically drew upon memory-work, Black feminism, critical theory, visual methodology, and narrative inquiry as “portraiture.” Issues of positionality and identity proved to be central to this work, as three luminaries portray Black teachers’ insights about supports and barriers to teaching and learning science. The community referents identified were associated with church and its oral traditions, inequities of the market place in meeting their basic human needs, and community spaces.

  11. Communicating science-based recommendations with memorable and actionable guidelines.

    PubMed

    Ratner, Rebecca K; Riis, Jason

    2014-09-16

    For many domains of basic and applied science, a key set of scientific facts is well established and there is a need for public action in light of those facts. However, individual citizens do not consistently follow science-based recommendations, even when they accept the veracity of the advice. To address this challenge, science communicators need to develop a guideline that individuals can commit to memory easily and act on straightforwardly at moments of decision. We draw on research from psychology to discuss several characteristics that will enhance a guideline's memorability and actionability and illustrate using a case study from the US Department of Agriculture's communications based on nutrition science. We conclude by discussing the importance of careful research to test whether any given guideline is memorable and actionable by the intended target audience.

  12. Information-seeking behavior of basic science researchers: implications for library services.

    PubMed

    Haines, Laura L; Light, Jeanene; O'Malley, Donna; Delwiche, Frances A

    2010-01-01

    This study examined the information-seeking behaviors of basic science researchers to inform the development of customized library services. A qualitative study using semi-structured interviews was conducted on a sample of basic science researchers employed at a university medical school. The basic science researchers used a variety of information resources ranging from popular Internet search engines to highly technical databases. They generally relied on basic keyword searching, using the simplest interface of a database or search engine. They were highly collegial, interacting primarily with coworkers in their laboratories and colleagues employed at other institutions. They made little use of traditional library services and instead performed many traditional library functions internally. Although the basic science researchers expressed a positive attitude toward the library, they did not view its resources or services as integral to their work. To maximize their use by researchers, library resources must be accessible via departmental websites. Use of library services may be increased by cultivating relationships with key departmental administrative personnel. Despite their self-sufficiency, subjects expressed a desire for centralized information about ongoing research on campus and shared resources, suggesting a role for the library in creating and managing an institutional repository.

  13. Information-seeking behavior of basic science researchers: implications for library services

    PubMed Central

    Haines, Laura L.; Light, Jeanene; O'Malley, Donna; Delwiche, Frances A.

    2010-01-01

    Objectives: This study examined the information-seeking behaviors of basic science researchers to inform the development of customized library services. Methods: A qualitative study using semi-structured interviews was conducted on a sample of basic science researchers employed at a university medical school. Results: The basic science researchers used a variety of information resources ranging from popular Internet search engines to highly technical databases. They generally relied on basic keyword searching, using the simplest interface of a database or search engine. They were highly collegial, interacting primarily with coworkers in their laboratories and colleagues employed at other institutions. They made little use of traditional library services and instead performed many traditional library functions internally. Conclusions: Although the basic science researchers expressed a positive attitude toward the library, they did not view its resources or services as integral to their work. To maximize their use by researchers, library resources must be accessible via departmental websites. Use of library services may be increased by cultivating relationships with key departmental administrative personnel. Despite their self-sufficiency, subjects expressed a desire for centralized information about ongoing research on campus and shared resources, suggesting a role for the library in creating and managing an institutional repository. PMID:20098658

  14. Basic science in a predoctoral family practice curriculum.

    PubMed

    Davies, T C; Barnett, B L

    1978-02-01

    A course in applied basic science was designed with topic material organized according to anatomic body regions. Details of the diagnostic method were explained early in the course, and clinical procedures for data gathering and problem analyzing were followed while the significance of basic science knowledge in dealing with clinical situations was described. A collection of 35mm slides constituted the focal point of the course. The authors conducted the course together and an atmosphere of intellectual honesty was developed through open discussion between faculty and students. Student curiosity was respected and rewarded. Summaries of the discussions were prepared retrospectively by the faculty instructors for review gy the students. This experience proved that family physicians can demonstrate effectively the relevance of basic science to clinical medicine.

  15. Rate Theory of Ion Pairing at the Water Liquid–Vapor Interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dang, Liem X.; Schenter, Gregory K.; Wick, Collin D.

    There is overwhelming evidence that certain ions are present near the vapor–liquid interface of aqueous salt solutions. Despite their importance in many chemical reactive phenomena, how ion–ion interactions are affected by interfaces and their influence on kinetic processes is not well understood. Molecular simulations were carried out to exam the thermodynamics and kinetics of small alkali halide ions in the bulk and near the water vapor–liquid interface. We calculated dissociation rates using classical transition state theory, and corrected them with transmission coefficients determined by the reactive flux method and Grote-Hynes theory. Our results show that, in addition to affecting themore » free energy of ions in solution, the interfacial environments significantly influence the kinetics of ion pairing. The results obtained from the reactive flux method and Grote-Hynes theory on the relaxation time present an unequivocal picture of the interface suppressing ion dissociation. This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. The calculations were carried out using computer resources provided by the Office of Basic Energy Sciences.« less

  16. Important role of translational science in rare disease innovation, discovery, and drug development.

    PubMed

    Pariser, Anne R; Gahl, William A

    2014-08-01

    Rare diseases play a leading role in innovation and the advancement of medical and pharmaceutical science. Most rare diseases are genetic disorders or atypical manifestations of infectious, immunologic, or oncologic diseases; they all provide opportunities to study extremes of human pathology and provide insight into both normal and aberrant physiology. Recently, drug development has become increasingly focused on classifying diseases largely on genetic grounds; this has allowed the identification of molecularly defined targets and the development of targeted therapies. Clinical trials are now focusing on progressively smaller subgroups within both common and rare disease populations, often based on genetic tests or biomarkers. Drug developers, researchers, and regulatory agencies face a variety of challenges throughout the life cycle of drug research and development for rare diseases. These include the small numbers of patients available for study, lack of knowledge of the disease's natural history, incomplete understanding of the basic mechanisms causing the disorder, and variability in disease severity, expression, and course. Traditional approaches to rare disease clinical research have not kept pace with advances in basic science, and increased attention to translational science is needed to address these challenges, especially diagnostic testing, registries, and novel trial designs.

  17. A history of health and medical research in Australia.

    PubMed

    Dyke, Timothy; Anderson, Warwick P

    2014-07-07

    Health and medical research has played an important role in improving the life of Australians since before the 20th century, with many Australian researchers contributing to important advances both locally and internationally. The establishment of the National Health and Medical Research Council (NHMRC) to support research and to work to achieve the benefits of research for the community was significant. The NHMRC has also provided guidance in research and health ethics. Australian research has broadened to include basic biomedical science, clinical medicine and science, public health and health services. In October 2002, the NHMRC adopted Indigenous health research as a strategic priority. In 2013, government expenditure through the NHMRC was $852.9 million. This article highlights some important milestones in the history of health and medical research in Australia.

  18. Basic Energy Sciences FY 2011 Research Summaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This report provides a collection of research abstracts for more than 1,300 research projects funded by the Office of Basic Energy Sciences (BES) in Fiscal Year 2011 at some 180 institutions across the U.S. This volume is organized along the three BES divisions: Materials Sciences and Engineering; Chemical Sciences, Geosciences, and Biosciences; and Scientific User Facilities.

  19. Teaching Basic Science Content via Real-World Applications: A College-Level Summer Course in Veterinary Anatomy and Physiology

    ERIC Educational Resources Information Center

    Maza, Paul; Miller, Allison; Carson, Brian; Hermanson, John

    2018-01-01

    Learning and retaining science content may be increased by applying the basic science material to real-world situations. Discussing cases with students during lectures and having them participate in laboratory exercises where they apply the science content to practical situations increases students' interest and enthusiasm. A summer course in…

  20. Basic Energy Sciences FY 2012 Research Summaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This report provides a collection of research abstracts and highlights for more than 1,400 research projects funded by the Office of Basic Energy Sciences (BES) in Fiscal Year 2012 at some 180 institutions across the U.S. This volume is organized along the three BES Divisions: Materials Sciences and Engineering; Chemical Sciences, Geosciences, and Biosciences; and Scientific User Facilities.

  1. Basic Energy Sciences FY 2014 Research Summaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This report provides a collection of research abstracts and highlights for more than 1,200 research projects funded by the Office of Basic Energy Sciences (BES) in Fiscal Year 2014 at some 200 institutions across the U.S. This volume is organized along the three BES Divisions: Materials Sciences and Engineering; Chemical Sciences, Geosciences, and Biosciences; and Scientific User Facilities.

  2. The Impact of Hands-On-Approach on Student Academic Performance in Basic Science and Mathematics

    ERIC Educational Resources Information Center

    Ekwueme, Cecilia O.; Ekon, Esther E.; Ezenwa-Nebife, Dorothy C.

    2015-01-01

    Children can learn mathematics and sciences effectively even before being exposed to formal school curriculum if basic Mathematics and Sciences concepts are communicated to them early using activity oriented (Hands-on) method of teaching. Mathematics and Science are practical and activity oriented and can best be learnt through inquiry (Okebukola…

  3. Basic Principles of Animal Science. Reprinted.

    ERIC Educational Resources Information Center

    Florida State Dept. of Education, Tallahassee.

    The reference book is designed to fulfill the need for organized subject matter dealing with basic principles of animal science to be incorporated into the high school agriculture curriculum. The material presented is scientific knowledge basic to livestock production. Five units contain specific information on the following topics: anatomy and…

  4. Radiological Dispersion Devices and Basic Radiation Science

    ERIC Educational Resources Information Center

    Bevelacqua, Joseph John

    2010-01-01

    Introductory physics courses present the basic concepts of radioactivity and an overview of nuclear physics that emphasizes the basic decay relationship and the various types of emitted radiation. Although this presentation provides insight into radiological science, it often fails to interest students to explore these concepts in a more rigorous…

  5. 75 FR 27547 - Notice of Reestablishment of the Secretary of Energy Advisory Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-17

    ... management, basic science, research, development and technology activities; energy and national security... basis of their broad competence in areas relating to quality management, basic science, renewable energy, energy policy, environmental science, economics, and broad public policy interests. Membership of the...

  6. Thinking science with thinking machines: The multiple realities of basic and applied knowledge in a research border zone.

    PubMed

    Hoffman, Steve G

    2015-04-01

    Some scholars dismiss the distinction between basic and applied science as passé, yet substantive assumptions about this boundary remain obdurate in research policy, popular rhetoric, the sociology and philosophy of science, and, indeed, at the level of bench practice. In this article, I draw on a multiple ontology framework to provide a more stable affirmation of a constructivist position in science and technology studies that cannot be reduced to a matter of competing perspectives on a single reality. The analysis is grounded in ethnographic research in the border zone of Artificial Intelligence science. I translate in-situ moments in which members of neighboring but differently situated labs engage in three distinct repertoires that render the reality of basic and applied science: partitioning, flipping, and collapsing. While the essences of scientific objects are nowhere to be found, the boundary between basic and applied is neither illusion nor mere propaganda. Instead, distinctions among scientific knowledge are made real as a matter of course.

  7. Integration of medicine and basic science in dentistry: the role of oral and maxillofacial surgery in the pre-doctoral dental curriculum.

    PubMed

    Dennis, Matthew J

    2010-05-01

    It is the premise of this paper that the need for medical and basic science instruction in dentistry will increase over time. However, student and faculty appreciation of the relevance and significance of medicine and basic science to clinical dentistry has been elusive, largely due to difficulties linking biomedical science instruction and clinical dental instruction. The scope of traditional procedure based oral surgery instruction can be expanded in an attempt to bridge the medical science-clinical gap. Topics such as health status evaluation, medical risk assessment, and a variety of other biomedical issues can be presented to students in a way which imparts specific dental meaning to basic medical science in real-life clinical situations. Using didactic and chair side instruction in an oral surgery clinical environment, students are confronted with the need to understand these issues and how they relate to the patients they encounter who present for dental care.

  8. Human Salivary Alpha-Amylase (EC.3.2.1.1) Activity and Periodic Acid and Schiff Reactive (PAS) Staining: A Useful Tool to Study Polysaccharides at an Undergraduate Level

    ERIC Educational Resources Information Center

    Fernandes, Ruben; Correia, Rossana; Fonte, Rosalia; Prudencio, Cristina

    2006-01-01

    Health science education is presently in discussion throughout Europe due to the Bologna Declaration. Teaching basic sciences such as biochemistry in a health sciences context, namely in allied heath education, can be a challenging task since the students of preclinical health sciences are not often convinced that basic sciences are clinically…

  9. Results of Studying Astronomy Students’ Science Literacy, Quantitative Literacy, and Information Literacy

    NASA Astrophysics Data System (ADS)

    Buxner, Sanlyn; Impey, Chris David; Follette, Katherine B.; Dokter, Erin F.; McCarthy, Don; Vezino, Beau; Formanek, Martin; Romine, James M.; Brock, Laci; Neiberding, Megan; Prather, Edward E.

    2017-01-01

    Introductory astronomy courses often serve as terminal science courses for non-science majors and present an opportunity to assess non future scientists’ attitudes towards science as well as basic scientific knowledge and scientific analysis skills that may remain unchanged after college. Through a series of studies, we have been able to evaluate students’ basic science knowledge, attitudes towards science, quantitative literacy, and informational literacy. In the Fall of 2015, we conducted a case study of a single class administering all relevant surveys to an undergraduate class of 20 students. We will present our analysis of trends of each of these studies as well as the comparison case study. In general we have found that students basic scientific knowledge has remained stable over the past quarter century. In all of our studies, there is a strong relationship between student attitudes and their science and quantitative knowledge and skills. Additionally, students’ information literacy is strongly connected to their attitudes and basic scientific knowledge. We are currently expanding these studies to include new audiences and will discuss the implications of our findings for instructors.

  10. What does the American Board of Surgery In-Training/Surgical Basic Science Examination tell us about graduate surgical education?

    PubMed

    DaRosa, D A; Shuck, J M; Biester, T W; Folse, R

    1993-01-01

    This research sought to identify the strengths and weakness in residents' basic science knowledge and, second, to determine whether they progressively improve in their abilities to recall basic science information and clinical management facts, to analyze cause-effect relationships, and to solve clinical problems. Basic science knowledge was assessed by means of the results of the January 1990 American Board of Surgery's In-Training/Surgical Basic Science Exam (IT/SBSE). Postgraduate year (PGY) 1 residents' scores were compared with those of PGY5 residents. Content related to a question was considered "known" if 67% or more of the residents in each of the two groups answered it correctly. Findings showed 44% of the content tested by the basic science questions were unknown by new and graduating residents. The second research question required the 250 IT/SBSE questions to be classified into one of three levels of thinking abilities: recall, analysis, and inferential thinking. Profile analysis (split-plot analysis of variance) for each pair of resident levels indicated significant (P < 0.001) differences in performance on questions requiring factual recall, analysis, and inference between all levels except for PGY3s and PGY4s. The results of this research enable program directors to evaluate strengths and weaknesses in residency training curricula and the cognitive development of residents.

  11. A basic recursion concept inventory

    NASA Astrophysics Data System (ADS)

    Hamouda, Sally; Edwards, Stephen H.; Elmongui, Hicham G.; Ernst, Jeremy V.; Shaffer, Clifford A.

    2017-04-01

    Recursion is both an important and a difficult topic for introductory Computer Science students. Students often develop misconceptions about the topic that need to be diagnosed and corrected. In this paper, we report on our initial attempts to develop a concept inventory that measures student misconceptions on basic recursion topics. We present a collection of misconceptions and difficulties encountered by students when learning introductory recursion as presented in a typical CS2 course. Based on this collection, a draft concept inventory in the form of a series of questions was developed and evaluated, with the question rubric tagged to the list of misconceptions and difficulties.

  12. Application of Science Aesthetics in the Teaching of Electrodynamics

    ERIC Educational Resources Information Center

    Li, Haiyan

    2010-01-01

    As the important part of the theoretical physics, the electrodynamics is a theoretical basic course of the physics and relative subjects. To adapt the demands for cultivating the target of highly-quality talents in the 21st century, the aesthetic principle can be used in the teaching to stimulate students' learning desire and cultivate students'…

  13. Experiences in Digital Circuit Design Courses: A Self-Study Platform for Learning Support

    ERIC Educational Resources Information Center

    Bañeres, David; Clarisó, Robert; Jorba, Josep; Serra, Montse

    2014-01-01

    The synthesis of digital circuits is a basic skill in all the bachelor programmes around the ICT area of knowledge, such as Computer Science, Telecommunication Engineering or Electrical Engineering. An important hindrance in the learning process of this skill is that the existing educational tools for the design of circuits do not allow the…

  14. Medical Student Service Learning Program Teaches Secondary Students about Career Opportunities in Health and Medical Fields

    ERIC Educational Resources Information Center

    Karpa, Kelly; Vakharia, Kavita; Caruso, Catherine A.; Vechery, Colin; Sipple, Lanette; Wang, Adrian

    2015-01-01

    Engagement of academic medical centers in community outreach provides the public with a better understanding of basic terms and concepts used in biomedical sciences and increases awareness of important health information. Medical students at one academic medical center initiated an educational outreach program, called PULSE, that targets secondary…

  15. Converging Science, Medicine, and Agriculture: An Update on Executing the NADC’s ‘One Health Mission’

    USDA-ARS?s Scientific Manuscript database

    The NADC was established in 1961 to conduct basic and applied research on the livestock and poultry diseases of major economic importance to US agriculture. Now 50 years later, the NADC is the largest US federal animal health research facility focused on high-impact endemic diseases of livestock an...

  16. The Mediating Effect of Context Variation in Mixed Practice for Transfer of Basic Science

    ERIC Educational Resources Information Center

    Kulasegaram, Kulamakan; Min, Cynthia; Howey, Elizabeth; Neville, Alan; Woods, Nicole; Dore, Kelly; Norman, Geoffrey

    2015-01-01

    Applying a previously learned concept to a novel problem is an important but difficult process called transfer. Practicing multiple concepts together (mixed practice mode) has been shown superior to practicing concepts separately (blocked practice mode) for transfer. This study examined the effect of single and multiple practice contexts for both…

  17. Gender Equality in Preschool STEM Programs as a Factor Determining Russia's Successful Technological Development

    ERIC Educational Resources Information Center

    Savinskaya, O. B.

    2017-01-01

    The article discusses the importance of introducing training programs for preschool children that allow them to master basic knowledge in science, technology, engineering, and mathematics (STEM subjects) as an academic basis for the technological transition that is currently taking place in the modern world. It is shown that when preschool…

  18. Demonstration Experiments for Solid-State Physics Using a Table-Top Mechanical Stirling Refrigerator

    ERIC Educational Resources Information Center

    Osorio, M. R.; Morales, A. Palacio; Rodrigo, J. G.; Suderow, H.; Vieira, S.

    2012-01-01

    Liquid-free cryogenic devices are acquiring importance in basic science and engineering. But they can also lead to improvements in teaching low temperature and solid-state physics to graduate students and specialists. Most of the devices are relatively expensive, but small-sized equipment is slowly becoming available. Here, we have designed…

  19. An International Basic Science and Clinical Research Summer Program for Medical Students

    ERIC Educational Resources Information Center

    Ramjiawan, Bram; Pierce, Grant N.; Anindo, Mohammad Iffat Kabir; AlKukhun, Abedalrazaq; Alshammari, Abdullah; Chamsi, Ahmad Talal; Abousaleh, Mohannad; Alkhani, Anas; Ganguly, Pallab K.

    2012-01-01

    An important part of training the next generation of physicians is ensuring that they are exposed to the integral role that research plays in improving medical treatment. However, medical students often do not have sufficient time to be trained to carry out any projects in biomedical and clinical research. Many medical students also fail to…

  20. Analysis of Analogy Use in Secondary Education Science Textbooks in Turkey

    ERIC Educational Resources Information Center

    Akçay, Süleyman

    2016-01-01

    Analogical reasoning is both an innate ability and a basic learning mechanism that can be improved. In classrooms, it is an important tool used by teachers, especially when explaining difficult or abstract issues. In addition to its use in all aspects of our lives, analogical reasoning is commonly used in textbooks. This research examines the…

  1. Global Warming & the Greenhouse Effect. Grades 7-10. Teacher's Guide. Great Explorations in Math and Science (GEMS).

    ERIC Educational Resources Information Center

    Hocking, Colin; And Others

    This series of educational activities is intended to help teachers communicate basic scientific concepts related to global warming and the greenhouse effect to students grades 7-10. Seven sessions provide laboratory activities, simulations, and discussions that can be used to improve student understanding of a number of important scientific…

  2. Arts in Education: Where Are We? Where Should We Be? Who Is Involved?

    ERIC Educational Resources Information Center

    Martin, Kathryn A.

    1990-01-01

    Responds to Charles Fowler's article, "Arts Education and the NEA: Does the National Science Foundation Point the Way?" Suggests that arts education is in crisis because of lack of audience support. Recommends that the National Endowment for the Arts (NEA) emphasize the importance of arts education as a part of basic education. (KM)

  3. The Development of Clinical Reasoning Skills: A Major Objective of the Anatomy Course

    ERIC Educational Resources Information Center

    Elizondo-Omana, Rodrigo E.; Lopez, Santos Guzman

    2008-01-01

    Traditional medical school curricula have made a clear demarcation between the basic biomedical sciences and the clinical years. It is our view that a comprehensive medical education necessarily involves an increased correlation between basic science knowledge and its clinical applications. A basic anatomy course should have two main objectives:…

  4. Teaching Basic Probability in Undergraduate Statistics or Management Science Courses

    ERIC Educational Resources Information Center

    Naidu, Jaideep T.; Sanford, John F.

    2017-01-01

    Standard textbooks in core Statistics and Management Science classes present various examples to introduce basic probability concepts to undergraduate business students. These include tossing of a coin, throwing a die, and examples of that nature. While these are good examples to introduce basic probability, we use improvised versions of Russian…

  5. Nuclear medicine and imaging research (quantitative studies in radiopharmaceutical science)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooper, M.D.; Beck, R.N.

    1990-09-01

    This is a report of progress in Year Two (January 1, 1990--December 31, 1990) of Grant FG02-86ER60438, Quantitative Studies in Radiopharmaceutical Science,'' awarded for the three-year period January 1, 1989--December 31, 1991 as a competitive renewal following site visit in the fall of 1988. This program addresses the problems involving the basic science and technology underlying the physical and conceptual tools of radioactive tracer methodology as they relate to the measurement of structural and functional parameters of physiologic importance in health and disease. The principal tool is quantitative radionuclide imaging. The overall objective of this program is to further themore » development and transfer of radiotracer methodology from basic theory to routine clinical practice in order that individual patients and society as a whole will receive the maximum net benefit from the new knowledge gained. The focus of the research is on the development of new instruments and radiopharmaceuticals, and the evaluation of these through the phase of clinical feasibility. 25 refs., 13 figs., 1 tab.« less

  6. Basic Curriculum Guide--Science. Grades K-6.

    ERIC Educational Resources Information Center

    Starr, John W., 3rd., Ed.

    GRADES OR AGES: K-6. SUBJECT MATTER: Science. ORGANIZATION AND PHYSICAL APPEARANCE: The guide is in two parts--the background, philosophy, and instructional principles of science teaching, including a resource unit model, and the development by grade level of the various basic scientific concepts. The guide also includes information of…

  7. Inventory of Data Sources in Science and Technology. A Preliminary Survey.

    ERIC Educational Resources Information Center

    International Council of Scientific Unions, Paris (France).

    Provided in this inventory are sources of numerical or factual data in selected fields of basic science and applied science/technology. The objective of the inventory is to provide organizations and individuals (scientists, engineers, and information specialists), particularly those in developing countries, with basic data sources relevant to…

  8. Development of ostrich thrombocytes and monocyte-derived macrophages in culture and the control of Toxoplasma gondii reproduction after macrophage activation.

    PubMed

    Miranda, Farlen J B; Damasceno-Sá, João Cláudio; DaMatta, Renato A

    2016-01-01

    Raising ostriches became an important economic activity after their products became commodities. The health of farm animals is of paramount importance, so assessing basic immunological responses is necessary to better understand health problems. We developed a method to obtain ostrich thrombocytes and macrophages. The thrombocytes died by apoptosis after 48 h in culture, and the macrophages expanded in size and increased the number of acidic compartments. Macrophages were activated by chicken interferon-γ, producing high levels of nitric oxide. Toxoplasma gondii was able to infect these macrophages, and activation controlled parasitic reproduction. T. gondii, however, persisted in these cells, and infection reduced the production of nitric oxide. These results are important for the future assessment of the basic cellular and immunobiology of ostriches and demonstrate T. gondii suppression of nitric oxide production. © 2016 Poultry Science Association Inc.

  9. Basic Science and Public Policy: Informed Regulation for Nicotine and Tobacco Products.

    PubMed

    Fowler, Christie D; Gipson, Cassandra D; Kleykamp, Bethea A; Rupprecht, Laura E; Harrell, Paul T; Rees, Vaughan W; Gould, Thomas J; Oliver, Jason; Bagdas, Deniz; Damaj, M Imad; Schmidt, Heath D; Duncan, Alexander; De Biasi, Mariella

    2018-06-07

    Scientific discoveries over the past few decades have provided significant insight into the abuse liability and negative health consequences associated with tobacco and nicotine-containing products. While many of these advances have led to the development of policies and laws that regulate access to and formulations of these products, further research is critical to guide future regulatory efforts, especially as novel nicotine-containing products are introduced and selectively marketed to vulnerable populations. In this narrative review, we provide an overview of the scientific findings that have impacted regulatory policy and discuss considerations for further translation of science into policy decisions. We propose that open, bidirectional communication between scientists and policy makers is essential to develop transformative preventive- and intervention-focused policies and programs to reduce appeal, abuse liability, and toxicity of the products. Through these types of interactions, collaborative efforts to inform and modify policy have the potential to significantly decrease the use of tobacco and alternative nicotine products and thus enhance health outcomes for individuals. This work addresses current topics in the nicotine and tobacco research field to emphasize the importance of basic science research and provide examples of how it can be utilized to inform public policy. In addition to relaying current thoughts on the topic from experts in the field, the article encourages continued efforts and communication between basic scientists and policy officials.

  10. On the fundamental importance of the social psychology of research as a basic paradigm for the philosophy of science: A philosophical case study of the psychology of the Apollo moon scientists

    NASA Technical Reports Server (NTRS)

    Mitroff, I. I.

    1972-01-01

    A combined philosophical and social psychological study of over 40 of the Apollo moon Scientists reveals that the Orthodox or Received View of Scientific Theories is found wanting in several respects: (1) observations are not theory-free; (2) scientific observations are not directly observable; and (3) observations are no less problematic than theories. The study also raises some severe criticisms of distinction between the context of discovery and the context of justification. Not only does this distinction fail to describe the actual practice of science but even more important it has the dangerous effect of excluding some of the strongest lines of evidence which could most effectively challenge the distinction. The distinction is harmful of efforts to found interdisciplinary theories and philosophies of science.

  11. AGU scientists meet with legislators during Geosciences Congressional Visits Day

    NASA Astrophysics Data System (ADS)

    Uhlenbrock, Kristan

    2011-10-01

    This year marks the fourth annual Geosciences Congressional Visits Day (Geo-CVD), in which scientists from across the nation join together in Washington, D. C., to meet with their legislators to discuss the importance of funding for Earth and space sciences. AGU partnered with seven other Earth and space science organizations to bring more than 50 scientists, representing 23 states, for 2 days of training and congressional visits on 20-21 September 2011. As budget negotiations envelop Congress, which must find ways to agree on fiscal year (FY) 2012 budgets and reduce the deficit by $1.5 trillion over the next 10 years, Geo-CVD scientists seized the occasion to emphasize the importance of federally funded scientific research as well as science, technology, engineering, and math (STEM) education. Cuts to basic research and STEM education could adversely affect innovation, stifle future economic growth and competitiveness, and jeopardize national security.

  12. The new approach to science and technology in Poland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karczewski, W.

    1993-01-01

    In the past, the entire field of science and technology in Poland was divided into three sectors: the Academy of Sciences, the universities and other academic institutions, and the research and development institutes. The level of collaboration among these sectors was low, and the system of financing science and technology was centralized, bureaucratic, and inefficient. The present Science Bill,' which came into force in January, 1991, has three important new features: autonomy, scientific merit, and openness. The coordination of government policy in this field has been entrusted to the KBN (State Committee for Scientific Research). Members of the Committee andmore » its two commissions - one each for basic and applied research - are elected by the scientific community in direct two-stage elections. This new approach to the management of scientific research organization and financing should result in better utilization of budgetary resources allocated for science in Poland.« less

  13. Communicating science-based recommendations with memorable and actionable guidelines

    PubMed Central

    Ratner, Rebecca K.; Riis, Jason

    2014-01-01

    For many domains of basic and applied science, a key set of scientific facts is well established and there is a need for public action in light of those facts. However, individual citizens do not consistently follow science-based recommendations, even when they accept the veracity of the advice. To address this challenge, science communicators need to develop a guideline that individuals can commit to memory easily and act on straightforwardly at moments of decision. We draw on research from psychology to discuss several characteristics that will enhance a guideline’s memorability and actionability and illustrate using a case study from the US Department of Agriculture’s communications based on nutrition science. We conclude by discussing the importance of careful research to test whether any given guideline is memorable and actionable by the intended target audience. PMID:25225363

  14. Welding As Science: Applying Basic Engineering Principles to the Discipline

    NASA Technical Reports Server (NTRS)

    Nunes, A. C., Jr.

    2010-01-01

    This Technical Memorandum provides sample problems illustrating ways in which basic engineering science has been applied to the discipline of welding. Perhaps inferences may be drawn regarding optimal approaches to particular welding problems, as well as for the optimal education for welding engineers. Perhaps also some readers may be attracted to the science(s) of welding and may make worthwhile contributions to the discipline.

  15. The Physics of Life: A Biophysics Course for Non-science Major Undergraduates

    NASA Astrophysics Data System (ADS)

    Parthasarathy, Raghuveer

    2014-03-01

    Enhancing the scientific literacy of non-scientists is an important goal, both because of the ever-increasing impact of science and technology on people's lives, and because understanding contemporary science enables enriching insights into the workings of nature. One route to improving scientific literacy is via general education undergraduate courses - i.e. courses intended for students not majoring in the sciences or engineering - which in many cases provide these students' last formal exposure to science. I describe here a course on biophysics for non-science-major undergraduates recently developed at the University of Oregon. Biophysics, I claim, is a particularly useful vehicle for addressing scientific literacy. It involves important and general scientific concepts, demonstrates connections between basic science and tangible, familiar phenomena related to health and disease, and illustrates how scientific insights proceed not in predictable paths, but rather by applying tools and perspectives from disparate fields in creative ways. In addition, it highlights the far-reaching impact of physics research. I describe the general design of this course and the specific content of a few of its modules, as well as noting aspects of enrollment and evaluation. This work is affiliated with the University of Oregon's Science Literacy Program, supported by a grant from the Howard Hughes Medical Institute.

  16. The extent of evidence-based information about child maltreatment fatalities in social science textbooks.

    PubMed

    Douglas, Emily M; Serino, Patricia J

    2013-10-01

    Previous research has established that child welfare workers lack important information about child maltreatment fatalities and risk factors leading to death. Further, training has not been associated with improvements in knowledge. The authors assessed the presence of evidence-based information about child maltreatment fatalities and risk factors for death in 24 social science textbooks about child abuse and neglect or child welfare. The results indicate that basic information, such as definitions and incidence rates of child maltreatment fatalities are routinely included in social science textbooks, but information about child, parent, and household risk factors are not, and that inaccurate information is often included. Implications of the findings are discussed.

  17. Teachers' Involvement in Implementing the Basic Science and Technology Curriculum of the Nine-Year Basic Education

    ERIC Educational Resources Information Center

    Odili, John Nwanibeze; Ebisine, Sele Sylvester; Ajuar, Helen Nwakaife

    2011-01-01

    The study investigated teachers' involvement in implementing the basic science and technology curriculum in primary schools in WSLGA (Warri South Local Government Area) of Delta State. It sought to identify the availability of the document in primary schools and teachers' knowledge of the objectives and activities specified in the curriculum.…

  18. Medical Microbiology: Deficits and Remedies

    ERIC Educational Resources Information Center

    Gabridge, Michael G.

    1974-01-01

    Microbiology is a typical medical science in which basic information can have direct application. Yet, surveys and questionnaires of recent medical school graduates indicate a serious lack of retentiion in regard to basic biological science. (Author)

  19. Cancer Pharmacogenomics: Integrating Discoveries in Basic, Clinical and Population Sciences to Advance Predictive Cancer Care

    Cancer.gov

    Cancer Pharmacogenomics: Integrating Discoveries in Basic, Clinical and Population Sciences to Advance Predictive Cancer Care, a 2010 workshop sponsored by the Epidemiology and Genomics Research Program.

  20. Improving Learning in Science and Basic Skills among Diverse Student Populations.

    ERIC Educational Resources Information Center

    Sutman, Francis X.; Guzman, Ana

    This monograph is a rich resource of information designed to strengthen science and basic skills teaching, and improve learning for limited English proficient (LEP) minority student populations. It proposes the use of hands-on science investigations as the driving force for mathematics and English language development. The materials included in…

  1. Sun-to-power cells layer by layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moseke, Dawn; Richards, Robin; Moseke, Daniel

    Representing the Center for Interface Science: Solar Electric Materials (CISSEM), this document is one of the entries in the Ten Hundred and One Word Challenge. As part of the challenge, the 46 Energy Frontier Research Centers were invited to represent their science in images, cartoons, photos, words and original paintings, but any descriptions or words could only use the 1000 most commonly used words in the English language, with the addition of one word important to each of the EFRCs and the mission of DOE: energy. The mission of the CISSEM is to advance the understanding of interface science underlyingmore » solar energy conversion technologies based on organic and organic-inorganic hybrid materials; and to inspire, recruit and train future scientists and leaders in basic science of solar electric conversion.« less

  2. Life Sciences Space Station planning document: A reference payload for the Life Sciences Research Facility

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The Space Station, projected for construction in the early 1990s, will be an orbiting, low-gravity, permanently manned facility providing unprecedented opportunities for scientific research. Facilities for Life Sciences research will include a pressurized research laboratory, attached payloads, and platforms which will allow investigators to perform experiments in the crucial areas of Space Medicine, Space Biology, Exobiology, Biospherics and Controlled Ecological Life Support System (CELSS). These studies are designed to determine the consequences of long-term exposure to space conditions, with particular emphasis on assuring the permanent presence of humans in space. The applied and basic research to be performed, using humans, animals, and plants, will increase our understanding of the effects of the space environment on basic life processes. Facilities being planned for remote observations from platforms and attached payloads of biologically important elements and compounds in space and on other planets (Exobiology) will permit exploration of the relationship between the evolution of life and the universe. Space-based, global scale observations of terrestrial biology (Biospherics) will provide data critical for understanding and ultimately managing changes in the Earth's ecosystem. The life sciences community is encouraged to participate in the research potential the Space Station facilities will make possible. This document provides the range and scope of typical life sciences experiments which could be performed within a pressurized laboratory module on Space Station.

  3. The Divergent Thinking of Basic Skills of Sciences Process Skills of Life Aspects on Natural Sciences Subject in Indonesian Elementary School Students

    ERIC Educational Resources Information Center

    Subali, Bambang; Paidi; Mariyam, Siti

    2016-01-01

    This research aims at measuring the divergent thinking of basic skills of science process skills (SPS) of life aspects in Natural Sciences subjects on Elementary School. The test instruments used in this research have been standardized through the development of instruments. In this case, the tests were tried out to 3070 students. The results of…

  4. Reinventing Biostatistics Education for Basic Scientists

    PubMed Central

    Weissgerber, Tracey L.; Garovic, Vesna D.; Milin-Lazovic, Jelena S.; Winham, Stacey J.; Obradovic, Zoran; Trzeciakowski, Jerome P.; Milic, Natasa M.

    2016-01-01

    Numerous studies demonstrating that statistical errors are common in basic science publications have led to calls to improve statistical training for basic scientists. In this article, we sought to evaluate statistical requirements for PhD training and to identify opportunities for improving biostatistics education in the basic sciences. We provide recommendations for improving statistics training for basic biomedical scientists, including: 1. Encouraging departments to require statistics training, 2. Tailoring coursework to the students’ fields of research, and 3. Developing tools and strategies to promote education and dissemination of statistical knowledge. We also provide a list of statistical considerations that should be addressed in statistics education for basic scientists. PMID:27058055

  5. Elementary GLOBE: Inquiring About the Earth System Through Elementary Student Investigations

    NASA Astrophysics Data System (ADS)

    Henderson, S.; Hatheway, B.; Gardiner, L.; Gallagher, S.

    2006-12-01

    Elementary GLOBE was designed to introduce K-4 students to the study of Earth System Science (ESS). Elementary GLOBE forms an instructional unit comprised of five modules that address ESS and interrelated subjects including weather, hydrology, seasons, and soils. Each Elementary GLOBE module contains a science based storybook, classroom learning activities that complement the science content covered in each book, and teacher's notes. The storybooks explore a component of the Earth system and the associated classroom learning activities provide students with a meaningful introduction to technology, a basic understanding of the methods of inquiry, and connection to math and literacy skills. The science content in the books and activities serves as a springboard to GLOBE's scientific protocols. All Elementary GLOBE materials are freely downloadable (www.globe.gov/elementaryglobe) The use of science storybooks with elementary students has proven to be an effective practice in exposing students to science content while providing opportunities for students to improve their reading, writing, and oral communication skills. The Elementary GLOBE storybooks portray kids asking questions about the natural world, doing science investigations, and exploring the world around them. Through the storybook characters, scientific inquiry is modeled for young learners. The associated learning activities provide opportunities for students to practice science inquiry and investigation skills, including observation, recording, measuring, etc. Students also gain exposure and increase their comfort with different tools that scientists use. The learning activities give students experiences with asking questions, conducting scientific investigations, and scientific journaling. Elementary GLOBE fills an important niche in K-4 instruction. The international GLOBE Program brings together students, teachers, and scientists with the basic goals of increasing scientific understanding of the Earth, supporting improved student achievement in science and math, and enhancing environmental awareness. NASA provides the primary source of funding for GLOBE.

  6. Field Work in Ecology for Secondary Schools in Tropical Countries. Science and Technology Education Document Series No. 30.

    ERIC Educational Resources Information Center

    Kelly, P. J., Ed.

    One of the important aims of good biology teaching should be to encourage some basic understanding and appreciation of ecology. This understanding should include not only the scientific basis of ecology, but also its application for human welfare and, in particular, for rational exploitation and management of the natural environment and resources.…

  7. Importance of Adequate Gross Anatomy Education: The Impact of a Structured Pelvic Anatomy Course during Gynecology Fellowship

    ERIC Educational Resources Information Center

    Heisler, Christine Aminda

    2011-01-01

    Medical education underwent standardization at the turn of the 20th century and remained fairly consistent until recently. Incorporation of a patient-centered or case-based curriculum is believed to reinforce basic science concepts. One negative aspect is a reduction in hours spent with cadaveric dissection in the gross anatomy laboratory. For…

  8. Mars exobiology landing sites for future exploration

    NASA Technical Reports Server (NTRS)

    Landheim, Ragnhild; Greeley, Ronald; Desmarais, David; Farmer, Jack D.; Klein, Harold

    1993-01-01

    The selection of landing sites for Exobiology is an important issue for planning for future Mars missions. Results of a recent site selection study which focused on potential landing sites described in the Mars Landing Site Catalog are presented. In addition, basic Exobiology science objectives in Mars exploration are reviewed, and the procedures used in site evaluation and prioritization are outlined.

  9. Group Solutions, Too! More Cooperative Logic Activities for Grades K-4. Teacher's Guide. LHS GEMS.

    ERIC Educational Resources Information Center

    Goodman, Jan M.; Kopp, Jaine

    There is evidence that structured cooperative logic is an effective way to introduce or reinforce mathematics concepts, explore thinking processes basic to both math and science, and develop the important social skills of cooperative problem-solving. This book contains a number of cooperative logic activities for grades K-4 in order to improve…

  10. Modern Aspects of Communication in Education of Teachers Using New Information and Communication Technologies (ICT)

    ERIC Educational Resources Information Center

    Tatkovic, Nevenka; Sehanovic, Jusuf; Ruzic, Maja

    2005-01-01

    This work deals with the need of introducing modern aspects of communication on higher education of future teachers using information and communication technologies. The emphasis is put on the importance for future teachers to have basic information science knowledge and skills and their preparations for using ICT. A growth of the number of…

  11. Development of a Virtual Tool for Learning Basic Organisation and Planning in Rural Engineering Projects

    ERIC Educational Resources Information Center

    Redel-Macías, María Dolores; Castillo, Carlos; Aguilar Porro, Cristina; Polo, María; Taguas, Encarnación V.

    2014-01-01

    This paper presents a virtual lab for the contents of an Engineering project, for designing an agro-industrial building, which is also useful for a range of different transversal courses in Engineering sciences. The aims of this tool are to analyse the most important contents of a project-document (calculation, regulations, drawings and budgets),…

  12. Pseudo-Science and a Sound Basic Education: Voodoo Statistics in New York

    ERIC Educational Resources Information Center

    Hanushek, Eric

    2005-01-01

    The education problems in New York City (and a number of other jurisdictions that face court financing challenges) are real and important. Many people would indeed be willing to put more money into New York City schools (or any poorly performing school for that matter) if they had any reason to believe that students' achievement would improve…

  13. Unlimited Thirst for Genome Sequencing, Data Interpretation, and Database Usage in Genomic Era: The Road towards Fast-Track Crop Plant Improvement

    PubMed Central

    Govindaraj, Mahalingam

    2015-01-01

    The number of sequenced crop genomes and associated genomic resources is growing rapidly with the advent of inexpensive next generation sequencing methods. Databases have become an integral part of all aspects of science research, including basic and applied plant and animal sciences. The importance of databases keeps increasing as the volume of datasets from direct and indirect genomics, as well as other omics approaches, keeps expanding in recent years. The databases and associated web portals provide at a minimum a uniform set of tools and automated analysis across a wide range of crop plant genomes. This paper reviews some basic terms and considerations in dealing with crop plant databases utilization in advancing genomic era. The utilization of databases for variation analysis with other comparative genomics tools, and data interpretation platforms are well described. The major focus of this review is to provide knowledge on platforms and databases for genome-based investigations of agriculturally important crop plants. The utilization of these databases in applied crop improvement program is still being achieved widely; otherwise, the end for sequencing is not far away. PMID:25874133

  14. The science of consciousness - Basics, models, and visions.

    PubMed

    Hinterberger, Thilo

    2015-12-01

    This article presents a few models and aspects of the phenomenon consciousness that are emerging from modern neuroscience and might serve as a basis for scientific discourse in the field of Applied Consciousness Sciences. A first model describes the dynamics of information processing in the brain. The evoked electric brain potentials represent a hierarchical sequence of functions playing an important role in conscious perception. These range from primary processing, attention, pattern recognition, categorization, associations to judgments, and complex thoughts. Most functions seem to be implemented in the brain's neural network operating as a neurobiological computer. Another model treats conscious perception as a process of internalisation leading to the "self" as conscious observer. As a consequence, every conscious perception can be seen as a reduced and already interpreted observation of an inner representation of an outer or imagined "world." Subjective experience thus offers properties which can only be experienced from the inside and cannot be made objective. Basic values of humanity such as responsibility, love, compassion, freedom, and dignity can be derived from these subjective qualities. Therefore, in contrast to the Natural Sciences, the Science of Consciousness additionally is challenged to deal with those subjective qualities, emphasizing the resulting influence on health, social interactions, and the whole society. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Contexts, concepts and cognition: principles for the transfer of basic science knowledge.

    PubMed

    Kulasegaram, Kulamakan M; Chaudhary, Zarah; Woods, Nicole; Dore, Kelly; Neville, Alan; Norman, Geoffrey

    2017-02-01

    Transfer of basic science aids novices in the development of clinical reasoning. The literature suggests that although transfer is often difficult for novices, it can be optimised by two complementary strategies: (i) focusing learners on conceptual knowledge of basic science or (ii) exposing learners to multiple contexts in which the basic science concepts may apply. The relative efficacy of each strategy as well as the mechanisms that facilitate transfer are unknown. In two sequential experiments, we compared both strategies and explored mechanistic changes in how learners address new transfer problems. Experiment 1 was a 2 × 3 design in which participants were randomised to learn three physiology concepts with or without emphasis on the conceptual structure of basic science via illustrative analogies and by means of one, two or three contexts during practice (operationalised as organ systems). Transfer of these concepts to explain pathologies in familiar organ systems (near transfer) and unfamiliar organ systems (far transfer) was evaluated during immediate and delayed testing. Experiment 2 examined whether exposure to conceptual analogies and multiple contexts changed how learners classified new problems. Experiment 1 showed that increasing context variation significantly improved far transfer performance but there was no difference between two and three contexts during practice. Similarly, the increased conceptual analogies led to higher performance for far transfer. Both interventions had independent but additive effects on overall performance. Experiment 2 showed that such analogies and context variation caused learners to shift to using structural characteristics to classify new problems even when there was superficial similarity to previous examples. Understanding problems based on conceptual structural characteristics is necessary for successful transfer. Transfer of basic science can be optimised by using multiple strategies that collectively emphasise conceptual structure. This means teaching must focus on conserved basic science knowledge and de-emphasise superficial features. © 2017 John Wiley & Sons Ltd and The Association for the Study of Medical Education.

  16. Basic science faculty in surgical departments: advantages, disadvantages and opportunities.

    PubMed

    Chinoy, Mala R; Moskowitz, Jay; Wilmore, Douglas W; Souba, Wiley W

    2005-01-01

    The number of Ph.D. faculty in clinical departments now exceeds the number of Ph.D. faculty in basic science departments. Given the escalating pressures on academic surgeons to produce in the clinical arena, the recruitment and retention of high-quality Ph.D.s will become critical to the success of an academic surgical department. This success will be as dependent on the surgical faculty understanding the importance of the partnership as the success of the Ph.D. investigator. Tighter alignment among the various clinical and research programs and between surgeons and basic scientists will facilitate the generation of new knowledge that can be translated into useful products and services (thus improving care). To capitalize on what Ph.D.s bring to the table, surgery departments may need to establish a more formal research infrastructure that encourages the ongoing exchange of ideas and resources. Physically removing barriers between the research groups, encouraging the open exchange of techniques and observations and sharing core laboratories is characteristic of successful research teams. These strategies can meaningfully contribute to developing successful training program grants, program projects and bringing greater research recognition to the department of surgery.

  17. The Basic Science Curriculum in the 21st Century: What Needs to Be Changed?

    ERIC Educational Resources Information Center

    Garant, Philias R.

    1986-01-01

    The basic science curriculum in dental education could be improved by adopting a curriculum containing only two integrated required science courses about (1) the structure and function of the human body and (2) disease and reaction to disease in the human body. Elective graduate-level predoctoral courses would allow specialization. (MSE)

  18. 76 FR 38666 - Food and Drug Administration (FDA) and Marine Environmental Sciences Consortium/Dauphin Island...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-01

    ... actively involved in both basic and applied research in coastal waters of the northern Gulf of Mexico. The... between the Center for Food Safety and Applied Nutrition (CFSAN) and the Marine Environmental Sciences Consortium/Dauphin Island Sea Lab (DISL). The goal of the DISL is marine science education, basic and applied...

  19. Development and Validation of a Project Package for Junior Secondary School Basic Science

    ERIC Educational Resources Information Center

    Udofia, Nsikak-Abasi

    2014-01-01

    This was a Research and Developmental study designed to develop and validate projects for Junior Secondary School Basic Science instruction and evaluation. The projects were developed using the project blueprint and sent for validation by experts in science education and measurement and evaluation; using a project validation scale. They were to…

  20. How do scientists respond to anomalies? Different strategies used in basic and applied science.

    PubMed

    Trickett, Susan Bell; Trafton, J Gregory; Schunn, Christian D

    2009-10-01

    We conducted two in vivo studies to explore how scientists respond to anomalies. Based on prior research, we identify three candidate strategies: mental simulation, mental manipulation of an image, and comparison between images. In Study 1, we compared experts in basic and applied domains (physics and meteorology). We found that the basic scientists used mental simulation to resolve an anomaly, whereas applied science practitioners mentally manipulated the image. In Study 2, we compared novice and expert meteorologists. We found that unlike experts, novices used comparison to address anomalies. We discuss the nature of expertise in the two kinds of science, the relationship between the type of science and the task performed, and the relationship of the strategies investigated to scientific creativity. Copyright © 2009 Cognitive Science Society, Inc.

  1. An international basic science and clinical research summer program for medical students.

    PubMed

    Ramjiawan, Bram; Pierce, Grant N; Anindo, Mohammad Iffat Kabir; Alkukhun, Abedalrazaq; Alshammari, Abdullah; Chamsi, Ahmad Talal; Abousaleh, Mohannad; Alkhani, Anas; Ganguly, Pallab K

    2012-03-01

    An important part of training the next generation of physicians is ensuring that they are exposed to the integral role that research plays in improving medical treatment. However, medical students often do not have sufficient time to be trained to carry out any projects in biomedical and clinical research. Many medical students also fail to understand and grasp translational research as an important concept today. In addition, since medical training is often an international affair whereby a medical student/resident/fellow will likely train in many different countries during his/her early training years, it is important to provide a learning environment whereby a young medical student experiences the unique challenges and value of an international educational experience. This article describes a program that bridges the gap between the basic and clinical research concepts in a unique international educational experience. After completing two semester curricula at Alfaisal University in Riyadh, Kingdom of Saudi Arabia, six medical students undertook a summer program at St. Boniface Hospital Research Centre, in Winnipeg, MB, Canada. The program lasted for 2 mo and addressed advanced training in basic science research topics in medicine such as cell isolation, functional assessment, and molecular techniques of analysis and manipulation as well as sessions on the conduct of clinical research trials, ethics, and intellectual property management. Programs such as these are essential to provide a base from which medical students can decide if research is an attractive career choice for them during their clinical practice in subsequent years. An innovative international summer research course for medical students is necessary to cater to the needs of the medical students in the 21st century.

  2. Integrating basic science in academic cardiology training: two international perspectives on a common challenge.

    PubMed

    Bode, Michael F; Hilgendorf, Ingo

    2018-06-09

    Political bodies and professional societies acknowledge that translational research benefits from researchers trained in both, clinical medicine and basic science. Yet, few physicians undergoing clinical training in cardiology seek this dual career (Milewicz et al. J Clin Invest 125:3742-3747, 2015). The reasons are likely manifold, but with cardiology having become increasingly interventional and facing economic pressure, how much attention, credit, and encouragement is given to physicians interested in basic cardiovascular science? Having studied and worked in hospitals and laboratories, in both Germany and the USA, we aim to compare in this article how basic science education is currently integrated into cardiology training at German and US university hospitals, from medical school to more advanced career stages. By doing so, we hope to provide some outside perspectives to young physicians and decision makers alike, that may inspire changes to curricula in the respective countries and around the world.

  3. Evaluation of the Effects of Platelet-Rich Plasma (PRP) Therapy Involved in the Healing of Sports-Related Soft Tissue Injuries

    PubMed Central

    Middleton, Kellie K.; Barro, Victor; Muller, Bart; Terada, Satosha; Fu, Freddie H.

    2012-01-01

    Abstract Musculoskeletal injuries are the most common cause of severe long-term pain and physical disability, and affect hundreds of millions of people around the world. One of the most popular methods used to biologically enhance healing in the fields of orthopaedic surgery and sports medicine includes the use of autologous blood products, namely, platelet rich plasma (PRP). PRP is an autologous concentration of human platelets to supra-physiologic levels. At baseline levels, platelets function as a natural reservoir for growth factors including platelet-derived growth factor (PDGF), epidermal growth factor (EGF), transforming growth factor-beta 1 (TGF-β1), vascular endothelial growth factor (VEGF), basic fibroblast growth factor (FGF), hepatocyte growth factor (HGF), and insulin-like growth factor (IGF-I). PRP is commonly used in orthopaedic practice to augment healing in sports-related injuries of skeletal muscle, tendons, and ligaments. Despite its pervasive use, the clinical efficacy of PrP therapy and varying mechanisms of action have yet to be established. Basic science research has revealed that PRP exerts is effects through many downstream events secondary to release of growth factors and other bioactive factors from its alpha granules. These effects may vary depending on the location of injury and the concentration of important growth factors involved in various soft tissue healing responses. This review focuses on the effects of PrP and its associated bioactive factors as elucidated in basic science research. Current findings in PRP basic science research, which have shed light on its proposed mechanisms of action, have opened doors for future areas of PrP research. PMID:23576936

  4. Relevance of human anatomy in daily clinical practice.

    PubMed

    Arráez-Aybar, Luis-Alfonso; Sánchez-Montesinos, Indalecio; Mirapeix, Rosa-M; Mompeo-Corredera, Blanca; Sañudo-Tejero, Jose-Ramón

    2010-12-20

    the aim of this study has been to evaluate the relevance of gross human anatomy in daily clinical practice and to compare it to that of other basic sciences (biochemistry, bioethics, cytohistology, microbiology, pharmacology, physiology, psychology). a total of 1250 questionnaires were distributed among 38 different medical speciality professionals. Answers were analyzed taking into account speciality (medical, surgery and others), professional status (training physician or staff member) and professional experience. the response rate was 42.9% (n=536). Gross human anatomy was considered the most relevant basic discipline for surgical specialists, while pharmacology and physiology were most relevant for medical specialists. Knowledge of anatomy was also considered fundamental for understanding neurological or musculoskeletal disorders. In undergraduate programmes, the most important focuses in teaching anatomy were radiological, topographical and functional anatomy followed by systematic anatomy. In daily medical practice anatomy was considered basic for physical examination, symptom interpretation and interpretation of radiological images. When professional status or professional experience was considered, small variations were shown and there were no significant differences related to gender or community. our results underline the relevance of basic sciences (gross anatomy, physiology, and pharmacology) in daily professional activity. Evidence-based studies such as ours, lend greater credibility and objectivity to the role of gross anatomy in the undergraduate training of health professionals and should help to establish a more appropriate curriculum for future professionals. 2010 Elsevier GmbH. All rights reserved.

  5. Psychiatry outside the framework of empiricism.

    PubMed

    Mume, Celestine Okorome

    2017-01-01

    Science is interested in whatever that is empirical and objective. Any claim that cannot be objectively demonstrated has no place in science, because the subject does not deviate from the role, which it has set out to play in the life of mankind. Psychiatry, as a scientific discipline, plays along these basic principles. In the etiology, symptomatology, and management of psychiatric disorders, the biopsychosocial model recognizes the role of biological, psychological, and social factors. This essay views psychiatry from the biopsychosocial perspective and asserts that certain elements, which may not be readily and empirically verifiable, are important in the practice of psychiatry.

  6. Chemistry Division annual progress report for period ending April 30, 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poutsma, M.L.; Ferris, L.M.; Mesmer, R.E.

    1993-08-01

    The Chemistry Division conducts basic and applied chemical research on projects important to DOE`s missions in sciences, energy technologies, advanced materials, and waste management/environmental restoration; it also conducts complementary research for other sponsors. The research are arranged according to: coal chemistry, aqueous chemistry at high temperatures and pressures, geochemistry, chemistry of advanced inorganic materials, structure and dynamics of advanced polymeric materials, chemistry of transuranium elements and compounds, chemical and structural principles in solvent extraction, surface science related to heterogeneous catalysis, photolytic transformations of hazardous organics, DNA sequencing and mapping, and special topics.

  7. Analogy Mapping Development for Learning Programming

    NASA Astrophysics Data System (ADS)

    Sukamto, R. A.; Prabawa, H. W.; Kurniawati, S.

    2017-02-01

    Programming skill is an important skill for computer science students, whereas nowadays, there many computer science students are lack of skills and information technology knowledges in Indonesia. This is contrary with the implementation of the ASEAN Economic Community (AEC) since the end of 2015 which is the qualified worker needed. This study provided an effort for nailing programming skills by mapping program code to visual analogies as learning media. The developed media was based on state machine and compiler principle and was implemented in C programming language. The state of every basic condition in programming were successful determined as analogy visualization.

  8. The founding of ISOTT: the Shamattawa of engineering science and medical science.

    PubMed

    Bruley, Duane F

    2014-01-01

    The founding of ISOTT was based upon the blending of Medical and Engineering sciences. This occurrence is portrayed by the Shamattawa, the joining of the Chippewa and Flambeau rivers. Beginning with Carl Scheele's discovery of oxygen, the medical sciences advanced the knowledge of its importance to physiological phenomena. Meanwhile, engineering science was evolving as a mathematical discipline used to define systems quantitatively from basic principles. In particular, Adolf Fick's employment of a gradient led to the formalization of transport phenomena. These two rivers of knowledge were blended to found ISOTT at Clemson/Charleston, South Carolina, USA, in 1973.The establishment of our society with a mission to support the collaborative work of medical scientists, clinicians and all disciplines of engineering was a supporting step in the evolution of bioengineering. Traditional engineers typically worked in areas not requiring knowledge of biology or the life sciences. By encouraging collaboration between medical science and traditional engineering, our society became one of the forerunners in establishing bioengineering as the fifth traditional discipline of engineering.

  9. Integration of basic science and clinical medicine: the innovative approach of the cadaver biopsy project at the Boston University School of Medicine.

    PubMed

    Eisenstein, Anna; Vaisman, Lev; Johnston-Cox, Hillary; Gallan, Alexander; Shaffer, Kitt; Vaughan, Deborah; O'Hara, Carl; Joseph, Lija

    2014-01-01

    Curricular integration has emerged as a consistent theme in medical education reform. Vertical integration of topics such as pathology offers the potential to bring basic science content into the clinical arena, but faculty/student acceptance and curricular design pose challenges for such integration. The authors describe the Cadaver Biopsy Project (CBP) at Boston University School of Medicine as a sustainable model of vertical integration. Faculty and select senior medical students obtained biopsies of cadavers during the first-year gross anatomy course (fall 2009) and used these to develop clinical cases for courses in histology (spring 2010), pathology (fall 2010-spring 2011), and radiology (fall 2011 or spring 2012), thereby linking students' first experiences in basic sciences with other basic science courses and later clinical courses. Project goals included engaging medical stu dents in applying basic science princi ples in all aspects of patient care as they acquire skills. The educational intervention used a patient (cadaver)-centered approach and small-group, collaborative, case-based learning. Through this project, the authors involved clinical and basic science faculty-plus senior medical students-in a collaborative project to design and implement an integrated curriculum through which students revisited, at several different points, the microscopic structure and pathophysiology of common diseases. Developing appropriate, measurable out comes for medical education initiatives, including the CBP, is challenging. Accumu lation of qualitative feedback from surveys will guide continuous improvement of the CBP. Documenting longer-term impact of the curricular innovation on test scores and other competency-based outcomes is an ultimate goal.

  10. Comparison of traditional six-year and new four-year dental curricula in South Korea.

    PubMed

    Komabayashi, Takashi; Ahn, Chul; Kim, Kang-Ju; Oh, Hyo-Won

    2012-01-01

    This study aimed to compare the dental curriculum of the traditional six-year system with that of the new four-year (graduate-entry) system in South Korea. There are 11 dental schools in South Korea: six are public and five are private. Eight offer the new four-year program and the other three offer the traditional six-year program. Descriptive analyses were conducted using bibliographic data and local information along with statistical analyses such as chi-square tests. In the six-year programs, clinical dentistry subjects were taught almost equally in practical and didactic courses, while the basic science courses were taught more often as practical courses (P < 0.0001). In the four-year programs, both the basic science and clinical dentistry subjects were taught didactically more often; while more dentistry subjects were taught than basic sciences (P = 0.004). The four-year program model in South Korea is more focused on dentistry than on basic science, while both basic and clinical dentistry subjects were equally taught in the six-year program.

  11. Positions Toward Science Studies in Medicine Among University Graduates of Medicine and the Teenaged Participants of the "Medical Systems" Study Program

    NASA Astrophysics Data System (ADS)

    Ben-Zvi-Assaraf, Orit; Even-Israel, Chava

    2011-08-01

    The "Medical Systems" program was designed to introduce high school students to the world of advanced medicine. Its premise was to use an applied scientific discipline like medicine to encourage high-school students' interest in basic science. This study compares the teen-aged graduates of "Medical Systems" with fourth and fifth-year medical students. It aims to identify the attitudes of these two groups towards medical science and basic sciences in medicine. The population included 94 graduates of "Medical Systems" from schools throughout Israel, who had also completed an advanced-level course in a basic science (biology, chemistry or physics), and 96 medical students from different Israeli universities. The students' attitudes were measured using West et al.'s questionnaire (Med Educ 16(4):188-191, 1982), which assesses both the attitude of the participants towards basic science knowledge, and their attitude towards their learning experience in medical school. Nine participants from each group were also interviewed using a semi-structured interview protocol. The results showed essential differences in the attitudes of the two groups. The high school students consider scientific knowledge far more essential for a physician than do the medical students, who also showed a far lower estimation of the effectiveness of their science studies.

  12. Closing the Communal Gap: The Importance of Communal Affordances in Science Career Motivation.

    PubMed

    Brown, Elizabeth R; Thoman, Dustin B; Smith, Jessi L; Diekman, Amanda B

    2015-12-01

    To remain competitive in the global economy, the United States (and other countries) is trying to broaden participation in science, technology, engineering, and mathematics (STEM) by graduating an additional 1 million people in STEM fields by 2018. Although communion (working with, helping, and caring for others) is a basic human need, STEM careers are often (mis)perceived as being uncommunal. Across three naturalistic studies we found greater support for the communal affordance hypothesis, that perceiving STEM careers as affording greater communion is associated with greater STEM career interest, than two alternative hypotheses derived from goal congruity theory. Importantly, these findings held regardless of major (Study 1), college enrollment (Study 2), and gender (Studies 1-3). For undergraduate research assistants, mid-semester beliefs that STEM affords communion predicted end of the semester STEM motivation (Study 3). Our data highlight the importance of educational and workplace motivational interventions targeting communal affordances beliefs about STEM.

  13. The All-Purpose Science Teacher: An Analysis of Loopholes in State Requirements for High School Science Teachers

    ERIC Educational Resources Information Center

    National Council on Teacher Quality, 2010

    2010-01-01

    The basic story line of the STEM (Science, Technology, Engineering and Mathematics) crisis is, at this point, well known. In an increasingly interdependent and technology-driven economy, America is falling behind. A substantial number of students cannot perform basic math. U.S. students lag behind peers in international comparisons of science…

  14. United Nations/European Space Agency Workshops on Basic Space Science

    NASA Technical Reports Server (NTRS)

    Haubold, H. J.; Ocampo, A.; Torres, S.; Wamsteker, W.

    1995-01-01

    In 1958, the United Nations (UN) formally recognized a new potential for international cooperation by establishing an ad hoc Committee on the Peaceful Uses of Outer Space (COPUOS). A year later the Committee became a permanent body, and by 1983 membership had expanded to 53 states, with more than half of the members coming from the developing world. In 1970, COPUOS established the UN Program on Space Applications in order to strengthen cooperation in space science and technology between non-industrialized and industrialized countries. In the last few years, the UN and its COPUOS have paid increasing attention to education and research in space science and technology, including basic space science. In 1991 the UN, in cooperation with ESA, initiated the organization of annual Workshops in Basic Space Science for developing countries. These Workshops are designed to be held in one of the following major regions: Asia and the Pacific, Latin America and the Caribbean, Africa, Western Asia, and Europe. Accordingly, Basic Space Science Workshops have already been held in India (1991), Costa Rica andColombia (1992), and Nigeria (1993). The fourth Workshop was held from 27 June to 1 July 1994 at the Cairo University, in Egypt, for Western Asia.

  15. [Basic science and applied science].

    PubMed

    Pérez-Tamayo, R

    2001-01-01

    A lecture was presented by the author at the Democratic Opinion Forum on Health Teaching and Research, organized by Mexico's National Health Institutes Coordinating Office, at National Cardiology Institute "Ignacio Chavez", where he presented a critical review of the conventional classification of basic and applied science, as well as his personal view on health science teaching and research. According to the author, "well-conducted science" is that "generating reality-checked knowledge" and "mis-conducted science" is that "unproductive or producing 'just lies' and 'non-fundable'. To support his views, the author reviews utilitarian and pejorative definitions of science, as well as those of committed and pure science, useful and useless science, and practical and esoterical science, as synonyms of applied and basic science. He also asserts that, in Mexico, "this classification has been used in the past to justify federal funding cutbacks to basic science, allegedly because it is not targeted at solving 'national problems' or because it was not relevant to priorities set in a given six-year political administration period". Regarding health education and research, the author asserts that the current academic programs are inefficient and ineffective; his proposal to tackle these problems is to carry out a solid scientific study, conducted by a multidisciplinary team of experts, "to design the scientific researcher curricula from recruitment of intelligent young people to retirement or death". Performance assessment of researchers would not be restricted to publication of papers, since "the quality of scientific work and contribution to the development of science is not reflected by the number of published papers". The English version of this paper is available at: http://www.insp.mx/salud/index.html

  16. [Science in Argentina. Where do we go from here?].

    PubMed

    Barañao, Lino

    2012-01-01

    The Minister of Science described in detail his plans for the creation of closer bonds between science and society in a long term attempt to improve general quality of life. This will be accomplished by strengthening the infrastructure with diversification of the finances, multidisciplinary interrelations aiming to increase production, with special attention for social demands. One of these objectives includes the creation of research-private/public company interrelations, stressing the importance of multidisciplinary projects. Publication of results in high impact journals will always be a priority stressing the importance of basic research as a source of breakthroughs or technological inventions. The Minister also referred to the awarding of grants for scientific projects, the relation between research and production and the promotion of technological innovations. He defined three technological platforms, which are nanotechnology, biotechnology and communication. He also identified four problem/opportunity sectors, such as public health, energy sources, agro-industry and social development. Interaction between these has already led to an area of biotechnology applied to public health which will grow through translational medicine. He finally discussed the problem of patents and their importance in promoting successful business-research partnerships.

  17. Trends of Students of the College of Basic Science towards Teaching the Course of Athletics and Health by Using Computer Technology in the World Islamic Sciences and Education University (WISE)

    ERIC Educational Resources Information Center

    Salameh, Ibrahim Abdul Ghani; Khawaldeh, Mohammad Falah Ali

    2014-01-01

    The Study aimed at identifying the trends of the students of basic sciences College in the World Islamic Sciences and Education University towards teaching health and sport course by using computer technology as a teaching method, and to identify also the impact of the variables of academic level and the gender on the students' trends. The study…

  18. Basic Science Research and the Protection of Human Research Participants

    NASA Astrophysics Data System (ADS)

    Eiseman, Elisa

    2001-03-01

    Technological advances in basic biological research have been instrumental in recent biomedical discoveries, such as in the understanding and treatment of cancer, HIV/AIDS, and heart disease. However, many of these advances also raise several new ethical challenges. For example, genetic research may pose no physical risk beyond that of obtaining the initial blood sample, yet it can pose significant psychological and economic risks to research participants, such as stigmatization, discrimination in insurance and employment, invasion of privacy, or breach of confidentiality. These harms may occur even when investigators do not directly interact with the person whose DNA they are studying. Moreover, this type of basic research also raises broader questions, such as what is the definition of a human subject, and what kinds of expertise do Institutional Review Boards (IRBs) need to review the increasingly diverse types of research made possible by these advances in technology. The National Bioethics Advisory Commission (NBAC), a presidentially appointed federal advisory committee, has addressed these and other ethical, scientific and policy issues that arise in basic science research involving human participants. Two of its six reports, in particular, have proposed recommendations in this regard. "Research Involving Human Biological Materials: Ethical and Policy Guidance" addresses the basic research use of human tissues, cells and DNA and the protection of human participants in this type of research. In "Ethical and Policy Issues in the Oversight of Human Research" NBAC proposes a definition of research involving human participants that would apply to all scientific disciplines, including physical, biological, and social sciences, as well as the humanities and related professions, such as business and law. Both of these reports make it clear that the protection of research participants is key to conducting ethically sound research. By ensuring that all participants in research are protected and by educating everyone involved in research with human participants, including the public, investigators, IRB members, institutions, and federal agencies, NBAC’s goal is to develop guidelines by which important basic research can proceed while making sure that the rights and welfare of human research participants are not compromised.

  19. Quantum Social Science

    NASA Astrophysics Data System (ADS)

    Haven, Emmanuel; Khrennikov, Andrei

    2013-01-01

    Preface; Part I. Physics Concepts in Social Science? A Discussion: 1. Classical, statistical and quantum mechanics: all in one; 2. Econophysics: statistical physics and social science; 3. Quantum social science: a non-mathematical motivation; Part II. Mathematics and Physics Preliminaries: 4. Vector calculus and other mathematical preliminaries; 5. Basic elements of quantum mechanics; 6. Basic elements of Bohmian mechanics; Part III. Quantum Probabilistic Effects in Psychology: Basic Questions and Answers: 7. A brief overview; 8. Interference effects in psychology - an introduction; 9. A quantum-like model of decision making; Part IV. Other Quantum Probabilistic Effects in Economics, Finance and Brain Sciences: 10. Financial/economic theory in crisis; 11. Bohmian mechanics in finance and economics; 12. The Bohm-Vigier Model and path simulation; 13. Other applications to economic/financial theory; 14. The neurophysiological sources of quantum-like processing in the brain; Conclusion; Glossary; Index.

  20. Key steps for integrating a basic science throughout a medical school curriculum using an e-learning approach.

    PubMed

    Dubois, Eline Agnès; Franson, Kari Lanette

    2009-09-01

    Basic sciences can be integrated into the medical school curriculum via e-learning. The process of integrating a basic science in this manner resembles a curricular change. The change usually begins with an idea for using e-learning to teach a basic science and establishing the need for the innovation. In the planning phase, learning outcomes are formulated and a prototype of the program is developed based on the desired requirements. A realistic concept is formed after considering the limitations of the current institute. Next, a project team is assembled to develop the program and plan its integration. Incorporation of the e-learning program is facilitated by a well-developed and communicated integration plan. Various course coordinators are contacted to determine content of the e-learning program as well as establish assessment. Linking the e-learning program to existing course activities and thereby applying the basic science into the clinical context enhances the degree of integration. The success of the integration is demonstrated by a positive assessment of the program including favourable cost-benefit analysis and improved student performance. Lastly, when the program becomes institutionalised, continuously updating content and technology (when appropriate), and evaluating the integration contribute to the prolonged survival of the e-learning program.

  1. The Joint Institute for Nuclear Research in Experimental Physics of Elementary Particles

    NASA Astrophysics Data System (ADS)

    Bednyakov, V. A.; Russakovich, N. A.

    2018-05-01

    The year 2016 marks the 60th anniversary of the Joint Institute for Nuclear Research (JINR) in Dubna, an international intergovernmental organization for basic research in the fields of elementary particles, atomic nuclei, and condensed matter. Highly productive advances over this long road clearly show that the international basis and diversity of research guarantees successful development (and maintenance) of fundamental science. This is especially important for experimental research. In this review, the most significant achievements are briefly described with an attempt to look into the future (seven to ten years ahead) and show the role of JINR in solution of highly important problems in elementary particle physics, which is a fundamental field of modern natural sciences. This glimpse of the future is full of justified optimism.

  2. Vertical integration of biochemistry and clinical medicine using a near-peer learning model.

    PubMed

    Gallan, Alexander J; Offner, Gwynneth D; Symes, Karen

    2016-11-12

    Vertical integration has been extensively implemented across medical school curricula but has not been widely attempted in the field of biochemistry. We describe a novel curricular innovation in which a near-peer learning model was used to implement vertical integration in our medical school biochemistry course. Senior medical students developed and facilitated a case-based small group session for first year biochemistry students. Students were surveyed before and after the session on their attitudes about biochemistry, as well as the effectiveness of the session. Prior to the session, the students believed biochemistry was more important to understanding the basic science of medicine than it was to understanding clinical medicine or becoming a good physician. The session improved students' attitudes about the importance of biochemistry in clinical medicine, and after the session they now believe that understanding biochemistry is equally important to the basic sciences as clinical medicine. Students would like more sessions and believe the senior student facilitators were knowledgeable and effective teachers. The facilitators believe they improved their teaching skills. This novel combination of near-peer learning and vertical integration in biochemistry provided great benefit to both first year and senior medical students, and can serve as a model for other institutions. © 2016 by The International Union of Biochemistry and Molecular Biology, 44(6):507-516, 2016. © 2016 The International Union of Biochemistry and Molecular Biology.

  3. Ophthalmology and vision science research: Part 3: avoiding writer's block--understanding the ABCs of a good research paper.

    PubMed

    McGhee, Charles N J; Gilhotra, Amardeep K

    2005-12-01

    Completion of a scientific manuscript for submission to a peer-reviewed journal is a daunting task for clinicians and scientists early in their careers. In an ongoing series, this third article is the first of 2 related articles that deal with the basics of producing a high-quality research manuscript. Although ophthalmology and vision science are the principal focus of this series, the general concepts essential to producing a quality manuscript are applicable to diverse fields of research. This article highlights the exponential growth in the scientific literature over the past 40 years, considers why it is important to publish completed research, and discusses the necessity of identifying the key messages of the research, and their context, in relation to the published literature. The ethics of publishing biomedical research and scientific misconduct, such as duplicate publication or plagiarism, are outlined. To avoid later conflict, there is a critical need for coworkers to carefully address authorship order and inclusion early in the manuscript process. Internationally agreed guidelines are identified to guide this process. The importance of choosing the correct journal for a specific article and the nature of basic citation indices are discussed. The article concludes by elaborating and contrasting different scientific writing styles and emphasizing the considerable importance of developing a representative title and applying clarity and appropriate structure to the abstract.

  4. Landscape of Innovation for Cardiovascular Pharmaceuticals: From Basic Science to New Molecular Entities.

    PubMed

    Beierlein, Jennifer M; McNamee, Laura M; Walsh, Michael J; Kaitin, Kenneth I; DiMasi, Joseph A; Ledley, Fred D

    2017-07-01

    This study examines the complete timelines of translational science for new cardiovascular therapeutics from the initiation of basic research leading to identification of new drug targets through clinical development and US Food and Drug Administration (FDA) approval of new molecular entities (NMEs) based on this research. This work extends previous studies by examining the association between the growth of research on drug targets and approval of NMEs associated with these targets. Drawing on research on innovation in other technology sectors, where technological maturity is an important determinant in the success or failure of new product development, an analytical model was used to characterize the growth of research related to the known targets for all 168 approved cardiovascular therapeutics. Categorizing and mapping the technological maturity of cardiovascular therapeutics reveal that (1) there has been a distinct transition from phenotypic to targeted methods for drug discovery, (2) the durations of clinical and regulatory processes were significantly influenced by changes in FDA practice, and (3) the longest phase of the translational process was the time required for technology to advance from initiation of research to a statistically defined established point of technology maturation (mean, 30.8 years). This work reveals a normative association between metrics of research maturation and approval of new cardiovascular therapeutics and suggests strategies for advancing translational science by accelerating basic and applied research and improving the synchrony between the maturation of this research and drug development initiatives. Copyright © 2017 Elsevier HS Journals, Inc. All rights reserved.

  5. IHY - An International Cooperative Program

    NASA Astrophysics Data System (ADS)

    Rabello-Soares, M. Cristina; Davila, J.; Gopalswamy, N.; Thompson, B.

    2007-05-01

    The International Heliophysical Year (IHY) in 2007/2008 involves thousands of scientists representing over 70 nations. It consists of four distinct elements that will be described here. Taking advantage of the large amount of heliophysical data acquired routinely by a vast number of sophisticated instruments aboard space missions and at ground-based observatories, IHY aims to develop the basic science of heliophysics through cross-disciplinary studies of universal processes by means of Coordinated Investigation Programs (CIPs). The second component is in collaboration with the United Nations Basic Space Science Initiative (UNBSSI) and consists of the deployment of arrays of small, inexpensive instruments such as magnetometers, radio antennas, GPS receivers, etc. around the world to provide global measurements. An important aspect of this partnership is to foster the participation of developing nations in heliophysics research. IHY coincides with the commemoration of 50 years of the space age that started with launch of Sputnik on October 4, 1957 and it is on the brink of a new age of space exploration where the Moon, Mars and the outer planets will be the focus of the space programs in the next years. As a result, it presents an excellent opportunity to create interest for science among young people with the excitement of discovery of space. The education and outreach program forms another cornerstone of IHY. Last but not least, an important part of the IHY activities, its forth component, is to preserve the history and memory of IGY 1957.

  6. Rho Chi lecture. Pharmaceutical sciences in the next millennium.

    PubMed

    Triggle, D J

    1999-02-01

    Even a cursory survey of this article suggests that the pharmaceutical sciences are being rapidly transformed under the influence of both the new technologies and sciences and the economic imperatives. Of particular importance are scientific and technological advances that may greatly accelerate the critical process of discovery. The possibility of a drug discovery process built around the principles of directed diversity, self-reproduction, evolution, and self-targeting suggests a new paradigm of lead discovery, one based quite directly on the paradigms of molecular biology. Coupled with the principles of nanotechnology, we may contemplate miniature molecular machines containing directed drug factories, circulating the body and capable of self-targeting against defective cells and pathways -- the ultimate "drug delivery machine." However, science and technology are not the only factors that will transform the pharmaceutical sciences in the next century. The necessary reductions in the costs of drug discovery brought about by the rapidly increasing costs of the current drug discovery paradigms means that efforts to decrease the discovery phase and to make drug development part of drug discovery will become increasingly important. This is likely to involve increasing numbers of "alliances," as well as the creation of pharmaceutical research cells -- highly mobile and entrepreneurial groups within or outside of a pharmaceutical company that are formed to carry out specific discovery processes. Some of these will be in the biotechnology industry, but an increasing number will be in universities. The linear process from basic science to applied technology that has been the Western model since Vannevar Bush's Science: The Endless Frontier has probably never been particularly linear and, in any event, is likely to be rapidly supplanted by models where science, scientific development, and technology are more intimately linked. The pharmaceutical sciences have always been an example of use-directed basic research, but the relationships between the pharmaceutical industry, small and large, and the universities seems likely to become increasingly developed in the next century. This may serve as a significant catalyst for the continued transformation of universities into the "knowledge factories" of the 21st century. Regardless, we may expect to see major changes in the research organizational structure in the pharmaceutical sciences even as pharmaceutical companies enjoy record prosperity. And this is in anticipation of tough times to come.

  7. Lab to farm: applying research on plant genetics and genomics to crop improvement.

    PubMed

    Ronald, Pamela C

    2014-06-01

    Over the last 300 years, plant science research has provided important knowledge and technologies for advancing the sustainability of agriculture. In this Essay, I describe how basic research advances have been translated into crop improvement, explore some lessons learned, and discuss the potential for current and future contribution of plant genetic improvement technologies to continue to enhance food security and agricultural sustainability.

  8. The Role of Involvement and Emotional Well-Being for Preschool Children's Scientific Observation Competency in Biology

    ERIC Educational Resources Information Center

    Klemm, Janina; Neuhaus, Birgit J.

    2017-01-01

    Observation is one of the basic methods in science. It is not only an epistemological method itself, but also an important competence for other methods like experimenting or comparing. However, there is little knowledge about the relation with affective factors of this inquiry method. In our study, we would like to find out about the relations of…

  9. Leveraging Data Analysis for Domain Experts: An Embeddable Framework for Basic Data Science Tasks

    ERIC Educational Resources Information Center

    Lohrer, Johannes-Y.; Kaltenthaler, Daniel; Kröger, Peer

    2016-01-01

    In this paper, we describe a framework for data analysis that can be embedded into a base application. Since it is important to analyze the data directly inside the application where the data is entered, a tool that allows the scientists to easily work with their data, supports and motivates the execution of further analysis of their data, which…

  10. Integrating Bioethics into Clinical and Translational Science Research: A Roadmap

    PubMed Central

    Shapiro, Robyn S.; Layde, Peter M.

    2008-01-01

    Abstract Recent initiatives to improve human health emphasize the need to effectively and appropriately translate new knowledge gleaned from basic biomedical and behavioral research to clinical and community application. To maximize the beneficial impact of scientific advances in clinical practice and community health, and to guard against potential deleterious medical and societal consequences of such advances, incorporation of bioethics at each stage of clinical and translational science research is essential. At the earliest stage, bioethics input is critical to address issues such as whether to limit certain areas of scientific inquiry. Subsequently, bioethics input is important to assure not only that human subjects trials are conducted and reported responsibly, but also that results are incorporated into clinical and community practices in a way that promotes and protects bioethical principles. At the final stage of clinical and translational science research, bioethics helps to identify the need and approach for refining clinical practices when safety or other concerns arise. The framework we present depicts how bioethics interfaces with each stage of clinical and translational science research, and suggests an important research agenda for systematically and comprehensively assuring bioethics input into clinical and translational science initiatives. PMID:20443821

  11. European Society of Cardiology Congress 2013 highlights.

    PubMed

    Fox, Keith A A

    2014-01-01

    The European Society of Cardiology (ESC) Congress in 2013 met in Amsterdam (The Netherlands) as an innovative and interactive congress involving more than 30,000 participants. There were 10,490 abstract submissions and a total of 227 hotline, basic science hotline and trial update submissions. Participants were involved from more than 150 countries. To make the congress manageable for participants, related topics were grouped together in ‘villages’ and a smart electronic application allowed the participants to guide their way through the congress and choose the sessions of interest. The innovative new program was initiated by the ESC Congress Programme Committee and the Congress Chair (Keith AA Fox, Chair 2012–2014) has responsibility for the design and delivery of the scientific program. The spotlight of the congress was ‘the heart interacting with systemic organs’, chosen because of the importance of cardiovascular disease conditions crossing conventional boundaries. In all 572 abstracts, the work involved an interaction between the heart and another organ, such as the brain, lungs, kidney, vasculature or inflammation system. In addition, innovative new approaches linked basic science and clinical science and the new ‘hubs of the congress’ allowed excellent interaction and exchange of ideas.

  12. Translational Science for Energy and Beyond.

    PubMed

    McKone, James R; Crans, Debbie C; Martin, Cheryl; Turner, John; Duggal, Anil R; Gray, Harry B

    2016-09-19

    A clear challenge for the coming decades is decreasing the carbon intensity of the global energy supply while simultaneously accommodating a rapid worldwide increase in power demand. Meeting this challenge of providing abundant, clean energy undoubtedly requires synergistic efforts between basic and applied researchers in the chemical sciences to develop and deploy new technologies. Among the available options, solar energy is one of the promising targets because of the high abundance of solar photons over much of the globe. Similarly, decarbonization of the global energy supply will require clean sources of hydrogen to use as reducing equivalents for fuel and chemical feedstocks. In this report, we discuss the importance of translational research-defined as work that explicitly targets basic discovery as well as technology development-in the context of photovoltaics and solar fuels. We focus on three representative research programs encompassing translational research in government, industry, and academia. We then discuss more broadly the benefits and challenges of translational research models and offer recommendations for research programs that address societal challenges in the energy sector and beyond.

  13. Nuclear medicine and quantitative imaging research (quantitative studies in radiopharmaceutical science): Comprehensive progress report, April 1, 1986-December 31, 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooper, M.D.; Beck, R.N.

    1988-06-01

    This document describes several years research to improve PET imaging and diagnostic techniques in man. This program addresses the problems involving the basic science and technology underlying the physical and conceptual tools of radioactive tracer methodology as they relate to the measurement of structural and functional parameters of physiologic importance in health and disease. The principal tool is quantitative radionuclide imaging. The overall objective of this program is to further the development and transfer of radiotracer methodology from basic theory to routine clinical practice in order that individual patients and society as a whole will receive the maximum net benefitmore » from the new knowledge gained. The focus of the research is on the development of new instruments and radiopharmaceuticals, and the evaluation of these through the phase of clinical feasibility. The reports in the study were processed separately for the data bases. (TEM)« less

  14. Health sciences librarians and mental health laws.

    PubMed Central

    Hartz, F R

    1978-01-01

    Two U.S. Supreme Court decisions, O'Connor v. Donaldson and Bounds v. Smith, hold important implications for health sciences librarians serving in mental health facilities. The first, O'Connor, with its many ancillary holdings, puts mental health personnel on notice that patients have certain basic rights, which courts all over the country will now be required to enforce. In Bounds the court has ruled that prison authorities must assist prison inmates in preparing and filing legal papers. The ruling will most likely benefit all mentally disabled prisoners, and future litigation may expand this category to include: (1) persons committed under the criminal code, (2) persons under involuntary commitment not related to the criminal code, and (3) persons voluntarily committed. A selective annotated bibliography, consisting of background readings in mental health and the law, basic rights, law library materials, and mental health legal services, has been compiled to help librarians establish and develop legal collections in anticipation of court decisions that will expand the conditions of Bounds to include all mentally disabled patients. PMID:361117

  15. Reassessing Phase II Heart Failure Clinical Trials: Consensus Recommendations

    PubMed Central

    Butler, Javed; Hamo, Carine E.; Udelson, James E.; O’Connor, Christopher; Sabbah, Hani N.; Metra, Marco; Shah, Sanjiv J.; Kitzman, Dalane W.; Teerlink, John; Bernstein, Harold S.; Brooks, Gabriel; Depre, Christophe; DeSouza, Mary M.; Dinh, Wilfried; Donovan, Mark; Frische-Danielson, Regina; Frost, Robert J.; Garza, Dahlia; Gohring, Udo-Michael; Hellawell, Jennifer; Hsia, Judith; Ishihara, Shiro; Kay-Mugford, Patricia; Koglin, Joerg; Kozinn, Marc; Larson, Christopher J.; Mayo, Martha; Gan, Li-Ming; Mugnier, Pierrre; Mushonga, Sekayi; Roessig, Lothar; Russo, Cesare; Salsali, Afshin; Satler, Carol; Shi, Victor; Ticho, Barry; van der Laan, Michael; Yancy, Clyde; Stockbridge, Norman; Gheorghiade, Mihai

    2017-01-01

    The increasing burden and the continued suboptimal outcomes for patients with heart failure underlines the importance of continued research to develop novel therapeutics for this disorder. This can only be accomplished with successful translation of basic science discoveries into direct human application through effective clinical trial design and execution that results in a substantially improved clinical course and outcomes. In this respect, phase II clinical trials play a pivotal role in determining which of the multitude of potential basic science discoveries should move to the large and expansive registration trials in humans. A critical examination of the phase II trials in heart failure reveals multiple shortcomings in their concept, design, execution, and interpretation. To further a dialogue regarding the challenges and potential for improvement and the role of phase II trials in patients with heart failure, the Food and Drug Administration facilitated a meeting on October 17th 2016 represented by clinicians, researchers, industry members, and regulators. This document summarizes the discussion from this meeting and provides key recommendations for future directions. PMID:28356300

  16. [Trueness of modern natural science (1): the scientific revolution and the problem of philosophy].

    PubMed

    Maeda, Y

    2001-12-01

    How can one characterize modern Europe? This problem is essentially related to the meaning of modern natural science, which was developed during the scientific revolution. Then how did viewpoints change during this revolution? The answer to this question also determined the basic character of modern philosophy. Through the examination of Aristotle's geocentric theory and kinematics, I have come to believe that the defect of Aristotle's was that he concluded that a visible sense image is an actual reflection of the reality as it is. From this point of view, the traditional theory of truth called "correspondence theory" is found to be an insufficient one. Therefore, in this paper I will show that the methodological and philosophical question "How do we see reality among phenomena?" is a very important one. This question is the one Plato struggled with, and also the one which guided Kant. It may be said that this can be seen as a group for a new metaphysics as a basic theory of reality.

  17. The Views of Science Pre-Service Teachers about the Usage of Basic Information Technologies (BIT) in Education and Instruction

    ERIC Educational Resources Information Center

    Çetin, Oguz

    2016-01-01

    In this study aiming to present a description based on science pre-service teachers' views related to use of Basic Information Technologies (BIT) in education and training, an interview is carried out with 21 pre-service science teachers who study in different classes in Faculty of Education, Nigde University. For this aim, improved interview form…

  18. Teaching Map Concepts in Social Science Education; an Evaluation with Undergraduate Students

    NASA Astrophysics Data System (ADS)

    Bugdayci, Ilkay; Zahit Selvi, H.

    2017-12-01

    One of the most important aim of the geography and social science courses is to gain the ability of reading, analysing and understanding maps. There are a lot of themes related with maps and map concepts in social studies education. Geographical location is one of the most important theme. Geographical location is specified by geographical coordinates called latitude and longitude. The geographical coordinate system is the primary spatial reference system of the earth. It is always used in cartography, in geography, in basic location calculations such as navigation and surveying. It’s important to support teacher candidates, to teach maps and related concepts. Cartographers also have important missions and responsibilities in this context. The purpose of this study is to evaluate the knowledge of undergraduate students, about the geographical location. For this purpose, a research has been carried out on questions and activities related to geographical location and related concepts. The details and results of the research conducted by the students in the study are explained.

  19. Engage: The Science Speaker Series - A novel approach to improving science outreach and communication

    NASA Astrophysics Data System (ADS)

    von der Linden, Jens; Hilton, Eric; Mitchell, Rachel; Rosenfield, Phil

    2011-10-01

    Communicating the results and significance of basic research to the general public is of critical importance. At present, very few programs exist to allow young scientists the opportunity to practice their public outreach skills. Although the need for science outreach is recognized, graduate programs often fail to provide any training in making science accessible. Engage represents a unique, graduate student-led effort to improve public outreach skills. Founded in 2009, Engage was created by three science graduate students at the University of Washington. The students developed an interdisciplinary curriculum to investigate why science outreach often fails, to improve graduate student communication skills, and to help students create a dynamic, public-friendly talk about their research. The course incorporates story-telling, improvisational arts, and development of analogy, all with a focus on clarity, brevity and accessibility. This free, public-friendly speaker series is hosted at the University of Washington and has substantial public attendance and participation.

  20. We must reach out to the public

    NASA Astrophysics Data System (ADS)

    Perfit, Michael; Fornari, Daniel J.

    Faced with the current budget crisis, legislators and leaders of federal agencies are asking scientists to communicate why continued and even expanded funding of basic sciences is important to America. There have been repeated requests for oceanographers to communicate the importance of their science to the public at large and to legislators at both state and federal levels. It is often difficult, however, to find opportunities for public and legislative outreach.On March 17, 1996, Neal Lane, Director of the National Science Foundation, and Jerry Lewis (R.-Calif.), Chair of the House Appropriations Subcommittee for VA, HUD, and Independent Agencies, which oversees NSF, participated in a dive off the coast of California in the Deep Submergence Vehicle (DSV) Alvin. The dive was part an ongoing effort to improve science and operational systems on Alvin and to ensure that the submersible systems are ready for the next science program. It followed a 3-month shutdown of the facility imposed, in part, by budget cutbacks. The engineering dives are funded by the National Science Foundation, The U.S. Navy Office of Naval Research, and the National Oceanic and Atmospheric Administration through the Woods Hole Oceanographic Institution, the facility operator. In addition to testing out a new, integrated navigation software package for DSV operations, several vehicle systems and a new digital imaging system were tested.

  1. Arctic research in the classroom: A teacher's experiences translated into data driven lesson plans

    NASA Astrophysics Data System (ADS)

    Kendrick, E. O.; Deegan, L.

    2011-12-01

    Incorporating research into high school science classrooms can promote critical thinking skills and provide a link between students and the scientific community. Basic science concepts become more relevant to students when taught in the context of research. A vital component of incorporating current research into classroom lessons is involving high school teachers in authentic research. The National Science Foundation sponsored Research Experience for Teachers (RET) program has inspired me to bring research to my classroom, communicate the importance of research in the classroom to other teachers and create lasting connections between students and the research community. Through my experiences as an RET at Toolik Field Station in Alaska, I have created several hands-on lessons and laboratory activities that are based on current arctic research and climate change. Each lesson uses arctic research as a theme for exemplifying basic biology concepts as well as increasing awareness of current topics such as climate change. For instance, data collected on the Kuparuk River will be incorporated into classroom activities that teach concepts such as primary production, trophic levels in a food chain and nutrient cycling within an ecosystem. Students will not only understand the biological concepts but also recognize the ecological implications of the research being conducted in the arctic. By using my experience in arctic research as a template, my students will gain a deeper understanding of the scientific process. I hope to create a crucial link of information between the science community and science education in public schools.

  2. Evolution and convergence of the patterns of international scientific collaboration.

    PubMed

    Coccia, Mario; Wang, Lili

    2016-02-23

    International research collaboration plays an important role in the social construction and evolution of science. Studies of science increasingly analyze international collaboration across multiple organizations for its impetus in improving research quality, advancing efficiency of the scientific production, and fostering breakthroughs in a shorter time. However, long-run patterns of international research collaboration across scientific fields and their structural changes over time are hardly known. Here we show the convergence of international scientific collaboration across research fields over time. Our study uses a dataset by the National Science Foundation and computes the fraction of papers that have international institutional coauthorships for various fields of science. We compare our results with pioneering studies carried out in the 1970s and 1990s by applying a standardization method that transforms all fractions of internationally coauthored papers into a comparable framework. We find, over 1973-2012, that the evolution of collaboration patterns across scientific disciplines seems to generate a convergence between applied and basic sciences. We also show that the general architecture of international scientific collaboration, based on the ranking of fractions of international coauthorships for different scientific fields per year, has tended to be unchanged over time, at least until now. Overall, this study shows, to our knowledge for the first time, the evolution of the patterns of international scientific collaboration starting from initial results described by literature in the 1970s and 1990s. We find a convergence of these long-run collaboration patterns between the applied and basic sciences. This convergence might be one of contributing factors that supports the evolution of modern scientific fields.

  3. Web portal on environmental sciences "ATMOS''

    NASA Astrophysics Data System (ADS)

    Gordov, E. P.; Lykosov, V. N.; Fazliev, A. Z.

    2006-06-01

    The developed under INTAS grant web portal ATMOS (http://atmos.iao.ru and http://atmos.scert.ru) makes available to the international research community, environmental managers, and the interested public, a bilingual information source for the domain of Atmospheric Physics and Chemistry, and the related application domain of air quality assessment and management. It offers access to integrated thematic information, experimental data, analytical tools and models, case studies, and related information and educational resources compiled, structured, and edited by the partners into a coherent and consistent thematic information resource. While offering the usual components of a thematic site such as link collections, user group registration, discussion forum, news section etc., the site is distinguished by its scientific information services and tools: on-line models and analytical tools, and data collections and case studies together with tutorial material. The portal is organized as a set of interrelated scientific sites, which addressed basic branches of Atmospheric Sciences and Climate Modeling as well as the applied domains of Air Quality Assessment and Management, Modeling, and Environmental Impact Assessment. Each scientific site is open for external access information-computational system realized by means of Internet technologies. The main basic science topics are devoted to Atmospheric Chemistry, Atmospheric Spectroscopy and Radiation, Atmospheric Aerosols, Atmospheric Dynamics and Atmospheric Models, including climate models. The portal ATMOS reflects current tendency of Environmental Sciences transformation into exact (quantitative) sciences and is quite effective example of modern Information Technologies and Environmental Sciences integration. It makes the portal both an auxiliary instrument to support interdisciplinary projects of regional environment and extensive educational resource in this important domain.

  4. Teaching Basic Science Environmentally, Concept: Water that Comes Down as Rain Is Used Over and Over Again.

    ERIC Educational Resources Information Center

    Busch, Phyllis S.

    1985-01-01

    Provides directions for basic science experiments which demonstrate the rain cycle, fundamentals of cloud formation, and testing for the presence of acidity in local rainwater. Describes materials required, step-by-step instructions, and discussion topics. (NEC)

  5. Tissue Engineering in Orthopaedics

    PubMed Central

    Tatara, Alexander M.; Mikos, Antonios G.

    2016-01-01

    ➤ It is important to carefully select the most appropriate combination of scaffold, signals, and cell types when designing tissue engineering approaches for an orthopaedic pathology. ➤ Although clinical studies in which the tissue engineering paradigm has been applied in the treatment of orthopaedic diseases are limited in number, examining them can yield important lessons. ➤ While there is a rapid rate of new discoveries in the basic sciences, substantial regulatory, economic, and clinical issues must be overcome with more consistency to translate a greater number of technologies from the laboratory to the operating room. PMID:27385687

  6. Nuclear fission: the interplay of science and technology.

    PubMed

    Stoneham, A M

    2010-07-28

    When the UK's Calder Hall nuclear power station was connected to the grid in 1956, the programmes that made this possible involved a powerful combination of basic and applied research. Both the science and the engineering were novel, addressing new and challenging problems. That the last Calder Hall reactor was shut down only in 2003 attests to the success of the work. The strengths of bringing basic science to bear on applications continued to be recognized until the 1980s, when government and management fashions changed. This paper identifies a few of the technology challenges, and shows how novel basic science emerged from them and proved essential in their resolution. Today, as the threat of climate change becomes accepted, it has become clear that there is no credible solution without nuclear energy. The design and construction of new fission reactors will need continuing innovation, with the interplay between the science and technology being a crucial component.

  7. Electrospray Ionization Efficiency Is Dependent on Different Molecular Descriptors with Respect to Solvent pH and Instrumental Configuration

    PubMed Central

    Kiontke, Andreas; Oliveira-Birkmeier, Ariana; Opitz, Andreas

    2016-01-01

    Over the past decades, electrospray ionization for mass spectrometry (ESI-MS) has become one of the most commonly employed techniques in analytical chemistry, mainly due to its broad applicability to polar and semipolar compounds and the superior selectivity which is achieved in combination with high resolution separation techniques. However, responsiveness of an analytical method also determines its suitability for the quantitation of chemical compounds; and in electrospray ionization for mass spectrometry, it can vary significantly among different analytes with identical solution concentrations. Therefore, we investigated the ESI-response behavior of 56 nitrogen-containing compounds including aromatic amines and pyridines, two compound classes of high importance to both, synthetic organic chemistry as well as to pharmaceutical sciences. These compounds are increasingly analyzed employing ESI mass spectrometry detection due to their polar, basic character. Signal intensities of the peaks from the protonated molecular ion (MH+) were acquired under different conditions and related to compound properties such as basicity, polarity, volatility and molecular size exploring their quantitative impact on ionization efficiency. As a result, we found that though solution basicity of a compound is the main factor initially determining the ESI response of the protonated molecular ion, other factors such as polarity and vaporability become more important under acidic solvent conditions and may nearly outweigh the importance of basicity under these conditions. Moreover, we show that different molecular descriptors may become important when using different types of instruments for such investigations, a fact not detailed so far in the available literature. PMID:27907110

  8. Preparing medical students for future learning using basic science instruction.

    PubMed

    Mylopoulos, Maria; Woods, Nicole

    2014-07-01

    The construct of 'preparation for future learning' (PFL) is understood as the ability to learn new information from available resources, relate new learning to past experiences and demonstrate innovation and flexibility in problem solving. Preparation for future learning has been proposed as a key competence of adaptive expertise. There is a need for educators to ensure that opportunities are provided for students to develop PFL ability and that assessments accurately measure the development of this form of competence. The objective of this research was to compare the relative impacts of basic science instruction and clinically focused instruction on performance on a PFL assessment (PFLA). This study employed a 'double transfer' design. Fifty-one pre-clerkship students were randomly assigned to either basic science instruction or clinically focused instruction to learn four categories of disease. After completing an initial assessment on the learned material, all participants received clinically focused instruction for four novel diseases and completed a PFLA. The data from the initial assessment and the PFLA were submitted to independent-sample t-tests. Mean ± standard deviation [SD] scores on the diagnostic cases in the initial assessment were similar for participants in the basic science (0.65 ± 0.11) and clinical learning (0.62 ± 0.11) conditions. The difference was not significant (t[42] = 0.90, p = 0.37, d = 0.27). Analysis of the diagnostic cases on the PFLA revealed significantly higher mean ± SD scores for participants in the basic science learning condition (0.72 ± 0.14) compared with those in the clinical learning condition (0.63 ± 0.15) (t[42] = 2.02, p = 0.05, d = 0.62). Our results show that the inclusion of basic science instruction enhanced the learning of novel related content. We discuss this finding within the broader context of research on basic science instruction, development of adaptive expertise and assessment in medical education. © 2014 John Wiley & Sons Ltd.

  9. My Summer with Science Policy

    NASA Astrophysics Data System (ADS)

    Murray, Marissa

    This past summer I interned at the American Institute of Physics and helped research and write articles for the FYI Science Policy Bulletin. FYI is an objective digest of science policy developments in Washington, D.C. that impact the greater physical sciences community. Over the course of the summer, I independently attended, analyzed, and reported on a variety of science, technology, and funding related events including congressional hearings, government agency advisory committee meetings, and scientific society events. I wrote and co-wrote three articles on basic energy research legislation, the National Institute of Standards and Technology improvement act, and the National Science Foundation's big ideas for future investment. I had the opportunity to examine some challenging questions such as what is the role of government in funding applied research? How should science priorities be set? What is the right balance of funding across different agencies and programs? I learned about how science policy is a two-way street: science is used to inform policy decisions and policy is made to fund and regulate the conduct of science. I will conclude with how my summer working with FYI showed me the importance of science advocacy, being informed, and voting. Society of Physics Students.

  10. A Bimetallic Nickel–Gallium Complex Catalyzes CO 2 Hydrogenation via the Intermediacy of an Anionic d 10 Nickel Hydride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cammarota, Ryan C.; Vollmer, Matthew V.; Xie, Jing

    Large-scale CO2 hydrogenation could offer a renewable stream of industrially important C1 chemicals while reducing CO2 emissions. Critical to this opportunity is the requirement for inexpensive catalysts based on earth-abundant metals instead of precious metals. We report a nickel-gallium complex featuring a Ni(0)→Ga(III) bond that shows remarkable catalytic activity for hydrogenating CO2 to formate at ambient temperature (3150 turnovers, turnover frequency = 9700 h-1), compared with prior homogeneous Ni-centred catalysts. The Lewis acidic Ga(III) ion plays a pivotal role by stabilizing reactive catalytic intermediates, including a rare anionic d10 Ni hydride. The structure of this reactive intermediate shows a terminalmore » Ni-H, for which the hydride donor strength rivals those of precious metal-hydrides. Collectively, our experimental and computational results demonstrate that modulating a transition metal center via a direct interaction with a Lewis acidic support can be a powerful strategy for promoting new reactivity paradigms in base-metal catalysis. The work was supported as part of the Inorganometallic Catalysis Design Center, an Energy Frontier Research Center funded by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences under Award DE-SC0012702. R.C.C. and M.V.V. were supported by DOE Office of Science Graduate Student Research and National Science Foundation Graduate Research Fellowship programs, respectively. J.C.L., S.A.B., and A.M.A. were supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.« less

  11. A study of the competency of third year medical students to interpret biochemically based clinical scenarios using knowledge and skills gained in year 1 and 2.

    PubMed

    Gowda, Veena Bhaskar S; Nagaiah, Bhaskar Hebbani; Sengodan, Bharathi

    2016-01-01

    Medical students build clinical knowledge on the grounds of previously obtained basic knowledge. The study aimed to evaluate the competency of third year medical students to interpret biochemically based clinical scenarios using knowledge and skills gained during year 1 and 2 of undergraduate medical training. Study was conducted on year 3 MBBS students at AIMST University, Malaysia. Clinical scenarios (25) were constructed and administered to student volunteers, making sure at least one question from each system of year 2 was represented. Feedback was obtained on a five-point Likert scale regarding perception of learning biochemistry in MBBS year 1 versus 2. Mean score of test was 18 (72.11%). Performance was comparatively better in questions related to topics learnt in year 1 and reinforced in year 2 compared to those learnt for first time in year 2. In the feedback obtained, 31% strongly agreed and 56% agreed understanding the subject was helped more by learning biochemistry in year 2 than in year 1. Likewise, 36% strongly agreed and 56% agreed appreciating the importance of biochemistry in patient diagnosis was helped more by learning biochemistry in year 2 than year 1. Thirty one percent strongly agreed and 54% agreed that year 1 biochemistry would have been more relevant if case discussions were done simultaneously. Students retain basic science subjects better and appreciate the importance of basic sciences in patient diagnosis if they are reinforced in the context of clinical situations. © 2016 The International Union of Biochemistry and Molecular Biology.

  12. Town Meeting on Plasma Physics at the National Science Foundation

    NASA Astrophysics Data System (ADS)

    2015-11-01

    We invite you to the Town Meeting on the role of the National Science Foundation (NSF) in supporting basic and applied research in Plasma Physics in the U.S. The overarching goal of NSF is to promote the progress of science and to enable training of the next generation of scientists and engineers at US colleges and universities. In this context, the role of the NSF Physics Division in leading the nearly 20 year old NSF/DOE Partnership in Basic Plasma Science and Engineering serves as an example of the long history of NSF support for basic plasma physics research. Yet, the NSF interest in maintaining a healthy university research base in plasma sciences extends across the Foundation. A total of five NSF Divisions are participating in the most recent Partnership solicitation, and a host of other multi-disciplinary and core programs provide opportunities for scientists to perform research on applications of plasma physics to Space & Solar Physics, Astrophysics, Accelerator Science, Material Science, Plasma Medicine, and many sub-disciplines within Engineering. This Town Meeting will provide a chance to discuss the full range of relevant NSF funding opportunities, and to begin a conversation on the present and future role of NSF in stewarding basic plasma science and engineering research at US colleges and universities. We would like to particularly encourage early career scientists and graduate students to participate in this Town Meeting, though everyone is invited to join what we hope to be a lively discussion.

  13. Evolving the future: Toward a science of intentional change

    PubMed Central

    Wilson, David Sloan; Hayes, Steven C.; Biglan, Anthony; Embry, Dennis D.

    2015-01-01

    Humans possess great capacity for behavioral and cultural change, but our ability to manage change is still limited. This article has two major objectives: first, to sketch a basic science of intentional change centered on evolution; second, to provide examples of intentional behavioral and cultural change from the applied behavioral sciences, which are largely unknown to the basic sciences community. All species have evolved mechanisms of phenotypic plasticity that enable them to respond adaptively to their environments. Some mechanisms of phenotypic plasticity count as evolutionary processes in their own right. The human capacity for symbolic thought provides an inheritance system having the same kind of combinatorial diversity as does genetic recombination and antibody formation. Taking these propositions seriously allows an integration of major traditions within the basic behavioral sciences, such as behaviorism, social constructivism, social psychology, cognitive psychology, and evolutionary psychology, which are often isolated and even conceptualized as opposed to one another. The applied behavioral sciences include well-validated examples of successfully managing behavioral and cultural change at scales ranging from individuals to small groups to large populations. However, these examples are largely unknown beyond their disciplinary boundaries, for lack of a unifying theoretical framework. Viewed from an evolutionary perspective, they are examples of managing evolved mechanisms of phenotypic plasticity, including open-ended processes of variation and selection. Once the many branches of the basic and applied behavioral sciences become conceptually unified, we are closer to a science of intentional change than one might think. PMID:24826907

  14. Ada in Introductory Computer Science Courses

    DTIC Science & Technology

    1993-01-01

    Ada by Daniel F. Stubbs and Neil W. Webre Course Objective: To introduce the students to the basic classical data structures of computer science...Introduction to Ada, Chapman & Hall, 1993, London Dale/Weems/McCormick, Programming and Problem Solving with Ada, D. C. Heath and Company, 1994, MA Feldman...Daniel F. Stubbs and Neil W. Webre - Course Objective: To introduce the students to the basic classical data structures of computer science

  15. Obstacles of Implementing the Science Curricula of the Basic Stage as Perceived by the Teachers in a Jordanian Town

    ERIC Educational Resources Information Center

    Ayasra, Ahmad

    2015-01-01

    This study aimed to investigate obstacles that prevent implementation of science curriculum which was developed within the Education Reform for the Knowledge Economy project (ErfKE). To achieve this, a purposeful sample consisted of four teachers of science for the basic stage in the town located in the north of Jordan in the first semester of the…

  16. Advancing pig cloning technologies towards application in regenerative medicine.

    PubMed

    Nagashima, H; Matsunari, H; Nakano, K; Watanabe, M; Umeyama, K; Nagaya, M

    2012-08-01

    Regenerative medicine is expected to make a significant contribution by development of novel therapeutic treatments for intractable diseases and for improving the quality of life of patients. Many advances in regenerative medicine, including basic and translational research, have been developed and tested in experimental animals; pigs have played an important role in various aspects of this work. The value of pigs as a model species is being enhanced by the generation of specially designed animals through cloning and genetic modifications, enabling more sophisticated research to be performed and thus accelerating the clinical application of regenerative medicine. This article reviews the significant aspects of the creation and application of cloned and genetically modified pigs in regenerative medicine research and considers the possible future directions of the technology. We also discuss the importance of reproductive biology as an interface between basic science and clinical medicine. © 2012 Blackwell Verlag GmbH.

  17. Genome Editing Redefines Precision Medicine in the Cardiovascular Field

    PubMed Central

    Lahm, Harald; Dreßen, Martina; Lange, Rüdiger; Wu, Sean M.; Krane, Markus

    2018-01-01

    Genome editing is a powerful tool to study the function of specific genes and proteins important for development or disease. Recent technologies, especially CRISPR/Cas9 which is characterized by convenient handling and high precision, revolutionized the field of genome editing. Such tools have enormous potential for basic science as well as for regenerative medicine. Nevertheless, there are still several hurdles that have to be overcome, but patient-tailored therapies, termed precision medicine, seem to be within reach. In this review, we focus on the achievements and limitations of genome editing in the cardiovascular field. We explore different areas of cardiac research and highlight the most important developments: (1) the potential of genome editing in human pluripotent stem cells in basic research for disease modelling, drug screening, or reprogramming approaches and (2) the potential and remaining challenges of genome editing for regenerative therapies. Finally, we discuss social and ethical implications of these new technologies. PMID:29731778

  18. Drug Management of Visceral Pain: Concepts from Basic Research

    PubMed Central

    Davis, Mellar P.

    2012-01-01

    Visceral pain is experienced by 40% of the population, and 28% of cancer patients suffer from pain arising from intra- abdominal metastasis or from treatment. Neuroanatomy of visceral nociception and neurotransmitters, receptors, and ion channels that modulate visceral pain are qualitatively or quantitatively different from those that modulate somatic and neuropathic pain. Visceral pain should be recognized as distinct pain phenotype. TRPV1, Na 1.8, and ASIC3 ion channels and peripheral kappa opioid receptors are important mediators of visceral pain. Mu agonists, gabapentinoids, and GABAB agonists reduce pain by binding to central receptors and channels. Combinations of analgesics and adjuvants in animal models have supra-additive antinociception and should be considered in clinical trials. This paper will discuss the neuroanatomy, receptors, ion channels, and neurotransmitters important to visceral pain and provide a basic science rationale for analgesic trials and management. PMID:22619712

  19. Optometry Basic Science Curricula: Current Status.

    ERIC Educational Resources Information Center

    Berman, Morris S.

    1991-01-01

    A national survey of optometry schools (n=10) concerning the status of basic biological science instruction provides insight into manpower, curriculum, learning resources, and budgetary support currently available. Results indicate that major changes must occur and that a national effort will be needed to support them. (Author/MSE)

  20. Hoping for more: How cognitive science has and hasn't been helpful to the OCD clinician.

    PubMed

    Ouimet, Allison J; Ashbaugh, Andrea R; Radomsky, Adam S

    2018-04-12

    Cognitive-behavioural models of obsessive-compulsive disorder (OCD) stemmed from knowledge acquired from cognitive science. Researchers continue to apply basic cognitive-affective science methods to understanding OCD, with the overarching goal of improving and refining evidence-based treatments. However, the degree to which such research has contributed to this goal is unclear. We reviewed OCD research in the general areas that comprise basic cognitive science, and evaluated the degree to which it has contributed to our understanding of the development, maintenance, and treatment of OCD. We focused on studies that either compared people with and without OCD and/or used experimental psychopathology methods with human participants, and attempted to resolve some of the conflicting theories related to the importance of cognitive deficits vs. cognitive biases. Overall, we observed equivocal findings for deficits in perception, attention, memory, and executive functioning. Moreover, many so-called deficits were moderated and/or explained by OCD-relevant beliefs, highlighting the role of confidence in cognitive processes as integral to our understanding of OCD. We discussed these findings in terms of cognitive measurement, cognitive-behavioural models, and clinical applicability, and made recommendations for future research that may offer innovation and insight helpful to clinicians working to improve the symptoms and lives of people with OCD. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. A brief simulation intervention increasing basic science and clinical knowledge.

    PubMed

    Sheakley, Maria L; Gilbert, Gregory E; Leighton, Kim; Hall, Maureen; Callender, Diana; Pederson, David

    2016-01-01

    The United States Medical Licensing Examination (USMLE) is increasing clinical content on the Step 1 exam; thus, inclusion of clinical applications within the basic science curriculum is crucial. Including simulation activities during basic science years bridges the knowledge gap between basic science content and clinical application. To evaluate the effects of a one-off, 1-hour cardiovascular simulation intervention on a summative assessment after adjusting for relevant demographic and academic predictors. This study was a non-randomized study using historical controls to evaluate curricular change. The control group received lecture (n l=515) and the intervention group received lecture plus a simulation exercise (n l+s=1,066). Assessment included summative exam questions (n=4) that were scored as pass/fail (≥75%). USMLE-style assessment questions were identical for both cohorts. Descriptive statistics for variables are presented and odds of passage calculated using logistic regression. Undergraduate grade point ratio, MCAT-BS, MCAT-PS, age, attendance at an academic review program, and gender were significant predictors of summative exam passage. Students receiving the intervention were significantly more likely to pass the summative exam than students receiving lecture only (P=0.0003). Simulation plus lecture increases short-term understanding as tested by a written exam. A longitudinal study is needed to assess the effect of a brief simulation intervention on long-term retention of clinical concepts in a basic science curriculum.

  2. A brief simulation intervention increasing basic science and clinical knowledge.

    PubMed

    Sheakley, Maria L; Gilbert, Gregory E; Leighton, Kim; Hall, Maureen; Callender, Diana; Pederson, David

    2016-01-01

    Background The United States Medical Licensing Examination (USMLE) is increasing clinical content on the Step 1 exam; thus, inclusion of clinical applications within the basic science curriculum is crucial. Including simulation activities during basic science years bridges the knowledge gap between basic science content and clinical application. Purpose To evaluate the effects of a one-off, 1-hour cardiovascular simulation intervention on a summative assessment after adjusting for relevant demographic and academic predictors. Methods This study was a non-randomized study using historical controls to evaluate curricular change. The control group received lecture (n l =515) and the intervention group received lecture plus a simulation exercise (n l+s =1,066). Assessment included summative exam questions (n=4) that were scored as pass/fail (≥75%). USMLE-style assessment questions were identical for both cohorts. Descriptive statistics for variables are presented and odds of passage calculated using logistic regression. Results Undergraduate grade point ratio, MCAT-BS, MCAT-PS, age, attendance at an academic review program, and gender were significant predictors of summative exam passage. Students receiving the intervention were significantly more likely to pass the summative exam than students receiving lecture only (P=0.0003). Discussion Simulation plus lecture increases short-term understanding as tested by a written exam. A longitudinal study is needed to assess the effect of a brief simulation intervention on long-term retention of clinical concepts in a basic science curriculum.

  3. Information Processing in Cognition Process and New Artificial Intelligent Systems

    NASA Astrophysics Data System (ADS)

    Zheng, Nanning; Xue, Jianru

    In this chapter, we discuss, in depth, visual information processing and a new artificial intelligent (AI) system that is based upon cognitive mechanisms. The relationship between a general model of intelligent systems and cognitive mechanisms is described, and in particular we explore visual information processing with selective attention. We also discuss a methodology for studying the new AI system and propose some important basic research issues that have emerged in the intersecting fields of cognitive science and information science. To this end, a new scheme for associative memory and a new architecture for an AI system with attractors of chaos are addressed.

  4. Lab to Farm: Applying Research on Plant Genetics and Genomics to Crop Improvement

    PubMed Central

    Ronald, Pamela C.

    2014-01-01

    Over the last 300 years, plant science research has provided important knowledge and technologies for advancing the sustainability of agriculture. In this Essay, I describe how basic research advances have been translated into crop improvement, explore some lessons learned, and discuss the potential for current and future contribution of plant genetic improvement technologies to continue to enhance food security and agricultural sustainability. PMID:24915201

  5. When Students Struggle with Gross Anatomy and Histology: A Strategy for Monitoring, Reviewing, and Promoting Student Academic Success in an Integrated Preclinical Medical Curriculum

    ERIC Educational Resources Information Center

    Hortsch, Michael; Mangrulkar, Rajesh S.

    2015-01-01

    Gross anatomy and histology are now often taught as parts of an integrated medical or dental curriculum. Although this puts these foundational basic sciences into a wider educational context, students may not fully appreciate their importance as essential components of their medical education and may not develop a sufficient level of competency,…

  6. Progress Report. 1981-1982.

    DTIC Science & Technology

    1982-04-01

    double auctions are efficient also has a basic * importance for the foundations of the economic theory of markets. Tradition- ally, much of economic...MOULIN During his tenure at the Center, Herve Moulin wrote about two-thirds of his new book, Game Theory for the Social Sciences , which has since...restric- tive conditions.) He also worked, jointly with Pradeep Dubey, of the Cowles Foundation for Research in Economics at Yale, on a paper, "Payoffs in

  7. Curriculum Reviews.

    ERIC Educational Resources Information Center

    Science and Children, 1981

    1981-01-01

    Reviews four science curriculum materials. "Human Issues in Science" presents social consequences of science and technological developments. "Experiences in Science" contains duplicating masters to supplement basic science programs. "Outdoor Areas as Learning Laboratories" includes activities for local environments. "The Science Cookbook" uses…

  8. Application of Platelet-Rich Plasma to Disorders of the Knee Joint

    PubMed Central

    Mandelbaum, Bert R.; McIlwraith, C. Wayne

    2013-01-01

    Importance. The promising therapeutic potential and regenerative properties of platelet-rich plasma (PRP) have rapidly led to its widespread clinical use in musculoskeletal injury and disease. Although the basic scientific rationale surrounding PRP products is compelling, the clinical application has outpaced the research. Objective. The purpose of this article is to examine the current concepts around the basic science of PRP application, different preparation systems, and clinical application of PRP in disorders in the knee. Evidence Acquisition. A systematic search of PubMed for studies that evaluated the basic science, preparation and clinical application of platelet concentrates was performed. The search used terms, including platelet-rich plasma or PRP preparation, activation, use in the knee, cartilage, ligament, and meniscus. Studies found in the initial search and related studies were reviewed. Results. A comprehensive review of the literature supports the potential use of PRP both nonoperatively and intraoperatively, but highlights the absence of large clinical studies and the lack of standardization between method, product, and clinical efficacy. Conclusions and Relevance. In addition to the call for more randomized, controlled clinical studies to assess the clinical effect of PRP, at this point, it is necessary to investigate PRP product composition and eventually have the ability to tailor the therapeutic product for specific indications. PMID:26069674

  9. BASIC ELECTRICITY. SCIENCE IN ACTION SERIES, NUMBER 14.

    ERIC Educational Resources Information Center

    CASSEL, RICHARD

    THIS TEACHING GUIDE, INVOLVING ACTIVITIES FOR DEVELOPING AN UNDERSTANDING OF BASIC ELECTRICITY, EMPHASIZES STUDENT INVESTIGATIONS RATHER THAN FACTS, AND IS BASED ON THE PREMISE THAT THE MAJOR GOAL IN SCIENCE TEACHING IS THE DEVELOPMENT OF THE INVESTIGATIVE ATTITUDE IN THE STUDENT. ACTIVITIES SUGGESTED INVOLVE SIMPLE DEMONSTRATIONS AND EXPERIMENTS…

  10. Integration of Basic Sciences in Health's Courses

    ERIC Educational Resources Information Center

    Azzalis, L. A.; Giavarotti, L.; Sato, S. N.; Barros, N. M. T.; Junqueira, V. B. C.; Fonseca, F. L. A.

    2012-01-01

    Concepts from disciplines such as Biochemistry, Genetics, Cellular and Molecular Biology are essential to the understanding and treatment of an elevated number of illnesses, but often they are studied separately, with no integration between them. This article proposes a model for basic sciences integration based on problem-based learning (PBL) and…

  11. Teaching Toxicology as a Basic Medical Science

    ERIC Educational Resources Information Center

    Gralla, Edward J.

    1976-01-01

    A 4-year effort at Yale University School of Medicine to teach toxicology as an elective basic science from the standpoint of organ-specific toxic effects is described. The objective of the successful multidisciplinary program is to prepare physicians to understand, recognize, and manage adverse effects from drugs and other environmental…

  12. ON THE NATURE OF SPEECH SCIENCE.

    ERIC Educational Resources Information Center

    PETERSON, GORDON E.

    IN THIS ARTICLE THE NATURE OF THE DISCIPLINE OF SPEECH SCIENCE IS CONSIDERED AND THE VARIOUS BASIC AND APPLIED AREAS OF THE DISCIPLINE ARE DISCUSSED. THE BASIC AREAS ENCOMPASS THE VARIOUS PROCESSES OF THE PHYSIOLOGY OF SPEECH PRODUCTION, THE ACOUSTICAL CHARACTERISTICS OF SPEECH, INCLUDING THE SPEECH WAVE TYPES AND THE INFORMATION-BEARING ACOUSTIC…

  13. Wilderness science in a time of change conference-Volume 3: Wilderness as a place for scientific inquiry; 1999 May 23-27; Missoula, MT

    Treesearch

    Stephen F. McCool; David N. Cole; William T. Borrie; Jennifer O' Loughlin

    2000-01-01

    Thirty-six papers related to the theme of wilderness as a place to conduct science are included. Five overview papers synthesize knowledge and research about basic work in the biophysical and social sciences that has been conducted in wilderness. Other papers present the results of focused basic research in wilderness, with one set of papers devoted to the conduct and...

  14. Influence of fluorescence time characteristics on the spatial resolution of CW-stimulated emission depletion microscopy

    NASA Astrophysics Data System (ADS)

    Qin, Haiyun; Zhao, Wei; Zhang, Chen; Liu, Yong; Wang, Guiren; Wang, Kaige

    2018-03-01

    Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 11672229 and 61378083), International Cooperation Foundation of the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2011DFA12220), Major Research Plan of the National Natural Science Foundation of China (Grant No. 91123030), Natural Science Foundation of Shaanxi Province of China (Grant Nos. 2010JS110 and 2013SZS03-Z01), Natural Science Basic Research Program of Shaanxi Province — Major Basic Research Project, China (Grant No. 2016ZDJC-15), Young Scientist Fund of the National Natural Science Foundation of China (Grant No. 11504294), and the Youth Talent Plan of the Natural Science Foundation of Shaanxi Province of China (Grant No. 2016JQ103).

  15. Little science, big science: strategies for research portfolio selection in academic surgery departments.

    PubMed

    Shah, Anand; Pietrobon, Ricardo; Cook, Chad; Sheth, Neil P; Nguyen, Lam; Guo, Lucie; Jacobs, Danny O; Kuo, Paul C

    2007-12-01

    To evaluate National Institutes of Health (NIH) funding for academic surgery departments and to determine whether optimal portfolio strategies exist to maximize this funding. The NIH budget is expected to be relatively stable in the foreseeable future, with a modest 0.7% increase from 2005 to 2006. Funding for basic and clinical science research in surgery is also not expected to increase. NIH funding award data for US surgery departments from 2002 to 2004 was collected using publicly available data abstracted from the NIH Information for Management, Planning, Analysis, and Coordination (IMPAC) II database. Additional information was collected from the Computer Retrieval of Information on Scientific Projects (CRISP) database regarding research area (basic vs. clinical, animal vs. human, classification of clinical and basic sciences). The primary outcome measures were total NIH award amount, number of awards, and type of grant. Statistical analysis was based on binomial proportional tests and multiple linear regression models. The smallest total NIH funding award in 2004 to an individual surgery department was a single $26,970 grant, whereas the largest was more than $35 million comprising 68 grants. From 2002 to 2004, one department experienced a 336% increase (greatest increase) in funding, whereas another experienced a 73% decrease (greatest decrease). No statistically significant differences were found between departments with decreasing or increasing funding and the subspecialty of basic science or clinical research funded. Departments (n = 5) experiencing the most drastic decrease (total dollars) in funding had a significantly higher proportion of type K (P = 0.03) grants compared with departments (n = 5) with the largest increases in total funding; the latter group had a significantly increased proportion of type U grants (P = 0.01). A linear association between amount of decrease/increase was found with the average amount of funding per grant and per investigator (P < 0.01), suggesting that departments that increased their total funding relied on investigators with large amounts of funding per grant. Although incentives to junior investigators and clinicians with secondary participation in research are important, our findings suggest that the best strategy for increasing NIH funding for surgery departments is to invest in individuals with focused research commitments and established track records of garnering large and multiple research grants.

  16. [Analysis of ophthalmic projects granted by National Natural Science Foundation].

    PubMed

    Shao, Jing-Jing; Mo, Xiao-Fen; Pan, Zhi-Qiang; Gan, De-Kang; Xu, Yan-Ying

    2008-09-01

    To understand the status of basic research work in the field of ophthalmology by analyzing the projects funded by the National Natural Science Foundation of China (NSFC) from the year of 1986 to 2007, and offer as a reference to the ophthalmologists and researchers. NSFC supported ophthalmology projects in the 22 year's period were collected from the database of NSFC. The field of funded projects, the research team and their achievements were analyzed. There were 228 applicants from 47 home institutions were funded in the field of ophthalmology during the past 22 years, 323 projects funded with 66.74 million Yuan in total, in which 165 projects were fulfilled before the end of 2006. The applied and funded projects mainly focus on six different kinds of research area related to retinal diseases, corneal diseases, glaucoma, optic nerve diseases, myopia and cataract, and 70% of them were basic research in nature. As a brief achievement of 165 fulfilled projects, more than 610 papers were published in domestic journals, over 140 papers were published in Science Citation Index journals, more than 600 people were trained, and over 20 scientific awards were obtained. The number of funded projects and achievement of fulfilled projects in the discipline of ophthalmology gradually increased over the past two decades, the research fields were concentrated in certain diseases. NSFC has played an important role in promoting the development of ophthalmology research and bringing up specialists in China. However, clinical research, continuously research, transforming from basic research to clinic applications and multidisciplinary cross studies should be strengthened.

  17. Pharmaceutical applications of cyclodextrins: basic science and product development.

    PubMed

    Loftsson, Thorsteinn; Brewster, Marcus E

    2010-11-01

    Drug pipelines are becoming increasingly difficult to formulate. This is punctuated by both retrospective and prospective analyses that show that while 40% of currently marketed drugs are poorly soluble based on the definition of the biopharmaceutical classification system (BCS), about 90% of drugs in development can be characterized as poorly soluble. Although a number of techniques have been suggested for increasing oral bioavailability and for enabling parenteral formulations, cyclodextrins have emerged as a productive approach. This short review is intended to provide both some basic science information as well as data on the ability to develop drugs in cyclodextrin-containing formulations. There are currently a number of marketed products that make use of these functional solubilizing excipients and new product introduction continues to demonstrate their high added value. The ability to predict whether cyclodextrins will be of benefit in creating a dosage form for a particular drug candidate requires a good working knowledge of the properties of cyclodextrins, their mechanism of solubilization and factors that contribute to, or detract from, the biopharmaceutical characteristics of the formed complexes. We provide basic science information as well as data on the development of drugs in cyclodextrin-containing formulations. Cyclodextrins have emerged as an important tool in the formulator's armamentarium to improve apparent solubility and dissolution rate for poorly water-soluble drug candidates. The continued interest and productivity of these materials bode well for future application and their currency as excipients in research, development and drug product marketing. © 2010 The Authors. Journal compilation © 2010 Royal Pharmaceutical Society of Great Britain.

  18. Advancing the Science of ISRU

    NASA Astrophysics Data System (ADS)

    Gertsch, L. S.; Morris, K. A.

    2017-02-01

    The sustainable exploration of space requires in situ resource utilization (ISRU). Successful ISRU depends on a solid science foundation; consequently, planetary science must include basic and applied science investigations to support ISRU.

  19. The Challenge of the Humanities and Social Science Education Through the Basic Seminar (Science of Snow Sports)

    NASA Astrophysics Data System (ADS)

    Taniai, Tetsuyuki; Sugimoto, Taku; Sato, Ken-Ichi; Ikota, Masaru

    The Education Center of Chiba Institute of Technology is taking a new approach to the introduction of liberal arts subjects commonly included in the curriculum of all departments through a newly established basic seminar, the Science of Snow Sports. Each faculty member has been working on setting up classes that cross the conventional boundaries of fields and disciplines and which are targeted at students of all faculties and departments. This paper describes the potential for teaching liberal arts and social science subjects to engineering students through the medium of sports science, based on actual experience gained via this new approach.

  20. Buckingham (1907): An appreciation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narasimhan, T.N.

    2004-11-17

    Nearly a century ago, Edgar Buckingham (1907) published a seminal work on the movement of soil moisture which is part of the foundation of modern soil physics. It also constitutes a pioneering contribution in the study of multi-phase flow in porous media. A physicist, Buckingham took on an earth science issue of importance to society, and produced superb basic science as a byproduct. Buckingham impresses us with his ability to combine experiment and theory, and his capacity to intuitively explain difficult ideas to a wide audience. Science progresses both by gradual accretion of knowledge, and by sudden influx of ideas.more » Buckingham's contribution belongs in the latter category. After a brief, four-year rendezvous with soil science, he went on to pursue a long and distinguished career in physics with the National Bureau of Standards. This paper is an appreciation of Buckingham's contribution on soil moisture in the context of contemporary developments in diffusion theory, and the rapid growth of science in America at the turn of the twentieth century.« less

  1. Impacting Society through Astronomy Undergraduate Courses

    NASA Astrophysics Data System (ADS)

    Schleigh, Sharon

    2015-04-01

    A high percentage of non-science majors enroll in undergraduate, introductory astronomy courses across the country. The perception of the astronomy course as being easier than the ``hard sciences'' and the idea that the course will focus on ``pretty pictures'', influences the interests of the non-science majors. Often the students that enroll in these courses will not take other science courses, resulting in the only opportunity to teach college students about basic scientific concepts that impact their lives. Vast misconceptions about the nature of science, the role of science and scientists in society, and social issues embedded in scientific information, impact the decisions that individuals make about every day events. In turn, these decisions influence the policies that construct our society. This talk will provide an overview of the common misconceptions and discuss how they impact our society as a whole. The research presented provides evidence of the impact that introductory college astronomy courses have on changing these everyday misconceptions and influencing non-science majors' ideas about science in society. The research suggests that introductory courses designed for non-science majors are extremely important in impacting our society, and begs for a stronger understanding and implementation of best practices for teaching and learning in the college classroom environment.

  2. Dental Students' Educational Achievement in Relation to Their Learning Styles: A Cross-Sectional Study in Iran.

    PubMed

    Hosseini, Seyed Masoud; Amery, Hamideh; Emadzadeh, Ali; Babazadeh, Saber

    2015-02-24

    In recent decades, many studies have been carried out on the importance of Kolb experiential learning theory (ELT) in teaching-learning processes and its effect on learning outcomes. However, some experts have criticized the Kolb theory and argue that there are some ambiguities on the validity of the theory as an important predictor of achievement. This study has been carried out on dental students' educational achievement in relation to their dominant learning styles based on Kolb theory in Mashhad University of Medical Sciences (Iran). In a cross sectional study, Kolb Learning Style Inventory (LSI Ver. 3.1) as well as a questionnaire containing students' demographic data, academic achievement marks including grade point average (GPA), theoretical and practical courses marks, and the comprehensive basic sciences exam (CBSE) scores were administered on a purposive sample of 162 dental students who had passed their comprehensive basic sciences exam. Educational achievement data were analyzed in relation to students' dominant learning styles, using descriptive and analytical statistics including χ2, Kruskal-Wallis and two-way ANOVA tests. The dominant learning styles of students were Assimilating (53.1%), Converging (24.1%), Diverging (14.2%) and Accommodating (8.6%). Although, the students with Assimilating and Converging learning styles had a better performance on their educational achievement, there was no significant relationship between educational achievement and dominant learning style (P≥0.05). Findings support that the dominant learning style is not exclusively an essential factor to predict educational achievement. Rather, it shows learning preferences of students that may be considered in designing learning opportunities by the teachers.

  3. Educating for the 21st-Century Health Care System: An Interdependent Framework of Basic, Clinical, and Systems Sciences.

    PubMed

    Gonzalo, Jed D; Haidet, Paul; Papp, Klara K; Wolpaw, Daniel R; Moser, Eileen; Wittenstein, Robin D; Wolpaw, Terry

    2017-01-01

    In the face of a fragmented and poorly performing health care delivery system, medical education in the United States is poised for disruption. Despite broad-based recommendations to better align physician training with societal needs, adaptive change has been slow. Traditionally, medical education has focused on the basic and clinical sciences, largely removed from the newer systems sciences such as population health, policy, financing, health care delivery, and teamwork. In this article, authors examine the current state of medical education with respect to systems sciences and propose a new framework for educating physicians in adapting to and practicing in systems-based environments. Specifically, the authors propose an educational shift from a two-pillar framework to a three-pillar framework where basic, clinical, and systems sciences are interdependent. In this new three-pillar framework, students not only learn the interconnectivity in the basic, clinical, and systems sciences but also uncover relevance and meaning in their education through authentic, value-added, and patient-centered roles as navigators within the health care system. Authors describe the Systems Navigation Curriculum, currently implemented for all students at the Penn State College of Medicine, as an example of this three-pillar educational model. Simple adjustments, such as including occasional systems topics in medical curriculum, will not foster graduates prepared to practice in the 21st-century health care system. Adequate preparation requires an explicit focus on the systems sciences as a vital and equal component of physician education.

  4. A roadmap for bridging basic and applied research in forensic entomology.

    PubMed

    Tomberlin, J K; Mohr, R; Benbow, M E; Tarone, A M; VanLaerhoven, S

    2011-01-01

    The National Research Council issued a report in 2009 that heavily criticized the forensic sciences. The report made several recommendations that if addressed would allow the forensic sciences to develop a stronger scientific foundation. We suggest a roadmap for decomposition ecology and forensic entomology hinging on a framework built on basic research concepts in ecology, evolution, and genetics. Unifying both basic and applied research fields under a common umbrella of terminology and structure would facilitate communication in the field and the production of scientific results. It would also help to identify novel research areas leading to a better understanding of principal underpinnings governing ecosystem structure, function, and evolution while increasing the accuracy of and ability to interpret entomological evidence collected from crime scenes. By following the proposed roadmap, a bridge can be built between basic and applied decomposition ecology research, culminating in science that could withstand the rigors of emerging legal and cultural expectations.

  5. Anatomy Integration Blueprint: A Fourth-Year Musculoskeletal Anatomy Elective Model

    ERIC Educational Resources Information Center

    Lazarus, Michelle D.; Kauffman, Gordon L., Jr.; Kothari, Milind J.; Mosher, Timothy J.; Silvis, Matthew L.; Wawrzyniak, John R.; Anderson, Daniel T.; Black, Kevin P.

    2014-01-01

    Current undergraduate medical school curricular trends focus on both vertical integration of clinical knowledge into the traditionally basic science-dedicated curricula and increasing basic science education in the clinical years. This latter type of integration is more difficult and less reported on than the former. Here, we present an outline of…

  6. Improving College Faculty Instruction in the Basic and Allied Health Sciences.

    ERIC Educational Resources Information Center

    Washton, Nathan S.

    A project to improve college instruction in the basic and allied health sciences at New York Chiropractic College and the New York Institute of Technology is described. Attention was directed to: the kinds of resources colleges and professional schools provide to improve instruction; motivation of faculty to explore innovative or strategic…

  7. Pair Comparison Study of the Relevance of Nine Basic Science Courses

    ERIC Educational Resources Information Center

    Spilman, Edra L.; Spilman, Helen W.

    1975-01-01

    Reports a survey study in which basic science courses were rated according to relevance. Notes approaches for making the anatomy disciplines more relevant because results showed them of lowest relevancy compared with physiology, pathology, and pharmacology which were rated of highest relevance and with biochemistry and microbiology which fell…

  8. A Human Dissection Training Program at Indiana University School of Medicine-Northwest

    ERIC Educational Resources Information Center

    Talarico, Ernest F., Jr.

    2010-01-01

    As human cadavers are widely used in basic sciences, medical education, and other training and research venues, there is a real need for experts trained in anatomy and dissection. This article describes a program that gives individuals interested in clinical and basic sciences practical experience working with cadavers. Participants are selected…

  9. An Inexpensive Predictor of Student Performance on Licensure Examinations.

    ERIC Educational Resources Information Center

    Hyde, R. M.; And Others

    1987-01-01

    The construction of a comprehensive final examination over the basic medical sciences is described. Performance on the exam was a better predictor of NBME-I scores than GPA in basic science or MCAT scores and a better predictor of NBME-II scores than preclinical course performance and MCAT scores. (Author/RH)

  10. Pima College Students' Knowledge of Selected Basic Physical Science Concepts.

    ERIC Educational Resources Information Center

    Iadevaia, David G.

    In 1989 a study was conducted at Pima Community College (PCC) to assess students' knowledge of basic physical science concepts. A three-part survey instrument was administered to students in a second semester sociology class, a first semester astronomy class, a second semester Spanish class, and a first semester physics class. The survey…

  11. The Sequencing of Basic Chemistry Topics by Physical Science Teachers

    ERIC Educational Resources Information Center

    Sibanda, Doras; Hobden, Paul

    2016-01-01

    The purpose of this study was to find out teachers' preferred teaching sequence for basic chemistry topics in Physical Science in South Africa, to obtain their reasons underpinning their preferred sequence, and to compare these sequences with the prescribed sequences in the current curriculum. The study was located within a pragmatic paradigm and…

  12. Medical Student Use of Objectives in Basic Science and Clinical Instruction.

    ERIC Educational Resources Information Center

    And Others; Mast, Terrill A.

    1980-01-01

    A study that investigated the long-term use of instructional objectives by medical students taking basic science and clinical courses is reported. Focus is on the extent and manner in which the objectives were used and factors that influenced their use. Students reported heavier usage earlier in the curriculum. (Author/JMD)

  13. The Museum of Science and Industry Basic List of Children's Science Books 1973-1984.

    ERIC Educational Resources Information Center

    Richter, Bernice; Wenzel, Duane

    Children's science books are listed under these headings: animals; astronomy; aviation and space; biography; careers; earth sciences; encyclopedias and reference books; environment and conservation; fiction; general science; life sciences; marine life; mathematics and computer science; medical and health sciences; physics and chemistry; plant…

  14. Rocket Science 101 Interactive Educational Program

    NASA Technical Reports Server (NTRS)

    Armstrong, Dennis; Funkhouse, Deborah; DiMarzio, Donald

    2007-01-01

    To better educate the public on the basic design of NASA s current mission rockets, Rocket Science 101 software has been developed as an interactive program designed to retain a user s attention and to teach about basic rocket parts. This program also has helped to expand NASA's presence on the Web regarding educating the public about the Agency s goals and accomplishments. The software was designed using Macromedia s Flash 8. It allows the user to select which type of rocket they want to learn about, interact with the basic parts, assemble the parts to create the whole rocket, and then review the basic flight profile of the rocket they have built.

  15. A simulation for teaching the basic and clinical science of fluid therapy.

    PubMed

    Rawson, Richard E; Dispensa, Marilyn E; Goldstein, Richard E; Nicholson, Kimberley W; Vidal, Noni Korf

    2009-09-01

    The course "Management of Fluid and Electrolyte Disorders" is an applied physiology course taught using lectures and paper-based cases. The course approaches fluid therapy from both basic science and clinical perspectives. While paper cases provide a basis for application of basic science concepts, they lack key components of genuine clinical cases that, by nature, are diverse, change over time, and respond in unique ways to therapeutic interventions. We developed a dynamic model using STELLA software that simulates normal and abnormal fluid and electrolyte balance in the dog. Students interact, not with the underlying model, but with a user interface that provides sufficient data (skin turgor, chemistry panel, etc.) for the clinical assessment of patients and an opportunity for treatment. Students administer fluids and supplements, and the model responds in "real time," requiring regular reassessment and, potentially, adaptation of the treatment strategy. The level of success is determined by clinical outcome, including improvement, deterioration, or death. We expected that the simulated cases could be used to teach both the clinical and basic science of fluid therapy. The simulation provides exposure to a realistic clinical environment, and students tend to focus on this aspect of the simulation while, for the most part, ignoring an exploration of the underlying physiological basis for patient responses. We discuss how the instructor's expertise can provide sufficient support, feedback, and scaffolding so that students can extract maximum understanding of the basic science in the context of assessing and treating at the clinical level.

  16. New Student-Centered and Data-Based Approaches to Hydrology Education

    NASA Astrophysics Data System (ADS)

    Bloeschl, G.; Troch, P. A. A.; Sivapalan, M.

    2014-12-01

    Hydrology as a science has evolved over the last century. The knowledge base has significantly expanded, and there are requirements to meet with the new expectations of a science where the connections between the parts are just as important as the parts themselves. In this new environment, what should we teach, and how should we teach it? Given the limited time we have in an undergraduate (and even graduate) curriculum, what should we include, and what should we leave out? What new material and new methods are essential, as compared to textbooks? Past practices have assumed certain basics as being essential to undergraduate teaching. Depending on the professor's background, these include basic process descriptions (infiltration, runoff generation, evaporation etc.) and basic techniques (unit hydrographs, flood frequency analysis, pumping tests). These are taught using idealized (textbook) examples and examined to test this basic competence. The main idea behind this "reductionist" approach to teaching is that the students will do the rest of the learning during practice and apprenticeship in their workplaces. Much of current hydrology teaching follows this paradigm, and the books provide the backdrop to this approach. Our view is that this approach is less than optimum, as it does not prepare the students to face up to the new challenges of the changing world. It is our view that the basics of hydrologic science are not just a collection of individual processes and techniques, but process interactions and underlying concepts or principles, and a collection of techniques that highlights these, combined with student-driven and data-based learning that enables the students to see the manifestations of these process interactions and principles in action in real world situations. While the actual number of items that can be taught in the classroom by this approach in a limited period of time may be lower than in the traditional approach, it will help the students make connections between the understanding gained in this way in solving real world problems. We will illustrate the feasibility of the approach through key examples from our own teaching.

  17. The changing role and legitimate boundaries of epidemiology: community-based prevention programmes.

    PubMed

    Tuomilehto, J; Puska, P

    1987-01-01

    Epidemiology is the basic science of public health. It combines medical and social sciences, both of which are developing with new inventions. Therefore, the role of epidemiology and its boundaries are also changing over time. An important role of epidemiology is to develop and implement community-based control programmes for major diseases in the community. Such programmes are essential for large scale public health policy. It is necessary that epidemiological research can as freely as possible test new methods of disease prevention and health promotion. The first community-based control programme for cardiovascular diseases, the North Karelia Project is reviewed against this background. At present, it is still possible to define the boundaries of epidemiology geographically and culturally, but in the future, however, it will become more difficult. There is no doubt that epidemiology will remain as the basic science of public health but the scope of public health problems are growing much wider. These include the prevention of the final epidemic--the destruction of our planet by nuclear bombs. In the control of the existing epidemics and in the prevention of new ones the boundaries of epidemiology cannot stay rigid but they must be changing as new facts about the emerging public health problems are identified.

  18. Toxic red tides and harmful algal blooms: A practical challenge in coastal oceanography

    NASA Astrophysics Data System (ADS)

    Anderson, Donald M.

    1995-07-01

    The debate over the relative value of practical or applied versus fundamental research has heated up considerably in recent years, and oceanography has not been spared this re-evaluation of science funding policy. Some federal agencies with marine interests have always focused their resources on practical problems, but those with a traditional commitment to basic research such as the National Science Foundation have increasingly had to fight to maintain their freedom to fund quality science without regard to practical or commercial applications. Within this context, it is instructive to highlight the extent to which certain scientific programs can satisfy both sides of this policy dilemma—i.e. address important societal issues through advances in fundamental or basic research. One clear oceanographic example of such a program involves the phenomena called "red tides" or "harmful algal blooms". This paper describes the nature and extent of the problems caused by these outbreaks, emphasizing the alarming expansion in their incidence and their impacts in recent years, both in the U.S. and worldwide. The objective is to highlight fundamental physical, biological, and chemical oceanographic question that must be addressed if we are to achieve the practical goal of scientifically based management of fisheries resources, public health, and ecosystem health in regions threatened by toxic and harmful algae.

  19. From Ideas to Efficacy: The ORBIT Model for Developing Behavioral Treatments for Chronic Diseases

    PubMed Central

    Czajkowski, Susan M.; Powell, Lynda H.; Adler, Nancy; Naar-King, Sylvie; Reynolds, Kim D.; Hunter, Christine M.; Laraia, Barbara; Olster, Deborah H.; Perna, Frank M.; Peterson, Janey C.; Epel, Elissa; Boyington, Josephine E.; Charlson, Mary E.

    2015-01-01

    Objective Given the critical role of behavior in preventing and treating chronic diseases, it is important to accelerate the development of behavioral treatments that can improve chronic disease prevention and outcomes. Findings from basic behavioral and social science research hold great promise for addressing behaviorally-based clinical health problems, yet there is currently no established pathway for translating fundamental behavioral science discoveries into health-related treatments ready for Phase III efficacy testing. This article provides a systematic framework for guiding efforts to translate basic behavioral science findings into behavioral treatments for preventing and treating chronic illness. Methods The ORBIT model for behavioral treatment development is described as involving a flexible and progressive process, pre-specified clinically significant milestones for forward movement, and return to earlier stages for refinement and optimization. Results This article presents the background and rationale for the ORBIT model, a summary of key questions for each phase, a selection of study designs and methodologies well-suited to answering these questions, and pre-specified milestones for forward or backward movement across phases. Conclusions The ORBIT model provides a progressive, clinically-relevant approach to increasing the number of evidence-based behavioral treatments available to prevent and treat chronic diseases. PMID:25642841

  20. The science of rotator cuff tears: translating animal models to clinical recommendations using simulation analysis.

    PubMed

    Mannava, Sandeep; Plate, Johannes F; Tuohy, Christopher J; Seyler, Thorsten M; Whitlock, Patrick W; Curl, Walton W; Smith, Thomas L; Saul, Katherine R

    2013-07-01

    The purpose of this article is to review basic science studies using various animal models for rotator cuff research and to describe structural, biomechanical, and functional changes to muscle following rotator cuff tears. The use of computational simulations to translate the findings from animal models to human scale is further detailed. A comprehensive review was performed of the basic science literature describing the use of animal models and simulation analysis to examine muscle function following rotator cuff injury and repair in the ageing population. The findings from various studies of rotator cuff pathology emphasize the importance of preventing permanent muscular changes with detrimental results. In vivo muscle function, electromyography, and passive muscle-tendon unit properties were studied before and after supraspinatus tenotomy in a rodent rotator cuff injury model (acute vs chronic). Then, a series of simulation experiments were conducted using a validated computational human musculoskeletal shoulder model to assess both passive and active tension of rotator cuff repairs based on surgical positioning. Outcomes of rotator cuff repair may be improved by earlier surgical intervention, with lower surgical repair tensions and fewer electromyographic neuromuscular changes. An integrated approach of animal experiments, computer simulation analyses, and clinical studies may allow us to gain a fundamental understanding of the underlying pathology and interpret the results for clinical translation.

  1. Utilization and acceptance of virtual patients in veterinary basic sciences - the vetVIP-project.

    PubMed

    Kleinsorgen, Christin; Kankofer, Marta; Gradzki, Zbigniew; Mandoki, Mira; Bartha, Tibor; von Köckritz-Blickwede, Maren; Naim, Hassan Y; Beyerbach, Martin; Tipold, Andrea; Ehlers, Jan P

    2017-01-01

    Context: In medical and veterinary medical education the use of problem-based and cased-based learning has steadily increased over time. At veterinary faculties, this development has mainly been evident in the clinical phase of the veterinary education. Therefore, a consortium of teachers of biochemistry and physiology together with technical and didactical experts launched the EU-funded project "vetVIP", to create and implement veterinary virtual patients and problems for basic science instruction. In this study the implementation and utilization of virtual patients occurred at the veterinary faculties in Budapest, Hannover and Lublin. Methods: This report describes the investigation of the utilization and acceptance of students studying veterinary basic sciences using optional online learning material concurrently to regular biochemistry and physiology didactic instruction. The reaction of students towards this offer of clinical case-based learning in basic sciences was analysed using quantitative and qualitative data. Quantitative data were collected automatically within the chosen software-system CASUS as user-log-files. Responses regarding the quality of the virtual patients were obtained using an online questionnaire. Furthermore, subjective evaluation by authors was performed using a focus group discussion and an online questionnaire. Results: Implementation as well as usage and acceptance varied between the three participating locations. High approval was documented in Hannover and Lublin based upon the high proportion of voluntary students (>70%) using optional virtual patients. However, in Budapest the participation rate was below 1%. Due to utilization, students seem to prefer virtual patients and problems created in their native language and developed at their own university. In addition, the statement that assessment drives learning was supported by the observation that peak utilization was just prior to summative examinations. Conclusion: Veterinary virtual patients in basic sciences can be introduced and used for the presentation of integrative clinical case scenarios. Student post-course comments also supported the conclusion that overall the virtual cases increased their motivation for learning veterinary basic sciences.

  2. Opportunities for Computational Discovery in Basic Energy Sciences

    NASA Astrophysics Data System (ADS)

    Pederson, Mark

    2011-03-01

    An overview of the broad-ranging support of computational physics and computational science within the Department of Energy Office of Science will be provided. Computation as the third branch of physics is supported by all six offices (Advanced Scientific Computing, Basic Energy, Biological and Environmental, Fusion Energy, High-Energy Physics, and Nuclear Physics). Support focuses on hardware, software and applications. Most opportunities within the fields of~condensed-matter physics, chemical-physics and materials sciences are supported by the Officeof Basic Energy Science (BES) or through partnerships between BES and the Office for Advanced Scientific Computing. Activities include radiation sciences, catalysis, combustion, materials in extreme environments, energy-storage materials, light-harvesting and photovoltaics, solid-state lighting and superconductivity.~ A summary of two recent reports by the computational materials and chemical communities on the role of computation during the next decade will be provided. ~In addition to materials and chemistry challenges specific to energy sciences, issues identified~include a focus on the role of the domain scientist in integrating, expanding and sustaining applications-oriented capabilities on evolving high-performance computing platforms and on the role of computation in accelerating the development of innovative technologies. ~~

  3. Storytelling in Earth sciences: The eight basic plots

    NASA Astrophysics Data System (ADS)

    Phillips, Jonathan

    2012-11-01

    Reporting results and promoting ideas in science in general, and Earth science in particular, is treated here as storytelling. Just as in literature and drama, storytelling in Earth science is characterized by a small number of basic plots. Though the list is not exhaustive, and acknowledging that multiple or hybrid plots and subplots are possible in a single piece, eight standard plots are identified, and examples provided: cause-and-effect, genesis, emergence, destruction, metamorphosis, convergence, divergence, and oscillation. The plots of Earth science stories are not those of literary traditions, nor those of persuasion or moral philosophy, and deserve separate consideration. Earth science plots do not conform those of storytelling more generally, implying that Earth scientists may have fundamentally different motivations than other storytellers, and that the basic plots of Earth Science derive from the characteristics and behaviors of Earth systems. In some cases preference or affinity to different plots results in fundamentally different interpretations and conclusions of the same evidence. In other situations exploration of additional plots could help resolve scientific controversies. Thus explicit acknowledgement of plots can yield direct scientific benefits. Consideration of plots and storytelling devices may also assist in the interpretation of published work, and can help scientists improve their own storytelling.

  4. Closing the Communal Gap: The Importance of Communal Affordances in Science Career Motivation

    PubMed Central

    Brown, Elizabeth R.; Thoman, Dustin B.; Smith, Jessi L.; Diekman, Amanda B.

    2015-01-01

    To remain competitive in the global economy, the United States (and other countries) is trying to broaden participation in science, technology, engineering, and mathematics (STEM) by graduating an additional 1 million people in STEM fields by 2018. Although communion (working with, helping, and caring for others) is a basic human need, STEM careers are often (mis)perceived as being uncommunal. Across three naturalistic studies we found greater support for the communal affordance hypothesis, that perceiving STEM careers as affording greater communion is associated with greater STEM career interest, than two alternative hypotheses derived from goal congruity theory. Importantly, these findings held regardless of major (Study 1), college enrollment (Study 2), and gender (Studies 1–3). For undergraduate research assistants, mid-semester beliefs that STEM affords communion predicted end of the semester STEM motivation (Study 3). Our data highlight the importance of educational and workplace motivational interventions targeting communal affordances beliefs about STEM. PMID:26806983

  5. Open Science: a first step towards Science Communication

    NASA Astrophysics Data System (ADS)

    Grigorov, Ivo; Tuddenham, Peter

    2015-04-01

    As Earth Science communicators gear up to adopt the new tools and captivating approaches to engage citizen scientists, budding entrepreneurs, policy makers and the public in general, researchers have the responsibility, and opportunity, to fully adopt Open Science principles and capitalize on its full societal impact and engagement. Open Science is about removing all barriers to basic research, whatever its formats, so that it can be freely used, re-used and re-hashed, thus fueling discourse and accelerating generation of innovative ideas. The concept is central to EU's Responsible Research and Innovation philosophy, and removing barriers to basic research measurably contributes to engaging citizen scientists into the research process, it sets the scene for co-creation of solutions to societal challenges, and raises the general science literacy level of the public. Despite this potential, only 50% of today's basic research is freely available. Open Science can be the first passive step of communicating marine research outside academia. Full and unrestricted access to our knowledge including data, software code and scientific publications is not just an ethical obligation, but also gives solid credibility to a more sophisticated communication strategy on engaging society. The presentation will demonstrate how Open Science perfectly compliments a coherent communication strategy for placing Marine Research in societal context, and how it underpin an effective integration of Ocean & Earth Literacy principles in standard educational, as well mobilizing citizen marine scientists, thus making marine science Open Science.

  6. Search for Signatures of Life in the Solar System

    NASA Astrophysics Data System (ADS)

    Race, M.; Schwehm, G.; Arnould, J.; Dawson, S.; Devore, E.; Evans, D.; Ferrazzani, M.; Shostak, S.

    The search for evidence of extraterrestrial life is an important scientific theme that fascinates the public and encourages interest in space exploration, both within the solar system and beyond. The rapid pace of mass media communication allows the public to share mission results and new discoveries almost simultaneously with the scientific community. The public can read about proposed sample return missions to Mars, listen as scientists debate about in situ exploration of the oceans on Europa, learn about the growing number of extrasolar planets, or use their personal computers to participate in searches for extraterrestrial intelligence (SETI). As the science community continues its multi-pronged efforts to detect evidence of extraterrestrial life, it must be mindful of more than just science and technology. It is important to understand public perceptions, misperceptions, beliefs, concerns and potential complications associated with the search for life beyond our home planet. This panel is designed to provide brief overviews of some important non-scientific areas with the potential to impact future astrobiological exploration. The presentations will be followed by open discussion and audience participation. Invited panelists and their topical areas include: SCIENCE FICTION AND MISPERCEPTIONS: Seth Shostak, Dylan EvansBattling Pseudo-Science, Hollywood and Alien Abductions LEGAL ISSUES: Marcus FerrazzaniLooming Complications for Future Missions and Exploration RISK COMMUNICATION: Sandra DawsonEngaging the Public, Explaining the Risks, and Encouraging Long-Term Interestin Mission Science EDUCATION: Edna DeVoreUsing the Search for Life as a Motivating Theme in Teaching Basic Science andCritical Thinking. ETHICAL ISSUES AND CONCERNS: Jacques ArnouldWhat Will it Mean if We Find "ET"? PANEL MODERATORS: Margaret Race, Gerhard Schwehm

  7. Hands-on, online, and workshop-based K-12 weather and climate education resources from the Center for Multi-scale Modeling of Atmospheric Processes

    NASA Astrophysics Data System (ADS)

    Foster, S. Q.; Johnson, R. M.; Randall, D. A.; Denning, A.; Burt, M. A.; Gardiner, L.; Genyuk, J.; Hatheway, B.; Jones, B.; La Grave, M. L.; Russell, R. M.

    2009-12-01

    The need for improving the representation of cloud processes in climate models has been one of the most important limitations of the reliability of climate-change simulations. Now in its fourth year, the National Science Foundation-funded Center for Multi-scale Modeling of Atmospheric Processes (CMMAP) at Colorado State University (CSU) is addressing this problem through a revolutionary new approach to representing cloud processes on their native scales, including the cloud-scale interaction processes that are active in cloud systems. CMMAP has set ambitious education and human-resource goals to share basic information about the atmosphere, clouds, weather, climate, and modeling with diverse K-12 and public audiences. This is accomplished through collaborations in resource development and dissemination between CMMAP scientists, CSU’s Little Shop of Physics (LSOP) program, and the Windows to the Universe (W2U) program at University Corporation for Atmospheric Research (UCAR). Little Shop of Physics develops new hands on science activities demonstrating basic science concepts fundamental to understanding atmospheric characteristics, weather, and climate. Videos capture demonstrations of children completing these activities which are broadcast to school districts and public television programs. CMMAP and LSOP educators and scientists partner in teaching a summer professional development workshops for teachers at CSU with a semester's worth of college-level content on the basic physics of the atmosphere, weather, climate, climate modeling, and climate change, as well as dozens of LSOP inquiry-based activities suitable for use in classrooms. The W2U project complements these efforts by developing and broadly disseminating new CMMAP-related online content pages, animations, interactives, image galleries, scientists’ biographies, and LSOP videos to K-12 and public audiences. Reaching nearly 20 million users annually, W2U is highly valued as a curriculum enhancement resource, because its content is written at three levels in English and Spanish. Links between science topics and literature, art, and mythology enable teachers of English Language Learners, literacy, and the arts to integrate science into their classrooms. In summary, the CMMAP NSF-funded Science and Technology Center has established a highly effective and productive partnership of scientists and educators focused on enhancing public science literacy about weather, climate, and global change. All CMMAP, LSOP, and W2U resources can be accessed online at no cost by the entire atmospheric science K-12 and informal science education community.

  8. Clouds, weather, climate, and modeling for K-12 and public audiences from the Center for Multi-scale Modeling of Atmospheric Processes

    NASA Astrophysics Data System (ADS)

    Foster, S. Q.; Johnson, R. M.; Randall, D. A.; Denning, A.; Russell, R. M.; Gardiner, L. S.; Hatheway, B.; Jones, B.; Burt, M. A.; Genyuk, J.

    2010-12-01

    The need for improving the representation of cloud processes in climate models has been one of the most important limitations of the reliability of climate-change simulations. Now in its fifth year, the National Science Foundation-funded Center for Multi-scale Modeling of Atmospheric Processes (CMMAP) at Colorado State University (CSU) is addressing this problem through a revolutionary new approach to representing cloud processes on their native scales, including the cloud-scale interaction processes that are active in cloud systems. CMMAP has set ambitious education and human-resource goals to share basic information about the atmosphere, clouds, weather, climate, and modeling with diverse K-12 and public audiences. This is accomplished through collaborations in resource development and dissemination between CMMAP scientists, CSU’s Little Shop of Physics (LSOP) program, and the Windows to the Universe (W2U) program at University Corporation for Atmospheric Research (UCAR). Little Shop of Physics develops new hands on science activities demonstrating basic science concepts fundamental to understanding atmospheric characteristics, weather, and climate. Videos capture demonstrations of children completing these activities which are broadcast to school districts and public television programs. CMMAP and LSOP educators and scientists partner in teaching a summer professional development workshops for teachers at CSU with a semester's worth of college-level content on the basic physics of the atmosphere, weather, climate, climate modeling, and climate change, as well as dozens of LSOP inquiry-based activities suitable for use in classrooms. The W2U project complements these efforts by developing and broadly disseminating new CMMAP-related online content pages, animations, interactives, image galleries, scientists’ biographies, and LSOP videos to K-12 and public audiences. Reaching nearly 20 million users annually, W2U is highly valued as a curriculum enhancement resource, because its content is written at three levels in English and Spanish. Links between science topics and literature, art, and mythology enable teachers of English Language Learners, literacy, and the arts to integrate science into their classrooms. In summary, the CMMAP NSF-funded Science and Technology Center has established a highly effective and productive partnership of scientists and educators focused on enhancing public science literacy about weather, climate, and global change. All CMMAP, LSOP, and W2U resources can be accessed online at no cost by the entire atmospheric science K-12 and informal science education community.

  9. Aligning library instruction with the needs of basic sciences graduate students: a case study.

    PubMed

    O'Malley, Donna; Delwiche, Frances A

    2012-10-01

    How can an existing library instruction program be reconfigured to reach basic sciences graduate students and other patrons missed by curriculum-based instruction? The setting is an academic health sciences library that serves both the university and its affiliated teaching hospital. The existing program was redesigned to incorporate a series of seven workshops that encompassed the range of information literacy skills that graduate students in the basic sciences need. In developing the new model, the teaching librarians made changes in pedagogy, technology, marketing, and assessment strategies. Total attendance at the sessions increased substantially in the first 2 years of the new model, increasing from an average of 20 per semester to an average of 124. Survey results provided insight about what patrons wanted to learn and how best to teach it. Modifying the program's content and structure resulted in a program that appealed to the target audience.

  10. Comparison of Basic Science Knowledge Between DO and MD Students.

    PubMed

    Davis, Glenn E; Gayer, Gregory G

    2017-02-01

    With the coming single accreditation system for graduate medical education, medical educators may wonder whether knowledge in basic sciences is equivalent for osteopathic and allopathic medical students. To examine whether medical students' basic science knowledge is the same among osteopathic and allopathic medical students. A dataset of the Touro University College of Osteopathic Medicine-CA student records from the classes of 2013, 2014, and 2015 and the national cohort of National Board of Medical Examiners Comprehensive Basic Science Examination (NBME-CBSE) parameters for MD students were used. Models of the Comprehensive Osteopathic Medical Licensing Examination-USA (COMLEX-USA) Level 1 scores were fit using linear and logistic regression. The models included variables used in both osteopathic and allopathic medical professions to predict COMLEX-USA outcomes, such as Medical College Admission Test biology scores, preclinical grade point average, number of undergraduate science units, and scores on the NBME-CBSE. Regression statistics were studied to compare the effectiveness of models that included or excluded NBME-CBSE scores at predicting COMLEX-USA Level 1 scores. Variance inflation factor was used to investigate multicollinearity. Receiver operating characteristic curves were used to show the effectiveness of NBME-CBSE scores at predicting COMLEX-USA Level 1 pass/fail outcomes. A t test at 99% level was used to compare mean NBME-CBSE scores with the national cohort. A total of 390 student records were analyzed. Scores on the NBME-CBSE were found to be an effective predictor of COMLEX-USA Level 1 scores (P<.001). The pass/fail outcome on COMLEX-USA Level 1 was also well predicted by NBME-CBSE scores (P<.001). No significant difference was found in performance on the NBME-CBSE between osteopathic and allopathic medical students (P=.322). As an examination constructed to assess the basic science knowledge of allopathic medical students, the NBME-CBSE is effective at predicting performance on COMLEX-USA Level 1. In addition, osteopathic medical students performed the same as allopathic medical students on the NBME-CBSE. The results imply that the same basic science knowledge is expected for DO and MD students.

  11. Nuclear medicine and imaging research (Instrumentation and quantitative methods of evaluation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beck, R.N.; Cooper, M.D.

    1989-09-01

    This program addresses the problems involving the basic science and technology underlying the physical and conceptual tools of radioactive tracer methodology as they relate to the measurement of structural and functional parameters of physiologic importance in health and disease. The principal tool is quantitative radionuclide imaging. The overall objective of this program is to further the development and transfer of radiotracer methodology from basic theory to routine clinical practice in order that individual patients and society as a whole will receive the maximum net benefit from the new knowledge gained. The focus of the research is on the development ofmore » new instruments and radiopharmaceuticals, and the evaluation of these through the phase of clinical feasibility.« less

  12. [The discussion of the infiltrative model of mathematical knowledge to genetics teaching].

    PubMed

    Liu, Jun; Luo, Pei-Gao

    2011-11-01

    Genetics, the core course of biological field, is an importance major-basic course in curriculum of many majors related with biology. Due to strong theoretical and practical as well as abstract of genetics, it is too difficult to study on genetics for many students. At the same time, mathematics is one of the basic courses in curriculum of the major related natural science, which has close relationship with the establishment, development and modification of genetics. In this paper, to establish the intrinsic logistic relationship and construct the integral knowledge network and to help students improving the analytic, comprehensive and logistic abilities, we applied some mathematical infiltrative model genetic knowledge in genetics teaching, which could help students more deeply learn and understand genetic knowledge.

  13. A hybrid model of mathematics support for science students emphasizing basic skills and discipline relevance

    NASA Astrophysics Data System (ADS)

    Jackson, Deborah C.; Johnson, Elizabeth D.

    2013-09-01

    The problem of students entering university lacking basic mathematical skills is a critical issue in the Australian higher-education sector and relevant globally. The Maths Skills programme at La Trobe University has been developed to address under preparation in the first-year science cohort in the absence of an institutional mathematics support centre. The programme was delivered through first-year science and statistics subjects with large enrolments and focused on basic mathematical skills relevant to each science discipline. The programme offered a new approach to the traditional mathematical support centre or class. It was designed through close collaboration between science subject coordinators and the project leader, a mathematician, and includes resources relevant to science and mathematics questions written in context. Evaluation of the programme showed it improved the confidence of the participating students who found it helpful and relevant. The programme was delivered through three learning modes to allow students to select activities most suitable for them, which was appreciated by students. Mathematics skills appeared to increase following completion of the programme and student participation in the programme correlated positively and highly with academic grades in their relevant science subjects. This programme offers an alternative model for mathematics support tailored to science disciplines.

  14. The pedagogy of argumentation in science education: science teachers' instructional practices

    NASA Astrophysics Data System (ADS)

    Özdem Yilmaz, Yasemin; Cakiroglu, Jale; Ertepinar, Hamide; Erduran, Sibel

    2017-07-01

    Argumentation has been a prominent concern in science education research and a common goal in science curriculum in many countries over the past decade. With reference to this goal, policy documents burden responsibilities on science teachers, such as involving students in dialogues and being guides in students' spoken or written argumentation. Consequently, teachers' pedagogical practices regarding argumentation gain importance due to their impact on how they incorporate this practice into their classrooms. In this study, therefore, we investigated the instructional strategies adopted by science teachers for their argumentation-based science teaching. Participants were one elementary science teacher, two chemistry teachers, and four graduate students, who have a background in science education. The study took place during a graduate course, which was aimed at developing science teachers' theory and pedagogy of argumentation. Data sources included the participants' video-recorded classroom practices, audio-recorded reflections, post-interviews, and participants' written materials. The findings revealed three typologies of instructional strategies towards argumentation. They are named as Basic Instructional Strategies for Argumentation, Meta-level Instructional ‌St‌‌rategies for ‌Argumentation, and Meta-strategic Instructional ‌St‌‌rategies for ‌Argumentation. In conclusion, the study provided a detailed coding framework for the exploration of science teachers' instructional practices while they are implementing argumentation-based lessons.

  15. From Big Data to Knowledge in the Social Sciences.

    PubMed

    Hesse, Bradford W; Moser, Richard P; Riley, William T

    2015-05-01

    One of the challenges associated with high-volume, diverse datasets is whether synthesis of open data streams can translate into actionable knowledge. Recognizing that challenge and other issues related to these types of data, the National Institutes of Health developed the Big Data to Knowledge or BD2K initiative. The concept of translating "big data to knowledge" is important to the social and behavioral sciences in several respects. First, a general shift to data-intensive science will exert an influence on all scientific disciplines, but particularly on the behavioral and social sciences given the wealth of behavior and related constructs captured by big data sources. Second, science is itself a social enterprise; by applying principles from the social sciences to the conduct of research, it should be possible to ameliorate some of the systemic problems that plague the scientific enterprise in the age of big data. We explore the feasibility of recalibrating the basic mechanisms of the scientific enterprise so that they are more transparent and cumulative; more integrative and cohesive; and more rapid, relevant, and responsive.

  16. The Quantitative Evaluation of the Clinical and Translational Science Awards (CTSA) Program Based on Science Mapping and Scientometric Analysis

    PubMed Central

    Zhang, Yin; Wang, Lei

    2013-01-01

    Abstract The Clinical and Translational Science Awards (CTSA) program is one of the most important initiatives in translational medical funding. The quantitative evaluation of the efficiency and performance of the CTSA program has a significant referential meaning for the decision making of global translational medical funding. Using science mapping and scientometric analytic tools, this study quantitatively analyzed the scientific articles funded by the CTSA program. The results of the study showed that the quantitative productivities of the CTSA program had a stable increase since 2008. In addition, the emerging trends of the research funded by the CTSA program covered clinical and basic medical research fields. The academic benefits from the CTSA program were assisting its members to build a robust academic home for the Clinical and Translational Science and to attract other financial support. This study provided a quantitative evaluation of the CTSA program based on science mapping and scientometric analysis. Further research is required to compare and optimize other quantitative methods and to integrate various research results. PMID:24330689

  17. From Big Data to Knowledge in the Social Sciences

    PubMed Central

    Hesse, Bradford W.; Moser, Richard P.; Riley, William T.

    2015-01-01

    One of the challenges associated with high-volume, diverse datasets is whether synthesis of open data streams can translate into actionable knowledge. Recognizing that challenge and other issues related to these types of data, the National Institutes of Health developed the Big Data to Knowledge or BD2K initiative. The concept of translating “big data to knowledge” is important to the social and behavioral sciences in several respects. First, a general shift to data-intensive science will exert an influence on all scientific disciplines, but particularly on the behavioral and social sciences given the wealth of behavior and related constructs captured by big data sources. Second, science is itself a social enterprise; by applying principles from the social sciences to the conduct of research, it should be possible to ameliorate some of the systemic problems that plague the scientific enterprise in the age of big data. We explore the feasibility of recalibrating the basic mechanisms of the scientific enterprise so that they are more transparent and cumulative; more integrative and cohesive; and more rapid, relevant, and responsive. PMID:26294799

  18. From agricultural geology to hydropedology: Forging links within the twenty-first-century geoscience community

    USGS Publications Warehouse

    Landa, E.R.; ,

    2006-01-01

    Despite historical linkages, the fields of geology and soil science have developed along largely divergent paths in the United States during much of the mid- to late-twentieth century. The shift in recent decades within both disciplines, towards greater emphasis on environmental-quality issues and a systems approach, has created new opportunities for collaboration and cross-training. Because of the importance of the soil as a dynamic interface between the hydrosphere, biosphere, atmosphere and lithosphere, introductory and advanced soil-science classes are now taught in a number of Earth and environmental science departments. The National Research Council's recent report, Basic Research Opportunities in Earth Science, highlights the soil zone as part of the land surface to groundwater 'critical zone' requiring additional investigation. To better prepare geology undergraduates to deal with complex environmental problems, their training should include a fundamental understanding of the nature and properties of soils. Those undergraduate geology students with an interest in this area should be encouraged to view soil science as a viable Earth-science specialty area for graduate study. ?? The Geological Society of London 2006.

  19. The quantitative evaluation of the Clinical and Translational Science Awards (CTSA) program based on science mapping and scientometric analysis.

    PubMed

    Zhang, Yin; Wang, Lei; Diao, Tianxi

    2013-12-01

    The Clinical and Translational Science Awards (CTSA) program is one of the most important initiatives in translational medical funding. The quantitative evaluation of the efficiency and performance of the CTSA program has a significant referential meaning for the decision making of global translational medical funding. Using science mapping and scientometric analytic tools, this study quantitatively analyzed the scientific articles funded by the CTSA program. The results of the study showed that the quantitative productivities of the CTSA program had a stable increase since 2008. In addition, the emerging trends of the research funded by the CTSA program covered clinical and basic medical research fields. The academic benefits from the CTSA program were assisting its members to build a robust academic home for the Clinical and Translational Science and to attract other financial support. This study provided a quantitative evaluation of the CTSA program based on science mapping and scientometric analysis. Further research is required to compare and optimize other quantitative methods and to integrate various research results. © 2013 Wiley Periodicals, Inc.

  20. Building the Capacity for Climate Services: Thoughts on Training Next Generation Climate Science Integrators

    NASA Astrophysics Data System (ADS)

    Garfin, G. M.; Brugger, J.; Gordon, E. S.; Barsugli, J. J.; Rangwala, I.; Travis, W.

    2015-12-01

    For more than a decade, stakeholder needs assessments and reports, including the recent National Climate Assessment, have pointed out the need for climate "science translators" or "science integrators" who can help bridge the gap between the cultures and contexts of researchers and decision-makers. Integration is important for exchanging and enhancing knowledge, building capacity to use climate information in decision making, and fostering more robust planning for decision-making in the context of climate change. This talk will report on the characteristics of successful climate science integrators, and a variety of models for training the upcoming generation of climate science integrators. Science integration characteristics identified by an experienced vanguard in the U.S. include maintaining credibility in both the scientific and stakeholder communities, a basic respect for stakeholders demonstrated through active listening, and a deep understanding of the decision-making context. Drawing upon the lessons of training programs for Cooperative Extension, public health professionals, and natural resource managers, we offer ideas about training next generation climate science integrators. Our model combines training and development of skills in interpersonal relations, communication of science, project implementation, education techniques and practices - integrated with a strong foundation in disciplinary knowledge.

  1. 2012 Global Summit on Regulatory Science (GSRS-2012)--modernizing toxicology.

    PubMed

    Miller, Margaret A; Tong, Weida; Fan, Xiaohui; Slikker, William

    2013-01-01

    Regulatory science encompasses the tools, models, techniques, and studies needed to assess and evaluate product safety, efficacy, quality, and performance. Several recent publications have emphasized the role of regulatory science in improving global health, supporting economic development and fostering innovation. As for other scientific disciplines, research in regulatory science is the critical element underpinning the development and advancement of regulatory science as a modern scientific discipline. As a regulatory agency in the 21st century, the Food and Drug Administration (FDA) has an international component that underpins its domestic mission; foods, drugs, and devices are developed and imported to the United States from across the world. The Global Summit on Regulatory Science, an international conference for discussing innovative technologies, approaches, and partnerships that enhance the translation of basic science into regulatory applications, is providing leadership for the advancement of regulatory sciences within the global context. Held annually, this international conference provides a platform where regulators, policy makers, and bench scientists from various countries can exchange views on how to develop, apply, and implement innovative methodologies into regulatory assessments in their respective countries, as well as developing a harmonized strategy to improve global public health through global collaboration.

  2. 1985 science and technology posture hearing with the Director of the Office of Science and Technology Policy. Hearing before the Committee on Science and Technology, 99th Congress, First Session, No. 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1985-01-01

    Presidential Science Adviser Dr. George Keyworth, Director of the Office of Science and Technology Policy, gave his annual (1985) report on US Science and Technology posture at a hearing of the Committee on Science and Technology of the US House of Representatives (99th Congress) on 5 Feb. 1985. He spoke of critical choices in three areas, i.e., how to reduce nuclear weapons, thereby to enhance the national security, how to ensure US technological superiority in the face of rapidly growing international competition, and how to accomplish the foregoing while reducing government deficits. US government support for Research and Development willmore » total $60 billion this year, $20 billion of which are for non-defense programs, and $8 billion for basic research. He emphasized the importance of the latter to the nation's economic wellbeing, and the need to make every research dollar count in the face of rising costs and soaring deficits. Dr. Keyworth urges aggressive US efforts to maintain its world leadership in science and technology.« less

  3. Science in the regulatory setting: a challenging but incompatible mix?

    PubMed

    Yetley, Elizabeth A

    2007-01-01

    Regulatory decisions informed by sound science have an important role in many regulatory applications involving drugs and foods, including applications related to dietary supplements. However, science is only one of many factors that must be taken into account in the regulatory decision-making process. In many cases, the scientific input to a regulatory decision must compete with other factors (e.g. economics, legal requirements, stakeholder interests) for impact on the resultant policy decision. Therefore, timely and effective articulation of the available science to support a regulatory decision can significantly affect the relative weight given to science. However, the incorporation of science into the regulatory process for dietary supplements is often fraught with challenges. The available scientific evidence has rarely been designed for the purpose of addressing regulatory questions and is often preliminary and of widely varying scientific quality. To add to the confusion, the same scientific evidence may result in what appears to be different regulatory decisions because the context in which the science is used differs. The underlying assumption is that scientists who have a basic understanding of the interface between science and policy decisions can more effectively provide scientific input into these decisions.

  4. A Laboratory Exercise Relating Soil Energy Budgets to Soil Temperature

    ERIC Educational Resources Information Center

    Koenig, Richard T.; Cerny-Koenig, Teresa; Kotuby-Amacher, Janice; Grossl, Paul R.

    2008-01-01

    Enrollment by students in degree programs other than traditional horticulture, agronomy, and soil science has increased in basic plant and soil science courses. In order to broaden the appeal of these courses to students from majors other than agriculture, we developed a hands-on laboratory exercise relating the basic concepts of a soil energy…

  5. Changes in Study Strategies of Medical Students between Basic Science Courses and Clerkships Are Associated with Performance

    ERIC Educational Resources Information Center

    Ensminger, David C.; Hoyt, Amy E.; Chandrasekhar, Arcot J.; McNulty, John A.

    2013-01-01

    We tested the hypothesis that medical students change their study strategies when transitioning from basic science courses to clerkships, and that their study practices are associated with performance scores. Factor scores for three approaches to studying (construction, rote, and review) generated from student (n = 150) responses to a…

  6. Effects of Concept Mapping Instruction Approach on Students' Achievement in Basic Science

    ERIC Educational Resources Information Center

    Ogonnaya, Ukpai Patricia; Okafor, Gabriel; Abonyi, Okechukwu S.; Ugama, J. O.

    2016-01-01

    The study investigated the effects of concept mapping on students' achievement in basic science. The study was carried out in Ebonyi State of Nigeria. The study employed a quasi-experimental design. Specifically the pretest posttest non-equivalent control group research design was used. The sample was 122 students selected from two secondary…

  7. A Mental Model of the Learner: Teaching the Basic Science of Educational Psychology to Future Teachers

    ERIC Educational Resources Information Center

    Willingham, Daniel T.

    2017-01-01

    Although most teacher education programs include instruction in the basic science of psychology, practicing teachers report that this preparation has low utility. Researchers have considered what sort of information from psychology about children's thinking, emotion, and motivation would be useful for teachers' practice. Here, I take a different…

  8. A Hybrid Model of Mathematics Support for Science Students Emphasizing Basic Skills and Discipline Relevance

    ERIC Educational Resources Information Center

    Jackson, Deborah C.; Johnson, Elizabeth D.

    2013-01-01

    The problem of students entering university lacking basic mathematical skills is a critical issue in the Australian higher-education sector and relevant globally. The Maths Skills programme at La Trobe University has been developed to address under preparation in the first-year science cohort in the absence of an institutional mathematics support…

  9. Coherent Teaching and Need-Based Learning in Science: An Approach to Teach Engineering Students in Basic Physics Courses

    ERIC Educational Resources Information Center

    Kurki-Suonio, T.; Hakola, A.

    2007-01-01

    In the present paper, we propose an alternative, based on constructivism, to the conventional way of teaching basic physics courses at the university level. We call this approach "coherent teaching" and the underlying philosophy of teaching science and engineering "need-based learning". We have been applying this philosophy in…

  10. Mathematics and Science Test Gaps. Pell Institute Fact Sheet. Updated

    ERIC Educational Resources Information Center

    Pell Institute for the Study of Opportunity in Higher Education, 2011

    2011-01-01

    Data is reported as percentages in 4th, 8th, and 12th grades based on proficiency in the subject ("Below Basic," "At Basic," "At Proficient", or "At Advanced"). "Low-income" on this data sheet means students who qualify for the National School Lunch Program. Both math and science data are from 2009…

  11. Examining the Effect of Self-Explanation on Cognitive Integration of Basic and Clinical Sciences in Novices

    ERIC Educational Resources Information Center

    Lisk, Kristina; Agur, Anne M. R.; Woods, Nicole N.

    2017-01-01

    Several studies have shown that cognitive integration of basic and clinical sciences supports diagnostic reasoning in novices; however, there has been limited exploration of the ways in which educators can translate this model of mental activity into sound instructional strategies. The use of "self-explanation" during learning has the…

  12. Long-Term Retention of Basic Science Knowledge: A Review Study

    ERIC Educational Resources Information Center

    Custers, Eugene J. F. M.

    2010-01-01

    In this paper, a review of long-term retention of basic science knowledge is presented. First, it is argued that retention of this knowledge has been a long-standing problem in medical education. Next, three types of studies are described that are employed in the literature to investigate long-term retention of knowledge in general. Subsequently,…

  13. Translating Basic Behavioral and Social Science Research to Clinical Application: The EVOLVE Mixed Methods Approach

    ERIC Educational Resources Information Center

    Peterson, Janey C.; Czajkowski, Susan; Charlson, Mary E.; Link, Alissa R.; Wells, Martin T.; Isen, Alice M.; Mancuso, Carol A.; Allegrante, John P.; Boutin-Foster, Carla; Ogedegbe, Gbenga; Jobe, Jared B.

    2013-01-01

    Objective: To describe a mixed-methods approach to develop and test a basic behavioral science-informed intervention to motivate behavior change in 3 high-risk clinical populations. Our theoretically derived intervention comprised a combination of positive affect and self-affirmation (PA/SA), which we applied to 3 clinical chronic disease…

  14. Intermediate SCDC Spanish Curricula Units. Science/Health, Unit 1, Kits 1-4, Teacher's Guide.

    ERIC Educational Resources Information Center

    Spanish Curricula Development Center, Miami Beach, FL.

    Unified by the theme "our community", this unit, part of nine basic instructional units for intermediate level, reflects the observations of Mexican Americans, Puerto Ricans, and Cubans in various regions of the United States. Comprised of Kits 1-4, the unit extends the following basic and interpreted science processes: observing, communicating,…

  15. 10 CFR Appendix A to Part 605 - The Energy Research Program Office Descriptions

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false The Energy Research Program Office Descriptions A Appendix... RESEARCH FINANCIAL ASSISTANCE PROGRAM Pt. 605, App. A Appendix A to Part 605—The Energy Research Program Office Descriptions 1. Basic Energy Sciences This program supports basic science research efforts in a...

  16. 10 CFR Appendix A to Part 605 - The Energy Research Program Office Descriptions

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false The Energy Research Program Office Descriptions A Appendix... RESEARCH FINANCIAL ASSISTANCE PROGRAM Pt. 605, App. A Appendix A to Part 605—The Energy Research Program Office Descriptions 1. Basic Energy Sciences This program supports basic science research efforts in a...

  17. 10 CFR Appendix A to Part 605 - The Energy Research Program Office Descriptions

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false The Energy Research Program Office Descriptions A Appendix... RESEARCH FINANCIAL ASSISTANCE PROGRAM Pt. 605, App. A Appendix A to Part 605—The Energy Research Program Office Descriptions 1. Basic Energy Sciences This program supports basic science research efforts in a...

  18. 10 CFR Appendix A to Part 605 - The Energy Research Program Office Descriptions

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false The Energy Research Program Office Descriptions A Appendix... RESEARCH FINANCIAL ASSISTANCE PROGRAM Pt. 605, App. A Appendix A to Part 605—The Energy Research Program Office Descriptions 1. Basic Energy Sciences This program supports basic science research efforts in a...

  19. Peer-Assisted Learning: Filling the Gaps in Basic Science Education for Preclinical Medical Students

    ERIC Educational Resources Information Center

    Sammaraiee, Yezen; Mistry, Ravi D.; Lim, Julian; Wittner, Liora; Deepak, Shantal; Lim, Gareth

    2016-01-01

    In contrast to peer-assisted learning (PAL) in clinical training, there is scant literature on the efficacy of PAL during basic medical sciences teaching for preclinical students. A group of senior medical students aimed to design and deliver clinically oriented small-group tutorials after every module in the preclinical curriculum at a United…

  20. Using "Basic Principles" to Understand Complex Science: Nicotine Smoke Chemistry and Literature Analogies

    ERIC Educational Resources Information Center

    Seeman, Jeffrey I.

    2005-01-01

    The chemical and physical properties of nicotine and its carboxylic acid salts found in tobacco provided as an interesting example to understand basic principles of complex science. The result showed that the experimental data used were inconsistent to the conclusion made, and the transfer of nicotine smoke from tobacco to smoke cannot be…

  1. PRP Treatment Efficacy for Tendinopathy: A Review of Basic Science Studies

    PubMed Central

    2016-01-01

    Platelet-Rich Plasma (PRP) has been widely used in orthopaedic surgery and sport medicine to treat tendon injuries. However, the efficacy of PRP treatment for tendinopathy is controversial. This paper focuses on reviewing the basic science studies on PRP performed under well-controlled conditions. Both in vitro and in vivo studies describe PRP's anabolic and anti-inflammatory effects on tendons. While some clinical trials support these findings, others refute them. In this review, we discuss the effectiveness of PRP to treat tendon injuries with evidence presented in basic science studies and the potential reasons for the controversial results in clinical trials. Finally, we comment on the approaches that may be required to improve the efficacy of PRP treatment for tendinopathy. PMID:27610386

  2. Virtual laboratory learning media development to improve science literacy skills of mechanical engineering students on basic physics concept of material measurement

    NASA Astrophysics Data System (ADS)

    Jannati, E. D.; Setiawan, A.; Siahaan, P.; Rochman, C.

    2018-05-01

    This study aims to determine the description of virtual laboratory learning media development to improve science literacy skills of Mechanical Engineering students on the concept of basic Physics. Quasi experimental method was employed in this research. The participants of this research were first semester students of mechanical engineering in Majalengka University. The research instrument was readability test of instructional media. The results of virtual laboratory learning media readability test show that the average score is 78.5%. It indicates that virtual laboratory learning media development are feasible to be used in improving science literacy skill of Mechanical Engineering students in Majalengka University, specifically on basic Physics concepts of material measurement.

  3. Remarks on neurocybernetics and its links to computing science. To the memory of Prof. Luigi M. Ricciardi.

    PubMed

    Moreno-Díaz, Roberto; Moreno-Díaz, Arminda

    2013-06-01

    This paper explores the origins and content of neurocybernetics and its links to artificial intelligence, computer science and knowledge engineering. Starting with three remarkable pieces of work, we center attention on a number of events that initiated and developed basic topics that are still nowadays a matter of research and inquire, from goal directed activity theories to circular causality and to reverberations and learning. Within this context, we pay tribute to the memory of Prof. Ricciardi documenting the importance of his contributions in the mathematics of brain, neural nets and neurophysiological models, computational simulations and techniques. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  4. A concept of a space hazard counteraction system: Astronomical aspects

    NASA Astrophysics Data System (ADS)

    Shustov, B. M.; Rykhlova, L. V.; Kuleshov, Yu. P.; Dubov, Yu. N.; Elkin, K. S.; Veniaminov, S. S.; Borovin, G. K.; Molotov, I. E.; Naroenkov, S. A.; Barabanov, S. I.; Emel'yanenko, V. V.; Devyatkin, A. V.; Medvedev, Yu. D.; Shor, V. A.; Kholshevnikov, K. V.

    2013-07-01

    The basic science of astronomy and, primarily, its branch responsible for studying the Solar System, face the most important practical task posed by nature and the development of human civilization—to study space hazards and to seek methods of counteracting them. In pursuance of the joint Resolution of the Federal Space Agency (Roscosmos) and the RAS (Russian Academy of Sciences) Space Council of June 23, 2010, the RAS Institute of Astronomy in collaboration with other scientific and industrial organizations prepared a draft concept of the federal-level program targeted at creating a system of space hazard detection and counteraction. The main ideas and astronomical content of the concept are considered in this article.

  5. Life sciences research on the space station: An introduction

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The Space Station will provide an orbiting, low gravity, permanently manned facility for scientific research, starting in the 1990s. The facilities for life sciences research are being designed to allow scientific investigators to perform research in Space Medicine and Space Biology, to study the consequences of long-term exposure to space conditions, and to allow for the permanent presence of humans in space. This research, using humans, animals, and plants, will provide an understanding of the effects of the space environment on the basic processes of life. In addition, facilities are being planned for remote observations to study biologically important elements and compounds in space and on other planets (exobiology), and Earth observations to study global ecology. The life sciences community is encouraged to plan for participation in scientific research that will be made possible by the Space Station research facility.

  6. Soliton microcomb range measurement.

    PubMed

    Suh, Myoung-Gyun; Vahala, Kerry J

    2018-02-23

    Laser-based range measurement systems are important in many application areas, including autonomous vehicles, robotics, manufacturing, formation flying of satellites, and basic science. Coherent laser ranging systems using dual-frequency combs provide an unprecedented combination of long range, high precision, and fast update rate. We report dual-comb distance measurement using chip-based soliton microcombs. A single pump laser was used to generate dual-frequency combs within a single microresonator as counterpropagating solitons. We demonstrated time-of-flight measurement with 200-nanometer precision at an averaging time of 500 milliseconds within a range ambiguity of 16 millimeters. Measurements at distances up to 25 meters with much lower precision were also performed. Our chip-based source is an important step toward miniature dual-comb laser ranging systems that are suitable for photonic integration. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  7. The poverty of embodied cognition.

    PubMed

    Goldinger, Stephen D; Papesh, Megan H; Barnhart, Anthony S; Hansen, Whitney A; Hout, Michael C

    2016-08-01

    In recent years, there has been rapidly growing interest in embodied cognition, a multifaceted theoretical proposition that (1) cognitive processes are influenced by the body, (2) cognition exists in the service of action, (3) cognition is situated in the environment, and (4) cognition may occur without internal representations. Many proponents view embodied cognition as the next great paradigm shift for cognitive science. In this article, we critically examine the core ideas from embodied cognition, taking a "thought exercise" approach. We first note that the basic principles from embodiment theory are either unacceptably vague (e.g., the premise that perception is influenced by the body) or they offer nothing new (e.g., cognition evolved to optimize survival, emotions affect cognition, perception-action couplings are important). We next suggest that, for the vast majority of classic findings in cognitive science, embodied cognition offers no scientifically valuable insight. In most cases, the theory has no logical connections to the phenomena, other than some trivially true ideas. Beyond classic laboratory findings, embodiment theory is also unable to adequately address the basic experiences of cognitive life.

  8. The Flinders experiment in medical education revisited.

    PubMed

    Geffen, L B; Birkett, D J; Alpers, J H

    The undergraduate medical curriculum of the Flinders University of South Australia is reviewed and evaluated against American recommendations for the basic education of doctors practising in the 21st century. Two previous articles in The Medical Journal of Australia describing earlier versions of the Flinders curriculum and the report on General Professional Education for the Physician of the Association of American Medical Colleges. The Flinders curriculum attempts to fully integrate the teaching of medical science and clinical disciplines. The earliest version of the curriculum emphasised horizontal integration of normal structure and function of body systems, followed by abnormalities of these systems, and finally clinical practice. The second version introduced vertical integration of basic science and clinical medicine within a body system. The present version attempts to balance the demands of horizontal and vertical integration. An important feature of all versions is the large proportion of time allowed for elective studies in most years of the course. The Flinders curriculum has been able to adapt to the changing needs of medical education because its organisation is relatively free from the constraints of departmental rivalry over resources.

  9. The Poverty of Embodied Cognition

    PubMed Central

    Goldinger, Stephen D.; Papesh, Megan H.; Barnhart, Anthony S.; Hansen, Whitney A.; Hout, Michael C.

    2016-01-01

    In recent years, there has been rapidly growing interest in Embodied Cognition, a multifaceted theoretical proposition that (1) cognitive processes are influenced by the body, (2) cognition exists in the service of action, (3) cognition is situated in the environment, and (4) cognition may occur without internal representations. Many proponents view embodied cognition as the next great paradigm shift for cognitive science. In this article, we critically examine the core ideas from embodied cognition, taking a “thought exercise” approach. We first note that the basic principles from embodiment theory are either unacceptably vague (e.g., the premise that perception is influenced by the body) or they offer nothing new (e.g., cognition evolved to optimize survival, emotions affect cognition, perception-action couplings are important). We next suggest that, for the vast majority of classic findings in cognitive science, embodied cognition offers no scientifically valuable insight. In most cases, the theory has no logical connections to the phenomena, other than some trivially true ideas. Beyond classic laboratory findings, embodiment theory is also unable to adequately address the basic experiences of cognitive life. PMID:27282990

  10. Translational Science for Energy and Beyond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKone, James R.; Crans, Debbie C.; Martin, Cheryl

    A clear challenge for the coming decades is decreasing the carbon intensity of the global energy supply while simultaneously accommodating a rapid worldwide increase in power demand. Meeting this challenge of providing abundant, clean energy undoubtedly requires synergistic efforts between basic and applied researchers in the chemical sciences to develop and deploy new technologies. Among the available options, solar energy is one of the promising targets because of the high abundance of solar photons over much of the globe. Similarly, decarbonization of the global energy supply will require clean sources of hydrogen to use as reducing equivalents for fuel andmore » chemical feedstocks. In this report, we discuss the importance of translational research -- defined as work that explicitly targets basic discovery as well as technology development -- in the context of photovoltaics and solar fuels. We focus on three representative research programs encompassing translational research in government, industry, and academia. We then discuss more broadly the benefits and challenges of translational research models and offer recommendations for research programs that address societal challenges in the energy sector and beyond.« less

  11. Current status of spray cryotherapy for airway disease

    PubMed Central

    Moore, Ryan F.; Lile, Deacon J.

    2017-01-01

    The use of liquid nitrogen to treat skin and mucosal lesions is well understood in the dermatologic and gastrointestinal literature. Direct spray cryotherapy (SCT) in the airway has shown promising results in the treatment of esophageal premalignant and even invasive lesions. In the airway, several studies have shown it to be a safe, effective treatment for both benign and malignant disease. It is easily administered in the outpatient setting and can be repeated several times without undue side effects. In this article, we review the current literature on the use of SCT for the treatment of endobronchial lesions and also describe our own institutional experience of the use of SCT in the airway. The use of proper technique and airway venting is important in mitigating the complications of barotrauma from massive expansion of nitrogen upon conversion from the liquid to gaseous state. We also review some of the basic science principals behind the use of the cryotherapy to treat lesions in different tissues. We feel that SCT is a potential area for further research at both clinical and basic science level. PMID:28446975

  12. Increasing the power of accelerated molecular dynamics methods and plans to exploit the coming exascale

    NASA Astrophysics Data System (ADS)

    Voter, Arthur

    Many important materials processes take place on time scales that far exceed the roughly one microsecond accessible to molecular dynamics simulation. Typically, this long-time evolution is characterized by a succession of thermally activated infrequent events involving defects in the material. In the accelerated molecular dynamics (AMD) methodology, known characteristics of infrequent-event systems are exploited to make reactive events take place more frequently, in a dynamically correct way. For certain processes, this approach has been remarkably successful, offering a view of complex dynamical evolution on time scales of microseconds, milliseconds, and sometimes beyond. We have recently made advances in all three of the basic AMD methods (hyperdynamics, parallel replica dynamics, and temperature accelerated dynamics (TAD)), exploiting both algorithmic advances and novel parallelization approaches. I will describe these advances, present some examples of our latest results, and discuss what should be possible when exascale computing arrives in roughly five years. Funded by the U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, and by the Los Alamos Laboratory Directed Research and Development program.

  13. Electronic Materials Science

    NASA Astrophysics Data System (ADS)

    Irene, Eugene A.

    2005-02-01

    A thorough introduction to fundamental principles and applications From its beginnings in metallurgy and ceramics, materials science now encompasses such high- tech fields as microelectronics, polymers, biomaterials, and nanotechnology. Electronic Materials Science presents the fundamentals of the subject in a detailed fashion for a multidisciplinary audience. Offering a higher-level treatment than an undergraduate textbook provides, this text benefits students and practitioners not only in electronics and optical materials science, but also in additional cutting-edge fields like polymers and biomaterials. Readers with a basic understanding of physical chemistry or physics will appreciate the text's sophisticated presentation of today's materials science. Instructive derivations of important formulae, usually omitted in an introductory text, are included here. This feature offers a useful glimpse into the foundations of how the discipline understands such topics as defects, phase equilibria, and mechanical properties. Additionally, concepts such as reciprocal space, electron energy band theory, and thermodynamics enter the discussion earlier and in a more robust fashion than in other texts. Electronic Materials Science also features: An orientation towards industry and academia drawn from the author's experience in both arenas Information on applications in semiconductors, optoelectronics, photocells, and nanoelectronics Problem sets and important references throughout Flexibility for various pedagogical needs Treating the subject with more depth than any other introductory text, Electronic Materials Science prepares graduate and upper-level undergraduate students for advanced topics in the discipline and gives scientists in associated disciplines a clear review of the field and its leading technologies.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierce, Eric M.; Freshley, Mark D.; Hubbard, Susan S.

    In this report, we start by examining previous efforts at linking science and DOE EM research with cleanup activities. Many of these efforts were initiated by creating science and technology roadmaps. A recurring feature of successfully implementing these roadmaps into EM applied research efforts and successful cleanup is the focus on integration. Such integration takes many forms, ranging from combining information generated by various scientific disciplines, to providing technical expertise to facilitate successful application of novel technology, to bringing the resources and creativity of many to address the common goal of moving EM cleanup forward. Successful projects identify and focusmore » research efforts on addressing the problems and challenges that are causing “failure” in actual cleanup activities. In this way, basic and applied science resources are used strategically to address the particular unknowns that are barriers to cleanup. The brief descriptions of the Office of Science basic (Environmental Remediation Science Program [ERSP]) and EM’s applied (Groundwater and Soil Remediation Program) research programs in subsurface science provide context to the five “crosscutting” themes that have been developed in this strategic planning effort. To address these challenges and opportunities, a tiered systematic approach is proposed that leverages basic science investments with new applied research investments from the DOE Office of Engineering and Technology within the framework of the identified basic science and applied research crosscutting themes. These themes are evident in the initial portfolio of initiatives in the EM groundwater and soil cleanup multi-year program plan. As stated in a companion document for tank waste processing (Bredt et al. 2008), in addition to achieving its mission, DOE EM is experiencing a fundamental shift in philosophy from driving to closure to enabling the long-term needs of DOE and the nation.« less

  15. An eye for discovery

    PubMed Central

    Stahl, Andreas; Smith, Lois E.H.

    2010-01-01

    Vision research has often led to significant advances in our understanding of biology. There has also been particular success in translating basic research in the eye into breakthrough clinical therapies that mark important milestones for ophthalmology and also for medical research. Anti-VEGF therapy for age-related macular degeneration was named as one of the top ten science advancements of the year 2006. Only two years later, successful transfer of the RPE65 gene into retinal pigment epithelium of patients with Leber congenital amaurosis was noted as one of the most important clinical applications of gene therapy. The articles in this Review series outline current developments in vision research and highlight its continued importance in ophthalmology and medicine. PMID:20811156

  16. Very long-term retention of basic science knowledge in doctors after graduation.

    PubMed

    Custers, Eugène J F M; Ten Cate, Olle T J

    2011-04-01

    Despite frequent complaints that biomedical knowledge is quickly forgotten after it has been learned, few investigations of actual long-term retention of basic science knowledge have been conducted in the medical domain. Our aim was to illuminate the long-term retention of basic science knowledge, particularly of unrehearsed knowledge. Using a cross-sectional study design, medical students and doctors in the Netherlands were tested for retention of basic science knowledge. Relationships between retention interval and proportion of correct answers on a knowledge test were investigated. The popular notion that most of basic science knowledge is forgotten shortly after graduation is not supported by our findings. With respect to the full test scores, which reflect a composite of unrehearsed and rehearsed knowledge, performance decreased from approximately 40% correct answers for students still in medical school, to 25-30% correct answers for doctors after many years of practice. When rehearsal during the retention interval is controlled for, it appears that little knowledge is lost for 1.5-2 years after it was last used; from then on, retention is best described by a negatively accelerated (logarithmic) forgetting curve. After ≥ 25 years, retention levels were in the range of 15-20%. Conclusions about the forgetting of unrehearsed knowledge in this study are in line with findings reported in other domains: it proceeds in accordance with the Ebbinghaus curve for meaningful material, except that in our findings the 'downward' part appears to start later than in most other studies. The limitations of the study are discussed and possible ramifications for medical education are proposed. © Blackwell Publishing Ltd 2011.

  17. Study design and hierarchy of evidence for surgical decision making.

    PubMed

    Sprague, Sheila; McKay, Paula; Thoma, Achilleas

    2008-04-01

    This article provides a historical overview of the hierarchy of evidence for surgical decision making and discusses key study designs in the hierarchy of evidence. This encompasses meta-analyses, randomized controlled trials, and observational studies, including cohort and case-controlled studies, case series and case reports, and basic science studies. This article also reviews the principles and importance of evidence-based plastic surgery and describes several systems to rate the strength of the scientific evidence.

  18. Cheering for Team Science | Office of Cancer Genomics

    Cancer.gov

    As a graduate student, my PhD thesis focused on the function of a single human gene, within a genome of some 20,000 genes. Although this sometimes made my work seem insignificant, I was reminded of how important one small piece of a large puzzle can be when I discovered all the ways the gene knockout cells were disadvantaged. Studying the basic biology of our cells made me appreciate the beautiful complexity of human biology.

  19. Gravity. Physical Science in Action[TM]. Schlessinger Science Library. [Videotape].

    ERIC Educational Resources Information Center

    2000

    All kids are familiar with the basic idea of gravity--it's why things fall to the ground. Gravity uses exciting visuals and clear, colorful graphics to take students beyond the basics to explain that gravity is really a force of attraction between objects. They'll discover that all objects--no matter how large or small--have gravitational force,…

  20. Linking Introductory Astronomy Students' Basic Science Knowledge, Beliefs, Attitudes, Sources of Information, and Information Literacy

    ERIC Educational Resources Information Center

    Buxner, Sanlyn R.; Impey, Chris D.; Romine, James; Nieberding, Megan

    2018-01-01

    [This paper is part of the Focused Collection on Astronomy Education Research.] We report on a study of almost 13 000 undergraduate students enrolled in introductory astronomy courses at the University of Arizona. From 1989 to 2016, students completed a basic science knowledge, beliefs, and attitudes survey. From 2014 to 2016, a subset of the…

  1. The Articulation of Integration of Clinical and Basic Sciences in Concept Maps: Differences between Experienced and Resident Groups

    ERIC Educational Resources Information Center

    Vink, Sylvia; van Tartwijk, Jan; Verloop, Nico; Gosselink, Manon; Driessen, Erik; Bolk, Jan

    2016-01-01

    To determine the content of integrated curricula, clinical concepts and the underlying basic science concepts need to be made explicit. Preconstructed concept maps are recommended for this purpose. They are mainly constructed by experts. However, concept maps constructed by residents are hypothesized to be less complex, to reveal more tacit basic…

  2. Exploration of an E-Learning Model to Foster Critical Thinking on Basic Science Concepts during Work Placements

    ERIC Educational Resources Information Center

    de Leng, Bas A.; Dolmans, Diana H. J. M.; Jobsis, Rijn; Muijtjens, Arno M. M.; van der Vleuten, Cees P. M.

    2009-01-01

    We designed an e-learning model to promote critical thinking about basic science topics in online communities of students during work placements in higher education. To determine the effectiveness and efficiency of the model we explored the online discussions in two case studies. We evaluated the quantity of the interactions by looking at…

  3. Beginning to Teach Chemistry: How Personal and Academic Characteristics of Pre-Service Science Teachers Compare with Their Understandings of Basic Chemical Ideas

    ERIC Educational Resources Information Center

    Kind, Vanessa; Kind, Per Morten

    2011-01-01

    Around 150 pre-service science teachers (PSTs) participated in a study comparing academic and personal characteristics with their misconceptions about basic chemical ideas taught to 11-16-year-olds, such as particle theory, change of state, conservation of mass, chemical bonding, mole calculations, and combustion reactions. Data, collected by…

  4. Effect of Self Regulated Learning Approach on Junior Secondary School Students' Achievement in Basic Science

    ERIC Educational Resources Information Center

    Nwafor, Chika E.; Obodo, Abigail Chikaodinaka; Okafor, Gabriel

    2015-01-01

    This study explored the effect of self-regulated learning approach on junior secondary school students' achievement in basic science. Quasi-experimental design was used for the study.Two co-educational schools were drawn for the study through simple random sampling technique. One school was assigned to the treatment group while the other was…

  5. Tapping into Basic 7-9 Science and Technology Teachers' Conceptions of Indigenous Knowledge in Imo State, Nigeria

    ERIC Educational Resources Information Center

    Singh-Pillay, Asheena; Alant, Busisiwe P.; Nwokocha, Godson

    2017-01-01

    The discussion on how to integrate African indigenous knowledge (IK) into mainstream Science and Technology schooling prevails. Nigeria's colonised school curriculum is antithetical to its rich IK heritage. Guided by postcolonial theory, and the need for a culturally relevant and decolonised curriculum, this paper sought to explore seven basic 7-9…

  6. 78 FR 12044 - DOE/NSF Nuclear Science Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-21

    ... DEPARTMENT OF ENERGY DOE/NSF Nuclear Science Advisory Committee AGENCY: Office of Science... Nuclear Science Advisory Committee (NSAC). The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat... Energy and the National Science Foundation on scientific priorities within the field of basic nuclear...

  7. The United Nations Basic Space Science Initiative

    NASA Astrophysics Data System (ADS)

    Haubold, Hans; Balogh, Werner

    2014-05-01

    The basic space science initiative was a long-term effort for the development of astronomy and space science through regional and international cooperation in this field on a worldwide basis, particularly in developing nations. Basic space science workshops were co-sponsored and co-organized by ESA, JAXA, and NASA. A series of workshops on basic space science was held from 1991 to 2004 (India 1991, Costa Rica and Colombia 1992, Nigeria 1993, Egypt 1994, Sri Lanka 1995, Germany 1996, Honduras 1997, Jordan 1999, France 2000, Mauritius 2001, Argentina 2002, and China 2004; http://neutrino.aquaphoenix.com/un-esa/) and addressed the status of astronomy in Asia and the Pacific, Latin America and the Caribbean, Africa, and Western Asia. Through the lead of the National Astronomical Observatory Japan, astronomical telescope facilities were inaugurated in seven developing nations and planetariums were established in twenty developing nations based on the donation of respective equipment by Japan.Pursuant to resolutions of the Committee on the Peaceful Uses of Outer Space of the United Nations (COPUOS) and its Scientific and Technical Subcommittee, since 2005, these workshops focused on the preparations for and the follow-ups to the International Heliophysical Year 2007 (UAE 2005, India 2006, Japan 2007, Bulgaria 2008, South Korea 2009; www.unoosa.org/oosa/SAP/bss/ihy2007/index.html). IHY's legacy is the current operation of 16 worldwide instrument arrays with more than 1000 instruments recording data on solar-terrestrial interaction from coronal mass ejections to variations of the total electron content in the ionosphere (http://iswisecretariat.org/). Instruments are provided to hosting institutions by entities of Armenia, Brazil, France, Israel, Japan, Switzerland, and the United States. Starting in 2010, the workshops focused on the International Space Weather Initiative (ISWI) as mandated in a three-year-work plan as part of the deliberations of COPUOS. Workshops on ISWI were held in Egypt in 2010 for Western Asia, Nigeria in 2011 for Africa, and Ecuador in 2012 for Latin America and the Caribbean. The International Center for Space Weather Science and Education at Kyushu University, Fukuoka, Japan 9www.serc.kyushu-u.ac.jp/index_e.html), was established through the basic space science initiative in 2012. Similar research and education centres were also established in Nigeria(www.cbssonline.com/aboutus.html) and India (www.cmsintl.org). Activities of basic space science initiative were also coordinated with the Regional Centres for Space Science and Technology Education, affiliated to the United Nations (www.unoosa.org/oosa/en/SAP/centres/index.html). Prospective future directions of the initiative will be discussed in this paper.

  8. Teaching of anterior cruciate ligament function in osteopathic medical education.

    PubMed

    Surek, Christopher Chase; Lorimer, Shannon D; Dougherty, John J; Stephens, Robert E

    2011-04-01

    The anterior cruciate ligament (ACL) of the knee and the function of its anteromedial (AM) and posterolateral (PL) bundles are a focus of orthopedic research. Because of the probability that third-year and fourth-year osteopathic medical students will encounter ACL injuries during clinical rotations, it is of paramount importance that students fully understand the functions of the AM and PL bundles as 2 distinct functional components of the ACL. The authors assess the degree to which the AM and PL bundles are discussed within basic science curricula at colleges of osteopathic medicine (COMs). In September 2008, a 6-question survey addressing various aspects of ACL education was mailed to instructors of lower-extremity anatomy at all 28 COMs that existed at that time. Nine of the 21 responding institutions (42.9%) indicated that both the AM and PL bundles of the ACL are discussed within their basic science curricula. Four of these 9 COMs indicated that their instruction mentions that the bundles are parallel in extension and crossed in flexion. Nine of the 21 responding COMs (42.9%) indicated that they instruct students that the AM bundle is a major anterior-posterior restrictor, and 12 (57.1%) indicated that they instruct students that the PL bundle is the major rotational stabilizer of the ACL. In 7 of the 21 responding COMs (33.3%), the AM and PL bundles are identified via direct visualization during anatomic dissection of the ACL. The authors conclude that their findings suggest the need for enhanced presentation of the AM and PL bundles within the basic science curricula at COMs to provide osteopathic medical students with a more comprehensive education in anatomy.

  9. Curricular Design for Intelligent Systems in Geosciences Using Urban Groundwater Studies.

    NASA Astrophysics Data System (ADS)

    Cabral-Cano, E.; Pierce, S. A.; Fuentes-Pineda, G.; Arora, R.

    2016-12-01

    Geosciences research frequently focuses on process-centered phenomena, studying combinations of physical, geological, chemical, biological, ecological, and anthropogenic factors. These interconnected Earth systems can be best understood through the use of digital tools that should be documented as workflows. To develop intelligent systems, it is important that geoscientists and computing and information sciences experts collaborate to: (1) develop a basic understanding of the geosciences and computing and information sciences disciplines so that the problem and solution approach are clear to all stakeholders, and (2) implement the desired intelligent system with a short turnaround time. However, these interactions and techniques are seldom covered in traditional Earth Sciences curricula. We have developed an exchange course on Intelligent Systems for Geosciences to support workforce development and build capacity to facilitate skill-development at the undergraduate student-level. The first version of this course was offered jointly by the University of Texas at Austin and the Universidad Nacional Autónoma de México as an intensive, study-abroad summer course. Content included: basic Linux introduction, shell scripting and high performance computing, data management, experts systems, field data collection exercises and basics of machine learning. Additionally, student teams were tasked to develop a term projects that centered on applications of Intelligent Systems applied to urban and karst groundwater systems. Projects included expert system and reusable workflow development for subsidence hazard analysis in Celaya, Mexico, a classification model to analyze land use change over a 30 Year Period in Austin, Texas, big data processing and decision support for central Texas groundwater case studies and 3D mapping with point cloud processing at three Texas field sites. We will share experiences and pedagogical insights to improve future versions of this course.

  10. Hydrology for everyone: Share your knowledge

    NASA Astrophysics Data System (ADS)

    Dogulu, Nilay; Dogulu, Canay

    2015-04-01

    Hydrology, the science of water, plays a central role in understanding the function and behaviour of water on the earth. Given the increasingly complex, uncertain, and dynamic nature of this system, the study of hydrology presents challenges in solving water-related problems in societies. While researchers in hydrologic science and engineering embrace these challenges, it is important that we also realize our critical role in promoting the basic understanding of hydrology concepts among the general public. Hydrology is everywhere, yet, the general public often lacks the basic understanding of the hydrologic environment surrounding them. Essentially, we believe that a basic level of knowledge on hydrology is a must for everyone and that this knowledge might facilitate resilience of communities to hydrological extremes. For instance, in case of flood and drought conditions, which are the most frequent and widespread hydrological phenomena that societies live with, a key aspect of facilitating community resilience would be to create awareness on the hydrological, meteorological, and climatological processes behind floods and droughts, and also on their potential implications on water resources management. Such knowledge awareness can lead to an increase in individuals' awareness on their role in water-related problems which in turn can potentially motivate them to adopt preparedness behaviours. For these reasons, embracing an approach that will increase hydrologic literacy of the general public should be a common objective for the hydrologic community. This talk, hopefully, will motivate researchers in hydrologic science and engineering to share their knowledge with the general public. We, as early career hydrologists, should take this responsibility more than anybody else. Start teaching hydrology now and share your knowledge with people around you - friends, family, relatives, neighbours, and others. There is hydrology for everyone!

  11. 78 FR 69658 - DOE/NSF Nuclear Science Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-20

    ... Science Foundation's Nuclear Physics Office's The 2013 ONP Comparative Research Review Presentation of the... Foundation on scientific priorities within the field of basic nuclear science research. Tentative Agenda...

  12. Carter Revises the Science Budget

    ERIC Educational Resources Information Center

    Science News, 1977

    1977-01-01

    Reviews budget changes made by President Carter in the following science areas: basic science research; fusion research and breeder reactor projects; oil and gas recovery; coal conversion techniques; and space exploration. (CS)

  13. Clinical caring science as a scientific discipline.

    PubMed

    Rehnsfeldt, Arne; Arman, Maria; Lindström, Unni Å

    2017-09-01

    Clinical caring science will be described from a theory of science perspective. The aim of this theoretical article to give a comprehensive overview of clinical caring science as a human science-based discipline grounded in a theory of science argumentation. Clinical caring science seeks idiographic or specific variations of the ontology, concepts and theories, formulated by caring science. The rationale is the insight that the research questions do not change when they are addressed in different contexts. The academic subject contains a concept order with ethos concepts, core and basic concepts and practice concepts that unites systematic caring science with clinical caring science. In accordance with a hermeneutic tradition, the idea of the caring act is based on the degree to which the theory base is hermeneutically appropriated by the caregiver. The better the ethos, essential concepts and theories are understood, the better the caring act can be understood. In order to understand the concept order related to clinical caring science, an example is given from an ongoing project in a disaster context. The concept order is an appropriate way of making sense of the essence of clinical caring science. The idea of the concept order is that concepts on all levels need to be united with each other. A research project in clinical caring science can start anywhere on the concept order, either in ethos, core concepts, basic concepts, practice concepts or in concrete clinical phenomena, as long as no parts are locked out of the concept order as an entity. If, for example, research on patient participation as a phenomenon is not related to core and basic concepts, there is a risqué that the research becomes meaningless. © 2016 Nordic College of Caring Science.

  14. Basic research needs to assure a secure energy future. A report from the Basic Energy Sciences Advisory Committee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This report has highlighted many of the possible fundamental research areas that will help our country avoid a future energy crisis. The report may not have adequately captured the atmosphere of concern that permeated the discussions at the workshop. The difficulties facing our nation and the world in meeting our energy needs over the next several decades are very challenging. It was generally felt that traditional solutions and approaches will not solve the total energy problem. Knowledge that does not exist must be obtained to address both the quantity of energy needed to increase the standard of living world-wide andmore » the quality of energy generation needed to preserve the environment. In terms of investments, it was clear that there is no single research area that will secure the future energy supply. A diverse range of economic energy sources will be required--and a broad range of fundamental research is needed to enable these. Many of the issues fall into the traditional materials and chemical sciences research areas, but with specific emphasis on understanding mechanisms, energy related phenomena, and pursuing novel directions in, for example, nanoscience and integrated modeling. An important result from the discussions, which is hopefully apparent from the brief presentations above, is that the problems that must be dealt with are truly multidisciplinary. This means that they require the participation of investigators with different skill sets. Basic science skills have to be complemented by awareness of the overall nature of the problem in a national and world context, and with knowledge of the engineering, design, and control issues in any eventual solution. It is necessary to find ways in which this can be done while still preserving the ability to do first-class basic science. The traditional structure of research, with specific disciplinary groupings, will not be sufficient. This presents great challenges and opportunities for the funders of the research that must be done. For example, the applied research programs in the DOE need a greater awareness of the user facilities and an understanding of how to use them to solve their unique problems. The discussions reinforced what all of the participants already knew: the issue of energy security is of major importance both for the U.S. and for the world. Furthermore, it is clear that major changes in the primary energy sources, in energy conversion, and in energy use, must be achieved within the next fifty years. This time scale is determined by two drivers: increasing world population and increasing expectations of that population. Much of the research and development currently being done are concerned with incremental improvements in what has been done in the immediate past; and it is necessary to take this path because improvements will be needed across the board. These advances extend the period before the radical changes have to be made; however, they will not solve the underlying, long-range problem. The Subpanel recommends that a major program be funded to conduct a multidisciplinary research program to address the issues to ensure a secure energy future for the U.S. It is necessary to recognize that this program must be ensured of a long-term stability. It is also necessary that a management and funding structure appropriate for such an approach be developed. The Department of Energy's Office of Basic Energy Sciences is well positioned to support this initiative by enhancement of their already world-class scientific research programs and user facilities.« less

  15. Radiological Dispersion Devices and Basic Radiation Science

    NASA Astrophysics Data System (ADS)

    Bevelacqua, Joseph John

    2010-05-01

    Introductory physics courses present the basic concepts of radioactivity and an overview of nuclear physics that emphasizes the basic decay relationship and the various types of emitted radiation. Although this presentation provides insight into radiological science, it often fails to interest students to explore these concepts in a more rigorous manner. One reason for limited student interest is the failure to link the discussion to topics of current interest. The author has found that presenting this material with a link to radiological dispersion devices (RDDs), or dirty bombs, and their associated health effects provides added motivation for students. The events of Sept. 11, 2001, and periodic media focus on RDDs heighten student interest from both a scientific curiosity as well as a personal protection perspective. This article presents a framework for a more interesting discussion of the basics of radiation science and their associated health effects. The presentation can be integrated with existing radioactivity lectures or added as a supplementary or enrichment activity.

  16. Self-assessment of current knowledge in nuclear medicine (second edition)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Selby, J.B.; Frey, G.D.; Cooper, J.F.

    1981-01-01

    In this updated second edition, the order of contents of the textbook has been reorganized. It has been divided into main parts: Basic Science and Clinical Nuclear Medicine. Basic Science, Part I, encompasses basic physics, radiation protection, interaction of radiation with matter and radiation detection, imaging, nuclear pharmacy, and radiation biology. Part II, Clinical Nuclear Medicine, covers the central nervous system, bone, gastroenterology (liver/spleen), cardiovascular system, pulmonary system, genitourinary system, thyroid and endocrine systems, gallium studies, radioassay, hematology, and therapy. The total number of pages of the current edition is increased to 250 from the 213 of the first editionmore » but there are fewer questions because those in the basic science area have been carefully selected to 60 of the original 98 questions. Compared with the previous edition, there are two advantages in the current one: (1) the addition of explanatory answers; and (2) the inclusion of up-to-date scintiphotos replacing rectilinear scan illustrations.« less

  17. Mesenchymal Stem Cells in Lipogems, a Reverse Story: from Clinical Practice to Basic Science.

    PubMed

    Tremolada, Carlo; Ricordi, Camillo; Caplan, Arnold I; Ventura, Carlo

    2016-01-01

    The idea that basic science should be the starting point for modern clinical approaches has been consolidated over the years, and emerged as the cornerstone of Molecular Medicine. Nevertheless, there is increasing concern over the low efficiency and inherent costs related to the translation of achievements from the bench to the bedside. These burdens are also perceived with respect to the effectiveness of translating basic discoveries in stem cell biology to the newly developing field of advanced cell therapy or Regenerative Medicine. As an alternative paradigm, past and recent history in Medical Science provides remarkable reverse stories in which clinical observations at the patient's bedside have fed major advances in basic research which, in turn, led to consistent progression in clinical practice. Within this context, we discuss our recently developed method and device, which forms the core of a system (Lipogems) for processing of human adipose tissue solely with the aid of mild mechanical forces to yield a microfractured tissue product.

  18. The importance of defining technical issues in interagency environmental negotiations

    USGS Publications Warehouse

    Lamb, B.L.; Burkardt, N.; Taylor, J.G.

    2001-01-01

    The role of technical clarity in successful multiparty negotiations was studied. Investigations involved in-depth interviews with the principal participants in six consultations conducted under the U.S. Federal Energy Regulatory Commission’s hydroelectric power project licensing procedures. Technical clarity was especially important in these cases because they concerned science-based questions. The principal issues in the six cases were fish passage, instream flow for fish habitat, and entrainment of fish in hydropower turbines. It was concluded that technical clarity was one of the most critical elements in resolving these conflicts. In the least successful negotiations, parties failed to address the basic values of the dispute before plunging into technical studies. The results of those studies usually highlighted the potential for negative outcomes and increased polarization between the participants. In the most successful negotiations, the various parties shared an understanding of each of their basic values. These shared understandings led to technical studies that cast the negotiation in a positive light and illuminated possible solutions.

  19. Basic science curriculums in nuclear cardiology and cardiovascular imaging: evolving and emerging concepts.

    PubMed

    Van Decker, William A; Villafana, Theodore

    2008-01-01

    The teaching of basic science with regard to physics, instrumentation, and radiation safety has been part of nuclear cardiology training since its inception. Although there are clear educational and quality rationale for such, regulations associated with the Nuclear Regulatory Commission Subpart J of old 10 CFR section 35 (Title 10, Code of Federal Regulations, Part 35) from the 1960s mandated such prescriptive instruction. Cardiovascular fellowship training programs now have a new opportunity to rethink their basic science imaging curriculums with the era of "revised 10 CFR section 35" and the growing implementation of multimodality imaging training and expertise. This review focuses on the history and the why, what, and how of such a curriculum arising in one city and suggests examples of future implementation in other locations.

  20. Schizophrenia Basics

    MedlinePlus

    ... schizophrenia. National Institute of Mental Health Office of Science Policy, Planning, and Communications Science Writing, Press, and Dissemination ... Mail: National Institute of Mental Health Office of Science Policy, Planning, and Communications 6001 Executive Boulevard, Room 6200, ...

Top