Science.gov

Sample records for imprinted igf2 expression

  1. Monotreme IGF2 expression and ancestral origin of genomic imprinting.

    PubMed

    Killian, J K; Nolan, C M; Stewart, N; Munday, B L; Andersen, N A; Nicol, S; Jirtle, R L

    2001-08-15

    IGF2 (insulin-like growth factor 2) and M6P/IGF2R (mannose 6-phosphate/insulin-like growth factor 2 receptor) are imprinted in marsupials and eutherians but not in birds. These results along with the absence of M6P/IGF2R imprinting in the egg-laying monotremes indicate that the parental imprinting of fetal growth-regulatory genes may be unique to viviparous mammals. In this investigation, we have cloned IGF2 from two monotreme mammals, the platypus and echidna, to further investigate the origin of imprinting. We report herein that like M6P/IGF2R, IGF2 is not imprinted in monotremes. Thus, although IGF2 encodes for a highly conserved growth factor in chordates, it is only imprinted in therian mammals. These findings support a concurrent origin of IGF2 and M6P/IGF2R imprinting in the late Jurassic/early Cretaceous period. The absence of imprinting in monotremes, despite apparent interparental conflicts over maternal-offspring exchange, argues that a fortuitous congruency of genetic and epigenetic events may have limited the phylogenetic breadth of genomic imprinting to therian mammals. J. Exp. Zool. (Mol. Dev. Evol.) 291:205-212, 2001.

  2. Monotreme IGF2 expression and ancestral origin of genomic imprinting.

    PubMed

    Killian, J K; Nolan, C M; Stewart, N; Munday, B L; Andersen, N A; Nicol, S; Jirtle, R L

    2001-08-15

    IGF2 (insulin-like growth factor 2) and M6P/IGF2R (mannose 6-phosphate/insulin-like growth factor 2 receptor) are imprinted in marsupials and eutherians but not in birds. These results along with the absence of M6P/IGF2R imprinting in the egg-laying monotremes indicate that the parental imprinting of fetal growth-regulatory genes may be unique to viviparous mammals. In this investigation, we have cloned IGF2 from two monotreme mammals, the platypus and echidna, to further investigate the origin of imprinting. We report herein that like M6P/IGF2R, IGF2 is not imprinted in monotremes. Thus, although IGF2 encodes for a highly conserved growth factor in chordates, it is only imprinted in therian mammals. These findings support a concurrent origin of IGF2 and M6P/IGF2R imprinting in the late Jurassic/early Cretaceous period. The absence of imprinting in monotremes, despite apparent interparental conflicts over maternal-offspring exchange, argues that a fortuitous congruency of genetic and epigenetic events may have limited the phylogenetic breadth of genomic imprinting to therian mammals. J. Exp. Zool. (Mol. Dev. Evol.) 291:205-212, 2001. PMID:11479919

  3. Tissue specificity and variability of imprinted IGF2 expression in humans

    SciTech Connect

    Giannoukakis, N.; Rouleau, G.; Polychronakos, C.

    1994-09-01

    Parental genomic imprinting refers to the phenomenon where expression of a gene copy depends on the sex of the parent from which it is derived. The human insulin-like growth factor II gene, IGF2, is parentally imprinted with the paternal gene copy exclusively expressed in fetal and term placenta as well as in fetal kidney. In mice, imprinted IGF2 expression is tissue-specific. In a preliminary approach to investigate tissue-specific IGF2 imprinting in humans, we evaluated allele-specific expression in four samples of umbilical cord blood leukocytes of fetuses found to imprint IGF2 in placenta. IGF2 mRNA transcripts from the gene copy transmitted from each parent were distinguished using a transcribed ApaI polymorphism by performing reverse transcription-PCR on total RNA from cord blood leukocytes. Postnatal peripheral blood was examined using the same method. Of 77 informative individuals, 68 expressed both IGF2 copies, but 9 individuals showed unambiguous monoallelic expression. Two individuals from each category were screened again and the results were identical. These data indicate that imprinted IGF2 expression is tissue-specific and show variability of IGF2 imprinting among individuals. This variability may be genetic. We are in the process of screening large pedigrees to test this hypothesis.

  4. Promoter-specific expression and imprint status of marsupial IGF2.

    PubMed

    Stringer, Jessica M; Suzuki, Shunsuke; Pask, Andrew J; Shaw, Geoff; Renfree, Marilyn B

    2012-01-01

    In mice and humans, IGF2 has multiple promoters to maintain its complex tissue- and developmental stage-specific imprinting and expression. IGF2 is also imprinted in marsupials, but little is known about its promoter region. In this study, three IGF2 transcripts were isolated from placental and liver samples of the tammar wallaby, Macropus eugenii. Each transcript contained a unique 5' untranslated region, orthologous to the non-coding exons derived from promoters P1-P3 in the human and mouse IGF2 locus. The expression of tammar IGF2 was predominantly from the P2 promoter, similar to humans. Expression of IGF2 was higher in pouch young than in the adult and imprinting was highly tissue and developmental-stage specific. Interestingly, while IGF2 was expressed throughout the placenta, imprinting seemed to be restricted to the vascular, trilaminar region. In addition, IGF2 was monoallelically expressed in the adult mammary gland while in the liver it switched from monoalleleic expression in the pouch young to biallelic in the adult. These data suggest a complex mode of IGF2 regulation in marsupials as seen in eutherian mammals. The conservation of the IGF2 promoters suggests they originated before the divergence of marsupials and eutherians, and have been selectively maintained for at least 160 million years.

  5. Genomic Imprinting of IGF2 Is Maintained in Infantile Hemangioma despite its High Level of Expression

    PubMed Central

    Yu, Ying; Wylie-Sears, Jill; Boscolo, Elisa; Mulliken, John B; Bischoff, Joyce

    2004-01-01

    Hemangioma, the most common tumor of infancy, is characterized by rapid growth and slow regression. Increased mRNA expression of insulin-like growth factor 2 (IGF2) has been detected in the proliferating phase by cDNA microarray analysis, but the underlying mechanism causing the increase remains unknown. Here, using quantitative real-time polymerase chain reaction (PCR) and immunohistochemistry, we show that IGF2 is highly expressed in both proliferating and involuting phase hemangioma, but is not detectable in other vascular lesions such as pyogenic granuloma, venous malformation, lymphatic malformation, or in normal infant skin. Loss of imprinting of the Igf2 gene has been associated with IGF2 overexpression in a variety of childhood tumors. To determine if loss of imprinting and consequent bi-allelic expression might contribute to the increased expression of IGF2, we examined the genomic imprinting status of Igf2 in 48 individual hemangiomas. We determined allele-specific Igf2 expression using reverse transcriptase–PCR combined with analysis of an Apa I–sensitive restriction fragment length polymorphism. Similar to heterozygous normal skin controls, all 15 informative hemangiomas showed uniform mono-allelic expression of Igf2. Therefore, loss of imprinting is not involved in the increased expression of IGF2 in infantile hemangioma. PMID:15706404

  6. IGF2 over-expression in solitary fibrous tumours is independent of anatomical location and is related to loss of imprinting.

    PubMed

    Hajdu, Mihai; Singer, Samuel; Maki, Robert G; Schwartz, Gary K; Keohan, Mary Lou; Antonescu, Cristina R

    2010-07-01

    Solitary fibrous tumour (SFT) is a mesenchymal neoplasm composed of CD34-positive fibroblastic cells. The pathogenesis driving this neoplasm remains unclear, with no recurrent genetic aberrations described to date. Previous reports suggest a role for IGF2 over-expression in the pathogenesis of these tumours, implicated in triggering hypoglycaemia in some patients. The expression profiling of 23 SFTs was investigated using an Affymetrix U133A platform. The transcriptional signature was compared to a set of 34 soft tissue sarcomas spanning seven subtypes. Potential candidate genes were then further investigated for activating mutations or loss of imprinting (LOI). SFT had a distinct expression signature and clustered in a tight genomic cluster, separate from all other sarcoma subtypes. A number of over-expressed receptor tyrosine kinase (RTK) genes were identified in SFT, including DDR1, ERBB2 and FGFR1; however, no mutations were identified by cDNA sequencing. Over-expression of IGF2 was uniformly detected in SFT, regardless of anatomical location, and was related to LOI. In contrast, IGF1 and JUN over-expression was seen in pleural, but not meningeal, locations. SFT shows a distinctive expression signature, with over-expression of DDR1, ERBB2 and FGFR1. Despite of lack of activating mutations in these RTKs, therapy with specific inhibitors targeting these kinases might be considered in advanced/metastatic cases. Our results confirm LOI in several tumours expressing high levels of IGF2, which may explain the observed paraneoplastic hypoglycaemia.

  7. Epigenetic changes encompassing the IGF2/H19 locus associated with relaxation of IGF2 imprinting and silencing of H19 in Wilms tumor.

    PubMed Central

    Taniguchi, T; Sullivan, M J; Ogawa, O; Reeve, A E

    1995-01-01

    In most tissues IGF2 is expressed from the paternal allele while H19 is expressed from the maternal allele. We have previously shown that in some Wilms tumors the maternal IGF2 imprint is relaxed such that the gene is expressed biallelically. We have now investigated this subset of tumors further and found that biallelic expression of IGF2 was associated with undetectable or very low levels of H19 expression. The relaxation of IGF2 imprinting in Wilms tumors also involved a concomitant reversal in the patterns of DNA methylation of the maternally inherited IGF2 and H19 alleles. Furthermore, the only specific methylation changes that occurred in tumors with relaxation of IGF2 imprinting were solely restricted to the maternal IGF2 and H19 alleles. These data suggest that there has been an acquisition of a paternal epigenotype in these tumors as the result of a pathologic disruption in the normal imprinting of the IGF2 and H19 genes. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:7534414

  8. Maternal and paternal genomes function independently in mouse ova in establishing expression of the imprinted genes Snrpn and Igf2r: no evidence for allelic trans-sensing and counting mechanisms.

    PubMed Central

    Szabó, P E; Mann, J R

    1996-01-01

    It has often been suggested that the parental-specific expression of mammalian imprinted genes might be dependent on maternal-paternal intergenomic or interallelic interactions. Using quantitative allele-specific RT-PCR single nucleotide primer extension assays developed for two imprinted genes, Snrpn and Igf2r, we demonstrate: (i) No role for maternal-paternal allelic interactions: the modes of parental-specific expression of Snrpn and Igf2r in normal ova were unchanged in gynogenetic and androgenetic ova; the latter contain two maternal and two paternal genomes respectively, and cannot undergo maternal-paternal interactions. (ii) No role for allelic counting or exclusion mechanisms: in individual blastomeres of androgenetic ova, both paternal Snrpn alleles were active (Snrpn was not expressed in gynogenetic ova), and in individual gynogenetic and androgenetic blastomeres, both maternal and paternal Igf2r alleles, respectively, were active. (iii) No role for ploidy: the mode of parental-specific expression of Snrpn and Igf2r in normal diploid ova was unchanged in individual blastomeres of triploid and tetraploid ova. Thus, the maternal and paternal genomes function independently in establishing the pre-implantation mode of parental-specific expression of Snrpn and Igf2r, with no role for trans-allelic/genomic interaction phenomena. In addition, the results show that inactive and biallelic modes of expression of imprinted genes are potential mechanisms for the death of gynogenones and androgenones at the peri-implantation stage. Images PMID:8947024

  9. Differential genomic imprinting regulates paracrine and autocrine roles of IGF2 in mouse adult neurogenesis

    PubMed Central

    Ferrón, S. R.; Radford, E. J.; Domingo-Muelas, A.; Kleine, I.; Ramme, A.; Gray, D.; Sandovici, I.; Constancia, M.; Ward, A.; Menheniott, T. R.; Ferguson-Smith, A. C.

    2015-01-01

    Genomic imprinting is implicated in the control of gene dosage in neurogenic niches. Here we address the importance of Igf2 imprinting for murine adult neurogenesis in the subventricular zone (SVZ) and in the subgranular zone (SGZ) of the hippocampus in vivo. In the SVZ, paracrine IGF2 is a cerebrospinal fluid and endothelial-derived neurogenic factor requiring biallelic expression, with mutants having reduced activation of the stem cell pool and impaired olfactory bulb neurogenesis. In contrast, Igf2 is imprinted in the hippocampus acting as an autocrine factor expressed in neural stem cells (NSCs) solely from the paternal allele. Conditional mutagenesis of Igf2 in blood vessels confirms that endothelial-derived IGF2 contributes to NSC maintenance in SVZ but not in the SGZ, and that this is regulated by the biallelic expression of IGF2 in the vascular compartment. Our findings indicate that a regulatory decision to imprint or not is a functionally important mechanism of transcriptional dosage control in adult neurogenesis. PMID:26369386

  10. Loss of imprinting of IGF2 in fibroadenomas and phyllodes tumors of the breast.

    PubMed

    Mishima, Chieko; Kagara, Naofumi; Tanei, Tomonori; Naoi, Yasuto; Shimoda, Masafumi; Shimomura, Atsushi; Shimazu, Kenzo; Kim, Seung Jin; Noguchi, Shinzaburo

    2016-03-01

    Loss of imprinting (LOI) of insulin-like growth factor 2 (IGF2) is thought to be implicated in the pathogenesis of some tumors by upregulating IGF2 mRNA but its role in the pathogenesis of fibroadenomas (FAs) and phyllodes tumors (PTs) of the breast is yet to be studied. LOI of IGF2 was investigated in 25 FAs and 17 PTs which were heterozygous for Apa I polymorphism, and was found to be present in 13 FAs and 12 PTs. IGF2 mRNA expression was more upregulated in FAs and PTs than in paired surrounding normal tissues and laser microdissection showed that IGF2 mRNA expression was significantly higher in the stromal than the epithelial cells. LOI was not associated with upregulation of IGF2 mRNA, nor were MED12 mutations and methylation status of the differentially methylated region 0 (DMR0) of IGF2. These results demonstrate that IGF2 mRNA expression is more upregulated in FAs and PTs than in normal tissues, especially in their stromal cells, but such an upregulation is not related to LOI of IGF2, and that hypomethylation of DMR0 is unlikely to be involved in induction of LOI. PMID:26676988

  11. Activation of an imprinted Igf 2 gene in mouse somatic cell cultures.

    PubMed Central

    Eversole-Cire, P; Ferguson-Smith, A C; Sasaki, H; Brown, K D; Cattanach, B M; Gonzales, F A; Surani, M A; Jones, P A

    1993-01-01

    The mouse insulin-like growth factor II gene (Igf 2), located on distal chromosome 7, is parentally imprinted such that the paternal allele is expressed while the maternal allele is transcriptionally silent. We derived a cell line from a mouse embryo maternally disomic and paternally deficient for distal chromosome 7 (MatDi7) to determine the stability of gene repression in culture. MatDi7 cells maintained Igf2 in a repressed state even after immortalization, except for one randomly picked clone which spontaneously expressed the gene. Igf 2 was expressed in a cell culture derived from a normal littermate; this expression was growth regulated, with Igf 2 mRNA levels increasing in the stationary phase of growth. Analysis of the methylation status of 28 sites distributed over 10 kb of the gene did not show consistent differences associated with expression level in the normal and MatDi7 cell lines, and the CpG island in the Igf 2 promoter remained unmethylated in all of the cell lines. Only with an oncogenically transformed cell line did the promoter become extensively methylated. We attempted to derepress the imprinted gene in MatDi7 cells by treatments known to alter gene expression. Expression of the Igf 2 allele in MatDi7 cells was increased in a dose-dependent manner by treatment with 5-aza-2'-deoxycytidine or bromodeoxyuridine, agents known to change DNA methylation patterns or chromatin conformation. Treatment of the cells with 1-beta-D-arabinofuranosylcytosine, 2'-deoxycytidine, calcium ionophore, heat shock, cold shock, or sodium butyrate did not result in increases in the levels of Igf 2 expression. It seems likely that the mechanism of the Igf 2 imprint involves subtle changes in the methylation or chromatin conformation of the gene which are affected by 5-aza-2'-deoxycytidine and bromodeoxyuridine. Images PMID:8336727

  12. Genomic imprinting controls matrix attachment regions in the Igf2 gene.

    PubMed

    Weber, Michaël; Hagège, Hélène; Murrell, Adele; Brunel, Claude; Reik, Wolf; Cathala, Guy; Forné, Thierry

    2003-12-01

    Genomic imprinting at the Igf2/H19 locus originates from allele-specific DNA methylation, which modifies the affinity of some proteins for their target sequences. Here, we show that AT-rich DNA sequences located in the vicinity of previously characterized differentially methylated regions (DMRs) of the imprinted Igf2 gene are conserved between mouse and human. These sequences have all the characteristics of matrix attachment regions (MARs), which are known as versatile regulatory elements involved in chromatin structure and gene expression. Combining allele-specific nuclear matrix binding assays and real-time PCR quantification, we show that retention of two of these Igf2 MARs (MAR0 and MAR2) in the nuclear matrix fraction depends on the tissue and is specific to the paternal allele. Furthermore, on this allele, the Igf2 MAR2 is functionally linked to the neighboring DMR2 while, on the maternal allele, it is controlled by the imprinting-control region. Our work clearly demonstrates that genomic imprinting controls matrix attachment regions in the Igf2 gene.

  13. Humanized H19/Igf2 locus reveals diverged imprinting mechanism between mouse and human and reflects Silver-Russell syndrome phenotypes.

    PubMed

    Hur, Stella K; Freschi, Andrea; Ideraabdullah, Folami; Thorvaldsen, Joanne L; Luense, Lacey J; Weller, Angela H; Berger, Shelley L; Cerrato, Flavia; Riccio, Andrea; Bartolomei, Marisa S

    2016-09-27

    Genomic imprinting affects a subset of genes in mammals, such that they are expressed in a monoallelic, parent-of-origin-specific manner. These genes are regulated by imprinting control regions (ICRs), cis-regulatory elements that exhibit allele-specific differential DNA methylation. Although genomic imprinting is conserved in mammals, ICRs are genetically divergent across species. This raises the fundamental question of whether the ICR plays a species-specific role in regulating imprinting at a given locus. We addressed this question at the H19/insulin-like growth factor 2 (Igf2) imprinted locus, the misregulation of which is associated with the human imprinting disorders Beckwith-Wiedemann syndrome (BWS) and Silver-Russell syndrome (SRS). We generated a knock-in mouse in which the endogenous H19/Igf2 ICR (mIC1) is replaced by the orthologous human ICR (hIC1) sequence, designated H19(hIC1) We show that hIC1 can functionally replace mIC1 on the maternal allele. In contrast, paternally transmitted hIC1 leads to growth restriction, abnormal hIC1 methylation, and loss of H19 and Igf2 imprinted expression. Imprint establishment at hIC1 is impaired in the male germ line, which is associated with an abnormal composition of histone posttranslational modifications compared with mIC1. Overall, this study reveals evolutionarily divergent paternal imprinting at IC1 between mice and humans. The conserved maternal imprinting mechanism and function at IC1 demonstrates the possibility of modeling maternal transmission of hIC1 mutations associated with BWS in mice. In addition, we propose that further analyses in the paternal knock-in H19(+/hIC1) mice will elucidate the molecular mechanisms that may underlie SRS.

  14. Humanized H19/Igf2 locus reveals diverged imprinting mechanism between mouse and human and reflects Silver-Russell syndrome phenotypes.

    PubMed

    Hur, Stella K; Freschi, Andrea; Ideraabdullah, Folami; Thorvaldsen, Joanne L; Luense, Lacey J; Weller, Angela H; Berger, Shelley L; Cerrato, Flavia; Riccio, Andrea; Bartolomei, Marisa S

    2016-09-27

    Genomic imprinting affects a subset of genes in mammals, such that they are expressed in a monoallelic, parent-of-origin-specific manner. These genes are regulated by imprinting control regions (ICRs), cis-regulatory elements that exhibit allele-specific differential DNA methylation. Although genomic imprinting is conserved in mammals, ICRs are genetically divergent across species. This raises the fundamental question of whether the ICR plays a species-specific role in regulating imprinting at a given locus. We addressed this question at the H19/insulin-like growth factor 2 (Igf2) imprinted locus, the misregulation of which is associated with the human imprinting disorders Beckwith-Wiedemann syndrome (BWS) and Silver-Russell syndrome (SRS). We generated a knock-in mouse in which the endogenous H19/Igf2 ICR (mIC1) is replaced by the orthologous human ICR (hIC1) sequence, designated H19(hIC1) We show that hIC1 can functionally replace mIC1 on the maternal allele. In contrast, paternally transmitted hIC1 leads to growth restriction, abnormal hIC1 methylation, and loss of H19 and Igf2 imprinted expression. Imprint establishment at hIC1 is impaired in the male germ line, which is associated with an abnormal composition of histone posttranslational modifications compared with mIC1. Overall, this study reveals evolutionarily divergent paternal imprinting at IC1 between mice and humans. The conserved maternal imprinting mechanism and function at IC1 demonstrates the possibility of modeling maternal transmission of hIC1 mutations associated with BWS in mice. In addition, we propose that further analyses in the paternal knock-in H19(+/hIC1) mice will elucidate the molecular mechanisms that may underlie SRS. PMID:27621468

  15. Defining Contributions of Paternally Methylated Imprinted Genes at the Igf2-H19 and Dlk1-Gtl2 Domains to Mouse Placentation by Transcriptomic Analysis*♦

    PubMed Central

    Kawahara, Manabu; Morita, Shinnosuke; Takahashi, Nozomi; Kono, Tomohiro

    2009-01-01

    Parental genome functions in ontogeny are determined by interactions among transcripts from the maternal and paternal genomes, which contain many genes whose expression is strictly dependent on their parental origin as a result of genomic imprinting. Comprehensive recognition of the interactions between parental genomes is important for understanding genomic imprinting in mammalian development. The placenta is a key organ for exploring the biological significance of genomic imprinting. To decipher the unknown roles of paternally methylated imprinted genes on chromosomes 7 and 12 in mouse placentation, we performed a transcriptomic analysis on placentae in three types of bimaternal conceptuses that contained genomes derived from both non-growing and fully grown oocytes. Furthermore, we used the Ingenuity pathway analysis software to predict key networks and identify functions specific to paternally methylated imprinted genes regulated by the Igf2-H19 imprinting control region and Dlk1-Dio3 imprinting control region. The data suggested that dynamic conversion of the gene expression profile by restoring the expression of paternally methylated imprinted genes resulted in phenotypic improvements in bimaternal placentae. These results provide a framework to further explore the role of epigenetic modifications in paternal genome during mouse placentation. PMID:19380578

  16. FSH Regulates IGF-2 Expression in Human Granulosa Cells in an AKT-Dependent Manner

    PubMed Central

    Baumgarten, Sarah C.; Convissar, Scott M.; Zamah, A. Musa; Fierro, Michelle A.; Winston, Nicola J.; Scoccia, Bert

    2015-01-01

    Context: IGF-2 is highly expressed in the granulosa cells of human dominant ovarian follicles; however, little is known about the regulation of the IGF-2 gene or the interaction of IGF-2 and FSH during follicle development. Objective: To examine the mechanisms involved in the regulation of the IGF-2 gene by FSH and the interplay between FSH and IGF-2 during granulosa cell differentiation. Design, Setting, Patients, and Interventions: Cumulus granulosa cells were separated from cumulus-oocyte complexes isolated from the follicular aspirates of in vitro fertilization patients and cultured for in vitro studies. Main Outcome: Protein and mRNA levels of IGF-2 and CYP19A1 (aromatase) were quantified using Western blot and quantitative real-time PCR. IGF-2 promoter-specific activation was determined by the amplification of alternative exons by PCR. Cell proliferation was assessed after treatment with FSH and/or IGF-2. Results: FSH significantly enhanced IGF-2 expression after 8 hours of treatment and at low doses (1 ng/mL). Reciprocally, IGF-2 synergized with FSH to increase cell proliferation and the expression of CYP19A1. When IGF-2 activity was blocked, FSH was no longer able to stimulate CYP19A1 expression. Determination of IGF-2 promoter usage in human cumulus cells showed that the IGF-2 gene is driven by promoters P3 and P4. However, FSH exclusively increased P3 promoter-derived transcripts. Moreover, the FSH-induced stimulation of P3-driven IGF-2 transcripts was blocked by cotreatment with inhibitors of AKT or IGF-1 receptor (IGF-1R). The inhibitory effect of the IGF-1R inhibitor on FSH-induced IGF-2 mRNA accumulation was reversed by overexpression of a constitutively active AKT construct. Conclusions: FSH is a potent enhancer of IGF-2 expression in human granulosa cells. In return, IGF-2 activation of the IGF-1R and AKT is required for FSH to stimulate CYP19A1 expression and proliferation of granulosa cells. These findings suggest a positive loop interaction

  17. Epigenetic status of H19/IGF2 and SNRPN imprinted genes in aborted and successfully derived embryonic stem cell lines in non-human primates.

    PubMed

    Wianny, Florence; Blachère, Thierry; Godet, Murielle; Guillermas, Rémi; Cortay, Véronique; Bourillot, Pierre-Yves; Lefèvre, Annick; Savatier, Pierre; Dehay, Colette

    2016-05-01

    The imprinted genes of primate embryonic stem cells (ESCs) often show altered DNA methylation. It is unknown whether these alterations emerge while deriving the ESCs. Here we studied the methylation patterns of two differentially methylated regions (DMRs), SNRPN and H19/IGF2 DMRs, during the derivation of monkey ESCs. We show that the SNRPN DMR is characteristically methylated at maternal alleles, whereas the H19/IGF2 DMR is globally highly methylated, with unusual methylation on the maternal alleles. These methylation patterns remain stable from the early stages of ESC derivation to late passages of monkey ESCs and following differentiation. Importantly, the methylation status of H19/IGF2 DMR and the expression levels of IGF2, H19, and DNMT3B mRNAs in early embryo-derived cells were correlated with their capacity to generate genuine ESC lines. Thus, we propose that these markers could be useful to predict the outcomes of establishing an ESC line in primates. PMID:26999759

  18. Effects of a novel SNP of IGF2R gene on growth traits and expression rate of IGF2R and IGF2 genes in gluteus medius muscle of Egyptian buffalo.

    PubMed

    El-Magd, Mohammed Abu; Abo-Al-Ela, Haitham G; El-Nahas, Abeer; Saleh, Ayman A; Mansour, Ali A

    2014-05-01

    Insulin-like growth factor 2 receptor (IGF2R) is responsible for degradation of the muscle development initiator, IGF2, and thus it can be used as a marker for selection strategies in the farm animals. The aim of this study was to search for polymorphisms in three coding loci of IGF2R, and to analyze their effect on the growth traits and on the expression levels of IGF2R and IGF2 genes in the gluteus medius muscle of Egyptian buffaloes. A novel A266C SNP was detected in the coding sequences of the third IGF2R locus (at nucleotide number 51 of exon 23) among Egyptian water buffaloes. This SNP was non-synonymous mutation and led to replacement of Y (tyrosine) amino acid (aa) by D (aspartic acid) aa. Three different single-strand conformation polymorphism patterns were observed in the third IGF2R locus: AA, AC, and CC with frequencies of 0.555, 0.195, and 0.250, respectively. Statistical analysis showed that the homozygous AA genotype significantly associated with the average daily gain than AC and CC genotypes from birth to 9 mo of age. Expression analysis showed that the A266C SNP was correlated with IGF2, but not with IGF2R, mRNA levels in the gluteus medius muscle of Egyptian buffaloes. The highest IGF2 mRNA level was estimated in the muscle of animals with the AA homozygous genotype as compared to the AC heterozygotes and CC homozygotes. We conclude that A266C SNP at nucleotide number 51 of exon 23 of the IGF2R gene is associated with the ADG during the early stages of life (from birth to 9 mo of age) and this effect is accompanied by, and may be caused by, increased expression levels of the IGF2 gene.

  19. Identification of transgenic cloned dairy goats harboring human lactoferrin and methylation status of the imprinted gene IGF2R in their lungs.

    PubMed

    Zhang, Y L; Zhang, G M; Wan, Y J; Jia, R X; Li, P Z; Han, L; Wang, F; Huang, M R

    2015-09-22

    Dairy goat is a good model for production of transgenic proteins in milk using somatic cell nuclear transfer (SCNT). However, animals produced from SCNT are often associated with lung deficiencies. We recently produced six transgenic cloned dairy goats harboring the human lactoferrin gene, including three live transgenic clones and three deceased transgenic clones that died from respiratory failure during the perinatal period. Imprinted genes are important regulators of lung growth, and may be subjected to faulty reprogramming. In the present study, first, microsatellite analysis, PCR, and DNA sequence identification were conducted to confirm that these three dead kids were genetically identical to the transgenic donor cells. Second, the CpG island methylation profile of the imprinted insulin-like growth factor receptor (IGF2R) gene was assessed in the lungs of the three dead transgenic kids and the normally produced kids using bisulfite sequencing PCR. In addition, the relative mRNA level of IGF2R was also determined by real-time PCR. Results showed that the IGF2R gene in the lungs of the dead cloned kids showed abnormal hypermethylation and higher mRNA expression levels than the control, indicating that aberrant DNA methylation reprogramming is one of the important factors in the death of transgenic cloned animals.

  20. Identification of transgenic cloned dairy goats harboring human lactoferrin and methylation status of the imprinted gene IGF2R in their lungs.

    PubMed

    Zhang, Y L; Zhang, G M; Wan, Y J; Jia, R X; Li, P Z; Han, L; Wang, F; Huang, M R

    2015-01-01

    Dairy goat is a good model for production of transgenic proteins in milk using somatic cell nuclear transfer (SCNT). However, animals produced from SCNT are often associated with lung deficiencies. We recently produced six transgenic cloned dairy goats harboring the human lactoferrin gene, including three live transgenic clones and three deceased transgenic clones that died from respiratory failure during the perinatal period. Imprinted genes are important regulators of lung growth, and may be subjected to faulty reprogramming. In the present study, first, microsatellite analysis, PCR, and DNA sequence identification were conducted to confirm that these three dead kids were genetically identical to the transgenic donor cells. Second, the CpG island methylation profile of the imprinted insulin-like growth factor receptor (IGF2R) gene was assessed in the lungs of the three dead transgenic kids and the normally produced kids using bisulfite sequencing PCR. In addition, the relative mRNA level of IGF2R was also determined by real-time PCR. Results showed that the IGF2R gene in the lungs of the dead cloned kids showed abnormal hypermethylation and higher mRNA expression levels than the control, indicating that aberrant DNA methylation reprogramming is one of the important factors in the death of transgenic cloned animals. PMID:26400340

  1. Disruption of genomic neighbourhood at the imprinted IGF2-H19 locus in Beckwith–Wiedemann syndrome and Silver–Russell syndrome

    PubMed Central

    Nativio, Raffaella; Sparago, Angela; Ito, Yoko; Weksberg, Rosanna; Riccio, Andrea; Murrell, Adele

    2011-01-01

    Hyper- and hypomethylation at the IGF2-H19 imprinting control region (ICR) result in reciprocal changes in IGF2-H19 expression and the two contrasting growth disorders, Beckwith–Wiedemann syndrome (BWS) and Silver–Russell syndrome (SRS). DNA methylation of the ICR controls the reciprocal imprinting of IGF2 and H19 by preventing the binding of the insulator protein, CTCF. We here show that local changes in histone modifications and CTCF–cohesin binding at the ICR in BWS and SRS together with DNA methylation correlate with the higher order chromatin structure at the locus. In lymphoblastoid cells from control individuals, we found the repressive histone H3K9me3 and H4K20me3 marks associated with the methylated paternal ICR allele and the bivalent H3K4me2/H3K27me3 mark together with H3K9ac and CTCF–cohesin associated with the non-methylated maternal allele. In patient-derived cell lines, the mat/pat asymmetric distribution of these epigenetic marks was lost with H3K9me3 and H4K20me3 becoming biallelic in the BWS and H3K4me2, H3K27me3 and H3K9ac together with CTCF–cohesin becoming biallelic in the SRS. We further show that in BWS and SRS cells, there is opposing chromatin looping conformation mediated by CTCF–cohesin binding sites surrounding the locus. In normal cells, lack of CTCF–cohesin binding at the paternal ICR is associated with monoallelic interaction between two CTCF sites flanking the locus. CTCF–cohesin binding at the maternal ICR blocks this interaction by associating with the CTCF site downstream of the enhancers. The two alternative chromatin conformations are differently favoured in BWS and SRS likely predisposing the locus to the activation of IGF2 or H19, respectively. PMID:21282187

  2. Non-random, individual-specific methylation profiles are present at the sixth CTCF binding site in the human H19/IGF2 imprinting control region.

    PubMed

    Tost, Jörg; Jammes, Hélène; Dupont, Jean-Michel; Buffat, Christophe; Robert, Brigitte; Mignot, Thérèse-Marie; Mondon, Françoise; Carbonne, Bruno; Siméoni, Umberto; Grangé, Gilles; Kerjean, Antoine; Ferré, Françoise; Gut, Ivo Glynne; Vaiman, Daniel

    2006-01-01

    Expression of imprinted genes is classically associated with differential methylation of specific CpG-rich DNA regions (DMRs). The H19/IGF2 locus is considered a paradigm for epigenetic regulation. In mice, as in humans, the essential H19 DMR--target of the CTCF insulator--is located between the two genes. Here, we performed a pyrosequencing-based quantitative analysis of its CpG methylation in normal human tissues. The quantitative analysis of the methylation level in the H19 DMR revealed three unexpected discrete, individual-specific methylation states. This epigenetic polymorphism was confined to the sixth CTCF binding site while a unique median-methylated profile was found at the third CTCF binding site as well as in the H19 promoter. Monoallelic expression of H19 and IGF2 was maintained independently of the methylation status at the sixth CTCF binding site and the IGF2 DMR2 displayed a median-methylated profile in all individuals and tissues analyzed. Interestingly, the methylation profile was genetically transmitted. Transgenerational inheritance of the H19 methylation profile was compatible with a simple model involving one gene with three alleles. The existence of three individual-specific epigenotypes in the H19 DMR in a non-pathological situation means it is important to reconsider the diagnostic value and functional importance of the sixth CTCF binding site. PMID:17012269

  3. Frequent aberrant methylation of the imprinted IGF2/H19 locus and LINE1 hypomethylation in ovarian carcinoma.

    PubMed

    Dammann, Reinhard H; Kirsch, Sebastian; Schagdarsurengin, Undraga; Dansranjavin, Temuujin; Gradhand, Elise; Schmitt, Wolfgang D; Hauptmann, Steffen

    2010-01-01

    Epigenetic alteration of tumor-related genes through changes of DNA methylation is a hallmark for carcinogenesis and aberrant DNA methylation modulates the activity of tumor suppressor genes, imprinted genes and repetitive elements. In ovarian carcinoma, frequent loss of imprinting or aberrant methylation of repetitive elements were reported, however, combined analysis were not performed. We analyzed the aberrant methylation of a differentially methylated region (DMR0) and a CTCF binding site of the IGF2-H19 locus and methylation of LINE1 and Satellite 2 in 22 primary ovarian carcinomas (OC) and controls by a quantitative bisulfite restriction analysis (QUBRA). In 91% of OC, a significant hypomethylation of DMR0 was found compared to controls (p<0.05). In 77% of OC, a hypermethylation of a CTCF binding site was found (p<0.05). A combined hypomethylation of DMR0 and hypermethylation of the CTCF binding was observed in 73% of OC. Hypomethylation of LINE1 and Satellite 2 was detected in 100 and 23% of OC, respectively. In summary, we found frequent combined aberrant methylation of the IGF2-H19 locus and LINE1 in the vast majority of OC, suggesting that these changes are important events in tumorigenesis.

  4. Protein intake during gestation affects postnatal bovine skeletal muscle growth and relative expression of IGF1, IGF1R, IGF2 and IGF2R.

    PubMed

    Micke, G C; Sullivan, T M; McMillen, I C; Gentili, S; Perry, V E A

    2011-01-30

    Expression of insulin-like growth factor (IGF)1 and IGF2 and their receptor (IGF1R and IGF2R) mRNA in fetal skeletal muscle are changed by variations in maternal nutrient intake. The persistence of these effects into postnatal life and their association with phenotype in beef cattle is unknown. Here we report that the cross-sectional areas of longissimus dorsi and semitendinosus (ST) muscles were greater for mature male progeny born to heifers fed low protein diets (70% vs. 240% of recommended) during the first trimester. In ST, this was accompanied by greater IGF1, IGF2 and IGF2R mRNA at 680 d. Females exposed to low protein diets during the first trimester had decreased IGF2 mRNA in ST at 680 d, however this did not result in an effect to phenotype. Exposure to low protein diets during the second trimester increased IGF1R mRNA in ST of all progeny at 680 d. Changes to expression of IGF genes in progeny skeletal muscle resulting from variations to maternal protein intake during gestation may have permanent and sex-specific effect on postnatal skeletal muscle growth.

  5. IGF2 expression is a marker for paraganglionic/SIF cell differentiation in neuroblastoma.

    PubMed Central

    Hedborg, F.; Ohlsson, R.; Sandstedt, B.; Grimelius, L.; Hoehner, J. C.; Pählman, S.

    1995-01-01

    Neuroblastoma is a childhood tumor of the sympathetic nervous system. Observations in the Beckwith-Wiedemann syndrome suggest that sympathetic embryonal cells with an abundant expression of the insulin-like growth factor 2 gene (IGF2) may be involved in the genesis of low-malignant infant neuroblastomas. We have therefore compared the cell type-specific IGF2 expression of the human sympathetic nervous system during early development with that of neuroblastoma. An abundant expression in normal sympathetic tissue was specific to extra-adrenal chromaffin cells, ie, paraganglia and small intensely fluorescent (SIF) cells, whereas sympathetic neuronal cells were IGF2-negative. A subpopulation of neuroblastomas expressed IGF2, which correlated with an early age at diagnosis, an extra-adrenal tumor origin, and severe hemodynamic signs of catecholamine secretion. Histologically IGF2-expressing tumors displayed a lobular growth pattern, and expression was restricted to the most mature and least proliferative cells. Typically, these cells were morphologically and histochemically similar to paraganglia/SIF cells and formed distinct ring-like zones in the center of the lobules around a core of apoptosis-like tumor cells. The similarities found between IGF2-expressing neuroblastoma cells and paraganglia/SIF cells in terms of histological features, anatomical origin, and age-dependent growth suggest a paraganglionic/SIF cell lineage of most infant tumors and also of extra-adrenal tumors diagnosed after infancy. Furthermore, since paraganglia/SIF cells undergo postnatal involution, the same cellular mechanism may be responsible for spontaneous regression in infant neuroblastoma. Images Figure 2 Figure 3 p839-a Figure 4 PMID:7717451

  6. Complete Biallelic Insulation at the H19/Igf2 Imprinting Control Region Position Results in Fetal Growth Retardation and Perinatal Lethality

    PubMed Central

    Lee, Dong-Hoon; Singh, Purnima; Tsark, Walter M. K.; Szabó, Piroska E.

    2010-01-01

    Background The H19/Igf2 imprinting control region (ICR) functions as an insulator exclusively in the unmethylated maternal allele, where enhancer-blocking by CTCF protein prevents the interaction between the Igf2 promoter and the distant enhancers. DNA methylation inhibits CTCF binding in the paternal ICR allele. Two copies of the chicken β-globin insulator (ChβGI)2 are capable of substituting for the enhancer blocking function of the ICR. Insulation, however, now also occurs upon paternal inheritance, because unlike the H19 ICR, the (ChβGI)2 does not become methylated in fetal male germ cells. The (ChβGI)2 is a composite insulator, exhibiting enhancer blocking by CTCF and chromatin barrier functions by USF1 and VEZF1. We asked the question whether these barrier proteins protected the (ChβGI)2 sequences from methylation in the male germ line. Methodology/Principal Findings We genetically dissected the ChβGI in the mouse by deleting the binding sites USF1 and VEZF1. The methylation of the mutant versus normal (ChβGI)2 significantly increased from 11% to 32% in perinatal male germ cells, suggesting that the barrier proteins did have a role in protecting the (ChβGI)2 from methylation in the male germ line. Contrary to the H19 ICR, however, the mutant (mChβGI)2 lacked the potential to attain full de novo methylation in the germ line and to maintain methylation in the paternal allele in the soma, where it consequently functioned as a biallelic insulator. Unexpectedly, a stricter enhancer blocking was achieved by CTCF alone than by a combination of the CTCF, USF1 and VEZF1 sites, illustrated by undetectable Igf2 expression upon paternal transmission. Conclusions/Significance In this in vivo model, hypomethylation at the ICR position together with fetal growth retardation mimicked the human Silver-Russell syndrome. Importantly, late fetal/perinatal death occurred arguing that strict biallelic insulation at the H19/Igf2 ICR position is not tolerated in development

  7. Transcription factor ZBED6 mediates IGF2 gene expression by regulating promoter activity and DNA methylation in myoblasts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Zinc finger, BED-type containing 6 (ZBED6) is an important transcription factor in placental mammals, affecting development, cell proliferation and growth. In this study, we found that the expression of the ZBED6 and IGF2 were up regulated during C2C12 differentiation. The IGF2 expression levels wer...

  8. Analysis of Imprinted Gene Expression in Normal Fertilized and Uniparental Preimplantation Porcine Embryos

    PubMed Central

    Park, Chi-Hun; Uh, Kyung-Jun; Mulligan, Brendan P.; Jeung, Eui-Bae; Hyun, Sang-Hwan; Shin, Taeyoung; Ka, Hakhyun; Lee, Chang-Kyu

    2011-01-01

    In the present study quantitative real-time PCR was used to determine the expression status of eight imprinted genes (GRB10, H19, IGF2R, XIST, IGF2, NNAT, PEG1 and PEG10) during preimplantation development, in normal fertilized and uniparental porcine embryos. The results demonstrated that, in all observed embryo samples, a non imprinted gene expression pattern up to the 16-cell stage of development was common for most genes. This was true for all classes of embryo, regardless of parental-origins and the direction of imprint. However, several differentially expressed genes (H19, IGF2, XIST and PEG10) were detected amongst the classes at the blastocyst stage of development. Most interestingly and despite the fact that maternally and paternally expressed genes should not be expressed in androgenones and parthenogenones, respectively, both uniparental embryos expressed these genes when tested for in this study. In order to account for this phenomenon, we compared the expression patterns of eight imprinted genes along with the methylation status of the IGF2/H19 DMR3 in haploid and diploid parthenogenetic embryos. Our findings revealed that IGF2, NNAT and PEG10 were silenced in haploid but not diploid parthenogenetic blastocysts and differential methylation of the IGF2/H19 DMR3 was consistently observed between haploid and diploid parthenogenetic blastocysts. These results appear to suggest that there exists a process to adjust the expression status of imprinted genes in diploid parthenogenetic embryos and that this phenomenon may be associated with altered methylation at an imprinting control region. In addition we believe that imprinted expression occurs in at least four genes, namely H19, IGF2, XIST and PEG10 in porcine blastocyst stage embryos. PMID:21804912

  9. A Common Polymorphism within the IGF2 Imprinting Control Region Is Associated with Parent of Origin Specific Effects in Infantile Hemangiomas

    PubMed Central

    Schultz, Brent; Yao, Xiaopan; Deng, Yanhong; Waner, Milton; Spock, Christopher; Tom, Laura; Persing, John; Narayan, Deepak

    2015-01-01

    Infantile hemangioma (IH) is the most common tumor of the pediatric age group, affecting up to 4% of newborns ranging from inconsequential blemishes, to highly aggressive tumors. Following well defined growth phases (proliferative, plateau involutional) IH usually regress into a fibro-fatty residuum. Despite the high prevalence of IH, little is known regarding the pathogenesis of disease. A reported six fold decrease in IGF2 expression (correlating with transformation of proliferative to involuted lesions) prompted us to study the IGF-2 axis further. We demonstrate that IGF2 expression in IH is strongly related to the expression of a cancer testes and suspected oncogene BORIS (paralog of CTCF), placing IH in the unique category of being the first known benign BORIS positive tumor. IGF2 expression was strongly and positively related to BORIS transcript expression. Furthermore, a stronger association was made when comparing BORIS levels against the expression of CTCF via either a percentage or difference between the two. A common C/T polymorphism at CTCF BS6 appeared to modify the correlation between CTCF/BORIS and IGF2 expression in a parent of origin specific manner. Moreover, these effects may have phenotypic consequences as tumor growth also correlates with the genotype at CTCF BS6. This may provide a framework for explaining the clinical variability seen in IH and suggests new insights regarding CTCF and BORIS related functionality in both normal and malignant states. PMID:26496499

  10. Transcription Factor ZBED6 Mediates IGF2 Gene Expression by Regulating Promoter Activity and DNA Methylation in Myoblasts

    NASA Astrophysics Data System (ADS)

    Huang, Yong-Zhen; Zhang, Liang-Zhi; Lai, Xin-Sheng; Li, Ming-Xun; Sun, Yu-Jia; Li, Cong-Jun; Lan, Xian-Yong; Lei, Chu-Zhao; Zhang, Chun-Lei; Zhao, Xin; Chen, Hong

    2014-04-01

    Zinc finger, BED-type containing 6 (ZBED6) is an important transcription factor in placental mammals, affecting development, cell proliferation and growth. In this study, we found that the expression of the ZBED6 and IGF2 were upregulated during C2C12 differentiation. The IGF2 expression levels were negatively associated with the methylation status in beef cattle (P < 0.05). A luciferase assay for the IGF2 intron 3 and P3 promoter showed that the mutant-type 439 A-SNP-pGL3 in driving reporter gene transcription is significantly higher than that of the wild-type 439 G-SNP-pGL3 construct (P < 0.05). An over-expression assay revealed that ZBED6 regulate IGF2 expression and promote myoblast differentiation. Furthermore, knockdown of ZBED6 led to IGF2 expression change in vitro. Taken together, these results suggest that ZBED6 inhibits IGF2 activity and expression via a G to A transition disrupts the interaction. Thus, we propose that ZBED6 plays a critical role in myogenic differentiation.

  11. Enhanced sensitivity to IGF-II signaling links loss of imprinting of IGF2 to increased cell proliferation and tumor risk.

    PubMed

    Kaneda, Atsushi; Wang, Chiaochun J; Cheong, Raymond; Timp, Winston; Onyango, Patrick; Wen, Bo; Iacobuzio-Donahue, Christine A; Ohlsson, Rolf; Andraos, Rita; Pearson, Mark A; Sharov, Alexei A; Longo, Dan L; Ko, Minoru S H; Levchenko, Andre; Feinberg, Andrew P

    2007-12-26

    Loss of imprinting (LOI) of the insulin-like growth factor-II gene (IGF2), leading to abnormal activation of the normally silent maternal allele, is a common human epigenetic population variant associated with a 5-fold increased frequency of colorectal neoplasia. Here, we show first that LOI leads specifically to increased expression of proliferation-related genes in mouse intestinal crypts. Surprisingly, LOI(+) mice also have enhanced sensitivity to IGF-II signaling, not simply increased IGF-II levels, because in vivo blockade with NVP-AEW541, a specific inhibitor of the IGF-II signaling receptor, showed reduction of proliferation-related gene expression to levels half that seen in LOI(-) mice. Signal transduction assays in microfluidic chips confirmed this enhanced sensitivity with marked augmentation of Akt/PKB signaling in LOI(+) cells at low doses of IGF-II, which was reduced in the presence of the inhibitor to levels below those found in LOI(-) cells, and was associated with increased expression of the IGF1 and insulin receptor genes. We exploited this increased IGF-II sensitivity to develop an in vivo chemopreventive strategy using the azoxymethane (AOM) mutagenesis model. LOI(+) mice treated with AOM showed a 60% increase in premalignant aberrant crypt foci (ACF) formation over LOI(-) mice. In vivo IGF-II blockade with NVP-AEW541 abrogated this effect, reducing ACF to a level 30% lower even than found in exposed LOI(-) mice. Thus, LOI increases cancer risk in a counterintuitive way, by increasing the sensitivity of the IGF-II signaling pathway itself, providing a previously undescribed epigenetic chemoprevention strategy in which cells with LOI are "IGF-II addicted" and undergo reduced tumorigenesis in the colon upon IGF-II pathway blockade. PMID:18087038

  12. Enhanced sensitivity to IGF-II signaling links loss of imprinting of IGF2 to increased cell proliferation and tumor risk.

    PubMed

    Kaneda, Atsushi; Wang, Chiaochun J; Cheong, Raymond; Timp, Winston; Onyango, Patrick; Wen, Bo; Iacobuzio-Donahue, Christine A; Ohlsson, Rolf; Andraos, Rita; Pearson, Mark A; Sharov, Alexei A; Longo, Dan L; Ko, Minoru S H; Levchenko, Andre; Feinberg, Andrew P

    2007-12-26

    Loss of imprinting (LOI) of the insulin-like growth factor-II gene (IGF2), leading to abnormal activation of the normally silent maternal allele, is a common human epigenetic population variant associated with a 5-fold increased frequency of colorectal neoplasia. Here, we show first that LOI leads specifically to increased expression of proliferation-related genes in mouse intestinal crypts. Surprisingly, LOI(+) mice also have enhanced sensitivity to IGF-II signaling, not simply increased IGF-II levels, because in vivo blockade with NVP-AEW541, a specific inhibitor of the IGF-II signaling receptor, showed reduction of proliferation-related gene expression to levels half that seen in LOI(-) mice. Signal transduction assays in microfluidic chips confirmed this enhanced sensitivity with marked augmentation of Akt/PKB signaling in LOI(+) cells at low doses of IGF-II, which was reduced in the presence of the inhibitor to levels below those found in LOI(-) cells, and was associated with increased expression of the IGF1 and insulin receptor genes. We exploited this increased IGF-II sensitivity to develop an in vivo chemopreventive strategy using the azoxymethane (AOM) mutagenesis model. LOI(+) mice treated with AOM showed a 60% increase in premalignant aberrant crypt foci (ACF) formation over LOI(-) mice. In vivo IGF-II blockade with NVP-AEW541 abrogated this effect, reducing ACF to a level 30% lower even than found in exposed LOI(-) mice. Thus, LOI increases cancer risk in a counterintuitive way, by increasing the sensitivity of the IGF-II signaling pathway itself, providing a previously undescribed epigenetic chemoprevention strategy in which cells with LOI are "IGF-II addicted" and undergo reduced tumorigenesis in the colon upon IGF-II pathway blockade.

  13. An exon splice enhancer primes IGF2:IGF2R binding site structure and function evolution.

    PubMed

    Williams, Christopher; Hoppe, Hans-Jürgen; Rezgui, Dellel; Strickland, Madeleine; Forbes, Briony E; Grutzner, Frank; Frago, Susana; Ellis, Rosamund Z; Wattana-Amorn, Pakorn; Prince, Stuart N; Zaccheo, Oliver J; Nolan, Catherine M; Mungall, Andrew J; Jones, E Yvonne; Crump, Matthew P; Hassan, A Bassim

    2012-11-30

    Placental development and genomic imprinting coevolved with parental conflict over resource distribution to mammalian offspring. The imprinted genes IGF2 and IGF2R code for the growth promoter insulin-like growth factor 2 (IGF2) and its inhibitor, mannose 6-phosphate (M6P)/IGF2 receptor (IGF2R), respectively. M6P/IGF2R of birds and fish do not recognize IGF2. In monotremes, which lack imprinting, IGF2 specifically bound M6P/IGF2R via a hydrophobic CD loop. We show that the DNA coding the CD loop in monotremes functions as an exon splice enhancer (ESE) and that structural evolution of binding site loops (AB, HI, FG) improved therian IGF2 affinity. We propose that ESE evolution led to the fortuitous acquisition of IGF2 binding by M6P/IGF2R that drew IGF2R into parental conflict; subsequent imprinting may then have accelerated affinity maturation. PMID:23197533

  14. Generation of Five Human Lactoferrin Transgenic Cloned Goats Using Fibroblast Cells and Their Methylation Status of Putative Differential Methylation Regions of IGF2R and H19 Imprinted Genes

    PubMed Central

    Sun, Yanyan; Zhang, Yanli; Wang, Ziyu; Song, Yang; Wang, Feng

    2013-01-01

    Background Somatic cell nuclear transfer (SCNT) is a promising technique to produce transgenic cloned mammalian, including transgenic goats which may produce Human Lactoferrin (hLF). However, success percentage of SCNT is low, because of gestational and neonatal failure of transgenic embryos. According to the studies on cattle and mice, DNA methylation of some imprinted genes, which plays a vital role in the reprogramming of embryo in NT maybe an underlying mechanism. Methodology/Principal Findings Fibroblast cells were derived from the ear of a two-month-old goat. The vector expressing hLF was constructed and transfected into fibroblasts. G418 selection, EGFP expression, PCR, and cell cycle distribution were applied sequentially to select transgenic cells clones. After NT and embryo transfer, five transgenic cloned goats were obtained from 240 cloned transgenic embryos. These transgenic goats were identified by 8 microsatellites genotyping and southern blot. Of the five transgenic goats, 3 were lived after birth, while 2 were dead during gestation. We compared differential methylation regions (DMR) pattern of two paternally imprinted genes (H19 and IGF2R) of the ear tissues from the lived transgenic goats, dead transgenic goats, and control goats from natural reproduction. Hyper-methylation pattern appeared in cloned aborted goats, while methylation status was relatively normal in cloned lived goats compared with normal goats. Conclusions/Significance In this study, we generated five hLF transgenic cloned goats by SCNT. This is the first time the DNA methylation of lived and dead transgenic cloned goats was compared. The results demonstrated that the methylation status of DMRs of H19 and IGF2R were different in lived and dead transgenic goats and therefore this may be potentially used to assess the reprogramming status of transgenic cloned goats. Understanding the pattern of gene imprinting may be useful to improve cloning techniques in future. PMID:24204972

  15. CREB Negatively Regulates IGF2R Gene Expression and Downstream Pathways to Inhibit Hypoxia-Induced H9c2 Cardiomyoblast Cell Death.

    PubMed

    Chen, Wei-Kung; Kuo, Wei-Wen; Hsieh, Dennis Jine-Yuan; Chang, Hsin-Nung; Pai, Pei-Ying; Lin, Kuan-Ho; Pan, Lung-Fa; Ho, Tsung-Jung; Viswanadha, Vijaya Padma; Huang, Chih-Yang

    2015-01-01

    During hypoxia, gene expression is altered by various transcription factors. Insulin-like growth factor-II (IGF2) is known to be induced by hypoxia, which binds to IGF2 receptor IGF2R that acts like a G protein-coupled receptor, might cause pathological hypertrophy or activation of the mitochondria-mediated apoptosis pathway. Cyclic adenosine monophosphate (cAMP) responsive element-binding protein (CREB) is central to second messenger-regulated transcription and plays a critical role in the cardiomyocyte survival pathway. In this study, we found that IGF2R level was enhanced in H9c2 cardiomyoblasts exposed to hypoxia in a time-dependent manner but was down-regulated by CREB expression. The over-expression of CREB in H9c2 cardiomyoblasts suppressed the induction of hypoxia-induced IGF2R expression levels and reduced cell apoptosis. Gel shift assay results further indicated that CREB binds to the promoter sequence of IGF2R. With a luciferase assay method, we further observed that CREB represses IGF2R promoter activity. These results suggest that CREB plays an important role in the inhibition of IGF2R expression by binding to the IGF2R promoter and further suppresses H9c2 cardiomyoblast cell apoptosis induced by IGF2R signaling under hypoxic conditions. PMID:26610485

  16. Conservation of a maternal-specific methylation signal at the human IGF2R locus.

    PubMed

    Smrzka, O W; Faé, I; Stöger, R; Kurzbauer, R; Fischer, G F; Henn, T; Weith, A; Barlow, D P

    1995-10-01

    The human IGF2R gene has been reported to be either biallelically or very rarely monoallelically expressed, in contrast to the maternally expressed mouse counterpart. We describe here an analysis of the 5' portion of the human IGF2R gene and show that it contains a maternally methylated CpG island in the second intron. A similar maternally methylated intronic element has been proposed to be the imprinting box for the mouse gene and although the relevance of this element has yet to be directly demonstrated, methylation has been reported to be essential to maintain allele-specific expression of imprinted genes. Allelic expression analysis of human IGF2R in 70 lymphoblastoid cell lines identified only one line showing monoallelic expression. Thus, in this tissue monoparental methylation of the IGF2R gene does not correlate with allele-specific expression. We also confirm here that the human IGF2R gene is located in an asynchronously replicating chromosomal region, as are all other imprinted genes so far analyzed. The mouse and human IGF2R intronic CpG islands both contain numerous large direct repeats that are methylated following maternal, but not paternal, transmittance. Thus features that attract maternal-specific methylation are conserved between the mouse and human genes. Since these intronic CpG islands share organizational rather than sequence homology, this suggests that secondary DNA structure may play a role in attracting a maternal methylation imprint.

  17. Alteration in Expression and Methylation of IGF2/H19 in Placenta and Umbilical Cord Blood Are Associated with Macrosomia Exposed to Intrauterine Hyperglycemia

    PubMed Central

    Su, Rina; Wang, Chen; Feng, Hui; Lin, Li; Liu, Xinyue; Wei, Yumei; Yang, Huixia

    2016-01-01

    Objective Macrosomia is one of the most common complications in gestational diabetes mellitus. Insulin-like growth factor 2 and H19 are two of the imprinted candidate genes that are involved in fetal growth and development. Change in methylation at differentially methylated region of the insulin-like growth factor 2 and H19 has been proved to be an early event related to the programming of metabolic profile, including macrosomia and small for gestational age in offspring. Here we hypothesize that alteration in methylation at differentially methylated region of the insulin-like growth factor 2 and H19 is associated with macrosomia induced by intrauterine hyperglycemia. Results The expression of insulin-like growth factor 2 is significant higher in gestational diabetes mellitus group (GDM group) compared to normal glucose tolerance group (NGT group) both in umbilical cord blood and placenta, while the expression of H19 is significant lower in GDM group in umbilical cord blood. The expression of insulin-like growth factor 2 is significant higher in normal glucose tolerance with macrosomia group (NGT-M) compared to normal glucose tolerance with normal birthweight group (NGT-NBW group) both in placenta and umbilical cord blood. A model with interaction term of gene expression of IGF2 and H19 found that IGF2 and the joint action of IGF2 and H19 in placenta showed significantly relationship with GDM/NGT and GDM-NBW/NGT-NBW. A borderline significant association was seen among IGF2 and H19 in cord blood and GDM-M/NGT-M. The methylation level at different CpG sites of insulin-like growth factor 2 and H19 in umbilical cord blood was also significantly different among groups. Based on the multivariable linear regression analysis, the methylation of the insulin-like growth factor 2 / H19 is closely related to birth weight and intrauterine hyperglycemia. Conclusions We confirmed the existence of alteration in DNA methylation in umbilical cord blood exposed to intrauterine

  18. IGF2 is critical for tumorigenesis by synovial sarcoma oncoprotein SYT-SSX1.

    PubMed

    Sun, Y; Gao, D; Liu, Y; Huang, J; Lessnick, S; Tanaka, S

    2006-02-16

    Synovial sarcoma is an aggressive soft tissue tumor characterized by a specific chromosomal translocation between chromosome 18 and X. This translocation can generate a fusion transcript encoding SYT-SSX1, a transforming oncoprotein. We present evidence that SYT-SSX1 induces insulin-like growth factor II expression in fibroblast cells. SYT-SSX2, a fusion also frequently found in synovial sarcoma, is necessary for maintaining Igf2 expression in the synovial sarcoma cell line, and the increased IGF2 synthesis protects cells from anoikis and is required for tumor formation in vivo. We also found a loss of imprinting (LOI) for Igf2 in a limited number of primary synovial sarcomas despite demethylation of CpG dinucleotides critical for maintaining imprinting. These findings suggest that inhibition of the IGF2/IGF1-R signaling pathway may represent a significant therapeutic modality for treating synovial sarcoma. PMID:16247461

  19. Expression of intronic miRNAs and their host gene Igf2 in a murine unilateral ureteral obstruction model

    PubMed Central

    Li, N.Q.; Yang, J.; Cui, L.; Ma, N.; Zhang, L.; Hao, L.R.

    2015-01-01

    The objective of this study was to determine the expression of miR-483 and miR-483* and the relationship among them, their host gene (Igf2), and other cytokines in a murine model of renal fibrosis. The extent of renal fibrosis was visualized using Masson staining, and fibrosis was scored 3 days and 1 and 2 weeks after unilateral ureteral obstruction (UUO). Expression of miR-483, miR-483* and various cytokine mRNAs was detected by real-time polymerase chain reaction (PCR). Expression of miR-483 and miR-483* was significantly upregulated in the UUO model, particularly miR-483 expression was the greatest 2 weeks after surgery. Additionally, miR-483 and miR-483* expression negatively correlated with Bmp7 expression and positively correlated with Igf2, Tgfβ, Hgf, and Ctgf expression, as determined by Pearson's correlation analysis. Hgf expression significantly increased at 1 and 2 weeks after the surgery compared to the control group. This study showed that miR-483 and miR-483* expression was upregulated in a murine UUO model. These data suggest that miR-483 and miR-483* play a role in renal fibrosis and that miR-483* may interact with miR-483 in renal fibrosis. Thus, these miRNAs may play a role in the pathogenesis of renal fibrosis and coexpression of their host gene Igf2. PMID:25831208

  20. Igf2 pathway dependency of the Trp53 developmental and tumour phenotypes

    PubMed Central

    Haley, Victoria L; Barnes, David J; Sandovici, Ionel; Constancia, Miguel; Graham, Christopher F; Pezzella, Francesco; Bühnemann, Claudia; Carter, Emma J; Hassan, A Bassim

    2012-01-01

    Insulin-like growth factor 2 (IGF2) and the transformation related protein 53 (Trp53) are potent regulators of cell growth and metabolism in development and cancer. In vitro evidence suggests several mechanistic pathway interactions. Here, we tested whether loss of function of p53 leads to IGF2 ligand pathway dependency in vivo. Developmental lethality occurred in p53 homozygote null mice that lacked the paternal expressed allele of imprinted Igf2. Further lethality due to post-natal lung haemorrhage occurred in female progeny with Igf2 paternal null allele only if derived from double heterozygote null fathers, and was associated with a specific gene expression signature. Conditional deletion of Igf2fl/fl attenuated the rapid tumour onset promoted by homozygous deletion of p53fl/fl. Accelerated carcinoma and sarcoma tumour formation in p53+/− females with bi-allelic Igf2 expression was associated with reductions in p53 loss of heterozygosity and apoptosis. Igf2 genetic dependency of the p53 null phenotype during development and tumour formation suggests that targeting the IGF2 pathway may be useful in the prevention and treatment of human tumours with a disrupted Trp53 pathway. PMID:22674894

  1. Wiedemann-Beckwith syndrome, imprinting, IGF2, and H19: Implications for hemihyperplasia, associated neoplasms, and overgrowth

    SciTech Connect

    Cohen, M.M. Jr.

    1994-08-15

    By now there are some 450 reported cases of the Wiedemann-Beckwith syndrome (WBS). Patients generally fit into one of three categories: those that occur sporadically and who have normal chromosomes; those with chromosome anomalies, most commonly duplication involving the 11p15.5 region; and those with autosomal dominant pedigrees and expression almost exclusively in individuals born to female carriers. Linkage to the 11p15.5 region has been demonstrated in families with informative RFLP markers. Research has progressed rapidly in this area and a number of explanations for the three categories of WBS are possible. Further studies are essential. Here I review one possible explanation which, if true, raises questions about hemihyperplasia, associated neoplasms, and high birth weights in WBS. 17 refs.

  2. Allelic gene expression imbalance of bovine IGF2, LEP and CCL2 genes in liver, kidney and pituitary.

    PubMed

    Olbromski, R; Siadkowska, E; Zelazowska, B; Zwierzchowski, L

    2013-02-01

    Allelic expression imbalance (AEI) is an important genetic factor being the cause of differences in phenotypic traits that can be heritable. Studying AEI can be useful in searching for factors that modulate gene expression and help to understand molecular mechanisms underlying phenotypic changes. Although it was commonly recognized in many species and we know many genes show allelic expression imbalance, this phenomena was not studied on a larger scale in cattle. Using the pyrosequencing method we analyzed a set of 29 bovine genes in order to find those that have preferential allelic expression. The study was conducted in three tissues: liver, pituitary and kindey. Out of the studied group of genes 3 of them-LEP (leptin), IGF2 (insulin-like growth factor 2), CCL2 (chemokine C-C motif ligand 2) showed allelic expression imbalance.

  3. Visualizing allele-specific expression in single cells reveals epigenetic mosaicism in an H19 loss-of-imprinting mutant

    PubMed Central

    Ginart, Paul; Kalish, Jennifer M.; Jiang, Connie L.; Yu, Alice C.; Bartolomei, Marisa S.; Raj, Arjun

    2016-01-01

    Imprinting is a classic mammalian epigenetic phenomenon that results in expression from a single parental allele. Imprinting defects can lead to inappropriate expression from the normally silenced allele, but it remains unclear whether every cell in a mutant organism follows the population average, which would have profound implications for human imprinting disorders. Here, we apply a new fluorescence in situ hybridization method that measures allele-specific expression in single cells to address this question in mutants exhibiting aberrant H19/Igf2 (insulin-like growth factor 2) imprinting. We show that mutant primary embryonic mouse fibroblasts are comprised of two subpopulations: one expressing both H19 alleles and another expressing only the maternal copy. Only in the latter cell population is Igf2 expression detected. Furthermore, the two subpopulations are stable in that cells do not interconvert between the two expression patterns. Combined small input methylation analysis and transcriptional imaging revealed that these two mutant subpopulations exhibit distinct methylation patterns at their imprinting control regions. Consistently, pharmacological inhibition of DNA methylation reduced the proportion of monoallelic cells. Importantly, we observed that the same two subpopulations are also present in vivo within murine cardiac tissue. Our results establish that imprinting disorders can display striking single-cell heterogeneity in their molecular phenotypes and suggest that such heterogeneity may underlie epigenetic mosaicism in human imprinting disorders. PMID:26944681

  4. Visualizing allele-specific expression in single cells reveals epigenetic mosaicism in an H19 loss-of-imprinting mutant.

    PubMed

    Ginart, Paul; Kalish, Jennifer M; Jiang, Connie L; Yu, Alice C; Bartolomei, Marisa S; Raj, Arjun

    2016-03-01

    Imprinting is a classic mammalian epigenetic phenomenon that results in expression from a single parental allele. Imprinting defects can lead to inappropriate expression from the normally silenced allele, but it remains unclear whether every cell in a mutant organism follows the population average, which would have profound implications for human imprinting disorders. Here, we apply a new fluorescence in situ hybridization method that measures allele-specific expression in single cells to address this question in mutants exhibiting aberrant H19/Igf2 (insulin-like growth factor 2) imprinting. We show that mutant primary embryonic mouse fibroblasts are comprised of two subpopulations: one expressing both H19 alleles and another expressing only the maternal copy. Only in the latter cell population is Igf2 expression detected. Furthermore, the two subpopulations are stable in that cells do not interconvert between the two expression patterns. Combined small input methylation analysis and transcriptional imaging revealed that these two mutant subpopulations exhibit distinct methylation patterns at their imprinting control regions. Consistently, pharmacological inhibition of DNA methylation reduced the proportion of monoallelic cells. Importantly, we observed that the same two subpopulations are also present in vivo within murine cardiac tissue. Our results establish that imprinting disorders can display striking single-cell heterogeneity in their molecular phenotypes and suggest that such heterogeneity may underlie epigenetic mosaicism in human imprinting disorders.

  5. Retrograde fibroblast growth factor 22 (FGF22) signaling regulates insulin-like growth factor 2 (IGF2) expression for activity-dependent synapse stabilization in the mammalian brain

    PubMed Central

    Terauchi, Akiko; Johnson-Venkatesh, Erin M; Bullock, Brenna; Lehtinen, Maria K; Umemori, Hisashi

    2016-01-01

    Communication between pre- and postsynaptic cells promotes the initial organization of synaptic specializations, but subsequent synaptic stabilization requires transcriptional regulation. Here we show that fibroblast growth factor 22 (FGF22), a target-derived presynaptic organizer in the mouse hippocampus, induces the expression of insulin-like growth factor 2 (IGF2) for the stabilization of presynaptic terminals. FGF22 is released from CA3 pyramidal neurons and organizes the differentiation of excitatory nerve terminals formed onto them. Local application of FGF22 on the axons of dentate granule cells (DGCs), which are presynaptic to CA3 pyramidal neurons, induces IGF2 in the DGCs. IGF2, in turn, localizes to DGC presynaptic terminals and stabilizes them in an activity-dependent manner. IGF2 application rescues presynaptic defects of Fgf22-/- cultures. IGF2 is dispensable for the initial presynaptic differentiation, but is required for the following presynaptic stabilization both in vitro and in vivo. These results reveal a novel feedback signal that is critical for the activity-dependent stabilization of presynaptic terminals in the mammalian hippocampus. DOI: http://dx.doi.org/10.7554/eLife.12151.001 PMID:27083047

  6. The cell type-specific IGF2 expression during early human development correlates to the pattern of overgrowth and neoplasia in the Beckwith-Wiedemann syndrome.

    PubMed Central

    Hedborg, F.; Holmgren, L.; Sandstedt, B.; Ohlsson, R.

    1994-01-01

    Overstimulation by insulin-like growth factor II is implied in several overgrowth conditions and childhood cancers. We have therefore studied spatial and temporal expression patterns of the insulin-like growth factor II gene (IGF2) and the insulin-like growth factor type 1 receptor gene during normal human development (5.5 to 23.0 weeks postfertilization). The set of cell types with the most abundant IGF2 expression correlated strikingly to the organomegaly and tumor predisposition of the Beckwith-Wiedemann syndrome. Intrauterine growth and postnatal organ weights of a prematurely born child with a full-blown syndrome are presented. The cell type-specific IGF2 expression of these organs and of multifocal Wilms' tumors from two other children affected by the Beckwith-Wiedemann syndrome were also studied. The results clarify and extend previous findings concerning human prenatal IGF2 expression and are consistent with a short range overstimulatory role of locally produced IGF II ensuing after the first trimester in the Beckwith-Wiedemann syndrome. Images Figure 1 Figure 3 Figure 4 Figure 6 PMID:7943172

  7. Igf2 ligand dependency of Pten(+/-) developmental and tumour phenotypes in the mouse.

    PubMed

    Church, D N; Phillips, B R; Stuckey, D J; Barnes, D J; Buffa, F M; Manek, S; Clarke, K; Harris, A L; Carter, E J; Hassan, A B

    2012-08-01

    The tumour suppressor PTEN is a key negative regulator of the PI3K-Akt pathway, and is frequently either reduced or lost in human tumours. Murine genetic studies have confirmed that reduction of Pten promotes tumourigenesis in multiple organs, and demonstrated dependency of tumour development on the activation of downstream components such as Akt. Insulin-like growth factors (IGFs) act via IGF1R to activate the PI3K-Akt pathway, and are commonly upregulated in cancer. A context-dependent interplay between IGFs and PTEN exists in normal tissue and tumours; increased IGF2 ligand supply induces Pten expression creating an autoregulatory negative feedback loop, whereas complete loss of PTEN may either cooperate with IGF overexpression in tumour promotion, or result in desensitisation to IGF ligand. However, it remains unknown whether neoplasia associated with Pten loss is dependent on upstream IGF ligand supply in vivo. We evaluated this by generation of Pten(+/-) mice with differing allelic dosage of Igf2, an imprinted gene encoding the potent embryonic and tumour growth factor Igf2. We show that biallelic Igf2 supply potentiates a previously unreported Pten(+/-) placental phenotype and results in strain-dependent cardiac hyperplasia and neonatal lethality. Importantly, we also show that the effects of Pten loss in vivo are modified by Igf2 supply, as lack of Igf2 results in extended survival and delayed tumour development while biallelic supply is associated with reduced lifespan and accelerated neoplasia in females. Furthermore, we demonstrate that reduction of PTEN protein to heterozygote levels in human MCF7 cells is associated with increased proliferation in response to IGF2, and does not result in desensitisation to IGF2 signalling. These data indicate that the effects of Pten loss at heterozygote levels commonly observed in human tumours are modified by Igf2 ligand, and emphasise the importance of the evaluation of upstream pathways in tumours with Pten loss

  8. Placental expression profile of imprinted genes impacts birth weight

    PubMed Central

    Kappil, Maya A; Green, Benjamin B; Armstrong, David A; Sharp, Andrew J; Lambertini, Luca; Marsit, Carmen J; Chen, Jia

    2015-01-01

    The importance of imprinted genes in regulating feto-placental development has been long established. However, a comprehensive assessment of the role of placental imprinted gene expression on fetal growth has yet to be conducted. In this study, we examined the association between the placental expression of 108 established and putative imprinted genes and birth weight in 677 term pregnancies, oversampled for small for gestational age (SGA) and large for gestational age (LGA) infants. Using adjusted multinomial regression analyses, a 2-fold increase in the expression of 9 imprinted genes was positively associated with LGA status: BLCAP [odds ratio (OR) = 3.78, 95% confidence interval (CI): 1.83, 7.82], DLK1 [OR = 1.63, 95% CI: 1.27, 2.09], H19 [OR = 2.79, 95% CI: 1.77, 4.42], IGF2 [OR = 1.43, 95% CI:1.31, 2.40], MEG3 [OR = 1.42, 95% CI: 1.19, 1.71], MEST [OR = 4.78, 95% CI: 2.64, 8.65], NNAT [OR = 1.40, 95% CI: 1.05, 1.86], NDN [OR = 2.52, 95% CI: 1.72, 3.68], and PLAGL1 [OR = 1.85, 95% CI: 1.40, 2.44]. For SGA status, a 2-fold increase in MEST expression was associated with decreased risk [OR = 0.31, 95% CI: 0.17, 0.58], while a 2-fold increase in NNAT expression was associated with increased risk [OR = 1.52, 95% CI: 1.1, 2.1]. Following a factor analysis, all genes significantly associated with SGA or LGA status loaded onto 2 of the 8 gene-sets underlying the variability in the dataset. Our comprehensive placental profiling of imprinted genes in a large birth cohort supports the importance of these genes for fetal growth. Given that abnormal birth weight is implicated in numerous diseases and developmental abnormalities, the expression pattern of placental imprinted genes has the potential to be developed as a novel biomarker for postnatal health outcomes. PMID:26186239

  9. Prenatal low-protein and postnatal high-fat diets induce rapid adipose tissue growth by inducing Igf2 expression in Sprague Dawley rat offspring.

    PubMed

    Claycombe, Kate J; Uthus, Eric O; Roemmich, James N; Johnson, Luann K; Johnson, W Thomas

    2013-10-01

    Maternal low-protein diets result in lower birth weight followed by accelerated catch-up growth that is accompanied by the development of obesity and glucose intolerance in later life. Whether postnatal high-fat (HF) diets further contribute to the development of obesity and insulin resistance in offspring by affecting adipose tissue metabolism and DNA methylation is currently unknown. Obese-prone Sprague-Dawley rats were fed 8% low protein (LP) or 20% normal protein diets for 3 wk prior to conception and throughout pregnancy and lactation to investigate whether prenatal LP and postnatal HF diets affect the rate of adipose tissue growth, insulin-like growth factor 2 (Igf2) expression, and DNA methylation in male offspring. At weaning, the offspring were fed 10% normal fat or 45% HF diets for 12 wk. The adipose tissue growth rate was increased (up to 26-fold) by the LP prenatal and HF postnatal diets. Adipose tissue Igf2 mRNAs and DNA methylation were increased by the LP prenatal and HF postnatal diets. The LP prenatal and HF postnatal diet increased the number of small adipocytes in adipose tissue and decreased insulin sensitivity. These findings suggest that prenatal LP and postnatal HF intake result in adipose tissue catch-up growth through alterations in the expression of the Igf2 gene and DNA methylation within adipocytes. These alterations in adiposity are accompanied by an increased risk of development of type 2 diabetes.

  10. Unbalanced placental expression of imprinted genes in human intrauterine growth restriction.

    PubMed

    McMinn, J; Wei, M; Schupf, N; Cusmai, J; Johnson, E B; Smith, A C; Weksberg, R; Thaker, H M; Tycko, B

    2006-01-01

    Imprinted genes control fetal and placental growth in mice and in rare human syndromes, but the role of these genes in sporadic intrauterine growth restriction (IUGR) is less well-studied. We measured the ratio of mRNA from a maternally expressed imprinted gene, PHLDA2, to that from a paternally expressed imprinted gene, MEST, by Northern blotting in 38 IUGR-associated placentae and 75 non-IUGR placentae and found an increase in the PHLDA2/MEST mRNA ratio in IUGR (p=0.0001). Altered expression of PHLDA2 and MEST was not accompanied by changes in DNA methylation within their imprinting centers, and immunohistochemistry showed PHLDA2 protein appropriately restricted to villous and intermediate cytotrophoblast in the IUGR placentae. We next did a genome-wide survey of mRNA expression in 14 IUGR placentae with maternal vascular under-perfusion compared to 15 non-IUGR placentae using Affymetrix U133A microarrays. In this series six imprinted genes were differentially expressed by ANOVA with a Benjamini-Hochberg false discovery rate of 0.05, with increased expression of PHLDA2 and decreased expression of MEST, MEG3, GATM, GNAS and PLAGL1 in IUGR placentae. At lower significance, we found IGF2 mRNA decreased and CDKN1C mRNA increased in the IUGR cases. We confirmed the significant reduction in MEG3 non-translated RNA in IUGR placentae by Northern blotting. In addition to imprinted genes, the microarray data highlighted non-imprinted genes acting in endocrine signaling (LEP, CRH, HPGD, INHBA), tissue growth (IGF1), immune modulation (INDO, PSG-family genes), oxidative metabolism (GLRX), vascular function (AGTR1, DSCR1) and metabolite transport (SLC-family solute carriers) as differentially expressed in IUGR vs. non-IUGR placentae. PMID:16125225

  11. Increased prenatal IGF2 expression due to the porcine intron3-G3072A mutation may be responsible for increased muscle mass.

    PubMed

    Clark, D L; Clark, D I; Beever, J E; Dilger, A C

    2015-05-01

    A SNP (IGF2 G3072A) within intron 3 of disrupts a binding site for the repressor zinc finger BED-type containing 6 (ZBED6), leading to increased carcass lean yields in pigs. However, the relative contributions of prenatal as opposed to postnatal increased IGF2 expression are unclear. As muscle fiber number is set at birth, prenatal and neonate skeletal muscle development is critical in determining mature growth potential. Therefore, the objectives of this study were to determine the contributions of hyperplasia and hypertrophy to increased muscle mass and to delineate the effect of the mutation on the expression of myogenic genes during prenatal and postnatal growth. Sows (IGF2 A/A) were bred to a single heterozygous (IGF2 A/G) boar. For fetal samples, sows were euthanized at 60 and 90 d of gestation (d60 and d90) to obtain fetuses. Male and female offspring were also euthanized at birth (0d), weaning (21d), and market weight of approximately 130 kg (176d). At each sampling time, the LM, psoas major (PM), and semitendinosus (ST) muscles were weighed. Samples of the LM were used to quantify the expression of IGF family members, myogenic regulatory factors (MRF), myosin heavy chain isoforms, and growth factors, myostatin, and . Liver samples were used to quantify and expression. At 176d, weights of LM, PM, and ST muscles were all increased approximately 8% to 14% (P < 0.01) in pigs with paternal A (A(Pat)) alleles compared with those with paternal G (G(Pat)) alleles. Additionally, total muscle fiber number in the ST at 176d tended to be greater (P = 0.10), whereas muscle fiber cross-sectional area tended to be reduced ( P= 0.08) in A(Pat) pigs compared with G(Pat) pigs. In addition to the expected 2.7- to 4.5-fold increase (P ≤ 0.02) in expression in the LM in A(Pat) compared with G(Pat) pigs at postnatal sampling times (21d and 176d), IGF2 expression was also increased (P ≤ 0.06) 1.4- to 1.5-fold at d90 of gestation and at birth. At d90, expression of myogenic

  12. Beckwith-Wiedemann syndrome and imprinted genes on chromosome 11p15.5

    SciTech Connect

    Weksberg, R.; Perlikowski, S.; Squire, J.

    1994-09-01

    Beckwith-Wiedemann syndrome (BWS) is a syndrome characterized by generalized and regional overgrowth as well as a predisposition to specific embryonal tumors. We have previously reported biallelic expression of insulin like growth factor 2 (IGF2) in fibroblasts from sporadic cases of BWS. In these cells, the normal expression pattern for IGF2 is allele-specific and derived from the paternal allele. To determine whether biallelic expression of IGF2 in BWS patients results from aberrant regulation of a single gene or multiple genes in an imprinted domain, we undertook the study of a second gene in the 11p15.5 imprinted region. H19 is normally stringently regulated, expressed primarily from the maternal allele, and in many tissues reciprocal expression of H19 and IGF2 has been documented. Since no protein product for H19 has been identified, the RNA itself may be biologically active and it may have a tumor suppressor function. Moreover, H19 has been suggested as a candidate gene in BWS, especially in autosomal dominant pedigrees. Using an Rsa1 polymorphism in the transcribed region of H19, we found that the expression of H19 in 8 patients with sporadic BWS is consistently nonallelic and in the informative cases is always from the maternal allele. This is also true for the two cases of BWS where biallelic IGF2 expression has been documented. We conclude that IGF2 biallelic expression does not represent a general loss of imprint control. If H19 and IGF2 do normally respond to common signals within an imprinted domain at 11p15.5, we suggest that BWS patients with biallelic IGF2 expression can escape from such imprinting constraints. To study this region in more detail, we have developed a replication timing assay for IGF2 and H19 to determine whether loss of asynchronous replication accompanies biallelic IGF2 expression.

  13. Insulin Like Growth Factor 2 Expression in the Rat Brain Both in Basal Condition and following Learning Predominantly Derives from the Maternal Allele

    PubMed Central

    Ye, Xiaojing; Kohtz, Amy; Pollonini, Gabriella; Riccio, Andrea; Alberini, Cristina M.

    2015-01-01

    Insulin like growth factor 2 (Igf2) is known as a maternally imprinted gene involved in growth and development. Recently, Igf2 was found to also be regulated and required in the adult rat hippocampus for long-term memory formation, raising the question of its allelic regulation in adult brain regions following experience and in cognitive processes. We show that, in adult rats, Igf2 is abundantly expressed in brain regions involved in cognitive functions, like hippocampus and prefrontal cortex, compared to the peripheral tissues. In contrast to its maternal imprinting in peripheral tissues, Igf2 is mainly expressed from the maternal allele in these brain regions. The training-dependent increase in Igf2 expression derives proportionally from both parental alleles, and, hence, is mostly maternal. Thus, Igf2 parental expression in the adult rat brain does not follow the imprinting rules found in peripheral tissues, suggesting differential expression regulation and functions of imprinted genes in the brain. PMID:26495851

  14. The landscape of genomic imprinting across diverse adult human tissues

    PubMed Central

    Baran, Yael; Subramaniam, Meena; Biton, Anne; Tukiainen, Taru; Tsang, Emily K.; Rivas, Manuel A.; Pirinen, Matti; Gutierrez-Arcelus, Maria; Smith, Kevin S.; Kukurba, Kim R.; Zhang, Rui; Eng, Celeste; Torgerson, Dara G.; Urbanek, Cydney; Li, Jin Billy; Rodriguez-Santana, Jose R.; Burchard, Esteban G.; Seibold, Max A.; MacArthur, Daniel G.; Montgomery, Stephen B.; Zaitlen, Noah A.; Lappalainen, Tuuli

    2015-01-01

    Genomic imprinting is an important regulatory mechanism that silences one of the parental copies of a gene. To systematically characterize this phenomenon, we analyze tissue specificity of imprinting from allelic expression data in 1582 primary tissue samples from 178 individuals from the Genotype-Tissue Expression (GTEx) project. We characterize imprinting in 42 genes, including both novel and previously identified genes. Tissue specificity of imprinting is widespread, and gender-specific effects are revealed in a small number of genes in muscle with stronger imprinting in males. IGF2 shows maternal expression in the brain instead of the canonical paternal expression elsewhere. Imprinting appears to have only a subtle impact on tissue-specific expression levels, with genes lacking a systematic expression difference between tissues with imprinted and biallelic expression. In summary, our systematic characterization of imprinting in adult tissues highlights variation in imprinting between genes, individuals, and tissues. PMID:25953952

  15. Copy number variations alter methylation and parallel IGF2 overexpression in adrenal tumors

    PubMed Central

    Nielsen, Helene Myrtue; How-Kit, Alexandre; Guerin, Carole; Castinetti, Frederic; Vollan, Hans Kristian Moen; De Micco, Catherine; Daunay, Antoine; Taieb, David; Van Loo, Peter; Besse, Celine; Kristensen, Vessela N; Hansen, Lise Lotte; Barlier, Anne; Sebag, Frederic; Tost, Jörg

    2015-01-01

    Overexpression of insulin growth factor 2 (IGF2) is a hallmark of adrenocortical carcinomas and pheochromocytomas. Previous studies investigating the IGF2/H19 locus have mainly focused on a single molecular level such as genomic alterations or altered DNA methylation levels and the causal changes underlying IGF2 overexpression are still not fully established. In the current study, we analyzed 62 tumors of the adrenal gland from patients with Conn's adenoma (CA, n=12), pheochromocytomas (PCC, n=10), adrenocortical benign tumors (ACBT, n=20), and adrenocortical carcinomas (ACC, n=20). Gene expression, somatic copy number variation of chr11p15.5, and DNA methylation status of three differential methylated regions of the IGF2/H19 locus including the H19 imprinting control region were integratively analyzed. IGF2 overexpression was found in 85% of the ACCs and 100% of the PCCs compared to 23% observed in CAs and ACBTs. Copy number aberrations of chr11p15.5 were abundant in both PCCs and ACCs but while PCCs retained a diploid state, ACCs were frequently tetraploid (7/19). Loss of either a single allele or loss of two alleles of the same parental origin in tetraploid samples resulted in a uniparental disomy-like genotype. These copy number changes correlated with hypermethylation of the H19 ICR suggesting that the lost alleles were the unmethylated maternal alleles. Our data provide conclusive evidence that loss of the maternal allele correlates with IGF2 overexpression in adrenal tumors and that hypermethylation of the H19 ICR is a consequence thereof. PMID:26400872

  16. A Complex Deoxyribonucleic Acid Looping Configuration Associated with the Silencing of the Maternal Igf2 Allele

    PubMed Central

    Qiu, Xinwen; Vu, Thanh H.; Lu, Qiucheng; Ling, Jian Qun; Li, Tao; Hou, Aiju; Wang, Shu Kui; Chen, Hui Ling; Hu, Ji Fan; Hoffman, Andrew R.

    2008-01-01

    Alternate interactions between the H19 imprinting control region (ICR) and one of the two Igf2 differentially methylated regions has been proposed as a model regulating the reciprocal imprinting of Igf2 and H19. To study the conformation of this imprint switch, we performed a systematic structural analysis across the 140 kb of the mouse Igf2-H19 region, which includes enhancers located both between the two genes as well as downstream of H19, by using a scanning chromosome conformation capture (3C) technique. Our results suggest that on the active paternal Igf2 allele, the various enhancers have direct access to the Igf2 promoters, whereas the imprinted silent maternal Igf2 allele assumes a complex three-dimensional knotted loop that keeps the enhancers away from the Igf2 promoters and allows them to interact with the H19 promoter. This complex DNA looping of the maternal allele is formed by interactions involving differentially methylated region 1, the ICR, and enhancers. Binding of CTC-binding factor to the maternal, unmethylated ICR in conjunction with the presence of multicomplex components including interchromosomal interactions, create a barrier blocking the access of all enhancers to Igf2, thereby silencing the maternal Igf2. This silencing configuration exists in newborn liver, mouse embryonic fibroblast, and embryonic stem cells and persists during mitosis, conferring a mechanism for epigenetic memory. PMID:18356289

  17. Effects of endocrine disruptors on imprinted gene expression in the mouse embryo

    PubMed Central

    Tran, Diana A; Rivas, Guillermo E; Singh, Purnima; Pfeifer, Gerd P

    2011-01-01

    Environmental endocrine disruptors (EDs) are synthetic chemicals that resemble natural hormones and are known to cause epigenetic perturbations. EDs have profound effects on development and fertility. Imprinted genes had been identified as candidate susceptibility loci to environmental insults because they are functionally haploid, and because the imprints undergo epigenetic resetting between generations. To screen for possible epigenetic perturbations caused by EDs at imprinted loci, we treated pregnant mice daily between 8.5 and 12.5 days post coitum (dpc) with di-(2-ethylhexyl)-phthalate (DEHP), bisphenol A (BPA), vinclozolin (VZ) or control oil vehicle. After isolating RNA from the placenta, yolk sac, amnion, head, body, heart, liver, lung, stomach and intestines of 13.5 dpc embryos we measured the allele-specific expression of 39 imprinted transcripts using multiplex single nucleotide primer extension (SNuPE) assays. In this representative data set we identified only a small number of transcripts that exhibited a substantial relaxation of imprinted expression with statistical significance: Slc22a18 with 10% relaxation in the embryo after BPA treatment; Rtl1as with 11 and 16% relaxation in the lung and placenta, respectively after BPA treatment; and Rtl1 with 12% relaxation in the yolk sac after DEHP treatment. Additionally, the standard deviation of allele-specificity increased in various organs after ED treatment for several transcripts including Igf2r, Rasgrf1, Usp29, Slc38a4 and Xist. Our data suggest that the maintenance of strongly biased monoallelic expression of imprinted genes is generally insensitive to EDs in the 13.5 dpc embryo and extra-embryonic organs, but is not immune to those effects. PMID:21636974

  18. MicroRNA-873 (MiRNA-873) Inhibits Glioblastoma Tumorigenesis and Metastasis by Suppressing the Expression of IGF2BP1

    PubMed Central

    Wang, Ren-jie; Li, Jian-wei; Bao, Bu-he; Wu, Huan-cheng; Du, Zhen-hua; Su, Jing-liang; Zhang, Ming-hua; Liang, Hai-qian

    2015-01-01

    Glioblastoma multiforme (GBM) is known as a highly malignant brain tumor with a poor prognosis, despite intensive research and clinical efforts. In this study, we observed that microRNA-873 (miR-873) was expressed at low levels in GBM and that the overexpression of miR-873 dramatically reduced the cell proliferation, migration, and invasion of GBM cells. Our further investigations of the inhibition mechanism indicated that miR-873 negatively affected the carcinogenesis and metastasis of GBM by down-regulating the expression of IGF2BP1, which stabilizes the mRNA transcripts of its target genes. These results demonstrate that miR-873 may constitute a potential target for GBM therapy. PMID:25670861

  19. Altered expression of the imprinted transcription factor PLAGL1 deregulates a network of genes in the human IUGR placenta.

    PubMed

    Iglesias-Platas, Isabel; Martin-Trujillo, Alex; Petazzi, Paolo; Guillaumet-Adkins, Amy; Esteller, Manel; Monk, David

    2014-12-01

    Genomic imprinting is the epigenetic process that results in monoallelic expression of genes depending on parental origin. These genes are known to be critical for placental development and fetal growth in mammals. Aberrant epigenetic profiles at imprinted loci, such as DNA methylation defects, are surprisingly rare in pregnancies with compromised fetal growth, while variations in transcriptional output from the expressed alleles of imprinted genes are more commonly reported in pregnancies complicated with intrauterine growth restriction (IUGR). To determine if PLAGL1 and HYMAI, two imprinted transcripts deregulated in Transient Neonatal Diabetes Mellitus, are involved in non-syndromic IUGR we compared the expression and DNA methylation levels in a large cohort of placental biopsies from IUGR and uneventful pregnancies. This revealed that despite appropriate maternal methylation at the shared PLAGL1/HYMAI promoter, there was a loss of correlation between PLAGL1 and HYMAI expression in IUGR. This incongruity was due to higher HYMAI expression in IUGR gestations, coupled with PLAGL1 down-regulation in placentas from IUGR girls, but not boys. The PLAGL1 protein is a zinc-finger transcription factor that has been shown to be a master coordinator of a genetic growth network in mice. We observe PLAGL1 binding to the H19/IGF2 shared enhancers in placentae, with significant correlations between PLAGL1 levels with H19 and IGF2 expression levels. In addition, PLAGL1 binding and expression also correlate with expression levels of metabolic regulator genes SLC2A4, TCF4 and PPARγ1. Our results strongly suggest that fetal growth can be influenced by altered expression of the PLAGL1 gene network in human placenta.

  20. Altered expression of the imprinted transcription factor PLAGL1 deregulates a network of genes in the human IUGR placenta

    PubMed Central

    Iglesias-Platas, Isabel; Martin-Trujillo, Alex; Petazzi, Paolo; Guillaumet-Adkins, Amy; Esteller, Manel; Monk, David

    2014-01-01

    Genomic imprinting is the epigenetic process that results in monoallelic expression of genes depending on parental origin. These genes are known to be critical for placental development and fetal growth in mammals. Aberrant epigenetic profiles at imprinted loci, such as DNA methylation defects, are surprisingly rare in pregnancies with compromised fetal growth, while variations in transcriptional output from the expressed alleles of imprinted genes are more commonly reported in pregnancies complicated with intrauterine growth restriction (IUGR). To determine if PLAGL1 and HYMAI, two imprinted transcripts deregulated in Transient Neonatal Diabetes Mellitus, are involved in non-syndromic IUGR we compared the expression and DNA methylation levels in a large cohort of placental biopsies from IUGR and uneventful pregnancies. This revealed that despite appropriate maternal methylation at the shared PLAGL1/HYMAI promoter, there was a loss of correlation between PLAGL1 and HYMAI expression in IUGR. This incongruity was due to higher HYMAI expression in IUGR gestations, coupled with PLAGL1 down-regulation in placentas from IUGR girls, but not boys. The PLAGL1 protein is a zinc-finger transcription factor that has been shown to be a master coordinator of a genetic growth network in mice. We observe PLAGL1 binding to the H19/IGF2 shared enhancers in placentae, with significant correlations between PLAGL1 levels with H19 and IGF2 expression levels. In addition, PLAGL1 binding and expression also correlate with expression levels of metabolic regulator genes SLC2A4, TCF4 and PPARγ1. Our results strongly suggest that fetal growth can be influenced by altered expression of the PLAGL1 gene network in human placenta. PMID:24993786

  1. Butyrate induced IGF2 activation correlated with distinct chromatin landscapes due to histone modification

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Histone modification has emerged as a very important mechanism regulating the transcriptional status of the genome. Insulin-like growth factor 2 (IGF2) is a peptide hormone controlling various cellular processes such as proliferation and apoptosis. IGF2 and H19 are reciprocally regulated imprinted ...

  2. Chromatin mechanisms in the developmental control of imprinted gene expression.

    PubMed

    Sanli, Ildem; Feil, Robert

    2015-10-01

    Hundreds of protein-coding genes and regulatory non-coding RNAs (ncRNAs) are subject to genomic imprinting. The mono-allelic DNA methylation marks that control imprinted gene expression are somatically maintained throughout development, and this process is linked to specific chromatin features. Yet, at many imprinted genes, the mono-allelic expression is lineage or tissue-specific. Recent studies provide mechanistic insights into the developmentally-restricted action of the 'imprinting control regions' (ICRs). At several imprinted domains, the ICR expresses a long ncRNA that mediates chromatin repression in cis (and probably in trans as well). ICRs at other imprinted domains mediate higher-order chromatin structuration that enhances, or prevents, transcription of close-by genes. Here, we present how chromatin and ncRNAs contribute to developmental control of imprinted gene expression and discuss implications for disease. This article is part of a Directed Issue entitled: Epigenetics dynamics in development and disease.

  3. The effects of early life lead exposure on the expression of insulin-like growth factor 1 and 2 (IGF1, IGF2) in the hippocampus of mouse pups.

    PubMed

    Li, Ning; Zhao, Gaiming; Qiao, Mingwu; Shao, Jianfeng; Liu, Xiaozhuan; Li, Haozhe; Li, Xing; Yu, Zengli

    2014-01-01

    The present study was undertaken to investigate the effects of maternal lead exposure on expression of IGF1 and IGF2 in the hippocampus of mice offspring. Lead exposure initiated from beginning of gestation to weaning. Lead acetate administered in drinking solutions was dissolved in distilled deionized water at the concentrations of 0.1%, 0.5% and 1% groups respectively. On the 21st postnatal day, the learning and memory ability was tested by Water Maze test and the Pb levels were also determined by graphite furnace atomic absorption spectrometry. The expression of IGF1 and IGF2 in hippocampus was examined by immunohistochemistry and western blotting. The lead levels in blood and hippocampus of all lead exposure groups were significantly higher than that of the control group (P<0.05). In Water Maze test, the performances of 0.5% and 1% lead exposure groupswere worse than that of the control group (P<0.05). The expression of IGF1 and IGF2 was decreased in lead exposed groups than that of the control group (P<0.05). The low expression of IGF1 and IGF2 in the hippocampus of pups may contribute to the impairment of learning and memory associated with maternal Pb exposure.

  4. The hepatic Igf2/H19 locus is not altered in 1-day old pups born to obese-prone Sprague-Dawley rats fed a low protein diet containing adequate folic acid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gong et al. (Epigenetics, 2010) found, using diets low in folic acid, that compared to an 18% protein diet a 9% protein diet fed to pregnant Sprague-Dawley rats resulted in increased Igf2 and H19 gene expression in the liver of day 0 male offspring. In addition DNA methylation in the Imprinting Cont...

  5. Paternally Inherited IGF2 Mutation and Growth Restriction.

    PubMed

    Begemann, Matthias; Zirn, Birgit; Santen, Gijs; Wirthgen, Elisa; Soellner, Lukas; Büttel, Hans-Martin; Schweizer, Roland; van Workum, Wilbert; Binder, Gerhard; Eggermann, Thomas

    2015-07-23

    In humans, mutations in IGF1 or IGF1R cause intrauterine and postnatal growth restriction; however, data on mutations in IGF2, encoding insulin-like growth factor (IGF) II, are lacking. We report an IGF2 variant (c.191C→A, p.Ser64Ter) with evidence of pathogenicity in a multigenerational family with four members who have growth restriction. The phenotype affects only family members who have inherited the variant through paternal transmission, a finding that is consistent with the maternal imprinting status of IGF2. The severe growth restriction in affected family members suggests that IGF-II affects postnatal growth in addition to prenatal growth. Furthermore, the dysmorphic features of affected family members are consistent with a role of deficient IGF-II levels in the cause of the Silver-Russell syndrome. (Funded by Bundesministerium für Bildung und Forschung and the European Union.).

  6. Trichostatin A Rescues the Disrupted Imprinting Induced by Somatic Cell Nuclear Transfer in Pigs

    PubMed Central

    Huan, Yanjun; Zhu, Jiang; Huang, Bo; Mu, Yanshuang; Kong, Qingran; Liu, Zhonghua

    2015-01-01

    Imprinting disorders induced by somatic cell nuclear transfer (SCNT) usually lead to the abnormalities of cloned animals and low cloning efficiency. Histone deacetylase inhibitors have been shown to improve gene expression, genomic methylation reprogramming and the development of cloned embryos, however, the imprinting statuses in these treated embryos and during their subsequent development remain poorly studied. In this study, we investigated the dynamics of H19/Igf2 methylation and transcription in porcine cloned embryos treated with trichostatin A (TSA), and examined H19/Igf2 imprinting patterns in cloned fetuses and piglets. Our results showed that compared with the maintenance of H19/Igf2 methylation in fertilized embryos, cloned embryos displayed aberrant H19/Igf2 methylation and lower H19/Igf2 transcripts. When TSA enhanced the development of cloned embryos, the disrupted H19/Igf2 imprinting was largely rescued in these treated embryos, more similar to those detected in fertilized counterparts. Further studies displayed that TSA effectively rescued the disrupted imprinting of H19/Igf2 in cloned fetuses and piglets, prevented the occurrence of cloned fetus and piglet abnormalities, and enhanced the full-term development of cloned embryos. In conclusion, our results demonstrated that aberrant imprinting induced by SCNT led to the abnormalities of cloned fetuses and piglets and low cloning efficiency, and TSA rescued the disrupted imprinting in cloned embryos, fetuses and piglets, and prevented the occurrence of cloned fetus and piglet abnormalities, thereby improving the development of cloned embryos. This study would have important implications in improving cloning efficiency and the health of cloned animals. PMID:25962071

  7. IGF2/H19 hypomethylation in a patient with very low birthweight, preocious pubarche and insulin resistance

    PubMed Central

    2012-01-01

    Background Insulin like growth factor 2 (IGF2) is an imprinted gene, which has an important role in fetal growth as established in mice models. IGF2 is downregulated through hypomethylation of a differentially methylated region (DMR) in Silver Russell syndrome (SRS), characterised by growth restriction. We have previously reported that severe pre- and post-natal growth restriction associated with insulin resistance and precocious pubarche in a woman without body asymmetry or other SRS features resulted from a balanced translocation affecting the regulation of her IGF2 gene expression. We hypothesised that severe pre- and post-natal growth restriction associated with insulin resistance and precocious pubarche in the absence of SRS are also caused by downregulation of IGF2 through hypomethylation, gene mutation or structural chromosomal abnormalities. Methods We performed routine karyotyping, IGF2 gene sequencing and investigated DNA methylation of the IGF2 differentially methylated region (DMR)0 and H19 DMR using pyrosequencing, in four women selected for very low birth weight (<−3 SDS for gestational age), precocious pubarche, short adult stature (<−2 SDS), and insulin resistance (defined as HOMA-IS < 80%); and compared their methylation results to those of 95 control subjects. Results We identified a 20 year old woman with severe hypomethylation at both DMRs. She was the smallest at birth (birthweight SDS,-3.9), and had the shortest adult height (143 cm). The patient was diagnosed with polycystic ovarian syndrome at the age of 15 years, and had impaired fasting glucose in the presence of a low BMI (19.2 kg/m2). Conclusions Our case of growth restriction, premature pubarche and insulin resistance in the absence of body asymmetry or other features of SRS adds to the expanding phenotype of IGF2/H19 methylation abnormalities. Further studies are needed to confirm whether growth restriction in association with premature pubarche and insulin resistance

  8. Imprinted gene expression in fetal growth and development.

    PubMed

    Lambertini, L; Marsit, C J; Sharma, P; Maccani, M; Ma, Y; Hu, J; Chen, J

    2012-06-01

    Experimental studies showed that genomic imprinting is fundamental in fetoplacental development by timely regulating the expression of the imprinted genes to overlook a set of events determining placenta implantation, growth and embryogenesis. We examined the expression profile of 22 imprinted genes which have been linked to pregnancy abnormalities that may ultimately influence childhood development. The study was conducted in a subset of 106 placenta samples, overrepresented with small and large for gestational age cases, from the Rhode Island Child Health Study. We investigated associations between imprinted gene expression and three fetal development parameters: newborn head circumference, birth weight, and size for gestational age. Results from our investigation show that the maternally imprinted/paternally expressed gene ZNF331 inversely associates with each parameter to drive smaller fetal size, while paternally imprinted/maternally expressed gene SLC22A18 directly associates with the newborn head circumference promoting growth. Multidimensional Scaling analysis revealed two clusters within the 22 imprinted genes which are independently associated with fetoplacental development. Our data suggest that cluster 1 genes work by assuring cell growth and tissue development, while cluster 2 genes act by coordinating these processes. Results from this epidemiologic study offer solid support for the key role of imprinting in fetoplacental development.

  9. IGF2 DNA methylation is a modulator of newborn's fetal growth and development.

    PubMed

    St-Pierre, Julie; Hivert, Marie-France; Perron, Patrice; Poirier, Paul; Guay, Simon-Pierre; Brisson, Diane; Bouchard, Luigi

    2012-10-01

    The insulin-like growth factor 2 (IGF2) gene, located within a cluster of imprinted genes on chromosome 11p15, encodes a fetal and placental growth factor affecting birth weight. DNA methylation variability at the IGF2 gene locus has been previously reported but its consequences on fetal growth and development are still mostly unknown in normal pediatric population. We collected one hundred placenta biopsies from 50 women with corresponding maternal and cord blood samples and measured anthropometric indices, blood pressure and metabolic phenotypes using standardized procedures. IGF2/H19 DNA methylation and IGF2 circulating levels were assessed using sodium bisulfite pyrosequencing and ELISA, respectively. Placental IGF2 (DMR0 and DMR2) DNA methylation levels were correlated with newborn's fetal growth indices, such as weight, and with maternal IGF2 circulating concentration at the third trimester of pregnancy, whereas H19 (DMR) DNA methylation levels were correlated with IGF2 levels in cord blood. The maternal genotype of a known IGF2/H19 polymorphism (rs2107425) was associated with birth weight. Taken together, we showed that IGF2/H19 epigenotype and genotypes independently account for 31% of the newborn's weight variance. No association was observed with maternal diabetic status, glucose concentrations or prenatal maternal body mass index. This is the first study showing that DNA methylation at the IGF2/H19 genes locus may act as a modulator of IGF2 newborn's fetal growth and development within normal range. IGF2/H19 DNA methylation could represent a cornerstone in linking birth weight and fetal metabolic programming of late onset obesity.

  10. Maternal protein restriction regulates IGF2 system in placental labyrinth.

    PubMed

    Gao, Haijun; Sathishkumar, Kunju Reddiar; Yallampalli, Uma; Balakrishnan, Meena; Li, Xilong; Wu, Guoyao; Yallampalli, Chandra

    2012-01-01

    This study was to test the hypothesis that altered IGF2 system in the placental labyrinth zone (LZ) impairs feto-placental growth in response to maternal protein restriction. Rats were fed a 20% protein diet and an isocaloric 6 % protein diet (LP) from day 1 to days 14, 18, or 21 of pregnancy. The effects of diet, gender of placenta and fetus, and day of pregnancy on placental weight, fetal weight, and expression of the IGF2 axis in the placental LZ and amino acids in maternal plasma were analyzed. Growth restriction occurred in both female and male fetuses by LP, coincident with impaired LZ growth and efficiency. The expression of Igf2, Igf2P0, Igf1r, Igf2r, Insr, Igfbp1, and Igfbp2 in placental LZ were affected by diet, gender and/or day of pregnancy. Concentrations of total essential amino acids and total nonessential amino acids were reduced and increased, respectively, in maternal plasma of LP-fed rats. These results indicate that adaptation of the IGF2 system in rat LZ occurs in a sex- and time-dependent manner in response to maternal protein restriction; however, these adaptations cannot prevent the growth restriction of both male and female fetuses during late pregnancy.

  11. IGF2BP3 Modulates the Interaction of Invasion-Associated Transcripts with RISC.

    PubMed

    Ennajdaoui, Hanane; Howard, Jonathan M; Sterne-Weiler, Timothy; Jahanbani, Fereshteh; Coyne, Doyle J; Uren, Philip J; Dargyte, Marija; Katzman, Sol; Draper, Jolene M; Wallace, Andrew; Cazarez, Oscar; Burns, Suzanne C; Qiao, Mei; Hinck, Lindsay; Smith, Andrew D; Toloue, Masoud M; Blencowe, Benjamin J; Penalva, Luiz O F; Sanford, Jeremy R

    2016-05-31

    Insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3) expression correlates with malignancy, but its role(s) in pathogenesis remains enigmatic. We interrogated the IGF2BP3-RNA interaction network in pancreatic ductal adenocarcinoma (PDAC) cells. Using a combination of genome-wide approaches, we have identified 164 direct mRNA targets of IGF2BP3. These transcripts encode proteins enriched for functions such as cell migration, proliferation, and adhesion. Loss of IGF2BP3 reduced PDAC cell invasiveness and remodeled focal adhesion junctions. Individual nucleotide resolution crosslinking immunoprecipitation (iCLIP) revealed significant overlap of IGF2BP3 and microRNA (miRNA) binding sites. IGF2BP3 promotes association of the RNA-induced silencing complex (RISC) with specific transcripts. Our results show that IGF2BP3 influences a malignancy-associated RNA regulon by modulating miRNA-mRNA interactions. PMID:27210763

  12. IGF2BP3 modulates the interaction of invasion-associated transcripts with RISC

    PubMed Central

    Ennajdaoui, Hanane; Howard, Jonathan M.; Sterne-Weiler, Timothy; Jahanbani, Fereshteh; Coyne, Doyle J.; Uren, Philip J.; Dargyte, Marija; Katzman, Sol; Draper, Jolene M.; Wallace, Andrew; Cazarez, Oscar; Burns, Suzanne C.; Qiao, Mei; Hinck, Lindsay; Smith, Andrew D.; Toloue, Masoud M.; Blencowe, Benjamin J.; Penalva, Luiz O.F.; Sanford, Jeremy R.

    2016-01-01

    Summary Insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3) expression correlates with malignancy. But its role(s) in pathogenesis remain enigmatic. Here, we interrogated the IGF2BP3-RNA interaction network in pancreatic ductal adenocarcinoma (PDAC) cells. Using a combination of genome-wide approaches we identify 164 direct mRNA targets of IGF2BP3. These transcripts encode proteins enriched for functions such as cell migration, proliferation and adhesion. Loss of IGF2BP3 reduced PDAC cell invasiveness and remodeled focal adhesion junctions. Individual-nucleotide resolution crosslinking immunoprecipitation (iCLIP) revealed significant overlap of IGF2BP3 and miRNA binding sites. IGF2BP3 promotes association of the RNA induced silencing complex (RISC) with specific transcripts. Our results show that IGF2BP3 influences a malignancy-associated RNA regulon by modulating miRNA-mRNA interactions. PMID:27210763

  13. Imprinted gene expression in hybrids: perturbed mechanisms and evolutionary implications.

    PubMed

    Wolf, J B; Oakey, R J; Feil, R

    2014-08-01

    Diverse mechanisms contribute to the evolution of reproductive barriers, a process that is critical in speciation. Amongst these are alterations in gene products and in gene dosage that affect development and reproductive success in hybrid offspring. Because of its strict parent-of-origin dependence, genomic imprinting is thought to contribute to the aberrant phenotypes observed in interspecies hybrids in mammals and flowering plants, when the abnormalities depend on the directionality of the cross. In different groups of mammals, hybrid incompatibility has indeed been linked to loss of imprinting. Aberrant expression levels have been reported as well, including imprinted genes involved in development and growth. Recent studies in humans emphasize that genetic diversity within a species can readily perturb imprinted gene expression and phenotype as well. Despite novel insights into the underlying mechanisms, the full extent of imprinted gene perturbation still remains to be determined in the different hybrid systems. Here we review imprinted gene expression in intra- and interspecies hybrids and examine the evolutionary scenarios under which imprinting could contribute to hybrid incompatibilities. We discuss effects on development and reproduction and possible evolutionary implications. PMID:24619185

  14. Human imprinted genes as oncodevelopmental markers.

    PubMed

    Biran, H; Ariel, I; de Groot, N; Shani, A; Hochberg, A

    1994-01-01

    Imprinted genes mediate unique maternal or paternal genetic roles and their function is essential in prenatal development. The reciprocally imprinted human insulin-like growth factor 2 (IGF2) and H19 genes are expressed during embryonal life, also in the placenta, and are downregulated postnatally. They reexpress in pediatric tumors (e.g. Wilms' tumor) and in inborn developmental syndromes predisposing to such tumors (e.g., Beckwith-Wiedemann syndrome). H19 (RNA transcripts) and IGF2 are manifested in Wilms' tumor, rhabdomyosarcoma, immature ovarian teratoma and gestational trophoblastic diseases. We have found that in the placenta and in urothelial carcinoma, H19 expression reflects the degree of invasiveness. These genes, displaying a tissue-specific oncofetal pattern of expression, are, therefore, tumor markers.

  15. Comparisons of mRNA expression for insulin-like growth factor (IGF) type 2 receptor (IGF2R) and IGF-1 in small ovarian follicles between cattle selected and not selected for twin ovulations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Both IGF-1 and -2 stimulate ovarian follicular cell proliferation and antral follicle development. Actions of IGF-1 and -2 are mediated through the IGF type 1 receptor, whereas binding of IGF-2 to the IGF2R results in its degradation. Information on the role of IGF2R in regulating bovine follicula...

  16. GH indirectly enhances the regeneration of transgenic zebrafish fins through IGF2a and IGF2b.

    PubMed

    Nornberg, Bruna Félix; Almeida, Daniela Volcan; Figueiredo, Márcio Azevedo; Marins, Luis Fernando

    2016-10-01

    The somatotropic axis, composed essentially of the growth hormone (GH) and insulin-like growth factors (IGFs), is the main regulator of somatic growth in vertebrates. However, these protein hormones are also involved in various other major physiological processes. Although the importance of IGFs in mechanisms involving tissue regeneration has already been established, little is known regarding the direct effects of GH in these processes. In this study, we used a transgenic zebrafish (Danio rerio) model, which overexpresses GH from the beta-actin constitutive promoter. The regenerative ability of the caudal fin was assessed after repeated amputations, as well as the expression of genes related to the GH/IGF axis. The results revealed that GH overexpression increased the regenerated area of the caudal fin in transgenic fish after the second amputation. Transgenic fish also presented a decrease in gene expression of the GH receptor (ghrb), in opposition to the increased expression of the IGF1 receptors (igf1ra and igf1rb). These results suggest that transgenic fish have a higher sensitivity to IGFs than to GH during fin regeneration. With respect to the different IGFs produced locally, a decrease in igf1a expression and a significant increase in both igf2a and igf2b expression was observed, suggesting that igf1a is not directly involved in fin regeneration. Overall, the results revealed that excess GH enhances fin regeneration in zebrafish through igf2a and igf2b expression, acting indirectly on this major physiological process.

  17. IGF2 Promotes Growth of Adrenocortical Carcinoma Cells, but Its Overexpression Does Not Modify Phenotypic and Molecular Features of Adrenocortical Carcinoma

    PubMed Central

    Guillaud-Bataille, Marine; Ragazzon, Bruno; de Reyniès, Aurélien; Chevalier, Claire; Francillard, Isabelle; Barreau, Olivia; Steunou, Virginie; Guillemot, Johann; Tissier, Frédérique; Rizk-Rabin, Marthe; René-Corail, Fernande; Ghuzlan, Abir Al; Assié, Guillaume; Bertagna, Xavier; Baudin, Eric; Le Bouc, Yves; Bertherat, Jérôme; Clauser, Eric

    2014-01-01

    Insulin-like growth factor 2 (IGF2) overexpression is an important molecular marker of adrenocortical carcinoma (ACC), which is a rare but devastating endocrine cancer. It is not clear whether IGF2 overexpression modifies the biology and growth of this cancer, thus more studies are required before IGF2 can be considered as a major therapeutic target. We compared the phenotypical, clinical, biological, and molecular characteristics of ACC with or without the overexpression of IGF2, to address these issues. We also carried out a similar analysis in an ACC cell line (H295R) in which IGF2 expression was knocked down with si- or shRNA. We found no significant differences in the clinical, biological and molecular (transcriptomic) traits between IGF2-high and IGF2-low ACC. The absence of IGF2 overexpression had little influence on the activation of tyrosine kinase pathways both in tumors and in H295 cells that express low levels of IGF2. In IGF2-low tumors, other growth factors (FGF9, PDGFA) are more expressed than in IGF2-high tumors, suggesting that they play a compensatory role in tumor progression. In addition, IGF2 knock-down in H295R cells substantially impaired growth (>50% inhibition), blocked cells in G1 phase, and promoted apoptosis (>2-fold). Finally, analysis of the 11p15 locus showed a paternal uniparental disomy in both IGF2-high and IGF2-low tumors, but low IGF2 expression could be explained in most IGF2-low ACC by an additional epigenetic modification at the 11p15 locus. Altogether, these observations confirm the active role of IGF2 in adrenocortical tumor growth, but also suggest that other growth promoting pathways may be involved in a subset of ACC with low IGF2 expression, which creates opportunities for the use of other targeted therapies. PMID:25089899

  18. A view through the clouds of imprinting.

    PubMed

    Burns, J L; Jackson, D A; Hassan, A B

    2001-08-01

    The purpose of this review is to examine whether our current knowledge of the higher order control of gene expression and nuclear organization can help us understand the mechanisms of genomic imprinting. Imprinting involves the inheritance of a silenced allele of a gene through either a paternal or maternal germline. We have approached the problem of imprinting using a model based on the dynamic attachment of chromatin loops to immobilized RNA polymerases and control elements. We have combined the information from different experimental approaches, examining primarily the IGF2-H19 locus, in an attempt to simplify the complexity of the imprinting data that has accumulated. It is hoped that a unified model may generate predictions amenable to experimental testing and contribute to the interpretation of future experiments.

  19. Imprinting genes associated with endometriosis

    PubMed Central

    Kobayashi, Hiroshi

    2014-01-01

    Purpose: Much work has been carried out to investigate the genetic and epigenetic basis of endometriosis and proposed that endometriosis has been described as an epigenetic disease. The purpose of this study was to extract the imprinting genes that are associated with endometriosis development. Methods: The information on the imprinting genes can be accessed publicly from a web-based interface at http://www.geneimprint.com/site/genes-by-species. Results: In the current version, the database contains 150 human imprinted genes derived from the literature. We searched gene functions and their roles in particular biological processes or events, such as development and pathogenesis of endometriosis. From the genomic imprinting database, we picked 10 genes that were highly associated with female reproduction; prominent among them were paternally expressed genes (DIRAS3, BMP8B, CYP1B1, ZFAT, IGF2, MIMT1, or MIR296) and maternally expressed genes (DVL1, FGFRL1, or CDKN1C). These imprinted genes may be associated with reproductive biology such as endometriosis, pregnancy loss, decidualization process and preeclampsia. Discussion: This study supports the possibility that aberrant epigenetic dysregulation of specific imprinting genes may contribute to endometriosis predisposition. PMID:26417259

  20. A Survey of Imprinted Gene Expression in Mouse Trophoblast Stem Cells

    PubMed Central

    Calabrese, J. Mauro; Starmer, Joshua; Schertzer, Megan D.; Yee, Della; Magnuson, Terry

    2015-01-01

    Several hundred mammalian genes are expressed preferentially from one parental allele as the result of a process called genomic imprinting. Genomic imprinting is prevalent in extra-embryonic tissue, where it plays an essential role during development. Here, we profiled imprinted gene expression via RNA-Seq in a panel of six mouse trophoblast stem lines, which are ex vivo derivatives of a progenitor population that gives rise to the placental tissue of the mouse. We found evidence of imprinted expression for 48 genes, 31 of which had been described previously as imprinted and 17 of which we suggest as candidate imprinted genes. An equal number of maternally and paternally biased genes were detected. On average, candidate imprinted genes were more lowly expressed and had weaker parent-of-origin biases than known imprinted genes. Several known and candidate imprinted genes showed variability in parent-of-origin expression bias between the six trophoblast stem cell lines. Sixteen of the 48 known and candidate imprinted genes were previously or newly annotated noncoding RNAs and six encoded for a total of 60 annotated microRNAs. Pyrosequencing across our panel of trophoblast stem cell lines returned levels of imprinted expression that were concordant with RNA-Seq measurements for all eight genes examined. Our results solidify trophoblast stem cells as a cell culture-based experimental model to study genomic imprinting, and provide a quantitative foundation upon which to delineate mechanisms by which the process is maintained in the mouse. PMID:25711832

  1. IGF-2 is necessary for retinoblastoma-mediated enhanced adaptation after small-bowel resection.

    PubMed

    Choi, Pamela M; Sun, Raphael C; Sommovilla, Josh; Diaz-Miron, Jose; Guo, Jun; Erwin, Christopher R; Warner, Brad W

    2014-11-01

    Previously, we have demonstrated that genetically disrupting retinoblastoma protein (Rb) expression in enterocytes results in taller villi, mimicking resection-induced adaption responses. Rb deficiency also results in elevated insulin-like growth factor-2 (IGF-2) expression in villus enterocytes. We propose that postoperative disruption of Rb results in enhanced adaptation which is driven by IGF-2. Inducible, intestine-specific Rb-null mice (iRbIKO) and wild-type (WT) littermates underwent a 50% proximal small-bowel resection (SBR) at 7-9 weeks of age. They were then given tamoxifen on postoperative days (PODs) 4-6 and harvested on POD 28. The experiment was then repeated on double knockouts of both IGF-2 and Rb (IGF-2 null/iRbIKO). iRbIKO mice demonstrated enhanced resection-induced adaptive villus growth after SBR and increased IGF-2 messenger RNA (mRNA) in ileal villus enterocytes compared to their WT littermates. In the IGF-2 null/iRbIKO double-knockout mice, there was no additional villus growth beyond what was expected of normal resection-induced adaptation. Adult mice in which Rb is inducibly deleted from the intestinal epithelium following SBR have augmented adaptive growth. IGF-2 expression is necessary for enhanced adaptation associated with acute intestinal Rb deficiency.

  2. Germline and somatic imprinting in the nonhuman primate highlights species differences in oocyte methylation

    PubMed Central

    Cheong, Clara Y.; Chng, Keefe; Ng, Shilen; Chew, Siew Boom; Chan, Louiza; Ferguson-Smith, Anne C.

    2015-01-01

    Genomic imprinting is an epigenetic mechanism resulting in parental allele-specific gene expression. Defects in normal imprinting are found in cancer, assisted reproductive technologies, and several human syndromes. In mouse models, germline-derived DNA methylation is shown to regulate imprinting. Though imprinting is largely conserved between mammals, species- and tissue-specific domains of imprinted expression exist. Using the cynomolgus macaque (Macaca fascicularis) to assess primate-specific imprinting, we present a comprehensive view of tissue-specific imprinted expression and DNA methylation at established imprinted gene clusters. For example, like mouse and unlike human, macaque IGF2R is consistently imprinted, and the PLAGL1, INPP5F transcript variant 2, and PEG3 imprinting control regions are not methylated in the macaque germline but acquire this post-fertilization. Methylome data from human early embryos appear to support this finding. These suggest fundamental differences in imprinting control mechanisms between primate species and rodents at some imprinted domains, with implications for our understanding of the epigenetic programming process in humans and its influence on disease. PMID:25862382

  3. Methylation variation at IGF2 differentially methylated regions and maternal folic acid use before and during pregnancy.

    PubMed

    Hoyo, Cathrine; Murtha, Amy P; Schildkraut, Joellen M; Jirtle, Randy L; Demark-Wahnefried, Wendy; Forman, Michele R; Iversen, Edwin S; Kurtzberg, Joanne; Overcash, Francine; Huang, Zhiqing; Murphy, Susan K

    2011-07-01

    Folic acid (FA) supplementation before and during pregnancy has been associated with decreased risk of neural tube defects although recent reports suggest it may also increase the risk of other chronic diseases. We evaluated exposure to maternal FA supplementation before and during pregnancy in relation to aberrant DNA methylation at two differentially methylated regions (DMRs) regulating Insulin-like Growth Factor 2 (IGF2) expression in infants. Aberrant methylation at these regions has been associated with IGF2 deregulation and increased susceptibility to several chronic diseases. Using a self-administered questionnaire, we assessed FA intake before and during pregnancy in 438 pregnant women. Pyrosequencing was used to measure methylation at two IGF2 DMRs in umbilical cord blood leukocytes. Mixed models were used to determine relationships between maternal FA supplementation before or during pregnancy and DNA methylation levels at birth. Average methylation at the H19 DMR was 61.2%. Compared to infants born to women reporting no FA intake before or during pregnancy, methylation levels at the H19 DMR decreased with increasing FA intake (2.8%, p=0.03, and 4.9%, p=0.04, for intake before and during pregnancy, respectively). This methylation decrease was most pronounced in male infants (p=0.01). Methylation alterations at the H19 DMR are likely an important mechanism by which FA risks and/or benefits are conferred in utero. Because stable methylation marks at DMRs regulating imprinted genes are acquired before gastrulation, they may serve as archives of early exposures with the potential to improve our understanding of developmental origins of adult disease.

  4. Gene therapy for human colorectal cancer cell lines with recombinant adenovirus 5 based on loss of the insulin-like growth factor 2 imprinting.

    PubMed

    Sun, Huiling; Pan, Yuqin; He, Bangshun; Deng, Qiwen; Li, Rui; Xu, Yeqiong; Chen, Jie; Gao, Tianyi; Ying, Houqun; Wang, Feng; Liu, Xian; Wang, Shukui

    2015-04-01

    The recombinant oncolytic adenovirus is a novel anticancer agent to replicate selectively in colon cancer cell lines. Loss of imprinting (LOI) of insulin-like growth factor 2 (IGF2) gene is an epigenetic abnormality phenomenon. We utilized the IGF2 LOI in gene therapy for the malignant tumor cell lines. We investigated the tumoricidal effects of IGF2 LOI on four cell lines by oncolytic adenovirus, and constructed novel adenovirus vectors Ad312-E1A and Ad312-EGFP. The expression of E1A was monitored by real-time PCR and western blot analysis. The viability and apoptosis of colorectal cells infected with Ad312-E1A were tested by CCK-8 and flow cytometry. In addition, we established a colorectal cancer model in nude mice. The results showed that HCT-8 and HT-29 with IGF2 LOI were infected with Ad312-EGFP and then produced the EGFP. Nevertheless, SW480 and GES-1, which were IGF2 MOI, did not produce the EGFP. The Ad312-E1A obviously reduced the cell viability and induced apoptosis in HCT-8 and HT-29 in vitro, and successfully suppressed tumor growth in HT-29 xenografts in nude mice. In summary, the conditionally replicative adenovirus with loss of IGF2 imprinting system has a positive effect on gene therapy.

  5. RNA-binding protein IGF2BP3 targeting of oncogenic transcripts promotes hematopoietic progenitor proliferation

    PubMed Central

    Palanichamy, Jayanth Kumar; Tran, Tiffany M.; Howard, Jonathan M.; Contreras, Jorge R.; Fernando, Thilini R.; Sterne-Weiler, Timothy; Katzman, Sol; Toloue, Masoud; Yan, Weihong; Sanford, Jeremy R.; Rao, Dinesh S.

    2016-01-01

    Posttranscriptional control of gene expression is important for defining both normal and pathological cellular phenotypes. In vitro, RNA-binding proteins (RBPs) have recently been shown to play important roles in posttranscriptional regulation; however, the contribution of RBPs to cell specification is not well understood. Here, we determined that the RBP insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3) is specifically overexpressed in mixed lineage leukemia–rearranged (MLL-rearranged) B-acute lymphoblastic leukemia (B-ALL), which constitutes a subtype of this malignancy associated with poor prognosis and high risk of relapse. IGF2BP3 was required for the survival of B-ALL cell lines, as knockdown led to decreased proliferation and increased apoptosis. Enforced expression of IGF2BP3 provided murine BM cells with a strong survival advantage, led to proliferation of hematopoietic stem and progenitor cells, and skewed hematopoietic development to the B cell/myeloid lineage. Cross-link immunoprecipitation and high throughput sequencing uncovered the IGF2BP3-regulated transcriptome, which includes oncogenes MYC and CDK6 as direct targets. IGF2BP3 regulated transcripts via targeting elements within 3′ untranslated regions (3′UTR), and enforced IGF2BP3 expression in mice resulted in enhanced expression of Myc and Cdk6 in BM. Together, our data suggest that IGF2BP3-mediated targeting of oncogenic transcripts may represent a critical pathogenetic mechanism in MLL-rearranged B-ALL and support IGF2BP3 and its cognate RNA-binding partners as potential therapeutic targets in this disease. PMID:26974154

  6. RNA-binding protein IGF2BP3 targeting of oncogenic transcripts promotes hematopoietic progenitor proliferation.

    PubMed

    Palanichamy, Jayanth Kumar; Tran, Tiffany M; Howard, Jonathan M; Contreras, Jorge R; Fernando, Thilini R; Sterne-Weiler, Timothy; Katzman, Sol; Toloue, Masoud; Yan, Weihong; Basso, Giuseppe; Pigazzi, Martina; Sanford, Jeremy R; Rao, Dinesh S

    2016-04-01

    Posttranscriptional control of gene expression is important for defining both normal and pathological cellular phenotypes. In vitro, RNA-binding proteins (RBPs) have recently been shown to play important roles in posttranscriptional regulation; however, the contribution of RBPs to cell specification is not well understood. Here, we determined that the RBP insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3) is specifically overexpressed in mixed lineage leukemia-rearranged (MLL-rearranged) B-acute lymphoblastic leukemia (B-ALL), which constitutes a subtype of this malignancy associated with poor prognosis and high risk of relapse. IGF2BP3 was required for the survival of B-ALL cell lines, as knockdown led to decreased proliferation and increased apoptosis. Enforced expression of IGF2BP3 provided murine BM cells with a strong survival advantage, led to proliferation of hematopoietic stem and progenitor cells, and skewed hematopoietic development to the B cell/myeloid lineage. Cross-link immunoprecipitation and high throughput sequencing uncovered the IGF2BP3-regulated transcriptome, which includes oncogenes MYC and CDK6 as direct targets. IGF2BP3 regulated transcripts via targeting elements within 3' untranslated regions (3'UTR), and enforced IGF2BP3 expression in mice resulted in enhanced expression of Myc and Cdk6 in BM. Together, our data suggest that IGF2BP3-mediated targeting of oncogenic transcripts may represent a critical pathogenetic mechanism in MLL-rearranged B-ALL and support IGF2BP3 and its cognate RNA-binding partners as potential therapeutic targets in this disease.

  7. ICR noncoding RNA expression controls imprinting and DNA replication at the Dlk1-Dio3 domain.

    PubMed

    Kota, Satya K; Llères, David; Bouschet, Tristan; Hirasawa, Ryutaro; Marchand, Alice; Begon-Pescia, Christina; Sanli, Ildem; Arnaud, Philippe; Journot, Laurent; Girardot, Michael; Feil, Robert

    2014-10-13

    Imprinted genes play essential roles in development, and their allelic expression is mediated by imprinting control regions (ICRs). The Dlk1-Dio3 locus is among the few imprinted domains controlled by a paternally methylated ICR. The unmethylated maternal copy activates imprinted expression early in development through an unknown mechanism. We find that in mouse embryonic stem cells (ESCs) and in blastocysts, this function is linked to maternal, bidirectional expression of noncoding RNAs (ncRNAs) from the ICR. Disruption of ICR ncRNA expression in ESCs affected gene expression in cis, led to acquisition of aberrant histone and DNA methylation, delayed replication timing along the domain on the maternal chromosome, and changed its subnuclear localization. The epigenetic alterations persisted during differentiation and affected the neurogenic potential of the stem cells. Our data indicate that monoallelic expression at an ICR of enhancer RNA-like ncRNAs controls imprinted gene expression, epigenetic maintenance processes, and DNA replication in embryonic cells.

  8. Characterizing a distal muscle enhancer in the mouse Igf2 locus.

    PubMed

    Alzhanov, Damir; Rotwein, Peter

    2016-02-01

    Insulin-like growth factor-2 (IGF2) is highly expressed in skeletal muscle and was identified as a quantitative trait locus for muscle mass. Yet little is known about mechanisms of its regulation in muscle. Recently, a DNA segment found ∼100 kb from the Igf2 gene was identified as a possible muscle transcriptional control element. Here we have developed an in vivo reporter system to assess this putative enhancer by substituting nuclear (n) EGFP for Igf2 coding exons in a bacterial artificial chromosome containing the mouse Igf2 - H19 chromosomal locus. After stable transfection into a mesenchymal stem cell line, individual clones were converted to myoblasts and underwent progressive muscle-specific gene expression and myotube formation in differentiation medium. Transgenic mRNA and nuclear-targeted enhanced green fluorescent protein were produced coincident with endogenous Igf2 mRNA, but only in lines containing an intact distal conserved DNA element. Our results show that a 294 bp DNA fragment containing two E-boxes is a necessary and sufficient long-range enhancer for induction of Igf2 gene transcription during skeletal muscle differentiation and provides a robust experimental platform for its further functional dissection. PMID:26645089

  9. The role and interaction of imprinted genes in human fetal growth

    PubMed Central

    Moore, Gudrun E.; Ishida, Miho; Demetriou, Charalambos; Al-Olabi, Lara; Leon, Lydia J.; Thomas, Anna C.; Abu-Amero, Sayeda; Frost, Jennifer M.; Stafford, Jaime L.; Chaoqun, Yao; Duncan, Andrew J.; Baigel, Rachel; Brimioulle, Marina; Iglesias-Platas, Isabel; Apostolidou, Sophia; Aggarwal, Reena; Whittaker, John C.; Syngelaki, Argyro; Nicolaides, Kypros H.; Regan, Lesley; Monk, David; Stanier, Philip

    2015-01-01

    Identifying the genetic input for fetal growth will help to understand common, serious complications of pregnancy such as fetal growth restriction. Genomic imprinting is an epigenetic process that silences one parental allele, resulting in monoallelic expression. Imprinted genes are important in mammalian fetal growth and development. Evidence has emerged showing that genes that are paternally expressed promote fetal growth, whereas maternally expressed genes suppress growth. We have assessed whether the expression levels of key imprinted genes correlate with fetal growth parameters during pregnancy, either early in gestation, using chorionic villus samples (CVS), or in term placenta. We have found that the expression of paternally expressing insulin-like growth factor 2 (IGF2), its receptor IGF2R, and the IGF2/IGF1R ratio in CVS tissues significantly correlate with crown–rump length and birthweight, whereas term placenta expression shows no correlation. For the maternally expressing pleckstrin homology-like domain family A, member 2 (PHLDA2), there is no correlation early in pregnancy in CVS but a highly significant negative relationship in term placenta. Analysis of the control of imprinted expression of PHLDA2 gave rise to a maternally and compounded grand-maternally controlled genetic effect with a birthweight increase of 93/155 g, respectively, when one copy of the PHLDA2 promoter variant is inherited. Expression of the growth factor receptor-bound protein 10 (GRB10) in term placenta is significantly negatively correlated with head circumference. Analysis of the paternally expressing delta-like 1 homologue (DLK1) shows that the paternal transmission of type 1 diabetes protective G allele of rs941576 single nucleotide polymorphism (SNP) results in significantly reduced birth weight (−132 g). In conclusion, we have found that the expression of key imprinted genes show a strong correlation with fetal growth and that for both genetic and genomics data analyses

  10. Adult mouse brain gene expression patterns bear an embryologic imprint.

    PubMed

    Zapala, Matthew A; Hovatta, Iiris; Ellison, Julie A; Wodicka, Lisa; Del Rio, Jo A; Tennant, Richard; Tynan, Wendy; Broide, Ron S; Helton, Rob; Stoveken, Barbara S; Winrow, Christopher; Lockhart, Daniel J; Reilly, John F; Young, Warren G; Bloom, Floyd E; Lockhart, David J; Barlow, Carrolee

    2005-07-19

    The current model to explain the organization of the mammalian nervous system is based on studies of anatomy, embryology, and evolution. To further investigate the molecular organization of the adult mammalian brain, we have built a gene expression-based brain map. We measured gene expression patterns for 24 neural tissues covering the mouse central nervous system and found, surprisingly, that the adult brain bears a transcriptional "imprint" consistent with both embryological origins and classic evolutionary relationships. Embryonic cellular position along the anterior-posterior axis of the neural tube was shown to be closely associated with, and possibly a determinant of, the gene expression patterns in adult structures. We also observed a significant number of embryonic patterning and homeobox genes with region-specific expression in the adult nervous system. The relationships between global expression patterns for different anatomical regions and the nature of the observed region-specific genes suggest that the adult brain retains a degree of overall gene expression established during embryogenesis that is important for regional specificity and the functional relationships between regions in the adult. The complete collection of extensively annotated gene expression data along with data mining and visualization tools have been made available on a publicly accessible web site (www.barlow-lockhart-brainmapnimhgrant.org).

  11. Global assessment of imprinted gene expression in the bovine conceptus by next generation sequencing

    PubMed Central

    Chen, Zhiyuan; Hagen, Darren E.; Wang, Juanbin; Elsik, Christine G.; Ji, Tieming; Siqueira, Luiz G.; Hansen, Peter J.; Rivera, Rocío M.

    2016-01-01

    ABSTRACT Genomic imprinting is an epigenetic mechanism that leads to parental-allele-specific gene expression. Approximately 150 imprinted genes have been identified in humans and mice but less than 30 have been described as imprinted in cattle. For the purpose of de novo identification of imprinted genes in bovine, we determined global monoallelic gene expression in brain, skeletal muscle, liver, kidney and placenta of day ∼105 Bos taurus indicus × Bos taurus taurus F1 conceptuses using RNA sequencing. To accomplish this, we developed a bioinformatics pipeline to identify parent-specific single nucleotide polymorphism alleles after filtering adenosine to inosine (A-to-I) RNA editing sites. We identified 53 genes subject to monoallelic expression. Twenty three are genes known to be imprinted in the cow and an additional 7 have previously been characterized as imprinted in human and/or mouse that have not been reported as imprinted in cattle. Of the remaining 23 genes, we found that 10 are uncharacterized or unannotated transcripts located in known imprinted clusters, whereas the other 13 genes are distributed throughout the bovine genome and are not close to any known imprinted clusters. To exclude potential cis-eQTL effects on allele expression, we corroborated the parental specificity of monoallelic expression in day 86 Bos taurus taurus × Bos taurus taurus conceptuses and identified 8 novel bovine imprinted genes. Further, we identified 671 candidate A-to-I RNA editing sites and describe random X-inactivation in day 15 bovine extraembryonic membranes. Our results expand the imprinted gene list in bovine and demonstrate that monoallelic gene expression can be the result of cis-eQTL effects. PMID:27245094

  12. IGF2R Genetic Variants, Circulating IGF2 Concentrations and Colon Cancer Risk in African Americans and Whites

    PubMed Central

    Hoyo, Cathrine; Murphy, Susan K.; Schildkraut, Joellen M.; Vidal, Adriana C.; Skaar, David; Millikan, Robert C.; Galanko, Joseph; Sandler, Robert S.; Jirtle, Randy; Keku, Temitope

    2012-01-01

    The Mannose 6 Phosphate/Insulin-like Growth Factor Receptor-2 (IGF2R) encodes a type-1 membrane protein that modulates availability of the potent mitogen, IGF2. We evaluated the associations between IGF2R non-synonymous genetic variants (c.5002G>A, Gly1619Arg(rs629849), and c.901C>G, Leu252Val(rs8191754)), circulating IGF2 levels, and colon cancer (CC) risk among African American and White participants enrolled in the North Carolina Colon Cancer Study (NCCCS). Generalized linear models were used to compare circulating levels of IGF2 among 298 African American and 518 White controls. Logistic regression models were used to estimate odds ratios (ORs) and 95% confidence intervals (CIs) for the association of IGF2R genetic variants and CC risk. Women homozygous for the IGF2R c.5002 G>A allele, had higher mean levels of circulating IGF2, 828 (SD=321) ng/ml compared to non-carriers, 595 (SD=217) ng/ml (p-value=0.01). This pattern was not apparent in individuals homozygous for the IGF2R c.901 C>G variant. Whites homozygous for the IGF2R c.901 C>G variant trended towards a higher risk of CC, OR=2.2 [95% CI(0.9–5.4)], whereas carrying the IGF2R c.5002 G>A variant was not associated with CC risk. Our findings support the hypothesis that being homozygous for the IGF2R c.5002 G>A modulates IGF2 circulating levels in a sex-specific manner, and while carrying the IGF2R c.901 C>G may increase cancer risk, the mechanism may not involve modulation of circulating IGF2. PMID:22377707

  13. Imprinted Rasgrf1 expression in neonatal mice affects olfactory learning and memory

    PubMed Central

    Drake, Nadia M; DeVito, Loren M; Cleland, Thomas A; Soloway, Paul D

    2011-01-01

    Rasgrf1 is genomically imprinted; only the paternally-inherited allele is expressed in the neonatal mouse brain until weaning, at which time expression becomes biallelic. Whereas Rasgrf1 has been implicated in learning and memory via knockout studies in adult mice, the effect of its normal imprinted expression on these phenotypes has not yet been examined. Neonatal mice with experimentally manipulated patterns of imprinted Rasgrf1 expression were assessed on an associative olfactory task. Neonates lacking the normally-expressed wildtype paternal allele exhibited significant impairment in olfactory associative memory. Adult animals in which neonatal imprinting had been manipulated were also behaviorally assessed; while neonatal imprinting significantly affects body weight even into adulthood, no learning and memory phenotype attributable to imprinting was observed in adults. Additional analyses of neonates revealed imprinted Rasgrf1 transcript selective to olfactory bulb even in mice that were null for Rasgrf1 in the rest of the brain, and showed that Rasgrf1 affects Ras and Rac activation in the brain. Taken together, these results indicate that Rasgrf1 expression from the wildtype paternal allele contributes to learning and memory in neonatal mice. PMID:21251221

  14. The effects of maternal anxiety during pregnancy on IGF2/H19 methylation in cord blood.

    PubMed

    Mansell, T; Novakovic, B; Meyer, B; Rzehak, P; Vuillermin, P; Ponsonby, A-L; Collier, F; Burgner, D; Saffery, R; Ryan, J

    2016-01-01

    Compelling evidence suggests that maternal mental health in pregnancy can influence fetal development. The imprinted genes, insulin-like growth factor 2 (IGF2) and H19, are involved in fetal growth and each is regulated by DNA methylation. This study aimed to determine the association between maternal mental well-being during pregnancy and differentially methylated regions (DMRs) of IGF2 (DMR0) and the IGF2/H19 imprinting control region (ICR) in newborn offspring. Maternal depression, anxiety and perceived stress were assessed at 28 weeks of pregnancy in the Barwon Infant Study (n=576). DNA methylation was measured in purified cord blood mononuclear cells using the Sequenom MassArray Platform. Maternal anxiety was associated with a decrease in average ICR methylation (Δ=-2.23%; 95% CI=-3.68 to -0.77%), and across all six of the individual CpG units in anxious compared with non-anxious groups. Birth weight and sex modified the association between prenatal anxiety and infant methylation. When stratified into lower (⩽3530 g) and higher (>3530 g) birth weight groups using the median birth weight, there was a stronger association between anxiety and ICR methylation in the lower birth weight group (Δ=-3.89%; 95% CI=-6.06 to -1.72%), with no association in the higher birth weight group. When stratified by infant sex, there was a stronger association in female infants (Δ=-3.70%; 95% CI=-5.90 to -1.51%) and no association in males. All the linear regression models were adjusted for maternal age, smoking and folate intake. These findings show that maternal anxiety in pregnancy is associated with decreased IGF2/H19 ICR DNA methylation in progeny at birth, particularly in female, low birth weight neonates. ICR methylation may help link poor maternal mental health and adverse birth outcomes, but further investigation is needed. PMID:27023171

  15. Identification and resolution of artifacts in the interpretation of imprinted gene expression

    PubMed Central

    Proudhon, Charlotte

    2010-01-01

    Genomic imprinting refers to genes that are epigenetically programmed in the germline to express exclusively or preferentially one allele in a parent-of-origin manner. Expression-based genome-wide screening for the identification of imprinted genes has failed to uncover a significant number of new imprinted genes, probably because of the high tissue- and developmental-stage specificity of imprinted gene expression. A very large number of technical and biological artifacts can also lead to the erroneous evidence of imprinted gene expression. In this article, we focus on three common sources of potential confounding effects: (i) random monoallelic expression in monoclonal cell populations, (ii) genetically determined monoallelic expression and (iii) contamination or infiltration of embryonic tissues with maternal material. This last situation specifically applies to genes that occur as maternally expressed in the placenta. Beside the use of reciprocal crosses that are instrumental to confirm the parental specificity of expression, we provide additional methods for the detection and elimination of these situations that can be misinterpreted as cases of imprinted expression. PMID:20829207

  16. STAT3-mediated IGF-2 secretion in the tumour microenvironment elicits innate resistance to anti-IGF-1R antibody.

    PubMed

    Lee, Ji-Sun; Kang, Ju-Hee; Boo, Hye-Jin; Hwang, Su-Jung; Hong, Sungyoul; Lee, Su-Chan; Park, Young-Jun; Chung, Tae-Moon; Youn, Hyewon; Lee, Seung Mi; Kim, Byoung Jae; Chung, June-Key; Chung, Yeonseok; William, William N; Shin, Young Kee; Lee, Hyo-Jong; Oh, Seung-Hyun; Lee, Ho-Young

    2015-01-01

    Drug resistance is a major impediment in medical oncology. Recent studies have emphasized the importance of the tumour microenvironment (TME) to innate resistance, to molecularly targeted therapies. In this study, we investigate the role of TME in resistance to cixutumumab, an anti-IGF-1R monoclonal antibody that has shown limited clinical efficacy. We show that treatment with cixutumumab accelerates tumour infiltration of stromal cells and metastatic tumour growth, and decreases overall survival of mice. Cixutumumab treatment stimulates STAT3-dependent transcriptional upregulation of IGF-2 in cancer cells and recruitment of macrophages and fibroblasts via paracrine IGF-2/IGF-2R activation, resulting in the stroma-derived CXCL8 production, and thus angiogenic and metastatic environment. Silencing IGF-2 or STAT3 expression in cancer cells or IGF-2R or CXCL8 expression in stromal cells significantly inhibits the cancer-stroma communication and vascular endothelial cells' angiogenic activities. These findings suggest that blocking the STAT3/IGF-2/IGF-2R intercellular signalling loop may overcome the adverse consequences of anti-IGF-1R monoclonal antibody-based therapies. PMID:26465273

  17. Lack of imprinting of the human dopamine D4 receptor (DRD4) gene

    SciTech Connect

    Cichon, S.; Noethen, M.M.; Propping, P.; Wolf, H.K.

    1996-04-09

    The term genomic imprinting has been used to refer to the differential expression of genetic material depending on whether it has come from the male or female parent. In humans, the chromosomal region 11p15.5 has been shown to contain 2 imprinted genes (H19 and IGF2). The gene for the dopamine D4 receptor (DRD4), which is of great interest for research into neuropsychiatric disorders and psychopharmacology, is also located in this area. In the present study, we have examined the imprinting status of the DRD4 gene in brain tissue of an epileptic patient who was heterozygous for a 12 bp repeat polymorphism in exon 1 of the DRD4 gene. We show that both alleles are expressed in equivalent amounts. We therefore conclude that the DRD4 gene is not imprinted in the human brain. 30 refs., 1 fig.

  18. Critical evaluation of imprinted gene expression by RNA-Seq: a new perspective.

    PubMed

    DeVeale, Brian; van der Kooy, Derek; Babak, Tomas

    2012-01-01

    In contrast to existing estimates of approximately 200 murine imprinted genes, recent work based on transcriptome sequencing uncovered parent-of-origin allelic effects at more than 1,300 loci in the developing brain and two adult brain regions, including hundreds present in only males or females. Our independent replication of the embryonic brain stage, where the majority of novel imprinted genes were discovered and the majority of previously known imprinted genes confirmed, resulted in only 12.9% concordance among the novel imprinted loci. Further analysis and pyrosequencing-based validation revealed that the vast majority of the novel reported imprinted loci are false-positives explained by technical and biological variation of the experimental approach. We show that allele-specific expression (ASE) measured with RNA-Seq is not accurately modeled with statistical methods that assume random independent sampling and that systematic error must be accounted for to enable accurate identification of imprinted expression. Application of a robust approach that accounts for these effects revealed 50 candidate genes where allelic bias was predicted to be parent-of-origin-dependent. However, 11 independent validation attempts through a range of allelic expression biases confirmed only 6 of these novel cases. The results emphasize the importance of independent validation and suggest that the number of imprinted genes is much closer to the initial estimates. PMID:22479196

  19. Association between birth weight and DNA methylation of IGF2, glucocorticoid receptor and repetitive elements LINE-1 and Alu

    PubMed Central

    Burris, Heather H; Braun, Joe M; Byun, Hyang-Min; Tarantini, Letizia; Mercado, Adriana; Wright, Rosalind J; Schnaas, Lourdes; Baccarelli, Andrea A; Wright, Robert O; Tellez-Rojo, Martha M

    2013-01-01

    Aim We examined the association between birth weight and methylation in the imprinted IGF/H19 loci, the nonimprinted gene NR3C1 and repetitive element DNA (LINE-1 and Alu). Materials & methods We collected umbilical cord venous blood from 219 infants born in Mexico City (Mexico) as part of a prospective birth cohort study and analyzed DNA methylation using pyrosequencing. Results Birth weight was not associated with DNA methylation of the regions studied. One of the CpG dinucleotides in the IGF2 imprinting control region (ICR)1 includes a potential C–T SNP. Among individuals with an absence of methylation at this site, probably due to a paternally inherited T allele, birth weight was associated with mean methylation status of both IGF2 ICR1 and ICR2. However, this association would not have survived adjustment for multiple testing. Conclusion While we did not detect an association between DNA methylation and birth weight, our study suggests a potential gene–epigene interaction between a T allele in the IGF2 ICR1 and methylation of ICRs of IGF2, and fetal growth. PMID:23750643

  20. Functional evolution of IGF2:IGF2R domain 11 binding generates novel structural interactions and a specific IGF2 antagonist.

    PubMed

    Frago, Susana; Nicholls, Ryan D; Strickland, Madeleine; Hughes, Jennifer; Williams, Christopher; Garner, Lee; Surakhy, Mirvat; Maclean, Rory; Rezgui, Dellel; Prince, Stuart N; Zaccheo, Oliver J; Ebner, Daniel; Sanegre, Sabina; Yu, Sheng; Buffa, Francesca M; Crump, Matthew P; Hassan, Andrew Bassim

    2016-05-17

    Among the 15 extracellular domains of the mannose 6-phosphate/insulin-like growth factor-2 receptor (M6P/IGF2R), domain 11 has evolved a binding site for IGF2 to negatively regulate ligand bioavailability and mammalian growth. Despite the highly evolved structural loops of the IGF2:domain 11 binding site, affinity-enhancing AB loop mutations suggest that binding is modifiable. Here we examine the extent to which IGF2:domain 11 affinity, and its specificity over IGF1, can be enhanced, and we examine the structural basis of the mechanistic and functional consequences. Domain 11 binding loop mutants were selected by yeast surface display combined with high-resolution structure-based predictions, and validated by surface plasmon resonance. We discovered previously unidentified mutations in the ligand-interacting surface binding loops (AB, CD, FG, and HI). Five combined mutations increased rigidity of the AB loop, as confirmed by NMR. When added to three independently identified CD and FG loop mutations that reduced the koff value by twofold, these mutations resulted in an overall selective 100-fold improvement in affinity. The structural basis of the evolved affinity was improved shape complementarity established by interloop (AB-CD) and intraloop (FG-FG) side chain interactions. The high affinity of the combinatorial domain 11 Fc fusion proteins functioned as ligand-soluble antagonists or traps that depleted pathological IGF2 isoforms from serum and abrogated IGF2-dependent signaling in vivo. An evolved and reengineered high-specificity M6P/IGF2R domain 11 binding site for IGF2 may improve therapeutic targeting of the frequent IGF2 gain of function observed in human cancer. PMID:27140600

  1. Variable allelic expression of imprinted genes in human pluripotent stem cells during differentiation into specialized cell types in vitro.

    PubMed

    Park, Sang-Wook; Kim, Jihoon; Park, Jong-Lyul; Ko, Ji-Yun; Im, Ilkyun; Do, Hyo-Sang; Kim, Hyemin; Tran, Ngoc-Tung; Lee, Sang-Hun; Kim, Yong Sung; Cho, Yee Sook; Lee, Dong Ryul; Han, Yong-Mahn

    2014-04-01

    Genomic imprinting is an epigenetic phenomenon by which a subset of genes is asymmetrically expressed in a parent-of-origin manner. However, little is known regarding the epigenetic behaviors of imprinted genes during human development. Here, we show dynamic epigenetic changes in imprinted genes in hESCs during in vitro differentiation into specialized cell types. Out of 9 imprinted genes with single nucleotide polymorphisms, mono-allelic expression for three imprinted genes (H19, KCNQ1OT1, and IPW), and bi- or partial-allelic expression for three imprinted genes (OSBPL5, PPP1R9A, and RTL1) were stably retained in H9-hESCs throughout differentiation, representing imprinting stability. Three imprinted genes (KCNK9, ATP10A, and SLC22A3) showed a loss and a gain of imprinting in a lineage-specific manner during differentiation. Changes in allelic expression of imprinted genes were observed in another hESC line during in vitro differentiation. These findings indicate that the allelic expression of imprinted genes may be vulnerable in a lineage-specific manner in human pluripotent stem cells during differentiation.

  2. Effects of Gold Nanorods on Imprinted Genes Expression in TM-4 Sertoli Cells

    PubMed Central

    Yuan, Beilei; Gu, Hao; Xu, Bo; Tang, Qiuqin; Wu, Wei; Ji, Xiaoli; Xia, Yankai; Hu, Lingqing; Chen, Daozhen; Wang, Xinru

    2016-01-01

    Gold nanorods (GNRs) are among the most commonly used nanomaterials. However, thus far, little is known about their harmful effects on male reproduction. Studies from our laboratory have demonstrated that GNRs could decrease glycine synthesis, membrane permeability, mitochondrial membrane potential and disrupt blood-testis barrier factors in TM-4 Sertoli cells. Imprinted genes play important roles in male reproduction and have been identified as susceptible loci to environmental insults by chemicals because they are functionally haploid. In this original study, we investigated the extent to which imprinted genes become deregulated in TM-4 Sertoli cells when treated with low dose of GNRs. The expression levels of 44 imprinted genes were analyzed by quantitative real-time PCR in TM-4 Sertoli cells after a low dose of (10 nM) GNRs treatment for 24 h. We found significantly diminished expression of Kcnq1, Ntm, Peg10, Slc22a2, Pwcr1, Gtl2, Nap1l5, Peg3 and Slc22a2, while Plagl1 was significantly overexpressed. Additionally, four (Kcnq1, Slc22a18, Pwcr1 and Peg3) of 10 abnormally expressed imprinted genes were found to be located on chromosome 7. However, no significant difference of imprinted miRNA genes was observed between the GNRs treated group and controls. Our study suggested that aberrant expression of imprinted genes might be an underlying mechanism for the GNRs-induced reproductive toxicity in TM-4 Sertoli cells. PMID:26938548

  3. Gene expression profile in cerebrum in the filial imprinting of domestic chicks (Gallus gallus domesticus).

    PubMed

    Yamaguchi, Shinji; Fujii-Taira, Ikuko; Katagiri, Sachiko; Izawa, Ei-Ichi; Fujimoto, Yasuyuki; Takeuchi, Hideaki; Takano, Tatsuya; Matsushima, Toshiya; Homma, Koichi J

    2008-06-15

    In newly hatched chicks, gene expression in the brain has previously been shown to be up-regulated following filial imprinting. By applying cDNA microarrays containing 13,007 expressed sequence tags, we examined the comprehensive gene expression profiling of the intermediate medial mesopallium in the chick cerebrum, which has been shown to play a key role in filial imprinting. We found 52 up-regulated genes and 6 down-regulated genes of at least 2.0-fold changes 3h after the training of filial imprinting, compared to the gene expression of the dark-reared chick brain. The up-regulated genes are known to be involved in a variety of pathways, including signal transduction, cytoskeletal organization, nuclear function, cell metabolism, RNA binding, endoplasmic reticulum or Golgi function, synaptic function, ion channel, and transporter. In contrast, fewer genes were down-regulated in the imprinting, coinciding with the previous data that the total RNA synthesis increased associated with filial imprinting. Our data suggests that the filial imprinting involves the modulation of multiple signaling pathways.

  4. Expression of imprinted genes in placenta is associated with infant neurobehavioral development

    PubMed Central

    Green, Benjamin B; Kappil, Maya; Lambertini, Luca; Armstrong, David A; Guerin, Dylan J; Sharp, Andrew J; Lester, Barry M; Chen, Jia; Marsit, Carmen J

    2015-01-01

    Genomic imprinting disorders often exhibit delayed neurobehavioral development, suggesting this unique mechanism of epigenetic regulation plays a role in mental and neurological health. While major errors in imprinting have been linked to adverse health outcomes, there has been little research conducted on how moderate variability in imprinted gene expression within a population contributes to differences in neurobehavioral outcomes, particularly at birth. Here, we profiled the expression of 108 known and putative imprinted genes in human placenta samples from 615 infants assessed by the Neonatal Intensive Care Unit (NICU) Network Neurobehavioral Scales (NNNS). Data reduction identified 10 genes (DLX5, DHCR24, VTRNA2-1, PHLDA2, NPAP1, FAM50B, GNAS-AS1, PAX8-AS1, SHANK2, and COPG2IT1) whose expression could distinguish between newborn neurobehavioral profiles derived from the NNNS. Clustering infants based on the expression pattern of these genes identified 2 groups of infants characterized by reduced quality of movement, increased signs of asymmetrical and non-optimal reflexes, and increased odds of demonstrating increased signs of physiologic stress and abstinence. Overall, these results suggest that common variation in placental imprinted gene expression is linked to suboptimal performance on scales of neurological functioning as well as with increased signs of physiologic stress, highlighting the central importance of the control of expression of these genes in the placenta for neurobehavioral development. PMID:26198301

  5. DNA demethylation reactivates a subset of imprinted genes in uniparental mouse embryonic fibroblasts.

    PubMed

    El Kharroubi, A; Piras, G; Stewart, C L

    2001-03-23

    Although most imprinted genes show allelic differences in DNA methylation, it is not clear whether methylation regulates the expression of some or all imprinted genes in somatic cells. To examine the mechanisms of silencing of imprinted alleles, we generated novel uniparental mouse embryonic fibroblasts exclusively containing either the paternal or the maternal genome. These fibroblasts retain parent-of-origin allele-specific expression of 12 imprinted genes examined for more than 30 cell generations. We show that p57(Kip2) (cyclin-dependent kinase inhibitor protein 2) and Igf2 (insulin-like growth factor 2) are induced by inhibiting histone deacetylases; however, their activated state is reversed quickly by withdrawal of trichostatin A. In contrast, DNA demethylation results in the heritable expression of a subset of imprinted genes including H19 (H19 fetal liver mRNA), p57(Kip2), Peg3/Pw1 (paternally expressed gene 3), and Zac1 (zinc finger-binding protein regulating apoptosis and cell cycle arrest). Other imprinted genes such as Grb10 (growth factor receptor-bound protein 10), Peg1/Mest (paternally expressed gene 1/mesoderm-specific transcript), Sgce (epsilon-sarcoglycan), Snrpn (small nuclear ribonucleoprotein polypeptide N), and U2af1 (U2 small nuclear ribonucleoprotein auxiliary factor), remain inactive, despite their exposure to inhibitors of histone deacetylases and DNA methylation. These results demonstrate that changes in DNA methylation but not histone acetylation create a heritable epigenetic state at some imprinted loci in somatic cells. PMID:11124954

  6. The nucleotides responsible for the direct physical contact between the chromatin insulator protein CTCF and the H19 imprinting control region manifest parent of origin-specific long-distance insulation and methylation-free domains

    PubMed Central

    Pant, Vinod; Mariano, Piero; Kanduri, Chandrasekhar; Mattsson, Anita; Lobanenkov, Victor; Heuchel, Rainer; Ohlsson, Rolf

    2003-01-01

    The repression of the maternally inherited Igf2 allele has been proposed to depend on a methylation-sensitive chromatin insulator organized by the 11 zinc finger protein CTCF at the H19 imprinting control region (ICR). Here we document that point mutations of the nucleotides in physical contact with CTCF within the endogenous H19 ICR lead to loss of CTCF binding and Igf2 imprinting only when passaged through the female germline. This effect is accompanied by a significant loss of methylation protection of the maternally derived H19 ICR. Because CTCF interacts with other imprinting control regions, it emerges as a central factor responsible for interpreting and propagating gamete-derived epigenetic marks and for organizing epigenetically controlled expression domains. PMID:12629040

  7. Differential neuronal vulnerability identifies IGF-2 as a protective factor in ALS

    PubMed Central

    Allodi, Ilary; Comley, Laura; Nichterwitz, Susanne; Nizzardo, Monica; Simone, Chiara; Benitez, Julio Aguila; Cao, Ming; Corti, Stefania; Hedlund, Eva

    2016-01-01

    The fatal disease amyotrophic lateral sclerosis (ALS) is characterized by the loss of somatic motor neurons leading to muscle wasting and paralysis. However, motor neurons in the oculomotor nucleus, controlling eye movement, are for unknown reasons spared. We found that insulin-like growth factor 2 (IGF-2) was maintained in oculomotor neurons in ALS and thus could play a role in oculomotor resistance in this disease. We also showed that IGF-1 receptor (IGF-1R), which mediates survival pathways upon IGF binding, was highly expressed in oculomotor neurons and on extraocular muscle endplate. The addition of IGF-2 induced Akt phosphorylation, glycogen synthase kinase-3β phosphorylation and β-catenin levels while protecting ALS patient motor neurons. IGF-2 also rescued motor neurons derived from spinal muscular atrophy (SMA) patients from degeneration. Finally, AAV9::IGF-2 delivery to muscles of SOD1G93A ALS mice extended life-span by 10%, while preserving motor neurons and inducing motor axon regeneration. Thus, our studies demonstrate that oculomotor-specific expression can be utilized to identify candidates that protect vulnerable motor neurons from degeneration. PMID:27180807

  8. The origin and evolution of genomic imprinting and viviparity in mammals

    PubMed Central

    Renfree, Marilyn B.; Suzuki, Shunsuke; Kaneko-Ishino, Tomoko

    2013-01-01

    Genomic imprinting is widespread in eutherian mammals. Marsupial mammals also have genomic imprinting, but in fewer loci. It has long been thought that genomic imprinting is somehow related to placentation and/or viviparity in mammals, although neither is restricted to mammals. Most imprinted genes are expressed in the placenta. There is no evidence for genomic imprinting in the egg-laying monotreme mammals, despite their short-lived placenta that transfers nutrients from mother to embryo. Post natal genomic imprinting also occurs, especially in the brain. However, little attention has been paid to the primary source of nutrition in the neonate in all mammals, the mammary gland. Differentially methylated regions (DMRs) play an important role as imprinting control centres in each imprinted region which usually comprises both paternally and maternally expressed genes (PEGs and MEGs). The DMR is established in the male or female germline (the gDMR). Comprehensive comparative genome studies demonstrated that two imprinted regions, PEG10 and IGF2-H19, are conserved in both marsupials and eutherians and that PEG10 and H19 DMRs emerged in the therian ancestor at least 160 Ma, indicating the ancestral origin of genomic imprinting during therian mammal evolution. Importantly, these regions are known to be deeply involved in placental and embryonic growth. It appears that most maternal gDMRs are always associated with imprinting in eutherian mammals, but emerged at differing times during mammalian evolution. Thus, genomic imprinting could evolve from a defence mechanism against transposable elements that depended on DNA methylation established in germ cells. PMID:23166401

  9. Paternally expressed imprinted genes establish postzygotic hybridization barriers in Arabidopsis thaliana

    PubMed Central

    Wolff, Philip; Jiang, Hua; Wang, Guifeng; Santos-González, Juan; Köhler, Claudia

    2015-01-01

    Genomic imprinting is an epigenetic phenomenon causing parent-of-origin specific differential expression of maternally and paternally inherited alleles. While many imprinted genes have been identified in plants, the functional roles of most of them are unknown. In this study, we systematically examine the functional requirement of paternally expressed imprinted genes (PEGs) during seed development in Arabidopsis thaliana. While none of the 15 analyzed peg mutants has qualitative or quantitative abnormalities of seed development, we identify three PEGs that establish postzygotic hybridization barriers in the endosperm, revealing that PEGs have a major role as speciation genes in plants. Our work reveals that a subset of PEGs maintains functional roles in the inbreeding plant Arabidopsis that become evident upon deregulated expression. DOI: http://dx.doi.org/10.7554/eLife.10074.001 PMID:26344545

  10. A genome-wide approach reveals novel imprinted genes expressed in the human placenta

    PubMed Central

    Barbaux, Sandrine; Gascoin-Lachambre, Géraldine; Buffat, Christophe; Monnier, Paul; Mondon, Françoise; Tonanny, Marie-Béatrice; Pinard, Amélie; Auer, Jana; Bessières, Bettina; Barlier, Anne; Jacques, Sébastien; Simeoni, Umberto; Dandolo, Luisa; Letourneur, Franck; Jammes, Hélène; Vaiman, Daniel

    2012-01-01

    Genomic imprinting characterizes genes with a monoallelic expression, which is dependent on the parental origin of each allele. Approximately 150 imprinted genes are known to date, in humans and mice but, though computational searches have tried to extract intrinsic characteristics of these genes to identify new ones, the existing list is probably far from being comprehensive. We used a high-throughput strategy by diverting the classical use of genotyping microarrays to compare the genotypes of mRNA/cDNA vs. genomic DNA to identify new genes presenting monoallelic expression, starting from human placental material. After filtering of data, we obtained a list of 1,082 putative candidate monoallelic SNPs located in more than one hundred candidate genes. Among these, we found known imprinted genes, such as IPW, GRB10, INPP5F and ZNF597, which contribute to validate the approach. We also explored some likely candidates of our list and identified seven new imprinted genes, including ZFAT, ZFAT-AS1, GLIS3, NTM, MAGI2, ZC3H12Cand LIN28B, four of which encode zinc finger transcription factors. They are, however, not imprinted in the mouse placenta, except for Magi2. We analyzed in more details the ZFAT gene, which is paternally expressed in the placenta (as ZFAT-AS1, a non-coding antisense RNA) but biallelic in other tissues. The ZFAT protein is expressed in endothelial cells, as well as in syncytiotrophoblasts. The expression of this gene is, moreover, downregulated in placentas from complicated pregnancies. With this work we increase by about 10% the number of known imprinted genes in humans. PMID:22894909

  11. The effects of maternal anxiety during pregnancy on IGF2/H19 methylation in cord blood

    PubMed Central

    Mansell, T; Novakovic, B; Meyer, B; Rzehak, P; Vuillermin, P; Ponsonby, A-L; Collier, F; Burgner, D; Saffery, R; Ryan, J; Vuillermin, Peter; Ponsonby, Anne-Louise; Carlin, John B; Allen, Katie J; Tang, Mimi L; Saffery, Richard; Ranganathan, Sarath; Burgner, David; Dwyer, Terry; Jachno, Kim; Sly, Peter

    2016-01-01

    Compelling evidence suggests that maternal mental health in pregnancy can influence fetal development. The imprinted genes, insulin-like growth factor 2 (IGF2) and H19, are involved in fetal growth and each is regulated by DNA methylation. This study aimed to determine the association between maternal mental well-being during pregnancy and differentially methylated regions (DMRs) of IGF2 (DMR0) and the IGF2/H19 imprinting control region (ICR) in newborn offspring. Maternal depression, anxiety and perceived stress were assessed at 28 weeks of pregnancy in the Barwon Infant Study (n=576). DNA methylation was measured in purified cord blood mononuclear cells using the Sequenom MassArray Platform. Maternal anxiety was associated with a decrease in average ICR methylation (Δ=−2.23% 95% CI=−3.68 to −0.77%), and across all six of the individual CpG units in anxious compared with non-anxious groups. Birth weight and sex modified the association between prenatal anxiety and infant methylation. When stratified into lower (⩽3530 g) and higher (>3530 g) birth weight groups using the median birth weight, there was a stronger association between anxiety and ICR methylation in the lower birth weight group (Δ=−3.89% 95% CI=−6.06 to −1.72%), with no association in the higher birth weight group. When stratified by infant sex, there was a stronger association in female infants (Δ=−3.70% 95% CI=−5.90 to −1.51%) and no association in males. All the linear regression models were adjusted for maternal age, smoking and folate intake. These findings show that maternal anxiety in pregnancy is associated with decreased IGF2/H19 ICR DNA methylation in progeny at birth, particularly in female, low birth weight neonates. ICR methylation may help link poor maternal mental health and adverse birth outcomes, but further investigation is needed. PMID:27023171

  12. Disruption of imprinted gene expression and DNA methylation status in porcine parthenogenetic fetuses and placentas.

    PubMed

    Wang, Dongxu; Chen, Xianju; Song, Yuning; Lv, Qinyan; Lai, Liangxue; Li, Zhanjun

    2014-09-01

    Parthenogenetically activated oocytes cannot develop to term in mammals due to the lack of paternal gene expression and failed X chromosome inactivation (XCI). To further characterize porcine parthenogenesis, the expression of 18 imprinted genes was compared between parthenogenetic (PA) and normally fertilized embryos (Con) using quantitative real-time PCR (qRT-PCR). The results revealed that maternally expressed genes were over-expressed, whereas paternally expressed genes were significantly reduced in PA fetuses and placentas. The results of bisulfite sequencing PCR (BSP) demonstrated that PRE-1 and Satellite were hypermethylated in both Con and PA fetuses and placentas, while XIST DMRs were hypomethylated only in PA samples. Taken together, these results suggest that the aberrant methylation profile of XIST DMRs and abnormal imprinted gene expression may be responsible for developmental failure and impaired growth in porcine parthenogenesis.

  13. 5‑Azacytidine inhibits human rhabdomyosarcoma cell growth by downregulating insulin‑like growth factor 2 expression and reactivating the H19 gene product miR‑675, which negatively affects insulin‑like growth factors and insulin signaling.

    PubMed

    Tarnowski, Maciej; Tkacz, Marta; Czerewaty, Michał; Poniewierska-Baran, Agata; Grymuła, Katarzyna; Ratajczak, Mariusz Z

    2015-05-01

    Insulin-like growth factor 2 (IGF2) and 1 (IGF1) and insulin (INS) promote proliferation of rhabdomyosarcoma (RMS) cells by interacting with the insulin-like growth factor 1 receptor (IGF1R) and the insulin receptor (INSR). Loss of imprinting (LOI) by DNA hypermethylation at the differentially methylated region (DMR) for the IGF2‑H19 locus is commonly observed in RMS cells and results in an increase in the expression of proliferation-promoting IGF2 and downregulation of proliferation-inhibiting non-coding H19 miRNAs. One of these miRNAs, miR‑675, has been reported in murine cells to be a negative regulator of IGF1R expression. To better address the role of IGF2 and 1, as well as INS signaling in the pathogenesis of RMS and the involvement of LOI at the IGF2‑H19 locus, we employed the DNA demethylating agent 5‑azacytidine (AzaC). We observed that AzaC‑mediated demethylation of the DMR at the IGF2‑H19 locus resulted in downregulation of IGF2 and an increase in the expression of H19. This epigenetic change resulted in a decrease in RMS proliferation due to downregulation of IGF2 and, IGF1R expression in an miR‑675‑dependent manner. Interestingly, we observed that miR‑675 not only inhibited the expression of IGF1R in a similar manner in human and murine cells, but we also observed its negative effect on the expression of the INSR. These results confirm the crucial role of LOI at the IGF2‑H19 DMR in the pathogenesis of RMS and are relevant to the development of new treatment strategies. PMID:25707431

  14. Allele-specific H3K79 Di- versus trimethylation distinguishes opposite parental alleles at imprinted regions.

    PubMed

    Singh, Purnima; Han, Li; Rivas, Guillermo E; Lee, Dong-Hoon; Nicholson, Thomas B; Larson, Garrett P; Chen, Taiping; Szabó, Piroska E

    2010-06-01

    Imprinted gene expression corresponds to parental allele-specific DNA CpG methylation and chromatin composition. Histone tail covalent modifications have been extensively studied, but it is not known whether modifications in the histone globular domains can also discriminate between the parental alleles. Using multiplex chromatin immunoprecipitation-single nucleotide primer extension (ChIP-SNuPE) assays, we measured the allele-specific enrichment of H3K79 methylation and H4K91 acetylation along the H19/Igf2 imprinted domain. Whereas H3K79me1, H3K79me2, and H4K91ac displayed a paternal-specific enrichment at the paternally expressed Igf2 locus, H3K79me3 was paternally biased at the maternally expressed H19 locus, including the paternally methylated imprinting control region (ICR). We found that these allele-specific differences depended on CTCF binding in the maternal ICR allele. We analyzed an additional 11 differentially methylated regions (DMRs) and found that, in general, H3K79me3 was associated with the CpG-methylated alleles, whereas H3K79me1, H3K79me2, and H4K91ac enrichment was specific to the unmethylated alleles. Our data suggest that allele-specific differences in the globular histone domains may constitute a layer of the "histone code" at imprinted genes.

  15. Early embryonic failure: Expression and imprinted status of candidate genes on human chromosome 21

    SciTech Connect

    Sherman, L.S.; Bennett, P.R.; Moore, G.E.

    1994-09-01

    Two cases of maternal uniparental (hetero)disomy for human chromosome 21 (mUPD21) have been identified in a systematic search for UPD in 23 cases of early embryonic failure (EEF). Bi-parental origin of the other chromosome pairs was confirmed using specific VNTR probes or dinucleotide repeat analysis. Both maternally and paternally derived isochromosomes 21q have previously been identified in two individuals with normal phenotypes. Full UPD21 has a different mechanism of origin than uniparental isochromosome 21q and its effect on imprinted genes and phenotypic outcome will therefore not necessarily be the same. EEF associated with mUPD21 suggests that developmentally important genes on HSA 21 may be imprinted such that they are only expressed from either the maternally or paternally derived alleles. We have searched for monoallelic expression of candidate genes on HSA 21 in human pregnancy (CBS, IFNAR, COL6A1) using intragenic DNA polymorphisms. These genes were chosen either because their murine homologues lie in imprinted regions or because they are potentially important in embryogenesis. Once imprinted candidate genes have been identified, their methylation status and expression in normal, early embryonic failure and uniparental disomy 21 pregnancies will be studied. At the same time, a larger number of cases of EEF are being examined to further investigate the incidence of UPD21 in this group.

  16. Up-Regulation of microRNA-210 is Associated with Spermatogenesis by Targeting IGF2 in Male Infertility

    PubMed Central

    Tang, Dongdong; Huang, Yuanyuan; Liu, Weiqun; Zhang, Xiansheng

    2016-01-01

    Background MicroRNAs (miRNAs) play pivotal roles in spermatogenesis. MicroRNA-210 (miR-210) expression was up-regulated in the testes of sterile men with non-obstructive azoospermia (NOA). However, the underlying mechanisms of miR-210 involved in the spermatogenesis in patients with NOA are unknown. Material/Methods Expression of miR-210 and insulin-like growth factor II (IGF2) in the testes of NOA cases (only including maturation arrest and hypospermatogenesis) were detected in this study. We carried out in vitro experiments to determine if IGF2 was directly targeted by miR-210 in NT2 cells. Results Compared with obstructive azoospermia (OA) as normal control, our results suggest that miR-210 was significantly up-regulated in testis of patients with NOA (P<0.05), and IGF2 was down-regulated, but without a significant difference. The results also indicated that IGF2 was directly targeted by miR-210 in NT2 cells. Conclusions The results showed that miR-210 was involved in spermatogenesis by targeting IGF2 in male infertility. PMID:27535712

  17. High-throughput analysis of candidate imprinted genes and allele-specific gene expression in the human term placenta

    PubMed Central

    2010-01-01

    Background Imprinted genes show expression from one parental allele only and are important for development and behaviour. This extreme mode of allelic imbalance has been described for approximately 56 human genes. Imprinting status is often disrupted in cancer and dysmorphic syndromes. More subtle variation of gene expression, that is not parent-of-origin specific, termed 'allele-specific gene expression' (ASE) is more common and may give rise to milder phenotypic differences. Using two allele-specific high-throughput technologies alongside bioinformatics predictions, normal term human placenta was screened to find new imprinted genes and to ascertain the extent of ASE in this tissue. Results Twenty-three family trios of placental cDNA, placental genomic DNA (gDNA) and gDNA from both parents were tested for 130 candidate genes with the Sequenom MassArray system. Six genes were found differentially expressed but none imprinted. The Illumina ASE BeadArray platform was then used to test 1536 SNPs in 932 genes. The array was enriched for the human orthologues of 124 mouse candidate genes from bioinformatics predictions and 10 human candidate imprinted genes from EST database mining. After quality control pruning, a total of 261 informative SNPs (214 genes) remained for analysis. Imprinting with maternal expression was demonstrated for the lymphocyte imprinted gene ZNF331 in human placenta. Two potential differentially methylated regions (DMRs) were found in the vicinity of ZNF331. None of the bioinformatically predicted candidates tested showed imprinting except for a skewed allelic expression in a parent-specific manner observed for PHACTR2, a neighbour of the imprinted PLAGL1 gene. ASE was detected for two or more individuals in 39 candidate genes (18%). Conclusions Both Sequenom and Illumina assays were sensitive enough to study imprinting and strong allelic bias. Previous bioinformatics approaches were not predictive of new imprinted genes in the human term

  18. Loss of CD34 and high IGF2 are associated with malignant transformation in solitary fibrous tumors.

    PubMed

    Schulz, Birte; Altendorf-Hofmann, Annelore; Kirchner, Thomas; Katenkamp, Detlef; Petersen, Iver; Knösel, Thomas

    2014-02-01

    The aim of this study was to characterize the subgroups of solitary fibrous tumor (SFT) and to investigate the expression of different biomarkers including CD34 and IGF2 in malignant transformation. Two hundred and ninety-four (294) SFTs from a single German consultation center of soft tissue tumors were categorized into the new proposal of SFT designation. We found the fibrous variant in 223 (75.9%), the cellular variant in 65 (22.1%), the fat forming variant in 4 (1.4%), and the giant cell-rich variant in 2 (0.6%) cases. Anatomical location, size, mitotic index, necrosis, cellularity, collagenous ropes, and growth pattern of the vessels were recorded. Criteria of malignancy were found in 68 (23%) tumors. Expression of IGF2, IGF1R, CD34, BCL2, CD99, SMA, S100, PanCK, and Ki67 was analyzed immunohistochemically. Low expression of CD34 and high expression of IGF2 were significantly associated with malignant transformation and the metastatic rate. Moreover the presence of necrosis showed the most significant p-value (p<0.004). Of all SFTs, the fibrous variant is the most common, followed by the cellular variant. The fat-forming and giant cell-rich variants are very rare. Low expression of CD34 and high expression of IGF2 are significantly associated with malignant transformation, and might be an interesting target of individualized therapy.

  19. Expression at the Imprinted Dlk1-Gtl2 Locus Is Regulated by Proneural Genes in the Developing Telencephalon

    PubMed Central

    Seibt, Julie; Armant, Olivier; Le Digarcher, Anne; Castro, Diogo; Ramesh, Vidya; Journot, Laurent; Guillemot, François; Vanderhaeghen, Pierre; Bouschet, Tristan

    2012-01-01

    Imprinting is an epigenetic mechanism that restrains the expression of about 100 genes to one allele depending on its parental origin. Several imprinted genes are implicated in neurodevelopmental brain disorders, such as autism, Angelman, and Prader-Willi syndromes. However, how expression of these imprinted genes is regulated during neural development is poorly understood. Here, using single and double KO animals for the transcription factors Neurogenin2 (Ngn2) and Achaete-scute homolog 1 (Ascl1), we found that the expression of a specific subset of imprinted genes is controlled by these proneural genes. Using in situ hybridization and quantitative PCR, we determined that five imprinted transcripts situated at the Dlk1-Gtl2 locus (Dlk1, Gtl2, Mirg, Rian, Rtl1) are upregulated in the dorsal telencephalon of Ngn2 KO mice. This suggests that Ngn2 influences the expression of the entire Dlk1-Gtl2 locus, independently of the parental origin of the transcripts. Interestingly 14 other imprinted genes situated at other imprinted loci were not affected by the loss of Ngn2. Finally, using Ngn2/Ascl1 double KO mice, we show that the upregulation of genes at the Dlk1-Gtl2 locus in Ngn2 KO animals requires a functional copy of Ascl1. Our data suggest a complex interplay between proneural genes in the developing forebrain that control the level of expression at the imprinted Dlk1-Gtl2 locus (but not of other imprinted genes). This raises the possibility that the transcripts of this selective locus participate in the biological effects of proneural genes in the developing telencephalon. PMID:23139813

  20. Maternal distress associates with placental genes regulating fetal glucocorticoid exposure and IGF2: Role of obesity and sex.

    PubMed

    Mina, Theresia H; Räikkönen, Katri; Riley, Simon C; Norman, Jane E; Reynolds, Rebecca M

    2015-09-01

    Maternal emotional distress symptoms, including life satisfaction, anxiety and depressed mood, are worse in Severely Obese (SO) than lean pregnancy and may alter placental genes regulating fetal glucocorticoid exposure and placental growth. We hypothesised that the associations between increased maternal distress symptoms and changes in placental gene expression including IGF2 and genes regulating fetal glucocorticoid exposure are more pronounced in SO pregnancy. We also considered whether there were sex-specific effects. Placental mRNA levels of 11β-HSDs, NR3C1-α, NR3C2, ABC transporters, mTOR and the IGF2 family were measured in term placental samples from 43 lean (BMI≤25kg/m(2)) and 50 SO (BMI≥40kg/m(2)) women, in whom distress symptoms were prospectively evaluated during pregnancy. The mRNA levels of genes with a similar role in regulating fetal glucocorticoid exposure were strongly inter-correlated. Increased maternal distress symptoms associated with increased NR3C2 and IGF2 isoform 1(IGF2-1) in both lean and SO group (p≤0.05). Increased distress was associated with higher ABCB1 and ABCG2 mRNA levels in SO but lower ABCB1 and higher 11β-HSD1 mRNA levels in lean (p≤0.05) suggesting a protective adaptive response in SO placentas. Increased maternal distress associated with reduced mRNA levels of ABCB1, ABCG2, 11β-HSD2, NR3C1-α and IGF2-1 in placentas of female but not male offspring. The observed sex differences in placental responses suggest greater vulnerability of female fetuses to maternal distress with potentially greater fetal glucocorticoid exposure and excess IGF2. Further studies are needed to replicate these findings and to test whether this translates to potentially greater negative outcomes of maternal distress in female offspring in early childhood.

  1. A Downstream CpG Island Controls Transcript Initiation and Elongation and the Methylation State of the Imprinted Airn Macro ncRNA Promoter

    PubMed Central

    Koerner, Martha V.; Pauler, Florian M.; Hudson, Quanah J.; Santoro, Federica; Sawicka, Anna; Guenzl, Philipp M.; Stricker, Stefan H.; Schichl, Yvonne M.; Latos, Paulina A.; Klement, Ruth M.; Warczok, Katarzyna E.; Wojciechowski, Jacek; Seiser, Christian; Kralovics, Robert; Barlow, Denise P.

    2012-01-01

    A CpG island (CGI) lies at the 5′ end of the Airn macro non-protein-coding (nc) RNA that represses the flanking Igf2r promoter in cis on paternally inherited chromosomes. In addition to being modified on maternally inherited chromosomes by a DNA methylation imprint, the Airn CGI shows two unusual organization features: its position immediately downstream of the Airn promoter and transcription start site and a series of tandem direct repeats (TDRs) occupying its second half. The physical separation of the Airn promoter from the CGI provides a model to investigate if the CGI plays distinct transcriptional and epigenetic roles. We used homologous recombination to generate embryonic stem cells carrying deletions at the endogenous locus of the entire CGI or just the TDRs. The deleted Airn alleles were analyzed by using an ES cell imprinting model that recapitulates the onset of Igf2r imprinted expression in embryonic development or by using knock-out mice. The results show that the CGI is required for efficient Airn initiation and to maintain the unmethylated state of the Airn promoter, which are both necessary for Igf2r repression on the paternal chromosome. The TDRs occupying the second half of the CGI play a minor role in Airn transcriptional elongation or processivity, but are essential for methylation on the maternal Airn promoter that is necessary for Igf2r to be expressed from this chromosome. Together the data indicate the existence of a class of regulatory CGIs in the mammalian genome that act downstream of the promoter and transcription start. PMID:22396659

  2. Amino Acid Supplementation Affects Imprinted Gene Transcription Patterns in Parthenogenetic Porcine Blastocysts

    PubMed Central

    Park, Chi-Hun; Jeong, Young-Hee; Jeong, Yeun-Ik; Kwon, Jeong-Woo; Shin, Taeyoung; Hyun, Sang-Hwan; Jeung, Eui-Bae; Kim, Nam-Hyung; Seo, Sang-Kyo; Lee, Chang-Kyu; Hwang, Woo-Suk

    2014-01-01

    To determine whether exogenous amino acids affect gene transcription patterns in parthenogenetic porcine embryos, we investigated the effects of amino acid mixtures in culture medium. Parthenogenetic embryos were cultured in PZM3 medium under four experimental conditions: 1) control (no amino acids except L-glutamine and taurine); 2) nonessential amino acids (NEAA); 3) essential amino acids (EAA); and 4) NEAA and EAA. The rate of development of embryos to the four-cell stage was not affected by treatment. However, fewer (P<0.05) embryos cultured with EAA (12.8%) reached the blastocyst stage as compared with the control group (25.6%) and NEAA group (30.3%). Based on these findings, we identified genes with altered expression in parthenogenetic embryos exposed to medium with or without EAAs. The results indicated that EAA influenced gene expression patterns, particularly those of imprinted genes (e.g., H19, IGF2R, PEG1, XIST). However, NEAAs did not affect impaired imprinted gene expressions induced by EAA. The results also showed that mechanistic target of rapamycin (MTOR) mRNA expression was significantly increased by EAA alone as compared with control cultures, and that the combined treatment with NEAA and EAA did not differ significantly from those of control cultures. Our results revealed that gene transcription levels in porcine embryos changed differentially depending on the presence of EAA or NEAA. However, the changes in the H19 mRNA observed in the parthenogenetic blastocysts expression level was not related to the DNA methylation status in the IGF2/H19 domain. The addition of exogenous amino acid mixtures affected not only early embryonic development, but also gene transcription levels, particularly those of imprinted genes. However, this study did not reveal how amino acids affect expression of imprinted genes under the culture conditions used. Further studies are thus required to fully evaluate how amino acids affect transcriptional regulation in porcine

  3. ZFP57 maintains the parent-of-origin-specific expression of the imprinted genes and differentially affects non-imprinted targets in mouse embryonic stem cells

    PubMed Central

    Riso, Vincenzo; Cammisa, Marco; Kukreja, Harpreet; Anvar, Zahra; Verde, Gaetano; Sparago, Angela; Acurzio, Basilia; Lad, Shraddha; Lonardo, Enza; Sankar, Aditya; Helin, Kristian; Feil, Robert; Fico, Annalisa; Angelini, Claudia; Grimaldi, Giovanna; Riccio, Andrea

    2016-01-01

    ZFP57 is necessary for maintaining repressive epigenetic modifications at Imprinting control regions (ICRs). In mouse embryonic stem cells (ESCs), ZFP57 binds ICRs (ICRBS) and many other loci (non-ICRBS). To address the role of ZFP57 on all its target sites, we performed high-throughput and multi-locus analyses of inbred and hybrid mouse ESC lines carrying different gene knockouts. By using an allele-specific RNA-seq approach, we demonstrate that ZFP57 loss results in derepression of the imprinted allele of multiple genes in the imprinted clusters. We also find marked epigenetic differences between ICRBS and non-ICRBS suggesting that different cis-acting regulatory functions are repressed by ZFP57 at these two classes of target loci. Overall, these data demonstrate that ZFP57 is pivotal to maintain the allele-specific epigenetic modifications of ICRs that in turn are necessary for maintaining the imprinted expression over long distances. At non-ICRBS, ZFP57 inactivation results in acquisition of epigenetic features that are characteristic of poised enhancers, suggesting that another function of ZFP57 in early embryogenesis is to repress cis-acting regulatory elements whose activity is not yet required. PMID:27257070

  4. Insulin and insulin-like growth factor 1 receptors are required for normal expression of imprinted genes.

    PubMed

    Boucher, Jeremie; Charalambous, Marika; Zarse, Kim; Mori, Marcelo A; Kleinridders, Andre; Ristow, Michael; Ferguson-Smith, Anne C; Kahn, C Ronald

    2014-10-01

    In addition to signaling through the classical tyrosine kinase pathway, recent studies indicate that insulin receptors (IRs) and insulin-like growth factor 1 (IGF1) receptors (IGF1Rs) can emit signals in the unoccupied state through some yet-to-be-defined noncanonical pathways. Here we show that cells lacking both IRs and IGF1Rs exhibit a major decrease in expression of multiple imprinted genes and microRNAs, which is partially mimicked by inactivation of IR alone in mouse embryonic fibroblasts or in vivo in brown fat in mice. This down-regulation is accompanied by changes in DNA methylation of differentially methylated regions related to these loci. Different from a loss of imprinting pattern, loss of IR and IGF1R causes down-regulated expression of both maternally and paternally expressed imprinted genes and microRNAs, including neighboring reciprocally imprinted genes. Thus, the unoccupied IR and IGF1R generate previously unidentified signals that control expression of imprinted genes and miRNAs through transcriptional mechanisms that are distinct from classical imprinting control. PMID:25246545

  5. Imprinting defects at human 14q32 locus alters gene expression and is associated with the pathobiology of osteosarcoma

    PubMed Central

    Shu, Jingmin; Li, Lihua; Sarver, Anne E.; Pope, Emily A.; Varshney, Jyotika; Thayanithy, Venugopal; Spector, Logan; Largaespada, David A.; Steer, Clifford J.; Subramanian, Subbaya

    2016-01-01

    Osteosarcoma is the most common primary bone malignancy affecting children and adolescents. Although several genetic predisposing conditions have been associated with osteosarcoma, our understanding of its pathobiology is rather limited. Here we show that, first, an imprinting defect at human 14q32-locus is highly prevalent (87%) and specifically associated with osteosarcoma patients < 30 years of age. Second, the average demethylation at differentially methylated regions (DMRs) in the 14q32-locus varied significantly compared to genome-wide demethylation. Third, the 14q32-locus was enriched in both H3K4-me3 and H3K27-me3 histone modifications that affected expression of all imprinted genes and miRNAs in this region. Fourth, imprinting defects at 14q32 - DMRs are present in triad DNA samples from affected children and their biological parents. Finally, imprinting defects at 14q32-DMRs were also observed at higher frequencies in an Rb1/Trp53 mutation-induced osteosarcoma mouse model. Further analysis of normal and tumor tissues from a Sleeping Beauty mouse model of spontaneous osteosarcoma supported the notion that these imprinting defects may be a key factor in osteosarcoma pathobiology. In conclusion, we demonstrate that imprinting defects at the 14q32 locus significantly alter gene expression, may contribute to the pathogenesis of osteosarcoma, and could be predictive of survival outcomes. PMID:26802029

  6. miR-506 inhibits the proliferation and invasion by targeting IGF2BP1 in glioblastoma

    PubMed Central

    Luo, Yonggang; Sun, Ranran; Zhang, Jun; Sun, Tongwen; Liu, Xianzhi; Yang, Bo

    2015-01-01

    Increasing evidence has indicated that microRNAs (miRNAs) play an essential role in cancers. Deregulation of miR-506 was reported in several cancers. However, the expression and function of miR-506 in glioblastoma remain unclear. Our data showed that the level of miR-506 was downregulated in glioblastoma tissues and cell lines. Overexpression of miR-506 repressed cell growth, blocked G1/S transition, and suppressed cell invasion in glioblastoma cell. Moreover, IGF2BP1 was a direct target of miR-506 in glioblastoma cells. Knockdown of IGF2BP1 recapitulated the anti-proliferative and anti-invasive effects of miR-506, whereas IGF2BP1 overexpression antagonized the tumor-suppressive function of miR-506. Our data showed that miRNA-506 played a tumor suppressor gene role in human glioblastoma by regulating IGF2BP1 gene and might be a new therapeutic target of human glioblastoma. PMID:26692944

  7. Variation in the IGF2 gene promoter region is associated with intramuscular fat content in porcine skeletal muscle.

    PubMed

    Aslan, Ozlem; Hamill, Ruth M; Davey, Grace; McBryan, Jean; Mullen, Anne Maria; Gispert, Marina; Sweeney, Torres

    2012-04-01

    Intramuscular fat (IMF) and subcutaneous fat (back fat-BF) are two of the major fat depots in livestock. A QTN located in the insulin-like growth factor 2 gene (IGF2) has been associated with a desirable reduction in BF depth in pigs. Given that the lipid metabolism of intramuscular adipocytes differs from that of subcutaneous fat adipocytes, this study aimed to search for genetic variation in the IGF2 gene that may be associated with IMF, as well as BF, in diverse pig breeds. Four proximal promoter regions of the IGF2 gene were characterised and the association of IGF2 genetic variation with IMF and BF was assessed. Six promoter SNPs were identified in four promoter regions (P1-P4; sequence coverage 945, 866, 784 and 864 bp, respectively) in phenotypically diverse F1 cross populations. Three promoter SNPs were subsequently genotyped in three pure breeds (Pietrain = 98, Duroc = 99 and Large White = 98). All three SNPs were >95% monomorphic in the Pietrain and Duroc breeds but minor alleles were at moderate frequencies in the Large White breed. These SNPs were linked and one was located in a putative transcription factor binding site. Five haplotypes were inferred and three combined diplotypes tested for association with IMF and BF in the Large White. As expected haplotype 1 (likely in LD with the beneficial QTN allele) was superior for BF level. In contrast, the heterozygote diplotype of the most common haplotypes (1 and 2) was associated with higher IMF and marbling scores compared to either homozygote. Gene expression analysis of divergent animals showed that IGF2 was 1.89 fold up-regulated in muscle with higher compared to lower IMF content. These findings suggest that genetic variation in the promoter region of the IGF2 gene is associated with IMF content in porcine skeletal muscle and that greater expression of the IGF2 gene is associated with higher IMF content. PMID:21779802

  8. The oncogenic triangle of HMGA2, LIN28B and IGF2BP1 antagonizes tumor-suppressive actions of the let-7 family

    PubMed Central

    Busch, Bianca; Bley, Nadine; Müller, Simon; Glaß, Markus; Misiak, Danny; Lederer, Marcell; Vetter, Martina; Strauß, Hans-Georg; Thomssen, Christoph; Hüttelmaier, Stefan

    2016-01-01

    The tumor-suppressive let-7 microRNA family targets various oncogene-encoding mRNAs. We identify the let-7 targets HMGA2, LIN28B and IGF2BP1 to form a let-7 antagonizing self-promoting oncogenic triangle. Surprisingly, 3′-end processing of IGF2BP1 mRNAs is unaltered in aggressive cancers and tumor-derived cells although IGF2BP1 synthesis was proposed to escape let-7 attack by APA-dependent (alternative polyadenylation) 3′ UTR shortening. However, the expression of the triangle factors is inversely correlated with let-7 levels and promoted by LIN28B impairing let-7 biogenesis. Moreover, IGF2BP1 enhances the expression of all triangle factors by recruiting the respective mRNAs in mRNPs lacking AGO proteins and let-7 miRNAs. This indicates that the downregulation of let-7, largely facilitated by LIN28B upregulation, and the protection of let-7 target mRNAs by IGF2BP1-directed shielding in mRNPs synergize in enhancing the expression of triangle factors. The oncogenic potential of this triangle was confirmed in ovarian cancer (OC)-derived ES-2 cells transduced with let-7 targeting decoys. In these, the depletion of HMGA2 only diminishes tumor cell growth under permissive conditions. The depletion of LIN28B and more prominently IGF2BP1 severely impairs tumor cell viability, self-renewal and 2D as well as 3D migration. In conclusion, this suggests the targeting of the HMGA2-LIN28B-IGF2BP1 triangle as a promising strategy in cancer treatment. PMID:26917013

  9. Conversion of genomic imprinting by reprogramming and redifferentiation.

    PubMed

    Kim, Min Jung; Choi, Hyun Woo; Jang, Hyo Jin; Chung, Hyung Min; Arauzo-Bravo, Marcos J; Schöler, Hans R; Do, Jeong Tae

    2013-06-01

    Induced pluripotent stem cells (iPSCs), generated from somatic cells by overexpression of transcription factors Oct4, Sox2, Klf4 and c-Myc have the same characteristics as pluripotent embryonic stem cells (ESCs). iPSCs reprogrammed from differentiated cells undergo epigenetic modification during reprogramming, and ultimately acquire a similar epigenetic state to that of ESCs. In this study, these epigenetic changes were observed in reprogramming of uniparental parthenogenetic somatic cells. The parthenogenetic pattern of imprinted genes changes during the generation of parthenogenetic maternal iPSCs (miPSCs), a process referred to as pluripotent reprogramming. We determined whether altered imprinted genes are maintained or revert to the parthenogenetic state when the reprogrammed cells are redifferentiated into specialized cell types. To address this question, we redifferentiated miPSCs into neural stem cells (miPS-NSCs) and compared them with biparental female NSCs (fNSCs) and parthenogenetic NSCs (pNSCs). We found that pluripotent reprogramming of parthenogenetic somatic cells could reset parthenogenetic DNA methylation patterns in imprinted genes, and that alterations in DNA methylation were maintained even after miPSCs were redifferentiated into miPS-NSCs. Notably, maternally methylated imprinted genes (Peg1, Peg3, Igf2r, Snrpn and Ndn), whose differentially methylated regions were fully methylated in pNSCs, were demethylated and their expression levels were found to be close to the levels in normal biparental fNSCs after reprogramming and redifferentiation. Our findings suggest that pluripotent reprogramming of parthenogenetic somatic cells followed by redifferentiation leads to changes in DNA methylation of imprinted genes and the reestablishment of gene expression levels to those of normal biparental cells. PMID:23525019

  10. Abnormal expression of the imprinted gene Phlda2 in cloned bovine placenta.

    PubMed

    Guillomot, M; Taghouti, G; Constant, F; Degrelle, S; Hue, I; Chavatte-Palmer, P; Jammes, H

    2010-06-01

    Cloning in mammals suffers from high rates of pregnancy losses associated with abnormal placentation, mainly placentomegaly, leading to fetal death. Placental growth is dependent on the regulated expression of many genes of which imprinted genes play a fundamental role. Among them, the Phlda2 gene is expressed from the maternal allele and acts to limit placental growth in mouse and human. Here we used Northern blots, quantitative RT-PCR and in situ hybridization to analyze the expression patterns of bovine PHLDA2 and to compare its expression levels in normal and somatic cell nuclear transfer (SCNT) placentas over a range of gestational stages. PHLDA2 is not expressed in extra-embryonic tissues before d32 of gestation but the level of expression increases throughout pregnancy until term in the placental villi collected from pregnancy obtained by artificial insemination (AI). At all stages of pregnancy, PHLDA2 mRNA are specifically localized in the trophoblast mononucleated cells contrasting with lack of expression in the binucleated cells and uterine tissues. In SCNT placentas, a similar pattern of expression was observed during early pregnancy. In contrast the level of expression is significantly reduced around d200 of gestation in the placental villi from pathological clones. The reduced expression of PHLDA2 was obvious particularly in the placental villi anchored within the uterine crypts with expression confined to the trophoblast of the chorionic plate. Altogether, these results highlight a similarity in expression patterns for PHLDA2 bovine and human where expression is localized to the trophoblast throughout pregnancy and parallels the continuous growth of the placenta. Moreover, the lack of expression in the fetal villi from oversized bovine cloned placenta is consistent with the function of PHLDA2 in restraining placental growth and underlines an aberrant expression of this gene after somatic cloning.

  11. Maternally imprinted microRNAs are differentially expressed during mouse and human lung development

    PubMed Central

    Williams, Andrew E.; Moschos, Sterghios A.; Perry, Mark M.; Barnes, Peter J.; Lindsay, Mark A.

    2008-01-01

    MicroRNAs (miRNAs) are a recently discovered class of non-coding genes that regulate the translation of target mRNA. More than 300 miRNAs have now been discovered in humans, although the function of most is still unknown. A highly sensitive, semi-quantitative RT-PCR method was utilised to reveal the differential expression of a number of miRNAs during the development of both mouse and human lung. Of note was the upregulation in neonatal mouse and fetal human lung of a maternally imprinted miRNA cluster located at human chromosome 14q32.21 (mouse chromosome 12F2), which includes the miR-154 and miR-335 families and is situated within the Gtl2-Dio3 domain. Conversely, several miRNAs were upregulated in adult compared to neonatal/fetal lung including miR-29a and miR-29b. Differences in the spatial expression patterns of miR-154, miR-29a and miR-26a was demonstrated using in situ hybridisation of mouse neonatal and adult tissue using miRNA-specific LNA probes. Interestingly, miR-154 appeared to be localised to the stroma of fetal but not adult lungs. The overall expression profile was similar for mouse and human tissue suggesting evolutionary conservation of miRNA expression during lung development and demonstrating the importance of maternally imprinted miRNAs in the developmental process. PMID:17191223

  12. Development of anxiety-like behavior via hippocampal IGF-2 signaling in the offspring of parental morphine exposure: effect of enriched environment.

    PubMed

    Li, Chang-Qi; Luo, Yan-Wei; Bi, Fang-Fang; Cui, Tao-Tao; Song, Ling; Cao, Wen-Yu; Zhang, Jian-Yi; Li, Fang; Xu, Jun-Mei; Hao, Wei; Xing, Xiao-Wei; Zhou, Fiona H; Zhou, Xin-Fu; Dai, Ru-Ping

    2014-11-01

    Opioid addiction is a major social, economic, and medical problem worldwide. Long-term adverse consequences of chronic opiate exposure not only involve the individuals themselves but also their offspring. Adolescent maternal morphine exposure results in behavior and morphologic changes in the brain of their adult offspring. However, few studies investigate the effect of adult opiate exposure on their offspring. Furthermore, the underlying molecular signals regulating the intergenerational effects of morphine exposure are still elusive. We report here that morphine exposure of adult male and female rats resulted in anxiety-like behavior and dendritic retraction in the dentate gyrus (DG) region of the hippocampus in their adult offspring. The behavior and morphologic changes were concomitant with the downregulation of insulin-like growth factor (IGF)-2 signaling in the granular zone of DG. Overexpression of hippocampal IGF-2 by bilateral intra-DG injection of lentivirus encoding the IGF-2 gene prevented anxiety-like behaviors in the offspring. Furthermore, exposure to an enriched environment during adolescence corrected the reduction of hippocampal IGF-2 expression, normalized anxiety-like behavior and reversed dendritic retraction in the adult offspring. Thus, parental morphine exposure can lead to the downregulation of hippocampal IGF-2, which contributed to the anxiety and hippocampal dendritic retraction in their offspring. An adolescent-enriched environment experience prevented the behavior and morphologic changes in their offspring through hippocampal IGF-2 signaling. IGF-2 and an enriched environment may be a potential intervention to prevention of anxiety and brain atrophy in the offspring of parental opioid exposure.

  13. Development of Anxiety-Like Behavior via Hippocampal IGF-2 Signaling in the Offspring of Parental Morphine Exposure: Effect of Enriched Environment

    PubMed Central

    Li, Chang-Qi; Luo, Yan-Wei; Bi, Fang-Fang; Cui, Tao-Tao; Song, Ling; Cao, Wen-Yu; Zhang, Jian-Yi; Li, Fang; Xu, Jun-Mei; Hao, Wei; Xing, Xiao-Wei; Zhou, Fiona H; Zhou, Xin-Fu; Dai, Ru-Ping

    2014-01-01

    Opioid addiction is a major social, economic, and medical problem worldwide. Long-term adverse consequences of chronic opiate exposure not only involve the individuals themselves but also their offspring. Adolescent maternal morphine exposure results in behavior and morphologic changes in the brain of their adult offspring. However, few studies investigate the effect of adult opiate exposure on their offspring. Furthermore, the underlying molecular signals regulating the intergenerational effects of morphine exposure are still elusive. We report here that morphine exposure of adult male and female rats resulted in anxiety-like behavior and dendritic retraction in the dentate gyrus (DG) region of the hippocampus in their adult offspring. The behavior and morphologic changes were concomitant with the downregulation of insulin-like growth factor (IGF)-2 signaling in the granular zone of DG. Overexpression of hippocampal IGF-2 by bilateral intra-DG injection of lentivirus encoding the IGF-2 gene prevented anxiety-like behaviors in the offspring. Furthermore, exposure to an enriched environment during adolescence corrected the reduction of hippocampal IGF-2 expression, normalized anxiety-like behavior and reversed dendritic retraction in the adult offspring. Thus, parental morphine exposure can lead to the downregulation of hippocampal IGF-2, which contributed to the anxiety and hippocampal dendritic retraction in their offspring. An adolescent-enriched environment experience prevented the behavior and morphologic changes in their offspring through hippocampal IGF-2 signaling. IGF-2 and an enriched environment may be a potential intervention to prevention of anxiety and brain atrophy in the offspring of parental opioid exposure. PMID:24889368

  14. Imp2 regulates GBM progression by activating IGF2/PI3K/Akt pathway

    PubMed Central

    Mu, Qingchun; Wang, Lijun; Yu, Fengbo; Gao, Haijun; Lei, Ting; Li, Peiwen; Liu, Pengfei; Zheng, Xu; Hu, Xitong; Chen, Yong; Jiang, Zhenfeng; Sayari, Arash J; Shen, Jia; Huang, Haiyan

    2015-01-01

    Glioblastomas multiforme (GBM) are the most frequently occurring malignant brain cancers. Treatment for GBM consists of surgical resection and subsequent adjuvant radiation therapy and chemotherapy. Despite this, GBM patient survival is limited to 12–15 months, and researchers are continually trying to develop improved therapy options. Insulin-like growth factor 2 mRNA-binding protein 2 (Imp2) is known to be upregulated in many cancers and is known to regulate the signaling activity of insulin-like growth factor 2 (IGF2). However, relatively little is known about its role in malignant development of GBM. In this study, we first found Imp2 is upregulated in GBM tissues by using clinical samples and public database search. Studies with loss and gain of Imp2 expression in in vitro GBM cell culture system demonstrated the role of Imp2 in promoting GBM cell proliferation, migration, invasion and epithelial-to-mesenchymal transition (EMT). Additionally, our results show that Imp2 regulates the activity of IGF2, which further activates PI3K/Akt signaling, thereby to promote GBM malignancy. Inhibition of Imp2 was also found to sensitize GBM to temozolomide treatment. These observations add to the current knowledge of GBM biology, and may prove useful in development of more effective GBM therapy. PMID:25719943

  15. Activation of tumor suppressor p53 gene expression by magnetic thymine-imprinted chitosan nanoparticles.

    PubMed

    Lee, Mei-Hwa; Thomas, James L; Chen, Jian-Zhou; Jan, Jeng-Shiung; Lin, Hung-Yin

    2016-02-01

    Chitosan is a natural biodegradable polysaccharide that has been used to enhance gene delivery, owing to the ease with which chitosan nanoparticles enter the nucleus of cells. To study the effects of nuclear delivery of telomeric gene sequences, which contain thymine, we formed magnetic thymine-imprinted chitosan nanoparticles (TIPs) by the precipitation of chitosan, mixed with thymine and magnetic nanoparticles (to aid in separations). The mean size of the TIPS was 116 ± 18 nm; the dissociation constant for thymine was 21.8 mg mL(-1). We then treated human hepatocellular carcinoma (HepG2) with TIPs nanoparticles bearing bound thymine or a bound telomeric DNA sequence. The expression of the tumor suppressor p53 gene increased when TIPs were applied and decreased when telomere-bound TIPs were applied.

  16. Heparin-binding mechanism of the IGF2/IGF-binding protein 2 complex.

    PubMed

    Lund, Jacob; Søndergaard, Mads T; Conover, Cheryl A; Overgaard, Michael T

    2014-06-01

    IGF1 and IGF2 are potent stimulators of diverse cellular activities such as differentiation and mitosis. Six IGF-binding proteins (IGFBP1-IGFBP6) are primary regulators of IGF half-life and receptor availability. Generally, the binding of IGFBPs inhibits IGF receptor activation. However, it has been shown that IGFBP2 in complex with IGF2 (IGF2/IGFBP2) stimulates osteoblast function in vitro and increases skeletal mass in vivo. IGF2 binding to IGFBP2 greatly increases the affinity for 2- or 3-carbon O-sulfated glycosaminoglycans (GAGs), e.g. heparin and heparan sulfate, which is hypothesized to preferentially and specifically target the IGF2/IGFBP2 complex to the bone matrix. In order to obtain a more detailed understanding of the interactions between the IGF2/IGFBP2 complex and GAGs, we investigated heparin-binding properties of IGFBP2 and the IGF2/IGFBP2 complex in a quantitative manner. For this study, we mutated key positively charged residues within the two heparin-binding domains (HBDs) in IGFBP2 and in one potential HBD in IGF2. Using heparin affinity chromatography, we demonstrate that the two IGFBP2 HBDs contribute differentially to GAG binding in free IGFBP2 and the IGF2/IGFBP2 protein complex. Moreover, we identify a significant contribution from the HBD in IGF2 to the increased IGF2/IGFBP2 heparin affinity. Using molecular modeling, we present a novel model for the IGF2/IGFBP2 interaction with heparin where all three proposed HBDs constitute a positively charged and surface-exposed area that would serve to promote the increased heparin affinity of the complex compared with free intact IGFBP2.

  17. Paternal BPA exposure in early life alters Igf2 epigenetic status in sperm and induces pancreatic impairment in rat offspring.

    PubMed

    Mao, Zhenxing; Xia, Wei; Chang, Huailong; Huo, Wenqian; Li, Yuanyuan; Xu, Shunqing

    2015-11-01

    Exposure to endocrine disruptors in utero appears to alter epigenetics in the male germ-line and subsequently promote adult-onset disease in subsequent generations. Fetal exposure to bisphenol A (BPA), a highly prevalent endocrine disruptor in environment, has been shown to alter epigenetic modification and result in glucose intolerance in adulthood. However, whether fetal exposure to BPA can induce epigenetic modification and phenotypic changes in their subsequent offspring are still unclear. The present study was designed to investigate whether exposure to BPA in early life induced glucose intolerance in the offspring through male germ line, and the underlying epigenetic molecular basis. F0 pregnant SD rats were received corn oil or 40 μg/kg/day of BPA during gestation and lactation. F1 male rats were maintained to generate F2 offspring by mating with untreated female rats. Both the F1 rats after weaning and the F2 offspring were not received any other treatments. Our results showed that male F2 offspring in the BPA group exhibited glucose intolerance and β-cell dysfunction. Decreased expression of Igf2 and associated hypermethylation of Igf2 were observed in islets of male F2 offspring. In addition, similar effects were observed in female F2 animals, but the effects were more pronounced in males. Moreover, abnormal expression and methylation of Igf2 was observed in sperm of adult F1 male rats, indicating that epigenetic modification in germ cells can be partly progressed to the next generation. Overall, our study suggests that BPA exposure during early life can result in generational transmission of glucose intolerance and β-cell dysfunction in the offspring through male germ line, which is associated with hypermethylation of Igf2 in islets. The changes of epigenetics in germ cells may contribute to this generational transmission. PMID:26276081

  18. Paternal BPA exposure in early life alters Igf2 epigenetic status in sperm and induces pancreatic impairment in rat offspring.

    PubMed

    Mao, Zhenxing; Xia, Wei; Chang, Huailong; Huo, Wenqian; Li, Yuanyuan; Xu, Shunqing

    2015-11-01

    Exposure to endocrine disruptors in utero appears to alter epigenetics in the male germ-line and subsequently promote adult-onset disease in subsequent generations. Fetal exposure to bisphenol A (BPA), a highly prevalent endocrine disruptor in environment, has been shown to alter epigenetic modification and result in glucose intolerance in adulthood. However, whether fetal exposure to BPA can induce epigenetic modification and phenotypic changes in their subsequent offspring are still unclear. The present study was designed to investigate whether exposure to BPA in early life induced glucose intolerance in the offspring through male germ line, and the underlying epigenetic molecular basis. F0 pregnant SD rats were received corn oil or 40 μg/kg/day of BPA during gestation and lactation. F1 male rats were maintained to generate F2 offspring by mating with untreated female rats. Both the F1 rats after weaning and the F2 offspring were not received any other treatments. Our results showed that male F2 offspring in the BPA group exhibited glucose intolerance and β-cell dysfunction. Decreased expression of Igf2 and associated hypermethylation of Igf2 were observed in islets of male F2 offspring. In addition, similar effects were observed in female F2 animals, but the effects were more pronounced in males. Moreover, abnormal expression and methylation of Igf2 was observed in sperm of adult F1 male rats, indicating that epigenetic modification in germ cells can be partly progressed to the next generation. Overall, our study suggests that BPA exposure during early life can result in generational transmission of glucose intolerance and β-cell dysfunction in the offspring through male germ line, which is associated with hypermethylation of Igf2 in islets. The changes of epigenetics in germ cells may contribute to this generational transmission.

  19. Differential Gene Expression Reveals Mitochondrial Dysfunction in an Imprinting Center Deletion Mouse Model of Prader-Willi Syndrome

    PubMed Central

    Fan, Weiwei; Coskun, Pinar E.; Nalbandian, Angèle; Knoblach, Susan; Resnick, James L.; Hoffman, Eric; Wallace, Douglas C.; Kimonis, Virginia E.

    2013-01-01

    Prader-Willi syndrome (PWS) is a genetic disorder caused by deficiency of imprinted gene expression from the paternal chromosome 15q11-15q13 and clinically characterized by neonatal hypotonia, short stature, cognitive impairment, hypogonadism, hyperphagia, morbid obesity and diabetes. Previous clinical studies suggest that a defect in energy metabolism may be involved in the pathogenesis of PWS. We focused our attention on the genes associated with energy metabolism and found that there were 95 and 66 mitochondrial genes differentially expressed in PWS muscle and brain, respectively. Assessment of enzyme activities of mitochondrial oxidative phosphorylation (OXPHOS) complexes in the brain, heart, liver and muscle were assessed. We found the enzyme activities of the cardiac mitochondrial complexes II+III were upregulated in the imprinting center deletion (PWS-IC) mice compared to the wild type littermates. These studies suggest that differential gene expression, especially of the mitochondrial genes may contribute to the pathophysiology of PWS. PMID:24127921

  20. Genomic Imprinting and the Expression of Affect in Angelman Syndrome: What's in the Smile?

    ERIC Educational Resources Information Center

    Oliver, Chris; Horsler, Kate; Berg, Katy; Bellamy, Gail; Dick, Katie; Griffiths, Emily

    2007-01-01

    Background: Kinship theory (or the genomic conflict hypothesis) proposes that the phenotypic effects of genomic imprinting arise from conflict between paternally and maternally inherited alleles. A prediction arising for social behaviour from this theory is that imbalance in this conflict resulting from a deletion of a maternally imprinted gene,…

  1. Hepatocellular carcinomas of the albumin SV40 T-antigen transgenic rat display fetal-like re-expression of lgf2 and deregulation of H19.

    PubMed

    Czarny, Matthew J; Babcock, Karlee; Baus, Rebecca M; Manoharan, Herbert; Pitot, Henry C

    2007-09-01

    Previous studies in our laboratory have shown that one of the earliest events during hepatocarcinogenesis in the albumin SV40 T antigen (Alb SV40 T Ag) transgenic rat is the duplication of chromosome 1q3.7-4.3, a region which contains the imprinted and coordinately regulated genes Igf2 and H19. We have also shown that this duplication is associated with the biallelic expression of the normally monoallelically-expressed H19. These results, however, are seemingly at odds with studies in the mouse that have shown a conservation of fetal regulatory patterns of these two genes in hepatic neoplasms. We therefore aimed in this study to determine the allelic origin of Igf2 expression in hepatocellular carcinomas of the Alb SV40 T Ag transgenic rat. Sprague-Dawley Alb SV40 T Ag transgenic rats and Brown Norway rats were reciprocally mated and the expression of Igf2 in hepatocellular carcinomas of the resulting F(1) transgene-positive female rats was analyzed by Northern blotting and RT-PCR. We determined that Igf2 was expressed exclusively from the paternal allele, which prompted the study (by the same methods) of the allelic origin of H19 in the same hepatocellular carcinomas in order to determine if the two genes remained coordinately regulated. Our results demonstrate fetal-like re-expression of Igf2 and deregulation of H19 in singular hepatocellular carcinomas of the rat. These results imply that another regulatory mechanism other than the generally accepted ICR/CTCF mechanism may play a role in the control of Igf2 and H19 expression.

  2. Gene structure, DNA methylation, and imprinted expression of the human SNRPN gene

    SciTech Connect

    Glenn, C.C.; Jong, T.C.; Filbrandt, M.M.

    1996-02-01

    The human SNRPN (small nuclear ribonucleoprotein polypeptide N) gene is one of a gene family that encode proteins involved in pre-mRNA splicing and maps to the smallest deletion region involved in the Prader-Willi syndrome (PWS) within chromosome 15q11-q13. Paternal only expression of SNRPN has previously been demonstrated by use of cell lines from PWS patients (maternal allele only) and Angelman syndrome (AS) patients (paternal allele only). We have characterized two previously unidentified 5{prime} exons of the SNRPN gene and demonstrate that exons -1 and 0 are included in the full-length transcript. This gene is expressed in a wide range of somatic tissues and at high, approximately equal levels in all regions of the brain. Both the first exon of SNRPN (exon -1) and the putative transcription start site are embedded within a CpG island. This CpG island is extensively methylated on the repressed maternal allele and is unmethylated on the expressed paternal allele, in a wide range of fetal and adult somatic cells. This provides a quick and highly reliable diagnostic assay for PWS and AS, which is based on DNA-methylation analysis that has been tested on >100 patients in a variety of tissues. Conversely, several CpG sites {approximately}22 kb downstream of the transcription start site in intron 5 are preferentially methylated on the expressed paternal allele in somatic tissues and male germ cells, whereas these same sites are unmethylated in fetal oocytes. These findings are consistent with a key role for DNA methylation in the imprinted inheritance and subsequent gene expression of the human SNRPN gene. 59 refs., 9 figs., 1 tab.

  3. Circulating IGF1 and IGF2 and SNP genotypes in men and pregnant and non-pregnant women.

    PubMed

    Gatford, K L; Heinemann, G K; Thompson, S D; Zhang, J V; Buckberry, S; Owens, J A; Dekker, G A; Roberts, C T

    2014-09-01

    Circulating IGFs are important regulators of prenatal and postnatal growth, and of metabolism and pregnancy, and change with sex, age and pregnancy. Single-nucleotide polymorphisms (SNPs) in genes coding for these hormones associate with circulating abundance of IGF1 and IGF2 in non-pregnant adults and children, but whether this occurs in pregnancy is unknown. We therefore investigated associations of plasma IGF1 and IGF2 with age and genotype at candidate SNPs previously associated with circulating IGF1, IGF2 or methylation of the INS-IGF2-H19 locus in men (n=134), non-pregnant women (n=74) and women at 15 weeks of gestation (n=98). Plasma IGF1 concentrations decreased with age (P<0.001) and plasma IGF1 and IGF2 concentrations were lower in pregnant women than in non-pregnant women or men (each P<0.001). SNP genotypes in the INS-IGF2-H19 locus were associated with plasma IGF1 (IGF2 rs680, IGF2 rs1004446 and IGF2 rs3741204) and IGF2 (IGF2 rs1004446, IGF2 rs3741204 and H19 rs217727). In single SNP models, effects of IGF2 rs680 were similar between groups, with higher plasma IGF1 concentrations in individuals with the GG genotype when compared with GA (P=0.016), or combined GA and AA genotypes (P=0.003). SNPs in the IGF2 gene associated with IGF1 or IGF2 were in linkage disequilibrium, hence these associations could reflect other genotype variations within this region or be due to changes in INS-IGF2-H19 methylation previously associated with some of these variants. As IGF1 in early pregnancy promotes placental differentiation and function, lower IGF1 concentrations in pregnant women carrying IGF2 rs680 A alleles may affect placental development and/or risk of pregnancy complications. PMID:25117571

  4. Differential regulation of genomic imprinting by TET proteins in embryonic stem cells.

    PubMed

    Liu, Lizhi; Mao, Shi-Qing; Ray, Chelsea; Zhang, Yu; Bell, Fong T; Ng, Sheau-Fang; Xu, Guo-Liang; Li, Xiajun

    2015-09-01

    TET proteins have been found to play an important role in active demethylation at CpG sites in mammals. There are some reports implicating their functions in removal of DNA methylation imprint at the imprinted regions in the germline. However, it is not well established whether TET proteins can also be involved in demethylation of DNA methylation imprint in embryonic stem (ES) cells. Here we report that loss of TET proteins caused a significant increase in DNA methylation at the Igf2-H19 imprinted region in ES cells. We also observed a variable increase in DNA methylation at the Peg1 imprinted region in the ES clones devoid of TET proteins, in particular in the differentiated ES cells. By contrast, we did not observe a significant increase of DNA methylation imprint at the Peg3, Snrpn and Dlk1-Dio3 imprinted regions in ES cells lacking TET proteins. Interestingly, loss of TET proteins did not result in a significant increase of DNA methylation imprint at the Igf2-H19 and Peg1 imprinted regions in the embryoid bodies (EB). Therefore, TET proteins seem to be differentially involved in maintaining DNA methylation imprint at a subset of imprinted regions in ES cells and EBs. PMID:26397890

  5. G Allele of the IGF2 ApaI Polymorphism Is Associated With Judo Status.

    PubMed

    Itaka, Toshio; Agemizu, Kenichiro; Aruga, Seiji; Machida, Shuichi

    2016-07-01

    Itaka, T, Agemizu, K, Aruga, S, and Machida, S. G allele of the IGF2 ApaI polymorphism is associated with judo status. J Strength Cond Res 30(7): 2043-2048, 2016-Previous studies have reported that the insulin-like growth factor 2 (IGF2) ApaI polymorphism is associated with body mass index, fat mass, and grip strength. Competitive judo requires high levels of strength and power. The purpose of this study was to investigate the association between the IGF2 ApaI and ACTN3 R577X polymorphisms and judo status. The subjects were 156 male judo athletes from a top-level university in Japan. They were divided into 3 groups based on their competitive history: international-level athletes, national-level athletes, and others. Genomic DNA was extracted from the saliva of each athlete, and the maximal isometric strength of the trunk muscles and handgrip strength were measured. Genotyping by polymerase chain reaction-restriction fragment length polymorphism was used to detect IGF2 (rs680) and α-actinin-3 (ACTN3) (rs1815739) gene polymorphisms. The genotype frequencies of the 2 gene polymorphisms were compared among the 3 groups of judo athletes and controls. International-level judo athletes showed a higher frequency of the GG + GA genotype of the IGF2 gene than that of the national-level athletes and others. There was an inverse linear correlation between the frequency of the IGF2 AA genotype and level of judo performance (p = 0.041). Back muscle strength relative to height and weight was higher in subjects with the GG + GA genotype than in those with the AA genotype. Conversely, the ACTN3 R577X polymorphism was not associated with judo status. Additionally, no differences were found in back muscle or handgrip strength among the ACTN3 genotypes. In conclusion, the results indicate that the IGF2 gene polymorphism may be associated with judo status. PMID:26677828

  6. Real-time PCR analysis of candidate imprinted genes on mouse chromosome 11 shows balanced expression from the maternal and paternal chromosomes and strain-specific variation in expression levels.

    PubMed

    Tuskan, Robert G; Tsang, Shirley; Sun, Zhonghe; Baer, Jessica; Rozenblum, Ester; Wu, Xiaolin; Munroe, David J; Reilly, Karlyne M

    2008-01-01

    Imprinted genes are monoallelically expressed from either the maternal or paternal genome. Because cancer develops through genetic and epigenetic alterations, imprinted genes affect tumorigenesis depending on which parental allele undergoes alteration. We have shown previously in a mouse model of neurofibromatosis type 1 (NF1) that inheriting mutant alleles of Nf1 and Trp53 on chromosome 11 from the mother or father dramatically changes the tumor spectrum of mutant progeny, likely due to alteration in an imprinted gene(s) linked to Nf1 and Trp53. In order to identify imprinted genes on chromosome 11 that are responsible for differences in susceptibility, we tested candidate imprinted genes predicted by a bioinformatics approach and an experimental approach. We have tested 30 candidate genes (Havcr2, Camk2b, Ccdc85a, Cntnap1, Ikzf1, 5730522E02Rik, Gria1, Zfp39, Sgcd, Jup, Nxph3, Spnb2, Asb3, Rasd1, Map2k3, Map2k4, Trp53, Serpinf1, Crk, Rasl10b, Itga3, Hoxb5, Cbx1, Pparbp, Igfbp4, Smarce1, Stat3, Atp6v0a1, Nbr1 and Meox1), two known imprinted genes (Grb10 and Impact) and Nf1, which has not been previously identified as an imprinted gene. Although we confirmed the imprinting of Grb10 and Impact, we found no other genes imprinted in the brain. We did, however, find strain-biased expression of Camk2b, 5730522E02Rik, Havcr2, Map2k3, Serpinf1, Rasl10b, Itga3, Asb3, Trp53, Nf1, Smarce1, Stat3, Cbx1, Pparbp and Cntnap1. These results suggest that the prediction of imprinted genes is complicated and must be individually validated. This manuscript includes supplementary data listing primer sequences for Taqman assays and Ct values for Taqman PCR. PMID:18188004

  7. Environmental Influences on Genomic Imprinting.

    PubMed

    Kappil, Maya; Lambertini, Luca; Chen, Jia

    2015-06-01

    Genomic imprinting refers to the epigenetic mechanism that results in the mono-allelic expression of a subset of genes in a parent-of-origin manner. These haploid genes are highly active in the placenta and are functionally implicated in the appropriate development of the fetus. Furthermore, the epigenetic marks regulating imprinted expression patterns are established early in development. These characteristics make genomic imprinting a potentially useful biomarker for environmental insults, especially during the in utero or early development stages, and for health outcomes later in life. Herein, we critically review the current literature regarding environmental influences on imprinted genes and summarize findings that suggest that imprinted loci are sensitive to known teratogenic agents, such as alcohol and tobacco, as well as less established factors with the potential to manipulate the in utero environment, including assisted reproductive technology. Finally, we discuss the potential of genomic imprinting to serve as an environmental sensor during early development.

  8. Environmental Influences on Genomic Imprinting

    PubMed Central

    Kappil, Maya; Lambertini, Luca; Chen, Jia

    2015-01-01

    Genomic imprinting refers to the epigenetic mechanism that results in the mono-allelic expression of a subset of genes in a parent-of-origin manner. These haploid genes are highly active in the placenta and are functionally implicated in the appropriate development of the fetus. Furthermore, the epigenetic marks regulating imprinted expression patterns are established early in development. These characteristics make genomic imprinting a potentially useful biomarker for environmental insults, especially during the in utero or early development stages, and for health outcomes later in life. Herein, we critically review the current literature regarding environmental influences on imprinted genes and summarize findings that suggest that imprinted loci are sensitive to known teratogenic agents, such as alcohol and tobacco, as well as less established factors with the potential to manipulate the in utero environment, including assisted reproductive technology. Finally, we discuss the potential of genomic imprinting to serve as an environmental sensor during early development. PMID:26029493

  9. Evolution and function of genomic imprinting in plants

    PubMed Central

    Rodrigues, Jessica A.; Zilberman, Daniel

    2015-01-01

    Genomic imprinting, an inherently epigenetic phenomenon defined by parent of origin-dependent gene expression, is observed in mammals and flowering plants. Genome-scale surveys of imprinted expression and the underlying differential epigenetic marks have led to the discovery of hundreds of imprinted plant genes and confirmed DNA and histone methylation as key regulators of plant imprinting. However, the biological roles of the vast majority of imprinted plant genes are unknown, and the evolutionary forces shaping plant imprinting remain rather opaque. Here, we review the mechanisms of plant genomic imprinting and discuss theories of imprinting evolution and biological significance in light of recent findings. PMID:26680300

  10. A Targetable GATA2-IGF2 Axis Confers Aggressiveness in Lethal Prostate Cancer

    PubMed Central

    Vidal, Samuel J.; Rodriguez-Bravo, Veronica; Quinn, S. Aidan; Rodriguez-Barrueco, Ruth; Lujambio, Amaia; Williams, Estrelania; Sun, Xiaochen; de la Iglesia-Vicente, Janis; Lee, Albert; Readhead, Ben; Chen, Xintong; Galsky, Matthew; Esteve, Berta; Petrylak, Daniel P.; Dudley, Joel T.; Rabadan, Raul; Silva, Jose M.; Hoshida, Yujin; Lowe, Scott W.; Cordon-Cardo, Carlos; Domingo-Domenech, Josep

    2015-01-01

    SUMMARY Elucidating the determinants of aggressiveness in lethal prostate cancer may stimulate therapeutic strategies that improve clinical outcomes. We used experimental models and clinical databases to identify GATA2 as a regulator of chemotherapy resistance and tumorigenicity in this context. Mechanistically, direct upregulation of the growth hormone IGF2 emerged as a mediator of the aggressive properties regulated by GATA2. IGF2 in turn activated IGF1R and INSR as well as a downstream polykinase program. The characterization of this axis prompted a combination strategy whereby dual IGF1R/INSR inhibition restored the efficacy of chemotherapy and improved survival in preclinical models. These studies reveal a GATA2-IGF2 aggressiveness axis in lethal prostate cancer and identify a therapeutic opportunity in this challenging disease. PMID:25670080

  11. Imprinting: a gamete's point of view.

    PubMed

    Barlow, D P

    1994-06-01

    The recent isolation of imprinted mammalian genes has at last allowed the analysis of the molecular controls that regulate monoparental gene expression. Remarkably, many expectations as to how the imprinting mechanism works have been confounded by these studies. As a result, the time now seems right to reconsider our current understanding of the nature of imprinting, and how best it can be defined. Here, I discuss the past and present understanding of imprinting in the light of results obtained from studies of endogenous imprinted genes, and finally propose that the current multiplicity of imprinting terms and definitions be replaced by a single term and definition.

  12. Imprinting: a gamete's point of view.

    PubMed

    Barlow, D P

    1994-06-01

    The recent isolation of imprinted mammalian genes has at last allowed the analysis of the molecular controls that regulate monoparental gene expression. Remarkably, many expectations as to how the imprinting mechanism works have been confounded by these studies. As a result, the time now seems right to reconsider our current understanding of the nature of imprinting, and how best it can be defined. Here, I discuss the past and present understanding of imprinting in the light of results obtained from studies of endogenous imprinted genes, and finally propose that the current multiplicity of imprinting terms and definitions be replaced by a single term and definition. PMID:7864936

  13. A search for imprinted quantitative trait loci (QTLs) for birth weight

    SciTech Connect

    Pandya, A.; Llewellyn, B.; Schieken, R.

    1994-09-01

    Previous studies have generally provided strong evidence that maternal effects are a much more important determinant of birth weight than the genes of the fetus. In the past, these findings have been interpreted as reflecting a genetically determined maternal constraint on fetal growth. However, the recognition that the expression of a gene can be influenced by its parental origin has provided an alternative explanation for apparent maternal effects. In the mouse, a growing number of imprinted genes have been identified which can profoundly influence birth weight or body size including IGF-1, IGF-2, and their respective receptor loci. To determine whether any of the loci are QTLs for body size in man, we have used parental typing data to classify dizygotic twins according to their identity by descent (IBD) for polymorphic markers at or near the candidate loci. The contrast between the correlations of DZ pairs sharing both alleles IBD and no alleles IBD can provide evidence for a candidate gene effect while the contrast between twins sharing one maternal or one paternal allele IBD can provide evidence for any effect of imprinting that may exist at the locus. Finally, the inclusion of data on MZ twins in an overall analysis permits the resolution of the imprinting and marker gene effects from other sources of genetic and environmental variation. We have applied this model to birth weight data on 181 pairs of twins who were classified according to their allele sharing at the IGF-1 locus. In keeping with other observations, the data show no evidence that the IGF-1 locus is imprinted in man. Although our results are consistent with the possibility that this locus may account for 15-20% of the genetic variation, the apparent effect is not statistically significant. Partitioned twin analysis appears to be a useful method for detecting the effects of specific candidate gene on continuously distributed traits.

  14. Comprehensive profiling of novel microRNA-9 targets and a tumor suppressor role of microRNA-9 via targeting IGF2BP1 in hepatocellular carcinoma

    PubMed Central

    Wang, Yongfeng; Li, Xiaojun; Xie, Qing; Jia, Junqiao; Yan, Ying; Guo, Zhengyang; Gao, Jian; Yao, Mingjie; Chen, Xiangmei; Lu, Fengmin

    2015-01-01

    MicroRNA-9 (miR-9) dysregulation is implicated in a variety of human malignancies including hepatocellular carcinoma (HCC), but its role remains contradictory. In this study, we explored the expression and methylation status of miR-9 in HCC samples, as well as the tumor-related functions of miR-9 in vitro. Bioinformatics analysis, array-based RNA expression profile, and literature retrieval were used to identify miR-9 targets in HCC. The potential downstream candidates were then validated by luciferase reporter assay, real-time quantitative PCR, and western blot or enzyme linked immunosorbent assay (ELISA). The expression status and clinicopathologic significances of miR-9 target genes in clinical samples were further explored. The results showed that miR-9 was frequently downregulated in primary HCC. Its silencing was largely contributed by a high frequency (42.5%) of mir-9-1 hypermethylation, which was correlated with bigger tumor size (P = 0.0234). In vitro functional studies revealed that miR-9 restoration retarded HCC cell proliferation and migration. IL-6, AP3B1, TC10, ONECUT2, IGF2BP1, MYO1D, and ANXA2 were confirmed to be miR-9 targets in HCC. Among them, ONECUT2, IGF2BP1, and ANXA2 were confirmed to be aberrantly upregulated in HCC. Moreover, upregulation of ONECUT2, IGF2BP1, and IL-6 were significantly associated with poor post-surgery prognosis (P = 0.0458, P = 0.0037 and P = 0.0461, respectively). Mechanically, miR-9 plays a tumor suppressive role partially through a functional miR-9/IGF2BP1/AKT&ERK axis. Our study suggests that miR-9 functions as a tumor suppressor in HCC progression by inhibiting a series of target genes, including the newly validated miR-9/IGF2BP1/AKT&ERK axis, thus providing potential therapeutic targets and novel prognostic biomarkers for HCC patients. PMID:26547929

  15. Impact of the genome on the epigenome is manifested in DNA methylation patterns of imprinted regions in monozygotic and dizygotic twins.

    PubMed

    Coolen, Marcel W; Statham, Aaron L; Qu, Wenjia; Campbell, Megan J; Henders, Anjali K; Montgomery, Grant W; Martin, Nick G; Clark, Susan J

    2011-01-01

    One of the best studied read-outs of epigenetic change is the differential expression of imprinted genes, controlled by differential methylation of imprinted control regions (ICRs). To address the impact of genotype on the epigenome, we performed a detailed study in 128 pairs of monozygotic (MZ) and 128 pairs of dizygotic (DZ) twins, interrogating the DNA methylation status of the ICRs of IGF2, H19, KCNQ1, GNAS and the non-imprinted gene RUNX1. While we found a similar overall pattern of methylation between MZ and DZ twins, we also observed a high degree of variability in individual CpG methylation levels, notably at the H19/IGF2 loci. A degree of methylation plasticity independent of the genome sequence was observed, with both local and regional CpG methylation changes, discordant between MZ and DZ individual pairs. However, concordant gains or losses of methylation, within individual twin pairs were more common in MZ than DZ twin pairs, indicating that de novo and/or maintenance methylation is influenced by the underlying DNA sequence. Specifically, for the first time we showed that the rs10732516 [A] polymorphism, located in a critical CTCF binding site in the H19 ICR locus, is strongly associated with increased hypermethylation of specific CpG sites in the maternal H19 allele. Together, our results highlight the impact of the genome on the epigenome and demonstrate that while DNA methylation states are tightly maintained between genetically identical and related individuals, there remains considerable epigenetic variation that may contribute to disease susceptibility. PMID:21991322

  16. Sex- and Diet-Specific Changes of Imprinted Gene Expression and DNA Methylation in Mouse Placenta under a High-Fat Diet

    PubMed Central

    Tost, Jörg; Karimi, Mohsen; Mayeur, Sylvain; Lesage, Jean; Boudadi, Elsa; Gross, Marie-Sylvie; Taurelle, Julien; Vigé, Alexandre; Breton, Christophe; Reusens, Brigitte; Remacle, Claude; Vieau, Didier; Ekström, Tomas J.; Jais, Jean-Philippe; Junien, Claudine

    2010-01-01

    Background Changes in imprinted gene dosage in the placenta may compromise the prenatal control of nutritional resources. Indeed monoallelic behaviour and sensitivity to changes in regional epigenetic state render imprinted genes both vulnerable and adaptable. Methods and Findings We investigated whether a high-fat diet (HFD) during pregnancy modified the expression of imprinted genes and local and global DNA methylation patterns in the placenta. Pregnant mice were fed a HFD or a control diet (CD) during the first 15 days of gestation. We compared gene expression patterns in total placenta homogenates, for male and female offspring, by the RT-qPCR analysis of 20 imprinted genes. Sexual dimorphism and sensitivity to diet were observed for nine genes from four clusters on chromosomes 6, 7, 12 and 17. As assessed by in situ hybridization, these changes were not due to variation in the proportions of the placental layers. Bisulphite-sequencing analysis of 30 CpGs within the differentially methylated region (DMR) of the chromosome 17 cluster revealed sex- and diet-specific differential methylation of individual CpGs in two conspicuous subregions. Bioinformatic analysis suggested that these differentially methylated CpGs might lie within recognition elements or binding sites for transcription factors or factors involved in chromatin remodelling. Placental global DNA methylation, as assessed by the LUMA technique, was also sexually dimorphic on the CD, with lower methylation levels in male than in female placentae. The HFD led to global DNA hypomethylation only in female placenta. Bisulphite pyrosequencing showed that neither B1 nor LINE repetitive elements could account for these differences in DNA methylation. Conclusions A HFD during gestation triggers sex-specific epigenetic alterations within CpG and throughout the genome, together with the deregulation of clusters of imprinted genes important in the control of many cellular, metabolic and physiological functions

  17. Metabolic hormones regulate basal and growth hormone-dependent igf2 mRNA level in primary cultured coho salmon hepatocytes: effects of insulin, glucagon, dexamethasone, and triiodothyronine.

    PubMed

    Pierce, A L; Dickey, J T; Felli, L; Swanson, P; Dickhoff, W W

    2010-03-01

    Igf1 and Igf2 stimulate growth and development of vertebrates. Circulating Igfs are produced by the liver. In mammals, Igf1 mediates the postnatal growth-promoting effects of growth hormone (Gh), whereas Igf2 stimulates fetal and placental growth. Hepatic Igf2 production is not regulated by Gh in mammals. Little is known about the regulation of hepatic Igf2 production in nonmammalian vertebrates. We examined the regulation of igf2 mRNA level by metabolic hormones in primary cultured coho salmon hepatocytes. Gh, insulin, the glucocorticoid agonist dexamethasone (Dex), and glucagon increased igf2 mRNA levels, whereas triiodothyronine (T(3)) decreased igf2 mRNA levels. Gh stimulated igf2 mRNA at physiological concentrations (0.25x10(-9) M and above). Insulin strongly enhanced Gh stimulation of igf2 at low physiological concentrations (10(-11) M and above), and increased basal igf2 (10(-8) M and above). Dex stimulated basal igf2 at concentrations comparable to those of stressed circulating cortisol (10(-8) M and above). Glucagon stimulated basal and Gh-stimulated igf2 at supraphysiological concentrations (10(-7) M and above), whereas T(3) suppressed basal and Gh-stimulated igf2 at the single concentration tested (10(-7) M). These results show that igf2 mRNA level is highly regulated in salmon hepatocytes, suggesting that liver-derived Igf2 plays a significant role in salmon growth physiology. The synergistic regulation of igf2 by insulin and Gh in salmon hepatocytes is similar to the regulation of hepatic Igf1 production in mammals.

  18. Antagonist Xist and Tsix co-transcription during mouse oogenesis and maternal Xist expression during pre-implantation development calls into question the nature of the maternal imprint on the X chromosome.

    PubMed

    Deuve, Jane Lynda; Bonnet-Garnier, Amélie; Beaujean, Nathalie; Avner, Philip; Morey, Céline

    2015-01-01

    During the first divisions of the female mouse embryo, the paternal X-chromosome is coated by Xist non-coding RNA and gradually silenced. This imprinted X-inactivation principally results from the apposition, during oocyte growth, of an imprint on the X-inactivation master control region: the X-inactivation center (Xic). This maternal imprint of yet unknown nature is thought to prevent Xist upregulation from the maternal X (X(M)) during early female development. In order to provide further insight into the X(M) imprinting mechanism, we applied single-cell approaches to oocytes and pre-implantation embryos at different stages of development to analyze the expression of candidate genes within the Xic. We show that, unlike the situation pertaining in most other cellular contexts, in early-growing oocytes, Xist and Tsix sense and antisense transcription occur simultaneously from the same chromosome. Additionally, during early development, Xist appears to be transiently transcribed from the X(M) in some blastomeres of late 2-cell embryos concomitant with the general activation of the genome indicating that X(M) imprinting does not completely suppress maternal Xist transcription during embryo cleavage stages. These unexpected transcriptional regulations of the Xist locus call for a re-evaluation of the early functioning of the maternal imprint on the X-chromosome and suggest that Xist/Tsix antagonist transcriptional activities may participate in imprinting the maternal locus as described at other loci subject to parental imprinting.

  19. Antagonist Xist and Tsix co-transcription during mouse oogenesis and maternal Xist expression during pre-implantation development calls into question the nature of the maternal imprint on the X chromosome

    PubMed Central

    Deuve, Jane Lynda; Bonnet-Garnier, Amélie; Beaujean, Nathalie; Avner, Philip; Morey, Céline

    2015-01-01

    During the first divisions of the female mouse embryo, the paternal X-chromosome is coated by Xist non-coding RNA and gradually silenced. This imprinted X-inactivation principally results from the apposition, during oocyte growth, of an imprint on the X-inactivation master control region: the X-inactivation center (Xic). This maternal imprint of yet unknown nature is thought to prevent Xist upregulation from the maternal X (XM) during early female development. In order to provide further insight into the XM imprinting mechanism, we applied single-cell approaches to oocytes and pre-implantation embryos at different stages of development to analyze the expression of candidate genes within the Xic. We show that, unlike the situation pertaining in most other cellular contexts, in early-growing oocytes, Xist and Tsix sense and antisense transcription occur simultaneously from the same chromosome. Additionally, during early development, Xist appears to be transiently transcribed from the XM in some blastomeres of late 2-cell embryos concomitant with the general activation of the genome indicating that XM imprinting does not completely suppress maternal Xist transcription during embryo cleavage stages. These unexpected transcriptional regulations of the Xist locus call for a re-evaluation of the early functioning of the maternal imprint on the X-chromosome and suggest that Xist/Tsix antagonist transcriptional activities may participate in imprinting the maternal locus as described at other loci subject to parental imprinting. PMID:26267271

  20. A nucleolar protein, H19 opposite tumor suppressor (HOTS), is a tumor growth inhibitor encoded by a human imprinted H19 antisense transcript

    PubMed Central

    Onyango, Patrick; Feinberg, Andrew P.

    2011-01-01

    The H19 gene, which localizes within a chromosomal region on human chromosome 11p15 that is commonly lost in Wilms tumor (WT), encodes an imprinted untranslated RNA. However, the biological significance of the H19 noncoding transcript remains unresolved because replacement of the RNA transcript with a neocassette has no obvious phenotypic effect. Here we show that the human H19 locus also encodes a maternally expressed, translated gene, antisense to the known H19 transcript, which is conserved in primates. This gene, termed HOTS for H19 opposite tumor suppressor, encodes a protein that localizes to the nucleus and nucleolus and that interacts with the human enhancer of rudimentary homolog (ERH) protein. WTs that show loss of heterozygosity of 11p15 or loss of imprinting of IGF2 also silence HOTS (7/7 and 10/10, respectively). Overexpression of HOTS inhibits Wilms, rhabdoid, rhabdomyosarcoma, and choriocarcinoma tumor cell growth, and silencing HOTS by RNAi increases in vitro colony formation and in vivo tumor growth. These results demonstrate that the human H19 locus harbors an imprinted gene encoding a tumor suppressor protein within the long-sought WT2 locus. PMID:21940503

  1. Parental Allele-Specific Chromatin Configuration in a Boundary–Imprinting-Control Element Upstream of the Mouse H19 Gene

    PubMed Central

    Khosla, Sanjeev; Aitchison, Alan; Gregory, Richard; Allen, Nicholas D.; Feil, Robert

    1999-01-01

    The mouse H19 gene is expressed from the maternal chromosome exclusively. A 2-kb region at 2 to 4 kb upstream of H19 is paternally methylated throughout development, and these sequences are necessary for the imprinted expression of both H19 and the 5′-neighboring Igf2 gene. In particular, on the maternal chromosome this element appears to insulate the Igf2 gene from enhancers located downstream of H19. We analyzed the chromatin organization of this element by assaying its sensitivity to nucleases in nuclei. Six DNase I hypersensitive sites (HS sites) were detected on the unmethylated maternal chromosome exclusively, the two most prominent of which mapped 2.25 and 2.75 kb 5′ to the H19 transcription initiation site. Five of the maternal HS sites were present in expressing and nonexpressing tissues and in embryonic stem (ES) cells. They seem, therefore, to reflect the maternal origin of the chromosome rather than the expression of H19. A sixth maternal HS site, at 3.45 kb upstream of H19, was detected in ES cells only. The nucleosomal organization of this element was analyzed in tissues and ES cells by micrococcal nuclease digestion. Specifically on the maternal chromosome, an unusual and strong banding pattern was obtained, suggestive of a nonnucleosomal organization. From our studies, it appears that the unusual chromatin organization with the presence of HS sites (maternal chromosome) and DNA methylation (paternal chromosome) in this element are mutually exclusive and reflect alternate epigenetic states. In addition, our data suggest that nonhistone proteins are associated with the maternal chromosome and that these might be involved in its boundary function. PMID:10082521

  2. PDGF, NT-3 and IGF-2 in Combination Induced Transdifferentiation of Muscle-Derived Stem Cells into Schwann Cell-Like Cells

    PubMed Central

    Song, Yanling; Ding, Weijin; Zhang, Yingfan; Zhang, Wenhao; Zhang, Jie; Peng, Heng; Jiang, Hua

    2014-01-01

    Muscle-derived stem cells (MDSCs) are multipotent stem cells with a remarkable long-term self-renewal and regeneration capacity. Here, we show that postnatal MDSCs could be transdifferentiated into Schwann cell-like cells upon the combined treatment of three neurotrophic factors (PDGF, NT-3 and IGF-2). The transdifferentiation of MDSCs was initially induced by Schwann cell (SC) conditioned medium. MDSCs adopted a spindle-like morphology similar to SCs after the transdifferentiation. Immunocytochemistry and immunoblot showed clearly that the SC markers S100, GFAP and p75 were expressed highly only after the transdifferentiation. Flow cytometry assay showed that the portion of S100 expressed cells was more than 60 percent and over one fourth of the transdifferentiated cells expressed all the three SC markers, indicating an efficient transdifferentiation. We then tested neurotrophic factors in the conditioned medium and found it was PDGF, NT-3 and IGF-2 in combination that conducted the transdifferentiation. Our findings demonstrate that it is possible to use specific neurotrophic factors to transdifferentiate MDSCs into Schwann cell-like cells, which might be therapeutically useful for clinical applications. PMID:24454677

  3. Birth Weight, Working Memory and Epigenetic Signatures in IGF2 and Related Genes: A MZ Twin Study

    PubMed Central

    Córdova-Palomera, Aldo; Alemany, Silvia; Fatjó-Vilas, Mar; Goldberg, Ximena; Leza, Juan Carlos; González-Pinto, Ana; Nenadic, Igor; Fañanás, Lourdes

    2014-01-01

    Neurodevelopmental disruptions caused by obstetric complications play a role in the etiology of several phenotypes associated with neuropsychiatric diseases and cognitive dysfunctions. Importantly, it has been noticed that epigenetic processes occurring early in life may mediate these associations. Here, DNA methylation signatures at IGF2 (insulin-like growth factor 2) and IGF2BP1-3 (IGF2-binding proteins 1-3) were examined in a sample consisting of 34 adult monozygotic (MZ) twins informative for obstetric complications and cognitive performance. Multivariate linear regression analysis of twin data was implemented to test for associations between methylation levels and both birth weight (BW) and adult working memory (WM) performance. Familial and unique environmental factors underlying these potential relationships were evaluated. A link was detected between DNA methylation levels of two CpG sites in the IGF2BP1 gene and both BW and adult WM performance. The BW-IGF2BP1 methylation association seemed due to non-shared environmental factors influencing BW, whereas the WM-IGF2BP1 methylation relationship seemed mediated by both genes and environment. Our data is in agreement with previous evidence indicating that DNA methylation status may be related to prenatal stress and later neurocognitive phenotypes. While former reports independently detected associations between DNA methylation and either BW or WM, current results suggest that these relationships are not confounded by each other. PMID:25171170

  4. Expression of Intratumoral IGF-II Is Regulated by the Gene Imprinting Status in Triple Negative Breast Cancer from Vietnamese Patients

    PubMed Central

    Radhakrishnan, Vinodh Kumar; Hernandez, Lorraine Christine; Anderson, Kendra; Tan, Qianwei; De León, Marino; De León, Daisy D.

    2015-01-01

    African American women suffer higher incidence and mortality of triple negative breast cancer (TNBC) than Caucasian women. TNBC is very aggressive, causing the worst clinical outcome. We previously demonstrated that tumors from these patients express high IGF-II and exhibit high activation of the IGF signaling pathways. IGF-II gene expression is imprinted (monoallelic), promotes tumor progression, and metastasis and regulates Survivin, a TNBC prognostic marker. Since BC mortality has increased among young Vietnamese women, we analyzed 48 (paired) TNBC samples from Vietnamese patients to assess IGF-II expression. We analyzed all samples by qrtPCR for identification of IGF-II heterozygosity and to determine allelic expression of the IGF-II gene. We also analyzed the tissues for proIGF-II and Survivin by RT-PCR and Western blotting. A total of 28 samples displayed IGF-II heterozygosity of which 78% were biallelic. Tumors with biallelic IGF-II gene expression exhibited the highest levels of proIGF-II and Survivin. Although 100% of these tissues corresponding normal samples were biallelic, they expressed significantly lower levels of or no proIGF-II and Survivin. Thus, IGF-II biallelic gene expression is differentially regulated in normal versus tumor tissues. We propose that intratumoral proIGF-II is dependent on the IGF-II gene imprinting status and it will promote a more aggressive TNBC. PMID:26448747

  5. The specification of imprints in mammals.

    PubMed

    Hanna, C W; Kelsey, G

    2014-08-01

    At the heart of genomic imprinting in mammals are imprinting control regions (ICRs), which are the discrete genetic elements that confer imprinted monoallelic expression to several genes in imprinted gene clusters. A characteristic of the known ICRs is that they acquire different epigenetic states, exemplified by differences in DNA methylation, in the sperm and egg, and these imprint marks remain on the sperm- and oocyte-derived alleles into the next generation as a lifelong memory of parental origin. Although there has been much focus on gametic marking of ICRs as the point of imprint specification, recent mechanistic studies and genome-wide DNA methylation profiling do not support the existence of a specific imprinting machinery in germ cells. Rather, ICRs are part of more widespread methylation events that occur during gametogenesis. Instead, a decisive component in the specification of imprints is the choice of which sites of gamete-derived methylation to maintain in the zygote and preimplantation embryo at a time when much of the remainder of the genome is being demethylated. Among the factors involved in this selection, the zinc-finger protein Zfp57 can be regarded as an imprint-specific, sequence-specific DNA binding factor responsible for maintaining methylation at most ICRs. The recent insights into the balance of gametic and zygotic contributions to imprint specification should help understand mechanistic opportunities and constraints on the evolution of imprinting in mammals.

  6. mRNA levels of imprinted genes in bovine in vivo oocytes, embryos and cross species comparisons in humans, mice and pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Twenty-six confirmed imprinted genes in the bovine were quantified in in vivo produced oocytes and embryos. Eighteen were detectable and their transcriptional abundance were categorized into five patterns: largely decreased (MEST and PLAGL1); first decreased and then increased (CDKN1C and IGF2R); p...

  7. Expression patterns of long noncoding RNAs from Dlk1-Dio3 imprinted region and the potential mechanisms of Gtl2 activation during blastocyst development.

    PubMed

    Han, Zhengbin; Yu, Changwei; Tian, Yijun; Zeng, Tiebo; Cui, Wei; Mager, Jesse; Wu, Qiong

    2015-07-31

    The function of long noncoding RNAs (lncRNAs) in cell differentiation and development have begun to be revealed in recent years. However, the expression pattern and mechanisms regulating lncRNAs are largely unknown during mammalian preimplantation development. LncRNAs expressed from Dlk1-Dio3 imprinted region have been linked to pluripotency of induced pluripotent cells (iPSCs). In this study we show that these lncRNAs (Gtl2, Rian and Mirg) are first expressed at the morula stage and gradually restricted to the inner cell mass (ICM) as the embryo differentiates into the blastocyst. Analysis of DNA methylation at IG-DMR and Gtl2-DMR showed no change during preimplantation while the presence of the activating histone modification H3K4me3 increased significantly from 8-cell to blastocyst stage, which may explain the expression activation. Additionally, knockdown of transcription factors (Oct4, Sox2 and Nanog) in blastocyst reduced the expression of Gtl2, indicating pluripotency factors regulate transcription of these lncRNAs. This study provides the spatiotemporal expression and dynamic changes of lncRNAs from Dlk1-Dio3 imprinted region in mouse preimplantation stage embryos and offers insight into the potential mechanisms responsible for Gtl2 activation. PMID:26005002

  8. Expression patterns of long noncoding RNAs from Dlk1-Dio3 imprinted region and the potential mechanisms of Gtl2 activation during blastocyst development.

    PubMed

    Han, Zhengbin; Yu, Changwei; Tian, Yijun; Zeng, Tiebo; Cui, Wei; Mager, Jesse; Wu, Qiong

    2015-07-31

    The function of long noncoding RNAs (lncRNAs) in cell differentiation and development have begun to be revealed in recent years. However, the expression pattern and mechanisms regulating lncRNAs are largely unknown during mammalian preimplantation development. LncRNAs expressed from Dlk1-Dio3 imprinted region have been linked to pluripotency of induced pluripotent cells (iPSCs). In this study we show that these lncRNAs (Gtl2, Rian and Mirg) are first expressed at the morula stage and gradually restricted to the inner cell mass (ICM) as the embryo differentiates into the blastocyst. Analysis of DNA methylation at IG-DMR and Gtl2-DMR showed no change during preimplantation while the presence of the activating histone modification H3K4me3 increased significantly from 8-cell to blastocyst stage, which may explain the expression activation. Additionally, knockdown of transcription factors (Oct4, Sox2 and Nanog) in blastocyst reduced the expression of Gtl2, indicating pluripotency factors regulate transcription of these lncRNAs. This study provides the spatiotemporal expression and dynamic changes of lncRNAs from Dlk1-Dio3 imprinted region in mouse preimplantation stage embryos and offers insight into the potential mechanisms responsible for Gtl2 activation.

  9. The Importance of Imprinting in the Human Placenta

    PubMed Central

    Frost, Jennifer M.; Moore, Gudrun E.

    2010-01-01

    As a field of study, genomic imprinting has grown rapidly in the last 20 years, with a growing figure of around 100 imprinted genes known in the mouse and approximately 50 in the human. The imprinted expression of genes may be transient and highly tissue-specific, and there are potentially hundreds of other, as yet undiscovered, imprinted transcripts. The placenta is notable amongst mammalian organs for its high and prolific expression of imprinted genes. This review discusses the development of the human placenta and focuses on the function of imprinting in this organ. Imprinting is potentially a mechanism to balance parental resource allocation and it plays an important role in growth. The placenta, as the interface between mother and fetus, is central to prenatal growth control. The expression of genes subject to parental allelic expression bias has, over the years, been shown to be essential for the normal development and physiology of the placenta. In this review we also discuss the significance of genes that lack conservation of imprinting between mice and humans, genes whose imprinted expression is often placental-specific. Finally, we illustrate the importance of imprinting in the postnatal human in terms of several human imprinting disorders, with consideration of the brain as a key organ for imprinted gene expression after birth. PMID:20617174

  10. Imprinted control of gene activity in Drosophila.

    PubMed

    Golic, K G; Golic, M M; Pimpinelli, S

    1998-11-19

    Genetic imprinting is defined as a reversible, differential marking of genes or chromosomes that is determined by the sex of the parent from whom the genetic material is inherited [1]. Imprinting was first observed in insects where, in some species, most notably among the coccoids (scale insects and allies), the differential marking of paternally and maternally transmitted chromosome sets leads to inactivation or elimination of paternal chromosomes [2]. Imprinting is also widespread in plants and mammals [3,4], in which paternally and maternally inherited alleles may be differentially expressed. Despite imprinting having been discovered in insects, clear examples of parental imprinting are scarce in the model insect species Drosophila melanogaster. We describe a case of imprint-mediated control of gene expression in Drosophila. The imprinted gene - the white+ eye-color gene - is expressed at a low level when transmitted by males, and at a high level when transmitted by females. Thus, in common with coccoids, Drosophila is capable of generating an imprint, and can respond to that imprint by silencing the paternal allele. PMID:9822579

  11. Wiedemann-Beckwith syndrome: Genomic imprinting revisited

    SciTech Connect

    Weksberg, R.

    1994-08-15

    In the study of genetic diseases involving genomic imprinting, Wiedemann-Beckwith syndrome (WBS) has become an important paradigm. Genetic heterogeneity is demonstrated in this condition by the variety of cytogenetic and molecular alterations of the 11p15.5 region. These involve several different patient subgroups with specific parent-of-origin findings. Several lines of evidence suggest that more than one locus underlies the WBS phenotype. This was based on the assumption that the WBS phenotype is caused by a loss-of-function mutation. Although this might be true, an alternative and more parsimonious explanation can account for the autosomal dominant pedigrees using only one locus, e.g., IGF2. 15 refs.

  12. Space/population and time/age in DNA methylation variability in humans: a study on IGF2/H19 locus in different Italian populations and in mono- and di-zygotic twins of different age.

    PubMed

    Pirazzini, Chiara; Giuliani, Cristina; Bacalini, Maria G; Boattini, Alessio; Capri, Miriam; Fontanesi, Elisa; Marasco, Elena; Mantovani, Vilma; Pierini, Michela; Pini, Elisa; Luiselli, Donata; Franceschi, Claudio; Garagnani, Paolo

    2012-07-01

    Little is known about the impact of space (geography/ancestry) and time (age of the individuals) on DNA methylation variability in humans. We investigated DNA methylation of the imprinted IGF2/H19 locus in: i) a cohort of individuals homogeneous for age and gender (males with restricted age range: 30-50 years) belonging to four Italian districts representative of the major genetic clines, informative for the geographical dimension; ii) a cohort of monozygotic (MZ) and dizygotic (DZ) twins of different ages (age-range: 22-97 years), informative for the temporal dimension. DNA methylation of the analyzed regions displayed high levels of inter-individual variability that could not be ascribed to any geographical cline. In MZ twins we identified two IGF2/H19 regions where the intra-couple variations significantly increased after the age of 60 years. The analysis of twins' individual life histories suggests that the within twin pairs difference is likely the result of the aging process itself, as sharing a common environment for long periods had no effect on DNA methylation divergence. On the whole, the data here reported suggest that: i) aging more than population genetics is responsible for the inter-individual variability in DNA methylation patterns in humans; ii) DNA methylation variability appears to be highly region-specific.

  13. Trichostatin A affects histone acetylation and gene expression in porcine somatic cell nucleus transfer embryos.

    PubMed

    Cervera, R P; Martí-Gutiérrez, N; Escorihuela, E; Moreno, R; Stojkovic, M

    2009-11-01

    Epigenetic aberrancies likely preclude correct and complete nuclear reprogramming after somatic cell nucleus transfer (SCNT) and may underlie the observed reduced viability of cloned embryos. In the current study, we tested the effects of the histone deacetylase-inhibitor trichostatin A (TSA) on preimplantation development and on histone acetylation and the gene expression of nucleus transfer (NT) porcine (Sus scrofa) embryos. Our results showed that 5 nM TSA for 26 h after reconstitution resulted in embryos (NTTSA) that reached the blastocyst stage at a higher level (48.1% vs. 20.2%) and increased number of cells (105.0 vs. 75.3) than that of the control (NTC) embryos. In addition, and unlike the NTC embryos, the treated embryos displayed a global acetylated histone H4 at lysine 8 profile similar to the in vitro-fertilized (IVF) and cultured embryos during the preimplantation development. Finally, we determined that several transcription factors exert a dramatic amount of genetic control over pluripotency, including Oct4, Nanog, Cdx2, and Rex01, the imprinting genes Igf2 and Igf2r, and the histone deacetyltransferase gene Hdac2. The NT blastocysts showed similar levels of Oct4, Cdx2, and Hdac2 but lower levels of Nanog than those of the IVF blastocyst. However, the NTTSA blastocysts showed similar levels of Rex01, Igf2, and Igf2r as those of IVF blastocysts, whereas the NTC blastocysts showed significantly lower levels for those genes. Our results suggest that TSA improves porcine SCNT preimplantation development and affects the acetylated status of the H4K8, rendering acetylation levels similar to those of the IVF counterparts.

  14. Loss of imprinting of insulin-like growth factor 2 is associated with increased risk of lymph node metastasis and gastric corpus cancer

    PubMed Central

    Lu, Yang; Lu, Ping; Zhu, Zhi; Xu, Huimian; Zhu, Xike

    2009-01-01

    Background The aim of this study was to determine the clinicopathological features of gastric cancers with loss of imprinting (LOI) of LIT1. Insulin-like growth factor 2 (IGF2) and H19 in Chinese patients. Methods DNA and RNA from tumours were amplified and then digested with RsaI, ApaI and HinfI, and RsaI respectively to determine the LOI status. The demographic and clinicopathological characteristics in LOI positive and LOI negative patients were compared and tested with Statistical analysis. Results Of the 89 patients enrolled for analysis, 22, 40 and 35 were heterozygous and thus informative for LIT1, IGF2 and H19 LOI analyses respectively. The positive rate of LIT1, IGF2 and H19 LOI of gastric cancer tissues were 54.6% (12/22), 45% (18/40) and 8.6% (3/32) in Chinese patients. Gastric corpus cancer (8/10, 80%) were more likely to have LOI of IGF2 in tumours than antrum cancers (10/30, 33.3%){odds ratio (OR) = 8, 95% confidence intervals (CI) = 1.425-44.920, p = 0.018)}. LOI of IGF2 in tumours was also associated with the lymph node metastasis (LNM) (OR = 4.5, 95% CI = 1.084-18.689, p = 0.038). Conclusion IGF2 LOI is present in high frequency in Chinese gastric cancer patients, especially those with gastric corpus cancer. PMID:19737423

  15. Genomic imprinting as a probable explanation for variable intrafamilial phenotypic expression of an unusual chromosome 3 abnormality

    SciTech Connect

    Fryburg, J.S.; Shashi, V.; Kelly, T.E.

    1994-09-01

    We present a 4 generation family in which an abnormal chromosome 3 with dup(3)(q25) segregated from great-grandmother to grandmother to son without phenotypic effect. The son`s 2 daughters have dysmorphic features, mild developmental delays and congenital heart disease. Both girls have the abnormal chr. 3 but are the only family members with the abnormality to have phenotypic effects. An unaffected son of the father has normal chromosomes. FISH with whole chromosome paints for chromosomes 1, 2, 6, 7, 8, 14, 18, and 22 excluded these as the origin of the extra material. Chromosome 3-specific paint revealed a uniform pattern, suggesting that the extra material is from chromosome 3. Comparative genomic hybridization and DNA studies are pending. Possible explanations for the discordance in phenotypes between the 4th generation offspring and the first 3 generations include: an undetected rearrangement in the previous generations that is unbalanced in the two affected individuals; the chromosome abnormality may be a benign variant and unrelated to the phenotype; or, most likely, genomic imprinting. Genomic imprinting is suggested by the observation that a phenotypic effect was only seen after the chromosome was inherited from the father. The mothers in the first two generations appear to have passed the abnormal chr. 3 on without effect. This is an opportunity to delineate a region of the human genome affected by paternal imprinting.

  16. Post-natal imprinting: evidence from marsupials

    PubMed Central

    Stringer, J M; Pask, A J; Shaw, G; Renfree, M B

    2014-01-01

    Genomic imprinting has been identified in therian (eutherian and marsupial) mammals but not in prototherian (monotreme) mammals. Imprinting has an important role in optimising pre-natal nutrition and growth, and most imprinted genes are expressed and imprinted in the placenta and developing fetus. In marsupials, however, the placental attachment is short-lived, and most growth and development occurs post-natally, supported by a changing milk composition tailor-made for each stage of development. Therefore there is a much greater demand on marsupial females during post-natal lactation than during pre-natal placentation, so there may be greater selection for genomic imprinting in the mammary gland than in the short-lived placenta. Recent studies in the tammar wallaby confirm the presence of genomic imprinting in nutrient-regulatory genes in the adult mammary gland. This suggests that imprinting may influence infant post-natal growth via the mammary gland as it does pre-natally via the placenta. Similarly, an increasing number of imprinted genes have been implicated in regulating feeding and nurturing behaviour in both the adult and the developing neonate/offspring in mice. Together these studies provide evidence that genomic imprinting is critical for regulating growth and subsequently the survival of offspring not only pre-natally but also post-natally. PMID:24595366

  17. Convergent evolution of genomic imprinting in plants and mammals.

    PubMed

    Feil, Robert; Berger, Frédéric

    2007-04-01

    Parental genomic imprinting is characterized by the expression of a selected panel of genes from one of the two parental alleles. Recent evidence shows that DNA methylation and histone modifications are responsible for this parent-of-origin-dependent expression of imprinted genes. Because similar epigenetic marks have been recruited independently in plants and mammals, the only organisms in which imprinted gene loci have been identified so far, this phenomenon represents a case for convergent evolution. Here we discuss the emerging parallels in imprinting in both taxa. We also describe the significance of imprinting for reproduction and discuss potential models for its evolution.

  18. Possible role of IGF2 receptors in regulating selection of 2 dominant follicles in cattle selected for twin ovulations and births

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Abundance of IGF-2 receptor (IGF2R), FSH receptor (FSHR), and LH receptor (LHCGR) mRNA in granulosa cells (GCs) or theca cells (TCs) or both cells as well as estradiol (E2), progesterone (P4), and androstenedione concentrations in follicular fluid were compared in cows genetically selected (Twinner)...

  19. Association between exonic polymorphism (rs629849, Gly1619Arg) of IGF2R gene and obesity in Korean population

    PubMed Central

    Yang, Seung-Ae

    2015-01-01

    The aim of this study is to investigate the relationship between single nucleotide polymorphisms (SNPs) and susceptibility to obesity. A previous study suggested that insulin-like growth factors (IGFs) may affect obesity and that IGFs regulate cellular signals by receptors that include the insulin-like growth factor 1 receptor (IGF1R) and the insulin-like growth factor 2 receptor (IGF2R). In this research, the rs3743262 and rs2229765 SNPs of IGF1R gene and rs629849 and rs1805075 SNPs of IG-F2R gene were genotyped in 120 overweight and obese patients with a BMI≥23 kg/m2 (Body Mass Index) and 123 healthy controls with a BMI of 18.5–23.0 kg/m2. Genotyping of each SNP was performed by direct sequencing. Among tested SNPs in IGF1R and IGF2R genes, rs629849 SNP of IGF2R gene showed significant association with obesity (OR=1.86, 95% CI=1.02–3.40, P=0.044 in codominant1 model; OR=1.99, 95% CI=1.10–3.57, P=0.020 in dominant model; OR=1.93, 95% CI=1.13–3.31, P=0.013 in log-additive model). And allele distribution between the control group and overweight/obese group also showed significant difference (OR=1.93, 95% CI=1.14–3.28, P=0.015). In conclusion, these results indicate that rs629849 SNP of IGF2R might be contributed to development of obesity in the Korean population. PMID:26535220

  20. A Genome-Wide Survey of Imprinted Genes in Rice Seeds Reveals Imprinting Primarily Occurs in the Endosperm

    PubMed Central

    Luo, Ming; Taylor, Jennifer M.; Spriggs, Andrew; Zhang, Hongyu; Wu, Xianjun; Russell, Scott; Singh, Mohan; Koltunow, Anna

    2011-01-01

    Genomic imprinting causes the expression of an allele depending on its parental origin. In plants, most imprinted genes have been identified in Arabidopsis endosperm, a transient structure consumed by the embryo during seed formation. We identified imprinted genes in rice seed where both the endosperm and embryo are present at seed maturity. RNA was extracted from embryos and endosperm of seeds obtained from reciprocal crosses between two subspecies Nipponbare (Japonica rice) and 93-11 (Indica rice). Sequenced reads from cDNA libraries were aligned to their respective parental genomes using single-nucleotide polymorphisms (SNPs). Reads across SNPs enabled derivation of parental expression bias ratios. A continuum of parental expression bias states was observed. Statistical analyses indicated 262 candidate imprinted loci in the endosperm and three in the embryo (168 genic and 97 non-genic). Fifty-six of the 67 loci investigated were confirmed to be imprinted in the seed. Imprinted loci are not clustered in the rice genome as found in mammals. All of these imprinted loci were expressed in the endosperm, and one of these was also imprinted in the embryo, confirming that in both rice and Arabidopsis imprinted expression is primarily confined to the endosperm. Some rice imprinted genes were also expressed in vegetative tissues, indicating that they have additional roles in plant growth. Comparison of candidate imprinted genes found in rice with imprinted candidate loci obtained from genome-wide surveys of imprinted genes in Arabidopsis to date shows a low degree of conservation, suggesting that imprinting has evolved independently in eudicots and monocots. PMID:21731498

  1. PU.1 Is Identified as a Novel Metastasis Suppressor in Hepatocellular Carcinoma Regulating the miR-615-5p/IGF2 Axis.

    PubMed

    Song, Li-Jie; Zhang, Wei-Jie; Chang, Zhi-Wei; Pan, Yan-Feng; Zong, Hong; Fan, Qing-Xia; Wang, Liu-Xing

    2015-01-01

    Invasion and metastasis is the major cause of tumor recurrence, difficulty for cure and low survival rate. Excavating key transcription factors, which can regulate tumor invasion and metastasis, are crucial to the development of therapeutic strategies for cancers. PU.1 is a master hematopoietic transcription factor and a vital regulator in life. Here, we report that, compared to adjacent non-cancerous tissues, expression of PU.1 mRNA in metastatic hepatocellular carcinoma (HCC), but not primary HCC, was significantly down-regulated. In addition, levels of PU.1 mRNA in metastatic hepatoma cell lines MHCC97L and MHCC97H were much lower than in non-metastatic Hep3B cells. Transwell invasion assays after PU.1 siRNA transfection showed that the invasion of hepatoma cell lines was increased markedly by PU.1 knockdown. Oppositely, overexpression of PU.1 suppressed the invasion of these cells. However, knockdown and overexpression of PU.1 did not influence proliferation. Finally, we tried to explore the potential mechanism of PU.1 suppressing hepatoma cell invasion. ChIP-qPCR analysis showed that PU.1 exhibited a high binding capacity with miR-615-5p promoter sequence. Overexpression of PU.1 caused a dramatic increase of pri-, pre- and mature miR-615-5p, as well as a marked decrease of miR-615-5p target gene IGF2. These data indicate that PU.1 inhibits invasion of human HCC through promoting miR-615-5p and suppressing IGF2. These findings improve our understanding of PU.1 regulatory roles and provided a potential target for metastatic HCC diagnosis and therapy.

  2. The Imprinted Retrotransposon-Like Gene PEG11 (RTL1) Is Expressed as a Full-Length Protein in Skeletal Muscle from Callipyge Sheep

    PubMed Central

    Byrne, Keren; Colgrave, Michelle L.; Vuocolo, Tony; Pearson, Roger; Bidwell, Christopher A.; Cockett, Noelle E.; Lynn, David J.; Fleming-Waddell, Jolena N.; Tellam, Ross L.

    2010-01-01

    Members of the Ty3-Gypsy retrotransposon family are rare in mammalian genomes despite their abundance in invertebrates and some vertebrates. These elements contain a gag-pol-like structure characteristic of retroviruses but have lost their ability to retrotranspose into the mammalian genome and are thought to be inactive relics of ancient retrotransposition events. One of these retrotransposon-like elements, PEG11 (also called RTL1) is located at the distal end of ovine chromosome 18 within an imprinted gene cluster that is highly conserved in placental mammals. The region contains several conserved imprinted genes including BEGAIN, DLK1, DAT, GTL2 (MEG3), PEG11 (RTL1), PEG11as, MEG8, MIRG and DIO3. An intergenic point mutation between DLK1 and GTL2 causes muscle hypertrophy in callipyge sheep and is associated with large changes in expression of the genes linked in cis between DLK1 and MEG8. It has been suggested that over-expression of DLK1 is the effector of the callipyge phenotype; however, PEG11 gene expression is also strongly correlated with the emergence of the muscling phenotype as a function of genotype, muscle type and developmental stage. To date, there has been no direct evidence that PEG11 encodes a protein, especially as its anti-sense transcript (PEG11as) contains six miRNA that cause cleavage of the PEG11 transcript. Using immunological and mass spectrometry approaches we have directly identified the full-length PEG11 protein from postnatal nuclear preparations of callipyge skeletal muscle and conclude that its over-expression may be involved in inducing muscle hypertrophy. The developmental expression pattern of the PEG11 gene is consistent with the callipyge mutation causing recapitulation of the normal fetal-like gene expression program during postnatal development. Analysis of the PEG11 sequence indicates strong conservation of the regions encoding the antisense microRNA and in at least two cases these correspond with structural or functional

  3. High-Throughput Profiling of Alpha Interferon- and Interleukin-28B-Regulated MicroRNAs and Identification of let-7s with Anti-Hepatitis C Virus Activity by Targeting IGF2BP1

    PubMed Central

    Cheng, Min; Si, Youhui; Niu, Yuqiang; Liu, Xiuying; Li, Xiang; Zhao, Jin

    2013-01-01

    Hepatitis C virus (HCV) infection is a major cause of severe liver disease. Interferon (IFN)/ribavirin treatment remains the standard therapeutic regimen for HCV infection in most countries. IFN-stimulated genes are believed to contribute to antiviral effects. However, emerging evidence suggests that microRNAs (miRNAs), a class of noncoding small RNAs, are involved in the control of viral infection. Here, we systematically profiled the hepatocyte expression of a set of 750 miRNAs in response to alpha interferon (IFN-α) and interleukin-28B (IL-28B) treatments. The anti-HCV activity of differentially expressed miRNAs was evaluated using cell culture-derived HCV in vitro. The results demonstrate that let-7b had a significant anti-HCV effect by inhibiting HCV replication and viral protein translation in human hepatoma cells. In particular, we show that the inhibition of let-7b attenuated the anti-HCV effects of IFN-α and IL-28B. Furthermore, we show that the host factor insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) is a target of let-7b. IGF2BP1 was required for HCV replication, and its expression was downregulated by IFN-α and IL-28B. Deletion of the wild-type seed region of let-7b abolished its antiviral activity. Finally, we demonstrate that other let-7 family miRNAs were able to inhibit HCV and to suppress IGF2BP1 expression. In conclusion, we provide an example of a host miRNA regulated by type I and type III IFNs that inhibits HCV replication and infectivity by targeting host targets. These results highlight the important role of miRNAs in the host antiviral immune response and provide a novel candidate for anti-HCV therapy. PMID:23824794

  4. Successful Computational Prediction of Novel Imprinted Genes from Epigenomic Features▿ †

    PubMed Central

    Brideau, Chelsea M.; Eilertson, Kirsten E.; Hagarman, James A.; Bustamante, Carlos D.; Soloway, Paul D.

    2010-01-01

    Approximately 100 mouse genes undergo genomic imprinting, whereby one of the two parental alleles is epigenetically silenced. Imprinted genes influence processes including development, X chromosome inactivation, obesity, schizophrenia, and diabetes, motivating the identification of all imprinted loci. Local sequence features have been used to predict candidate imprinted genes, but rigorous testing using reciprocal crosses validated only three, one of which resided in previously identified imprinting clusters. Here we show that specific epigenetic features in mouse cells correlate with imprinting status in mice, and we identify hundreds of additional genes predicted to be imprinted in the mouse. We used a multitiered approach to validate imprinted expression, including use of a custom single nucleotide polymorphism array and traditional molecular methods. Of 65 candidates subjected to molecular assays for allele-specific expression, we found 10 novel imprinted genes that were maternally expressed in the placenta. PMID:20421412

  5. Glatiramer acetate-reactive T lymphocytes regulate oligodendrocyte progenitor cell number in vitro: role of IGF-2

    PubMed Central

    Zhang, Y.; Jalili, F.; Ouamara, N.; Zameer, A.; Cosentino, G.; Mayne, M.; Hayardeny, L.; Antel, J. P.; Bar-Or, A.; John, G. R.

    2010-01-01

    Glatiramer acetate (GA) is an immunomodulator approved for therapy of relapsing-remitting multiple sclerosis (RRMS), but recent findings indicate that it may also have additional, neurotrophic effects. Here, we found that supernatants from human GA-reactive T lymphocytes potentiated oligodendrocyte numbers in rodent and human oligodendrocyte progenitor (OPC) cultures. Effects of Th2-polarized lines were stronger than Th1-polarized cells. Microarray and ELISA analyses revealed that neurotrophic factors induced in Th2- and Th1-polarized GA-reactive lines included IGF-2 and BMP-7 respectively, and functional studies confirmed IGF-2 as trophic for OPCs. Our results support the concept that GA therapy may result in supportive effects on oligodendrocytes in RRMS patients. PMID:20637510

  6. The tobacco-specific carcinogen-operated calcium channel promotes lung tumorigenesis via IGF2 exocytosis in lung epithelial cells

    PubMed Central

    Boo, Hye-Jin; Min, Hye-Young; Jang, Hyun-Ji; Yun, Hye Jeong; Smith, John Kendal; Jin, Quanri; Lee, Hyo-Jong; Liu, Diane; Kweon, Hee-Seok; Behrens, Carmen; Lee, J. Jack; Wistuba, Ignacio I.; Lee, Euni; Hong, Waun Ki; Lee, Ho-Young

    2016-01-01

    Nicotinic acetylcholine receptors (nAChRs) binding to the tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) induces Ca2+ signalling, a mechanism that is implicated in various human cancers. In this study, we investigated the role of NNK-mediated Ca2+ signalling in lung cancer formation. We show significant overexpression of insulin-like growth factors (IGFs) in association with IGF-1R activation in human preneoplastic lung lesions in smokers. NNK induces voltage-dependent calcium channel (VDCC)-intervened calcium influx in airway epithelial cells, resulting in a rapid IGF2 secretion via the regulated pathway and thus IGF-1R activation. Silencing nAChR, α1 subunit of L-type VDCC, or various vesicular trafficking curators, including synaptotagmins and Rabs, or blockade of nAChR/VDCC-mediated Ca2+ influx significantly suppresses NNK-induced IGF2 exocytosis, transformation and tumorigenesis of lung epithelial cells. Publicly available database reveals inverse correlation between use of calcium channel blockers and lung cancer diagnosis. Our data indicate that NNK disrupts the regulated pathway of IGF2 exocytosis and promotes lung tumorigenesis. PMID:27666821

  7. Unequal parental contributions: genomic imprinting in mammals.

    PubMed

    Shire, J G

    1989-11-01

    Evidence for genomic imprinting, in which the expression of genes is influenced by their parental origin, is provided by pronuclear transplantation experiments, by studies of X-chromosome inactivation and monoparental disomy, and by the analysis of the expression and methylation of certain transgenes. Both patroclinous and matroclinous patterns of mammalian inheritance occur, and germ-cell and gonadal traits as well as tumor development can be affected. To understand the processes that influence genetic inheritance, genomic imprinting must be distinguished from Y-linkage and cytoplasmic and other maternal effects. Genomic imprinting may be mediated by a variety of mechanisms, including DNA methylation. Further studies addressing such aspects of imprinting as its initiation and maintenance are required to understand the molecular bases for these critical genetic events.

  8. Evaluation of the Association of IGF2BP2 Variants With Type 2 Diabetes in French Caucasians

    PubMed Central

    Duesing, Konsta; Fatemifar, Ghazaleh; Charpentier, Guillaume; Marre, Michel; Tichet, Jean; Hercberg, Serge; Balkau, Beverley; Froguel, Philippe; Gibson, Fernando

    2008-01-01

    OBJECTIVE—We performed a comprehensive genetic association study of common variation spanning the IGF2BP2 locus in order to replicate the association of the “confirmed” type 2 diabetes susceptibility variants rs4402960 and rs1470579 in the French Caucasian population and to further characterize the susceptibility variants at this novel locus. RESEARCH DESIGN AND METHODS—We genotyped a total of 21 tagging single nucleotide polymorphisms spanning the IGF2BP2 locus in our type 2 diabetes case-control cohort comprising 3,093 French Caucasian subjects. RESULTS—IGF2BP2 variants rs4402960 and rs1470579 were not associated with type 2 diabetes in the present study (P = 0.632 and P = 0.896, respectively). Meta-analysis of genotype data from over 34,000 subjects demonstrated that our inability to replicate rs4402960/rs1470579 was consistent with the findings from several previous genome-wide association study (GWAS) datasets that were underpowered to detect this modest association signal (odds ratio [OR] 1.14). We obtained novel evidence that rs9826022, a borderline rare variant (5% minor allele frequency) in the 3′ downstream region, was associated with type 2 diabetes (P = 0.0002; OR 1.53 [95% CI 1.22–1.91]). This result was corroborated by the meta-analysis of 10,542 genotypes from the current study and GWAS datasets using both fixed (P = 9.47 × 10−6; 1.30 [1.16–1.46]) and random effects (P = 0.001; 1.30 [1.11–1.52)] calculations. CONCLUSIONS—We were unable to replicate the confirmed rs4402960/rs1470579 susceptibility variants but found novel evidence for a rare variant in the 3′ downstream region of IGF2BP2. Further genetic and functional studies are required to identify the etiological IGF2BP2 variants. PMID:18430866

  9. Partial Loss of Genomic Imprinting Reveals Important Roles for Kcnq1 and Peg10 Imprinted Domains in Placental Development

    PubMed Central

    Koppes, Erik; Himes, Katherine P.; Chaillet, J. Richard

    2015-01-01

    Mutations in imprinted genes or their imprint control regions (ICRs) produce changes in imprinted gene expression and distinct abnormalities in placental structure, indicating the importance of genomic imprinting to placental development. We have recently shown that a very broad spectrum of placental abnormalities associated with altered imprinted gene expression occurs in the absence of the oocyte–derived DNMT1o cytosine methyltransferase, which normally maintains parent-specific imprinted methylation during preimplantation. The absence of DNMT1o partially reduces inherited imprinted methylation while retaining the genetic integrity of imprinted genes and their ICRs. Using this novel system, we undertook a broad and inclusive approach to identifying key ICRs involved in placental development by correlating loss of imprinted DNA methylation with abnormal placental phenotypes in a mid-gestation window (E12.5-E15.5). To these ends we measured DNA CpG methylation at 15 imprinted gametic differentially methylated domains (gDMDs) that overlap known ICRs using EpiTYPER-mass array technology, and linked these epigenetic measurements to histomorphological defects. Methylation of some imprinted gDMDs, most notably Dlk1, was nearly normal in mid-gestation DNMT1o-deficient placentas, consistent with the notion that cells having lost methylation on these DMDs do not contribute significantly to placental development. Most imprinted gDMDs however showed a wide range of methylation loss among DNMT1o-deficient placentas. Two striking associations were observed. First, loss of DNA methylation at the Peg10 imprinted gDMD associated with decreased embryonic viability and decreased labyrinthine volume. Second, loss of methylation at the Kcnq1 imprinted gDMD was strongly associated with trophoblast giant cell (TGC) expansion. We conclude that the Peg10 and Kcnq1 ICRs are key regulators of mid-gestation placental function. PMID:26241757

  10. GRB10 imprinting is eutherian mammal specific.

    PubMed

    Stringer, Jessica M; Suzuki, Shunsuke; Pask, Andrew J; Shaw, Geoff; Renfree, Marilyn B

    2012-12-01

    GRB10 is an imprinted gene differently expressed from two promoters in mouse and human. Mouse Grb10 is maternally expressed from the major promoter in most tissues and paternally expressed from the brain-specific promoter within specific regions of the fetal and adult central nervous system. Human GRB10 is biallelically expressed from the major promoter in most tissues except in the placental villus trophoblast where it is maternally expressed, whereas the brain-specific promoter is paternally expressed in the fetal brain. This study characterized the ortholog of GRB10 in a marsupial, the tammar wallaby (Macropus eugenii) to investigate the origin and evolution of imprinting at this locus. The protein coding exons and predicted amino acid sequence of tammar GRB10 were highly conserved with eutherian GRB10. The putative first exon, which is located in the orthologous region to the eutherian major promoter, was found in the tammar, but no exon was found in the downstream region corresponding to the eutherian brain-specific promoter, suggesting that marsupials only have a single promoter. Tammar GRB10 was widely expressed in various tissues including the brain but was not imprinted in any of the tissues examined. Thus, it is likely that GRB10 imprinting evolved in eutherians after the eutherian-marsupial divergence approximately 160 million years ago, subsequent to the acquisition of a brain-specific promoter, which resides within the imprinting control region in eutherians. PMID:22787282

  11. Lead Exposure during Early Human Development and DNA Methylation of Imprinted Gene Regulatory Elements in Adulthood

    PubMed Central

    Li, Yue; Xie, Changchun; Murphy, Susan K.; Skaar, David; Nye, Monica; Vidal, Adriana C.; Cecil, Kim M.; Dietrich, Kim N.; Puga, Alvaro; Jirtle, Randy L.; Hoyo, Cathrine

    2015-01-01

    Background: Lead exposure during early development causes neurodevelopmental disorders by unknown mechanisms. Epidemiologic studies have focused recently on determining associations between lead exposure and global DNA methylation; however, such approaches preclude the identification of loci that may alter human disease risk. Objectives: The objective of this study was to determine whether maternal, postnatal, and early childhood lead exposure can alter the differentially methylated regions (DMRs) that control the monoallelic expression of imprinted genes involved in metabolism, growth, and development. Methods: Questionnaire data and serial blood lead levels were obtained from 105 participants (64 females, 41 males) of the Cincinnati Lead Study from birth to 78 months. When participants were adults, we used Sequenom EpiTYPER assays to test peripheral blood DNA to quantify CpG methylation in peripheral blood leukocytes at DMRs of 22 human imprinted genes. Statistical analyses were conducted using linear regression. Results: Mean blood lead concentration from birth to 78 months was associated with a significant decrease in PEG3 DMR methylation (β = –0.0014; 95% CI: –0.0023, –0.0005, p = 0.002), stronger in males (β = –0.0024; 95% CI: –0.0038, –0.0009, p = 0.003) than in females (β = –0.0009; 95% CI: –0.0020, 0.0003, p = 0.1). Elevated mean childhood blood lead concentration was also associated with a significant decrease in IGF2/H19 (β = –0.0013; 95% CI: –0.0023, –0.0003, p = 0.01) DMR methylation, but primarily in females, (β = –0.0017; 95% CI: –0.0029, –0.0006, p = 0.005) rather than in males, (β = –0.0004; 95% CI: –0.0023, 0.0015, p = 0.7). Elevated blood lead concentration during the neonatal period was associated with higher PLAGL1/HYMAI DMR methylation regardless of sex (β = 0.0075; 95% CI: 0.0018, 0.0132, p = 0.01). The magnitude of associations between cumulative lead exposure and CpG methylation remained unaltered from

  12. Alteration of imprinted Dlk1-Dio3 miRNA cluster expression in the entorhinal cortex induced by maternal immune activation and adolescent cannabinoid exposure

    PubMed Central

    Hollins, S L; Zavitsanou, K; Walker, F R; Cairns, M J

    2014-01-01

    A significant feature of the cortical neuropathology of schizophrenia is a disturbance in the biogenesis of short non-coding microRNA (miRNA) that regulate translation and stability of mRNA. While the biological origin of this phenomenon has not been defined, it is plausible that it relates to major environmental risk factors associated with the disorder such as exposure to maternal immune activation (MIA) and adolescent cannabis use. To explore this hypothesis, we administered the viral mimic poly I:C to pregnant rats and further exposed some of their maturing offsprings to daily injections of the synthetic cannabinoid HU210 for 14 days starting on postnatal day 35. Whole-genome miRNA expression analysis was then performed on the left and right hemispheres of the entorhinal cortex (EC), a region strongly associated with schizophrenia. Animals exposed to either treatment alone or in combination exhibited significant differences in the expression of miRNA in the left hemisphere, whereas the right hemisphere was less responsive. Hemisphere-associated differences in miRNA expression were greatest in the combined treatment and highly over-represented in a single imprinted locus on chromosome 6q32. This observation was significant as the syntenic 14q32 locus in humans encodes a large proportion of miRNAs differentially expressed in peripheral blood lymphocytes from patients with schizophrenia, suggesting that interaction of early and late environmental insults may affect miRNA expression, in a manner that is relevant to schizophrenia. PMID:25268256

  13. Genomic imprinting effects on complex traits in domesticated animal species

    PubMed Central

    O’Doherty, Alan M.; MacHugh, David E.; Spillane, Charles; Magee, David A.

    2015-01-01

    Monoallelically expressed genes that exert their phenotypic effect in a parent-of-origin specific manner are considered to be subject to genomic imprinting, the most well understood form of epigenetic regulation of gene expression in mammals. The observed differences in allele specific gene expression for imprinted genes are not attributable to differences in DNA sequence information, but to specific chemical modifications of DNA and chromatin proteins. Since the discovery of genomic imprinting some three decades ago, over 100 imprinted mammalian genes have been identified and considerable advances have been made in uncovering the molecular mechanisms regulating imprinted gene expression. While most genomic imprinting studies have focused on mouse models and human biomedical disorders, recent work has highlighted the contributions of imprinted genes to complex trait variation in domestic livestock species. Consequently, greater understanding of genomic imprinting and its effect on agriculturally important traits is predicted to have major implications for the future of animal breeding and husbandry. In this review, we discuss genomic imprinting in mammals with particular emphasis on domestic livestock species and consider how this information can be used in animal breeding research and genetic improvement programs. PMID:25964798

  14. A comparative study on expression profile of developmentally important genes during pre-implantation stages in buffalo hand-made cloned embryos derived from adult fibroblasts and amniotic fluid derived stem cells.

    PubMed

    Em, Sadeesh; Shah, Fozia; Kataria, Meena; Yadav, P S

    2016-08-01

    Abnormal gene expression in somatic cell nuclear transfer embryos due to aberrant epigenetic modifications of the donor nucleus may account for much of the observed diminished viability and developmental abnormalities. The present study compared the developmentally important gene expression pattern at 4-cell, 8- to 16-cell, morula, and blastocyst stages of buffalo nuclear transfer (NT) embryos from adult fibroblasts (AFs) and amniotic fluid stem cells (AFSCs). In vitro fertilized embryos were used as control embryos. Alterations in the expression pattern of genes implicated in transcription and pluripotency (OCT4, STAT3, NANOG), DNA methylation (DNMT1, DNMT3A), histone deacetylation (HDAC2), growth factor signaling, and imprinting (IGF2, IGF2R), apoptosis (BAX, BCL2), oxidative stress (MnSOD), metabolism (GLUT1) regulation were observed in cloned embryos. The expression of transcripts in AFSC-NT embryos more closely followed that of the in vitro fertilized embryos compared with AF-NT embryos. It is concluded that AFSCs with a relatively undifferentiated genome may serve as suitable donors which could be reprogrammed more efficiently to reactivate expression of early embryonic genes in buffalo NT.

  15. Systems biology discoveries using non-human primate pluripotent stem and germ cells: novel gene and genomic imprinting interactions as well as unique expression patterns.

    PubMed

    Ben-Yehudah, Ahmi; Easley, Charles A; Hermann, Brian P; Castro, Carlos; Simerly, Calvin; Orwig, Kyle E; Mitalipov, Shoukhrat; Schatten, Gerald

    2010-08-05

    The study of pluripotent stem cells has generated much interest in both biology and medicine. Understanding the fundamentals of biological decisions, including what permits a cell to maintain pluripotency, that is, its ability to self-renew and thereby remain immortal, or to differentiate into multiple types of cells, is of profound importance. For clinical applications, pluripotent cells, including both embryonic stem cells and adult stem cells, have been proposed for cell replacement therapy for a number of human diseases and disorders, including Alzheimer's, Parkinson's, spinal cord injury and diabetes. One challenge in their usage for such therapies is understanding the mechanisms that allow the maintenance of pluripotency and controlling the specific differentiation into required functional target cells. Because of regulatory restrictions and biological feasibilities, there are many crucial investigations that are just impossible to perform using pluripotent stem cells (PSCs) from humans (for example, direct comparisons among panels of inbred embryonic stem cells from prime embryos obtained from pedigreed and fertile donors; genomic analysis of parent versus progeny PSCs and their identical differentiated tissues; intraspecific chimera analyses for pluripotency testing; and so on). However, PSCs from nonhuman primates are being investigated to bridge these knowledge gaps between discoveries in mice and vital information necessary for appropriate clinical evaluations. In this review, we consider the mRNAs and novel genes with unique expression and imprinting patterns that were discovered using systems biology approaches with primate pluripotent stem and germ cells.

  16. Epigenetic discordance at imprinting control regions in twins.

    PubMed

    Ollikainen, Miina; Craig, Jeffrey M

    2011-06-01

    Imprinting control regions are differentially methylated in a parent-of-origin-dependent manner and this methylation state is inherited through the germline. These regions control parent-specific monoallelic expression of their target genes. Genetically identical organisms show considerable variation in their epigenomes owing to environmental and stochastic influences creating fluctuations in phenotype. Monozygotic twin pairs discordant for imprinting disorders due to epigenetic changes at imprinting control regions are an example of phenotypic variation caused by extreme variations of the epigenome. Here, we discuss the within-pair epigenetic discordance at imprinted loci, both in phenotypically concordant and discordant monozygotic twin pairs. PMID:22122339

  17. Can Molecular Imprinting Explain Heterozygote Deficiency and Hybrid Vigor?

    PubMed Central

    Chakraborty, R.

    1989-01-01

    Molecular imprinting, the phenomenon of differential expressions of a gene based on whether it is paternally or maternally derived, has been noted in mice, humans, and other nonmammalian organisms. Effects of differential imprinting are important not only in the study of the manifestation of deleterious genes; they have important evolutionary implications as well. It is shown here that molecular imprinting may mimic observations that are often construed to be due to hybrid vigor and/or inbreeding depression. Furthermore, if a locus undergoes differential imprinting, it also yields observed genotypic proportions which mimic heterozygote deficiency in the population without the aid of natural selection. PMID:2759426

  18. DNA Methyltransferase Candidate Polymorphisms, Imprinting Methylation, and Birth Outcome

    PubMed Central

    Haggarty, Paul; Hoad, Gwen; Horgan, Graham W.; Campbell, Doris M.

    2013-01-01

    Background Birth weight and prematurity are important obstetric outcomes linked to lifelong health. We studied a large birth cohort to look for evidence of epigenetic involvement in birth outcomes. Methods We investigated the association between birth weight, length, placental weight and duration of gestation and four candidate variants in 1,236 mothers and 1,073 newborns; DNMT1 (rs2162560), DNMT3A (rs734693), DNMT3B (rs2424913) and DNMT3L (rs7354779). We measured methylation of LINE1 and the imprinted genes, PEG3, SNRPN, and IGF2, in cord blood. Results The minor DNMT3L allele in the baby was associated with higher birth weight (+54 95% CI 10,99 g; p = 0.016), birth length (+0.23 95% CI 0.04,0.42 cm; p = 0.017), placental weight, (+18 95% CI 3,33 g; p = 0.017), and reduced risk of being in the lowest birth weight decile (p = 0.018) or requiring neonatal care (p = 0.039). The DNMT3B minor allele in the mother was associated with an increased risk of prematurity (p = 0.001). Placental size was related to PEG3 (p<0.001) and IGF2 (p<0.001) methylation. Birth weight was related to LINE1 and IGF2 methylation but only at p = 0.052. The risk of requiring neonatal treatment was related to LINE1 (p = 0.010) and SNRPN (p = 0.001) methylation. PEG3 methylation was influenced by baby DNMT3A genotype (p = 0.012) and LINE1 by baby 3B genotype (p = 0.044). Maternal DNMT3L genotype was related to IGF2 methylation in the cord blood but this effect was only seen in carriers of the minor frequency allele (p = 0.050). Conclusions The results here suggest that epigenetic processes are linked birth outcome and health in early life. Our emerging understanding of the role of epigenetics in health and biological function across the lifecourse suggests that these early epigenetic events could have longer term implications. PMID:23922667

  19. Glial cell line-derived neurotrophic factor alters the growth characteristics and genomic imprinting of mouse multipotent adult germline stem cells

    SciTech Connect

    Jung, Yoon Hee

    2010-03-10

    This study evaluated the essentiality of glial cell line-derived neurotrophic factor (GDNF) for in vitro culture of established mouse multipotent adult germline stem (maGS) cell lines by culturing them in the presence of GDNF, leukemia inhibitory factor (LIF) or both. We show that, in the absence of LIF, GDNF slows the proliferation of maGS cells and result in smaller sized colonies without any change in distribution of cells to different cell-cycle stages, expression of pluripotency genes and in vitro differentiation potential. Furthermore, in the absence of LIF, GDNF increased the expression of male germ-line genes and repopulated the empty seminiferous tubule of W/W{sup v} mutant mouse without the formation of teratoma. GDNF also altered the genomic imprinting of Igf2, Peg1, and H19 genes but had no effect on DNA methylation of Oct4, Nanog and Stra8 genes. However, these effects of GDNF were masked in the presence of LIF. GDNF also did not interfere with the multipotency of maGS cells if they are cultured in the presence of LIF. In conclusion, our results suggest that, in the absence of LIF, GDNF alters the growth characteristics of maGS cells and partially impart them some of the germline stem (GS) cell-like characteristics.

  20. Evolution of genomic imprinting: insights from marsupials and monotremes.

    PubMed

    Renfree, Marilyn B; Hore, Timothy A; Shaw, Geoffrey; Graves, Jennifer A Marshall; Pask, Andrew J

    2009-01-01

    Parent-of-origin gene expression (genomic imprinting) is widespread among eutherian mammals and also occurs in marsupials. Most imprinted genes are expressed in the placenta, but the brain is also a favored site. Although imprinting evolved in therian mammals before the marsupial-eutherian split, the mechanisms have continued to evolve in each lineage to produce differences between the two groups in terms of the number and regulation of imprinted genes. As yet there is no evidence for genomic imprinting in the egg-laying monotreme mammals, although these mammals also form a placenta (albeit short-lived) and transfer nutrients from mother to embryo. Therefore, imprinting was not essential for the evolution of the placenta and its importance in nutrient transfer but the elaboration of imprinted genes in marsupials and eutherians is associated with viviparity. Here we review the recent analyses of imprinted gene clusters in marsupials and monotremes, which have served to shed light on the origin and evolution of imprinting mechanisms in mammals.

  1. Natural epigenetic polymorphisms lead to intraspecific variation in Arabidopsis gene imprinting

    PubMed Central

    Pignatta, Daniela; Erdmann, Robert M; Scheer, Elias; Picard, Colette L; Bell, George W; Gehring, Mary

    2014-01-01

    Imprinted gene expression occurs during seed development in plants and is associated with differential DNA methylation of parental alleles, particularly at proximal transposable elements (TEs). Imprinting variability could contribute to observed parent-of-origin effects on seed development. We investigated intraspecific variation in imprinting, coupled with analysis of DNA methylation and small RNAs, among three Arabidopsis strains with diverse seed phenotypes. The majority of imprinted genes were parentally biased in the same manner among all strains. However, we identified several examples of allele-specific imprinting correlated with intraspecific epigenetic variation at a TE. We successfully predicted imprinting in additional strains based on methylation variability. We conclude that there is standing variation in imprinting even in recently diverged genotypes due to intraspecific epiallelic variation. Our data demonstrate that epiallelic variation and genomic imprinting intersect to produce novel gene expression patterns in seeds. DOI: http://dx.doi.org/10.7554/eLife.03198.001 PMID:24994762

  2. [SNPs detection of IGF2 gene and its relationship with carcass and meat quality traits in Qinchuan cattle].

    PubMed

    Han, Rui-Hua; Zan, Lin-Sen; Yang, Da-Peng; Hao, Rong-Chao

    2008-12-01

    PCR-SSCP technology was used to analyze the correlation of polymorphisms IGF2 (Insulin-like growth factor) gene with carcass and meat quality traits in 186 Qinchuan cattle at the age of 24-month. C-->T mutation in 120 and A-->G mutation in 279 of IGF2 gene. Statistical analysis indicated that Qinchuan cattle with genotype BB and DD had significant differences in slaughter weight, carcass weight, carcass length, carcass chest depth and eye muscle area (P<0.05). The difference in thickness of back fat was significant (P<0.01). Significant differences in marbling, tenderness, pH24 of meat quality (P<0.05), but the differences in carcass depth and water holding capacity were not significant (P>0.05). Genotype AA, DD were predominant genotypes and A, D were predominant alleles. The population containing B, D allele had more excellent carcass and meat quality than others, especially in the capacity of fat accumulate.

  3. Transcriptome-Wide Identification of Novel Imprinted Genes in Neonatal Mouse Brain

    PubMed Central

    Wang, Xu; Sun, Qi; McGrath, Sean D.; Mardis, Elaine R.; Soloway, Paul D.; Clark, Andrew G.

    2008-01-01

    Imprinted genes display differential allelic expression in a manner that depends on the sex of the transmitting parent. The degree of imprinting is often tissue-specific and/or developmental stage-specific, and may be altered in some diseases including cancer. Here we applied Illumina/Solexa sequencing of the transcriptomes of reciprocal F1 mouse neonatal brains and identified 26 genes with parent-of-origin dependent differential allelic expression. Allele-specific Pyrosequencing verified 17 of them, including three novel imprinted genes. The known and novel imprinted genes all are found in proximity to previously reported differentially methylated regions (DMRs). Ten genes known to be imprinted in placenta had sufficient expression levels to attain a read depth that provided statistical power to detect imprinting, and yet all were consistent with non-imprinting in our transcript count data for neonatal brain. Three closely linked and reciprocally imprinted gene pairs were also discovered, and their pattern of expression suggests transcriptional interference. Despite the coverage of more than 5000 genes, this scan only identified three novel imprinted refseq genes in neonatal brain, suggesting that this tissue is nearly exhaustively characterized. This approach has the potential to yield an complete catalog of imprinted genes after application to multiple tissues and developmental stages, shedding light on the mechanism, bioinformatic prediction, and evolution of imprinted genes and diseases associated with genomic imprinting. PMID:19052635

  4. A Survey for Novel Imprinted Genes in the Mouse Placenta by mRNA-seq

    PubMed Central

    Wang, Xu; Soloway, Paul D.; Clark, Andrew G.

    2011-01-01

    Many questions about the regulation, functional specialization, computational prediction, and evolution of genomic imprinting would be better addressed by having an exhaustive genome-wide catalog of genes that display parent-of-origin differential expression. As a first-pass scan for novel imprinted genes, we performed mRNA-seq experiments on embryonic day 17.5 (E17.5) mouse placenta cDNA samples from reciprocal cross F1 progeny of AKR and PWD mouse strains and quantified the allele-specific expression and the degree of parent-of-origin allelic imbalance. We confirmed the imprinting status of 23 known imprinted genes in the placenta and found that 12 genes reported previously to be imprinted in other tissues are also imprinted in mouse placenta. Through a well-replicated design using an orthogonal allelic-expression technology, we verified 5 novel imprinted genes that were not previously known to be imprinted in mouse (Pde10, Phf17, Phactr2, Zfp64, and Htra3). Our data suggest that most of the strongly imprinted genes have already been identified, at least in the placenta, and that evidence supports perhaps 100 additional weakly imprinted genes. Despite previous appearance that the placenta tends to display an excess of maternally expressed imprinted genes, with the addition of our validated set of placenta-imprinted genes, this maternal bias has disappeared. PMID:21705755

  5. Expression and DNA methylation analysis of SNRPN in Prader-Willi patients

    SciTech Connect

    Glenn, C.C.; Jong, M.T.C.; Driscoll, D.J.

    1994-09-01

    The human SNRPN gene is one of a gene family that encode proteins involved in pre-mRNA splicing and maps to the Prader-Willi syndrome critical region in 15q11-q13. We have previously demonstrated functional imprinting of SNRPN, with absent expression in PWS skin fibroblasts and lymphoblasts. We now show a similar lack of expression in blood of PWS patients, which appear to correlate with DNA methylation of NotI sites in the 5{prime} region of the gene. RNA and DNA was extracted from peripheral blood of Prader-Willi syndrome (PWS) and Angelman syndrome (AS) deletion patients to be used for RT-PCR with SNRPN gene-specific primers and DNA methylation analysis. Either no or highly reduced levels of SNRPN RT-PCR product were detected in nine PWS samples but was present in normals, AS patients, and one clinically typical PWS patient. Parent-of-origin DNA methylation imprints are also present within the SNRPN gene. PWS patients having only a maternal contribution of SNRPN have several NotI restriction sites near the transcription start site which are methylated, while these same sites are unmethylated on the paternal chromosome (i.e., AS samples). Several CpG sites approximately 22 kb downstream of the transcription start site are methylated preferentially on the paternal allele. These observations for human SNRPN are similar to those of the mouse imprinted gene Igf2r, which exhibits DNA methylation of a CpG island 27 kb from the transcription start site on the expressed allele, and DNA methylation in the promoter region of the repressed allele. We suggest that RT-PCR and/or DNA methylation analysis from blood of PWS patients may be the most accurate means of diagnosing classical PWS. These results further indicate a role for SNRPN in the pathogenesis of PWS, and may serve as a model to study other human imprinted genes.

  6. Regulatory links between imprinted genes: evolutionary predictions and consequences

    PubMed Central

    Patten, Manus M.; Cowley, Michael; Oakey, Rebecca J.; Feil, Robert

    2016-01-01

    Genomic imprinting is essential for development and growth and plays diverse roles in physiology and behaviour. Imprinted genes have traditionally been studied in isolation or in clusters with respect to cis-acting modes of gene regulation, both from a mechanistic and evolutionary point of view. Recent studies in mammals, however, reveal that imprinted genes are often co-regulated and are part of a gene network involved in the control of cellular proliferation and differentiation. Moreover, a subset of imprinted genes acts in trans on the expression of other imprinted genes. Numerous studies have modulated levels of imprinted gene expression to explore phenotypic and gene regulatory consequences. Increasingly, the applied genome-wide approaches highlight how perturbation of one imprinted gene may affect other maternally or paternally expressed genes. Here, we discuss these novel findings and consider evolutionary theories that offer a rationale for such intricate interactions among imprinted genes. An evolutionary view of these trans-regulatory effects provides a novel interpretation of the logic of gene networks within species and has implications for the origin of reproductive isolation between species. PMID:26842569

  7. Regulatory links between imprinted genes: evolutionary predictions and consequences.

    PubMed

    Patten, Manus M; Cowley, Michael; Oakey, Rebecca J; Feil, Robert

    2016-02-10

    Genomic imprinting is essential for development and growth and plays diverse roles in physiology and behaviour. Imprinted genes have traditionally been studied in isolation or in clusters with respect to cis-acting modes of gene regulation, both from a mechanistic and evolutionary point of view. Recent studies in mammals, however, reveal that imprinted genes are often co-regulated and are part of a gene network involved in the control of cellular proliferation and differentiation. Moreover, a subset of imprinted genes acts in trans on the expression of other imprinted genes. Numerous studies have modulated levels of imprinted gene expression to explore phenotypic and gene regulatory consequences. Increasingly, the applied genome-wide approaches highlight how perturbation of one imprinted gene may affect other maternally or paternally expressed genes. Here, we discuss these novel findings and consider evolutionary theories that offer a rationale for such intricate interactions among imprinted genes. An evolutionary view of these trans-regulatory effects provides a novel interpretation of the logic of gene networks within species and has implications for the origin of reproductive isolation between species.

  8. Allele-specific deposition of macroH2A1 in Imprinting Control Regions

    SciTech Connect

    Choo, J H; Kim, J D; Chung, J H; Stubbs, L; Kim, J

    2006-01-13

    In the current study, we analyzed the deposition patterns of macroH2A1 at a number of different genomic loci located in X chromosome and autosomes. MacroH2A1 is preferentially deposited at methylated CpG CpG-rich regions located close to promoters. The macroH2A1 deposition patterns at the methylated CpG islands of several imprinted domains, including the Imprinting Control Regions (ICRs) of Xist, Peg3, H19/Igf2 Igf2, Gtl2/Dlk1, and Gnas domains, show consistent allele-specificity towards inactive, methylated alleles. The macroH2A1 deposition levels at the ICRs and other Differentially Methylated Regions (DMRs) of these domains are also either higher or comparable to those observed at the inactive X chromosome of female mammals. Overall, our results indicate that besides DNA methylation macroH2A1 is another epigenetic component in the chromatin of ICRs displaying differential association with two parental alleles.

  9. Effects of the porcine IGF2 intron 3-G3072A mutation on carcass cutability, meat quality, and bacon processing.

    PubMed

    Clark, D L; Bohrer, B M; Tavárez, M A; Boler, D D; Beever, J E; Dilger, A C

    2014-12-01

    A SNP in a regulatory region of intron 3 within the porcine IGF2 gene (IGF2-G3072A) is associated with increased lean deposition and decreased fat deposition in pigs with paternal A alleles (APat) compared with pigs with paternal G alleles (GPat). However, data regarding fresh and processed meat quality characteristics of pigs with different alleles for this polymorphism are limited. A single heterozygote (AG) boar was bred to homozygous (AA) commercial Yorkshire-cross sows producing F1 barrows and gilts with either GPat or APat. Two farrowing groups of barrows and gilts were group housed, provided ad libitum access to a diet that met or exceeded NRC nutrient recommendations throughout production, and slaughtered at 176 d (±4 d) of age. Fresh LM quality and estimated percent fat-free lean measurements were taken on the left side of carcasses, while carcass cutouts were completed with right sides. Fresh belly and bacon processing traits were characterized for only block 1 pigs. Pig was treated as the experimental unit for all analyses. Ending live weight and HCW were not affected by IGF2 allele; however, 10th rib backfat thickness was 0.41 cm less (P=0.01), loin eye area was 4.0 cm2 greater (P=0.01), and predicted fat-free lean was over 2 percentage units greater (P<0.01) in APat pigs compared with GPat pigs. Furthermore, boneless lean cuts from the shoulder, loin, and ham were heavier (P<0.05) in APat pigs compared with GPat pigs. Minolta L* value was 2.36 units greater (P=0.03) but cooking loss was 1.82 percentage units greater (P<0.01) in APat pigs compared with GPat pigs. Additionally, despite reductions in subcutaneous fat, extractable intramuscular lipid from the LM was 0.64 percentage units greater (P=0.02) in APat pigs compared with GPat pigs. Bellies were 7.17 mm thinner (P=0.01), had 7.27 cm less flop distance (P=0.05), and tended to have 1.34 units greater iodine value (P=0.09) in APat pigs compared with GPat pigs. While not statistically different (P=0

  10. Increased body fat in mice with a targeted mutation of the paternally expressed imprinted gene Peg3.

    PubMed

    Curley, J P; Pinnock, S B; Dickson, S L; Thresher, R; Miyoshi, N; Surani, M A; Keverne, E B

    2005-08-01

    Peg3 encodes a C2H2 type zinc finger protein that is implicated in a novel physiological pathway regulating core body temperature, feeding behavior, and obesity in mice. Peg3+/- mutant mice develop an excess of abdominal, subcutaneous, and intra-scapular fat, despite a lifetime of lower food intake than wild-type animals. However, they start life with reduced fat reserves and are slower to enter puberty. These mice maintain a lower core body temperature, fail to respond to a cold challenge, and have lower metabolic activity as measured by oxygen consumption. Plasma leptin levels are significantly higher than in wild types, and Peg3+/- mice appear to have developed leptin resistance. Administration of exogenous leptin resulted in a significant reduction in food intake in wild-type mice that was not observed in Peg3+/- mutants. This mutation, which is strongly expressed in hypothalamic tissue during development, has the capacity to regulate multiple events relating to energy homeostasis.

  11. Genomic Imprinting in the Arabidopsis Embryo Is Partly Regulated by PRC2

    PubMed Central

    Raissig, Michael T.; Bemer, Marian; Baroux, Célia; Grossniklaus, Ueli

    2013-01-01

    Genomic imprinting results in monoallelic gene expression in a parent-of-origin-dependent manner and is regulated by the differential epigenetic marking of the parental alleles. In plants, genomic imprinting has been primarily described for genes expressed in the endosperm, a tissue nourishing the developing embryo that does not contribute to the next generation. In Arabidopsis, the genes MEDEA (MEA) and PHERES1 (PHE1), which are imprinted in the endosperm, are also expressed in the embryo; whether their embryonic expression is regulated by imprinting or not, however, remains controversial. In contrast, the maternally expressed in embryo 1 (mee1) gene of maize is clearly imprinted in the embryo. We identified several imprinted candidate genes in an allele-specific transcriptome of hybrid Arabidopsis embryos and confirmed parent-of-origin-dependent, monoallelic expression for eleven maternally expressed genes (MEGs) and one paternally expressed gene (PEG) in the embryo, using allele-specific expression analyses and reporter gene assays. Genetic studies indicate that the Polycomb Repressive Complex 2 (PRC2) but not the DNA METHYLTRANSFERASE1 (MET1) is involved in regulating imprinted expression in the embryo. In the seedling, all embryonic MEGs and the PEG are expressed from both parents, suggesting that the imprint is erased during late embryogenesis or early vegetative development. Our finding that several genes are regulated by genomic imprinting in the Arabidopsis embryo clearly demonstrates that this epigenetic phenomenon is not a unique feature of the endosperm in both monocots and dicots. PMID:24339783

  12. Genomic imprinting in the Arabidopsis embryo is partly regulated by PRC2.

    PubMed

    Raissig, Michael T; Bemer, Marian; Baroux, Célia; Grossniklaus, Ueli

    2013-01-01

    Genomic imprinting results in monoallelic gene expression in a parent-of-origin-dependent manner and is regulated by the differential epigenetic marking of the parental alleles. In plants, genomic imprinting has been primarily described for genes expressed in the endosperm, a tissue nourishing the developing embryo that does not contribute to the next generation. In Arabidopsis, the genes MEDEA (MEA) and PHERES1 (PHE1), which are imprinted in the endosperm, are also expressed in the embryo; whether their embryonic expression is regulated by imprinting or not, however, remains controversial. In contrast, the maternally expressed in embryo 1 (mee1) gene of maize is clearly imprinted in the embryo. We identified several imprinted candidate genes in an allele-specific transcriptome of hybrid Arabidopsis embryos and confirmed parent-of-origin-dependent, monoallelic expression for eleven maternally expressed genes (MEGs) and one paternally expressed gene (PEG) in the embryo, using allele-specific expression analyses and reporter gene assays. Genetic studies indicate that the Polycomb Repressive Complex 2 (PRC2) but not the DNA METHYLTRANSFERASE1 (MET1) is involved in regulating imprinted expression in the embryo. In the seedling, all embryonic MEGs and the PEG are expressed from both parents, suggesting that the imprint is erased during late embryogenesis or early vegetative development. Our finding that several genes are regulated by genomic imprinting in the Arabidopsis embryo clearly demonstrates that this epigenetic phenomenon is not a unique feature of the endosperm in both monocots and dicots.

  13. Genomic imprinting in the Arabidopsis embryo is partly regulated by PRC2.

    PubMed

    Raissig, Michael T; Bemer, Marian; Baroux, Célia; Grossniklaus, Ueli

    2013-01-01

    Genomic imprinting results in monoallelic gene expression in a parent-of-origin-dependent manner and is regulated by the differential epigenetic marking of the parental alleles. In plants, genomic imprinting has been primarily described for genes expressed in the endosperm, a tissue nourishing the developing embryo that does not contribute to the next generation. In Arabidopsis, the genes MEDEA (MEA) and PHERES1 (PHE1), which are imprinted in the endosperm, are also expressed in the embryo; whether their embryonic expression is regulated by imprinting or not, however, remains controversial. In contrast, the maternally expressed in embryo 1 (mee1) gene of maize is clearly imprinted in the embryo. We identified several imprinted candidate genes in an allele-specific transcriptome of hybrid Arabidopsis embryos and confirmed parent-of-origin-dependent, monoallelic expression for eleven maternally expressed genes (MEGs) and one paternally expressed gene (PEG) in the embryo, using allele-specific expression analyses and reporter gene assays. Genetic studies indicate that the Polycomb Repressive Complex 2 (PRC2) but not the DNA METHYLTRANSFERASE1 (MET1) is involved in regulating imprinted expression in the embryo. In the seedling, all embryonic MEGs and the PEG are expressed from both parents, suggesting that the imprint is erased during late embryogenesis or early vegetative development. Our finding that several genes are regulated by genomic imprinting in the Arabidopsis embryo clearly demonstrates that this epigenetic phenomenon is not a unique feature of the endosperm in both monocots and dicots. PMID:24339783

  14. Pervasive polymorphic imprinted methylation in the human placenta

    PubMed Central

    Hanna, Courtney W.; Peñaherrera, Maria S.; Saadeh, Heba; Andrews, Simon; McFadden, Deborah E.; Kelsey, Gavin; Robinson, Wendy P.

    2016-01-01

    The maternal and paternal copies of the genome are both required for mammalian development, and this is primarily due to imprinted genes, those that are monoallelically expressed based on parent-of-origin. Typically, this pattern of expression is regulated by differentially methylated regions (DMRs) that are established in the germline and maintained after fertilization. There are a large number of germline DMRs that have not yet been associated with imprinting, and their function in development is unknown. In this study, we developed a genome-wide approach to identify novel imprinted DMRs in the human placenta and investigated the dynamics of these imprinted DMRs during development in somatic and extraembryonic tissues. DNA methylation was evaluated using the Illumina HumanMethylation450 array in 134 human tissue samples, publicly available reduced representation bisulfite sequencing in the human embryo and germ cells, and targeted bisulfite sequencing in term placentas. Forty-three known and 101 novel imprinted DMRs were identified in the human placenta by comparing methylation between diandric and digynic triploid conceptions in addition to female and male gametes. Seventy-two novel DMRs showed a pattern consistent with placental-specific imprinting, and this monoallelic methylation was entirely maternal in origin. Strikingly, these DMRs exhibited polymorphic imprinted methylation between placental samples. These data suggest that imprinting in human development is far more extensive and dynamic than previously reported and that the placenta preferentially maintains maternal germline-derived DNA methylation. PMID:26769960

  15. Imprinting in plants as a mechanism to generate seed phenotypic diversity

    PubMed Central

    Bai, Fang; Settles, A. M.

    2015-01-01

    Normal plant development requires epigenetic regulation to enforce changes in developmental fate. Genomic imprinting is a type of epigenetic regulation in which identical alleles of genes are expressed in a parent-of-origin dependent manner. Deep sequencing of transcriptomes has identified hundreds of imprinted genes with scarce evidence for the developmental importance of individual imprinted loci. Imprinting is regulated through global DNA demethylation in the central cell prior to fertilization and directed repression of individual loci with the Polycomb Repressive Complex 2 (PRC2). There is significant evidence for transposable elements and repeat sequences near genes acting as cis-elements to determine imprinting status of a gene, implying that imprinted gene expression patterns may evolve randomly and at high frequency. Detailed genetic analysis of a few imprinted loci suggests an imprinted pattern of gene expression is often dispensable for seed development. Few genes show conserved imprinted expression within or between plant species. These data are not fully explained by current models for the evolution of imprinting in plant seeds. We suggest that imprinting may have evolved to provide a mechanism for rapid neofunctionalization of genes during seed development to increase phenotypic diversity of seeds. PMID:25674092

  16. Increased body fat in mice with a targeted mutation of the paternally expressed imprinted gene Peg3.

    PubMed

    Curley, J P; Pinnock, S B; Dickson, S L; Thresher, R; Miyoshi, N; Surani, M A; Keverne, E B

    2005-08-01

    Peg3 encodes a C2H2 type zinc finger protein that is implicated in a novel physiological pathway regulating core body temperature, feeding behavior, and obesity in mice. Peg3+/- mutant mice develop an excess of abdominal, subcutaneous, and intra-scapular fat, despite a lifetime of lower food intake than wild-type animals. However, they start life with reduced fat reserves and are slower to enter puberty. These mice maintain a lower core body temperature, fail to respond to a cold challenge, and have lower metabolic activity as measured by oxygen consumption. Plasma leptin levels are significantly higher than in wild types, and Peg3+/- mice appear to have developed leptin resistance. Administration of exogenous leptin resulted in a significant reduction in food intake in wild-type mice that was not observed in Peg3+/- mutants. This mutation, which is strongly expressed in hypothalamic tissue during development, has the capacity to regulate multiple events relating to energy homeostasis. PMID:15928196

  17. Maternal Diet during Pregnancy Induces Gene Expression and DNA Methylation Changes in Fetal Tissues in Sheep

    PubMed Central

    Lan, Xianyong; Cretney, Evan C.; Kropp, Jenna; Khateeb, Karam; Berg, Mary A.; Peñagaricano, Francisco; Magness, Ronald; Radunz, Amy E.; Khatib, Hasan

    2013-01-01

    Studies in rats and mice have established that maternal nutrition induces epigenetic modifications, sometimes permanently, that alter gene expression in the fetus, which in turn leads to phenotypic changes. However, limited data is available on the influence of maternal diet on epigenetic modifications and gene expression in sheep. Therefore, the objectives of this study were to investigate the impact of different maternal dietary energy sources on the expression of imprinted genes in fetuses in sheep. Ewes were naturally bred to a single sire and from days 67 ± 3 of gestation until necropsy (days 130 ± 1), they were fed one of three diets of alfalfa haylage (HY; fiber), corn (CN; starch), or dried corn distiller’s grains (DG; fiber plus protein plus fat). A total of 26 fetuses were removed from the dams and longissimus dorsi, semitendinosus, perirenal adipose depot, and subcutaneous adipose depot tissues were collected for expression and DNA methylation analyses. Expression analysis of nine imprinted genes and three DNA methyltransferase (DNMTs) genes showed significant effects of the different maternal diets on the expression of these genes. The methylation levels of CpG islands of both IGF2R and H19 were higher in HY and DG than CN fetuses in both males and females. This result is consistent with the low amino acid content of the CN diet, a source of methyl group donors, compared to HY and DG diets. Thus, results of this study provide evidence of association between maternal nutrition during pregnancy and transcriptomic and epigenomic alterations of imprinted genes and DNMTs in the fetal tissues. PMID:23577020

  18. Circadian biology: rhythms leave their imprint.

    PubMed

    Ray, David W

    2015-03-01

    A recent study has revealed that loss of neuronal expression of the paternally imprinted gene Ube3a in Angelman syndrome results in selective neuronal loss of robust circadian oscillations, with a resulting behavioural phenotype, and adipose tissue accumulation. PMID:25734270

  19. Epigenomic landscape modified by histone modification correlated with activation of IGF2 gene

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The links of histone post-translational modifications and chromatin structure to cell cycle progression, DNA replication, and overall chromosome functions are very clear. The modulation of genome expression as a consequence of chromatin structural changes is most likely a basic mechanism. The epige...

  20. Genomic imprinting and the social brain.

    PubMed

    Isles, Anthony R; Davies, William; Wilkinson, Lawrence S

    2006-12-29

    Genomic imprinting refers to the parent-of-origin-specific epigenetic marking of a number of genes. This epigenetic mark leads to a bias in expression between maternally and paternally inherited imprinted genes, that in some cases results in monoallelic expression from one parental allele. Genomic imprinting is often thought to have evolved as a consequence of the intragenomic conflict between the parental alleles that occurs whenever there is an asymmetry of relatedness. The two main examples of asymmetry of relatedness are when there is partiality of parental investment in offspring (as is the case for placental mammals, where there is also the possibility of extended postnatal care by one parent), and in social groups where there is a sex-biased dispersal. From this evolutionary starting point, it is predicted that, at the behavioural level, imprinted genes will influence what can broadly be termed bonding and social behaviour. We examine the animal and human literature for examples of imprinted genes mediating these behaviours, and divide them into two general classes. Firstly, mother-offspring interactions (suckling, attachment and maternal behaviours) that are predicted to occur when partiality in parental investment in early postnatal offspring occurs; and secondly, adult social interactions, when there is an asymmetry of relatedness in social groups. Finally, we return to the evolutionary theory and examine whether there is a pattern of behavioural functions mediated by imprinted genes emerging from the limited data, and also whether any tangible predictions can be made with regards to the direction of action of genes of maternal or paternal origin.

  1. Genomic imprinting in the human placenta.

    PubMed

    Monk, David

    2015-10-01

    With the launch of the National Institute of Child Health and Human Development/National Institutes of Health Human Placenta Project, the anticipation is that this often-overlooked organ will be the subject of much intense research. Compared with somatic tissues, the cells of the placenta have a unique epigenetic profile that dictates its transcription patterns, which when disturbed may be associated with adverse pregnancy outcomes. One major class of genes that is dependent on strict epigenetic regulation in the placenta is subject to genomic imprinting, the parent-of-origin-dependent monoallelic gene expression. This review discusses the differences in allelic expression and epigenetic profiles of imprinted genes that are identified between different species, which reflect the continuous evolutionary adaption of this form of epigenetic regulation. These observations divulge that placenta-specific imprinted gene that is reliant on repressive histone signatures in mice are unlikely to be imprinted in humans, whereas intense methylation profiling in humans has uncovered numerous maternally methylated regions that are restricted to the placenta that are not conserved in mice. Imprinting has been proposed to be a mechanism that regulates parental resource allocation and ultimately can influence fetal growth, with the placenta being the key in this process. Furthermore, I discuss the developmental dynamics of both classic and transient placenta-specific imprinting and examine the evidence for an involvement of these genes in intrauterine growth restriction and placenta-associated complications. Finally, I focus on examples of genes that are regulated aberrantly in complicated pregnancies, emphasizing their application as pregnancy-related disease biomarkers to aid the diagnosis of at-risk pregnancies early in gestation.

  2. Genomic imprinting and the maternal brain.

    PubMed

    Keverne, E B

    2001-01-01

    Those parts of the genome that contain imprinted genes are relatively small (between 100 and 150 genes predicted) but their impact on mammalian development and evolution is substantial. Most of the imprinted genes that have been studied are regulatory: transcription factors, alternative splicers, oncogenes, tumor suppressors, growth factors, or are involved in complex signalling pathways such as the tumor necrosis factor (TNF) and ubiquitin pathways. This review considers the effects of imprinted genes on brain development by examining the distribution of androgenetic and parthenogenetic cells in the brains of chimeric mice using in situ markers. At birth, cells that are disomic for the paternal genome (androgenetic) contribute substantially to the hypothalamus, septum, preoptic area and bed nuclei of the stria terminalis and fail to survive in the developing neocortex and striatum. In contrast, cells that are disomic for the maternal genome (parthenogenetic) proliferate in the cortex and striatum but are excluded from the diencephalic structures. Growth of the brain is enhanced by the presence of parthenogenetic cells and hence increased maternal gene dosage, whereas the brains of androgenetic chimeras are smaller. Mest and Peg3, two imprinted genes that are paternally expressed, have been disrupted by gene targeting and show high levels of expression in regions where androgenetic cells accumulated, namely the hypothalamus, preoptic area and septum. Although of different structural classes and located on different chromosomes, both of these paternally expressed genes influence placental growth and maternal behavior. The implications of these findings for brain evolution and maternal behavior are discussed. PMID:11589137

  3. Imprinting disorders: a group of congenital disorders with overlapping patterns of molecular changes affecting imprinted loci.

    PubMed

    Eggermann, Thomas; Perez de Nanclares, Guiomar; Maher, Eamonn R; Temple, I Karen; Tümer, Zeynep; Monk, David; Mackay, Deborah J G; Grønskov, Karen; Riccio, Andrea; Linglart, Agnès; Netchine, Irène

    2015-01-01

    Congenital imprinting disorders (IDs) are characterised by molecular changes affecting imprinted chromosomal regions and genes, i.e. genes that are expressed in a parent-of-origin specific manner. Recent years have seen a great expansion in the range of alterations in regulation, dosage or DNA sequence shown to disturb imprinted gene expression, and the correspondingly broad range of resultant clinical syndromes. At the same time, however, it has become clear that this diversity of IDs has common underlying principles, not only in shared molecular mechanisms, but also in interrelated clinical impacts upon growth, development and metabolism. Thus, detailed and systematic analysis of IDs can not only identify unifying principles of molecular epigenetics in health and disease, but also support personalisation of diagnosis and management for individual patients and families. PMID:26583054

  4. Detection of Loss of Imprinting by Pyrosequencing®.

    PubMed

    Tabano, Silvia; Bonaparte, Eleonora; Miozzo, Monica

    2015-01-01

    Genomic imprinting is an epigenetically regulated process determining allele-specific expression in a parent-of-origin dependent manner. Altered expression of imprinted genes characterizes numerous congenital diseases including Beckwith-Wiedemann, Silver-Russell, Angelman, and Prader-Willi syndromes as well as acquired disorders such as cancer. The detection of imprinting alterations has important translational implications in clinics and the application of the Pyrosequencing(®) technology offers the possibility to identify accurately also subtle modifications in allele-specific expression and in DNA methylation levels.Here, we describe two methods to investigate genomic imprinting defects (loss of imprinting, LOI) using Pyrosequencing: (1) Allele-specific expression analysis based on single nucleotide polymorphism (SNP), and (2) quantification of DNA methylation.The protocol for the quantification of the allele-specific expression is carried out by analyzing an informative SNP located within the transcribed portion of an imprinted gene. The method includes the cDNA amplification of the region containing the SNP and the Pyrosequencing-based analysis for the quantitative allelic discrimination comparing the ratio of the two alleles.The second protocol allows the accurate quantification of the DNA methylation levels at the Imprinting Control Regions (ICRs). Imprinted genes are clustered in chromosomal regions and their expression is mainly regulated by DNA methylation at CpG sites located within the ICRs. After bisulfite modification of the genomic DNA, the region of interest is amplified by PCR and analyzed by Pyrosequencing. The methylation value at each CpG site is calculated by the CpG software, which determines the ratio of the incorporation of "C" and "T" and converts the value in methylation percentage. PMID:26103904

  5. Relaxation of imprinting of IGFII gene in juvenile nasopharyngeal angiofibromas.

    PubMed

    Coutinho-Camillo, Cláudia M; Brentani, M Mitzi; Butugan, Ossamu; Torloni, Humberto; Nagai, Maria A

    2003-03-01

    IGFII and H19 genes are expressed only from one allele due to genomic imprinting, biallelic expression (loss of imprinting) being associated with the tumorigenic process of different types of tumors. The mechanism responsible for genomic imprinting is not yet determined, although DNA methylation has been considered the main genetic event for an imprinted mark. In the current study, the authors analyzed the imprinting status and expression levels of the IGFII and H19 genes in 27 cases of Juvenile Nasopharyngeal Angiofibroma (JNA) using RFLPs, RT-PCR, and Southern and Northern Blots. The authors found that four out of eight informative cases (50%) for ApaI/IFGII polymorphism showed biallelic expression of IFGII whereas none of the nine informative cases for the polymorphism showed biallelic expression of the H19 gene. Overexpression of IFGII was observed in 8 out of 22 cases (36.4%), and 7 out of 19 cases (36.8%) showed H19 overexpression. Hypomethylation was found only in the H19 gene in six out of eight cases analyzed. Therefore, our results demonstrate that alterations in the IFGII/H19 imprinted region occur in JNA.

  6. A model for transgenerational imprinting variation in complex traits.

    PubMed

    Wang, Chenguang; Wang, Zhong; Luo, Jiangtao; Li, Qin; Li, Yao; Ahn, Kwangmi; Prows, Daniel R; Wu, Rongling

    2010-07-14

    Despite the fact that genetic imprinting, i.e., differential expression of the same allele due to its different parental origins, plays a pivotal role in controlling complex traits or diseases, the origin, action and transmission mode of imprinted genes have still remained largely unexplored. We present a new strategy for studying these properties of genetic imprinting with a two-stage reciprocal F mating design, initiated with two contrasting inbred lines. This strategy maps quantitative trait loci that are imprinted (i.e., iQTLs) based on their segregation and transmission across different generations. By incorporating the allelic configuration of an iQTL genotype into a mixture model framework, this strategy provides a path to trace the parental origin of alleles from previous generations. The imprinting effects of iQTLs and their interactions with other traditionally defined genetic effects, expressed in different generations, are estimated and tested by implementing the EM algorithm. The strategy was used to map iQTLs responsible for survival time with four reciprocal F populations and test whether and how the detected iQTLs inherit their imprinting effects into the next generation. The new strategy will provide a tool for quantifying the role of imprinting effects in the creation and maintenance of phenotypic diversity and elucidating a comprehensive picture of the genetic architecture of complex traits and diseases.

  7. Transcriptome-wide investigation of genomic imprinting in chicken.

    PubMed

    Frésard, Laure; Leroux, Sophie; Servin, Bertrand; Gourichon, David; Dehais, Patrice; Cristobal, Magali San; Marsaud, Nathalie; Vignoles, Florence; Bed'hom, Bertrand; Coville, Jean-Luc; Hormozdiari, Farhad; Beaumont, Catherine; Zerjal, Tatiana; Vignal, Alain; Morisson, Mireille; Lagarrigue, Sandrine; Pitel, Frédérique

    2014-04-01

    Genomic imprinting is an epigenetic mechanism by which alleles of some specific genes are expressed in a parent-of-origin manner. It has been observed in mammals and marsupials, but not in birds. Until now, only a few genes orthologous to mammalian imprinted ones have been analyzed in chicken and did not demonstrate any evidence of imprinting in this species. However, several published observations such as imprinted-like QTL in poultry or reciprocal effects keep the question open. Our main objective was thus to screen the entire chicken genome for parental-allele-specific differential expression on whole embryonic transcriptomes, using high-throughput sequencing. To identify the parental origin of each observed haplotype, two chicken experimental populations were used, as inbred and as genetically distant as possible. Two families were produced from two reciprocal crosses. Transcripts from 20 embryos were sequenced using NGS technology, producing ∼200 Gb of sequences. This allowed the detection of 79 potentially imprinted SNPs, through an analysis method that we validated by detecting imprinting from mouse data already published. However, out of 23 candidates tested by pyrosequencing, none could be confirmed. These results come together, without a priori, with previous statements and phylogenetic considerations assessing the absence of genomic imprinting in chicken. PMID:24452801

  8. Transcriptome-wide investigation of genomic imprinting in chicken

    PubMed Central

    Frésard, Laure; Leroux, Sophie; Servin, Bertrand; Gourichon, David; Dehais, Patrice; Cristobal, Magali San; Marsaud, Nathalie; Vignoles, Florence; Bed'hom, Bertrand; Coville, Jean-Luc; Hormozdiari, Farhad; Beaumont, Catherine; Zerjal, Tatiana; Vignal, Alain; Morisson, Mireille; Lagarrigue, Sandrine; Pitel, Frédérique

    2014-01-01

    Genomic imprinting is an epigenetic mechanism by which alleles of some specific genes are expressed in a parent-of-origin manner. It has been observed in mammals and marsupials, but not in birds. Until now, only a few genes orthologous to mammalian imprinted ones have been analyzed in chicken and did not demonstrate any evidence of imprinting in this species. However, several published observations such as imprinted-like QTL in poultry or reciprocal effects keep the question open. Our main objective was thus to screen the entire chicken genome for parental-allele-specific differential expression on whole embryonic transcriptomes, using high-throughput sequencing. To identify the parental origin of each observed haplotype, two chicken experimental populations were used, as inbred and as genetically distant as possible. Two families were produced from two reciprocal crosses. Transcripts from 20 embryos were sequenced using NGS technology, producing ∼200 Gb of sequences. This allowed the detection of 79 potentially imprinted SNPs, through an analysis method that we validated by detecting imprinting from mouse data already published. However, out of 23 candidates tested by pyrosequencing, none could be confirmed. These results come together, without a priori, with previous statements and phylogenetic considerations assessing the absence of genomic imprinting in chicken. PMID:24452801

  9. Loss of genomic imprinting in Drosophila clones.

    PubMed

    Haigh, Andrew J; Lloyd, Vett K

    2006-08-01

    Genomic imprinting is a process that genetically distinguishes maternal and paternal genomes, and can result in parent-of-origin-dependent monoallelic expression of a gene that is dependent on the parent of origin. As such, an otherwise functional maternally inherited allele may be silenced so that the gene is expressed exclusively from the paternal allele, or vice versa. Once thought to be restricted to mammals, genomic imprinting has been documented in angiosperm plants (J.L. Kermicle. 1970. Genetics, 66: 69-85), zebrafish (C.C. Martin and R. McGowan. 1995. Genet. Res. 65: 21-28), insects, and C. elegans (C.J. Bean, C.E. Schaner, and W.G. Kelly. 2004. Nat. Genet. 36: 100-105.). In each case, it appears to rely on differential chromatin structure. Aberrant imprinting has been implicated in various human cancers and has been detected in a number of cloned mammals, potentially limiting the usefulness of somatic nuclear transfer. Here we show that genomic imprinting associated with a mini-X chromosome is lost in Drosophila melanogaster clones. PMID:17036079

  10. Molecularly imprinted membranes.

    PubMed

    Trotta, Francesco; Biasizzo, Miriam; Caldera, Fabrizio

    2012-07-19

    Although the roots of molecularly imprinted polymers lie in the beginning of 1930s in the past century, they have had an exponential growth only 40-50 years later by the works of Wulff and especially by Mosbach. More recently, it was also proved that molecular imprinted membranes (i.e., polymer thin films) that show recognition properties at molecular level of the template molecule are used in their formation. Different procedures and potential application in separation processes and catalysis are reported. The influences of different parameters on the discrimination abilities are also discussed.

  11. Molecularly Imprinted Membranes

    PubMed Central

    Trotta, Francesco; Biasizzo, Miriam; Caldera, Fabrizio

    2012-01-01

    Although the roots of molecularly imprinted polymers lie in the beginning of 1930s in the past century, they have had an exponential growth only 40–50 years later by the works of Wulff and especially by Mosbach. More recently, it was also proved that molecular imprinted membranes (i.e., polymer thin films) that show recognition properties at molecular level of the template molecule are used in their formation. Different procedures and potential application in separation processes and catalysis are reported. The influences of different parameters on the discrimination abilities are also discussed. PMID:24958291

  12. Genomic imprinting in farm animals.

    PubMed

    Tian, Xiuchun Cindy

    2014-02-01

    The mouse is the first species in which genomic imprinting was studied. Imprinting research in farm species has lagged behind owing to a lack of sequencing and genetic background information, as well as long generation intervals and high costs in tissue collection. Since the creation of Dolly, the first cloned mammal from an adult sheep, studies on genomic imprinting in domestic species have accelerated because animals from cloning and other assisted reproductive technologies exhibit phenotypes of imprinting disruptions. Although this review focuses on new developments in farm animals, most of the imprinting mechanism information was derived from the mouse.

  13. Genomic imprinting in farm animals.

    PubMed

    Tian, Xiuchun Cindy

    2014-02-01

    The mouse is the first species in which genomic imprinting was studied. Imprinting research in farm species has lagged behind owing to a lack of sequencing and genetic background information, as well as long generation intervals and high costs in tissue collection. Since the creation of Dolly, the first cloned mammal from an adult sheep, studies on genomic imprinting in domestic species have accelerated because animals from cloning and other assisted reproductive technologies exhibit phenotypes of imprinting disruptions. Although this review focuses on new developments in farm animals, most of the imprinting mechanism information was derived from the mouse. PMID:25384133

  14. Rasgrf1 Imprinting Is Regulated by a CTCF-Dependent Methylation-Sensitive Enhancer Blocker

    PubMed Central

    Yoon, Bongjune; Herman, Herry; Hu, Benjamin; Park, Yoon Jung; Lindroth, Anders; Bell, Adam; West, Adam G.; Chang, Yanjie; Stablewski, Aimee; Piel, Jessica C.; Loukinov, Dmitri I.; Lobanenkov, Victor V.; Soloway, Paul D.

    2005-01-01

    Imprinted methylation of the paternal Rasgrf1 allele in mice occurs at a differentially methylated domain (DMD) 30 kbp 5′ of the promoter. A repeated sequence 3′ of the DMD regulates imprinted methylation, which is required for imprinted expression. Here we identify the mechanism by which methylation controls imprinting. The DMD is an enhancer blocker that binds CTCF in a methylation-sensitive manner. CTCF bound to the unmethylated maternal allele silences expression. CTCF binding to the paternal allele is prevented by repeat-mediated methylation, allowing expression. Optimal in vitro enhancer-blocking activity requires CTCF binding sites. The enhancer blocker can be bypassed in vivo and imprinting abolished by placing an extra enhancer proximal to the promoter. Together, the repeats and the DMD constitute a binary switch that regulates Rasgrf1 imprinting. PMID:16314537

  15. Sequences Sufficient for Programming Imprinted Germline DNA Methylation Defined

    PubMed Central

    Park, Yoon Jung; Herman, Herry; Gao, Ying; Lindroth, Anders M.; Hu, Benjamin Y.; Murphy, Patrick J.; Putnam, James R.; Soloway, Paul D.

    2012-01-01

    Epigenetic marks are fundamental to normal development, but little is known about signals that dictate their placement. Insights have been provided by studies of imprinted loci in mammals, where monoallelic expression is epigenetically controlled. Imprinted expression is regulated by DNA methylation programmed during gametogenesis in a sex-specific manner and maintained after fertilization. At Rasgrf1 in mouse, paternal-specific DNA methylation on a differential methylation domain (DMD) requires downstream tandem repeats. The DMD and repeats constitute a binary switch regulating paternal-specific expression. Here, we define sequences sufficient for imprinted methylation using two transgenic mouse lines: One carries the entire Rasgrf1 cluster (RC); the second carries only the DMD and repeats (DR) from Rasgrf1. The RC transgene recapitulated all aspects of imprinting seen at the endogenous locus. DR underwent proper DNA methylation establishment in sperm and erasure in oocytes, indicating the DMD and repeats are sufficient to program imprinted DNA methylation in germlines. Both transgenes produce a DMD-spanning pit-RNA, previously shown to be necessary for imprinted DNA methylation at the endogenous locus. We show that when pit-RNA expression is controlled by the repeats, it regulates DNA methylation in cis only and not in trans. Interestingly, pedigree history dictated whether established DR methylation patterns were maintained after fertilization. When DR was paternally transmitted followed by maternal transmission, the unmethylated state that was properly established in the female germlines could not be maintained. This provides a model for transgenerational epigenetic inheritance in mice. PMID:22403732

  16. [Evolution of genomic imprinting in mammals: what a zoo!].

    PubMed

    Proudhon, Charlotte; Bourc'his, Déborah

    2010-05-01

    Genomic imprinting imposes an obligate mode of biparental reproduction in mammals. This phenomenon results from the monoparental expression of a subset of genes. This specific gene regulation mechanism affects viviparous mammals, especially eutherians, but also marsupials to a lesser extent. Oviparous mammals, or monotremes, do not seem to demonstrate monoparental allele expression. This phylogenic confinement suggests that the evolution of the placenta imposed a selective pressure for the emergence of genomic imprinting. This physiological argument is now complemented by recent genomic evidence facilitated by the sequencing of the platypus genome, a rare modern day case of a monotreme. Analysis of the platypus genome in comparison to eutherian genomes shows a chronological and functional coincidence between the appearance of genomic imprinting and transposable element accumulation. The systematic comparative analyses of genomic sequences in different species is essential for the further understanding of genomic imprinting emergence and divergent evolution along mammalian speciation.

  17. [Evolution of genomic imprinting in mammals: what a zoo!].

    PubMed

    Proudhon, Charlotte; Bourc'his, Déborah

    2010-05-01

    Genomic imprinting imposes an obligate mode of biparental reproduction in mammals. This phenomenon results from the monoparental expression of a subset of genes. This specific gene regulation mechanism affects viviparous mammals, especially eutherians, but also marsupials to a lesser extent. Oviparous mammals, or monotremes, do not seem to demonstrate monoparental allele expression. This phylogenic confinement suggests that the evolution of the placenta imposed a selective pressure for the emergence of genomic imprinting. This physiological argument is now complemented by recent genomic evidence facilitated by the sequencing of the platypus genome, a rare modern day case of a monotreme. Analysis of the platypus genome in comparison to eutherian genomes shows a chronological and functional coincidence between the appearance of genomic imprinting and transposable element accumulation. The systematic comparative analyses of genomic sequences in different species is essential for the further understanding of genomic imprinting emergence and divergent evolution along mammalian speciation. PMID:20510148

  18. Short interspersed element (SINE) depletion and long interspersed element (LINE) abundance are not features universally required for imprinting.

    PubMed

    Cowley, Michael; de Burca, Anna; McCole, Ruth B; Chahal, Mandeep; Saadat, Ghazal; Oakey, Rebecca J; Schulz, Reiner

    2011-04-20

    Genomic imprinting is a form of gene dosage regulation in which a gene is expressed from only one of the alleles, in a manner dependent on the parent of origin. The mechanisms governing imprinted gene expression have been investigated in detail and have greatly contributed to our understanding of genome regulation in general. Both DNA sequence features, such as CpG islands, and epigenetic features, such as DNA methylation and non-coding RNAs, play important roles in achieving imprinted expression. However, the relative importance of these factors varies depending on the locus in question. Defining the minimal features that are absolutely required for imprinting would help us to understand how imprinting has evolved mechanistically. Imprinted retrogenes are a subset of imprinted loci that are relatively simple in their genomic organisation, being distinct from large imprinting clusters, and have the potential to be used as tools to address this question. Here, we compare the repeat element content of imprinted retrogene loci with non-imprinted controls that have a similar locus organisation. We observe no significant differences that are conserved between mouse and human, suggesting that the paucity of SINEs and relative abundance of LINEs at imprinted loci reported by others is not a sequence feature universally required for imprinting.

  19. The Wellcome Prize Lecture. Genetic imprinting: the battle of the sexes rages on.

    PubMed

    Reik, W

    1996-03-01

    Genomic imprinting in mammals is an important genetic mechanism by which genes are expressed or repressed depending on which parent they have been inherited from. Some properties of the imprinting mechanism are already established; notably, some of the effects of imprinting on mammalian development can be explained by the phenotypic effects of a number of specific imprinted genes, which include major fetal growth factors. An evolutionary explanation of imprinting has also been suggested. Some of the molecular mechanisms of imprinting are known, and these include the modification of DNA and chromosomes in the form of DNA methylation and possibly heritable chromatin structures. Loss of imprinting or altered imprinting is implicated in a large number of genetic diseases and cancers. Many important issues remain to be resolved; these include the precise molecular mechanisms and, in particular, the nature of the primary imprints that are inherited from the parental gametes, and the genes that control the imprinting process. Isolation of the majority of imprinted genes and the elucidation of their phenotypic effects and physiology are major goals for the future. These studies will provide important insights into human genetics, and will connect evolutionary understanding with physiology, genetic disease and human behaviour.

  20. The Wellcome Prize Lecture. Genetic imprinting: the battle of the sexes rages on.

    PubMed

    Reik, W

    1996-03-01

    Genomic imprinting in mammals is an important genetic mechanism by which genes are expressed or repressed depending on which parent they have been inherited from. Some properties of the imprinting mechanism are already established; notably, some of the effects of imprinting on mammalian development can be explained by the phenotypic effects of a number of specific imprinted genes, which include major fetal growth factors. An evolutionary explanation of imprinting has also been suggested. Some of the molecular mechanisms of imprinting are known, and these include the modification of DNA and chromosomes in the form of DNA methylation and possibly heritable chromatin structures. Loss of imprinting or altered imprinting is implicated in a large number of genetic diseases and cancers. Many important issues remain to be resolved; these include the precise molecular mechanisms and, in particular, the nature of the primary imprints that are inherited from the parental gametes, and the genes that control the imprinting process. Isolation of the majority of imprinted genes and the elucidation of their phenotypic effects and physiology are major goals for the future. These studies will provide important insights into human genetics, and will connect evolutionary understanding with physiology, genetic disease and human behaviour. PMID:8845132

  1. Long noncoding RNAs: Lessons from genomic imprinting.

    PubMed

    Kanduri, Chandrasekhar

    2016-01-01

    Genomic imprinting has been a great resource for studying transcriptional and post-transcriptional-based gene regulation by long noncoding RNAs (lncRNAs). In this article, I overview the functional role of intergenic lncRNAs (H19, IPW, and MEG3), antisense lncRNAs (Kcnq1ot1, Airn, Nespas, Ube3a-ATS), and enhancer lncRNAs (IG-DMR eRNAs) to understand the diverse mechanisms being employed by them in cis and/or trans to regulate the parent-of-origin-specific expression of target genes. Recent evidence suggests that some of the lncRNAs regulate imprinting by promoting intra-chromosomal higher-order chromatin compartmentalization, affecting replication timing and subnuclear positioning. Whereas others act via transcriptional occlusion or transcriptional collision-based mechanisms. By establishing genomic imprinting of target genes, the lncRNAs play a critical role in important biological functions, such as placental and embryonic growth, pluripotency maintenance, cell differentiation, and neural-related functions such as synaptic development and plasticity. An emerging consensus from the recent evidence is that the imprinted lncRNAs fine-tune gene expression of the protein-coding genes to maintain their dosage in cell. Hence, lncRNAs from imprinted clusters offer insights into their mode of action, and these mechanisms have been the basis for uncovering the mode of action of lncRNAs in several other biological contexts. This article is part of a Special Issue entitled: Clues to long noncoding RNA taxonomy, edited by Dr. Tetsuro Hirose and Dr. Shinichi Nakagawa.

  2. Long noncoding RNAs: Lessons from genomic imprinting.

    PubMed

    Kanduri, Chandrasekhar

    2016-01-01

    Genomic imprinting has been a great resource for studying transcriptional and post-transcriptional-based gene regulation by long noncoding RNAs (lncRNAs). In this article, I overview the functional role of intergenic lncRNAs (H19, IPW, and MEG3), antisense lncRNAs (Kcnq1ot1, Airn, Nespas, Ube3a-ATS), and enhancer lncRNAs (IG-DMR eRNAs) to understand the diverse mechanisms being employed by them in cis and/or trans to regulate the parent-of-origin-specific expression of target genes. Recent evidence suggests that some of the lncRNAs regulate imprinting by promoting intra-chromosomal higher-order chromatin compartmentalization, affecting replication timing and subnuclear positioning. Whereas others act via transcriptional occlusion or transcriptional collision-based mechanisms. By establishing genomic imprinting of target genes, the lncRNAs play a critical role in important biological functions, such as placental and embryonic growth, pluripotency maintenance, cell differentiation, and neural-related functions such as synaptic development and plasticity. An emerging consensus from the recent evidence is that the imprinted lncRNAs fine-tune gene expression of the protein-coding genes to maintain their dosage in cell. Hence, lncRNAs from imprinted clusters offer insights into their mode of action, and these mechanisms have been the basis for uncovering the mode of action of lncRNAs in several other biological contexts. This article is part of a Special Issue entitled: Clues to long noncoding RNA taxonomy, edited by Dr. Tetsuro Hirose and Dr. Shinichi Nakagawa. PMID:26004516

  3. The evolution of genomic imprinting: theories, predictions and empirical tests.

    PubMed

    Patten, M M; Ross, L; Curley, J P; Queller, D C; Bonduriansky, R; Wolf, J B

    2014-08-01

    The epigenetic phenomenon of genomic imprinting has motivated the development of numerous theories for its evolutionary origins and genomic distribution. In this review, we examine the three theories that have best withstood theoretical and empirical scrutiny. These are: Haig and colleagues' kinship theory; Day and Bonduriansky's sexual antagonism theory; and Wolf and Hager's maternal-offspring coadaptation theory. These theories have fundamentally different perspectives on the adaptive significance of imprinting. The kinship theory views imprinting as a mechanism to change gene dosage, with imprinting evolving because of the differential effect that gene dosage has on the fitness of matrilineal and patrilineal relatives. The sexual antagonism and maternal-offspring coadaptation theories view genomic imprinting as a mechanism to modify the resemblance of an individual to its two parents, with imprinting evolving to increase the probability of expressing the fitter of the two alleles at a locus. In an effort to stimulate further empirical work on the topic, we carefully detail the logic and assumptions of all three theories, clarify the specific predictions of each and suggest tests to discriminate between these alternative theories for why particular genes are imprinted. PMID:24755983

  4. The evolution of genomic imprinting: theories, predictions and empirical tests

    PubMed Central

    Patten, M M; Ross, L; Curley, J P; Queller, D C; Bonduriansky, R; Wolf, J B

    2014-01-01

    The epigenetic phenomenon of genomic imprinting has motivated the development of numerous theories for its evolutionary origins and genomic distribution. In this review, we examine the three theories that have best withstood theoretical and empirical scrutiny. These are: Haig and colleagues' kinship theory; Day and Bonduriansky's sexual antagonism theory; and Wolf and Hager's maternal–offspring coadaptation theory. These theories have fundamentally different perspectives on the adaptive significance of imprinting. The kinship theory views imprinting as a mechanism to change gene dosage, with imprinting evolving because of the differential effect that gene dosage has on the fitness of matrilineal and patrilineal relatives. The sexual antagonism and maternal–offspring coadaptation theories view genomic imprinting as a mechanism to modify the resemblance of an individual to its two parents, with imprinting evolving to increase the probability of expressing the fitter of the two alleles at a locus. In an effort to stimulate further empirical work on the topic, we carefully detail the logic and assumptions of all three theories, clarify the specific predictions of each and suggest tests to discriminate between these alternative theories for why particular genes are imprinted. PMID:24755983

  5. The evolution of genomic imprinting: theories, predictions and empirical tests.

    PubMed

    Patten, M M; Ross, L; Curley, J P; Queller, D C; Bonduriansky, R; Wolf, J B

    2014-08-01

    The epigenetic phenomenon of genomic imprinting has motivated the development of numerous theories for its evolutionary origins and genomic distribution. In this review, we examine the three theories that have best withstood theoretical and empirical scrutiny. These are: Haig and colleagues' kinship theory; Day and Bonduriansky's sexual antagonism theory; and Wolf and Hager's maternal-offspring coadaptation theory. These theories have fundamentally different perspectives on the adaptive significance of imprinting. The kinship theory views imprinting as a mechanism to change gene dosage, with imprinting evolving because of the differential effect that gene dosage has on the fitness of matrilineal and patrilineal relatives. The sexual antagonism and maternal-offspring coadaptation theories view genomic imprinting as a mechanism to modify the resemblance of an individual to its two parents, with imprinting evolving to increase the probability of expressing the fitter of the two alleles at a locus. In an effort to stimulate further empirical work on the topic, we carefully detail the logic and assumptions of all three theories, clarify the specific predictions of each and suggest tests to discriminate between these alternative theories for why particular genes are imprinted.

  6. Angelman syndrome imprinting center encodes a transcriptional promoter

    PubMed Central

    Lewis, Michael W.; Brant, Jason O.; Kramer, Joseph M.; Moss, James I.; Yang, Thomas P.; Hansen, Peter J.; Williams, R. Stan; Resnick, James L.

    2015-01-01

    Clusters of imprinted genes are often controlled by an imprinting center that is necessary for allele-specific gene expression and to reprogram parent-of-origin information between generations. An imprinted domain at 15q11–q13 is responsible for both Angelman syndrome (AS) and Prader–Willi syndrome (PWS), two clinically distinct neurodevelopmental disorders. Angelman syndrome arises from the lack of maternal contribution from the locus, whereas Prader–Willi syndrome results from the absence of paternally expressed genes. In some rare cases of PWS and AS, small deletions may lead to incorrect parent-of-origin allele identity. DNA sequences common to these deletions define a bipartite imprinting center for the AS–PWS locus. The PWS–smallest region of deletion overlap (SRO) element of the imprinting center activates expression of genes from the paternal allele. The AS–SRO element generates maternal allele identity by epigenetically inactivating the PWS–SRO in oocytes so that paternal genes are silenced on the future maternal allele. Here we have investigated functional activities of the AS–SRO, the element necessary for maternal allele identity. We find that, in humans, the AS–SRO is an oocyte-specific promoter that generates transcripts that transit the PWS–SRO. Similar upstream promoters were detected in bovine oocytes. This result is consistent with a model in which imprinting centers become DNA methylated and acquire maternal allele identity in oocytes in response to transiting transcription. PMID:25378697

  7. Angelman syndrome imprinting center encodes a transcriptional promoter.

    PubMed

    Lewis, Michael W; Brant, Jason O; Kramer, Joseph M; Moss, James I; Yang, Thomas P; Hansen, Peter J; Williams, R Stan; Resnick, James L

    2015-06-01

    Clusters of imprinted genes are often controlled by an imprinting center that is necessary for allele-specific gene expression and to reprogram parent-of-origin information between generations. An imprinted domain at 15q11-q13 is responsible for both Angelman syndrome (AS) and Prader-Willi syndrome (PWS), two clinically distinct neurodevelopmental disorders. Angelman syndrome arises from the lack of maternal contribution from the locus, whereas Prader-Willi syndrome results from the absence of paternally expressed genes. In some rare cases of PWS and AS, small deletions may lead to incorrect parent-of-origin allele identity. DNA sequences common to these deletions define a bipartite imprinting center for the AS-PWS locus. The PWS-smallest region of deletion overlap (SRO) element of the imprinting center activates expression of genes from the paternal allele. The AS-SRO element generates maternal allele identity by epigenetically inactivating the PWS-SRO in oocytes so that paternal genes are silenced on the future maternal allele. Here we have investigated functional activities of the AS-SRO, the element necessary for maternal allele identity. We find that, in humans, the AS-SRO is an oocyte-specific promoter that generates transcripts that transit the PWS-SRO. Similar upstream promoters were detected in bovine oocytes. This result is consistent with a model in which imprinting centers become DNA methylated and acquire maternal allele identity in oocytes in response to transiting transcription. PMID:25378697

  8. The effect of amniotic membrane stem cells as donor nucleus on gene expression in reconstructed bovine oocytes.

    PubMed

    Nazari, Hassan; Shirazi, Abolfazl; Shams-Esfandabadi, Naser; Afzali, Azita; Ahmadi, Ebrahim

    2016-01-01

    Nuclear reprogramming of a differentiated cell in somatic cell nuclear transfer (SCNT) is a major concern in cloning procedures. Indeed, the nucleus of the donor cell often fails to express the genes which are a prerequisite for normal early embryo development. This study was aimed to evaluate the developmental competence and the expression pattern of some reprogramming related genes in bovine cloned embryos reconstructed with amniotic membrane stem cells (AMSCs) in comparison with those reconstructed with mesenchymal stem cells (MSCs) and adult fibroblasts (AF) as well as with in vitro fertilized (IVF) oocytes. In vitro matured abattoir-derived oocytes were considered as recipients and a hand-made cloning technique was employed for oocyte enucleation and nuclear transfer (NT) procedures. The expression pattern of genes involved in self-renewal and pluripotency (POU5F1, SOX2, NANOG), imprinting (IGF2, IGF2R), DNA methylation (DNMT1, DNMT3A), histone deacetylation (HDAC2), and apoptosis (BAX, BCL2) were evaluated in NT and IVF derived embryos. Despite the insignificant difference in cleavage rate between reconstructed and IVF oocytes, the blastocyst rate in the IVF group was higher than that of other groups. Among reconstructed oocytes, a higher blastocysts rate was observed in MSC-NT and AMSCs-NT derived embryos that were significantly higher than AF-NT derived ones. There were more similarities in the expression pattern of pluripotency and epigenetic modification genes between MSC-NT and IVF derived blastocysts compared with other groups. In conclusion, considering developmental competence, AMSCs, as alternative donors in SCNT procedure, like MSCs, were prone to have more advantage compared with AF. PMID:27389982

  9. No detectable association of IGF2BP2 and SLC30A8 genes with type 2 diabetes in the population of Hyderabad, India☆

    PubMed Central

    Kommoju, Uma Jyothi; Maruda, Jayaraj; Kadarkarai, Subburaj; Irgam, Kumuda; Kotla, Jaya Prasad; Velaga, Lakshmi; Mohan Reddy, Battini

    2013-01-01

    Genome-wide association studies identified novel genes associated with T2DM which have been replicated in different populations. We try to examine here if certain frequently replicated SNPs of Insulin growth factor 2 m-RNA binding protein 2 (IGF2BP2) (rs4402960, rs1470579) and Solute Carrier family 30 member 8 (SLC30A8) (rs13266634) genes, known to be implicated in insulin pathway, are associated with T2DM in the population of Hyderabad, which is considered to be a diabetic capital of India. Genotyping of the 1379 samples, 758 cases and 621 controls, for the SNPs was performed on sequenom massarray platform. The logistic regression analysis was done using SPSS software and the post-hoc power of the study was estimated using G power. The allele and genotype frequencies were similar between cases and controls, both for SNPs of IGF2BP2 and SLC30A8 genes. Logistic regression did not reveal significant allelic or genotypic association of any of the three SNPs with T2DM. Despite large sample size and adequate power, we could not replicate the association of IGF2BP2 and SLC30A8 SNPs with T2DM in our sample from Hyderabad (A.P.), India, albeit another study based on much larger sample but from heterogeneous populations from the northern parts of India showed significant association of two of the above 3 SNPs, suggesting variable nature of susceptibility of these genes in different ethnic groups. Although the IGF2BP2 and SLC30A8 genes are important in the functional pathway of Insulin secretion, it appears that these genes do not play a significant role in the susceptibility to T2DM in this population. PMID:25606370

  10. Different yet similar: evolution of imprinting in flowering plants and mammals

    PubMed Central

    2014-01-01

    Genomic imprinting refers to a form of epigenetic gene regulation whereby alleles are differentially expressed in a parent-of-origin-dependent manner. Imprinting evolved independently in flowering plants and in therian mammals in association with the elaboration of viviparity and a placental habit. Despite the striking differences in plant and animal reproduction, genomic imprinting shares multiple characteristics between them. In both groups, imprinted expression is controlled, at least in part, by DNA methylation and chromatin modifications in cis-regulatory regions, and many maternally and paternally expressed genes display complementary dosage-dependent effects during embryogenesis. This suggests that genomic imprinting evolved in response to similar selective pressures in flowering plants and mammals. Nevertheless, there are important differences between plant and animal imprinting. In particular, genomic imprinting has been shown to be more flexible and evolutionarily labile in plants. In mammals, imprinted genes are organized mainly in highly conserved clusters, whereas in plants they occur in isolation throughout the genome and are affected by local gene duplications. There is a large degree of intra- and inter-specific variation in imprinted gene expression in plants. These differences likely reflect the distinct life cycles and the different evolutionary dynamics that shape plant and animal genomes. PMID:25165562

  11. Association study of polymorphisms in FOXO3, AKT1 and IGF-2R genes with human longevity in a Han Chinese population

    PubMed Central

    Liu, Xiaoqi; Ma, Shi; Lin, He; Chen, Rong; Hao, Fang; Zhang, Dingding

    2016-01-01

    FOXO3, AKT1 and IGF-2R are critical members of the insulin/IGF-1 signaling pathway. Previous studies showed that polymorphisms (SNPs) in FOXO3, AKT1 and IGF-2R were associated with human longevity in Caucasian population. However, the association of these SNPs in different ethnic groups is often inconsistent. Here, we investigated the association of genetic variants in three genes with human longevity in Han Chinese population. Twelve SNPs from FOXO3, AKT1 and IGF-2R were selected and genotyped in 1202 long-lived individuals (nonagenarians and centenarians) and younger individuals. Rs9486902 of FOXO3 was found to be associated with human longevity in both genders combined in this study (allelic P = 0.002, corrected P = 0.024). The other eleven SNPs were not significantly associated with human longevity in Han Chinese population. The haplotypes TTCTT, CCTTC and CTCCT of FOXO3 as well as GGTCGG and GGTCAG of AKT1 were shown to have a significant difference between case and control (P =0.006, 2.78×10−5, 4.68×10−6, 0.003,0.005, respectively). The estimated prevalence of diabetes and prediabetes in long-lived individuals was significantly lower than in common adult populations (P = 0.001, 2.3×10−26). Therefore, the search for longevity-associated genes provides the identification of new potential targets beneficial for the treatment of diabetes. PMID:26683100

  12. Improving gene targeting efficiency on pig IGF2 mediated by ZFNs and CRISPR/Cas9 by using SSA reporter system.

    PubMed

    Jinqing, Wu; Gui, Mei; Zhiguo, Liu; Yaosheng, Chen; Peiqing, Cong; Zuyong, He

    2015-01-01

    IGF2 (Insulin-like growth factor 2) is a major growth factor affecting porcine fetal and postnatal development. We propose that the precise modification of IGF2 gene of Chinese indigenous pig breed--Lantang pig by genome editing technology could reduce its backfat thickness, and increase its lean meat content. Here, we tested the genome editing activities of zinc finger nucleases (ZFNs) and CRISPR/Cas9 system on IGF2 gene in the Lantang porcine fetal fibroblasts (PEF). The results indicated that CRISPR/Cas9 presented cutting efficiency up to 9.2%, which was significantly higher than that generated by ZFNs with DNA cutting efficiency lower than 1%. However, even by using CRISPR/Cas9, the relatively lower percentage of genetically modified cells in the transfected population was not satisfied for somatic nuclear transfer (SCNT). Therefore, we used a SSA (Single-strand annealing) reporter system to enrich genetically modified cells induced by ZFN or CRISPR/Cas9. T7 endonuclease I assay revealed that this strategy improved genome editing activity of CRISPR/Cas9 by 5 folds, and was even more effective for improving genome editing efficiency of ZFN.

  13. A dose-dependent decrease in the fraction of cases harboring M6P/IGF2R mutations in hepatocellular carcinomas from the atomic bomb survivors.

    PubMed

    Iwamoto, Keisuke S; Yano, Shiho; Barber, Chad L; MacPhee, Donald G; Tokuoka, Shoji

    2006-12-01

    The risk for hepatocellular carcinoma (HCC) development is significantly heightened in the atomic bomb survivors, but the mechanism is unclear. We have previously reported finding a radiation dose-dependent increase in HCCs with TP53 mutations from the survivors. We now show that, in the same HCC samples, the frequency of 3'-untranslated region (3'UTR) mutations in M6P/IGF2R, a candidate HCC tumor suppressor gene, decreases with dose (P = 0.0091), implying a radiation dose-dependent negative selection of cells harboring such mutations. The fact that they were in the 3'UTR implicates changes in transcript stability rather than in protein function as the mechanism. Moreover, these M6P/IGF2R 3'UTR mutations and the TP53 mutations detected previously were mutually exclusive in most of the tumors, suggesting two independent pathways to HCC development, with the TP53 pathway being more favored with increasing radiation dose than the M6P/IGF2R pathway. These results suggest that tumors attributable to radiation may be genotypically different from tumors of other etiologies and hence may provide a way of distinguishing radiation-induced cancers from "background" cancers--a shift from the current paradigm.

  14. IGF2BP2 rs11705701 polymorphisms are associated with prediabetes in a Chinese population: A population-based case-control study

    PubMed Central

    Han, Liyuan; Li, Yuanyuan; Tang, Linlin; Chen, Zhongwei; Zhang, Tao; Chen, Sihan; Liu, Shengyuan; Peng, Xiaolin; Mai, Yifeng; Zhuo, Renjie; Wang, Changyi; Duan, Shiwei

    2016-01-01

    Associations between insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) rs11705701, insulin receptor substrate 1 rs7578326, gastric inhibitory polypeptide receptor rs10423928 and transcription factor 7-like 2 rs12255372 gene polymorphisms with prediabetes and type 2 diabetes (T2D) have not been evaluated in the Han Chinese population. These four genetic variants were investigated for their associations with prediabetes and T2D among 490 unrelated patients with T2D, 471 patients with prediabetes and 575 healthy controls. Sequenom MassARRAY software was used to genotype the patients for these variants. The Generalized Multifactor Dimensionality Reduction method was used to analyze the gene-gene and gene-environment interactions. A breakdown analysis by gender revealed a significant association of IGF2BP2 rs11705701 with prediabetes under the dominant genetic model in females following application of the Bonferroni correction (odds ratio = 0.26; 95% confidence interval = 0.10–0.67; P=0.005). However, no significant associations were reported between any of the other three polymorphisms and T2D under any genetic models. Furthermore, there were no statistically significant gene-gene or gene-environment interactions when evaluated with the above association tests. The present case-control study reveals a significant association between IGF2BP2 rs11705701 and prediabetes in female patients. PMID:27588103

  15. Association of a novel SNP in exon 10 of the IGF2 gene with growth traits in Egyptian water buffalo (Bubalus bubalis).

    PubMed

    Abo-Al-Ela, Haitham G; El-Magd, Mohammed Abu; El-Nahas, Abeer F; Mansour, Ali A

    2014-08-01

    Insulin-like growth factor 2 (IGF2) plays an important role in muscle growth and it might be used as a marker for the growth traits selection strategies in farm animals. The objectives of this study were to detect polymorphisms in exon 10 of IGF2 and to determine associations between these polymorphisms and growth traits in Egyptian water buffalo. PCR-single-strand conformation polymorphism (SSCP) and DNA sequencing methods were used to detect any prospective polymorphism. A novel single nucleotide polymorphism (SNP), C287A, was detected. It was a non-synonymous mutation and led to replacement of glutamine (Q) amino acid (aa) by histidine (H) aa. Three different SSCP patterns were observed: AA, AC, and CC, with frequencies of 0.540, 0.325, and 0.135, respectively. Association analyses revealed that the AA individuals had a higher average daily gain (ADG) than other individuals (CC and AC) from birth to 9 months of age. We conclude that the AA genotype in C287A SNP in the exon 10 of the IGF2 gene is associated with the ADG during the age from birth to 9 months and could be used as a potential genetic marker for selection of growth traits in Egyptian buffalo.

  16. Regulation of supply and demand for maternal nutrients in mammals by imprinted genes

    PubMed Central

    Reik, Wolf; Constância, Miguel; Fowden, Abigail; Anderson, Neil; Dean, Wendy; Ferguson-Smith, Anne; Tycko, Benjamin; Sibley, Colin

    2003-01-01

    The placenta has evolved in eutherian mammals primarily to provide nutrients for the developing fetus. The genetic control of the regulation of supply and demand for maternal nutrients is not understood. In this review we argue that imprinted genes have central roles in controlling both the fetal demand for, and the placental supply of, maternal nutrients. Recent studies on Igf2 (insulin-like growth factor 2) knockout mouse models provide experimental support for this hypothesis. These show effects on placental transport capacity consistent with a role of IGF-II in modulating both the placental supply and fetal demand for nutrients. Imprinting of genes with such functions may have coevolved with the placenta and new evidence suggests that transporter proteins, as well as the regulators themselves, may also be imprinted. These data and hypotheses are important, as deregulation of supply and demand affects fetal growth and has long term consequences for health in mammals both in the neonatal period and, as a result of fetal programming, in adulthood. PMID:12562908

  17. mRNA imprinting

    PubMed Central

    2011-01-01

    Following its synthesis in the nucleus, mRNA undergoes various stages that are critical for the proper synthesis, localization and possibly functionality of its encoded protein. Recently, we have shown that two RNA polymerase II (Pol II) subunits, Rpb4p and Rpb7p, associate with the nascent transcript co-transcriptionally. This “mRNA imprinting” lasts throughout the mRNA lifetime and is required for proper regulation of all major stages that the mRNA undergoes. Other possible cases of co-transcriptional imprinting are discussed. Since mRNAs can be transported from the synthesizing cell to other cells, we propose that mRNA imprinting can also affect the phenotype of the recipient cells. This can be viewed as “mRNA-based epigenetics.” PMID:21686103

  18. Solvent Immersion Imprint Lithography

    SciTech Connect

    Vasdekis, Andreas E.; Wilkins, Michael J.; Grate, Jay W.; Kelly, Ryan T.; Konopka, Allan; Xantheas, Sotiris S.; Chang, M. T.

    2014-06-21

    The mechanism of polymer disolution was explored for polymer microsystem prototyping, including microfluidics and optofluidics. Polymer films are immersed in a solvent, imprinted and finally brought into contact with a non-modified surface to permanently bond. The underlying polymer-solvent interactions were experimentally and theoretically investigated, and enabled rapid polymer microsystem prototyping. During imprinting, small molecule integration in the molded surfaces was feasible, a principle applied to oxygen sensing. Polystyrene (PS) was employed for microbiological studies at extreme environmental conditions. The thermophile anaerobe Clostridium Thermocellum was grown in PS pore-scale micromodels, revealing a double mean generation lifetime than under ideal culture conditions. Microsystem prototyping through directed polymer dissolution is simple and accessible, while simultaneous patterning, bonding, and surface/volume functionalization are possible in less than one minute.

  19. Changes in Parthenogenetic Imprinting Patterns during Reprogramming by Cell Fusion.

    PubMed

    Jang, Hyun Sik; Hong, Yean Ju; Choi, Hyun Woo; Song, Hyuk; Byun, Sung June; Uhm, Sang Jun; Seo, Han Geuk; Do, Jeong Tae

    2016-01-01

    Differentiated somatic cells can be reprogrammed into the pluripotent state by cell-cell fusion. In the pluripotent state, reprogrammed cells may then self-renew and differentiate into all three germ layers. Fusion-induced reprogramming also epigenetically modifies the somatic cell genome through DNA demethylation, X chromosome reactivation, and histone modification. In this study, we investigated whether fusion with embryonic stem cells (ESCs) also reprograms genomic imprinting patterns in somatic cells. In particular, we examined imprinting changes in parthenogenetic neural stem cells fused with biparental ESCs, as well as in biparental neural stem cells fused with parthenogenetic ESCs. The resulting hybrid cells expressed the pluripotency markers Oct4 and Nanog. In addition, methylation of several imprinted genes except Peg3 was comparable between hybrid cells and ESCs. This finding indicates that reprogramming by cell fusion does not necessarily reverse the status of all imprinted genes to the state of pluripotent fusion partner. PMID:27232503

  20. Changes in Parthenogenetic Imprinting Patterns during Reprogramming by Cell Fusion

    PubMed Central

    Jang, Hyun Sik; Hong, Yean Ju; Choi, Hyun Woo; Song, Hyuk; Byun, Sung June; Uhm, Sang Jun; Seo, Han Geuk; Do, Jeong Tae

    2016-01-01

    Differentiated somatic cells can be reprogrammed into the pluripotent state by cell-cell fusion. In the pluripotent state, reprogrammed cells may then self-renew and differentiate into all three germ layers. Fusion-induced reprogramming also epigenetically modifies the somatic cell genome through DNA demethylation, X chromosome reactivation, and histone modification. In this study, we investigated whether fusion with embryonic stem cells (ESCs) also reprograms genomic imprinting patterns in somatic cells. In particular, we examined imprinting changes in parthenogenetic neural stem cells fused with biparental ESCs, as well as in biparental neural stem cells fused with parthenogenetic ESCs. The resulting hybrid cells expressed the pluripotency markers Oct4 and Nanog. In addition, methylation of several imprinted genes except Peg3 was comparable between hybrid cells and ESCs. This finding indicates that reprogramming by cell fusion does not necessarily reverse the status of all imprinted genes to the state of pluripotent fusion partner. PMID:27232503

  1. Conserved imprinting associated with unique epigenetic signatures in the Arabidopsis genus.

    PubMed

    Klosinska, Maja; Picard, Colette L; Gehring, Mary

    2016-01-01

    In plants, imprinted gene expression occurs in endosperm seed tissue and is sometimes associated with differential DNA methylation between maternal and paternal alleles(1). Imprinting is theorized to have been selected for because of conflict between parental genomes in offspring(2), but most studies of imprinting have been conducted in Arabidopsis thaliana, an inbred primarily self-fertilizing species that should have limited parental conflict. We examined embryo and endosperm allele-specific expression and DNA methylation genome-wide in the wild outcrossing species Arabidopsis lyrata. Here we show that the majority of A. lyrata imprinted genes also exhibit parentally biased expression in A. thaliana, suggesting that there is evolutionary conservation in gene imprinting. Surprisingly, we discovered substantial interspecies differences in methylation features associated with paternally expressed imprinted genes (PEGs). Unlike in A. thaliana, the maternal allele of many A. lyrata PEGs was hypermethylated in the CHG context. Increased maternal allele CHG methylation was associated with increased expression bias in favour of the paternal allele. We propose that CHG methylation maintains or reinforces repression of maternal alleles of PEGs. These data suggest that the genes subject to imprinting are largely conserved, but there is flexibility in the epigenetic mechanisms employed between closely related species to maintain monoallelic expression. This supports the idea that imprinting of specific genes is a functional phenomenon, and not simply a byproduct of seed epigenomic reprogramming.

  2. Conserved imprinting associated with unique epigenetic signatures in the Arabidopsis genus.

    PubMed

    Klosinska, Maja; Picard, Colette L; Gehring, Mary

    2016-01-01

    In plants, imprinted gene expression occurs in endosperm seed tissue and is sometimes associated with differential DNA methylation between maternal and paternal alleles(1). Imprinting is theorized to have been selected for because of conflict between parental genomes in offspring(2), but most studies of imprinting have been conducted in Arabidopsis thaliana, an inbred primarily self-fertilizing species that should have limited parental conflict. We examined embryo and endosperm allele-specific expression and DNA methylation genome-wide in the wild outcrossing species Arabidopsis lyrata. Here we show that the majority of A. lyrata imprinted genes also exhibit parentally biased expression in A. thaliana, suggesting that there is evolutionary conservation in gene imprinting. Surprisingly, we discovered substantial interspecies differences in methylation features associated with paternally expressed imprinted genes (PEGs). Unlike in A. thaliana, the maternal allele of many A. lyrata PEGs was hypermethylated in the CHG context. Increased maternal allele CHG methylation was associated with increased expression bias in favour of the paternal allele. We propose that CHG methylation maintains or reinforces repression of maternal alleles of PEGs. These data suggest that the genes subject to imprinting are largely conserved, but there is flexibility in the epigenetic mechanisms employed between closely related species to maintain monoallelic expression. This supports the idea that imprinting of specific genes is a functional phenomenon, and not simply a byproduct of seed epigenomic reprogramming. PMID:27643534

  3. Imprinting artificial magnetic structures.

    SciTech Connect

    Lohstroh, W.

    1998-09-25

    Recently we created La/Fe multilayers with a helical magnetic structure imprinted from the conditions of growth rather than by the magnetic interactions between layers. Each sublayer was 30{angstrom} thick, and during deposition the sample was rotated in an external field of 3 Oe. a field strong enough to magnetize the Fe layer being deposited but not sufficient to perturb the magnetization of the Fe layers already grown. As a result adjacent Fe layers formed a helical structure with a chirality and periodicity determined by the rotational direction and speed of the substrate and the rate of deposition. Following this discovery, an extensive set of experiments (mainly using Kerr effect magnetometry and polarized neutron reflectivity) was undertaken to ascertain the stability of imprinted magnetic structures, and to understand the onset of magnetization during growth. La/Fe imprinted helical magnetic structures (of different La and Fe thicknesses) were found to be stable in time and to be permanently erased only by magnetic fields larger than 90 Oe.

  4. Metabolic imprinting in obesity.

    PubMed

    Sullivan, E L; Grove, K L

    2010-01-01

    Increasing evidence indicates that early metabolic programming contributes to escalating obesity rates in children and adults. Metabolic imprinting is involved in the establishment of set points for physiologic and metabolic responses in adulthood. Evidence from epidemiological studies and animal models indicates that maternal health and nutritional status during gestation and lactation have long-term effects on central and peripheral systems that regulate energy balance in the developing offspring. Perinatal nutrition also impacts susceptibility to developing metabolic disorders and plays a role in programming body weight set points. The states of maternal energy status and health that are implicated in predisposing offspring to increased risk of developing obesity include maternal overnutrition, diabetes, and undernutrition. This chapter discusses the evidence from epidemiologic studies and animal models that each of these states of maternal energy status results in metabolic imprinting of obesity in offspring. Also, the potential molecular mediators of metabolic imprinting of obesity by maternal energy status including glucose, insulin, leptin, inflammatory cytokines and epigenetic mechanisms are considered.

  5. Prader-Willi Syndrome: Obesity due to Genomic Imprinting

    PubMed Central

    Butler, Merlin G

    2011-01-01

    Prader-Willi syndrome (PWS) is a complex neurodevelopmental disorder due to errors in genomic imprinting with loss of imprinted genes that are paternally expressed from the chromosome 15q11-q13 region. Approximately 70% of individuals with PWS have a de novo deletion of the paternally derived 15q11-q13 region in which there are two subtypes (i.e., larger Type I or smaller Type II), maternal disomy 15 (both 15s from the mother) in about 25% of cases, and the remaining subjects have either defects in the imprinting center controlling the activity of imprinted genes or due to other chromosome 15 rearrangements. PWS is characterized by a particular facial appearance, infantile hypotonia, a poor suck and feeding difficulties, hypogonadism and hypogenitalism in both sexes, short stature and small hands and feet due to growth hormone deficiency, mild learning and behavioral problems (e.g., skin picking, temper tantrums) and hyperphagia leading to early childhood obesity. Obesity is a significant health problem, if uncontrolled. PWS is considered the most common known genetic cause of morbid obesity in children. The chromosome 15q11-q13 region contains approximately 100 genes and transcripts in which about 10 are imprinted and paternally expressed. This region can be divided into four groups: 1) a proximal non-imprinted region; 2) a PWS paternal-only expressed region containing protein-coding and non-coding genes; 3) an Angelman syndrome region containing maternally expressed genes and 4) a distal non-imprinted region. This review summarizes the current understanding of the genetic causes, the natural history and clinical presentation of individuals with PWS. PMID:22043168

  6. The Role of GNAS and Other Imprinted Genes in the Development of Obesity

    PubMed Central

    Weinstein, Lee S.; Xie, Tao; Qasem, Ahmed; Wang, Jie; Chen, Min

    2010-01-01

    Genomic imprinting is an epigenetic phenomenon affecting a small number of genes which leads to differential expression from the two parental alleles. Imprinted genes are known to regulate fetal growth and a ‘kinship’ or ‘parental conflict’ model predicts that paternally- and maternally-expressed imprinted genes promote and inhibit fetal growth, respectively. In this review we examine the role of imprinted genes in postnatal growth and metabolism, with an emphasis on the GNAS/Gnas locus. GNAS is a complex imprinted locus with multiple oppositely imprinted gene products, including the G protein α-subunit Gsα which is expressed primarily from the maternal allele in some tissues and the Gsα isoform XLαs which is expressed only from the paternal allele. Maternal, but not paternal, Gsα mutations lead to obesity in Albright hereditary osteodystrophy. Mouse studies show that this phenomenon is due to Gsα imprinting in the central nervous system leading to a specific defect in the ability of central melanocortins to stimulate sympathetic nervous system activity and energy expenditure. In contrast mutation of paternally-expressed XLαs leads to opposite metabolic effects in mice. While these findings conform to the ‘kinship’ model, the effects of other imprinted genes on body weight regulation do not conform to this model. PMID:19844212

  7. Cell Pluripotency Levels Associated with Imprinted Genes in Human

    PubMed Central

    Yuan, Liyun; Tang, Xiaoyan; Zhang, Binyan; Ding, Guohui

    2015-01-01

    Pluripotent stem cells are exhibited similarly in the morphology, gene expression, growth properties, and epigenetic modification with embryonic stem cells (ESCs). However, it is still controversial that the pluripotency of induced pluripotent stem cell (iPSC) is much inferior to ESC, and the differentiation capacity of iPSC and ESC can also be separated by transcriptome and epigenetics. miRNAs, which act in posttranscriptional regulation of gene expression and are involved in many basic cellular processes, may reveal the answer. In this paper, we focused on identifying the hidden relationship between miRNAs and imprinted genes in cell pluripotency. Total miRNA expression patterns in iPSC and ES cells were comprehensively analysed and linked with human imprinted genes, which show a global picture of their potential function in pluripotent level. A new CPA4-KLF14 region which locates in chromosomal homologous segments (CHSs) within mammals and include both imprinted genes and significantly expressed miRNAs was first identified. Molecular network analysis showed genes interacted with imprinted genes closely and enriched in modules such as cancer, cell death and survival, and tumor morphology. This imprinted region may provide a new look for those who are interested in cell pluripotency of hiPSCs and hESCs. PMID:26504487

  8. Cell Pluripotency Levels Associated with Imprinted Genes in Human.

    PubMed

    Yuan, Liyun; Tang, Xiaoyan; Zhang, Binyan; Ding, Guohui

    2015-01-01

    Pluripotent stem cells are exhibited similarly in the morphology, gene expression, growth properties, and epigenetic modification with embryonic stem cells (ESCs). However, it is still controversial that the pluripotency of induced pluripotent stem cell (iPSC) is much inferior to ESC, and the differentiation capacity of iPSC and ESC can also be separated by transcriptome and epigenetics. miRNAs, which act in posttranscriptional regulation of gene expression and are involved in many basic cellular processes, may reveal the answer. In this paper, we focused on identifying the hidden relationship between miRNAs and imprinted genes in cell pluripotency. Total miRNA expression patterns in iPSC and ES cells were comprehensively analysed and linked with human imprinted genes, which show a global picture of their potential function in pluripotent level. A new CPA4-KLF14 region which locates in chromosomal homologous segments (CHSs) within mammals and include both imprinted genes and significantly expressed miRNAs was first identified. Molecular network analysis showed genes interacted with imprinted genes closely and enriched in modules such as cancer, cell death and survival, and tumor morphology. This imprinted region may provide a new look for those who are interested in cell pluripotency of hiPSCs and hESCs. PMID:26504487

  9. A role for chromatin topology in imprinted domain regulation.

    PubMed

    MacDonald, William A; Sachani, Saqib S; White, Carlee R; Mann, Mellissa R W

    2016-02-01

    Recently, many advancements in genome-wide chromatin topology and nuclear architecture have unveiled the complex and hidden world of the nucleus, where chromatin is organized into discrete neighbourhoods with coordinated gene expression. This includes the active and inactive X chromosomes. Using X chromosome inactivation as a working model, we utilized publicly available datasets together with a literature review to gain insight into topologically associated domains, lamin-associated domains, nucleolar-associating domains, scaffold/matrix attachment regions, and nucleoporin-associated chromatin and their role in regulating monoallelic expression. Furthermore, we comprehensively review for the first time the role of chromatin topology and nuclear architecture in the regulation of genomic imprinting. We propose that chromatin topology and nuclear architecture are important regulatory mechanisms for directing gene expression within imprinted domains. Furthermore, we predict that dynamic changes in chromatin topology and nuclear architecture play roles in tissue-specific imprint domain regulation during early development and differentiation.

  10. [Imprint cytology. Advantages and possibilities].

    PubMed

    Müller, H A

    1976-01-01

    Imprint cytology is a special variation of applied cytology, which can be used for quite different purposes. In scientific research cytologic imprints are very apt for cytophotometric measurements of DNA contents in nuclei as well as for karyologic studies, for instance on the different distribution of chromatin in the nuclei of benign and malignant tumors. Furthermore, imprint cytology is of great importance in teaching and learning results of aspiration biopsies, as the cellular patterns obtained with both methods are looking identical and moreover every imprint can be compared with the corresponding histologic slide. Last but not least in diagnostic procedures cytologic imprints are very helpful as an adjuvant to frozen and paraffin sections: They set off also very discrete changes and make possible diagnostic statements in a shorter time than it is possible with histologic slides.

  11. Truncation of MIMT1 gene in the PEG3 domain leads to major changes in placental gene expression and stillbirth in cattle.

    PubMed

    Flisikowski, Krzysztof; Venhoranta, Heli; Bauersachs, Stefan; Hänninen, Reetta; Fürst, Rainer W; Saalfrank, Anja; Ulbrich, Susanne E; Taponen, Juhani; Lohi, Hannes; Wolf, Eckhard; Kind, Alexander; Andersson, Magnus; Schnieke, Angelika

    2012-06-01

    We previously identified a microdeletion (Del) in the maternally imprinted PEG3 domain in cattle that results in loss of paternal MIMT1 expression and causes late-term abortion and stillbirth. The mutation, when inherited from the sire, is semilethal for his progeny, with 85% mortality. Here we precisely delineate the deletion and describe comparative analyses of fetuses carrying the deletion with wild-type (WT) siblings. Global DNA methylation analysis of cotyledon tissue revealed greater global CpG methylation in fetuses with the deletion (P = 0.003). Gene expression microarray analyses identified increased NPSR1A, IL1RN, NOS3, IL4R, ZDHHC22, and SMOC2 expression in fetuses carrying the deletion and decreased GRID1, PLG, and IGF1 expression. Involvement of the NPSR1A, IL1RN, NOS3, and IL4R genes suggests that some form of restriction related to blood supply, perhaps hypoxemia, may play a role in the pathological mechanism. Also, imprinted genes known to play a role in mammalian prenatal development, specifically IGF2, DLK1, MEST, AST1, PEG3, APEG3, and H19, showed differential expression. The most striking difference was abundant abnormal expression of the neuropeptide S receptor 1 (NPSR1) gene in placental cotyledon tissue of 7 of 11 MIMT1(Del/WT) fetuses. The similarity of this proportion to that of the semilethal mortality rate suggests that abnormal NPSR1 expression may be linked to death or survival of MIMT1(Del/WT) fetuses. NPSR1 is expressed as two isoforms (A and B), and isoform A was detected in MIMT1(Del/WT) cotyledons. NPSR1A is normally not expressed in placenta. Its role in the stillbirth phenomenon has yet to be elucidated, but it may provide a useful prognostic indicator. PMID:23100617

  12. Association between IGF2BP2 Polymorphisms and Type 2 Diabetes Mellitus: A Case–Control Study and Meta-Analysis

    PubMed Central

    Rao, Ping; Wang, Hao; Fang, Honghong; Gao, Qing; Zhang, Jie; Song, Manshu; Zhou, Yong; Wang, Youxin; Wang, Wei

    2016-01-01

    Background: Genome-wide association studies (GWAS) found that IGF2BP2 rs4402960 and rs1470579 polymorphisms were associated with type 2 diabetes mellitus (T2DM) risk. Many studies have replicated this association, but yielded inconsistent results. Materials and Methods: A case-control study consisting of 461 T2DM patients and 434 health controls was conducted to detect the genetic susceptibility of IGF2BP2 in a northern Han Chinese population. A meta-analysis was to evaluate the association more precisely in Asians. Results: In the case-control study, the carriers of TT genotype at rs4402960 had a higher T2DM risk than the G carriers (TG + GG) (adjusted odd ratio (AOR) = 1.962, 95% confidence interval (95% CI) = 1.065–3.612, p = 0.031]; CC carriers at rs1470579 were more susceptible to T2DM than A carriers (CA + AA) (AOR = 2.014, 95% CI = 1.114–3.642, p = 0.021). The meta-analysis containing 36 studies demonstrated that the two polymorphisms were associated with T2DM under the allele comparison, genetic models of dominant and recessive in Asians (p < 0.05). The rs4402960 polymorphisms were significantly associated with the T2DM risk after stratification by diagnostic criterion, size of sample and average age and BMI of cases, while there’re no consistent results for rs1470579. Conclusions: Our data suggests that IGF2BP2 polymorphisms are associated with T2DM in Asian populations. PMID:27294943

  13. Epigenetic Properties and Identification of an Imprint Mark in the Nesp-Gnasxl Domain of the Mouse Gnas Imprinted Locus

    PubMed Central

    Coombes, Candice; Arnaud, Philippe; Gordon, Emma; Dean, Wendy; Coar, Elizabeth A.; Williamson, Christine M.; Feil, Robert; Peters, Jo; Kelsey, Gavin

    2003-01-01

    The Gnas locus in the mouse is imprinted with a complex arrangement of alternative transcripts defined by promoters with different patterns of monoallelic expression. The Gnas transcript is subject to tissue-specific imprinted expression, Nesp is expressed only from the maternal allele, and Gnasxl is expressed only from the paternal allele. The mechanisms controlling these expression patterns are not known. To identify potential imprinting regulatory regions, particularly for the reciprocally expressed Nesp and Gnasxl promoters, we examined epigenetic properties of the locus in gametes, embryonic stem cells, and fetal and adult tissues. The Nesp and Gnasxl promoter regions are contained in extensive CpG islands with methylation of the paternal allele at Nesp and the maternal allele at Gnasxl. Parental allele-specific DNase I-hypersensitive sites were found at these regions, which correlate with hypomethylation rather than actual expression status. A germ line methylation mark was identified covering the promoters for Gnasxl and the antisense transcript Nespas. Prominent DNase I-hypersensitive sites present on paternal alleles in embryonic stem cells are contained within this mark. This is the second gametic mark identified at Gnas and suggests that the Nesp and Gnasxl promoters are under separate control from the Gnas promoter. We propose models to account for the regulation of imprinting at the locus. PMID:12897124

  14. Protein imprinting in polyacrylamide-based gels

    PubMed Central

    Zayats, Maya; Brenner, Andrew J.; Searson, Peter C.

    2015-01-01

    Protein imprinting in hydrogels is a method to produce materials capable of selective recognition and capture of a target protein. Here we report on the imprinting of fluorescently-labeled maltose binding protein (MBP) in acrylamide (AAm)/N-isopropylacrylamide (NIPAm) hydrogels. The targeting efficiency and selectivity of protein recognition is usually characterized by the imprinting factor, which in the simplest case is the ratio of protein uptake in an imprinted film divided by the uptake by the corresponding non-imprinted film. Our objective in this work is to study the dynamics of protein binding and elution in imprinted and non-imprinted films to elucidate the processes that control protein recognition. Protein elution from imprinted and non-imprinted films suggests that imprinting results in sites with a distribution of binding energies, and that only a relatively small fraction of these sites exhibit strong binding. PMID:25034963

  15. Protein imprinting in polyacrylamide-based gels.

    PubMed

    Zayats, Maya; Brenner, Andrew J; Searson, Peter C

    2014-10-01

    Protein imprinting in hydrogels is a method to produce materials capable of selective recognition and capture of a target protein. Here we report on the imprinting of fluorescently-labeled maltose binding protein (MBP) in acrylamide (AAm)/N-isopropylacrylamide (NIPAm) hydrogels. The targeting efficiency and selectivity of protein recognition is usually characterized by the imprinting factor, which in the simplest case is the ratio of protein uptake in an imprinted film divided by the uptake by the corresponding non-imprinted film. Our objective in this work is to study the dynamics of protein binding and elution in imprinted and non-imprinted films to elucidate the processes that control protein recognition. Protein elution from imprinted and non-imprinted films suggests that imprinting results in sites with a distribution of binding energies, and that only a relatively small fraction of these sites exhibit strong binding.

  16. Protein imprinting in polyacrylamide-based gels.

    PubMed

    Zayats, Maya; Brenner, Andrew J; Searson, Peter C

    2014-10-01

    Protein imprinting in hydrogels is a method to produce materials capable of selective recognition and capture of a target protein. Here we report on the imprinting of fluorescently-labeled maltose binding protein (MBP) in acrylamide (AAm)/N-isopropylacrylamide (NIPAm) hydrogels. The targeting efficiency and selectivity of protein recognition is usually characterized by the imprinting factor, which in the simplest case is the ratio of protein uptake in an imprinted film divided by the uptake by the corresponding non-imprinted film. Our objective in this work is to study the dynamics of protein binding and elution in imprinted and non-imprinted films to elucidate the processes that control protein recognition. Protein elution from imprinted and non-imprinted films suggests that imprinting results in sites with a distribution of binding energies, and that only a relatively small fraction of these sites exhibit strong binding. PMID:25034963

  17. Imprint switch mutations at Rasgrf1 support conflict hypothesis of imprinting and define a growth control mechanism upstream of IGF1

    PubMed Central

    Drake, Nadia M.; Park, Yoon Jung; Shirali, Aditya S.; Cleland, Thomas A.

    2010-01-01

    Rasgrf1 is imprinted and expressed preferentially from the paternal allele in neonatal mouse brain. At weaning, expression becomes biallelic. Using a mouse model, we assayed the effects of perturbing imprinted Rasgrf1 expression in mice with the following imprinted expression patterns: monoallelic paternal (wild type), monoallelic maternal (maternal only), biallelic (both alleles transcribed), and null (neither allele transcribed). All genotypes exhibit biallelic expression around weaning. Consequences of this transient imprinting perturbation are manifested as overall size differences that correspond to the amount of neonatal Rasgrf1 expressed and are persistent, extending into adulthood. Biallelic mice are the largest and overexpress Rasgrf1 relative to wild-type mice, null mice are the smallest and underexpress Rasgrf1 as neonates, and the two monoallelically expressing genotypes are intermediate and indistinguishable from one another, in both size and Rasgrf1 expression level. Importantly, these data support one of the key underlying assumptions of the “conflict hypothesis” that describes the evolution of genomic imprinting in mammals and supposes that equivalent amounts of imprinted gene expression produce equivalent phenotypes, regardless of which parental allele is transcribed. Concordant with the difference in overall body size, we identify differences in IGF-1 levels, both in serum protein and as liver transcript, and identify additional differential expression of components upstream of IGF-1 release in the GH/IGF-1 axis. These data suggest that imprinted Rasgrf1 expression affects GH/IGF-1 axis function, and that the consequences of Rasgrf1 inputs to this axis persist beyond the time period when expression is restricted via epigenetic mechanisms, suggesting that proper neonatal Rasgrf1 expression levels are critical for development. PMID:19513790

  18. Does genomic imprinting play a role in autoimmunity?

    PubMed

    Camprubí, Cristina; Monk, David

    2011-01-01

    In the 19th century Gregor Mendel defined the laws of genetic inheritance by crossing different types of peas. From these results arose his principle of equivalence: the gene will have the same behaviour whether it is inherited from the mother or the father. Today, several key exceptions to this principle are known, for example sex-linked traits and genes in the mitochondrial genome, whose inheritance patterns are referred to as 'non mendelian'. A third, important exception in mammals is that of genomic imprinting, where transcripts are expressed in a monoallelic fashion from only the maternal or the paternal chromosome. In this chapter, we discuss how parent-of-origin effects and genomic imprinting may play a role in autoimmunity and speculate how imprinted miRNAs may influence the expression of many target autoimmune associated genes. PMID:21627045

  19. Effects of genetic variants for the swine FABP3, HMGA1, MC4R, IGF2, and FABP4 genes on fatty acid composition.

    PubMed

    Hong, Joonki; Kim, Duwan; Cho, Kyuho; Sa, Soojin; Choi, Sunho; Kim, Younghwa; Park, Juncheol; Schmidt, Gilberto Silber; Davis, Michael E; Chung, Hoyoung

    2015-12-01

    This study aimed to verify genetic relationships between fatty acid composition (FAC) and genotypes of several genes (FABP3, HMGA1, MC4R, IGF2, and FABP4) using pig breeds. The effects of genetic variations on FAC of the longissimus muscle were statistically significant with additive and dominance effects. The polymorphisms of FABP3 and IGF2 had the largest effects on stearic (C18:0, P=0.009) and γ-linoleic (C18:3n6, P=0.039) acids, respectively, whereas HMGA1 and FABP4 did not show significances. The analysis revealed that MC4R was significantly associated with palmitoleic acid (C16:ln7) and MUFA. Allele frequencies of the genes examined in this analysis were significantly skewed or fixed in the Korean native pig (KNP), whereas the allele frequencies of the crossbreds tended to fall between those of the purebreds except that HMGA1 and FABP4 had approximately the same allele frequencies with Duroc and KNP, respectively. The polymorphisms found in this study could be used as genetic markers in breeding programs to simultaneously change proportions of fatty acids in muscle tissues.

  20. Incidence in diverse pig populations of an IGF2 mutation with potential influence on meat quality and quantity: An assay based on real time PCR (RT-PCR).

    PubMed

    Carrodeguas, José Alberto; Burgos, Carmen; Moreno, Carlos; Sánchez, Ana Cristina; Ventanas, Sonia; Tarrafeta, Luis; Barcelona, José Antonio; López, Maria Otilia; Oria, Rosa; López-Buesa, Pascual

    2005-11-01

    IGF2, insulin-like growth factor 2, is implicated in myogenesis and lean meat content. A mutation in a single base (A for G substitution) of the gene for IGF2 (position 3072 in intron 3) has been recently described as the cause of a major QTL effect on muscle growth in pigs [Van Laere, A. S, Nguyen, M., Braunschweig, M., Nezer, C., Collete, C., & Moreau, L. et al. (2003). Nature, 425, 832-836]. We describe here a rapid assay based on real time PCR (RT-PCR) to detect this mutation. We have evaluated the incidence of the mutation in commercial pig crosses, in three populations of purebred Iberian or Iberian×Duroc crosses, and in cured meat products and wild boars. The incidence of the mutation varies among these groups. Penetrance of the A mutation is about 80% in the commercial population. Purebred Iberian pigs were all homozygous G/G whereas crosses of Iberian pigs were heterozygous (90%) or homozygous A/A (10%). The implications of this gene for the selection of Iberian pigs are discussed.

  1. Xist imprinting is promoted by the hemizygous (unpaired) state in the male germ line

    PubMed Central

    Sun, Sha; Payer, Bernhard; Namekawa, Satoshi; An, Jee Young; Press, William; Catalan-Dibene, Jovani; Sunwoo, Hongjae; Lee, Jeannie T.

    2015-01-01

    The long noncoding X-inactivation–specific transcript (Xist gene) is responsible for mammalian X-chromosome dosage compensation between the sexes, the process by which one of the two X chromosomes is inactivated in the female soma. Xist is essential for both the random and imprinted forms of X-chromosome inactivation. In the imprinted form, Xist is paternally marked to be expressed in female embryos. To investigate the mechanism of Xist imprinting, we introduce Xist transgenes (Tg) into the male germ line. Although ectopic high-level Xist expression on autosomes can be compatible with viability, transgenic animals demonstrate reduced fitness, subfertility, defective meiotic pairing, and other germ-cell abnormalities. In the progeny, paternal-specific expression is recapitulated by the 200-kb Xist Tg. However, Xist imprinting occurs efficiently only when it is in an unpaired or unpartnered state during male meiosis. When transmitted from a hemizygous father (+/Tg), the Xist Tg demonstrates paternal-specific expression in the early embryo. When transmitted by a homozygous father (Tg/Tg), the Tg fails to show imprinted expression. Thus, Xist imprinting is directed by sequences within a 200-kb X-linked region, and the hemizygous (unpaired) state of the Xist region promotes its imprinting in the male germ line. PMID:26489649

  2. Association of genomic instability, and the methylation status of imprinted genes and mismatch-repair genes, with neural tube defects.

    PubMed

    Liu, Zhuo; Wang, Zhigang; Li, Yuanyuan; Ouyang, Shengrong; Chang, Huibo; Zhang, Ting; Zheng, Xiaoying; Wu, Jianxin

    2012-05-01

    We studied the genomic instability and methylation status of the mismatch-repair (MMR) genes hMLH1 and hMSH2, and the imprinted genes H19/IGF2, in fetuses with neural tube defects (NTDs) to explore the pathogenesis of the disease. Microsatellite instability (MSI) was observed in 23 of 50 NTD patients. Five NTD patients showed high-degree MSI (MSI-H) and 18 showed low-degree MSI (MSI-L). The frequencies of mutated microsatellite loci were 3/50 (6%) for BatT-25, 10/50 (20%) for Bat-26, 3/50 (6%) for Bat34C4, 6/50 (12%) for D2S123, 4/50 (8%) for D2S119, and 3/50 (6%) for D3S1611. The promoter regions of the hMLH1 and hMSH2 genes were unmethylated in NTD patients, as determined by methylation-specific PCR. The hMLH1 and hMSH2 promoter methylation patterns, the methylation levels of H19 DMR1, and IGF2 DMR0 were detected by bisulfite sequencing PCR, sub-cloning, and sequencing. The hMSH2 promoter sequence was unmethylated, and the hMLH1 promoter showed a specific methylation pattern at two CpG sites. The methylation levels of H19 DMR1 in the NTD and control groups are 73.3% ± 15.9 and 58.3% ± 11.2, respectively. The methylation level of the NTD group was higher than that of the control group (Student's t-test, P<0.05). There is no significant difference in IGF2 DMR0 methylation level between the two groups. All of the results presented here suggest that genomic instability, the MMR system, and hyper-methylation of the H19 DMR1 may be correlated with the occurrence of NTDs.

  3. Programmable imprint lithography template

    DOEpatents

    Cardinale, Gregory F.; Talin, Albert A.

    2006-10-31

    A template for imprint lithography (IL) that reduces significantly template production costs by allowing the same template to be re-used for several technology generations. The template is composed of an array of spaced-apart moveable and individually addressable rods or plungers. Thus, the template can be configured to provide a desired pattern by programming the array of plungers such that certain of the plungers are in an "up" or actuated configuration. This arrangement of "up" and "down" plungers forms a pattern composed of protruding and recessed features which can then be impressed onto a polymer film coated substrate by applying a pressure to the template impressing the programmed configuration into the polymer film. The pattern impressed into the polymer film will be reproduced on the substrate by subsequent processing.

  4. Manganese uptake of imprinted polymers

    SciTech Connect

    Susanna Ventura

    2015-09-30

    Batch tests of manganese imprinted polymers of variable composition to assess their ability to extract lithium and manganese from synthetic brines at T=45C . Data on manganese uptake for two consecutive cycles are included.

  5. Molecular imprinting: perspectives and applications.

    PubMed

    Chen, Lingxin; Wang, Xiaoyan; Lu, Wenhui; Wu, Xiaqing; Li, Jinhua

    2016-04-21

    Molecular imprinting technology (MIT), often described as a method of making a molecular lock to match a molecular key, is a technique for the creation of molecularly imprinted polymers (MIPs) with tailor-made binding sites complementary to the template molecules in shape, size and functional groups. Owing to their unique features of structure predictability, recognition specificity and application universality, MIPs have found a wide range of applications in various fields. Herein, we propose to comprehensively review the recent advances in molecular imprinting including versatile perspectives and applications, concerning novel preparation technologies and strategies of MIT, and highlight the applications of MIPs. The fundamentals of MIPs involving essential elements, preparation procedures and characterization methods are briefly outlined. Smart MIT for MIPs is especially highlighted including ingenious MIT (surface imprinting, nanoimprinting, etc.), special strategies of MIT (dummy imprinting, segment imprinting, etc.) and stimuli-responsive MIT (single/dual/multi-responsive technology). By virtue of smart MIT, new formatted MIPs gain popularity for versatile applications, including sample pretreatment/chromatographic separation (solid phase extraction, monolithic column chromatography, etc.) and chemical/biological sensing (electrochemical sensing, fluorescence sensing, etc.). Finally, we propose the remaining challenges and future perspectives to accelerate the development of MIT, and to utilize it for further developing versatile MIPs with a wide range of applications (650 references). PMID:26936282

  6. Molecular imprinting: perspectives and applications.

    PubMed

    Chen, Lingxin; Wang, Xiaoyan; Lu, Wenhui; Wu, Xiaqing; Li, Jinhua

    2016-04-21

    Molecular imprinting technology (MIT), often described as a method of making a molecular lock to match a molecular key, is a technique for the creation of molecularly imprinted polymers (MIPs) with tailor-made binding sites complementary to the template molecules in shape, size and functional groups. Owing to their unique features of structure predictability, recognition specificity and application universality, MIPs have found a wide range of applications in various fields. Herein, we propose to comprehensively review the recent advances in molecular imprinting including versatile perspectives and applications, concerning novel preparation technologies and strategies of MIT, and highlight the applications of MIPs. The fundamentals of MIPs involving essential elements, preparation procedures and characterization methods are briefly outlined. Smart MIT for MIPs is especially highlighted including ingenious MIT (surface imprinting, nanoimprinting, etc.), special strategies of MIT (dummy imprinting, segment imprinting, etc.) and stimuli-responsive MIT (single/dual/multi-responsive technology). By virtue of smart MIT, new formatted MIPs gain popularity for versatile applications, including sample pretreatment/chromatographic separation (solid phase extraction, monolithic column chromatography, etc.) and chemical/biological sensing (electrochemical sensing, fluorescence sensing, etc.). Finally, we propose the remaining challenges and future perspectives to accelerate the development of MIT, and to utilize it for further developing versatile MIPs with a wide range of applications (650 references).

  7. Inhibitors of histone deacetylases and DNA methyltransferases alter imprinted gene regulation in embryonic stem cells.

    PubMed

    Baqir, Senan; Smith, Lawrence C

    2006-01-01

    Pluripotent embryonic stem cells are able to differentiate into a variety of cell types, thereby making them a valuable source for transplantation medicine. Recent studies have reported the use of pharmacological agents, namely 5-Aza-Cytidine (5AzaC) and Trichostatin A (TSA), to guide embryonic stem (ES) cells to differentiate into specific cellular lineages. However, those drugs are known to be potent inhibitors of DNA methyltransferases and/or histone deacetylases. Since both epigenetic mechanisms are involved in the expression of imprinted genes in fetal and adult somatic tissues, it is essential to investigate further the role of these agents in regulating imprinted gene expression in embryonic cells. Embryonic stem cells were exposed to 5AzaC and TSA and analyzed for transcript abundance of a number of imprinted and non-imprinted marker genes. Most imprinted gene transcripts increased following exposure to 5AzaC or TSA alone and responded in either an additive or synergistic manner when exposed to both drugs together. Interestingly, transcript levels of several imprinted genes remained high and in some cases, increased further after drug removal or even after passaging the cells, indicating a long lasting and retarded effect on gene expression. Together, our results suggest that DNA methylation and histone acetylation play jointly an important epigenetic role in governing imprinted gene expression in embryonic stem cells. Moreover, these results describe the sensitivity and irreversibility of embryonic stem cells to epigenetic modifiers, highlighting potential risks for their use in therapeutic applications.

  8. Detection of imprinting mutations in Angelman syndrome using a probe for exon {alpha} of SNRPN

    SciTech Connect

    Beuten, J.; Sutcliffe, J.S.; Casey, B.M.

    1996-05-17

    Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are distinct clinical disorders resulting from deficiency of paternal (PWS) or maternal (AS) expression of imprinted genes within chromosome 15q11-q13. 15 refs., 1 fig.

  9. Genes Downregulated in Endometriosis Are Located Near the Known Imprinting Genes

    PubMed Central

    Higashiura, Yumi; Koike, Natsuki; Akasaka, Juria; Uekuri, Chiharu; Iwai, Kana; Niiro, Emiko; Morioka, Sachiko; Yamada, Yuki

    2014-01-01

    There is now accumulating evidence that endometriosis is a disease associated with an epigenetic disorder. Genomic imprinting is an epigenetic phenomenon known to regulate DNA methylation of either maternal or paternal alleles. We hypothesize that hypermethylated endometriosis-associated genes may be enriched at imprinted gene loci. We sought to determine whether downregulated genes associated with endometriosis susceptibility are associated with chromosomal location of the known paternally and maternally expressed imprinting genes. Gene information has been gathered from National Center for Biotechnology Information database geneimprint.com. Several researchers have identified specific loci with strong DNA methylation in eutopic endometrium and ectopic lesion with endometriosis. Of the 29 hypermethylated genes in endometriosis, 19 genes were located near 45 known imprinted foci. There may be an association of the genomic location between genes specifically downregulated in endometriosis and epigenetically imprinted genes. PMID:24615936

  10. Coadaptation and conflict, misconception and muddle, in the evolution of genomic imprinting

    PubMed Central

    Haig, D

    2014-01-01

    Common misconceptions of the ‘parental conflict' theory of genomic imprinting are addressed. Contrary to widespread belief, the theory defines conditions for cooperation as well as conflict in mother–offspring relations. Moreover, conflict between genes of maternal and paternal origin is not the same as conflict between mothers and fathers. In theory, imprinting can evolve either because genes of maternal and paternal origin have divergent interests or because offspring benefit from a phenotypic match, or mismatch, to one or other parent. The latter class of models usually require maintenance of polymorphism at imprinted loci for the maintenance of imprinted expression. The conflict hypothesis does not require maintenance of polymorphism and is therefore a more plausible explanation of evolutionarily conserved imprinting. PMID:24129605

  11. A systems-level approach to parental genomic imprinting: the imprinted gene network includes extracellular matrix genes and regulates cell cycle exit and differentiation.

    PubMed

    Al Adhami, Hala; Evano, Brendan; Le Digarcher, Anne; Gueydan, Charlotte; Dubois, Emeric; Parrinello, Hugues; Dantec, Christelle; Bouschet, Tristan; Varrault, Annie; Journot, Laurent

    2015-03-01

    Genomic imprinting is an epigenetic mechanism that restrains the expression of ∼ 100 eutherian genes in a parent-of-origin-specific manner. The reason for this selective targeting of genes with seemingly disparate molecular functions is unclear. In the present work, we show that imprinted genes are coexpressed in a network that is regulated at the transition from proliferation to quiescence and differentiation during fibroblast cell cycle withdrawal, adipogenesis in vitro, and muscle regeneration in vivo. Imprinted gene regulation is not linked to alteration of DNA methylation or to perturbation of monoallelic, parent-of-origin-dependent expression. Overexpression and knockdown of imprinted gene expression alters the sensitivity of preadipocytes to contact inhibition and adipogenic differentiation. In silico and in cellulo experiments showed that the imprinted gene network includes biallelically expressed, nonimprinted genes. These control the extracellular matrix composition, cell adhesion, cell junction, and extracellular matrix-activated and growth factor-activated signaling. These observations show that imprinted genes share a common biological process that may account for their seemingly diverse roles in embryonic development, obesity, diabetes, muscle physiology, and neoplasm.

  12. Sexual dimorphism in parental imprint ontogeny and contribution to embryonic development.

    PubMed

    Bourc'his, Déborah; Proudhon, Charlotte

    2008-01-30

    Genomic imprinting refers to the functional non-equivalence of parental genomes in mammals that results from the parent-of-origin allelic expression of a subset of genes. Parent-specific expression is dependent on the germ line acquisition of DNA methylation marks at imprinting control regions (ICRs), coordinated by the DNA-methyltransferase homolog DNMT3L. We discuss here how the gender-specific stages of DNMT3L expression may have influenced the various sexually dimorphic aspects of genomic imprinting: (1) the differential developmental timing of methylation establishment at paternally and maternally imprinted genes in each parental germ line, (2) the differential dependence on DNMT3L of parental methylation imprint establishment, (3) the unequal duration of paternal versus maternal methylation imprints during germ cell development, (4) the biased distribution of methylation-dependent ICRs towards the maternal genome, (5) the different genomic organization of paternal versus maternal ICRs, and finally (6) the overwhelming contribution of maternal germ line imprints to development compared to their paternal counterparts. PMID:18178305

  13. Targeted methylation testing of a patient cohort broadens the epigenetic and clinical description of imprinting disorders.

    PubMed

    Poole, Rebecca L; Docherty, Louise E; Al Sayegh, Abeer; Caliebe, Almuth; Turner, Claire; Baple, Emma; Wakeling, Emma; Harrison, Lucy; Lehmann, Anna; Temple, I Karen; Mackay, Deborah J G

    2013-09-01

    Imprinting disorders are associated with mutations and epimutations affecting imprinted genes, that is those whose expression is restricted by parent of origin. Their diagnosis is challenging for two reasons: firstly, their clinical features, particularly prenatal and postnatal growth disturbance, are heterogeneous and partially overlapping; secondly, their underlying molecular defects include mutation, epimutation, copy number variation, and chromosomal errors, and can be further complicated by somatic mosaicism and multi-locus methylation defects. It is currently unclear to what extent the observed phenotypic heterogeneity reflects the underlying molecular pathophysiology; in particular, the molecular and clinical diversity of multilocus methylation defects remains uncertain. To address these issues we performed comprehensive methylation analysis of imprinted genes in a research cohort of 285 patients with clinical features of imprinting disorders, with or without a positive molecular diagnosis. 20 of 91 patients (22%) with diagnosed epimutations had methylation defects of additional imprinted loci, and the frequency of developmental delay and congenital anomalies was higher among these patients than those with isolated epimutations, indicating that hypomethylation of multiple imprinted loci is associated with increased diversity of clinical presentation. Among 194 patients with clinical features of an imprinting disorder but no molecular diagnosis, we found 15 (8%) with methylation anomalies, including missed and unexpected molecular diagnoses. These observations broaden the phenotypic and epigenetic definitions of imprinting disorders, and show the importance of comprehensive molecular testing for patient diagnosis and management.

  14. Quantitative genetics of genomic imprinting: a comparison of simple variance derivations, the effects of inbreeding, and response to selection.

    PubMed

    Santure, Anna W; Spencer, Hamish G

    2011-07-01

    The level of expression of an imprinted gene is dependent on the sex of the parent from which it was inherited. As a result, reciprocal heterozygotes in a population may have different mean phenotypes for quantitative traits. Using standard quantitative genetic methods for deriving breeding values, population variances, and covariances between relatives, we demonstrate that although these approaches are equivalent under Mendelian expression, this equivalence is lost when genomic imprinting is acting. Imprinting introduces both parent-of-origin-dependent and generation-dependent effects that result in differences in the way additive and dominance effects are defined for the various approaches. Further, imprinting creates a covariance between additive and dominance terms absent under Mendelian expression, but the expression for this covariance cannot be derived using a number of the standard approaches for defining additive and dominance terms. Inbreeding also generates such a covariance, and we demonstrate that a modified method for partitioning variances can easily accommodate both inbreeding and imprinting. As with inbreeding, the concept of breeding values has no useful meaning for an imprinted trait. Finally, we derive the expression for the response to selection under imprinting, and conclude that the response to selection for an imprinted trait cannot be predicted from the breeder's equation, even when there is no dominance. PMID:22384325

  15. Associations between antibiotic exposure during pregnancy, birth weight and aberrant methylation at imprinted genes among offspring

    PubMed Central

    Vidal, A C; Murphy, S K; Murtha, A P; Schildkraut, J M; Soubry, A; Huang, Z; Neelon, S E B; Fuemmeler, B; Iversen, E; Wang, F; Kurtzberg, J; Jirtle, R L; Hoyo, C

    2013-01-01

    Objectives: Low birth weight (LBW) has been associated with common adult-onset chronic diseases, including obesity, cardiovascular disease, type II diabetes and some cancers. The etiology of LBW is multi-factorial. However, recent evidence suggests exposure to antibiotics may also increase the risk of LBW. The mechanisms underlying this association are unknown, although epigenetic mechanisms are hypothesized. In this study, we evaluated the association between maternal antibiotic use and LBW and examined the potential role of altered DNA methylation that controls growth regulatory imprinted genes in these associations. Methods: Between 2009–2011, 397 pregnant women were enrolled and followed until delivery. Prenatal antibiotic use was ascertained through maternal self-report. Imprinted genes methylation levels were measured at differentially methylated regions (DMRs) using bisulfite pyrosequencing. Generalized linear models were used to examine associations among antibiotic use, birth weight and DMR methylation fractions. Results: After adjusting for infant gender, race/ethnicity, maternal body mass index, delivery route, gestational weight gain, gestational age at delivery, folic acid intake, physical activity, maternal smoking and parity, antibiotic use during pregnancy was associated with 138 g lower birth weight compared with non-antibiotic use (β-coefficient=−132.99, s.e.=50.70, P=0.008). These associations were strongest in newborns of women who reported antibiotic use other than penicillins (β-coefficient=−135.57, s.e.=57.38, P=0.02). Methylation at five DMRs, IGF2 (P=0.05), H19 (P=0.15), PLAGL1 (P=0.01), MEG3 (P=0.006) and PEG3 (P=0.08), was associated with maternal antibiotic use; among these, only methylation at the PLAGL1 DMR was also associated with birth weight. Conclusion: We report an inverse association between in utero exposure to antibiotics and lower infant birth weight and provide the first empirical evidence supporting imprinted gene

  16. Non-germ Line Restoration of Genomic Imprinting for a Small Subset of Imprinted Genes in Ubiquitin-like PHD and RING Finger Domain-Containing 1 (Uhrf1) Null Mouse Embryonic Stem Cells.

    PubMed

    Qi, Shankang; Wang, Zhiqiang; Li, Pishun; Wu, Qihan; Shi, Tieliu; Li, Jiwen; Wong, Jiemin

    2015-05-29

    The underlying mechanism for the establishment and maintenance of differential DNA methylation in imprinted genes is largely unknown. Previous studies using Dnmt1 knock-out embryonic stem (ES) cells demonstrated that, although re-expression of DNMT1 restored DNA methylation in the non-imprinted regions, the methylation patterns of imprinted genes could be restored only through germ line passage. Knock-out of Uhrf1, an accessory factor essential for DNMT1-mediated DNA methylation, in mouse ES cells also led to impaired global DNA methylation and loss of genomic imprinting. Here, we demonstrate that, although re-expression of UHRF1 in Uhrf1(-/-) ES cells restored DNA methylation for the bulk genome but not for most of the imprinted genes, it did rescue DNA methylation for the imprinted H19, Nnat, and Dlk1 genes. Analysis of histone modifications at the differential methylated regions of the imprinted genes by ChIP assays revealed that for the imprinted genes whose DNA methylation could be restored upon re-expression of UHRF1, the active histone markers (especially H3K4me3) were maintained at considerably low levels, and low levels were maintained even in Uhrf1(-/-) ES cells. In contrast, for the imprinted genes whose DNA methylation could not be restored upon UHRF1 re-expression, the active histone markers (especially H3K4me3) were relatively high and became even higher in Uhrf1(-/-) ES cells. Our study thus supports a role for histone modifications in determining the establishment of imprinting-related DNA methylation and demonstrates that mouse ES cells can be a valuable model for mechanistic study of the establishment and maintenance of differential DNA methylation in imprinted genes.

  17. High Gestational Folic Acid Supplementation Alters Expression of Imprinted and Candidate Autism Susceptibility Genes in a sex-Specific Manner in Mouse Offspring.

    PubMed

    Barua, Subit; Kuizon, Salomon; Brown, W Ted; Junaid, Mohammed A

    2016-02-01

    Maternal nutrients play critical roles in modulating epigenetic events and exert long-term influences on the progeny's health. Folic acid (FA) supplementation during pregnancy has decreased the incidence of neural tube defects in newborns, but the influence of high doses of maternal FA supplementation on infants' brain development is unclear. The present study was aimed at investigating the effects of a high dose of gestational FA on the expression of genes in the cerebral hemispheres (CHs) of 1-day-old pups. One week prior to mating and throughout the entire period of gestation, female C57BL/6J mice were fed a diet, containing FA at either 2 mg/kg (control diet (CD)) or 20 mg/kg (high maternal folic acid (HMFA)). At postnatal day 1, pups from different dams were sacrificed and CH tissues were collected. Quantitative RT-PCR and Western blot analysis confirmed sex-specific alterations in the expression of several genes that modulate various cellular functions (P < 0.05) in pups from the HMFA group. Genomic DNA methylation analysis showed no difference in the level of overall methylation in pups from the HMFA group. These findings demonstrate that HMFA supplementation alters offsprings' CH gene expression in a sex-specific manner. These changes may influence infants' brain development. PMID:26547318

  18. Tet-mediated imprinting erasure in H19 locus following reprogramming of spermatogonial stem cells to induced pluripotent stem cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Selective methylation of CpG islands at imprinting control regions (ICR) determines the monoparental expression of a subset of genes. The imprinting marks are protected from global demethylation taking place during pre-implantation development before being reset in primordial germ cells. However, it...

  19. Kin Recognition in Aleochara bilineata Could Support the Kinship Theory of Genomic Imprinting

    PubMed Central

    Lizé, Anne; Cortesero, Anne Marie; Atlan, Anne; Poinsot, Denis

    2007-01-01

    Genomic imprinting corresponds to the differential expression of a gene according to its paternal or maternal origin. The kinship theory of genomic imprinting proposes that maternally or paternally inherited genes may be in conflict over their effects on kin differently related along the paternal or maternal line. Most examples supporting the kinship theory of imprinting deal with competition between offspring for maternal resources. However, genomic imprinting may also explain differential behavioral expression toward kin whenever sibs are more related to each other via one parental sex than the other. Unfortunately, nothing is currently known about imprinting associated with a behavioral phenotype in insects. Here we report the first evidence of such a maternally imprinted behavior. We show that the solitary parasitoid larvae of Aleochara bilineata Gyll (Coleoptera; Staphylinidae), which avoid superparasitizing their full sibs, also avoid their cousins when they are related to them through their father, but not when they are related to them through their mother. A genetic kin recognition mechanism is proposed to explain this result and we conclude that genomic imprinting could control the avoidance of kin superparasitism in this species and have a profound influence on decision-making processes. PMID:17237504

  20. Unearthing the roles of imprinted genes in the placenta.

    PubMed

    Bressan, F F; De Bem, T H C; Perecin, F; Lopes, F L; Ambrosio, C E; Meirelles, F V; Miglino, M A

    2009-10-01

    Mammalian fetal survival and growth are dependent on a well-established and functional placenta. Although transient, the placenta is the first organ to be formed during pregnancy and is responsible for important functions during development, such as the control of metabolism and fetal nutrition, gas and metabolite exchange, and endocrine control. Epigenetic marks and gene expression patterns in early development play an essential role in embryo and fetal development. Specifically, the epigenetic phenomenon known as genomic imprinting, represented by the non-equivalence of the paternal and maternal genome, may be one of the most important regulatory pathways involved in the development and function of the placenta in eutherian mammals. A lack of pattern or an imprecise pattern of genomic imprinting can lead to either embryonic losses or a disruption in fetal and placental development. Genetically modified animals present a powerful approach for revealing the interplay between gene expression and placental function in vivo and allow a single gene disruption to be analyzed, particularly focusing on its role in placenta function. In this paper, we review the recent transgenic strategies that have been successfully created in order to provide a better understanding of the epigenetic patterns of the placenta, with a special focus on imprinted genes. We summarize a number of phenotypes derived from the genetic manipulation of imprinted genes and other epigenetic modulators in an attempt to demonstrate that gene-targeting studies have contributed considerably to the knowledge of placentation and conceptus development. PMID:19679348

  1. Imprinting and recalling cortical ensembles.

    PubMed

    Carrillo-Reid, Luis; Yang, Weijian; Bando, Yuki; Peterka, Darcy S; Yuste, Rafael

    2016-08-12

    Neuronal ensembles are coactive groups of neurons that may represent building blocks of cortical circuits. These ensembles could be formed by Hebbian plasticity, whereby synapses between coactive neurons are strengthened. Here we report that repetitive activation with two-photon optogenetics of neuronal populations from ensembles in the visual cortex of awake mice builds neuronal ensembles that recur spontaneously after being imprinted and do not disrupt preexisting ones. Moreover, imprinted ensembles can be recalled by single- cell stimulation and remain coactive on consecutive days. Our results demonstrate the persistent reconfiguration of cortical circuits by two-photon optogenetics into neuronal ensembles that can perform pattern completion. PMID:27516599

  2. Differences in developmental competence and gene expression profiles between buffalo (Bubalus bubalis) preimplantation embryos cultured in three different embryo culture media.

    PubMed

    Sadeesh, E M; Selokar, N L; Balhara, A K; Yadav, P S

    2016-10-01

    The objective of this study was to compare effects of in vitro culture systems on embryonic development and expression patterns of developmentally important genes in preimplantation buffalo embryos. After IVM/IVF presumptive zygotes were cultured in one of three systems: undefined TCM-199, mCR2aa medium supplemented with 10 % FBS and defined PVA-myo-inositol-phosphate-EGF medium. No (P > 0.05) differences at 2-cell, 4-cell and 8-cell to 16- cell stages were observed among the three cultured media used, however, increased (P < 0.05) blastocyst yield, cell number and hatching rate were found in defined medium compared to undefined media. The expression patterns of genes implicated in embryo metabolism (GLUT-1), anti-apoptosis (BCL-2), imprinting (IGF-2R), DNA methylation (DNMT-3A) and maternal recognition of pregnancy (IFNT) were increased (P < 0.05) in hatched blastocysts derived from defined medium compared to undefined media. In conclusion, serum-free, defined medium improved developmental competence of in vitro cultured buffalo embryos. Whether these differences in morphological development and gene expression have long-term effects on buffalo calves born after embryo transfer remains unknown. However, it is possible that early adaptations of the preimplantation embryo to its environment persist during fetal and post-natal development. PMID:27481470

  3. Familiarity interferes with filial imprinting.

    PubMed

    van Kampen, H S; de Vos, G J

    1996-10-01

    The present study was performed to investigate whether and how pre-exposure to an object affects subsequent filial imprinting to that object. In Experiment 1 junglefowl chicks (Gallus gallus spadiceus) were first exposed to either a red object alone (control group), or a red and a yellow object simultaneously (experimental group; phase 1). Subsequently, all chicks were exposed to the yellow object in the presence of a black and blue one (phase 2). At the end of phase 1, most experimental chicks had developed a preference for the red object over the yellow one. At the end of phase 2, preferences of experimental chicks were shifted away from the yellow object towards the novel black and blue object, relative to preferences of control chicks. This shows that pre-exposure may interfere with imprinting. Experiment 2 revealed that when control chicks were tested with the yellow object at the end of phase 1, filial responses were as strong as in experimental chicks. This shows that the yellow object had not acquired control over filial behaviour during phase 1, and also that the relatively impaired imprinting on that object in phase 2 was not due to reduced generalization from the red object. One possible explanation why pre-exposure may interfere with imprinting is that familiarity alters the level of attention attracted by an object, a mechanism suggested to underlie 'latent inhibition' in conditioning. PMID:24897630

  4. Clinical features associated with copy number variations of the 14q32 imprinted gene cluster.

    PubMed

    Rosenfeld, Jill A; Fox, Joyce E; Descartes, Maria; Brewer, Fallon; Stroud, Tracy; Gorski, Jerome L; Upton, Sheila J; Moeschler, John B; Monteleone, Berrin; Neill, Nicholas J; Lamb, Allen N; Ballif, Blake C; Shaffer, Lisa G; Ravnan, J Britt

    2015-02-01

    Uniparental disomy (UPD) for imprinted chromosomes can cause abnormal phenotypes due to absent or overexpression of imprinted genes. UPD(14)pat causes a unique constellation of features including thoracic skeletal anomalies, polyhydramnios, placentomegaly, and limited survival; its hypothesized cause is overexpression of paternally expressed RTL1, due to absent regulatory effects of maternally expressed RTL1as. UPD(14)mat causes a milder condition with hypotonia, growth failure, and precocious puberty; its hypothesized cause is absence of paternally expressed DLK1. To more clearly establish how gains and losses of imprinted genes can cause disease, we report six individuals with copy number variations of the imprinted 14q32 region identified through clinical microarray-based comparative genomic hybridization. Three individuals presented with UPD(14)mat-like phenotypes (Temple syndrome) and had apparently de novo deletions spanning the imprinted region, including DLK1. One of these deletions was shown to be on the paternal chromosome. Two individuals with UPD(14)pat-like phenotypes had 122-154kb deletions on their maternal chromosomes that included RTL1as but not the differentially methylated regions that regulate imprinted gene expression, providing further support for RTL1 overexpression as a cause for the UPD(14)pat phenotype. The sixth individual is tetrasomic for a 1.7Mb segment, including the imprinted region, and presents with intellectual disability and seizures but lacks significant phenotypic overlap with either UPD(14) syndrome. Therefore, the 14q32 imprinted region is dosage sensitive, with deletions of different critical regions causing UPD(14)mat- and UPD(14)pat-like phenotypes, while copy gains are likely insufficient to recapitulate these phenotypes. PMID:25756153

  5. IGF2, LEPR, POMC, PPARG, and PPARGC1 gene variants are associated with obesity-related risk phenotypes in Brazilian children and adolescents.

    PubMed

    Queiroz, E M; Cândido, A P C; Castro, I M; Bastos, A Q A; Machado-Coelho, G L L; Freitas, R N

    2015-07-01

    Association studies of genetic variants and obesity and/or obesity-related risk factors have yielded contradictory results. The aim of the present study was to determine the possible association of five single-nucleotide polymorphisms (SNPs) located in the IGF2, LEPR, POMC, PPARG, and PPARGC1 genes with obesity or obesity-related risk phenotypes. This case-control study assessed overweight (n=192) and normal-weight (n=211) children and adolescents. The SNPs were analyzed using minisequencing assays, and variables and genotype distributions between the groups were compared using one-way analysis of variance and Pearson's chi-square or Fisher's exact tests. Logistic regression analysis adjusted for age and gender was used to calculate the odds ratios (ORs) for selected phenotype risks in each group. No difference in SNP distribution was observed between groups. In children, POMC rs28932472(C) was associated with lower diastolic blood pressure (P=0.001), higher low-density lipoprotein (LDL) cholesterol (P=0.014), and higher risk in overweight children of altered total cholesterol (OR=7.35, P=0.006). In adolescents, IGF2 rs680(A) was associated with higher glucose (P=0.012) and higher risk in overweight adolescents for altered insulin (OR=10.08, P=0.005) and homeostasis model of insulin resistance (HOMA-IR) (OR=6.34, P=0.010). PPARG rs1801282(G) conferred a higher risk of altered insulin (OR=12.31, P=0.003), and HOMA-IR (OR=7.47, P=0.005) in overweight adolescents. PARGC1 rs8192678(A) was associated with higher triacylglycerols (P=0.005), and LEPR rs1137101(A) was marginally associated with higher LDL cholesterol (P=0.017). LEPR rs1137101(A) conferred higher risk for altered insulin, and HOMA-IR in overweight adolescents. The associations observed in this population suggested increased risk for cardiovascular diseases and/or type 2 diabetes later in life for individuals carrying these alleles.

  6. IGF2, LEPR, POMC, PPARG, and PPARGC1 gene variants are associated with obesity-related risk phenotypes in Brazilian children and adolescents

    PubMed Central

    Queiroz, E.M.; Cândido, A.P.C.; Castro, I.M.; Bastos, A.Q.A.; Machado-Coelho, G.L.L.; Freitas, R.N.

    2015-01-01

    Association studies of genetic variants and obesity and/or obesity-related risk factors have yielded contradictory results. The aim of the present study was to determine the possible association of five single-nucleotide polymorphisms (SNPs) located in the IGF2, LEPR, POMC, PPARG, and PPARGC1genes with obesity or obesity-related risk phenotypes. This case-control study assessed overweight (n=192) and normal-weight (n=211) children and adolescents. The SNPs were analyzed using minisequencing assays, and variables and genotype distributions between the groups were compared using one-way analysis of variance and Pearson's chi-square or Fisher's exact tests. Logistic regression analysis adjusted for age and gender was used to calculate the odds ratios (ORs) for selected phenotype risks in each group. No difference in SNP distribution was observed between groups. In children, POMC rs28932472(C) was associated with lower diastolic blood pressure (P=0.001), higher low-density lipoprotein (LDL) cholesterol (P=0.014), and higher risk in overweight children of altered total cholesterol (OR=7.35, P=0.006). In adolescents, IGF2 rs680(A) was associated with higher glucose (P=0.012) and higher risk in overweight adolescents for altered insulin (OR=10.08, P=0.005) and homeostasis model of insulin resistance (HOMA-IR) (OR=6.34, P=0.010). PPARG rs1801282(G) conferred a higher risk of altered insulin (OR=12.31, P=0.003), and HOMA-IR (OR=7.47, P=0.005) in overweight adolescents. PARGC1 rs8192678(A) was associated with higher triacylglycerols (P=0.005), and LEPR rs1137101(A) was marginally associated with higher LDL cholesterol (P=0.017). LEPR rs1137101(A) conferred higher risk for altered insulin, and HOMA-IR in overweight adolescents. The associations observed in this population suggested increased risk for cardiovascular diseases and/or type 2 diabetes later in life for individuals carrying these alleles. PMID:25923461

  7. Retinoblastoma and Its Binding Partner MSI1 Control Imprinting in Arabidopsis

    PubMed Central

    Jullien, Pauline E; Mosquna, Assaf; Ingouff, Mathieu; Sakata, Tadashi; Ohad, Nir; Berger, Frédéric

    2008-01-01

    Parental genomic imprinting causes preferential expression of one of the two parental alleles. In mammals, differential sex-dependent deposition of silencing DNA methylation marks during gametogenesis initiates a new cycle of imprinting. Parental genomic imprinting has been detected in plants and relies on DNA methylation by the methyltransferase MET1. However, in contrast to mammals, plant imprints are created by differential removal of silencing marks during gametogenesis. In Arabidopsis, DNA demethylation is mediated by the DNA glycosylase DEMETER (DME) causing activation of imprinted genes at the end of female gametogenesis. On the basis of genetic interactions, we show that in addition to DME, the plant homologs of the human Retinoblastoma (Rb) and its binding partner RbAp48 are required for the activation of the imprinted genes FIS2 and FWA. This Rb-dependent activation is mediated by direct transcriptional repression of MET1 during female gametogenesis. We have thus identified a new mechanism required for imprinting establishment, outlining a new role for the Retinoblastoma pathway, which may be conserved in mammals. PMID:18700816

  8. Targeting and Imaging of Cancer Cells via Monosaccharide-Imprinted Fluorescent Nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, Shuangshou; Yin, Danyang; Wang, Wenjing; Shen, Xiaojing; Zhu, Jun-Jie; Chen, Hong-Yuan; Liu, Zhen

    2016-03-01

    The recognition of cancer cells is a key for cancer diagnosis and therapy, but the specificity highly relies on the use of biorecognition molecules particularly antibodies. Because biorecognition molecules suffer from some apparent disadvantages, such as hard to prepare and poor storage stability, novel alternatives that can overcome these disadvantages are highly important. Here we present monosaccharide-imprinted fluorescent nanoparticles (NPs) for targeting and imaging of cancer cells. The molecularly imprinted polymer (MIP) probe was fluorescein isothiocyanate (FITC) doped silica NPs with a shell imprinted with sialic acid, fucose or mannose as the template. The monosaccharide-imprinted NPs exhibited high specificity toward the target monosaccharides. As the template monosaccharides used are over-expressed on cancer cells, these monosaccharide-imprinted NPs allowed for specific targeting cancer cells over normal cells. Fluorescence imaging of human hepatoma carcinoma cells (HepG-2) over normal hepatic cells (L-02) and mammary cancer cells (MCF-7) over normal mammary epithelial cells (MCF-10A) by these NPs was demonstrated. As the imprinting approach employed herein is generally applicable and highly efficient, monosaccharide-imprinted NPs can be promising probes for targeting cancer cells.

  9. G9a/GLP Complex Maintains Imprinted DNA Methylation in Embryonic Stem Cells

    PubMed Central

    Zhang, Tuo; Termanis, Ausma; Özkan, Burak; Bao, Xun X.; Culley, Jayne; de Lima Alves, Flavia; Rappsilber, Juri; Ramsahoye, Bernard; Stancheva, Irina

    2016-01-01

    Summary DNA methylation at imprinting control regions (ICRs) is established in gametes in a sex-specific manner and has to be stably maintained during development and in somatic cells to ensure the correct monoallelic expression of imprinted genes. In addition to DNA methylation, the ICRs are marked by allele-specific histone modifications. Whether these marks are essential for maintenance of genomic imprinting is largely unclear. Here, we show that the histone H3 lysine 9 methylases G9a and GLP are required for stable maintenance of imprinted DNA methylation in embryonic stem cells; however, their catalytic activity and the G9a/GLP-dependent H3K9me2 mark are completely dispensable for imprinting maintenance despite the genome-wide loss of non-imprinted DNA methylation in H3K9me2-depleted cells. We provide additional evidence that the G9a/GLP complex protects imprinted DNA methylation by recruitment of de novo DNA methyltransferases, which antagonize TET dioxygenass-dependent erosion of DNA methylation at ICRs. PMID:27052169

  10. Dynamic methylation adjustment and counting as part of imprinting mechanisms.

    PubMed Central

    Shemer, R; Birger, Y; Dean, W L; Reik, W; Riggs, A D; Razin, A

    1996-01-01

    Monoallelic expression in diploid mammalian cells appears to be a widespread phenomenon, with the most studied examples being X-chromosome inactivation in eutherian female cells and genomic imprinting in the mouse and human. Silencing and methylation of certain sites on one of the two alleles in somatic cells is specific with respect to parental source for imprinted genes and random for X-linked genes. We report here evidence indicating that: (i) differential methylation patterns of imprinted genes are not simply copied from the gametes, but rather established gradually after fertilization; (ii) very similar methylation patterns are observed for diploid, tetraploid, parthenogenic, and androgenic preimplantation mouse embryos, as well as parthenogenic and androgenic mouse embryonic stem cells; (iii) haploid parthenogenic embryos do not show methylation adjustment as seen in diploid or tetraploid embryos, but rather retain the maternal pattern. These observations suggest that differential methylation in imprinted genes is achieved by a dynamic process that senses gene dosage and adjusts methylation similar to X-chromosome inactivation. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8692822

  11. Rapid Evolution of Genomic Imprinting in Two Species of the Brassicaceae.

    PubMed

    Hatorangan, Marcelinus R; Laenen, Benjamin; Steige, Kim A; Slotte, Tanja; Köhler, Claudia

    2016-08-01

    Genomic imprinting is an epigenetic phenomenon occurring in mammals and flowering plants that causes genes to adopt a parent-of-origin-specific mode of expression. While the imprinting status of genes is well conserved in mammals, clear estimates for the degree of conservation were lacking in plants. We therefore analyzed the genome-wide imprinting status of Capsella rubella, which shared a common recent ancestor with Arabidopsis thaliana ∼10 to 14 million years ago. However, only ∼14% of maternally expressed genes (MEGs) and ∼29% of paternally expressed genes (PEGs) in C. rubella were commonly imprinted in both species, revealing that genomic imprinting is a rapidly evolving phenomenon in plants. Nevertheless, conserved PEGs exhibited signs of selection, suggesting that a subset of imprinted genes play an important functional role and are therefore maintained in plants. Like in Arabidopsis, PEGs in C. rubella are frequently associated with the presence of transposable elements that preferentially belong to helitron and MuDR families. Our data further reveal that MEGs and PEGs differ in their targeting by 24-nucleotide small RNAs and asymmetric DNA methylation, suggesting different mechanisms establishing DNA methylation at MEGs and PEGs. PMID:27465027

  12. Sex-linked dosage-sensitive modifiers as imprinting genes.

    PubMed

    Sapienza, C

    1990-01-01

    It is proposed that differential genome imprinting is the result of dosage-sensitive modifier genes located on the sex chromosomes. Parallels between variegating position-effects in Drosophila, the phenotype elicited by transgenes in the mouse and data from several pediatric tumors indicate that the net result of the activity of such modifier genes is often cellular mosaicism in the expression of affected alleles. The mechanism by which inactivation of affected alleles is achieved is proposed to be through the formation of heterochromatic domains. Because the relevant sex-linked modifying loci are dosage sensitive in their activity, differential imprinting will occur even within homogeneous genetic backgrounds. The presence of allelic variants at these loci in non-inbred populations will give rise to variation in the observed expressivity and mode of inheritance of affected traits.

  13. IGF2BP2/IMP2-Deficient mice resist obesity through enhanced translation of Ucp1 mRNA and Other mRNAs encoding mitochondrial proteins.

    PubMed

    Dai, Ning; Zhao, Liping; Wrighting, Diedra; Krämer, Dana; Majithia, Amit; Wang, Yanqun; Cracan, Valentin; Borges-Rivera, Diego; Mootha, Vamsi K; Nahrendorf, Matthias; Thorburn, David R; Minichiello, Liliana; Altshuler, David; Avruch, Joseph

    2015-04-01

    Although variants in the IGF2BP2/IMP2 gene confer risk for type 2 diabetes, IMP2, an RNA binding protein, is not known to regulate metabolism. Imp2(-/-) mice gain less lean mass after weaning and have increased lifespan. Imp2(-/-) mice are highly resistant to diet-induced obesity and fatty liver and display superior glucose tolerance and insulin sensitivity, increased energy expenditure, and better defense of core temperature on cold exposure. Imp2(-/-) brown fat and Imp2(-/-) brown adipocytes differentiated in vitro contain more UCP1 polypeptide than Imp2(+/+) despite similar levels of Ucp1 mRNA; the Imp2(-/-)adipocytes also exhibit greater uncoupled oxygen consumption. IMP2 binds the mRNAs encoding Ucp1 and other mitochondrial components, and most exhibit increased translational efficiency in the absence of IMP2. In vitro IMP2 inhibits translation of mRNAs bearing the Ucp1 untranslated segments. Thus IMP2 limits longevity and regulates nutrient and energy metabolism in the mouse by controlling the translation of its client mRNAs. PMID:25863250

  14. Epigenetic imprinting during assisted reproductive technologies: The effect of temporal and cumulative fluctuations in methionine cycling on the DNA methylation state.

    PubMed

    Hoeijmakers, Lianne; Kempe, Hermannus; Verschure, Pernette J

    2016-02-01

    Assisted reproductive technology (ART) exposes gametes and embryos to an artificial environment that does not resemble the conditions of natural conception, and therefore might change epigenetic regulation of genes that are imprinted during development. In the present review, we discuss the relationship between susceptibility of specific genes to receive an altered epigenetic composition during ART processes, possibly via alterations in the biochemical folate and methionine cycle. We provide a comprehensive view of the current state of epigenetic patterning in ART-conceived healthy children and in Angelman syndrome (AS) and Beckwith-Wiedemann syndrome (BWS) patients. We illustrate that similar genes--that is, MEST, KCNQ1OT1, and IGF2--possess an altered DNA methylation profile in animal models, ART-conceived healthy children, and AS and BWS patients. The developmental stage at which these genes receive their epigenetic imprint appears to coincide with the specific moment that ART takes place. We highlight that ART procedures affect physiological levels of enzymes and substrates involved in the folate and methionine cycle thereby altering the DNA methylation state. Moreover, although the DNA methylation rate appears to be robust: (i) temporal imbalances coinciding with defined moments of epigenetic imprinting of specific genes affect the eventual DNA methylation state of those genes and (ii) cumulative ART effects on methionine and folate cycling can alter DNA methylation rates. These observations underscore the necessity to further investigate consequences of ART treatments on the epigenetic profile. PMID:26660493

  15. Genome-wide histone state profiling of fibroblasts from the opossum, Monodelphis domestica, identifies the first marsupial-specific imprinted gene

    PubMed Central

    2014-01-01

    Background Imprinted genes have been extensively documented in eutherian mammals and found to exhibit significant interspecific variation in the suites of genes that are imprinted and in their regulation between tissues and developmental stages. Much less is known about imprinted loci in metatherian (marsupial) mammals, wherein studies have been limited to a small number of genes previously known to be imprinted in eutherians. We describe the first ab initio search for imprinted marsupial genes, in fibroblasts from the opossum, Monodelphis domestica, based on a genome-wide ChIP-seq strategy to identify promoters that are simultaneously marked by mutually exclusive, transcriptionally opposing histone modifications. Results We identified a novel imprinted gene (Meis1) and two additional monoallelically expressed genes, one of which (Cstb) showed allele-specific, but non-imprinted expression. Imprinted vs. allele-specific expression could not be resolved for the third monoallelically expressed gene (Rpl17). Transcriptionally opposing histone modifications H3K4me3, H3K9Ac, and H3K9me3 were found at the promoters of all three genes, but differential DNA methylation was not detected at CpG islands at any of these promoters. Conclusions In generating the first genome-wide histone modification profiles for a marsupial, we identified the first gene that is imprinted in a marsupial but not in eutherian mammals. This outcome demonstrates the practicality of an ab initio discovery strategy and implicates histone modification, but not differential DNA methylation, as a conserved mechanism for marking imprinted genes in all therian mammals. Our findings suggest that marsupials use multiple epigenetic mechanisms for imprinting and support the concept that lineage-specific selective forces can produce sets of imprinted genes that differ between metatherian and eutherian lines. PMID:24484454

  16. Gene Dosage Effects of the Imprinted Delta-Like Homologue 1 (Dlk1/Pref1) in Development: Implications for the Evolution of Imprinting

    PubMed Central

    Teixeira da Rocha, Simao; Charalambous, Marika; Lin, Shau-Ping; Gutteridge, Isabel; Ito, Yoko; Gray, Dionne; Dean, Wendy; Ferguson-Smith, Anne C.

    2009-01-01

    Genomic imprinting is a normal process that causes genes to be expressed according to parental origin. The selective advantage conferred by imprinting is not understood but is hypothesised to act on dosage-critical genes. Here, we report a unique model in which the consequences of a single, double, and triple dosage of the imprinted Dlk1/Pref1, normally repressed on the maternally inherited chromosome, can be assessed in the growing embryo. BAC-transgenic mice were generated that over-express Dlk1 from endogenous regulators at all sites of embryonic activity. Triple dosage causes lethality associated with major organ abnormalities. Embryos expressing a double dose of Dlk1, recapitulating loss of imprinting, are growth enhanced but fail to thrive in early life, despite the early growth advantage. Thus, any benefit conferred by increased embryonic size is offset by postnatal lethality. We propose a negative correlation between gene dosage and survival that fixes an upper limit on growth promotion by Dlk1, and we hypothesize that trade-off between growth and lethality might have driven imprinting at this locus. PMID:19247431

  17. Imprinted Zac1 in neural stem cells

    PubMed Central

    Daniel, Guillaume; Schmidt-Edelkraut, Udo; Spengler, Dietmar; Hoffmann, Anke

    2015-01-01

    Neural stem cells (NSCs) and imprinted genes play an important role in brain development. On historical grounds, these two determinants have been largely studied independently of each other. Recent evidence suggests, however, that NSCs can reset select genomic imprints to prevent precocious depletion of the stem cell reservoir. Moreover, imprinted genes like the transcriptional regulator Zac1 can fine tune neuronal vs astroglial differentiation of NSCs. Zac1 binds in a sequence-specific manner to pro-neuronal and imprinted genes to confer transcriptional regulation and furthermore coregulates members of the p53-family in NSCs. At the genome scale, Zac1 is a central hub of an imprinted gene network comprising genes with an important role for NSC quiescence, proliferation and differentiation. Overall, transcriptional, epigenomic, and genomic mechanisms seem to coordinate the functional relationships of NSCs and imprinted genes from development to maturation, and possibly aging. PMID:25815116

  18. Imprint Reduction with Shaped Pulses

    NASA Astrophysics Data System (ADS)

    Collins, T. J. B.; Skupsky, S.

    2000-10-01

    A novel technique for reducing laser imprint in OMEGA cryogenic targets has been developed. Standard ICF cryogenic targets consist of a shell of DT ice with a thin outer layer of CH. The presence of the CH layer gives rise to a brief period of early-time growth by the Rayleigh-Taylor (RT) instability, which effectively increases the amount of laser imprint by about a factor of 2. Two-dimensional ORCHID simulations show that by introducing a short, high-intensity spike at the start of the implosion, this early-time growth can be significantly reduced with only a small change to the calculated 1-D neutron yield. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC03-92SF19460.

  19. Genomic imprinting and parent-of-origin effects on complex traits

    PubMed Central

    Lawson, Heather A.; Cheverud, James M.

    2014-01-01

    Parent-of-origin effects occur when the phenotypic effect of an allele depends on whether it is inherited from an individual’s mother or father. Several phenomena can cause parent-of-origin effects, with the best characterized being parent-of-origin dependent gene expression associated with genomic imprinting. Imprinting plays a critical role in a diversity of biological processes and in certain contexts it structures epigenetic relationships between DNA sequence and phenotypic variation. The development of new mapping approaches applied to the growing abundance of genomic data has demonstrated that imprinted genes can be important contributors to complex trait variation. Therefore, to understand the genetic architecture and evolution of complex traits, including complex diseases and traits of agricultural importance, it is crucial to account for these parent-of-origin effects. Here we discuss patterns of phenotypic variation associated with imprinting, evidence supporting its role in complex trait variation, and approaches for identifying its molecular signatures. PMID:23917626

  20. Characterization of global loss of imprinting in fetal overgrowth syndrome induced by assisted reproduction.

    PubMed

    Chen, Zhiyuan; Hagen, Darren E; Elsik, Christine G; Ji, Tieming; Morris, Collin James; Moon, Laura Emily; Rivera, Rocío Melissa

    2015-04-14

    Embryos generated with the use of assisted reproductive technologies (ART) can develop overgrowth syndromes. In ruminants, the condition is referred to as large offspring syndrome (LOS) and exhibits variable phenotypic abnormalities including overgrowth, enlarged tongue, and abdominal wall defects. These characteristics recapitulate those observed in the human loss-of-imprinting (LOI) overgrowth syndrome Beckwith-Wiedemann (BWS). We have recently shown LOI at the KCNQ1 locus in LOS, the most common epimutation in BWS. Although the first case of ART-induced LOS was reported in 1995, studies have not yet determined the extent of LOI in this condition. Here, we determined allele-specific expression of imprinted genes previously identified in human and/or mouse in day ∼105 Bos taurus indicus × Bos taurus taurus F1 hybrid control and LOS fetuses using RNAseq. Our analysis allowed us to determine the monoallelic expression of 20 genes in tissues of control fetuses. LOS fetuses displayed variable LOI compared with controls. Biallelic expression of imprinted genes in LOS was associated with tissue-specific hypomethylation of the normally methylated parental allele. In addition, a positive correlation was observed between body weight and the number of biallelically expressed imprinted genes in LOS fetuses. Furthermore, not only was there loss of allele-specific expression of imprinted genes in LOS, but also differential transcript amounts of these genes between control and overgrown fetuses. In summary, we characterized previously unidentified imprinted genes in bovines and identified misregulation of imprinting at multiple loci in LOS. We concluded that LOS is a multilocus LOI syndrome, as is BWS. PMID:25825726

  1. Characterization of global loss of imprinting in fetal overgrowth syndrome induced by assisted reproduction.

    PubMed

    Chen, Zhiyuan; Hagen, Darren E; Elsik, Christine G; Ji, Tieming; Morris, Collin James; Moon, Laura Emily; Rivera, Rocío Melissa

    2015-04-14

    Embryos generated with the use of assisted reproductive technologies (ART) can develop overgrowth syndromes. In ruminants, the condition is referred to as large offspring syndrome (LOS) and exhibits variable phenotypic abnormalities including overgrowth, enlarged tongue, and abdominal wall defects. These characteristics recapitulate those observed in the human loss-of-imprinting (LOI) overgrowth syndrome Beckwith-Wiedemann (BWS). We have recently shown LOI at the KCNQ1 locus in LOS, the most common epimutation in BWS. Although the first case of ART-induced LOS was reported in 1995, studies have not yet determined the extent of LOI in this condition. Here, we determined allele-specific expression of imprinted genes previously identified in human and/or mouse in day ∼105 Bos taurus indicus × Bos taurus taurus F1 hybrid control and LOS fetuses using RNAseq. Our analysis allowed us to determine the monoallelic expression of 20 genes in tissues of control fetuses. LOS fetuses displayed variable LOI compared with controls. Biallelic expression of imprinted genes in LOS was associated with tissue-specific hypomethylation of the normally methylated parental allele. In addition, a positive correlation was observed between body weight and the number of biallelically expressed imprinted genes in LOS fetuses. Furthermore, not only was there loss of allele-specific expression of imprinted genes in LOS, but also differential transcript amounts of these genes between control and overgrown fetuses. In summary, we characterized previously unidentified imprinted genes in bovines and identified misregulation of imprinting at multiple loci in LOS. We concluded that LOS is a multilocus LOI syndrome, as is BWS.

  2. Discovery of a novel imprinted gene by transcriptional analysis of parthenogenetic embryonic stem cells

    PubMed Central

    Sritanaudomchai, Hathaitip; Ma, Hong; Clepper, Lisa; Gokhale, Sumita; Bogan, Randy; Hennebold, Jon; Wolf, Don; Mitalipov, Shoukhrat

    2010-01-01

    BACKGROUND Parthenogenetic embryonic stem cells (PESCs) may have future utilities in cell replacement therapies since they are closely related to the female from which the activated oocyte was obtained. Furthermore, the avoidance of parthenogenetic development in mammals provides the most compelling rationale for the evolution of genomic imprinting, and the biological process of parthenogenesis raises complex issues regarding differential gene expression. METHODS AND RESULTS We describe here homozygous rhesus monkey PESCs derived from a spontaneously duplicated, haploid oocyte genome. Since the effect of homozygosity on PESCs pluripotency and differentiation potential is unknown, we assessed the similarities and differences in pluripotency markers and developmental potential by in vitro and in vivo differentiation of homozygous and heterozygous PESCs. To understand the differences in gene expression regulation between parthenogenetic and biparental embryonic stem cells (ESCs), we conducted microarray analysis of genome-wide mRNA profiles of primate PESCs and ESCs derived from fertilized embryos using the Affymetrix Rhesus Macaque Genome array. Several known paternally imprinted genes were in the highly down-regulated group in PESCs compared with ESCs. Furthermore, allele-specific expression analysis of other genes whose expression is also down-regulated in PESCs, led to the identification of one novel imprinted gene, inositol polyphosphate-5-phosphatase F (INPP5F), which was exclusively expressed from a paternal allele. CONCLUSION Our findings suggest that PESCs could be used as a model for studying genomic imprinting, and in the discovery of novel imprinted genes. PMID:20522441

  3. Molecularly imprinted polymers: synthesis and characterisation.

    PubMed

    Cormack, Peter A G; Elorza, Amaia Zurutuza

    2004-05-01

    This short review aims to present, in clear English, a summary of the principal synthetic considerations pertaining to good practice in the polymerisation aspects of molecular imprinting, and is primarily aimed at researchers familiar with molecular imprinting methods but with little or no prior experience in polymer synthesis. It is our hope that this will facilitate researchers to plan their own syntheses of molecular imprints in a more logical and structured fashion, and to begin to appreciate the limitations of the present synthetic approaches in this molecularly complex area, as well as the scope for rationally designing improved imprinted materials in the future.

  4. Genomic imprinting in plants: what makes the functions of paternal and maternal genes different in endosperm formation?

    PubMed

    Ohnishi, Takayuki; Sekine, Daisuke; Kinoshita, Tetsu

    2014-01-01

    Genomic imprinting refers to the unequal expression of maternal and paternal alleles according to the parent of origin. This phenomenon is regulated by epigenetic controls and has been reported in placental mammals and flowering plants. Although conserved characteristics can be identified across a wide variety of taxa, it is believed that genomic imprinting evolved independently in animal and plant lineages. Plant genomic imprinting occurs most obviously in the endosperm, a terminally differentiated embryo-nourishing tissue that is required for seed development. Recent studies have demonstrated a close relationship between genomic imprinting and the development of elaborate defense mechanisms against parasitic elements during plant sexual reproduction. In this chapter, we provide an introductory description of genomic imprinting in plants, and focus on recent advances in our understanding of its role in endosperm development, the frontline of maternal and paternal epigenomes.

  5. The placental imprintome and imprinted gene function in the trophoblast glycogen cell lineage.

    PubMed

    Lefebvre, Louis

    2012-07-01

    Imprinted genes represent a unique class of autosomal genes expressed from only one of the parental alleles during development. The choice of the expressed allele is not random but rather is determined by the parental origin of the allele. Consequently, the mouse genome contains more than 100 genes expressed preferentially or exclusively from the maternally or the paternally inherited allele. Current research efforts are focused on understanding the molecular mechanism of this epigenetic phenomenon as well as the biological functions of the genes under its regulation. Both theoretical considerations and experimental results support a role for genomic imprinting in the regulation of embryonic growth and placental biology. In this review, recent efforts to establish the complete set of genes showing imprinted expression in the mouse placenta are first discussed. Then, the evidence suggesting that imprinted genes might be implicated in the emergence, maintenance and function of trophoblast glycogen cells is presented. Although the origin and functions of this trophoblast cell lineage are currently unknown, the analysis of mutations in imprinted genes in the mouse are providing new insights into these issues. The implications of this work for placental pathologies in human are also discussed.

  6. Distributed feedback imprinted electrospun fiber lasers.

    PubMed

    Persano, Luana; Camposeo, Andrea; Del Carro, Pompilio; Fasano, Vito; Moffa, Maria; Manco, Rita; D'Agostino, Stefania; Pisignano, Dario

    2014-10-01

    Imprinted, distributed feedback lasers are demonstrated on individual, active electrospun polymer nanofibers. In addition to advantages related to miniaturization, optical confinement and grating nanopatterning lead to a significant threshold reduction compared to conventional thin-film lasers. The possibility of imprinting arbitrary photonic crystal geometries on electrospun lasing nanofibers opens new opportunities for realizing optical circuits and chips.

  7. Neuronal imprinting of human values.

    PubMed

    Delgado, J M

    2000-03-01

    In the 21st century, psychophysiology will face the challenge of establishing ethical principles and practical means for the genetic and social influencing of the development of human beings. Neuronal imprinting of beliefs and morality within infantile minds will be necessary for the peaceful coexistence of races and cultures. This process requires study and consideration, among others, of the following psychophysiological facts: (1) Genes do not transmit moral values. (2) Material support of physiological activities is necessary for the existence and development of mental functions. (3) Imprinting of human values is based on material changes within neuronal structures. (4) Early neuronal imprinting is performed without personal awareness or consent of the individual and depends on sensory inputs, mainly from the social structure of the group. (5) Biological structures lack values. Personal and social antagonisms do not depend on genes, but on cultural indoctrination. (6) Pleasure and punishment (positive and negative reinforcement) are the two main elements, which regulate animal and human behavior. (7) Values must be chosen by adults, who decide the questions 'why'? 'when'? 'which ones'?, 'who should teach'?, 'what?' and 'how'? (8) Many biological imperatives are shared by all animals and by all people. Human beings may be considered the 'crickets of the Universe', unable to understand the mysteries of nature because of our insufficient neuronal capacity. (9) Our emotional life is mainly related to the structure of the limbic system controlled by the neocortex. (10) New theories based on the integration of physics, chemistry, biology and other specific areas of knowledge, as proposed by the General Theory of Systems, will avoid 'opposites', favoring the acceptance of complementary aspects of reality. (11) Early education will promote preferential learning which depends on both genetic endowment and neuronal development influenced by experience. It is the

  8. Astrobiological Molecularly Imprinted Polymer Sensors

    NASA Astrophysics Data System (ADS)

    Izenberg, N. R.; Murray, G. M.; van Houten, K. A.; Hofstra, A. A.

    2005-12-01

    Development of Molecularly Imprinted Polymer (MIP) sensors for astrobiology is intended to provide a new class of microlaboratory sensors compatible with other life or biomarker detection. Molecular imprinting is a process for making selective binding sites in synthetic polymers. The process may be approached by designing the recognition site or by simply choosing monomers that may have favorable interactions with the imprinting molecule. We are working to apply this methodology to astrobiology for development of a reliable, low cost, low mass, low power consumption sensor technology for quantitative in-situ analysis of biochemistry, biomarkers, and other indicators of astrobiological importance. Specific goals of the project are: 1) To develop a general methodology and specific methods for MIP-based sensor construction. The overall methodology will guide procedures for design and testing of any desired sensor. Specific methods will be applied to key families and specific species of astrobiological interest, i.e., alkanes (and Polycyclic aromatic hydrocarbons - PAHs), amino acids, steroids, and hopanes; 2) To construct and characterize the general family and specific species sensors. We will test for accuracy, precision, interferences, and limitations of the sensor against blanks, standards, and known terrestrial biological environment samples. Additional testing will determine sturdiness and longevity of sensors after exposure to transit conditions (launch and space environment), and at potential target environments (pressure, temperature, pH, etc.); and 3) To construct and demonstrate the combination of multiple sensors into a viable prototype instrument, and roadmap the expansion of potential instrument capabilities and exploration of the ultimate environmental limitations of the technology, and the necessary changes and additions to create a mission-ready instrument. Initial work has resulted successful detection of aqueous alanine (D and L) with simple MIP

  9. Loss of Gnas Imprinting Differentially Affects REM/NREM Sleep and Cognition in Mice

    PubMed Central

    Lassi, Glenda; Ball, Simon T.; Maggi, Silvia; Colonna, Giovanni; Nieus, Thierry; Cero, Cheryl; Bartolomucci, Alessandro; Peters, Jo; Tucci, Valter

    2012-01-01

    It has been suggested that imprinted genes are important in the regulation of sleep. However, the fundamental question of whether genomic imprinting has a role in sleep has remained elusive up to now. In this work we show that REM and NREM sleep states are differentially modulated by the maternally expressed imprinted gene Gnas. In particular, in mice with loss of imprinting of Gnas, NREM and complex cognitive processes are enhanced while REM and REM–linked behaviors are inhibited. This is the first demonstration that a specific overexpression of an imprinted gene affects sleep states and related complex behavioral traits. Furthermore, in parallel to the Gnas overexpression, we have observed an overexpression of Ucp1 in interscapular brown adipose tissue (BAT) and a significant increase in thermoregulation that may account for the REM/NREM sleep phenotypes. We conclude that there must be significant evolutionary advantages in the monoallelic expression of Gnas for REM sleep and for the consolidation of REM–dependent memories. Conversely, biallelic expression of Gnas reinforces slow wave activity in NREM sleep, and this results in a reduction of uncertainty in temporal decision-making processes. PMID:22589743

  10. Expression profile of IGF paralog genes in liver and muscle of a GH-transgenic zebrafish.

    PubMed

    Nornberg, Bruna Felix; Figueiredo, Marcio Azevedo; Marins, Luis Fernando

    2016-01-15

    The objective of this study was to investigate the relationship between IGFs produced in the liver and skeletal muscle with muscle hypertrophy previously observed in a line of GH-transgenic zebrafish. In this sense, we evaluated the expression of genes related to the IGF system in liver and muscle of transgenics, as well as the main intracellular signaling pathways used by GH/IGF axis. Our results showed an increase in expression of igf1a, igf2a, and igf2b genes in the liver. Moreover, there was a decrease in the expression of igf1ra and an increase in muscle igf2r of transgenics, indicating a negative response of muscle tissue with respect to excess circulating IGFs. Muscle IGFs expression analyses revealed a significant increase only for igf2b, accompanied by a parallel induction of igfbp5a gene. The presence of IGFBP5a may potentiate the IGF2 action in muscle cells differentiation. Regarding JAK/STAT-related genes, we observed an alteration in the expression profile of both stat3 and stat5a in transgenic fish liver. No changes were observed in the muscle, suggesting that both tissues respond differently to GH-transgenesis. Western blotting analyses indicated an imbalance between the phosphorylation levels of the proliferative (MEK/ERK) and hypertrophic (PI3K/Akt) pathways, in favor of the latter. In summary, the results of this study suggest that the hypertrophy caused by GH-transgenesis in zebrafish may be due to circulating IGFs produced by the liver, with an important participation of muscle IGF2b. This group of IGFs appears to be favoring the hypertrophic intracellular pathway in muscle tissue of transgenic zebrafish.

  11. Expression profile of IGF paralog genes in liver and muscle of a GH-transgenic zebrafish.

    PubMed

    Nornberg, Bruna Felix; Figueiredo, Marcio Azevedo; Marins, Luis Fernando

    2016-01-15

    The objective of this study was to investigate the relationship between IGFs produced in the liver and skeletal muscle with muscle hypertrophy previously observed in a line of GH-transgenic zebrafish. In this sense, we evaluated the expression of genes related to the IGF system in liver and muscle of transgenics, as well as the main intracellular signaling pathways used by GH/IGF axis. Our results showed an increase in expression of igf1a, igf2a, and igf2b genes in the liver. Moreover, there was a decrease in the expression of igf1ra and an increase in muscle igf2r of transgenics, indicating a negative response of muscle tissue with respect to excess circulating IGFs. Muscle IGFs expression analyses revealed a significant increase only for igf2b, accompanied by a parallel induction of igfbp5a gene. The presence of IGFBP5a may potentiate the IGF2 action in muscle cells differentiation. Regarding JAK/STAT-related genes, we observed an alteration in the expression profile of both stat3 and stat5a in transgenic fish liver. No changes were observed in the muscle, suggesting that both tissues respond differently to GH-transgenesis. Western blotting analyses indicated an imbalance between the phosphorylation levels of the proliferative (MEK/ERK) and hypertrophic (PI3K/Akt) pathways, in favor of the latter. In summary, the results of this study suggest that the hypertrophy caused by GH-transgenesis in zebrafish may be due to circulating IGFs produced by the liver, with an important participation of muscle IGF2b. This group of IGFs appears to be favoring the hypertrophic intracellular pathway in muscle tissue of transgenic zebrafish. PMID:26718079

  12. The Drosophila melanogaster homolog of UBE3A is not imprinted in neurons

    PubMed Central

    Hope, Kevin A.; LeDoux, Mark S.; Reiter, Lawrence T.

    2016-01-01

    ABSTRACT In mammals, expression of UBE3A is epigenetically regulated in neurons and expression is restricted to the maternal copy of UBE3A. A recent report claimed that Drosophila melanogaster UBE3A homolog (Dube3a) is preferentially expressed from the maternal allele in fly brain, inferring an imprinting mechanism. However, complex epigenetic regulatory features of the mammalian imprinting center are not present in Drosophila, and allele specific expression of Dube3a has not been documented. We used behavioral and electrophysiological analysis of the Dube3a loss-of-function allele (Dube3a15b) to investigate Dube3a imprinting in fly neurons. We found that motor impairment (climbing ability) and a newly-characterized defect in synaptic transmission are independent of parental inheritance of the Dube3a15b allele. Furthermore, expression analysis of coding single nucleotide polymorphisms (SNPs) in Dube3a did not reveal allele specific expression differences among reciprocal crosses. These data indicate that Dube3a is neither imprinted nor preferentially expressed from the maternal allele in fly neurons. PMID:27599063

  13. The imprinted brain: how genes set the balance between autism and psychosis.

    PubMed

    Badcock, Christopher

    2011-06-01

    The imprinted brain theory proposes that autism spectrum disorder (ASD) represents a paternal bias in the expression of imprinted genes. This is reflected in a preference for mechanistic cognition and in the corresponding mentalistic deficits symptomatic of ASD. Psychotic spectrum disorder (PSD) would correspondingly result from an imbalance in favor of maternal and/or X-chromosome gene expression. If differences in gene expression were reflected locally in the human brain as mouse models and other evidence suggests they are, ASD would represent not so much an 'extreme male brain' as an extreme paternal one, with PSD correspondingly representing an extreme maternal brain. To the extent that copy number variation resembles imprinting and aneuploidy in nullifying or multiplying the expression of particular genes, it has been found to conform to the diametric model of mental illness peculiar to the imprinted brain theory. The fact that nongenetic factors such as nutrition in pregnancy can mimic and/or interact with imprinted gene expression suggests that the theory might even be able to explain the notable effect of maternal starvation on the risk of PSD - not to mention the 'autism epidemic' of modern affluent societies. Finally, the theory suggests that normality represents balanced cognition, and that genius is an extraordinary extension of cognitive configuration in both mentalistic and mechanistic directions. Were it to be proven correct, the imprinted brain theory would represent one of the biggest single advances in our understanding of the mind and of mental illness that has ever taken place, and would revolutionize psychiatric diagnosis, prevention and treatment - not to mention our understanding of epigenomics.

  14. No Evidence for Enrichment in Schizophrenia for Common Allelic Associations at Imprinted Loci

    PubMed Central

    Escott-Price, Valentina; Kirov, George; Rees, Elliott; Isles, Anthony R.; Owen, Michael J.; O’Donovan, Michael C.

    2015-01-01

    Most genetic studies assume that the function of a genetic variant is independent of the parent from which it is inherited, but this is not always true. The best known example of parent-of-origin effects arises with respect to alleles at imprinted loci. In classical imprinting, characteristically, either the maternal or paternal copy is expressed, but not both. Only alleles present in one of the parental copies of the gene, the expressed copy, is likely to contribute to disease. It has been postulated that imprinting is important in central nervous system development, and that consequently, imprinted loci may be involved in schizophrenia. If this is true, allowing for parent-of-origin effects might be important in genetic studies of schizophrenia. Here, we use genome-wide association data from one of the world’s largest samples (N = 695) of parent schizophrenia-offspring trios to test for parent-of-origin effects. To maximise power, we restricted our analyses to test two main hypotheses. If imprinting plays a disproportionate role in schizophrenia susceptibility, we postulated a) that alleles showing robust evidence for association to schizophrenia from previous genome-wide association studies should be enriched for parent-of-origin effects and b) that genes at loci imprinted in humans or mice should be enriched both for genome-wide significant associations, and in our sample, for parent-of-origin effects. Neither prediction was supported in the present study. We have shown, that it is unlikely that parent-of-origin effects or imprinting play particularly important roles in schizophrenia, although our findings do not exclude such effects at specific loci nor do they exclude such effects among rare alleles. PMID:26633303

  15. At Least Ten Genes Define the Imprinted Dlk1-Dio3 Cluster on Mouse Chromosome 12qF1

    PubMed Central

    Hagan, John P.; O'Neill, Brittany L.; Stewart, Colin L.; Kozlov, Serguei V.; Croce, Carlo M.

    2009-01-01

    Background Genomic imprinting is an exception to Mendelian genetics in that imprinted genes are expressed monoallelically, dependent on parental origin. In mammals, imprinted genes are critical in numerous developmental and physiological processes. Aberrant imprinted gene expression is implicated in several diseases including Prader-Willi/Angelman syndromes and cancer. Methodology/Principal Findings To identify novel imprinted genes, transcription profiling was performed on two uniparentally derived cell lines, androgenetic and parthenogenetic primary mouse embryonic fibroblasts. A maternally expressed transcript termed Imprinted RNA near Meg3/Gtl2 (Irm) was identified and its expression studied by Northern blotting and whole mounts in situ hybridization. The imprinted region that contains Irm has a parent of origin effect in three mammalian species, including the sheep callipyge locus. In mice and humans, both maternal and paternal uniparental disomies (UPD) cause embryonic growth and musculoskeletal abnormalities, indicating that both alleles likely express essential genes. To catalog all imprinted genes in this chromosomal region, twenty-five mouse mRNAs in a 1.96Mb span were investigated for allele specific expression. Conclusions/Significance Ten imprinted genes were elucidated. The imprinting of three paternally expressed protein coding genes (Dlk1, Peg11, and Dio3) was confirmed. Seven noncoding RNAs (Meg3/Gtl2, Anti-Peg11, Meg8, Irm/“Rian”, AK050713, AK053394, and Meg9/Mirg) are characterized by exclusive maternal expression. Intriguingly, the majority of these noncoding RNA genes contain microRNAs and/or snoRNAs within their introns, as do their human orthologs. Of the 52 identified microRNAs that map to this region, six are predicted to regulate negatively Dlk1, suggesting an additional mechanism for interactions between allelic gene products. Since several previous studies relied heavily on in silico analysis and RT-PCR, our findings from Northerns

  16. Automated visual inspection of imprinted pharmaceutical tablets

    NASA Astrophysics Data System (ADS)

    Bukovec, Marko; Špiclin, Žiga; Pernuš, Franjo; Likar, Boštjan

    2007-09-01

    This paper is on automated visual inspection of tablets that may, in contrast to manual tablet sorting, provide objective and reproducible tablet quality assurance. Visual inspection of the ever-increasing numbers of produced imprinted tablets, regulatory enforced for unambiguous identification of active ingredients and dosage strength of each tablet, is especially demanding. The problem becomes more tractable by incorporating some a priori knowledge of the imprint shape and/or appearance. For this purpose, we consider two alternative automated tablet defect detection methods. The geometrical method, incorporating geometrical a priori knowledge of the imprint shape, enables specific inspection of the imprinted and non-imprinted tablet surface, while the statistical method exploits statistical a priori knowledge of tablet surface appearance, derived from a training image database. The two methods were evaluated on a large tablet image database, consisting of 3445 images of four types of imprinted tablets, with and without typical production defects. A 'gold standard' for testing the performances of the two inspection methods was established by manually classifying the tablets into good and five defective classes. The results, obtained by ROC (receiver operating characteristics) analysis, indicate that the statistical method yields better defect detection sensitivity and specificity than the geometrical method. Both presented image analysis methods are quite general and promising tools for automated visual inspection of imprinted pharmaceutical tablets.

  17. Methylation Defect in Imprinted Genes Detected in Patients with an Albright's Hereditary Osteodystrophy Like Phenotype and Platelet Gs Hypofunction

    PubMed Central

    Izzi, Benedetta; Francois, Inge; Labarque, Veerle; Thys, Chantal; Wittevrongel, Christine; Devriendt, Koen; Legius, Eric; Van den Bruel, Annick; D'Hooghe, Marc; Lambrechts, Diether; de Zegher, Francis; Van Geet, Chris; Freson, Kathleen

    2012-01-01

    Background Pseudohypoparathyroidism (PHP) indicates a group of heterogeneous disorders whose common feature is represented by impaired signaling of hormones that activate Gsalpha, encoded by the imprinted GNAS gene. PHP-Ib patients have isolated Parathormone (PTH) resistance and GNAS epigenetic defects while PHP-Ia cases present with hormone resistance and characteristic features jointly termed as Albright's Hereditary Osteodystrophy (AHO) due to maternally inherited GNAS mutations or similar epigenetic defects as found for PHP-Ib. Pseudopseudohypoparathyroidism (PPHP) patients with an AHO phenotype and no hormone resistance and progressive osseous heteroplasia (POH) cases have inactivating paternally inherited GNAS mutations. Methodology/Principal Findings We here describe 17 subjects with an AHO-like phenotype that could be compatible with having PPHP but none of them carried Gsalpha mutations. Functional platelet studies however showed an obvious Gs hypofunction in the 13 patients that were available for testing. Methylation for the three differentially methylated GNAS regions was quantified via the Sequenom EpiTYPER. Patients showed significant hypermethylation of the XL amplicon compared to controls (36±3 vs. 29±3%; p<0.001); a pattern that is reversed to XL hypomethylation found in PHPIb. Interestingly, XL hypermethylation was associated with reduced XLalphaS protein levels in the patients' platelets. Methylation for NESP and ExonA/B was significantly different for some but not all patients, though most patients have site-specific CpG methylation abnormalities in these amplicons. Since some AHO features are present in other imprinting disorders, the methylation of IGF2, H19, SNURF and GRB10 was quantified. Surprisingly, significant IGF2 hypermethylation (20±10 vs. 14±7%; p<0.05) and SNURF hypomethylation (23±6 vs. 32±6%; p<0.001) was found in patients vs. controls, while H19 and GRB10 methylation was normal. Conclusion/Significance In conclusion, this

  18. The parental non-equivalence of imprinting control regions during mammalian development and evolution.

    PubMed

    Schulz, Reiner; Proudhon, Charlotte; Bestor, Timothy H; Woodfine, Kathryn; Lin, Chyuan-Sheng; Lin, Shau-Ping; Prissette, Marine; Oakey, Rebecca J; Bourc'his, Déborah

    2010-11-01

    In mammals, imprinted gene expression results from the sex-specific methylation of imprinted control regions (ICRs) in the parental germlines. Imprinting is linked to therian reproduction, that is, the placenta and imprinting emerged at roughly the same time and potentially co-evolved. We assessed the transcriptome-wide and ontology effect of maternally versus paternally methylated ICRs at the developmental stage of setting of the chorioallantoic placenta in the mouse (8.5dpc), using two models of imprinting deficiency including completely imprint-free embryos. Paternal and maternal imprints have a similar quantitative impact on the embryonic transcriptome. However, transcriptional effects of maternal ICRs are qualitatively focused on the fetal-maternal interface, while paternal ICRs weakly affect non-convergent biological processes, with little consequence for viability at 8.5dpc. Moreover, genes regulated by maternal ICRs indirectly influence genes regulated by paternal ICRs, while the reverse is not observed. The functional dominance of maternal imprints over early embryonic development is potentially linked to selection pressures favoring methylation-dependent control of maternal over paternal ICRs. We previously hypothesized that the different methylation histories of ICRs in the maternal versus the paternal germlines may have put paternal ICRs under higher mutational pressure to lose CpGs by deamination. Using comparative genomics of 17 extant mammalian species, we show here that, while ICRs in general have been constrained to maintain more CpGs than non-imprinted sequences, the rate of CpG loss at paternal ICRs has indeed been higher than at maternal ICRs during evolution. In fact, maternal ICRs, which have the characteristics of CpG-rich promoters, have gained CpGs compared to non-imprinted CpG-rich promoters. Thus, the numerical and, during early embryonic development, functional dominance of maternal ICRs can be explained as the consequence of two

  19. Genomic Imprinting in the Endosperm Is Systematically Perturbed in Abortive Hybrid Tomato Seeds

    PubMed Central

    Florez-Rueda, Ana M.; Paris, Margot; Schmidt, Anja; Widmer, Alex; Grossniklaus, Ueli; Städler, Thomas

    2016-01-01

    Hybrid seed failure represents an important postzygotic barrier to interbreeding among species of wild tomatoes (Solanum section Lycopersicon) and other flowering plants. We studied genome-wide changes associated with hybrid seed abortion in the closely related Solanum peruvianum and S. chilense where hybrid crosses yield high proportions of inviable seeds due to endosperm failure and arrested embryo development. Based on differences of seed size in reciprocal hybrid crosses and developmental evidence implicating endosperm failure, we hypothesized that perturbed genomic imprinting is involved in this strong postzygotic barrier. Consequently, we surveyed the transcriptomes of developing endosperms from intra- and inter-specific crosses using tissues isolated by laser-assisted microdissection. We implemented a novel approach to estimate parent-of-origin–specific expression using both homozygous and heterozygous nucleotide differences between parental individuals and identified candidate imprinted genes. Importantly, we uncovered systematic shifts of “normal” (intraspecific) maternal:paternal transcript proportions in hybrid endosperms; the average maternal proportion of gene expression increased in both crossing directions but was stronger with S. peruvianum in the maternal role. These genome-wide shifts almost entirely eliminated paternally expressed imprinted genes in S. peruvianum hybrid endosperm but also affected maternally expressed imprinted genes and all other assessed genes. These profound, systematic changes in parental expression proportions suggest that core processes of transcriptional regulation are functionally compromised in hybrid endosperm and contribute to hybrid seed failure. PMID:27601611

  20. Ferroelectric capacitor with reduced imprint

    DOEpatents

    Evans, Jr., Joseph T.; Warren, William L.; Tuttle, Bruce A.; Dimos, Duane B.; Pike, Gordon E.

    1997-01-01

    An improved ferroelectric capacitor exhibiting reduced imprint effects in comparison to prior art capacitors. A capacitor according to the present invention includes top and bottom electrodes and a ferroelectric layer sandwiched between the top and bottom electrodes, the ferroelectric layer comprising a perovskite structure of the chemical composition ABO.sub.3 wherein the B-site comprises first and second elements and a dopant element that has an oxidation state greater than +4. The concentration of the dopant is sufficient to reduce shifts in the coercive voltage of the capacitor with time. In the preferred embodiment of the present invention, the ferroelectric element comprises Pb in the A-site, and the first and second elements are Zr and Ti, respectively. The preferred dopant is chosen from the group consisting of Niobium, Tantalum, and Tungsten. In the preferred embodiment of the present invention, the dopant occupies between 1 and 8% of the B-sites.

  1. The essence of linkage-based imprinting detection: Comparing power, type 1 error, and the effects of confounders in two different analysis approaches

    PubMed Central

    Greenberg, David A.; Monti, Maria Cristina; Feenstra, Bjarke; Zhang, Junying; Hodge, Susan E.

    2010-01-01

    Summary Background and goal The epigenetic phenomenon of imprinting is critical to understanding disease expression. However, it is hard to detect and can be species- and tissue-specific. One approach is to detect imprinting by taking advantage of linkage information. Although imprinting detection methods exist, the effects of potential confounders, such as heterogeneity, sex-specific penetrance, and differential sex-based ascertainment, have not been explored in depth. In this study we explored possible confounders using two different imprinting detection approaches. Our goal was to understand the essence of how imprinting and linkage interact and to elucidate the underlying issues in existing imprinting detection approaches. Methods One method (PP) models imprinting by maximizing lod scores with respect to parent-specific penetrances. The other method (DRF) approximates imprinting by maximizing two-point lods with respect to differential male-female recombination fractions. We compared power, type 1 error, and confounder effects in these two linkage-based imprinting detection methods using two-point linkage analysis for simplicity. We computer-simulated data, determining power and type 1 error for imprinting detection among datasets with detectable linkage. We generated data with and without imprinting, with and without heterogeneity, and with varying reduced penetrance, family and dataset size. We also examined non-imprinting situations that could mimic imprinting, e.g., sex-specific penetrances, and a scenario requiring a sex-specified affected parent for ascertainment. Results Without heterogeneity, PP had more imprinting-detecting power than DRF. Surprisingly, PP’s power increased when parental affectedness status was ignored, but decreased with heterogeneity. With heterogeneity, type 1 error could increase dramatically for both methods. However, DRF’s power also appeared to increase under heterogeneity, more than could be attributed to the inflated type

  2. Imprinting analysis of porcine MAGEL2 gene in two fetal stages and association analysis with carcass traits.

    PubMed

    Guo, Ling; Qiao, Mu; Wang, Chao; Zheng, Rong; Xiong, Yuan-Zhu; Deng, Chang-Yan

    2012-01-01

    Imprinted genes play an essential role in the regulation of fetal growth, development and function of the placenta, however only a limited number of imprinted genes have been studied in swine. In this study, we cloned and characterized porcine MAGEL2 (melanoma antigen-like gene 2), and also identified its imprinting status during porcine fetal development. The complete open reading frame (ORF) encoding 1,193 amino acids was isolated and two single nucleotide polymorphisms (SNPs) (g.2592A>C and g.3277T>C) in the coding region were identified. The reciprocal Yorkshire×Meishan F1 hybrid model and the RT-PCR/RFLP method were used to detect the imprinting status of porcine MAGEL2 gene at two developmental stages of day 30 and 65 of gestation. Imprinting analysis showed that porcine MAGEL2 was paternally expressed in day 65 fetal tissues, including heart, liver, spleen, lung, kidney, stomach, small intestine, skeletal muscle, brain and placenta. Interestingly, we observed an imprinting variance of MAGEL2 gene in 30 dpc fetuses produced by the cross of Yorkshire boar×Meishan sow, in which seven heterozygous fetuses were monoallelically expressed from the paternal allele but two were biallelically expressed from both the paternal and maternal alleles. Association analysis in a Yorkshire×Meishan F2 resource population showed that the mutation of g.2592A>C was significantly associated with dressed carcass percentage (P<0.05) and buttock fat thickness (P<0.05). Our results suggest that MAGEL2, as a novel imprinted gene in pig, might be a candidate gene affecting carcass traits and could provide important information for the functional study of imprinted genes during porcine development.

  3. Insertion of an imprinted insulator into the IgH locus reveals developmentally regulated, transcription-dependent control of V(D)J recombination.

    PubMed

    Puget, Nadine; Hirasawa, Ryutaro; Hu, Ngoc-Sa Nguyen; Laviolette-Malirat, Nathalie; Feil, Robert; Khamlichi, Ahmed Amine

    2015-02-01

    The assembly of antigen receptor loci requires a developmentally regulated and lineage-specific recombination between variable (V), diversity (D), and joining (J) segments through V(D)J recombination. The process is regulated by accessibility control elements, including promoters, insulators, and enhancers. The IgH locus undergoes two recombination steps, D-J(H) and then V(H)-DJ(H), but it is unclear how the availability of the DJ(H) substrate could influence the subsequent V(H)-DJ(H) recombination step. The Eμ enhancer plays a critical role in V(D)J recombination and controls a set of sense and antisense transcripts. We epigenetically perturbed the early events at the IgH locus by inserting the imprinting control region (ICR) of the Igf2/H19 locus or a transcriptional insulator devoid of the imprinting function upstream of the Eμ enhancer. The insertions recapitulated the main epigenetic features of their endogenous counterparts, including differential DNA methylation and binding of CTCF/cohesins. Whereas the D-J(H) recombination step was unaffected, both the insulator insertions led to a severe impairment of V(H)-DJ(H) recombination. Strikingly, the inhibition of V(H)-DJ(H) recombination correlated consistently with a strong reduction of DJ(H) transcription and incomplete demethylation. Thus, developmentally regulated transcription following D-J(H) recombination emerges as an important mechanism through which the Eμ enhancer controls V(H)-DJ(H) recombination.

  4. Molecularly Imprinted Polymers: Present and Future Prospective

    PubMed Central

    Vasapollo, Giuseppe; Sole, Roberta Del; Mergola, Lucia; Lazzoi, Maria Rosaria; Scardino, Anna; Scorrano, Sonia; Mele, Giuseppe

    2011-01-01

    Molecular Imprinting Technology (MIT) is a technique to design artificial receptors with a predetermined selectivity and specificity for a given analyte, which can be used as ideal materials in various application fields. Molecularly Imprinted Polymers (MIPs), the polymeric matrices obtained using the imprinting technology, are robust molecular recognition elements able to mimic natural recognition entities, such as antibodies and biological receptors, useful to separate and analyze complicated samples such as biological fluids and environmental samples. The scope of this review is to provide a general overview on MIPs field discussing first general aspects in MIP preparation and then dealing with various application aspects. This review aims to outline the molecularly imprinted process and present a summary of principal application fields of molecularly imprinted polymers, focusing on chemical sensing, separation science, drug delivery and catalysis. Some significant aspects about preparation and application of the molecular imprinting polymers with examples taken from the recent literature will be discussed. Theoretical and experimental parameters for MIPs design in terms of the interaction between template and polymer functionalities will be considered and synthesis methods for the improvement of MIP recognition properties will also be presented. PMID:22016636

  5. A Mouse Model for Imprinting of the Human Retinoblastoma Gene

    PubMed Central

    Tasiou, Vasiliki; Hiber, Michaela; Steenpass, Laura

    2015-01-01

    The human RB1 gene is imprinted due to integration of the PPP1R26P1 pseudogene into intron 2. PPP1R26P1 harbors the gametic differentially methylated region of the RB1 gene, CpG85, which is methylated in the female germ line. The paternally unmethylated CpG85 acts as promoter for the alternative transcript 2B of RB1, which interferes with expression of full-length RB1 in cis. In mice, PPP1R26P1 is not present in the Rb1 gene and Rb1 is not imprinted. Assuming that the mechanisms responsible for genomic imprinting are conserved, we investigated if imprinting of mouse Rb1 can be induced by transferring human PPP1R26P1 into mouse Rb1. We generated humanized Rb1_PPP1R26P1 knock-in mice that pass human PPP1R26P1 through the mouse germ line. We found that the function of unmethylated CpG85 as promoter for an alternative Rb1 transcript and as cis-repressor of the main Rb1 transcript is maintained in mouse tissues. However, CpG85 is not recognized as a gametic differentially methylated region in the mouse germ line. DNA methylation at CpG85 is acquired only in tissues of neuroectodermal origin, independent of parental transmission of PPP1R26P1. Absence of CpG85 methylation in oocytes and sperm implies a failure of imprint methylation establishment in the germ line. Our results indicate that site-specific integration of a proven human gametic differentially methylated region is not sufficient for acquisition of DNA methylation in the mouse germ line, even if promoter function of the element is maintained. This suggests a considerable dependency of DNA methylation induction on the surrounding sequence. However, our model is suited to determine the cellular function of the alternative Rb1 transcript. PMID:26275142

  6. Regulation of the imprinted Dlk1-Dio3 locus by allele-specific enhancer activity.

    PubMed

    Luo, Zhuojuan; Lin, Chengqi; Woodfin, Ashley R; Bartom, Elizabeth T; Gao, Xin; Smith, Edwin R; Shilatifard, Ali

    2016-01-01

    Genomic imprinting is a critical developmental process characteristic of parent of origin-specific gene expression. It is well accepted that differentially DNA-methylated regions (DMRs) and enhancers are two major classes of cis-elements determining parent of origin-specific gene expression, with each recruiting different sets of transcription factors. Previously, we identified the AF4/FMR2 (AFF) family protein AFF3 within the transcription elongation complex SEC-L3. Here, we report that AFF3 can specifically bind both gametic DMRs (gDMRs) and enhancers within imprinted loci in an allele-specific manner. We identify the molecular regulators involved in the recruitment of AFF3 to gDMRs and provide mechanistic insight into the requirement of AFF3 at an enhancer for the expression of an ∼200-kb polycistronic transcript within the imprinted Dlk1-Dio3 locus. Our data suggest that the heterochromatic environment at the gDMR reinforces silencing of its related enhancer by controlling the binding and activity of AFF3 in an allele-specific manner. In summary, this study provides molecular details about the regulation of dosage-critical imprinted gene expression through the regulated binding of the transcription elongation factor AFF3 between a DMR and an enhancer. PMID:26728555

  7. Cellular functions of genetically imprinted genes in human and mouse as annotated in the gene ontology.

    PubMed

    Hamed, Mohamed; Ismael, Siba; Paulsen, Martina; Helms, Volkhard

    2012-01-01

    By analyzing the cellular functions of genetically imprinted genes as annotated in the Gene Ontology for human and mouse, we found that imprinted genes are often involved in developmental, transport and regulatory processes. In the human, paternally expressed genes are enriched in GO terms related to the development of organs and of anatomical structures. In the mouse, maternally expressed genes regulate cation transport as well as G-protein signaling processes. Furthermore, we investigated if imprinted genes are regulated by common transcription factors. We identified 25 TF families that showed an enrichment of binding sites in the set of imprinted genes in human and 40 TF families in mouse. In general, maternally and paternally expressed genes are not regulated by different transcription factors. The genes Nnat, Klf14, Blcap, Gnas and Ube3a contribute most to the enrichment of TF families. In the mouse, genes that are maternally expressed in placenta are enriched for AP1 binding sites. In the human, we found that these genes possessed binding sites for both, AP1 and SP1. PMID:23226257

  8. Regulation of the imprinted Dlk1-Dio3 locus by allele-specific enhancer activity

    PubMed Central

    Luo, Zhuojuan; Lin, Chengqi; Woodfin, Ashley R.; Bartom, Elizabeth T.; Gao, Xin; Smith, Edwin R.; Shilatifard, Ali

    2016-01-01

    Genomic imprinting is a critical developmental process characteristic of parent of origin-specific gene expression. It is well accepted that differentially DNA-methylated regions (DMRs) and enhancers are two major classes of cis-elements determining parent of origin-specific gene expression, with each recruiting different sets of transcription factors. Previously, we identified the AF4/FMR2 (AFF) family protein AFF3 within the transcription elongation complex SEC-L3. Here, we report that AFF3 can specifically bind both gametic DMRs (gDMRs) and enhancers within imprinted loci in an allele-specific manner. We identify the molecular regulators involved in the recruitment of AFF3 to gDMRs and provide mechanistic insight into the requirement of AFF3 at an enhancer for the expression of an ∼200-kb polycistronic transcript within the imprinted Dlk1-Dio3 locus. Our data suggest that the heterochromatic environment at the gDMR reinforces silencing of its related enhancer by controlling the binding and activity of AFF3 in an allele-specific manner. In summary, this study provides molecular details about the regulation of dosage-critical imprinted gene expression through the regulated binding of the transcription elongation factor AFF3 between a DMR and an enhancer. PMID:26728555

  9. Role for piRNAs and Noncoding RNA in de Novo DNA Methylation of the Imprinted Mouse Rasgrf1 Locus

    PubMed Central

    Watanabe, Toshiaki; Tomizawa, Shin-ichi; Mitsuya, Kohzoh; Totoki, Yasushi; Yamamoto, Yasuhiro; Kuramochi-Miyagawa, Satomi; Iida, Naoko; Hoki, Yuko; Murphy, Patrick J.; Toyoda, Atsushi; Gotoh, Kengo; Hiura, Hitoshi; Arima, Takahiro; Fujiyama, Asao; Sado, Takashi; Shibata, Tatsuhiro; Nakano, Toru; Lin, Haifan; Ichiyanagi, Kenji; Soloway, Paul D.; Sasaki, Hiroyuki

    2012-01-01

    Genomic imprinting causes parental origin–specific monoallelic gene expression through differential DNA methylation established in the parental germ line. However, the mechanisms underlying how specific sequences are selectively methylated are not fully understood. We have found that the components of the PIWI-interacting RNA (piRNA) pathway are required for de novo methylation of the differentially methylated region (DMR) of the imprinted mouse Rasgrf1 locus, but not other paternally imprinted loci. A retrotransposon sequence within a noncoding RNA spanning the DMR was targeted by piRNAs generated from a different locus. A direct repeat in the DMR, which is required for the methylation and imprinting of Rasgrf1, served as a promoter for this RNA. We propose a model in which piRNAs and a target RNA direct the sequence-specific methylation of Rasgrf1. PMID:21566194

  10. Transcriptional Truncation of the Long Coding Imprinted Gene Usp29

    PubMed Central

    He, Hongzhi; Ye, An; Kim, Joomyeong

    2016-01-01

    Usp29 (Ubiquitin-specific protease 29) is a paternally expressed gene located upstream of another imprinted gene Peg3. In the current study, the transcription of this long coding gene spanning a 250-kb genomic distance was truncated using a knockin allele. According to the results, paternal transmission of the mutant allele resulted in reduced body and litter sizes whereas the maternal transmission caused no obvious effects. In the paternal mutant, the expression levels of Usp29 were reduced to 14–18% level of the wild-type littermates due to the Poly-A signal included in the knockin cassette. Expression analyses further revealed an unusual female-specific up-regulation of the adjacent imprinted gene Zfp264 in the mutant. Consistent with this, the promoter of Zfp264 was hypomethylated only in the female mutant. Interestingly, this female-specific hypomethylation by the knockin allele was not detected in the offspring of an interspecific crossing, indicating its sensitivity to genetic background. Overall, the results suggest that the transcription of Usp29 may be involved in DNA methylation setting of Zfp264 promoter in a sex-specific manner. PMID:27327533

  11. A statistical design for testing transgenerational genomic imprinting in natural human populations.

    PubMed

    Li, Yao; Guo, Yunqian; Wang, Jianxin; Hou, Wei; Chang, Myron N; Liao, Duanping; Wu, Rongling

    2011-02-25

    Genomic imprinting is a phenomenon in which the same allele is expressed differently, depending on its parental origin. Such a phenomenon, also called the parent-of-origin effect, has been recognized to play a pivotal role in embryological development and pathogenesis in many species. Here we propose a statistical design for detecting imprinted loci that control quantitative traits based on a random set of three-generation families from a natural population in humans. This design provides a pathway for characterizing the effects of imprinted genes on a complex trait or disease at different generations and testing transgenerational changes of imprinted effects. The design is integrated with population and cytogenetic principles of gene segregation and transmission from a previous generation to next. The implementation of the EM algorithm within the design framework leads to the estimation of genetic parameters that define imprinted effects. A simulation study is used to investigate the statistical properties of the model and validate its utilization. This new design, coupled with increasingly used genome-wide association studies, should have an immediate implication for studying the genetic architecture of complex traits in humans.

  12. A Micro-Silicon Chip for in Vivo Cerebral Imprint in Monkey

    PubMed Central

    2012-01-01

    Access to cerebral tissue is essential to better understand the molecular mechanisms associated with neurodegenerative diseases. In this study, we present, for the first time, a new tool designed to obtain molecular and cellular cerebral imprints in the striatum of anesthetized monkeys. The imprint is obtained during a spatially controlled interaction of a chemically modified micro-silicon chip with the brain tissue. Scanning electron and immunofluorescence microscopies showed homogeneous capture of cerebral tissue. Nano-liquid chromatography–tandem mass spectrometry (nano-LC-MS/MS) analysis of proteins harvested on the chip allowed the identification of 1158 different species of proteins. The gene expression profiles of mRNA extracted from the imprint tool showed great similarity to those obtained via the gold standard approach, which is based on post-mortem sections of the same nucleus. Functional analysis of the harvested molecules confirmed the spatially controlled capture of striatal proteins implicated in dopaminergic regulation. Finally, the behavioral monitoring and histological results establish the safety of obtaining repeated cerebral imprints in striatal regions. These results demonstrate the ability of our imprint tool to explore the molecular content of deep brain regions in vivo. They open the way to the molecular exploration of brain in animal models of neurological diseases and will provide complementary information to current data mainly restricted to post-mortem samples. PMID:23509975

  13. A micro-silicon chip for in vivo cerebral imprint in monkey.

    PubMed

    Zaccaria, Affif; Bouamrani, Ali; Selek, Laurent; El Atifi, Michelle; Hesse, Anne Marie; Juhem, Aurélie; Ratel, David; Mathieu, Herve; Coute, Yohann; Bruley, Christophe; Garin, Jerome; Benabid, Alim L; Chabardes, Stephan; Piallat, Brigitte; Berger, François

    2013-03-20

    Access to cerebral tissue is essential to better understand the molecular mechanisms associated with neurodegenerative diseases. In this study, we present, for the first time, a new tool designed to obtain molecular and cellular cerebral imprints in the striatum of anesthetized monkeys. The imprint is obtained during a spatially controlled interaction of a chemically modified micro-silicon chip with the brain tissue. Scanning electron and immunofluorescence microscopies showed homogeneous capture of cerebral tissue. Nano-liquid chromatography-tandem mass spectrometry (nano-LC-MS/MS) analysis of proteins harvested on the chip allowed the identification of 1158 different species of proteins. The gene expression profiles of mRNA extracted from the imprint tool showed great similarity to those obtained via the gold standard approach, which is based on post-mortem sections of the same nucleus. Functional analysis of the harvested molecules confirmed the spatially controlled capture of striatal proteins implicated in dopaminergic regulation. Finally, the behavioral monitoring and histological results establish the safety of obtaining repeated cerebral imprints in striatal regions. These results demonstrate the ability of our imprint tool to explore the molecular content of deep brain regions in vivo. They open the way to the molecular exploration of brain in animal models of neurological diseases and will provide complementary information to current data mainly restricted to post-mortem samples. PMID:23509975

  14. Loss of DNMT1o Disrupts Imprinted X Chromosome Inactivation and Accentuates Placental Defects in Females

    PubMed Central

    Martel, Josée; Cirio, M. Cecilia; de Zeeuw, Pauline; Mak, Winifred; Plass, Christoph; Bartolomei, Marisa S.; Chaillet, J. Richard; Trasler, Jacquetta M.

    2013-01-01

    The maintenance of key germline derived DNA methylation patterns during preimplantation development depends on stores of DNA cytosine methyltransferase-1o (DNMT1o) provided by the oocyte. Dnmt1omat−/− mouse embryos born to Dnmt1Δ1o/Δ1o female mice lack DNMT1o protein and have disrupted genomic imprinting and associated phenotypic abnormalities. Here, we describe additional female-specific morphological abnormalities and DNA hypomethylation defects outside imprinted loci, restricted to extraembryonic tissue. Compared to male offspring, the placentae of female offspring of Dnmt1Δ1o/Δ1o mothers displayed a higher incidence of genic and intergenic hypomethylation and more frequent and extreme placental dysmorphology. The majority of the affected loci were concentrated on the X chromosome and associated with aberrant biallelic expression, indicating that imprinted X-inactivation was perturbed. Hypomethylation of a key regulatory region of Xite within the X-inactivation center was present in female blastocysts shortly after the absence of methylation maintenance by DNMT1o at the 8-cell stage. The female preponderance of placental DNA hypomethylation associated with maternal DNMT1o deficiency provides evidence of additional roles beyond the maintenance of genomic imprints for DNA methylation events in the preimplantation embryo, including a role in imprinted X chromosome inactivation. PMID:24278026

  15. Influence of mom and dad: quantitative genetic models for maternal effects and genomic imprinting.

    PubMed

    Santure, Anna W; Spencer, Hamish G

    2006-08-01

    The expression of an imprinted gene is dependent on the sex of the parent it was inherited from, and as a result reciprocal heterozygotes may display different phenotypes. In contrast, maternal genetic terms arise when the phenotype of an offspring is influenced by the phenotype of its mother beyond the direct inheritance of alleles. Both maternal effects and imprinting may contribute to resemblance between offspring of the same mother. We demonstrate that two standard quantitative genetic models for deriving breeding values, population variances and covariances between relatives, are not equivalent when maternal genetic effects and imprinting are acting. Maternal and imprinting effects introduce both sex-dependent and generation-dependent effects that result in differences in the way additive and dominance effects are defined for the two approaches. We use a simple example to demonstrate that both imprinting and maternal genetic effects add extra terms to covariances between relatives and that model misspecification may over- or underestimate true covariances or lead to extremely variable parameter estimation. Thus, an understanding of various forms of parental effects is essential in correctly estimating quantitative genetic variance components. PMID:16751674

  16. Imprinting mutations suggested by abnormal DNA methylation patterns in familial angelman and Prader-Willi syndromes

    SciTech Connect

    Reis, A. ); Dittrich, B.; Buiting, K.; Gillessen-Kaesbach, G.; Horsthemke, B. ); Greger, V.; Lalande, M. ); Anvret, M. )

    1994-05-01

    The D15S9 and D15S63 loci in the Prader-Willi/Angelman syndrome region on chromosome 15 are subject to parent-of-origin-specific DNA methylation. The authors have found two Prader-Willi syndrome families in which the patients carry a maternal methylation imprint on the paternal chromosome. In one of these families, the patients have a small deletion encompassing the gene for the small nuclear ribonucleoprotein polypeptide N, which maps 130 kb telomeric to D15S63. Furthermore, they have identified a pair of nondeletion Angelman syndrome sibs and two isolated Angelman syndrome patients who carry a paternal methylation imprint on the maternal chromosome. These Angelman and Prader-Willi syndrome patients may have a defect in the imprinting process in 15q11-13. The authors propose a model in which a cis-acting mutation prevents the resetting of the imprinting signal in the germ line and thus disturbs the expression of imprinted genes in this region. 39 refs., 4 figs., 1 tab.

  17. A Non-Coding RNA Within the Rasgrf1 Locus in Mouse Is Imprinted and Regulated by Its Homologous Chromosome in Trans

    PubMed Central

    Holmes, Rebecca; Soloway, Paul D.

    2010-01-01

    Background Rasgrf1 is imprinted in mouse, displaying paternal allele specific expression in neonatal brain. Paternal expression is accompanied by paternal-specific DNA methylation at a differentially methylated domain (DMD) within the locus. The cis-acting elements necessary for Rasgrf1 imprinting are known. A series of tandem DNA repeats control methylation of the adjacent DMD, which is a methylation sensitive enhancer-blocking element. These two sequences constitute a binary switch that controls imprinting and represents the Imprinting Control Region (ICR). One paternally transmitted mutation, which helped define the ICR, induced paramutation, in trans, on the maternal allele. Like many imprinted genes, Rasgrf1 lies within an imprinted cluster. One of four noncoding transcripts in the cluster, AK015891, is known to be imprinted. Methodology/Principal Findings Here we demonstrate that an additional noncoding RNA, AK029869, is imprinted and paternally expressed in brain throughout development. Intriguingly, any of several maternally inherited ICR mutations affected expression of the paternal AK029869 transcript in trans. Furthermore, we found that the ICR mutations exert different trans effects on AK029869 at different developmental times. Conclusions/Significance Few trans effects have been defined in mammals and, those that exist, do not show the great variation seen at the Rasgrf1 imprinted domain, either in terms of the large number of mutations that produce the effects or the range of phenotypes that emerge when they are seen. These results suggest that trans regulation of gene expression may be more common than originally appreciated and that where trans regulation occurs it can change dynamically during development. PMID:21072176

  18. Loss of inherited genomic imprints in mice leads to severe disruption in placental lipid metabolism

    PubMed Central

    Himes, K. P.; Young, A.; Koppes, E.; Stolz, D.; Barak, Y.; Sadovsky, Y.; Chaillet, J.R.

    2015-01-01

    Introduction Monoallelic expression of imprinted genes is necessary for placental development and normal fetal growth. Differentially methylated domains (DMDs) largely determine the parental-specific monoallelic expression of imprinted genes. Maternally derived DNA (cytosine-5-) -methyltransferase 1o (DNMT1o) maintains DMDs during the eight-cell stage of development. DNMT1o-deficient mouse placentas have a generalized disruption of genomic imprints. Previous studies have demonstrated that DNMT1o deficiency alters placental morphology and broadens the embryonic weight distribution in late gestation. Lipids are critical for fetal growth. Thus, we assessed the impact of disrupted imprinting on placental lipids. Methods Lipids were quantified from DNMT1o-deficient mouse placentas and embryos at E17.5 using a modified Folch method. Expression of select genes critical for lipid metabolism was quantified with RT-qPCR. Mitochondrial morphology was assessed by TEM and mitochondrial aconitase and cytoplasmic citrate concentrations quantified. DMD methylation was determined by EpiTYPER. Results We found that DNMT1o deficiency is associated with increased placental triacylglycerol levels. Neither fetal triacylglycerol concentrations nor expression of select genes that mediate placental lipid transport were different from wild type. Placental triacylglycerol accumulation was associated with impaired beta-oxidation and abnormal citrate metabolism with decreased mitochondrial aconitase activity and increased cytoplasmic citrate concentrations. Loss of methylation at the MEST DMD was strongly associated with placental triacylglycerol accumulation. Discussion A generalized disruption of genomic imprints leads to triacylglycerol accumulation and abnormal mitochondrial function. This could stem directly from a loss of methylation at a given DMD, such as MEST, or represent a consequence of abnormal placental development. PMID:25662615

  19. Molecularly imprinted polymers for biomedical and biotechnological applications

    NASA Astrophysics Data System (ADS)

    Dmitrienko, E. V.; Pyshnaya, I. A.; Martyanov, O. N.; Pyshnyi, D. V.

    2016-05-01

    This survey covers main advances in the preparation and application of molecularly imprinted polymers which are capable of specific recognition of biologically active compounds. The principles underlying the production of highly efficient and template-specific molecularly imprinted polymers are discussed. The focus is on the imprinting of highly structured macromolecular and supramolecular templates. The existing and potential applications of molecularly imprinted polymers in various fields of chemistry and molecular biology are considered. The bibliography includes 261 references.

  20. Pairing of Homologous Regions in the Mouse Genome Is Associated with Transcription but Not Imprinting Status

    PubMed Central

    Krueger, Christel; King, Michelle R.; Krueger, Felix; Branco, Miguel R.; Osborne, Cameron S.; Niakan, Kathy K.; Higgins, Michael J.; Reik, Wolf

    2012-01-01

    Although somatic homologous pairing is common in Drosophila it is not generally observed in mammalian cells. However, a number of regions have recently been shown to come into close proximity with their homologous allele, and it has been proposed that pairing might be involved in the establishment or maintenance of monoallelic expression. Here, we investigate the pairing properties of various imprinted and non-imprinted regions in mouse tissues and ES cells. We find by allele-specific 4C-Seq and DNA FISH that the Kcnq1 imprinted region displays frequent pairing but that this is not dependent on monoallelic expression. We demonstrate that pairing involves larger chromosomal regions and that the two chromosome territories come close together. Frequent pairing is not associated with imprinted status or DNA repair, but is influenced by chromosomal location and transcription. We propose that homologous pairing is not exclusive to specialised regions or specific functional events, and speculate that it provides the cell with the opportunity of trans-allelic effects on gene regulation. PMID:22802932

  1. Tet-mediated imprinting erasure in H19 locus following reprogramming of spermatogonial stem cells to induced pluripotent stem cells

    PubMed Central

    Bermejo-Álvarez, P.; Ramos-Ibeas, P.; Park, K.E.; Powell, A. P.; Vansandt, L.; Derek, Bickhart; Ramirez, M. A.; Gutiérrez-Adán, A.; Telugu, B. P.

    2015-01-01

    Selective methylation of CpG islands at imprinting control regions (ICR) determines the monoparental expression of a subset of genes. Currently, it is unclear whether artificial reprogramming induced by the expression of Yamanaka factors disrupts these marks and whether cell type of origin affects the dynamics of reprogramming. In this study, spermatogonial stem cells (SSC) that harbor paternalized imprinting marks, and fibroblasts were reprogrammed to iPSC (SSCiPSC and fiPSC). The SSCiPSC were able to form teratomas and generated chimeras with a higher skin chimerism than those derived from fiPSC. RNA-seq revealed extensive reprogramming at the transcriptional level with 8124 genes differentially expressed between SSC and SSCiPSC and only 490 between SSCiPSC and fiPSC. Likewise, reprogramming of SSC affected 26 of 41 imprinting gene clusters known in the mouse genome. A closer look at H19 ICR revealed complete erasure in SSCiPSC in contrast to fiPSC. Imprinting erasure in SSCiPSC was maintained even after in vivo differentiation into teratomas. Reprogramming of SSC from Tet1 and Tet2 double knockout mice however lacked demethylation of H19 ICR. These results suggest that imprinting erasure during reprogramming depends on the epigenetic landscape of the precursor cell and is mediated by TETs at the H19 locus. PMID:26328763

  2. Tet-mediated imprinting erasure in H19 locus following reprogramming of spermatogonial stem cells to induced pluripotent stem cells.

    PubMed

    Bermejo-Álvarez, P; Ramos-Ibeas, P; Park, K E; Powell, A P; Vansandt, L; Derek, Bickhart; Ramirez, M A; Gutiérrez-Adán, A; Telugu, B P

    2015-09-02

    Selective methylation of CpG islands at imprinting control regions (ICR) determines the monoparental expression of a subset of genes. Currently, it is unclear whether artificial reprogramming induced by the expression of Yamanaka factors disrupts these marks and whether cell type of origin affects the dynamics of reprogramming. In this study, spermatogonial stem cells (SSC) that harbor paternalized imprinting marks, and fibroblasts were reprogrammed to iPSC (SSCiPSC and fiPSC). The SSCiPSC were able to form teratomas and generated chimeras with a higher skin chimerism than those derived from fiPSC. RNA-seq revealed extensive reprogramming at the transcriptional level with 8124 genes differentially expressed between SSC and SSCiPSC and only 490 between SSCiPSC and fiPSC. Likewise, reprogramming of SSC affected 26 of 41 imprinting gene clusters known in the mouse genome. A closer look at H19 ICR revealed complete erasure in SSCiPSC in contrast to fiPSC. Imprinting erasure in SSCiPSC was maintained even after in vivo differentiation into teratomas. Reprogramming of SSC from Tet1 and Tet2 double knockout mice however lacked demethylation of H19 ICR. These results suggest that imprinting erasure during reprogramming depends on the epigenetic landscape of the precursor cell and is mediated by TETs at the H19 locus.

  3. Monoallelic Loss of the Imprinted Gene Grb10 Promotes Tumor Formation in Irradiated Nf1+/- Mice

    PubMed Central

    Mroue, Rana; Huang, Brian; Braunstein, Steve; Firestone, Ari J.; Nakamura, Jean L.

    2015-01-01

    Imprinted genes are expressed from only one parental allele and heterozygous loss involving the expressed allele is sufficient to produce complete loss of protein expression. Genetic alterations are common in tumorigenesis but the role of imprinted genes in this process is not well understood. In earlier work we mutagenized mice heterozygous for the Neurofibromatosis I tumor suppressor gene (NF1) to model radiotherapy-associated second malignant neoplasms that arise in irradiated NF1 patients. Expression analysis of tumor cell lines established from our mouse models identified Grb10 expression as widely absent. Grb10 is an imprinted gene and polymorphism analysis of cell lines and primary tumors demonstrates that the expressed allele is commonly lost in diverse Nf1 mutant tumors arising in our mouse models. We performed functional studies to test whether Grb10 restoration or loss alter fundamental features of the tumor growth. Restoring Grb10 in Nf1 mutant tumors decreases proliferation, decreases soft agar colony formation and downregulates Ras signaling. Conversely, Grb10 silencing in untransformed mouse embryo fibroblasts significantly increased cell proliferation and increased Ras-GTP levels. Expression of a constitutively activated MEK rescued tumor cells from Grb10-mediated reduction in colony formation. These studies reveal that Grb10 loss can occur during in vivo tumorigenesis, with a functional consequence in untransformed primary cells. In tumors, Grb10 loss independently promotes Ras pathway hyperactivation, which promotes hyperproliferation, an early feature of tumor development. In the context of a robust Nf1 mutant mouse model of cancer this work identifies a novel role for an imprinted gene in tumorigenesis. PMID:26000738

  4. Autonomous silencing of the imprinted Cdkn1c gene in stem cells

    PubMed Central

    Wood, Michelle D.; Hiura, Hitoshi; Tunster, Simon; Arima, Takahiro; Shin, Jong-Yeon; Higgins, Michael; John, Rosalind M.

    2010-01-01

    Parent-of-origin specific expression of imprinted genes relies on the differential DNA methylation of specific genomic regions. Differentially methylated regions (DMRs) acquire DNA methylation either during gametogenesis (primary DMR) or after fertilization when allele-specific expression is established (secondary DMR). Little is known about the function of these secondary DMRs. We investigated the DMR spanning Cdkn1c in mouse embryonic stem cells, androgenetic stem cells and embryonic germ stem cells. In all cases, expression of Cdkn1c was appropriately repressed in in vitro differentiated cells. However, stem cells failed to de novo methylate the silenced gene even after sustained differentiation. In the absence of maintained DNA methylation (Dnmt1−/−), Cdkn1c escapes silencing demonstrating the requirement for DNA methylation in long term silencing in vivo. We propose that post-fertilization differential methylation reflects the importance of retaining single gene dosage of a subset of imprinted loci in the adult. PMID:20372090

  5. Construction and evolution of imprinted loci in mammals.

    PubMed

    Hore, Timothy A; Rapkins, Robert W; Graves, Jennifer A Marshall

    2007-09-01

    Genomic imprinting first evolved in mammals around the time that humans last shared a common ancestor with marsupials and monotremes (180-210 million years ago). Recent comparisons of large imprinted domains in these divergent mammalian groups have shown that imprinting evolved haphazardly at various times in different lineages, perhaps driven by different selective forces. Surprisingly, some imprinted domains were formed relatively recently, using non-imprinted components acquired from unexpected genomic regions. Rearrangement and the insertion of retrogenes, small nucleolar RNAs, microRNAs, differential CpG methylation and control by non-coding RNA often accompanied the acquisition of imprinting. Here, we use comparisons between different mammalian groups to chart the course of evolution of two related epigenetic regulatory systems in mammals: genomic imprinting and X-chromosome inactivation.

  6. Atomic-Scale Imprinting into Amorphous Metals

    NASA Astrophysics Data System (ADS)

    Schwarz, Udo; Li, Rui; Simon, Georg; Kinser, Emely; Liu, Ze; Chen, Zheng; Zhou, Chao; Singer, Jonathan; Osuji, Chinedum; Schroers, Jan

    Nanoimprinting by thermoplastic forming (TPF) has attracted significant attention in recent years due to its promise of low-cost fabrication of nanostructured devices. Usually performed using polymers, amorphous metals have been identified as a material class that might be even better suited for nanoimprinting due to a combination of mechanical properties and processing ability. Commonly referred to as metallic glasses, their featureless atomic structure suggests that there may not be an intrinsic size limit to the material's ability to replicate a mold. To study this hypothesis, we demonstrate atomic-scale imprinting into amorphous metals by TPF under ambient conditions. Atomic step edges of a SrTiO3 (STO) single crystal used as mold were successfully imprinted into Pt-based bulk metallic glasses (BMGs) with high fidelity. Terraces on the BMG replicas possess atomic smoothness with sub-Angstrom roughness that is identical to the one measured on the STO mold. Systematic studies revealed that the quality of the replica depends on the loading rate during imprinting, that the same mold can be used multiple times without degradation of mold or replicas, and that the atomic-scale features on as-imprinted BMG surfaces has impressive long-term stability (months).

  7. Plastic Antibodies: Molecular Recognition with Imprinted Polymers

    ERIC Educational Resources Information Center

    Rushton, Gregory T.; Furmanski, Brian; Shimizu, Ken D.

    2005-01-01

    Synthetic polymers are prepared and tested in a study for their molecular recognition properties of an adenine derivative, ethyl adenine-9-acetate (EA9A), within two laboratory periods. The procedure introduces undergraduate chemistry students to noncovalent molecular imprinting as well as the analytical techniques for assessing their recognition…

  8. Maintenance of Xist Imprinting Depends on Chromatin Condensation State and Rnf12 Dosage in Mice

    PubMed Central

    Fukuda, Atsushi; Mitani, Atsushi; Miyashita, Toshiyuki; Sado, Takashi; Umezawa, Akihiro; Akutsu, Hidenori

    2016-01-01

    In female mammals, activation of Xist (X-inactive specific transcript) is essential for establishment of X chromosome inactivation. During early embryonic development in mice, paternal Xist is preferentially expressed whereas maternal Xist (Xm-Xist) is silenced. Unlike autosomal imprinted genes, Xist imprinting for Xm-Xist silencing was erased in cloned or parthenogenetic but not fertilized embryos. However, the molecular mechanism underlying the variable nature of Xm-Xist imprinting is poorly understood. Here, we revealed that Xm-Xist silencing depends on chromatin condensation states at the Xist/Tsix genomic region and on Rnf12 expression levels. In early preimplantation, chromatin decondensation via H3K9me3 loss and histone acetylation gain caused Xm-Xist derepression irrespective of embryo type. Although the presence of the paternal genome during pronuclear formation impeded Xm-Xist derepression, Xm-Xist was robustly derepressed when the maternal genome was decondensed before fertilization. Once Xm-Xist was derepressed by chromatin alterations, the derepression was stably maintained and rescued XmXpΔ lethality, indicating that loss of Xm-Xist imprinting was irreversible. In late preimplantation, Oct4 served as a chromatin opener to create transcriptional permissive states at Xm-Xist/Tsix genomic loci. In parthenogenetic embryos, Rnf12 overdose caused Xm-Xist derepression via Xm-Tsix repression; physiological Rnf12 levels were essential for Xm-Xist silencing maintenance in fertilized embryos. Thus, chromatin condensation and fine-tuning of Rnf12 dosage were crucial for Xist imprint maintenance by silencing Xm-Xist. PMID:27788132

  9. A Path to Soluble Molecularly Imprinted Polymers

    PubMed Central

    Verma, Abhilasha; Murray, George M.

    2011-01-01

    Molecular imprinting is a technique for making a selective binding site for a specific chemical. The technique involves building a polymeric scaffold of molecular complements containing the target molecule. Subsequent removal of the target leaves a cavity with a structural “memory” of the target. Molecularly imprinted polymers (MIPs) can be employed as selective adsorbents of specific molecules or molecular functional groups. In addition, sensors for specific molecules can be made using optical transduction through lumiphores residing in the imprinted site. We have found that the use of metal ions as chromophores can improve selectivity due to selective complex formation. The combination of molecular imprinting and spectroscopic selectivity can result in sensors that are highly sensitive and nearly immune to interferences. A weakness of conventional MIPs with regard to processing is the insolubility of crosslinked polymers. Traditional MIPs are prepared either as monoliths and ground into powders or are prepared in situ on a support. This limits the applicability of MIPs by imposing tedious or difficult processes for their inclusion in devices. The size of the particles hinders diffusion and slows response. These weaknesses could be avoided if a means were found to prepare individual macromolecules with crosslinked binding sites with soluble linear polymeric arms. This process has been made possible by controlled free radical polymerization techniques that can form pseudo-living polymers. Modern techniques of controlled free radical polymerization allow the preparation of block copolymers with potentially crosslinkable substituents in specific locations. The inclusion of crosslinkable mers proximate to the binding complex in the core of a star polymer allows the formation of molecularly imprinted macromolecules that are soluble and processable. Due to the much shorter distance for diffusion, the polymers exhibit rapid responses. This paper reviews the methods

  10. Imprinting of the MEDEA polycomb gene in the Arabidopsis endosperm.

    PubMed Central

    Kinoshita, T; Yadegari, R; Harada, J J; Goldberg, R B; Fischer, R L

    1999-01-01

    In flowering plants, two cells are fertilized in the haploid female gametophyte. Egg and sperm nuclei fuse to form the embryo. A second sperm nucleus fuses with the central cell nucleus that replicates to generate the endosperm, which is a tissue that supports embryo development. MEDEA (MEA) encodes an Arabidopsis SET domain Polycomb protein. Inheritance of a maternal loss-of-function mea allele results in embryo abortion and prolonged endosperm production, irrespective of the genotype of the paternal allele. Thus, only the maternal wild-type MEA allele is required for proper embryo and endosperm development. To understand the molecular mechanism responsible for the parent-of-origin effects of mea mutations on seed development, we compared the expression of maternal and paternal MEA alleles in the progeny of crosses between two Arabidopsis ecotypes. Only the maternal MEA mRNA was detected in the endosperm from seeds at the torpedo stage and later. By contrast, expression of both maternal and paternal MEA alleles was observed in the embryo from seeds at the torpedo stage and later, in seedling, leaf, stem, and root. Thus, MEA is an imprinted gene that displays parent-of-origin-dependent monoallelic expression specifically in the endosperm. These results suggest that the embryo abortion observed in mutant mea seeds is due, at least in part, to a defect in endosperm function. Silencing of the paternal MEA allele in the endosperm and the phenotype of mutant mea seeds supports the parental conflict theory for the evolution of imprinting in plants and mammals. PMID:10521524

  11. The essence of linkage-based imprinting detection: comparing power, type 1 error, and the effects of confounders in two different analysis approaches.

    PubMed

    Greenberg, David A; Monti, Maria Cristina; Feenstra, Bjarke; Zhang, Junying; Hodge, Susan E

    2010-05-01

    Imprinting is critical to understanding disease expression. It can be detected using linkage information, but the effects of potential confounders (heterogeneity, sex-specific penetrance, and sex-biased ascertainment) have not been explored. We examine power and confounders in two imprinting detection approaches, and we explore imprinting-linkage interaction. One method (PP) models imprinting by maximising lod scores w.r.t. parent-specific penetrances. The second (DRF) approximates imprinting by maximising lods over differential male-female recombination fractions. We compared power, type 1 error, and confounder effects in these two methods, using computer-simulated data. We varied heterogeneity, penetrance, family and dataset size, and confounders that might mimic imprinting. Without heterogeneity, PP had more imprinting-detecting power than DRF. PP's power increased when parental affectedness status was ignored, but decreased with heterogeneity. With heterogeneity, type 1 error increased dramatically for both methods. However, DRF's power also increased under heterogeneity, more than was attributable to inflated type 1 error. Sex-specific penetrance could increase false positives for PP but not for DRF. False positives did not increase on ascertainment through an affected "mother". For PP, non-penetrant individuals increased information, arguing against using affected-only methods. The high type 1 error levels under some circumstances means these methods must be used cautiously. PMID:20374235

  12. Imprinting of the gene encoding a human cyclin-dependent kinase inhibitor, p57KIP2, on chromosome 11p15.

    PubMed Central

    Matsuoka, S; Thompson, J S; Edwards, M C; Bartletta, J M; Grundy, P; Kalikin, L M; Harper, J W; Elledge, S J; Feinberg, A P

    1996-01-01

    Parental origin-specific alterations of chromosome 11p15 in human cancer suggest the involvement of one or more maternally expressed imprinted genes involved in embryonal tumor suppression and the cancer-predisposing Beckwith-Wiedemann syndrome (BWS). The gene encoding cyclin-dependent kinase inhibitor p57KIP2, whose overexpression causes G1 phase arrest, was recently cloned and mapped to this band. We find that the p57KIP2 gene is imprinted, with preferential expression of the maternal allele. However, the imprint is not absolute, as the paternal allele is also expressed at low levels in most tissues, and at levels comparable to the maternal allele in fetal brain and some embryonal tumors. The biochemical function, chromosomal location, and imprinting of the p57KIP2 gene match the properties predicted for a tumor suppressor gene at 11p15.5. However, as the p57KIP2 gene is 500 kb centromeric to the gene encoding insulin-like growth factor 2, it is likely to be part of a large domain containing other imprinted genes. Thus, loss of heterozygosity or loss of imprinting might simultaneously affect several genes at this locus that together contribute to tumor and/or growth- suppressing functions that are disrupted in BWS and embryonal tumors. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8610162

  13. Early stages of memory formation in filial imprinting: Fos-like immunoreactivity and behavior in the domestic chick.

    PubMed

    Suge, R; McCabe, B J

    2004-01-01

    Early stages of memory formation in filial imprinting were studied in domestic chicks. Chicks trained for 15 min showed strong imprinting, demonstrated by a strong preference for their training stimulus, and the time course of this preference over 2 days after training was similar to that of chicks trained for 60 min. The chicks therefore learned characteristics of the training stimulus very early during training. The intermediate and medial hyperstriatum ventrale (IMHV) is a part of the chick forebrain that is crucial for imprinting. Previous experiments have shown a learning-specific increase in Fos-like immunoreactivity, used as a marker of neuronal activity, in the IMHV after training for 60 min. The time course of Fos expression in the IMHV was measured after training for 15 min and 60 min. The same pattern of expression was found for both training times, showing a peak 120 min after the start of training. The time course of expression was stimulus-dependent. Fos expression in the IMHV, but not the hippocampus, was significantly correlated with strength of imprinting. It is concluded that the learning-specific change in Fos expression in the IMHV is associated with very early components of memory formation.

  14. IGF-2 and FLT-1/VEGF-R1 mRNA levels reveal distinctions and similarities between congenital and common infantile hemangioma.

    PubMed

    Picard, Arnaud; Boscolo, Elisa; Khan, Zia A; Bartch, Tatianna C; Mulliken, John B; Vazquez, Marie Paule; Bischoff, Joyce

    2008-03-01

    Common infantile hemangioma appears postnatally, grows rapidly, and regresses slowly. Two types of congenital vascular tumors present fully grown at birth and behave differently from infantile hemangioma. These rare congenital tumors have been designated rapidly involuting congenital hemangioma (RICH) and noninvoluting congenital hemangioma (NICH). RICH and NICH are similar in appearance, location, and size, and have some overlapping histologic features with infantile hemangioma. At a molecular level, neither expresses glucose transporter-1, a diagnostic marker of infantile hemangioma. To gain further insight into the molecular differences and similarities between congenital and common hemangioma, we analyzed expression of insulin-like growth factor-2, known to be highly expressed in infantile hemangioma and VEGF-receptors, by quantitative real-time PCR, in three RICH and five NICH specimens. We show that insulin-like growth factor-2 mRNA was expressed in both RICH and NICH, at a level comparable with that detected in common hemangioma over 4 y of age. In contrast, mRNA levels for membrane-associated fms-like tyrosine-kinase receptor, also known as VEGF receptor-1, were uniformly increased in congenital hemangiomas compared with proliferating or involuting phase common hemangioma. These results provide the first evidence of the molecular distinctions and similarities between congenital and postnatal hemangioma.

  15. NMDA receptor antagonists extend the sensitive period for imprinting.

    PubMed

    Parsons, C H; Rogers, L J

    2000-03-01

    Filial imprinting in the domestic chick occurs during a sensitive period of development. The exact timing of this period can vary according to the methods used to measure imprinting. Using our imprinting paradigm, we have shown that normal, dark-reared chicks lose the ability to imprint after the second day post-hatching. Further, we reported that chicks treated 10 h after hatching with a mixture of the noncompetitive NMDA receptor antagonist ketamine (55 mg/kg) and the alpha(2)-adrenergic receptor agonist xylazine (6 mg/kg) were able to imprint on day 8 after hatching, whereas controls treated with saline did not imprint. We now show that the effect of the ketamine-xylazine mixture can be mimicked by treating chicks with ketamine alone or with another noncompetitive NMDA receptor antagonist, MK-801 (5 mg/kg). Treating chicks with a single dose of ketamine (55 mg/kg) or with a single dose of xylazine (6 mg/kg) failed to produce the effect on the sensitive period. However, prolonging the action of ketamine by treating chicks with two doses of ketamine (at 10 and 12 h after hatching) did allow imprinting on day 8. In contrast, prolonging the action of xylazine had no effect on the sensitive period for imprinting. Chicks treated with MK-801 were also able to imprint on day 8. Thus, we have evidence that the NMDA receptor system is involved in the mechanisms that control the sensitive period for imprinting.

  16. NMDA receptor antagonists extend the sensitive period for imprinting.

    PubMed

    Parsons, C H; Rogers, L J

    2000-03-01

    Filial imprinting in the domestic chick occurs during a sensitive period of development. The exact timing of this period can vary according to the methods used to measure imprinting. Using our imprinting paradigm, we have shown that normal, dark-reared chicks lose the ability to imprint after the second day post-hatching. Further, we reported that chicks treated 10 h after hatching with a mixture of the noncompetitive NMDA receptor antagonist ketamine (55 mg/kg) and the alpha(2)-adrenergic receptor agonist xylazine (6 mg/kg) were able to imprint on day 8 after hatching, whereas controls treated with saline did not imprint. We now show that the effect of the ketamine-xylazine mixture can be mimicked by treating chicks with ketamine alone or with another noncompetitive NMDA receptor antagonist, MK-801 (5 mg/kg). Treating chicks with a single dose of ketamine (55 mg/kg) or with a single dose of xylazine (6 mg/kg) failed to produce the effect on the sensitive period. However, prolonging the action of ketamine by treating chicks with two doses of ketamine (at 10 and 12 h after hatching) did allow imprinting on day 8. In contrast, prolonging the action of xylazine had no effect on the sensitive period for imprinting. Chicks treated with MK-801 were also able to imprint on day 8. Thus, we have evidence that the NMDA receptor system is involved in the mechanisms that control the sensitive period for imprinting. PMID:10764906

  17. Immunoendocrinology: faulty hormonal imprinting in the immune system.

    PubMed

    Csaba, György

    2014-06-01

    Hormonal imprinting is an epigenetic process which is taking place perinatally at the first encounter between the developing hormone receptors and their target hormones. The hormonal imprinting influences the binding capacity of receptors, the hormone synthesis of the cells, and other hormonally regulated functions, as sexual behavior, aggressivity, empathy, etc. However, during the critical period, when the window for imprinting is open, molecules similar to the physiological imprinters as synthetic hormone analogs, other members of the hormone families, environmental pollutants, etc. can cause faulty imprinting with life-long consequences. The developing immune system, the cells of which also have receptors for hormones, is very sensitive to faulty imprinting, which causes alterations in the antibody and cytokine production, in the ratio of immune cells, in the defense against bacterial and viral infections as well as against malignant tumors. Immune cells (lymphocytes, monocytes, granulocytes and mast cells) are also producing hormones which are secreted into the blood circulation as well as are transported locally (packed transport). This process is also disturbed by faulty imprinting. As immune cells are differentiating during the whole life, faulty imprinting could develop any time, however, the most decisive is the perinatal imprinting. The faulty imprinting is inherited to the progenies in general and especially in the case of immune system. In our modern world the number and amount of artificial imprinters (e.g. endocrine disruptors and drugs) are enormously increasing. The effects of the faulty imprinters most dangerous to the immune system are shown in the paper. The present and future consequences of the flood of faulty imprintings are unpredictable however, it is discussed.

  18. Parametric and nonparametric multipoint linkage analysis with imprinting and two-locus-trait models: application to mite sensitization.

    PubMed Central

    Strauch, K; Fimmers, R; Kurz, T; Deichmann, K A; Wienker, T F; Baur, M P

    2000-01-01

    We present two extensions to linkage analysis for genetically complex traits. The first extension allows investigators to perform parametric (LOD-score) analysis of traits caused by imprinted genes-that is, of traits showing a parent-of-origin effect. By specification of two heterozygote penetrance parameters, paternal and maternal origin of the mutation can be treated differently in terms of probability of expression of the trait. Therefore, a single-disease-locus-imprinting model includes four penetrances instead of only three. In the second extension, parametric and nonparametric linkage analysis with two trait loci is formulated for a multimarker setting, optionally taking imprinting into account. We have implemented both methods into the program GENEHUNTER. The new tools, GENEHUNTER-IMPRINTING and GENEHUNTER-TWOLOCUS, were applied to human family data for sensitization to mite allergens. The data set comprises pedigrees from England, Germany, Italy, and Portugal. With single-disease-locus-imprinting MOD-score analysis, we find several regions that show at least suggestive evidence for linkage. Most prominently, a maximum LOD score of 4.76 is obtained near D8S511, for the English population, when a model that implies complete maternal imprinting is used. Parametric two-trait-locus analysis yields a maximum LOD score of 6.09 for the German population, occurring exactly at D4S430 and D18S452. The heterogeneity model specified for analysis alludes to complete maternal imprinting at both disease loci. Altogether, our results suggest that the two novel formulations of linkage analysis provide valuable tools for genetic mapping of multifactorial traits. PMID:10796874

  19. NOEY2 (ARHI), an imprinted putative tumor suppressor gene in ovarian and breast carcinomas

    PubMed Central

    Yu, Yinhua; Xu, Fengji; Peng, Hongqi; Fang, Xianjun; Zhao, Shulei; Li, Yang; Cuevas, Bruce; Kuo, Wen-Lin; Gray, Joe W.; Siciliano, Michael; Mills, Gordon B.; Bast, Robert C.

    1999-01-01

    Using differential display PCR, we have identified a gene [NOEY2, ARHI (designation by the Human Gene Nomenclature Committee)] with high homology to ras and rap that is expressed consistently in normal ovarian and breast epithelial cells but not in ovarian and breast cancers. Reexpression of NOEY2 through transfection suppresses clonogenic growth of breast and ovarian cancer cells. Growth suppression was associated with down-regulation of the cyclin D1 promoter activity and induction of p21WAF1/CIP1. In an effort to identify mechanisms leading to NOEY2 silencing in cancer, we found that the gene is expressed monoallelically and is imprinted maternally. Loss of heterozygosity of the gene was detected in 41% of ovarian and breast cancers. In most of cancer samples with loss of heterozygosity, the nonimprinted functional allele was deleted. Thus, NOEY2 appears to be a putative imprinted tumor suppressor gene whose function is abrogated in ovarian and breast cancers. PMID:9874798

  20. [Spectroscopic Study of Salbutamol Molecularly Imprinted Polymers].

    PubMed

    Ren, Hui-peng; Guan, Yu-yu; Dai, Rong-hua; Liu, Guo-yan; Chai, Chun-yan

    2016-02-01

    In order to solve the problem of on-site rapid detection of salbutamol residues in feed and animal products, and develop a new method of fast detection of salbutamol on the basis of the molecular imprinting technology, this article uses the salbutamol (SAL) working as template molecule, methacrylic acid (MAA) working as functional monomer. On this basis, a new type of core-shell type salbutamol molecularly imprinted polymers were prepared with colloidal gold particles as triggering core. Superficial characteristics of the MIPs and the related compounds were investigated by ultraviolet (UV) spectra and infrared (IR) spectra, Raman spectra, Scanning electron microscopy (SEM) respectively. The results indicated that a stable hydrogen bonding complex has been formed between the carboxyl groups of SAL and MA with a matching ratio of 1:1. The complex can be easily eluted by the reagent containing hydrogen bonding. The chemical binding constant K reaches -0.245 x 10⁶ L² · mol⁻². The possible binding sites of the hydrogen bonding was formed between the hydrogen atoms of -COOH in MA and the oxygen atoms of C==O in SAL. IR and Raman spectrum showed that, compared with MA, a significant red shift of -OH absorption peak was manifested in MIPs, which proved that SAL as template molecule occurred a specific bond between MA. Red shift of stretching vibration absorption peak of C==O was also detected in the un-eluted MIPs and obvious energy loss happened, which demonstrated a possible binding sites is SAL intramolecular of C==O atom of oxygen. If the hydrogen atoms of -COOH in MA wanted to generate hydrogen bond. However, the shapes of absorption peak of other functional groups including C==C, C==O, and -OH were very similar both in MIPs and NIPs. Specific cavities were formed after the template molecules in MIPs were removed. It was proved by the adsorption experiment that the specific sites in these cavities highly match with the chemical and space structure of SAL

  1. A small family of sushi-class retrotransposon-derived genes in mammals and their relation to genomic imprinting.

    PubMed

    Youngson, Neil A; Kocialkowski, Sylvia; Peel, Nina; Ferguson-Smith, Anne C

    2005-10-01

    Ty3/gypsy retrotransposons are rare in mammalian genomes despite their abundance in invertebrate and other vertebrate classes. Here we identify a family of nine conserved mammalian genes with homology to Ty3/gypsy retrotransposons but which have lost their ability to autonomously retrotranspose. Of these, five map to the X chromosome while the remaining four are autosomal. Comparative phylogenetic analyses show them to have strongest homology to the sushi-ichi element from Fugu rubripes. Two of the autosomal gene members, Peg10 and Rtl1, are known to be imprinted, being expressed from the paternally inherited chromosome homologue. This suggests, consistent with the host-parasite response theory of the evolution of the imprinting mechanism, that parental-origin specific epigenetic control may be mediated by genomic "parasitic" elements such as these. Alternatively, these elements may preferentially integrate into regions that are differentially modified on the two homologous chromosomes such as imprinted domains and the X chromosome and acquire monoallelic expression. We assess the imprinting status of the remaining autosomal members of this family and show them to be biallelically expressed in embryo and placenta. Furthermore, the methylation status of Rtl1 was assayed throughout development and was found to resemble that of actively, silenced repetitive elements rather than imprinted sequences. This indicates that the ability to undergo genomic imprinting is not an inherent property of all members of this family of retroelements. Nonetheless, the conservation but functional divergence between the different members suggests that they have undergone positive selection and acquired distinct endogenous functions within their mammalian hosts.

  2. Identification of the imprinted KLF14 transcription factor undergoing human-specific accelerated evolution.

    PubMed

    Parker-Katiraee, Layla; Carson, Andrew R; Yamada, Takahiro; Arnaud, Philippe; Feil, Robert; Abu-Amero, Sayeda N; Moore, Gudrun E; Kaneda, Masahiro; Perry, George H; Stone, Anne C; Lee, Charles; Meguro-Horike, Makiko; Sasaki, Hiroyuki; Kobayashi, Keiko; Nakabayashi, Kazuhiko; Scherer, Stephen W

    2007-05-01

    Imprinted genes are expressed in a parent-of-origin manner and are located in clusters throughout the genome. Aberrations in the expression of imprinted genes on human Chromosome 7 have been suggested to play a role in the etiologies of Russell-Silver Syndrome and autism. We describe the imprinting of KLF14, an intronless member of the Krüppel-like family of transcription factors located at Chromosome 7q32. We show that it has monoallelic maternal expression in all embryonic and extra-embryonic tissues studied, in both human and mouse. We examine epigenetic modifications in the KLF14 CpG island in both species and find this region to be hypomethylated. In addition, we perform chromatin immunoprecipitation and find that the murine Klf14 CpG island lacks allele-specific histone modifications. Despite the absence of these defining features, our analysis of Klf14 in offspring from DNA methyltransferase 3a conditional knockout mice reveals that the gene's expression is dependent upon a maternally methylated region. Due to the intronless nature of Klf14 and its homology to Klf16, we suggest that the gene is an ancient retrotransposed copy of Klf16. By sequence analysis of numerous species, we place the timing of this event after the divergence of Marsupialia, yet prior to the divergence of the Xenarthra superclade. We identify a large number of sequence variants in KLF14 and, using several measures of diversity, we determine that there is greater variability in the human lineage with a significantly increased number of nonsynonymous changes, suggesting human-specific accelerated evolution. Thus, KLF14 may be the first example of an imprinted transcript undergoing accelerated evolution in the human lineage. PMID:17480121

  3. Mycotoxin Analysis Using Imprinted Materials Technology: Recent Developments.

    PubMed

    Appell, Michael; Mueller, Anja

    2016-07-01

    Molecular imprinting technology is an attractive, cost-effective, and robust alternative to address the limitations of highly selective natural receptors, such as antibodies and aptamers. The field of molecular imprinting has seen a recent surge in growth, and several commercially available products are of great interest for sample cleanup to improve mycotoxin analysis. Current research trends are in specific applications of imprinting technology for small-molecule sensing and chromatographic cleanup procedures in new commodities. The choice of components and imprinting template are critical factors for mycotoxin recovery or detection optimization. Template mimics offer a means to reduce toxic exposure during polymer synthesis and address issues of leaching template from the imprinted polymer. Recent reports of molecularly imprinted polymers for aflatoxins, ochratoxins, fumonisins, fusaric acid, citrinin, patulin, zearalenone, deoxynivalenol, and T-2 toxin are reviewed. PMID:27214609

  4. A molecular-imprint nanosensor for ultrasensitive detection of proteins

    NASA Astrophysics Data System (ADS)

    Cai, Dong; Ren, Lu; Zhao, Huaizhou; Xu, Chenjia; Zhang, Lu; Yu, Ying; Wang, Hengzhi; Lan, Yucheng; Roberts, Mary F.; Chuang, Jeffrey H.; Naughton, Michael J.; Ren, Zhifeng; Chiles, Thomas C.

    2010-08-01

    Molecular imprinting is a technique for preparing polymer scaffolds that function as synthetic receptors. Imprinted polymers that can selectively bind organic compounds have proven useful in sensor development. Although creating synthetic molecular-imprinting polymers that recognize proteins remains challenging, nanodevices and nanomaterials show promise in this area. Here, we show that arrays of carbon-nanotube tips with an imprinted non-conducting polymer coating can recognize proteins with subpicogram per litre sensitivity using electrochemical impedance spectroscopy. We have developed molecular-imprinting sensors specific for human ferritin and human papillomavirus derived E7 protein. The molecular-imprinting-based nanosensor can also discriminate between Ca2+-induced conformational changes in calmodulin. This ultrasensitive, label-free electrochemical detection of proteins offers an alternative to biosensors based on biomolecule recognition.

  5. Laser-assisted photothermal imprinting of nanocomposite

    SciTech Connect

    Lu, Y.; Shao, D.B.; Chen, S.C.

    2004-08-30

    We report on a laser-assisted photothermal imprinting method for directly patterning carbon nanofiber-reinforced polyethylene nanocomposite. A single laser pulse from a solid state Nd:YAG laser (10 ns pluse, 532 and 355 nm wavelengths) is used to melt/soften a thin skin layer of the polymer nanocomposite. Meanwhile, a fused quartz mold with micro sized surface relief structures is pressed against the surface of the composite. Successful pattern transfer is realized upon releasing the quartz mold. Although polyethylene is transparent to the laser beam, the carbon nanofibers in the high density polyethylene (HDPE) matrix absorb the laser energy and convert it into heat. Numerical heat conduction simulation shows the HDPE matrix is partially melted or softened, allowing for easier imprinting of the relief pattern of the quartz mold.

  6. Bolt Cutter Blade's Imprint in Toolmarks Examination.

    PubMed

    Volkov, Nikolai; Finkelstein, Nir; Novoselsky, Yehuda; Tsach, Tsadok

    2015-11-01

    Bolt cutters are known as cutting tools which are used for cutting hard objects and materials, such as padlocks and bars. Bolt cutter blades leave their imprint on the cut objects. When receiving a cut object from a crime scene, forensic toolmarks examiners can determine whether the suspected cutting tool was used in a specific crime or not based on class characteristic marks and individual marks that the bolt cutter blades leave on the cut object. The paper presents preliminary results of a study on ten bolt cutters and suggests a quick preliminary examination-the comparison between the blade thickness and the width of the imprint left by the tool on the cut object. Based on the comparison result, if there is not a match, the examiner can eliminate the feasibility of the use of the suspected cutting tool in a specific crime. This examination simplifies and accelerates the comparison procedure. PMID:26257324

  7. Imprinted survival genes preclude loss of heterozygosity of chromosome 7 in cancer cells.

    PubMed

    Boot, Arnoud; Oosting, Jan; de Miranda, Noel Fcc; Zhang, Yinghui; Corver, Willem E; van de Water, Bob; Morreau, Hans; van Wezel, Tom

    2016-09-01

    The genomes of a wide range of cancers, including colon, breast, and thyroid cancers, frequently show copy number gains of chromosome 7 and rarely show loss of heterozygosity. The molecular basis for this phenomenon is unknown. Strikingly, oncocytic follicular thyroid carcinomas can display an extreme genomic profile, with homozygosity of all chromosomes except for chromosome 7. The observation that homozygosity of chromosome 7 is never observed suggests that retention of heterozygosity is essential for cells. We hypothesized that cell survival genes are genetically imprinted on either of two copies of chromosome 7, which thwarts loss of heterozygosity at this chromosome in cancer cells. By employing a DNA methylation screen and gene expression analysis, we identified six imprinted genes that force retention of heterozygosity on chromosome 7. Subsequent knockdown of gene expression showed that CALCR, COPG2, GRB10, KLF14, MEST, and PEG10 were essential for cancer cell survival, resulting in reduced cell proliferation, G1 -phase arrest, and increased apoptosis. We propose that imprinted cell survival genes provide a genetic basis for retention of chromosome 7 heterozygosity in cancer cells. The monoallelically expressed cell survival genes identified in this study, and the cellular pathways that they are involved in, offer new therapeutic targets for the treatment of tumours showing retention of heterozygosity on chromosome 7. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. PMID:27265324

  8. A possible role for imprinted genes in inbreeding avoidance and dispersal from the natal area in mice.

    PubMed Central

    Isles, Anthony R; Baum, Michael J; Ma, Dan; Szeto, Abigail; Keverne, Eric B; Allen, Nicholas D

    2002-01-01

    The expression of a subset of mammalian genes is subject to parent of origin effects (POE), most of which can be explained by genomic imprinting. Analysis of mutant animals has demonstrated that a number of imprinted genes influence brain development and behaviour. Here we provide evidence for POE on olfactory related behaviour and sensitivity to maternal odour cues. This was investigated by examining the odour preference behaviour of reciprocal cross F(1) mice made by embryo transfer to genetically unrelated foster parents. We determined that both adult males and females show an avoidance of female urinary odours of their genetic maternal but not paternal origin. This was found not to be due to any previous exposure to these odours or due to self-learning, but may be related to direct effects on the olfactory system, as reciprocal F(1) males show differential sensitivity to female odour cues. Currently the most robust theory to explain the evolution of imprinting is the conflict hypothesis that focuses on maternal resource allocation to the developing foetus. Kinship considerations are also likely to be important in the selection of imprinted genes and we discuss our findings within this context, suggesting that imprinted genes act directly on the olfactory system to promote post-weaning dispersal from the natal area. PMID:11934356

  9. Nanoscale molecularly imprinted polymers and method thereof

    DOEpatents

    Hart, Bradley R.; Talley, Chad E.

    2008-06-10

    Nanoscale molecularly imprinted polymers (MIP) having polymer features wherein the size, shape and position are predetermined can be fabricated using an xy piezo stage mounted on an inverted microscope and a laser. Using an AMF controller, a solution containing polymer precursors and a photo initiator are positioned on the xy piezo and hit with a laser beam. The thickness of the polymeric features can be varied from a few nanometers to over a micron.

  10. Deletions of a differentially methylated CpG island at SNRPN define a putative imprinting control region

    SciTech Connect

    Sutcliffe, J.S.,; Nakao, M.; Beaudet, A.L.

    1994-09-01

    Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are associated with paternal and maternal deficiencies, respectively, of gene expression within human chromosome 15q11-q13, and are caused by deletion, uniparental disomy, or other mutations. Four transcripts designated PAR-5, PAR-7, PAR-1 and PAR-4 were isolated and localized to a region within 300 kb telomeric to the gene encoding small nuclear ribonucleoprotein-associated polypeptide N (SNRPN). Analysis of the transcripts in cultured fibroblasts and lymphoblasts from deletion patients demonstrated that SNRPN, PAR-5 and PAR-1 are expressed exclusively from the paternal chromosome, defining an imprinted domain that spans at least 200 kb. All three imprinted transcripts were absent in cells from three PWS patients (one pair of sibs and one sporadic case) with small deletions that involve a differentially methylated CpG island containing a previously undescribed 5{prime} untranslated exon ({alpha}) of SNRPN. Methylation of the CpG island is specific for the maternal chromosome consistent with paternal expression of the imprinted domain. One deletion, which is benign when maternally transmitted, extends upstream <30 kb from the CpG island, and is associated with altered methylation centromeric to SNRPN, and loss of transcription telomeric to SNRPN, implying the presence of an imprinting control region around the CpG island containing exon {alpha}.

  11. Preparation of protein imprinted materials by hierarchical imprinting techniques and application in selective depletion of albumin from human serum

    NASA Astrophysics Data System (ADS)

    Liu, Jinxiang; Deng, Qiliang; Tao, Dingyin; Yang, Kaiguang; Zhang, Lihua; Liang, Zhen; Zhang, Yukui

    2014-06-01

    Hierarchical imprinting was developed to prepare the protein imprinted materials, as the artificial antibody, for the selective depletion of HSA from the human serum proteome. Porcine serum albumin (PSA) was employed as the dummy template for the fabrication of the recognition sites. To demonstrate the advantages of the hierarchical imprinting, molecularly imprinted polymers prepared by hierarchical imprinting technique (h-MIPs) were compared with those obtained by bulk imprinting (b-MIPs), in terms of the binding capacity, adsorption kinetics, selectivity and synthesis reproducibility. The binding capacity of h-MIPs could reach 12 mg g-1. And saturation binding could be reached in less than 20 min for the h-MIPs. In the protein mixture, h-MIPs exhibit excellent selectivity for PSA, with imprinting factors as about 3.6, much higher than those for non-template proteins. For the proteomic application, the identified protein group number in serum treated by h-MIPs was increased to 422, which is 21% higher than that obtained from the original serum, meanwhile the identified protein group number for the Albumin Removal kit was only 376. The results demonstrate that protein imprinted polymers prepared by hierarchical imprinting technique, might become the artificial antibodies for the selective depletion of high abundance proteins in proteome study.

  12. Evolution of Genomic Imprinting with Biparental Care: Implications for Prader-Willi and Angelman Syndromes

    PubMed Central

    Úbeda, Francisco

    2008-01-01

    The term “imprinted gene” refers to genes whose expression is conditioned by their parental origin. Among theories to unravel the evolution of genomic imprinting, the kinship theory prevails as the most widely accepted, because it sheds light on many aspects of the biology of imprinted genes. While most assumptions underlying this theory have not escaped scrutiny, one remains overlooked: mothers are the only source of parental investment in mammals. But, is it reasonable to assume that fathers' contribution of resources is negligible? It is not in some key mammalian orders including humans. In this research, I generalize the kinship theory of genomic imprinting beyond maternal contribution only. In addition to deriving new conditions for the evolution of imprinting, I have found that the same gene may show the opposite pattern of expression when the investment of one parent relative to the investment of the other changes; the reversion, interestingly, does not require that fathers contribute more resources than mothers. This exciting outcome underscores the intimate connection between the kinship theory and the social structure of the organism considered. Finally, the insight gained from my model enabled me to explain the clinical phenotype of Prader-Willi syndrome. This syndrome is caused by the paternal inheritance of a deletion of the PWS/AS cluster of imprinted genes in human Chromosome 15. As such, children suffering from this syndrome exhibit a striking biphasic phenotype characterized by poor sucking and reduced weight before weaning but by voracious appetite and obesity after weaning. Interest in providing an evolutionary explanation to such phenotype is 2-fold. On the one hand, the kinship theory has been doubted as being able to explain the symptoms of patients with Prader-Willi. On the other hand, the post-weaning symptoms remain as one of the primary concern of pediatricians treating children with Prader-Willi. In this research, I reconcile the

  13. Maternal Rnf12/RLIM is required for imprinted X-chromosome inactivation in mice.

    PubMed

    Shin, Jongdae; Bossenz, Michael; Chung, Young; Ma, Hong; Byron, Meg; Taniguchi-Ishigaki, Naoko; Zhu, Xiaochun; Jiao, Baowei; Hall, Lisa L; Green, Michael R; Jones, Stephen N; Hermans-Borgmeyer, Irm; Lawrence, Jeanne B; Bach, Ingolf

    2010-10-21

    Two forms of X-chromosome inactivation (XCI) ensure the selective silencing of female sex chromosomes during mouse embryogenesis. Imprinted XCI begins with the detection of Xist RNA expression on the paternal X chromosome (Xp) at about the four-cell stage of embryonic development. In the embryonic tissues of the inner cell mass, a random form of XCI occurs in blastocysts that inactivates either Xp or the maternal X chromosome (Xm). Both forms of XCI require the non-coding Xist RNA that coats the inactive X chromosome from which it is expressed. Xist has crucial functions in the silencing of X-linked genes, including Rnf12 (refs 3, 4) encoding the ubiquitin ligase RLIM (RING finger LIM-domain-interacting protein). Here we show, by targeting a conditional knockout of Rnf12 to oocytes where RLIM accumulates to high levels, that the maternal transmission of the mutant X chromosome (Δm) leads to lethality in female embryos as a result of defective imprinted XCI. We provide evidence that in Δm female embryos the initial formation of Xist clouds and Xp silencing are inhibited. In contrast, embryonic stem cells lacking RLIM are able to form Xist clouds and silence at least some X-linked genes during random XCI. These results assign crucial functions to the maternal deposit of Rnf12/RLIM for the initiation of imprinted XCI.

  14. Mammalian viviparity: a complex niche in the evolution of genomic imprinting

    PubMed Central

    Keverne, E B

    2014-01-01

    Evolution of mammalian reproductive success has witnessed a strong dependence on maternal resources through placental in utero development. Genomic imprinting, which has an active role in mammalian viviparity, also reveals a biased role for matrilineal DNA in its regulation. The co-existence of three matrilineal generations as one (mother, foetus and post-meiotic oocytes) has provided a maternal niche for transgenerational co-adaptive selection pressures to operate. In utero foetal growth has required increased maternal feeding in advance of foetal energetic demands; the mammary glands are primed for milk production in advance of birth, while the maternal hypothalamus is hormonally primed by the foetal placenta for nest building and post-natal care. Such biological forward planning resulted from maternal–foetal co-adaptation facilitated by co-expression of the same imprinted allele in the developing hypothalamus and placenta. This co-expression is concurrent with the placenta interacting with the adult maternal hypothalamus thereby providing a transgenerational template on which selection pressures may operate ensuring optimal maternalism in this and the next generation. Invasive placentation has further required the maternal immune system to adapt and positively respond to the foetal allotype. Pivotal to these mammalian evolutionary developments, genomic imprinting emerged as a monoallelic gene dosage regulatory mechanism of tightly interconnected gene networks providing developmental genetic stability for in utero development. PMID:24569636

  15. Mitochondrial complex II and genomic imprinting in inheritance of paraganglioma tumors.

    PubMed

    Baysal, Bora E

    2013-05-01

    Germ line heterozygous mutations in the structural subunit genes of mitochondrial complex II (succinate dehydrogenase; SDH) and the regulatory gene SDHAF2 predispose to paraganglioma tumors which show constitutive activation of hypoxia inducible pathways. Mutations in SDHD and SDHAF2 cause highly penetrant multifocal tumor development after a paternal transmission, whereas maternal transmission rarely, if ever, leads to tumor development. This transmission pattern is consistent with genomic imprinting. Recent molecular evidence supports a model for tissue-specific imprinted regulation of the SDHD gene by a long range epigenetic mechanism. In addition, there is evidence of SDHB mRNA editing in peripheral blood mononuclear cells and long-term balancing selection operating on the SDHA gene. Regulation of SDH subunit expression by diverse epigenetic mechanisms implicates a crucial dosage-dependent role for SDH in oxygen homeostasis. This article is part of a Special Issue entitled: Respiratory complex II: Role in cellular physiology and disease.

  16. Investigation of imprinting parameters and their recognition nature for quinine-molecularly imprinted polymers

    NASA Astrophysics Data System (ADS)

    He, Jian-feng; Zhu, Quan-hong; Deng, Qin-ying

    2007-08-01

    A series of molecularly imprinted polymers (MIPs) was prepared using quinine as the template molecules by bulk polymerization. The presence of monomer-template solution complexes in non-covalent MIPs systems has been verified by both fluorescence and UV-vis spectrometric detection. The influence of different synthetic conditions (porogen, functional monomer, cross-linkers, initiation methods, monomer-template ratio, etc.) on recognition properties of the polymers was investigated. Scatchard analysis revealed that two classes of binding sites were formed in the imprinted polymer. The corresponding dissociation constants were estimated to be 45.00 μmol l -1 and 1.42 mmol l -1, respectively, by utilizing a multi-site recognition model. The binding characteristics of the imprinted polymers were explored in various solvents using equilibrium binding experiments. In the organic media, results suggested that polar interactions (hydrogen bonding, ionic interactions, etc.) between acidic monomer/polymer and template molecules were mainly responsible for the recognition, whereas in aqueous media, hydrophobic interactions had a remarkable non-specific contribution to the overall binding. The specificity of MIP was evaluated by rebinding the other structurally similar compounds. The results indicated that the imprinted polymers exhibited an excellent stereo-selectivity toward quinine.

  17. Electrochemical sensor for sulfadimethoxine based on molecularly imprinted polypyrrole: study of imprinting parameters.

    PubMed

    Turco, Antonio; Corvaglia, Stefania; Mazzotta, Elisabetta

    2015-01-15

    The present work describes the development of a simple and cost-effective electrochemical sensor for sulfadimethoxine (SDM) based on molecularly imprinted overoxidized polypyrrole (PPy). An all electrochemical approach is used for sensor fabrication and application consisting in molecularly imprinted polymer (MIP) galvanostatic deposition on a gold electrode and its overoxidation under different experimental conditions and in SDM amperometric detection. Several parameters influencing the imprinting effect are critically discussed and evaluated. A key role of the electrolyte used in electropolymerization (tetrabuthylammonium perchlorate and lithium perchlorate) has emerged demonstrating its effect on sensing performances of imprinted PPy and, related to this, on its morphology, as highlighted by atomic force microscopy (AFM). The effect of different overoxidation conditions in removing template is evaluated by analyzing MIP films before and after the treatment by X-ray photoelectron spectroscopy (XPS) also evidencing the correlation between MIP chemical structure and its rebinding ability. MIP-template interaction is verified also by Fourier Transform Infrared (FT-IR) spectroscopy. Under the selected optimal conditions, MIP sensor shows a linear range from 0.15 to 3.7 mM SDM, a limit of detection of 70 μM, a highly reproducible response (RSD 4.2%) and a good selectivity in the presence of structurally related molecules. SDM was determined in milk samples spiked at two concentration levels: 0.2 mM and 0.4 mM obtaining a satisfactory recovery of (97±3)% and (96±8)%, respectively.

  18. Mycotoxin analysis using imprinted materials technology: Recent developments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Molecular imprinting technology is an attractive, cost effective, and robust alternative to address the limitations of highly selective natural receptors, such as antibodies and aptamers. The field of molecular imprinting has seen a recent surge in growth with several commercially available products...

  19. Imprinting can cause a maladaptive preference for infectious conspecifics.

    PubMed

    Stephenson, Jessica F; Reynolds, Michael

    2016-04-01

    Recognizing and associating with specific individuals, such as conspecifics or kin, brings many benefits. One mechanism underlying such recognition is imprinting: the long-term memory of cues encountered during development. Typically, juveniles imprint on cues of nearby individuals and may later associate with phenotypes matching their 'recognition template'. However, phenotype matching could lead to maladaptive social decisions if, for instance, individuals imprint on the cues of conspecifics infected with directly transmitted diseases. To investigate the role of imprinting in the sensory ecology of disease transmission, we exposed juvenile guppies,Poecilia reticulata, to the cues of healthy conspecifics, or to those experiencing disease caused by the directly transmitted parasite Gyrodactylus turnbulli In a dichotomous choice test, adult 'disease-imprinted' guppies preferred to associate with the chemical cues of G. turnbulli-infected conspecifics, whereas 'healthy-imprinted' guppies preferred to associate with cues of uninfected conspecifics. These responses were only observed when stimulus fish were in late infection, suggesting imprinted fish responded to cues of disease, but not of infection alone. We discuss how maladaptive imprinting may promote disease transmission in natural populations of a social host. PMID:27072405

  20. High volume nanoscale roll-based imprinting using jet and flash imprint lithography

    NASA Astrophysics Data System (ADS)

    Ahn, Se Hyun; Miller, Michael; Yang, Shuqiang; Ganapathisubramanian, Maha; Menezes, Marlon; Singh, Vik; Wan, Fen; Choi, Jin; Xu, Frank; LaBrake, Dwayne; Resnick, Douglas J.; Hofemann, Paul; Sreenivasan, S. V.

    2014-03-01

    Extremely large-area roll-to-roll manufacturing on flexible substrates is ubiquitous for applications such as paper and plastic processing. The challenge is to extend this approach to the realm of nanopatterning and realize similar benefits. Display applications, including liquid crystal (LCD), organic light emitting diode (OLED) and flexible displays are particularly interesting because of the ability to impact multiple levels in the basic display. Of particular interest are the polarizer, DBEF, thin film transistor and color filter; roll-based imprinting has the opportunity to create high performance components within the display while improving the cost of ownership of the panel. Realization of these devices requires both a scalable imprinting technology and tool. In this paper, we introduce a high volume roll-based nanopatterning system, the LithoFlex 350TM. The LithoFlex 350 uses an inkjet based imprinting process similar to the technology demonstrator tool, the LithoFlex 100, introduced in 2012. The width of the web is 350mm and patterning width is 300mm. The system can be configured either for Plate-to-Roll (P2R) imprinting (in which a rigid template is used to pattern the flexible web material) or for Roll-to-Plate imprinting (R2P) (in which a web based template is used to pattern either wafers or panels). Also described in this paper are improvements to wire grid polarizer devices. By optimizing the deposition, patterning and etch processes, we have been able to create working WGPs with transmittance and extinction ratios as high as 44% and 50,000, respectively.

  1. Fluorescense Anisotropy Studies of Molecularly Imprinted Polymer Sensors

    SciTech Connect

    Chen, Yin-Chu; Wang, Zheming; Yan, Mingdi; Prahl, Scott A.

    2005-08-03

    Molecularly imprinted polymers (MIPs) are used as recognition elements in biochemical sensors. In a fluorescence-based MIP sensor system, it is difficult to distinguish the analyte fluorescence from the background fluorescence of the polymer itself. We studied steady-state fluorescence anisotropy of anthracene imprinted in a polymer (polyurethane) matrix. Vertically polarized excitation light was incident on MIP films coated on silicon wafers; vertically and horizontally polarized emission was measured. We compared the fluorescence anisotropy of MIPs with imprinted molecules, MIPs with the imprinted molecules extracted, MIPs with rebound molecules, and nonimprinted control polymers (without binding cavities). It is shown that differences in fluorescence anisotropy between the polymers and imprinted fluorescent molecules may provide a means to discriminate the fluorescence of analyte from that of the background polymer.

  2. Preparation of polyhedral oligomeric silsesquioxane based imprinted monolith.

    PubMed

    Li, Fang; Chen, Xiu-Xiu; Huang, Yan-Ping; Liu, Zhao-Sheng

    2015-12-18

    Polyhedral oligomeric silsesquioxane (POSS) was successfully applied, for the first time, to prepare imprinted monolithic column with high porosity and good permeability. The imprinted monolithic column was synthesized with a mixture of PSS-(1-Propylmethacrylate)-heptaisobutyl substituted (MA 0702), naproxon (template), 4-vinylpyridine, and ethylene glycol dimethacrylate, in ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM]BF4). The influence of synthesis parameters on the retention factor and imprinting effect, including the amount of MA 0702, the ratio of template to monomer, and the ratio of monomer to crosslinker, was investigated. The greatest imprinting factor on the imprinted monolithic column prepared with MA 0702 was 22, about 10 times higher than that prepared in absence of POSS. The comparisons between MIP monoliths synthesized with POSS and without POSS were made in terms of permeability, column efficiency, surface morphology and pore size distribution. In addition, thermodynamic and Van Deemter analysis were used to evaluate the POSS-based MIP monolith.

  3. Use of molecularly imprinted polymers in a biotransformation process.

    PubMed

    Ye, L; Ramström, O; Ansell, R J; Månsson, M O; Mosbach, K

    1999-09-20

    Molecularly imprinted polymers are highly stable and can be sterilised, making them ideal for use in biotransformation process. In this communication, we describe a novel application of molecularly imprinted polymers in an enzymatic reaction. The enzymatic condensation of Z-L-aspartic acid with L-phenylalanine methyl ester to give Z-L-Asp-L-Phe-OMe (Z-aspartame) was chosen as a model system to evaluate the applicability of using molecularly imprinted polymers to facilitate product formation. When the product-imprinted polymer is present, a considerable increase (40%) in product yield is obtained. Besides their use to enhance product yields, as demonstrated here, we suggest that imprinted polymers may also find use in the continuous removal of toxic compounds during biochemical reactions.

  4. Matrix molecularly imprinted mesoporous sol-gel sorbent for efficient solid-phase extraction of chloramphenicol from milk.

    PubMed

    Samanidou, Victoria; Kehagia, Maria; Kabir, Abuzar; Furton, Kenneth G

    2016-03-31

    Highly selective and efficient chloramphenicol imprinted sol-gel silica based inorganic polymeric sorbent (sol-gel MIP) was synthesized via matrix imprinting approach for the extraction of chloramphenicol in milk. Chloramphenicol was used as the template molecule, 3-aminopropyltriethoxysilane (3-APTES) and triethoxyphenylsilane (TEPS) as the functional precursors, tetramethyl orthosilicate (TMOS) as the cross-linker, isopropanol as the solvent/porogen, and HCl as the sol-gel catalyst. Non-imprinted sol-gel polymer (sol-gel NIP) was synthesized under identical conditions in absence of template molecules for comparison purpose. Both synthesized materials were characterized by Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FT-IR) and nitrogen adsorption porosimetry, which unambiguously confirmed their significant structural and morphological differences. The synthesized MIP and NIP materials were evaluated as sorbents for molecularly imprinted solid phase extraction (MISPE) of chloramphenicol in milk. The effect of critical extraction parameters (flow rate, elution solvent, sample and eluent volume, selectivity coefficient, retention capacity) was studied in terms of retention and desorption of chloramphenicol. Competition and cross reactivity tests have proved that sol-gel MIP sorbent possesses significantly higher specific retention and enrichment capacity for chloramphenicol compared to its non-imprinted analogue. The maximum imprinting factor (IF) was found as 9.7, whereas the highest adsorption capacity of chloramphenicol by sol-gel MIP was 23 mg/g. The sol-gel MIP was found to be adequately selective towards chloramphenicol to provide the necessary minimum required performance limit (MRPL) of 0.3 μg/kg set forth by European Commission after analysis by LC-MS even without requiring time consuming solvent evaporation and sample reconstitution step, often considered as an integral part in solid phase extraction work-flow. Intra and

  5. Matrix molecularly imprinted mesoporous sol-gel sorbent for efficient solid-phase extraction of chloramphenicol from milk.

    PubMed

    Samanidou, Victoria; Kehagia, Maria; Kabir, Abuzar; Furton, Kenneth G

    2016-03-31

    Highly selective and efficient chloramphenicol imprinted sol-gel silica based inorganic polymeric sorbent (sol-gel MIP) was synthesized via matrix imprinting approach for the extraction of chloramphenicol in milk. Chloramphenicol was used as the template molecule, 3-aminopropyltriethoxysilane (3-APTES) and triethoxyphenylsilane (TEPS) as the functional precursors, tetramethyl orthosilicate (TMOS) as the cross-linker, isopropanol as the solvent/porogen, and HCl as the sol-gel catalyst. Non-imprinted sol-gel polymer (sol-gel NIP) was synthesized under identical conditions in absence of template molecules for comparison purpose. Both synthesized materials were characterized by Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FT-IR) and nitrogen adsorption porosimetry, which unambiguously confirmed their significant structural and morphological differences. The synthesized MIP and NIP materials were evaluated as sorbents for molecularly imprinted solid phase extraction (MISPE) of chloramphenicol in milk. The effect of critical extraction parameters (flow rate, elution solvent, sample and eluent volume, selectivity coefficient, retention capacity) was studied in terms of retention and desorption of chloramphenicol. Competition and cross reactivity tests have proved that sol-gel MIP sorbent possesses significantly higher specific retention and enrichment capacity for chloramphenicol compared to its non-imprinted analogue. The maximum imprinting factor (IF) was found as 9.7, whereas the highest adsorption capacity of chloramphenicol by sol-gel MIP was 23 mg/g. The sol-gel MIP was found to be adequately selective towards chloramphenicol to provide the necessary minimum required performance limit (MRPL) of 0.3 μg/kg set forth by European Commission after analysis by LC-MS even without requiring time consuming solvent evaporation and sample reconstitution step, often considered as an integral part in solid phase extraction work-flow. Intra and

  6. Sex steroids imprinting and prostatic growth.

    PubMed

    Chung, L W; MacFadden, D K

    1980-01-01

    Sex steroids exposure to rats castrated at birth during the neonatal or prepubertal period permanently modified certain morphologic features of the accessory sex organs in adulthood. Similar treatment of intact rats failed to induce these changes. Hypophysectomy in adulthood did not abolish the neonatally androgen-induced imprinting of the growth response of the rat accessory sex organs in adulthood, which suggests that the effects of neonatal androgen administration are directly on the hormone-responsive target cells and are not mediated via the hypothalamic-pituitary axis.

  7. Band structure controlled by chiral imprinting

    NASA Astrophysics Data System (ADS)

    Castro-Garay, P.; Adrian Reyes, J.; Ramos-Garcia, R.

    2007-09-01

    Using the configuration of an imprinted cholesteric elastomer immersed in a racemic solvent, the authors find the solution of the boundary-value problem for the reflection and transmission of incident optical waves due to the elastomer. They show a significant width reduction of the reflection band for certain values of nematic penetration depth, which depends on the volume fraction of molecules from the solvent, whose handedness is preferably absorbed. The appearance of nested band gaps of both handednesses during the sorting mixed chiral process is also obtained. This suggests the design of chemically controlled optical filters and optically monitored chiral pumps.

  8. Band Structure Controlled by Chiral Imprinting

    NASA Astrophysics Data System (ADS)

    Reyes Cervantes, Adrian; Castro-Garay, P.; Ramos-Garcia, Ruben

    2008-03-01

    Using the configuration of an imprinted cholesteric elastomer immersed in a racemic solvent, we find the solution of the boundary--value problem for the reflection and transmission of incident optical waves due to the elastomer. We show a significant width reduction of the reflection band for certain values of nematic penetration depth, which depends on the volume fraction of molecules from the solvent, whose handedness is preferably absorbed. The appearance of nested bandgaps of both handednesses during the sorting mixed chiral process is also obtained. This suggests the design of chemically controlled optical filters and optically monitored chiral pumps.

  9. Econazole imprinted textiles with antifungal activity.

    PubMed

    Hossain, Mirza Akram; Lalloz, Augustine; Benhaddou, Aicha; Pagniez, Fabrice; Raymond, Martine; Le Pape, Patrice; Simard, Pierre; Théberge, Karine; Leblond, Jeanne

    2016-04-01

    In this work, we propose pharmaceutical textiles imprinted with lipid microparticles of Econazole nitrate (ECN) as a mean to improve patient compliance while maintaining drug activity. Lipid microparticles were prepared and characterized by laser diffraction (3.5±0.1 μm). Using an optimized screen-printing method, microparticles were deposited on textiles, as observed by scanning electron microscopy. The drug content of textiles (97±3 μg/cm(2)) was reproducible and stable up to 4 months storage at 25 °C/65% Relative Humidity. Imprinted textiles exhibited a thermosensitive behavior, as witnessed by a fusion temperature of 34.8 °C, which enabled a larger drug release at 32 °C (temperature of the skin) than at room temperature. In vitro antifungal activity of ECN textiles was compared to commercial 1% (wt/wt) ECN cream Pevaryl®. ECN textiles maintained their antifungal activity against a broad range of Candida species as well as major dermatophyte species. In vivo, ECN textiles also preserved the antifungal efficacy of ECN on cutaneous candidiasis infection in mice. Ex vivo percutaneous absorption studies demonstrated that ECN released from pharmaceutical textiles concentrated more in the upper skin layers, where the fungal infections develop, as compared to dermal absorption of Pevaryl®. Overall, these results showed that this technology is promising to develop pharmaceutical garments textiles for the treatment of superficial fungal infections. PMID:26883854

  10. Substrate conformal imprint lithography for nanophotonics

    NASA Astrophysics Data System (ADS)

    Verschuuren, M. A.

    2010-03-01

    The field of nano-photonics studies the interaction and control of light with dielectric, semiconductor and metal structures which are comparable in size or smaller than the vacuum wavelength of light. In this thesis we present Substrate Conformal Imprint Lithography (SCIL) as a novel wafer-scale nanoimprint method with nano-scale resolution which combines the resolution and accuracy of rigid stamps with the flexibility of soft stamp methods. Chapter two describes the SCIL soft nanoimprint process and introduces a novel silica sol-gel imprint resist. A new soft rubber stamp material is described which enables sub-10 nm resolution. We demonstrate that SCIL imprinted patterns have on average less than 0.1 nm distortion and demonstrate sub-50 nm overlay alignment. Chapter 3 demonstrates 30 nm dense structures and features with aspect ratios from 1/640 up to 5. Imprinted sol-gel patterns can be transferred into underlying materials while maintaining sub-10 nm resolution. Two methods are demonstrated to pattern noble metals in particle arrays and sub-wavelength hole arrays. SCIL is applied to produce photonic crystal power InGaN LEDs which exhibit strong modification of the emission pattern. Chapter 4 demonstrates a relatively simple route towards 3D woodpile type photonic crystals. We show a four layer woodpile type structure with 70 nm features on a 240 nm pitch, which is temperature stable up to 1000 C. Chapter 5 demonstrates a novel fabrication route to large area nano hole arrays, which are interesting as angle independent color filters and for sensor applications. A solid state index matched hole array exhibits SPP mediated super resonant transmission. Chapter 6 treats single mode polarization stabilized Vertical Cavity Surface Emitting Lasers (VCSELs). The lasers produced by SCIL exhibit equal performance as devices produced by e-beam. VCSELs with SCIL imprinted sub-wavelength gratings increase the laser efficiency by 29 % compared to conventional gratings

  11. Timing and Sequence Requirements Defined for Embryonic Maintenance of Imprinted DNA Methylation at Rasgrf1▿

    PubMed Central

    Holmes, Rebecca; Chang, Yanjie; Soloway, Paul D.

    2006-01-01

    Epigenetic programming is critical for normal development of mammalian embryos. Errors cause misexpression of genes and aberrant development (E. Li, C. Beard, and R. Jaenisch, Nature 366:362-365, 1993). Imprinted genes are important targets of epigenetic regulation, but little is known about how the epigenetic patterns are established in the parental germ lines and maintained in the embryo. Paternal allele-specific expression at the imprinted Rasgrf1 locus in mice is controlled by paternal allele-specific methylation at a differentially methylated domain (DMD). DMD methylation is in turn controlled by a direct repeat sequence immediately downstream of the DMD which is required for establishing Rasgrf1 methylation in the male germ line (B. J. Yoon et al., Nat. Genet. 30:92-96, 2002). To determine if these repeats have a role in methylation maintenance, we developed a conditional deletion of the repeat sequence in mice and showed that the repeats are also required during a narrow interval to maintain paternal methylation of Rasgrf1 in developing embryos. Removing the repeats upon fertilization caused a total loss of methylation by the morula stage, but by the epiblast stage, the repeats were completely dispensable for methylation maintenance. This developmental interval coincides with genome-wide demethylation and remethylation in mice which most imprinted genes resist. Our data show that the Rasgrf1 repeats serve at least two functions: first, to establish Rasgrf1 DNA methylation in the male germ line, and second, to resist global demethylation in the preimplantation embryo. PMID:17030618

  12. Transgenerational epigenetic imprinting of the male germline by endocrine disruptor exposure during gonadal sex determination.

    PubMed

    Chang, Hung-Shu; Anway, Matthew D; Rekow, Stephen S; Skinner, Michael K

    2006-12-01

    Embryonic exposure to the endocrine disruptor vinclozolin at the time of gonadal sex determination was previously found to promote transgenerational disease states. The actions of vinclozolin appear to be due to epigenetic alterations in the male germline that are transmitted to subsequent generations. Analysis of the transgenerational epigenetic effects on the male germline (i.e. sperm) identified 25 candidate DNA sequences with altered methylation patterns in the vinclozolin generation sperm. These sequences were identified and mapped to specific genes and noncoding DNA regions. Bisulfite sequencing was used to confirm the altered methylation pattern of 15 of the candidate DNA sequences. Alterations in the epigenetic pattern (i.e. methylation) of these genes/DNA sequences were found in the F2 and F3 generation germline. Therefore, the reprogramming of the male germline involves the induction of new imprinted-like genes/DNA sequences that acquire an apparent permanent DNA methylation pattern that is passed at least through the paternal allele. The expression pattern of several of the genes during embryonic development were found to be altered in the vinclozolin F1 and F2 generation testis. A number of the imprinted-like genes/DNA sequences identified are associated with epigenetic linked diseases. In summary, an endocrine disruptor exposure during embryonic gonadal sex determination was found to promote an alteration in the epigenetic (i.e. induction of imprinted-like genes/DNA sequences) programming of the male germline, and this is associated with the development of transgenerational disease states.

  13. A Proteomic Study of Memory After Imprinting in the Domestic Chick

    PubMed Central

    Meparishvili, Maia; Nozadze, Maia; Margvelani, Giorgi; McCabe, Brian J.; Solomonia, Revaz O.

    2015-01-01

    The intermediate and medial mesopallium (IMM) of the domestic chick forebrain has previously been shown to be a memory system for visual imprinting. Learning-related changes occur in certain plasma membrane and mitochondrial proteins in the IMM. Two-dimensional gel electrophoresis/mass spectrometry has been employed to identify more comprehensively learning-related expression of proteins in the membrane-mitochondrial fraction of the IMM 24 h after training. We inquired whether amounts of these proteins in the IMM and a control region (posterior pole of the nidopallium, PPN) are correlated with a behavioral estimate of memory for the imprinting stimulus. Learning-related increases in amounts of the following proteins were found in the left IMM, but not the right IMM or the left or right PPN: (i) membrane cognin; (ii) a protein resembling the P32 subunit of splicing factor SF2; (iii) voltage-dependent anionic channel-1; (iv) dynamin-1; (v) heterogeneous nuclear ribonucleoprotein A2/B1. Learning-related increases in some transcription factors involved in mitochondrial biogenesis were also found, without significant change in mitochondrial DNA copy number. The results indicate that the molecular processes involved in learning and memory underlying imprinting include protein stabilization, increased mRNA trafficking, synaptic vesicle recycling, and specific changes in the mitochondrial proteome. PMID:26635566

  14. A Case-by-Case Evolutionary Analysis of Four Imprinted Retrogenes

    PubMed Central

    McCole, Ruth B; Loughran, Noeleen B; Chahal, Mandeep; Fernandes, Luis P; Roberts, Roland G; Fraternali, Franca; O'Connell, Mary J; Oakey, Rebecca J

    2011-01-01

    Retroposition is a widespread phenomenon resulting in the generation of new genes that are initially related to a parent gene via very high coding sequence similarity. We examine the evolutionary fate of four retrogenes generated by such an event; mouse Inpp5f_v2, Mcts2, Nap1l5, and U2af1-rs1. These genes are all subject to the epigenetic phenomenon of parental imprinting. We first provide new data on the age of these retrogene insertions. Using codon-based models of sequence evolution, we show these retrogenes have diverse evolutionary trajectories, including divergence from the parent coding sequence under positive selection pressure, purifying selection pressure maintaining parent-retrogene similarity, and neutral evolution. Examination of the expression pattern of retrogenes shows an atypical, broad pattern across multiple tissues. Protein 3D structure modeling reveals that a positively selected residue in U2af1-rs1, not shared by its parent, may influence protein conformation. Our case-by-case analysis of the evolution of four imprinted retrogenes reveals that this interesting class of imprinted genes, while similar in regulation and sequence characteristics, follow very varied evolutionary paths. PMID:21166792

  15. Sex-specific meiotic drive and selection at an imprinted locus.

    PubMed Central

    Ubeda, Francisco; Haig, David

    2004-01-01

    We present a one-locus model that breaks two symmetries of Mendelian genetics. Whereas symmetry of transmission is breached by allowing sex-specific segregation distortion, symmetry of expression is breached by allowing genomic imprinting. Simple conditions for the existence of at least one polymorphic stable equilibrium are provided. In general, population mean fitness is not maximized at polymorphic equilibria. However, mean fitness at a polymorphic equilibrium with segregation distortion may be higher than mean fitness at the corresponding equilibrium with Mendelian segregation if one (or both) of the heterozygote classes has higher fitness than both homozygote classes. In this case, mean fitness is maximized by complete, but opposite, drive in the two sexes. We undertook an extensive numerical analysis of the parameter space, finding, for the first time in this class of models, parameter sets yielding two stable polymorphic equilibria. Multiple equilibria exist both with and without genomic imprinting, although they occurred in a greater proportion of parameter sets with genomic imprinting. PMID:15342542

  16. Targeted deletion of the Nesp55 DMR defines another Gnas imprinting control region and provides a mouse model of autosomal dominant PHP-Ib.

    PubMed

    Fröhlich, Leopold F; Mrakovcic, Maria; Steinborn, Ralf; Chung, Ung-Il; Bastepe, Murat; Jüppner, Harald

    2010-05-18

    Approximately 100 genes undergo genomic imprinting. Mutations in fewer than 10 imprinted genetic loci, including GNAS, are associated with complex human diseases that differ phenotypically based on the parent transmitting the mutation. Besides the ubiquitously expressed Gsalpha, which is of broad biological importance, GNAS gives rise to an antisense transcript and to several Gsalpha variants that are transcribed from the nonmethylated parental allele. We previously identified two almost identical GNAS microdeletions extending from exon NESP55 to antisense (AS) exon 3 (delNESP55/delAS3-4). When inherited maternally, both deletions are associated with erasure of all maternal GNAS methylation imprints and autosomal-dominant pseudohypoparathyroidism type Ib, a disorder characterized by parathyroid hormone-resistant hypocalcemia and hyperphosphatemia. As for other imprinting disorders, the mechanisms resulting in abnormal GNAS methylation are largely unknown, in part because of a paucity of suitable animal models. We now showed in mice that deletion of the region equivalent to delNESP55/delAS3-4 on the paternal allele (DeltaNesp55(p)) leads to healthy animals without Gnas methylation changes. In contrast, mice carrying the deletion on the maternal allele (DeltaNesp55(m)) showed loss of all maternal Gnas methylation imprints, leading in kidney to increased 1A transcription and decreased Gsalpha mRNA levels, and to associated hypocalcemia, hyperphosphatemia, and secondary hyperparathyroidism. Besides representing a murine autosomal-dominant pseudohypoparathyroidism type Ib model and one of only few animal models for imprinted human disorders, our findings suggest that the Nesp55 differentially methylated region is an additional principal imprinting control region, which directs Gnas methylation and thereby affects expression of all maternal Gnas-derived transcripts.

  17. Characterization of the Binding Properties of Molecularly Imprinted Polymers.

    PubMed

    Ansell, Richard J

    2015-01-01

    The defining characteristic of the binding sites of any particular molecularly imprinted material is heterogeneity: that is, they are not all identical. Nonetheless, it is useful to study their fundamental binding properties, and to obtain average properties. In particular, it has been instructive to compare the binding properties of imprinted and non-imprinted materials. This chapter begins by considering the origins of this site heterogeneity. Next, the properties of interest of imprinted binding sites are described in brief: affinity, selectivity, and kinetics. The binding/adsorption isotherm, the graph of concentration of analyte bound to a MIP versus concentration of free analyte at equilibrium, over a range of total concentrations, is described in some detail. Following this, the techniques for studying the imprinted sites are described (batch-binding assays, radioligand binding assays, zonal chromatography, frontal chromatography, calorimetry, and others). Thereafter, the parameters that influence affinity, selectivity and kinetics are discussed (solvent, modifiers of organic solvents, pH of aqueous solvents, temperature). Finally, mathematical attempts to fit the adsorption isotherms for imprinted materials, so as to obtain information about the range of binding affinities characterizing the imprinted sites, are summarized. PMID:25796622

  18. Aberrant epigenetic reprogramming of imprinted microRNA-127 and Rtl1 in cloned mouse embryos

    SciTech Connect

    Cui Xiangshun; Zhang Dingxiao; Ko, Yoeung-Gyu; Kim, Nam-Hyung

    2009-02-06

    The microRNA (miRNA) genes mir-127 and mir-136 are located near two CpG islands in the imprinted mouse retrotransposon-like gene Rtl1, a key gene involved in placenta formation. These miRNAs appear to be involved in regulating the imprinting of Rtl1. To obtain insights into the epigenetic reprogramming of cloned embryos, we compared the expression levels of mir-127 and mir-136 in fertilized mouse embryos, parthenotes, androgenotes and cloned embryos developing in vitro. We also examined the DNA methylation status of the promoter regions of Rtl1 and mir-127 in these embryos. Our data showed that mir-127 and mir-136 were highly expressed in parthenotes, but rarely expressed in androgenotes. Interestingly, the expression levels of mir-127 and mir-136 in parthenotes were almost twice that seen in the fertilized embryos, but were much lower in the cloned embryos. The Rtl1 promoter region was hyper-methylated in blastocyst stage parthenotes (75.0%), moderately methylated (32.4%) in the fertilized embryos and methylated to a much lower extent ({approx}10%) in the cloned embryos. Conversely, the promoter region of mir-127 was hypo-methylated in parthenogenetically activated embryos (0.4%), moderately methylated (30.0%) in fertilized embryos and heavily methylated in cloned blastocysts (63-70%). These data support a role for mir-127 and mir-136 in the epigenetic reprogramming of the Rtl1 imprinting process. Analysis of the aberrant epigenetic reprogramming of mir-127 and Rtl1 in cloned embryos may help to explain the nuclear reprogramming procedures that occur in donor cells following somatic cell nuclear transfer (SCNT)

  19. Dummy molecularly imprinted mesoporous silica prepared by hybrid imprinting method for solid-phase extraction of bisphenol A.

    PubMed

    Yu, Dan; Hu, Xiaolei; Wei, Shoutai; Wang, Qiang; He, Chiyang; Liu, Shaorong

    2015-05-29

    A novel hybrid dummy imprinting strategy was developed to prepare a mesoporous silica for the solid-phase extraction (SPE) of bisphenol A (BPA). A new covalent template-monomer complex (BPAF-Si) was first synthesized with 2,2-bis(4-hydroxyphenyl)hexafluoropropane (BPAF) as the template. The imprinted silica was obtained through the gelation of BPAF-Si with tetraethoxysilane and the subsequent removal of template by thermal cleavage, and then it was characterized by FT-IR spectroscopy, scanning electron microscopy, transmission electron microscopy, and nitrogen adsorption-desorption isotherms. Results showed that the new silica had micron-level particle size and ordered mesoporous structure. The static binding test verified that the imprinted silica had much higher recognition ability for BPA than the non-imprinted silica. The imprinted silica also showed high extraction efficiencies and high enrichment factor for SPE of BPA. Using the imprinted silica, a SPE-HPLC-UV method was developed and successfully applied for detecting BPA in BPA-spiked tap water and lake water samples with a recovery of 99-105%, a RSD of 2.7-5.0% and a limit of detection (S/N=3) of 0.3ng/mL. The new imprinted silica avoided the interference of the residual template molecules and reduced the non-specific binding sites, and therefore it can be utilized as a good sorbent for SPE of BPA in environmental water samples. PMID:25892637

  20. Improvement of DNA recognition through molecular imprinting: hybrid oligomer imprinted polymeric nanoparticles (oligoMIP NPs).

    PubMed

    Brahmbhatt, H; Poma, A; Pendergraff, H M; Watts, J K; Turner, N W

    2016-02-01

    High affinity and specific binding are cardinal properties of nucleic acids in relation to their biological function and their role in biotechnology. To this end, structural preorganization of oligonucleotides can significantly improve their binding performance, and numerous examples of this can be found in Nature as well as in artificial systems. Here we describe the production and characterization of hybrid DNA-polymer nanoparticles (oligoMIP NPs) as a system in which we have preorganized the oligonucleotide binding by molecular imprinting technology. Molecularly imprinted polymers (MIPs) are cost-effective "smart" polymeric materials capable of antibody-like detection, but characterized by superior robustness and the ability to work in extreme environmental conditions. Especially in the nanoparticle format, MIPs are dubbed as one of the most suitable alternatives to biological antibodies due to their selective molecular recognition properties, improved binding kinetics as well as size and dispersibility. Nonetheless, there have been very few attempts at DNA imprinting in the past due to structural complexity associated with these templates. By introducing modified thymine bases into the oligonucleotide sequences, which allow establishing covalent bonds between the DNA and the polymer, we demonstrate that such hybrid oligoMIP NPs specifically recognize their target DNA, and that the unique strategy of incorporating the complementary DNA strands as "preorganized selective monomers" improves the recognition properties without affecting the NPs physical properties such as size, shape or dispersibility. PMID:26509192

  1. Genetic differentiation of hypothalamus parentally biased transcripts in populations of the house mouse implicate the Prader-Willi syndrome imprinted region as a possible source of behavioral divergence.

    PubMed

    Lorenc, Anna; Linnenbrink, Miriam; Montero, Inka; Schilhabel, Markus B; Tautz, Diethard

    2014-12-01

    Parentally biased expression of transcripts (genomic imprinting) in adult tissues, including the brain, can influence and possibly drive the evolution of behavioral traits. We have previously found that paternally determined cues are involved in population-specific mate choice decisions between two populations of the Western house mouse (Mus musculus domesticus). Here, we ask whether this could be mediated by genomically imprinted transcripts that are subject to fast differentiation between these populations. We focus on three organs that are of special relevance for mate choice and behavior: The vomeronasal organ (VNO), the hypothalamus, and the liver. To first identify candidate transcripts at a genome-wide scale, we used reciprocal crosses between M. m. domesticus and M. m. musculus inbred strains and RNA sequencing of the respective tissues. Using a false discovery cutoff derived from mock reciprocal cross comparisons, we find a total of 66 imprinted transcripts, 13 of which have previously not been described as imprinted. The largest number of imprinted transcripts were found in the hypothalamus; fewer were found in the VNO, and the least were found in the liver. To assess molecular differentiation and imprinting in the wild-derived M. m. domesticus populations, we sequenced the RNA of the hypothalamus from individuals of these populations. This confirmed the presence of the above identified transcripts also in wild populations and allowed us to search for those that show a high genetic differentiation between these populations. Our results identify the Ube3a-Snrpn imprinted region on chromosome 7 as a region that encompasses the largest number of previously not described transcripts with paternal expression bias, several of which are at the same time highly differentiated. For four of these, we confirmed their imprinting status via single nucleotide polymorphism-specific pyrosequencing assays with RNA from reciprocal crosses. In addition, we find the

  2. Imprinting analysis of porcine DIO3 gene in two fetal stages and association analysis with carcass and meat quality traits.

    PubMed

    Qiao, Mu; Wu, Hua-Yu; Guo, Ling; Mei, Shu-Qi; Zhang, Peng-Peng; Li, Feng-E; Zheng, Rong; Deng, Chang-Yan

    2012-03-01

    Imprinted genes play important roles in mammalian growth, development and behavior. In this study, we obtained 1568 bp mRNA sequence of porcine DIO3 (deiodinase, iodothyronine, type III), and also identified its imprinting status during porcine fetal development. The complete open reading frame (ORF) encoding 278 amino acids. The porcine DIO3 mRNA was expressed predominantly in backfat, mildly in liver, uterus, kidney, heart, small intestine, muscle and stomach, and almost absent in spleen and lung. A single nucleotide polymorphism in exon (A/C (687)) was used to investigate the allele frequencies in different pig breeds and the imprinting status in porcine embryonic tissues. The results indicate that DIO3 was imprinted in all the tested tissues. Statistical analysis showed the DIO3 gene polymorphism was significantly associated with almost all the fat deposition and carcass traits, including lean meat percentage (LMP), fat meat percentage (FMP), ratio of lean to fat (RLF), shoulder fat thickness (SFT), sixth-seventh rib fat thickness (RFT), buttock fat thickness (BFT), loin eye area (LEA), and intramuscular fat (IMF).

  3. Undernutrition and stage of gestation influence fetal adipose tissue gene expression

    PubMed Central

    Wallace, Jacqueline M.; Milne, John S.; Aitken, Raymond P.; Redmer, Dale A.; Reynolds, Lawrence P.; Luther, Justin S.; Horgan, GW; Adam, Clare L.

    2015-01-01

    Low birthweight is a risk factor for neonatal mortality and adverse metabolic health, both associated with inadequate prenatal adipose tissue development. Here we investigated the impact of maternal undernutrition on expression of genes regulating fetal perirenal adipose tissue (PAT) development and function at gestation days 89 and 130 (term=145d). Singleton fetuses were taken from adolescent ewes fed control (C) intake to maintain adiposity throughout pregnancy or undernourished (UN) to maintain conception weight but deplete maternal reserves (n=7/group). Fetal weight was independent of maternal intake at day 89 but by day 130 fetuses from UN dams were 17% lighter with lower PAT mass containing fewer unilocular adipocytes. Relative PAT expression of IGF1, IGF2, IGF2R and peroxisome-proliferator-activated receptor-gamma (PPARG) mRNA was lower in UN than in C, predominantly at day 89. Independent of maternal nutrition, PAT gene expression of PPARG, glycerol-3-phosphate dehydrogenase, hormone sensitive lipase, leptin, uncoupling protein-1 and prolactin receptor increased and IGF1, IGF2, IGF1R, IGF2R decreased between 89 and 130 days. Fatty acid synthase and lipoprotein lipase (LPL) mRNAs were not influenced by nutrition or stage of pregnancy. Females had greater LPL and leptin mRNA than males, and LPL, leptin and PPARG mRNAs were decreased by UN at day 89 in females only. PAT gene expression correlations with PAT mass were stronger at day 89 than day 130. These data suggest that key genes regulating adipose tissue development and function are active from mid-gestation when they are sensitive to maternal undernutrition. This leads to reduced fetal adiposity by late pregnancy. PMID:25917833

  4. Increased dosage of the imprinted Ascl2 gene restrains two key endocrine lineages of the mouse Placenta.

    PubMed

    Tunster, S J; McNamara, G I; Creeth, H D J; John, R M

    2016-10-01

    Imprinted genes are expressed primarily from one parental allele by virtue of a germ line epigenetic process. Achaete-scute complex homolog 2 (Ascl2 aka Mash2) is a maternally expressed imprinted gene that plays a key role in placental and intestinal development. Loss-of-function of Ascl2 results in an expansion of the parietal trophoblast giant cell (P-TGC) lineage, an almost complete loss of Trophoblast specific protein alpha (Tpbpa) positive cells in the ectoplacental cone and embryonic failure by E10.5. Tpbpa expression marks the progenitors of some P-TGCs, two additional trophoblast giant cell lineages (spiral artery and canal), the spongiotrophoblast and the glycogen cell lineage. Using a transgenic model, here we show that elevated expression of Ascl2 reduced the number of P-TGC cells by 40%. Elevated Ascl2 also resulted in a marked loss of the spongiotrophoblast and a substantial mislocalisation of glycogen cells into the labyrinth. In addition, Ascl2-Tg placenta contained considerably more placental glycogen than wild type. Glycogen cells are normally located within the junctional zone in close contact with spongiotrophoblast cells, before migrating through the P-TGC layer into the maternal decidua late in gestation where their stores of glycogen are released. The failure of glycogen cells to release their stores of glycogen may explain both the inappropriate accumulation of glycogen and fetal growth restriction observed late in gestation in this model. In addition, using in a genetic cross we provide evidence that Ascl2 requires the activity of a second maternally expressed imprinted gene, Pleckstrin homology-like domain, family a, member 2 (Phlda2) to limit the expansion of the spongiotrophoblast. This "belts and braces" approach demonstrates the importance of genomic imprinting in regulating the size of the placental endocrine compartment for optimal placental development and fetal growth. PMID:27542691

  5. Developmental programming mediated by complementary roles of imprinted Grb10 in mother and pup.

    PubMed

    Cowley, Michael; Garfield, Alastair S; Madon-Simon, Marta; Charalambous, Marika; Clarkson, Richard W; Smalley, Matthew J; Kendrick, Howard; Isles, Anthony R; Parry, Aled J; Carney, Sara; Oakey, Rebecca J; Heisler, Lora K; Moorwood, Kim; Wolf, Jason B; Ward, Andrew

    2014-02-01

    Developmental programming links growth in early life with health status in adulthood. Although environmental factors such as maternal diet can influence the growth and adult health status of offspring, the genetic influences on this process are poorly understood. Using the mouse as a model, we identify the imprinted gene Grb10 as a mediator of nutrient supply and demand in the postnatal period. The combined actions of Grb10 expressed in the mother, controlling supply, and Grb10 expressed in the offspring, controlling demand, jointly regulate offspring growth. Furthermore, Grb10 determines the proportions of lean and fat tissue during development, thereby influencing energy homeostasis in the adult. Most strikingly, we show that the development of normal lean/fat proportions depends on the combined effects of Grb10 expressed in the mother, which has the greater effect on offspring adiposity, and Grb10 expressed in the offspring, which influences lean mass. These distinct functions of Grb10 in mother and pup act complementarily, which is consistent with a coadaptation model of imprinting evolution, a model predicted but for which there is limited experimental evidence. In addition, our findings identify Grb10 as a key genetic component of developmental programming, and highlight the need for a better understanding of mother-offspring interactions at the genetic level in predicting adult disease risk. PMID:24586114

  6. Developmental Programming Mediated by Complementary Roles of Imprinted Grb10 in Mother and Pup

    PubMed Central

    Cowley, Michael; Garfield, Alastair S.; Madon-Simon, Marta; Charalambous, Marika; Clarkson, Richard W.; Smalley, Matthew J.; Kendrick, Howard; Isles, Anthony R.; Parry, Aled J.; Carney, Sara; Oakey, Rebecca J.; Heisler, Lora K.; Moorwood, Kim; Wolf, Jason B.; Ward, Andrew

    2014-01-01

    Developmental programming links growth in early life with health status in adulthood. Although environmental factors such as maternal diet can influence the growth and adult health status of offspring, the genetic influences on this process are poorly understood. Using the mouse as a model, we identify the imprinted gene Grb10 as a mediator of nutrient supply and demand in the postnatal period. The combined actions of Grb10 expressed in the mother, controlling supply, and Grb10 expressed in the offspring, controlling demand, jointly regulate offspring growth. Furthermore, Grb10 determines the proportions of lean and fat tissue during development, thereby influencing energy homeostasis in the adult. Most strikingly, we show that the development of normal lean/fat proportions depends on the combined effects of Grb10 expressed in the mother, which has the greater effect on offspring adiposity, and Grb10 expressed in the offspring, which influences lean mass. These distinct functions of Grb10 in mother and pup act complementarily, which is consistent with a coadaptation model of imprinting evolution, a model predicted but for which there is limited experimental evidence. In addition, our findings identify Grb10 as a key genetic component of developmental programming, and highlight the need for a better understanding of mother-offspring interactions at the genetic level in predicting adult disease risk. PMID:24586114

  7. Imprintable membranes from incomplete chiral coalescence

    NASA Astrophysics Data System (ADS)

    Zakhary, Mark J.; Gibaud, Thomas; Nadir Kaplan, C.; Barry, Edward; Oldenbourg, Rudolf; Meyer, Robert B.; Dogic, Zvonimir

    2014-01-01

    Coalescence is an essential phenomenon that governs the equilibrium behaviour in a variety of systems from intercellular transport to planetary formation. In this report, we study coalescence pathways of circularly shaped two-dimensional colloidal membranes, which are one rod-length-thick liquid-like monolayers of aligned rods. The chirality of the constituent rods leads to three atypical coalescence pathways that are not found in other simple or complex fluids. In particular, we characterize two pathways that do not proceed to completion but instead produce partially joined membranes connected by line defects—π-wall defects or alternating arrays of twisted bridges and pores. We elucidate the structure and energetics of these defects and ascribe their stability to a geometrical frustration inherently present in chiral colloidal membranes. Furthermore, we induce the coalescence process with optical forces, leading to a robust on-demand method for imprinting networks of channels and pores into colloidal membranes.

  8. Imprinting bulk amorphous alloy at room temperature

    PubMed Central

    Kim, Song-Yi; Park, Eun-Soo; Ott, Ryan T.; Lograsso, Thomas A.; Huh, Moo-Young; Kim, Do-Hyang; Eckert, Jürgen; Lee, Min-Ha

    2015-01-01

    We present investigations on the plastic deformation behavior of a brittle bulk amorphous alloy by simple uniaxial compressive loading at room temperature. A patterning is possible by cold-plastic forming of the typically brittle Hf-based bulk amorphous alloy through controlling homogenous flow without the need for thermal energy or shaping at elevated temperatures. The experimental evidence suggests that there is an inconsistency between macroscopic plasticity and deformability of an amorphous alloy. Moreover, imprinting of specific geometrical features on Cu foil and Zr-based metallic glass is represented by using the patterned bulk amorphous alloy as a die. These results demonstrate the ability of amorphous alloys or metallic glasses to precisely replicate patterning features onto both conventional metals and the other amorphous alloys. Our work presents an avenue for avoiding the embrittlement of amorphous alloys associated with thermoplastic forming and yields new insight the forming application of bulk amorphous alloys at room temperature without using heat treatment. PMID:26563908

  9. Selective sample treatment using molecularly imprinted polymers.

    PubMed

    Pichon, Valérie

    2007-06-01

    The molecularly imprinted polymers (MIPs) are synthetic polymers possessing specific cavities designed for a target molecule. By a mechanism of molecular recognition, the MIPs are used as selective sorbents for the solid-phase extraction of target analytes from complex matrices. MIPs are often called synthetic antibodies in comparison with immuno-based sorbents; they offer some advantages including easy, cheap and rapid preparation and high thermal and chemical stability. This review describes the use of MIPs in solid-phase extraction with emphasis on their synthesis, the various parameters affecting the selectivity of the extraction, their potential to selectively extract analytes from complex aqueous samples or organic extracts, their on-line coupling with LC and their potential in miniaturized devices. PMID:17412351

  10. Imprinting bulk amorphous alloy at room temperature.

    PubMed

    Kim, Song-Yi; Park, Eun-Soo; Ott, Ryan T; Lograsso, Thomas A; Huh, Moo-Young; Kim, Do-Hyang; Eckert, Jürgen; Lee, Min-Ha

    2015-01-01

    We present investigations on the plastic deformation behavior of a brittle bulk amorphous alloy by simple uniaxial compressive loading at room temperature. A patterning is possible by cold-plastic forming of the typically brittle Hf-based bulk amorphous alloy through controlling homogenous flow without the need for thermal energy or shaping at elevated temperatures. The experimental evidence suggests that there is an inconsistency between macroscopic plasticity and deformability of an amorphous alloy. Moreover, imprinting of specific geometrical features on Cu foil and Zr-based metallic glass is represented by using the patterned bulk amorphous alloy as a die. These results demonstrate the ability of amorphous alloys or metallic glasses to precisely replicate patterning features onto both conventional metals and the other amorphous alloys. Our work presents an avenue for avoiding the embrittlement of amorphous alloys associated with thermoplastic forming and yields new insight the forming application of bulk amorphous alloys at room temperature without using heat treatment. PMID:26563908

  11. Imprinting bulk amorphous alloy at room temperature

    NASA Astrophysics Data System (ADS)

    Kim, Song-Yi; Park, Eun-Soo; Ott, Ryan T.; Lograsso, Thomas A.; Huh, Moo-Young; Kim, Do-Hyang; Eckert, Jürgen; Lee, Min-Ha

    2015-11-01

    We present investigations on the plastic deformation behavior of a brittle bulk amorphous alloy by simple uniaxial compressive loading at room temperature. A patterning is possible by cold-plastic forming of the typically brittle Hf-based bulk amorphous alloy through controlling homogenous flow without the need for thermal energy or shaping at elevated temperatures. The experimental evidence suggests that there is an inconsistency between macroscopic plasticity and deformability of an amorphous alloy. Moreover, imprinting of specific geometrical features on Cu foil and Zr-based metallic glass is represented by using the patterned bulk amorphous alloy as a die. These results demonstrate the ability of amorphous alloys or metallic glasses to precisely replicate patterning features onto both conventional metals and the other amorphous alloys. Our work presents an avenue for avoiding the embrittlement of amorphous alloys associated with thermoplastic forming and yields new insight the forming application of bulk amorphous alloys at room temperature without using heat treatment.

  12. Chromosome imbalance, normal phenotype, and imprinting.

    PubMed Central

    Bortotto, L; Piovan, E; Furlan, R; Rivera, H; Zuffardi, O

    1990-01-01

    A duplication of the sub-bands 1q42.11 and 1q42.12 was found in a boy and his mother. The proband has short stature (around the 10th centile) but a normal phenotype and psychomotor development. His mother is also asymptomatic. We found 30 published cases of normal subjects with an imbalance of autosomal euchromatic material. In these cases the imbalance involved either only one G positive band or a G positive and a G negative band. Thus the absence of a phenotypic effect cannot always be ascribed to the deficiency in the G positive bands of coding DNA. Moreover, in some cases, the method of transmission of the chromosome abnormality was such that an imprinting effect could be postulated. Images PMID:2231652

  13. Imprinting bulk amorphous alloy at room temperature

    SciTech Connect

    Kim, Song-Yi; Park, Eun-Soo; Ott, Ryan T.; Lograsso, Thomas A.; Huh, Moo-Young; Kim, Do-Hyang; Eckert, Jürgen; Lee, Min-Ha

    2015-11-13

    We present investigations on the plastic deformation behavior of a brittle bulk amorphous alloy by simple uniaxial compressive loading at room temperature. A patterning is possible by cold-plastic forming of the typically brittle Hf-based bulk amorphous alloy through controlling homogenous flow without the need for thermal energy or shaping at elevated temperatures. The experimental evidence suggests that there is an inconsistency between macroscopic plasticity and deformability of an amorphous alloy. Moreover, imprinting of specific geometrical features on Cu foil and Zr-based metallic glass is represented by using the patterned bulk amorphous alloy as a die. These results demonstrate the ability of amorphous alloys or metallic glasses to precisely replicate patterning features onto both conventional metals and the other amorphous alloys. In conclusion, our work presents an avenue for avoiding the embrittlement of amorphous alloys associated with thermoplastic forming and yields new insight the forming application of bulk amorphous alloys at room temperature without using heat treatment.

  14. A new application of molecularly imprinted materials.

    PubMed

    Ye, L; Ramström, O; Månsson, M O; Mosbach, K

    1998-01-01

    We have studied the possibility of shifting a thermodynamically unfavourable enzymatic equilibrium towards product formation via the addition of a highly specific adsorbent. The commercially interesting enzymatic condensation of Z-L-aspartic acid with L-phenylalanine methyl ester to the sweetener aspartame was chosen as the model system. Extremely stable and specific adsorbents for the product Z-L-Asp-L-Phe-OMe (Z-aspartame) were prepared using the emerging technique of molecular imprinting. A considerable increase (40%) in the yield of product was obtained when such adsorbents were present during the enzymatic reaction. The message of this investigation is that the use of such specific, sterilizable adsorbents should be considered for enzymatic processes to increase the yield. Finally, the direct isolation of a product formed by the retrieval of the adsorbents carrying the product can be envisaged, especially if the adsorbents are magnetic.

  15. Cell shape recognition by colloidal cell imprints: Energy of the cell-imprint interaction

    NASA Astrophysics Data System (ADS)

    Borovička, Josef; Stoyanov, Simeon D.; Paunov, Vesselin N.

    2015-09-01

    The results presented in this study are aimed at the theoretical estimate of the interactions between a spherical microbial cell and the colloidal cell imprints in terms of the Derjaguin, Landau, Vervey, and Overbeek (DLVO) surface forces. We adapted the Derjaguin approximation to take into account the geometry factor in the colloidal interaction between a spherical target particle and a hemispherical shell at two different orientations with respect to each other. We took into account only classical DLVO surface forces, i.e., the van der Waals and the electric double layer forces, in the interaction of a spherical target cell and a hemispherical shell as a function of their size ratio, mutual orientation, distance between their surfaces, their respective surface potentials, and the ionic strength of the aqueous solution. We found that the calculated interaction energies are several orders higher when match and recognition between the target cell and the target cell imprint is achieved. Our analysis revealed that the recognition effect of the hemispherical shell towards the target microsphere comes from the greatly increased surface contact area when a full match of their size and shape is produced. When the interaction between the surfaces of the hemishell and the target cell is attractive, the recognition greatly amplifies the attraction and this increases the likelihood of them to bind strongly. However, if the surface interaction between the cell and the imprint is repulsive, the shape and size match makes this interaction even more repulsive and thus decreases the likelihood of binding. These results show that the surface chemistry of the target cells and their colloidal imprints is very important in controlling the outcome of the interaction, while the shape recognition only amplifies the interaction. In the case of nonmonotonous surface-to-surface interaction we discovered some interesting interplay between the effects of shape match and surface chemistry

  16. Cell shape recognition by colloidal cell imprints: energy of the cell-imprint interaction.

    PubMed

    Borovička, Josef; Stoyanov, Simeon D; Paunov, Vesselin N

    2015-09-01

    The results presented in this study are aimed at the theoretical estimate of the interactions between a spherical microbial cell and the colloidal cell imprints in terms of the Derjaguin, Landau, Vervey, and Overbeek (DLVO) surface forces. We adapted the Derjaguin approximation to take into account the geometry factor in the colloidal interaction between a spherical target particle and a hemispherical shell at two different orientations with respect to each other. We took into account only classical DLVO surface forces, i.e., the van der Waals and the electric double layer forces, in the interaction of a spherical target cell and a hemispherical shell as a function of their size ratio, mutual orientation, distance between their surfaces, their respective surface potentials, and the ionic strength of the aqueous solution. We found that the calculated interaction energies are several orders higher when match and recognition between the target cell and the target cell imprint is achieved. Our analysis revealed that the recognition effect of the hemispherical shell towards the target microsphere comes from the greatly increased surface contact area when a full match of their size and shape is produced. When the interaction between the surfaces of the hemishell and the target cell is attractive, the recognition greatly amplifies the attraction and this increases the likelihood of them to bind strongly. However, if the surface interaction between the cell and the imprint is repulsive, the shape and size match makes this interaction even more repulsive and thus decreases the likelihood of binding. These results show that the surface chemistry of the target cells and their colloidal imprints is very important in controlling the outcome of the interaction, while the shape recognition only amplifies the interaction. In the case of nonmonotonous surface-to-surface interaction we discovered some interesting interplay between the effects of shape match and surface chemistry

  17. Differential developmental competence and gene expression patterns in buffalo (Bubalus bubalis) nuclear transfer embryos reconstructed with fetal fibroblasts and amnion mesenchymal stem cells.

    PubMed

    Sadeesh Em; Shah, Fozia; Yadav, P S

    2016-10-01

    The developmental ability and gene expression pattern at 8- to 16-cell and blastocyst stages of buffalo (Bubalus bubalis) nuclear transfer (NT) embryos from fetal fibroblasts (FFs), amnion mesenchymal stem cells (AMSCs) and in vitro fertilized (IVF) embryos were compared in the present studies. The in vitro expanded buffalo FFs showed a typical "S" shape growth curve with a doubling time of 41.4 h and stained positive for vimentin. The in vitro cultured undifferentiated AMSCs showed a doubling time of 39.5 h and stained positive for alkaline phosphatase, and these cells also showed expression of pluripotency markers (OCT 4, SOX 2, NANOG), and mesenchymal stem cell markers (CD29, CD44) and were negative for haematopoietic marker (CD34) genes at different passages. Further, when AMSCs were exposed to corresponding induction conditions, these cells differentiated into adipogenic, chondrogenic and osteogenic lineages which were confirmed through oil red O, alcian blue and alizarin staining, respectively. Donor cells at 3-4 passage were employed for NT. The cleavage rate was significantly (P < 0.05) higher in IVF than in FF-NT and AMSC-NT embryos (82.6 ± 8.2 vs. 64.6 ± 1.3 and 72.3 ± 2.2 %, respectively). However, blastocyst rates in IVF and AMSC-NT embryos (30.6 ± 2.7 and 28.9 ± 3.1 %) did not differ and were significantly (P < 0.05) higher than FF-NT (19.5 ± 1.8 %). Total cell number did not show significant (P > 0.05) differences between IVF and AMSC-NT embryos (186.7 ± 4.2, 171.2 ± 3.8, respectively) but were significantly (P < 0.05) higher than that from FF-NT (151.3 ± 4.1). Alterations in the expression pattern of genes implicated in transcription and pluripotency (OCT4, STAT3, NANOG), DNA methylation (DNMT1, DNMT3A), histone deacetylation (HDAC2), growth factor signaling and imprinting (IGF2, IGF2R), apoptosis (BAX, BCL2), metabolism (GLUT1) and oxidative stress (MnSOD) regulation were observed in cloned embryos. The

  18. A synthetic nanomaterial for virus recognition produced by surface imprinting.

    PubMed

    Cumbo, Alessandro; Lorber, Bernard; Corvini, Philippe F-X; Meier, Wolfgang; Shahgaldian, Patrick

    2013-01-01

    Major stumbling blocks in the production of fully synthetic materials designed to feature virus recognition properties are that the target is large and its self-assembled architecture is fragile. Here we describe a synthetic strategy to produce organic/inorganic nanoparticulate hybrids that recognize non-enveloped icosahedral viruses in water at concentrations down to the picomolar range. We demonstrate that these systems bind a virus that, in turn, acts as a template during the nanomaterial synthesis. These virus imprinted particles then display remarkable selectivity and affinity. The reported method, which is based on surface imprinting using silica nanoparticles that act as a carrier material and organosilanes serving as biomimetic building blocks, goes beyond simple shape imprinting. We demonstrate the formation of a chemical imprint, comparable to the formation of biosilica, due to the template effect of the virion surface on the synthesis of the recognition material. PMID:23422671

  19. Step and flash imprint lithography for manufacturing patterned media

    NASA Astrophysics Data System (ADS)

    Brooks, Cynthia; Schmid, Gerard M.; Miller, Mike; Johnson, Steve; Khusnatdinov, Niyaz; LaBrake, Dwayne; Resnick, Douglas J.; Sreenivasan, S. V.

    2009-03-01

    The ever-growing demand for hard drives with greater storage density has motivated a technology shift from continuous magnetic media to patterned media hard disks, which are expected to be implemented in future generations of hard disk drives to provide data storage at densities exceeding 1012 bits per square inch. Step and Flash Imprint Lithography (S-FIL) technology has been employed to pattern the hard disk substrates. This paper discusses the infrastructure required to enable S-FIL in high-volume manufacturing; namely, fabrication of master templates, template replication, high-volume imprinting with precisely controlled residual layers, and dual-sided imprinting. Imprinting of disks is demonstrated with substrate throughput currently as high as 180 disks/hour (dualsided). These processes are applied to patterning hard disk substrates with both discrete tracks and bit-patterned designs.

  20. Mechanical strains and electric fields applied to topologically imprinted elastomers

    NASA Astrophysics Data System (ADS)

    Burridge, D. J.; Mao, Y.; Warner, M.

    2006-08-01

    We analyze and predict the behavior of a chirally imprinted elastomer under a mechanical strain and an electric field, applied along the helical axis. As the strain and/or field increases, the system is deformed from a conical or transverse imprinted state towards an ultimately nematic one. At a critical strain and/or field there is a first-order transition to a low imprinting efficiency state. This transition is accompanied by a discontinuous global rotation of the director toward the axis of the imprinted helix, measured by the cone angle, θ . We show that the threshold electric field required for switching this transition can be conveniently low, provided an appropriate prestrain is imposed. We suggest that these properties may give rise to a “chiral pump.”

  1. Novel chiral recognition elements for molecularly imprinted polymer preparation.

    PubMed

    Knutsson, M; Andersson, H S; Nicholls, I A

    1998-01-01

    The use of a novel chiral functional monomer system in molecular imprinting protocols is described. The monomer, dibenzyl (2R,3R)-O-monoacryloyl tartrate, possesses a hydroxyl moiety which can be used to direct template-functional monomer interactions during molecular imprinting polymerization. This system simultaneously positions benzyl ester-protected carboxyl groups in close proximity to the template, which upon deprotection yield recognition sites with stronger ligand-binding capacities. Furthermore, the inherent chirality of the monomer engenders the polymer with an inbuilt preference for a given stereoisomer. Application of the system to the molecular imprinting of the cinchonidine alkaloids (+)-cinchonine and (-)-cinchonidine yielded stereoselective polymers. The effect of imprinting (+)-cinchonine produced a polymer which more than reversed the inherent chiral selectivity of the chiral monomer residues present in the matrix.

  2. Rapid preparation of molecularly imprinted polymer by frontal polymerization.

    PubMed

    Zhong, Dan-Dan; Liu, Xin; Pang, Qian-Qian; Huang, Yan-Ping; Liu, Zhao-Sheng

    2013-04-01

    Frontal polymerization was successfully applied, for the first time, to obtain molecularly imprinted polymers (MIPs). The method provides a solvent-free polymerization mode, and the reaction can be completed in 30 min. By this approach, MIPs were synthesized using a mixture of levofloxacin (template), methacrylic acid, and divinylbenzene. The effect of template concentration and the amount of comonomer on the imprinting effect of the resulting MIPs was investigated. The textural and morphological parameters of the MIP particles were also characterized by mercury intrusion porosimetry, nitrogen adsorption isotherms, and scanning electron microscopy, providing evidence concerning median pore diameter, pore volumes, and pore size distributions. The levofloxacin-imprinted polymer formed in frontal polymerization mode showed high selectivity, with an imprinting factor of 5.78. The results suggest that frontal polymerization provides an alternative means to prepare MIPs that are difficult to synthesize and may open up new perspectives in the field of MIPs. PMID:23392405

  3. The investigation of mold life for glass thermal imprint

    NASA Astrophysics Data System (ADS)

    Chen, L. K.; Hung, Y. M.; Sung, C. K.

    2011-12-01

    Thermal imprint provides a stable and rapid approach in the fabrication of precision V-groove structures. This paper presents a theoretical and experimental study focusing on the estimation of mold life based on both the formation and wear mechanisms. In the experiment, BK-7 was used as the substrate, and the mold with V-groove patterns was fabricated with glassy carbon. The formation of V-groove microstructures on BK-7 glass substrate was implemented by a lab made thermal imprint equipment, while the precision of imprinted pattern was measured by an optical measurement system. Additionally, the micro-scale friction and wear theories were adopted to estimate the mold life. Finally, the prediction model of mold life can be estimated by the relative friction and wear theories and measurement data, which enable us to efficiently optimize the glass thermal imprint process.

  4. 7. Underside of Roadbed (Interior beams cast horizontal, imprints of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Underside of Roadbed (Interior beams cast horizontal, imprints of timbers used as formwork visible on abutment walls and beams) - North Bridge, Spanning Quarton Lake branch of River Rouge, Birmingham, Oakland County, MI

  5. 7. Underside of Roadbed (Interior beams cast horizontal, imprints of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Underside of Roadbed (Interior beams cast horizontal, imprints of timbers used as formwork visible on abutment walls and beams) - South Bridge, Spanning Quarton Lake branch of River Rouge, Birmingham, Oakland County, MI

  6. 21 CFR 206.10 - Code imprint required.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... identification than a symbol or logo by itself. Homeopathic drug products are required only to bear an imprint that identifies the manufacturer and their homeopathic nature. (b) A holder of an approved...

  7. 21 CFR 206.10 - Code imprint required.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... identification than a symbol or logo by itself. Homeopathic drug products are required only to bear an imprint that identifies the manufacturer and their homeopathic nature. (b) A holder of an approved...

  8. 21 CFR 206.10 - Code imprint required.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... identification than a symbol or logo by itself. Homeopathic drug products are required only to bear an imprint that identifies the manufacturer and their homeopathic nature. (b) A holder of an approved...

  9. 21 CFR 206.10 - Code imprint required.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... identification than a symbol or logo by itself. Homeopathic drug products are required only to bear an imprint that identifies the manufacturer and their homeopathic nature. (b) A holder of an approved...

  10. 21 CFR 206.10 - Code imprint required.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... identification than a symbol or logo by itself. Homeopathic drug products are required only to bear an imprint that identifies the manufa