Science.gov

Sample records for imprinted gene snurf

  1. The imprinted SNRPN gene is associated with a polycistronic mRNA and an imprinting control element

    SciTech Connect

    Saitoh, S.; Nicholls, R.D.; Seip, J.

    1994-09-01

    The small nuclear ribonucleoprotein-associated protein SmN (SNRPN) gene is located in the Prader-Willi syndrome (PWS) critical region in chromosome 15q11-q13. We have previously shown that it is functionally imprinted in humans, being only expressed from the paternal allele and differentially methylated on parental alleles. Therefore, SNRPN may have a role in PWS, although genetic studies suggest that at least two genes may be necessary for the classical PWS phenotype. We have characterized the SNRPN genomic structure, and shown that it comprises ten exons. Surprisingly, we identified an open reading frame (ORF) in the first three exons, 190-bp 5{prime} to the SmN ORF. Notably, the majority of base substitutions bewteen human and rodents in the upstream ORF occurred in the wobble position of codons, suggesting selection for a protein coding function. This ORF, which we name SNURF (SNRPN upstream reading frame) encodes a putative polypeptide of 71 amino acids. By analogy to prokaryotic operons that encode proteins with related functions, it is possible that SNURF may have a role in pre-mRNA splicing.

  2. Imprinting defects on human chromosome 15.

    PubMed

    Horsthemke, B; Buiting, K

    2006-01-01

    The Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are two distinct neurogenetic diseases that are caused by the loss of function of imprinted genes on the proximal long arm of human chromosome 15. In a few percent of patients with PWS and AS, the disease is due to aberrant imprinting and gene silencing. In patients with PWS and an imprinting defect, the paternal chromosome carries a maternal imprint. In patients with AS and an imprinting defect, the maternal chromosome carries a paternal imprint. Imprinting defects offer a unique opportunity to identify some of the factors and mechanisms involved in imprint erasure, resetting and maintenance. In approximately 10% of cases the imprinting defects are caused by a microdeletion affecting the 5' end of the SNURF-SNRPN locus. These deletions define the 15q imprinting center (IC), which regulates imprinting in the whole domain. These findings have been confirmed and extended in knock-out and transgenic mice. In the majority of patients with an imprinting defect, the incorrect imprint has arisen without a DNA sequence change, possibly as the result of stochastic errors of the imprinting process or the effect of exogenous factors.

  3. Aberrant methylation of imprinted genes is associated with negative hormone receptor status in invasive breast cancer

    PubMed Central

    Barrow, Timothy M; Barault, Ludovic; Ellsworth, Rachel E; Harris, Holly R; Binder, Alexandra M; Valente, Allyson L; Shriver, Craig D; Michels, Karin B

    2015-01-01

    Epigenetic regulation of imprinted genes enables monoallelic expression according to parental origin, and its disruption is implicated in many cancers and developmental disorders. The expression of hormone receptors is significant in breast cancer as they are indicators of cancer cell growth rate and determine response to endocrine therapies. We investigated the frequency of aberrant events and variation in DNA methylation at nine imprinted sites in invasive breast cancer and examined the association with estrogen and progesterone receptor status. Breast tissue and blood from patients with invasive breast cancer (n=38) and benign breast disease (n=30) were compared to those from healthy individuals (n=36), matched to the cancer patients by age at diagnosis, ethnicity, BMI, menopausal status, and familial history of cancer. DNA methylation and allele-specific expression were analyzed by pyrosequencing. Tumor-specific methylation changes at IGF2 DMR2 were observed in 59% of cancer patients, IGF2 DMR0 in 38%, DIRAS3 DMR in 36%, GRB10 ICR in 23%, PEG3 DMR in 21%, MEST ICR in 19%, H19 ICR in 18%, KvDMR in 8%, and SNRPN/SNURF ICR in 4%. Variation of methylation was significantly greater in breast tissue from cancer patients than healthy individuals and benign breast disease. Aberrant methylation of three or more sites was significantly associated with negative estrogen-alpha (Fisher’s Exact Test, p=0.02) and progesterone-A (p=0.02) receptor status. Aberrant events and increased variation of imprinted gene DNA methylation therefore appear to be frequent in invasive breast cancer and are associated with negative estrogen and progesterone receptor status, without loss of monoallelic expression. PMID:25560175

  4. [Imprinting genes and it's expression in Arabidopsis].

    PubMed

    Zhang, Hong-Yu; Xu, Pei-Zhou; Yang, Hua; Wu, Xian-Jun

    2010-07-01

    Genomic imprinting refers to the phenomenon that the expression of a gene copy depends on its parent of origin. The Arabidopsis imprinted FIS (Fertilisation-independent seed) genes, mea, fis2, and fie, play essential roles in the repression of central cell and the regulation of early endosperm development. fis mutants display two phenotypes: autonomous diploid endosperm development when fertilization is absent and un-cellularised endosperm formation when fertilization occurs. The FIS Polycomb protein complex including the above three FIS proteins catalyzes histone H3 K27 tri-methylation on target loci. DME (DEMETER), a DNA glycosylase, and AtMET1 (Methyltransferase1), a DNA methyltransferase, are involved in the regulation of imprinted expression of both mea and fis2. This review summarizes the studies on the Arabidopsis imprinted FIS genes and other related genes. Recent works have shown that the insertion of transposons may affect nearby gene expression, which may be the main driving force behind the evolution of genomic imprinting. This summary covers the achievements on Arabidopsis imprinted genes will provide important information for studies on genomic imprinting in the important crops such as rice and maize.

  5. Coreceptor gene imprinting governs thymocyte lineage fate

    PubMed Central

    Adoro, Stanley; McCaughtry, Thomas; Erman, Batu; Alag, Amala; Van Laethem, François; Park, Jung-Hyun; Tai, Xuguang; Kimura, Motoko; Wang, Lie; Grinberg, Alex; Kubo, Masato; Bosselut, Remy; Love, Paul; Singer, Alfred

    2012-01-01

    Immature thymocytes are bipotential cells that are signalled during positive selection to become either helper- or cytotoxic-lineage T cells. By tracking expression of lineage determining transcription factors during positive selection, we now report that the Cd8 coreceptor gene locus co-opts any coreceptor protein encoded within it to induce thymocytes to express the cytotoxic-lineage factor Runx3 and to adopt the cytotoxic-lineage fate, findings we refer to as ‘coreceptor gene imprinting'. Specifically, encoding CD4 proteins in the endogenous Cd8 gene locus caused major histocompatibility complex class II-specific thymocytes to express Runx3 during positive selection and to differentiate into CD4+ cytotoxic-lineage T cells. Our findings further indicate that coreceptor gene imprinting derives from the dynamic regulation of specific cis Cd8 gene enhancer elements by positive selection signals in the thymus. Thus, for coreceptor-dependent thymocytes, lineage fate is determined by Cd4 and Cd8 coreceptor gene loci and not by the specificity of T-cell antigen receptor/coreceptor signalling. This study identifies coreceptor gene imprinting as a critical determinant of lineage fate determination in the thymus. PMID:22036949

  6. SUMO-1 promotes association of SNURF (RNF4) with PML nuclear bodies

    SciTech Connect

    Haekli, Marika; Karvonen, Ulla; Jaenne, Olli A.; Palvimo, Jorma J. . E-mail: jorma.palvimo@helsinki.fi

    2005-03-10

    Small nuclear RING finger protein SNURF (RNF4) is involved in transcriptional and cell growth regulation. We show here that a significant portion of endogenous SNURF localizes to nuclear bodies (NBs) that overlap with or are adjacent to domains containing endogenous promyelocytic leukemia (PML) protein and small ubiquitin-like modifier-1 (SUMO-1). In biochemical assays, SNURF efficiently binds SUMO-1 in a noncovalent fashion. SNURF is also covalently modified by SUMO-1 at nonconsensus attachment sites. Ectopic expression of SUMO-1 markedly enhances the interaction between PML3 (PML IV) and SNURF, but covalent attachment of SUMO-1 to neither protein is required. Moreover, overexpression of PML3, but not PML-L (PML III), abolishes the coactivation function of SNURF in transactivation assays, which parallels the ability of PML3 to recruit SNURF to nuclear bodies. In sum, we have identified SNURF as a novel component in PML bodies and suggest that SUMO-1-facilitated sequestration into these nuclear domains regulates the transcriptional activity of SNURF.

  7. Comprehensive analysis of imprinted genes in maize reveals allelic variation for imprinting and limited conservation with other species.

    PubMed

    Waters, Amanda J; Bilinski, Paul; Eichten, Steven R; Vaughn, Matthew W; Ross-Ibarra, Jeffrey; Gehring, Mary; Springer, Nathan M

    2013-11-26

    In plants, a subset of genes exhibit imprinting in endosperm tissue such that expression is primarily from the maternal or paternal allele. Imprinting may arise as a consequence of mechanisms for silencing of transposons during reproduction, and in some cases imprinted expression of particular genes may provide a selective advantage such that it is conserved across species. Separate mechanisms for the origin of imprinted expression patterns and maintenance of these patterns may result in substantial variation in the targets of imprinting in different species. Here we present deep sequencing of RNAs isolated from reciprocal crosses of four diverse maize genotypes, providing a comprehensive analysis that allows evaluation of imprinting at more than 95% of endosperm-expressed genes. We find that over 500 genes exhibit statistically significant parent-of-origin effects in maize endosperm tissue, but focused our analyses on a subset of these genes that had >90% expression from the maternal allele (69 genes) or from the paternal allele (108 genes) in at least one reciprocal cross. Over 10% of imprinted genes show evidence of allelic variation for imprinting. A comparison of imprinting in maize and rice reveals that 13% of genes with syntenic orthologs in both species exhibit conserved imprinting. Genes that exhibit conserved imprinting between maize and rice have elevated nonsynonymous to synonymous substitution ratios compared with other imprinted genes, suggesting a history of more rapid evolution. Together, these data suggest that imprinting only has functional relevance at a subset of loci that currently exhibit imprinting in maize.

  8. Imprinted genes and human disease: an evolutionary perspective.

    PubMed

    Ubeda, Francisco; Wilkins, Jon F

    2008-01-01

    Imprinted genes have been associated with a wide range of diseases. Many of these diseases have symptoms that can be understood in the context of the evolutionary forces that favored imprinted expression at these loci. Modulation of perinatal growth and resource acquisition has played a central role in the evolution of imprinting and many of the diseases associated with imprinted genes involve some sort of growth or feeding disorder. In the first part of this chapter, we discuss the relationship between the evolution of imprinting and the clinical manifestations of imprinting-associated diseases. In the second half, we consider the variety of processes that can disrupt imprinted gene expression and function. We ask specifically if there is reason to believe that imprinted genes are particularly susceptible to deregulation-and whether a disruption of an imprinted gene is more likely to have deleterious consequences than a disruption of an unimprinted gene. There is more to a gene than its DNA sequence. C. H. Waddington used the term "epigenetic" to describe biological differences between tissues that result from the process of development. Waddington needed a new term to describe this variation which was neither the result of genotypic differences between the cells nor well described as phenotypic variation. We now understand that heritable modifications of the DNA--such as cytosine methylation--and aspects of chromatin structure--including histone modifications--are the mechanisms underlying what Waddington called the "epigenotype." Epigenetic modifications are established in particular cell lines during development and are responsible for the patterns of gene expression seen in different tissue types. In contemporary usage, the term epigenetic refers to heritable changes in gene expression that are not coded in the DNA sequence itself. In recent years, much attention has been paid to a particular type of epigenetic variation: genomic imprinting. In the case of

  9. Regulatory links between imprinted genes: evolutionary predictions and consequences.

    PubMed

    Patten, Manus M; Cowley, Michael; Oakey, Rebecca J; Feil, Robert

    2016-02-10

    Genomic imprinting is essential for development and growth and plays diverse roles in physiology and behaviour. Imprinted genes have traditionally been studied in isolation or in clusters with respect to cis-acting modes of gene regulation, both from a mechanistic and evolutionary point of view. Recent studies in mammals, however, reveal that imprinted genes are often co-regulated and are part of a gene network involved in the control of cellular proliferation and differentiation. Moreover, a subset of imprinted genes acts in trans on the expression of other imprinted genes. Numerous studies have modulated levels of imprinted gene expression to explore phenotypic and gene regulatory consequences. Increasingly, the applied genome-wide approaches highlight how perturbation of one imprinted gene may affect other maternally or paternally expressed genes. Here, we discuss these novel findings and consider evolutionary theories that offer a rationale for such intricate interactions among imprinted genes. An evolutionary view of these trans-regulatory effects provides a novel interpretation of the logic of gene networks within species and has implications for the origin of reproductive isolation between species.

  10. Regulatory links between imprinted genes: evolutionary predictions and consequences

    PubMed Central

    Patten, Manus M.; Cowley, Michael; Oakey, Rebecca J.; Feil, Robert

    2016-01-01

    Genomic imprinting is essential for development and growth and plays diverse roles in physiology and behaviour. Imprinted genes have traditionally been studied in isolation or in clusters with respect to cis-acting modes of gene regulation, both from a mechanistic and evolutionary point of view. Recent studies in mammals, however, reveal that imprinted genes are often co-regulated and are part of a gene network involved in the control of cellular proliferation and differentiation. Moreover, a subset of imprinted genes acts in trans on the expression of other imprinted genes. Numerous studies have modulated levels of imprinted gene expression to explore phenotypic and gene regulatory consequences. Increasingly, the applied genome-wide approaches highlight how perturbation of one imprinted gene may affect other maternally or paternally expressed genes. Here, we discuss these novel findings and consider evolutionary theories that offer a rationale for such intricate interactions among imprinted genes. An evolutionary view of these trans-regulatory effects provides a novel interpretation of the logic of gene networks within species and has implications for the origin of reproductive isolation between species. PMID:26842569

  11. Imprinted gene expression in fetal growth and development.

    PubMed

    Lambertini, L; Marsit, C J; Sharma, P; Maccani, M; Ma, Y; Hu, J; Chen, J

    2012-06-01

    Experimental studies showed that genomic imprinting is fundamental in fetoplacental development by timely regulating the expression of the imprinted genes to overlook a set of events determining placenta implantation, growth and embryogenesis. We examined the expression profile of 22 imprinted genes which have been linked to pregnancy abnormalities that may ultimately influence childhood development. The study was conducted in a subset of 106 placenta samples, overrepresented with small and large for gestational age cases, from the Rhode Island Child Health Study. We investigated associations between imprinted gene expression and three fetal development parameters: newborn head circumference, birth weight, and size for gestational age. Results from our investigation show that the maternally imprinted/paternally expressed gene ZNF331 inversely associates with each parameter to drive smaller fetal size, while paternally imprinted/maternally expressed gene SLC22A18 directly associates with the newborn head circumference promoting growth. Multidimensional Scaling analysis revealed two clusters within the 22 imprinted genes which are independently associated with fetoplacental development. Our data suggest that cluster 1 genes work by assuring cell growth and tissue development, while cluster 2 genes act by coordinating these processes. Results from this epidemiologic study offer solid support for the key role of imprinting in fetoplacental development.

  12. Characterization of Conserved and Nonconserved Imprinted Genes in Swine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genomic imprinting results in the silencing of a subset of mammalian alleles due to parent-of-origin inheritance. Due to the nature of their expression patterns they play a critical role in placental and early embryonic development. In order to increase our understanding of imprinted genes specifi...

  13. Imprinted gene expression in hybrids: perturbed mechanisms and evolutionary implications.

    PubMed

    Wolf, J B; Oakey, R J; Feil, R

    2014-08-01

    Diverse mechanisms contribute to the evolution of reproductive barriers, a process that is critical in speciation. Amongst these are alterations in gene products and in gene dosage that affect development and reproductive success in hybrid offspring. Because of its strict parent-of-origin dependence, genomic imprinting is thought to contribute to the aberrant phenotypes observed in interspecies hybrids in mammals and flowering plants, when the abnormalities depend on the directionality of the cross. In different groups of mammals, hybrid incompatibility has indeed been linked to loss of imprinting. Aberrant expression levels have been reported as well, including imprinted genes involved in development and growth. Recent studies in humans emphasize that genetic diversity within a species can readily perturb imprinted gene expression and phenotype as well. Despite novel insights into the underlying mechanisms, the full extent of imprinted gene perturbation still remains to be determined in the different hybrid systems. Here we review imprinted gene expression in intra- and interspecies hybrids and examine the evolutionary scenarios under which imprinting could contribute to hybrid incompatibilities. We discuss effects on development and reproduction and possible evolutionary implications.

  14. Imprinted gene expression in hybrids: perturbed mechanisms and evolutionary implications

    PubMed Central

    Wolf, J B; Oakey, R J; Feil, R

    2014-01-01

    Diverse mechanisms contribute to the evolution of reproductive barriers, a process that is critical in speciation. Amongst these are alterations in gene products and in gene dosage that affect development and reproductive success in hybrid offspring. Because of its strict parent-of-origin dependence, genomic imprinting is thought to contribute to the aberrant phenotypes observed in interspecies hybrids in mammals and flowering plants, when the abnormalities depend on the directionality of the cross. In different groups of mammals, hybrid incompatibility has indeed been linked to loss of imprinting. Aberrant expression levels have been reported as well, including imprinted genes involved in development and growth. Recent studies in humans emphasize that genetic diversity within a species can readily perturb imprinted gene expression and phenotype as well. Despite novel insights into the underlying mechanisms, the full extent of imprinted gene perturbation still remains to be determined in the different hybrid systems. Here we review imprinted gene expression in intra- and interspecies hybrids and examine the evolutionary scenarios under which imprinting could contribute to hybrid incompatibilities. We discuss effects on development and reproduction and possible evolutionary implications. PMID:24619185

  15. Variable imprinting of the MEST gene in human preimplantation embryos

    PubMed Central

    Huntriss, John D; Hemmings, Karen E; Hinkins, Matthew; Rutherford, Anthony J; Sturmey, Roger G; Elder, Kay; Picton, Helen M

    2013-01-01

    There is evidence that expression and methylation of the imprinted paternally expressed gene 1/mesoderm-specific transcript homologue (PEG1/MEST) gene may be affected by assisted reproductive technologies (ARTs) and infertility. In this study, we sought to assess the imprinting status of the MEST gene in a large cohort of in vitro-derived human preimplantation embryos, in order to characterise potentially adverse effects of ART and infertility on this locus in early human development. Embryonic genomic DNA from morula or blastocyst stage embryos was screened for a transcribed AflIII polymorphism in MEST and imprinting analysis was then performed in cDNA libraries derived from these embryos. In 10 heterozygous embryos, MEST expression was monoallelic in seven embryos, predominantly monoallelic in two embryos, and biallelic in one embryo. Screening of cDNA derived from 61 additional human preimplantation embryos, for which DNA for genotyping was unavailable, identified eight embryos with expression originating from both alleles (biallelic or predominantly monoallelic). In some embryos, therefore, the onset of imprinted MEST expression occurs during late preimplantation development. Variability in MEST imprinting was observed in both in vitro fertilization and intracytoplasmic sperm injection-derived embryos. Biallelic or predominantly monoallelic MEST expression was not associated with any one cause of infertility. Characterisation of the main MEST isoforms revealed that isoform 2 was detected in early development and was itself variably imprinted between embryos. To our knowledge, this report constitutes the largest expression study to date of genomic imprinting in human preimplantation embryos and reveals that for some imprinted genes, contrasting imprinting states exist between embryos. PMID:22763377

  16. Cell Pluripotency Levels Associated with Imprinted Genes in Human

    PubMed Central

    Yuan, Liyun; Tang, Xiaoyan; Zhang, Binyan; Ding, Guohui

    2015-01-01

    Pluripotent stem cells are exhibited similarly in the morphology, gene expression, growth properties, and epigenetic modification with embryonic stem cells (ESCs). However, it is still controversial that the pluripotency of induced pluripotent stem cell (iPSC) is much inferior to ESC, and the differentiation capacity of iPSC and ESC can also be separated by transcriptome and epigenetics. miRNAs, which act in posttranscriptional regulation of gene expression and are involved in many basic cellular processes, may reveal the answer. In this paper, we focused on identifying the hidden relationship between miRNAs and imprinted genes in cell pluripotency. Total miRNA expression patterns in iPSC and ES cells were comprehensively analysed and linked with human imprinted genes, which show a global picture of their potential function in pluripotent level. A new CPA4-KLF14 region which locates in chromosomal homologous segments (CHSs) within mammals and include both imprinted genes and significantly expressed miRNAs was first identified. Molecular network analysis showed genes interacted with imprinted genes closely and enriched in modules such as cancer, cell death and survival, and tumor morphology. This imprinted region may provide a new look for those who are interested in cell pluripotency of hiPSCs and hESCs. PMID:26504487

  17. Cell Pluripotency Levels Associated with Imprinted Genes in Human.

    PubMed

    Yuan, Liyun; Tang, Xiaoyan; Zhang, Binyan; Ding, Guohui

    2015-01-01

    Pluripotent stem cells are exhibited similarly in the morphology, gene expression, growth properties, and epigenetic modification with embryonic stem cells (ESCs). However, it is still controversial that the pluripotency of induced pluripotent stem cell (iPSC) is much inferior to ESC, and the differentiation capacity of iPSC and ESC can also be separated by transcriptome and epigenetics. miRNAs, which act in posttranscriptional regulation of gene expression and are involved in many basic cellular processes, may reveal the answer. In this paper, we focused on identifying the hidden relationship between miRNAs and imprinted genes in cell pluripotency. Total miRNA expression patterns in iPSC and ES cells were comprehensively analysed and linked with human imprinted genes, which show a global picture of their potential function in pluripotent level. A new CPA4-KLF14 region which locates in chromosomal homologous segments (CHSs) within mammals and include both imprinted genes and significantly expressed miRNAs was first identified. Molecular network analysis showed genes interacted with imprinted genes closely and enriched in modules such as cancer, cell death and survival, and tumor morphology. This imprinted region may provide a new look for those who are interested in cell pluripotency of hiPSCs and hESCs.

  18. Expression of the nuclear RING finger protein SNURF/RNF4 during rat testis development suggests a role in spermatid maturation.

    PubMed

    Yan, Wei; Hirvonen-Santti, Sirpa J; Palvimo, Jorma J; Toppari, Jorma; Jänne, Olli A

    2002-10-01

    A small nuclear RING finger protein, termed SNURF (or RNF4), is a coregulator of androgen receptor-dependent transcription. To elucidate the physiological role of SNURF in vivo, cell type-specific localization and changes in SNURF mRNA and protein accumulation were followed during testicular development and spermatogenesis of the rat. Two SNURF transcripts, approximately 3.0 and 1.6 kb in size, were detected in adult rat testis. Both mRNA species are capable of encoding full-length SNURF protein. The 3.0 kb SNURF mRNA is persistently expressed in Sertoli cells of both immature and mature testes, whereas the expression of the 1.6 kb transcript appears after day 30 of postnatal life and is restricted to step 4-11 spermatids. Increased accumulation of SNURF in step 4-11 spermatids, which do not express the androgen receptor, indicates that SNURF action is not restricted to the regulation of androgen signaling. Germ cell expression of SNURF coincides with the last transcriptional activity of the haploid genome and alterations in chromatin structure, suggesting that SNURF is involved in the regulation of processes required for late steps of spermatid maturation.

  19. Prader-Willi syndrome and atypical submicroscopic 15q11-q13 deletions with or without imprinting defects.

    PubMed

    Hassan, Maaz; Butler, Merlin G

    2016-11-01

    We report a 20 year follow up on a Caucasian female, now 26 years of age, with Prader-Willi syndrome (PWS) harboring an atypical 15q11-q13 submicroscopic deletion of 100-200 kb in size first detected in 1996 involving the imprinting center, SNRPN gene and surrounding region. PWS is a rare complex disorder caused by the loss of paternally expressed genes in the 15q11-q13 region. With high resolution chromosomal microarray and methylation - specific MLPA analysis, we updated the genetic findings on our patient and found a 209,819bp deletion including the SNURF-SNRPN gene complex which includes the imprinting center and the SNORD116 region. We compared with four other similarly reported individuals in the literature with atypical submicroscopic deletions within this region but without imprinting center involvement to better characterize the specific genetic lesions causing PWS clinical findings. Clinically, our patient met the diagnostic criteria of PWS including infantile hypotonia, a poor suck with feeding difficulties, global developmental delays and later food foraging, childhood obesity, small hands and skin picking. Small atypical deletions of comparable sizes were seen in the 15q11-q13 region in all five cases and similar behavioral/physical characteristics were found despite an imprinting defect in our patient. These results further support an overlapping critical deletion region involving the non-coding snoRNA SNORD116 in common in the five individuals playing a key role in contributing to the PWS phenotype.

  20. Genomic imprinting-an epigenetic gene-regulatory model.

    PubMed

    Koerner, Martha V; Barlow, Denise P

    2010-04-01

    Epigenetic mechanisms (Box 1) are considered to play major gene-regulatory roles in development, differentiation and disease. However, the relative importance of epigenetics in defining the mammalian transcriptome in normal and disease states is unknown. The mammalian genome contains only a few model systems where epigenetic gene regulation has been shown to play a major role in transcriptional control. These model systems are important not only to investigate the biological function of known epigenetic modifications but also to identify new and unexpected epigenetic mechanisms in the mammalian genome. Here we review recent progress in understanding how epigenetic mechanisms control imprinted gene expression.

  1. Small mosaic deletion encompassing the snoRNAs and SNURF-SNRPN results in an atypical Prader-Willi syndrome phenotype.

    PubMed

    Anderlid, Britt-Marie; Lundin, Johanna; Malmgren, Helena; Lehtihet, Mikael; Nordgren, Ann

    2014-02-01

    Genetic analyses were performed in a male patient with suspected Prader-Willi syndrome who presented with hypogonadism, excessive eating, central obesity, small hands and feet and cognition within the low normal range. However, he had no neonatal hypotonia or feeding problems during infancy. Chromosome analysis showed a normal male karyotype. Further analysis with array-CGH identified a mosaic 847 kb deletion in 15q11-q13, including SNURF-SNRPN, the snoRNA gene clusters SNORD116 (HBII-85), SNORD115, (HBII-52), SNORD109 A and B (HBII-438A and B), SNORD64 (HBII-13), and NPAP1 (C15ORF2). MLPA confirmed the deletion and the results were compatible with a paternal origin. Metaphase-FISH verified the mosaicism with the deletion present in 58% of leukocytes analyzed. Three smaller deletions in this region have previously been reported in patients with Prader-Willi syndrome phenotype. All three deletions included SNORD116, but only two encompassed parts of SNURF-SNRPN, implicating SNORD116 as the major contributor to the Prader-Willi phenotype. Our case adds further information about genotype-phenotype correlation and supports the hypothesis that SNORD116 plays a major role in the pathogenesis of Prader-Willi syndrome. Furthermore, it examplifies diagnostic difficulties in atypical cases and illustrates the need for additional testing methods when Prader-Willi syndrome is suspected.

  2. Expression profile and transcription factor binding site exploration of imprinted genes in human and mouse

    PubMed Central

    Steinhoff, Christine; Paulsen, Martina; Kielbasa, Szymon; Walter, Jörn; Vingron, Martin

    2009-01-01

    Background In mammals, imprinted genes are regulated by an epigenetic mechanism that results in parental origin-specific expression. Though allele-specific regulation of imprinted genes has been studied for several individual genes in detail, little is known about their overall tissue-specific expression patterns and interspecies conservation of expression. Results We performed a computational analysis of microarray expression data of imprinted genes in human and mouse placentae and in a variety of adult tissues. For mouse, early embryonic stages were also included. The analysis reveals that imprinted genes are expressed in a broad spectrum of tissues for both species. Overall, the relative tissue-specific expression levels of orthologous imprinted genes in human and mouse are not highly correlated. However, in both species distinctive expression profiles are found in tissues of the endocrine pathways such as adrenal gland, pituitary, pancreas as well as placenta. In mouse, the placental and embryonic expression patterns of imprinted genes are highly similar. Transcription factor binding site (TFBS) prediction reveals correlation of tissue-specific expression patterns and the presence of distinct TFBS signatures in the upstream region of human imprinted genes. Conclusion Imprinted genes are broadly expressed pre- and postnatally and do not exhibit a distinct overall expression pattern when compared to non-imprinted genes. The relative expression of most orthologous gene pairs varies significantly between human and mouse suggesting rapid species-specific changes in gene regulation. Distinct expression profiles of imprinted genes are confined to certain human and mouse hormone producing tissues, and placentae. In contrast to the overall variability, distinct expression profiles and enriched TFBS signatures are found in human and mouse endocrine tissues and placentae. This points towards an important role played by imprinted gene regulation in these tissues. PMID

  3. Allelic expression of mammalian imprinted genes in a matrotrophic lizard, Pseudemoia entrecasteauxii.

    PubMed

    Griffith, Oliver W; Brandley, Matthew C; Belov, Katherine; Thompson, Michael B

    2016-03-01

    Genomic imprinting is a process that results in the differential expression of genes depending on their parent of origin. It occurs in both plants and live-bearing mammals, with imprinted genes typically regulating the ability of an embryo to manipulate the maternal provision of nutrients. Genomic imprinting increases the potential for selection to act separately on paternally and maternally expressed genes, which increases the number of opportunities that selection can facilitate embryonic control over maternal nutrient provision. By looking for imprinting in an independent matrotrophic lineage, the viviparous lizard Pseudemoia entrecasteauxii (Scincidae), we test the hypothesis that genomic imprinting facilitates the evolution of substantial placental nutrient transport to embryos (matrotrophy). We sequenced transcriptomes from the embryonic component of lizard placentae to determine whether there are parent-of-origin differences in expression of genes that are imprinted in mammals. Of these genes, 19 had sufficiently high expression in the lizard to identify polymorphisms in transcribed sequences. We identified bi-allelic expression in 17 genes (including insulin-like growth factor 2), indicating that neither allele was imprinted. These data suggest that either genomic imprinting has not evolved in this matrotrophic skink or, if it has, it has evolved in different genes to mammals. We outline how these hypotheses can be tested. This study highlights important differences between mammalian and reptile pregnancy and the absence of any shared imprinting genes reflects fundamental differences in the way that pregnancy has evolved in these two lineages.

  4. Cellular functions of genetically imprinted genes in human and mouse as annotated in the gene ontology.

    PubMed

    Hamed, Mohamed; Ismael, Siba; Paulsen, Martina; Helms, Volkhard

    2012-01-01

    By analyzing the cellular functions of genetically imprinted genes as annotated in the Gene Ontology for human and mouse, we found that imprinted genes are often involved in developmental, transport and regulatory processes. In the human, paternally expressed genes are enriched in GO terms related to the development of organs and of anatomical structures. In the mouse, maternally expressed genes regulate cation transport as well as G-protein signaling processes. Furthermore, we investigated if imprinted genes are regulated by common transcription factors. We identified 25 TF families that showed an enrichment of binding sites in the set of imprinted genes in human and 40 TF families in mouse. In general, maternally and paternally expressed genes are not regulated by different transcription factors. The genes Nnat, Klf14, Blcap, Gnas and Ube3a contribute most to the enrichment of TF families. In the mouse, genes that are maternally expressed in placenta are enriched for AP1 binding sites. In the human, we found that these genes possessed binding sites for both, AP1 and SP1.

  5. Global assessment of imprinted gene expression in the bovine conceptus by next generation sequencing.

    PubMed

    Chen, Zhiyuan; Hagen, Darren E; Wang, Juanbin; Elsik, Christine G; Ji, Tieming; Siqueira, Luiz G; Hansen, Peter J; Rivera, Rocío M

    2016-07-02

    Genomic imprinting is an epigenetic mechanism that leads to parental-allele-specific gene expression. Approximately 150 imprinted genes have been identified in humans and mice but less than 30 have been described as imprinted in cattle. For the purpose of de novo identification of imprinted genes in bovine, we determined global monoallelic gene expression in brain, skeletal muscle, liver, kidney and placenta of day ∼105 Bos taurus indicus × Bos taurus taurus F1 conceptuses using RNA sequencing. To accomplish this, we developed a bioinformatics pipeline to identify parent-specific single nucleotide polymorphism alleles after filtering adenosine to inosine (A-to-I) RNA editing sites. We identified 53 genes subject to monoallelic expression. Twenty three are genes known to be imprinted in the cow and an additional 7 have previously been characterized as imprinted in human and/or mouse that have not been reported as imprinted in cattle. Of the remaining 23 genes, we found that 10 are uncharacterized or unannotated transcripts located in known imprinted clusters, whereas the other 13 genes are distributed throughout the bovine genome and are not close to any known imprinted clusters. To exclude potential cis-eQTL effects on allele expression, we corroborated the parental specificity of monoallelic expression in day 86 Bos taurus taurus × Bos taurus taurus conceptuses and identified 8 novel bovine imprinted genes. Further, we identified 671 candidate A-to-I RNA editing sites and describe random X-inactivation in day 15 bovine extraembryonic membranes. Our results expand the imprinted gene list in bovine and demonstrate that monoallelic gene expression can be the result of cis-eQTL effects.

  6. Global assessment of imprinted gene expression in the bovine conceptus by next generation sequencing

    PubMed Central

    Chen, Zhiyuan; Hagen, Darren E.; Wang, Juanbin; Elsik, Christine G.; Ji, Tieming; Siqueira, Luiz G.; Hansen, Peter J.; Rivera, Rocío M.

    2016-01-01

    ABSTRACT Genomic imprinting is an epigenetic mechanism that leads to parental-allele-specific gene expression. Approximately 150 imprinted genes have been identified in humans and mice but less than 30 have been described as imprinted in cattle. For the purpose of de novo identification of imprinted genes in bovine, we determined global monoallelic gene expression in brain, skeletal muscle, liver, kidney and placenta of day ∼105 Bos taurus indicus × Bos taurus taurus F1 conceptuses using RNA sequencing. To accomplish this, we developed a bioinformatics pipeline to identify parent-specific single nucleotide polymorphism alleles after filtering adenosine to inosine (A-to-I) RNA editing sites. We identified 53 genes subject to monoallelic expression. Twenty three are genes known to be imprinted in the cow and an additional 7 have previously been characterized as imprinted in human and/or mouse that have not been reported as imprinted in cattle. Of the remaining 23 genes, we found that 10 are uncharacterized or unannotated transcripts located in known imprinted clusters, whereas the other 13 genes are distributed throughout the bovine genome and are not close to any known imprinted clusters. To exclude potential cis-eQTL effects on allele expression, we corroborated the parental specificity of monoallelic expression in day 86 Bos taurus taurus × Bos taurus taurus conceptuses and identified 8 novel bovine imprinted genes. Further, we identified 671 candidate A-to-I RNA editing sites and describe random X-inactivation in day 15 bovine extraembryonic membranes. Our results expand the imprinted gene list in bovine and demonstrate that monoallelic gene expression can be the result of cis-eQTL effects. PMID:27245094

  7. Brain-expressed imprinted genes and adult behaviour: the example of Nesp and Grb10.

    PubMed

    Dent, Claire L; Isles, Anthony R

    2014-02-01

    Imprinted genes are defined by their parent-of-origin-specific monoallelic expression. Although the epigenetic mechanisms regulating imprinted gene expression have been widely studied, their functional importance is still unclear. Imprinted genes are associated with a number of physiologies, including placental function and foetal growth, energy homeostasis, and brain and behaviour. This review focuses on genomic imprinting in the brain and on two imprinted genes in particular, Nesp and paternal Grb10, which, when manipulated in animals, have been shown to influence adult behaviour. These two genes are of particular interest as they are expressed in discrete and overlapping neural regions, recognised as key "imprinting hot spots" in the brain. Furthermore, these two genes do not appear to influence placental function and/or maternal provisioning of offspring. Consequently, by understanding their behavioural function we may begin to shed light on the evolutionary significance of imprinted genes in the adult brain, independent of the recognised role in maternal care. In addition, we discuss the potential future directions of research investigating the function of these two genes and the behavioural role of imprinted genes more generally.

  8. A Novel Imprinted Gene NUWA Controls Mitochondrial Function in Early Seed Development in Arabidopsis

    PubMed Central

    He, Shan; Sun, Yan; Zhang, Xiangyu; Zhao, Peng; Sun, Mengxiang; Liu, Jingjing; Qian, Weiqiang; Gu, Hongya; Qu, Li-Jia

    2017-01-01

    Imprinted genes display biased expression of paternal and maternal alleles and are only found in mammals and flowering plants. Compared to several hundred imprinted genes that are functionally characterized in mammals, very few imprinted genes were confirmed in plants and even fewer of them have been functionally investigated. Here, we report a new imprinted gene, NUWA, in plants. NUWA is an essential gene, because loss of its function resulted in reduced transmission through the female gametophyte and defective cell/nuclear proliferation in early Arabidopsis embryo and endosperm. NUWA is a maternally expressed imprinted gene, as only the maternal allele of NUWA is transcribed and translated from gametogenesis to the 16-cell globular embryo stage after fertilization, and the de novo transcription of the maternal allele of NUWA starts from the zygote stage. Different from other identified plant imprinted genes whose encoded proteins are mostly localized to the nucleus, the NUWA protein was localized to the mitochondria and was essential for mitochondria function. Our work uncovers a novel imprinted gene of a previously unidentified type, namely, a maternal-specific expressed nuclear gene with its encoded protein localizing to and controlling the function of the maternally inherited mitochondria. This reveals a unique mechanism of maternal control of the mitochondria and adds an extra layer of complexity to the regulation of nucleus-organelle coordination during early plant development. PMID:28095407

  9. Genomic imprinting and maternal effect genes in haplodiploid sex determination.

    PubMed

    van de Zande, L; Verhulst, E C

    2014-01-01

    The research into the Drosophila melanogaster sex-determining system has been at the basis of all further research on insect sex determination. This further research has made it clear that, for most insect species, the presence of sufficient functional Transformer (TRA) protein in the early embryonic stage is essential for female sexual development. In Hymenoptera, functional analysis of sex determination by knockdown studies of sex-determining genes has only been performed for 2 species. The first is the social insect species Apis mellifera, the honeybee, which has single-locus complementary sex determination (CSD). The other species is the parasitoid Nasonia vitripennis, the jewel wasp. Nasonia has a non-CSD sex-determining system, described as the maternal effect genomic imprinting sex determination system (MEGISD). Here, we describe the arguments that eventually led to the formulation of MEGISD and the experimental data that supported and refined this model. We evaluate the possibility that DNA methylation lies at the basis of MEGISD and briefly address the role of genomic imprinting in non-CSD sex determination in other Hymenoptera.

  10. Importance of gene duplication in the evolution of genomic imprinting revealed by molecular evolutionary analysis of the type I MADS-box gene family in Arabidopsis species.

    PubMed

    Yoshida, Takanori; Kawabe, Akira

    2013-01-01

    The pattern of molecular evolution of imprinted genes is controversial and the entire picture is still to be unveiled. Recently, a relationship between the formation of imprinted genes and gene duplication was reported in genome-wide survey of imprinted genes in Arabidopsis thaliana. Because gene duplications influence the molecular evolution of the duplicated gene family, it is necessary to investigate both the pattern of molecular evolution and the possible relationship between gene duplication and genomic imprinting for a better understanding of evolutionary aspects of imprinted genes. In this study, we investigated the evolutionary changes of type I MADS-box genes that include imprinted genes by using relative species of Arabidopsis thaliana (two subspecies of A. lyrata and three subspecies of A. halleri). A duplicated gene family enables us to compare DNA sequences between imprinted genes and its homologs. We found an increased number of gene duplications within species in clades containing the imprinted genes, further supporting the hypothesis that local gene duplication is one of the driving forces for the formation of imprinted genes. Moreover, data obtained by phylogenetic analysis suggested "rapid evolution" of not only imprinted genes but also its closely related orthologous genes, which implies the effect of gene duplication on molecular evolution of imprinted genes.

  11. Both maternally and paternally imprinted genes regulate seed development in rice.

    PubMed

    Yuan, Jingya; Chen, Sushu; Jiao, Wu; Wang, Longfei; Wang, Limei; Ye, Wenxue; Lu, Jie; Hong, Delin; You, Siliang; Cheng, Zhukuan; Yang, Dong-Lei; Chen, Z Jeffrey

    2017-03-13

    Genetic imprinting refers to the unequal expression of paternal and maternal alleles of a gene in sexually reproducing organisms, including mammals and flowering plants. Although many imprinted genes have been identified in plants, the functions of these imprinted genes have remained largely uninvestigated. We report genome-wide analysis of gene expression, DNA methylation and small RNAs in the rice endosperm and functional tests of five imprinted genes during seed development using Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated gene9 (CRISPR/Cas9) gene editing technology. In the rice endosperm, we identified 162 maternally expressed genes (MEGs) and 95 paternally expressed genes (PEGs), which were associated with miniature inverted-repeat transposable elements, imprinted differentially methylated loci and some 21-22 small interfering RNAs (siRNAs) and long noncoding RNAs (lncRNAs). Remarkably, one-third of MEGs and nearly one-half of PEGs were associated with grain yield quantitative trait loci. Most MEGs and some PEGs were expressed specifically in the endosperm. Disruption of two MEGs increased the amount of small starch granules and reduced grain and embryo size, whereas mutation of three PEGs reduced starch content and seed fertility. Our data indicate that both MEGs and PEGs in rice regulate nutrient metabolism and endosperm development, which optimize seed development and offspring fitness to facilitate parental-offspring coadaptation. These imprinted genes and mechanisms could be used to improve the grain yield of rice and other cereal crops.

  12. Lack of imprinting of the human dopamine D4 receptor (DRD4) gene

    SciTech Connect

    Cichon, S.; Noethen, M.M.; Propping, P.; Wolf, H.K.

    1996-04-09

    The term genomic imprinting has been used to refer to the differential expression of genetic material depending on whether it has come from the male or female parent. In humans, the chromosomal region 11p15.5 has been shown to contain 2 imprinted genes (H19 and IGF2). The gene for the dopamine D4 receptor (DRD4), which is of great interest for research into neuropsychiatric disorders and psychopharmacology, is also located in this area. In the present study, we have examined the imprinting status of the DRD4 gene in brain tissue of an epileptic patient who was heterozygous for a 12 bp repeat polymorphism in exon 1 of the DRD4 gene. We show that both alleles are expressed in equivalent amounts. We therefore conclude that the DRD4 gene is not imprinted in the human brain. 30 refs., 1 fig.

  13. Expression profiling of uniparental mouse embryos is inefficient in identifying novel imprinted genes.

    PubMed

    Ruf, Nico; Dünzinger, Ulrich; Brinckmann, Anja; Haaf, Thomas; Nürnberg, Peter; Zechner, Ulrich

    2006-04-01

    Imprinted genes are expressed from only one allele in a parent-of-origin-specific manner. We here describe a systematic approach to identify novel imprinted genes using quantification of allele-specific expression by Pyrosequencing, a highly accurate method to detect allele-specific expression differences. Sixty-eight candidate imprinted transcripts mapping to known imprinted chromosomal regions were selected from a recent expression profiling study of uniparental mouse embryos and analyzed. Three novel imprinted transcripts encoding putative non-protein-coding RNAs were identified on the basis of parent-of-origin-specific monoallelic expression in E11.5 (C57BL/6 x Cast/Ei)F1 and informative (C57BL/6 x Cast/Ei) x C57BL/6 backcross embryos. In addition, four transcripts with preferential expression of a strain-specific allele were found. Intriguingly, a vast majority of the analyzed transcripts showed no imprinting-associated expression in F1 embryos. These data strengthen the view that a large fraction of nonimprinted genes is differentially expressed between parthenogenetic and androgenetic embryos and question the efficiency of expression profiling of uniparental embryos to identify novel imprinted genes.

  14. Faithful expression of imprinted genes in donor cells of SCNT cloned pigs.

    PubMed

    Wang, Dongxu; Yuan, Lin; Sui, Tingting; Song, Yuning; Lv, Qingyan; Wang, Anfeng; Li, Zhanjun; Lai, Liangxue

    2015-07-22

    To understand if the genomic imprinting status of the donor cells is altered during the process of SCNT (somatic cell nuclear transfer), cloned pigs were produced by SCNT using PEF (porcine embryonic fibroblast) and P-PEF (parthenogenetic-PEF) cells as donors. Then, the gene expression and methylation patterns of H19, IGF2, NNAT and MEST were compared between PEF vs. C-PEF (cloned-PEF), P-PEF vs. CP-PEF (cloned-P-PEF), respectively. Taken together, the results revealed that there was no significant difference in the expression of imprinted genes and conserved genomic imprints between the donor and cloned cells.

  15. Gene expression profile in cerebrum in the filial imprinting of domestic chicks (Gallus gallus domesticus).

    PubMed

    Yamaguchi, Shinji; Fujii-Taira, Ikuko; Katagiri, Sachiko; Izawa, Ei-Ichi; Fujimoto, Yasuyuki; Takeuchi, Hideaki; Takano, Tatsuya; Matsushima, Toshiya; Homma, Koichi J

    2008-06-15

    In newly hatched chicks, gene expression in the brain has previously been shown to be up-regulated following filial imprinting. By applying cDNA microarrays containing 13,007 expressed sequence tags, we examined the comprehensive gene expression profiling of the intermediate medial mesopallium in the chick cerebrum, which has been shown to play a key role in filial imprinting. We found 52 up-regulated genes and 6 down-regulated genes of at least 2.0-fold changes 3h after the training of filial imprinting, compared to the gene expression of the dark-reared chick brain. The up-regulated genes are known to be involved in a variety of pathways, including signal transduction, cytoskeletal organization, nuclear function, cell metabolism, RNA binding, endoplasmic reticulum or Golgi function, synaptic function, ion channel, and transporter. In contrast, fewer genes were down-regulated in the imprinting, coinciding with the previous data that the total RNA synthesis increased associated with filial imprinting. Our data suggests that the filial imprinting involves the modulation of multiple signaling pathways.

  16. Identification of imprinted genes using a novel screening method based on asynchronous DNA replication

    SciTech Connect

    Kawame, H.; Hansen, R.S.; Gartler, S.M.

    1994-09-01

    Genomic imprinting refers to the process of epigenetic change that occurs during germ cell development that results in either maternal- or paternal-specific gene expression. Identification of imprinted genes is of primary importance to the understanding of imprinting mechanisms and the role of specific imprinted genes in human disease. Recently, it has been established that chromosomal regions known to contain imprinted genes replicate asynchronously. We propose a novel screening method to identify imprinted genes based on replication asynchrony as a marker for imprinted domains. Dividing human cells were pulse-labeled with BrdU and separated into different fractions of S-phase by flow cytometry. A library of late-replicating inter-Alu sequences should be enriched in gene-associated sequences that replicate early on one chromosome and late on the other homologue. Clones were analyzed for replication timing by hybridization to inter-Alu replication profiles. Candidates for replication asynchrony exhibited broad or biphasic replication timing, and these were analyzed for chromosomal location by hybridizations to inter-Alu products from a hybrid mapping panel. Initial screening of 123 clones resulted in 3 asynchronously-replicating clones that localized to single chromosomes. Chromosome 17 and chromosome 19 candidates might be located in regions thought to be imprinted by synteny with mouse chromosomes. A chromosome 15 clone was further characterized because of its possible localization to the Prader-Willi/Angelman locus. This sequence was localized outside the region deleted in Prader-Willi patients, and was found to be expressed in human cell lines. Replication asynchrony for this sequence appears to be polymorphic because cells derived from some individuals indicated synchronous replication. This appears to be the first example of a polymorphism in replication asynchrony.

  17. Embryos aggregation improves development and imprinting gene expression in mouse parthenogenesis.

    PubMed

    Bai, Guang-Yu; Song, Si-Hang; Wang, Zhen-Dong; Shan, Zhi-Yan; Sun, Rui-Zhen; Liu, Chun-Jia; Wu, Yan-Shuang; Li, Tong; Lei, Lei

    2016-04-01

    Mouse parthenogenetic embryonic stem cells (PgESCs) could be applied to study imprinting genes and are used in cell therapy. Our previous study found that stem cells established by aggregation of two parthenogenetic embryos at 8-cell stage (named as a2 PgESCs) had a higher efficiency than that of PgESCs, and the paternal expressed imprinting genes were observably upregulated. Therefore, we propose that increasing the number of parthenogenetic embryos in aggregation may improve the development of parthenogenetic mouse and imprinting gene expression of PgESCs. To verify this hypothesis, we aggregated four embryos together at the 4-cell stage and cultured to the blastocyst stage (named as 4aPgB). qPCR detection showed that the expression of imprinting genes Igf2, Mest, Snrpn, Igf2r, H19, Gtl2 in 4aPgB were more similar to that of fertilized blastocyst (named as fB) compared to 2aPgB (derived from two 4-cell stage parthenogenetic embryos aggregation) or PgB (single parthenogenetic blastocyst). Post-implantation development of 4aPgB extended to 11 days of gestation. The establishment efficiency of GFP-a4 PgESCs which derived from GFP-4aPgB is 62.5%. Moreover, expression of imprinting genes Igf2, Mest, Snrpn, notably downregulated and approached the level of that in fertilized embryonic stem cells (fESCs). In addition, we acquired a 13.5-day fetus totally derived from GFP-a4 PgESCs with germline contribution by 8-cell under zona pellucida (ZP) injection. In conclusion, four embryos aggregation improves parthenogenetic development, and compensates imprinting genes expression in PgESCs. It implied that a4 PgESCs could serve as a better scientific model applied in translational medicine and imprinting gene study.

  18. Expression of imprinted genes in placenta is associated with infant neurobehavioral development

    PubMed Central

    Green, Benjamin B; Kappil, Maya; Lambertini, Luca; Armstrong, David A; Guerin, Dylan J; Sharp, Andrew J; Lester, Barry M; Chen, Jia; Marsit, Carmen J

    2015-01-01

    Genomic imprinting disorders often exhibit delayed neurobehavioral development, suggesting this unique mechanism of epigenetic regulation plays a role in mental and neurological health. While major errors in imprinting have been linked to adverse health outcomes, there has been little research conducted on how moderate variability in imprinted gene expression within a population contributes to differences in neurobehavioral outcomes, particularly at birth. Here, we profiled the expression of 108 known and putative imprinted genes in human placenta samples from 615 infants assessed by the Neonatal Intensive Care Unit (NICU) Network Neurobehavioral Scales (NNNS). Data reduction identified 10 genes (DLX5, DHCR24, VTRNA2-1, PHLDA2, NPAP1, FAM50B, GNAS-AS1, PAX8-AS1, SHANK2, and COPG2IT1) whose expression could distinguish between newborn neurobehavioral profiles derived from the NNNS. Clustering infants based on the expression pattern of these genes identified 2 groups of infants characterized by reduced quality of movement, increased signs of asymmetrical and non-optimal reflexes, and increased odds of demonstrating increased signs of physiologic stress and abstinence. Overall, these results suggest that common variation in placental imprinted gene expression is linked to suboptimal performance on scales of neurological functioning as well as with increased signs of physiologic stress, highlighting the central importance of the control of expression of these genes in the placenta for neurobehavioral development. PMID:26198301

  19. Clinical features associated with copy number variations of the 14q32 imprinted gene cluster.

    PubMed

    Rosenfeld, Jill A; Fox, Joyce E; Descartes, Maria; Brewer, Fallon; Stroud, Tracy; Gorski, Jerome L; Upton, Sheila J; Moeschler, John B; Monteleone, Berrin; Neill, Nicholas J; Lamb, Allen N; Ballif, Blake C; Shaffer, Lisa G; Ravnan, J Britt

    2015-02-01

    Uniparental disomy (UPD) for imprinted chromosomes can cause abnormal phenotypes due to absent or overexpression of imprinted genes. UPD(14)pat causes a unique constellation of features including thoracic skeletal anomalies, polyhydramnios, placentomegaly, and limited survival; its hypothesized cause is overexpression of paternally expressed RTL1, due to absent regulatory effects of maternally expressed RTL1as. UPD(14)mat causes a milder condition with hypotonia, growth failure, and precocious puberty; its hypothesized cause is absence of paternally expressed DLK1. To more clearly establish how gains and losses of imprinted genes can cause disease, we report six individuals with copy number variations of the imprinted 14q32 region identified through clinical microarray-based comparative genomic hybridization. Three individuals presented with UPD(14)mat-like phenotypes (Temple syndrome) and had apparently de novo deletions spanning the imprinted region, including DLK1. One of these deletions was shown to be on the paternal chromosome. Two individuals with UPD(14)pat-like phenotypes had 122-154kb deletions on their maternal chromosomes that included RTL1as but not the differentially methylated regions that regulate imprinted gene expression, providing further support for RTL1 overexpression as a cause for the UPD(14)pat phenotype. The sixth individual is tetrasomic for a 1.7Mb segment, including the imprinted region, and presents with intellectual disability and seizures but lacks significant phenotypic overlap with either UPD(14) syndrome. Therefore, the 14q32 imprinted region is dosage sensitive, with deletions of different critical regions causing UPD(14)mat- and UPD(14)pat-like phenotypes, while copy gains are likely insufficient to recapitulate these phenotypes.

  20. Differential expression of imprinted genes in normal and IUGR human placentas.

    PubMed

    Diplas, Andreas I; Lambertini, Luca; Lee, Men-Jean; Sperling, Rhoda; Lee, Yin Leng; Wetmur, James; Chen, Jia

    2009-05-16

    Genomic imprinting refers to silencing of one parental allele in the zygotes of gametes depending upon the parent of origin. Loss of imprinting (LOI) is the gain of function from the silent allele that can have a maximum effect of doubling the gene dosage. LOI may play a significant role in the etiology of intrauterine growth restriction (IUGR). Using placental tissue from ten normal and seven IUGR pregnancies, we conducted a systematic survey of the expression of a panel of 74 "putatively" imprinted genes using quantitative RT-PCR. We found that 52/74 ( approximately 70%) of the genes were expressed in human placentas. Nine of the 52 (17%) expressed genes were significantly differentially expressed between normal and IUGR placentas; five were upregulated (PHLDA2, ILK2, NNAT, CCDC86, PEG10) and four downregulated (PLAGL1, DHCR24, ZNF331, CDKAL1). We also assessed LOI profile of 14 imprinted genes in 14 normal and 24 IUGR placentas using a functional and sensitive assay developed in our laboratory. Little LOI was observed in any placentas for five of the genes (PEG10, PHLDA2, MEG3, EPS15, CD44). With the 149 heterozygosities examined, 40 (26.8%) exhibited LOI >3%. Some genes exhibited frequent LOI in placentas regardless of the disease status (IGF2, TP73, MEST, SLC22A18, PEG3), while others exhibited LOI only in IUGR placentas (PLAGL1, DLK1, H19, SNRPN). Importantly, there was no correlation between gene expression and LOI profile. Our study suggests that genomic imprinting may play a role in IUGR pathogenesis, but mechanisms other than LOI may contribute to dysregulation of imprinted genes.

  1. Using RNA sequencing for identifying gene imprinting and random monoallelic expression in human placenta

    PubMed Central

    Metsalu, Tauno; Viltrop, Triin; Tiirats, Airi; Rajashekar, Balaji; Reimann, Ene; Kõks, Sulev; Rull, Kristiina; Milani, Lili; Acharya, Ganesh; Basnet, Purusotam; Vilo, Jaak; Mägi, Reedik; Metspalu, Andres; Peters, Maire; Haller-Kikkatalo, Kadri; Salumets, Andres

    2014-01-01

    Given the possible critical importance of placental gene imprinting and random monoallelic expression on fetal and infant health, most of those genes must be identified, in order to understand the risks that the baby might meet during pregnancy and after birth. Therefore, the aim of the current study was to introduce a workflow and tools for analyzing imprinted and random monoallelic gene expression in human placenta, by applying whole-transcriptome (WT) RNA sequencing of placental tissue and genotyping of coding DNA variants in family trios. Ten family trios, each with a healthy spontaneous single-term pregnancy, were recruited. Total RNA was extracted for WT analysis, providing the full sequence information for the placental transcriptome. Parental and child blood DNA genotypes were analyzed by exome SNP genotyping microarrays, mapping the inheritance and estimating the abundance of parental expressed alleles. Imprinted genes showed consistent expression from either parental allele, as demonstrated by the SNP content of sequenced transcripts, while monoallelically expressed genes had random activity of parental alleles. We revealed 4 novel possible imprinted genes (LGALS8, LGALS14, PAPPA2 and SPTLC3) and confirmed the imprinting of 4 genes (AIM1, PEG10, RHOBTB3 and ZFAT-AS1) in human placenta. The major finding was the identification of 4 genes (ABP1, BCLAF1, IFI30 and ZFAT) with random allelic bias, expressing one of the parental alleles preferentially. The main functions of the imprinted and monoallelically expressed genes included: i) mediating cellular apoptosis and tissue development; ii) regulating inflammation and immune system; iii) facilitating metabolic processes; and iv) regulating cell cycle. PMID:25437054

  2. A novel approach identifies new differentially methylated regions (DMRs) associated with imprinted genes

    PubMed Central

    Choufani, Sanaa; Shapiro, Jonathan S.; Susiarjo, Martha; Butcher, Darci T.; Grafodatskaya, Daria; Lou, Youliang; Ferreira, Jose C.; Pinto, Dalila; Scherer, Stephen W.; Shaffer, Lisa G.; Coullin, Philippe; Caniggia, Isabella; Beyene, Joseph; Slim, Rima; Bartolomei, Marisa S.; Weksberg, Rosanna

    2011-01-01

    Imprinted genes are critical for normal human growth and neurodevelopment. They are characterized by differentially methylated regions (DMRs) of DNA that confer parent of origin-specific transcription. We developed a new strategy to identify imprinted gene-associated DMRs. Using genome-wide methylation profiling of sodium bisulfite modified DNA from normal human tissues of biparental origin, candidate DMRs were identified by selecting CpGs with methylation levels consistent with putative allelic differential methylation. In parallel, the methylation profiles of tissues of uniparental origin, i.e., paternally-derived androgenetic complete hydatidiform moles (AnCHMs), and maternally-derived mature cystic ovarian teratoma (MCT), were examined and then used to identify CpGs with parent of origin-specific DNA methylation. With this approach, we found known DMRs associated with imprinted genomic regions as well as new DMRs for known imprinted genes, NAP1L5 and ZNF597, and novel candidate imprinted genes. The paternally methylated DMR for one candidate, AXL, a receptor tyrosine kinase, was also validated in experiments with mouse embryos that demonstrated Axl was expressed preferentially from the maternal allele in a DNA methylation-dependent manner. PMID:21324877

  3. Early embryonic failure: Expression and imprinted status of candidate genes on human chromosome 21

    SciTech Connect

    Sherman, L.S.; Bennett, P.R.; Moore, G.E.

    1994-09-01

    Two cases of maternal uniparental (hetero)disomy for human chromosome 21 (mUPD21) have been identified in a systematic search for UPD in 23 cases of early embryonic failure (EEF). Bi-parental origin of the other chromosome pairs was confirmed using specific VNTR probes or dinucleotide repeat analysis. Both maternally and paternally derived isochromosomes 21q have previously been identified in two individuals with normal phenotypes. Full UPD21 has a different mechanism of origin than uniparental isochromosome 21q and its effect on imprinted genes and phenotypic outcome will therefore not necessarily be the same. EEF associated with mUPD21 suggests that developmentally important genes on HSA 21 may be imprinted such that they are only expressed from either the maternally or paternally derived alleles. We have searched for monoallelic expression of candidate genes on HSA 21 in human pregnancy (CBS, IFNAR, COL6A1) using intragenic DNA polymorphisms. These genes were chosen either because their murine homologues lie in imprinted regions or because they are potentially important in embryogenesis. Once imprinted candidate genes have been identified, their methylation status and expression in normal, early embryonic failure and uniparental disomy 21 pregnancies will be studied. At the same time, a larger number of cases of EEF are being examined to further investigate the incidence of UPD21 in this group.

  4. NOEY2 (ARHI), an imprinted putative tumor suppressor gene in ovarian and breast carcinomas

    PubMed Central

    Yu, Yinhua; Xu, Fengji; Peng, Hongqi; Fang, Xianjun; Zhao, Shulei; Li, Yang; Cuevas, Bruce; Kuo, Wen-Lin; Gray, Joe W.; Siciliano, Michael; Mills, Gordon B.; Bast, Robert C.

    1999-01-01

    Using differential display PCR, we have identified a gene [NOEY2, ARHI (designation by the Human Gene Nomenclature Committee)] with high homology to ras and rap that is expressed consistently in normal ovarian and breast epithelial cells but not in ovarian and breast cancers. Reexpression of NOEY2 through transfection suppresses clonogenic growth of breast and ovarian cancer cells. Growth suppression was associated with down-regulation of the cyclin D1 promoter activity and induction of p21WAF1/CIP1. In an effort to identify mechanisms leading to NOEY2 silencing in cancer, we found that the gene is expressed monoallelically and is imprinted maternally. Loss of heterozygosity of the gene was detected in 41% of ovarian and breast cancers. In most of cancer samples with loss of heterozygosity, the nonimprinted functional allele was deleted. Thus, NOEY2 appears to be a putative imprinted tumor suppressor gene whose function is abrogated in ovarian and breast cancers. PMID:9874798

  5. Genome-wide screen of genes imprinted in sorghum endosperm, and the roles of allelic differential cytosine methylation.

    PubMed

    Zhang, Meishan; Li, Ning; He, Wenan; Zhang, Huakun; Yang, Wei; Liu, Bao

    2016-02-01

    Imprinting is an epigenetic phenomenon referring to allele-biased expression of certain genes depending on their parent of origin. Accumulated evidence suggests that, while imprinting is a conserved mechanism across kingdoms, the identities of the imprinted genes are largely species-specific. Using deep RNA sequencing of endosperm 14 days after pollination in sorghum, 5683 genes (29.27% of the total 19 418 expressed genes) were found to harbor diagnostic single nucleotide polymorphisms between two parental lines. The analysis of parent-of-origin expression patterns in the endosperm of a pair of reciprocal F1 hybrids between the two sorghum lines led to identification of 101 genes with ≥ fivefold allelic expression difference in both hybrids, including 85 maternal expressed genes (MEGs) and 16 paternal expressed genes (PEGs). Thirty of these genes were previously identified as imprinted in endosperm of maize (Zea mays), rice (Oryza sativa) or Arabidopsis, while the remaining 71 genes are sorghum-specific imprinted genes relative to these three plant species. Allele-biased expression of virtually all of the 14 tested imprinted genes (nine MEGs and five PEGs) was validated by pyrosequencing using independent sources of RNA from various developmental stages and dissected parts of endosperm. Forty-six imprinted genes (30 MEGs and 16 PEGs) were assayed by quantitative RT-PCR, and the majority of them showed endosperm-specific or preferential expression relative to embryo and other tissues. DNA methylation analysis of the 5' upstream region and gene body for seven imprinted genes indicated that, while three of the four PEGs were associated with hypomethylation of maternal alleles, no MEG was associated with allele-differential methylation.

  6. The role and interaction of imprinted genes in human fetal growth.

    PubMed

    Moore, Gudrun E; Ishida, Miho; Demetriou, Charalambos; Al-Olabi, Lara; Leon, Lydia J; Thomas, Anna C; Abu-Amero, Sayeda; Frost, Jennifer M; Stafford, Jaime L; Chaoqun, Yao; Duncan, Andrew J; Baigel, Rachel; Brimioulle, Marina; Iglesias-Platas, Isabel; Apostolidou, Sophia; Aggarwal, Reena; Whittaker, John C; Syngelaki, Argyro; Nicolaides, Kypros H; Regan, Lesley; Monk, David; Stanier, Philip

    2015-03-05

    Identifying the genetic input for fetal growth will help to understand common, serious complications of pregnancy such as fetal growth restriction. Genomic imprinting is an epigenetic process that silences one parental allele, resulting in monoallelic expression. Imprinted genes are important in mammalian fetal growth and development. Evidence has emerged showing that genes that are paternally expressed promote fetal growth, whereas maternally expressed genes suppress growth. We have assessed whether the expression levels of key imprinted genes correlate with fetal growth parameters during pregnancy, either early in gestation, using chorionic villus samples (CVS), or in term placenta. We have found that the expression of paternally expressing insulin-like growth factor 2 (IGF2), its receptor IGF2R, and the IGF2/IGF1R ratio in CVS tissues significantly correlate with crown-rump length and birthweight, whereas term placenta expression shows no correlation. For the maternally expressing pleckstrin homology-like domain family A, member 2 (PHLDA2), there is no correlation early in pregnancy in CVS but a highly significant negative relationship in term placenta. Analysis of the control of imprinted expression of PHLDA2 gave rise to a maternally and compounded grand-maternally controlled genetic effect with a birthweight increase of 93/155 g, respectively, when one copy of the PHLDA2 promoter variant is inherited. Expression of the growth factor receptor-bound protein 10 (GRB10) in term placenta is significantly negatively correlated with head circumference. Analysis of the paternally expressing delta-like 1 homologue (DLK1) shows that the paternal transmission of type 1 diabetes protective G allele of rs941576 single nucleotide polymorphism (SNP) results in significantly reduced birth weight (-132 g). In conclusion, we have found that the expression of key imprinted genes show a strong correlation with fetal growth and that for both genetic and genomics data analyses, it

  7. Effects of endocrine disruptors on imprinted gene expression in the mouse embryo.

    PubMed

    Kang, Eun-Rim; Iqbal, Khursheed; Tran, Diana A; Rivas, Guillermo E; Singh, Purnima; Pfeifer, Gerd P; Szabó, Piroska E

    2011-07-01

    Environmental endocrine disruptors (EDs) are synthetic chemicals that resemble natural hormones and are known to cause epigenetic perturbations. EDs have profound effects on development and fertility. Imprinted genes had been identified as susceptible loci to environmental insults by EDs because they are functionally haploid, and because the imprints undergo epigenetic resetting between generations. To screen for possible epigenetic perturbations caused by EDs at imprinted loci, we treated pregnant mice daily between 8.5 and 12.5 days post coitum (dpc) with di-(2-ethylhexyl)-phthalate (DEHP), bisphenol A (BPA), vinclozolin (VZ), or control oil vehicle. After isolating RNA from the placenta, yolk sac, amnion, head, body, heart, liver, lung, stomach, and intestines of 13.5 dpc embryos we measured the allele-specific expression of 38 imprinted transcripts using multiplex single nucleotide primer extension (SNuPE) assays. In this representative data set we identified only a small number of transcripts that exhibited a substantial relaxation of imprinted expression with statistical significance: Slc22a18 with 10% relaxation in the embryo after BPA treatment; Rtl1as with 11 and 16% relaxation in the lung and placenta, respectively after BPA treatment; and Rtl1 with 12% relaxation in the yolk sac after DEHP treatment. Additionally, the standard deviation of allele-specificity increased in various organs after ED treatment for several transcripts including Igf2r, Rasgrf1, Usp29, Slc38a4, and Xist. Our data suggest that the maintenance of strongly biased monoallelic expression of imprinted genes is generally insensitive to EDs in the 13.5 dpc embryo and extra-embryonic organs, but is not immune to those effects.

  8. Ancestral TCDD exposure promotes epigenetic transgenerational inheritance of imprinted gene Igf2: Methylation status and DNMTs.

    PubMed

    Ma, Jing; Chen, Xi; Liu, Yanan; Xie, Qunhui; Sun, Yawen; Chen, Jingshan; Leng, Ling; Yan, Huan; Zhao, Bin; Tang, Naijun

    2015-12-01

    Ancestral TCDD exposure could induce epigenetic transgenerational phenotypes, which may be mediated in part by imprinted gene inheritance. The aim of our study was to evaluate the transgenerational effects of ancestral TCDD exposure on the imprinted gene insulin-like growth factor-2 (Igf2) in rat somatic tissue. TCDD was administered daily by oral gavage to groups of F0 pregnant SD rats at dose levels of 0 (control), 200 or 800 ng/kg bw during gestation day 8-14. Animal transgenerational model of ancestral exposure to TCDD was carefully built, avoiding sibling inbreeding. Hepatic Igf2 expression of the TCDD male progeny was decreased concomitantly with hepatic damage and increased activities of serum hepatic enzymes both in the F1 and F3 generation. Imprinted Control Region (ICR) of Igf2 manifested a hypermethylated pattern, whereas methylation status in the Differentially Methylated Region 2 (DMR2) showed a hypomethylated manner in the F1 generation. These epigenetic alterations in these two regions maintained similar trends in the F3 generation. Meanwhile, the expressions of DNA methyltransferases (DNMT1, DNMT3A and DNMT3B) changed in a non-monotonic manner both in the F1 and F3 generation. This study provides evidence that ancestral TCDD exposure may promote epigenetic transgenerational alterations of imprinted gene Igf2 in adult somatic tissue.

  9. Characterization of the IGF2 Imprinted Gene Methylation Status in Bovine Oocytes during Folliculogenesis.

    PubMed

    Mendonça, Anelise dos Santos; Guimarães, Ana Luíza Silva; da Silva, Naiara Milagres Augusto; Caetano, Alexandre Rodrigues; Dode, Margot Alves Nunes; Franco, Maurício Machaim

    2015-01-01

    DNA methylation reprogramming occurs during mammalian gametogenesis and embryogenesis. Sex-specific DNA methylation patterns at specific CpG islands controlling imprinted genes are acquired during this window of development. Characterization of the DNA methylation dynamics of imprinted genes acquired by oocytes during folliculogenesis is essential for understanding the physiological and genetic aspects of female gametogenesis and to determine the parameters for oocyte competence. This knowledge can be used to improve in vitro embryo production (IVP), specifically because oocyte competence is one of the most important aspects determining the success of IVP. Imprinted genes, such as IGF2, play important roles in embryo development, placentation and fetal growth. The aim of this study was to characterize the DNA methylation profile of the CpG island located in IGF2 exon 10 in oocytes during bovine folliculogenesis. The methylation percentages in oocytes from primordial follicles, final secondary follicles, small antral follicles, large antral follicles, MII oocytes and spermatozoa were 73.74 ± 2.88%, 58.70 ± 7.46%, 56.00 ± 5.58%, 65.77 ± 5.10%, 56.35 ± 7.45% and 96.04 ± 0.78%, respectively. Oocytes from primordial follicles showed fewer hypomethylated alleles (15.5%) than MII oocytes (34.6%) (p = 0.039); spermatozoa showed only hypermethylated alleles. Moreover, MII oocytes were less methylated than spermatozoa (p<0.001). Our results showed that the methylation pattern of this region behaves differently between mature oocytes and spermatozoa. However, while this region has a classical imprinted pattern in spermatozoa that is fully methylated, it was variable in mature oocytes, showing hypermethylated and hypomethylated alleles. Furthermore, our results suggest that this CpG island may have received precocious reprogramming, considering that the hypermethylated pattern was already found in growing oocytes from primordial follicles. These results may contribute to

  10. Allelic switching of the imprinted IGF2R gene in cloned bovine fetuses and calves.

    PubMed

    Suteevun-Phermthai, T; Curchoe, C L; Evans, A C; Boland, E; Rizos, D; Fair, T; Duffy, P; Sung, L Y; Du, F; Chaubal, S; Xu, J; Wechayant, T; Yang, X; Lonergan, P; Parnpai, R; Tian, X C

    2009-11-01

    Cloned animals often suffer from loss of development to term and abnormalities, typically classified under the umbrella term of Large Offspring Syndrome (LOS). Cattle are an interesting species to study because of the relatively greater success rate of nuclear transfer in this species compared with all species cloned to date. The imprinted insulin-like growth factor receptor (IGF2R; mannose-6-phosphate) gene was chosen to investigate aspects of fetal growth and development in cloned cattle in the present study. IGF2R gene expression patterns in identical genetic clones of several age groups were assessed in day 25, day 45, and day 75 fetuses as well as spontaneously aborted fetuses, calves that died shortly after birth and healthy cloned calves using single stranded conformational polymorphism gel electrophoresis. A variable pattern of IGF2R allelic expression in major organs such as the brain, cotyledon, heart, liver, lung, spleen, kidney and intercotyledon was observed using a G/A transition in the 3'UTR of IGF2R. IGF2R gene expression was also assessed by real time RT-PCR and found to be highly variable among the clone groups. Proper IGF2R gene expression is necessary for survival to term, but is most likely not a cause of early fetal lethality or an indicator of postnatal fitness. Contrary to previous reports of the transmission of imprinting patterns from somatic donor cells to cloned animals within organs in the same cloned animal the paternal allele of IGF2R can be imprinted in one tissue while the maternal allele is imprinted in another tissue. This observation has never been reported in any species in which imprinting has been studied.

  11. Genomic imprinting syndromes and cancer.

    PubMed

    Lim, Derek Hock Kiat; Maher, Eamonn Richard

    2010-01-01

    Genomic imprinting represents a form of epigenetic control of gene expression in which one allele of a gene is preferentially expressed according to the parent-of-origin of the allele. Genomic imprinting plays an important role in normal growth and development. Disruption of imprinting can result in a number of human imprinting syndromes and predispose to cancer. In this chapter, we describe a number of human imprinting syndromes to illustrate the concepts of genomic imprinting and how loss of imprinting of imprinted genes their relationship to human neoplasia.

  12. Characterization of three novel imprinted snoRNAs from mouse Irm gene.

    PubMed

    Xiao, Yu; Zhou, Hui; Qu, Liang-Hu

    2006-02-24

    Most, if not all, of snoRNAs in mammals are intron-encoded, implying the expressional and functional relativeness between the snoRNA and their hosts. By computational analysis of an intron database extracted from 65 known mouse imprinted genes, three novel orphan box C/D snoRNAs were identified from Irm gene which is maternally expressed and related to human disorders. The snoRNAs were positively detected and found to express in all the mouse tissues except kidney. The imprinted snoRNAs exhibit stringent structures, but quite variable in locations at their host introns, suggesting their maturation probably through a splicing independent manner. We characterized Irm as a new kind of snoRNA host gene which has no protein-coding capacity and no 5'TOP structure in its mRNA. The newly identified snoRNAs appear mouse-specific, however, their function remains to be elucidated.

  13. Imprinting in the schizophrenia candidate gene GABRB2 encoding GABA(A) receptor β(2) subunit.

    PubMed

    Pun, F W; Zhao, C; Lo, W-S; Ng, S-K; Tsang, S-Y; Nimgaonkar, V; Chung, W S; Ungvari, G S; Xue, H

    2011-05-01

    Schizophrenia is a complex genetic disorder, the inheritance pattern of which is likely complicated by epigenetic factors yet to be elucidated. In this study, transmission disequilibrium tests with family trios yielded significant differences between paternal and maternal transmissions of the disease-associated single-nucleotide polymorphism (SNP) rs6556547 and its haplotypes. The minor allele (T) of rs6556547 was paternally undertransmitted to male schizophrenic offsprings, and this parent-of-origin effect strongly suggested that GABRB2 is imprinted. 'Flipping' of allelic expression in heterozygotes of SNP rs2229944 (C/T) in GABRB2 or rs2290732 (G/A) in the neighboring GABRA1 was compatible with imprinting effects on gene expression. Clustering analysis of GABRB2 mRNA expressions suggested that imprinting brought about the observed two-tiered distribution of expression levels in controls with heterozygous genotype at the disease-associated SNP rs1816071 (A/G). The deficit of upper-tiered expressions accounted for the lowered expression levels in the schizophrenic heterozygotes. The occurrence of a two-tiered distribution furnished support for imprinting, and also pointed to the necessity of differentiating between two kinds of heterozygotes of different parental origins in disease association studies on GABRB2. Bisulfite sequencing revealed hypermethylation in the neighborhood of SNP rs1816071, and methylation differences between controls and schizophrenia patients. Notably, the two schizophrenia-associated SNPs rs6556547 and rs1816071 overlapped with a CpG dinucleotide, thereby opening the possibility that CpG methylation status of these sites could have an impact on the risk of schizophrenia. Thus multiple lines of evidence pointed to the occurrence of imprinting in the GABRB2 gene and its possible role in the development of schizophrenia.

  14. Monoallelic Loss of the Imprinted Gene Grb10 Promotes Tumor Formation in Irradiated Nf1+/- Mice

    PubMed Central

    Mroue, Rana; Huang, Brian; Braunstein, Steve; Firestone, Ari J.; Nakamura, Jean L.

    2015-01-01

    Imprinted genes are expressed from only one parental allele and heterozygous loss involving the expressed allele is sufficient to produce complete loss of protein expression. Genetic alterations are common in tumorigenesis but the role of imprinted genes in this process is not well understood. In earlier work we mutagenized mice heterozygous for the Neurofibromatosis I tumor suppressor gene (NF1) to model radiotherapy-associated second malignant neoplasms that arise in irradiated NF1 patients. Expression analysis of tumor cell lines established from our mouse models identified Grb10 expression as widely absent. Grb10 is an imprinted gene and polymorphism analysis of cell lines and primary tumors demonstrates that the expressed allele is commonly lost in diverse Nf1 mutant tumors arising in our mouse models. We performed functional studies to test whether Grb10 restoration or loss alter fundamental features of the tumor growth. Restoring Grb10 in Nf1 mutant tumors decreases proliferation, decreases soft agar colony formation and downregulates Ras signaling. Conversely, Grb10 silencing in untransformed mouse embryo fibroblasts significantly increased cell proliferation and increased Ras-GTP levels. Expression of a constitutively activated MEK rescued tumor cells from Grb10-mediated reduction in colony formation. These studies reveal that Grb10 loss can occur during in vivo tumorigenesis, with a functional consequence in untransformed primary cells. In tumors, Grb10 loss independently promotes Ras pathway hyperactivation, which promotes hyperproliferation, an early feature of tumor development. In the context of a robust Nf1 mutant mouse model of cancer this work identifies a novel role for an imprinted gene in tumorigenesis. PMID:26000738

  15. Imprinted Genes and Satellite Loci Are Differentially Methylated in Bovine Somatic Cell Nuclear Transfer Clones

    PubMed Central

    Shen, Chih-Jie; Lin, Chiao-Chieh; Shen, Perng-Chih; Cheng, Winston T.K.; Chen, Hsiao-Ling; Chang, Tsung-Chou; Liu, Shyh-Shyan

    2013-01-01

    Abstract In mammals, genome-wide epigenetic reprogramming systems exist in primordial germ cells and zygotes. These reprogramming systems play crucial roles in regulating genome functions during critical stages of embryonic development, and they confer the stability of gene expression during mammalian development. The frequent unexpected loss of progeny from somatic cell nuclear transfer (SCNT) is an ongoing problem. In this study, we used six cloned bovines (named NT-1 to NT-6), which were created by ear fibroblast nuclear transfer and displayed short life spans with multiple organ defects, as an experimental model. We focus here on three imprinted genes (IGF2, H19, and XIST) and four satellite loci (Satellite I, Satellite II, Art2, and VNTR) to investigate their methylation changes. The results revealed that aberrant methylation frequently occurred in the analyzed imprinted genes, but not in the satellite loci, of the cloned bovines. After the bovine fibroblast cells were treated with the 5-aza-2(′)-deoxycytidine (5-Aza-dc) demethylation agent, the methylation percentages of the XIST and H19 putative differentially methylated region (DMR) were significantly decreased (XIST, p<0.01; H19, p<0.05) followed by an increase in their mRNA expression levels (p<0.01). Furthermore, we found that five short-lived cloned bovines (NT-1 to NT-5) exhibited more severe aberrant methylation changes in the three imprinted genes examined than the little longer-lived clone (NT-6) compared with wild-type (WT) cows. Our data suggest that the reprogramming of the methylation-controlled regions between the imprinted genes and satellite loci are differences and may be involved with additional mechanisms that need further elucidation. PMID:23961768

  16. Heat-Induced Release of Epigenetic Silencing Reveals the Concealed Role of an Imprinted Plant Gene

    PubMed Central

    Sanchez, Diego H.; Paszkowski, Jerzy

    2014-01-01

    Epigenetic mechanisms suppress the transcription of transposons and DNA repeats; however, this suppression can be transiently released under prolonged heat stress. Here we show that the Arabidopsis thaliana imprinted gene SDC, which is silent during vegetative growth due to DNA methylation, is activated by heat and contributes to recovery from stress. SDC activation seems to involve epigenetic mechanisms but not canonical heat-shock perception and signaling. The heat-mediated transcriptional induction of SDC occurs particularly in young developing leaves and is proportional to the level of stress. However, this occurs only above a certain window of absolute temperatures and, thus, resembles a thermal-sensing mechanism. In addition, the re-silencing kinetics during recovery can be entrained by repeated heat stress cycles, suggesting that epigenetic regulation in plants may conserve memory of stress experience. We further demonstrate that SDC contributes to the recovery of plant biomass after stress. We propose that transcriptional gene silencing, known to be involved in gene imprinting, is also co-opted in the specific tuning of SDC expression upon heat stress and subsequent recovery. It is therefore possible that dynamic properties of the epigenetic landscape associated with silenced or imprinted genes may contribute to regulation of their expression in response to environmental challenges. PMID:25411840

  17. Box C/D small nucleolar RNA genes and the Prader-Willi syndrome: a complex interplay.

    PubMed

    Cavaillé, Jérôme

    2017-03-13

    The nucleolus of mammalian cells contains hundreds of box C/D small nucleolar RNAs (SNORDs). Through their ability to base pair with ribosomal RNA precursors, most play important roles in the synthesis and/or activity of ribosomes, either by guiding sequence-specific 2'-O-methylations or by facilitating RNA folding and cleavages. A growing number of SNORD genes with elusive functions have been discovered recently. Intriguingly, the vast majority of them are located in two large, imprinted gene clusters at human chromosome region 15q11q13 (the SNURF-SNRPN domain) and at 14q32 (the DLK1-DIO3 domain) where they are expressed, respectively, only from the paternally and maternally inherited alleles. These placental mammal-specific SNORD genes have many features of the canonical SNORDs that guide 2'-O-methylations, yet they lack obvious complementarity with ribosomal RNAs and, surprisingly, they are processed from large, tandemly repeated genes expressed preferentially in the brain. This review summarizes our understanding of the biology of these peculiar SNORD genes, focusing particularly on SNORD115 and SNORD116 in the SNURF-SNRPN domain. It examines the growing evidence that altered levels of these SNORDs and/or their host-gene transcripts may be a primary cause of Prader-Willi syndrome (PWS; a rare disorder characterized by overeating and obesity) as well as abnormalities in signaling through the 5-HT2C serotonin receptor. Finally, the hypothesis that PWS may be a ribosomopathy (ribosomal disease) is also discussed. For further resources related to this article, please visit the WIREs website.

  18. In brief: genomic imprinting and imprinting diseases.

    PubMed

    Horsthemke, Bernhard

    2014-04-01

    Genomic imprinting is an epigenetic process by which the male and the female germline confer different DNA methylation marks and histone modifications onto specific gene regions, so that one allele of an imprinted gene is active and the other one is silent. Since the dosage of imprinted genes is important for normal development, growth and behaviour, the loss or duplication of the active allele can cause disease.

  19. Gene structure, DNA methylation, and imprinted expression of the human SNRPN gene

    SciTech Connect

    Glenn, C.C.; Jong, T.C.; Filbrandt, M.M.

    1996-02-01

    The human SNRPN (small nuclear ribonucleoprotein polypeptide N) gene is one of a gene family that encode proteins involved in pre-mRNA splicing and maps to the smallest deletion region involved in the Prader-Willi syndrome (PWS) within chromosome 15q11-q13. Paternal only expression of SNRPN has previously been demonstrated by use of cell lines from PWS patients (maternal allele only) and Angelman syndrome (AS) patients (paternal allele only). We have characterized two previously unidentified 5{prime} exons of the SNRPN gene and demonstrate that exons -1 and 0 are included in the full-length transcript. This gene is expressed in a wide range of somatic tissues and at high, approximately equal levels in all regions of the brain. Both the first exon of SNRPN (exon -1) and the putative transcription start site are embedded within a CpG island. This CpG island is extensively methylated on the repressed maternal allele and is unmethylated on the expressed paternal allele, in a wide range of fetal and adult somatic cells. This provides a quick and highly reliable diagnostic assay for PWS and AS, which is based on DNA-methylation analysis that has been tested on >100 patients in a variety of tissues. Conversely, several CpG sites {approximately}22 kb downstream of the transcription start site in intron 5 are preferentially methylated on the expressed paternal allele in somatic tissues and male germ cells, whereas these same sites are unmethylated in fetal oocytes. These findings are consistent with a key role for DNA methylation in the imprinted inheritance and subsequent gene expression of the human SNRPN gene. 59 refs., 9 figs., 1 tab.

  20. Coadaptation in mother and infant regulated by a paternally expressed imprinted gene.

    PubMed Central

    Curley, James P.; Barton, Sheila; Surani, Azim; Keverne, Eric B.

    2004-01-01

    This study investigates how a targeted mutation of a paternally expressed imprinted gene regulates multiple aspects of foetal and post-natal development including placental size, foetal growth, suckling and post-natal growth, weaning age and puberty onset. This same mutation in a mother impairs maternal reproductive success with reduced maternal care, reduced maternal food intake during pregnancy, and impaired milk let-down, which in turn reduces infant growth and delays weaning and onset of puberty. The significance of these coadaptive traits being synchronized in mother and offspring by the same paternally expressed imprinted gene ensures that offspring that have extracted 'good' maternal nurturing will themselves be both well provisioned and genetically predisposed towards 'good' mothering. PMID:15306355

  1. Dynamic expression of imprinted genes associates with maternally controlled nutrient allocation during maize endosperm development.

    PubMed

    Xin, Mingming; Yang, Ruolin; Li, Guosheng; Chen, Hao; Laurie, John; Ma, Chuang; Wang, Dongfang; Yao, Yingyin; Larkins, Brian A; Sun, Qixin; Yadegari, Ramin; Wang, Xiangfeng; Ni, Zhongfu

    2013-09-01

    In angiosperms, the endosperm provides nutrients for embryogenesis and seed germination and is the primary tissue where gene imprinting occurs. To identify the imprintome of early developing maize (Zea mays) endosperm, we performed high-throughput transcriptome sequencing of whole kernels at 0, 3, and 5 d after pollination (DAP) and endosperms at 7, 10, and 15 DAP, using B73 by Mo17 reciprocal crosses. We observed gradually increased expression of paternal transcripts in 3- and 5-DAP kernels. In 7-DAP endosperm, the majority of the genes tested reached a 2:1 maternal versus paternal ratio, suggesting that paternal genes are nearly fully activated by 7 DAP. A total of 116, 234, and 63 genes exhibiting parent-specific expression were identified at 7, 10, and 15 DAP, respectively. The largest proportion of paternally expressed genes was at 7 DAP, mainly due to the significantly deviated parental allele expression ratio of these genes at this stage, while nearly 80% of the maternally expressed genes (MEGs) were specific to 10 DAP and were primarily attributed to sharply increased expression levels compared with the other stages. Gene ontology enrichment analysis of the imprinted genes suggested that 10-DAP endosperm-specific MEGs are involved in nutrient uptake and allocation and the auxin signaling pathway, coincident with the onset of starch and storage protein accumulation.

  2. ZFP57 maintains the parent-of-origin-specific expression of the imprinted genes and differentially affects non-imprinted targets in mouse embryonic stem cells

    PubMed Central

    Riso, Vincenzo; Cammisa, Marco; Kukreja, Harpreet; Anvar, Zahra; Verde, Gaetano; Sparago, Angela; Acurzio, Basilia; Lad, Shraddha; Lonardo, Enza; Sankar, Aditya; Helin, Kristian; Feil, Robert; Fico, Annalisa; Angelini, Claudia; Grimaldi, Giovanna; Riccio, Andrea

    2016-01-01

    ZFP57 is necessary for maintaining repressive epigenetic modifications at Imprinting control regions (ICRs). In mouse embryonic stem cells (ESCs), ZFP57 binds ICRs (ICRBS) and many other loci (non-ICRBS). To address the role of ZFP57 on all its target sites, we performed high-throughput and multi-locus analyses of inbred and hybrid mouse ESC lines carrying different gene knockouts. By using an allele-specific RNA-seq approach, we demonstrate that ZFP57 loss results in derepression of the imprinted allele of multiple genes in the imprinted clusters. We also find marked epigenetic differences between ICRBS and non-ICRBS suggesting that different cis-acting regulatory functions are repressed by ZFP57 at these two classes of target loci. Overall, these data demonstrate that ZFP57 is pivotal to maintain the allele-specific epigenetic modifications of ICRs that in turn are necessary for maintaining the imprinted expression over long distances. At non-ICRBS, ZFP57 inactivation results in acquisition of epigenetic features that are characteristic of poised enhancers, suggesting that another function of ZFP57 in early embryogenesis is to repress cis-acting regulatory elements whose activity is not yet required. PMID:27257070

  3. DHPLC-based method for DNA methylation analysis of differential methylated regions from imprinted genes.

    PubMed

    Couvert, P; Poirier, K; Carrié, A; Chalas, C; Jouannet, P; Beldjord, C; Bienvenu, T; Chelly, J; Kerjean, A

    2003-02-01

    The bisulfite genomic sequencing method is one of the most widely used techniques for methylation analysis in heterogeneous unbiased PCR, amplifying for both methylated and unmethylated alleles simultaneously. However, it requires labor-intensive and time-consuming cloning and sequencing steps. In the current study, we used a denaturing high-performance liquid chromatography (DHPLC) procedure in a complementary way with the bisulfite genomic sequencing to analyze the methylation of differentially methylated regions (DMRs) of imprinted genes. We showed reliable and reproducible results in distinguishing overall methylation profiles of DMRs regions of human SNRPN, H19, MEST/PEG1, LIT1, IGF2, TSSC5, WT1 antisense, and mouse H19, Mest/Peg1, Igf2R imprinted genes. These DHPLC profiles were in accordance with bisulfite genomic sequencing data and may serve as a type of "fingerprint," revealing the overall methylation status of DMRs associated with sample heterogeneity. We conclude that DHPLC analysis could be used to increase the throughput efficiency of methylation pattern analysis of imprinted genes after the bisulfite conversion of genomic DNA and unbiased PCR amplification.

  4. DNA Methylation of Regulatory Regions of Imprinted Genes at Birth and Its Relation to Infant Temperament

    PubMed Central

    Fuemmeler, Bernard F.; Lee, Chien-Ti; Soubry, Adelheid; Iversen, Edwin S.; Huang, Zhiqing; Murtha, Amy P.; Schildkraut, Joellen M.; Jirtle, Randy L.; Murphy, Susan K.; Hoyo, Cathrine

    2016-01-01

    BACKGROUND DNA methylation of the differentially methylated regions (DMRs) of imprinted genes is relevant to neurodevelopment. METHODS DNA methylation status of the DMRs of nine imprinted genes in umbilical cord blood leukocytes was analyzed in relation to infant behaviors and temperament (n = 158). RESULTS MEG3 DMR levels were positively associated with internalizing (β = 0.15, P = 0.044) and surgency (β = 0.19, P = 0.018) behaviors, after adjusting for birth weight, gender, gestational age at birth, maternal age at delivery, race/ethnicity, education level, smoking status, parity, and a history of anxiety or depression. Higher methylation levels at the intergenic MEG3-IG methylation regions were associated with surgency (β = 0.28, P = 0.0003) and PEG3 was positively related to externalizing (β = 0.20, P = 0.01) and negative affectivity (β = 0.18, P = 0.02). CONCLUSION While the small sample size limits inference, these pilot data support gene-specific associations between epigenetic differences in regulatory regions of imprinted domains at birth and later infant temperament. PMID:27920589

  5. At Least Ten Genes Define the Imprinted Dlk1-Dio3 Cluster on Mouse Chromosome 12qF1

    PubMed Central

    Hagan, John P.; O'Neill, Brittany L.; Stewart, Colin L.; Kozlov, Serguei V.; Croce, Carlo M.

    2009-01-01

    Background Genomic imprinting is an exception to Mendelian genetics in that imprinted genes are expressed monoallelically, dependent on parental origin. In mammals, imprinted genes are critical in numerous developmental and physiological processes. Aberrant imprinted gene expression is implicated in several diseases including Prader-Willi/Angelman syndromes and cancer. Methodology/Principal Findings To identify novel imprinted genes, transcription profiling was performed on two uniparentally derived cell lines, androgenetic and parthenogenetic primary mouse embryonic fibroblasts. A maternally expressed transcript termed Imprinted RNA near Meg3/Gtl2 (Irm) was identified and its expression studied by Northern blotting and whole mounts in situ hybridization. The imprinted region that contains Irm has a parent of origin effect in three mammalian species, including the sheep callipyge locus. In mice and humans, both maternal and paternal uniparental disomies (UPD) cause embryonic growth and musculoskeletal abnormalities, indicating that both alleles likely express essential genes. To catalog all imprinted genes in this chromosomal region, twenty-five mouse mRNAs in a 1.96Mb span were investigated for allele specific expression. Conclusions/Significance Ten imprinted genes were elucidated. The imprinting of three paternally expressed protein coding genes (Dlk1, Peg11, and Dio3) was confirmed. Seven noncoding RNAs (Meg3/Gtl2, Anti-Peg11, Meg8, Irm/“Rian”, AK050713, AK053394, and Meg9/Mirg) are characterized by exclusive maternal expression. Intriguingly, the majority of these noncoding RNA genes contain microRNAs and/or snoRNAs within their introns, as do their human orthologs. Of the 52 identified microRNAs that map to this region, six are predicted to regulate negatively Dlk1, suggesting an additional mechanism for interactions between allelic gene products. Since several previous studies relied heavily on in silico analysis and RT-PCR, our findings from Northerns

  6. Activation of an imprinted Igf 2 gene in mouse somatic cell cultures.

    PubMed Central

    Eversole-Cire, P; Ferguson-Smith, A C; Sasaki, H; Brown, K D; Cattanach, B M; Gonzales, F A; Surani, M A; Jones, P A

    1993-01-01

    The mouse insulin-like growth factor II gene (Igf 2), located on distal chromosome 7, is parentally imprinted such that the paternal allele is expressed while the maternal allele is transcriptionally silent. We derived a cell line from a mouse embryo maternally disomic and paternally deficient for distal chromosome 7 (MatDi7) to determine the stability of gene repression in culture. MatDi7 cells maintained Igf2 in a repressed state even after immortalization, except for one randomly picked clone which spontaneously expressed the gene. Igf 2 was expressed in a cell culture derived from a normal littermate; this expression was growth regulated, with Igf 2 mRNA levels increasing in the stationary phase of growth. Analysis of the methylation status of 28 sites distributed over 10 kb of the gene did not show consistent differences associated with expression level in the normal and MatDi7 cell lines, and the CpG island in the Igf 2 promoter remained unmethylated in all of the cell lines. Only with an oncogenically transformed cell line did the promoter become extensively methylated. We attempted to derepress the imprinted gene in MatDi7 cells by treatments known to alter gene expression. Expression of the Igf 2 allele in MatDi7 cells was increased in a dose-dependent manner by treatment with 5-aza-2'-deoxycytidine or bromodeoxyuridine, agents known to change DNA methylation patterns or chromatin conformation. Treatment of the cells with 1-beta-D-arabinofuranosylcytosine, 2'-deoxycytidine, calcium ionophore, heat shock, cold shock, or sodium butyrate did not result in increases in the levels of Igf 2 expression. It seems likely that the mechanism of the Igf 2 imprint involves subtle changes in the methylation or chromatin conformation of the gene which are affected by 5-aza-2'-deoxycytidine and bromodeoxyuridine. Images PMID:8336727

  7. The product of the imprinted H19 gene is an oncofetal RNA.

    PubMed Central

    Ariel, I.; Ayesh, S.; Perlman, E. J.; Pizov, G.; Tanos, V.; Schneider, T.; Erdmann, V. A.; Podeh, D.; Komitowski, D.; Quasem, A. S.; de Groot, N.; Hochberg, A.

    1997-01-01

    AIMS/BACKGROUND: The H19 gene is an imprinted, maternally expressed gene in humans. It is tightly linked and coregulated with the imprinted, paternally expressed gene of insulin-like growth factor 2. The H19 gene product is not translated into protein and functions as an RNA molecule. Although its role has been investigated for more than a decade, its biological function is still not understood fully. H19 is abundantly expressed in many tissues from early stages of embryogenesis through fetal life, and is down regulated postnatally. It is also expressed in certain childhood and adult tumours. This study was designed to screen the expression of H19 in human cancer and its relation to the expression of H19 in the fetus. METHODS: Using in situ hybridisation with a [35S] labelled probe, H19 mRNA was detected in paraffin wax sections of fetal tissues from the first and second trimesters of pregnancy and of a large array of human adult and childhood tumours arising from these tissues. RESULTS: The H19 gene is expressed in tumours arising from tissues which express this gene in fetal life. Its expression in the fetus and in cancer is closely linked with tissue differentiation. CONCLUSIONS: Based on these and previous data, H19 is neither a tumour suppressor gene nor an oncogene. Its product is an oncofetal RNA. The potential use of this RNA as a tumour marker should be evaluated. Images PMID:9208812

  8. Genome-wide histone state profiling of fibroblasts from the opossum, Monodelphis domestica, identifies the first marsupial-specific imprinted gene

    PubMed Central

    2014-01-01

    Background Imprinted genes have been extensively documented in eutherian mammals and found to exhibit significant interspecific variation in the suites of genes that are imprinted and in their regulation between tissues and developmental stages. Much less is known about imprinted loci in metatherian (marsupial) mammals, wherein studies have been limited to a small number of genes previously known to be imprinted in eutherians. We describe the first ab initio search for imprinted marsupial genes, in fibroblasts from the opossum, Monodelphis domestica, based on a genome-wide ChIP-seq strategy to identify promoters that are simultaneously marked by mutually exclusive, transcriptionally opposing histone modifications. Results We identified a novel imprinted gene (Meis1) and two additional monoallelically expressed genes, one of which (Cstb) showed allele-specific, but non-imprinted expression. Imprinted vs. allele-specific expression could not be resolved for the third monoallelically expressed gene (Rpl17). Transcriptionally opposing histone modifications H3K4me3, H3K9Ac, and H3K9me3 were found at the promoters of all three genes, but differential DNA methylation was not detected at CpG islands at any of these promoters. Conclusions In generating the first genome-wide histone modification profiles for a marsupial, we identified the first gene that is imprinted in a marsupial but not in eutherian mammals. This outcome demonstrates the practicality of an ab initio discovery strategy and implicates histone modification, but not differential DNA methylation, as a conserved mechanism for marking imprinted genes in all therian mammals. Our findings suggest that marsupials use multiple epigenetic mechanisms for imprinting and support the concept that lineage-specific selective forces can produce sets of imprinted genes that differ between metatherian and eutherian lines. PMID:24484454

  9. H19 controls reactivation of the imprinted gene network during muscle regeneration.

    PubMed

    Martinet, Clémence; Monnier, Paul; Louault, Yann; Benard, Matthieu; Gabory, Anne; Dandolo, Luisa

    2016-03-15

    The H19 locus controls fetal growth by regulating expression of several genes from the imprinted gene network (IGN). H19 is fully repressed after birth, except in skeletal muscle. Using loss-of-function H19(Δ3) mice, we investigated the function of H19 in adult muscle. Mutant muscles display hypertrophy and hyperplasia, with increased Igf2 and decreased myostatin (Mstn) expression. Many imprinted genes are expressed in muscle stem cells or satellite cells. Unexpectedly, the number of satellite cells was reduced by 50% in H19(Δ3) muscle fibers. This reduction occurred after postnatal day 21, suggesting a link with their entry into quiescence. We investigated the biological function of these mutant satellite cells in vivo using a regeneration assay induced by multiple injections of cardiotoxin. Surprisingly, despite their reduced number, the self-renewal capacity of these cells is fully retained in the absence of H19. In addition, we observed a better regeneration potential of the mutant muscles, with enhanced expression of several IGN genes and genes from the IGF pathway.

  10. Ammonium accumulation and use of mineral oil overlay do not alter imprinting establishment at three key imprinted genes in mouse oocytes grown and matured in a long-term follicle culture.

    PubMed

    Anckaert, Ellen; Adriaenssens, Tom; Romero, Sergio; Smitz, Johan

    2009-10-01

    Imprinted genes are differentially methylated during gametogenesis to allow parent-of-origin-specific monoallelic expression. Follicle culture under oil overlay has been associated with altered imprinting establishment in mouse oocytes. We previously demonstrated normal imprinting establishment at four key imprinted genes in mouse oocytes grown and matured in a long-term in vitro follicle culture system without oil overlay. Ammonium (300 microM) has been linked to aberrant imprinting in in vitro preimplantation embryo culture. Compared to culture without oil, mineral oil overlay during follicle culture led to a dramatic increase in ammonia levels in culture medium: mean ammonia levels were, respectively, 39 and 290 microM at Day 4 of culture, 73 and 465 microM at Day 8, and 101 and 725 microM at Day 12 (P < 0.0001). Mineral oil overlay and high ammonia levels (comparable to the follicle culture system for which aberrant imprinting was previously described) during follicle culture did not affect follicle survival, metaphase II (MII) rate, or MII oocyte diameter. Bisulphite sequencing revealed that high levels of ammonia and mineral oil overlay during follicle culture did not alter the methylation status of differentially methylated regions of three key imprinted genes (Snrpn, Igf2r, and H19) in MII oocytes. In the current culture setup, ammonium accumulation and mineral oil overlay during follicle culture do not induce aberrant imprinting establishment at the studied regulatory sequences in mouse oocytes.

  11. Imprinting defects at human 14q32 locus alters gene expression and is associated with the pathobiology of osteosarcoma

    PubMed Central

    Shu, Jingmin; Li, Lihua; Sarver, Anne E.; Pope, Emily A.; Varshney, Jyotika; Thayanithy, Venugopal; Spector, Logan; Largaespada, David A.; Steer, Clifford J.; Subramanian, Subbaya

    2016-01-01

    Osteosarcoma is the most common primary bone malignancy affecting children and adolescents. Although several genetic predisposing conditions have been associated with osteosarcoma, our understanding of its pathobiology is rather limited. Here we show that, first, an imprinting defect at human 14q32-locus is highly prevalent (87%) and specifically associated with osteosarcoma patients < 30 years of age. Second, the average demethylation at differentially methylated regions (DMRs) in the 14q32-locus varied significantly compared to genome-wide demethylation. Third, the 14q32-locus was enriched in both H3K4-me3 and H3K27-me3 histone modifications that affected expression of all imprinted genes and miRNAs in this region. Fourth, imprinting defects at 14q32 - DMRs are present in triad DNA samples from affected children and their biological parents. Finally, imprinting defects at 14q32-DMRs were also observed at higher frequencies in an Rb1/Trp53 mutation-induced osteosarcoma mouse model. Further analysis of normal and tumor tissues from a Sleeping Beauty mouse model of spontaneous osteosarcoma supported the notion that these imprinting defects may be a key factor in osteosarcoma pathobiology. In conclusion, we demonstrate that imprinting defects at the 14q32 locus significantly alter gene expression, may contribute to the pathogenesis of osteosarcoma, and could be predictive of survival outcomes. PMID:26802029

  12. Restricted development of mouse triploid fetuses with disorganized expression of imprinted genes.

    PubMed

    Yamazaki, Wataru; Takahashi, Masashi; Kawahara, Manabu

    2015-12-01

    Eukaryotic species commonly contain a diploid complement of chromosomes. The diploid state appears to be advantageous for mammals because it enables sexual reproduction and facilitates genetic recombination. Nonetheless, the effects of DNA ploidy on mammalian ontogeny have yet to be understood. The present study shows phenotypic features and expression patterns of imprinted genes in tripronucleate diandric and digynic triploid (DAT and DGT) mouse fetuses on embryonic day 10.5 (E10.5). Measurement of crown-rump length revealed that the length of DGT fetuses (1.87 ± 0.13 mm; mean ± standard error of the mean) was much smaller than that of diploid fetuses (4.81 ± 0.05 mm). However, no significant difference was observed in the crown-rump length between diploid and DAT fetuses (3.86 ± 0.43 mm). In DGT fetuses, the expression level of paternally expressed genes, Igf2, Dlk1, Ndn, and Peg3, remained significantly reduced and that of maternally expressed genes, Igf2r and Grb10, increased. Additionally, in DAT fetuses, the Igf2 mRNA expression level was approximately twice that in diploid fetuses, as expected. These results provide the first demonstration that imprinted genes in mouse triploid fetuses show distinctive expression patterns independent of the number of parental-origin haploid sets. These data suggest that both DNA ploidy and asymmetrical functions of parental genomes separately influence mammalian ontogeny.

  13. [Genomic imprinting and human pathology].

    PubMed

    Polívková, Z

    2005-01-01

    Genomic imprinting is an epigenetic form of regulation of gene expression. Imprinted genes are transcribed from one allele of specific parental origin. Such genes are normally involved in embryonic growth and behavioral development. Deregulation of imprinted genes has been observed in a number of human diseases as gestation trophoblastic disease, Prader-Willi, Angelmann and Beckwith-Wiedemann syndromes and plays significant role in the carcinogenesis. Review of recent knowledge on mechanism and regulation of imprinting is presented in this paper.

  14. Modulation of imprinted gene network in placenta results in normal development of in vitro manipulated mouse embryos.

    PubMed

    Fauque, Patricia; Ripoche, Marie-Anne; Tost, Jörg; Journot, Laurent; Gabory, Anne; Busato, Florence; Le Digarcher, Anne; Mondon, Françoise; Gut, Ivo; Jouannet, Pierre; Vaiman, Daniel; Dandolo, Luisa; Jammes, Hélène

    2010-05-01

    Genomic imprinting regulates the expression of a group of genes monoallelically expressed in a parent-of-origin specific manner. Allele-specific DNA methylation occurs at differentially methylated regions (DMRs) of these genes. We have previously shown that in vitro fertilization and embryo culture result in methylation defects at the imprinted H19-Igf2 locus at the blastocyst stage. The current study was designed to evaluate the consequences of these manipulations on genomic imprinting after implantation in the mouse. Blastocysts were produced following three experimental conditions: (i) embryos maintained in culture medium after in vivo fertilization or (ii) in vitro fertilization and (iii) a control group with embryos obtained after in vivo fertilization and timed mating. Blastocysts were all transplanted into pseudopregnant females. Embryos and placentas were collected on day 10.5 of development. DNA methylation patterns of the H19, Igf2, Igf2r and Dlk1-Dio3 DMRs were analyzed by quantitative pyrosequencing. In contrast to blastocyst stage, methylation profiles were normal both in embryonic and placental tissues after in vitro fertilization and culture. Expression of a selected set of imprinting genes from the recently described imprinted gene network (IGN) (including Igf2 and H19) was analyzed in placental tissues by quantitative RT-PCR. Placentas obtained after in vitro fertilization and embryo culture displayed significantly disturbed levels of H19 and Igf2 mRNA, as well as of most other genes from the IGN. As embryos were phenotypically normal, we hypothesize that the modulation of a coordinated network of imprinted genes results in a compensatory process capable of correcting potential dysfunction of placenta.

  15. A Cis-acting locus determines the polymorphic parental imprinting of the human IGF2R gene

    SciTech Connect

    Xu, Y.; Polychronakos, C.

    1994-09-01

    The murine gene encoding the insulin-like growth factor receptor (IGF2R) is parentally imprinted in the mouse with exclusive maternal expression, but most humans express both gene copies. We have reported preferential expression of the maternal copy in approximately 17% of normal human pre-term placenta samples and in 50% of the kidneys of Wilms` tumor patients. Thus, IGF2R imprinting appears to be a polymorphic trait that may predispose to cancer. We explored the possibility that imprinting is associated with sequence variations of the imprinted domain itself (cis-acting locus). We studied 9 subjects with imprinted IGF2R expression that were informative for parental origin. These subjects were heterozygous for a transcribed CA repeat at the 3{prime}UTR of the gene, used for the study of the parental origin of mRNA transcripts. The two most common alleles, A162 and A164 (names refer to size in bp), were analyzed. In all cases the preferentially transcribed allele was maternal (p=0.002). In all 8 cases in which A164 was present, it was of paternal origin and was repressed (p=0.008), while A162 was maternal and preferentially expressed in 8/9 cases. Parental origin of A162 and A164 was random in individuals with biallelic expression. PCR amplification of genomic DNA after digestion with the methylation-sensitive enzyme HpaII revealed biallelic methylation at the 3{prime}UTR in both imprinting and non-imprinting individuals, making it unlikely that the imprint-controlling element (ICE) is located there. Polymorphic IGF2R imprinting depends on a cis-acting locus, at linkage disequilibrium with, but probably distinct from, our 3{prime}UTR marker. Biallelic expression in many subjects with a paternal A164 suggests that the frequency of the imprintable ICE is much lower than that of A164. Alternatively, the cis-locus is necessary but not sufficient and input in trans is additionally required for paternal-germline specific IGF2R repression.

  16. Loss of imprinting of the insulin-like growth factor II (IGF2) gene in esophageal normal and adenocarcinoma tissues.

    PubMed

    Zhao, Ronghua; DeCoteau, John F; Geyer, C Ronald; Gao, Mei; Cui, Hengmi; Casson, Alan G

    2009-12-01

    To evaluate loss of imprinting (LOI) and expression of the IGF2 gene in matched esophageal normal and adenocarcinoma tissues, we studied a prospective cohort of 77 patients who underwent esophageal resection between 1998 and 2003. IGF2 imprinting status was determined by reverse transcription-polymerase chain reaction (PCR) following ApaI digestion, and quantitative PCR was used to evaluate IGF2 expression, which was correlated with clinicopathologic findings, disease-free and overall survival. In total, 32% (14/44) of informative tissues showed loss of IGF2 imprinting, with a strong correlation between the tumor and normal esophageal epithelia (Kappa = 0.89, P < 0.01). Normal epithelia with LOI had increased expression of IGF2 [median: 2.91, 95% confidence interval (CI): 0.93-5.06] compared with imprinted normal epithelia (median: 1.13, 95% CI: 0.85-1.39) (P = 0.03). In contrast, tumors with LOI had significantly reduced IGF2 expression (median: 1.87, 95% CI: 0.53-5.21) compared with normally imprinted tumors (median: 6.79, 95% CI: 3.39-15.89) (P = 0.016). Patients below the age of 65 years with normally imprinted tumors had significantly reduced 5 year disease-free survival (DFS) (24%) compared with patients whose tumors had LOI for IGF2 (55%) (P = 0.03). Cox regression analysis showed that IGF2 overexpression was associated with significantly reduced disease-free survival (P = 0.04). We conclude that in a subgroup of younger patients, loss of IGF2 imprinting was associated with improved outcome following esophageal resection. Expression of IGF2 in esophageal adenocarcinoma and normal esophageal epithelia depended on imprinting status and tissue type, suggesting novel molecular regulatory mechanisms in esophageal tumorigenesis.

  17. Disruption of a novel imprinted zinc-finger gene, ZNF215, in Beckwith-Wiedemann syndrome.

    PubMed Central

    Alders, M; Ryan, A; Hodges, M; Bliek, J; Feinberg, A P; Privitera, O; Westerveld, A; Little, P F; Mannens, M

    2000-01-01

    The genetics of Beckwith-Wiedemann syndrome (BWS) is complex and is thought to involve multiple genes. It is known that three regions on chromosome 11p15 (BWSCR1, BWSCR2, and BWSCR3) may play a role in the development of BWS. BWSCR2 is defined by two BWS breakpoints. Here we describe the cloning and sequence analysis of 73 kb containing BWSCR2. Within this region, we detected a novel zinc-finger gene, ZNF215. We show that two of its five alternatively spliced transcripts are disrupted by both BWSCR2 breakpoints. Parts of the 3' end of these splice forms are transcribed from the antisense strand of a second zinc-finger gene, ZNF214. We show that ZNF215 is imprinted in a tissue-specific manner. PMID:10762538

  18. No evidence for parental imprinting of mouse 22q11 gene orthologs.

    PubMed

    Maynard, Thomas M; Meechan, Daniel W; Heindel, Clifford C; Peters, Amanda Z; Hamer, Robert M; Lieberman, Jeffrey A; LaMantia, Anthony-Samuel

    2006-08-01

    Non-Mendelian factors may influence central nervous system (CNS) phenotypes in patients with 22q11 Deletion Syndrome (22q11DS, also known as DiGeorge or Velocardiofacial Syndrome), and similar mechanisms may operate in mice carrying a deletion of one or more 22q11 gene orthologs. Accordingly, we examined the influence of parent of origin on expression of 25 murine 22q11 orthologs in the developing and mature CNS using single nucleotide polymorphism (SNP)-based analysis in interspecific crosses and quantification of mRNA in a murine model of 22q11DS. We found no evidence for absolute genomic imprinting or silencing. All 25 genes are biallelically expressed in the developing and adult brains. Furthermore, if more subtle forms of allelic biasing are present, they are very small in magnitude and most likely beyond the resolution of currently available quantitative approaches. Given the high degree of similarity of human 22q11 and the orthologous region of mmChr16, genomic imprinting most likely cannot explain apparent parent-of-origin effects in 22q11DS.

  19. Imprinting evolution and human health.

    PubMed

    Das, Radhika; Hampton, Daniel D; Jirtle, Randy L

    2009-01-01

    Genomic imprinting results in parent-of-origin-dependent, monoallelic expression of genes. The functional haploid state of these genes has far-reaching consequences. Not only has imprinting been implicated in accelerating mammalian speciation, there is growing evidence that it is also involved in the pathogenesis of several human conditions, particularly cancer and neurological disorders. Epigenetic regulatory mechanisms govern the parental allele-specific silencing of imprinted genes, and many theories have attempted to explain the driving force for the evolution of this unique form of gene control. This review discusses the evolution of imprinting in Therian mammals, and the importance of imprinted genes in human health and disease.

  20. Associations Between Fetal Imprinted Genes and Maternal Blood Pressure in Pregnancy.

    PubMed

    Petry, Clive J; Sanz Marcos, Nuria; Pimentel, Gracielle; Hayes, M Geoffrey; Nodzenski, Michael; Scholtens, Denise M; Hughes, Ieuan A; Acerini, Carlo L; Ong, Ken K; Lowe, William L; Dunger, David B

    2016-12-01

    In addition to maternal genes and environmental exposures, variation in fetal imprinted genes could also affect maternal blood pressure during pregnancy. Our objective was to test the associations between polymorphic variants in 16 imprinted genes and maternal mean arterial blood pressures in 1160 DNA trios from 2 established birth cohorts (the Cambridge Baby Growth and Wellbeing Studies) and seek replication in 1367 Hyperglycemia and Adverse Pregnancy Outcome Study participants. Significant univariate associations, all independent of fetal sex, were observed in the Cambridge cohorts, including FAM99A rs1489945 transmitted from the mother (P=2×10(-4)), DLK1 rs10139403 (mother; P=9×10(-4)), DLK1 rs12147008 (mother; P=1×10(-3)), H19 rs217222 (father; P=1×10(-3)), SNRPN rs1453556 (father; P=1×10(-3)), IGF2 rs6356 (father; P=1×10(-3)), and NNAT rs6066671 (father; P=1×10(-3)). In meta-analysis including additional independent Hyperglycemia and Adverse Pregnancy Outcome Study data, the association with maternally transmitted fetal DLK1 rs10139403 reached genome-wide significance (P=6.3×10(-10)). With the exception of fetal rs1489945 and rs217222, all of other associations were unidirectional and most were statistically significant. To further explore the significance of these relationships, we developed an allele score based on the univariate findings. The score was strongly associated with maternal blood pressure at 31 weeks (P=4.1×10(-8); adjusted r(2)=5.6%) and 37 weeks of pregnancy (P=1.1×10(-4); r(2)=3.6%), and during the last 2 weeks before parturition (P=1.1×10(-10); r(2)=8.7%). It was also associated with gestational hypertension (odds ratio, 1.54 [range, 1.14-2.09] per allele; P=0.005; 45 cases and 549 controls). These data support the concept that fetal imprinted genes are related to the development of gestational hypertension.

  1. Imprints of natural selection along environmental gradients in phenology-related genes of Quercus petraea.

    PubMed

    Alberto, Florian J; Derory, Jérémy; Boury, Christophe; Frigerio, Jean-Marc; Zimmermann, Niklaus E; Kremer, Antoine

    2013-10-01

    We explored single nucleotide polymorphism (SNP) variation in candidate genes for bud burst from Quercus petraea populations sampled along gradients of latitude and altitude in Western Europe. SNP diversity was monitored for 106 candidate genes, in 758 individuals from 32 natural populations. We investigated whether SNP variation reflected the clinal pattern of bud burst observed in common garden experiments. We used different methods to detect imprints of natural selection (FST outlier, clinal variation at allelic frequencies, association tests) and compared the results obtained for the two gradients. FST outlier SNPs were found in 15 genes, 5 of which were common to both gradients. The type of selection differed between the two gradients (directional or balancing) for 3 of these 5. Clinal variations were observed for six SNPs, and one cline was conserved across both gradients. Association tests between the phenotypic or breeding values of trees and SNP genotypes identified 14 significant associations, involving 12 genes. The results of outlier detection on the basis of population differentiation or clinal variation were not very consistent with the results of association tests. The discrepancies between these approaches may reflect the different hierarchical levels of selection considered (inter- and intrapopulation selection). Finally, we obtained evidence for convergent selection (similar for gradients) and clinal variation for a few genes, suggesting that comparisons between parallel gradients could be used to screen for major candidate genes responding to natural selection in trees.

  2. Differential Gene Expression Reveals Mitochondrial Dysfunction in an Imprinting Center Deletion Mouse Model of Prader-Willi Syndrome

    PubMed Central

    Fan, Weiwei; Coskun, Pinar E.; Nalbandian, Angèle; Knoblach, Susan; Resnick, James L.; Hoffman, Eric; Wallace, Douglas C.; Kimonis, Virginia E.

    2013-01-01

    Prader-Willi syndrome (PWS) is a genetic disorder caused by deficiency of imprinted gene expression from the paternal chromosome 15q11-15q13 and clinically characterized by neonatal hypotonia, short stature, cognitive impairment, hypogonadism, hyperphagia, morbid obesity and diabetes. Previous clinical studies suggest that a defect in energy metabolism may be involved in the pathogenesis of PWS. We focused our attention on the genes associated with energy metabolism and found that there were 95 and 66 mitochondrial genes differentially expressed in PWS muscle and brain, respectively. Assessment of enzyme activities of mitochondrial oxidative phosphorylation (OXPHOS) complexes in the brain, heart, liver and muscle were assessed. We found the enzyme activities of the cardiac mitochondrial complexes II+III were upregulated in the imprinting center deletion (PWS-IC) mice compared to the wild type littermates. These studies suggest that differential gene expression, especially of the mitochondrial genes may contribute to the pathophysiology of PWS. PMID:24127921

  3. Central Precocious Puberty Caused by Mutations in the Imprinted Gene MKRN3

    PubMed Central

    Abreu, Ana Paula; Dauber, Andrew; Macedo, Delanie B.; Noel, Sekoni D.; Brito, Vinicius N.; Gill, John C.; Cukier, Priscilla; Thompson, Iain R.; Navarro, Victor M.; Gagliardi, Priscila C.; Rodrigues, Tânia; Kochi, Cristiane; Longui, Carlos Alberto; Beckers, Dominique; de Zegher, Francis; Montenegro, Luciana R.; Mendonca, Berenice B.; Carroll, Rona S.; Hirschhorn, Joel N.; Latronico, Ana Claudia; Kaiser, Ursula B.

    2013-01-01

    BACKGROUND The onset of puberty is first detected as an increase in pulsatile secretion of gonadotropin-releasing hormone (GnRH). Early activation of the hypothalamic–pituitary–gonadal axis results in central precocious puberty. The timing of pubertal development is driven in part by genetic factors, but only a few, rare molecular defects associated with central precocious puberty have been identified. METHODS We performed whole-exome sequencing in 40 members of 15 families with central precocious puberty. Candidate variants were confirmed with Sanger sequencing. We also performed quantitative real-time polymerase-chain-reaction assays to determine levels of messenger RNA (mRNA) in the hypothalami of mice at different ages. RESULTS We identified four novel heterozygous mutations in MKRN3, the gene encoding makorin RING-finger protein 3, in 5 of the 15 families; both sexes were affected. The mutations included three frameshift mutations, predicted to encode truncated proteins, and one missense mutation, predicted to disrupt protein function. MKRN3 is a paternally expressed, imprinted gene located in the Prader–Willi syndrome critical region (chromosome 15q11–q13). All affected persons inherited the mutations from their fathers, a finding that indicates perfect segregation with the mode of inheritance expected for an imprinted gene. Levels of Mkrn3 mRNA were high in the arcuate nucleus of prepubertal mice, decreased immediately before puberty, and remained low after puberty. CONCLUSIONS Deficiency of MKRN3 causes central precocious puberty in humans. (Funded by the National Institutes of Health and others.) PMID:23738509

  4. The human homolog of a mouse-imprinted gene, Peg3, maps to a zinc finger gene-rich region of human chromosome 19q13.4.

    PubMed

    Kim, J; Ashworth, L; Branscomb, E; Stubbs, L

    1997-05-01

    Peg3 (paternally expressed gene 3) is the first imprinted gene detected in the proximal region of mouse chromosome 7. Because imprinting is a trait that is generally conserved among mammals, and imprinted domains generally encompass several adjacent genes, expression patterns and chromosomal environment of the human counterpart of Peg3 are of special interest. In this study we have localized human PEG3 approximately 2 Mb proximal of the telomere of chromosome 19q, within a region known to carry large numbers of tandemly clustered Krüppel-type zinc finger-containing (ZNF) genes. Peg3 also encodes a Krüppel-type ZNF protein but one that is distinguished from other ZNF gene products by the fact that it carries two novel proline-rich motifs. Comparison between mouse Peg3 and partial human PEG3 gene sequences revealed a high level of conservation between the two species, despite the fact that one of the two proline-rich repeats is absent from the human gene. Our data demonstrate that the human gene is expressed at highest levels in ovary and placenta; mouse Peg3, by contrast, is transcribed at highest levels in the adult brain. These comparative mapping, sequencing, and expression data provide the first clues to the potential activities of PEG3, and generate new tools to aid in the analysis of structure and function of a potentially new imprinted domain located in human chromosome 19q13.4 and mouse chromosome 7.

  5. A small family of sushi-class retrotransposon-derived genes in mammals and their relation to genomic imprinting.

    PubMed

    Youngson, Neil A; Kocialkowski, Sylvia; Peel, Nina; Ferguson-Smith, Anne C

    2005-10-01

    Ty3/gypsy retrotransposons are rare in mammalian genomes despite their abundance in invertebrate and other vertebrate classes. Here we identify a family of nine conserved mammalian genes with homology to Ty3/gypsy retrotransposons but which have lost their ability to autonomously retrotranspose. Of these, five map to the X chromosome while the remaining four are autosomal. Comparative phylogenetic analyses show them to have strongest homology to the sushi-ichi element from Fugu rubripes. Two of the autosomal gene members, Peg10 and Rtl1, are known to be imprinted, being expressed from the paternally inherited chromosome homologue. This suggests, consistent with the host-parasite response theory of the evolution of the imprinting mechanism, that parental-origin specific epigenetic control may be mediated by genomic "parasitic" elements such as these. Alternatively, these elements may preferentially integrate into regions that are differentially modified on the two homologous chromosomes such as imprinted domains and the X chromosome and acquire monoallelic expression. We assess the imprinting status of the remaining autosomal members of this family and show them to be biallelically expressed in embryo and placenta. Furthermore, the methylation status of Rtl1 was assayed throughout development and was found to resemble that of actively, silenced repetitive elements rather than imprinted sequences. This indicates that the ability to undergo genomic imprinting is not an inherent property of all members of this family of retroelements. Nonetheless, the conservation but functional divergence between the different members suggests that they have undergone positive selection and acquired distinct endogenous functions within their mammalian hosts.

  6. Genomic imprinting and reproduction.

    PubMed

    Swales, A K E; Spears, N

    2005-10-01

    Genomic imprinting is the parent-of-origin specific gene expression which is a vital mechanism through both development and adult life. One of the key elements of the imprinting mechanism is DNA methylation, controlled by DNA methyltransferase enzymes. Germ cells undergo reprogramming to ensure that sex-specific genomic imprinting is initiated, thus allowing normal embryo development to progress after fertilisation. In some cases, errors in genomic imprinting are embryo lethal while in others they lead to developmental disorders and disease. Recent studies have suggested a link between the use of assisted reproductive techniques and an increase in normally rare imprinting disorders. A greater understanding of the mechanisms of genomic imprinting and the factors that influence them are important in assessing the safety of these techniques.

  7. Effect of developmental dioxin exposure on methylation and expression of specific imprinted genes in mice.

    PubMed

    Somm, Emmanuel; Stouder, Christelle; Paoloni-Giacobino, Ariane

    2013-01-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is an endocrine disruptor affecting the reproductive system in humans. The aim of this study was to evaluate the effects of TCDD administered to pregnant mice at two different doses (2-10 ng/kg/day), on imprinted genes in the male offspring. The degree of methylation and the mRNA expression of Snrpn, Peg3 and Igf2r were analyzed in the sperm, skeletal muscle and liver. TCDD administration (10 ng/kg/day) decreased the sperm count in the male offspring. It did not affect methylation but increased mRNA expression of Snrpn, Peg3, Igf2r and Air ncRNA. In muscle and liver, TCDD (10 ng/kg/day) induced increases in methylation and decreases in mRNA expression of Igf2r. These results show that the robust effects of TCDD on the mRNA expression of Snrpn, Peg3 and Igf2r genes in the sperm and of Igf2r in the muscle and liver are unrelated to changes in methylation in their respective genes.

  8. Diseases associated with genomic imprinting.

    PubMed

    Wilkins, Jon F; Úbeda, Francisco

    2011-01-01

    Genomic imprinting is the phenomenon where the expression of a locus differs between the maternally and paternally inherited alleles. Typically, this manifests as transcriptional silencing of one of the alleles, although many genes are imprinted in a tissue- or isoform-specific manner. Diseases associated with imprinted genes include various cancers, disorders of growth and metabolism, and disorders in neurodevelopment, cognition, and behavior, including certain major psychiatric disorders. In many cases, the disease phenotypes associated with dysfunction at particular imprinted loci can be understood in terms of the evolutionary processes responsible for the origin of imprinting. Imprinted gene expression represents the outcome of an intragenomic evolutionary conflict, where natural selection favors different expression strategies for maternally and paternally inherited alleles. This conflict is reasonably well understood in the context of the early growth effects of imprinted genes, where paternally inherited alleles are selected to place a greater demand on maternal resources than are maternally inherited alleles. Less well understood are the origins of imprinted gene expression in the brain, and their effects on cognition and behavior. This chapter reviews the genetic diseases that are associated with imprinted genes, framed in terms of the evolutionary pressures acting on gene expression at those loci. We begin by reviewing the phenomenon and evolutionary origins of genomic imprinting. We then discuss diseases that are associated with genetic or epigenetic defects at particular imprinted loci, many of which are associated with abnormalities in growth and/or feeding behaviors that can be understood in terms of the asymmetric pressures of natural selection on maternally and paternally inherited alleles. We next described the evidence for imprinted gene effects on adult cognition and behavior, and the possible role of imprinted genes in the etiology of certain

  9. Altered expression of the imprinted transcription factor PLAGL1 deregulates a network of genes in the human IUGR placenta

    PubMed Central

    Iglesias-Platas, Isabel; Martin-Trujillo, Alex; Petazzi, Paolo; Guillaumet-Adkins, Amy; Esteller, Manel; Monk, David

    2014-01-01

    Genomic imprinting is the epigenetic process that results in monoallelic expression of genes depending on parental origin. These genes are known to be critical for placental development and fetal growth in mammals. Aberrant epigenetic profiles at imprinted loci, such as DNA methylation defects, are surprisingly rare in pregnancies with compromised fetal growth, while variations in transcriptional output from the expressed alleles of imprinted genes are more commonly reported in pregnancies complicated with intrauterine growth restriction (IUGR). To determine if PLAGL1 and HYMAI, two imprinted transcripts deregulated in Transient Neonatal Diabetes Mellitus, are involved in non-syndromic IUGR we compared the expression and DNA methylation levels in a large cohort of placental biopsies from IUGR and uneventful pregnancies. This revealed that despite appropriate maternal methylation at the shared PLAGL1/HYMAI promoter, there was a loss of correlation between PLAGL1 and HYMAI expression in IUGR. This incongruity was due to higher HYMAI expression in IUGR gestations, coupled with PLAGL1 down-regulation in placentas from IUGR girls, but not boys. The PLAGL1 protein is a zinc-finger transcription factor that has been shown to be a master coordinator of a genetic growth network in mice. We observe PLAGL1 binding to the H19/IGF2 shared enhancers in placentae, with significant correlations between PLAGL1 levels with H19 and IGF2 expression levels. In addition, PLAGL1 binding and expression also correlate with expression levels of metabolic regulator genes SLC2A4, TCF4 and PPARγ1. Our results strongly suggest that fetal growth can be influenced by altered expression of the PLAGL1 gene network in human placenta. PMID:24993786

  10. Imprinting of the MEA Polycomb gene is controlled by antagonism between MET1 methyltransferase and DME glycosylase.

    PubMed

    Xiao, Wenyan; Gehring, Mary; Choi, Yeonhee; Margossian, Linda; Pu, Hong; Harada, John J; Goldberg, Robert B; Pennell, Roger I; Fischer, Robert L

    2003-12-01

    The MEA Polycomb gene is imprinted in the Arabidopsis endosperm. DME DNA glycosylase activates maternal MEA allele expression in the central cell of the female gametophyte, the progenitor of the endosperm. Maternal mutant dme or mea alleles result in seed abortion. We identified mutations that suppress dme seed abortion and found that they reside in the MET1 methyltransferase gene, which maintains cytosine methylation. Seeds with maternal dme and met1 alleles survive, indicating that suppression occurs in the female gametophyte. Suppression requires a maternal wild-type MEA allele, suggesting that MET1 functions upstream of, or at, MEA. DME activates whereas MET1 suppresses maternal MEA::GFP allele expression in the central cell. MET1 is required for DNA methylation of three regions in the MEA promoter in seeds. Our data suggest that imprinting is controlled in the female gametophyte by antagonism between the two DNA-modifying enzymes, MET1 methyltransferase and DME DNA glycosylase.

  11. Dynamic Expression of Imprinted Genes Associates with Maternally Controlled Nutrient Allocation during Maize Endosperm Development[W][OPEN

    PubMed Central

    Xin, Mingming; Yang, Ruolin; Li, Guosheng; Chen, Hao; Laurie, John; Ma, Chuang; Wang, Dongfang; Yao, Yingyin; Larkins, Brian A.; Sun, Qixin; Yadegari, Ramin; Wang, Xiangfeng; Ni, Zhongfu

    2013-01-01

    In angiosperms, the endosperm provides nutrients for embryogenesis and seed germination and is the primary tissue where gene imprinting occurs. To identify the imprintome of early developing maize (Zea mays) endosperm, we performed high-throughput transcriptome sequencing of whole kernels at 0, 3, and 5 d after pollination (DAP) and endosperms at 7, 10, and 15 DAP, using B73 by Mo17 reciprocal crosses. We observed gradually increased expression of paternal transcripts in 3- and 5-DAP kernels. In 7-DAP endosperm, the majority of the genes tested reached a 2:1 maternal versus paternal ratio, suggesting that paternal genes are nearly fully activated by 7 DAP. A total of 116, 234, and 63 genes exhibiting parent-specific expression were identified at 7, 10, and 15 DAP, respectively. The largest proportion of paternally expressed genes was at 7 DAP, mainly due to the significantly deviated parental allele expression ratio of these genes at this stage, while nearly 80% of the maternally expressed genes (MEGs) were specific to 10 DAP and were primarily attributed to sharply increased expression levels compared with the other stages. Gene ontology enrichment analysis of the imprinted genes suggested that 10-DAP endosperm-specific MEGs are involved in nutrient uptake and allocation and the auxin signaling pathway, coincident with the onset of starch and storage protein accumulation. PMID:24058158

  12. Mammalian-specific genomic functions: Newly acquired traits generated by genomic imprinting and LTR retrotransposon-derived genes in mammals

    PubMed Central

    KANEKO-ISHINO, Tomoko; ISHINO, Fumitoshi

    2015-01-01

    Mammals, including human beings, have evolved a unique viviparous reproductive system and a highly developed central nervous system. How did these unique characteristics emerge in mammalian evolution, and what kinds of changes did occur in the mammalian genomes as evolution proceeded? A key conceptual term in approaching these issues is “mammalian-specific genomic functions”, a concept covering both mammalian-specific epigenetics and genetics. Genomic imprinting and LTR retrotransposon-derived genes are reviewed as the representative, mammalian-specific genomic functions that are essential not only for the current mammalian developmental system, but also mammalian evolution itself. First, the essential roles of genomic imprinting in mammalian development, especially related to viviparous reproduction via placental function, as well as the emergence of genomic imprinting in mammalian evolution, are discussed. Second, we introduce the novel concept of “mammalian-specific traits generated by mammalian-specific genes from LTR retrotransposons”, based on the finding that LTR retrotransposons served as a critical driving force in the mammalian evolution via generating mammalian-specific genes. PMID:26666304

  13. Towards the cloning of imprinted genes in the Prader-Willi/Angelman region of chromosome 15q11-q13

    SciTech Connect

    Nakao, M.; Sutcliffe, J.S.; Beaudet, A.L.

    1994-09-01

    Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are distinct clinical phenotypes resulting from paternal and maternal deficiencies respectively in human chromosome 15q11-q13. The data suggest the presence of oppositely imprinted genes in the region, and the gene for small nuclear ribonucleoprotein-associated polypeptide N (SNRPN) has been identified as a candidate gene for PWS. Previous strategies for positional cloning identified a number of transcripts from the PWS/AS region, and two of them, PAR-5 (D15S226E) and PAR-1 (D15S227E), are paternally expressed in cultured human cells from patients deleted for 15q11-q13 as is SNRPN. Cosmid contig maps have been developed from the following YACs (contained loci in parentheses): 307A12 (D15S13), 457B4 (SNRPN), 132D4 (D15S10), A229A2, and 378A12 (D15S113), to facilitate molecular studies of PWS and AS. Exon trapping has been employed to isolate putative exons from these overlapping cosmids. Two trapped fragments from the D15S113 region and one fragment from the SNRPN region has been isolated. Sequence information is available for all of the fragments. In addition to imprinting analysis in cultured human cells, we have developed a method to detect imprinting in mouse and human using a GC-clamped denaturing gradient gel electrophoresis strategy, in combination with reverse transcription-polymerase chain reaction. The imprinting analyses of putative exons are in progress to investigate their possible candidacy for involvement in PWS or AS phenotypes.

  14. Microprocessor dynamics and interactions at endogenous imprinted C19MC microRNA genes.

    PubMed

    Bellemer, Clément; Bortolin-Cavaillé, Marie-Line; Schmidt, Ute; Jensen, Stig Mølgaard Rask; Kjems, Jørgen; Bertrand, Edouard; Cavaillé, Jérôme

    2012-06-01

    Nuclear primary microRNA (pri-miRNA) processing catalyzed by the DGCR8-Drosha (Microprocessor) complex is highly regulated. Little is known, however, about how microRNA biogenesis is spatially organized within the mammalian nucleus. Here, we image for the first time, in living cells and at the level of a single microRNA cluster, the intranuclear distribution of untagged, endogenously-expressed pri-miRNAs generated at the human imprinted chromosome 19 microRNA cluster (C19MC), from the environment of transcription sites to single molecules of fully released DGCR8-bound pri-miRNAs dispersed throughout the nucleoplasm. We report that a large fraction of Microprocessor concentrates onto unspliced C19MC pri-miRNA deposited in close proximity to their genes. Our live-cell imaging studies provide direct visual evidence that DGCR8 and Drosha are targeted post-transcriptionally to C19MC pri-miRNAs as a preformed complex but dissociate separately. These dynamics support the view that, upon pri-miRNA loading and most probably concomitantly with Drosha-mediated cleavages, Microprocessor undergoes conformational changes that trigger the release of Drosha while DGCR8 remains stably bound to pri-miRNA.

  15. Genomic imprinting and environmental disease susceptibility.

    PubMed

    Jirtle, R L; Sander, M; Barrett, J C

    2000-03-01

    Genomic imprinting is one of the most intriguing subtleties of modern genetics. The term "imprinting" refers to parent-of-origin-dependent gene expression. The presence of imprinted genes can cause cells with a full parental complement of functional autosomal genes to specifically express one allele but not the other, resulting in monoallelic expression of the imprinted loci. Genomic imprinting plays a critical role in fetal growth and behavioral development, and it is regulated by DNA methylation and chromatin structure. This paper summarizes the Genomic Imprinting and Environmental Disease Susceptibility Conference held 8-10 October 1998 at Duke University, Durham, North Carolina. The conference focused on the importance of genomic imprinting in determining susceptibility to environmentally induced diseases. Conference topics included rationales for imprinting: parental antagonism and speciation; methods for imprinted gene identification: allelic message display and monochromosomal mouse/human hybrids; properties of the imprinted gene cluster human 11p15.5 and mouse distal 7; the epigenetics of X-chromosome inactivation; variability in imprinting: imprint erasure, non-Mendelian inheritance ratios, and polymorphic imprinting; imprinting and behavior: genetics of bipolar disorder, imprinting in Turner syndrome, and imprinting in brain development and social behavior; and aberrant methylation: methylation and chromatin structure, methylation and estrogen exposure, methylation of tumor-suppressor genes, and cancer susceptibility. Environmental factors are capable of causing epigenetic changes in DNA that can potentially alter imprint gene expression and that can result in genetic diseases including cancer and behavioral disorders. Understanding the contribution of imprinting to the regulation of gene expression will be an important step in evaluating environmental influences on human health and disease.

  16. Genomic imprinting of experience-dependent cortical plasticity by the ubiquitin ligase gene Ube3a.

    PubMed

    Sato, Masaaki; Stryker, Michael P

    2010-03-23

    A defect in the maternal copy of a ubiqutin ligase gene Ube3a can produce a neurodevelopmental defect in human children known as Angelman syndrome. We investigated the role of the maternally expressed Ube3a gene in experience-dependent development and plasticity of the mouse visual system. As demonstrated by optical imaging, rapid ocular dominance (OD) plasticity after brief monocular deprivation (MD) was severely impaired during the critical period (CP) in the visual cortex (VC) of Ube3a maternal-deficient (m-/p+) mice. Prolonged MD elicited significant plasticity in m-/p+ mice that never matched the level seen in control animals. In older animals after the CP, 7-day MD elicited mild OD shifts in both control and m-/p+ mice; however, the OD shifts in m-/p+ mice lacked the strengthening of visual responses to the two eyes characteristic of normal adult plasticity. Anatomic effects of the maternal deficiency include reduced spine density on basal, but not apical, dendrites of pyramidal neurons in the binocular region of the VC. Imprinting of Ube3a expression was not fully established in the early postnatal period, consistent with the normal development of cortical retinotopy and visual acuity that we observed in m-/p+ mice, but was fully established by the onset of the CP. These results demonstrate that paternal and maternal genomes are not functionally equivalent for cortical plasticity, and that maternally expressed Ube3a is required for normal experience-dependent modification of cortical circuits during and after the CP.

  17. Epigenetics and imprinting in human disease.

    PubMed

    Kalish, Jennifer M; Jiang, Connie; Bartolomei, Marisa S

    2014-01-01

    Most genes are expressed from both parental chromosomes; however, a small number of genes in mammals are imprinted and expressed in a parent-of-origin specific manner. These imprinted genes play an important role in embryonic and extraembryonic growth and development, as well as in a variety of processes after birth. Many imprinted genes are clustered in the genome with the establishment and maintenance of imprinted gene expression governed by complex epigenetic mechanisms. Dysregulation of these epigenetic mechanisms as well as genomic mutations at imprinted gene clusters can lead to human disease.

  18. Evolution and function of genomic imprinting in plants

    PubMed Central

    Rodrigues, Jessica A.; Zilberman, Daniel

    2015-01-01

    Genomic imprinting, an inherently epigenetic phenomenon defined by parent of origin-dependent gene expression, is observed in mammals and flowering plants. Genome-scale surveys of imprinted expression and the underlying differential epigenetic marks have led to the discovery of hundreds of imprinted plant genes and confirmed DNA and histone methylation as key regulators of plant imprinting. However, the biological roles of the vast majority of imprinted plant genes are unknown, and the evolutionary forces shaping plant imprinting remain rather opaque. Here, we review the mechanisms of plant genomic imprinting and discuss theories of imprinting evolution and biological significance in light of recent findings. PMID:26680300

  19. Evolution and function of genomic imprinting in plants.

    PubMed

    Rodrigues, Jessica A; Zilberman, Daniel

    2015-12-15

    Genomic imprinting, an inherently epigenetic phenomenon defined by parent of origin-dependent gene expression, is observed in mammals and flowering plants. Genome-scale surveys of imprinted expression and the underlying differential epigenetic marks have led to the discovery of hundreds of imprinted plant genes and confirmed DNA and histone methylation as key regulators of plant imprinting. However, the biological roles of the vast majority of imprinted plant genes are unknown, and the evolutionary forces shaping plant imprinting remain rather opaque. Here, we review the mechanisms of plant genomic imprinting and discuss theories of imprinting evolution and biological significance in light of recent findings.

  20. Genomic imprinting in disruptive spermatogenesis.

    PubMed

    Marques, Cristina Joana; Carvalho, Filipa; Sousa, Mário; Barros, Alberto

    2004-05-22

    The possibility of imprinting disease transmission by assisted reproductive technologies has been raised after births of children with Angelman's and Beckwith-Wiedemann's syndromes. To investigate whether imprinting defects were associated with disturbed spermatogenesis, we studied two oppositely imprinted genes in spermatozoan DNA from normozoospermic and oligozoospermic patients. In the mesodermal specific transcript gene (MEST), bisulphite genomic sequencing showed that maternal imprinting was correctly erased in all 123 patients. However, methylation of the H19 gene did not change in any of 27 normozoospermic individuals (0%, 95% CI 0-13%), compared with methylation changes in eight moderate (17%, 8-31%, p=0.026) and 15 severe (30%, 18-45%, p=0.002) oligozoospermic patients. Our data suggest an association between abnormal genomic imprinting and hypospermatogenesis, and that spermatozoa from oligozoospermic patients carry a raised risk of transmitting imprinting errors.

  1. Imprinted genes and transpositions: epigenomic targets for low dose radiation effects. Final report

    SciTech Connect

    Jirtle, Randy L.

    2012-10-11

    The overall hypothesis of this grant application is that low dose ionizing radiation (LDIR) elicits adaptive responses in part by causing heritable DNA methylation changes in the epigenome. This novel postulate was tested by determining if the level of DNA methylation at the Agouti viable yellow (A{sup vy}) metastable locus is altered, in a dose-dependent manner, by low dose radiation exposure (<10 cGy) during early gestation. This information is particularly important to ascertain given the increased use of CT scans in disease diagnosis, increased number of people predicted to live and work in space, and the present concern about radiological terrorism. We showed for the first time that LDIR significantly increased DNA methylation at the A{sup vy} locus in a sex-specific manner (p=0.004). Average DNA methylation was significantly increased in male offspring exposed to doses between 0.7 cGy and 7.6 cGy with maximum effects at 1.4 cGy and 3.0 cGy (p<0.01). Offspring coat color was concomitantly shifted towards pseudoagouti (p<0.01). Maternal dietary antioxidant supplementation mitigated both the DNA methylation changes and coat color shift in the irradiated offspring (p<0.05). Thus, LDIR exposure during gestation elicits epigenetic alterations that lead to positive adaptive phenotypic changes that are negated with antioxidants, indicating they are mediated in part by oxidative stress. These findings provide evidence that in the isogenic Avy mouse model epigenetic alterations resulting from LDIR play a role in radiation hormesis, bringing into question the assumption that every dose of radiation is harmful. Our findings not only have significant implications concerning the mechanism of hormesis, but they also emphasize the potential importance of this phenomenon in determining human risk at low radiation doses. Since the epigenetic regulation of genes varies markedly between species, the effect of LDIR on other epigenetically labile genes (e.g. imprinted genes) in

  2. Glomerular-specific imprinting of the mouse Gs{alpha} gene: How does this relate to hormone resistance in Albright hereditary osteodystrophy?

    SciTech Connect

    Williamson, C.M.; Dutton, E.R.; Seymour, A.

    1996-09-01

    The gene for alpha-stimulating guanine-nucleotide binding polypeptide, Gnas, has been considered as a candidate for the imprinting effects ascribed to distal mouse Chromosome (Chr) 2. Its human homologue (GNAS1) appears, from clinical and biochemical studies of patients with Albright hereditary ostodystrophy, to be paternally imprinted. GNAS1 maps to 20q13, a region that shows linkage conservation with distal mouse Chr 2. We have mapped Gnas within the imprinting region on distal Chr 2 by linkage analysis. To establish if Gnas is imprinted, we have looked for expression differences in tissues taken from mice carrying maternal duplication/paternal deficiency for distal Chr 2 (MatDp2) and its reciprocal (PatDp2). RNA in situ hybridization revealed high levels of Gnas mRNA in glomeruli of PatDp2 embryos at late gestation and lower levels in glomeruli of MatDp2 embryos. These results strongly suggest that Gnas is maternally imprinted and suggest that the mouse gene may be imprinted in a manner opposite the predicted in human. 42 refs., 4 figs.

  3. Imprinted chromosomal domains revealed by allele-specific replication timing of the GABRB3 and GABRA5 genes

    SciTech Connect

    LaSalle, J.; Flint, A.; Lalande, M.

    1994-09-01

    The GABRB3 and GABRA5 genes are organized as a cluster in chromosome 15q11-q13. The genes are separated by around 100 kb and arranged in opposite transcriptional orientations. The GABA{sub A} receptor cluster lies near the Angelman and Prader-Willi loci and displays asynchronous DNA replication, suggesting that this region is subject to parental imprinting. In order to further study the association between DNA replication and imprinting, allele-specific replication was assayed by fluorescence in situ hybridization with {lambda}-phage probes from the GABRB3/A5 region and a D15Z1 satellite probe to identify the parental origin of each chromosome. The replication kinetics of each allele was determined by using a flow sorter to fractionate mitogen-stimulated lymphocytes on the basis of cell cycle progression prior to FISH analysis. These kinetic studies reveal a 50-150 kb chromosomal domain extending from the middle of the GABRB3/A5 intergenic region into the GABRA5 5{prime}-UTR which displays maternal replication in early S with paternal replication delayed until the end of S. In contrast, genomic regions on either side of this maternal early replication domain exhibit the opposite pattern with paternal before maternal replication and both alleles replicating in the latter half of S. These results indicate that the GABRB3/A5 region is divided into domains in which replication timing is determined by parental origin. In addition to a loss of asynchronous replication, organization into replication timing domains is also lost in lymphocytes from maternal and paternal uniparental disomy 15 patients suggesting that a chromosome contribution from both parents is required for the establishment of the imprinted replication domains.

  4. Imprinting on chromosome 20: tissue-specific imprinting and imprinting mutations in the GNAS locus.

    PubMed

    Kelsey, Gavin

    2010-08-15

    The GNAS locus on chromosome 20q13.11 is the archetypal complex imprinted locus. It comprises a bewildering array of alternative transcripts determined by differentially imprinted promoters which encode distinct proteins. It also provides the classic example of tissue-specific imprinted gene expression, in which the canonical GNAS transcript coding for Gsalpha is expressed predominantly from the maternal allele in a set of seemingly unrelated tissues. Functionally, this rather obscure imprinting is nevertheless of considerable clinical significance, as it dictates the nature of the disease caused by inactivating mutations in Gsalpha, with end organ hormone resistance specifically on maternal transmission (pseudohypoparathyroidism type 1a, PHP1a). In addition, there is a bona fide imprinting disorder, PHP1b, which is caused specifically by DNA methylation defects in the differentially methylated regions (DMRs) that determine tissue-specific monoallelic expression of GNAS. Although the genetic defect in PHP1a and the disrupted imprinting in PHP1b both essentially result in profound reduction of Gsalpha activity in tissues with monoallelic GNAS expression, and despite a growing awareness of the overlap in these two conditions, there are important pathophysiological differences between the two whose basis is not fully understood. PHP1b is one of the only imprinted gene syndromes in which cis-acting mutations have been discovered that disrupt methylation of germline-derived imprint marks; such imprinting mutations in GNAS are helping to provide important new insights into the mechanisms of imprinting establishment generally.

  5. Maternal nutrition during pregnancy is associated with differential expression of imprinted genes and DNA methyltranfereases in muscle of beef cattle offspring.

    PubMed

    Wang, X; Lan, X; Radunz, A E; Khatib, H

    2015-01-01

    Maternal diet during pregnancy is a major determinant of the fetal developmental competence and may induce long-lasting epigenetic changes to the offspring. Imprinted genes have important roles in fetal programming, growth, and development. There are, however, limited data available on the influence of maternal diet on the expression of imprinted genes in beef cattle. Therefore, the objective of this study was to analyze the impact of maternal diet during pregnancy on the expression of 5 imprinted genes and 3 DNA methyltransferase genes in longissimus dorsi muscle from Angus calves. A total of 36 Angus-cross cows were inseminated to a single sire and on Day 135 of gestation they were randomly assigned to either low-starch (haylage) or high-starch (corn silage) diets. Diets were initially formulated to provide isocaloric and isonitrogenous intake. The H19, MEG8, IGF2R, and DNMT3a genes showed differential expression in longissimus dorsi muscle in calves between the diet groups. Given that high-starch diet is a source of energy for muscle growth and feed conversion efficiency in postnatal development, the mechanisms by which this diet affected expression of imprinted genes should be further explored.

  6. Genomic imprinting mechanisms in mammals.

    PubMed

    Ideraabdullah, Folami Y; Vigneau, Sebastien; Bartolomei, Marisa S

    2008-12-01

    Genomic imprinting is a form of epigenetic gene regulation that results in expression from a single allele in a parent-of-origin-dependent manner. This form of monoallelic expression affects a small but growing number of genes and is essential to normal mammalian development. Despite extensive studies and some major breakthroughs regarding this intriguing phenomenon, we have not yet fully characterized the underlying molecular mechanisms of genomic imprinting. This is in part due to the complexity of the system in that the epigenetic markings required for proper imprinting must be established in the germline, maintained throughout development, and then erased before being re-established in the next generation's germline. Furthermore, imprinted gene expression is often tissue or stage-specific. It has also become clear that while imprinted loci across the genome seem to rely consistently on epigenetic markings of DNA methylation and/or histone modifications to discern parental alleles, the regulatory activities underlying these markings vary among loci. Here, we discuss different modes of imprinting regulation in mammals and how perturbations of these systems result in human disease. We focus on the mechanism of genomic imprinting mediated by insulators as is present at the H19/Igf2 locus, and by non-coding RNA present at the Igf2r and Kcnq1 loci. In addition to imprinting mechanisms at autosomal loci, what is known about imprinted X-chromosome inactivation and how it compares to autosomal imprinting is also discussed. Overall, this review summarizes many years of imprinting research, while pointing out exciting new discoveries that further elucidate the mechanism of genomic imprinting, and speculating on areas that require further investigation.

  7. Genomic Imprinting Mechanisms in Mammals

    PubMed Central

    Ideraabdullah, Folami Y.; Vigneau, Sebastien; Bartolomei, Marisa S.

    2008-01-01

    Genomic imprinting is a form of epigenetic gene regulation that results in expression from a single allele in a parent-of-origin-dependent manner. This form of monoallelic expression affects a small but growing number of genes and is essential to normal mammalian development. Despite extensive studies and some major breakthroughs regarding this intriguing phenomenon, we have not yet fully characterized the underlying molecular mechanisms of genomic imprinting. This is in part due to the complexity of the system in that the epigenetic markings required for proper imprinting must be established in the germline, maintained throughout development, and then erased before being re-established in the next generation’s germline. Furthermore, imprinted gene expression is often tissue or stage-specific. It has also become clear that while imprinted loci across the genome seem to rely consistently on epigenetic markings of DNA methylation and/or histone modifications to discern parental alleles, the regulatory activities underlying these markings vary among loci. Here, we discuss different modes of imprinting regulation in mammals and how perturbations of these systems result in human disease. We focus mostly on the mechanism of genomic imprinting mediated by insulators as is present at the H19/Igf2 locus, and by non-coding RNA present at the Igf2r and Kcnq1 loci. In addition to imprinting mechanisms at autosomal loci, what is known about imprinted X-chromosome inactivation and how it compares to autosomal imprinting is also discussed. Overall, this review summarizes the many years of imprinting research, while pointing out exciting new discoveries that further elucidate the mechanism of genomic imprinting, and speculating on areas that require further investigation. PMID:18778719

  8. Genomic imprinting and human disease.

    PubMed

    Hirasawa, Ryutaro; Feil, Robert

    2010-09-20

    In many epigenetic phenomena, covalent modifications on DNA and chromatin mediate somatically heritable patterns of gene expression. Genomic imprinting is a classical example of epigenetic regulation in mammals. To date, more than 100 imprinted genes have been identified in humans and mice. Many of these are involved in foetal growth and deve lopment, others control behaviour. Mono-allelic expression of imprinted genes depends on whether the gene is inherited from the mother or the father. This remarkable pattern of expression is controlled by specialized sequence elements called ICRs (imprinting control regions). ICRs are marked by DNA methylation on one of the two parental alleles. These allelic marks originate from either the maternal or the paternal germ line. Perturbation of the allelic DNA methylation at ICRs is causally involved in several human diseases, including the Beckwith-Wiedemann and Silver-Russell syndromes, associated with aberrant foetal growth. Perturbed imprinted gene expression is also implicated in the neuro-developmental disorders Prader-Willi syndrome and Angelman syndrome. Embryo culture and human-assisted reproduction procedures can increase the occurrence of imprinting-related disorders. Recent research shows that, besides DNA methylation, covalent histone modifications and non-histone proteins also contribute to imprinting regulation. The involvement of imprinting in specific human pathologies (and in cancer) emphasizes the need to further explore the underlying molecular mechanisms.

  9. Genomic imprinting and dermatological disease.

    PubMed

    Millington, G W M

    2006-09-01

    Imprinting is the process whereby genetic alleles responsible for a phenotype are derived from one parent only. It is an epigenetic phenomenon resulting from DNA methylation or modification of protruding histones. When imprinted genes are disrupted, syndromes with characteristic patterns of inheritance and multisystem phenotype occur. Those detailed in this article have some quite characteristic cutaneous features and patterns of inheritance. These diseases include Beckwith-Wiedmann, Silver-Russell, Prader-Willi, McCune-Albright and Angelman syndromes, Albright's hereditary osteodystrophy, and progressive osseous heteroplasia. In the case of Von Hippel-Lindau syndrome, hypomelanosis of Ito and dermatopathia pigmentosa reticularis, imprinting may play a part in the inheritance. With neurofibromatosis type 1, a nonimprinted condition, the expression of the phenotype could be affected by interaction with imprinted gene loci. Imprinted genes could also play a part in the polygenetic inheritance of more common diseases also, as atopic eczema and psoriasis may have predominantly maternal and paternal modes of transmission, respectively.

  10. mRNA levels of imprinted genes in bovine in vivo oocytes, embryos and cross species comparisons in humans, mice and pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Twenty-six confirmed imprinted genes in the bovine were quantified in in vivo produced oocytes and embryos. Eighteen were detectable and their transcriptional abundance were categorized into five patterns: largely decreased (MEST and PLAGL1); first decreased and then increased (CDKN1C and IGF2R); p...

  11. Growth regulation, imprinting, and epigenetic transcription-related gene expression differs in lung of deceased transgenic cloned and normal goats.

    PubMed

    Meng, Li; Jia, Ruo-Xin; Sun, Yan-Yan; Wang, Zi-Yu; Wan, Yong-Jie; Zhang, Yan-Li; Zhong, Bu-Shuai; Wang, Feng

    2014-02-01

    Somatic cell nuclear transfer (SCNT) is a promising technique to produce mammalian transgenic clones. Only a small proportion of manipulated embryos, however, can develop into viable offspring. The abnormal growth and development of cloned animals, furthermore, are accompanied by aberrant lung development. Our objective was to investigate molecular background of lung developmental problems in transgenic (random insertion of exogenous DNA) cloned goats. We examined expression of 15 genes involved in growth regulation, imprinting, and epigenetic transcription in lung tissue of deceased transgenic cloned and normal goats of various ages. Compared with normal goats of the same age from conventional reproduction, expression of 13 genes (BMP4, FGF10, GHR, HGFR, PDGFR, RABP, VEGF, H19, CDKNIC, PCAF, MeCP2, HDAC1, and Dnmt3b) decreased in transgenic cloned goats that died at or shortly after birth; Expression of eight genes (FGF10, PDGFR, RABP, VEGF, PCAF, HDAC1, MeCP2, and Dnmt3b) decreased in fetal death of transgenic cloned goats. Expression of two epigenetic transcription genes (PCAF and Dnmt3b) decreased in disease death of transgenic cloned goats (1-4 months old). Disruptions in gene expression might be associated with the high neonatal mortality in transgenic cloned animals. These findings have implications in understanding the low efficiency of transgenic cloning.

  12. Characterization of differentially methylated regions in 3 bovine imprinted genes: a model for studying human germ-cell and embryo development.

    PubMed

    Hansmann, T; Heinzmann, J; Wrenzycki, C; Zechner, U; Niemann, H; Haaf, T

    2011-01-01

    Correct imprinting is crucial for normal fetal and placental development in mammals. Experimental evidence in animal models and epidemiological studies in humans suggest that assisted reproductive technologies (ARTs) can interfere with imprinted gene regulation in gametogenesis and early embryogenesis. Bos taurus is an agriculturally important species in which ARTs are commonly employed. Because this species exhibits a similar preimplantation development and gestation length as humans, it is increasingly being used as a model for human germ-cell and embryo development. However, in contrast to humans and mice, there is relatively little information on bovine imprinted genes. Here, we characterized the bovine intergenic IGF2-H19 imprinting control region (ICR) spanning approximately 3 kb. We identified a 300-bp differentially methylated region (DMR) approximately 6 kb upstream of the H19 promoter, containing a CpG island with CTCF-binding site and high sequence similarity with the human intergenic ICR. Additional differentially methylated CpG islands lie -6 kb to -3 kb upstream of the promoter, however these are less conserved. Both classical bisulfite sequencing and bisulfite pyrosequencing demonstrated complete methylation of the IGF2-H19 ICR in sperm, complete demethylation in parthenogenetic embryos having only the female genome, and differential methylation in placental and somatic tissues. In addition, we established pyrosequencing assays for the previously reported bovine SNRPN and PEG3 DMRs. The observed methylation patterns were consistent with genomic imprinting in all analyzed tissues/cell types. The identified IGF2-H19 ICR and the developed quantitative methylation assays may prove useful for further studies on the relationship between ARTs and imprinting defects in the bovine model.

  13. Linking Hematopoietic Differentiation to Co-Expressed Sets of Pluripotency-Associated and Imprinted Genes and to Regulatory microRNA-Transcription Factor Motifs

    PubMed Central

    Hamed, Mohamed; Trumm, Johannes; Spaniol, Christian; Sethi, Riccha; Irhimeh, Mohammad R.; Fuellen, Georg; Paulsen, Martina

    2017-01-01

    Maintenance of cell pluripotency, differentiation, and reprogramming are regulated by complex gene regulatory networks (GRNs) including monoallelically-expressed imprinted genes. Besides transcriptional control, epigenetic modifications and microRNAs contribute to cellular differentiation. As a model system for studying the capacity of cells to preserve their pluripotency state and the onset of differentiation and subsequent specialization, murine hematopoiesis was used and compared to embryonic stem cells (ESCs) as a control. Using published microarray data, the expression profiles of two sets of genes, pluripotent and imprinted, were compared to a third set of known hematopoietic genes. We found that more than half of the pluripotent and imprinted genes are clearly upregulated in ESCs but subsequently repressed during hematopoiesis. The remaining genes were either upregulated in hematopoietic progenitors or in differentiated blood cells. The three gene sets each consist of three similarly behaving gene groups with similar expression profiles in various lineages of the hematopoietic system as well as in ESCs. To explain this co-regulation behavior, we explored the transcriptional and post-transcriptional mechanisms of pluripotent and imprinted genes and their regulator/target miRNAs in six different hematopoietic lineages. Therewith, lineage-specific transcription factor (TF)-miRNA regulatory networks were generated and their topologies and functional impacts during hematopoiesis were analyzed. This led to the identification of TF-miRNA co-regulatory motifs, for which we validated the contribution to the cellular development of the corresponding lineage in terms of statistical significance and relevance to biological evidence. This analysis also identified key miRNAs and TFs/genes that might play important roles in the derived lineage networks. These molecular associations suggest new aspects of the cellular regulation of the onset of cellular differentiation and

  14. Analysis of imprinted IGF2/H19 gene methylation and expression in normal fertilized and parthenogenetic embryonic stem cells of pigs.

    PubMed

    Uh, Kyung-Jun; Park, Chi-Hun; Choi, Kwang-Hwan; Park, Jin-Kyu; Jeong, Yeon-Woo; Roh, Sangho; Hyun, Sang-Hwan; Shin, Taeyoung; Lee, Chang-Kyu; Hwang, Woo Suk

    2014-06-10

    To determine whether the genomic imprinting can be maintained during the process of embryonic stem (ES) cell derivation from pig blastocysts, mRNA and DNA methylation at the IGF2/H19 imprinting control region in putative ES cells derived from in vitro fertilized (IVF) and parthenogenetic (PG) embryos were investigated. In the present study, one IVF- and three PG ES-like cell lines were established and analyzed for cellular characteristics such as pluripotent marker expression and differentiation capacity. The results showed that these putative ES cells derived from pig blastocysts fulfilled the general "stemness" criteria. The expression of the H19 gene was significantly greater in PG blastocysts than IVF blastocysts, but there were greater amounts of IGF2 in IVF than PG blastocysts. Of these putative ES cell lines, one PG line had less H19 gene expression than a IVF ES cell line while the other two PG lines had much greater expression of the H19 gene than the IVF line. In contrast, the IGF2 gene was upregulated in the same PG cell line relative to the other two PG cell lines and transcript abundance was similar to IVF ES-like cells. Despite the variable amounts of mRNA among the PG cell lines, the IGF2/H19 gene had a differentially methylated region (DMR) 3 was typically un-methylated in all PG cells, and hemi-methylated in the IVF cells. These findings indicated that the mRNA of H19 and IGF2 genes is susceptible to in vitro environments during the process of ES cell derivation from blastocysts but DNA methylation status at this region was well maintained. These altered gene expressions may not be associated with the methylation of the imprinting control region at this locus. Therefore, with their uni-parental genotype, the pluripotent differentiation potentials of PG ES cells could be a valuable tool for understanding genomic imprinting in embryonic development.

  15. Fine mapping of an imprinted gene for familial nonchromaffin paragangliomas, on chromosome 11q23.

    PubMed Central

    Baysal, B E; Farr, J E; Rubinstein, W S; Galus, R A; Johnson, K A; Aston, C E; Myers, E N; Johnson, J T; Carrau, R; Kirkpatrick, S J; Myssiorek, D; Singh, D; Saha, S; Gollin, S M; Evans, G A; James, M R; Richard, C W

    1997-01-01

    Hereditary nonchromaffin paragangliomas (PGL; glomus tumors; MIM 168000) are mostly benign, slow-growing tumors of the head and neck region, inherited from carrier fathers in an autosomal dominant fashion subject to genomic imprinting. Genetic linkage analysis in two large, unrelated Dutch families assigned PGL loci to two regions of chromosome 11, at 11q23 (PGL1) and 11q13.1 (PGL2). We ascertained a total of 11 North American PGL families and confirmed maternal imprinting (inactivation). In three of six families, linkage analysis provided evidence of linkage to the PGL1 locus at 11q23. Recombinants narrowed the critical region to an approximately 4.5-Mb interval flanked by markers D11S1647 and D11S622. Partial allelic loss of strictly maternal origin was detected in 5 of 19 tumors. The greatest degree of imbalance was detected at 11q23, distal to D11S1327 and proximal to CD3D. Age at onset of symptoms was significantly different between fathers and children (Wilcoxon rank-sum test, P < .002). Affected children had an earlier age at onset of symptoms in 39 of 57 father-child pairs (chi2 = 7.74, P < .006). However, a more conservative comparison of the number of pairs in which a child had > or = 5 years earlier age at onset (n = 33) vis-a-vis that of complementary pairs (n = 24) revealed no significant difference (chi2 = 1.42, P > .2). Whether these data represent genetic anticipation or ascertainment bias can be addressed only by analysis of a larger number of father-child pairs. PMID:8981955

  16. Genomic imprinting: parental influence on the genome.

    PubMed

    Reik, W; Walter, J

    2001-01-01

    Genomic imprinting affects several dozen mammalian genes and results in the expression of those genes from only one of the two parental chromosomes. This is brought about by epigenetic instructions--imprints--that are laid down in the parental germ cells. Imprinting is a particularly important genetic mechanism in mammals, and is thought to influence the transfer of nutrients to the fetus and the newborn from the mother. Consistent with this view is the fact that imprinted genes tend to affect growth in the womb and behaviour after birth. Aberrant imprinting disturbs development and is the cause of various disease syndromes. The study of imprinting also provides new insights into epigenetic gene modification during development.

  17. Competition--a common motif for the imprinting mechanism?

    PubMed Central

    Barlow, D P

    1997-01-01

    Imprinted genes, in contrast to the majority of mammalian genes, are able to restrict expression to one of the two parental alleles in somatic diploid cells. Although the silent allele of an imprinted gene appears to be transcriptionally repressed, it often bears little other resemblance to normal genes in an inactive state. The key to the imprinting mechanism may be a form of parental-specific expression-competition between cis-linked genes and not parental-specific expression versus repression. Thus, the imprinting mechanism may be better understood if the chromosomal region containing imprinted genes is viewed as 'active' on both parental chromosomes. PMID:9384569

  18. Genomic imprinting in development, growth, behavior and stem cells.

    PubMed

    Plasschaert, Robert N; Bartolomei, Marisa S

    2014-05-01

    Genes that are subject to genomic imprinting in mammals are preferentially expressed from a single parental allele. This imprinted expression of a small number of genes is crucial for normal development, as these genes often directly regulate fetal growth. Recent work has also demonstrated intricate roles for imprinted genes in the brain, with important consequences on behavior and neuronal function. Finally, new studies have revealed the importance of proper expression of specific imprinted genes in induced pluripotent stem cells and in adult stem cells. As we review here, these findings highlight the complex nature and developmental importance of imprinted genes.

  19. Genomic imprinting in plants: what makes the functions of paternal and maternal genes different in endosperm formation?

    PubMed

    Ohnishi, Takayuki; Sekine, Daisuke; Kinoshita, Tetsu

    2014-01-01

    Genomic imprinting refers to the unequal expression of maternal and paternal alleles according to the parent of origin. This phenomenon is regulated by epigenetic controls and has been reported in placental mammals and flowering plants. Although conserved characteristics can be identified across a wide variety of taxa, it is believed that genomic imprinting evolved independently in animal and plant lineages. Plant genomic imprinting occurs most obviously in the endosperm, a terminally differentiated embryo-nourishing tissue that is required for seed development. Recent studies have demonstrated a close relationship between genomic imprinting and the development of elaborate defense mechanisms against parasitic elements during plant sexual reproduction. In this chapter, we provide an introductory description of genomic imprinting in plants, and focus on recent advances in our understanding of its role in endosperm development, the frontline of maternal and paternal epigenomes.

  20. The Mouse Murr1 Gene Is Imprinted in the Adult Brain, Presumably Due to Transcriptional Interference by the Antisense-Oriented U2af1-rs1 Gene

    PubMed Central

    Wang, Youdong; Joh, Keiichiro; Masuko, Sadahiko; Yatsuki, Hitomi; Soejima, Hidenobu; Nabetani, Akira; Beechey, Colin V.; Okinami, Satoshi; Mukai, Tsunehiro

    2004-01-01

    The mouse Murr1 gene contains an imprinted gene, U2af1-rs1, in its first intron. U2af1-rs1 shows paternal allele-specific expression and is transcribed in the direction opposite to that of the Murr1 gene. In contrast to a previous report of biallelic expression of Murr1 in neonatal mice, we have found that the maternal allele is expressed predominantly in the adult brain and also preferentially in other adult tissues. This maternal-predominant expression is not observed in embryonic and neonatal brains. In situ hybridization experiments that used the adult brain indicated that Murr1 gene was maternally expressed in neuronal cells in all regions of the brain. We analyzed the developmental change in the expression levels of both Murr1 and U2af1-rs1 in the brain and liver, and we propose that the maternal-predominant expression of Murr1 results from transcriptional interference of the gene by U2af1-rs1 through the Murr1 promoter region. PMID:14673161

  1. Growth hormone-releasing hormone resistance in pseudohypoparathyroidism type ia: new evidence for imprinting of the Gs alpha gene.

    PubMed

    Mantovani, Giovanna; Maghnie, Mohamad; Weber, Giovanna; De Menis, Ernesto; Brunelli, Valeria; Cappa, Marco; Loli, Paola; Beck-Peccoz, Paolo; Spada, Anna

    2003-09-01

    Heterozygous inactivating mutations in the Gs alpha gene cause Albright's hereditary osteodystrophy. Consistent with the observation that only maternally inherited mutations lead to resistance to hormone action [pseudohypoparathyroidism type Ia (PHP Ia)], recent studies provided evidence for a predominant maternal origin of Gs alpha transcripts in endocrine organs, such as thyroid, gonad, and pituitary. The aim of this study was to investigate the presence of pituitary resistance to hypothalamic hormones acting via Gs alpha-coupled receptors in patients with PHP Ia. Six of nine patients showed an impaired GH responsiveness to GHRH plus arginine, consistent with a complete GH deficiency (GH peak from 2.6-8.6 microg/liter, normal > 16.5), and partial (GH peak 13.9 and 13.6 microg/liter) and normal responses were found in two and one patient, respectively. Accordingly, IGF-I levels were below and in the low-normal range in seven and two patients. All patients had a normal cortisol response to 1 microg ACTH test, suggesting a normal corticotroph function that was confirmed by a normal ACTH and cortisol response to CRH test in three patients. In conclusion, we report that in addition to PTH and TSH resistance, patients with PHP Ia display variable degrees of GHRH resistance, consistent with Gs alpha imprinting in human pituitary.

  2. Molecular structure of bovine Gtl2 gene and DNA methylation status of Dlk1-Gtl2 imprinted domain in cloned bovines.

    PubMed

    Su, Hong; Li, Dongjie; Hou, Xiaohui; Tan, Beibei; Hu, Jiaqi; Zhang, Cui; Dai, Yunping; Li, Ning; Li, Shijie

    2011-08-01

    Somatic cell nuclear transfer (SCNT) is an inefficient process, which is due to incomplete reprogramming of the donor nucleus. DNA methylation of imprinted genes is essential to the reprogramming of the somatic cell nucleus in SCNT. Dlk1-Gtl2 imprinted domain has been widely studied in mouse and human. However, little is known in bovine, possibly because of limited appropriate sequences of bovine. In our study, we first isolated the cDNA sequence and found multiple transcript variants occurred in bovine Gtl2 gene, which was conserved among species. A probably 110-kb-long Dlk1-Gtl2 imprinted domain was detected on bovine chromosome 21. We identified the putative Gtl2 DMR and IG-DMR corresponding to the mouse and human DMRs and assessed the methylation status of the two DMRs and Dlk1 5' promoter in lungs of deceased SCNT bovines that died within 48h after birth and the normal controls. In cloned bovines, Gtl2 DMR exhibited hypermethylation, which was similar to controls. However, the methylation status of IG-DMR and Dlk1 5' promoter in clones was significantly different from controls, with severe loss of methylation in IG-DMR and hypermethylation in the Dlk1 5' promoter region. Our data suggested that abnormal methylation patterns of IG-DMR may lead to the abnormal expression of Gtl2 and Dlk1 5' hypermethylated promoter is associated with the aberrant development of lungs of cloned bovines, which consequently may contribute to the low efficiency of SCNT.

  3. Mutants in the imprinted PICKLE RELATED 2 gene, suppress seed abortion of fertilization independent seed class mutants and paternal excess interploidy crosses in Arabidopsis.

    PubMed

    Huang, Fang; Zhu, Qian-Hao; Zhu, Anyu; Wu, Xiaoba; Xie, Liqiong; Wu, Xianjun; Helliwell, Chris; Chaudhury, Abed; Jean Finnegan, E; Luo, Ming

    2017-02-03

    Endosperm cellularization is essential for embryo development and viable seed formation. Loss of function of the FERTILIZATION INDEPENDENT SEED (FIS) class Polycomb genes, which mediate histone H3 lysine27 trimethylation (H3K27me3), as well as imbalanced contributions of parental genomes interrupt this process. What causes the failure of cellularization is poorly understood. In this study, we identified PICKLE RELATED 2 (PKR2), mutations which suppress seed abortion in fis1/mea by restoring endosperm cellularization. PKR2, a paternally expressed imprinted gene, encodes a CHD3 chromatin remodeler. PKR2 is specifically expressed in syncytial endosperm and its maternal copy is repressed by FIS1. Seed abortion in a paternal genome excess interploidy cross was also partly suppressed by pkr2. Simultaneous mutations in PKR2 and another PEG, ADMETOS (ADM), additively rescue the seed abortion in fis1 and in the interploidy cross, suggesting that PKR2 and ADM modulate endosperm cellularization independently and reproductive isolation between plants of different ploidy is established by imprinted genes. Genes up-regulated in fis1 and down-regulated in the presence of pkr2 are enriched in glycosyl hydrolysis activity, while genes down-regulated in fis1 and up-regulated in the presence of pkr2 are enriched with microtubule motor activity, consistent with the cellularization patterns in fis1 and the suppressor line. The antagonistic functions of FIS1 and PKR2 in modulating endosperm development are similar to those of PICKLE (PKL) and CURLY LEAF (CLF), which antagonistically regulate root meristem activity. Our results provide further insights into the function of imprinted genes in endosperm development and reproductive isolation. This article is protected by copyright. All rights reserved.

  4. Transcriptomic imprints of adaptation to fresh water: parallel evolution of osmoregulatory gene expression in the Alewife.

    PubMed

    Velotta, Jonathan P; Wegrzyn, Jill L; Ginzburg, Samuel; Kang, Lin; Czesny, Sergiusz; O'Neill, Rachel J; McCormick, Stephen D; Michalak, Pawel; Schultz, Eric T

    2017-02-01

    Comparative approaches in physiological genomics offer an opportunity to understand the functional importance of genes involved in niche exploitation. We used populations of Alewife (Alosa pseudoharengus) to explore the transcriptional mechanisms that underlie adaptation to fresh water. Ancestrally anadromous Alewives have recently formed multiple, independently derived, landlocked populations, which exhibit reduced tolerance of saltwater and enhanced tolerance of fresh water. Using RNA-seq, we compared transcriptional responses of an anadromous Alewife population to two landlocked populations after acclimation to fresh (0 ppt) and saltwater (35 ppt). Our results suggest that the gill transcriptome has evolved in primarily discordant ways between independent landlocked populations and their anadromous ancestor. By contrast, evolved shifts in the transcription of a small suite of well-characterized osmoregulatory genes exhibited a strong degree of parallelism. In particular, transcription of genes that regulate gill ion exchange has diverged in accordance with functional predictions: freshwater ion-uptake genes (most notably, the 'freshwater paralog' of Na(+) /K(+) -ATPase α-subunit) were more highly expressed in landlocked forms, whereas genes that regulate saltwater ion secretion (e.g. the 'saltwater paralog' of NKAα) exhibited a blunted response to saltwater. Parallel divergence of ion transport gene expression is associated with shifts in salinity tolerance limits among landlocked forms, suggesting that changes to the gill's transcriptional response to salinity facilitate freshwater adaptation.

  5. Gene therapy for colorectal cancer by adenovirus-mediated siRNA targeting CD147 based on loss of the IGF2 imprinting system.

    PubMed

    Pan, Yuqin; He, Bangshun; Chen, Jie; Sun, Huiling; Deng, Qiwen; Wang, Feng; Ying, Houqun; Liu, Xian; Lin, Kang; Peng, Hongxin; Xie, Hongguang; Wang, Shukui

    2015-11-01

    Colorectal cancer (CRC) is one of the most common malignant tumors worldwide. Loss of imprinting (LOI) of the insulin-like growth factor 2 (IGF2) gene is an epigenetic abnormality phenomenon in CRC. Recently observed association of CRC with cluster of differentiation 147 (CD147) could provide a novel approach for gene therapy. In the present study, we investigated the feasibility of using adenovirus‑mediated siRNA targeting CD147 based on the IGF2 LOI system for targeted gene therapy of CRC. A novel adenovirus-mediated siRNA targeting CD147, rAd-H19-CD147mirsh, which was driven by the IGF2 imprinting system, was constructed. The results showed that the EGFP expression was detected only in the IGF2 LOI cell lines (HT-29 and HCT-8), but that no EGFP was produced in cell lines with maintenance of imprinting (MOI) (HCT116). Moreover, rAd-H19-CD147mirsh significantly inhibited the expression of CD147, decreased cell viability and invasive ability, and increased sensitivity to chemotherapeutic drugs only in the LOI cell lines in vitro. Furthermore, mice bearing HT-29 xenografted tumors, which received intratumoral administration of the rAd-H19-CD147mirsh, showed significantly reduced tumor growth and enhanced survival. We conclude that recombinant adenovirus-mediated siRNA targeting CD147 based on the IGF2 LOI system inhibited the growth of the LOI cells in vitro and in vivo, which would provide a novel approach for targeted CRC gene therapy.

  6. Mechanisms of activation of the paternally expressed genes by the Prader-Willi imprinting center in the Prader-Willi/Angelman syndromes domains

    PubMed Central

    Rabinovitz, Shiri; Kaufman, Yotam; Ludwig, Guy; Razin, Aharon; Shemer, Ruth

    2012-01-01

    The Prader-Willi syndrome/Angelman syndrome (PWS/AS) imprinted domain is regulated by a bipartite imprinting control center (IC) composed of a sequence around the SNRPN promoter (PWS-IC) and a 880-bp sequence located 35 kb upstream (AS-IC). The AS-IC imprint is established during gametogenesis and confers repression upon PWS-IC on the maternal allele. Mutation at PWS-IC on the paternal allele leads to gene silencing across the entire PWS/AS domain. This silencing implies that PWS-IC functions on the paternal allele as a bidirectional activator. Here we examine the mechanism by which PWS-IC activates the paternally expressed genes (PEGs) using transgenes that include the PWS-IC sequence in the presence or absence of AS-IC and NDN, an upstream PEG, as an experimental model. We demonstrate that PWS-IC is in fact an activator of NDN. This activation requires an unmethylated PWS-IC in the gametes and during early embryogenesis. PWS-IC is dispensable later in development. Interestingly, a similar activation of a nonimprinted gene (APOA1) was observed, implying that PWS-IC is a universal activator. To decipher the mechanism by which PWS-IC confers activation of remote genes, we performed methylated DNA immunoprecipitation (MeDIP) array analysis on lymphoblast cell lines that revealed dispersed, rather than continued differential methylation. However, chromatin conformation capture (3c) experiments revealed a physical interaction between PWS-IC and the PEGs, suggesting that activation of PEGs may require their proximity to PWS-IC. PMID:22529396

  7. Olfactory imprinting is correlated with changes in gene expression in the olfactory epithelia of the zebrafish.

    PubMed

    Harden, Maegan V; Newton, Lucy A; Lloyd, Russell C; Whitlock, Kathleen E

    2006-11-01

    Odors experienced as juveniles can have significant effects on the behavior of mature organisms. A dramatic example of this occurs in salmon, where the odors experienced by developing fish determine the river to which they return as adults. Further examples of olfactory memories are found in many animals including vertebrates and invertebrates. Yet, the cellular and molecular bases underlying the formation of olfactory memory are poorly understood. We have devised a series of experiments to determine whether zebrafish can form olfactory memories much like those observed in salmonids. Here we show for the first time that zebrafish form and retain olfactory memories of an artificial odorant, phenylethyl alcohol (PEA), experienced as juveniles. Furthermore, we demonstrate that exposure to PEA results in changes in gene expression within the olfactory sensory system. These changes are evident by in situ hybridization in the olfactory epithelium of the developing zebrafish. Strikingly, our analysis by in situ hybridization demonstrates that the transcription factor, otx2, is up regulated in the olfactory sensory epithelia in response to PEA. This increase is evident at 2-3 days postfertilization and is maintained in the adult animals. We propose that the changes in otx2 gene expression are manifest as an increase in the number of neuronal precursors in the cells olfactory epithelium of the odor-exposed fish. Thus, our results reveal a role for the environment in controlling gene expression in the developing peripheral nervous system.

  8. Identification of transgenic cloned dairy goats harboring human lactoferrin and methylation status of the imprinted gene IGF2R in their lungs.

    PubMed

    Zhang, Y L; Zhang, G M; Wan, Y J; Jia, R X; Li, P Z; Han, L; Wang, F; Huang, M R

    2015-09-22

    Dairy goat is a good model for production of transgenic proteins in milk using somatic cell nuclear transfer (SCNT). However, animals produced from SCNT are often associated with lung deficiencies. We recently produced six transgenic cloned dairy goats harboring the human lactoferrin gene, including three live transgenic clones and three deceased transgenic clones that died from respiratory failure during the perinatal period. Imprinted genes are important regulators of lung growth, and may be subjected to faulty reprogramming. In the present study, first, microsatellite analysis, PCR, and DNA sequence identification were conducted to confirm that these three dead kids were genetically identical to the transgenic donor cells. Second, the CpG island methylation profile of the imprinted insulin-like growth factor receptor (IGF2R) gene was assessed in the lungs of the three dead transgenic kids and the normally produced kids using bisulfite sequencing PCR. In addition, the relative mRNA level of IGF2R was also determined by real-time PCR. Results showed that the IGF2R gene in the lungs of the dead cloned kids showed abnormal hypermethylation and higher mRNA expression levels than the control, indicating that aberrant DNA methylation reprogramming is one of the important factors in the death of transgenic cloned animals.

  9. Humans as Superorganisms: How Microbes, Viruses, Imprinted Genes, and Other Selfish Entities Shape Our Behavior.

    PubMed

    Kramer, Peter; Bressan, Paola

    2015-07-01

    Psychologists and psychiatrists tend to be little aware that (a) microbes in our brains and guts are capable of altering our behavior; (b) viral DNA that was incorporated into our DNA millions of years ago is implicated in mental disorders; (c) many of us carry the cells of another human in our brains; and (d) under the regulation of viruslike elements, the paternally inherited and maternally inherited copies of some genes compete for domination in the offspring, on whom they have opposite physical and behavioral effects. This article provides a broad overview, aimed at a wide readership, of the consequences of our coexistence with these selfish entities. The overarching message is that we are not unitary individuals but superorganisms, built out of both human and nonhuman elements; it is their interaction that determines who we are.

  10. Neuronatin gene: Imprinted and misfolded: Studies in Lafora disease, diabetes and cancer may implicate NNAT-aggregates as a common downstream participant in neuronal loss.

    PubMed

    Joseph, Rajiv Madathiparambil

    2014-01-01

    Neuronatin (NNAT) is a ubiquitous and highly conserved mammalian gene involved in brain development. Its mRNA isoforms, chromosomal location, genomic DNA structure and regulation have been characterized. More recently there has been rapid progress in the understanding of its function in physiology and human disease. In particular there is fairly direct evidence implicating neuronatin in the causation of Lafora disease and diabetes. Neuronatin protein has a strong predisposition to misfold and form cellular aggregates that cause cell death by apoptosis. Aggregation of Neuronatin within cortical neurons and resulting cell death is the hallmark of Lafora disease, a progressive and fatal neurodegenerative disease. Under high glucose conditions simulating diabetes, neuronatin protein also accumulates and destroys pancreatic beta cells. The neuronatin gene is imprinted and only the paternal allele is normally expressed in the adult. However, changes in DNA methylation may cause the maternal allele to lose imprinting and trigger cell proliferation and metastasis. Neuronatin has also been shown to be translated peripherally within the dendrites of neurons, a finding of relevance in synaptic plasticity. The current understanding of the function of neuronatin raises the possibility that this gene may participate in the common downstream mechanisms associated with aberrant neuronal growth and death. A better understanding of these mechanisms may open new therapeutic targets to help modify the progression of devastating neurodegenerative conditions such as Alzheimer's and anterior horn cell disease.

  11. Genomic imprinting--insights from studies in mice.

    PubMed

    Ferguson-Smith, Anne; Lin, Shau-Ping; Tsai, Chen-En; Youngson, Neil; Tevendale, Maxine

    2003-02-01

    A subset of mammalian genes is controlled by genomic imprinting. This process causes a gene to be expressed from only one chromosome homologue depending on whether it originally came from the egg or the sperm. Parental origin-specific gene regulation is controlled by epigenetic modifications to DNA and chromatin. Genomic imprinting is therefore a useful model system to study the epigenetic control of genome function. Here we consider the value of the mouse as an experimental organism to address questions about the role of imprinted genes, about the regulation of mono-allelic gene expression and about the evolution of the imprinting function and mechanism.

  12. An unexpected function of the Prader-Willi syndrome imprinting center in maternal imprinting in mice.

    PubMed

    Wu, Mei-Yi; Jiang, Ming; Zhai, Xiaodong; Beaudet, Arthur L; Wu, Ray-Chang

    2012-01-01

    Genomic imprinting is a phenomenon that some genes are expressed differentially according to the parent of origin. Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are neurobehavioral disorders caused by deficiency of imprinted gene expression from paternal and maternal chromosome 15q11-q13, respectively. Imprinted genes at the PWS/AS domain are regulated through a bipartite imprinting center, the PWS-IC and AS-IC. The PWS-IC activates paternal-specific gene expression and is responsible for the paternal imprint, whereas the AS-IC functions in the maternal imprint by allele-specific repression of the PWS-IC to prevent the paternal imprinting program. Although mouse chromosome 7C has a conserved PWS/AS imprinted domain, the mouse equivalent of the human AS-IC element has not yet been identified. Here, we suggest another dimension that the PWS-IC also functions in maternal imprinting by negatively regulating the paternally expressed imprinted genes in mice, in contrast to its known function as a positive regulator for paternal-specific gene expression. Using a mouse model carrying a 4.8-kb deletion at the PWS-IC, we demonstrated that maternal transmission of the PWS-IC deletion resulted in a maternal imprinting defect with activation of the paternally expressed imprinted genes and decreased expression of the maternally expressed imprinted gene on the maternal chromosome, accompanied by alteration of the maternal epigenotype toward a paternal state spread over the PWS/AS domain. The functional significance of this acquired paternal pattern of gene expression was demonstrated by the ability to complement PWS phenotypes by maternal inheritance of the PWS-IC deletion, which is in stark contrast to paternal inheritance of the PWS-IC deletion that resulted in the PWS phenotypes. Importantly, low levels of expression of the paternally expressed imprinted genes are sufficient to rescue postnatal lethality and growth retardation in two PWS mouse models. These findings

  13. An invariant aspartic acid in the DNA glycosylase domain of DEMETER is necessary for transcriptional activation of the imprinted MEDEA gene

    PubMed Central

    Choi, Yeonhee; Harada, John J.; Goldberg, Robert B.; Fischer, Robert L.

    2004-01-01

    Helix-hairpin-helix DNA glycosylases are typically small proteins that initiate repair of DNA by excising damaged or mispaired bases. An invariant aspartic acid in the active site is involved in catalyzing the excision reaction. Replacement of this critical residue with an asparagine severely reduces catalytic activity but preserves enzyme stability and structure. The Arabidopsis DEMETER (DME) gene encodes a large 1,729-aa polypeptide with a 200-aa DNA glycosylase domain. DME is expressed primarily in the central cell of the female gametophyte. DME activates maternal allele expression of the imprinted MEDEA (MEA) gene in the central cell and is required for seed viability. We mutated the invariant aspartic acid at position 1304 in DME to asparagine (D1304N) to determine whether the catalytic activity of the DNA glycosylase domain is required for DME function in vivo. Transgenes expressing wild-type DME in the central cell rescue seed abortion caused by a mutation in the endogenous DME gene and activate maternal MEA:GFP transcription. However, transgenes expressing the D1304N mutant DME do not rescue seed abortion or activate maternal MEA:GFP transcription. Whereas ectopic expression of the wild-type DME polypeptide in pollen is sufficient to activate ectopic paternal MEA and MEA:GUS expression, equivalent expression of the D1304N mutant DME in pollen failed to do so. These results show that the conserved aspartic acid residue is necessary for DME to function in vivo and suggest that an active DNA glycosylase domain, normally associated with DNA repair, promotes gene transcription that is essential for gene imprinting. PMID:15128940

  14. Genomic imprinting and Turner syndrome.

    PubMed

    Bondy, Carolyn A; Hougen, Helen Y; Zhou, Jian; Cheng, Clara M

    2012-05-01

    The term 'genomic imprinting' refers to selective repression of transcription from distinct chromosomal regions determined by their maternal or paternal inheritance. There are two potentially important aspects of imprinting that may manifest in individuals with X monosomy, or Turner syndrome (TS). Given that men are monosomic for Xm while women are mosaic for Xm:Xp, genomic imprinting of important X-linked genes should be associated with sexually dimorphic traits, e.g., social skills, regional fat deposition and adult height. Such X-imprinted traits are predicted to differ in Turner groups monosomic for Xm vs. Xp. We review relevant studies of psychosocial attributes, regional fat distribution and height in TS related to parent of origin for the single normal X chromosome. In addition, we review recent evidence that monosomy for the X chromosome per se, regardless of the parental origin, may disrupt the normal distribution of autosomal imprint patterns. This may contribute to a high rate of fetal loss in human monosomy via impaired placentation in the most severe cases, and to loss of paternal contribution to growth in the mildest manifestation.

  15. The continuing quest to comprehend genomic imprinting.

    PubMed

    Miyoshi, N; Barton, S C; Kaneda, M; Hajkova, P; Surani, M A

    2006-01-01

    The discovery of the phenomenon of genomic imprinting in mammals showed that the parental genomes are functionally non-equivalent. Considerable advances have occurred in the field over the past 20 years, which has resulted in the identification and functional analysis of a number of imprinted genes the expression of which is determined by their parental origin. These genes belong to many diverse categories and they have been shown to regulate growth, complex aspects of mammalian physiology and behavior. Many aspects of the mechanism of imprinting have also been elucidated. However, the reasons for the evolution of genomic imprinting remain enigmatic. Further research is needed to determine if there is any relationship between the apparently diverse functions of imprinted genes in mammals, and their role in human diseases. It also remains to be seen what common features exist amongst the diverse imprinting control elements. The mechanisms involved in the erasure and re-establishment of imprints should provide deeper insights into epigenetic mechanisms of wide general interest.

  16. The X-linked imprinted gene family Fthl17 shows predominantly female expression following the two-cell stage in mouse embryos

    PubMed Central

    Kobayashi, Shin; Fujihara, Yoshitaka; Mise, Nathan; Kaseda, Kazuhiro; Abe, Kuniya; Ishino, Fumitoshi; Okabe, Masaru

    2010-01-01

    Differences between male and female mammals are initiated by embryonic differentiation of the gonad into either a testis or an ovary. However, this may not be the sole determinant. There are reports that embryonic sex differentiation might precede and be independent of gonadal differentiation, but there is little molecular biological evidence for this. To test for sex differences in early-stage embryos, we separated male and female blastocysts using newly developed non-invasive sexing methods for transgenic mice expressing green fluorescent protein and compared the gene-expression patterns. From this screening, we found that the Fthl17 (ferritin, heavy polypeptide-like 17) family of genes was predominantly expressed in female blastocysts. This comprises seven genes that cluster on the X chromosome. Expression analysis based on DNA polymorphisms revealed that these genes are imprinted and expressed from the paternal X chromosome as early as the two-cell stage. Thus, by the time zygotic genome activation starts there are already differences in gene expression between male and female mouse embryos. This discovery will be important for the study of early sex differentiation, as clearly these differences arise before gonadal differentiation. PMID:20185572

  17. A human imprinting centre demonstrates conserved acquisition but diverged maintenance of imprinting in a mouse model for Angelman syndrome imprinting defects.

    PubMed

    Johnstone, Karen A; DuBose, Amanda J; Futtner, Christopher R; Elmore, Michael D; Brannan, Camilynn I; Resnick, James L

    2006-02-01

    Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are caused by the loss of imprinted gene expression from chromosome 15q11-q13. Imprinted gene expression in the region is regulated by a bipartite imprinting centre (IC), comprising the PWS-IC and the AS-IC. The PWS-IC is a positive regulatory element required for bidirectional activation of a number of paternally expressed genes. The function of the AS-IC appears to be to suppress PWS-IC function on the maternal chromosome through a methylation imprint acquired during female gametogenesis. Here we have placed the entire mouse locus under the control of a human PWS-IC by targeted replacement of the mouse PWS-IC with the equivalent human region. Paternal inheritance of the human PWS-IC demonstrates for the first time that a positive regulatory element in the PWS-IC has diverged. These mice show postnatal lethality and growth deficiency, phenotypes not previously attributed directly to the affected genes. Following maternal inheritance, the human PWS-IC is able to acquire a methylation imprint in mouse oocytes, suggesting that acquisition of the methylation imprint is conserved. However, the imprint is lost in somatic cells, showing that maintenance has diverged. This maternal imprinting defect results in expression of maternal Ube3a-as and repression of Ube3a in cis, providing evidence that Ube3a is regulated by its antisense and creating the first reported mouse model for AS imprinting defects.

  18. The role of genomic imprinting in biology and disease: an expanding view.

    PubMed

    Peters, Jo

    2014-08-01

    Genomic imprinting is an epigenetic phenomenon that results in monoallelic gene expression according to parental origin. It has long been established that imprinted genes have major effects on development and placental biology before birth. More recently, it has become evident that imprinted genes also have important roles after birth. In this Review, I bring together studies of the effects of imprinted genes from the prenatal period onwards. Recent work on postnatal stages shows that imprinted genes influence an extraordinarily wide-ranging array of biological processes, the effects of which extend into adulthood, and play important parts in common diseases that range from obesity to psychiatric disorders.

  19. Genomic imprinting and human psychology: cognition, behavior and pathology.

    PubMed

    Goos, Lisa M; Ragsdale, Gillian

    2008-01-01

    Imprinted genes expressed in the brain are numerous and it has become clear that they play an important role in nervous system development and function. The significant influence of genomic imprinting during development sets the stage for structural and physiological variations affecting psychological function and behaviour, as well as other physiological systems mediating health and well-being. However, our understanding of the role of imprinted genes in behaviour lags far behind our understanding of their roles in perinatal growth and development. Knowledge of genomic imprinting remains limited among behavioral scientists and clinicians and research regarding the influence of imprinted genes on normal cognitive processes and the most common forms of neuropathology has been limited to date. In this chapter, we will explore how knowledge of genomic imprinting can be used to inform our study of normal human cognitive and behavioral processes as well as their disruption. Behavioural analyses of rare imprinted disorders, such as Prader-Willi and Angelman syndromes, provide insight regarding the phenotypic impact of imprinted genes in the brain, and can be used to guide the study of normal behaviour as well as more common but etiologically complex disorders such as ADHD and autism. Furthermore, hypotheses regarding the evolutionary development of imprinted genes can be used to derive predictions about their role in normal behavioural variation, such as that observed in food-related and social interactions.

  20. Evolution of genomic imprinting: insights from marsupials and monotremes.

    PubMed

    Renfree, Marilyn B; Hore, Timothy A; Shaw, Geoffrey; Graves, Jennifer A Marshall; Pask, Andrew J

    2009-01-01

    Parent-of-origin gene expression (genomic imprinting) is widespread among eutherian mammals and also occurs in marsupials. Most imprinted genes are expressed in the placenta, but the brain is also a favored site. Although imprinting evolved in therian mammals before the marsupial-eutherian split, the mechanisms have continued to evolve in each lineage to produce differences between the two groups in terms of the number and regulation of imprinted genes. As yet there is no evidence for genomic imprinting in the egg-laying monotreme mammals, although these mammals also form a placenta (albeit short-lived) and transfer nutrients from mother to embryo. Therefore, imprinting was not essential for the evolution of the placenta and its importance in nutrient transfer but the elaboration of imprinted genes in marsupials and eutherians is associated with viviparity. Here we review the recent analyses of imprinted gene clusters in marsupials and monotremes, which have served to shed light on the origin and evolution of imprinting mechanisms in mammals.

  1. Demography, kinship, and the evolving theory of genomic imprinting.

    PubMed

    Brandvain, Yaniv; Van Cleve, Jeremy; Ubeda, Francisco; Wilkins, Jon F

    2011-07-01

    Genomic imprinting is the differential expression of an allele based on the parent of origin. Recent transcriptome-wide evaluations of the number of imprinted genes reveal complex patterns of imprinted expression among developmental stages and cell types. Such data demand a comprehensive evolutionary framework in which to understand the effect of natural selection on imprinted gene expression. We present such a framework for how asymmetries in demographic parameters and fitness effects can lead to the evolution of genomic imprinting and place recent theoretical advances in this framework. This represents a modern interpretation of the kinship theory, is well suited to studying populations with complex social interactions, and provides predictions which can be tested with forthcoming transcriptomic data. To understand the intricate phenotypic patterns that are emerging from the recent deluge of data, future investigations of genomic imprinting will require integrating evolutionary theory, transcriptomic data, developmental and functional genetics, and natural history.

  2. Dietary supplementation with polyunsaturated fatty acid during pregnancy modulates DNA methylation at IGF2/H19 imprinted genes and growth of infants

    PubMed Central

    Lee, Ho-Sun; Barraza-Villarreal, Albino; Biessy, Carine; Duarte-Salles, Talita; Sly, Peter D.; Ramakrishnan, Usha; Rivera, Juan; Herceg, Zdenko

    2014-01-01

    Epigenetic regulation of imprinted genes is regarded as a highly plausible explanation for linking dietary exposures in early life with the onset of diseases during childhood and adulthood. We sought to test whether prenatal dietary supplementation with docosahexaenoic acid (DHA) during pregnancy may modulate epigenetic states at birth. This study was based on a randomized intervention trial conducted in Mexican pregnant women supplemented daily with 400 mg of DHA or a placebo from gestation week 18–22 to parturition. We applied quantitative profiling of DNA methylation states at IGF2 promoter 3 (IGF2 P3), IGF2 differentially methylated region (DMR), and H19 DMR in cord blood mononuclear cells of the DHA-supplemented group (n = 131) and the control group (n = 130). In stratified analyses, DNA methylation levels in IGF2 P3 were significantly higher in the DHA group than the control group in preterm infants (P = 0.04). We also observed a positive association between DNA methylation levels and maternal body mass index; IGF2 DMR methylation was higher in the DHA group than the control group in infants of overweight mothers (P = 0.03). In addition, at H19 DMR, methylation levels were significantly lower in the DHA group than the control group in infants of normal weight mothers (P = 0.01). Finally, methylation levels at IGF2/H19 imprinted regions were associated with maternal BMI. These findings suggest that epigenetic mechanisms may be modulated by DHA, with potential impacts on child growth and development. PMID:25293351

  3. An imprinted long noncoding RNA located between genes Meg8 and Meg9 in the cattle Dlk1-Dio3 domain.

    PubMed

    Zhang, Mingyue; Zhao, Yupeng; Wang, Guannan; Li, Dongjie; Chen, Weina; Zhang, Cui; Li, Shijie

    2017-02-01

    The Dlk1-Dio3 imprinted domain is located on the cattle chromosome 21 and contains three paternally expressed protein-coding genes and a number of maternally expressed short or long noncoding RNA genes. We have previously obtained two maternally expressed long noncoding RNA genes, Meg8 and Meg9, from the cattle. In this study, we identified a novel noncoding RNA located between Meg8 and Meg9 known as LINC24061 according to the GENCODE annotated bibliography. Two alternatively spliced transcripts (LINC24061-v1 and LINC24061-v2) were obtained using RT-PCR and RACE, and the expression pattern of LINC24061-v1 and LINC24061-v2 was shown to be tissue-specific. The LINC24061-v1 splice variant was expressed in only three types of tissues: heart, kidney and muscle; in contrast, LINC24061-v2 was expressed in all eight tissues examined, including heart, liver, spleen, lung, kidney, skeletal muscle, subcutaneous fat, and brain of adult cattle. The allele-specific expression of LINC24061 was identified based on a single nucleotide polymorphism (SNP) in exon 2 of LINC24061. The results showed that LINC24061 exhibited monoallelic expression in all the examined cattle tissues.

  4. Aberrant genomic imprinting in rhesus monkey embryonic stem cells.

    PubMed

    Fujimoto, Akihisa; Mitalipov, Shoukhrat M; Kuo, Hung-Chih; Wolf, Don P

    2006-03-01

    Genomic imprinting involves modification of a gene or a chromosomal region that results in the differential expression of parental alleles. Disruption or inappropriate expression of imprinted genes is associated with several clinically significant syndromes and tumorigenesis in humans. Additionally, abnormal imprinting occurs in mouse embryonic stem cells (ESCs) and in clonally derived animals. Imprinted gene expression patterns in primate ESCs are largely unknown, despite the clinical potential of the latter in the cell-based treatment of human disease. Because of the possible implications of abnormal gene expression to cell or tissue replacement therapies involving ESCs, we examined allele specific expression of four imprinted genes in the rhesus macaque. Genomic and complementary DNA from embryos and ESC lines containing useful single nucleotide polymorphisms were subjected to polymerase chain reaction-based amplification and sequence analysis. In blastocysts, NDN expression was variable indicating abnormal or incomplete imprinting whereas IGF2 and SNRPN were expressed exclusively from the paternal allele and H19 from the maternal allele as expected. In ESCs, both NDN and SNRPN were expressed from the paternal allele while IGF2 and H19 showed loss of imprinting and biallelic expression. In differentiated ESC progeny, these expression patterns were maintained. The implications of aberrant imprinted gene expression to ESC differentiation in vitro and on ESC-derived cell function in vivo after transplantation are unknown.

  5. Mechanisms and evolution of genomic imprinting in plants.

    PubMed

    Köhler, C; Weinhofer-Molisch, I

    2010-07-01

    Genomic imprinting, the allele-specific expression of a gene dependent on its parent-of-origin, has independently evolved in flowering plants and mammals. In mammals and flowering plants, imprinting occurs in the embryo as well as in embryo-nourishing tissues, the placenta and the endosperm, respectively, and it has been suggested that imprinted genes control the nutrient flow from the mother to the offspring ('kinship theory'). Alternatively, imprinting might have evolved as a by-product of a defense mechanism destined to control transposon activity in gametes ('defense hypothesis'). Recent studies provide substantial evidence for the 'defense hypothesis' by showing that imprinted genes in plants are located in the vicinity of transposon or repeat sequences, suggesting that the insertion of transposon or repeat sequences was a prerequisite for imprinting evolution. Transposons or repeat sequences are silenced by DNA methylation, causing silencing of neighboring genes in vegetative tissues. However, because of genome-wide DNA demethylation in the central cell, genes located in the vicinity of transposon or repeat sequences will be active in the central cell and the maternal alleles will remain unmethylated and active in the descendent endosperm, assuming an imprinted expression. Consequently, many imprinted genes are likely to have an endosperm-restricted function, or, alternatively, they have no functional role in the endosperm and are on the trajectory to convert to pseudogenes. Thus, the 'defense hypothesis' as well as 'kinship theory' together can explain the origin of genomic imprinting; whereas the first hypothesis explains how imprinting originates, the latter explains how imprinting is manifested and maintained.

  6. BACs as tools for the study of genomic imprinting.

    PubMed

    Tunster, S J; Van De Pette, M; John, R M

    2011-01-01

    Genomic imprinting in mammals results in the expression of genes from only one parental allele. Imprinting occurs as a consequence of epigenetic marks set down either in the father's or the mother's germ line and affects a very specific category of mammalian gene. A greater understanding of this distinctive phenomenon can be gained from studies using large genomic clones, called bacterial artificial chromosomes (BACs). Here, we review the important applications of BACs to imprinting research, covering physical mapping studies and the use of BACs as transgenes in mice to study gene expression patterns, to identify imprinting centres, and to isolate the consequences of altered gene dosage. We also highlight the significant and unique advantages that rapid BAC engineering brings to genomic imprinting research.

  7. Imprinting in plants as a mechanism to generate seed phenotypic diversity

    PubMed Central

    Bai, Fang; Settles, A. M.

    2015-01-01

    Normal plant development requires epigenetic regulation to enforce changes in developmental fate. Genomic imprinting is a type of epigenetic regulation in which identical alleles of genes are expressed in a parent-of-origin dependent manner. Deep sequencing of transcriptomes has identified hundreds of imprinted genes with scarce evidence for the developmental importance of individual imprinted loci. Imprinting is regulated through global DNA demethylation in the central cell prior to fertilization and directed repression of individual loci with the Polycomb Repressive Complex 2 (PRC2). There is significant evidence for transposable elements and repeat sequences near genes acting as cis-elements to determine imprinting status of a gene, implying that imprinted gene expression patterns may evolve randomly and at high frequency. Detailed genetic analysis of a few imprinted loci suggests an imprinted pattern of gene expression is often dispensable for seed development. Few genes show conserved imprinted expression within or between plant species. These data are not fully explained by current models for the evolution of imprinting in plant seeds. We suggest that imprinting may have evolved to provide a mechanism for rapid neofunctionalization of genes during seed development to increase phenotypic diversity of seeds. PMID:25674092

  8. Inactive allele-specific methylation and chromatin structure of the imprinted gene U2af1-rs1 on mouse chromosome 11

    SciTech Connect

    Shibata, Hideo; Yoshino, Kiyoshi; Kamiya, Mamoru

    1996-07-01

    The imprinted U2Af1-rs1 gene that maps to mouse chromosome 11 is predominately expressed from the paternal allele. We examined the methylation of genomic sequences in and around the U2af1-rs1 locus to establish the extent of sequence modifications that accompanied the silencing of the maternal allele. The analysis of HapII or HhaI sites showed that the silent maternal allele was hypermethylated in a block of CpG sequences that covered more than 10 kb. By comparison, the expressed paternal allele was unmethylated from a CpG island upstream of the transcribed region through 2 kb. An analysis of DNaseI hypersensitivity of a putative promoter of U2af1-rs1 showed an open chromatin conformation only on the unmethylated, expressed paternal allele. These results suggest that allele-specific hypermethylation covering the gene and its upstream CpG island plays a role in maternal allele repression of U2af1-rs1, which is reflected in altered chromatin conformation of DNaseI hypersensitive sites. 9 refs., 2 figs.

  9. [Epigenetic modification of the genetic material. Genomic imprinting and its significance for disease in human beings].

    PubMed

    Brøndum-Nielsen, K; Pedersen, M L

    2001-06-04

    Genomic imprinting is the epigenetic differential marking of maternally and paternally inherited alleles of specific genes or chromosomal subregions during gametogenesis, leading after fertilization to differential expression during development. Expression is thus monoallelic, with one parental allele being expressed, the other silenced. Imprinting implies the existence of a reversible imprinting signal, which is erased in the gonads to be reset according to the sex of the individual. Mutations in imprinted genes are not inherited in a regular Mendelian fashion. The number of identified imprinted genes is now around 35. Three congenital human disorders are known to be caused by errors in the expression pattern of imprinted genes: Prader-Willi syndrome, Angelman syndrome and Beckwith-Wiedemann syndrome. A number of cancers are also caused by errors in imprinted genes.

  10. Genomic imprinting and position-effect variegation in Drosophila melanogaster.

    PubMed Central

    Lloyd, V K; Sinclair, D A; Grigliatti, T A

    1999-01-01

    Genomic imprinting is a phenomenon in which the expression of a gene or chromosomal region depends on the sex of the individual transmitting it. The term imprinting was first coined to describe parent-specific chromosome behavior in the dipteran insect Sciara and has since been described in many organisms, including other insects, plants, fish, and mammals. In this article we describe a mini-X chromosome in Drosophila melanogaster that shows genomic imprinting of at least three closely linked genes. The imprinting of these genes is observed as mosaic silencing when the genes are transmitted by the male parent, in contrast to essentially wild-type expression when the same genes are maternally transmitted. We show that the imprint is due to the sex of the parent rather than to a conventional maternal effect, differential mitotic instability of the mini-X chromosome, or an allele-specific effect. Finally, we have examined the effects of classical modifiers of position-effect variegation on the maintenance and the establishment of the imprint. Factors that modify position-effect variegation alter the somatic expression but not the establishment of the imprint. This suggests that chromatin structure is important in maintenance of the imprint, but a separate mechanism may be responsible for its initiation. PMID:10101173

  11. Quantifying genomic imprinting in the presence of linkage.

    PubMed

    Vincent, Quentin; Alcaïs, Alexandre; Alter, Andrea; Schurr, Erwin; Abel, Laurent

    2006-12-01

    Genomic imprinting decreases the power of classical linkage analysis, in which paternal and maternal transmissions of marker alleles are equally weighted. Several methods have been proposed for taking genomic imprinting into account in the model-free linkage analysis of binary traits. However, none of these methods are suitable for the formal identification and quantification of genomic imprinting in the presence of linkage. In addition, the available methods are designed for use with pure sib-pairs, requiring artificial decomposition in cases of larger sibships, leading to a loss of power. We propose here the maximum likelihood binomial method adaptive for imprinting (MLB-I), which is a unified analytic framework giving rise to specific tests in sibships of any size for (i) linkage adaptive to imprinting, (ii) genomic imprinting in the presence of linkage, and (iii) partial versus complete genomic imprinting. In addition, we propose an original measure for quantifying genomic imprinting. We have derived and validated the distribution of the three tests under their respective null hypotheses for various genetic models, and have assessed the power of these tests in simulations. This method can readily be applied to genome-wide scanning, as illustrated here for leprosy sibships. Our approach provides a novel tool for dissecting genomic imprinting in model-free linkage analysis, and will be of considerable value for identifying and evaluating the contribution of imprinted genes to complex diseases.

  12. Genomic imprinting: an obsession with depilatory mice.

    PubMed

    Haig, David; Úbeda, Francisco

    2011-04-12

    Excessive grooming in mice has been promoted as a model of human obsessive-compulsive disorders. A recent paper adds Grb10 to the list of genes with effects on behavioral hair loss, with the added twist that this time the gene is imprinted.

  13. Molecularly Imprinted Ionomers

    DTIC Science & Technology

    2002-04-05

    ion selective electrodes and ion selective optical sensors using a modified version of the molecular imprinting technique. The modification is a...materials may be the means to realize this goal. An additional application of metal ion imprinted polymers is as sensors . The ability to detect a...been shown to have dramatic effects on polymer properties. The benefits of ionic crosslinking on molecular imprinting are two-fold. First, ionic

  14. Genomic imprinting in the human placenta.

    PubMed

    Monk, David

    2015-10-01

    With the launch of the National Institute of Child Health and Human Development/National Institutes of Health Human Placenta Project, the anticipation is that this often-overlooked organ will be the subject of much intense research. Compared with somatic tissues, the cells of the placenta have a unique epigenetic profile that dictates its transcription patterns, which when disturbed may be associated with adverse pregnancy outcomes. One major class of genes that is dependent on strict epigenetic regulation in the placenta is subject to genomic imprinting, the parent-of-origin-dependent monoallelic gene expression. This review discusses the differences in allelic expression and epigenetic profiles of imprinted genes that are identified between different species, which reflect the continuous evolutionary adaption of this form of epigenetic regulation. These observations divulge that placenta-specific imprinted gene that is reliant on repressive histone signatures in mice are unlikely to be imprinted in humans, whereas intense methylation profiling in humans has uncovered numerous maternally methylated regions that are restricted to the placenta that are not conserved in mice. Imprinting has been proposed to be a mechanism that regulates parental resource allocation and ultimately can influence fetal growth, with the placenta being the key in this process. Furthermore, I discuss the developmental dynamics of both classic and transient placenta-specific imprinting and examine the evidence for an involvement of these genes in intrauterine growth restriction and placenta-associated complications. Finally, I focus on examples of genes that are regulated aberrantly in complicated pregnancies, emphasizing their application as pregnancy-related disease biomarkers to aid the diagnosis of at-risk pregnancies early in gestation.

  15. Genomic imprinting and the social brain.

    PubMed

    Isles, Anthony R; Davies, William; Wilkinson, Lawrence S

    2006-12-29

    Genomic imprinting refers to the parent-of-origin-specific epigenetic marking of a number of genes. This epigenetic mark leads to a bias in expression between maternally and paternally inherited imprinted genes, that in some cases results in monoallelic expression from one parental allele. Genomic imprinting is often thought to have evolved as a consequence of the intragenomic conflict between the parental alleles that occurs whenever there is an asymmetry of relatedness. The two main examples of asymmetry of relatedness are when there is partiality of parental investment in offspring (as is the case for placental mammals, where there is also the possibility of extended postnatal care by one parent), and in social groups where there is a sex-biased dispersal. From this evolutionary starting point, it is predicted that, at the behavioural level, imprinted genes will influence what can broadly be termed bonding and social behaviour. We examine the animal and human literature for examples of imprinted genes mediating these behaviours, and divide them into two general classes. Firstly, mother-offspring interactions (suckling, attachment and maternal behaviours) that are predicted to occur when partiality in parental investment in early postnatal offspring occurs; and secondly, adult social interactions, when there is an asymmetry of relatedness in social groups. Finally, we return to the evolutionary theory and examine whether there is a pattern of behavioural functions mediated by imprinted genes emerging from the limited data, and also whether any tangible predictions can be made with regards to the direction of action of genes of maternal or paternal origin.

  16. Genomic imprinting: A missing piece of the Multiple Sclerosis puzzle?

    PubMed

    Ruhrmann, Sabrina; Stridh, Pernilla; Kular, Lara; Jagodic, Maja

    2015-10-01

    Evidence for parent-of-origin effects in complex diseases such as Multiple Sclerosis (MS) strongly suggests a role for epigenetic mechanisms in their pathogenesis. In this review, we describe the importance of accounting for parent-of-origin when identifying new risk variants for complex diseases and discuss how genomic imprinting, one of the best-characterized epigenetic mechanisms causing parent-of-origin effects, may impact etiology of complex diseases. While the role of imprinted genes in growth and development is well established, the contribution and molecular mechanisms underlying the impact of genomic imprinting in immune functions and inflammatory diseases are still largely unknown. Here we discuss emerging roles of imprinted genes in the regulation of inflammatory responses with a particular focus on the Dlk1 cluster that has been implicated in etiology of experimental MS-like disease and Type 1 Diabetes. Moreover, we speculate on the potential wider impact of imprinting via the action of imprinted microRNAs, which are abundantly present in the Dlk1 locus and predicted to fine-tune important immune functions. Finally, we reflect on how unrelated imprinted genes or imprinted genes together with non-imprinted genes can interact in so-called imprinted gene networks (IGN) and suggest that IGNs could partly explain observed parent-of-origin effects in complex diseases. Unveiling the mechanisms of parent-of-origin effects is therefore likely to teach us not only about the etiology of complex diseases but also about the unknown roles of this fascinating phenomenon underlying uneven genetic contribution from our parents. This article is part of a Directed Issue entitled: Epigenetics dynamics in development and disease.

  17. A single postnatal injection of oxytocin rescues the lethal feeding behaviour in mouse newborns deficient for the imprinted Magel2 gene.

    PubMed

    Schaller, Fabienne; Watrin, Françoise; Sturny, Rachel; Massacrier, Annick; Szepetowski, Pierre; Muscatelli, Françoise

    2010-12-15

    The onset of feeding at birth is a vital step for the adaptation of the neonate to extra uterine life. Prader-Willi syndrome (PWS) is a complex neurogenetic disorder caused by the alteration of several imprinted contiguous genes including MAGEL2. PWS presents with various clinical manifestations, including poor suckling behaviour and feeding problems in neonates. Hypothalamic defects have been proposed, but the pathophysiological mechanisms remain poorly understood. Here, we report that a Magel2-deficient mouse with 50% neonatal mortality had an altered onset of suckling activity and subsequent impaired feeding, suggesting a role of MAGEL2 in the suckling deficit seen in PW newborns. The hypothalamus of Magel2 mutant neonates showed a significant reduction in oxytocin (OT). Furthermore, injection of a specific OT receptor antagonist in wild-type neonates recapitulated the feeding deficiency seen in Magel2 mutants, and a single injection of OT, 3-5 h after birth, rescued the phenotype of Magel2 mutant pups, allowing all of them to survive. Our study illustrates the crucial role of feeding onset behaviour after birth. We propose that OT supply might constitute a promising avenue for the treatment of feeding difficulties in PW neonates and potentially of other newborns with impaired feeding onset.

  18. Monotreme IGF2 expression and ancestral origin of genomic imprinting.

    PubMed

    Killian, J K; Nolan, C M; Stewart, N; Munday, B L; Andersen, N A; Nicol, S; Jirtle, R L

    2001-08-15

    IGF2 (insulin-like growth factor 2) and M6P/IGF2R (mannose 6-phosphate/insulin-like growth factor 2 receptor) are imprinted in marsupials and eutherians but not in birds. These results along with the absence of M6P/IGF2R imprinting in the egg-laying monotremes indicate that the parental imprinting of fetal growth-regulatory genes may be unique to viviparous mammals. In this investigation, we have cloned IGF2 from two monotreme mammals, the platypus and echidna, to further investigate the origin of imprinting. We report herein that like M6P/IGF2R, IGF2 is not imprinted in monotremes. Thus, although IGF2 encodes for a highly conserved growth factor in chordates, it is only imprinted in therian mammals. These findings support a concurrent origin of IGF2 and M6P/IGF2R imprinting in the late Jurassic/early Cretaceous period. The absence of imprinting in monotremes, despite apparent interparental conflicts over maternal-offspring exchange, argues that a fortuitous congruency of genetic and epigenetic events may have limited the phylogenetic breadth of genomic imprinting to therian mammals. J. Exp. Zool. (Mol. Dev. Evol.) 291:205-212, 2001.

  19. Oligonucleofide Imprinting in Aqueous Environment

    DTIC Science & Technology

    2002-04-05

    imprint molecule for various organic and aqueous polymerization formulations (Table I). The polymer ...interactions (Table 1). Table 1. Polymer formulations used to imprint adenosine dimer 1. Molecularly imprinted polymer ( MIP ) using 1% dimer 1 as template ( MIP ... MIP P3 is compared to its rebinding with non- imprinted polymer P30. Cb is the amount of dimer rebound to the polymer . Cf is the

  20. Eggs, embryos and the evolution of imprinting: insights from the platypus genome.

    PubMed

    Renfree, Marilyn B; Papenfuss, Anthony T; Shaw, Geoff; Pask, Andrew J

    2009-01-01

    Genomic imprinting is widespread in eutherian and marsupial mammals. Although there have been many hypotheses to explain why genomic imprinting evolved in mammals, few have examined how it arose. The host defence hypothesis suggests that imprinting evolved from existing mechanisms within the cell that act to silence foreign DNA elements that insert into the genome. However, the changes to the mammalian genome that accompanied the evolution of imprinting have been hard to define due to the absence of large-scale genomic resources from all extant classes. The recent release of the platypus genome sequence has provided the first opportunity to make comparisons between prototherian (monotreme, which show no signs of imprinting) and therian (marsupial and eutherian, which have imprinting) mammals. We compared the distribution of repeat elements known to attract epigenetic silencing across the genome from monotremes and therian mammals, particularly focusing on the orthologous imprinted regions. Our analyses show that the platypus has significantly fewer repeats of certain classes in the regions of the genome that have become imprinted in therian mammals. The accumulation of repeats, especially long-terminal repeats and DNA elements, in therian imprinted genes and gene clusters therefore appears to be coincident with, and may have been a potential driving force in, the development of mammalian genomic imprinting. Comparative platypus genome analyses of orthologous imprinted regions have provided strong support for the host defence hypothesis to explain the origin of imprinting.

  1. Germline and somatic imprinting in the nonhuman primate highlights species differences in oocyte methylation.

    PubMed

    Cheong, Clara Y; Chng, Keefe; Ng, Shilen; Chew, Siew Boom; Chan, Louiza; Ferguson-Smith, Anne C

    2015-05-01

    Genomic imprinting is an epigenetic mechanism resulting in parental allele-specific gene expression. Defects in normal imprinting are found in cancer, assisted reproductive technologies, and several human syndromes. In mouse models, germline-derived DNA methylation is shown to regulate imprinting. Though imprinting is largely conserved between mammals, species- and tissue-specific domains of imprinted expression exist. Using the cynomolgus macaque (Macaca fascicularis) to assess primate-specific imprinting, we present a comprehensive view of tissue-specific imprinted expression and DNA methylation at established imprinted gene clusters. For example, like mouse and unlike human, macaque IGF2R is consistently imprinted, and the PLAGL1, INPP5F transcript variant 2, and PEG3 imprinting control regions are not methylated in the macaque germline but acquire this post-fertilization. Methylome data from human early embryos appear to support this finding. These suggest fundamental differences in imprinting control mechanisms between primate species and rodents at some imprinted domains, with implications for our understanding of the epigenetic programming process in humans and its influence on disease.

  2. Aberrant DNA methylation imprints in aborted bovine clones.

    PubMed

    Liu, Jing-He; Yin, Shen; Xiong, Bo; Hou, Yi; Chen, Da-Yuan; Sun, Qing-Yuan

    2008-04-01

    Genomic imprinting plays a very important role during development and its abnormality may heavily undermine the developmental potential of bovine embryos. Because of limited resources of the cow genome, bovine genomic imprinting, both in normal development and in somatic cell nuclear transfer (SCNT) cloning, is not well documented. DNA methylation is thought to be a major factor for the establishment of genomic imprinting. In our study, we determined the methylation status of differential methylated regions (DMRs) of four imprinted genes in four spontaneously aborted SCNT-cloned fetuses (AF). Firstly, abnormal methylation imprints were observed in each individual to different extents. In particular, Peg3 and MAOA were either seriously demethylated or showed aberrant methylation patterns in four aborted clones we tested, but Xist and Peg10 exhibited relatively better maintained methylation status in AF1 and AF4. Secondly, two aborted fetuses, AF2 and AF3 exhibited severe aberrant methylation imprints of four imprinted genes. Finally, MAOA showed strong heterogeneous methylation patterns of its DMR in normal somatic adult tissue, but largely variable methylation levels and relatively homogeneous methylation patterns in aborted cloned fetuses. Our data indicate that the aborted cloned fetuses exhibited abnormal methylation imprints, to different extent, in aborted clones, which partially account for the higher abortion and developmental abnormalities during bovine cloning.

  3. Positive darwinian selection at the imprinted MEDEA locus in plants.

    PubMed

    Spillane, Charles; Schmid, Karl J; Laoueillé-Duprat, Sylvia; Pien, Stéphane; Escobar-Restrepo, Juan-Miguel; Baroux, Célia; Gagliardini, Valeria; Page, Damian R; Wolfe, Kenneth H; Grossniklaus, Ueli

    2007-07-19

    In mammals and seed plants, a subset of genes is regulated by genomic imprinting where an allele's activity depends on its parental origin. The parental conflict theory suggests that genomic imprinting evolved after the emergence of an embryo-nourishing tissue (placenta and endosperm), resulting in an intragenomic parental conflict over the allocation of nutrients from mother to offspring. It was predicted that imprinted genes, which arose through antagonistic co-evolution driven by a parental conflict, should be subject to positive darwinian selection. Here we show that the imprinted plant gene MEDEA (MEA), which is essential for seed development, originated during a whole-genome duplication 35 to 85 million years ago. After duplication, MEA underwent positive darwinian selection consistent with neo-functionalization and the parental conflict theory. MEA continues to evolve rapidly in the out-crossing species Arabidopsis lyrata but not in the self-fertilizing species Arabidopsis thaliana, where parental conflicts are reduced. The paralogue of MEA, SWINGER (SWN; also called EZA1), is not imprinted and evolved under strong purifying selection because it probably retained the ancestral function of the common precursor gene. The evolution of MEA suggests a late origin of genomic imprinting within the Brassicaceae, whereas imprinting is thought to have originated early within the mammalian lineage.

  4. Genomic Imprinting in the Arabidopsis Embryo Is Partly Regulated by PRC2

    PubMed Central

    Raissig, Michael T.; Bemer, Marian; Baroux, Célia; Grossniklaus, Ueli

    2013-01-01

    Genomic imprinting results in monoallelic gene expression in a parent-of-origin-dependent manner and is regulated by the differential epigenetic marking of the parental alleles. In plants, genomic imprinting has been primarily described for genes expressed in the endosperm, a tissue nourishing the developing embryo that does not contribute to the next generation. In Arabidopsis, the genes MEDEA (MEA) and PHERES1 (PHE1), which are imprinted in the endosperm, are also expressed in the embryo; whether their embryonic expression is regulated by imprinting or not, however, remains controversial. In contrast, the maternally expressed in embryo 1 (mee1) gene of maize is clearly imprinted in the embryo. We identified several imprinted candidate genes in an allele-specific transcriptome of hybrid Arabidopsis embryos and confirmed parent-of-origin-dependent, monoallelic expression for eleven maternally expressed genes (MEGs) and one paternally expressed gene (PEG) in the embryo, using allele-specific expression analyses and reporter gene assays. Genetic studies indicate that the Polycomb Repressive Complex 2 (PRC2) but not the DNA METHYLTRANSFERASE1 (MET1) is involved in regulating imprinted expression in the embryo. In the seedling, all embryonic MEGs and the PEG are expressed from both parents, suggesting that the imprint is erased during late embryogenesis or early vegetative development. Our finding that several genes are regulated by genomic imprinting in the Arabidopsis embryo clearly demonstrates that this epigenetic phenomenon is not a unique feature of the endosperm in both monocots and dicots. PMID:24339783

  5. Genomic imprinting in the Arabidopsis embryo is partly regulated by PRC2.

    PubMed

    Raissig, Michael T; Bemer, Marian; Baroux, Célia; Grossniklaus, Ueli

    2013-01-01

    Genomic imprinting results in monoallelic gene expression in a parent-of-origin-dependent manner and is regulated by the differential epigenetic marking of the parental alleles. In plants, genomic imprinting has been primarily described for genes expressed in the endosperm, a tissue nourishing the developing embryo that does not contribute to the next generation. In Arabidopsis, the genes MEDEA (MEA) and PHERES1 (PHE1), which are imprinted in the endosperm, are also expressed in the embryo; whether their embryonic expression is regulated by imprinting or not, however, remains controversial. In contrast, the maternally expressed in embryo 1 (mee1) gene of maize is clearly imprinted in the embryo. We identified several imprinted candidate genes in an allele-specific transcriptome of hybrid Arabidopsis embryos and confirmed parent-of-origin-dependent, monoallelic expression for eleven maternally expressed genes (MEGs) and one paternally expressed gene (PEG) in the embryo, using allele-specific expression analyses and reporter gene assays. Genetic studies indicate that the Polycomb Repressive Complex 2 (PRC2) but not the DNA METHYLTRANSFERASE1 (MET1) is involved in regulating imprinted expression in the embryo. In the seedling, all embryonic MEGs and the PEG are expressed from both parents, suggesting that the imprint is erased during late embryogenesis or early vegetative development. Our finding that several genes are regulated by genomic imprinting in the Arabidopsis embryo clearly demonstrates that this epigenetic phenomenon is not a unique feature of the endosperm in both monocots and dicots.

  6. Silencing of imprinted CDKN1C gene expression is associated with loss of CpG and histone H3 lysine 9 methylation at DMR-LIT1 in esophageal cancer.

    PubMed

    Soejima, Hidenobu; Nakagawachi, Tetsuji; Zhao, Wei; Higashimoto, Ken; Urano, Takeshi; Matsukura, Shiroh; Kitajima, Yoshihiko; Takeuchi, Makoto; Nakayama, Masahiro; Oshimura, Mitsuo; Miyazaki, Kohji; Joh, Keiichiro; Mukai, Tsunehiro

    2004-05-27

    The putative tumor suppressor CDKN1C is an imprinted gene at 11p15.5, a well-known imprinted region often deleted in tumors. The absence of somatic mutations and the frequent diminished expression in tumors would suggest that CDKN1C expression is regulated epigenetically. It has been, however, controversial whether the diminution is caused by imprinting disruption of the CDKN1C/LIT1 domain or by promoter hypermethylation of CDKN1C itself. To clarify this, we investigated the CpG methylation index of the CDKN1C promoter and the differentially methylated region of the LIT1 CpG island (differentially methylated region (DMR)-LIT1), an imprinting control region of the domain, and CDKN1C expression in esophageal cancer cell lines. CDKN1C expression was diminished in 10 of 17 lines and statistically correlated with the loss of methylation at DMR-LIT1 in all but three. However, there was no statistical correlation between CDKN1C promoter MI and CDKN1C expression. Furthermore, loss of CpG methylation was associated with loss of histone H3 lysine 9 (H3K9) methylation at DMR-LIT1. Histone modifications at CDKN1C promoter were not correlated with CDKN1C expression. The data suggested that the diminished CDKN1C expression is associated with the loss of methylation of CpG and H3K9 at DMR-LIT1, not by its own promoter CpG methylation, and is involved in esophageal cancer, implying that DMR-LIT1 epigenetically regulates CDKN1C expression not through histone modifications at CDKN1C promoter, but through that of DMR-LIT1.

  7. Central Precocious Puberty That Appears to Be Sporadic Caused by Paternally Inherited Mutations in the Imprinted Gene Makorin Ring Finger 3

    PubMed Central

    Macedo, Delanie B.; Abreu, Ana Paula; Reis, Ana Claudia S.; Montenegro, Luciana R.; Dauber, Andrew; Beneduzzi, Daiane; Cukier, Priscilla; Silveira, Leticia F. G.; Teles, Milena G.; Carroll, Rona S.; Junior, Gil Guerra; Filho, Guilherme Guaragna; Gucev, Zoran; Arnhold, Ivo J. P.; de Castro, Margaret; Moreira, Ayrton C.; Martinelli, Carlos Eduardo; Hirschhorn, Joel N.; Mendonca, Berenice B.; Brito, Vinicius N.; Antonini, Sonir R.; Kaiser, Ursula B.

    2014-01-01

    Context: Loss-of-function mutations in makorin ring finger 3 (MKRN3), an imprinted gene located on the long arm of chromosome 15, have been recognized recently as a cause of familial central precocious puberty (CPP) in humans. MKRN3 has a potential inhibitory effect on GnRH secretion. Objectives: The objective of the study was to investigate potential MKRN3 sequence variations as well as copy number and methylation abnormalities of the 15q11 locus in patients with apparently sporadic CPP. Setting and Participants: We studied 215 unrelated children (207 girls and eight boys) from three university medical centers with a diagnosis of CPP. All but two of these patients (213 cases) reported no family history of premature sexual development. First-degree relatives of patients with identified MKRN3 variants were included for genetic analysis. Main Outcome Measures: All 215 CPP patients were screened for MKRN3 mutations by automatic sequencing. Multiplex ligation-dependent probe amplification was performed in a partially overlapping cohort of 52 patients. Results: We identified five novel heterozygous mutations in MKRN3 in eight unrelated girls with CPP. Four were frame shift mutations predicted to encode truncated proteins and one was a missense mutation, which was suggested to be deleterious by in silico analysis. All patients with MKRN3 mutations had classical features of CPP with a median age of onset at 6 years. Copy number and methylation abnormalities at the 15q11 locus were not detected in the patients tested for these abnormalities. Segregation analysis was possible in five of the eight girls with MKRN3 mutations; in all cases, the mutation was inherited on the paternal allele. Conclusions: We have identified novel inherited MKRN3 defects in children with apparently sporadic CPP, supporting a fundamental role of this peptide in the suppression of the reproductive axis. PMID:24628548

  8. Molecularly Imprinted Biodegradable Nanoparticles

    PubMed Central

    Gagliardi, Mariacristina; Bertero, Alice; Bifone, Angelo

    2017-01-01

    Biodegradable polymer nanoparticles are promising carriers for targeted drug delivery in nanomedicine applications. Molecu- lar imprinting is a potential strategy to target polymer nanoparticles through binding of endogenous ligands that may promote recognition and active transport into specific cells and tissues. However, the lock-and-key mechanism of molecular imprinting requires relatively rigid cross-linked structures, unlike those of many biodegradable polymers. To date, no fully biodegradable molecularly imprinted particles have been reported in the literature. This paper reports the synthesis of a novel molecularly- imprinted nanocarrier, based on poly(lactide-co-glycolide) (PLGA) and acrylic acid, that combines biodegradability and molec- ular recognition properties. A novel three-arm biodegradable cross-linker was synthesized by ring-opening polymerization of glycolide and lactide initiated by glycerol. The resulting macromer was functionalized by introduction of end-functions through reaction with acryloyl chloride. Macromer and acrylic acid were used for the synthesis of narrowly-dispersed nanoparticles by radical polymerization in diluted conditions in the presence of biotin as template molecule. The binding capacity of the imprinted nanoparticles towards biotin and biotinylated bovine serum albumin was twentyfold that of non-imprinted nanoparti- cles. Degradation rates and functional performances were assessed in in vitro tests and cell cultures, demonstrating effective biotin-mediated cell internalization. PMID:28071745

  9. Molecularly Imprinted Biodegradable Nanoparticles

    NASA Astrophysics Data System (ADS)

    Gagliardi, Mariacristina; Bertero, Alice; Bifone, Angelo

    2017-01-01

    Biodegradable polymer nanoparticles are promising carriers for targeted drug delivery in nanomedicine applications. Molecu- lar imprinting is a potential strategy to target polymer nanoparticles through binding of endogenous ligands that may promote recognition and active transport into specific cells and tissues. However, the lock-and-key mechanism of molecular imprinting requires relatively rigid cross-linked structures, unlike those of many biodegradable polymers. To date, no fully biodegradable molecularly imprinted particles have been reported in the literature. This paper reports the synthesis of a novel molecularly- imprinted nanocarrier, based on poly(lactide-co-glycolide) (PLGA) and acrylic acid, that combines biodegradability and molec- ular recognition properties. A novel three-arm biodegradable cross-linker was synthesized by ring-opening polymerization of glycolide and lactide initiated by glycerol. The resulting macromer was functionalized by introduction of end-functions through reaction with acryloyl chloride. Macromer and acrylic acid were used for the synthesis of narrowly-dispersed nanoparticles by radical polymerization in diluted conditions in the presence of biotin as template molecule. The binding capacity of the imprinted nanoparticles towards biotin and biotinylated bovine serum albumin was twentyfold that of non-imprinted nanoparti- cles. Degradation rates and functional performances were assessed in in vitro tests and cell cultures, demonstrating effective biotin-mediated cell internalization.

  10. Molecularly Imprinted Biodegradable Nanoparticles.

    PubMed

    Gagliardi, Mariacristina; Bertero, Alice; Bifone, Angelo

    2017-01-10

    Biodegradable polymer nanoparticles are promising carriers for targeted drug delivery in nanomedicine applications. Molecu- lar imprinting is a potential strategy to target polymer nanoparticles through binding of endogenous ligands that may promote recognition and active transport into specific cells and tissues. However, the lock-and-key mechanism of molecular imprinting requires relatively rigid cross-linked structures, unlike those of many biodegradable polymers. To date, no fully biodegradable molecularly imprinted particles have been reported in the literature. This paper reports the synthesis of a novel molecularly- imprinted nanocarrier, based on poly(lactide-co-glycolide) (PLGA) and acrylic acid, that combines biodegradability and molec- ular recognition properties. A novel three-arm biodegradable cross-linker was synthesized by ring-opening polymerization of glycolide and lactide initiated by glycerol. The resulting macromer was functionalized by introduction of end-functions through reaction with acryloyl chloride. Macromer and acrylic acid were used for the synthesis of narrowly-dispersed nanoparticles by radical polymerization in diluted conditions in the presence of biotin as template molecule. The binding capacity of the imprinted nanoparticles towards biotin and biotinylated bovine serum albumin was twentyfold that of non-imprinted nanoparti- cles. Degradation rates and functional performances were assessed in in vitro tests and cell cultures, demonstrating effective biotin-mediated cell internalization.

  11. Human imprinting anomalies in fetal and childhood growth disorders: clinical implications and molecular mechanisms.

    PubMed

    Azzi, Salah; Brioude, Fréderic; Le Bouc, Yves; Netchine, Irène

    2014-01-01

    Genomic imprinting is among the most important epigenetic mechanisms whereby expression of a subset of genes is restricted to a single parental allele. Loss of imprinting (LOI) through hypo or hyper methylation is involved in various human syndromes. These LOI occur early during development and usually impair growth. Some imprinting syndromes are the consequences of genetic anomalies, such as uniparental disomies (UPD) or copy number variations (deletion or duplications) involving the imprinted domains; others are due to LOI at the imprinting control regions (ICR) regulating each domain. Imprinting disorders are phenotypically heterogeneous, although some share various common clinical features such that diagnosis may be difficult. Multilocus imprinting defects associated with several syndromes have been increasingly reported in recent years, although there are no obvious clinical differences between monolocus and multilocus LOI patients. Subsequently, some rare mutations of transacting factors have been identified in patients with multilocus imprinting defects but they do not explain the majority of the cases; this therefore implies that other factors are involved. By contrast, no mutation of a transacting factor has yet been identified in monolocus LOI. The effect of the environment on the regulation of imprinting is clearly illustrated by studies of assisted reproductive technology (ART). The regulation of imprinting is complex and involves a huge range of genetic and environmental factors; the identification of these factors will undoubtedly help to elucidate the regulation of imprinting and contribute to the understanding of imprinting disorders. This would be beneficial for diagnostics, clinical follow up and the development of treatment guidelines.

  12. Suppressive effects of genomic imprinted gene PEG10 on hydrogen peroxide-induced apoptosis in L02 cells.

    PubMed

    Liu, Yao; Huang, Huanjun; Lin, Jusheng; Zhang, Qiang; Tan, Jinquan; Ren, Jinghua

    2009-12-01

    The effects of PEG10 on hydrogen peroxide (H2O2)-induced apoptosis in human normal liver cell line L02 were investigated. The PEG10 gene was transfected into L02 cells by lipofectamine, the positive clone was screened by G418 and defined as L02/PEG10, while the cell transfected with empty expression vector (pEGFP-N1) was defined as L02/vector. L02/vector and parental L02 cells served as control. RT-PCR and Western blotting were employed to detect the expression of target genes. H2O2 (50-400 mmol/L) was administered to induce the apoptosis of L02 cells. Cells viability was measured by MTT and the morphological changes of apoptotic cells were determined by fluorescence microscopy using hoechst33342 nuclei staining. DNA fragmentation was observed by agarose gel electrophoresis. PEG10 mRNA and protein levels in L02/PEG10 cells were significantly increased as compared with those in the control cells. After treatment with 400 mmol/L H2O2 for 24 h, the cellular growth inhibition rate of L02/PEG10 cells was significantly lower (58.2%) than that of L02 (92.5%) and L02/vector (88%). Distinct morphological changes characteristic of cell apoptosis such as karyopyknosis and conglomeration were not observed in L02/PEG10. Ladder-like DNA fragmentation in a dose-dependent manner was observed in both L02 and L02/vector cell lines, but not in L02/PEG10. PEG10 over-expression significantly inhibited cytotoxicity induced by H2O2 on human normal liver cell line L02 by antagonizing H2O2-induced apoptosis.

  13. Genomic imprinting, methylation and parent-of-origin effects in reciprocal hybrid endosperm of castor bean.

    PubMed

    Xu, Wei; Dai, Mengyuan; Li, Fei; Liu, Aizhong

    2014-06-01

    Genomic imprinting often results in parent-of-origin specific differential expression of maternally and paternally inherited alleles. In plants, the triploid endosperm is where gene imprinting occurs most often, but aside from studies on Arabidopsis, little is known about gene imprinting in dicotyledons. In this study, we inspected genomic imprinting in castor bean (Ricinus communis) endosperm, which persists throughout seed development. After mapping out the polymorphic SNP loci between accessions ZB306 and ZB107, we generated deep sequencing RNA profiles of F1 hybrid seeds derived from reciprocal crosses. Using polymorphic SNP sites to quantify allele-specific expression levels, we identified 209 genes in reciprocal endosperms with potential parent-of-origin specific expression, including 200 maternally expressed genes and 9 paternally expressed genes. In total, 57 of the imprinted genes were validated via reverse transcriptase-polymerase chain reaction sequencing, and analysis of the genomic DNA methylation distribution between embryo and endosperm tissues showed significant hypomethylation in the endosperm and an enrichment of differentially methylated regions around the identified genes. Curiously, the expression of the imprinted genes was not tightly linked to DNA methylation. These results largely extended gene imprinting information existing in plants, providing potential directions for further research in gene imprinting.

  14. Genomic imprinting, methylation and parent-of-origin effects in reciprocal hybrid endosperm of castor bean

    PubMed Central

    Xu, Wei; Dai, Mengyuan; Li, Fei; Liu, Aizhong

    2014-01-01

    Genomic imprinting often results in parent-of-origin specific differential expression of maternally and paternally inherited alleles. In plants, the triploid endosperm is where gene imprinting occurs most often, but aside from studies on Arabidopsis, little is known about gene imprinting in dicotyledons. In this study, we inspected genomic imprinting in castor bean (Ricinus communis) endosperm, which persists throughout seed development. After mapping out the polymorphic SNP loci between accessions ZB306 and ZB107, we generated deep sequencing RNA profiles of F1 hybrid seeds derived from reciprocal crosses. Using polymorphic SNP sites to quantify allele-specific expression levels, we identified 209 genes in reciprocal endosperms with potential parent-of-origin specific expression, including 200 maternally expressed genes and 9 paternally expressed genes. In total, 57 of the imprinted genes were validated via reverse transcriptase-polymerase chain reaction sequencing, and analysis of the genomic DNA methylation distribution between embryo and endosperm tissues showed significant hypomethylation in the endosperm and an enrichment of differentially methylated regions around the identified genes. Curiously, the expression of the imprinted genes was not tightly linked to DNA methylation. These results largely extended gene imprinting information existing in plants, providing potential directions for further research in gene imprinting. PMID:24799438

  15. Angelman syndrome imprinting center encodes a transcriptional promoter.

    PubMed

    Lewis, Michael W; Brant, Jason O; Kramer, Joseph M; Moss, James I; Yang, Thomas P; Hansen, Peter J; Williams, R Stan; Resnick, James L

    2015-06-02

    Clusters of imprinted genes are often controlled by an imprinting center that is necessary for allele-specific gene expression and to reprogram parent-of-origin information between generations. An imprinted domain at 15q11-q13 is responsible for both Angelman syndrome (AS) and Prader-Willi syndrome (PWS), two clinically distinct neurodevelopmental disorders. Angelman syndrome arises from the lack of maternal contribution from the locus, whereas Prader-Willi syndrome results from the absence of paternally expressed genes. In some rare cases of PWS and AS, small deletions may lead to incorrect parent-of-origin allele identity. DNA sequences common to these deletions define a bipartite imprinting center for the AS-PWS locus. The PWS-smallest region of deletion overlap (SRO) element of the imprinting center activates expression of genes from the paternal allele. The AS-SRO element generates maternal allele identity by epigenetically inactivating the PWS-SRO in oocytes so that paternal genes are silenced on the future maternal allele. Here we have investigated functional activities of the AS-SRO, the element necessary for maternal allele identity. We find that, in humans, the AS-SRO is an oocyte-specific promoter that generates transcripts that transit the PWS-SRO. Similar upstream promoters were detected in bovine oocytes. This result is consistent with a model in which imprinting centers become DNA methylated and acquire maternal allele identity in oocytes in response to transiting transcription.

  16. A model for genomic imprinting in the social brain: adults.

    PubMed

    Ubeda, Francisco; Gardner, Andy

    2011-02-01

    Genomic imprinting refers to genes that are silenced when inherited via sperm or via egg. The silencing of genes conditional upon their parental origin requires an evolutionary explanation. The most widely accepted theory for the evolution of genomic imprinting-the kinship theory-argues that conflict between maternally inherited and paternally inherited genes over phenotypes with asymmetric effects on matrilineal and patrilineal kin results in self-imposed silencing of one of the copies. This theory has been applied to imprinting of genes expressed in the placenta, and infant brain determining the allocation of parental resources being the source of conflict parental promiscuity. However, there is growing evidence that imprinted genes are expressed in the postinfant brain where parental promiscuity per se is no longer a source of conflict. Here, we advance the kinship theory by developing an evolutionary model of genomic imprinting in adults, driven by intragenomic conflict over allocation to parental versus communal care. We consider the role of sex differences in dispersal and variance in reproductive success as sources of conflict. We predict that, in hominids and birds, parental care will be expressed by maternally inherited genes. In nonhominid mammals, we predict more diversity, with some mammals showing the same pattern and other showing the reverse. We use the model to interpret experimental data on imprinted genes in the house mouse: specifically, paternally expressed Peg1 and Peg3 genes, underlying maternal care, and maternally expressed Gnas and paternally expressed Gnasxl genes, underlying communal care. We also use the model to relate ancestral demography to contemporary imprinting disorders of adults, in humans and other taxa.

  17. Genomic imprinting: a mammalian epigenetic discovery model.

    PubMed

    Barlow, Denise P

    2011-01-01

    Genomic imprinting is an epigenetic process leading to parental-specific expression of one to two percent of mammalian genes that offers one of the best model systems for a molecular analysis of epigenetic regulation in development and disease. In the twenty years since the first imprinted gene was identified, this model has had a significant impact on decoding epigenetic information in mammals. So far it has led to the discovery of long-range cis-acting control elements whose epigenetic state regulates small clusters of genes and of unusual macro noncoding RNAs (ncRNAs) that directly repress genes in cis, and critically, it has demonstrated that one biological role of DNA methylation is to allow expression of genes normally repressed by default. This review describes the progress in understanding how imprinted protein-coding genes are silenced; in particular, it focuses on the role of macro ncRNAs that have broad relevance as a potential new layer of regulatory information in the mammalian genome.

  18. Genomic imprinting in psoriasis and atopic dermatitis: A review.

    PubMed

    Nguyen, Catherine M; Liao, Wilson

    2015-11-01

    Genomic imprinting is a genetic process where only one allele of a particular gene is expressed in a parent-of-origin dependent manner. Epigenetic changes in the DNA, such as methylation or acetylation of histones, are primarily thought to be responsible for silencing of the imprinted allele. Recently, global CpG methylation changes have been identified in psoriatic skin in comparison to normal skin, particularly near genes known to be upregulated in psoriasis such as KYNU, OAS2, and SERPINB3. Furthermore, imprinting has been associated with multi-chromosomal human disease, including diabetes and multiple sclerosis. This paper is the first to review the clinical and genetic evidence that exists in the literature for the association between imprinting and general skin disorders, including atopic dermatitis and psoriatic disease. Atopy was found to have evidence of imprinting on chromosomes 6, 11, 14, and 13. The β subunit of the IgE receptor on chromosome 11q12-13 may be imprinted. Psoriatic disease may be related to imprinting effects on chromosome 6 for psoriasis and 16 for psoriatic arthritis.

  19. Transcriptome-wide investigation of genomic imprinting in chicken.

    PubMed

    Frésard, Laure; Leroux, Sophie; Servin, Bertrand; Gourichon, David; Dehais, Patrice; Cristobal, Magali San; Marsaud, Nathalie; Vignoles, Florence; Bed'hom, Bertrand; Coville, Jean-Luc; Hormozdiari, Farhad; Beaumont, Catherine; Zerjal, Tatiana; Vignal, Alain; Morisson, Mireille; Lagarrigue, Sandrine; Pitel, Frédérique

    2014-04-01

    Genomic imprinting is an epigenetic mechanism by which alleles of some specific genes are expressed in a parent-of-origin manner. It has been observed in mammals and marsupials, but not in birds. Until now, only a few genes orthologous to mammalian imprinted ones have been analyzed in chicken and did not demonstrate any evidence of imprinting in this species. However, several published observations such as imprinted-like QTL in poultry or reciprocal effects keep the question open. Our main objective was thus to screen the entire chicken genome for parental-allele-specific differential expression on whole embryonic transcriptomes, using high-throughput sequencing. To identify the parental origin of each observed haplotype, two chicken experimental populations were used, as inbred and as genetically distant as possible. Two families were produced from two reciprocal crosses. Transcripts from 20 embryos were sequenced using NGS technology, producing ∼200 Gb of sequences. This allowed the detection of 79 potentially imprinted SNPs, through an analysis method that we validated by detecting imprinting from mouse data already published. However, out of 23 candidates tested by pyrosequencing, none could be confirmed. These results come together, without a priori, with previous statements and phylogenetic considerations assessing the absence of genomic imprinting in chicken.

  20. Transcriptome-wide investigation of genomic imprinting in chicken

    PubMed Central

    Frésard, Laure; Leroux, Sophie; Servin, Bertrand; Gourichon, David; Dehais, Patrice; Cristobal, Magali San; Marsaud, Nathalie; Vignoles, Florence; Bed'hom, Bertrand; Coville, Jean-Luc; Hormozdiari, Farhad; Beaumont, Catherine; Zerjal, Tatiana; Vignal, Alain; Morisson, Mireille; Lagarrigue, Sandrine; Pitel, Frédérique

    2014-01-01

    Genomic imprinting is an epigenetic mechanism by which alleles of some specific genes are expressed in a parent-of-origin manner. It has been observed in mammals and marsupials, but not in birds. Until now, only a few genes orthologous to mammalian imprinted ones have been analyzed in chicken and did not demonstrate any evidence of imprinting in this species. However, several published observations such as imprinted-like QTL in poultry or reciprocal effects keep the question open. Our main objective was thus to screen the entire chicken genome for parental-allele-specific differential expression on whole embryonic transcriptomes, using high-throughput sequencing. To identify the parental origin of each observed haplotype, two chicken experimental populations were used, as inbred and as genetically distant as possible. Two families were produced from two reciprocal crosses. Transcripts from 20 embryos were sequenced using NGS technology, producing ∼200 Gb of sequences. This allowed the detection of 79 potentially imprinted SNPs, through an analysis method that we validated by detecting imprinting from mouse data already published. However, out of 23 candidates tested by pyrosequencing, none could be confirmed. These results come together, without a priori, with previous statements and phylogenetic considerations assessing the absence of genomic imprinting in chicken. PMID:24452801

  1. Mutations in NLRP5 are associated with reproductive wastage and multilocus imprinting disorders in humans

    PubMed Central

    Docherty, Louise E.; Rezwan, Faisal I.; Poole, Rebecca L.; Turner, Claire L. S.; Kivuva, Emma; Maher, Eamonn R.; Smithson, Sarah F.; Hamilton-Shield, Julian P.; Patalan, Michal; Gizewska, Maria; Peregud-Pogorzelski, Jaroslaw; Beygo, Jasmin; Buiting, Karin; Horsthemke, Bernhard; Soellner, Lukas; Begemann, Matthias; Eggermann, Thomas; Baple, Emma; Mansour, Sahar; Temple, I. Karen; Mackay, Deborah J. G.

    2015-01-01

    Human-imprinting disorders are congenital disorders of growth, development and metabolism, associated with disturbance of parent of origin-specific DNA methylation at imprinted loci across the genome. Some imprinting disorders have higher than expected prevalence of monozygotic twinning, of assisted reproductive technology among parents, and of disturbance of multiple imprinted loci, for which few causative trans-acting mutations have been found. Here we report mutations in NLRP5 in five mothers of individuals affected by multilocus imprinting disturbance. Maternal-effect mutations of other human NLRP genes, NLRP7 and NLRP2, cause familial biparental hydatidiform mole and multilocus imprinting disturbance, respectively. Offspring of mothers with NLRP5 mutations have heterogenous clinical and epigenetic features, but cases include a discordant monozygotic twin pair, individuals with idiopathic developmental delay and autism, and families affected by infertility and reproductive wastage. NLRP5 mutations suggest connections between maternal reproductive fitness, early zygotic development and genomic imprinting. PMID:26323243

  2. A model for genomic imprinting in the social brain: juveniles.

    PubMed

    Ubeda, Francisco; Gardner, Andy

    2010-09-01

    What are imprinted genes doing in the adult brain? Genomic imprinting is when a gene's expression depends upon parent of origin. According to the prevailing view, the "kinship theory" of genomic imprinting, this effect is driven by evolutionary conflicts between genes inherited via sperm versus egg. This theory emphasizes conflicts over the allocation of maternal resources, and focuses upon genes that are expressed in the placenta and infant brain. However, there is growing evidence that imprinted genes are also expressed in the juvenile and adult brain, after cessation of parental care. These genes have recently been suggested to underpin neurological disorders of the social brain such as psychosis and autism. Here we advance the kinship theory by developing an evolutionary model of genomic imprinting for social behavior beyond the nuclear family. We consider the role of demography and mating system, emphasizing the importance of sex differences in dispersal and variance in reproductive success. We predict that, in hominids and birds, altruism will be promoted by paternally inherited genes and egoism will be promoted by maternally inherited genes. In nonhominid mammals we predict more diversity, with some mammals showing the same pattern and other showing the reverse. We discuss the implications for the evolution of psychotic and autistic spectrum disorders in human populations with different social structures.

  3. Evidence for paternal imprinting in familial Beckwith-Wiedemann syndrome.

    PubMed Central

    Viljoen, D; Ramesar, R

    1992-01-01

    A previously unreported family in which seven members in two generations have Beckwith-Wiedemann syndrome (BWS) is documented. Paternal imprinting of the gene responsible for BWS is involved as the mechanism responsible for the aberrant inheritance pattern in this kindred. A review of published reports showed 27 previously published pedigrees with two or more affected subjects with BWS. Paternal imprinting would explain the non-mendelian inheritance of BWS in all but four kindreds. The latter families are examined in more detail and in only one example is the evidence against imprinting totally unexplained. Images PMID:1583639

  4. Genomic imprinting and its relevance to congenital disease, infertility, molar pregnancy and induced pluripotent stem cell.

    PubMed

    Tomizawa, Shin-ichi; Sasaki, Hiroyuki

    2012-02-01

    Genomic imprinting is an epigenetic gene-marking phenomenon that occurs in the germline, whereby genes are expressed from only one of the two parental copies in embryos and adults. Imprinting is essential for normal mammalian development and its disruption can cause various developmental defects and diseases. The process of imprinting in the germline involves DNA methylation of the imprint control regions (ICRs), and resulting parental-specific methylation imprints are maintained in the zygote and act as the marks controlling imprinted gene expression. Recent studies in mice have revealed new factors involved in imprint establishment during gametogenesis and maintenance during early development. Clinical studies have identified cases of imprinting disorders where involvement of factors shared by multiple ICRs for establishment or maintenance is suspected. These include Beckwith-Wiedemann syndrome, transient neonatal diabetes, Silver-Russell syndrome and others. More severe disruptions can lead to recurrent molar pregnancy, miscarriage or infertility. Imprinting defects may also occur during assisted reproductive technology or cell reprogramming. In this review, we summarize our current knowledge on the mechanisms of imprint establishment and maintenance, and discuss the relationship with various human disorders.

  5. Genomic imprinting is a parental effect established in mammalian germ cells.

    PubMed

    Li, Xiajun

    2013-01-01

    Genomic imprinting is an epigenetic phenomenon in which either the paternal or the maternal allele of imprinted genes is expressed in somatic cells. It is unique to eutherian mammals, marsupials, and flowering plants. It is absolutely required for normal mammalian development. Dysregulation of genomic imprinting can cause a variety of human diseases. About 150 imprinted genes have been identified so far in mammals and many of them are clustered such that they are coregulated by a cis-acting imprinting control region, called the ICR. One hallmark of the ICR is that it contains a germ line-derived differentially methylated region that is methylated on the paternal chromosome or on the maternal chromosome. The DNA methylation imprint is reset in the germ line and differential methylation at an ICR is restored upon fertilization. The DNA methylation imprint is resistant to a genome-wide demethylation process in early embryos and is stably maintained in postimplantation embryos. Maintenance of the DNA methylation imprint is dependent on two distinct maternal effect genes (Zfp57 and PGC7/Stella). In germ cells, around midgestation, the DNA methylation imprint is erased and undergoes another round of the DNA methylation imprint cycle that includes erasure, resetting, restoration, and maintenance of differential DNA methylation.

  6. Genomic imprinting effects in a compromised in utero environment: implications for a healthy pregnancy.

    PubMed

    Lim, A L; Ferguson-Smith, A C

    2010-04-01

    Genomic imprinting in gametogenesis marks a subset of mammalian genes for parent-of-origin-dependent monoallelic expression in the offspring. In mice, the identification and manipulation of individual imprinted genes has shown that the diverse products of these genes are largely devoted to controlling pre- and postnatal growth. Human syndromes with parental origin effects have been characterized both at the phenotypic and genotypic levels, allowing further elucidation of the function and regulation of imprinted genes. Evidence suggests that a compromised in utero environment influences fetal growth through the modulation of epigenetic states. However it is not known whether imprinted genes, by their nature, might be more or less susceptible to such environmental influences. Here we review the progress made in addressing the influence of a compromised in utero environment on the behavior of imprinted genes. We also examine whether these environmental influences may have an impact on the later development of human disease.

  7. Epigenetic and genetic alterations of the imprinting disorder Beckwith-Wiedemann syndrome and related disorders.

    PubMed

    Soejima, Hidenobu; Higashimoto, Ken

    2013-07-01

    Genomic imprinting is an epigenetic phenomenon that leads to parent-specific differential expression of a subset of genes. Most imprinted genes form clusters, or imprinting domains, and are regulated by imprinting control regions. As imprinted genes have an important role in growth and development, aberrant expression of imprinted genes due to genetic or epigenetic abnormalities is involved in the pathogenesis of human disorders, or imprinting disorders. Beckwith-Wiedemann syndrome (BWS) is a representative imprinting disorder characterized by macrosomia, macroglossia and abdominal wall defects, and exhibits a predisposition to tumorigenesis. The relevant imprinted chromosomal region in BWS is 11p15.5, which consists of two imprinting domains, IGF2/H19 and CDKN1C/KCNQ1OT1. BWS has five known causative epigenetic and genetic alterations: loss of methylation (LOM) at KvDMR1, gain of methylation (GOM) at H19DMR, paternal uniparental disomy, CDKN1C mutations and chromosomal rearrangements. Opposite methylation defects, GOM and LOM, at H19DMR are known to cause clinically opposite disorders: BWS and Silver-Russell syndrome, respectively. Interestingly, a recent study discovered that loss of function or gain of function of CDKN1C also causes clinically opposite disorders, BWS and IMAGe (intrauterine growth restriction, metaphyseal dysplasia, adrenal hypoplasia congenita, and genital anomalies) syndrome, respectively. Furthermore, several clinical studies have suggested a relationship between assisted reproductive technology (ART) and the risk of imprinting disorders, along with the existence of trans-acting factors that regulate multiple imprinted differentially methylated regions. In this review, we describe the latest knowledge surrounding the imprinting mechanism of 11p15.5, in addition to epigenetic and genetic etiologies of BWS, associated childhood tumors, the effects of ART and multilocus hypomethylation disorders.

  8. Different yet similar: evolution of imprinting in flowering plants and mammals

    PubMed Central

    2014-01-01

    Genomic imprinting refers to a form of epigenetic gene regulation whereby alleles are differentially expressed in a parent-of-origin-dependent manner. Imprinting evolved independently in flowering plants and in therian mammals in association with the elaboration of viviparity and a placental habit. Despite the striking differences in plant and animal reproduction, genomic imprinting shares multiple characteristics between them. In both groups, imprinted expression is controlled, at least in part, by DNA methylation and chromatin modifications in cis-regulatory regions, and many maternally and paternally expressed genes display complementary dosage-dependent effects during embryogenesis. This suggests that genomic imprinting evolved in response to similar selective pressures in flowering plants and mammals. Nevertheless, there are important differences between plant and animal imprinting. In particular, genomic imprinting has been shown to be more flexible and evolutionarily labile in plants. In mammals, imprinted genes are organized mainly in highly conserved clusters, whereas in plants they occur in isolation throughout the genome and are affected by local gene duplications. There is a large degree of intra- and inter-specific variation in imprinted gene expression in plants. These differences likely reflect the distinct life cycles and the different evolutionary dynamics that shape plant and animal genomes. PMID:25165562

  9. Different yet similar: evolution of imprinting in flowering plants and mammals.

    PubMed

    Pires, Nuno D; Grossniklaus, Ueli

    2014-01-01

    Genomic imprinting refers to a form of epigenetic gene regulation whereby alleles are differentially expressed in a parent-of-origin-dependent manner. Imprinting evolved independently in flowering plants and in therian mammals in association with the elaboration of viviparity and a placental habit. Despite the striking differences in plant and animal reproduction, genomic imprinting shares multiple characteristics between them. In both groups, imprinted expression is controlled, at least in part, by DNA methylation and chromatin modifications in cis-regulatory regions, and many maternally and paternally expressed genes display complementary dosage-dependent effects during embryogenesis. This suggests that genomic imprinting evolved in response to similar selective pressures in flowering plants and mammals. Nevertheless, there are important differences between plant and animal imprinting. In particular, genomic imprinting has been shown to be more flexible and evolutionarily labile in plants. In mammals, imprinted genes are organized mainly in highly conserved clusters, whereas in plants they occur in isolation throughout the genome and are affected by local gene duplications. There is a large degree of intra- and inter-specific variation in imprinted gene expression in plants. These differences likely reflect the distinct life cycles and the different evolutionary dynamics that shape plant and animal genomes.

  10. Molecularly Imprinted Membranes

    PubMed Central

    Trotta, Francesco; Biasizzo, Miriam; Caldera, Fabrizio

    2012-01-01

    Although the roots of molecularly imprinted polymers lie in the beginning of 1930s in the past century, they have had an exponential growth only 40–50 years later by the works of Wulff and especially by Mosbach. More recently, it was also proved that molecular imprinted membranes (i.e., polymer thin films) that show recognition properties at molecular level of the template molecule are used in their formation. Different procedures and potential application in separation processes and catalysis are reported. The influences of different parameters on the discrimination abilities are also discussed. PMID:24958291

  11. Molecularly imprinted membranes.

    PubMed

    Trotta, Francesco; Biasizzo, Miriam; Caldera, Fabrizio

    2012-07-19

    Although the roots of molecularly imprinted polymers lie in the beginning of 1930s in the past century, they have had an exponential growth only 40-50 years later by the works of Wulff and especially by Mosbach. More recently, it was also proved that molecular imprinted membranes (i.e., polymer thin films) that show recognition properties at molecular level of the template molecule are used in their formation. Different procedures and potential application in separation processes and catalysis are reported. The influences of different parameters on the discrimination abilities are also discussed.

  12. Snx14 Regulates Neuronal Excitability, Promotes Synaptic Transmission, and Is Imprinted in the Brain of Mice

    PubMed Central

    Huang, Hsien-Sung; Yoon, Bong-June; Brooks, Sherian; Bakal, Robert; Berrios, Janet; Larsen, Rylan S.; Wallace, Michael L.; Han, Ji Eun; Chung, Eui Hwan; Zylka, Mark J.; Philpot, Benjamin D.

    2014-01-01

    Genomic imprinting describes an epigenetic process through which genes can be expressed in a parent-of-origin-specific manner. The monoallelic expression of imprinted genes renders them particularly susceptible to disease causing mutations. A large proportion of imprinted genes are expressed in the brain, but little is known about their functions. Indeed, it has proven difficult to identify cell type-specific imprinted genes due to the heterogeneity of cell types within the brain. Here we used laser capture microdissection of visual cortical neurons and found evidence that sorting nexin 14 (Snx14) is a neuronally imprinted gene in mice. SNX14 protein levels are high in the brain and progressively increase during neuronal development and maturation. Snx14 knockdown reduces intrinsic excitability and severely impairs both excitatory and inhibitory synaptic transmission. These data reveal a role for monoallelic Snx14 expression in maintaining normal neuronal excitability and synaptic transmission. PMID:24859318

  13. The evolution of genomic imprinting: costs, benefits and long-term consequences.

    PubMed

    Holman, Luke; Kokko, Hanna

    2014-08-01

    Genomic imprinting refers to a pattern of gene expression in which a specific parent's allele is either under-expressed or completely silenced. Imprinting is an evolutionary conundrum because it appears to incur the costs of diploidy (e.g. presenting a larger target than haploidy to mutations) while foregoing its benefits (protection from harmful recessive mutations). Here, we critically evaluate previously proposed evolutionary benefits of imprinting and suggest some additional ones. We discuss whether each benefit is capable of explaining both the origin and maintenance of imprinting, and examine how the different benefits interact. We then outline the many costs of imprinting. Simple models show that circulating deleterious recessives can prevent the initial spread of imprinting, even if imprinting would be evolutionarily stable if it could persist long enough to purge these. We also show that imprinting can raise or lower the mutation load, depending on the selective regime and the degree of dominance. We finish by discussing the population-level consequences of imprinting, which can be both positive and negative. Imprinting offers many insights into evolutionary conflict, the interaction between individual- and population-level fitness effects, and the 'gene's-eye view' of evolution.

  14. Genomic imprinting, action, and interaction of maternal and fetal genomes

    PubMed Central

    Keverne, Eric B.

    2015-01-01

    Mammalian viviparity (intrauterine development of the fetus) introduced a new dimension to brain development, with the fetal hypothalamus and fetal placenta developing at a time when the fetal placenta engages hypothalamic structures of the maternal generation. Such transgenerational interactions provide a basis for ensuring optimal maternalism in the next generation. This success has depended on genomic imprinting and a biased role of the matriline. Maternal methylation imprints determine parent of origin expression of genes fundamental to both placental and hypothalamic development. The matriline takes a further leading role for transgenerational reprogramming of these imprints. Developmental errors are minimized by the tight control that imprinted genes have on regulation of downstream evolutionary expanded gene families important for placental and hypothalamic development. Imprinted genes themselves have undergone purifying selection, providing a framework of stability for in utero development with most growth variance occurring postnatally. Mothers, not fathers, take the lead in the endocrinological and behavior adaptations that nurture, feed, and protect the infant. In utero coadaptive development of the placenta and hypothalamus has thus required a concomitant development to ensure male masculinization. Only placental male mammals evolved the sex determining SRY, which activates Sox9 for testes formation. SRY is a hybrid gene of Dgcr8 expressed in the developing placenta and Sox3 expressed in hypothalamic development. This hybridization of genes that take their origin from the placenta and hypothalamus has enabled critical in utero timing for the development of fetal Leydig cells, and hence testosterone production for hypothalamic masculinization. PMID:25404322

  15. Clickable molecularly imprinted nanoparticles.

    PubMed

    Xu, Changgang; Ye, Lei

    2011-06-07

    Terminal alkynyl and azide groups are introduced on the surface of molecularly imprinted core-shell nanoparticles using precipitation polymerization. These clickable groups enable simple nanoparticle conjugation and surface modification under mild reaction conditions, opening new opportunities for nanoparticle-based assays and chemical sensing.

  16. Conserved imprinting associated with unique epigenetic signatures in the Arabidopsis genus

    PubMed Central

    Klosinska, Maja; Picard, Colette L.; Gehring, Mary

    2017-01-01

    In plants, imprinted gene expression occurs in endosperm seed tissue and is sometimes associated with differential DNA methylation between maternal and paternal alleles1. Imprinting is theorized to have been selected for because of conflict between parental genomes in offspring2, but most studies of imprinting have been conducted in Arabidopsis thaliana, an inbred primarily self-fertilizing species that should have limited parental conflict. We examined embryo and endosperm allele-specific expression and DNA methylation genome-wide in the wild outcrossing species Arabidopsis lyrata. Here we show that the majority of A. lyrata imprinted genes also exhibit parentally-biased expression in A. thaliana, suggesting that there is evolutionary conservation in gene imprinting. Surprisingly, we discovered substantial interspecies differences in methylation features associated with paternally expressed imprinted genes (PEGs). Unlike in A. thaliana, the maternal allele of many A. lyrata PEGs was hypermethylated in the CHG context. Increased maternal allele CHG methylation was associated with increased expression bias in favor of the paternal allele. We propose that CHG methylation maintains or reinforces repression of maternal alleles of PEGs. These data suggest that while the genes subject to imprinting are largely conserved, there is flexibility in the epigenetic mechanisms employed between closely related species to maintain monoallelic expression. This supports the idea that imprinting of specific genes is a functional phenomenon, and not simply a byproduct of seed epigenomic reprogramming. PMID:27643534

  17. Prader-Willi Syndrome: Obesity due to Genomic Imprinting

    PubMed Central

    Butler, Merlin G

    2011-01-01

    Prader-Willi syndrome (PWS) is a complex neurodevelopmental disorder due to errors in genomic imprinting with loss of imprinted genes that are paternally expressed from the chromosome 15q11-q13 region. Approximately 70% of individuals with PWS have a de novo deletion of the paternally derived 15q11-q13 region in which there are two subtypes (i.e., larger Type I or smaller Type II), maternal disomy 15 (both 15s from the mother) in about 25% of cases, and the remaining subjects have either defects in the imprinting center controlling the activity of imprinted genes or due to other chromosome 15 rearrangements. PWS is characterized by a particular facial appearance, infantile hypotonia, a poor suck and feeding difficulties, hypogonadism and hypogenitalism in both sexes, short stature and small hands and feet due to growth hormone deficiency, mild learning and behavioral problems (e.g., skin picking, temper tantrums) and hyperphagia leading to early childhood obesity. Obesity is a significant health problem, if uncontrolled. PWS is considered the most common known genetic cause of morbid obesity in children. The chromosome 15q11-q13 region contains approximately 100 genes and transcripts in which about 10 are imprinted and paternally expressed. This region can be divided into four groups: 1) a proximal non-imprinted region; 2) a PWS paternal-only expressed region containing protein-coding and non-coding genes; 3) an Angelman syndrome region containing maternally expressed genes and 4) a distal non-imprinted region. This review summarizes the current understanding of the genetic causes, the natural history and clinical presentation of individuals with PWS. PMID:22043168

  18. Genomic imprinting and the evolutionary psychology of human kinship

    PubMed Central

    Haig, David

    2011-01-01

    Genomic imprinting is predicted to influence behaviors that affect individuals to whom an actor has different degrees of matrilineal and patrilineal kinship (asymmetric kin). Effects of imprinted genes are not predicted in interactions with nonrelatives or with individuals who are equally related to the actor's maternally and paternally derived genes (unless a gene also has pleiotropic effects on fitness of asymmetric kin). Long-term mating bonds are common in most human populations, but dissolution of marriage has always affected a significant proportion of mated pairs. Children born in a new union are asymmetric kin of children born in a previous union. Therefore, the innate dispositions of children toward parents and sibs are expected to be sensitive to cues of marital stability, and these dispositions may be subject to effects of imprinted genes. PMID:21690414

  19. Maternal control of nutrient allocation in plant seeds by genomic imprinting.

    PubMed

    Costa, Liliana M; Yuan, Jing; Rouster, Jacques; Paul, Wyatt; Dickinson, Hugh; Gutierrez-Marcos, Jose F

    2012-01-24

    Imprinted genes are commonly expressed in mammalian placentas and in plant seed endosperms, where they exhibit preferential uniparental allelic expression. In mammals, imprinted genes directly regulate placental function and nutrient distribution from mother to fetus; however, none of the >60 imprinted genes thus far reported in plants have been demonstrated to play an equivalent role in regulating the flow of resources to the embryo. Here we show that imprinted Maternally expressed gene1 (Meg1) in maize is both necessary and sufficient for the establishment and differentiation of the endosperm nutrient transfer cells located at the mother:seed interface. Consistent with these findings, Meg1 also regulates maternal nutrient uptake, sucrose partitioning, and seed biomass yield. In addition, we generated an imprinted and nonimprinted synthetic Meg1 ((syn)Meg1) dosage series whereby increased dosage and absence of imprinting both resulted in an unequal investment of maternal resources into the endosperm. These findings highlight dosage regulation by genomic imprinting as being critical for maintaining a balanced distribution of maternal nutrients to filial tissues in plants, as in mammals. However, unlike in mammals, Meg1 is a maternally expressed imprinted gene that surprisingly acts to promote rather than restrict nutrient allocation to the offspring.

  20. Parents do matter: genomic imprinting and parental sex effects in neurological disorders.

    PubMed

    Chatkupt, S; Antonowicz, M; Johnson, W G

    1995-05-01

    Genomic imprinting is a recently recognized phenomenon of differential expression of genetic material depending upon whether the genetic material has come from the male or female parent. This process of differential phenotypic expression involves mammalian development both in the normal and abnormal situations, resulting in parental sex effects. However, some parental sex effects may be due to other mechanisms such as mitochondrial inheritance. In the following article, evidence for genomic imprinting in experimental animals and in diseases are summarized. Relevant human neurological disorders manifesting parental sex effects discussed here include myotonic dystrophy, Huntington's disease, fragile X syndrome, spinocerebellar ataxia type 1, and neurofibromatosis type 1 and 2. A possible mechanism of imprinting involves the processes of methylation imprint and replication imprint. The knowledge of imprinting is helpful in clinical practice particularly in the areas of genetic counseling, prenatal diagnosis, and possible future gene therapy.

  1. Solvent Immersion Imprint Lithography

    SciTech Connect

    Vasdekis, Andreas E.; Wilkins, Michael J.; Grate, Jay W.; Kelly, Ryan T.; Konopka, Allan; Xantheas, Sotiris S.; Chang, M. T.

    2014-06-21

    The mechanism of polymer disolution was explored for polymer microsystem prototyping, including microfluidics and optofluidics. Polymer films are immersed in a solvent, imprinted and finally brought into contact with a non-modified surface to permanently bond. The underlying polymer-solvent interactions were experimentally and theoretically investigated, and enabled rapid polymer microsystem prototyping. During imprinting, small molecule integration in the molded surfaces was feasible, a principle applied to oxygen sensing. Polystyrene (PS) was employed for microbiological studies at extreme environmental conditions. The thermophile anaerobe Clostridium Thermocellum was grown in PS pore-scale micromodels, revealing a double mean generation lifetime than under ideal culture conditions. Microsystem prototyping through directed polymer dissolution is simple and accessible, while simultaneous patterning, bonding, and surface/volume functionalization are possible in less than one minute.

  2. Synthesis of magnetic cytosine-imprinted chitosan nanoparticles

    NASA Astrophysics Data System (ADS)

    Lee, Mei-Hwa; Ahluwalia, Arti; Chen, Jian-Zhou; Shih, Neng-Lang; Lin, Hung-Yin

    2017-02-01

    Molecularly imprinted polymer nanoparticles incorporating magnetic nanoparticles (MNPs) have been investigated for their selective adsorption properties. Here we describe the synthesis and characterization of magnetic cytosine-imprinted chitosan nanoparticles (CIPs) for gene delivery. In particular, CIPs carrying the mammalian expression plasmid of enhanced green fluorescent protein were prepared by the co-precipitation of MNPs, chitosan and a template nucleobase (cytosine). The results show that the selective reabsorption of cytosine to magnetic CIPs was at least double that of non-imprinted polymers and other nucleobases (such as adenine and thymine). The gene carrier CIPs were used for the transfection of human embryonic kidney 293 cells showing dramatic increase their efficiency with that of conventional chitosan nanoparticles. Furthermore, the gene carrier magnetic CIPs also exhibit low toxicity compared to that of commercially available cationic lipids.

  3. Synthesis of magnetic cytosine-imprinted chitosan nanoparticles.

    PubMed

    Lee, Mei-Hwa; Ahluwalia, Arti; Chen, Jian-Zhou; Shih, Neng-Lang; Lin, Hung-Yin

    2017-02-24

    Molecularly imprinted polymer nanoparticles incorporating magnetic nanoparticles (MNPs) have been investigated for their selective adsorption properties. Here we describe the synthesis and characterization of magnetic cytosine-imprinted chitosan nanoparticles (CIPs) for gene delivery. In particular, CIPs carrying the mammalian expression plasmid of enhanced green fluorescent protein were prepared by the co-precipitation of MNPs, chitosan and a template nucleobase (cytosine). The results show that the selective reabsorption of cytosine to magnetic CIPs was at least double that of non-imprinted polymers and other nucleobases (such as adenine and thymine). The gene carrier CIPs were used for the transfection of human embryonic kidney 293 cells showing dramatic increase their efficiency with that of conventional chitosan nanoparticles. Furthermore, the gene carrier magnetic CIPs also exhibit low toxicity compared to that of commercially available cationic lipids.

  4. Metabolic imprinting in obesity.

    PubMed

    Sullivan, E L; Grove, K L

    2010-01-01

    Increasing evidence indicates that early metabolic programming contributes to escalating obesity rates in children and adults. Metabolic imprinting is involved in the establishment of set points for physiologic and metabolic responses in adulthood. Evidence from epidemiological studies and animal models indicates that maternal health and nutritional status during gestation and lactation have long-term effects on central and peripheral systems that regulate energy balance in the developing offspring. Perinatal nutrition also impacts susceptibility to developing metabolic disorders and plays a role in programming body weight set points. The states of maternal energy status and health that are implicated in predisposing offspring to increased risk of developing obesity include maternal overnutrition, diabetes, and undernutrition. This chapter discusses the evidence from epidemiologic studies and animal models that each of these states of maternal energy status results in metabolic imprinting of obesity in offspring. Also, the potential molecular mediators of metabolic imprinting of obesity by maternal energy status including glucose, insulin, leptin, inflammatory cytokines and epigenetic mechanisms are considered.

  5. Establishment of paternal genomic imprinting in mouse prospermatogonia analyzed by nuclear transfer.

    PubMed

    Kamimura, Satoshi; Hatanaka, Yuki; Hirasawa, Ryutaro; Matsumoto, Kazuya; Oikawa, Mami; Lee, Jiyoung; Matoba, Shogo; Mizutani, Eiji; Ogonuki, Narumi; Inoue, Kimiko; Kohda, Takashi; Ishino, Fumitoshi; Ogura, Atsuo

    2014-11-01

    In mice, the establishment of paternal genomic imprinting in male germ cells starts at midgestation, as suggested by DNA methylation analyses of differentially methylated regions (DMRs). However, this information is based on averages from mixed populations of germ cells, and the DNA methylation pattern might not always provide a full representation of imprinting status. To obtain more detailed information on the establishment of paternal imprinting, single prospermatogonia at Embryonic Days 15.5 (E15.5), E16.5, and E17.5 and at Day 0.5 after birth were cloned using nuclear transfer; previous reports suggested that cloned embryos reflected the donor's genomic imprinting status. Then, the resultant fetuses (E9.5) were analyzed for the DNA methylation pattern of three paternal DMRs (IG-DMR, H19 DMR, and Rasgrf1 DMR) and the expression pattern of imprinted genes therein. The overall data indicated that establishment of genomic imprinting in all paternally imprinted regions was completed by E17.5, following a short intermediate period at E16.5. Furthermore, comparison between the methylation status of DMRs and the expression profiles of imprinted genes suggested that methylation of the IG-DMR, but not the H19 DMR, solely governed the control of its imprinted gene cluster. The Rasgrf1 DMR seemed to be imprinted later than the other two genes. We also found that the methylation status of the Gtl2 DMR, the secondary DMR that acquires DNA methylation after fertilization, was likely to follow the methylation status of the upstream IG-DMR. Thus, the systematic analyses of prospermatogonium-derived embryos provided additional important information on the establishment of paternal imprinting.

  6. Genomic Imprinting and the Expression of Affect in Angelman Syndrome: What's in the Smile?

    ERIC Educational Resources Information Center

    Oliver, Chris; Horsler, Kate; Berg, Katy; Bellamy, Gail; Dick, Katie; Griffiths, Emily

    2007-01-01

    Background: Kinship theory (or the genomic conflict hypothesis) proposes that the phenotypic effects of genomic imprinting arise from conflict between paternally and maternally inherited alleles. A prediction arising for social behaviour from this theory is that imbalance in this conflict resulting from a deletion of a maternally imprinted gene,…

  7. The origin and evolution of genomic imprinting and viviparity in mammals

    PubMed Central

    Renfree, Marilyn B.; Suzuki, Shunsuke; Kaneko-Ishino, Tomoko

    2013-01-01

    Genomic imprinting is widespread in eutherian mammals. Marsupial mammals also have genomic imprinting, but in fewer loci. It has long been thought that genomic imprinting is somehow related to placentation and/or viviparity in mammals, although neither is restricted to mammals. Most imprinted genes are expressed in the placenta. There is no evidence for genomic imprinting in the egg-laying monotreme mammals, despite their short-lived placenta that transfers nutrients from mother to embryo. Post natal genomic imprinting also occurs, especially in the brain. However, little attention has been paid to the primary source of nutrition in the neonate in all mammals, the mammary gland. Differentially methylated regions (DMRs) play an important role as imprinting control centres in each imprinted region which usually comprises both paternally and maternally expressed genes (PEGs and MEGs). The DMR is established in the male or female germline (the gDMR). Comprehensive comparative genome studies demonstrated that two imprinted regions, PEG10 and IGF2-H19, are conserved in both marsupials and eutherians and that PEG10 and H19 DMRs emerged in the therian ancestor at least 160 Ma, indicating the ancestral origin of genomic imprinting during therian mammal evolution. Importantly, these regions are known to be deeply involved in placental and embryonic growth. It appears that most maternal gDMRs are always associated with imprinting in eutherian mammals, but emerged at differing times during mammalian evolution. Thus, genomic imprinting could evolve from a defence mechanism against transposable elements that depended on DNA methylation established in germ cells. PMID:23166401

  8. The origin and evolution of genomic imprinting and viviparity in mammals.

    PubMed

    Renfree, Marilyn B; Suzuki, Shunsuke; Kaneko-Ishino, Tomoko

    2013-01-05

    Genomic imprinting is widespread in eutherian mammals. Marsupial mammals also have genomic imprinting, but in fewer loci. It has long been thought that genomic imprinting is somehow related to placentation and/or viviparity in mammals, although neither is restricted to mammals. Most imprinted genes are expressed in the placenta. There is no evidence for genomic imprinting in the egg-laying monotreme mammals, despite their short-lived placenta that transfers nutrients from mother to embryo. Post natal genomic imprinting also occurs, especially in the brain. However, little attention has been paid to the primary source of nutrition in the neonate in all mammals, the mammary gland. Differentially methylated regions (DMRs) play an important role as imprinting control centres in each imprinted region which usually comprises both paternally and maternally expressed genes (PEGs and MEGs). The DMR is established in the male or female germline (the gDMR). Comprehensive comparative genome studies demonstrated that two imprinted regions, PEG10 and IGF2-H19, are conserved in both marsupials and eutherians and that PEG10 and H19 DMRs emerged in the therian ancestor at least 160 Ma, indicating the ancestral origin of genomic imprinting during therian mammal evolution. Importantly, these regions are known to be deeply involved in placental and embryonic growth. It appears that most maternal gDMRs are always associated with imprinting in eutherian mammals, but emerged at differing times during mammalian evolution. Thus, genomic imprinting could evolve from a defence mechanism against transposable elements that depended on DNA methylation established in germ cells.

  9. The role of genomic imprinting in human developmental disorders: lessons from Prader-Willi syndrome.

    PubMed

    Hanel, M L; Wevrick, R

    2001-03-01

    Normal human development involves a delicate interplay of gene expression in specific tissues at narrow windows of time. Temporally and spatially regulated gene expression is controlled both by gene-specific factors and chromatin-specific factors. Genomic imprinting is the expression of specific genes primarily from only one allele at particular times during development, and is one mechanism implicated in the intricate control of gene expression. Two human genetic disorders, Prader-Willi syndrome (PWS, MIM 176270) and Angelman syndrome (AS, MIM 105830), result from rearrangements of chromosome 15q11-q13, an imprinted region of the human genome. Despite their rarity, disorders such as PWS and AS can give focused insight into the role of genomic imprinting and imprinted genes in human development.

  10. Small regulatory RNAs controlled by genomic imprinting and their contribution to human disease.

    PubMed

    Girardot, Michael; Cavaillé, Jérôme; Feil, Robert

    2012-12-01

    More than a hundred protein-coding genes are controlled by genomic imprinting in humans. These atypical genes are organized in chromosomal domains, each of which is controlled by a differentially methylated "imprinting control region" (ICR). How ICRs mediate the parental allele-specific expression of close-by genes is now becoming understood. At several imprinted domains, this epigenetic mechanism involves the action of long non-coding RNAs. It is less well appreciated that imprinted gene domains also transcribe hundreds of microRNA and small nucleolar RNA genes and that these represent the densest clusters of small RNA genes in mammalian genomes. The evolutionary reasons for this remarkable enrichment of small regulatory RNAs at imprinted domains remain unclear. However, recent studies show that imprinted small RNAs modulate specific functions in development and metabolism and also are frequently perturbed in cancer. Here, we review our current understanding of imprinted small RNAs in the human genome and discuss how perturbation of their expression contributes to disease.

  11. Small regulatory RNAs controlled by genomic imprinting and their contribution to human disease

    PubMed Central

    Girardot, Michael; Cavaillé, Jérôme; Feil, Robert

    2012-01-01

    More than a hundred protein-coding genes are controlled by genomic imprinting in humans. These atypical genes are organized in chromosomal domains, each of which is controlled by a differentially methylated "imprinting control region" (ICR). How ICRs mediate the parental allele-specific expression of close-by genes is now becoming understood. At several imprinted domains, this epigenetic mechanism involves the action of long non-coding RNAs. It is less well appreciated that imprinted gene domains also transcribe hundreds of microRNA and small nucleolar RNA genes and that these represent the densest clusters of small RNA genes in mammalian genomes. The evolutionary reasons for this remarkable enrichment of small regulatory RNAs at imprinted domains remain unclear. However, recent studies show that imprinted small RNAs modulate specific functions in development and metabolism and also are frequently perturbed in cancer. Here, we review our current understanding of imprinted small RNAs in the human genome and discuss how perturbation of their expression contributes to disease. PMID:23154539

  12. A role for chromatin topology in imprinted domain regulation.

    PubMed

    MacDonald, William A; Sachani, Saqib S; White, Carlee R; Mann, Mellissa R W

    2016-02-01

    Recently, many advancements in genome-wide chromatin topology and nuclear architecture have unveiled the complex and hidden world of the nucleus, where chromatin is organized into discrete neighbourhoods with coordinated gene expression. This includes the active and inactive X chromosomes. Using X chromosome inactivation as a working model, we utilized publicly available datasets together with a literature review to gain insight into topologically associated domains, lamin-associated domains, nucleolar-associating domains, scaffold/matrix attachment regions, and nucleoporin-associated chromatin and their role in regulating monoallelic expression. Furthermore, we comprehensively review for the first time the role of chromatin topology and nuclear architecture in the regulation of genomic imprinting. We propose that chromatin topology and nuclear architecture are important regulatory mechanisms for directing gene expression within imprinted domains. Furthermore, we predict that dynamic changes in chromatin topology and nuclear architecture play roles in tissue-specific imprint domain regulation during early development and differentiation.

  13. Ftx is dispensable for imprinted X-chromosome inactivation in preimplantation mouse embryos

    PubMed Central

    Soma, Miki; Fujihara, Yoshitaka; Okabe, Masaru; Ishino, Fumitoshi; Kobayashi, Shin

    2014-01-01

    X-chromosome inactivation (XCI) equalizes gene expression between the sexes by inactivating one of the two X chromosomes in female mammals. Xist has been considered as a major cis-acting factor that inactivates the paternally derived X chromosome (Xp) in preimplantation mouse embryos (imprinted XCI). Ftx has been proposed as a positive regulator of Xist. However, the physiological role of Ftx in female animals has never been studied. We recently reported that Ftx is located in the cis-acting regulatory region of the imprinted XCI and expressed from the inactive Xp, suggesting a role in the imprinted XCI mechanism. Here we examined the effects on imprinted XCI using targeted deletion of Ftx. Disruption of Ftx did not affect the survival of female embryos or expression of Xist and other X-linked genes in the preimplantation female embryos. Our results indicate that Ftx is dispensable for imprinted XCI in preimplantation embryos. PMID:24899465

  14. Bayesian mapping of genome-wide epistatic imprinted loci for quantitative traits.

    PubMed

    Li, Shize; Wang, Xin; Li, Jiahan; Yang, Tianfu; Min, Lingjiang; Liu, Yang; Lin, Min; Yang, Runqing

    2012-05-01

    Genomic imprinting, an epigenetic phenomenon of parent-of-origin-specific gene expression, has been widely observed in plants, animals, and humans. To detect imprinting genes influencing quantitative traits, the least squares and maximum likelihood approaches for fitting a single quantitative trait locus (QTL) and Bayesian methods for simultaneously modeling multiple QTL have been adopted, respectively, in various studies. However, most of these studies have only estimated imprinting main effects and thus ignored imprinting epistatic effects. In the presence of extremely complex genomic imprinting architectures, we introduce a Bayesian model selection method to analyze the multiple interacting imprinted QTL (iQTL) model. This approach will greatly enhance the computational efficiency through setting the upper bound of the number of QTLs and performing selective sampling for QTL parameters. The imprinting types of detected main-effect QTLs can be estimated from the Bayes factor statistic formulated by the posterior probabilities for the genetic effects being compared. The performance of the proposed method is demonstrated by several simulation experiments. Moreover, this method is applied to dissect the imprinting genetic architecture for body weight in mouse and fruit weight in tomato. Matlab code for implementing this approach will be available from the authors upon request.

  15. Tissue specificity and variability of imprinted IGF2 expression in humans

    SciTech Connect

    Giannoukakis, N.; Rouleau, G.; Polychronakos, C.

    1994-09-01

    Parental genomic imprinting refers to the phenomenon where expression of a gene copy depends on the sex of the parent from which it is derived. The human insulin-like growth factor II gene, IGF2, is parentally imprinted with the paternal gene copy exclusively expressed in fetal and term placenta as well as in fetal kidney. In mice, imprinted IGF2 expression is tissue-specific. In a preliminary approach to investigate tissue-specific IGF2 imprinting in humans, we evaluated allele-specific expression in four samples of umbilical cord blood leukocytes of fetuses found to imprint IGF2 in placenta. IGF2 mRNA transcripts from the gene copy transmitted from each parent were distinguished using a transcribed ApaI polymorphism by performing reverse transcription-PCR on total RNA from cord blood leukocytes. Postnatal peripheral blood was examined using the same method. Of 77 informative individuals, 68 expressed both IGF2 copies, but 9 individuals showed unambiguous monoallelic expression. Two individuals from each category were screened again and the results were identical. These data indicate that imprinted IGF2 expression is tissue-specific and show variability of IGF2 imprinting among individuals. This variability may be genetic. We are in the process of screening large pedigrees to test this hypothesis.

  16. Imprinting-mutation mechanisms in Prader-Willi syndrome.

    PubMed Central

    Ohta, T; Gray, T A; Rogan, P K; Buiting, K; Gabriel, J M; Saitoh, S; Muralidhar, B; Bilienska, B; Krajewska-Walasek, M; Driscoll, D J; Horsthemke, B; Butler, M G; Nicholls, R D

    1999-01-01

    Microdeletions of a region termed the "imprinting center" (IC) in chromosome 15q11-q13 have been identified in several families with Prader-Willi syndrome (PWS) or Angelman syndrome who show epigenetic inheritance for this region that is consistent with a mutation in the imprinting process. The IC controls resetting of parental imprints in 15q11-q13 during gametogenesis. We have identified a larger series of cases of familial PWS, including one case with a deletion of only 7.5 kb, that narrows the PWS critical region to <4. 3 kb spanning the SNRPN gene CpG island and exon 1. Identification of a strong DNase I hypersensitive site, specific for the paternal allele, and six evolutionarily conserved (human-mouse) sequences that are potential transcription-factor binding sites is consistent with this region defining the SNRPN gene promoter. These findings suggest that promoter elements at SNRPN play a key role in the initiation of imprint switching during spermatogenesis. We also identified three patients with sporadic PWS who have an imprinting mutation (IM) and no detectable mutation in the IC. An inherited 15q11-q13 mutation or a trans-factor gene mutation are unlikely; thus, the disease in these patients may arise from a developmental or stochastic failure to switch the maternal-to-paternal imprint during parental spermatogenesis. These studies allow a better understanding of a novel mechanism of human disease, since the epigenetic effect of an IM in the parental germ line determines the phenotypic effect in the patient. PMID:9973278

  17. Detection of imprinting mutations in Angelman syndrome using a probe for exon {alpha} of SNRPN

    SciTech Connect

    Beuten, J.; Sutcliffe, J.S.; Casey, B.M.

    1996-05-17

    Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are distinct clinical disorders resulting from deficiency of paternal (PWS) or maternal (AS) expression of imprinted genes within chromosome 15q11-q13. 15 refs., 1 fig.

  18. Epigenetic and genetic mechanisms of abnormal 11p15 genomic imprinting in Silver-Russell and Beckwith-Wiedemann syndromes.

    PubMed

    Demars, J; Le Bouc, Y; El-Osta, A; Gicquel, C

    2011-01-01

    Fetal growth is a complex process depending on the genetics of the fetus, the availability of nutrients to the fetus, maternal nutrition and various growth factors and hormones of maternal, fetal and placental origin. The IGF system, and more particularly IGF2, is one of the most important endocrine and paracrine growth systems regulating fetal and placental growth (reviewed in [1]). The IGF2 gene is regulated by genomic imprinting and is expressed only from the paternally-inherited allele in most tissues during fetal development and after birth. Imprinted genes are tightly regulated and are therefore particularly susceptible to changes, including environmental and nutritional changes. Dysregulation of a cluster of imprinted genes, including the IGF2 gene within the 11p15 region, results in two fetal growth disorders (Silver-Russell and Beckwith-Wiedemann syndromes) with opposite growth phenotypes. Those two syndromes are model imprinting disorders to decipher the regulation of genomic imprinting.

  19. Paternally expressed genes predominate in the placenta.

    PubMed

    Wang, Xu; Miller, Donald C; Harman, Rebecca; Antczak, Douglas F; Clark, Andrew G

    2013-06-25

    The discovery of genomic imprinting through studies of manipulated mouse embryos indicated that the paternal genome has a major influence on placental development. However, previous research has not demonstrated paternal bias in imprinted genes. We applied RNA sequencing to trophoblast tissue from reciprocal hybrids of horse and donkey, where genotypic differences allowed parent-of-origin identification of most expressed genes. Using this approach, we identified a core group of 15 ancient imprinted genes, of which 10 were paternally expressed. An additional 78 candidate imprinted genes identified by RNA sequencing also showed paternal bias. Pyrosequencing was used to confirm the imprinting status of six of the genes, including the insulin receptor (INSR), which may play a role in growth regulation with its reciprocally imprinted ligand, histone acetyltransferase-1 (HAT1), a gene involved in chromatin modification, and lymphocyte antigen 6 complex, locus G6C, a newly identified imprinted gene in the major histocompatibility complex. The 78 candidate imprinted genes displayed parent-of-origin expression bias in placenta but not fetus, and most showed less than 100% silencing of the imprinted allele. Some displayed variability in imprinting status among individuals. This variability results in a unique epigenetic signature for each placenta that contributes to variation in the intrauterine environment and thus presents the opportunity for natural selection to operate on parent-of-origin differential regulation. Taken together, these features highlight the plasticity of imprinting in mammals and the central importance of the placenta as a target tissue for genomic imprinting.

  20. Programmable imprint lithography template

    DOEpatents

    Cardinale, Gregory F.; Talin, Albert A.

    2006-10-31

    A template for imprint lithography (IL) that reduces significantly template production costs by allowing the same template to be re-used for several technology generations. The template is composed of an array of spaced-apart moveable and individually addressable rods or plungers. Thus, the template can be configured to provide a desired pattern by programming the array of plungers such that certain of the plungers are in an "up" or actuated configuration. This arrangement of "up" and "down" plungers forms a pattern composed of protruding and recessed features which can then be impressed onto a polymer film coated substrate by applying a pressure to the template impressing the programmed configuration into the polymer film. The pattern impressed into the polymer film will be reproduced on the substrate by subsequent processing.

  1. Analysis of genomic imprinting by quantitative allele-specific expression by Pyrosequencing(®).

    PubMed

    McKeown, Peter C; Fort, Antoine; Spillane, Charles

    2014-01-01

    Genomic imprinting is a parent-of-origin phenomenon whereby gene expression is restricted to the allele inherited from either the maternal or paternal parent. It has been described from flowering plants and eutherian mammals and may have evolved due to parental conflicts over resource allocation. In mammals, imprinted genes are responsible for ensuring correct rates of embryo development and for preventing parthenogenesis. The molecular basis of imprinting depends upon the presence of differential epigenetic marks on the alleles inherited from each parent, although in plants the exact mechanisms that control imprinting are still unclear in many cases. Recent studies have identified large numbers of candidate imprinted genes from Arabidopsis thaliana and other plants (see Chap. 7 by Köhler and colleagues elsewhere in this volume) providing the tools for more thorough investigation into how imprinted gene networks (IGNs) are regulated. Analysis of genomic imprinting in animals has revealed important information on how IGNs are regulated during development, which often involves intermediate levels of imprinting. In some instances, small but significant changes in the degree of parental bias in gene expression have been linked to developmental traits, livestock phenotypes, and human disease. As some of the imprinted genes recently reported from plants show differential rather than complete (binary) imprinting, there is a clear need for tools that can quantify the degree of allelic expression bias occurring at a transcribed locus. In this chapter, we describe the use of Quantification of Allele-Specific Expression by Pyrosequencing(®) (QUASEP) as a tool suitable for this challenge. We describe in detail the factors which ensure that a Pyrosequencing(®) assay will be suitable for giving robust QUASEP and the problems which may be encountered during the study of imprinted genes by Pyrosequencing(®), with particular reference to our work in A. thaliana and in cattle

  2. Manganese uptake of imprinted polymers

    SciTech Connect

    Susanna Ventura

    2015-09-30

    Batch tests of manganese imprinted polymers of variable composition to assess their ability to extract lithium and manganese from synthetic brines at T=45C . Data on manganese uptake for two consecutive cycles are included.

  3. Genomic imprinting: the emergence of an epigenetic paradigm.

    PubMed

    Ferguson-Smith, Anne C

    2011-07-18

    The emerging awareness of the contribution of epigenetic processes to genome function in health and disease is underpinned by decades of research in model systems. In particular, many principles of the epigenetic control of genome function have been uncovered by studies of genomic imprinting. The phenomenon of genomic imprinting, which results in some genes being expressed in a parental--origin-specific manner, is essential for normal mammalian growth and development and exemplifies the regulatory influences of DNA methylation, chromatin structure and non-coding RNA. Setting seminal discoveries in this field alongside recent progress and remaining questions shows how the study of imprinting continues to enhance our understanding of the epigenetic control of genome function in other contexts.

  4. Molecular imprinting: perspectives and applications.

    PubMed

    Chen, Lingxin; Wang, Xiaoyan; Lu, Wenhui; Wu, Xiaqing; Li, Jinhua

    2016-04-21

    Molecular imprinting technology (MIT), often described as a method of making a molecular lock to match a molecular key, is a technique for the creation of molecularly imprinted polymers (MIPs) with tailor-made binding sites complementary to the template molecules in shape, size and functional groups. Owing to their unique features of structure predictability, recognition specificity and application universality, MIPs have found a wide range of applications in various fields. Herein, we propose to comprehensively review the recent advances in molecular imprinting including versatile perspectives and applications, concerning novel preparation technologies and strategies of MIT, and highlight the applications of MIPs. The fundamentals of MIPs involving essential elements, preparation procedures and characterization methods are briefly outlined. Smart MIT for MIPs is especially highlighted including ingenious MIT (surface imprinting, nanoimprinting, etc.), special strategies of MIT (dummy imprinting, segment imprinting, etc.) and stimuli-responsive MIT (single/dual/multi-responsive technology). By virtue of smart MIT, new formatted MIPs gain popularity for versatile applications, including sample pretreatment/chromatographic separation (solid phase extraction, monolithic column chromatography, etc.) and chemical/biological sensing (electrochemical sensing, fluorescence sensing, etc.). Finally, we propose the remaining challenges and future perspectives to accelerate the development of MIT, and to utilize it for further developing versatile MIPs with a wide range of applications (650 references).

  5. Is there a genomically imprinted social brain?

    PubMed

    Curley, James P

    2011-09-01

    Imprinted genes (IGs) are expressed or silenced according to their parent-of-origin. These genes are known to play a role in regulating offspring growth, development and infant behaviors such as suckling and ultrasonic calls. In adults, neurally expressed IGs coordinate several behaviors including maternal care, sex, feeding, emotionality, and cognition. However, despite evidence from human psychiatric disorders and evolutionary theory that maternally and paternally expressed genes should also regulate social behavior, little empirical data from mouse research exists. This paper discusses data from a recent study (Garfield et al., 2011) that the IG Grb10 governs unique aspects of mouse social behavior and interprets the relevance of these findings for the future of this field.

  6. Dormancy-specific imprinting underlies maternal inheritance of seed dormancy in Arabidopsis thaliana

    PubMed Central

    Piskurewicz, Urszula; Iwasaki, Mayumi; Susaki, Daichi; Megies, Christian; Kinoshita, Tetsu; Lopez-Molina, Luis

    2016-01-01

    Mature seed dormancy is a vital plant trait that prevents germination out of season. In Arabidopsis, the trait can be maternally regulated but the underlying mechanisms sustaining this regulation, its general occurrence and its biological significance among accessions are poorly understood. Upon seed imbibition, the endosperm is essential to repress the germination of dormant seeds. Investigation of genomic imprinting in the mature seed endosperm led us to identify a novel set of imprinted genes that are expressed upon seed imbibition. Remarkably, programs of imprinted gene expression are adapted according to the dormancy status of the seed. We provide direct evidence that imprinted genes play a role in regulating germination processes and that preferential maternal allelic expression can implement maternal inheritance of seed dormancy levels. DOI: http://dx.doi.org/10.7554/eLife.19573.001 PMID:28005006

  7. New Perspectives on Genomic Imprinting, an Essential and Multifaceted Mode of Epigenetic Control in the Developing and Adult Brain

    PubMed Central

    Perez, Julio D.; Rubinstein, Nimrod D.; Dulac, Catherine

    2016-01-01

    Mammalian evolution entailed multiple innovations in gene regulation, including the emergence of genomic imprinting, an epigenetic regulation leading to the preferential expression of a gene from its maternal or paternal allele. Genomic imprinting is highly prevalent in the brain, yet, until recently, its central roles in neural processes have not been fully appreciated. Here, we provide a comprehensive survey of adult and developmental brain functions influenced by imprinted genes, from neural development and wiring to synaptic function and plasticity, energy balance, social behaviors, emotions, and cognition. We further review the widespread identification of parental biases alongside monoallelic expression in brain tissues, discuss their potential roles in dosage regulation of key neural pathways, and suggest possible mechanisms underlying the dynamic regulation of imprinting in the brain. This review should help provide a better understanding of the significance of genomic imprinting in the normal and pathological brain of mammals including humans. PMID:27145912

  8. Allele-specific DNA methylation: beyond imprinting.

    PubMed

    Tycko, Benjamin

    2010-10-15

    Allele-specific DNA methylation (ASM) and allele-specific gene expression (ASE) have long been studied in genomic imprinting and X chromosome inactivation. But these types of allelic asymmetries, along with allele-specific transcription factor binding (ASTF), have turned out to be far more pervasive-affecting many non-imprinted autosomal genes in normal human tissues. ASM, ASE and ASTF have now been mapped genome-wide by microarray-based methods and NextGen sequencing. Multiple studies agree that all three types of allelic asymmetries, as well as the related phenomena of expression and methylation quantitative trait loci, are mostly accounted for by cis-acting regulatory polymorphisms. The precise mechanisms by which this occurs are not yet understood, but there are some testable hypotheses and already a few direct clues. Future challenges include achieving higher resolution maps to locate the epicenters of cis-regulated ASM, using this information to test mechanistic models, and applying genome-wide maps of ASE/ASM/ASTF to pinpoint functional regulatory polymorphisms influencing disease susceptibility.

  9. Tet-mediated imprinting erasure in H19 locus following reprogramming of spermatogonial stem cells to induced pluripotent stem cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Selective methylation of CpG islands at imprinting control regions (ICR) determines the monoparental expression of a subset of genes. The imprinting marks are protected from global demethylation taking place during pre-implantation development before being reset in primordial germ cells. However, it...

  10. Benjamin Franklin's Medical Imprints

    PubMed Central

    Cantu, Jane Quale

    1965-01-01

    The printing house of Benjamin Franklin produced several works of a medical nature in Colonial America at a time when very few medical treatises were being written or printed. Benjamin Franklin was also indirectly responsible for the founding of the first medical library in this country. For these reasons he was, in addition to his many other talents, an early contributor to American medical literature. Included in this bibliography are all the known medical books, pamphlets, and broadsides in English with Benjamin Franklin's name in the imprint, issued in America. These eighteen titles span the years 1732 to 1765 and are presented chronologically with indications of their relation to the practice and practitioners of Colonial medicine. Benjamin Franklin's press produced as wide a variety of contributions as did his versatile life, and the early history of medicine in this country bears the influence of both. I am pleased with your scheme of a Medical Library at the Hospital, and I fancy I can procure you some donations among my medical friends here, if you will send me a catalogue of what books you already have. Enclosed I send you the only book of the kind in my possession here, having just received it as a present from the author.—Benjamin Franklin to Dr. Cadwallader Evans, London, May 5, 1767 (1). PMID:14223741

  11. Molecularly imprinted materials: synthesis, properties, applications

    NASA Astrophysics Data System (ADS)

    Lisichkin, Georgii V.; Krutyakov, Yu A.

    2006-10-01

    This review is devoted to the method of molecular imprinting. The physicochemical fundamentals and mechanisms of covalent and non-covalent molecular imprinting aimed at the development of organic polymeric sorbents capable of molecular recognition are considered. Attention is focused on the preparation of molecular imprints on mineral supports. The mechanisms of molecular recognition in adsorption are discussed. Application fields of materials with molecular imprints are briefly surveyed.

  12. Stability of genomic imprinting in embryonic stem cells: lessons from assisted reproductive technology.

    PubMed

    Huntriss, John; Picton, Helen M

    2008-05-01

    Imprinted genes are expressed predominantly or exclusively from one allele only. This mode of gene expression makes the regulation of imprinted genes susceptible to epigenetic insults, which may in turn lead to disease. There is compelling experimental evidence that certain aspects of assisted reproductive technology (ART) such as in vitro cell culture may have adverse effects on the regulation of epigenetic information in mammalian embryos, including the disruption of imprinted genes and epigenetic regulators. Moreover, in humans, disorders of genomic imprinting have been reported in children conceived by ART. The derivation and in vitro culture of embryonic stem (ES) cells are potential points of origin for epigenetic abnormalities. There is evidence that defects of genomic imprinting occur in mouse embryonic stem cells, with similar data now emerging in related studies in non-human primate and human ES cells. It is therefore pertinent to rigorously assess the epigenetic status of all stem cells and their derivatives prior to their therapeutic use in humans. Focusing on the stability of genomic imprinting, this review discusses the current evidence for epigenetic disruption in mammalian embryonic stem cells in light of the epigenetic disruption observed in ART-derived mammalian embryos.

  13. Molecular imprinting in sol-gel matrix.

    PubMed

    Gupta, Radha; Kumar, Ashok

    2008-01-01

    Molecular imprinting is a newly developed methodology which provides molecular assemblies of desired structures and properties and is being increasingly used for several applications such as in separation processes, microreactors, immunoassays and antibody mimics, catalysis, artificial enzymes, biosensor recognition elements and bio- and chemo-sensors. The ambient processing conditions and versatility of the sol-gel process makes sol-gel glassy matrix suitable for molecular imprinting. The progress of sol-gel based molecular imprinted polymers (MIPs) for various applications can be seen from the growing number of publications. The main focus of the review is molecular imprinting in sol-gel matrix and applications of molecular imprinted sol-gel derived materials for the development of sensors. Combining sol-gel process with molecular imprinting enables to procure the sensors with greater sensitivity and selectivity necessary for sensing applications. The merits, problems, challenges and factors affecting molecular imprinting in sol-gel matrix have been discussed. Considerable attention has been drawn on recent developments like use of organically modified silane precursors (ORMOSILS) for the synthesis of hybrid molecular imprinted polymers (HMIPs) and applying surface sol-gel process for molecular imprinting. The development of molecular imprinted sol-gel nanotubes for biochemical separation and bio-imprinting is a new advancement and is under progress. Templated xerogels and molecularly imprinted sol-gel films provide a good platform for various sensor applications.

  14. Molecularly Imprinted Materials: Towards the Next Generation

    DTIC Science & Technology

    2002-04-05

    SCINTILLATION POLYMERS : A NEW SENSOR CONCEPT Although molecularly imprinted polymers ( MIPs ) often display high binding affinity and specificity mimicking... sensors have been demonstrated over the past years. In general, molecular imprinting can be defined as a process of target directed synthesis of...efficiency. For these reasons imprinted polymer beads are preferable. Although the well-established suspension and dispersion polymerization methods

  15. Relationship between the IQ of People with Prader-Willi Syndrome and that of Their Siblings: Evidence for Imprinted Gene Effects

    ERIC Educational Resources Information Center

    Whittington, J.; Holland, A.; Webb, T.

    2009-01-01

    Background: Genetic disorders occasionally provide the means to uncover potential mechanisms linking gene expression and physical or cognitive characteristics or behaviour. Prader-Willi syndrome (PWS) is one such genetic disorder in which differences between the two main genetic subtypes have been documented (e.g. higher verbal IQ in one vs.…

  16. Characterization of global loss of imprinting in fetal overgrowth syndrome induced by assisted reproduction.

    PubMed

    Chen, Zhiyuan; Hagen, Darren E; Elsik, Christine G; Ji, Tieming; Morris, Collin James; Moon, Laura Emily; Rivera, Rocío Melissa

    2015-04-14

    Embryos generated with the use of assisted reproductive technologies (ART) can develop overgrowth syndromes. In ruminants, the condition is referred to as large offspring syndrome (LOS) and exhibits variable phenotypic abnormalities including overgrowth, enlarged tongue, and abdominal wall defects. These characteristics recapitulate those observed in the human loss-of-imprinting (LOI) overgrowth syndrome Beckwith-Wiedemann (BWS). We have recently shown LOI at the KCNQ1 locus in LOS, the most common epimutation in BWS. Although the first case of ART-induced LOS was reported in 1995, studies have not yet determined the extent of LOI in this condition. Here, we determined allele-specific expression of imprinted genes previously identified in human and/or mouse in day ∼105 Bos taurus indicus × Bos taurus taurus F1 hybrid control and LOS fetuses using RNAseq. Our analysis allowed us to determine the monoallelic expression of 20 genes in tissues of control fetuses. LOS fetuses displayed variable LOI compared with controls. Biallelic expression of imprinted genes in LOS was associated with tissue-specific hypomethylation of the normally methylated parental allele. In addition, a positive correlation was observed between body weight and the number of biallelically expressed imprinted genes in LOS fetuses. Furthermore, not only was there loss of allele-specific expression of imprinted genes in LOS, but also differential transcript amounts of these genes between control and overgrown fetuses. In summary, we characterized previously unidentified imprinted genes in bovines and identified misregulation of imprinting at multiple loci in LOS. We concluded that LOS is a multilocus LOI syndrome, as is BWS.

  17. Molecular mechanisms of memory in imprinting

    PubMed Central

    Solomonia, Revaz O.; McCabe, Brian J.

    2015-01-01

    Converging evidence implicates the intermediate and medial mesopallium (IMM) of the domestic chick forebrain in memory for a visual imprinting stimulus. During and after imprinting training, neuronal responsiveness in the IMM to the familiar stimulus exhibits a distinct temporal profile, suggesting several memory phases. We discuss the temporal progression of learning-related biochemical changes in the IMM, relative to the start of this electrophysiological profile. c-fos gene expression increases <15 min after training onset, followed by a learning-related increase in Fos expression, in neurons immunopositive for GABA, taurine and parvalbumin (not calbindin). Approximately simultaneously or shortly after, there are increases in phosphorylation level of glutamate (AMPA) receptor subunits and in releasable neurotransmitter pools of GABA and taurine. Later, the mean area of spine synapse post-synaptic densities, N-methyl-d-aspartate receptor number and phosphorylation level of further synaptic proteins are elevated. After ∼15 h, learning-related changes in amounts of several synaptic proteins are observed. The results indicate progression from transient/labile to trophic synaptic modification, culminating in stable recognition memory. PMID:25280906

  18. High Gestational Folic Acid Supplementation Alters Expression of Imprinted and Candidate Autism Susceptibility Genes in a sex-Specific Manner in Mouse Offspring.

    PubMed

    Barua, Subit; Kuizon, Salomon; Brown, W Ted; Junaid, Mohammed A

    2016-02-01

    Maternal nutrients play critical roles in modulating epigenetic events and exert long-term influences on the progeny's health. Folic acid (FA) supplementation during pregnancy has decreased the incidence of neural tube defects in newborns, but the influence of high doses of maternal FA supplementation on infants' brain development is unclear. The present study was aimed at investigating the effects of a high dose of gestational FA on the expression of genes in the cerebral hemispheres (CHs) of 1-day-old pups. One week prior to mating and throughout the entire period of gestation, female C57BL/6J mice were fed a diet, containing FA at either 2 mg/kg (control diet (CD)) or 20 mg/kg (high maternal folic acid (HMFA)). At postnatal day 1, pups from different dams were sacrificed and CH tissues were collected. Quantitative RT-PCR and Western blot analysis confirmed sex-specific alterations in the expression of several genes that modulate various cellular functions (P < 0.05) in pups from the HMFA group. Genomic DNA methylation analysis showed no difference in the level of overall methylation in pups from the HMFA group. These findings demonstrate that HMFA supplementation alters offsprings' CH gene expression in a sex-specific manner. These changes may influence infants' brain development.

  19. Germline mutation in NLRP2 (NALP2) in a familial imprinting disorder (Beckwith-Wiedemann Syndrome).

    PubMed

    Meyer, Esther; Lim, Derek; Pasha, Shanaz; Tee, Louise J; Rahman, Fatimah; Yates, John R W; Woods, C Geoffrey; Reik, Wolf; Maher, Eamonn R

    2009-03-01

    Beckwith-Wiedemann syndrome (BWS) is a fetal overgrowth and human imprinting disorder resulting from the deregulation of a number of genes, including IGF2 and CDKN1C, in the imprinted gene cluster on chromosome 11p15.5. Most cases are sporadic and result from epimutations at either of the two 11p15.5 imprinting centres (IC1 and IC2). However, rare familial cases may be associated with germline 11p15.5 deletions causing abnormal imprinting in cis. We report a family with BWS and an IC2 epimutation in which affected siblings had inherited different parental 11p15.5 alleles excluding an in cis mechanism. Using a positional-candidate gene approach, we found that the mother was homozygous for a frameshift mutation in exon 6 of NLRP2. While germline mutations in NLRP7 have previously been associated with familial hydatidiform mole, this is the first description of NLRP2 mutation in human disease and the first report of a trans mechanism for disordered imprinting in BWS. These observations are consistent with the hypothesis that NLRP2 has a previously unrecognised role in establishing or maintaining genomic imprinting in humans.

  20. Relaxation of IGF2 imprinting in Wilms tumours associated with specific changes in IGF2 methylation.

    PubMed

    Sullivan, M J; Taniguchi, T; Jhee, A; Kerr, N; Reeve, A E

    1999-12-09

    Relaxation of IGF2 imprinting occurs in Wilms tumours and many other cancers, but the mechanism of loss of imprinting (LOI) remains unknown. To investigate the role of altered DNA methylation in LOI, we examined the pattern of methylation of the human insulin-IGF2 region in Wilms tumours and the normal kidney. The analysis included regions homologous to three 'differentially methylated regions' of the mouse Igf2 gene (dmrs 0, 1 and 2). In tumours displaying normal IGF2 imprinting, and in the normal kidney, maternal allele-specific DNA methylation was identified spanning exons 2 and 3. This region is homologous to dmr 0, a site of maternal-specific differential methylation in the mouse. In Wilms tumours with relaxed imprinting or 11p15.5 LOH this region was unmethylated. No other differential methylation was identified. In particular, two sites of paternal methylation in the mouse (dmrs 1 and 2), and all three imprinted IGF2 promoters were not methylated in the kidney or in Wilms tumours. We postulate that LOI in Wilms tumours is associated with loss of maternal allele-specific methylation from a region located upstream of the imprinted IGF2 promoters. This region may contain cis acting sequences that coordinately influence imprinting.

  1. Xist imprinting is promoted by the hemizygous (unpaired) state in the male germ line

    PubMed Central

    Sun, Sha; Payer, Bernhard; Namekawa, Satoshi; An, Jee Young; Press, William; Catalan-Dibene, Jovani; Sunwoo, Hongjae; Lee, Jeannie T.

    2015-01-01

    The long noncoding X-inactivation–specific transcript (Xist gene) is responsible for mammalian X-chromosome dosage compensation between the sexes, the process by which one of the two X chromosomes is inactivated in the female soma. Xist is essential for both the random and imprinted forms of X-chromosome inactivation. In the imprinted form, Xist is paternally marked to be expressed in female embryos. To investigate the mechanism of Xist imprinting, we introduce Xist transgenes (Tg) into the male germ line. Although ectopic high-level Xist expression on autosomes can be compatible with viability, transgenic animals demonstrate reduced fitness, subfertility, defective meiotic pairing, and other germ-cell abnormalities. In the progeny, paternal-specific expression is recapitulated by the 200-kb Xist Tg. However, Xist imprinting occurs efficiently only when it is in an unpaired or unpartnered state during male meiosis. When transmitted from a hemizygous father (+/Tg), the Xist Tg demonstrates paternal-specific expression in the early embryo. When transmitted by a homozygous father (Tg/Tg), the Tg fails to show imprinted expression. Thus, Xist imprinting is directed by sequences within a 200-kb X-linked region, and the hemizygous (unpaired) state of the Xist region promotes its imprinting in the male germ line. PMID:26489649

  2. The Origin of the RB1 Imprint

    PubMed Central

    Kanber, Deniz; Buiting, Karin; Roos, Christian; Gromoll, Jörg; Kaya, Sabine; Horsthemke, Bernhard; Lohmann, Dietmar

    2013-01-01

    The human RB1 gene is imprinted due to a differentially methylated CpG island in intron 2. This CpG island is part of PPP1R26P1, a truncated retrocopy of PPP1R26, and serves as a promoter for an alternative RB1 transcript. We show here by in silico analyses that the parental PPP1R26 gene is present in the analysed members of Haplorrhini, which comprise Catarrhini (Old World Monkeys, Small apes, Great Apes and Human), Platyrrhini (New World Monkeys) and tarsier, and Strepsirrhini (galago). Interestingly, we detected the retrocopy, PPP1R26P1, in all Anthropoidea (Catarrhini and Platyrrhini) that we studied but not in tarsier or galago. Additional retrocopies are present in human and chimpanzee on chromosome 22, but their distinct composition indicates that they are the result of independent retrotransposition events. Chimpanzee and marmoset have further retrocopies on chromosome 8 and chromosome 4, respectively. To examine the origin of the RB1 imprint, we compared the methylation patterns of the parental PPP1R26 gene and its retrocopies in different primates (human, chimpanzee, orangutan, rhesus macaque, marmoset and galago). Methylation analysis by deep bisulfite sequencing showed that PPP1R26 is methylated whereas the retrocopy in RB1 intron 2 is differentially methylated in all primates studied. All other retrocopies are fully methylated, except for the additional retrocopy on marmoset chromosome 4, which is also differentially methylated. Using an informative SNP for the methylation analysis in marmoset, we could show that the differential methylation pattern of the retrocopy on chromosome 4 is allele-specific. We conclude that the epigenetic fate of a PPP1R26 retrocopy after integration depends on the DNA sequence and selective forces at the integration site. PMID:24282601

  3. Imprinted Polymers in Wastewater Treatment

    SciTech Connect

    Eastman, Christopher; Goodrich, Scott; Gartner, Isabelle; Mueller, Anja

    2004-03-31

    In wastewater treatment, a method that specifically recognizes a variety of impurities in a flexible manner would be useful for treatment facilities with varying needs. Current purification techniques (i.e. bacteria, oxidation, reduction, precipitation and filtration) are nonspecific and difficult to control in complex mixtures. Heavy metal removal is particularly important in improving the efficiency of wastewater treatment, as they inhibit or even destroy the bacteria used for filtration. Imprinting polymerization is a technique that allows for the efficient removal of specific compounds and has been used in purification of enantiomers. It has potential to be applied in wastewater systems with the impurities acting as the template for the imprinting polymerization. The polymer with the bound impurities intact can then be removed via precipitation. After removal of the impurity the polymer can be reused. Data for the imprinting polymerization of polyacrylates and polyacrylamides for several metal complexes will be presented. Imprinting polymerization in combination with emulsion polymerization to improve the removal of hydrophobic contaminants will be described. Removal efficiencies will be presented and compared with conventional wastewater treatment methods.

  4. Molecularly imprinted polymer sensor arrays.

    PubMed

    Shimizu, Ken D; Stephenson, Clifton J

    2010-12-01

    The sensor array format has proved an effective method of transforming sensors of modest selectivity into highly selective and discriminating sensors. The primary challenge in developing new sensor arrays is collecting together a sufficient number of recognition elements that possess different binding affinities for the analytes of interest. In this regard, the use of molecularly imprinted polymers (MIPs) as the recognition elements in sensor arrays has a number of unique advantages. MIPs can be rapidly and inexpensively prepared with different selectivities and tuned with different selectivity patterns via the choice of templates in the imprinting process. The array format also helps compensate for the low selectivities and high cross-reactivities of MIP sensors. These attractive qualities of MIP sensor arrays have been demonstrated in recent examples, which have established the viability and generality of the approach. In particular, the versatility of the imprinting process enables MIP sensor arrays to be tailored to specific analytes. MIP sensor arrays have also shown surprisingly broad utility, as even analytes that were not used as templates in the imprinting process can be effectively discriminated.

  5. Dissecting genomic imprinting and genetic conflict from a game theory prospective. Comment on: ;Epigenetic game theory: How to compute the epigenetic control of maternal-to-zygotic transition; by Qian Wang et al.

    NASA Astrophysics Data System (ADS)

    Cui, Yuehua; Yang, Haitao

    2017-03-01

    Epigenetics typically refers to changes in the structure of a chromosome that affect gene activity and expression. Genomic imprinting is a special type of epigenetic phenomenon in which the expression of an allele depends on its parental origin. When an allele inherited from the mother (or father) is imprinted (i.e., silent), it is termed as maternal (or paternal) imprinting. Imprinting is often resulted from DNA methylation and tends to cluster together in the genome [1]. It has been shown to play a key role in many genetic disorders in humans [2]. Imprinting is heritable and undergoes a reprogramming process in gametes before and after fertilization [1]. Sometimes the reprogramming process is not reversible, leading to the loss of imprinting [3]. Although efforts have been made to experimentally or computationally infer imprinting genes, the underlying molecular mechanism that leads to unbalanced allelic expression is still largely unknown.

  6. Neurodevelopmental disorders involving genomic imprinting at human chromosome 15q11-q13.

    PubMed

    Chamberlain, Stormy J; Lalande, Marc

    2010-07-01

    Human chromosome 15q11-q13 is subject to regulation by genomic imprinting, an epigenetic process by which genes are expressed in a parent-of-origin specific manner. Three neurodevelopmental disorders, Prader-Willi syndrome, Angelman syndrome, and 15q duplication syndrome, result from aberrant expression of imprinted genes in this region. Here, we review the current literature pertaining to mouse models and recently identified patients with atypical deletions, which shed light on the epigenetic regulation of the chromosome 15q11-q13 subregion and the genes that are responsible for the phenotypic outcomes of these disorders.

  7. Imprint Reduction with Shaped Pulses

    NASA Astrophysics Data System (ADS)

    Collins, T. J. B.; Skupsky, S.

    2000-10-01

    A novel technique for reducing laser imprint in OMEGA cryogenic targets has been developed. Standard ICF cryogenic targets consist of a shell of DT ice with a thin outer layer of CH. The presence of the CH layer gives rise to a brief period of early-time growth by the Rayleigh-Taylor (RT) instability, which effectively increases the amount of laser imprint by about a factor of 2. Two-dimensional ORCHID simulations show that by introducing a short, high-intensity spike at the start of the implosion, this early-time growth can be significantly reduced with only a small change to the calculated 1-D neutron yield. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC03-92SF19460.

  8. "imprinting" in General Relativity Tests?

    NASA Astrophysics Data System (ADS)

    Iorio, Lorenzo

    We investigate possible a priori "imprinting" of general relativity itself on spaceraft-based tests of it. We deal with some performed or proposed time-delay ranging experiments in the Sun's gravitational field. The "imprint" of general relativity on the Astronomical Unit and the solar gravitational constant GM⊙, not solved for in the spacecraft-based time-delay test performed so far, may induce an a priori bias of the order of 10-6 in typical solar system ranging experiments aimed to measuring the space curvature PPN parameter γ. It is too small by one order of magnitude to be of concern for the performed Cassini experiment, but it would affect future planned or proposed tests aiming to reach a 10-7-10-9 accuracy in determining γ.

  9. X-inactivation, imprinting, and long noncoding RNAs in health and disease.

    PubMed

    Lee, Jeannie T; Bartolomei, Marisa S

    2013-03-14

    X chromosome inactivation and genomic imprinting are classic epigenetic processes that cause disease when not appropriately regulated in mammals. Whereas X chromosome inactivation evolved to solve the problem of gene dosage, the purpose of genomic imprinting remains controversial. Nevertheless, the two phenomena are united by allelic control of large gene clusters, such that only one copy of a gene is expressed in every cell. Allelic regulation poses significant challenges because it requires coordinated long-range control in cis and stable propagation over time. Long noncoding RNAs have emerged as a common theme, and their contributions to diseases of imprinting and the X chromosome have become apparent. Here, we review recent advances in basic biology, the connections to disease, and preview potential therapeutic strategies for future development.

  10. A mono-allelic bivalent chromatin domain controls tissue-specific imprinting at Grb10.

    PubMed

    Sanz, Lionel A; Chamberlain, Stormy; Sabourin, Jean-Charles; Henckel, Amandine; Magnuson, Terry; Hugnot, Jean-Philippe; Feil, Robert; Arnaud, Philippe

    2008-10-08

    Genomic imprinting is a developmental mechanism that mediates parent-of-origin-specific expression in a subset of genes. How the tissue specificity of imprinted gene expression is controlled remains poorly understood. As a model to address this question, we studied Grb10, a gene that displays brain-specific expression from the paternal chromosome. Here, we show in the mouse that the paternal promoter region is marked by allelic bivalent chromatin enriched in both H3K4me2 and H3K27me3, from early embryonic stages onwards. This is maintained in all somatic tissues, but brain. The bivalent domain is resolved upon neural commitment, during the developmental window in which paternal expression is activated. Our data indicate that bivalent chromatin, in combination with neuronal factors, controls the paternal expression of Grb10 in brain. This finding highlights a novel mechanism to control tissue-specific imprinting.

  11. Rapid Birth-and-Death Evolution of Imprinted snoRNAs in the Prader-Willi Syndrome Locus: Implications for Neural Development in Euarchontoglires

    PubMed Central

    Zhang, Yi-Jun; Yang, Jian-Hua; Shi, Qiao-Su; Zheng, Ling-Ling; Liu, Jun; Zhou, Hui; Zhang, Hui; Qu, Liang-Hu

    2014-01-01

    Imprinted small nucleolar RNAs (snoRNAs) are only found in eutherian genomes and closely related to brain functions. A complex human neurological disease, Prader-Willi syndrome (PWS), is primarily attributed to the deletion of imprinted snoRNAs in chromosome 15q11-q13. Here we investigated the snoRNA repertoires in the PWS locus of 12 mammalian genomes and their evolution processes. A total of 613 imprinted snoRNAs were identified in the PWS homologous loci and the gene number was highly variable across lineages, with a peak in Euarchontoglires. Lineage-specific gene gain and loss events account for most extant genes of the HBII-52 (SNORD115) and the HBII-85 (SNORD116) gene family, and remarkable high gene-birth rates were observed in the primates and the rodents. Meanwhile, rapid sequence substitution occurred only in imprinted snoRNA genes, rather than their flanking sequences or the protein-coding genes located in the same imprinted locus. Strong selective constraints on the functional elements of these imprinted snoRNAs further suggest that they are subjected to birth-and-death evolution. Our data suggest that the regulatory role of HBII-52 on 5-HT2CR pre-mRNA might originate in the Euarchontoglires through adaptive process. We propose that the rapid evolution of PWS-related imprinted snoRNAs has contributed to the neural development of Euarchontoglires. PMID:24945811

  12. Human Oocyte-Derived Methylation Differences Persist in the Placenta Revealing Widespread Transient Imprinting

    PubMed Central

    Court, Franck; Martin-Trujillo, Alex; Tayama, Chiharu; Kondova, Ivanela; Bontrop, Ronald; Poo-Llanillo, Maria Eugenia; Nakabayashi, Kazuhiko; Simón, Carlos; Monk, David

    2016-01-01

    Thousands of regions in gametes have opposing methylation profiles that are largely resolved during the post-fertilization epigenetic reprogramming. However some specific sequences associated with imprinted loci survive this demethylation process. Here we present the data describing the fate of germline-derived methylation in humans. With the exception of a few known paternally methylated germline differentially methylated regions (DMRs) associated with known imprinted domains, we demonstrate that sperm-derived methylation is reprogrammed by the blastocyst stage of development. In contrast a large number of oocyte-derived methylation differences survive to the blastocyst stage and uniquely persist as transiently methylated DMRs only in the placenta. Furthermore, we demonstrate that this phenomenon is exclusive to primates, since no placenta-specific maternal methylation was observed in mouse. Utilizing single cell RNA-seq datasets from human preimplantation embryos we show that following embryonic genome activation the maternally methylated transient DMRs can orchestrate imprinted expression. However despite showing widespread imprinted expression of genes in placenta, allele-specific transcriptional profiling revealed that not all placenta-specific DMRs coordinate imprinted expression and that this maternal methylation may be absent in a minority of samples, suggestive of polymorphic imprinted methylation. PMID:27835649

  13. Induced pluripotent stem cell models of the genomic imprinting disorders Angelman and Prader-Willi syndromes.

    PubMed

    Chamberlain, Stormy J; Chen, Pin-Fang; Ng, Khong Y; Bourgois-Rocha, Fany; Lemtiri-Chlieh, Fouad; Levine, Eric S; Lalande, Marc

    2010-10-12

    Angelman syndrome (AS) and Prader-Willi syndrome (PWS) are neurodevelopmental disorders of genomic imprinting. AS results from loss of function of the ubiquitin protein ligase E3A (UBE3A) gene, whereas the genetic defect in PWS is unknown. Although induced pluripotent stem cells (iPSCs) provide invaluable models of human disease, nuclear reprogramming could limit the usefulness of iPSCs from patients who have AS and PWS should the genomic imprint marks be disturbed by the epigenetic reprogramming process. Our iPSCs derived from patients with AS and PWS show no evidence of DNA methylation imprint erasure at the cis-acting PSW imprinting center. Importantly, we find that, as in normal brain, imprinting of UBE3A is established during neuronal differentiation of AS iPSCs, with the paternal UBE3A allele repressed concomitant with up-regulation of the UBE3A antisense transcript. These iPSC models of genomic imprinting disorders will facilitate investigation of the AS and PWS disease processes and allow study of the developmental timing and mechanism of UBE3A repression in human neurons.

  14. Epigenetic deregulation of genomic imprinting in human disorders and following assisted reproduction.

    PubMed

    Arnaud, Philippe; Feil, Robert

    2005-06-01

    Imprinted genes play important roles in the regulation of growth and development, and several have been shown to influence behavior. Their allele-specific expression depends on inheritance from either the mother or the father, and is regulated by "imprinting control regions" (ICRs). ICRs are controlled by DNA methylation, which is present on one of the two parental alleles only. These allelic methylation marks are established in either the female or the male germline, following the erasure of preexisting DNA methylation in the primordial germ cells. After fertilization, the allelic DNA methylation at ICRs is maintained in all somatic cells of the developing embryo. This epigenetic "life cycle" of imprinting (germline erasure, germline establishment, and somatic maintenance) can be disrupted in several human diseases, including Beckwith-Wiedemann syndrome (BWS), Prader-Willi syndrome (PWS), Angelman syndrome and Hydatidiform mole. In the neurodevelopmental Rett syndrome, the way the ICR mediates imprinted expression is perturbed. Recent studies indicate that assisted reproduction technologies (ART) can sometimes affect the epigenetic cycle of imprinting as well, and that this gives rise to imprinting disease syndromes. This finding warrants careful monitoring of the epigenetic effects, and absolute risks, of currently used and novel reproduction technologies.

  15. Negative energy balance affects imprint stability in oocytes recovered from postpartum dairy cows.

    PubMed

    O'Doherty, Alan M; O'Gorman, Aoife; al Naib, Abdullah; Brennan, Lorraine; Daly, Edward; Duffy, Pat; Fair, Trudee

    2014-09-01

    Ovarian follicle development in post-partum, high-producing dairy cows, occurs in a compromised endogenous metabolic environment (referred to as negative energy balance, NEB). Key events that occur during oocyte/follicle growth, such as the vital process of genomic imprinting, may be detrimentally affected by this altered ovarian environment. Imprinting is crucial for placental function and regulation of fetal growth, therefore failure to establish and maintain imprints during oocyte growth may contribute to early embryonic loss. Using ovum pick-up (OPU), oocytes and follicular fluid samples were recovered from cows between days 20 and 115 post-calving, encompassing the NEB period. In a complimentary study, cumulus oocyte complexes were in vitro matured under high non-esterified fatty acid (NEFA) concentrations and in the presence of the methyl-donor S-adenosylmethionine (SAM). Pyrosequencing revealed the loss of methylation at several imprinted loci in the OPU derived oocytes. The loss of DNA methylation was observed at the PLAGL1 locus in oocytes, following in vitro maturation (IVM) in the presence of elevated NEFAs and SAM. Finally, metabolomic analysis of postpartum follicular fluid samples revealed significant differences in several branched chain amino acids, with fatty acid profiles bearing similarities to those characteristic of lactating dairy cows. These results provide the first evidence that (1) the postpartum ovarian environment may affect maternal imprint acquisition and (2) elevated NEFAs during IVM can lead to the loss of imprinted gene methylation in bovine oocytes.

  16. Loss of Gnas imprinting differentially affects REM/NREM sleep and cognition in mice.

    PubMed

    Lassi, Glenda; Ball, Simon T; Maggi, Silvia; Colonna, Giovanni; Nieus, Thierry; Cero, Cheryl; Bartolomucci, Alessandro; Peters, Jo; Tucci, Valter

    2012-01-01

    It has been suggested that imprinted genes are important in the regulation of sleep. However, the fundamental question of whether genomic imprinting has a role in sleep has remained elusive up to now. In this work we show that REM and NREM sleep states are differentially modulated by the maternally expressed imprinted gene Gnas. In particular, in mice with loss of imprinting of Gnas, NREM and complex cognitive processes are enhanced while REM and REM-linked behaviors are inhibited. This is the first demonstration that a specific overexpression of an imprinted gene affects sleep states and related complex behavioral traits. Furthermore, in parallel to the Gnas overexpression, we have observed an overexpression of Ucp1 in interscapular brown adipose tissue (BAT) and a significant increase in thermoregulation that may account for the REM/NREM sleep phenotypes. We conclude that there must be significant evolutionary advantages in the monoallelic expression of Gnas for REM sleep and for the consolidation of REM-dependent memories. Conversely, biallelic expression of Gnas reinforces slow wave activity in NREM sleep, and this results in a reduction of uncertainty in temporal decision-making processes.

  17. Loss of Gnas Imprinting Differentially Affects REM/NREM Sleep and Cognition in Mice

    PubMed Central

    Lassi, Glenda; Ball, Simon T.; Maggi, Silvia; Colonna, Giovanni; Nieus, Thierry; Cero, Cheryl; Bartolomucci, Alessandro; Peters, Jo; Tucci, Valter

    2012-01-01

    It has been suggested that imprinted genes are important in the regulation of sleep. However, the fundamental question of whether genomic imprinting has a role in sleep has remained elusive up to now. In this work we show that REM and NREM sleep states are differentially modulated by the maternally expressed imprinted gene Gnas. In particular, in mice with loss of imprinting of Gnas, NREM and complex cognitive processes are enhanced while REM and REM–linked behaviors are inhibited. This is the first demonstration that a specific overexpression of an imprinted gene affects sleep states and related complex behavioral traits. Furthermore, in parallel to the Gnas overexpression, we have observed an overexpression of Ucp1 in interscapular brown adipose tissue (BAT) and a significant increase in thermoregulation that may account for the REM/NREM sleep phenotypes. We conclude that there must be significant evolutionary advantages in the monoallelic expression of Gnas for REM sleep and for the consolidation of REM–dependent memories. Conversely, biallelic expression of Gnas reinforces slow wave activity in NREM sleep, and this results in a reduction of uncertainty in temporal decision-making processes. PMID:22589743

  18. The conflict theory of genomic imprinting: how much can be explained?

    PubMed

    Iwasa, Y

    1998-01-01

    In some mammalian genes, paternally and maternally derived alleles are expressed differently: this phenomenon is called genomic imprinting. Several-explanations have been proposed for the observed patterns of genomic imprinting, but the most successful explanation is the genetic conflict hypothesis--natural selection operating on the gene expression produces the parental origin-dependent gene expression--because the paternally derived allele tends to be less related to the siblings of the same mother than the maternal allele and hence the paternal allele should evolve to be more aggressive in obtaining maternal resources. The successes and failures of this argument have been examined in explaining the observed patterns of genomic imprinting in mammals. After a brief summary of the observations with some examples, a quantitative genetic model describing the evolution of the cis-regulating element of a gene affecting the maternal resource acquisition was presented. The model supports the verbal argument that the growth enhancer should evolve to show imprinting with the paternal allele expressed and the maternal allele inactive, whereas a growth suppressor gene tends to have an inactive paternal allele and an active maternal allele. There are four major problems of the genetic conflict hypothesis. (1) Some genes affect embryonic growth but are not imprinted (e.g., Igf1), which can be explained by considering recessive, deleterious mutations on the coding regions, (2) A gene exists that shows the pattern that is a perfect reversal (Mash2), which is needed for placental growth, and yet has an active maternal allele and an inactive paternal allele. This can be explained if the overproduction of this gene causes dose-sensitive abortion to occur in early gestation. (3) Paternal disomies are sometimes smaller than normal embryos. This is a likely outcome of evolution if imprinted genes control the allocation between placenta and embryo by modifying the cell developmental

  19. Relaxation of IGF2/H19 imprinting in Wilms tumour is associated with a switch in DNA methylation

    SciTech Connect

    Reeve, A.E.; Taniguchi, T.; Sullivan, M.J.; Ogawa, O.

    1994-09-01

    We and others have recently shown that the normal imprinting of the insulin-like growth factor 2 (IGF2) gene is disrupted in Wilms tumor. The process of relaxation of IGF2 imprinting leads to the activation of transcription of the normally silent maternally inherited IGF2 allele such that both alleles of the IGF2 gene are transcribed. Relaxation of IGF2 imprinting has also been detected as a constitutional event in patients with the Beckwith-Wiedemann syndrom and a patient with gigantism and Wilms tumor. We have now shown that in Wilms tumors in which imprinting is relaxed, IGF2 is transcribed from the maternal allele and there is a concomitant transcriptional inactivation of the H19 maternal allele. Furthermore, the patterns of methylation of the IGF2 and H19 gene are reversed on the maternal chromosome. Relaxation of imprinting in Wilms tumors appear, therefore, to be associated with a switch in gene expression and methylation at the IGF2/H19 locus. The data supports the notion of a disrupted IGF2/H19 imprinting switch in Wilms tumor.

  20. The Haglund imprint on the patella.

    PubMed

    Graf, J; Bernd, L; Simank, H G; Niethard, F U

    1993-12-01

    Seven hundred and five radiographs of the knee were examined and 17.6% showed a so-called Haglund imprint on the patella. The incidence was the same in patients with chondromalacia and in a control group. There was no statistical difference regarding age, sex and body weight. Haglund's imprint is a variation from the normal and is of no diagnostic value.

  1. Tools for fluorescent molecularly imprinted polymers.

    PubMed

    Rathbone, Daniel L; Bains, Ajeet

    2005-01-15

    A linear co-polymer of hexyl acrylate and quinine acrylate was prepared anchored to cellulose filtration membranes. These were used to probe quenching of the tethered fluorophore by test compounds in solution for the validation of imprinted polymer fluorescence studies. The results are compared with simple solution phase quenching studies and also for two membrane-bound imprinted polymers containing the same fluorophore.

  2. Distributed feedback imprinted electrospun fiber lasers.

    PubMed

    Persano, Luana; Camposeo, Andrea; Del Carro, Pompilio; Fasano, Vito; Moffa, Maria; Manco, Rita; D'Agostino, Stefania; Pisignano, Dario

    2014-10-01

    Imprinted, distributed feedback lasers are demonstrated on individual, active electrospun polymer nanofibers. In addition to advantages related to miniaturization, optical confinement and grating nanopatterning lead to a significant threshold reduction compared to conventional thin-film lasers. The possibility of imprinting arbitrary photonic crystal geometries on electrospun lasing nanofibers opens new opportunities for realizing optical circuits and chips.

  3. Molecularly Imprinted Nanomaterials for Sensor Applications

    PubMed Central

    Irshad, Muhammad; Iqbal, Naseer; Mujahid, Adnan; Afzal, Adeel; Hussain, Tajamal; Sharif, Ahsan; Ahmad, Ejaz; Athar, Muhammad Makshoof

    2013-01-01

    Molecular imprinting is a well-established technology to mimic antibody-antigen interaction in a synthetic platform. Molecularly imprinted polymers and nanomaterials usually possess outstanding recognition capabilities. Imprinted nanostructured materials are characterized by their small sizes, large reactive surface area and, most importantly, with rapid and specific analysis of analytes due to the formation of template driven recognition cavities within the matrix. The excellent recognition and selectivity offered by this class of materials towards a target analyte have found applications in many areas, such as separation science, analysis of organic pollutants in water, environmental analysis of trace gases, chemical or biological sensors, biochemical assays, fabricating artificial receptors, nanotechnology, etc. We present here a concise overview and recent developments in nanostructured imprinted materials with respect to various sensor systems, e.g., electrochemical, optical and mass sensitive, etc. Finally, in light of recent studies, we conclude the article with future perspectives and foreseen applications of imprinted nanomaterials in chemical sensors. PMID:28348356

  4. No Evidence for Enrichment in Schizophrenia for Common Allelic Associations at Imprinted Loci

    PubMed Central

    Escott-Price, Valentina; Kirov, George; Rees, Elliott; Isles, Anthony R.; Owen, Michael J.; O’Donovan, Michael C.

    2015-01-01

    Most genetic studies assume that the function of a genetic variant is independent of the parent from which it is inherited, but this is not always true. The best known example of parent-of-origin effects arises with respect to alleles at imprinted loci. In classical imprinting, characteristically, either the maternal or paternal copy is expressed, but not both. Only alleles present in one of the parental copies of the gene, the expressed copy, is likely to contribute to disease. It has been postulated that imprinting is important in central nervous system development, and that consequently, imprinted loci may be involved in schizophrenia. If this is true, allowing for parent-of-origin effects might be important in genetic studies of schizophrenia. Here, we use genome-wide association data from one of the world’s largest samples (N = 695) of parent schizophrenia-offspring trios to test for parent-of-origin effects. To maximise power, we restricted our analyses to test two main hypotheses. If imprinting plays a disproportionate role in schizophrenia susceptibility, we postulated a) that alleles showing robust evidence for association to schizophrenia from previous genome-wide association studies should be enriched for parent-of-origin effects and b) that genes at loci imprinted in humans or mice should be enriched both for genome-wide significant associations, and in our sample, for parent-of-origin effects. Neither prediction was supported in the present study. We have shown, that it is unlikely that parent-of-origin effects or imprinting play particularly important roles in schizophrenia, although our findings do not exclude such effects at specific loci nor do they exclude such effects among rare alleles. PMID:26633303

  5. Astrobiological Molecularly Imprinted Polymer Sensors

    NASA Astrophysics Data System (ADS)

    Izenberg, N. R.; Murray, G. M.; van Houten, K. A.; Hofstra, A. A.

    2005-12-01

    Development of Molecularly Imprinted Polymer (MIP) sensors for astrobiology is intended to provide a new class of microlaboratory sensors compatible with other life or biomarker detection. Molecular imprinting is a process for making selective binding sites in synthetic polymers. The process may be approached by designing the recognition site or by simply choosing monomers that may have favorable interactions with the imprinting molecule. We are working to apply this methodology to astrobiology for development of a reliable, low cost, low mass, low power consumption sensor technology for quantitative in-situ analysis of biochemistry, biomarkers, and other indicators of astrobiological importance. Specific goals of the project are: 1) To develop a general methodology and specific methods for MIP-based sensor construction. The overall methodology will guide procedures for design and testing of any desired sensor. Specific methods will be applied to key families and specific species of astrobiological interest, i.e., alkanes (and Polycyclic aromatic hydrocarbons - PAHs), amino acids, steroids, and hopanes; 2) To construct and characterize the general family and specific species sensors. We will test for accuracy, precision, interferences, and limitations of the sensor against blanks, standards, and known terrestrial biological environment samples. Additional testing will determine sturdiness and longevity of sensors after exposure to transit conditions (launch and space environment), and at potential target environments (pressure, temperature, pH, etc.); and 3) To construct and demonstrate the combination of multiple sensors into a viable prototype instrument, and roadmap the expansion of potential instrument capabilities and exploration of the ultimate environmental limitations of the technology, and the necessary changes and additions to create a mission-ready instrument. Initial work has resulted successful detection of aqueous alanine (D and L) with simple MIP

  6. Genome-wide parent-of-origin DNA methylation analysis reveals the intricacies of human imprinting and suggests a germline methylation-independent mechanism of establishment

    PubMed Central

    Court, Franck; Tayama, Chiharu; Romanelli, Valeria; Martin-Trujillo, Alex; Iglesias-Platas, Isabel; Okamura, Kohji; Sugahara, Naoko; Simón, Carlos; Moore, Harry; Harness, Julie V.; Keirstead, Hans; Sanchez-Mut, Jose Vicente; Kaneki, Eisuke; Lapunzina, Pablo; Soejima, Hidenobu; Wake, Norio; Esteller, Manel; Ogata, Tsutomu; Hata, Kenichiro; Nakabayashi, Kazuhiko; Monk, David

    2014-01-01

    Differential methylation between the two alleles of a gene has been observed in imprinted regions, where the methylation of one allele occurs on a parent-of-origin basis, the inactive X-chromosome in females, and at those loci whose methylation is driven by genetic variants. We have extensively characterized imprinted methylation in a substantial range of normal human tissues, reciprocal genome-wide uniparental disomies, and hydatidiform moles, using a combination of whole-genome bisulfite sequencing and high-density methylation microarrays. This approach allowed us to define methylation profiles at known imprinted domains at base-pair resolution, as well as to identify 21 novel loci harboring parent-of-origin methylation, 15 of which are restricted to the placenta. We observe that the extent of imprinted differentially methylated regions (DMRs) is extremely similar between tissues, with the exception of the placenta. This extra-embryonic tissue often adopts a different methylation profile compared to somatic tissues. Further, we profiled all imprinted DMRs in sperm and embryonic stem cells derived from parthenogenetically activated oocytes, individual blastomeres, and blastocysts, in order to identify primary DMRs and reveal the extent of reprogramming during preimplantation development. Intriguingly, we find that in contrast to ubiquitous imprints, the majority of placenta-specific imprinted DMRs are unmethylated in sperm and all human embryonic stem cells. Therefore, placental-specific imprinting provides evidence for an inheritable epigenetic state that is independent of DNA methylation and the existence of a novel imprinting mechanism at these loci. PMID:24402520

  7. Parental and sexual conflicts over the Peg3 imprinted domain

    PubMed Central

    He, Hongzhi; Perera, Bambarendage P. U.; Ye, An; Kim, Joomyeong

    2016-01-01

    In the current study, the imprinting control region of the mouse Peg3 domain was deleted to test its functional impact on animal growth and survival. The paternal transmission of the deletion resulted in complete abolition of the transcription of two paternally expressed genes, Peg3 and Usp29, causing the reduced body weight of the pups. In contrast, the maternal transmission resulted in the unexpected transcriptional up-regulation of the remaining paternal allele of both Peg3 and Usp29, causing the increased body weight and survival rates. Thus, the imprinted maternal allele of the ICR may be a suppressor antagonistic to the active paternal allele of the ICR, suggesting a potential intralocus allelic conflict. The opposite outcomes between the two transmissions also justify the functional compromise that the maternal allele has become epigenetically repressed rather than genetically deleted during mammalian evolution. The mice homozygous for the deletion develop normally but with a skewed sex ratio, one male per litter, revealing its sex-biased effect. Overall, the Peg3 locus may have evolved to an imprinted domain to cope with both parental and sexual conflicts driven by its growth-stimulating paternal versus growth-suppressing maternal alleles. PMID:27901122

  8. 21 CFR 206.10 - Code imprint required.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Code imprint required. 206.10 Section 206.10 Food...: GENERAL IMPRINTING OF SOLID ORAL DOSAGE FORM DRUG PRODUCTS FOR HUMAN USE § 206.10 Code imprint required... delivered for introduction into interstate commerce unless it is clearly marked or imprinted with a...

  9. A statistical design for testing transgenerational genomic imprinting in natural human populations.

    PubMed

    Li, Yao; Guo, Yunqian; Wang, Jianxin; Hou, Wei; Chang, Myron N; Liao, Duanping; Wu, Rongling

    2011-02-25

    Genomic imprinting is a phenomenon in which the same allele is expressed differently, depending on its parental origin. Such a phenomenon, also called the parent-of-origin effect, has been recognized to play a pivotal role in embryological development and pathogenesis in many species. Here we propose a statistical design for detecting imprinted loci that control quantitative traits based on a random set of three-generation families from a natural population in humans. This design provides a pathway for characterizing the effects of imprinted genes on a complex trait or disease at different generations and testing transgenerational changes of imprinted effects. The design is integrated with population and cytogenetic principles of gene segregation and transmission from a previous generation to next. The implementation of the EM algorithm within the design framework leads to the estimation of genetic parameters that define imprinted effects. A simulation study is used to investigate the statistical properties of the model and validate its utilization. This new design, coupled with increasingly used genome-wide association studies, should have an immediate implication for studying the genetic architecture of complex traits in humans.

  10. Imprinting mutations suggested by abnormal DNA methylation patterns in familial Angelman and Prader-Willi syndromes.

    PubMed Central

    Reis, A.; Dittrich, B.; Greger, V.; Buiting, K.; Lalande, M.; Gillessen-Kaesbach, G.; Anvret, M.; Horsthemke, B.

    1994-01-01

    The D15S9 and D15S63 loci in the Prader-Willi/Angelman syndrome region on chromosome 15 are subject to parent-of-origin-specific DNA methylation. We have found two Prader-Willi syndrome families in which the patients carry a maternal methylation imprint on the paternal chromosome. In one of these families, the patients have a small deletion encompassing the gene for the small nuclear ribonucleoprotein polypeptide N, which maps 130 kb telomeric to D15S63. Furthermore, we have identified a pair of nondeletion Angelman syndrome sibs and two isolated Angelman syndrome patients who carry a paternal methylation imprint on the maternal chromosome. These Angelman and Prader-Willi syndrome patients may have a defect in the imprinting process in 15q11-13. We propose a model in which a cis-acting mutation prevents the resetting of the imprinting signal in the germ line and thus disturbs the expression of imprinted genes in this region. Images Figure 2 Figure 3 PMID:8178815

  11. Transcription and imprinting dynamics in developing postnatal male germline stem cells

    PubMed Central

    Hammoud, Saher Sue; Low, Diana H.P.; Yi, Chongil; Lee, Chee Leng; Oatley, Jon M.; Payne, Christopher J.; Carrell, Douglas T.; Guccione, Ernesto; Cairns, Bradley R.

    2015-01-01

    Postnatal spermatogonial stem cells (SSCs) progress through proliferative and developmental stages to populate the testicular niche prior to productive spermatogenesis. To better understand, we conducted extensive genomic profiling at multiple postnatal stages on subpopulations enriched for particular markers (THY1, KIT, OCT4, ID4, or GFRa1). Overall, our profiles suggest three broad populations of spermatogonia in juveniles: (1) epithelial-like spermatogonia (THY1+; high OCT4, ID4, and GFRa1), (2) more abundant mesenchymal-like spermatogonia (THY1+; moderate OCT4 and ID4; high mesenchymal markers), and (3) (in older juveniles) abundant spermatogonia committing to gametogenesis (high KIT+). Epithelial-like spermatogonia displayed the expected imprinting patterns, but, surprisingly, mesenchymal-like spermatogonia lacked imprinting specifically at paternally imprinted loci but fully restored imprinting prior to puberty. Furthermore, mesenchymal-like spermatogonia also displayed developmentally linked DNA demethylation at meiotic genes and also at certain monoallelic neural genes (e.g., protocadherins and olfactory receptors). We also reveal novel candidate receptor–ligand networks involving SSCs and the developing niche. Taken together, neonates/juveniles contain heterogeneous epithelial-like or mesenchymal-like spermatogonial populations, with the latter displaying extensive DNA methylation/chromatin dynamics. We speculate that this plasticity helps SSCs proliferate and migrate within the developing seminiferous tubule, with proper niche interaction and membrane attachment reverting mesenchymal-like spermatogonial subtype cells back to an epithelial-like state with normal imprinting profiles. PMID:26545815

  12. Imprinting mutations suggested by abnormal DNA methylation patterns in familial angelman and Prader-Willi syndromes

    SciTech Connect

    Reis, A. ); Dittrich, B.; Buiting, K.; Gillessen-Kaesbach, G.; Horsthemke, B. ); Greger, V.; Lalande, M. ); Anvret, M. )

    1994-05-01

    The D15S9 and D15S63 loci in the Prader-Willi/Angelman syndrome region on chromosome 15 are subject to parent-of-origin-specific DNA methylation. The authors have found two Prader-Willi syndrome families in which the patients carry a maternal methylation imprint on the paternal chromosome. In one of these families, the patients have a small deletion encompassing the gene for the small nuclear ribonucleoprotein polypeptide N, which maps 130 kb telomeric to D15S63. Furthermore, they have identified a pair of nondeletion Angelman syndrome sibs and two isolated Angelman syndrome patients who carry a paternal methylation imprint on the maternal chromosome. These Angelman and Prader-Willi syndrome patients may have a defect in the imprinting process in 15q11-13. The authors propose a model in which a cis-acting mutation prevents the resetting of the imprinting signal in the germ line and thus disturbs the expression of imprinted genes in this region. 39 refs., 4 figs., 1 tab.

  13. Genomic Imprinting in the Endosperm Is Systematically Perturbed in Abortive Hybrid Tomato Seeds

    PubMed Central

    Florez-Rueda, Ana M.; Paris, Margot; Schmidt, Anja; Widmer, Alex; Grossniklaus, Ueli; Städler, Thomas

    2016-01-01

    Hybrid seed failure represents an important postzygotic barrier to interbreeding among species of wild tomatoes (Solanum section Lycopersicon) and other flowering plants. We studied genome-wide changes associated with hybrid seed abortion in the closely related Solanum peruvianum and S. chilense where hybrid crosses yield high proportions of inviable seeds due to endosperm failure and arrested embryo development. Based on differences of seed size in reciprocal hybrid crosses and developmental evidence implicating endosperm failure, we hypothesized that perturbed genomic imprinting is involved in this strong postzygotic barrier. Consequently, we surveyed the transcriptomes of developing endosperms from intra- and inter-specific crosses using tissues isolated by laser-assisted microdissection. We implemented a novel approach to estimate parent-of-origin–specific expression using both homozygous and heterozygous nucleotide differences between parental individuals and identified candidate imprinted genes. Importantly, we uncovered systematic shifts of “normal” (intraspecific) maternal:paternal transcript proportions in hybrid endosperms; the average maternal proportion of gene expression increased in both crossing directions but was stronger with S. peruvianum in the maternal role. These genome-wide shifts almost entirely eliminated paternally expressed imprinted genes in S. peruvianum hybrid endosperm but also affected maternally expressed imprinted genes and all other assessed genes. These profound, systematic changes in parental expression proportions suggest that core processes of transcriptional regulation are functionally compromised in hybrid endosperm and contribute to hybrid seed failure. PMID:27601611

  14. Genomic Imprinting in the Endosperm Is Systematically Perturbed in Abortive Hybrid Tomato Seeds.

    PubMed

    Florez-Rueda, Ana M; Paris, Margot; Schmidt, Anja; Widmer, Alex; Grossniklaus, Ueli; Städler, Thomas

    2016-11-01

    Hybrid seed failure represents an important postzygotic barrier to interbreeding among species of wild tomatoes (Solanum section Lycopersicon) and other flowering plants. We studied genome-wide changes associated with hybrid seed abortion in the closely related Solanum peruvianum and S. chilense where hybrid crosses yield high proportions of inviable seeds due to endosperm failure and arrested embryo development. Based on differences of seed size in reciprocal hybrid crosses and developmental evidence implicating endosperm failure, we hypothesized that perturbed genomic imprinting is involved in this strong postzygotic barrier. Consequently, we surveyed the transcriptomes of developing endosperms from intra- and inter-specific crosses using tissues isolated by laser-assisted microdissection. We implemented a novel approach to estimate parent-of-origin-specific expression using both homozygous and heterozygous nucleotide differences between parental individuals and identified candidate imprinted genes. Importantly, we uncovered systematic shifts of "normal" (intraspecific) maternal:paternal transcript proportions in hybrid endosperms; the average maternal proportion of gene expression increased in both crossing directions but was stronger with S. peruvianum in the maternal role. These genome-wide shifts almost entirely eliminated paternally expressed imprinted genes in S. peruvianum hybrid endosperm but also affected maternally expressed imprinted genes and all other assessed genes. These profound, systematic changes in parental expression proportions suggest that core processes of transcriptional regulation are functionally compromised in hybrid endosperm and contribute to hybrid seed failure.

  15. Genome-wide allelic methylation analysis reveals disease-specific susceptibility to multiple methylation defects in imprinting syndromes.

    PubMed

    Court, Franck; Martin-Trujillo, Alex; Romanelli, Valeria; Garin, Intza; Iglesias-Platas, Isabel; Salafsky, Ira; Guitart, Miriam; Perez de Nanclares, Guiomar; Lapunzina, Pablo; Monk, David

    2013-04-01

    Genomic imprinting is the parent-of-origin-specific allelic transcriptional silencing observed in mammals, which is governed by DNA methylation established in the gametes and maintained throughout the development. The frequency and extent of epimutations associated with the nine reported imprinting syndromes varies because it is evident that aberrant preimplantation maintenance of imprinted differentially methylated regions (DMRs) may affect multiple loci. Using a custom Illumina GoldenGate array targeting 27 imprinted DMRs, we profiled allelic methylation in 65 imprinting defect patients. We identify multilocus hypomethylation in numerous Beckwith-Wiedemann syndrome, transient neonatal diabetes mellitus (TNDM), and pseudohypoparathyroidism 1B patients, and an individual with Silver-Russell syndrome. Our data reveal a broad range of epimutations exist in certain imprinting syndromes, with the exception of Prader-Willi syndrome and Angelman syndrome patients that are associated with solitary SNRPN-DMR defects. A mutation analysis identified a 1 bp deletion in the ZFP57 gene in a TNDM patient with methylation defects at multiple maternal DMRs. In addition, we observe missense variants in ZFP57, NLRP2, and NLRP7 that are not consistent with maternal effect and aberrant establishment or methylation maintenance, and are likely benign. This work illustrates that further extensive molecular characterization of these rare patients is required to fully understand the mechanism underlying the etiology of imprint establishment and maintenance.

  16. Molecular imprinting of bulk, microporous silica

    NASA Astrophysics Data System (ADS)

    Katz, Alexander; Davis, Mark E.

    2000-01-01

    Molecular imprinting aims to create solid materials containing chemical functionalities that are spatially organized by covalent or non-covalent interactions with imprint (or template) molecules during the synthesis process. Subsequent removal of the imprint molecules leaves behind designed sites for the recognition of small molecules, making the material ideally suited for applications such as separations, chemical sensing and catalysis. Until now, the molecular imprinting of bulk polymers and polymer and silica surfaces has been reported, but the extension of these methods to a wider range of materials remains problematic. For example, the formation of substrate-specific cavities within bulk silica, while conceptually straightforward, has been difficult to accomplish experimentally. Here we describe the imprinting of bulk amorphous silicas with single aromatic rings carrying up to three 3-aminopropyltriethoxysilane side groups; this generates and occupies microporosity and attaches functional organic groups to the pore walls in a controlled fashion. The triethoxysilane part of the molecules' side groups is incorporated into the silica framework during sol-gel synthesis, and subsequent removal of the aromatic core creates a cavity with spatially organized aminopropyl groups covalently anchored to the pore walls. We find that the imprinted silicas act as shape-selective base catalysts. Our strategy can be extended to imprint other functional groups, which should give access to a wide range of functionalized materials.

  17. Molecularly Imprinted Membranes: Past, Present, and Future.

    PubMed

    Yoshikawa, Masakazu; Tharpa, Kalsang; Dima, Ştefan-Ovidiu

    2016-10-12

    More than 80 years ago, artificial materials with molecular recognition sites emerged. The application of molecular imprinting to membrane separation has been studied since 1962. Especially after 1990, such research has been intensively conducted by membranologists and molecular imprinters to understand the advantages of each technique with the aim of constructing an ideal membrane, which is still an active area of research. The present review aims to be a substantial, comprehensive, authoritative, critical, and general-interest review, placed at the cross section of two broad, interconnected, practical, and extremely dynamic fields, namely, the fields of membrane separation and molecularly imprinted polymers. This review describes the recent discoveries that appeared after repeated and fertile collisions between these two fields in the past three years, to which are added the worthy acknowledgments of pioneering discoveries and a look into the future of molecularly imprinted membranes. The review begins with a general introduction in membrane separation, followed by a short theoretical section regarding the basic principles of mass transport through a membrane. Following these general aspects on membrane separation, two principles of obtaining polymeric materials with molecular recognition properties are reviewed, namely, molecular imprinting and alternative molecular imprinting, followed the methods of obtaining and practical applications for the particular case of molecularly imprinted membranes. The review continues with insights into molecularly imprinted nanofiber membranes as a promising, highly optimized type of membrane that could provide a relatively high throughput without a simultaneous unwanted reduction in permselectivity. Finally, potential applications of molecularly imprinted membranes in a variety of fields are highlighted, and a look into the future of membrane separations is offered.

  18. Specific transgenerational imprinting effects of the endocrine disruptor methoxychlor on male gametes.

    PubMed

    Stouder, Christelle; Paoloni-Giacobino, Ariane

    2011-02-01

    Endocrine-disrupting chemicals (EDCs), among which methoxychlor (MXC), have been reported to affect the male reproductive system. This study evaluates the possible deleterious effects of MXC on imprinted genes. After administration of the chemical in adult male mice or in pregnant mice we analyzed by pyrosequencing possible methylation defects in two paternally imprinted (H19 and Meg3 (Gtl2)) and three maternally imprinted (Mest (Peg1), Snrpn, and Peg3) genes in the sperm and in the tail, liver, and skeletal muscle DNAs of the adult male mice and of the male offspring. MXC treatment of adult mice decreased the percentages of methylated CpGs of Meg3 and increased those of Mest, Snrpn, and Peg3 in the sperm DNA. MXC treatment of pregnant mice decreased the mean sperm concentrations by 30% and altered the methylation pattern of all the imprinted genes tested in the F1 offspring. In the latter case, MXC effects were transgenerational but disappeared gradually from F1 to F3. MXC did not affect imprinting in the somatic cells, suggesting that it exerts its damaging effects via the process of reprogramming that is unique to gamete development. A systematic analysis at the CpG level showed a heterogeneity in the CpG sensitivity to MXC. This observation suggests that not only DNA methylation but also other epigenetic modifications can explain the transgenerational effects of MXC. The reported effects of EDCs on human male spermatogenesis might be mediated by complex imprinting alterations analogous to those described in this study.

  19. The interval between Ins2 and Ascl2 is dispensable for imprinting centre function in the murine Beckwith-Wiedemann region.

    PubMed

    Lefebvre, Louis; Mar, Lynn; Bogutz, Aaron; Oh-McGinnis, Rosemary; Mandegar, Mohammad A; Paderova, Jana; Gertsenstein, Marina; Squire, Jeremy A; Nagy, Andras

    2009-11-15

    Imprinted genes are commonly clustered in domains across the mammalian genome, suggesting a degree of coregulation via long-range coordination of their monoallelic transcription. The distal end of mouse chromosome 7 (Chr 7) contains two clusters of imprinted genes within a approximately 1 Mb domain. This region is conserved on human 11p15.5 where it is implicated in the Beckwith-Wiedemann syndrome. In both species, imprinted regulation requires two critical cis-acting imprinting centres, carrying different germline epigenetic marks and mediating imprinted expression in the proximal and distal sub-domains. The clusters are separated by a region containing the gene for tyrosine hydroxylase (Th) as well as a high density of short repeats and retrotransposons in the mouse. We have used the Cre-loxP recombination system in vivo to engineer an interstitial deletion of this approximately 280-kb intervening region previously proposed to participate in the imprinting mechanism or to act as a boundary between the two sub-domains. The deletion allele, Del(7AI), is silent with respect to epigenetic marking at the two flanking imprinting centres. Reciprocal inheritance of Del(7AI) demonstrates that the deleted region, which represents more than a quarter of the previously defined imprinted domain, is associated with intrauterine growth restriction in maternal heterozygotes. In homozygotes, the deficiency behaves as a Th null allele and can be rescued pharmacologically by bypassing the metabolic requirement for TH in utero. Our results show that the deleted interval is not required for normal imprinting on distal Chr 7 and uncover a new imprinted growth phenotype.

  20. A reporter model to visualize imprinting stability at the Dlk1 locus during mouse development and in pluripotent cells

    PubMed Central

    Swanzey, Emily

    2016-01-01

    Genomic imprinting results in the monoallelic expression of genes that encode important regulators of growth and proliferation. Dysregulation of imprinted genes, such as those within the Dlk1-Dio3 locus, is associated with developmental syndromes and specific diseases. Our ability to interrogate causes of imprinting instability has been hindered by the absence of suitable model systems. Here, we describe a Dlk1 knock-in reporter mouse that enables single-cell visualization of allele-specific expression and prospective isolation of cells, simultaneously. We show that this ‘imprinting reporter mouse’ can be used to detect tissue-specific Dlk1 expression patterns in developing embryos. We also apply this system to pluripotent cell culture and demonstrate that it faithfully indicates DNA methylation changes induced upon cellular reprogramming. Finally, the reporter system reveals the role of elevated oxygen levels in eroding imprinted Dlk1 expression during prolonged culture and in vitro differentiation. The possibility to study allele-specific expression in different contexts makes our reporter system a useful tool to dissect the regulation of genomic imprinting in normal development and disease. PMID:27729406

  1. Ferroelectric capacitor with reduced imprint

    DOEpatents

    Evans, Jr., Joseph T.; Warren, William L.; Tuttle, Bruce A.; Dimos, Duane B.; Pike, Gordon E.

    1997-01-01

    An improved ferroelectric capacitor exhibiting reduced imprint effects in comparison to prior art capacitors. A capacitor according to the present invention includes top and bottom electrodes and a ferroelectric layer sandwiched between the top and bottom electrodes, the ferroelectric layer comprising a perovskite structure of the chemical composition ABO.sub.3 wherein the B-site comprises first and second elements and a dopant element that has an oxidation state greater than +4. The concentration of the dopant is sufficient to reduce shifts in the coercive voltage of the capacitor with time. In the preferred embodiment of the present invention, the ferroelectric element comprises Pb in the A-site, and the first and second elements are Zr and Ti, respectively. The preferred dopant is chosen from the group consisting of Niobium, Tantalum, and Tungsten. In the preferred embodiment of the present invention, the dopant occupies between 1 and 8% of the B-sites.

  2. Protein conformational studies for macromolecularly imprinted polymers.

    PubMed

    Kryscio, David R; Fleming, Michael Q; Peppas, Nicholas A

    2012-08-01

    CD is used to clearly show the negative impact of common ligands on the overall conformation of BSA, a typical protein template in macromolecularly imprinted polymers. This change occurs at concentrations far lower than those generally used in the literature. These findings are important as they offer insight into a potential fundamental reason for the lack of success in protein imprinting to date despite significant interest from the scientific community.

  3. Molecularly imprinted polymers: present and future prospective.

    PubMed

    Vasapollo, Giuseppe; Sole, Roberta Del; Mergola, Lucia; Lazzoi, Maria Rosaria; Scardino, Anna; Scorrano, Sonia; Mele, Giuseppe

    2011-01-01

    Molecular Imprinting Technology (MIT) is a technique to design artificial receptors with a predetermined selectivity and specificity for a given analyte, which can be used as ideal materials in various application fields. Molecularly Imprinted Polymers (MIPs), the polymeric matrices obtained using the imprinting technology, are robust molecular recognition elements able to mimic natural recognition entities, such as antibodies and biological receptors, useful to separate and analyze complicated samples such as biological fluids and environmental samples. The scope of this review is to provide a general overview on MIPs field discussing first general aspects in MIP preparation and then dealing with various application aspects. This review aims to outline the molecularly imprinted process and present a summary of principal application fields of molecularly imprinted polymers, focusing on chemical sensing, separation science, drug delivery and catalysis. Some significant aspects about preparation and application of the molecular imprinting polymers with examples taken from the recent literature will be discussed. Theoretical and experimental parameters for MIPs design in terms of the interaction between template and polymer functionalities will be considered and synthesis methods for the improvement of MIP recognition properties will also be presented.

  4. Fluorescence Anisotropy Studies of Molecularly Imprinted Polymers

    SciTech Connect

    Chen, Yin-Chu; Wang, Zheming; Yan, Mingdi; Prahl, Scott A.

    2006-01-01

    A molecularly imprinted polymer (MIP) is a biomimetic material that can be used as a biochemical sensing element. We studied the steady-state and time-resolved fluorescence and fluorescence anisotropy of anthracene imprinted polyurethane. We compared MIPs with imprinted analytes present, MIPs with the imprinted analytes extracted, MIPs with rebound analytes, non-imprinted control polymers (non-MIPs), and non-MIPs bound with analytes to understand MIP’s binding behavior. MIPs and non-MIPs had similar steady-state fluorescence anisotropy in the range of 0.11–0.24. Anthracene rebound in MIPs and non-MIPs had a fluorescence lifetime _=0.64 ns and a rotational correlation time _F =1.2–1.5 ns, both of which were shorter than that of MIPs with imprinted analytes present (_=2.03 ns and _F =2.7 ns). The steady-state anisotropy of polymer solutions increased exponentially with polymerization time and might be used to characterize the polymerization extent in-situ.

  5. Molecularly Imprinted Polymers: Present and Future Prospective

    PubMed Central

    Vasapollo, Giuseppe; Sole, Roberta Del; Mergola, Lucia; Lazzoi, Maria Rosaria; Scardino, Anna; Scorrano, Sonia; Mele, Giuseppe

    2011-01-01

    Molecular Imprinting Technology (MIT) is a technique to design artificial receptors with a predetermined selectivity and specificity for a given analyte, which can be used as ideal materials in various application fields. Molecularly Imprinted Polymers (MIPs), the polymeric matrices obtained using the imprinting technology, are robust molecular recognition elements able to mimic natural recognition entities, such as antibodies and biological receptors, useful to separate and analyze complicated samples such as biological fluids and environmental samples. The scope of this review is to provide a general overview on MIPs field discussing first general aspects in MIP preparation and then dealing with various application aspects. This review aims to outline the molecularly imprinted process and present a summary of principal application fields of molecularly imprinted polymers, focusing on chemical sensing, separation science, drug delivery and catalysis. Some significant aspects about preparation and application of the molecular imprinting polymers with examples taken from the recent literature will be discussed. Theoretical and experimental parameters for MIPs design in terms of the interaction between template and polymer functionalities will be considered and synthesis methods for the improvement of MIP recognition properties will also be presented. PMID:22016636

  6. Humanized H19/Igf2 locus reveals diverged imprinting mechanism between mouse and human and reflects Silver–Russell syndrome phenotypes

    PubMed Central

    Hur, Stella K.; Freschi, Andrea; Ideraabdullah, Folami; Thorvaldsen, Joanne L.; Luense, Lacey J.; Weller, Angela H.; Berger, Shelley L.; Cerrato, Flavia; Riccio, Andrea; Bartolomei, Marisa S.

    2016-01-01

    Genomic imprinting affects a subset of genes in mammals, such that they are expressed in a monoallelic, parent-of-origin–specific manner. These genes are regulated by imprinting control regions (ICRs), cis-regulatory elements that exhibit allele-specific differential DNA methylation. Although genomic imprinting is conserved in mammals, ICRs are genetically divergent across species. This raises the fundamental question of whether the ICR plays a species-specific role in regulating imprinting at a given locus. We addressed this question at the H19/insulin-like growth factor 2 (Igf2) imprinted locus, the misregulation of which is associated with the human imprinting disorders Beckwith–Wiedemann syndrome (BWS) and Silver–Russell syndrome (SRS). We generated a knock-in mouse in which the endogenous H19/Igf2 ICR (mIC1) is replaced by the orthologous human ICR (hIC1) sequence, designated H19hIC1. We show that hIC1 can functionally replace mIC1 on the maternal allele. In contrast, paternally transmitted hIC1 leads to growth restriction, abnormal hIC1 methylation, and loss of H19 and Igf2 imprinted expression. Imprint establishment at hIC1 is impaired in the male germ line, which is associated with an abnormal composition of histone posttranslational modifications compared with mIC1. Overall, this study reveals evolutionarily divergent paternal imprinting at IC1 between mice and humans. The conserved maternal imprinting mechanism and function at IC1 demonstrates the possibility of modeling maternal transmission of hIC1 mutations associated with BWS in mice. In addition, we propose that further analyses in the paternal knock-in H19+/hIC1 mice will elucidate the molecular mechanisms that may underlie SRS. PMID:27621468

  7. Molecular Imprinting Techniques Used for the Preparation of Biosensors.

    PubMed

    Ertürk, Gizem; Mattiasson, Bo

    2017-02-04

    Molecular imprinting is the technology of creating artificial recognition sites in polymeric matrices which are complementary to the template in their size, shape and spatial arrangement of the functional groups. Molecularly imprinted polymers (MIPs) and their incorporation with various transducer platforms are among the most promising approaches for detection of several analytes. There are a variety of molecular imprinting techniques used for the preparation of biomimetic sensors including bulk imprinting, surface imprinting (soft lithography, template immobilization, grafting, emulsion polymerization) and epitope imprinting. This chapter presents an overview of all of these techniques with examples from particular publications.

  8. Molecular Imprinting Techniques Used for the Preparation of Biosensors

    PubMed Central

    Ertürk, Gizem; Mattiasson, Bo

    2017-01-01

    Molecular imprinting is the technology of creating artificial recognition sites in polymeric matrices which are complementary to the template in their size, shape and spatial arrangement of the functional groups. Molecularly imprinted polymers (MIPs) and their incorporation with various transducer platforms are among the most promising approaches for detection of several analytes. There are a variety of molecular imprinting techniques used for the preparation of biomimetic sensors including bulk imprinting, surface imprinting (soft lithography, template immobilization, grafting, emulsion polymerization) and epitope imprinting. This chapter presents an overview of all of these techniques with examples from particular publications. PMID:28165419

  9. Mitochondrial complex II and genomic imprinting in inheritance of paraganglioma tumors.

    PubMed

    Baysal, Bora E

    2013-05-01

    Germ line heterozygous mutations in the structural subunit genes of mitochondrial complex II (succinate dehydrogenase; SDH) and the regulatory gene SDHAF2 predispose to paraganglioma tumors which show constitutive activation of hypoxia inducible pathways. Mutations in SDHD and SDHAF2 cause highly penetrant multifocal tumor development after a paternal transmission, whereas maternal transmission rarely, if ever, leads to tumor development. This transmission pattern is consistent with genomic imprinting. Recent molecular evidence supports a model for tissue-specific imprinted regulation of the SDHD gene by a long range epigenetic mechanism. In addition, there is evidence of SDHB mRNA editing in peripheral blood mononuclear cells and long-term balancing selection operating on the SDHA gene. Regulation of SDH subunit expression by diverse epigenetic mechanisms implicates a crucial dosage-dependent role for SDH in oxygen homeostasis. This article is part of a Special Issue entitled: Respiratory complex II: Role in cellular physiology and disease.

  10. Evolution of mate-choice imprinting: competing strategies.

    PubMed

    Tramm, Nora A; Servedio, Maria R

    2008-08-01

    Mate-choice imprinting, the determination of mating preferences at an early age based on an individual's observation of adults, plays a role in mate choice in a wide variety of animals. Theoretical work has thus far been focused either on the effects of mate-choice imprinting on the evolution of the male trait used as a mating cue, or on the evolution of imprinting against a nonimprinting background. We ask the question: if multiple types of imprinting are possible in a species, which is likely to evolve? We develop a haploid population genetic model to compare the evolution of three forms of imprinting: paternal, maternal, and oblique (nonparental adult) imprinting. We find that paternal imprinting is the most likely to evolve, whereas maternal and oblique are nearly equivalent. We identify two factors that determine a strategy's success: its "imprinting set," the set of individuals imprinted upon, and phenogenotypic disequilibrium, the association between imprinted preferences and mating cues. We assess the predictive power of these factors, and find that the imprinting set is the primary determinant of a strategy's success. We suggest that the imprinting set concept may be generalized to predict the success of additional imprinting strategies, such as mate-choice copying.

  11. Tet-mediated imprinting erasure in H19 locus following reprogramming of spermatogonial stem cells to induced pluripotent stem cells.

    PubMed

    Bermejo-Álvarez, P; Ramos-Ibeas, P; Park, K E; Powell, A P; Vansandt, L; Derek, Bickhart; Ramirez, M A; Gutiérrez-Adán, A; Telugu, B P

    2015-09-02

    Selective methylation of CpG islands at imprinting control regions (ICR) determines the monoparental expression of a subset of genes. Currently, it is unclear whether artificial reprogramming induced by the expression of Yamanaka factors disrupts these marks and whether cell type of origin affects the dynamics of reprogramming. In this study, spermatogonial stem cells (SSC) that harbor paternalized imprinting marks, and fibroblasts were reprogrammed to iPSC (SSCiPSC and fiPSC). The SSCiPSC were able to form teratomas and generated chimeras with a higher skin chimerism than those derived from fiPSC. RNA-seq revealed extensive reprogramming at the transcriptional level with 8124 genes differentially expressed between SSC and SSCiPSC and only 490 between SSCiPSC and fiPSC. Likewise, reprogramming of SSC affected 26 of 41 imprinting gene clusters known in the mouse genome. A closer look at H19 ICR revealed complete erasure in SSCiPSC in contrast to fiPSC. Imprinting erasure in SSCiPSC was maintained even after in vivo differentiation into teratomas. Reprogramming of SSC from Tet1 and Tet2 double knockout mice however lacked demethylation of H19 ICR. These results suggest that imprinting erasure during reprogramming depends on the epigenetic landscape of the precursor cell and is mediated by TETs at the H19 locus.

  12. Tet-mediated imprinting erasure in H19 locus following reprogramming of spermatogonial stem cells to induced pluripotent stem cells

    PubMed Central

    Bermejo-Álvarez, P.; Ramos-Ibeas, P.; Park, K.E.; Powell, A. P.; Vansandt, L.; Derek, Bickhart; Ramirez, M. A.; Gutiérrez-Adán, A.; Telugu, B. P.

    2015-01-01

    Selective methylation of CpG islands at imprinting control regions (ICR) determines the monoparental expression of a subset of genes. Currently, it is unclear whether artificial reprogramming induced by the expression of Yamanaka factors disrupts these marks and whether cell type of origin affects the dynamics of reprogramming. In this study, spermatogonial stem cells (SSC) that harbor paternalized imprinting marks, and fibroblasts were reprogrammed to iPSC (SSCiPSC and fiPSC). The SSCiPSC were able to form teratomas and generated chimeras with a higher skin chimerism than those derived from fiPSC. RNA-seq revealed extensive reprogramming at the transcriptional level with 8124 genes differentially expressed between SSC and SSCiPSC and only 490 between SSCiPSC and fiPSC. Likewise, reprogramming of SSC affected 26 of 41 imprinting gene clusters known in the mouse genome. A closer look at H19 ICR revealed complete erasure in SSCiPSC in contrast to fiPSC. Imprinting erasure in SSCiPSC was maintained even after in vivo differentiation into teratomas. Reprogramming of SSC from Tet1 and Tet2 double knockout mice however lacked demethylation of H19 ICR. These results suggest that imprinting erasure during reprogramming depends on the epigenetic landscape of the precursor cell and is mediated by TETs at the H19 locus. PMID:26328763

  13. Astrobiological molecularly imprinted polymer sensors

    NASA Astrophysics Data System (ADS)

    Izenberg, Noam R.; Murrray, George M.; Pilato, Robert S.; Baird, Lance M.; Levin, Scott M.; Van Houten, Kelly A.

    2009-06-01

    The purpose of the Astrobiological MIP Sensor (AMS) Project is to develop reliable, low-cost, low-mass, low-power consumption detection technologies for in situ analysis of biochemical markers, and other indicators of astrobiological importance. To this end, we are investigating the potential role that molecularly imprinted polymers (MIP) could serve in the recognition of pre-biotic and biotic compounds in planetary, astrobiological and geochemical mission profiles. While MIPs are effective molecular recognition tools, a signal transduction method must be developed so that the recognition of analytes can be realized. In the course of this study, surface plasmon resonance (SPR) will be the detection method of the MIP recognition event. In addition, MIP-coated SPR substrates were subjected to vibration, temperature and radiation testing to demonstrate that they could withstand the rigors of space travel. The methods developed in this study require capture of the biomarkers onto the SPR sensor chip, followed by addition of a MIP. It is the binding of the MIP to the SPR bound analyte that amplifies the SPR signal associated with binding of the low molecular weight analyte. The MIPs, developed in this study are water-soluble processable star polymers while the SPR device used was SensíQ™ by Nomatics. Proof-of-principal experiments were first demonstrated using amino biotin.

  14. Imprinting in human disease with special reference to transient neonatal diabetes and Beckwith-Wiedemann syndrome.

    PubMed

    Temple, I Karen

    2007-01-01

    There are at least 6 well-studied imprinting domains on human autosomes. Each domain is under the regulatory control of an 'imprinting centre' that harbours a differentially methylated region. A number of molecular mechanisms result in differential silencing of some genes within these domains and gene expression is tightly regulated in normal individuals. However, this makes them vulnerable to naturally occurring genetic and epigenetic aberrations. Nine recognisable developmental syndromes have been described due to abnormalities within these 6 domains: transient neonatal diabetes (TND; at 6q24); Beckwith- Wiedemann syndrome (BWS) and Silver-Russell syndrome (at 11p15.5; 2 imprinted domains); maternal and paternal uniparental disomy syndromes (at 14q32); Angelman and Prader-Willi syndromes (at 15q11-13), and pseudohypoparathyroidism type 1b (at 20q12-13). Furthermore, it is now recognised that involvement at multiple domains can occur simultaneously and result in what has been described as the hypomethylation syndrome. TND and BWS are discussed in more detail as examples of imprinting disorders.

  15. Imprinting control regions (ICRs) are marked by mono-allelic bivalent chromatin when transcriptionally inactive.

    PubMed

    Maupetit-Méhouas, Stéphanie; Montibus, Bertille; Nury, David; Tayama, Chiharu; Wassef, Michel; Kota, Satya K; Fogli, Anne; Cerqueira Campos, Fabiana; Hata, Kenichiro; Feil, Robert; Margueron, Raphael; Nakabayashi, Kazuhiko; Court, Franck; Arnaud, Philippe

    2016-01-29

    Parental allele-specific expression of imprinted genes is mediated by imprinting control regions (ICRs) that are constitutively marked by DNA methylation imprints on the maternal or paternal allele. Mono-allelic DNA methylation is strictly required for the process of imprinting and has to be faithfully maintained during the entire life-span. While the regulation of DNA methylation itself is well understood, the mechanisms whereby the opposite allele remains unmethylated are unclear. Here, we show that in the mouse, at maternally methylated ICRs, the paternal allele, which is constitutively associated with H3K4me2/3, is marked by default by H3K27me3 when these ICRs are transcriptionally inactive, leading to the formation of a bivalent chromatin signature. Our data suggest that at ICRs, chromatin bivalency has a protective role by ensuring that DNA on the paternal allele remains unmethylated and protected against spurious and unscheduled gene expression. Moreover, they provide the proof of concept that, beside pluripotent cells, chromatin bivalency is the default state of transcriptionally inactive CpG island promoters, regardless of the developmental stage, thereby contributing to protect cell identity.

  16. Abnormal expression of DNA methyltransferases and genomic imprinting in cloned goat fibroblasts.

    PubMed

    Wan, Yongjie; Deng, Mingtian; Zhang, Guomin; Ren, Caifang; Zhang, Hao; Zhang, Yanli; Wang, Lizhong; Wang, Feng

    2016-01-01

    Somatic cell nuclear transfer (SCNT) is a useful way to produce cloned animals. However, SCNT animals exhibit DNA methylation and genomic imprinting abnormalities. These abnormalities may be due to the faulty epigenetic reprogramming of donor cells. To investigate the consequence of SCNT on the genomic imprinting and global methylation in the donor cells, growth patterns and apoptosis of cloned goat fibroblast cells (CGFCs) at passage 7 were determined. Growth patterns in CGFCs were similar to the controls; however, the growth rate in log phase was lower and apoptosis in CGFCs were significantly higher (P < 0.01). In addition, quantitative expression analysis of three DNA methyltransferases (Dnmt) and two imprinted genes (H19, IGF2R) was conducted in CGFCs: Dnmt1 and Dnmt3b expression was significantly reduced (P < 0.01), and H19 expression was decreased sixfold (P < 0.01); however, the expression of Dnmt3a was unaltered and IGF2R expression was significantly increased (P < 0.05). Finally, we used bisulfite sequencing PCR to compare the DNA methylation patterns in differentially methylated regions (DMRs) of H19 and IGF2R. The DMRs of H19 (P < 0.01) and IGF2R (P < 0.01) were both highly methylated in CGFCs. These results indicate that the global genome might be hypomethylated. Moreover, there is an aberrant expression of imprinted genes and DMR methylation in CGFCs.

  17. Molecularly imprinted polymers for biomedical and biotechnological applications

    NASA Astrophysics Data System (ADS)

    Dmitrienko, E. V.; Pyshnaya, I. A.; Martyanov, O. N.; Pyshnyi, D. V.

    2016-05-01

    This survey covers main advances in the preparation and application of molecularly imprinted polymers which are capable of specific recognition of biologically active compounds. The principles underlying the production of highly efficient and template-specific molecularly imprinted polymers are discussed. The focus is on the imprinting of highly structured macromolecular and supramolecular templates. The existing and potential applications of molecularly imprinted polymers in various fields of chemistry and molecular biology are considered. The bibliography includes 261 references.

  18. Monolithic molecularly imprinted cryogel for lysozyme recognition.

    PubMed

    Rabieizadeh, Mohammadmahdi; Kashefimofrad, Seyed Mohammadreza; Naeimpoor, Fereshteh

    2014-10-01

    The application of molecularly imprinted polymers in the selective adsorption of macromolecules such as proteins by monolithic protein-imprinted columns requires a macroporous structure, which can be provided by cryogelation at low temperature in which the formation of ice crystals gives a porous structure to the molecularly imprinted polymer. In this study, we applied this technique to synthesize lysozyme-imprinted polyacrylamide cryogels containing 8% w/v of total monomers and 0.3% w/v of lysozyme. The synthesized cryogel was sponge-like and elastic with very fast swelling and reshaping properties, showing a swelling ratio of 24.5 ± 3 and gel fraction yield of about 72%. It showed an imprinting effect of 1.58 and a separation factor of 1.37 for cytochrome c as the competing protein. Adsorption studies on the cryogel revealed that it follows the Langmuir isotherm, with a maximum theoretical adsorption capacity of 36.3 mg lysozyme per gram of cryogel. Additionally, it was shown that a salt-free rebinding solution at low flow rate and pH = 7.0 is favorable for lysozyme rebinding. This kind of monolithic column promises a wide range of application in separation of various biomolecules due to its preparation simplicity, good rebinding characteristics, and macroporosity.

  19. Causal Imprinting in Causal Structure Learning

    PubMed Central

    Taylor, Eric G.; Ahn, Woo-kyoung

    2012-01-01

    Suppose one observes a correlation between two events, B and C, and infers that B causes C. Later one discovers that event A explains away the correlation between B and C. Normatively, one should now dismiss or weaken the belief that B causes C. Nonetheless, participants in the current study who observed a positive contingency between B and C followed by evidence that B and C were independent given A, persisted in believing that B causes C. The authors term this difficulty in revising initially learned causal structures “causal imprinting.” Throughout four experiments, causal imprinting was obtained using multiple dependent measures and control conditions. A Bayesian analysis showed that causal imprinting may be normative under some conditions, but causal imprinting also occurred in the current study when it was clearly non-normative. It is suggested that causal imprinting occurs due to the influence of prior knowledge on how reasoners interpret later evidence. Consistent with this view, when participants first viewed the evidence showing that B and C are independent given A, later evidence with only B and C did not lead to the belief that B causes C. PMID:22859019

  20. Computational insights on sulfonamide imprinted polymers.

    PubMed

    Isarankura-Na-Ayudhya, Chartchalerm; Nantasenamat, Chanin; Buraparuangsang, Prasit; Piacham, Theeraphon; Ye, Lei; Bülow, Leif; Prachayasittikul, Virapong

    2008-12-10

    Molecular imprinting is one of the most efficient methods for preparing synthetic receptors that possess user defined recognition properties. Despite general success of non-covalent imprinting for a large variety of templates, some groups of compounds remain difficult to tackle due to their structural complexity. In this study we investigate preparation of molecularly imprinted polymers that can bind sulfonamide compounds, which represent important drug candidates. Compared to the biological system that utilizes metal coordinated interaction, the imprinted polymer provided pronounced selectivity when hydrogen bond interaction was employed in an organic solvent. Computer simulation of the interaction between the sulfonamide template and functional monomers pointed out that although methacrylic acid had strong interaction energy with the template, it also possessed high non-specific interaction with the solvent molecules of tetrahydrofuran as well as being prone to self-complexation. On the other hand, 1-vinyl-imidazole was suitable for imprinting sulfonamides as it did not cross-react with the solvent molecules or engage in self-complexation structures.

  1. Analysis of imprinted messenger RNA expression in deceased transgenic cloned goats.

    PubMed

    Jia, R X; Zhou, Z R; Zhang, G M; Wang, L Z; Fan, Y X; Wan, Y J; Zhang, Y L; Wang, Z Y; Wang, F

    2016-01-29

    Genomic imprinting is an important epigenetic mechanism that has vital effects on fetal growth and development. We observed the differences in four tissues (heart, spleen, liver, and kidney) from dead transgenic cloned goats using hematoxylin and eosin (H&E) staining. Eight imprinted genes in the tissues of dead transgenic cloned and normal goats were analyzed using reverse transcription polymerase chain reaction. H&E staining results from the abortion group indicated the lack of obvious morphological changes in heart and spleen tissues, while inflammatory cell infiltration and glomerular nephritis characteristics were observed in liver and kidney tissues, respectively. Compared to the control group, CDKN1C, H19, IGF2R, and SNRPN were significantly (P < 0.05) overexpressed in the heart tissue of the abortion group, while XIST was significantly reduced. In the liver tissues, CDKN1C and DLK1 expression decreased, while GNAS, H19, IGF2R, PEG3, and XIST expression increased significantly. In the spleen tissues, DLK1 expression increased, while GNAS, H19, IGF2R, PEG3, SNRPN, and XIST expression decreased. In the kidney tissues, CDKN1C, DLK1, GNAS, IGF2R, and PEG3 expression increased, while H19 and XIST expression decreased. The overall expression of imprinted genes was abnormal in different tissues of transgenic cloned goats, and the degree of abnormal genomic imprinting was more severe in the abortion group compared to the death and control groups. These results suggest that abnormal expression of imprinted genes may cause developmental defects in transgenic cloned goats. Moreover, abnormal epigenetic modifications may affect the reprogramming of transgenic donor cells.

  2. Selective Binding of Organophosphate Pesticides Using Molecular Imprinted Polymers

    DTIC Science & Technology

    2005-10-01

    MIPs . SELECTIVE BINDING OF ORGANOPHOSPHATE PESTICIDES USING MOLECULAR IMPRINTED POLYMERS . *Ali M. Saboori...Maryland 20910-7500. ABSTRACT Molecular Imprinted Polymers ( MIPs ) have been used for recognition and binding of different compounds. We are...INTRODUCTION Molecular Imprinted Polymers ( MIPs ) are highly cross-linked polymers , which are formed by cross- linking monomer in

  3. Molecular imprinted polymers as drug delivery vehicles.

    PubMed

    Zaidi, Shabi Abbas

    2016-09-01

    This review is aimed to discuss the molecular imprinted polymer (MIP)-based drug delivery systems (DDS). Molecular imprinted polymers have proved to possess the potential and also as a suitable material in several areas over a long period of time. However, only recently it has been employed for pharmaceuticals and biomedical applications, particularly as drug delivery vehicles due to properties including selective recognition generated from imprinting the desired analyte, favorable in harsh experimental conditions, and feedback-controlled recognitive drug release. Hence, this review will discuss their synthesis, the reason they are selected as drug delivery vehicles and for their applications in several drug administration routes (i.e. transdermal, ocular and gastrointestinal or stimuli-reactive routes).

  4. Molecularly imprinted polymers for bioanalytical sample preparation.

    PubMed

    Gama, Mariana Roberto; Bottoli, Carla Beatriz Grespan

    2017-02-01

    Molecularly imprinted polymers (MIP) are stable polymers with molecular recognition abilities, provided by the presence of a template during their synthesis, and are excellent materials with high selectivity for sample preparation in bioanalytical methods. This short review discusses aspects of MIP preparation and its applications as a sorbent material in pharmaceutical and biomedical analysis. MIP in different extraction configurations, including classical solid-phase extraction, solid-phase microextraction, magnetic molecularly imprinted solid-phase extraction, microextraction by packed sorbent and solid-phase extraction in pipette tips, are used to illustrate the good performance of this type of sorbent for sample preparation procedures of complex matrices, especially prior to bioanalytical approaches.

  5. Visualizing Changes in Cdkn1c Expression Links Early-Life Adversity to Imprint Mis-regulation in Adults.

    PubMed

    Van de Pette, Mathew; Abbas, Allifia; Feytout, Amelie; McNamara, Gráinne; Bruno, Ludovica; To, Wilson K; Dimond, Andrew; Sardini, Alessandro; Webster, Zoe; McGinty, James; Paul, Eleanor J; Ungless, Mark A; French, Paul M W; Withers, Dominic J; Uren, Anthony; Ferguson-Smith, Anne C; Merkenschlager, Matthias; John, Rosalind M; Fisher, Amanda G

    2017-01-31

    Imprinted genes are regulated according to parental origin and can influence embryonic growth and metabolism and confer disease susceptibility. Here, we designed sensitive allele-specific reporters to non-invasively monitor imprinted Cdkn1c expression in mice and showed that expression was modulated by environmental factors encountered in utero. Acute exposure to chromatin-modifying drugs resulted in de-repression of paternally inherited (silent) Cdkn1c alleles in embryos that was temporary and resolved after birth. In contrast, deprivation of maternal dietary protein in utero provoked permanent de-repression of imprinted Cdkn1c expression that was sustained into adulthood and occurred through a folate-dependent mechanism of DNA methylation loss. Given the function of imprinted genes in regulating behavior and metabolic processes in adults, these results establish imprinting deregulation as a credible mechanism linking early-life adversity to later-life outcomes. Furthermore, Cdkn1c-luciferase mice offer non-invasive tools to identify factors that disrupt epigenetic processes and strategies to limit their long-term impact.

  6. [Imprint cytology in the diagnosis of tumors of the thyroid].

    PubMed

    Pluot, M; Faroux, M J; Rain, J; Patey, M; Mallaisy, T; Simatos, A

    1989-01-01

    We have correlated imprint cytology findings in thyroid tumors to the results of preoperative fine needle aspiration and operative specimen histology. Specificity of imprint cytology proved greater than that of fine needle aspiration cytology and topographic correlations were particularly helpful. Imprint cytology can improve the intraoperative histologic diagnosis. Because abundant cells are available, imprint thyroid cytology is ideal for teaching and training cytologists. Imprint cytology provides enough cells to perform special techniques, such as quantitative cytology, that are useful for the diagnosis of some tumor varieties (e.g. follicular tumors).

  7. Construction and evolution of imprinted loci in mammals.

    PubMed

    Hore, Timothy A; Rapkins, Robert W; Graves, Jennifer A Marshall

    2007-09-01

    Genomic imprinting first evolved in mammals around the time that humans last shared a common ancestor with marsupials and monotremes (180-210 million years ago). Recent comparisons of large imprinted domains in these divergent mammalian groups have shown that imprinting evolved haphazardly at various times in different lineages, perhaps driven by different selective forces. Surprisingly, some imprinted domains were formed relatively recently, using non-imprinted components acquired from unexpected genomic regions. Rearrangement and the insertion of retrogenes, small nucleolar RNAs, microRNAs, differential CpG methylation and control by non-coding RNA often accompanied the acquisition of imprinting. Here, we use comparisons between different mammalian groups to chart the course of evolution of two related epigenetic regulatory systems in mammals: genomic imprinting and X-chromosome inactivation.

  8. Enhanced removal of bilirubin on molecularly imprinted titania film.

    PubMed

    Yang, Zheng-peng; Yan, Jin-long; Zhang, Chun-jing; Luo, Shu-qiong

    2011-10-01

    Titania film imprinted by bilirubin molecule at the surface of quartz crystal was prepared using molecular imprinting and surface sol-gel process. The molecularly imprinted titania film was characterized by FTIR spectra, and the interaction between bilirubin and imprinted film was investigated using quartz crystal microbalance (QCM) technique. Compared with pure titania film, the molecularly imprinted titania film exhibits a much higher adsorption capacity for the target molecule, and the adsorption kinetic parameter estimated from the in situ frequency measurement is about 1.6×10(8) M(-1), which is ten times higher than that obtained on pure titania film. The photocatalytic measurements indicate that the bilirubin adsorbed on molecularly imprinted titania film can be completely removed under UV illumination. Moreover, our study indicates that the molecularly imprinted titania film possesses a better stability and reusability.

  9. Thermochemical study of amino acid imprinted polymer films.

    PubMed

    Chai, Ziyi; BelBruno, Joseph J

    2015-11-01

    Molecularly imprinted polymers provide an alternative to traditional methods of amino acid analysis. The imprinted polymers are more robust and significantly less expensive than, for example, ELISA analysis. Amino acid imprinted nylon-6 thin films were studied by differential scanning calorimetry and scanning electron microscopy. Endothermic peaks were observed for imprinted films at temperatures higher than that for pure nylon, indicating the formation of a more-ordered, hydrogen bonded polymer. Removal of the amino acid from the imprinted film resulted in reversion to the peak observed for pure nylon-6. Additives, β-cyclodextrin and multiwalled carbon nanotubes, were added to the imprinted polymer solutions as a means to increase the porosity of the films. These studies resulted in alternative morphologies and calorimetric results that provide additional functionalities and applications for imprinted polymers.

  10. Molecular recognition effects in atomistic models of imprinted polymers.

    PubMed

    Dourado, Eduardo M A; Herdes, Carmelo; van Tassel, Paul R; Sarkisov, Lev

    2011-01-01

    In this article we present a model for molecularly imprinted polymers, which considers both complexation processes in the pre-polymerization mixture and adsorption in the imprinted structures within a single consistent framework. As a case study we investigate MAA/EGDMA polymers imprinted with pyrazine and pyrimidine. A polymer imprinted with pyrazine shows substantial selectivity towards pyrazine over pyrimidine, thus exhibiting molecular recognition, whereas the pyrimidine imprinted structure shows no preferential adsorption of the template. Binding sites responsible for the molecular recognition of pyrazine involve one MAA molecule and one EGDMA molecule, forming associations with the two functional groups of the pyrazine molecule. Presence of these specific sites in the pyrazine imprinted system and lack of the analogous sites in the pyrimidine imprinted system is directly linked to the complexation processes in the pre-polymerization solution. These processes are quite different for pyrazine and pyrimidine as a result of both enthalpic and entropic effects.

  11. A Case-by-Case Evolutionary Analysis of Four Imprinted Retrogenes

    PubMed Central

    McCole, Ruth B; Loughran, Noeleen B; Chahal, Mandeep; Fernandes, Luis P; Roberts, Roland G; Fraternali, Franca; O'Connell, Mary J; Oakey, Rebecca J

    2011-01-01

    Retroposition is a widespread phenomenon resulting in the generation of new genes that are initially related to a parent gene via very high coding sequence similarity. We examine the evolutionary fate of four retrogenes generated by such an event; mouse Inpp5f_v2, Mcts2, Nap1l5, and U2af1-rs1. These genes are all subject to the epigenetic phenomenon of parental imprinting. We first provide new data on the age of these retrogene insertions. Using codon-based models of sequence evolution, we show these retrogenes have diverse evolutionary trajectories, including divergence from the parent coding sequence under positive selection pressure, purifying selection pressure maintaining parent-retrogene similarity, and neutral evolution. Examination of the expression pattern of retrogenes shows an atypical, broad pattern across multiple tissues. Protein 3D structure modeling reveals that a positively selected residue in U2af1-rs1, not shared by its parent, may influence protein conformation. Our case-by-case analysis of the evolution of four imprinted retrogenes reveals that this interesting class of imprinted genes, while similar in regulation and sequence characteristics, follow very varied evolutionary paths. PMID:21166792

  12. Identification of clustered YY1 binding sites in Imprinting Control Regions

    SciTech Connect

    Kim, J D; Hinz, A; Bergmann, A; Huang, J; Ovcharenko, I; Stubbs, L; Kim, J

    2006-04-19

    Mammalian genomic imprinting is regulated by Imprinting Control Regions (ICRs) that are usually associated with tandem arrays of transcription factor binding sites. In the current study, the sequence features derived from a tandem array of YY1 binding sites of Peg3-DMR (differentially methylated region) led us to identify three additional clustered YY1 binding sites, which are also localized within the DMRs of Xist, Tsix, and Nespas. These regions have been shown to play a critical role as ICRs for the regulation of surrounding genes. These ICRs have maintained a tandem array of YY1 binding sites during mammalian evolution. The in vivo binding of YY1 to these regions is allele-specific and only to the unmethylated active alleles. Promoter/enhancer assays suggest that a tandem array of YY1 binding sites function as a potential orientation-dependent enhancer. Insulator assays revealed that the enhancer-blocking activity is detected only in the YY1 binding sites of Peg3-DMR but not in the YY1 binding sites of other DMRs. Overall, our identification of three additional clustered YY1 binding sites in imprinted domains suggests a significant role for YY1 in mammalian genomic imprinting.

  13. Differential genomic imprinting regulates paracrine and autocrine roles of IGF2 in mouse adult neurogenesis

    PubMed Central

    Ferrón, S. R.; Radford, E. J.; Domingo-Muelas, A.; Kleine, I.; Ramme, A.; Gray, D.; Sandovici, I.; Constancia, M.; Ward, A.; Menheniott, T. R.; Ferguson-Smith, A. C.

    2015-01-01

    Genomic imprinting is implicated in the control of gene dosage in neurogenic niches. Here we address the importance of Igf2 imprinting for murine adult neurogenesis in the subventricular zone (SVZ) and in the subgranular zone (SGZ) of the hippocampus in vivo. In the SVZ, paracrine IGF2 is a cerebrospinal fluid and endothelial-derived neurogenic factor requiring biallelic expression, with mutants having reduced activation of the stem cell pool and impaired olfactory bulb neurogenesis. In contrast, Igf2 is imprinted in the hippocampus acting as an autocrine factor expressed in neural stem cells (NSCs) solely from the paternal allele. Conditional mutagenesis of Igf2 in blood vessels confirms that endothelial-derived IGF2 contributes to NSC maintenance in SVZ but not in the SGZ, and that this is regulated by the biallelic expression of IGF2 in the vascular compartment. Our findings indicate that a regulatory decision to imprint or not is a functionally important mechanism of transcriptional dosage control in adult neurogenesis. PMID:26369386

  14. Imprinting Technology in Electrochemical Biomimetic Sensors.

    PubMed

    Frasco, Manuela F; Truta, Liliana A A N A; Sales, M Goreti F; Moreira, Felismina T C

    2017-03-06

    Biosensors are a promising tool offering the possibility of low cost and fast analytical screening in point-of-care diagnostics and for on-site detection in the field. Most biosensors in routine use ensure their selectivity/specificity by including natural receptors as biorecognition element. These materials are however too expensive and hard to obtain for every biochemical molecule of interest in environmental and clinical practice. Molecularly imprinted polymers have emerged through time as an alternative to natural antibodies in biosensors. In theory, these materials are stable and robust, presenting much higher capacity to resist to harsher conditions of pH, temperature, pressure or organic solvents. In addition, these synthetic materials are much cheaper than their natural counterparts while offering equivalent affinity and sensitivity in the molecular recognition of the target analyte. Imprinting technology and biosensors have met quite recently, relying mostly on electrochemical detection and enabling a direct reading of different analytes, while promoting significant advances in various fields of use. Thus, this review encompasses such developments and describes a general overview for building promising biomimetic materials as biorecognition elements in electrochemical sensors. It includes different molecular imprinting strategies such as the choice of polymer material, imprinting methodology and assembly on the transduction platform. Their interface with the most recent nanostructured supports acting as standard conductive materials within electrochemical biomimetic sensors is pointed out.

  15. Imprinting Technology in Electrochemical Biomimetic Sensors

    PubMed Central

    Frasco, Manuela F.; Truta, Liliana A. A. N. A.; Sales, M. Goreti F.; Moreira, Felismina T. C.

    2017-01-01

    Biosensors are a promising tool offering the possibility of low cost and fast analytical screening in point-of-care diagnostics and for on-site detection in the field. Most biosensors in routine use ensure their selectivity/specificity by including natural receptors as biorecognition element. These materials are however too expensive and hard to obtain for every biochemical molecule of interest in environmental and clinical practice. Molecularly imprinted polymers have emerged through time as an alternative to natural antibodies in biosensors. In theory, these materials are stable and robust, presenting much higher capacity to resist to harsher conditions of pH, temperature, pressure or organic solvents. In addition, these synthetic materials are much cheaper than their natural counterparts while offering equivalent affinity and sensitivity in the molecular recognition of the target analyte. Imprinting technology and biosensors have met quite recently, relying mostly on electrochemical detection and enabling a direct reading of different analytes, while promoting significant advances in various fields of use. Thus, this review encompasses such developments and describes a general overview for building promising biomimetic materials as biorecognition elements in electrochemical sensors. It includes different molecular imprinting strategies such as the choice of polymer material, imprinting methodology and assembly on the transduction platform. Their interface with the most recent nanostructured supports acting as standard conductive materials within electrochemical biomimetic sensors is pointed out. PMID:28272314

  16. Molecular Imprinting Applications in Forensic Science.

    PubMed

    Yılmaz, Erkut; Garipcan, Bora; Patra, Hirak K; Uzun, Lokman

    2017-03-28

    Producing molecular imprinting-based materials has received increasing attention due to recognition selectivity, stability, cast effectiveness, and ease of production in various forms for a wide range of applications. The molecular imprinting technique has a variety of applications in the areas of the food industry, environmental monitoring, and medicine for diverse purposes like sample pretreatment, sensing, and separation/purification. A versatile usage, stability and recognition capabilities also make them perfect candidates for use in forensic sciences. Forensic science is a demanding area and there is a growing interest in molecularly imprinted polymers (MIPs) in this field. In this review, recent molecular imprinting applications in the related areas of forensic sciences are discussed while considering the literature of last two decades. Not only direct forensic applications but also studies of possible forensic value were taken into account like illicit drugs, banned sport drugs, effective toxins and chemical warfare agents in a review of over 100 articles. The literature was classified according to targets, material shapes, production strategies, detection method, and instrumentation. We aimed to summarize the current applications of MIPs in forensic science and put forth a projection of their potential uses as promising alternatives for benchmark competitors.

  17. Membrane separations using molecularly imprinted polymers.

    PubMed

    Ulbricht, Mathias

    2004-05-05

    This review presents an overview on the promising field of molecularly imprinted membranes (MIM). The focus is onto the separation of molecules in liquid mixtures via membrane transport selectivity. First, the status of synthetic membranes and membrane separation technology is briefly summarized, emphasizing the need for novel membranes with higher selectivities. Innovative principles for the preparation of membranes with improved or novel functionality include self-assembly or supramolecular aggregation as well as the use of templates. Based on a detailed analysis of the literature, the main established preparation methods for MIM are outlined: simultaneous membrane formation and imprinting, or preparation of imprinted composite membranes. Then, the separation capability of MIM is discussed for two different types, as a function of their barrier structure. Microporous MIM can continuously separate mixtures based on facilitated diffusion of the template, or they can change their permeability in the presence of the template ("gate effect"). Macroporous MIM can be developed towards molecule-specific membrane adsorbers. Emerging further combinations of molecularly imprinted polymers (MIPs), especially MIP nanoparticles or microgels, with membranes and membrane processes are briefly outlined as well. Finally, the application potential for advanced MIM separation technologies is summarized.

  18. Plastic Antibodies: Molecular Recognition with Imprinted Polymers

    ERIC Educational Resources Information Center

    Rushton, Gregory T.; Furmanski, Brian; Shimizu, Ken D.

    2005-01-01

    Synthetic polymers are prepared and tested in a study for their molecular recognition properties of an adenine derivative, ethyl adenine-9-acetate (EA9A), within two laboratory periods. The procedure introduces undergraduate chemistry students to noncovalent molecular imprinting as well as the analytical techniques for assessing their recognition…

  19. Molecularly imprinted polymers for biomolecular recognition.

    PubMed

    Molinelli, Alexandra; Janotta, Markus; Mizaikoff, Boris

    2005-01-01

    Molecular imprinting of polymers is a concept for the synthetic formation of structurally organized materials providing binding sites with molecular selectivity. Compared to biological receptors, these polymeric recognition systems have the advantage of superior chemical and mechanical stability with potential applications in areas such as biomimetic catalysis and engineering, biomedical analysis, sensor technology, or the food industry. In particular, molecularly imprinted polymers (MIPs) providing selectivity for biorelated molecules are gaining substantial importance. In this context, a self-assembly approach for the synthesis of imprinted polymers against the flavonol quercetin is presented, which is exemplary for the biologically relevant group of flavonoid compounds. The creation of synthetic selective recognition sites for this biomolecule is demonstrated by comparing the separation capabilities of imprinted and nonimprinted polymer particles for several structurally related molecules via high-performance liquid chromatography experiments. The developed quercetin-MIP enables selective extraction of quercetin even from complex mixtures, demonstrating the potential for designing biomimetic recognition materials with improved selectivity for biomolecules with tunable functionality at a nanoscale.

  20. Molecularly imprinted polymers for some reactive dyes.

    PubMed

    Okutucu, Burcu; Akkaya, Alper; Pazarlioglu, Nurdan Kasikara

    2010-01-01

    Depending upon their structure, azo- and anthraquinonic dyes are the two major classes and together represent 90% of all organic colorants. Adsorption of dye molecules onto a sorbent can be an effective, low-cost method of color removal. Most of the techniques used for removal of dyes are of high production cost, and the regeneration also makes them uneconomical. There is much interest in the development of cheaper and effective newer materials for use as adsorbents. Molecular imprinting is a new kind of materials that can be alternative adsorbents. In this study, molecularly imprinted polymers of three textile dyes (Cibacron Orange P-4R, Cibacron Red P-4B, Cibacron Black PSG) were prepared. Methacrylic acid was used as a monomer for red and orange dyes and acrylamide was used for black dye. Methanol:acetonitrile was used as a porogen. The selective recognition ability of the molecularly imprinted polymers was studied by an equilibrium-adsorption batch method. The adsorption data are for Cibacron Black PSG 65% and nonimprinted polymer (NIP) 25%; Cibacron Red P-4B 72% and NIP 18%; and Cibacron Orange P-4R 45% and NIP 10%, respectively. Dye-imprinted polymers were used as a solid-phase extraction material for selective adsorption from wastewater of textile factory.

  1. Parametric and nonparametric multipoint linkage analysis with imprinting and two-locus-trait models: application to mite sensitization.

    PubMed Central

    Strauch, K; Fimmers, R; Kurz, T; Deichmann, K A; Wienker, T F; Baur, M P

    2000-01-01

    We present two extensions to linkage analysis for genetically complex traits. The first extension allows investigators to perform parametric (LOD-score) analysis of traits caused by imprinted genes-that is, of traits showing a parent-of-origin effect. By specification of two heterozygote penetrance parameters, paternal and maternal origin of the mutation can be treated differently in terms of probability of expression of the trait. Therefore, a single-disease-locus-imprinting model includes four penetrances instead of only three. In the second extension, parametric and nonparametric linkage analysis with two trait loci is formulated for a multimarker setting, optionally taking imprinting into account. We have implemented both methods into the program GENEHUNTER. The new tools, GENEHUNTER-IMPRINTING and GENEHUNTER-TWOLOCUS, were applied to human family data for sensitization to mite allergens. The data set comprises pedigrees from England, Germany, Italy, and Portugal. With single-disease-locus-imprinting MOD-score analysis, we find several regions that show at least suggestive evidence for linkage. Most prominently, a maximum LOD score of 4.76 is obtained near D8S511, for the English population, when a model that implies complete maternal imprinting is used. Parametric two-trait-locus analysis yields a maximum LOD score of 6.09 for the German population, occurring exactly at D4S430 and D18S452. The heterogeneity model specified for analysis alludes to complete maternal imprinting at both disease loci. Altogether, our results suggest that the two novel formulations of linkage analysis provide valuable tools for genetic mapping of multifactorial traits. PMID:10796874

  2. A Path to Soluble Molecularly Imprinted Polymers

    PubMed Central

    Verma, Abhilasha; Murray, George M.

    2011-01-01

    Molecular imprinting is a technique for making a selective binding site for a specific chemical. The technique involves building a polymeric scaffold of molecular complements containing the target molecule. Subsequent removal of the target leaves a cavity with a structural “memory” of the target. Molecularly imprinted polymers (MIPs) can be employed as selective adsorbents of specific molecules or molecular functional groups. In addition, sensors for specific molecules can be made using optical transduction through lumiphores residing in the imprinted site. We have found that the use of metal ions as chromophores can improve selectivity due to selective complex formation. The combination of molecular imprinting and spectroscopic selectivity can result in sensors that are highly sensitive and nearly immune to interferences. A weakness of conventional MIPs with regard to processing is the insolubility of crosslinked polymers. Traditional MIPs are prepared either as monoliths and ground into powders or are prepared in situ on a support. This limits the applicability of MIPs by imposing tedious or difficult processes for their inclusion in devices. The size of the particles hinders diffusion and slows response. These weaknesses could be avoided if a means were found to prepare individual macromolecules with crosslinked binding sites with soluble linear polymeric arms. This process has been made possible by controlled free radical polymerization techniques that can form pseudo-living polymers. Modern techniques of controlled free radical polymerization allow the preparation of block copolymers with potentially crosslinkable substituents in specific locations. The inclusion of crosslinkable mers proximate to the binding complex in the core of a star polymer allows the formation of molecularly imprinted macromolecules that are soluble and processable. Due to the much shorter distance for diffusion, the polymers exhibit rapid responses. This paper reviews the methods

  3. Identification of the Imprinted KLF14 Transcription Factor Undergoing Human-Specific Accelerated Evolution

    PubMed Central

    Parker-Katiraee, Layla; Carson, Andrew R; Yamada, Takahiro; Arnaud, Philippe; Feil, Robert; Abu-Amero, Sayeda N; Moore, Gudrun E; Kaneda, Masahiro; Perry, George H; Stone, Anne C; Lee, Charles; Meguro-Horike, Makiko; Sasaki, Hiroyuki; Kobayashi, Keiko; Nakabayashi, Kazuhiko; Scherer, Stephen W

    2007-01-01

    Imprinted genes are expressed in a parent-of-origin manner and are located in clusters throughout the genome. Aberrations in the expression of imprinted genes on human Chromosome 7 have been suggested to play a role in the etiologies of Russell-Silver Syndrome and autism. We describe the imprinting of KLF14, an intronless member of the Krüppel-like family of transcription factors located at Chromosome 7q32. We show that it has monoallelic maternal expression in all embryonic and extra-embryonic tissues studied, in both human and mouse. We examine epigenetic modifications in the KLF14 CpG island in both species and find this region to be hypomethylated. In addition, we perform chromatin immunoprecipitation and find that the murine Klf14 CpG island lacks allele-specific histone modifications. Despite the absence of these defining features, our analysis of Klf14 in offspring from DNA methyltransferase 3a conditional knockout mice reveals that the gene's expression is dependent upon a maternally methylated region. Due to the intronless nature of Klf14 and its homology to Klf16, we suggest that the gene is an ancient retrotransposed copy of Klf16. By sequence analysis of numerous species, we place the timing of this event after the divergence of Marsupialia, yet prior to the divergence of the Xenarthra superclade. We identify a large number of sequence variants in KLF14 and, using several measures of diversity, we determine that there is greater variability in the human lineage with a significantly increased number of nonsynonymous changes, suggesting human-specific accelerated evolution. Thus, KLF14 may be the first example of an imprinted transcript undergoing accelerated evolution in the human lineage. PMID:17480121

  4. Identification of the imprinted KLF14 transcription factor undergoing human-specific accelerated evolution.

    PubMed

    Parker-Katiraee, Layla; Carson, Andrew R; Yamada, Takahiro; Arnaud, Philippe; Feil, Robert; Abu-Amero, Sayeda N; Moore, Gudrun E; Kaneda, Masahiro; Perry, George H; Stone, Anne C; Lee, Charles; Meguro-Horike, Makiko; Sasaki, Hiroyuki; Kobayashi, Keiko; Nakabayashi, Kazuhiko; Scherer, Stephen W

    2007-05-04

    Imprinted genes are expressed in a parent-of-origin manner and are located in clusters throughout the genome. Aberrations in the expression of imprinted genes on human Chromosome 7 have been suggested to play a role in the etiologies of Russell-Silver Syndrome and autism. We describe the imprinting of KLF14, an intronless member of the Krüppel-like family of transcription factors located at Chromosome 7q32. We show that it has monoallelic maternal expression in all embryonic and extra-embryonic tissues studied, in both human and mouse. We examine epigenetic modifications in the KLF14 CpG island in both species and find this region to be hypomethylated. In addition, we perform chromatin immunoprecipitation and find that the murine Klf14 CpG island lacks allele-specific histone modifications. Despite the absence of these defining features, our analysis of Klf14 in offspring from DNA methyltransferase 3a conditional knockout mice reveals that the gene's expression is dependent upon a maternally methylated region. Due to the intronless nature of Klf14 and its homology to Klf16, we suggest that the gene is an ancient retrotransposed copy of Klf16. By sequence analysis of numerous species, we place the timing of this event after the divergence of Marsupialia, yet prior to the divergence of the Xenarthra superclade. We identify a large number of sequence variants in KLF14 and, using several measures of diversity, we determine that there is greater variability in the human lineage with a significantly increased number of nonsynonymous changes, suggesting human-specific accelerated evolution. Thus, KLF14 may be the first example of an imprinted transcript undergoing accelerated evolution in the human lineage.

  5. Microdeletions in the human H19 DMR result in loss of IGF2 imprinting and Beckwith-Wiedemann syndrome.

    PubMed

    Sparago, Angela; Cerrato, Flavia; Vernucci, Maria; Ferrero, Giovanni Battista; Silengo, Margherita Cirillo; Riccio, Andrea

    2004-09-01

    The overgrowth- and tumor-associated Beckwith-Wiedemann syndrome results from dysregulation of imprinted genes on chromosome 11p15.5. Here we show that inherited microdeletions in the H19 differentially methylated region (DMR) that abolish two CTCF target sites cause this disease. Maternal transmission of the deletions results in hypermethylation of the H19 DMR, biallelic IGF2 expression, H19 silencing and Beckwith-Wiedemann syndrome, indicative of loss of function of the IGF2-H19 imprinting control element.

  6. NMDA receptor antagonists extend the sensitive period for imprinting.

    PubMed

    Parsons, C H; Rogers, L J

    2000-03-01

    Filial imprinting in the domestic chick occurs during a sensitive period of development. The exact timing of this period can vary according to the methods used to measure imprinting. Using our imprinting paradigm, we have shown that normal, dark-reared chicks lose the ability to imprint after the second day post-hatching. Further, we reported that chicks treated 10 h after hatching with a mixture of the noncompetitive NMDA receptor antagonist ketamine (55 mg/kg) and the alpha(2)-adrenergic receptor agonist xylazine (6 mg/kg) were able to imprint on day 8 after hatching, whereas controls treated with saline did not imprint. We now show that the effect of the ketamine-xylazine mixture can be mimicked by treating chicks with ketamine alone or with another noncompetitive NMDA receptor antagonist, MK-801 (5 mg/kg). Treating chicks with a single dose of ketamine (55 mg/kg) or with a single dose of xylazine (6 mg/kg) failed to produce the effect on the sensitive period. However, prolonging the action of ketamine by treating chicks with two doses of ketamine (at 10 and 12 h after hatching) did allow imprinting on day 8. In contrast, prolonging the action of xylazine had no effect on the sensitive period for imprinting. Chicks treated with MK-801 were also able to imprint on day 8. Thus, we have evidence that the NMDA receptor system is involved in the mechanisms that control the sensitive period for imprinting.

  7. Maintenance of imprinting and nuclear architecture in cycling cells.

    PubMed

    Teller, Kathrin; Solovei, Irina; Buiting, Karin; Horsthemke, Bernhard; Cremer, Thomas

    2007-09-18

    Dynamic gene repositioning has emerged as an additional level of epigenetic gene regulation. An early example was the report of a transient, spatial convergence (< or =2 microm) of oppositely imprinted regions ("kissing"), including the Angelman syndrome/Prader-Willi syndrome (AS/PWS) locus and the Beckwith-Wiedemann syndrome locus in human lymphocytes during late S phase. It was argued that kissing is required for maintaining opposite imprints in cycling cells. Employing 3D-FISH with a BAC contig covering the AS/PWS region, light optical, serial sectioning, and quantitative 3D-image analysis, we observed that both loci always retained a compact structure and did not form giant loops. Three-dimensional distances measured among various, homologous AS/PWS segments in 393 human lymphocytes, 132 human fibroblasts, and 129 lymphoblastoid cells from Gorilla gorilla revealed a wide range of distances at any stage of interphase and in G(0). At late S phase, 4% of nuclei showed distances < or =2 microm, 49% showed distances >6 microm, and 18% even showed distances >8 microm. A similar distance variability was found for Homo sapiens (HSA) 15 centromeres in a PWS patient with a deletion of the maternal AS/PWS locus and for the Beckwith-Wiedemann syndrome loci in human lymphocytes. A transient kiss during late S phase between loci widely separated at other stages of the cell cycle seems incompatible with known global constraints of chromatin movements in cycling cells. Further experiments suggest that the previously observed convergence of AS/PWS loci during late S phase was most likely a side effect of the convergence of nucleolus organizer region-bearing acrocentric human chromosomes, including HSA 15.

  8. Immunoendocrinology: faulty hormonal imprinting in the immune system.

    PubMed

    Csaba, György

    2014-06-01

    Hormonal imprinting is an epigenetic process which is taking place perinatally at the first encounter between the developing hormone receptors and their target hormones. The hormonal imprinting influences the binding capacity of receptors, the hormone synthesis of the cells, and other hormonally regulated functions, as sexual behavior, aggressivity, empathy, etc. However, during the critical period, when the window for imprinting is open, molecules similar to the physiological imprinters as synthetic hormone analogs, other members of the hormone families, environmental pollutants, etc. can cause faulty imprinting with life-long consequences. The developing immune system, the cells of which also have receptors for hormones, is very sensitive to faulty imprinting, which causes alterations in the antibody and cytokine production, in the ratio of immune cells, in the defense against bacterial and viral infections as well as against malignant tumors. Immune cells (lymphocytes, monocytes, granulocytes and mast cells) are also producing hormones which are secreted into the blood circulation as well as are transported locally (packed transport). This process is also disturbed by faulty imprinting. As immune cells are differentiating during the whole life, faulty imprinting could develop any time, however, the most decisive is the perinatal imprinting. The faulty imprinting is inherited to the progenies in general and especially in the case of immune system. In our modern world the number and amount of artificial imprinters (e.g. endocrine disruptors and drugs) are enormously increasing. The effects of the faulty imprinters most dangerous to the immune system are shown in the paper. The present and future consequences of the flood of faulty imprintings are unpredictable however, it is discussed.

  9. Phosphatidylinositol 3-Kinase (PI3K) Signaling via Glycogen Synthase Kinase-3 (Gsk-3) Regulates DNA Methylation of Imprinted Loci*

    PubMed Central

    Popkie, Anthony P.; Zeidner, Leigh C.; Albrecht, Ashley M.; D'Ippolito, Anthony; Eckardt, Sigrid; Newsom, David E.; Groden, Joanna; Doble, Bradley W.; Aronow, Bruce; McLaughlin, K. John; White, Peter; Phiel, Christopher J.

    2010-01-01

    Glycogen synthase kinase-3 (Gsk-3) isoforms, Gsk-3α and Gsk-3β, are constitutively active, largely inhibitory kinases involved in signal transduction. Underscoring their biological significance, altered Gsk-3 activity has been implicated in diabetes, Alzheimer disease, schizophrenia, and bipolar disorder. Here, we demonstrate that deletion of both Gsk-3α and Gsk-3β in mouse embryonic stem cells results in reduced expression of the de novo DNA methyltransferase Dnmt3a2, causing misexpression of the imprinted genes Igf2, H19, and Igf2r and hypomethylation of their corresponding imprinted control regions. Treatment of wild-type embryonic stem cells and neural stem cells with the Gsk-3 inhibitor, lithium, phenocopies the DNA hypomethylation at these imprinted loci. We show that inhibition of Gsk-3 by phosphatidylinositol 3-kinase (PI3K)-mediated activation of Akt also results in reduced DNA methylation at these imprinted loci. Finally, we find that N-Myc is a potent Gsk-3-dependent regulator of Dnmt3a2 expression. In summary, we have identified a signal transduction pathway that is capable of altering the DNA methylation of imprinted loci. PMID:21047779

  10. A model for the initiation and progression of non-chromaffin paragangliomas: An autosomal dominant disorder with genetic heterogeneity and genomic imprinting

    SciTech Connect

    Mariman, E.C.M.; Beersum, S.E.C. van; Ropers, H.H.

    1994-09-01

    Non-chromaffin paragangliomas are autosomal dominantly inherited tumors of the head and neck region (frequency: 1:30,000). Genomic imprinting influences the expression of the disorder. Tumor development is restricted to offspring of male disease gene carriers. By linkage analysis and haplotyping of a single family, in which the pattern of inheritance is consistent with genomic imprinting, we have mapped the gene to a 5 cM region of chromosome 11q13.1 between D11S956 and PYGM. A maximum lod score of 7.62 at {theta}=0.0 was obtained for D11S480. This interval does not overlap with the segment 11q22.3-q23.3, to which a locus for glomus tumors has been assigned in other families. Moreover, the 5cM interval was excluded as the location of the disease gene in a second family showing the imprinting phenomenon, whereas an indication for linkage was obtained (Z=+2.65) with markers from the distal locus. These observations argue for the presence of two distinct imprinted genes for paragangliomas on 11q. Clinical findings suggest that at least one, but probably both genes code for tumor suppressor required for tumor initiation. According to this model, imprinting would account for the silencing of the two maternal copies, whereas a paternal copy would be inactive due to an inherited mutation. Tumors would then result from somatic inactivation of the other paternal gene copy in individual cells. In tumors, relaxation of imprinting seems to be a frequent feature. Here, it would necessitate subsequent inactivation of maternal gene copies to allow tumor progression. Indeed, selective loss of maternal alleles in paragangliomas has been observed with markers from 11 q. Definite proof for this model should come from the isolation and expression studies of the involved genes.

  11. MRI screening of kindred at risk of developing paragangliomas: support for genomic imprinting in hereditary glomus tumours.

    PubMed Central

    van Gils, A. P.; van der Mey, A. G.; Hoogma, R. P.; Sandkuijl, L. A.; Maaswinkel-Mooy, P. D.; Falke, T. H.; Pauwels, E. K.

    1992-01-01

    Paragangliomas of the head and neck (glomus tumours) can occur in a hereditary pattern and may be hormonally active as well as being associated with paragangliomas elsewhere. A number of these tumours may be present without symptoms. To detect the presence of subclinical paragangliomas we screened 83 members of a family at risk of developing hereditary paragangliomas using whole body MRI and urinary catecholamine testing. In eight previously diagnosed members, eight known glomus tumours of which one functioning, and two unknown glomus tumours and one unknown pheochromocytoma were present. Six unsuspected members showed ten glomus tumours and one pheochromocytoma. It has been suggested that the manifestation of hereditary glomus tumours is determined by the sex of the transmitting parent. There were no tumours in the descendants of female gene carriers. Comparing the likelihood of inheritance with genomic imprinting versus inheritance without genomic imprinting we found an odds ratio of 23375 in favour of genomic imprinting. PMID:1616861

  12. A comparison of covalent and non-covalent imprinting strategies for the synthesis of stigmasterol imprinted polymers.

    PubMed

    Hashim, Shima N N S; Boysen, Reinhard I; Schwarz, Lachlan J; Danylec, Basil; Hearn, Milton T W

    2014-09-12

    Non-covalent and covalent imprinting strategies have been investigated for the synthesis of stigmasterol imprinted polymers. The synthesized molecularly imprinted polymers (MIPs) were then evaluated for their recognition and selectivity towards stigmasterol via static and dynamic batch-binding assays and their performance measured against control non-imprinted polymers (NIPs). MIPs prepared using the conventional non-covalent imprinting method displayed little to no binding affinity for stigmasterol under various conditions. In contrast, the application of a covalent imprinting approach using the novel post-synthetically cleavable monomer-template composite stigmasteryl-3-O-methacrylate resulted in the fabrication of a MIP that successfully recognized stigmasterol in both organic and partially aqueous environments. The affinity and selectivity of the covalently prepared MIP was enhanced when undertaken in a partially aqueous environment consisting of an acetonitrile/water (9:1, v/v) solvent mixture. These features have been exploited in a molecularly imprinted solid-phase extraction (MISPE) format, wherein the preferential retention of stigmasterol (with an imprint factor of 12) was demonstrated with 99% recovery in comparison to cholesterol (imprint factor of 6) and ergosterol (imprint factor of 4) while in the presence of several closely related steryl analogues.

  13. [Spectroscopic Study of Salbutamol Molecularly Imprinted Polymers].

    PubMed

    Ren, Hui-peng; Guan, Yu-yu; Dai, Rong-hua; Liu, Guo-yan; Chai, Chun-yan

    2016-02-01

    In order to solve the problem of on-site rapid detection of salbutamol residues in feed and animal products, and develop a new method of fast detection of salbutamol on the basis of the molecular imprinting technology, this article uses the salbutamol (SAL) working as template molecule, methacrylic acid (MAA) working as functional monomer. On this basis, a new type of core-shell type salbutamol molecularly imprinted polymers were prepared with colloidal gold particles as triggering core. Superficial characteristics of the MIPs and the related compounds were investigated by ultraviolet (UV) spectra and infrared (IR) spectra, Raman spectra, Scanning electron microscopy (SEM) respectively. The results indicated that a stable hydrogen bonding complex has been formed between the carboxyl groups of SAL and MA with a matching ratio of 1:1. The complex can be easily eluted by the reagent containing hydrogen bonding. The chemical binding constant K reaches -0.245 x 10⁶ L² · mol⁻². The possible binding sites of the hydrogen bonding was formed between the hydrogen atoms of -COOH in MA and the oxygen atoms of C==O in SAL. IR and Raman spectrum showed that, compared with MA, a significant red shift of -OH absorption peak was manifested in MIPs, which proved that SAL as template molecule occurred a specific bond between MA. Red shift of stretching vibration absorption peak of C==O was also detected in the un-eluted MIPs and obvious energy loss happened, which demonstrated a possible binding sites is SAL intramolecular of C==O atom of oxygen. If the hydrogen atoms of -COOH in MA wanted to generate hydrogen bond. However, the shapes of absorption peak of other functional groups including C==C, C==O, and -OH were very similar both in MIPs and NIPs. Specific cavities were formed after the template molecules in MIPs were removed. It was proved by the adsorption experiment that the specific sites in these cavities highly match with the chemical and space structure of SAL

  14. Quantitative prediction of imprinting factor of molecularly imprinted polymers by artificial neural network

    NASA Astrophysics Data System (ADS)

    Nantasenamat, Chanin; Naenna, Thanakorn; Ayudhya, Chartchalerm Isarankura Na; Prachayasittikul, Virapong

    2005-07-01

    Artificial neural network (ANN) implementing the back-propagation algorithm was applied for the calculation of the imprinting factors (IF) of molecularly imprinted polymers (MIP) as a function of the computed molecular descriptors of template and functional monomer molecules and mobile phase descriptors. The dataset used in our study were obtained from the literature and classified into two distinctive datasets on the basis of the polymer's morphology, irregularly sized MIP and uniformly sized MIP datasets. Results revealed that artificial neural network was able to perform well on datasets derived from uniformly sized MIP ( n=23, r=0.946, RMS=2.944) while performing poorly on datasets derived from irregularly sized MIP ( n=75, r=0.382, RMS=6.123). The superior performance of the uniformly sized MIP dataset over the irregularly sized MIP dataset could be attributed to its more predictable nature owing to the consistency of MIP particles, uniform number and association constant of binding sites, and minimal deviation of the imprinted polymers. The ability to predict the imprinting factor of imprinted polymer prior to performing actual experimental work provide great insights on the feasibility of the interaction between template-functional monomer pairs.

  15. Characterization of molecularly imprinted polymer nanoparticles by photon correlation spectroscopy.

    PubMed

    Malm, Björn; Yoshimatsu, Keiichi; Ye, Lei; Krozer, Anatol

    2014-12-01

    We follow template-binding induced aggregation of nanoparticles enantioselectively imprinted against (S)-propranolol, and the non-imprinted ones, using photon correlation spectroscopy (dynamic light scattering). The method requires no separation steps. We have characterized binding of (R,S)-propranolol to the imprinted polymers and determined the degree of non-specificity by comparing the specific binding with the results obtained using non-imprinted nanoparticles. Using (S)-propranolol as a template for binding to (S)-imprinted nanoparticle, and (R)-propranolol as a non-specific control, we have determined range of concentrations where chiral recognition can be observed. By studying aggregation induced by three analytes related to propranolol, atenolol, betaxolol, and 1-amino-3-(naphthalen-1-yloxy)propan-2-ol, we were able to determine which parts of the template are involved in the specific binding, discuss several details of specific adsorption, and the structure of the imprinted site.

  16. A molecular-imprint nanosensor for ultrasensitive detection of proteins

    NASA Astrophysics Data System (ADS)

    Cai, Dong; Ren, Lu; Zhao, Huaizhou; Xu, Chenjia; Zhang, Lu; Yu, Ying; Wang, Hengzhi; Lan, Yucheng; Roberts, Mary F.; Chuang, Jeffrey H.; Naughton, Michael J.; Ren, Zhifeng; Chiles, Thomas C.

    2010-08-01

    Molecular imprinting is a technique for preparing polymer scaffolds that function as synthetic receptors. Imprinted polymers that can selectively bind organic compounds have proven useful in sensor development. Although creating synthetic molecular-imprinting polymers that recognize proteins remains challenging, nanodevices and nanomaterials show promise in this area. Here, we show that arrays of carbon-nanotube tips with an imprinted non-conducting polymer coating can recognize proteins with subpicogram per litre sensitivity using electrochemical impedance spectroscopy. We have developed molecular-imprinting sensors specific for human ferritin and human papillomavirus derived E7 protein. The molecular-imprinting-based nanosensor can also discriminate between Ca2+-induced conformational changes in calmodulin. This ultrasensitive, label-free electrochemical detection of proteins offers an alternative to biosensors based on biomolecule recognition.

  17. Antagonist Xist and Tsix co-transcription during mouse oogenesis and maternal Xist expression during pre-implantation development calls into question the nature of the maternal imprint on the X chromosome.

    PubMed

    Deuve, Jane Lynda; Bonnet-Garnier, Amélie; Beaujean, Nathalie; Avner, Philip; Morey, Céline

    2015-01-01

    During the first divisions of the female mouse embryo, the paternal X-chromosome is coated by Xist non-coding RNA and gradually silenced. This imprinted X-inactivation principally results from the apposition, during oocyte growth, of an imprint on the X-inactivation master control region: the X-inactivation center (Xic). This maternal imprint of yet unknown nature is thought to prevent Xist upregulation from the maternal X (X(M)) during early female development. In order to provide further insight into the X(M) imprinting mechanism, we applied single-cell approaches to oocytes and pre-implantation embryos at different stages of development to analyze the expression of candidate genes within the Xic. We show that, unlike the situation pertaining in most other cellular contexts, in early-growing oocytes, Xist and Tsix sense and antisense transcription occur simultaneously from the same chromosome. Additionally, during early development, Xist appears to be transiently transcribed from the X(M) in some blastomeres of late 2-cell embryos concomitant with the general activation of the genome indicating that X(M) imprinting does not completely suppress maternal Xist transcription during embryo cleavage stages. These unexpected transcriptional regulations of the Xist locus call for a re-evaluation of the early functioning of the maternal imprint on the X-chromosome and suggest that Xist/Tsix antagonist transcriptional activities may participate in imprinting the maternal locus as described at other loci subject to parental imprinting.

  18. Cyclic voltammetry characterization of metal complex imprinted polymer.

    PubMed

    Zeng, Yi Ning; Zheng, Ning; Osborne, Peter G; Li, Yuan Zong; Chang, Wen Bao; Wen, Mei Juan

    2002-01-01

    Polymer capable of specific binding to Cu(2+)-2, 2'-dipyridyl complex was prepared by molecular imprinting technology. The binding specificity of the polymer to the template (Cu(2+)-2, 2'-dipyridyl complex) was investigated by cyclic voltammetric scanning using the carbon paste electrode modified by polymer particles in phosphate buffer solution. Factors that influence rebinding of the imprinted polymer were explored. The results demonstrated that cyclic voltammetry was an efficient approach to explore interactions between template and imprinted polymers.

  19. Development of Improved Crosslinking Monomers for Molecularly Imprinted Materials

    DTIC Science & Technology

    2002-04-05

    Molecular imprinting involves the self-assembled complexation of a substrate to functional monomers to form a pre- polymer complex which is "locked-in" to...on the design of crosslinking monomers for molecular imprinting , we have developed new classes of crosslinked polymers to optimize the performance of...of the design, synthesis, polymerization and performance of these new crosslinking monomers for molecularly imprinted polymers will be reported

  20. Binding Studies on Resins Imprinted with (S)-naproxen

    DTIC Science & Technology

    2002-04-05

    The results are typical of other systems reported in the literature. INTRODUCTION Molecularly imprinted polymers ( MIPs ) are synthetic polymers having...material. These washing experiments were performed on three different MIP -(S)-naproxen samples. A reference non- imprinted polymer was prepared using the...Proceedings. Volume 723. Molecularly Imprinted Materials - Sensors and Other Devices. Symposia Held in San Francisco, California on April 2-5, 2002 To

  1. Molecular Imprinting of Polymeric Core-Shell Nanoparticles

    DTIC Science & Technology

    2002-04-05

    UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP013604 TITLE: Molecular Imprinting of Polymeric Core-Shell Nanoparticles...Soc. Symp. Proc. Vol. 723 © 2002 Materials Research Society M3.2 MOLECULAR IMPRINTING OF POLYMERIC CORE-SHELL NANOPARTICLES Natalia P~rez Moral and...rebinding was performed in an organic solvent. INTRODUCTION Molecularly imprinted polymers ( MIPs ) address the need for robust, simple, fast and efficient

  2. Bolt Cutter Blade's Imprint in Toolmarks Examination.

    PubMed

    Volkov, Nikolai; Finkelstein, Nir; Novoselsky, Yehuda; Tsach, Tsadok

    2015-11-01

    Bolt cutters are known as cutting tools which are used for cutting hard objects and materials, such as padlocks and bars. Bolt cutter blades leave their imprint on the cut objects. When receiving a cut object from a crime scene, forensic toolmarks examiners can determine whether the suspected cutting tool was used in a specific crime or not based on class characteristic marks and individual marks that the bolt cutter blades leave on the cut object. The paper presents preliminary results of a study on ten bolt cutters and suggests a quick preliminary examination-the comparison between the blade thickness and the width of the imprint left by the tool on the cut object. Based on the comparison result, if there is not a match, the examiner can eliminate the feasibility of the use of the suspected cutting tool in a specific crime. This examination simplifies and accelerates the comparison procedure.

  3. Imprinting localized plasmons for enhanced solar cells.

    PubMed

    Dunbar, Ricky B; Pfadler, Thomas; Lal, Niraj N; Baumberg, Jeremy J; Schmidt-Mende, Lukas

    2012-09-28

    Imprinted silver nanovoid arrays are investigated via angle-resolved reflectometry to demonstrate their suitability for plasmonic light trapping. Both wavelength- and subwavelength-scale nanovoids are imprinted into standard solar cell architectures to achieve nanostructured metallic electrodes which provide enhanced absorption for improving solar cell performance. The technique is versatile, low-cost and scalable and can be applied to a wide range of organic semiconductors. Absorption features which are independent of incident polarization and weakly dependent on incident angle reveal localized plasmonic modes at the structured interface. Metallic nanostructure-PCPDTBT:PCBM samples demonstrate absorption enhancements of up to 40%. The structured interface provides light trapping, which boosts absorption at wavelengths where the semiconductors absorb poorly.

  4. Gastric mucormycosis: Diagnosis by imprint cytology.

    PubMed

    Tathe, Shilpa P; Dani, Aarti A; Chawhan, Sanjay M; Meshram, Saroj A; Randale, Archana A; Raut, Waman K

    2016-10-01

    The fungi in the order of Mucorales commonly target diabetics and other immunocompromised hosts, producing fatal respiratory and or CNS infections. Gastrointestinal mucormycosis is uncommon and seldom diagnosed in living patients due to nonspecific clinical manifestations. We report a case of gastric mucormycosis in an immmunocompetent male patient, diagnosed by imprint cytology-a rare site and a rare setting. To the best of our knowledge, this is only the second report of gastric mucormycosis being diagnosed on cytology. As the disease is rapidly progressive and often fatal, early diagnosis is critical to the patient survival. Imprint cytology or brush cytology is extremely useful for the rapid diagnosis of gastric mucormycosis as these organisms are morphologically distinct. Familiarity with the cytomorphology of these organisms assists in the correct diagnosis of this disease. Diagn. Cytopathol. 2016;44:820-822. © 2016 Wiley Periodicals, Inc.

  5. Capacitive Biosensors and Molecularly Imprinted Electrodes

    PubMed Central

    Ertürk, Gizem; Mattiasson, Bo

    2017-01-01

    Capacitive biosensors belong to the group of affinity biosensors that operate by registering direct binding between the sensor surface and the target molecule. This type of biosensors measures the changes in dielectric properties and/or thickness of the dielectric layer at the electrolyte/electrode interface. Capacitive biosensors have so far been successfully used for detection of proteins, nucleotides, heavy metals, saccharides, small organic molecules and microbial cells. In recent years, the microcontact imprinting method has been used to create very sensitive and selective biorecognition cavities on surfaces of capacitive electrodes. This chapter summarizes the principle and different applications of capacitive biosensors with an emphasis on microcontact imprinting method with its recent capacitive biosensor applications. PMID:28218689

  6. Development of a Molecularly Imprinted Biomimetic Electrode

    PubMed Central

    Kindschy, Lisa M.; Alocilja, Evangelyn C.

    2007-01-01

    The technique of molecular imprinting produces artificial receptor sites in a polymer that can be used in a biomimetic sensor. This research extends previous studies of a molecularly imprinted polymer (MIP) biomimetic sensor for the small drug theophylline. The presence of theophylline in the biomimetic sensor was monitored by analyzing the peak currents from cyclic voltammetry experiments. The functional working range of the MIP modified electrode was 2 - 4 mM theophylline. The concentration of theophylline that resulted in the best signal was 3 mM. The MIP sensor showed no response to the structurally related molecule caffeine, and therefore was selective to the target analyte theophylline. This research will provide the foundation for future studies that will result in durable biomimetic sensors that can offer a viable alternative to current sensors.

  7. Capacitive Biosensors and Molecularly Imprinted Electrodes.

    PubMed

    Ertürk, Gizem; Mattiasson, Bo

    2017-02-17

    Capacitive biosensors belong to the group of affinity biosensors that operate by registering direct binding between the sensor surface and the target molecule. This type of biosensors measures the changes in dielectric properties and/or thickness of the dielectric layer at the electrolyte/electrode interface. Capacitive biosensors have so far been successfully used for detection of proteins, nucleotides, heavy metals, saccharides, small organic molecules and microbial cells. In recent years, the microcontact imprinting method has been used to create very sensitive and selective biorecognition cavities on surfaces of capacitive electrodes. This chapter summarizes the principle and different applications of capacitive biosensors with an emphasis on microcontact imprinting method with its recent capacitive biosensor applications.

  8. Parental sex effect in spina bifida: a role for genomic imprinting?

    PubMed

    Chatkupt, S; Lucek, P R; Koenigsberger, M R; Johnson, W G

    1992-11-01

    Fifty families (491 individuals in 137 sibships) with more than one living case of isolated, nonsyndromic spina bifida (SB) were analyzed genetically. There were twice as many gene-carrier females (56) as gene-carrier males (28) (P < 0.005). This was not an artifact of ascertainment bias because the sex ratio of gene-carriers was the same whether the pedigree was obtained through the proband's father or mother. Also, this effect was not observed in other disorders analyzed by the same method. Neither was the effect due to differential fertility because the number and sex of affected and unaffected children per gene-carrier parent were not different for male or female gene-carrier parents. There was no evidence that the missing male gene-carriers were lost by selective spontaneous abortion. There was no deficit of male-to-male or male-to-female transmission, excluding simple X-linked or simple mitochondrial inheritance. If genomic imprinting plays a role in the unequal female and male carrier frequencies in SB, penetrance should differ with parental sex. Penetrance was higher for offspring of female parents than of male parents, but the difference was not statistically significant. In addition, both male and female gene-carriers were frequently found in the same pedigree. Thus, the present data suggest a possible role for imprinting in SB.

  9. Deciphering bloody imprints through chemical enhancement.

    PubMed

    Doherty, P E; Mooney, D J

    1990-03-01

    Obliterated bloody impressions are occasionally submitted to the crime laboratory, and potentially to the document examiner, for decipherment. Nondestructive methods often lead to inconclusive results in these circumstances. With this point in mind, the researchers explored a series of chemical reagents with the intent to enhance bloody imprints to a legible degree. The reagents selected for this comparison include rhodamine dye, luminol, and Coomassie Blue stain.

  10. Nanoscale molecularly imprinted polymers and method thereof

    DOEpatents

    Hart, Bradley R.; Talley, Chad E.

    2008-06-10

    Nanoscale molecularly imprinted polymers (MIP) having polymer features wherein the size, shape and position are predetermined can be fabricated using an xy piezo stage mounted on an inverted microscope and a laser. Using an AMF controller, a solution containing polymer precursors and a photo initiator are positioned on the xy piezo and hit with a laser beam. The thickness of the polymeric features can be varied from a few nanometers to over a micron.

  11. [Biological decontamination of the imprints obtained from different dental materials].

    PubMed

    Brekhlichuk, P P; Petrov, V O; Bati, V V; Levchuk, O B; Boĭko, N V

    2013-01-01

    Microbiological contamination of the imprints made of alginate ("Ypeen") and silicone material ("Speedex") with and without the correction supplement has been investigated. Streptococcus and Staphylococcus have been estimated to be the most survivable species on the imprint surface, however their concentration differ depending on the type of imprints' material. The strains resistant to antibiotics dominated among all the isolated microorganisms. Bacterial preparations based on Bacillus - Biosporin and Subalin and some extracts of edible plants, fruits and berries can be used in dentistry for the decontamination of imprints obtained by the use of different materials.

  12. Molecularly imprinted polymers for alpha-tocopherol delivery.

    PubMed

    Puoci, Francesco; Cirillo, Giuseppe; Curcio, Manuela; Iemma, Francesca; Parisi, Ortensia Ilaria; Castiglione, Mariarosaria; Picci, Nevio

    2008-05-01

    Biomedical applications of antioxidants have increased dramatically since the link between human diseases and oxidative stress was established. This paper focuses on alpha -tocopherol and on the possibility of employing molecularly imprinted polymers as a controlled release device for alpha-tocopherol in gastrointestinal simulating fluids. Polymers were synthesized using methacrylic acid as functional monomer and ethylene glycol dimethacrylate as cross-linker. Considerable differences in recognition characteristics between imprinted and non-imprinted polymers, both in organic and in aqueous media, were observed. Imprinted polymers bound much more alpha-tocopherol and showed a controlled/sustained drug release capacity in gastrointestinal simulating fluids.

  13. Phospholipid imprinted polymers as selective endotoxin scavengers

    NASA Astrophysics Data System (ADS)

    Sulc, Robert; Szekely, Gyorgy; Shinde, Sudhirkumar; Wierzbicka, Celina; Vilela, Filipe; Bauer, David; Sellergren, Börje

    2017-03-01

    Herein we explore phospholipid imprinting as a means to design receptors for complex glycolipids comprising the toxic lipopolysaccharide endotoxin. A series of polymerizable bis-imidazolium and urea hosts were evaluated as cationic and neutral hosts for phosphates and phosphonates, the latter used as mimics of the phospholipid head groups. The bis-imidazolium hosts interacted with the guests in a cooperative manner leading to the presence of tight and well defined 1:2 ternary complexes. Optimized monomer combinations were subsequently used for imprinting of phosphatidic acid as an endotoxin dummy template. Presence of the aforementioned ternary complexes during polymerization resulted in imprinting of lipid dimers – the latter believed to crudely mimic the endotoxin Lipid A motif. The polymers were characterized with respect to template rebinding, binding affinity, capacity and common structural properties, leading to the identification of polymers which were thereafter subjected to an industrially validated endotoxin removal test. Two of the polymers were capable of removing endotoxin down to levels well below the accepted threshold (0.005 EU/mg API) in pharmaceutical production.

  14. Phospholipid imprinted polymers as selective endotoxin scavengers

    PubMed Central

    Sulc, Robert; Szekely, Gyorgy; Shinde, Sudhirkumar; Wierzbicka, Celina; Vilela, Filipe; Bauer, David; Sellergren, Börje

    2017-01-01

    Herein we explore phospholipid imprinting as a means to design receptors for complex glycolipids comprising the toxic lipopolysaccharide endotoxin. A series of polymerizable bis-imidazolium and urea hosts were evaluated as cationic and neutral hosts for phosphates and phosphonates, the latter used as mimics of the phospholipid head groups. The bis-imidazolium hosts interacted with the guests in a cooperative manner leading to the presence of tight and well defined 1:2 ternary complexes. Optimized monomer combinations were subsequently used for imprinting of phosphatidic acid as an endotoxin dummy template. Presence of the aforementioned ternary complexes during polymerization resulted in imprinting of lipid dimers – the latter believed to crudely mimic the endotoxin Lipid A motif. The polymers were characterized with respect to template rebinding, binding affinity, capacity and common structural properties, leading to the identification of polymers which were thereafter subjected to an industrially validated endotoxin removal test. Two of the polymers were capable of removing endotoxin down to levels well below the accepted threshold (0.005 EU/mg API) in pharmaceutical production. PMID:28303896

  15. Mammalian viviparity: a complex niche in the evolution of genomic imprinting

    PubMed Central

    Keverne, E B

    2014-01-01

    Evolution of mammalian reproductive success has witnessed a strong dependence on maternal resources through placental in utero development. Genomic imprinting, which has an active role in mammalian viviparity, also reveals a biased role for matrilineal DNA in its regulation. The co-existence of three matrilineal generations as one (mother, foetus and post-meiotic oocytes) has provided a maternal niche for transgenerational co-adaptive selection pressures to operate. In utero foetal growth has required increased maternal feeding in advance of foetal energetic demands; the mammary glands are primed for milk production in advance of birth, while the maternal hypothalamus is hormonally primed by the foetal placenta for nest building and post-natal care. Such biological forward planning resulted from maternal–foetal co-adaptation facilitated by co-expression of the same imprinted allele in the developing hypothalamus and placenta. This co-expression is concurrent with the placenta interacting with the adult maternal hypothalamus thereby providing a transgenerational template on which selection pressures may operate ensuring optimal maternalism in this and the next generation. Invasive placentation has further required the maternal immune system to adapt and positively respond to the foetal allotype. Pivotal to these mammalian evolutionary developments, genomic imprinting emerged as a monoallelic gene dosage regulatory mechanism of tightly interconnected gene networks providing developmental genetic stability for in utero development. PMID:24569636

  16. Imprinting regulates mammalian snoRNA-encoding chromatin decondensation and neuronal nucleolar size

    PubMed Central

    Leung, Karen N.; Vallero, Roxanne O.; DuBose, Amanda J.; Resnick, James L.; LaSalle, Janine M.

    2009-01-01

    Imprinting, non-coding RNA and chromatin organization are modes of epigenetic regulation that modulate gene expression and are necessary for mammalian neurodevelopment. The only two known mammalian clusters of genes encoding small nucleolar RNAs (snoRNAs), SNRPN through UBE3A(15q11–q13/7qC) and GTL2(14q32.2/12qF1), are neuronally expressed, localized to imprinted loci and involved in at least five neurodevelopmental disorders. Deficiency of the paternal 15q11–q13 snoRNA HBII-85 locus is necessary to cause the neurodevelopmental disorder Prader–Willi syndrome (PWS). Here we show epigenetically regulated chromatin decondensation at snoRNA clusters in human and mouse brain. An 8-fold allele-specific decondensation of snoRNA chromatin was developmentally regulated specifically in maturing neurons, correlating with HBII-85 nucleolar accumulation and increased nucleolar size. Reciprocal mouse models revealed a genetic and epigenetic requirement of the 35 kb imprinting center (IC) at the Snrpn–Ube3a locus for transcriptionally regulated chromatin decondensation. PWS human brain and IC deletion mouse Purkinje neurons showed significantly decreased nucleolar size, demonstrating the essential role of the 15q11–q13 HBII-85 locus in neuronal nucleolar maturation. These results are relevant to understanding the molecular pathogenesis of multiple human neurodevelopmental disorders, including PWS and some causes of autism. PMID:19656775

  17. Parental imprinting regulates insulin-like growth factor signaling: a Rosetta Stone for understanding the biology of pluripotent stem cells, aging and cancerogenesis.

    PubMed

    Ratajczak, M Z; Shin, D-M; Schneider, G; Ratajczak, J; Kucia, M

    2013-04-01

    In recent years, solid evidence has accumulated that insulin-like growth factor-1 (IGF-1) and 2 (IGF-2) regulate many biological processes in normal and malignant cells. Recently, more light has been shed on the epigenetic mechanisms regulating expression of genes involved in IGF signaling (IFS) and it has become evident that these mechanisms are crucial for initiation of embryogenesis, maintaining the quiescence of pluripotent stem cells deposited in adult tissues (for example, very-small embryonic-like stem cells), the aging process, and the malignant transformation of cells. The expression of several genes involved in IFS is regulated at the epigenetic level by imprinting/methylation within differentially methylated regions (DMRs), which regulate their expression from paternal or maternal chromosomes. The most important role in the regulation of IFS gene expression is played by the Igf-2-H19 locus, which encodes the autocrine/paracrine mitogen IGF-2 and the H19 gene, which gives rise to a non-coding RNA precursor of several microRNAs that negatively affect cell proliferation. Among these, miR-675 has recently been demonstrated to downregulate expression of the IGF-1 receptor. The proper imprinting of DMRs at the Igf-2-H19 locus, with methylation of the paternal chromosome and a lack of methylation on the maternal chromosome, regulates expression of these genes so that Igf-2 is transcribed only from the paternal chromosome and H19 (including miR-675) only from the maternal chromosome. In this review, we will discuss the relevance of (i) proper somatic imprinting, (ii) erasure of imprinting and (iii) loss of imprinting within the DMRs at the Igf-2-H19 locus to the expression of genes involved in IFS, and the consequences of these alternative patterns of imprinting for stem cell biology.

  18. Preparation of protein imprinted materials by hierarchical imprinting techniques and application in selective depletion of albumin from human serum

    PubMed Central

    Liu, Jinxiang; Deng, Qiliang; Tao, Dingyin; Yang, Kaiguang; Zhang, Lihua; Liang, Zhen; Zhang, Yukui

    2014-01-01

    Hierarchical imprinting was developed to prepare the protein imprinted materials, as the artificial antibody, for the selective depletion of HSA from the human serum proteome. Porcine serum albumin (PSA) was employed as the dummy template for the fabrication of the recognition sites. To demonstrate the advantages of the hierarchical imprinting, molecularly imprinted polymers prepared by hierarchical imprinting technique (h-MIPs) were compared with those obtained by bulk imprinting (b-MIPs), in terms of the binding capacity, adsorption kinetics, selectivity and synthesis reproducibility. The binding capacity of h-MIPs could reach 12 mg g−1. And saturation binding could be reached in less than 20 min for the h-MIPs. In the protein mixture, h-MIPs exhibit excellent selectivity for PSA, with imprinting factors as about 3.6, much higher than those for non-template proteins. For the proteomic application, the identified protein group number in serum treated by h-MIPs was increased to 422, which is 21% higher than that obtained from the original serum, meanwhile the identified protein group number for the Albumin Removal kit was only 376. The results demonstrate that protein imprinted polymers prepared by hierarchical imprinting technique, might become the artificial antibodies for the selective depletion of high abundance proteins in proteome study. PMID:24976158

  19. Preparation of protein imprinted materials by hierarchical imprinting techniques and application in selective depletion of albumin from human serum

    NASA Astrophysics Data System (ADS)

    Liu, Jinxiang; Deng, Qiliang; Tao, Dingyin; Yang, Kaiguang; Zhang, Lihua; Liang, Zhen; Zhang, Yukui

    2014-06-01

    Hierarchical imprinting was developed to prepare the protein imprinted materials, as the artificial antibody, for the selective depletion of HSA from the human serum proteome. Porcine serum albumin (PSA) was employed as the dummy template for the fabrication of the recognition sites. To demonstrate the advantages of the hierarchical imprinting, molecularly imprinted polymers prepared by hierarchical imprinting technique (h-MIPs) were compared with those obtained by bulk imprinting (b-MIPs), in terms of the binding capacity, adsorption kinetics, selectivity and synthesis reproducibility. The binding capacity of h-MIPs could reach 12 mg g-1. And saturation binding could be reached in less than 20 min for the h-MIPs. In the protein mixture, h-MIPs exhibit excellent selectivity for PSA, with imprinting factors as about 3.6, much higher than those for non-template proteins. For the proteomic application, the identified protein group number in serum treated by h-MIPs was increased to 422, which is 21% higher than that obtained from the original serum, meanwhile the identified protein group number for the Albumin Removal kit was only 376. The results demonstrate that protein imprinted polymers prepared by hierarchical imprinting technique, might become the artificial antibodies for the selective depletion of high abundance proteins in proteome study.

  20. CTCF-dependent chromatin bias constitutes transient epigenetic memory of the mother at the H19-Igf2 imprinting control region in prospermatogonia.

    PubMed

    Lee, Dong-Hoon; Singh, Purnima; Tsai, Shirley Y; Oates, Nathan; Spalla, Alexander; Spalla, Claudio; Brown, Lucy; Rivas, Guillermo; Larson, Garrett; Rauch, Tibor A; Pfeifer, Gerd P; Szabó, Piroska E

    2010-11-24

    Genomic imprints-parental allele-specific DNA methylation marks at the differentially methylated regions (DMRs) of imprinted genes-are erased and reestablished in germ cells according to the individual's sex. Imprint establishment at paternally methylated germ line DMRs occurs in fetal male germ cells. In prospermatogonia, the two unmethylated alleles exhibit different rates of de novo methylation at the H19/Igf2 imprinting control region (ICR) depending on parental origin. We investigated the nature of this epigenetic memory using bisulfite sequencing and allele-specific ChIP-SNuPE assays. We found that the chromatin composition in fetal germ cells was biased at the ICR between the two alleles with the maternally inherited allele exhibiting more H3K4me3 and less H3K9me3 than the paternally inherited allele. We determined genetically that the chromatin bias, and also the delayed methylation establishment in the maternal allele, depended on functional CTCF insulator binding sites in the ICR. Our data suggest that, in primordial germ cells, maternally inherited allele-specific CTCF binding sets up allele-specific chromatin differences at the ICR. The erasure of these allele-specific chromatin marks is not complete before the process of de novo methylation imprint establishment begins. CTCF-dependent allele-specific chromatin composition imposes a maternal allele-specific delay on de novo methylation imprint establishment at the H19/Igf2 ICR in prospermatogonia.

  1. Maternal–fetal conflict, genomic imprinting and mammalian vulnerabilities to cancer

    PubMed Central

    Haig, David

    2015-01-01

    Antagonistic coevolution between maternal and fetal genes, and between maternally and paternally derived genes may have increased mammalian vulnerability to cancer. Placental trophoblast has evolved to invade maternal tissues and evade structural and immunological constraints on its invasion. These adaptations can be co-opted by cancer in intrasomatic selection. Imprinted genes of maternal and paternal origin favour different degrees of proliferation of particular cell types in which they reside. As a result, the set of genes favouring greater proliferation will be selected to evade controls on cell-cycle progression imposed by the set of genes favouring lesser proliferation. The dynamics of stem cell populations will be a particular focus of this intragenomic conflict. Gene networks that are battlegrounds of intragenomic conflict are expected to be less robust than networks that evolve in the absence of conflict. By these processes, maternal–fetal and intragenomic conflicts may undermine evolved defences against cancer. PMID:26056362

  2. Coexistence of two different pseudohypoparathyroidism subtypes (Ia and Ib) in the same kindred with independent Gsα coding mutations and GNAS imprinting defects

    PubMed Central

    Lecumberri, B; Fernández-Rebollo, E; Sentchordi, L; Saavedra, P; Bernal-Chico, A; Pallardo, L F; Jiménez Bustos, J M; Castaño, L; de Santiago, M; Hiort, O; Pérez de Nanclares, G; Bastepe, M

    2011-01-01

    Background Pseudohypoparathyroidism (PHP) defines a rare group of disorders whose common feature is resistance to the parathyroid hormone. Patients with PHP-Ia display additional hormone resistance, Albright hereditary osteodystrophy (AHO) and reduced Gsα activity in easily accessible cells. This form of PHP is associated with heterozygous inactivating mutations in Gsα-coding exons of GNAS, an imprinted gene locus on chromosome 20q13.3. Patients with PHP-Ib typically have isolated parathyroid hormone resistance, lack AHO features and demonstrate normal erythrocyte Gsα activity. Instead of coding Gsα mutations, patients with PHP-Ib display imprinting defects of GNAS, caused, at least in some cases, by genetic mutations within or nearby this gene. Patients Two unrelated PHP families, each of which includes at least one patient with a Gsα coding mutation and another with GNAS loss of imprinting, are reported here. Results One of the patients with GNAS imprinting defects has paternal uniparental isodisomy of chromosome 20q, explaining the observed imprinting abnormalities. The identified Gsα coding mutations include a tetranucleotide deletion in exon 7, which is frequently found in PHP-Ia, and a novel single nucleotide change at the acceptor splice junction of intron 11. Conclusions These molecular data reveal an interesting mixture, in the same family, of both genetic and epigenetic mutations of the same gene. PMID:19858129

  3. The battle of the sexes over seed size: support for both kinship genomic imprinting and interlocus contest evolution.

    PubMed

    Willi, Yvonne

    2013-06-01

    Outcrossing creates a venue for parental conflict. When one sex provides parental care to offspring fertilized by several partners, the nonproviding sex is under selection to maximally exploit the caring sex. The caring sex may counteradapt, and a coevolutionary arms race ensues. Genetic models of this conflict include the kinship theory of genomic imprinting (parent-of-origin-specific expression of maternal-care effectors) and interlocus conflict evolution (interaction between male selfish signals and female abatement). Predictions were tested by measuring the sizes of seeds produced by within-population crosses (diallel design) and between-population crosses in outcrossing and selfing populations of Arabidopsis lyrata. Within-population diallel crosses revealed substantial maternal variance in seed size in most populations. The comparison of between- and within-population crosses showed that seeds were larger when pollen came from another outcrossing population than when pollen came from a selfing or the same population, supporting interlocus contest evolution between male selfish genes and female recognition genes. Evidence for kinship genomic imprinting came from complementary trait means of seed size in reciprocal between-population crosses independent of whether populations were predominantly selfing or outcrossing. Hence, both kinship genomic imprinting and interlocus contest are supported in outcrossing Arabidopsis, whereas only kinship genomic imprinting is important in selfing populations.

  4. Deletions of a differentially methylated CpG island at SNRPN define a putative imprinting control region

    SciTech Connect

    Sutcliffe, J.S.,; Nakao, M.; Beaudet, A.L.

    1994-09-01

    Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are associated with paternal and maternal deficiencies, respectively, of gene expression within human chromosome 15q11-q13, and are caused by deletion, uniparental disomy, or other mutations. Four transcripts designated PAR-5, PAR-7, PAR-1 and PAR-4 were isolated and localized to a region within 300 kb telomeric to the gene encoding small nuclear ribonucleoprotein-associated polypeptide N (SNRPN). Analysis of the transcripts in cultured fibroblasts and lymphoblasts from deletion patients demonstrated that SNRPN, PAR-5 and PAR-1 are expressed exclusively from the paternal chromosome, defining an imprinted domain that spans at least 200 kb. All three imprinted transcripts were absent in cells from three PWS patients (one pair of sibs and one sporadic case) with small deletions that involve a differentially methylated CpG island containing a previously undescribed 5{prime} untranslated exon ({alpha}) of SNRPN. Methylation of the CpG island is specific for the maternal chromosome consistent with paternal expression of the imprinted domain. One deletion, which is benign when maternally transmitted, extends upstream <30 kb from the CpG island, and is associated with altered methylation centromeric to SNRPN, and loss of transcription telomeric to SNRPN, implying the presence of an imprinting control region around the CpG island containing exon {alpha}.

  5. Allele-specific H3K79 Di- versus trimethylation distinguishes opposite parental alleles at imprinted regions.

    PubMed

    Singh, Purnima; Han, Li; Rivas, Guillermo E; Lee, Dong-Hoon; Nicholson, Thomas B; Larson, Garrett P; Chen, Taiping; Szabó, Piroska E

    2010-06-01

    Imprinted gene expression corresponds to parental allele-specific DNA CpG methylation and chromatin composition. Histone tail covalent modifications have been extensively studied, but it is not known whether modifications in the histone globular domains can also discriminate between the parental alleles. Using multiplex chromatin immunoprecipitation-single nucleotide primer extension (ChIP-SNuPE) assays, we measured the allele-specific enrichment of H3K79 methylation and H4K91 acetylation along the H19/Igf2 imprinted domain. Whereas H3K79me1, H3K79me2, and H4K91ac displayed a paternal-specific enrichment at the paternally expressed Igf2 locus, H3K79me3 was paternally biased at the maternally expressed H19 locus, including the paternally methylated imprinting control region (ICR). We found that these allele-specific differences depended on CTCF binding in the maternal ICR allele. We analyzed an additional 11 differentially methylated regions (DMRs) and found that, in general, H3K79me3 was associated with the CpG-methylated alleles, whereas H3K79me1, H3K79me2, and H4K91ac enrichment was specific to the unmethylated alleles. Our data suggest that allele-specific differences in the globular histone domains may constitute a layer of the "histone code" at imprinted genes.

  6. Bovine DNA methylation imprints are established in an oocyte size-specific manner, which are coordinated with the expression of the DNMT3 family proteins.

    PubMed

    O'Doherty, Alan M; O'Shea, Lynne C; Fair, Trudee

    2012-03-01

    A subset of genes, known as imprinted genes, is present in the mammalian genome. Genomic imprinting governs the monoallelic expression of these genes, depending on whether the gene was inherited from the sperm or the egg. This parent-of-origin specific gene expression is generally dependent on the epigenetic modification, DNA methylation, and the DNA methylation status of CpG dinucleotides residing in loci known as differentially methylated regions (DMRs). The enzymatic machinery responsible for the addition of methyl (-CH(3)) groups to the cytosine residue in the CpG dinucleotides are known as DNA methyltransferases (DNMTs). Correct establishment and maintenance of methylation patterns at imprinted genes has been associated with placental function and regulation of embryonic/fetal development. Much work has been carried out on imprinted genes in mouse and human; however, little is known about the methylation dynamics in the bovine oocyte. The primary objective of the present study was to characterize the establishment of methylation at maternally imprinted genes in bovine growing oocytes and to determine if the expression of the bovine DNMTs-DNMT3A, DNMT3B, and DNMT3L-was coordinated with DNA methylation during oocyte development. To this end, a panel of maternally imprinted genes was selected (SNRPN, MEST, IGF2R, PEG10, and PLAGL1) and putative DMRs for MEST, IGF2R, PEG10, and PLAGL1 were identified within the 5' regions for each gene; the SNRPN DMR has been reported previously. Conventional bisulfite sequencing revealed that methylation marks were acquired at all five DMRs investigated in an oocyte size-dependent fashion. This was confirmed for a selection of genes using pyrosequencing analysis. Furthermore, mRNA expression and protein analysis revealed that DNMT3A, DNMT3B, and DNMT3L are also present in the bovine oocyte during its growth phase. This study demonstrates for the first time that an increase in bovine imprinted gene DMR methylation occurs during

  7. Mycotoxin analysis using imprinted materials technology: Recent developments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Molecular imprinting technology is an attractive, cost effective, and robust alternative to address the limitations of highly selective natural receptors, such as antibodies and aptamers. The field of molecular imprinting has seen a recent surge in growth with several commercially available products...

  8. Molecularly imprinted nanotubes for enantioselective drug delivery and controlled release.

    PubMed

    Yin, Junfa; Cui, Yue; Yang, Gengliang; Wang, Hailin

    2010-11-07

    Molecularly imprinted nanotubes for enantioselective drug delivery and controlled release are fabricated by the combination of template synthesis and ATRP grafting. The release of R-propranolol from the imprinted nanotubes in rats is restricted while the release of pharmacologically active S-enantiomer is greatly promoted.

  9. Investigation of imprinting parameters and their recognition nature for quinine-molecularly imprinted polymers

    NASA Astrophysics Data System (ADS)

    He, Jian-feng; Zhu, Quan-hong; Deng, Qin-ying

    2007-08-01

    A series of molecularly imprinted polymers (MIPs) was prepared using quinine as the template molecules by bulk polymerization. The presence of monomer-template solution complexes in non-covalent MIPs systems has been verified by both fluorescence and UV-vis spectrometric detection. The influence of different synthetic conditions (porogen, functional monomer, cross-linkers, initiation methods, monomer-template ratio, etc.) on recognition properties of the polymers was investigated. Scatchard analysis revealed that two classes of binding sites were formed in the imprinted polymer. The corresponding dissociation constants were estimated to be 45.00 μmol l -1 and 1.42 mmol l -1, respectively, by utilizing a multi-site recognition model. The binding characteristics of the imprinted polymers were explored in various solvents using equilibrium binding experiments. In the organic media, results suggested that polar interactions (hydrogen bonding, ionic interactions, etc.) between acidic monomer/polymer and template molecules were mainly responsible for the recognition, whereas in aqueous media, hydrophobic interactions had a remarkable non-specific contribution to the overall binding. The specificity of MIP was evaluated by rebinding the other structurally similar compounds. The results indicated that the imprinted polymers exhibited an excellent stereo-selectivity toward quinine.

  10. Fluorescense Anisotropy Studies of Molecularly Imprinted Polymer Sensors

    SciTech Connect

    Chen, Yin-Chu; Wang, Zheming; Yan, Mingdi; Prahl, Scott A.

    2005-08-03

    Molecularly imprinted polymers (MIPs) are used as recognition elements in biochemical sensors. In a fluorescence-based MIP sensor system, it is difficult to distinguish the analyte fluorescence from the background fluorescence of the polymer itself. We studied steady-state fluorescence anisotropy of anthracene imprinted in a polymer (polyurethane) matrix. Vertically polarized excitation light was incident on MIP films coated on silicon wafers; vertically and horizontally polarized emission was measured. We compared the fluorescence anisotropy of MIPs with imprinted molecules, MIPs with the imprinted molecules extracted, MIPs with rebound molecules, and nonimprinted control polymers (without binding cavities). It is shown that differences in fluorescence anisotropy between the polymers and imprinted fluorescent molecules may provide a means to discriminate the fluorescence of analyte from that of the background polymer.

  11. Small organic molecular imprinted materials: their preparation and application.

    PubMed

    Jiang, Xiaoman; Jiang, Na; Zhang, Haixia; Liu, Mancang

    2007-09-01

    Molecular imprinting is a technique for preparing polymeric materials that are capable of recognizing and binding the desired molecular target with a high affinity and selectivity. The materials can be applied to a wide range of target molecules, even those for which no natural binder exists or whose antibodies are difficult to raise. The imprinting of small organic molecules (e.g., pharmaceuticals, pesticides, amino acids, steroids, and sugars) is now almost routine. In this review, we pay special attention to the synthesis and application of molecular imprinted polymer (MIPs) imprinted with small organic molecules, including herbicides, pesticides, and drugs. The advantages, applications, and recent developments in small organic molecular imprinted technology are highlighted.

  12. Photobleaching imprinting microscopy: seeing clearer and deeper.

    PubMed

    Gao, Liang; Garcia-Uribe, Alejandro; Liu, Yan; Li, Chiye; Wang, Lihong V

    2014-01-15

    We present a generic sub-diffraction-limited imaging method - photobleaching imprinting microscopy (PIM) - for biological fluorescence imaging. A lateral resolution of 110 nm was measured, more than a twofold improvement over the optical diffraction limit. Unlike other super-resolution imaging techniques, PIM does not require complicated illumination modules or specific fluorescent dyes. PIM is expected to facilitate the conversion of super-resolution imaging into a routine lab tool, making it accessible to a much broader biological research community. Moreover, we show that PIM can increase the image contrast of biological tissue, effectively extending the fundamental depth limit of multi-photon fluorescence microscopy.

  13. Band structure controlled by chiral imprinting

    NASA Astrophysics Data System (ADS)

    Castro-Garay, P.; Adrian Reyes, J.; Ramos-Garcia, R.

    2007-09-01

    Using the configuration of an imprinted cholesteric elastomer immersed in a racemic solvent, the authors find the solution of the boundary-value problem for the reflection and transmission of incident optical waves due to the elastomer. They show a significant width reduction of the reflection band for certain values of nematic penetration depth, which depends on the volume fraction of molecules from the solvent, whose handedness is preferably absorbed. The appearance of nested band gaps of both handednesses during the sorting mixed chiral process is also obtained. This suggests the design of chemically controlled optical filters and optically monitored chiral pumps.

  14. The impact of imprinting: Prader-Willi syndrome resulting from chromosome translocation, recombination, and nondisjunction.

    PubMed Central

    Toth-Fejel, S.; Olson, S.; Gunter, K.; Quan, F.; Wolford, J.; Popovich, B. W.; Magenis, R. E.

    1996-01-01

    Prader-Willi syndrome (PWS) is most often the result of a deletion of bands q11.2-q13 of the paternally derived chromosome 15, but it also occurs either because of maternal uniparental disomy (UPD) of this region or, rarely, from a methylation imprinting defect. A significant number of cases are due to structural rearrangements of the pericentromeric region of chromosome 15. We report two cases of PWS with UPD in which there was a meiosis I nondisjunction error involving an altered chromosome 15 produced by both a translocation event between the heteromorphic satellite regions of chromosomes 14 and 15 and recombination. In both cases, high-resolution banding of the long arm was normal, and FISH of probes D15S11, SNRPN, D15S10, and GABRB3 indicated no loss of this material. Chromosome heteromorphism analysis showed that each patient had maternal heterodisomy of the chromosome 15 short arm, whereas PCR of microsatellites demonstrated allele-specific maternal isodisomy and heterodisomy of the long arm. SNRPN gene methylation analysis revealed only a maternal imprint in both patients. We suggest that the chromosome structural rearrangements, combined with recombination in these patients, disrupted normal segregation of an imprinted region, resulting in uniparental disomy and PWS. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:8651261

  15. Atypical Angelman syndrome due to a mosaic imprinting defect: Case reports and review of the literature.

    PubMed

    Le Fevre, Anna; Beygo, Jasmin; Silveira, Cheryl; Kamien, Benjamin; Clayton-Smith, Jill; Colley, Alison; Buiting, Karin; Dudding-Byth, Tracy

    2017-03-01

    Angelman syndrome (AS) is characterized by severe intellectual disability, limited, or absent speech and a generally happy demeanor. The four known etiological mechanisms; deletions, uniparental disomy, imprinting defects, and UBE3A mutation all affect expression of the UBE3A gene at 15q11-q13. An atypical phenotype is seen in individuals who are mosaic for a chromosome 15q11-q13 imprinting defect on the maternal allele. These patients present with a milder phenotype, often with hyperphagia and obesity or non-specific intellectual disability. Unlike typical AS syndrome, they can have a vocabulary up to 100 words and speak in sentences. Ataxia and seizures may not be present, and the majority of individuals do not have microcephaly. Here we review the current literature and present three individuals with atypical AS caused by a mosaic imprinting defect to demonstrate why DNA methylation analysis at the SNRPN locus needs to be considered in a broader clinical context. © 2017 Wiley Periodicals, Inc.

  16. The impact of imprinting: Prader-Willi syndrome resulting from chromosome translocation, recombination, and nondisjunction

    SciTech Connect

    Toth-Fejel, S.; Olson, S.; Gunter, K.

    1996-05-01

    Prader-Willi syndrome (PWS) is most often the result of a deletion of bands q11.2-q13 of the paternally derived chromosome 15, but it also occurs either because of maternal uniparental disomy (UPD) of this region or, rarely, from a methylation imprinting defect. A significant number of cases are due to structural rearrangements of the pericentromeric region of chromosome 15. We report two cases of PWS with UPD in which there was a meiosis I nondisjunction error involving an altered chromosome 15 produced by both a translocation event between the heteromorphic satellite regions of chromosomes 14 and 15 and recombination. In both cases, high-resolution banding of the long arm was normal, and FISH of probes D15S11, SNRPN, D15S10, and GABRB3 indicated no loss of this material. Chromosome heteromorphism analysis showed that each patient had maternal heterodisomy of the chromosome 15 short arm, whereas PCR of microsatellites demonstrated allele-specific maternal isodisomy and heterodisomy of the long arm. SNRPN gene methylation analysis revealed only a maternal imprint in both patients. We suggest that the chromosome structural rearrangements, combined with recombination in these patients, disrupted normal segregation of an imprinted region, resulting in uniparental disomy and PWS. 30 refs., 6 figs., 1 tab.

  17. Disrupted imprinting status at the H19 differentially methylated region is associated with the resorbed embryo phenotype in rats.

    PubMed

    Pathak, Shilpa; Saxena, Madhurima; D'Souza, Ryan; Balasinor, N H

    2010-01-01

    Igf2, an imprinted gene that is paternally expressed in embryos, encodes an embryonic growth factor. An important regulator of Igf2 expression is methylation of the H19 differentially methylated region (DMR). A significant association has been observed between sperm methylation status at the H19 DMR and post-implantation loss. In addition, tamoxifen treatment has been shown to increase post-implantation loss and reduce DNA methylation at the H19 DMR in rat spermatozoa. Because this DMR is a primary DMR transmitting epigenetic imprint information from the gametes to the embryo, the aim of the present study was to determine the imprinting status of H19 DMR in post-implantation normal and resorbed embryos (F(1)) and to compare it with the H19 DMR in the spermatozoa of the respective sires. Analysis of the H19 DMR revealed methylation errors in resorbed embryo that were also observed in their sires' spermatozoa in the control and tamoxifen-treated groups. Expression analysis of the reciprocally imprinted genes Igf2 and H19 showed significant downregulation of Igf2 protein without any effect on H19 transcript levels in the resorbed embryos. The results indicate an association between disrupted imprinting status at the H19 DMR in resorbed embryos and the spermatozoa from their respective sires regardless of treatment, implying a common mechanism of resorption. The results demonstrate transmission of methylation errors at the Igf2-H19 locus through the paternal germline to the subsequent generation, emphasising the role of paternal factors during embryogenesis.

  18. Genomic imbalance in the centromeric 11p15 imprinting center in three families: Further evidence of a role for IC2 as a cause of Russell-Silver syndrome.

    PubMed

    Cytrynbaum, Cheryl; Chong, Karen; Hannig, Vickie; Choufani, Sanaa; Shuman, Cheryl; Steele, Leslie; Morgan, Thomas; Scherer, Stephen W; Stavropoulos, Dimitri J; Basran, Raveen K; Weksberg, Rosanna

    2016-10-01

    Russell-Silver syndrome is a heterogeneous disorder characterized by intrauterine growth retardation, postnatal growth deficiency, characteristic facial appearance, and other variable features. Genetic and epigenetic alterations are identified in about 60% of individuals with Russell-Silver syndrome. Most frequently, Russell-Silver syndrome is caused by altered gene expression on chromosome 11p15 due to loss of methylation at the telomeric imprinting center. To date there have been a handful of isolated clinical reports implicating the centromeric imprinting center 2 in the etiology of Russell-Silver syndrome. Here we report three new families with genomic imbalances, involving imprinting center 2 resulting in gain of methylation at this center and a Russell-Silver syndrome phenotype, including two families with a maternally inherited microduplication and the first pediatric patient with a paternally derived microdeletion. The findings in our families provide additional evidence of a role for imprinting center 2 in the etiology of Russell-Silver syndrome and suggest that imprinting center 2 imprinting abnormalities may be a more common cause of Russell-Silver syndrome than previously recognized. Furthermore, our findings together with previous clinical reports of genomic imbalances involving imprinting center 2 serve to underscore the complexity of the epigenetic regulation of the 11p15 region making it challenging to predict phenotype on the basis of genotype alone. © 2016 Wiley Periodicals, Inc.

  19. Avoiding medication mixups. Identifiable imprint codes.

    PubMed Central

    Vasudevan, P; Del Gianni, T; Robertson, W O

    1996-01-01

    This study was done to determine if current imprinting of solid medication forms permits health care professionals to identify the manufacturers involved so as to be able to activate the hierarchic identification system mandated by the Food and Drug Administration. We tested 15 representatives of 6 groups of health professionals for their ability to identify the manufacturer after having examined 30 solid-dosage forms drawn from a pseudo-random sample of stock hospital formulary products. The correct identification of the manufacturer was the sole criterion. Of the 2,700 opportunities, the manufacturer was able to be identified for only 43%. Nurses and medical students had a 35% success rate, pharmacists and poison center specialists a 55% success rate, and residents and attending physicians a 40% rate. None approached 95% accuracy. Currently employed imprints fail in their objective to permit health care professionals--or the general public--to rapidly identify prescription drugs. The manufacturers' logotypes need to be modified if this identification system is to be implemented. We propose a simple voluntary collaborative effort by the pharmaceutical industry to solve the problem. PMID:9000855

  20. Econazole imprinted textiles with antifungal activity.

    PubMed

    Hossain, Mirza Akram; Lalloz, Augustine; Benhaddou, Aicha; Pagniez, Fabrice; Raymond, Martine; Le Pape, Patrice; Simard, Pierre; Théberge, Karine; Leblond, Jeanne

    2016-04-01

    In this work, we propose pharmaceutical textiles imprinted with lipid microparticles of Econazole nitrate (ECN) as a mean to improve patient compliance while maintaining drug activity. Lipid microparticles were prepared and characterized by laser diffraction (3.5±0.1 μm). Using an optimized screen-printing method, microparticles were deposited on textiles, as observed by scanning electron microscopy. The drug content of textiles (97±3 μg/cm(2)) was reproducible and stable up to 4 months storage at 25 °C/65% Relative Humidity. Imprinted textiles exhibited a thermosensitive behavior, as witnessed by a fusion temperature of 34.8 °C, which enabled a larger drug release at 32 °C (temperature of the skin) than at room temperature. In vitro antifungal activity of ECN textiles was compared to commercial 1% (wt/wt) ECN cream Pevaryl®. ECN textiles maintained their antifungal activity against a broad range of Candida species as well as major dermatophyte species. In vivo, ECN textiles also preserved the antifungal efficacy of ECN on cutaneous candidiasis infection in mice. Ex vivo percutaneous absorption studies demonstrated that ECN released from pharmaceutical textiles concentrated more in the upper skin layers, where the fungal infections develop, as compared to dermal absorption of Pevaryl®. Overall, these results showed that this technology is promising to develop pharmaceutical garments textiles for the treatment of superficial fungal infections.

  1. Micro and nanofabrication of molecularly imprinted polymers.

    PubMed

    Bompart, Marc; Haupt, Karsten; Ayela, Cédric

    2012-01-01

    Molecularly imprinted polymers (MIPs) are tailor-made receptors that possess the most important feature of biological antibodies and receptors - specific molecular recognition. They can thus be used in applications where selective binding events are of importance, such as chemical sensors, biosensors and biochips. For the development of microsensors, sensor arrays and microchips based on molecularly imprinted polymers, micro and nanofabrication methods are of great importance since they allow the patterning and structuring of MIPs on transducer surfaces. It has been shown that because of their stability, MIPs can be easily integrated in a number of standard microfabrication processes. Thereby, the possibility of photopolymerizing MIPs is a particular advantage. In addition to specific molecular recognition properties, nanostructured MIPs and MIP nanocomposites allow for additional interesting properties in such sensing materials, for example, amplification of electromagnetic waves by metal nanoparticles, magnetic susceptibility, structural colors in photonic crystals, or others. These materials will therefore find applications in particular for chemical and biochemical detection, monitoring and screening.

  2. Molecularly Imprinted Filtering Adsorbents for Odor Sensing

    PubMed Central

    Shinohara, Sho; Chiyomaru, You; Sassa, Fumihiro; Liu, Chuanjun; Hayashi, Kenshi

    2016-01-01

    Versatile odor sensors that can discriminate among huge numbers of environmental odorants are desired in many fields, including robotics, environmental monitoring, and food production. However, odor sensors comparable to an animal’s nose have not yet been developed. An animal’s olfactory system recognizes odor clusters with specific molecular properties and uses this combinatorial information in odor discrimination. This suggests that measurement and clustering of odor molecular properties (e.g., polarity, size) using an artificial sensor is a promising approach to odor sensing. Here, adsorbents composed of composite materials with molecular recognition properties were developed for odor sensing. The selectivity of the sensor depends on the adsorbent materials, so specific polymeric materials with particular solubility parameters were chosen to adsorb odorants with various properties. The adsorption properties of the adsorbents could be modified by mixing adsorbent materials. Moreover, a novel molecularly imprinted filtering adsorbent (MIFA), composed of an adsorbent substrate covered with a molecularly imprinted polymer (MIP) layer, was developed to improve the odor molecular recognition ability. The combination of the adsorbent and MIP layer provided a higher specificity toward target molecules. The MIFA thus provides a useful technique for the design and control of adsorbents with adsorption properties specific to particular odor molecules. PMID:27886070

  3. Dynamic changes in paternal X-chromosome activity during imprinted X-chromosome inactivation in mice

    PubMed Central

    Patrat, Catherine; Okamoto, Ikuhiro; Diabangouaya, Patricia; Vialon, Vivian; Le Baccon, Patricia; Chow, Jennifer; Heard, Edith

    2009-01-01

    In mammals, X-chromosome dosage compensation is achieved by inactivating one of the two X chromosomes in females. In mice, X inactivation is initially imprinted, with inactivation of the paternal X (Xp) chromosome occurring during preimplantation development. One theory is that the Xp is preinactivated in female embryos, because of its previous silence during meiosis in the male germ line. The extent to which the Xp is active after fertilization and the exact time of onset of X-linked gene silencing have been the subject of debate. We performed a systematic, single-cell transcriptional analysis to examine the activity of the Xp chromosome for a panel of X-linked genes throughout early preimplantation development in the mouse. Rather than being preinactivated, we found the Xp to be fully active at the time of zygotic gene activation, with silencing beginning from the 4-cell stage onward. X-inactivation patterns were, however, surprisingly diverse between genes. Some loci showed early onset (4–8-cell stage) of X inactivation, and some showed extremely late onset (postblastocyst stage), whereas others were never fully inactivated. Thus, we show that silencing of some X-chromosomal regions occurs outside of the usual time window and that escape from X inactivation can be highly lineage specific. These results reveal that imprinted X inactivation in mice is far less concerted than previously thought and highlight the epigenetic diversity underlying the dosage compensation process during early mammalian development. PMID:19273861

  4. DNA methylation errors in imprinting disorders and assisted reproductive technology.

    PubMed

    Chiba, Hatsune; Hiura, Hitoshi; Okae, Hiroaki; Miyauchi, Naoko; Sato, Fumi; Sato, Akiko; Arima, Takahiro

    2013-10-01

    There have been increased incident reports of rare imprinting disorders associated with assisted reproductive technology (ART). ART is an important treatment for infertile people of reproductive age and is increasingly common. The identification of epigenetic changes at imprinted loci in ART infants has led to the suggestion that the techniques themselves may predispose embryos to acquisition of imprinting errors and disease. It is still unknown, however, at what point(s) these imprinting errors arise, or the risk factors. In this review it was hypothesized that the particular steps of the ART process may be prone to induction of imprinting methylation errors during gametogenesis, fertilization and early embryonic development. In addition, imprinting diseases and their causes are explained. Moreover, using a Japanese nationwide epidemiological study of imprinting diseases, their association with ART is determined. Epigenetic studies are required to understand the pathogenesis of this association; the ART-related risk factor(s); and the precautions that can be taken to prevent the occurrence of these syndromes. It is hoped that the constitution of children born after ART will indicate the safest and most ethical approach to use, which will be invaluable for the future development of standard ART treatment.

  5. Sustained in vivo release from imprinted therapeutic contact lenses.

    PubMed

    Tieppo, A; White, C J; Paine, A C; Voyles, M L; McBride, M K; Byrne, M E

    2012-02-10

    In this paper, we demonstrate the successful in vivo extended release of a small molecular weight therapeutic, ketotifen fumarate (MW=425), from molecularly imprinted, therapeutic contact lenses. This is the first time that a steady, effective concentration of drug is maintained in the tear film from a contact lens for an extended period of time for the entire duration of lens wear. Poly(HEMA-co-AA-co-AM-co-NVP-co-PEG200DMA) soft contact lenses were prepared (100±5 μm thickness, diameter 11.8 mm, power zero), and a constant tear film concentration of 170±30 μg/mL was measured for up to 26 hrs in a New Zealand white rabbit model. The results showed a dramatic increase in ketotifen mean residence time (MRT) and bioavailability compared to topical drop therapy and drug soaked lenses. The MRT for imprinted lenses was 12.47±3.99 hrs, ~4 and 50 fold greater than non-imprinted lenses and 0.035% eye drops (Zaditor®), respectively. Furthermore, AUC(0-26 hrs) was 9 and 94 fold greater for imprinted lenses than non-imprinted lenses and eye drops, respectively. The results indicate that molecular imprinting provides an exciting rational engineering strategy for sustained release. It is clear that imprinted lenses are very promising combination devices and are much more effective and efficient delivery devices than eye drops.

  6. Studies on molecular recognition of thymidines with molecularly imprinted polymers

    NASA Astrophysics Data System (ADS)

    Chen, Zhen-He; Luo, Ai-Qin; Sun, Li-Quan

    2009-07-01

    Molecularly imprinted polymers (MIPs) with excellent molecular recognition ability have been used in chemical sensors, chromatographic separation and biochemical analyses. Thymidine is an important part of DNA for biomolecular recognition and the intermediate of many medicines. The polymers imprinted with the template of thymidine and 5'-Otosylthymidine have been prepared, using a non-proton solvent, acetonitrile as the porogen. Direct imprinting with thymidine could not form strong molecular interaction sites in this system. Relative MIPs were obtained by bulk polymerization and their adsorption capacities were investigated. The adsorption capacities of MIP (P2) and nonimprinted polymer (P20) for thymidine are 0.120 mg•g-1and 0.103 mg•g-1, respectively. The imprinting factor is 1.17. As 5'-O-tosylthymidine is more soluble than thymidine moiety in acetonitrile and give rise to more sites of molecular recognition. The results demonstrated that the imprinted polymers were able to bind and recognize thymidine moderately in acetonitrile. MIPs imprinted with 5'-O-tosylthymidine like nature enzymes displayed some recognition ability to its analogues. The insoluble derivatives in the non-proton solvent can be an effective template to prepare efficient imprinting recognition sites.

  7. Characterization of the Binding Properties of Molecularly Imprinted Polymers.

    PubMed

    Ansell, Richard J

    2015-01-01

    The defining characteristic of the binding sites of any particular molecularly imprinted material is heterogeneity: that is, they are not all identical. Nonetheless, it is useful to study their fundamental binding properties, and to obtain average properties. In particular, it has been instructive to compare the binding properties of imprinted and non-imprinted materials. This chapter begins by considering the origins of this site heterogeneity. Next, the properties of interest of imprinted binding sites are described in brief: affinity, selectivity, and kinetics. The binding/adsorption isotherm, the graph of concentration of analyte bound to a MIP versus concentration of free analyte at equilibrium, over a range of total concentrations, is described in some detail. Following this, the techniques for studying the imprinted sites are described (batch-binding assays, radioligand binding assays, zonal chromatography, frontal chromatography, calorimetry, and others). Thereafter, the parameters that influence affinity, selectivity and kinetics are discussed (solvent, modifiers of organic solvents, pH of aqueous solvents, temperature). Finally, mathematical attempts to fit the adsorption isotherms for imprinted materials, so as to obtain information about the range of binding affinities characterizing the imprinted sites, are summarized.

  8. Shape recognition of microbial cells by colloidal cell imprints

    NASA Astrophysics Data System (ADS)

    Borovička, Josef; Stoyanov, Simeon D.; Paunov, Vesselin N.

    2013-08-01

    We have engineered a class of colloids which can recognize the shape and size of targeted microbial cells and selectively bind to their surfaces. These imprinted colloid particles, which we called ``colloid antibodies'', were fabricated by partial fragmentation of silica shells obtained by templating the targeted microbial cells. We successfully demonstrated the shape and size recognition between such colloidal imprints and matching microbial cells. High percentage of binding events of colloidal imprints with the size matching target particles was achieved. We demonstrated selective binding of colloidal imprints to target microbial cells in a binary mixture of cells of different shapes and sizes, which also resulted in high binding selectivity. We explored the role of the electrostatic interactions between the target cells and their colloid imprints by pre-coating both of them with polyelectrolytes. Selective binding occurred predominantly in the case of opposite surface charges of the colloid cell imprint and the targeted cells. The mechanism of the recognition is based on the amplification of the surface adhesion in the case of shape and size match due to the increased contact area between the target cell and the colloidal imprint. We also tested the selective binding for colloid imprints of particles of fixed shape and varying sizes. The concept of cell recognition by colloid imprints could be used for development of colloid antibodies for shape-selective binding of microbes. Such colloid antibodies could be additionally functionalized with surface groups to enhance their binding efficiency to cells of specific shape and deliver a drug payload directly to their surface or allow them to be manipulated using external fields. They could benefit the pharmaceutical industry in developing selective antimicrobial therapies and formulations.

  9. Genes in mammalian reproduction

    SciTech Connect

    Gwatkin, R.B.L.

    1996-11-01

    This is an informative book which deals mainly with genomic imprinting, the role of steroid hormones in development, the expression of a variety of genes during development and the link to hereditary diseases. It is an up-to-date review in a field that is quickly changing and provides valuable basic information and current research trends.

  10. DNA methylation imprints on the IG-DMR of the Dlk1-Gtl2 domain in mouse male germline.

    PubMed

    Hiura, Hitoshi; Komiyama, Junichi; Shirai, Motomu; Obata, Yayoi; Ogawa, Hidehiko; Kono, Tomohiro

    2007-04-03

    Mouse genomes show a large cluster of imprinted genes at the Dlk1-Gtl2 domain in the distal region of chromosome 12. An intergenic-differentially methylated region (IG-DMR) located between Dlk1 and Gtl2 is specifically methylated in the male germline; IG-DMR regulates the parental allele-specific expression of imprinted genes. Here, we show the resetting of IG-DMR methylation marks during male germ-cell differentiation. For parental allele-specific methylation analysis, polymorphisms were detected in a 2.6-kb IG-DMR in three mouse strains. Bisulfite methylation analysis showed erasure of the marks by E14 and re-establishment before birth. The IG-DMR methylation status was maintained in spermatogonia and spermatocytes of mature testes. The IG-DMR methylation status established before birth is thus maintained throughout the lifetime in the male germline.

  11. Behavioural and cognitive abnormalities in an imprinting centre deletion mouse model for Prader-Willi syndrome.

    PubMed

    Relkovic, Dinko; Doe, Christine M; Humby, Trevor; Johnstone, Karen A; Resnick, James L; Holland, Anthony J; Hagan, Jim J; Wilkinson, Lawrence S; Isles, Anthony R

    2010-01-01

    The genes in the imprinted cluster on human chromosome 15q11-q13 are known to contribute to psychiatric conditions such as schizophrenia and autism. Major disruptions of this interval leading to a lack of paternal allele expression give rise to Prader-Willi syndrome (PWS), a neurodevelopmental disorder with core symptoms of a failure to thrive in infancy and, on emergence from infancy, learning disabilities and over-eating. Individuals with PWS also display a number of behavioural problems and an increased incidence of neuropsychiatric abnormalities, which recent work indicates involve aspects of frontal dysfunction. To begin to examine the contribution of genes in this interval to relevant psychological and behavioural phenotypes, we exploited the imprinting centre (IC) deletion mouse model for PWS (PWS-IC(+/-)) and the five-choice serial reaction time task (5-CSRTT), which is primarily an assay of visuospatial attention and response control that is highly sensitive to frontal manipulations. Locomotor activity, open-field behaviour and sensorimotor gating were also assessed. PWS-IC(+/-) mice displayed reduced locomotor activity, increased acoustic startle responses and decreased prepulse inhibition of startle responses. In the 5-CSRTT, the PWS-IC(+/-) mice showed deficits in discriminative response accuracy, increased correct reaction times and increased omissions. Task manipulations confirmed that these differences were likely to be due to impaired attention. Our data recapitulate several aspects of the PWS clinical condition, including findings consistent with frontal abnormalities, and may indicate novel contributions of the imprinted genes found in 15q11-q13 to behavioural and cognitive function generally.

  12. Aberrant epigenetic reprogramming of imprinted microRNA-127 and Rtl1 in cloned mouse embryos

    SciTech Connect

    Cui Xiangshun; Zhang Dingxiao; Ko, Yoeung-Gyu; Kim, Nam-Hyung

    2009-02-06

    The microRNA (miRNA) genes mir-127 and mir-136 are located near two CpG islands in the imprinted mouse retrotransposon-like gene Rtl1, a key gene involved in placenta formation. These miRNAs appear to be involved in regulating the imprinting of Rtl1. To obtain insights into the epigenetic reprogramming of cloned embryos, we compared the expression levels of mir-127 and mir-136 in fertilized mouse embryos, parthenotes, androgenotes and cloned embryos developing in vitro. We also examined the DNA methylation status of the promoter regions of Rtl1 and mir-127 in these embryos. Our data showed that mir-127 and mir-136 were highly expressed in parthenotes, but rarely expressed in androgenotes. Interestingly, the expression levels of mir-127 and mir-136 in parthenotes were almost twice that seen in the fertilized embryos, but were much lower in the cloned embryos. The Rtl1 promoter region was hyper-methylated in blastocyst stage parthenotes (75.0%), moderately methylated (32.4%) in the fertilized embryos and methylated to a much lower extent ({approx}10%) in the cloned embryos. Conversely, the promoter region of mir-127 was hypo-methylated in parthenogenetically activated embryos (0.4%), moderately methylated (30.0%) in fertilized embryos and heavily methylated in cloned blastocysts (63-70%). These data support a role for mir-127 and mir-136 in the epigenetic reprogramming of the Rtl1 imprinting process. Analysis of the aberrant epigenetic reprogramming of mir-127 and Rtl1 in cloned embryos may help to explain the nuclear reprogramming procedures that occur in donor cells following somatic cell nuclear transfer (SCNT)

  13. Stochastic Loss of Silencing of the Imprinted Ndn/NDN Allele, in a Mouse Model and Humans with Prader-Willi Syndrome, Has Functional Consequences

    PubMed Central

    Unmehopa, Unga; Matarazzo, Valery; Watrin, Françoise; Linke, Matthias; Georges, Beatrice; Bischof, Jocelyn; Dijkstra, Femke; Bloemsma, Monique; Corby, Severine; Michel, François J.; Wevrick, Rachel; Zechner, Ulrich; Swaab, Dick; Dudley, Keith; Bezin, Laurent; Muscatelli, Françoise

    2013-01-01

    Genomic imprinting is a process that causes genes to be expressed from one allele only according to parental origin, the other allele being silent. Diseases can arise when the normally active alleles are not expressed. In this context, low level of expression of the normally silent alleles has been considered as genetic noise although such expression has never been further studied. Prader-Willi Syndrome (PWS) is a neurodevelopmental disease involving imprinted genes, including NDN, which are only expressed from the paternally inherited allele, with the maternally inherited allele silent. We present the first in-depth study of the low expression of a normally silent imprinted allele, in pathological context. Using a variety of qualitative and quantitative approaches and comparing wild-type, heterozygous and homozygous mice deleted for Ndn, we show that, in absence of the paternal Ndn allele, the maternal Ndn allele is expressed at an extremely low level with a high degree of non-genetic heterogeneity. The level of this expression is sex-dependent and shows transgenerational epigenetic inheritance. In about 50% of mutant mice, this expression reduces birth lethality and severity of the breathing deficiency, correlated with a reduction in the loss of serotonergic neurons. In wild-type brains, the maternal Ndn allele is never expressed. However, using several mouse models, we reveal a competition between non-imprinted Ndn promoters which results in monoallelic (paternal or maternal) Ndn expression, suggesting that Ndn allelic exclusion occurs in the absence of imprinting regulation. Importantly, specific expression of the maternal NDN allele is also detected in post-mortem brain samples of PWS individuals. Our data reveal an unexpected epigenetic flexibility of PWS imprinted genes that could be exploited to reactivate the functional but dormant maternal alleles in PWS. Overall our results reveal high non-genetic heterogeneity between genetically identical individuals

  14. Terahertz wire grid polarizer fabricated by imprinting porous silicon.

    PubMed

    Imakita, Kenji; Kamada, Takeshi; Fujii, Minoru; Aoki, Kanna; Mizuhata, Minoru; Hayashi, Shinji

    2013-12-01

    A terahertz (THz) wire-grid polarizer is fabricated by imprinting porous Si followed by oblique evaporation of Ag. We demonstrate that it works in a wide frequency region covering from 5 to 18 THz with the extinction ratio of 10 dB. The frequency region is much wider than that of THz wire-grid polarizers fabricated by conventional imprint lithography using organic materials. The result suggests that imprinting of porous Si is a promising fabrication technique to realize low-cost wire-grid polarizers working in the THz region.

  15. Imprinted optical pattern of low-softening phosphate glass.

    PubMed

    Takebe, Hiromichi; Kuwabara, Makoto; Komori, Masaharu; Fukugami, Norihito; Soma, Munehisa; Kusuura, Takahisa

    2007-09-15

    Thermal imprinting of transparent tin phosphate glass was performed at 250 degrees C using a fine-patterned silica mold. The glass sample was prepared by a conventional melt-quenching method and polished with a roughness of < or =10 nm for imprinting experiments. The imprinting temperature is optimized based on experimental viscosity data. Scanning electron microscope and atomic force microscope observations revealed that a square grid pattern has a surface roughness of < or =10 nm and 5 microm x 5 microm squares with ~1 microm intervals and 90-100 nm depth. Diffraction spots due to the micropattern are demonstrated by illuminating He-Ne laser light.

  16. Targeted deletion of the Nesp55 DMR defines another Gnas imprinting control region and provides a mouse model of autosomal dominant PHP-Ib.

    PubMed

    Fröhlich, Leopold F; Mrakovcic, Maria; Steinborn, Ralf; Chung, Ung-Il; Bastepe, Murat; Jüppner, Harald

    2010-05-18

    Approximately 100 genes undergo genomic imprinting. Mutations in fewer than 10 imprinted genetic loci, including GNAS, are associated with complex human diseases that differ phenotypically based on the parent transmitting the mutation. Besides the ubiquitously expressed Gsalpha, which is of broad biological importance, GNAS gives rise to an antisense transcript and to several Gsalpha variants that are transcribed from the nonmethylated parental allele. We previously identified two almost identical GNAS microdeletions extending from exon NESP55 to antisense (AS) exon 3 (delNESP55/delAS3-4). When inherited maternally, both deletions are associated with erasure of all maternal GNAS methylation imprints and autosomal-dominant pseudohypoparathyroidism type Ib, a disorder characterized by parathyroid hormone-resistant hypocalcemia and hyperphosphatemia. As for other imprinting disorders, the mechanisms resulting in abnormal GNAS methylation are largely unknown, in part because of a paucity of suitable animal models. We now showed in mice that deletion of the region equivalent to delNESP55/delAS3-4 on the paternal allele (DeltaNesp55(p)) leads to healthy animals without Gnas methylation changes. In contrast, mice carrying the deletion on the maternal allele (DeltaNesp55(m)) showed loss of all maternal Gnas methylation imprints, leading in kidney to increased 1A transcription and decreased Gsalpha mRNA levels, and to associated hypocalcemia, hyperphosphatemia, and secondary hyperparathyroidism. Besides representing a murine autosomal-dominant pseudohypoparathyroidism type Ib model and one of only few animal models for imprinted human disorders, our findings suggest that the Nesp55 differentially methylated region is an additional principal imprinting control region, which directs Gnas methylation and thereby affects expression of all maternal Gnas-derived transcripts.

  17. Dummy molecularly imprinted mesoporous silica prepared by hybrid imprinting method for solid-phase extraction of bisphenol A.

    PubMed

    Yu, Dan; Hu, Xiaolei; Wei, Shoutai; Wang, Qiang; He, Chiyang; Liu, Shaorong

    2015-05-29

    A novel hybrid dummy imprinting strategy was developed to prepare a mesoporous silica for the solid-phase extraction (SPE) of bisphenol A (BPA). A new covalent template-monomer complex (BPAF-Si) was first synthesized with 2,2-bis(4-hydroxyphenyl)hexafluoropropane (BPAF) as the template. The imprinted silica was obtained through the gelation of BPAF-Si with tetraethoxysilane and the subsequent removal of template by thermal cleavage, and then it was characterized by FT-IR spectroscopy, scanning electron microscopy, transmission electron microscopy, and nitrogen adsorption-desorption isotherms. Results showed that the new silica had micron-level particle size and ordered mesoporous structure. The static binding test verified that the imprinted silica had much higher recognition ability for BPA than the non-imprinted silica. The imprinted silica also showed high extraction efficiencies and high enrichment factor for SPE of BPA. Using the imprinted silica, a SPE-HPLC-UV method was developed and successfully applied for detecting BPA in BPA-spiked tap water and lake water samples with a recovery of 99-105%, a RSD of 2.7-5.0% and a limit of detection (S/N=3) of 0.3ng/mL. The new imprinted silica avoided the interference of the residual template molecules and reduced the non-specific binding sites, and therefore it can be utilized as a good sorbent for SPE of BPA in environmental water samples.

  18. Imprinting at the PLAGL1 domain is contained within a 70-kb CTCF/cohesin-mediated non-allelic chromatin loop

    PubMed Central

    Iglesias-Platas, Isabel; Court, Franck; Camprubi, Cristina; Sparago, Angela; Guillaumet-Adkins, Amy; Martin-Trujillo, Alex; Riccio, Andrea; Moore, Gudrun E.; Monk, David

    2013-01-01

    Paternal duplications of chromosome 6q24, a region that contains the imprinted PLAGL1 and HYMAI transcripts, are associated with transient neonatal diabetes mellitus. A common feature of imprinted genes is that they tend to cluster together, presumably as a result of sharing common cis-acting regulatory elements. To determine the extent of this imprinted cluster in human and mouse, we have undertaken a systematic analysis of allelic expression and DNA methylation of the genes mapping within an ∼1.4-Mb region flanking PLAGL1/Plagl1. We confirm that all nine neighbouring genes are biallelically expressed in both species. In human we identify two novel paternally expressed PLAGL1 coding transcripts that originate from unique promoter regions. Chromatin immunoprecipitation for CTCF and the cohesin subunits RAD21 and SMC3 reveals evolutionarily conserved binding sites within unmethylated regions ∼5 kb downstream of the PLAGL1 differentially methylated region and within the PLAGL1 3′ untranslated region (UTR). Higher-order chromatin looping occurs between these regions in both expressing and non-expressing tissues, forming a non-allelic chromatin loop around the PLAGL1/Plagl1 gene. In placenta and brain tissues, we identify an additional interaction between the PLAGL1 P3/P4 promoters and the unmethylated element downstream of the PLAGL1 differentially methylated region that we propose facilitates imprinted expression of these alternative isoforms. PMID:23295672

  19. Placental hydroxymethylation vs methylation at the imprinting control region 2 on chromosome 11p15.5.

    PubMed

    Magalhães, H R; Leite, S B P; Paz, C C P de; Duarte, G; Ramos, E S

    2013-10-22

    In addition to methylated cytosines (5-mCs), hydroxymethylcytosines (5-hmCs) are present in CpG dinucleotide-enriched regions and some transcription regulator binding sites. Unlike methylation, hydroxymethylation does not result in silencing of gene expression, and the most commonly used methods to study methylation, such as techniques based on restriction enzymatic digestion and/or bisulfite modification, are unable to distinguish between them. Genomic imprinting is a process of gene regulation where only one member of an allelic pair is expressed depending on the parental origin. Chromosome 11p15.5 has an imprinting control region (ICR2) that includes a differentially methylated region (KvDMR1) that guarantees parent-specific gene expression. The objective of the present study was to determine the presence of 5-hmC at the KvDMR1 in human placentas. We analyzed 16 third-trimester normal human placentas (chorionic villi). We compared two different methods based on real-time PCR after enzymatic digestion. The first method distinguished methylation from hydroxymethylation, while the other method did not. Unlike other methylation studies, subtle variations of methylation in ICRs could represent a drastic deregulation of the expression of imprinted genes, leading to important phenotypic consequences, and the presence of hydroxymethylation could interfere with the results of many studies. We observed agreement between the results of both methods, indicating the absence of hydroxymethylation at the KvDMR1 in third-trimester placentas. To the best of our knowledge, this is the first study describing the investigation of hydroxymethylation in human placenta using a genomic imprinting model.

  20. Genomic Imprinting of the M6P/IGF2 Receptor: A Novel Breast Cancer Susceptibility Mechanism

    DTIC Science & Technology

    1999-07-01

    function are best exemplified by studies on Wilms’ tumor, a will be required to determine whether this provocative sporadic and familial childhood kidney...an abnormal in over 20 different tumor types, demonstrating its nurturing behavior. It is presently unknown whether fundamental mechanistic importance...in carcinogene- PEG11MEST inactivation has a similar effect on ma- sis [9]. ternal nurturing behavior in humans or what effect Another imprinted gene

  1. Bovine SNRPN methylation imprint in oocytes and day 17 in vitro-produced and somatic cell nuclear transfer embryos.

    PubMed

    Lucifero, Diana; Suzuki, João; Bordignon, Vilceu; Martel, Josée; Vigneault, Christian; Therrien, Jacinthe; Filion, France; Smith, Lawrence C; Trasler, Jacquetta M

    2006-10-01

    Findings from recent studies have suggested that the low survival rate of animals derived via somatic cell nuclear transfer (SCNT) may be in part due to epigenetic abnormalities brought about by this procedure. DNA methylation is an epigenetic modification of DNA that is implicated in the regulation of imprinted genes. Genes subject to genomic imprinting are expressed monoallelically in a parent of origin-dependent manner and are important for embryo growth, placental function, and neurobehavioral processes. The vast majority of imprinted genes have been studied in mice and humans. Herein, our objectives were to characterize the bovine SNRPN gene in gametes and to compare its methylation profile in in vivo-produced, in vitro-produced, and SCNT-derived Day 17 elongating embryos. A CpG island within the 5' region of SNRPN was identified and examined using bisulfite sequencing. SNRPN alleles were unmethylated in sperm, methylated in oocytes, and approximately 50% methylated in somatic samples. The examined SNRPN region appeared for the most part to be normally methylated in three in vivo-produced Day 17 embryos and in eight in vitro-produced Day 17 embryos examined, while alleles from Day 17 SCNT embryos were severely hypomethylated in seven of eight embryos. In this study, we showed that the SNRPN methylation profiles previously observed in mouse and human studies are also conserved in cattle. Moreover, SCNT-derived Day 17 elongating embryos were abnormally hypomethylated compared with in vivo-produced and in vitro-produced embryos, which in turn suggests that SCNT may lead to faulty reprogramming or maintenance of methylation imprints at this locus.

  2. Ever deeper phylogeographies: trees retain the genetic imprint of Tertiary plate tectonics.

    PubMed

    Hampe, Arndt; Petit, Rémy J

    2007-12-01

    Changes in species distributions after the last glacial maximum (c. 18 000 years bp) are beginning to be understood, but information diminishes quickly as one moves further back in time. In this issue of Molecular Ecology, Magri et al. (2007) present the fascinating case of a Mediterranean tree species whose populations preserve the genetic imprints of plate tectonic events that took place between 25 million years and 15 million years ago. The study provides a unique insight into the pace of evolution of trees, which, despite interspecific gene flow, can retain a cohesive species identity over timescales long enough to allow the diversification of entire plant and animal genera.

  3. Abnormal Hypermethylation at Imprinting Control Regions in Patients with S-Adenosylhomocysteine Hydrolase (AHCY) Deficiency

    PubMed Central

    Motzek, Antje; Knežević, Jelena; Switzeny, Olivier J.; Cooper, Alexis; Barić, Ivo; Beluzić, Robert; Strauss, Kevin A.; Puffenberger, Erik G.; Vugrek, Oliver; Zechner, Ulrich

    2016-01-01

    S-adenosylhomocysteine hydrolase (AHCY) deficiency is a rare autosomal recessive disorder in methionine metabolism caused by mutations in the AHCY gene. Main characteristics are psychomotor delay including delayed myelination and myopathy (hypotonia, absent tendon reflexes etc.) from birth, mostly associated with hypermethioninaemia, elevated serum creatine kinase levels and increased genome wide DNA methylation. The prime function of AHCY is to hydrolyse and efficiently remove S-adenosylhomocysteine, the by-product of transmethylation reactions and one of the most potent methyltransferase inhibitors. In this study, we set out to more specifically characterize DNA methylation changes in blood samples from patients with AHCY deficiency. Global DNA methylation was increased in two of three analysed patients. In addition, we analysed the DNA methylation levels at differentially methylated regions (DMRs) of six imprinted genes (MEST, SNRPN, LIT1, H19, GTL2 and PEG3) as well as Alu and LINE1 repetitive elements in seven patients. Three patients showed a hypermethylation in up to five imprinted gene DMRs. Abnormal methylation in Alu and LINE1 repetitive elements was not observed. We conclude that DNA hypermethylation seems to be a frequent but not a constant feature associated with AHCY deficiency that affects different genomic regions to different degrees. Thus AHCY deficiency may represent an ideal model disease for studying the molecular origins and biological consequences of DNA hypermethylation due to impaired cellular methylation status. PMID:26974671

  4. Abnormal Hypermethylation at Imprinting Control Regions in Patients with S-Adenosylhomocysteine Hydrolase (AHCY) Deficiency.

    PubMed

    Motzek, Antje; Knežević, Jelena; Switzeny, Olivier J; Cooper, Alexis; Barić, Ivo; Beluzić, Robert; Strauss, Kevin A; Puffenberger, Erik G; Mudd, S Harvey; Vugrek, Oliver; Zechner, Ulrich

    2016-01-01

    S-adenosylhomocysteine hydrolase (AHCY) deficiency is a rare autosomal recessive disorder in methionine metabolism caused by mutations in the AHCY gene. Main characteristics are psychomotor delay including delayed myelination and myopathy (hypotonia, absent tendon reflexes etc.) from birth, mostly associated with hypermethioninaemia, elevated serum creatine kinase levels and increased genome wide DNA methylation. The prime function of AHCY is to hydrolyse and efficiently remove S-adenosylhomocysteine, the by-product of transmethylation reactions and one of the most potent methyltransferase inhibitors. In this study, we set out to more specifically characterize DNA methylation changes in blood samples from patients with AHCY deficiency. Global DNA methylation was increased in two of three analysed patients. In addition, we analysed the DNA methylation levels at differentially methylated regions (DMRs) of six imprinted genes (MEST, SNRPN, LIT1, H19, GTL2 and PEG3) as well as Alu and LINE1 repetitive elements in seven patients. Three patients showed a hypermethylation in up to five imprinted gene DMRs. Abnormal methylation in Alu and LINE1 repetitive elements was not observed. We conclude that DNA hypermethylation seems to be a frequent but not a constant feature associated with AHCY deficiency that affects different genomic regions to different degrees. Thus AHCY deficiency may represent an ideal model disease for studying the molecular origins and biological consequences of DNA hypermethylation due to impaired cellular methylation status.

  5. Helical Microfilaments with Alternating Imprinted Intrinsic Curvatures.

    PubMed

    Silva, Pedro Emanuel Santos; Godinho, Maria Helena

    2017-03-01

    There has been an intense research for developing techniques that can produce filaments with helical shapes, given the widespread of potential applications. In this work, how helices with different curvatures can be precisely imprinted in microfilaments is shown. It is also shown that using this technique, it is possible to produce, in a single fiber, helices with different curvatures. This striking and innovative behavior is observed when one side of the stretched filaments is irradiated with UV light, modifying the mechanical properties at surface. Upon release, the regions with higher curvature start to curl first, while regions with lower intrinsic curvature remain stretched until start to curl later. The results presented here can be important to understand why structures adopt a helical shape in general, which can be of interest in nanotechnology, biomolecular science, or even to understand why plant filaments curl.

  6. Imprinting bulk amorphous alloy at room temperature

    PubMed Central

    Kim, Song-Yi; Park, Eun-Soo; Ott, Ryan T.; Lograsso, Thomas A.; Huh, Moo-Young; Kim, Do-Hyang; Eckert, Jürgen; Lee, Min-Ha

    2015-01-01

    We present investigations on the plastic deformation behavior of a brittle bulk amorphous alloy by simple uniaxial compressive loading at room temperature. A patterning is possible by cold-plastic forming of the typically brittle Hf-based bulk amorphous alloy through controlling homogenous flow without the need for thermal energy or shaping at elevated temperatures. The experimental evidence suggests that there is an inconsistency between macroscopic plasticity and deformability of an amorphous alloy. Moreover, imprinting of specific geometrical features on Cu foil and Zr-based metallic glass is represented by using the patterned bulk amorphous alloy as a die. These results demonstrate the ability of amorphous alloys or metallic glasses to precisely replicate patterning features onto both conventional metals and the other amorphous alloys. Our work presents an avenue for avoiding the embrittlement of amorphous alloys associated with thermoplastic forming and yields new insight the forming application of bulk amorphous alloys at room temperature without using heat treatment. PMID:26563908

  7. Chromosome imbalance, normal phenotype, and imprinting.

    PubMed Central

    Bortotto, L; Piovan, E; Furlan, R; Rivera, H; Zuffardi, O

    1990-01-01

    A duplication of the sub-bands 1q42.11 and 1q42.12 was found in a boy and his mother. The proband has short stature (around the 10th centile) but a normal phenotype and psychomotor development. His mother is also asymptomatic. We found 30 published cases of normal subjects with an imbalance of autosomal euchromatic material. In these cases the imbalance involved either only one G positive band or a G positive and a G negative band. Thus the absence of a phenotypic effect cannot always be ascribed to the deficiency in the G positive bands of coding DNA. Moreover, in some cases, the method of transmission of the chromosome abnormality was such that an imprinting effect could be postulated. Images PMID:2231652

  8. Anisotropic wettability on imprinted hierarchical structures.

    PubMed

    Zhang, Fengxiang; Low, Hong Yee

    2007-07-03

    A series of two-level hierarchical structures on polystyrene (PS) and poly(methyl methacrylate) (PMMA) were fabricated using sequential nanoimprinting lithography (NIL). The hierarchical structures consist of micrometer and sub-micrometer scale grating imprinted with varying orientations. Through water contact angle measurements, these surface hierarchical structures showed a wide range of anisotropic wettabilities on PMMA and PS, with PMMA having an anisotropic wettability from 6 degrees to 54 degrees and PS having an anisotropic wettability from 8 degrees to 32 degrees. At the same time, the water contact angle of PMMA and PS can be tuned to nearly 120 degrees without modifying the surface chemistry. A tunable anisotropic wettability is beneficial for applications where controlling the direction of liquid flow is important, such as in microfluidic devices.

  9. Imprinting bulk amorphous alloy at room temperature

    SciTech Connect

    Kim, Song-Yi; Park, Eun-Soo; Ott, Ryan T.; Lograsso, Thomas A.; Huh, Moo-Young; Kim, Do-Hyang; Eckert, Jürgen; Lee, Min-Ha

    2015-11-13

    We present investigations on the plastic deformation behavior of a brittle bulk amorphous alloy by simple uniaxial compressive loading at room temperature. A patterning is possible by cold-plastic forming of the typically brittle Hf-based bulk amorphous alloy through controlling homogenous flow without the need for thermal energy or shaping at elevated temperatures. The experimental evidence suggests that there is an inconsistency between macroscopic plasticity and deformability of an amorphous alloy. Moreover, imprinting of specific geometrical features on Cu foil and Zr-based metallic glass is represented by using the patterned bulk amorphous alloy as a die. These results demonstrate the ability of amorphous alloys or metallic glasses to precisely replicate patterning features onto both conventional metals and the other amorphous alloys. In conclusion, our work presents an avenue for avoiding the embrittlement of amorphous alloys associated with thermoplastic forming and yields new insight the forming application of bulk amorphous alloys at room temperature without using heat treatment.

  10. Cell shape recognition by colloidal cell imprints: Energy of the cell-imprint interaction

    NASA Astrophysics Data System (ADS)

    Borovička, Josef; Stoyanov, Simeon D.; Paunov, Vesselin N.

    2015-09-01

    The results presented in this study are aimed at the theoretical estimate of the interactions between a spherical microbial cell and the colloidal cell imprints in terms of the Derjaguin, Landau, Vervey, and Overbeek (DLVO) surface forces. We adapted the Derjaguin approximation to take into account the geometry factor in the colloidal interaction between a spherical target particle and a hemispherical shell at two different orientations with respect to each other. We took into account only classical DLVO surface forces, i.e., the van der Waals and the electric double layer forces, in the interaction of a spherical target cell and a hemispherical shell as a function of their size ratio, mutual orientation, distance between their surfaces, their respective surface potentials, and the ionic strength of the aqueous solution. We found that the calculated interaction energies are several orders higher when match and recognition between the target cell and the target cell imprint is achieved. Our analysis revealed that the recognition effect of the hemispherical shell towards the target microsphere comes from the greatly increased surface contact area when a full match of their size and shape is produced. When the interaction between the surfaces of the hemishell and the target cell is attractive, the recognition greatly amplifies the attraction and this increases the likelihood of them to bind strongly. However, if the surface interaction between the cell and the imprint is repulsive, the shape and size match makes this interaction even more repulsive and thus decreases the likelihood of binding. These results show that the surface chemistry of the target cells and their colloidal imprints is very important in controlling the outcome of the interaction, while the shape recognition only amplifies the interaction. In the case of nonmonotonous surface-to-surface interaction we discovered some interesting interplay between the effects of shape match and surface chemistry

  11. Daidzein-imprinted membranes using co-functional monomers.

    PubMed

    Wang, Ping; Chen, Shanshan; Zhu, Xingyi; Xie, Jie

    2009-11-06

    Daidzein-imprinted poly(methacrylamide-co-acrylic acid) composite membranes with different ratios of methacrylamide (MAM) versus acrylic acid (AA) were prepared via UV initiated photo-copolymerization on the commercial filter paper with ethylene glycol dimethacrylate (EGDMA) as cross-linker and mixed cellulose ester as agglutinant. Infra-red (IR) spectroscopy and scanning electron microscope (SEM) were used to visualize the surface of the membranes. Binding and recognising properties of the imprinted composite membranes to daidzein and its analogues genistein were evaluated by static adsorption experiment. It was found that the daidzein-imprinted membranes showed high selectivity to daidzein, with the highest selectivity when the composite membrane with the ratio of MAM vs AA as 4:1. The results suggested that the molecularly imprinted composite membranes were potentially useful for daidzein enrichment.

  12. Molecularly imprinted sol-gel nanotubes membrane for biochemical separations.

    PubMed

    Yang, Huang-Hao; Zhang, Shu-Qiong; Yang, Wei; Chen, Xiao-Lan; Zhuang, Zhi-Xia; Xu, Jin-Gou; Wang, Xiao-Ru

    2004-04-07

    In this study, we report a simple procedure for applying molecular imprinting functional groups to the inner surfaces of the template-synthesized sol-gel nanotubes for chemical separation of estrone. The silica nanotubes were synthesized within the pores of nanopore alumina template membranes using a sol-gel method by simultaneous hydrolysis of a silica monomer-imprinted molecule complex and tetraethoxysilane (TEOS). A covalent imprinting strategy was employed by generating a sacrificial spacer through the reaction of the isocyanate group of 3-(triethoxysilyl)propyl isocyanate and a phenol moiety of estrone to form a thermally cleavable urethane bond. This allowed us to remove the imprinted estrone by simple thermal reaction and to simultaneously introduce functional groups into the cavity formed by the silica nanotubes. Experiments indicated that estrone could be bound selectively by such an approach and have a binding affinity of 864 +/- 137 (n = 3).

  13. 21 CFR 206.10 - Code imprint required.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... identification than a symbol or logo by itself. Homeopathic drug products are required only to bear an imprint... National Drug Code, or a mark, symbol, logo, or monogram, or a combination of letters, numbers, and...

  14. 21 CFR 206.10 - Code imprint required.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... paragraph (a) of this section and is not exempt from the requirement may be considered adulterated and misbranded and may be an unapproved new drug. (d) For purposes of this section, code imprint means any...

  15. 21 CFR 206.10 - Code imprint required.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... paragraph (a) of this section and is not exempt from the requirement may be considered adulterated and misbranded and may be an unapproved new drug. (d) For purposes of this section, code imprint means any...

  16. 21 CFR 206.10 - Code imprint required.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... paragraph (a) of this section and is not exempt from the requirement may be considered adulterated and misbranded and may be an unapproved new drug. (d) For purposes of this section, code imprint means any...

  17. Imprinting: When Early Life Memories Make Food Smell Bad.

    PubMed

    Rayes, Diego; Alkema, Mark J

    2016-05-09

    A recent study has found that pathogen exposure early in the life of the nematode Caenorhabditis elegans leads to a long-lasting aversion that requires distinct sets of neurons for the formation and retrieval of the imprinted memory.

  18. Template-imprinted nanostructured surfaces for protein recognition.

    PubMed

    Shi, H; Tsai, W B; Garrison, M D; Ferrari, S; Ratner, B D

    1999-04-15

    Synthetic materials capable of selectively recognizing proteins are important in separations, biosensors and the development of biomedical materials. The technique of molecular imprinting creates specific recognition sites in polymers by using template molecules. Molecular recognition is attributed to binding sites that complement molecules in size, shape and chemical functionality. But attempts to imprint proteins have met with only limited success. Here we report a method for imprinting surfaces with protein-recognition sites. We use radio-frequency glow-discharge plasma deposition to form polymeric thin films around proteins coated with disaccharide molecules. The disaccharides become covalently attached to the polymer film, creating polysaccharide-like cavities that exhibit highly selective recognition for a variety of template proteins, including albumin, immunoglobulin G, lysozyme, ribonuclease and streptavidin. Direct imaging of template recognition is achieved by patterning a surface at the micrometre scale with imprinted regions.

  19. The correlation between relatives on the supposition of genomic imprinting.

    PubMed Central

    Spencer, Hamish G

    2002-01-01

    Standard genetic analyses assume that reciprocal heterozygotes are, on average, phenotypically identical. If a locus is subject to genomic imprinting, however, this assumption does not hold. We incorporate imprinting into the standard quantitative-genetic model for two alleles at a single locus, deriving expressions for the additive and dominance components of genetic variance, as well as measures of resemblance among relatives. We show that, in contrast to the case with Mendelian expression, the additive and dominance deviations are correlated. In principle, this correlation allows imprinting to be detected solely on the basis of different measures of familial resemblances, but in practice, the standard error of the estimate is likely to be too large for a test to have much statistical power. The effects of genomic imprinting will need to be incorporated into quantitative-genetic models of many traits, for example, those concerned with mammalian birthweight. PMID:12019254

  20. Synthetic strategies for the generation of molecularly imprinted organic polymers.

    PubMed

    Mayes, A G; Whitcombe, M J

    2005-12-06

    Molecular imprinting is a method of inducing molecular recognition properties in synthetic polymers in response to the presence of a template species during formation of the three-dimensional structure of the polymer. The molecularly imprinted polymers (MIPs) prepared in this way have been termed "plastic antibodies" and combine the robustness of the polymer scaffold with binding properties more readily associated with biological receptors. Smart polymers of this type may find applications in drug delivery, controlled release and monitoring of drug and metabolite concentrations. In this review the main synthetic strategies used in the preparation of imprinted organic polymers are described in terms of the chemical principles used in the templating step. These are illustrated with examples taken from the literature and are classified as covalent, semi-covalent, non-covalent, metal-mediated and non-polar. Finally strategies for the selection of monomers, optimisation and modification of the properties of imprinted polymers are reviewed.

  1. Mom Knows Best: Imprinted Control of Hematopoietic Stem Cell Quiescence.

    PubMed

    Serrano-Lopez, Juana; Cancelas, Jose A

    2016-02-04

    The mechanisms by which imprinted loci control activity of hematopoietic stem cells (HSCs) are not known. In this issue of Cell Stem Cell, Qian et al. (2016) demonstrate that non-coding RNAs expressed by the maternal-imprinted locus Dlk1-Gtl2 maintain HSC self-renewal through the inhibition of PI3K-mTOR signaling, mitochondrial biogenesis, and metabolic activity.

  2. Molecularly Imprinted Polymer Based Sensor for the Detection of Theophylline

    NASA Astrophysics Data System (ADS)

    Braga, Guilherme S.; Paterno, Leonardo G.; Fonseca, Fernando J.; del Valle, Manel

    2011-11-01

    A molecularly imprinted polymer (MIP) impedance-based sensor was employed to detect theophylline in distilled water. To evaluate its sensibility, impedance measurements were carried out in a diluted solution of theophylline (1 mM) and distilled water using MIP and NIP (reference non-imprinted polymer) sensors. MIP showed higher sensitivity to theophylline than the NIP. This feature shows their suitability for developing an electronic tongue system for determination of methylxanthines.

  3. Full-field imprinting of sub-40 nm patterns

    NASA Astrophysics Data System (ADS)

    Yeo, Jeongho; Kim, Hoyeon; Eynon, Ben

    2008-03-01

    Imprint lithography has been included on the ITRS Lithography Roadmap at the 32, 22 and 16 nm nodes. Step and Flash Imprint Lithography (S-FIL (R)) is a unique patterning method that has been designed from the beginning to enable precise overlay to enable multilevel device fabrication. A photocurable low viscosity resist is dispensed dropwise to match the pattern density requirements of the device, thus enabling patterning with a uniform residual layer thickness across a field and across multiple wafers. Further, S-FIL provides sub-50 nm feature resolution without the significant expense of multi-element projection optics or advanced illumination sources. However, since the technology is 1X, it is critical to address the infrastructure associated with the fabrication of imprint masks (templates). For sub-32 nm device manufacturing, one of the major technical challenges remains the fabrication of full-field 1x imprint masks with commercially viable write times. Recent progress in the writing of sub-40 nm patterns using commercial variable shape e-beam tools and non-chemically amplified resists has demonstrated a very promising route to realizing these objectives, and in doing so, has considerably strengthened imprint lithography as a competitive manufacturing technology for the sub-32nm node. Here we report the first imprinting results from sub-40 nm full-field patterns, using Samsung's current flash memory production device design. The fabrication of the imprint mask and the resulting critical dimension control and uniformity are discussed, along with image placement results. The imprinting results are described in terms of CD uniformity, etch results, and overlay.

  4. Molecular crowding-based imprinted monolithic column for capillary electrochromatography.

    PubMed

    Zong, Hai-Yan; Liu, Xiao; Liu, Zhao-Sheng; Huang, Yan-Ping

    2015-03-01

    Molecular crowding is a new approach to stabilizing binding sites and improving molecular recognition. In this work, the concept was applied to the preparation of imprinted monolithic columns for CEC. The imprinted monolithic column was synthesized using a mixture of d-zopiclone (d-ZOP)(template), methacrylic acid, ethylene glycol dimethacrylate, and poly(methyl methacrylate) (PMMA) (molecular crowding agent). The resulting PMMA-based imprinted capillary was able to separate ZOP enantiomers in CEC mode. The resolution of enantiomer separation achieved on the d-ZOP-imprinted monolithic column was up to 2.09. Some polymerization factors, such as template-monomer molar ratio, functional monomer-cross-linker molar ratio and the composition of the porogen, on the imprinting effect of resulting molecularly imprinted polymer (MIP) monolithic column were systematically investigated. Chromatographic parameters, including pH values, the content of acetonitrile and the salt concentration on chiral separation were also studied. The results indicated the addition of PMMA resulted in MIPs with superior retention properties and excellent selectivity for d-ZOP, as compared to the MIPs prepared without addition of the crowding-inducing agent. The results revealed that molecular crowding is an effective method for the preparation of a highly efficient MIP stationary phase for chiral separation in CEC.

  5. Electropolymerized Molecularly Imprinted Polypyrrole Film for Sensing of Clofibric Acid

    PubMed Central

    Schweiger, Bianca; Kim, Jungtae; Kim, Young Jun; Ulbricht, Mathias

    2015-01-01

    Piezoelectric quartz crystals and analogous gold substrates were electrochemically coated with molecularly imprinted polypyrrole films for pulsed amperometric detection (PAD) of clofibric acid, a metabolite of clofibrate. Cyclic voltammetry data obtained during polymerization and deposited weight estimations revealed a decrease of the polymerization rate with increasing clofibric acid concentration. XPS measurements indicated that clofibric acid could be removed after imprinting with an aqueous ethanol solution, which was further optimized by using PAD. Zeta potential and contact angle measurements revealed differences between molecularly imprinted (MIP) and non-imprinted polymer (NIP) layers. Binding experiments with clofibric acid and other substances showed a pronounced selectivity of the MIP for clofibric acid vs. carbamazepine, but the response of MIP and NIP to 2,4-dichlorophenoxyacetic acid was higher than that for clofibric acid. A smooth surface, revealed by AFM measurements, with roughness of 6–8 nm for imprinted and non-imprinted layers, might be a reason for an excessively low density of specific binding sites for clofibric acid. Furthermore, the decreased polymerization rate in the presence of clofibric acid might not result in well-defined polymer structures, which could be the reason for the lower sensitivity. PMID:25730487

  6. Design of molecularly imprinted polymers for diphenylamine sensing.

    PubMed

    Granado, V L V; Rudnitskaya, A; Oliveira, J A B P; Gomes, M T S R

    2012-05-30

    A series of the polymers imprinted with diphenylamine (DPA) and respective non imprinted polymers were synthesized using precipitation polymerization. Synthesized polymers were characterized by Fourier Transform Infra-Red spectroscopy with Total Attenuated Reflectance (FTIR-ATR), Scanning Electron Microscopy (SEM) and equilibrium batch re-binding experiments. Influence of the synthesis conditions, namely monomer/template ratio and reaction duration, on the polymer binding capacity and selectivity towards aromatic compounds was investigated. Binding behavior of MIP was described using Freundlich isotherm. Significance of the effects of the synthesis conditions on the polymer properties was evaluated using ANOVA. MIPs synthesized at different conditions, which displayed different properties (binding capacity and selectivity), and respective non-imprinted polymers were employed for the fabrication of the potentiometric sensors. While sensors prepared using imprinted polymers had higher sensitivity and selectivity compared to the ones containing non-imprinted polymer, no difference was observed between sensors containing different imprinted polymers. No correspondence between polymers' characteristics obtained in the equilibrium re-binding studies and potentiometric behavior of the sensors based on the same polymers was observed. Therefore, equilibrium re-binding studies cannot be used for predicting sensor behavior.

  7. Absence of Maternal Methylation in Biparental Hydatidiform Moles from Women with NLRP7 Maternal-Effect Mutations Reveals Widespread Placenta-Specific Imprinting

    PubMed Central

    Sanchez-Delgado, Marta; Martin-Trujillo, Alejandro; Tayama, Chiharu; Vidal, Enrique; Esteller, Manel; Iglesias-Platas, Isabel; Deo, Nandita; Barney, Olivia; Maclean, Ken; Hata, Kenichiro; Nakabayashi, Kazuhiko; Fisher, Rosemary; Monk, David

    2015-01-01

    Familial recurrent hydatidiform mole (RHM) is a maternal-effect autosomal recessive disorder usually associated with mutations of the NLRP7 gene. It is characterized by HM with excessive trophoblastic proliferation, which mimics the appearance of androgenetic molar conceptuses despite their diploid biparental constitution. It has been proposed that the phenotypes of both types of mole are associated with aberrant genomic imprinting. However no systematic analyses for imprinting defects have been reported. Here, we present the genome-wide methylation profiles of both spontaneous androgenetic and biparental NLRP7 defective molar tissues. We observe total paternalization of all ubiquitous and placenta-specific differentially methylated regions (DMRs) in four androgenetic moles; namely gain of methylation at paternally methylated loci and absence of methylation at maternally methylated regions. The methylation defects observed in five RHM biopsies from NLRP7 defective patients are restricted to lack-of-methylation at maternal DMRs. Surprisingly RHMs from two sisters with the same missense mutations, as well as consecutive RHMs from one affected female show subtle allelic methylation differences, suggesting inter-RHM variation. These epigenotypes are consistent with NLRP7 being a maternal-effect gene and involved in imprint acquisition in the oocyte. In addition, bioinformatic screening of the resulting methylation datasets identified over sixty loci with methylation profiles consistent with imprinting in the placenta, of which we confirm 22 as novel maternally methylated loci. These observations strongly suggest that the molar phenotypes are due to defective placenta-specific imprinting and over-expression of paternally expressed transcripts, highlighting that maternal-effect mutations of NLRP7 are associated with the most severe form of multi-locus imprinting defects in humans. PMID:26544189

  8. Large offspring syndrome: a bovine model for the human loss-of-imprinting overgrowth syndrome Beckwith-Wiedemann.

    PubMed

    Chen, Zhiyuan; Robbins, Katherine Marie; Wells, Kevin Dale; Rivera, Rocío Melissa

    2013-06-01

    Beckwith-Wiedemann syndrome (BWS) is a human loss-of-imprinting syndrome primarily characterized by macrosomia, macroglossia, and abdominal wall defects. BWS has been associated with misregulation of two clusters of imprinted genes. Children conceived with the use of assisted reproductive technologies (ART) appear to have an increased incidence of BWS. As in humans, ART can also induce a similar overgrowth syndrome in ruminants which is referred to as large offspring syndrome (LOS). The main goal of our study is to determine if LOS shows similar loss-of-imprinting at loci known to be misregulated in BWS. To test this, Bos taurus indicus × Bos taurus taurus F1 hybrids were generated by artificial insemination (AI; control) or by ART. Seven of the 27 conceptuses in the ART group were in the > 97th percentile body weight when compared with controls. Further, other characteristics reported in BWS were observed in the ART group, such as large tongue, umbilical hernia, and ear malformations. KCNQ1OT1 (the most-often misregulated imprinted gene in BWS) was biallelically-expressed in various organs in two out of seven overgrown conceptuses from the ART group, but shows monoallelic expression in all tissues of the AI conceptuses. Furthermore, biallelic expression of KCNQ1OT1 is associated with loss of methylation at the KvDMR1 on the maternal allele and with downregulation of the maternally-expressed gene CDKN1C. In conclusion, our results show phenotypic and epigenetic similarities between LOS and BWS, and we propose the use of LOS as an animal model to investigate the etiology of BWS.

  9. Insights into the molecular mechanism for type 2 diabetes susceptibility at the KCNQ1 locus from temporal changes in imprinting status in human islets.

    PubMed

    Travers, Mary E; Mackay, Deborah J G; Dekker Nitert, Marloes; Morris, Andrew P; Lindgren, Cecilia M; Berry, Andrew; Johnson, Paul R; Hanley, Neil; Groop, Leif C; McCarthy, Mark I; Gloyn, Anna L

    2013-03-01

    The molecular basis of type 2 diabetes predisposition at most established susceptibility loci remains poorly understood. KCNQ1 maps within the 11p15.5 imprinted domain, a region with an established role in congenital growth phenotypes. Variants intronic to KCNQ1 influence diabetes susceptibility when maternally inherited. By use of quantitative PCR and pyrosequencing of human adult islet and fetal pancreas samples, we investigated the imprinting status of regional transcripts and aimed to determine whether type 2 diabetes risk alleles influence regional DNA methylation and gene expression. The results demonstrate that gene expression patterns differ by developmental stage. CDKN1C showed monoallelic expression in both adult and fetal tissue, whereas PHLDA2, SLC22A18, and SLC22A18AS were biallelically expressed in both tissues. Temporal changes in imprinting were observed for KCNQ1 and KCNQ1OT1, with monoallelic expression in fetal tissues and biallelic expression in adult samples. Genotype at the type 2 diabetes risk variant rs2237895 influenced methylation levels of regulatory sequence in fetal pancreas but without demonstrable effects on gene expression. We demonstrate that CDKN1C, KCNQ1, and KCNQ1OT1 are most likely to mediate diabetes susceptibility at the KCNQ1 locus and identify temporal differences in imprinting status and methylation effects, suggesting that diabetes risk effects may be mediated in early development.

  10. Long-range DNase I hypersensitivity mapping reveals the imprinted Igf2r and Air promoters share cis-regulatory elements

    PubMed Central

    Pauler, Florian M.; Stricker, Stefan H.; Warczok, Katarzyna E.; Barlow, Denise P.

    2005-01-01

    Epigenetic mechanisms restrict the expression of imprinted genes to one parental allele in diploid cells. At the Igf2r/Air imprinted cluster on mouse chromosome 17, paternal-specific expression of the Air noncoding RNA has been shown to silence three genes in cis: Igf2r, Slc22a2, and Slc22a3. By an unbiased mapping of DNase I hypersensitive sites (DHS) in a 192-kb region flanking Igf2r and Air, we identified 21 DHS, of which nine mapped to evolutionarily conserved sequences. Based on the hypothesis that silencing effects of Air would be directed towards cis regulatory elements used to activate genes, DHS are potential key players in the control of imprinted expression. However, in this 192-kb region only the two DHS mapping to the Igf2r and Air promoters show parental specificity. The remaining 19 DHS were present on both parental alleles and, thus, have the potential to activate Igf2r on the maternal allele and Air on the paternal allele. The possibility that the Igf2r and Air promoters share the same cis-acting regulatory elements, albeit on opposite parental chromosomes, was supported by the similar expression profiles of Igf2r and Air in vivo. These results refine our understanding of the onset of imprinted silencing at this cluster and indicate the Air noncoding RNA may specifically target silencing to the Igf2r promoter. PMID:16204191

  11. Genetic evidence for Dnmt3a-dependent imprinting during oocyte growth obtained by conditional knockout with Zp3-Cre and complete exclusion of Dnmt3b by chimera formation.

    PubMed

    Kaneda, Masahiro; Hirasawa, Ryutaro; Chiba, Hatsune; Okano, Masaki; Li, En; Sasaki, Hiroyuki

    2010-03-01

    In the male and female germ-lines of mice, both of the two de novo DNA methyltransferases Dnmt3a and Dnmt3b are expressed. By the conditional knockout experiments using the Tnap-Cre gene, we previously showed that deletion of Dnmt3a in primordial germ cells disrupts paternal and maternal imprinting, however, Dnmt3b mutants did not show any defect. Here, we have knocked out Dnmt3a after birth in growing oocytes by using the Zp3-Cre gene and obtained genetic evidence that de novo methylation by Dnmt3a during the oocyte growth stage is indispensable for maternal imprinting. We also carried out DNA methylation analysis in the mutant oocytes and embryos and found that hypomethylation of imprinted genes in Dnmt3a-deficient oocytes was directly inherited to the embryos, but repetitive elements were re-methylated during development. Furthermore, we show that Dnmt3b-deficient cells can contribute to the male and female germ-lines in chimeric mice and can produce normal progeny, establishing that Dnmt3b is dispensable for mouse gametogenesis and imprinting. Finally, Dnmt3-related protein Dnmt3L is not only essential for methylation of imprinted genes but also enhances de novo methylation of repetitive elements in growing oocytes.

  12. Modes of Imprinted Gene Action in Learning Disability

    ERIC Educational Resources Information Center

    Isles, A. R.; Humby, T.

    2006-01-01

    Background: It is now widely acknowledged that there may be a genetic contribution to learning disability and neuropsychiatric disorders, stemming from evidence provided by family, twin and adoption studies, and from explicit syndromic conditions. Recently it has been recognized that in some cases the presentation of genetic syndromes (or discrete…

  13. Batch and column separation characteristics of copper-imprinted porous polymer micro-beads synthesized by a direct imprinting method.

    PubMed

    Hoai, Nguyen To; Yoo, Dong-Keun; Kim, Dukjoon

    2010-01-15

    Copper (II) ion-imprinted porous polymethacrylate micro-particles were prepared. Two functional monomers, methacrylic acid and vinyl pyridine, formed a complex with the template copper ion through ionic interactions. The self-assembled copper/monomer complex was polymerized in the presence of an ethylene glycol dimethacrylate cross-linker by a suspension method. After the imprinting sites were provided through removal of the template, the micro-porous particles, of approximate size 200 microm, were obtained for batch and column separation applications. The chemical structure and morphology of the Cu(II)-imprinted micro-porous particles were analyzed using FTIR, SEM, and BET. The adsorption capacity and adsorption kinetics of the imprinted beads for the template Cu(II) ion were significantly affected by particle size, copper ion concentration, pH, and flow rate of the feed solution. The imprinted particles showed high selectivity for the copper ion over other metal ions such as Ni and Zn. The selectivity of the present imprinted polymers for the copper ion was at least 10 times as high as those from commercial sources.

  14. Magnetic Zn (II) ion-imprinted polymer prepared by the surface imprinting technique and its adsorption properties.

    PubMed

    Zhang, Hui-xin; Dou, Qian; Jin, Xiu-hong; Zhang, Jie; Yang, Ting-ru; Han, Xu; Wang, Dong-dong

    2015-01-01

    A novel magnetic Zn (II) ion-imprinted polymer was prepared by the surface ion-imprinted technique by using magnetic Fe3O4@SiO2 microspheres as supporter, methacrylic acid and salicylaldoxime as monomers, ethylene glycol dimethacrylate as the crosslinker. The products were characterized by Fourier transform infrared, X-ray photoelectron spectrometer, vibrating sample magnetometer and scanning electron microscope. The adsorption experiments showed that the imprinted polymer was employed successfully in comparison with non-imprinted polymer. When the temperature was in a range of 291-297 K, the maximum adsorption was about 52.69 mg g(-1) with an optimal pH 6.0 for an equilibrium time of 40 min. The imprinted polymer possessed high selectivity and specific recognition towards Zn (II). The Langmuir adsorption model was more favourable than the Freundlich or the Temkin adsorption model. Thermodynamic experiment showed that the adsorption was a spontaneous and endothermic process for Zn (II). The mechanism for Zn (II) adsorption on the imprinted polymer was investigated.

  15. KCNK9 imprinting syndrome-further delineation of a possible treatable disorder.

    PubMed

    Graham, John M; Zadeh, Neda; Kelley, Melissa; Tan, Ee Shien; Liew, Wendy; Tan, Victoria; Deardorff, Matthew A; Wilson, Golder N; Sagi-Dain, Lena; Shalev, Stavit A

    2016-10-01

    Patients with KCNK9 imprinting syndrome demonstrate congenital hypotonia, variable cleft palate, normal MRIs and EEGs, delayed development, and feeding problems. Associated facial dysmorphic features include dolichocephaly with bitemporal narrowing, short philtrum, tented upper lip, palatal abnormalities, and small mandible. This disorder maps to chromosomal region 8q24, and it is caused by a specific missense mutation 770G>A in exon 2, replacing glycine at position 236 by arginine (G236R) in the maternal copy of KCNK9 within this locus. KCNK9 (also called TASK3) encodes a member of the two pore- domain potassium channel (K2P) subfamily. This gene is normally imprinted with paternal silencing, thus a mutation in the maternal copy of the gene will result in disease, whereas a mutation in the paternal copy will have no effect. Exome sequencing in four new patients with developmental delay and central hypotonia revealed de novo G236R mutations. Older members of a previously reported Arab-Israeli family have intellectual disability of variable severity, persistent feeding difficulties in infancy with dysphagia of liquids and dysphonia with a muffled voice in early adulthood, generalized hypotonia, weakness of proximal muscles, elongated face with narrow bitemporal diameter, and reduced facial movements. We describe the clinical features in four recently recognized younger patients and compare them with those found in members of the originally reported Arab-Israeli family and suggest this may be a treatable disorder. © 2016 Wiley Periodicals, Inc.

  16. Causes and Consequences of Multi-Locus Imprinting Disturbances in Humans.

    PubMed

    Sanchez-Delgado, Marta; Riccio, Andrea; Eggermann, Thomas; Maher, Eamonn R; Lapunzina, Pablo; Mackay, Deborah; Monk, David

    2016-07-01

    Eight syndromes are associated with the loss of methylation at specific imprinted loci. There has been increasing evidence that these methylation defects in patients are not isolated events occurring at a given disease-associated locus but that some of these patients may have multi-locus imprinting disturbances (MLID) affecting additional imprinted regions. With the recent advances in technology, methylation profiling has revealed that imprinted loci represent only a small fraction of the methylation differences observed between the gametes. To figure out how imprinting anomalies occur at multiple imprinted domains, we have to understand the interplay between DNA methylation and histone modifications in the process of selective imprint protection during pre-implantation reprogramming, which, if disrupted, leads to these complex imprinting disorders (IDs).

  17. Highly Selective Fluorescent Sensing of Proteins Based on a Fluorescent Molecularly Imprinted Nanosensor

    PubMed Central

    Deng, Qiliang; Wu, Jianhua; Zhai, Xiaorui; Fang, Guozhen; Wang, Shuo

    2013-01-01

    A fluorescent molecularly imprinted nanosensor was obtained by grafting imprinted polymer onto the surface of multi-wall carbon nanotubes and post-imprinting treatment with fluorescein isothiocyanate (FITC). The fluorescence of lysozyme-imprinted polymer (Lys-MIP) was quenched more strongly by Lys than that of nonimprinted polymer (NIP), which indicated that the Lys-MIP could recognize Lys. The resulted imprinted material has the ability to selectively sense a target protein, and an imprinting factor of 3.34 was achieved. The Lys-MIP also showed selective detection for Lys among other proteins such as cytochrome C (Cyt C), hemoglobin (HB) and bovine serum albumin (BSA) due to the imprinted sites in the Lys-MIP. This approach combines the high selectivity of surface molecular imprinting technology and fluorescence, and converts binding events into detectable signals by monitoring fluorescence spectra. Therefore, it will have further applications for Lys sensing. PMID:24077318

  18. Imprinting and flexibility in human face cognition.

    PubMed

    Marcinkowska, Urszula M; Terraube, Julien; Kaminski, Gwenaël

    2016-09-29

    Faces are an important cue to multiple physiological and psychological traits. Human preferences for exaggerated sex typicality (masculinity or femininity) in faces depend on multiple factors and show high inter-subject variability. To gain a deeper understanding of the mechanisms underlying facial femininity preferences in men, we tested the interactive effect of family structure (birth order, sibling sex-ratio and number of siblings) and parenthood status on these preferences. Based on a group of 1304 heterosexual men, we have found that preference for feminine faces was not only influenced by sibling age and sex, but also that fatherhood modulated this preference. Men with sisters had a weaker preference for femininity than men with brothers, highlighting a possible effect of a negative imprinting-like mechanism. What is more, fatherhood increased strongly the preference for facial femininity. Finally, for fathers with younger sisters only, the more the age difference increased between them, the more femininity preference increased. Overall our findings bring new insight into how early-acquired experience at the individual level may determine face preference in adulthood, and what is more, how these preferences are flexible and potentially dependent on parenthood status in adult men.

  19. Transgenerational epigenetic imprints on mate preference.

    PubMed

    Crews, David; Gore, Andrea C; Hsu, Timothy S; Dangleben, Nygerma L; Spinetta, Michael; Schallert, Timothy; Anway, Matthew D; Skinner, Michael K

    2007-04-03

    Environmental contamination by endocrine-disrupting chemicals (EDC) can have epigenetic effects (by DNA methylation) on the germ line and promote disease across subsequent generations. In natural populations, both sexes may encounter affected as well as unaffected individuals during the breeding season, and any diminution in attractiveness could compromise reproductive success. Here we examine mate preference in male and female rats whose progenitors had been treated with the antiandrogenic fungicide vinclozolin. This effect is sex-specific, and we demonstrate that females three generations removed from the exposure discriminate and prefer males who do not have a history of exposure, whereas similarly epigenetically imprinted males do not exhibit such a preference. The observations suggest that the consequences of EDCs are not just transgenerational but can be "transpopulational", because in many mammalian species, males are the dispersing sex. This result indicates that epigenetic transgenerational inheritance of EDC action represents an unappreciated force in sexual selection. Our observations provide direct experimental evidence for a role of epigenetics as a determinant factor in evolution.

  20. Imprinting and flexibility in human face cognition

    PubMed Central

    Marcinkowska, Urszula M.; Terraube, Julien; Kaminski, Gwenaël

    2016-01-01

    Faces are an important cue to multiple physiological and psychological traits. Human preferences for exaggerated sex typicality (masculinity or femininity) in faces depend on multiple factors and show high inter-subject variability. To gain a deeper understanding of the mechanisms underlying facial femininity preferences in men, we tested the interactive effect of family structure (birth order, sibling sex-ratio and number of siblings) and parenthood status on these preferences. Based on a group of 1304 heterosexual men, we have found that preference for feminine faces was not only influenced by sibling age and sex, but also that fatherhood modulated this preference. Men with sisters had a weaker preference for femininity than men with brothers, highlighting a possible effect of a negative imprinting-like mechanism. What is more, fatherhood increased strongly the preference for facial femininity. Finally, for fathers with younger sisters only, the more the age difference increased between them, the more femininity preference increased. Overall our findings bring new insight into how early-acquired experience at the individual level may determine face preference in adulthood, and what is more, how these preferences are flexible and potentially dependent on parenthood status in adult men. PMID:27680495

  1. HYSTERESIS OF BACKFLOW IMPRINTED IN COLLIMATED JETS

    SciTech Connect

    Mizuta, Akira; Kino, Motoki; Nagakura, Hiroki

    2010-01-20

    We report two different types of backflow from jets by performing two-dimensional special relativistic hydrodynamical simulations. One is anti-parallel and quasi-straight to the main jet (quasi-straight backflow), and the other is a bent path of the backflow (bent backflow). We find that the former appears when the head advance speed is comparable to or higher than the local sound speed at the hotspot, while the latter appears when the head advance speed is slower than the sound speed at the hotspot. Bent backflow collides with the unshocked jet and laterally squeezes the jet. At the same time, a pair of new oblique shocks is formed at the tip of the jet and new bent fast backflows are generated via these oblique shocks. The hysteresis of backflow collisions is thus imprinted in the jet as a node and anti-node structure. This process also promotes broadening of the jet cross-sectional area and also causes a decrease in the head advance velocity. This hydrodynamic process may be tested by observations of compact young jets.

  2. Chemical microsensors with molecularly imprinted sensitive layers

    NASA Astrophysics Data System (ADS)

    Dickert, Franz L.; Greibl, Wolfgang; Sikorski, Renatus; Tortschanoff, Matthias; Weber, K.; Bulst, W. E.; Fischerauer, G.

    1998-12-01

    The bottleneck in the development of chemical sensors is the design of the coatings for chemical recognition of the analyte. One pronounced method is to tailor supramolecular cavities for different analytes. Polyfunctional linkers or the embedding of these materials in a polymeric matrix can improve stability and response time of the sensor. An even more favorable method to synthesize chemically sensitive layers is realized by molecular imprinting, since a rigid polymer can be generated directly on the transducer of interest and may be included in its production process. The analyte of interest acts as a template during the polymerization process and is evaporated or extracted by suitable solvents. Due to the cavities formed this polymer enriches analyte molecules, which can be detected by mass- sensitive devices such as QMB or SAW resonators or by optical measurements. This procedure allows both the detection of polycyclic aromatic hydrocarbons (PAHs) with fluorescence or mass sensitive devices. If the print PAHs are varied the polymers are tuned to the desired analyte. The enrichment of solvent vapors or other uncolored specimen by the layer can also be followed by the embedding of carbenium ions used as optical labels.

  3. Imprinting bulk amorphous alloy at room temperature

    DOE PAGES

    Kim, Song-Yi; Park, Eun-Soo; Ott, Ryan T.; ...

    2015-11-13

    We present investigations on the plastic deformation behavior of a brittle bulk amorphous alloy by simple uniaxial compressive loading at room temperature. A patterning is possible by cold-plastic forming of the typically brittle Hf-based bulk amorphous alloy through controlling homogenous flow without the need for thermal energy or shaping at elevated temperatures. The experimental evidence suggests that there is an inconsistency between macroscopic plasticity and deformability of an amorphous alloy. Moreover, imprinting of specific geometrical features on Cu foil and Zr-based metallic glass is represented by using the patterned bulk amorphous alloy as a die. These results demonstrate the abilitymore » of amorphous alloys or metallic glasses to precisely replicate patterning features onto both conventional metals and the other amorphous alloys. In conclusion, our work presents an avenue for avoiding the embrittlement of amorphous alloys associated with thermoplastic forming and yields new insight the forming application of bulk amorphous alloys at room temperature without using heat treatment.« less

  4. Familial KANK1 deletion that does not follow expected imprinting pattern.

    PubMed

    Vanzo, Rena J; Martin, Megan M; Sdano, Mallory R; South, Sarah T

    2013-05-01

    Deletion of the KANK1 gene (also called ANKRD15), located at chromosome position 9p24.3, has been associated with neurodevelopmental disease including congenital cerebral palsy, hypotonia, quadriplegia, and intellectual disability in a four-generation family. The inheritance pattern in this family was suggested to be maternal imprinting, as all affected individuals inherited the deletion from their fathers and monoallelic protein expression was observed. We present a family in which the proband's phenotype, including autism spectrum disorder, motor delay, and intellectual disability, is consistent with this previous report of KANK1 deletions. However, a paternally inherited deletion in the proband's unaffected sibling did not support maternal imprinting. This family raises consideration of further complexity of the KANK1 locus, including variable expressivity, incomplete penetrance, and the additive effects of additional genomic variants or the potential benign nature of inherited copy number variations (CNVs). However, when considered with the previous publication, our case also suggests that KANK1 may be subject to random monoallelic expression as a possible mode of inheritance. It is also important to consider that KANK1 has two alternately spliced transcripts, A and B. These have differential tissue expression and thus potentially differential clinical significance. Based upon cases in the literature, the present case, and information in the Database of Genomic Variants, it is possible that only aberrations of variant A contribute to neurodevelopmental disease. The familial deletion in this present case does not support maternal imprinting as an inheritance pattern. We suggest that other inheritance patterns and caveats should be considered when evaluating KANK1 deletions, which may become increasingly recognized through whole genome microarray testing, whole genome sequencing, and whole exome sequencing techniques.

  5. Automated imprint mask cleaning for step-and-flash imprint lithography

    NASA Astrophysics Data System (ADS)

    Singh, Sherjang; Chen, Ssuwei; Selinidis, Kosta; Fletcher, Brian; McMackin, Ian; Thompson, Ecron; Resnick, Douglas J.; Dress, Peter; Dietze, Uwe

    2009-03-01

    Step-and-Flash Imprint Lithography (S-FIL) is a promising lithography strategy for semiconductor manufacturing at device nodes below 32nm. The S-FIL 1:1 pattern transfer technology utilizes a field-by-field ink jet dispense of a low viscosity liquid resist to fill the relief pattern of the device layer etched into the glass mask. Compared to other sub 40nm CD lithography methods, the resulting high resolution, high throughput through clustering, 3D patterning capability, low process complexity, and low cost of ownership (CoO) of S-FIL makes it a widely accepted technology for patterned media as well as a promising mainstream option for future CMOS applications. Preservation of mask cleanliness is essential to avoid risk of repeated printing of defects. The development of mask cleaning processes capable of removing particles adhered to the mask surface without damaging the mask is critical to meet high volume manufacturing requirements. In this paper we have presented various methods of residual (cross-linked) resist removal and final imprint mask cleaning demonstrated on the HamaTech MaskTrack automated mask cleaning system. Conventional and non-conventional (acid free) methods of particle removal have been compared and the effect of mask cleaning on pattern damage and CD integrity is also studied.

  6. Comparison of binding behavior for molecularly imprinted polymers prepared by hierarchical imprinting or Pickering emulsion polymerization.

    PubMed

    Giovannoli, Cristina; Passini, Cinzia; Anfossi, Laura; Nardo, Fabio Di; Spano, Giulia; Maurino, Valter; Baggiani, Claudio

    2015-10-01

    The aim of this study was the evaluation of the binding performances and selectivity of molecularly imprinted beads prepared toward several penicillins (i) by hierarchical bulk polymerization in the pores of template-grafted silica microbeads (hMIPs) and (ii) by Pickering emulsion polymerization in the presence of template-decorated silica nanobeads (pMIPs). 6-Aminopenicillanic acid was chosen as the common fragmental mimic template. Both approaches produced micron-sized polymeric beads with good recognition properties toward the target ligands whereas the selectivity pattern appeared quite different. The polymer prepared by the Pickering emulsion approach showed binding properties similar to imprinted beads prepared by hierarchical approach. Equilibrium binding constants changed their values from 0.1-0.2 × 10(6) (hMIPs) to 0.2-0.6 × 10(6) M(-1) (pMIPs), while the binding site densities changed from 3.7-4.8 (hMIPs) to 0.3-0.55 μmol/g (pMIPs). Compared to the hierarchical polymerization, Pickering emulsion polymerization represents a more practical approach when a template mimic needs to be used.

  7. Fluorescence measurements of activity associated with a molecularly imprinted polymer imprinted to dipicolinic acid

    NASA Astrophysics Data System (ADS)

    Anderson, John; Pestov, Dmitry; Fischer, Robert L.; Webb, Stanley; Tepper, Gary C.

    2004-03-01

    Steady state and lifetime fluorescence measurements were acquired to measure the binding activity associated with molecularly imprinted polymer (MIP) microparticles imprinted to dipicolinic acid. Dipicolinic acid is a unique compound associated with the sporulation phase of spore-forming bacteria (e.g., genus Bacillus and Clostridium). Vinylic monomers were polymerized in a dimethylformamide solution containing the dipicolinic acid as a template. The resulting MIP was then pulverized and size selected into small microscale particles. Samplers were adapted incorporating the MIP particles within a dialyzer (500 MW). Tests were run on replicate samples of biologically active cultures representing both stationary phase and sporulation post fermentation products in standard media. The permeability of the membrane permitted diffusion of lighter molecular weight constituents from media effluents to enter the dialyzer chamber and contact the MIP. Extractions of the media were measured using steady state and lifetime fluorescence. Results showed dramatic steady state fluorescence changes as a function of excitation, emission and intensity and an estimated lifetime of 5.8 ns.

  8. Quantum-dots-encoded-microbeads based molecularly imprinted polymer.

    PubMed

    Liu, Yixi; Liu, Le; He, Yonghong; He, Qinghua; Ma, Hui

    2016-03-15

    Quantum dots encoded microbeads have various advantages such as large surface area, superb optical properties and the ability of multiplexing. Molecularly imprinted polymer that can mimic the natural recognition entities has high affinity and selectivity for the specific analyte. Here, the concept of utilizing the quantum dots encoded microbeads as the supporting material and the polydopamine as the functional monomer to form the core-shell molecular imprinted polymer was proposed for the first time. The resulted imprinted polymer can provide various merits: polymerization can complete in aqueous environment; fabrication procedure is facile and universal; the obvious economic advantage; the thickness of the imprinting layer is highly controllable; polydopamine coating can improve the biocompatibility of the quantum dot encoded microbeads. The rabbit IgG binding and flow cytometer experiment result showed the distinct advantages of this strategy: cost-saving, facile and fast preparation procedure. Most importantly, the ability for the multichannel detection, which makes the imprinted polydopamine modified encoded-beads very attractive in protein pre-concentration, recognition, separation and biosensing.

  9. Thermoresponsive ketoprofen-imprinted monolith prepared in ionic liquid.

    PubMed

    Sun, Xuan; Zhao, Chun-Yan; Wang, Xian-Hua; Huang, Yan-Ping; Liu, Zhao-Sheng

    2014-09-01

    A thermoresponsive imprinted monolith with the ability of molecular recognition for ketoprofen was prepared for the first time. The smart monolith was synthesized in a stainless steel column using acrylamide (AAm) and 2-acrylamide-2-methyl propanesulfonic acid (AMPS) as functional monomers, which can form interpolymer complexation to restrict access of the analyte to the imprinted networks at low temperatures. To avoid a high back pressure of the column derived from neat dimethyl sulfoxide (DMSO) as a porogenic solvent that is needed to solve polar AMPS, an ionic liquid, [BMIM]BF4, was introduced into the pre-polymerization mixture. The molecular recognition ability towards ketoprofen of the resulting thermoresponsive molecularly imprinted polymer (MIP) monolith displayed significant dependence on temperature compared with a non-imprinted column (NIP), and the greatest imprinting factor was achieved at the transition temperature of 35 °C (above 10). Furthermore, the number of binding sites of the smart MIP monolith at 35 °C was about 76 times as large as that at 25 °C. In addition, Freundlich analyses indicated that the thermoresponsive MIP monolith had homogeneous affinity sites at both 25 and 35 °C with heterogeneity index 0.9251 and 0.9851, respectively.

  10. Chitosan in Molecularly-Imprinted Polymers: Current and Future Prospects

    PubMed Central

    Xu, Long; Huang, Yun-An; Zhu, Qiu-Jin; Ye, Chun

    2015-01-01

    Chitosan is widely used in molecular imprinting technology (MIT) as a functional monomer or supporting matrix because of its low cost and high contents of amino and hydroxyl functional groups. The various excellent properties of chitosan, which include nontoxicity, biodegradability, biocompatibility, and attractive physical and mechanical performances, make chitosan a promising alternative to conventional functional monomers. Recently, chitosan molecularly-imprinted polymers have gained considerable attention and showed significant potential in many fields, such as curbing environmental pollution, medicine, protein separation and identification, and chiral-compound separation. These extensive applications are due to the polymers’ desired selectivity, physical robustness, and thermal stability, as well as their low cost and easy preparation. Cross-linkers, which fix the functional groups of chitosan around imprinted molecules, play an important role in chitosan molecularly-imprinted polymers. This review summarizes the important cross-linkers of chitosan molecularly-imprinted polymers and illustrates the cross-linking mechanism of chitosan and cross-linkers based on the two glucosamine units. Finally, some significant attempts to further develop the application of chitosan in MIT are proposed. PMID:26262607

  11. Scalemic and racemic imprinting with a chiral crosslinker.

    PubMed

    Hebert, Britney; Meador, Danielle S; Spivak, David A

    2015-08-26

    The development of molecularly imprinted chiral stationary phases has traditionally been limited by the need for a chiral pure template. Paradoxically, availability of a chiral pure template largely defeats the purpose of developing a chiral stationary phase. To solve this paradox, imprinting of scalemic and racemic template mixtures was investigated using both chiral (N-α-bismethacryloyl-L-alanine) and achiral (N,O-bisacrylamide ethanolamine) crosslinkers. Imprinting of scalemic mixtures provided polymers capable of partial separation of Boc-tyrosine enantiomers with virtually the same results when using either the chiral or achiral crosslinker. However, the chiral crosslinker was required for chiral differentiation by the racemic imprinted polymers which were evaluated in both batch rebinding and chromatographic modes. Batch rebinding analysis revealed intersecting binding isotherms for the L- and D-Boc-tyrosine, indicating bias for the D or L enantiomer is concentration dependent. Partial chromatographic separation was achieved by the racemic imprinted polymers providing variable D or L bias in equal probability over multiple replicates of polymer synthesis. Correlation of enantiomer bias with the batch rebinding results and optimization of HPLC parameters are discussed.

  12. Bio-Mimetic Sensors Based on Molecularly Imprinted Membranes

    PubMed Central

    Algieri, Catia; Drioli, Enrico; Guzzo, Laura; Donato, Laura

    2014-01-01

    An important challenge for scientific research is the production of artificial systems able to mimic the recognition mechanisms occurring at the molecular level in living systems. A valid contribution in this direction resulted from the development of molecular imprinting. By means of this technology, selective molecular recognition sites are introduced in a polymer, thus conferring it bio-mimetic properties. The potential applications of these systems include affinity separations, medical diagnostics, drug delivery, catalysis, etc. Recently, bio-sensing systems using molecularly imprinted membranes, a special form of imprinted polymers, have received the attention of scientists in various fields. In these systems imprinted membranes are used as bio-mimetic recognition elements which are integrated with a transducer component. The direct and rapid determination of an interaction between the recognition element and the target analyte (template) was an encouraging factor for the development of such systems as alternatives to traditional bio-assay methods. Due to their high stability, sensitivity and specificity, bio-mimetic sensors-based membranes are used for environmental, food, and clinical uses. This review deals with the development of molecularly imprinted polymers and their different preparation methods. Referring to the last decades, the application of these membranes as bio-mimetic sensor devices will be also reported. PMID:25196110

  13. Bio-mimetic sensors based on molecularly imprinted membranes.

    PubMed

    Algieri, Catia; Drioli, Enrico; Guzzo, Laura; Donato, Laura

    2014-07-30

    An important challenge for scientific research is the production of artificial systems able to mimic the recognition mechanisms occurring at the molecular level in living systems. A valid contribution in this direction resulted from the development of molecular imprinting. By means of this technology, selective molecular recognition sites are introduced in a polymer, thus conferring it bio-mimetic properties. The potential applications of these systems include affinity separations, medical diagnostics, drug delivery, catalysis, etc. Recently, bio-sensing systems using molecularly imprinted membranes, a special form of imprinted polymers, have received the attention of scientists in various fields. In these systems imprinted membranes are used as bio-mimetic recognition elements which are integrated with a transducer component. The direct and rapid determination of an interaction between the recognition element and the target analyte (template) was an encouraging factor for the development of such systems as alternatives to traditional bio-assay methods. Due to their high stability, sensitivity and specificity, bio-mimetic sensors-based membranes are used for environmental, food, and clinical uses. This review deals with the development of molecularly imprinted polymers and their different preparation methods. Referring to the last decades, the application of these membranes as bio-mimetic sensor devices will be also reported.

  14. Ionic liquid crosslinkers for chiral imprinted nanoGUMBOS.

    PubMed

    Hamdan, Suzana; Moore, Leonard; Lejeune, Jason; Hasan, Farhana; Carlisle, Trevor K; Bara, Jason E; Gin, D L; LaFrate, Andrew L; Noble, R D; Spivak, David A; Warner, Isiah M

    2016-02-01

    Molecularly imprinted polymers (MIPs) are an important class of selective materials for molecular specific sensors and separations. Molecular imprinting using non-covalent interactions in aqueous conditions still remains a difficult challenge due to interruption of hydrogen-bonding or electrostatic interactions water. Newly developed crosslinking ionic liquids are demonstrated herein to overcome problems of synthesizing aqueous MIPs, adding to previous examples of ionic liquids used as monomers in non-aqueous conditions or used as MIP solvents. Vinylimidazole ionic liquid crosslinkers were synthesized and subsequently explored as matrix supports for fabrication of molecularly imprinted polymeric nanoGUMBOS (nanoparticles derived from a group of uniform materials based on organic salts). Each of the four crosslinkers incorporated a unique functional spacer between the vinylimidazole groups, and the performance of the corresponding molecularly imprinted polymers was evaluated using chiral recognition as the diagnostic. High uptake values for l-tryptophan were found in the 13-87μmol/g range; and chiral recognition was determined via binding ratios of l-tryptophan over d-tryptophan that ranged from 5:1 to 13:1 for polymers made using different crosslinkers. Not only are these materials good for chiral recognition, but the results highlight the utility of these materials for imprinting aqueous templates such as biological targets for theranostic agents.

  15. Chitosan in Molecularly-Imprinted Polymers: Current and Future Prospects.

    PubMed

    Xu, Long; Huang, Yun-An; Zhu, Qiu-Jin; Ye, Chun

    2015-08-07

    Chitosan is widely used in molecular imprinting technology (MIT) as a functional monomer or supporting matrix because of its low cost and high contents of amino and hydroxyl functional groups. The various excellent properties of chitosan, which include nontoxicity, biodegradability, biocompatibility, and attractive physical and mechanical performances, make chitosan a promising alternative to conventional functional monomers. Recently, chitosan molecularly-imprinted polymers have gained considerable attention and showed significant potential in many fields, such as curbing environmental pollution, medicine, protein separation and identification, and chiral-compound separation. These extensive applications are due to the polymers' desired selectivity, physical robustness, and thermal stability, as well as their low cost and easy preparation. Cross-linkers, which fix the functional groups of chitosan around imprinted molecules, play an important role in chitosan molecularly-imprinted polymers. This review summarizes the important cross-linkers of chitosan molecularly-imprinted polymers and illustrates the cross-linking mechanism of chitosan and cross-linkers based on the two glucosamine units. Finally, some significant attempts to further develop the application of chitosan in MIT are proposed.

  16. Analysis of recognition of fructose by imprinted polymers.

    PubMed

    Rajkumar, Rajagopal; Warsinke, Axel; Möhwald, Helmuth; Scheller, Frieder W; Katterle, Martin

    2008-09-15

    Binding of fructose to the fructose imprinted polymer (MIP(Frc)) and pinacol imprinted polymer (control) were studied both in batch and a flow through mode. The influence of the cross-linkers ethylene glycol dimethacrylate (EDMA) and trimethylolpropane trimethacrylate (TRIM) on the binding characteristics was analysed. TRIM cross-linked MIPs showed a lower (unspecific) binding for the control polymer (pinacol imprinted) and higher binding of fructose as compared with the EDMA-MIPs. Furthermore interactions of a TRIM cross-linked molecularly imprinted polymer against fructose and its corresponding template were studied using a thermistor. Label-free detection of fructose was realised in the range of 0.5-10mM. The difference in enthalpy changes between specific binding of fructose to boronic acid moieties of the MIP and non-specific binding to the matrix leads to an 18-fold higher apparent imprinting factor than batch binding studies. Cross-reactivity studies using MIP sensor indicate that the interaction of fructose to MIP generates higher signal than disaccharides. The studies described in this paper demonstrate the potential of direct characterisation of molecular binding events.

  17. Molecularly imprinted polymers for 5-fluorouracil release in biological fluids.

    PubMed

    Puoci, Francesco; Iemma, Francesca; Cirillo, Giuseppe; Picci, Nevio; Matricardi, Pietro; Alhaiqu, Franco

    2007-04-18

    The aim of this work was to investigate the possibility of employing Molecularly Imprinted Polymers (MIPs) as a controlled release device for 5-fluorouracil (5-FU) in biological fluids, especially gastrointestinal ones, compared to Non Imprinted Polymers (NIPs). MIPs were synthesized using methacrylic acid (MAA) as functional monomer and ethylene glycol dimethacrylate (EGDMA) as crosslinking agent. The capacity of the polymer to recognize and to bind the template selectively in both organic and aqueous media was evaluated. An in vitro release study was performed both in gastrointestinal and in plasma simulating fluids. The imprinted polymers bound much more 5-Fu than the corresponding non-imprinted ones and showed a controlled/sustained drug release, with MIPs release rate being indeed much more sustained than that obtained from NIPs. These polymers represent a potential valid system for drug delivery and this study indicates that the selective binding characteristic of molecularly imprinted polymers is promising for the preparation of novel controlled release drug dosage form.

  18. Molecularly imprinted polymers as the future drug delivery devices.

    PubMed

    Luliński, Piotr

    2013-01-01

    In recent years, the investigations of new drug delivery systems have been directed on the development of some "intelligent" drug delivery devices that are able to directly respond to the patient's individual needs. New drug delivery systems should maximize the efficiency of administrated therapeutic agents and improve the patient's quality of life. Introduction of the new drug delivery devices is an important scientific goal, which could be achieved by combining new technologies and intelligent biomaterials. Molecular imprinting technology has a high potential for the preparation of optimized drug delivery forms. Here, molecularly imprinted polymers (MIPs) are promising new materials for such purposes, but their application in this field is nowadays at a developing stage. In this review, the principles of molecular imprinting and the recognition-release mechanisms of polymeric matrices are discussed. The potential application of molecularly imprinted materials as the future drug delivery systems with various administering routes (transdermal, ocular or oral) are presented, and some future prospects for the imprinted polymers are outlined.

  19. A transcriptional insulator at the imprinted H19/Igf2 locus

    PubMed Central

    Kaffer, Christopher R.; Srivastava, Madhulika; Park, Kye-Yoon; Ives, Elizabeth; Hsieh, Sandra; Batlle, Juan; Grinberg, Alexander; Huang, Sing-Ping; Pfeifer, Karl

    2000-01-01

    Igf2 and H19 exhibit parent-of-origin-specific monoallelic expression. H19 is expressed from the maternal chromosome and Igf2 from the paternal. The two genes share enhancer elements and monoallelic expression of both genes is dependent on cis-acting sequences upstream of the H19 promoter. In this work we examine the mechanisms by which this region silences the maternal Igf2 allele and we demonstrate that deletion of this region can result in high levels of activation of both H19 and Igf2 from a single chromosome. Moreover, by inserting this cis element between a promoter and its enhancer at a heterologous position, we demonstrate that the sequences carry both insulator activity and the ability to be stably imprinted. We also characterize the insulator in vitro and show that it is neither enhancer nor promoter specific. PMID:10921905

  20. 21 CFR 330.3 - Imprinting of solid oral dosage form drug products.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 5 2011-04-01 2011-04-01 false Imprinting of solid oral dosage form drug products... AS SAFE AND EFFECTIVE AND NOT MISBRANDED General Provisions § 330.3 Imprinting of solid oral dosage form drug products. A requirement to imprint an identification code on solid oral dosage form...

  1. 21 CFR 330.3 - Imprinting of solid oral dosage form drug products.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 5 2010-04-01 2010-04-01 false Imprinting of solid oral dosage form drug products... AS SAFE AND EFFECTIVE AND NOT MISBRANDED General Provisions § 330.3 Imprinting of solid oral dosage form drug products. A requirement to imprint an identification code on solid oral dosage form...

  2. Determination of fusaric acid in maize using molecularly imprinted SPE clean-up

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new liquid chromatography method to detect fusaric acid in maize is reported based on molecularly imprinted polymer solid phase extraction clean-up (MISPE) using mimic-templated molecularly-imprinted polymers. Picolinic acid was used as a toxin analog for imprinting polymers during a thermolytic s...

  3. Expression of KCNQ1OT1, CDKN1C, H19, and PLAGL1 and the methylation patterns at the KvDMR1 and H19/IGF2 imprinting control regions is conserved between human and bovine

    PubMed Central

    2012-01-01

    Background Beckwith-Wiedemann syndrome (BWS) is a loss-of-imprinting pediatric overgrowth syndrome. The primary features of BWS include macrosomia, macroglossia, and abdominal wall defects. Secondary features that are frequently observed in BWS patients are hypoglycemia, nevus flammeus, polyhydramnios, visceromegaly, hemihyperplasia, cardiac malformations, and difficulty breathing. BWS is speculated to occur primarily as the result of the misregulation of imprinted genes associated with two clusters on chromosome 11p15.5, namely the KvDMR1 and H19/IGF2. A similar overgrowth phenotype is observed in bovine and ovine as a result of embryo culture. In ruminants this syndrome is known as large offspring syndrome (LOS). The phenotypes associated with LOS are increased birth weight, visceromegaly, skeletal defects, hypoglycemia, polyhydramnios, and breathing difficulties. Even though phenotypic similarities exist between the two syndromes, whether the two syndromes are epigenetically similar is unknown. In this study we use control Bos taurus indicus X Bos taurus taurus F1 hybrid bovine concepti to characterize baseline imprinted gene expression and DNA methylation status of imprinted domains known to be misregulated in BWS. This work is intended to be the first step in a series of experiments aimed at determining if LOS will serve as an appropriate animal model to study BWS. Results The use of F1 B. t. indicus x B. t. taurus tissues provided us with a tool to unequivocally determine imprinted status of the regions of interest in our study. We found that imprinting is conserved between the bovine and human in imprinted genes known to be associated with BWS. KCNQ1OT1 and PLAGL1 were paternally-expressed while CDKN1C and H19 were maternally-expressed in B. t. indicus x B. t. taurus F1 concepti. We also show that in bovids, differential methylation exists at the KvDMR1 and H19/IGF2 ICRs. Conclusions Based on these findings we conclude that the imprinted gene expression of

  4. Domain regulation of imprinting cluster in Kip2/Lit1 subdomain on mouse chromosome 7F4/F5: large-scale DNA methylation analysis reveals that DMR-Lit1 is a putative imprinting control region.

    PubMed

    Yatsuki, Hitomi; Joh, Keiichiro; Higashimoto, Ken; Soejima, Hidenobu; Arai, Yuji; Wang, Youdong; Hatada, Izuho; Obata, Yayoi; Morisaki, Hiroko; Zhang, Zhongming; Nakagawachi, Tetsuji; Satoh, Yuji; Mukai, Tsunehiro

    2002-12-01

    Mouse chromosome 7F4/F5, where the imprinting domain is located, is syntenic to human 11p15.5, the locus for Beckwith-Wiedemann syndrome. The domain is thought to consist of the two subdomains Kip2 (p57(kip2))/Lit1 and Igf2/H19. Because DNA methylation is believed to be a key factor in genomic imprinting, we performed large-scale DNA methylation analysis to identify the cis-element crucial for the regulation of the Kip2/Lit1 subdomain. Ten CpG islands (CGIs) were found, and these were located at the promoter sites, upstream of genes, and within intergenic regions. Bisulphite sequencing revealed that CGIs 4, 5, 8, and 10 were differentially methylated regions (DMRs). CGIs 4, 5, and 10 were methylated paternally in somatic tissues but not in germ cells. CGI8 was methylated in oocyte and maternally in somatic tissues during development. Parental-specific DNase I hypersensitive sites (HSSs) were found near CGI8. These data indicate that CGI8, called DMR-Lit1, is not only the region for gametic methylation but might also be the imprinting control region (ICR) of the subdomain.

  5. Modular Polymer Biosensors by Solvent Immersion Imprint Lithography

    SciTech Connect

    Moore, Jayven S.; Xantheas, Sotiris S.; Grate, Jay W.; Wietsma, Thomas W.; Gratton, Enrico; Vasdekis, Andreas

    2016-01-01

    We recently demonstrated Solvent Immersion Imprint Lithography (SIIL), a rapid benchtop microsystem prototyping technique, including polymer functionalization, imprinting and bonding. Here, we focus on the realization of planar polymer sensors using SIIL through simple solvent immersion without imprinting. We describe SIIL’s impregnation characteristics, including an inherent mechanism that not only achieves practical doping concentrations, but their unexpected 4-fold enhancement compared to the immersion solution. Subsequently, we developed and characterized optical sensors for detecting molecular O2. To this end, a high dynamic range is reported, including its control through the immersion duration, a manifestation of SIIL’s modularity. Overall, SIIL exhibits the potential of improving the operating characteristics of polymer sensors, while significantly accelerating their prototyping, as it requires a few seconds of processing and no need for substrates or dedicated instrumentation. These are critical for O2 sensing as probed by way of example here, as well as any polymer permeable reactant.

  6. Guiding Molecular Motors with Nano-Imprinted Structures

    NASA Astrophysics Data System (ADS)

    Bunk, Richard; Carlberg, Patrick; Månsson, Alf; Nicholls, Ian A.; Omling, Pär; Sundberg, Mark; Tågerud, Sven; Montelius, Lars

    2005-05-01

    This work, for the first time, demonstrates that nano-imprinted samples, with 100 nm wide polymer lines, can act as guides for molecular motors consisting of motor proteins actin and myosin. The motor protein function was characterized using fluorescence microscopy and compared to actomyosin motility on non-structured nitrocellulose surfaces. Our results open for further use of the nano-imprint technique in the production of disposable chips for bio-nanotechnological applications and miniaturized biological test systems. We discuss how the nano-imprinted motor protein assay system may be optimized and also how it compares to previously tested assay systems involving low-resolution UV-lithography and low throughput but high-resolution electron beam lithography.

  7. Application of molecularly imprinted polymers in wastewater treatment: a review.

    PubMed

    Huang, Dan-Lian; Wang, Rong-Zhong; Liu, Yun-Guo; Zeng, Guang-Ming; Lai, Cui; Xu, Piao; Lu, Bing-An; Xu, Juan-Juan; Wang, Cong; Huang, Chao

    2015-01-01

    Molecularly imprinted polymers are synthetic polymers possessing specific cavities designed for target molecules. They are prepared by copolymerization of a cross-linking agent with the complex formed from a template and monomers that have functional groups specifically interacting with the template through covalent or noncovalent bonds. Subsequent removal of the imprint template leaves specific cavities whose shape, size, and functional groups are complementary to the template molecule. Because of their predetermined selectivity, molecularly imprinted polymers (MIPs) can be used as ideal materials in wastewater treatment. Especially, MIP-based composites offer a wide range of potentialities in wastewater treatment. This paper reviews the latest applications of MIPs in wastewater treatment, highlights the development of MIP-based composites in wastewater, and offers suggestions for future success in the field of MIPs.

  8. Insights on imprinting from beyond mice and men.

    PubMed

    Pask, Andrew

    2012-01-01

    Genomic imprinting is an epigenetic phenomenon that results in the silencing of alleles, dependent on their parent of origin. Within vertebrates, this phenomenon is restricted only to the mammals and has been identified in eutherians and marsupials but not in the egg-laying monotremes. Many hypotheses have been put forward to explain why genomic imprinting evolved, most of which are centered on the regulation of nutrient provisioning from parent to offspring. The three different mammalian lineages have adopted very different modes of reproduction and, as a result, vary widely in the amount of nutrient provisioning to the conceptus. Examining imprinting across the three mammal groups enables us to test hypotheses on the origin of this phenomenon in mammals and also to investigate changes in the genome coincident with its evolution.

  9. Modular Polymer Biosensors by Solvent Immersion Imprint Lithography.

    PubMed

    Moore, J S; Xantheas, S S; Grate, J W; Wietsma, T W; Gratton, E; Vasdekis, A E

    2016-01-01

    We recently demonstrated Solvent Immersion Imprint Lithography (SIIL), a rapid benchtop microsystem prototyping technique, including polymer functionalization, imprinting and bonding. Here, we focus on the realization of planar polymer sensors using SIIL through simple solvent immersion without imprinting. We describe SIIL's impregnation characteristics, including an inherent mechanism that not only achieves practical doping concentrations, but their unexpected 2-fold enhancement compared to the immersion solution. Subsequently, we developed and characterized optical sensors for detecting molecular O2. To this end, a substantially high dynamic range is reported, including its control through the immersion duration, a manifestation of SIIL's modularity. Overall, SIIL exhibits the potential of improving the operating characteristics of polymer sensors, while significantly accelerating their prototyping, as it requires a few seconds of processing and no need for substrates or dedicated instrumentation. These are critical for O2 sensing as probed by way of example here, as well as any polymer permeable reactant.

  10. 32 nm imprint masks using variable shape beam pattern generators

    NASA Astrophysics Data System (ADS)

    Selinidis, Kosta; Thompson, Ecron; Schmid, Gerard; Stacey, Nick; Perez, Joseph; Maltabes, John; Resnick, Douglas J.; Yeo, Jeongho; Kim, Hoyeon; Eynon, Ben

    2008-05-01

    Imprint lithography has been included on the ITRS Lithography Roadmap at the 32, 22 and 16 nm nodes. Step and Flash Imprint Lithography (S-FIL ®) is a unique method that has been designed from the beginning to enable precise overlay for creating multilevel devices. A photocurable low viscosity monomer is dispensed dropwise to meet the pattern density requirements of the device, thus enabling imprint patterning with a uniform residual layer across a field and across entire wafers. Further, S-FIL provides sub-100 nm feature resolution without the significant expense of multi-element, high quality projection optics or advanced illumination sources. However, since the technology is 1X, it is critical to address the infrastructure associated with the fabrication of templates. For sub-32 nm device manufacturing, one of the major technical challenges remains the fabrication of full-field 1x templates with commercially viable write times. Recent progress in the writing of sub-40 nm patterns using commercial variable shape e-beam tools and non-chemically amplified resists has demonstrated a very promising route to realizing these objectives, and in doing so, has considerably strengthened imprint lithography as a competitive manufacturing technology for the sub 32nm node. Here we report the first imprinting results from sub-40 nm full-field patterns, using Samsung's current flash memory production device design. The fabrication of the template is discussed and the resulting critical dimension control and uniformity are discussed, along with image placement results. The imprinting results are described in terms of CD uniformity, etch results, and overlay.

  11. A random model for mapping imprinted quantitative trait loci in a structured pedigree: an implication for mapping canine hip dysplasia.

    PubMed

    Liu,